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INTRODUCTION

Providing accurate medical imaging at an aid station or remote field hospital is difficult. Portable
ultrasound instrumentation can be designed for these applications, but the expertise required for
an accurate diagnosis can only be obtained through years of training. Much of the information in
an ultrasound examination is obtained by exploiting the real-time nature of the imaging modality.
A successful diagnosis relies on the skill of the diagnostician to transform mentally dynamic
two-dimensional (2D) images into the complex three-dimensional (3D) anatomy. Locating
anatomical landmarks and moving the scan plane throughout the volume of interest are both
critical components of this process. Without extensive training, it would be difficult for a
medical corpsman to perform this procedure.

Researchers have started exploring tele-medicine in combination with 3D ultrasound data
acquisition as a solution to this problem. This combination could potentially transfer the skill
required to scan the patient and make the diagnosis from a medical corpsman to an imaging
expert. Unfortunately, acquiring a 3D ultrasound data set is difficult. Modem 3D ultrasound
systems are essentially conventional scanners modified to collect a series of 2D images. The
images are later 'stacked' to represent the 3D anatomy. Although modem scanners are designed
to collect 2D images in real-time (20 2D images/s), 3D image acquisition is slow. Slow image
acquisition introduces the problem of how to align adjacent 2D images collected at different
times. The patient and imaging probe can be immobilized to reduce movement of the anatomy
between adjacent images. Cardiac and respiratory gating can also be applied. Even in a carefully
controlled clinical setting, the resulting 3D data set is often badly distorted. If the patient, the
anatomy, or the transducer moves during 3D image acquisition, the data must be discarded.
Providing the care needed to obtain 'good' 3D data in the clinic is troublesome, on a battlefield it
would be very difficult.

We are building an ultrasound imaging system that would avoid these problems. The two key
components of our system are the following: 1) a high speed scanner that can collect 3D data 40
to 80 times faster than current 3D imaging approaches, and 2) a set of software tools for rapid
image manipulation and analysis at a remote site. Real-time 3D image acquisition eliminates the
need for patient immobilization, and cardiac and respiratory gating. A medical corpsman would
simply place a small probe on the patient and position the sample volume by viewing a real-time
two-dimensional image of the anatomy. Once the probe is correctly placed, a three-dimensional
data set would be recorded in real-time (0.05 s for each 3D data set). Following data acquisition,
the images would be transmitted to a central hospital for post-processing and analysis. An expert
clinician could 're-scan' the patient by looking at multiple 2D planes through the data sets, or
examine a computer reconstruction of the three-dimensional anatomy. The 3D data set could also
be analyzed quantitatively to calculate dynamic changes in the anatomy. The entire imaging
procedure, including subject preparation, would take only a few minutes.
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BODY

A description of progress in each of the areas outlined in the statement of work is given below.

Phase III: Month 12 - 24

Scanner/Array Development:

Beamformer - Complete software development for 64-channel system and verify
performance.

PARTIALLY COMPLETED - The assembly language routines for all 64 channels have been
written and independently verified. The board vender had unforeseen manufacturing problems,
having to do with the availability of certain specialized memory parts used in the system. As a
result, we have only 17 of 33 digital signal processing boards available for testing. This
precludes testing the complete 64-channel system. The full system is expected by February
2001. We have tested and verified the algorithms for a 24 channel system using simulated
receive signals. We have also characterized and fully developed the synchronization electronics
required for the 64-channel system. All testing to date indicates that the 64-channel system will
function as designed. Calibration procedures are also being developed to ensure accurate
performance. A conference proceeding publication, which describes the beamformer hardware
and software, is included in Appendix 1.

* Front end electronics - Based on results of Phase II, design, fabricate, and test 64-channel
front end.

PARTIALLY COMPLETED - Using a prototype array from Tetrad, a single channel of the front
end was evaluated and found to be acceptable. The complete 64-channel front end has been
designed, but fabrication is not yet completed.

* Transmit electronics - Based on results of Phase II, design, fabricate, and test multi-channel
transmit boards.

COMPLETED - The decision was made to use a multi-layer transducer technology. A lab-bench
multi-channel system has been designed and tested successfully. A PC board has been designed
and sent out for fabrication. The pulser is capable of producing a monocycle from 0 to 400 volts
peak-to-peak into a 10 to 50 ohm load. The pulse frequency can be varied from 1 to 10 MHz and
the pulse repetition rate can be as high as 7 kHz. These specifications exceed the requirements
for the system.
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The following two tasks were assigned to Tetrad Corporation under subcontract. Four reports
describing the progress made on the transducer array and probe head are included in Appendix 2
of this report.

0 Transducer Array - Based on results of Phase II, design, fabricate, and test prototype array.

COMPLETED - Tetrad has designed and built a prototype array. A complete evaluation of this
array is included in the Appendix 2.

* Probe Head - Assemble probe and deliver completed probe with drive circuitry to Cleveland
Clinic.

PARTIALLY COMPLETED - A probe was assembled using a prototype array. The drive
circuitry and electrical connections were evaluated. Details of the analysis are included in
Appendix 2 of this report. A completed probe with an array meeting the specifications of this
project is not yet completed.

* Develop software for scanner control.

PARTIALLY COMPLETED - Control of the scanner involves the integration of four major
components: beamformer, pulser, transducer, and scan converting display. Each individual
component has its own controls and overall system control involves synchronizing all of these
systems. Using a specially developed synchronization board, we are able to ensure that the
motion control signals from the transducer are used to simultaneously activate the beamformer
and high voltage pulser. This is all done under the control of assembly language routines
running on the beamforming hardware. The display has been designed to be data driven, so that
minimal controls are needed. Software for controlling the display itself is fully developed. The
major task remaining is the development of software which can control the motion of the
transducer. This has been delayed until the actual rocking probe hardware is available.

User Interface & Image Processing Software:

0 Develop clinical toolbox for detection of shrapnel

NOT COMPLETED - Unavailability of ultrasound images showing shrapnel or trauma in
general has hindered the development of this toolbox. We are now planning to collect such
images at the Walter Reed Hospital with the help of Drs. Gerald Moses and Kenneth Curley of
the Telemedicine and Advanced Technology Research Center (TATRC). These images will be
two-dimensional (2D), because most hospitals do not have the 3D acquisition capability. We
plan to apply feature detection techniques being developed for the breast imaging toolbox to the
trauma ultrasound images when they become available. In the future, when the use of 3D
ultrasound imaging becomes widespread, our shrapnel detection technique can be extended to
accommodate the third dimension.
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Develop clinical toolbox for cardiac imaging

PARTIALLY COMPLETED - Dynamic multi-planar reformatting (MPR), 3D image
segmentation and 3D image registration are the three major engineering components we are
developing for the cardiac imaging toolbox. The development of dynamic MPR and 3D image
registration has been completed, while the development of 3D image segmentation is still
ongoing. We expect to complete the development of 3D image segmentation in first quarter of
2001. Below we describe each engineering component individually.

Dynamic MPR. The dynamic MPR capability is a simple yet powerful mechanism to visualize a
time varying 3D image by viewing any oblique or orthographic cross-section, replayed at the
original heart rate (hence, dynamic). Although conceptually simple, the implementation of
dynamic MPR is computationally demanding. To animate a view at 30 frames/sec,
approximately 4 million trilinear interpolations per second (TRIPS) or 84 million floating-point
operations (56 million multiplications and 28 million additions) per second are required. We
have achieved interactive performance (>30 frames/sec) through the use 3D texture mapping
hardware, resident on high-end graphics boards. The specific hardware we have used is rated to
perform 142 million TRIPS. We are going to describe the dynamic MPR implementation in
several publications.

3D Image Registration. The registration capability allows us to compare anatomy and physiology
serially. The details of 3D image registration are described in the manuscript, "Mutual
information-based rigid and nonrigid registration of ultrasound volumes." This manuscript (see
Appendix 3) is currently under peer-review for publication in IEEE Transactions on Medical
Imaging. We will present another paper, "Multifunction extension of simplex optimization
method for mutual information based registration of ultrasound volumes," at the SPIE Medical
Imaging Symposium in San Diego in February 2001. The abstract of this manuscript (see
Appendix 4) is provided with this report.

3D Image Segmentation. We are extending our earlier published work to detect the endo- and
epicardial surfaces of the left ventricle in 3D. It is a two-step semiautomatic approach, in which a
surface template, placed in close proximity of the organ of interest by the user, is refined
automatically thereafter under the influence of image gradients. This approach combines the
strengths of automated and manual techniques, namely, the objectivity of automated techniques
and the robustness of manual techniques.

We have created the necessary GUI to display a 3D image, place a 3D surface template inside
the 3D image, and transform the shape globally as well as locally. The surface template can be
rotated, translated and scaled comprising global transformation modes. In addition, any vertex
with a user-controlled neighborhood can be pulled out or pushed in perpendicular to the surface
(local morphing) by a user-defined amount. Shape changes are reflected in all views. The
ongoing work focuses on: (1) creation of efficient data structure for 3D shapes, (2) development
of effective automatic shape refinement algorithm, (3) segmentation of endo- and epicardial
surfaces in all frames for shape tracking, and (4) validation.
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Develop clinical toolbox for breast imaging

PARTIALLY COMPLETED - As part of the breast imaging toolbox, we are developing
automated tools to analyze lesions observed on 2D breast ultrasound images and to resolve cysts
from non-cysts. The use of ultrasound is limited to these tasks in the current clinical practice.
Moreover, these tasks are subjective since they are performed manually.

Our ongoing engineering development focuses on (1) segmentation of an observed lesion from
the background and (2) separation of cysts from non-cysts. The test images, which number 18,
represent a wide range of conditions and include 8 cysts and 10 non-cysts. We are investigating a
set of optimal descriptors to discriminate between cysts and non-cysts. The available descriptors
are tumor boundary fluctuation, tumor boundary roughness, geometric surface roughness, and
several texture descriptors.

* Integrate toolboxes into user interface

PARTIALLY COMPLETED - The integration of toolboxes has been under way. This
integration will be completed when the toolboxes are fully developed.
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KEY RESEARCH ACCOMPLISHMENTS

"* Developed optimized software for complete 64-channel beamformer (see Appendix 1)
"* Synchronized the beamformer with the transducer and pulsing system.
"* Design receive electronics and test for a single channel using a prototype array
"* Designed and evaluated a complete multi-channel transmit board
"* Fabricated and evaluated a prototype array (see Appendix 2)
"* Developed interactive and dynamic multi-planar reformatting (> 30 frames/second)
"* Demonstrated real-time scan conversion of simulated 4D ultrasound data
"* Demonstrated rigid and nonrigid registration of ultrasound (see Appendix 3)
"* Developed a multi-function optimization algorithm (see Appendix 4)

REPORTABLE OUTCOMES

Manuscripts, abstracts, presentations:

"* C.R. Hazard and G.R. Lockwood, "Developing a High Speed Beamformer Using the
TMS320C6201 Digital Signal Processor," Proc. 2000 IEEE Ultrasonics Symposium, San
Juan, Puerto Rico, In Press.

" Vladimir Zagrodsky, Raj Shekhar, and J. Fredrick Cornhill, "Multifunction extension of
simplex optimization method for mutual information based registration of ultrasound
volumes," to be presented at the SPIE Medical Imaging Symposium in San Diego in
February 2001.

" Raj Shekhar, Vladimir Zagrodsky, and J. Fredrick Cornhill, "Mutual information-based rigid
and nonrigid registration of ultrasound volumes," submitted to IEEE Transactions on
Medical Imaging.

Funding applied for:

"* Development of quantitative real-time 3D stress echocardiography (PI - Raj Shekhar)
Funding Agency: The Whitaker Foundation

"* Improving coronary artery disease diagnosis through registration of real-time 3D and SPECT
images (PI - Raj Shekhar )
Funding Agency: American Heart Association - Ohio Valley Affiliate
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CONCLUSIONS

We have developed a method for high speed ultrasound imaging. The method permits the
acquisition of 40 to 80 images in the time normally required to collect a single image. The
increased acquisition speed will be used to collect a 3D data set in real-time. The objective of
this proposal is to build a prototype scanner and develop the software tools required to analyze
and interpret the 3D data.

The beamformer is integral to allowing high speed ultrasound imaging and collection of 3D data
sets in real-time. Using the design derived from our previous simulations and modeling, we have
assembled the hardware to implement this beamformer. During this second year, we have fully
developed and optimized the assembly language routines required for high speed beamforming.
We have moved from a theoretical evaluation to a real world implementation. This required
overcoming the additional challenges of real-time communication between a large network of
processors, as well as synchronization of all the components in the system. While some testing
remains, we are confident that the beamformer will be capable of real-time 3D data acquisition.

In order to allow our synthetic aperture approach to imaging, the transducer array must have an
improved signal-to-noise ratio over conventional array technology. Tetrad Corp. has developed
a multi-layered array for this purpose. A prototype of the array has been fabricated and used to
design the front end electronics of the system. This multi-layer device provides increased
sensitivity by improving the electrical matching between the transducer and the electronics.
Since the multi-layer technology is being newly developed, there have been some challenges in
perfecting the fabrication techniques for this array. Additionally, a rocking probe has been
designed, and a prototype array tested in the fixture. A working prototype of the complete probe
with a transducer array meeting our design criteria is expected in the beginning of the coming
year.

The user interface and image analysis software development has focused on developing
interactive visualization and image analysis algorithms. We have demonstrated real-time scan
conversion of the native polar data for image preview and transducer placement. This software is
being interfaced with the beamformer. The development of an interactive and dynamic MPR
viewing mode for simultaneous viewing of multiple imaging planes of 4D data has been
completed.

3D image segmentation and registration are two core image analysis technologies we have
developed. These image analysis algorithms, together with the developed visualization tools, are
fundamental to the creation of the cardiac and breast imaging toolboxes. Efforts are under way to
acquire trauma images at a military hospital to complete the development of shrapnel detection
toolbox.

Real-time 3D imaging combined with tele-medicine and a set of image analysis tools will enable
ultrasound imaging for forward echelon combat casualty care. This technology will be equally
effective in civilian emergency care.
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APPENDICES

Appendix 1: Preprint of the publication - C.R. Hazard and G.R. Lockwood, "Developing a High
Speed Beamformer Using the TMS320C6201 Digital Signal Processor," Proc. 2000 IEEE
Ultrasonics Symposium, San Juan, Puerto Rico.

Appendix 2: Progress reports from Tetrad Corporation.

Appendix 3: Manuscript undergoing peer-review - Raj Shekhar, Vladimir Zagrodsky, and J.
Fredrick Cornhill, "Mutual information-based rigid and nonrigid registration of ultrasound
volumes," submitted to IEEE Transactions on Medical Imaging.

Appendix 4: Abstract of the paper to be presented at SPIE Medical Imaging Symposium in San
Diego in February 2001 - Vladimir Zagrodsky, Raj Shekhar, and J. Fredrick Cornhill,
"Multifunction extension of simplex optimization method for mutual information based
registration of ultrasound volumes."
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Developing a High Speed Beamformer
Using the TMS320C6201 Digital Signal Processor

C. R. Hazard 1,2 and G. R. Lockwood 1"3

'Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH.
2 Biomedical Engineering Program, The Ohio State University, Columbus, OH.

3 Department of Physics, Queens University, Kingston, Ontario, Canada.

Abstract--We are developing a synthetic linear interpolation algorithm, and sums values
aperture beamformer for a realtime 3D imaging channel to channel using a pipelined network of DSPs
system. The beamformer consists of a network of [1]. Here we further investigate this architecture. The
multi-processor digital signal processor (DSP) boards system generates a synthetic aperture image from three
which provide the processing speed and flexibility transmit events. We evaluate both the accuracy of the
required for realtime 3D beamforming. The system beamforming and the performance of the system as
uses high speed memory buffers and a ribbon cable implemented with a fixed point DSP (TMS320C6201,
interface between DSP boards to allow channel to Texas Instruments, Dallas, TX). An important
channel transfers to occur in parallel. Each channel limitation on the performance of a DSP based
has a 12 bit A/D, a C6201 DSP which calculates beamformer is the speed at which data can be moved
delayed signal values using linear interpolation, and a between processors. In fact, for a high speed
DSPfor summing. Dividing the summing and delaying beamformer, the input/output (I/O) performance is as
tasksreducestheinput/output(I/O)burden.Restricting important as the CPU speed. We present algorithms
the A/D sampling frequency to an integer multiple of directed at minimizing the 1/0 demands on the system.
fourtimesthecenterfrequencyoftheultrasoundsignal We also address the issue of demodulation and log
further reduces the 1/0 burden. An algorithm compression using fixed point processors.
optimized for the C6201 calculates a single
demodulated point in 25 ns. A multi-resolution look II. OVERVIEW OF PIPELINE ARCHITECTURE

up table algorithm produces an 8 bit estimate of the log
compressed envelope signal in less than 25 ns per The beamformer consists of a network of
point. Simulations of the radiation pattern formed digital signal processors. Summing is done by
using three transmit pulses show secondary lobes arranging the DSPs in a pipeline so that the input to a
below -50 dB. processor is the sum of all the prior channels and the

output is the sum including the contribution from that
I. INTRODUCTION channel. Pipelining reduces the number of processors

by eliminating the need for a hierarchical structure in
We are developing a prototype realtime 3D which pairs of channels are summed by additional

imaging system based on synthetic aperture processors. However, pipelining introduces a data
beamforming. This beamformer must calculate an skew because the Nth processor cannot add data until
image in the time that a conventional beamformer all the processors up to and including the (N-1)th
would calculate a few lines. Digital signal processors processor have calculated sums. This means that the
are an ideal platform for developing a beamformer. Nth channel must either wait to calculate its values or
They provide the processing speed required for store those values until the previous channels have
realtime beamforming, but are still easily adapted to calculated the sums. Waiting to calculate the values
different algorithms, is constrained by the amount of memory available to

Previously, we introduced a beamforming store the digitized signals which would be needed for
architecture which accurately delays signals using a the calculations. Our system calculates the values and



stores the results until they are ready to be summed. consisting of an A/D and two C6201s. One DSP is
The concept of skew is illustrated in figure 1. used to calculate delayed and apodized values using

linear interpolation [1], while the second DSP sums
Ithese values with the values from the pipeline.

aic ,y, Ca~c'y, CSignals from the transducer are digitized at 42
1 y, 2y, Interpolation MHz. Two A/D samples are packaged in a 32 bit

,s=,y 2S,=2y,  3 Sr word and then written into a FIFO at 84 MB/s. The
Sog data can be read from the FIFO by the C6201 at 400

aaic Y MB/s. A complete synthetic aperture image is formed

1Y2 Y2,Y2 
2 3

Y ihm using information collected from three separate,-. ,PS, is the sum for
1S2=

1Y2+'1S 2S2y2+
2S, pixel set p at transmit events. Data for the first two transmits of an

Schannel c image are stored in the internal data memory. The
Calc lY, CaPc 2y3 YPy are the pixel third transmit is temporarily stored in the FIFO itself.

3 Y3 1Yy,2Y3 123/ 3 values for the pixel This allows collection of all three transmits in a time
S et pat channel c

!eS3='Y3+'S2  that is limited by the speed of sound and not

1 2 3 processing speed. By collecting the three transmits
Cycle quickly we reduce the system's sensitivity to motion

Figure 1: Data flow for pipelined system [2].

The pipeline structure requires that data be Interpolating/Delay Signals from
transferred from one channel to the next. For our r Array .4 DigitizeDataat
system, data is received at nearly 85 AM A 42 MHz, 12 bits

Addresses and Pack 2 samples

MB/second/channel. Interpolated outputs can be coefficients for into 32 bit word
Interpolation are 3 40 MB/•.| 3=

calculated at 160 MB/second/channel. These large stolatinoSn-re

data rates preclude the use of a standard bus - D C
architecture, since a bus would not allow the parallel SRAM 5201 C6201 SRAM
transfer of data between channels. Instead we use 100
MHz, 32 bit first in first out memory buffers (FIFO) Summ•ing (3 4W Mals 4W 3 MEi

and a 160 MB/s ribbon cable interface which directly Previous Nt A/ Channel , ÷ D FI F B'n LIF• I A *,FF Channel

connects channels. This allows the simultaneous annl - llCo6201 _ G201 t FP"-] PairUl
connctschanel. pirI Pai plOUT

transfer of sums. The system uses DMA engines to 4 .W.. 40M M 4W"MW.

transfer data. Each DMA transfer has a setup time and Figure 2: Hardware implementation of pipelined,
therefore data is most efficiently transferred in large linear interpolation beamformer
blocks which minimize the setup penalty. The data
skew introduced by pipelining and the amount of Figure 2 shows the architecture of a single
memory available limits the size of the blocks, multiprocessor board. The C6201, connected to each
Therefore skew leads to a trade off between memory A/D, calculates apodized and delayed values using
and 1/0 efficiency. linear interpolation. In figure 2, the interpolating

C6201s are labeled C and D. The interpolating
III. HARDWARE IMPLEMENTATION C6201 s also read addresses and coefficients from SB-

SRAM. The interpolators calculate the delayed values

We have implemented a linear interpolation and store them temporarily in the internal data
synthetic aperture beamformer using the 200 MHz memory. This temporary storage helps offset the data
TMS320C6201 DSP. The system is based on a multi- skew introduced by the pipeline architecture. The
processor board manufactured by Pentek, Inc. (Model second C6201 provides additional skew buffers. After

9137, Upper Saddle River, NJ). Each board provides interpolation the values are transfered to a second

four C6201 processors; two channels of 12 bit, 42 processor which is responsible for summing the data.

MHz A/D; and two Front Panel Data Ports (FPDP) in The second processor is part of the pipeline.

a single VME slot. Each board houses two channels Transferring data between processors is complicated



by the fact that the AID FIFO, the SB-SRAM, and the IV. SOFTWARE IMPLEMENTATION

FIFO connected to the second processor all share the
same external memory interface. Consequently, these The software was written in hand optimized
resources cannot be accessed simultaneously, despite assembly language to ensure high performance
the parallel nature of the CPU and DMA on the beamforming. There are several design considerations
C6201. for programming the C6201. The internal data

The second processor for each channel adds memory of the C6201 is only 64 kB. The CPU has
the values for that channel to the sum of the values two sets of arithmetic/logic units which allow up to
from the previous channels in the pipeline. On figure eight instructions to occur simultaneously (though
2, the adders are labeled A and B. Each adder also has many restrictions apply). The external memories are
three connections to the external memory interface of more efficiently accessed using the DMA and large
the C6201: a FIFO input from the interpolating blocks. The CPU pays a large overhead for each
C6201, a second FIFO input, and a FIFO output. For access to external memory. All external memory is
processor B, in figure 2, the second FIFO input is from accessed through the external memory interface,
the 160 MB/s ribbon cable interface that connects which precludes parallel access [3].
multiple boards. The ribbon interface provides the
sum of the values from the previous channels on other
boards. Processor B calculates a new sum by adding Read Delayed Read Delayed Simultaneousl Simultaneousli

the values from processor D, which were temporarily Values from C Values from D A/D 1)ReadAD

stored in skew buffers. This new sum is then sent to Read Partial Read Data from 2)Read Coeffs 2)Read Coeffs

processor A using the output FIFO for processor B. Sums from B Previous Board from SBSRAM from SBSRAM
3) Delay with 3) Delay with

For procesor A, the second input FIFO is connected to SUM Values SUM Values linear interp. linear interp.
processor B and contains the newly summed values. Write Data to Write Partial Write Delayed Write Delayed
Processor A adds the values from processor C and Next Board Sums to A valuestoA values to B

sends the sum to the next board using the ribbon cable.
Signals From Transducer Array Figure 4: Main tasks for each processor

Distribution Figure 4 shows the main tasks for each

processor. The algorithms are synchronized to allow
realtime beamforming. This synchronization is

Pe1377achieved using matched algorithms and limited
Pentek 9137 Pentek 9137

Ribbon Cable Connects handshaking. The beamforming software is designed
Channel Pairs Using FPDP to minimize I/O, which is the limiting factor. The I/O
with 160 MB/s tranfers necessary for the linear interpolation algorithm can be

Figure 3: Multiple board connections minimized by restricting the A/D sampling frequency
to an integer multiple of the center frequency of the

Figure 3 shows how the multiple boards are transducer array. This ensures that there are samples
interfaced using the ribbon cable interfaces. The A/Ds a quarter period apart. We estimate the signal
from each channel are synchronized by distributing envelope by calculating inphase (I) and quadrature (Q)
clock and start signals to each board. The high components of the signal for each point in the image.
voltage pulser that excites the transducer array is also The quadrature component is estimated by
synchronized to the AID's. The total system has 64 introducing an additional quarter wavelength delay,
channels, consisting of 32 VME based Quad C6201 relative to the inphase component. The envelope is
boards (two channels per board). An additional board then estimated by I -+Q I Restricting the
is used to provide DC offset corrections, sum data
over multiple transmits, perform envelope detection sampling frequency ensures that the linear
calculations, log compression, and interface with a PC interpolation coefficients are the same for both I and
for scan conversion. Q. In addition only a single address needs to be

stored, as the I and Q sample values will always be



separated by a fixed number of samples. Using this system is less than I dB different than the floating
sampling scheme we can pack the delay address and point calculation. However, a 21 bit lookup table
the linear interpolation coefficients for I and Q into a would require over 2 MB of memory. A 14 bit lookup
single 32 bit word. This greatly reduces the 1/0 table requires only 16 kB, but severely limits the
between the C6201 and SB-SRAM. dynamic range of the system. The secondary lobes for

Packing the I and Q values into a single 32 bit a 14 bit table are down by less than 40 dB. A good
word for transfer reduces I/O and allows the use of a compromise, which meets both our accuracy and
special add instruction on the C6201, which sums the memory requirements, is a dual lookup table. The
I and Q in a single cycle. However, this restricts the dual table uses a 14 bit lookup table for all but the
summing accuracy to 16 bits, which limits the lower 1000 values, for which a portion of the 21 bit
dynamic range of the system. table is used. This provides an 8 bit estimate of the

The beamforming assembly code has been log envelope in less than 25 ns per point. The memory
optimized by carefully arranging buffers to avoid required is less than 17 kB and the accuracy is less
memory resource conflicts, and when possible the than I dB different than the floating point calculations
calculations are done in parallel with DMA data (as seen in the figure). The secondary lobes are below
transfers. The linear interpolation routine calculates -50 dB for the system.
packed IQ pairs in 25 ns. The summing algorithm
sums IQ pairs in 8 ns. The system is capable of V. SUMMARY AND CONCLUSIONS
calculating 6.5 million IQ pairs per second.

We have presented the design for a
0- beamformer capable of producing over 6.5 million

[-- Float p
0 14 Bit' points per second. The beamformer is limited by the

-10 Dual,/110 capacity of current state of the art DSP hardware.

"20 However, by restricting the sampling rate of the A/D'0-20

to reduce coefficient storage, packing data for efficient
E transfer, and carefully managing memory resources.<-30o

this bottleneck can be reduced. The system is capable
a-40•- e .e e .of calculating IQ pairs in 25 ns and summing IQ pairs

94 Jin 8 ns. A dual resolution lookup table provides
-so- realtime envelope detection and log compression.

This system can be used as a high speed beamformer
-60 for a synthetic aperture imaging system.
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Figure 5: Radiation patterns using floating point, VI. REFERENCES

14-bit LUT and dual LUT
[1] C. R. Hazard and G. R. Lockwood,

A final DSP board at the end of the pipeline is "Theoretical assessment of a synthetic
responsible for envelope detection and log aperture beamformer for real-time 3D
compression. For a fixed point processor, direct imaging," IEEE Trans. UtIrason., Ferroelect.,
calculation of these complicated functions would be Freq. Contr., vol. 46(4), pp. 972-980, 1999.
too slow for realtime beamforming. Instead the
system must use a lookup table. We evaluated the [2] C. R. Hazard and G. R. Lockwood, "Effects
performance of the lookup table by comparing the of Motion on a Synthetic Aperture
resulting radiation patterns to that produced by a Beamformer for Real-time 3D Ultrasound."
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and using a dual lookup table. A 21 bit lookup table [3] "TMS320C6000 Technical Brief." TI
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Introduction
This report summarizes tests conducted on multilayer ceramic purchased from outside vendors and
internally at Tetrad. It was found that multilayers purchased externally did not stand up well to
dicing and nor maintain performance when placed into an array. Multilayers manufactured at Tetrad
were found to perform much better, including in array form. Phased arrays were manufactured at
Tetrad and tank tests were conducted to determine the ability of the transducers to withstand high
voltage drive. For comparison purposes results for two multilayer phased arrays were analyzed along
with a commercial single layer phased array.

The tank measurements were performed with the transducers being driven by a unipolar negative
polarity pulse. The pulser delivered 278 V peak into an open circuit and 270 V peak into a 50 ohm
load. The voltage delivered to the complex transducer impedance was either higher or lower, as
noted for the appropriate test. Since the pulser voltage was of a fixed value, the only way to increase
the power delivered to an element was to pulse at a higher rate, hence increasing only the temporal
power but not the instantaneous power. Repetition rates between 500 Hz and 5000 Hz were
employed to determine the effect of temporal power on the received amplitude. In all cases the
transducer was driven with a 100 ohm resistor in parallel with the transducer.

The single layer phased array operated with a 4.0 MHz center frequency, while the multilayer arrays
operated with center frequencies of 3.0 and 3.2 MHz. The thickness of the ceramic of the single
layer array was 0.323 mm, while the thickness of the individual layers of the multilayer was 0.146
mm.

Executive Summary of Results
Two phased arrays were manufactured using Tetrad multilayer ceramic. Both arrays had 100% of
their elements with full capacitance. Thus it is apparent that multilayers made at Tetrad are able to
withstand the array fabrication process, including dicing into individual elements, better than
commercially available multilayers. The arrays were tested while driven with a high voltage source
(220 V) which resulted in a field close to the poling field. When driven in the direction of poling,
pulses at that voltage and a repetition rate of 1.5 kHz, more than the maximum anticipated to be used
in the final system, showed no degradation in signal level even after 2 hours. The signal level of the
multilayer arrays was found to be significantly higher than a comparable array made with a single



layer of ceramic. Based on this outcome it is clear that proceeding with a multilayer for the final
deliverable array is the best decision.

Experimental Summary
The single layer phased array showed signs of slight depoling at a high drive voltage, but the
received signal amplitude was not lowered even at the highest rep rate of 5 kHz. The first multilayer
phased array showed a higher received voltage when the drive signal was applied in the direction of
poling. The received signal was not degraded even with a rep rate of 5 kHz for 23 minutes. The
second multilayer array showed that driving in the direction opposite to the poling results in a lower
received voltage due to depoling, and the rate of depoling is greater for higher rep rates. This
depoling was found to be reversible. It was also found that it is possible to permanently damage the
multilayer, even if it is driven in the direction of poling, if a high enough rep rate is used for an
extended period of time. The damage is due to partial disbonding of the multilayer and is non-
reversible. It was found, however, that if the rep rate is kept at 1.5 kHz or lower, a drive signal close
to the poling field can be used for over 2 hours with no loss in received sensitivity.

The angular response of multilayer phased array #2 was found to be 69 degrees. Based on the
preliminary measurements of the acoustic window in the wobbling mechanism, this should be
sufficiently wide so that even with a small amount of beam narrowing due to the window the -6dB
beamwidth should still meet the 60 degree criteria.

Previous results with multilayers
Multilayers were received form two vendors. The multilayers received from Vendor A were found
to be unsuitable for ultrasound applications. The measured coupling was extremely weak and the
elements did not withstand dicing. In addition, it appears that the internal electrodes had a very high
resistance. Multilayers from Vendor B were found to be of better quality, but still not acceptable for
an array with 100% functional elements. The coupling was reasonable, but not all of the elements
withstood dicing. An array was made with one of these multilayers and it was found that the
elements did not withstand high power drive. At this point it was decided that it was more feasible
to develop multilayer ceramic technology at Tetrad so that all of the issues affecting performance
could be addressed. Initial results showed that it was possible to manufacture multilayers in-house
that yielded 100% functional array elements when diced into array elements. Work then proceeded
with applying Tetrad triple layer ceramic multilayers into phased array designs so that acoustic
performance could be evaluated.

Single layer phased array
The pulser voltage measured at the transducer terminals was 540 V. It is speculated that this is due
to either the complex and large impedance (150 ohms at 3.7 MHz) of the single layer array element
or due to the coax cable between the pulser and the transducer. The echo received from a flat plate
with the transducer at the focal distance was 165 mV, for a loss of 70 dB. The signal decreased to
133 mV after 40 minutes with a 500 Hz repetition rate. Apparently this was due to the elevation
angle shifting slightly, because by adjusting the angle the signal increased to 151 mV. After this the
polarity on the drive signal was reversed and a signal of 147 mV was recorded. After 17 minutes the
voltage reduced to 139 mV. At this time the rep rate was increased first to 1 kHz and then to 5 kHz,
with neither affecting the signal amplitude appreciably.



Multilayer array #1
A scaled version of the 4.0 MHz single layer array was tested with the same setup, first with a 500
Hz rep rate. This phased array was built with a pitch scaled so that the elements were slightly wider,
in terms of wavelengths, than the single layer array. The voltage measured at the transducer was 222
V and the received signal was 493 mV, for a loss of 53 dB. The loss numbers might not be directly
comparable, since the effect of the 100 ohm resistor will be greater on the higher impedance
transducer. Also, the elevation of the two arrays was the same; therefor the beam divergence and
hence the loss of the lower frequency multilayer array will be greater. These effects should partially
offset so that at least approximately the overall loss comparison should be valid.

After 32 minutes this signal reduced to 462 mV. With the polarity reversed the received echo was
511 mV, and after 9 minutes this reduced to 497 mV. Reversing the polarity apparently put the
driving voltage in the same direction as the poling voltage, thereby reinforcing poling. At this point
the rep rate was increased to 5 kHz. After 23 minutes the signal was 496 mV. Even a high rep rate
did not result in a lower received voltage when the transducer was driven in the direction of poling.

Multilayer array #2
This phased array was built with a pitch scaled directly with frequency so that the element spacing
was the same number of wavelengths as for the single layer array. The elevation was the same as the
single layer array. The voltage at the transducer terminals was 220 V. The field across one layer of
the multilayer was 15.1 kV/cm, close to the poling field of 20 kV/cm typically used for poling PZT
ceramic. Three elements were tested. Element 1 was driven for 8 minutes at a 500 Hz rep rate. The
received voltage went from 373 to 368 mV over that time period. At this point the rep rate was
increased to 5 kHz, and after 34 minutes the signal was reduced to 96 mV. Apparently combination
of the high field and rep rate caused the multilayer to depole significantly. This drive was in the
direction opposite to the poling direction.

Element 2 was then driven at 500 Hz with a drive voltage at the transducer of 215 V. The measured
receive voltage vs time is plotted in Figure 1. It can be seen that the received voltage decreased
slightly over a 29 minute span with the rep rate at 500 Hz, continuing with a 1 kHz rep rate. The rate
of signal loss increased with the 2.0 kHz and the 3.5 kHz rep rates. Finally with a rep rate of 5 kHz,
the received voltage was reduced to just under half of the original signal. This element was then
repoled at a field of 20 kV/cm in air at room temperature and the received voltage was rechecked.
Figure 2 shows the received voltage to be decreasing with the input in the same polarity as the
original over a 6 minute period. The polarity of the input signal was then reversed and the received
signal increased to 439 mV. After increasing the rep rate to 1 kHz for 26 minutes, the signal
increased to 458 mV. Apparently with the polarity of the input signal reversed, the polarization of
the ceramic is reinforced. Because the excitation signal is a negative pulse, it would be necessary to
reveres the poling direction so that the negative pulse drive would reinforce the poling. At a 1 kHz
rep rate the amplitude of the received signal was maintained for over 25 minutes. It appears that the
transducer is capable of operating at a field close to the poling field for an extended period of
time at a repetition rate of 1 kHz.

Figure 3 shows the measured sequence for element 3, which was driven at 500 Hz in the original
polarity and measured 388 mV on receive. The polarity on this element was reversed so that the
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Figure 1) Received voltage vs time for 3-layer ceramic transducer #2, element #2 at various repetition rates
with an input of 218 volts (15 kV/cm) oriented opposite to the poling direction.

Element #2 Repole

500 1
450 -- -- ---

400

350

"> 300
E

, 250
- 200

150

100

50

0

0 10 20 30 40 50

Time (minutes)

.----0 500 Hz ---- --- reversed polarity, input 227V - 1 kHz, input 223V

Figure 2) Received voltage from element #2 repoled and driven first opposite to the poling direction, then with
it, showing that the initial loss of received signal was due to reversible depoling.
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Figure 3) Received voltage from element #3, initially driven opposite to poling for 4 minutes, then driven with
poling. Signal degradation after 40 minutes was due to non-reversible multilayer disbond, most likely from
excessive heating in the piezoelectric ceramic.

drive signal reinforced the poling. It can be seen that even after 15 minutes at a rep rate of 5 kHz the
signal was not degraded significantly. After leaving the transducer unattended for an additional 20
minutes, however, the amplitude was reduced significantly. Repoling of this element was
unsuccessful. From a look at the electrical impedance for this element, it is evident that the
multilayer had disbonded and this was the reason for the loss in signal. Apparently a high drive
amplitude and a high rep rate for a long period of time generates enough heat for the multilayer to
disbond and the damage in this case is non-reversible.

An additional test was performed on the repoled element #2, first driving it at 500 Hz in the direction
of poling for 8 minutes, then at 2 kHz for just over 2 hours. The results are plotted in Figure 4.
After 1 hour the received voltage was almost the same, and after 2 hours it was reduced by 20 %. At
this point the element was repoled again, but after subsequent testing the element did not receive
signal did not improve. Analysis of the electrical impedance showed a small degree of disbonding in
the multilayer, but not to the extent of element 3. Thus a 2 kHz rep rate seems to be enough to heat
the multilayer to failure if driven for an extended period of time.

A fourth element was tested with the rep rate set at 1.5 kHz, and the results are shown in Figure 4. It
is clear that even after driving for an extended period of time at a 1.5 kHz rep rate, the multilayer is
still functioning effectively and without any noticeable degradation in performance.
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Figure 4) Received voltage from element #2 after repole, second test. Some signal degradation occurred after
extended drive at a 2 kHz rep rate, due to non-reversible disbonding of the multilayer.

Element #4

600

500

400

E
g 300
0)

> 200

100

0 -4_____

0 20 40 60 80 100 120 140

Time (minutes)

-- 1.5 kHz, input 220V

Figure 5) Received voltage from element #4. Some variation in received voltage was observed, but no
significant degradation in received signal amplitude was observed after 2 hours of pulsing at a 1.5 kHz rep rate.
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Introduction
This report serves as a final feasibility report on Phase I of the project, including the acoustic
design and materials (array angular response, coupling fluid, and window material), mechanical
probe design with drive system specs, and life time of flex. Other milestones under Phase I have
already been reported on, including analysis of SNR, multilayers incorporated into phased arrays,
phased array prototyping, available mechanical probe technologies, and other critical issues.

Summary of Phase I - Feasibility Study
The purpose of Phase I of this program was to initiate a design approach and conduct preliminary
experiments to determine the feasibility of making a phased array in a configuration which will
be capable of being rotated mechanically in one direction. Because of the low transmit power
used in the imaging approach, the required sensitivity of the array needs to be greater than a
conventional array. Previous reports have detailed the technical risks associated with the
proposed approach for rotating the array. The decision to use a multilayer in the array has been
made based on the successful construction of an array with 100% of the elements functional and
verification that the elements remain functional at high transmit voltages.

This report summarizes the remainder of the feasibility study, including a theoretical analysis of
the acoustic window and measurements on an initial prototype. Also included are results on the
measured effect of the acoustic window on the beamwidth of the probe.

The effects of the acoustic window on the intensity of the transmitted beam and beamwidth are
primarily due to attenuation in the coupling fluid and the window, rather than from reflection at
any interface. The attenuation could be decreased by making the window thinner, though this
would make the window more flexible and could hinder mechanical rotation in a realistic
operating environment. The reverberation has been measured with the elements oriented normal
to the window and found to be the expected amplitude. Measurements off axis were
unsuccessful because of the low acceptance angle of the linear array in the first prototype
wobbler. The affect of near field artifact due to reflection will probably have to be assessed



using the Cleveland Clinic system during early evaluations.

The longitudinal wave critical angle of the current window/fluid system is just beyond 45
degrees. However, due to the velocity of the fluid the worst case center ray of from the phased
array (45 degree steering angle) is incident upon the window at only 41 degrees. Therefor all
imaging can be done at less than the critical angle. There will be time delays and attenuation that
vary with the incident angle as discussed below. These are an inevitable consequence of
scanning through a fluid-plastic interface at varying angles unless properties can be matched
exactly.

A complete array in the wobbler mechanism was tested for reliability. No interconnection
failures occurred after continuous rotation for over 100 hours.

Acoustic design and materials
This section reports on the geometry and materials of the acoustic window, including
measurements of velocity and attenuation for the actual window materials and their effect,
including transmission and reflection on the beam as it is steered from zero through 45 degrees.

Acoustic window geometry and material properties
The phased array is attached to rotation mechanism (wobbler) contained inside a fluid-filled
enclosure with a window material on the front, as shown in Figure 1. The axis of rotation is
located at the center of the window curvature so that the array maintains a constant distance from
the window as it is rotated. The window material is polystyrene with a thickness of 0.49 mm,
and the coupling fluid is raw linseed oil. Both materials were tested to determine their acoustic
properties, and the results are shown in Table 1.

0

o 0
0

Rotation

Coupling fluid

Figure 1 - Drawing of the phased array in the wobbler mechanism

Transmission loss through the window
A theoretical analysis of the transmission characteristics of this arrangement has been conducted,
and the results are described below, including a comparison of measurements made on the
physical probe. This analysis assumes that both media are liquid, an assumption that neglects the



conversion of waves from longitudinal to shear and vice versa. It also assumes that the waves are
Table 1 - Acoustic properties of window material and coupling fluid

polystyrene linseed oil
Velocity (mm/us) 2.00 1.42
Density (glcc) 1.01 0.92
Impedance (MRayl) 2.02 1.33

Attenuation (dB/mm) 3.3* 0.6 **

* measured at 3.5 MHz i

•* measured at 5.2 MHz _

normal to the surface.

Using the above assumptions, the power loss from reflection at the interface between the
coupling fluid and the window is 0.18 dB, and between the window and water is 0.09 dB. Thus
the total round trip loss from reflections is 0.54 dB. Based on the measurements, the loss from
attenuation is much greater, with a total round trip loss of 3.3 dB in the window and 3.6 dB in the
fluid. The loss in the fluid was measured at 5.2 MHz, and should be appreciably lower at 3.2
MHz, though we could not measure the loss accurately at that frequency. This loss increases
with increased steering angle due to the angle that the beam takes through the fluid and the
window. The path length through the window at a 45 degree angle is approximately 2.6 times
what it is for an unsteered beam (See Figure 2 below). This is from refraction at the fluid-
window interface, and that will have a significant effect on the attenuation at large angles, since
the loss in the window is almost six times as great as in the fluid. At 30 degrees, the path length
in the window is only 30% longer than for zero degrees. There will also be an increase in path
length in the fluid due to the geometry of steering the beam at an angle. Because of the lower
attenuation in the fluid, this will be less significant than the attenuation in the window. Based on
the total path length in the fluid and window, the net loss at zero, 30 and 45 degrees is 6.9, 8.5,
and 13.6 dB. The loss calculated at 30 degrees agrees well with measurements made on an actual
probe (see Angular response below).

Path length through window
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Figure 2 - One way path length from the transducer to the outside of the window as a function of steering



angle.

Refraction effects
Analysis of the refraction affects are slightly more complicated. Because there is a difference
between the velocity of the fluid and that of the human body there will be a net refraction of the
beam when it leaves or enters the probe. A plot of the incident angle in the probe versus the
beam angle relative to the line normal to the center of the window is given in Figure 3. Note that
the full 45 degrees of steering will be achieved when the incident angle between the fluid and the
window is approximately 41 degrees. This should be transparent to the beam steering system
which will still use delays appropriate to the human body. However, it is important in evaluation
of the critical angle because the incident angle in the probe will be less than the steered angle in
the body. It is also important because of the relative placement of line locations in the scan
converter.
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Figure 3 - Plot of refracted angle in the body vs. incident angle in the fluid. This plot shows that for an
incident angle of 41 degrees on the fluid, the beam will be refracted to 45 degrees in the body.

Transmission and reflection through the acoustic window
A plot of the calculated transmission and reflection coefficients for the fluid-window interface
(ignoring shear conversion) are given in Figure 4. Note that the current selection of acoustic
materials produces a critical angle very close to 45 degrees. The transmission at 41 degrees,
however, is still very good. Measurements made with the transducer indicate that the
transmission coefficient at 45 degrees (in water) is still substantial.

The time delay caused by the window is a function of angle even without shear conversion. This
is caused by the refraction of the longitudinal wave when it reaches the window. The
combination of the difference of beam angle in the fluid and the path through the window
produces displacements of the rays. The length of the one-way path through the window as a
function of steering angle in the body is given as Figure 2. This increase in length causes
substantially higher attenuation of the signal at large steering angles.
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Figure 4 - Plot of the reflection and transmission coefficients for the fluid-water interface.

These affects could be reduced if the fluid and window could be perfectly matched but they
cannot be. The critical angle could be increased either by selecting a fluid with a high sound
velocity or a window with a lower sound velocity. It is difficult to raise the sound velocity of the
fluid since it needs to be oil-based. Water-based fluids are not practical since the fluid needs to
lubricate the probe movement. They are also more susceptible to bubble formation due to the
variability of air solubility with temperature. Linseed oil has a relatively high velocity for an oil-
based fluid.

Reverberation tests
Reverberation tests were performed on the wobbler mechanism containing a linear array.
Multiple elements of the array were connected to a Panametrics pulser / receiver. First, two
adjacent elements were tested with one of them as a transmitter and one as a receiver. Thus the
incident wave is essentially normal to the window surface. The amplitude of the reflected signal
using this configuration seemed reasonable.

As described above, the theoretical critical angle at which transmission through the window goes
to zero occurs at just over 45 degrees. An attempt was made to determine the off-axis reflection
characteristics by using elements at opposite ends of the array as transmitters and receivers.
Unfortunately because of the limited angular response of the linear array, the amplitude of the
signal was too low to measure at angles away from normal. Because of the close proximity of
the array to the window material and the attenuation of the lens and coupling fluid, the
reverberation should decay over a short period of time and would therefor cause artifacts only in
the near field of an image. The net affect of this kind of reverberation is difficult to predict and
will probably not be fully known until an image is created with the unit on the Cleveland Clinic
system. It is thought that if reverberation is an issue with the phased array, then there is room in
the wobbler mechanism for the placement of absorbers which could reduce their effect.



Angular Response
The angular response (FWHM) of the initial multilayer phased array was 69 degrees. Thus a
small amount of beam narrowing due to the acoustic window can be tolerated and a 60 degree
angular response maintained.

The effect of the window material on the angular response was measured by first testing the
linear array outside the wobbler, and then testing it again inside the wobbler. The graphs are
included at the end of the manual (see pages 21 and 22). From the graphs (which are
normalized), it is evident that at 30 degrees, there is a reduction of just over 1 dB in the response
with the window relative to the response without. The measured beamwidth of the phased array
at -5 dB, which would correspond to - 6dB trough the window, is roughly 62 degrees. If the
angular response is required to be wider, it is possible to reduce the pitch slightly to increase the
angular response, although this would decrease the sensitivity.

Acoustic window summary
There are a several materials that would produce a window with a lower sound velocity. All of
these materials are all substantially more flexible and higher in attenuation than polystyrene.
Flexibility presents a problem because thin membranes can easily be displaced by pressure on the
face and could interfere with free transducer movement. Thick membranes present a problem
because of the increased attenuation. The combination of a thicker membrane and higher
material attenuation is likely to produce high differential attenuation at large steering angles
relative to normal incidence even though the refraction path length through the window may be
reduced.

It is our recommendation that this fluid and window system be used. If acoustic problems result
we can run calculations to see if the problem observed might be improved by the use of an
alternative window material. If performance can be substantially improved we can attempt a
window replacement for the final phase of the project.

Mechanical Probe Design with Drive System Specs
An initial prototype of the wobbler mechanism has been constructed with a linear array and the
acoustic window configuration described above. The complete manual for operating this unit is
included as Appendix 1.

The unit was connected to a computer and the interface hardware was tested using the windows
program "hyper terminal" as follows:

1) The probe control module was connected as shown in Figures 1 and 2 of the manual.
2) "Hyper terminal" was opened and a session started connecting directly to Coin 1.
3) Under "properties" the settings were (see page 7 of the manual)

9600 Baud
8 data bits
no parity
1 stop bit
no flow control



Note: It was necessary to go to "device manager" under "system" in "control panel" to
install the driver for Com 1.

4) As capital letters, commands were typed according to the description on page 7.

Each of the scan presets shown in Table 4 were tested. The array elements were not connected
during this experiment, as we did not have the appropriate system to image with this probe. The
audio-frequency sound emanating from the probe was listened to as the setting was changed and
a rotation initiated. As expected, it was apparent that the scan rate was increasing as the settings
were changed from S I to S6. The exact scan rate and sweep angle could not be measured
without a more complex test setup. The developers of the mechanical system have thoroughly
tested the accuracy and functionality of the sweep rates, and these can be checked through the
AUX / 10 signals if necessary.

Life Test
A complete wobbler mechanism with a linear array was tested to determine if it could withstand
100 hours of continuous cycling. The probe was tested with a ± 15 degree sweep angle at 20 Hz,
after which time all of the elements were functional. In a previous test with a similar mechanism
and flex circuit, the system ran for two months continuously with a ± 30 degree sweep angle
(over two billion cycles). Given these results, it is unlikely that the lifetime of the probe will be
an issue.



To: Geoff Lockwood
Project: Cleveland Clinic 3-D Mechanically Steered Phased Array Probe
Customer Grant #: DAMD17-99-1-9034
Reports: Complete specification for 1st prototype

Place orders for all components
Milestones: #9 and #10
Date: September 8, 2000
Written By: Mike Zipparo
Organization: Tetrad Corporation
Address: 357 Inverness Dr. South, Suite A

Englewood, CO 80112
Phone: 303-754-2309
FAX: 303-754-2329
E-mail: mzipparo @tetradcorp.com

Milestone #9
A complete mechanical rotation mechanism has been built with a linear array contained inside.
The results of this array, including response through the acoustic window and longevity of the
flex circuit, have been described in the Phase I Feasibility Study. A multilayer phased array
prototype has also been delivered under Phase I. The plan for Phase II is to deliver a second
phased array with the same acoustic design and housed inside the wobbler mechanism which has
already been built. The specifications for the wobbler mechanism are included as part of the
operators manual which was included as part of the Phase I Feasibility Report. The
specifications for the probe are as follows:

Probe type 1-D phased array in mechanical wobbler assembly
Mechanical specifications See "3-D Probe System Specification" attachment
Window material Polystyrene (same as initial prototype)
Coupling material Linseed oil (same as initial prototype)
Center frequency 3.0 to 3.5 MHz
Elements 64

% working elements 100%
Sensitivity variation Target -4 dB
Flatness Target ± 40 nsec
Connection longevity 20 Hz for > 50 hours

Piezoelectric material PZT5-H, Tetrad bonded 3-layer ceramic stack
Active elevation >13 mm
Pitch 0.27 mm (0.62 X @ 3.25 MHz)
Angular response

Target 69 degrees (same as initial prototype)
Min 60 degrees

Bandwidth
Target 67% (same as initial prototype)
Min 60%

Power handling Target - continuous unipolar drive at 220 V, > 1 kHz rep rate



Milestone #10
A process for building the initial multilayer arrays which will fit into the wobbler mechanism has
been developed. The array will have the same acoustic geometry as the initial array prototype
that has been delivered as part of Phase I. The only difference is that it will be built with a
mechanism for mounting to the wobbler. All other array manufacturing processes will be
identical to what has already been done. Tooling and parts which have been designed and
ordered exclusively for this project include:

1) Custom flex circuit for interconnection to cable at array handle
2) Custom PC boards to match array pitch
3) Custom housing to mate with wobbler mechanism and to facilitate traditional array

manufacturing process.
4) Custom tooling for holding housing during processing.

In addition, several multilayers for use in the final deliverable are in process. All of the other
parts are either in-house already or can be fabricated in-house quickly for use when the custom
parts are complete.



To: Geoff Lockwood
Project: Cleveland Clinic 3-D Mechanically Steered Phased Array Probe
Customer Grant #: DAMD 17-99-1-9034
Reports: Build arrays for mechanical system - report
Milestone: #11
Amount: $28k
Date: January 12 th
Written By: Mike Zipparo
Organization: Tetrad Corporation
Address: 357 Inverness Dr. South, Suite A

Englewood, CO 80112
Phone: 303-754-2309
FAX: 303-754-2329
E-mail: mzipparo@tetradcorp.com

Milestone #11
A series of arrays have been fabricated according to the specifications listed under Milestone 10.
One of the arrays has all of its elements working, although some at a lower level. This array has
been tested extensively and will be put into the wobbler mechanism to test the acoustics of that
system with a 3-layer phased array.

Figure 1 shows the capacitance measured for each element. There are 20 elements (out of 64
total) with an element capacitance which is approximately one-third of that of the remaining
elements. The reason for this is that these elements were damaged during dicing and have lost a
connection to one of their internal electrodes.

Capacitance vs element number
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Figure 1) Capacitance vs. element. The diamond-shaped markers represent measurements just
before sending the array to be placed into the wobbler mechanism.



The measured sensitivity is shown in Figure 2. It is apparent that most of the element which
show low capacitance also show low sensitivity. This is because only one of the three layers is
being driven electrically. The lowest elements are about 5 or 6 dB lower than the rest of the
array. It should be noted that even with this level of decrease, the sensitivity of all of the
elements is at least that which would be obtainable with a single layer of ceramic. The target
sensitivity variation is -4 dB from the maximum, and this array has about -7 dB. The sensitivity
uniformity will improve considerably when an array is built with all of the elements working
with both internal electrodes connected. Technical difficulties are currently being addressed to
achieve this objective.

sensitivity vs element number
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Figure 2) Measured sensitivity vs. element number. Most of the low sensitivity elements also
measured low in capacitance.

The fractional bandwidth vs. element number is shown in Figure 3. The specification is a
minimum of 60% bandwidth. The elements with low sensitivity also measured lower in
bandwidth. This is because connection of only on-third of the multilayer results in a disrupted
acoustic response. Even with the poorer elements, the mean bandwidth for the entire array was
over 66%. Some element were over 80% bandwidth. Meeting the bandwidth spec should not be
a problem when all of the elements are working properly.

The measured arrival time is shown in Figure 4. The absolute variation is 181 ns. However, a
large portion of this is due to measurement error and misalignment of the probe during testing.
Even if a probe has an arrival time variation of 40 ns, the test setup at Tetrad is not capable of
measuring it.

The response vs. angle measured for element 24 is shown in Figure 5. The -6 dB level spans -34
to +36 degrees, for a total -6 dB beamwidth of 70 degrees. This is well above the specification



of 60 degrees.
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Figure 3) Measured fractional bandwidth vs. element number.
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Figure 4) Measured arrival time vs. element number.



-60 Response vs angle for element 24

-65 -::• !: : :i

S-70

7 -7

':•i!•i•<• • •;•••°••:•• •3-1ayer stacked ceramic array

-8 5 ... ........ .. .. .. .. . . . .

-60 -40 -20 0 20 40 60
Angle (deg)

Figure 5) Measured angular response for element 24, showing a -6 dB beamnwidth of 70 degrees.

Summary and Future Plans

An array has been built to fit into the mechanical rotation assembly. All of the elements are
functional, although a significant number are operating at a reduced level because of damage
done during the assembly. The probe as-is meets the requirements set for bandwidth and angular
response, and the arrival time cannot be measured well enough to meet the 40 ns spec. Even
with the bad elements, the sensitivity variation is still close to the spec of -4 dB. This will
improve substantially when an array is made with completely functional multilayers.

This array will be placed into the existing wobbler assembly so that the entire acoustics system
can be looked at with a phased arrays. Based on theoretical calculations made with the properties
of the window system and on measurements made with a linear array in the housing, the current
system is not expected to significantly reduce the -6 dB beamwidth. Following acoustics and life
cycle tests of this array, a specification for the final array will be developed. This will conclude
Phase HI of our program.

The fabrication process is being examined closely to determine how to make an array with all of
the layers working for all of the elements. The final Phase fIH probe is still expected to be a
triple-layer ceramic with all of its elements fully functional. The drive system is already
complete and will be delivered along with the Phase HI array. Necessary improvements or
modifications to the array or mechanical system will be made as necessary, based on the
conclusions drawn from our tests and system incorporation and imaging done at The Cleveland
Clinic Foundation.



Appendix 3: Manuscript undergoing peer-review - Raj Shekhar, Vladimir Zagrodsky, and J.
Fredrick Cornhill, "Mutual information-based rigid and nonrigid registration of ultrasound
volumes." Submitted to IEEE Transactions on Medical Imaging.
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ABSTRACT

We investigated the registration of ultrasound volumes based on the mutual information
measure, a technique originally developed for multimodality registration of brain images. A
prerequisite for successful registration is a smooth, quasi-complex mutual information surface
with an unambiguous maximum. We discuss the necessary preprocessing to create such a surface
for ultrasound volumes. Abdominal and thoracic organs imaged with ultrasound typically move
relative to the exterior of the body and are deformable. Consequently, four specific instances of
image registration involving progressively generalized transformations were studied: rigid-body,
rigid-body + uniform scaling, rigid-body + nonuniform scaling, and affine. Registration was
applied to both clinically acquired and synthetically created images. The accuracy was
comparable to the voxel dimension for the first two transformation modes. The accuracy
degraded and the capture range shrank as the transformation grew more complex. Our principal
objective was to demonstrate the feasibility of mutual information-based (i.e., segmentation-free)
registration of ultrasound images of deformable organs. When real-time 3D ultrasound image
acquisition becomes routine, this method should work well for to a variety of applications
examining serial anatomic and physiologic changes. Developers of these clinical applications
would match the deformation model of their problem to one of the four models presented here.

Key Words: image registration, mutual information, nonrigid image registration, three-
dimensional ultrasound



3

I. INTRODUCTION

Registration of monomodality medical images is an important first step in successful
visualization and quantification of temporal changes in anatomy and physiology. Since the
bodily organs are fundamentally three-dimensional (3D), a comprehensive picture of serial
change is expected to emerge from the registration of 3D images or volumes. A 3D approach is
not only the most natural approach to medical image registration, it is also a worthwhile image
processing endeavor.

Image registration has been an area of active research [1], and the state-of-the-art brain image
registration solves many difficult clinical tasks [2-5]. However, there is a relative shortage of
image registration work outside the brain anatomy, and consequently, a dearth of literature on
registration techniques involving ultrasound imaging, a modality not suitable for the brain.
Ultrasound, however, is ideal for imaging abdominal and thoracic organs, especially the heart.
Even for such organs, registration of ultrasound images has not been reported in the literature
much. This may be due to the relatively poor image quality of ultrasound and the nonrigid nature
of organs typically imaged with it, to which registration techniques developed for the brain
simply do not extend.

The lack of investigation in ultrasound image registration may also be due to the primarily two-
dimensional (2D) nature of ultrasound. Whereas magnetic resonance imaging (MRI), computed
tomography (CT) and various nuclear medicine image modalities have historically produced 3D
images, ultrasound has not. There have been solutions suggested to reconstruct 3D by carefully
registering 2D images acquired from a conventional ultrasound scanner. A 3D volume is
reconstructed by translating, rotating or rocking the transducer head uniformly with the aid of a
purpose-built mechanical device such that the spatial relationship between the acquired 2D
images is known [6]. Alternatively, a 3D volume could be created by freehand manipulation of
the transducer head whose orientation is recorded continuously with a wireless 3D localizer [7].
Regardless of transducer localization mechanism, such solutions are too slow to image a
dynamic organ such as the heart. Electrocardiogram (ECG) and respiratory gatings have been
employed to reconstruct 3D images of the heart over multiple cardiac cycles, but such data may
still have distortions due to cardiac arrythmias and irregular breathing. Even when imaging a
static organ, it is difficult to avoid distortion due to patient motion and inherent inaccuracies in
3D localization mechanisms.

Real-time 3D ultrasound acquisition, the most recent advance in ultrasound imaging, addresses
both speed and distortion problems inherent in 3D reconstruction solutions. A commercial real-
time 3D ultrasound system (Volumetrics, Inc., Durham, North Carolina) is available now, but at
very few hospitals only. Where it is available, its use is limited to research investigations. Images
are acquired through a 2D phased array of crystals, capable of directing an ultrasound beam
anywhere within a 60 x 60 degree pyramid of space. Through the use of 16:1 parallel processing,
it is possible to acquire 64 scan lines in 64 scan planes in less than 30 milliseconds, leading to
effective volumetric imaging rates of greater than 25 Hz [8]. Although this scanner has the
necessary speed for 3D image acquisition, it provides a lateral image resolution poorer than that
of the current clinical images (64 vs. greater than 200 scan lines). Development is under way at
our institution to produce a real-time 3D ultrasound scanner that works on the principle of
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synthetic aperture beamforming [9, 10]. This scanner will not compromise lateral image
resolution for speed and produce volumetric images with the current clinical lateral resolution. It
is not difficult to envision real-time 3D acquisition as the future of ultrasound imaging, and most
hospitals, especially their cardiology departments, adopting real-time 3D ultrasound in the near
future.

There are several approaches to image registration, not all of which are applicable to our problem
domain - registration of volumetric ultrasound images of the heart and other characteristically
nonrigid organs. The anatomy and unique motion of the heart place special constraints on the
registration approach. As commonly applied to brain image registration, frame-based techniques
[11] or techniques that rely on the placement of external markers on the patient's body [12]
assume a rigid underlying anatomy and a fixed spatial relationship of this anatomy with respect
to the outside markers. The heart is not only nonrigid, it can move significantly within the chest
cavity, rendering such approaches inappropriate. These prospective techniques, in general, have
little clinical acceptability because they involve time-consuming acquisition protocols.
Retrospective image registration, on the other hand, is nonobtrusive to the existing clinical
practice and perhaps the only alternative in the case of abdominal and thoracic organs.
Retrospective registration approaches utilize internal anatomic point, contour and surface
landmarks, or voxel similarity [1]. Techniques based on internal landmarks, although
generalizable to nonrigid transformation, have limitations because they involve some form of
image segmentation. Not many point landmarks in ultrasound images of abdominal and thoracic
organs can be reliably identified and used for registration. On the contrary, the requirement for
the number of point landmarks is even higher to solve for nonrigid transformation. Contour
and/or surface-based approaches rely on accurate segmentation of one or many anatomical
structures in the images to be registered. Segmentation of ultrasound images is a difficult
problem that usually requires manual intervention for optimal robustness and accuracy. If
manual steps are involved, the accuracy of segmentation becomes user-dependent and is always
suspect. Segmentation-based registration is limited by the accuracy, reliability and speed of
segmentation. A voxel similarity-based approach provides the best framework for ultrasound
volume registration. No segmentation of points, contours or surfaces is required, thereby
removing any limits on the accuracy and speed. There is also no theoretical limitation on the
nature of transformation (rigid or nonrigid) involved. A voxel similarity-based technique has the
potential for full automation - another reason for its selection in the present investigation.

We here report results of registration of ultrasound volumes using mutual information measure
[13] of voxel similarity. In particular, we report the accuracy, capture range and execution time
for four different modes of possible transformation between two image representations of an
anatomy. Although the results are presented for cardiac images, the approach is generalizable to
ultrasound images of most other anatomical sites.

II. RELATED WORK

Voxel similarity-based techniques of image registration, especially those involving ultrasound
images, form the background for our work. The flexibility of using voxel similarity for image
registration has been recognized in the literature [1]. The superiority of a volume-based over a
surface-based approach for multimodality registration of brain images has been shown [14].
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Many studies [15, 16] have compared various measures of voxel similarity and concluded that
mutual information is the most accurate and robust measure for 3D image registration. While
these comparative studies have been performed on non-ultrasound data (brain MRI and single
photon emission computed tomography (SPECT) in [15], liver MRI in [16]), we believe based
on these studies and a preliminary study by our group [17] that the same holds for ultrasound.
These studies provide sufficient confidence that mutual information is a reasonably good
measure of voxel similarity. Instead of repeating experiments comparing voxel similarity
measures, we have focused on preprocessing, recovery of rigid and nonrigid transformations,
and, in general, effectiveness of the voxel similarity approach applied to ultrasound volume
registration.

One of the first applications of voxel similarity for registering ultrasound volumes was by
Rohling et al. [18]. The objective was to register up to six different freehand swept, volumetric
ultrasound images of the gall bladder from slightly different viewing directions so that they could
be spatially compounded (averaged) to create a 3D image free of acquisition distortions, artifacts
and speckles. The specific voxel similarity measure used was the correlation coefficient of
gradient images. The authors report the effectiveness of the voxel similarity approach and the
adequacy of rigid-body registration to eliminate any artifacts due to organ movement between
image acquisitions.

A study with a similar focus as ours is that by Meyer et al. [19], who used the mutual
information measure successfully to register 3D ultrasound images of the breast. The objective
was to register a pair of color flow and/or power Doppler images to create a difference image for
serial monitoring of patients in response to chemotherapy or radiation therapy. If imaged from
multiple directions, superimposition followed by registration allowed filling in of the flow
information missing in a single view. Starting with an approximate registration based on user-
selected point landmarks, the investigators refined the registration using voxel similarity. Rigid-
body, full affine and elastic transformations were compared. The authors concluded that the
affine transformation modeled the deformation of the breast between scans with clinically
acceptable accuracy.

III. REGISTRATION METHODS

In this section, we briefly describe the general theory of mutual information-based 3D image
registration and explain the ultrasound specific processing steps we have introduced.

A. Mutual Information-Based Registration

The algorithm assumes the existence of two data sets: one (primary) is kept stationary, and the
other (secondary) is transformed iteratively until the most optimal alignment between the data
sets, corresponding to the maximum of mutual information function, is achieved. An
optimization method searches for the mutual information maximum in the domain of
transformation parameters. The mutual information I(A,B) between two data sets A and B is a
function of the individual probability density functions p(a) and p(b) and the joint probability
density function p(a,b) of voxel intensities in the overlapping zone of A and B.
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I(A,B)= -jp(a,b)logr p(a,b)

"a b ,p(a)p(b)) (1)

Physically, mutual information conveys the amount of information that A contains about B, or
vice versa [13].

In our formulation of the problem, the goal of image registration is to obtain a 4x4
transformation matrix To, in homogeneous coordinates, such that the mutual information
measure, I(A, TB), between the primary set (A) and the transformed secondary set (TB) is
maximized at T = To. To refers to rigid-body transformation if it incorporates rotation and
translation only. The transformation is affine if it includes scaling and shearing as well.

B. Modes of Transformation

A generalized affine transformation (7) is the cumulative effect of a series of scaling (S),
shearing (H), rotation (R) and translation (D). Although individual transformations could be
combined in many ways, we have restricted the order to the following.

T=DxRxHxS (2)
The expanded affine transformation matrix appears as below

r r, r. d

0 01
where {dx, dy, dz} is the translation vector, and the nine elements of the upper-left 3x3 submatrix
encompass the combined effect of three rotations { 0, Oy, Oz}, three scalings { sý, s, s, I and three
shearings {I y, Oy, OG} (refer to the Appendix for further formulation).

In the present work, we have investigated four different global transformation modes with
progressively increasing complexity. The simplest mode corresponds to rigid-body
transformation, whereas the most complex is full affine transformation. The two intermediate
modes are limited forms of affine transformation. The first limited affine mode corresponds to
rigid-body transformation plus uniform global scaling, whereas the second relaxes the uniformity
condition to nonuniform scaling along the three principal axes. Shearing is not allowed in either
mode. Totally elastic deformation, in which each data sample of the secondary set has a unique
transformation, is conceivable, but such a registration may warp a pathological region of tissue
loss or growth to align with a region of healthy tissue, defeating the purpose of serial follow-up
by subtraction in medical applications.

The transformation mode determines the dimensionality of the search space for optimization. Six
parameters, three translations {dx, dy, dj} and three rotations { O, y, 1}, are searched in the
rigid-body (RB) transformation mode. The uniform scaling (RB + US) mode searches for seven
parameters - a global scaling parameter {s,: sy = s, = sx} in addition to six transformation
parameters of the RB mode. Three distinct scaling parameters {sx, sy, sj}, one per principal axis,
make the number of parameters searched in the nonuniform scaling (RB + NS) mode equal to
nine. The last case, affine transformation (AT) mode, involves 15 geometric parameters that
include three translations, three rotations, three scalings and six shearings. The effect of the 15
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geometric parameters is, however, expressed by only 12 algebraic parameters in the 4x4
homogenous matrix formulation (see Eq. 3). In the Appendix, we have shown that only three
shearing parameters are unique; the effect of the other three is a combination of the other
geometric parameters. Therefore, in the AT mode, three shearing parameters { 9y, , 0 ,z} were
searched in addition to nine parameters of RB + NS mode without any loss of generality.

C. Capture Range

Image registration using the mutual information measure searches for the maximum of mutual
information function in the domain of transformation parameters. The desired solution, in
general, is a strong local maximum but not the absolute maximum over the entire search space.
This idea can be explained by anextreme example, in which, the two volumes overlap at only a
few sample points. If the intensity histograms happened to be identical for the two volumes in
the region of overlap, mutual information would be extremely high. However, such an
orientation is clearly not the desired solution because the two volumes virtually do not overlap.
An implicit assumption in our method, or any other voxel similarity-based method, is that the
starting misalignment between the two data sets is in the neighborhood of the desired solution.
We use the term capture range to convey the notion of a space around the perfect solution such
that launching registration anywhere in this space guarantees convergence on the desired
solution.

D. Speckle Reduction

A requirement for successful registration is that the mutual information function (or any other
measure of voxel similarity) at least within the capture range must be quasi-convex with as few
local maxima as possible. While this requirement is often met in. mono- or multimodality
registration of any combination of typical MRI, CT and nuclear medicine images, the speckle
noise in ultrasound images makes this a difficult requirement to meet. Figure 1 shows surface
plots of mutual information as a function of misalignment to illustrate this point. The mutual
information surface for a pair of MRI and SPECT images in panel (a) is quite smooth, whereas
the same surface for a monomodality 3D ultrasound image pair in panel (b) has ripples. Ripples
or local maxima confound the search for the global maximum. Removal of speckles is key to
suppressing the undesired local maxima in the mutual information function and making
optimization robust and reliable. We accomplished this objective in two ways.

1) Median filtering: Speckles were reduced in a preprocessing step by a 3 x 3 x 3 median
filtering kernel for clinical 3D ultrasound images. The kernel was 3 x 3 in size for semi-synthetic
(to be explained later) data sets that were created from 2D image sequences of the heart. Median
filtering suppressed speckles and in turn significantly smoothed the resulting mutual information
function, as is apparent in panel (c) of Figure 1.

2) Intensity quantization: Sample points of ultrasound data are typically a byte or 8 bits
long. Using fewer than 8 upper voxel intensity bits attenuates both signal and noise, but the
signal-to-noise ratio (SNR) seems to improve first before decreasing, as the number of bits
employed goes from 8 to 1. The higher the SNR, the smoother is the mutual information
function. In the preliminary investigation [17], we showed that using either 5 or 6 upper bits
allowed the most reliable convergence. Panels (c) and (d) of Figure 1 have the mutual
information surface plots for 8 and 6 bits of intensity quantization, respectively, following
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median filtering. The surface is smoother and steeper at 6 bits of intensity quantization. All
results reported in this study are averages of repeating registration with both 5 and 6 bits of
intensity quantization. We are investigating multifunction optimization that takes advantage of
multiple levels of intensity quantization [20].

E. Optimization Algorithm

There are several approaches to optimization. Gradient-based approaches, although fast, are
sensitive to errors in gradient calculation and the presence of local maxima. Gradient-based
search algorithms were ruled out in the present study because of the limitation of the
preprocessing to eliminate completely any speckle noise-induced artifacts from the mutual
information function. The simulated annealing approach, despite its robustness, was also
discarded because of the excessive time it took to converge. Based on our preliminary
experimentation, we selected the simplex method of Nelder and Mead [21] as a compromise
between robustness and convergence time.

Choosing the size of the initial simplex in a multidimensional parameter space is an important
step in using simplex optimization. Each axis of the multidimensional parameter space
corresponds to a geometric transformation parameter. For RB transformation mode, the space is
6-dimensional with dx, dr, d,, 0, oy and 0z as parameters. Prior to determining the size of the
initial simplex, a normalization is desired such that a unit step along any parameter axis results in
approximately the same physical displacement of the data in the spatial domain. The relationship
between translation and physical displacement of data is direct - a unit translation moves all
voxels of a 3D image by the same fixed amount. The same is, however, not true for rotation,
where the displacement of a voxel is dependent on its distance from the axis of rotation. The
physical displacement associated with rotation was estimated by the excursion of the farthest
vertex from the axis of rotation passing through the center of the data. The displacements
associated with scaling and shearing were similarly the excursions of the farthest vertex. In the
present work, a physical displacement on the order of voxel dimension was chosen as the
normalizing distance. The required translation (in millimeters), rotation (in degrees), scaling
(unitless) or shearing (in degrees) to produce this physical displacement was treated as one unit
of that parameter in the transformation parameter domain. For the data sets used in the study, a
unit parameter distance corresponded to 1.25 mm of translation, 1 degree of rotation, 2% of scale
and 2 degrees of shear.

In principle, the size of the initial simplex should be greater than the unit dimension along each
axis so that it does not get stuck in a local maximum. The ripples in the mutual information
function are spaced approximately at unit dimension. The initial size should also not be greater
than the capture range, otherwise the convergence may not occur. An initial size roughly 2-5
units along each axis was found satisfactory.

When using optimization, one must also decide termination conditions. We employed a two-part
condition; meeting both parts stopped the optimization. The first part checked for the size of the
simplex. If it became smaller than a unit hypercube in the parameter space, the condition was
considered met. The second part looked for the range of mutual information values at simplex
vertices. This condition was considered met if and when the range became less than 0.001. There
was also a failsafe condition, simply the number of iterations, which was empirically kept at
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1000 to prevent optimization from executing indefinitely. The failsafe condition was rarely
encountered, as the search would end due to the physically meaningful first condition.

IV. EXPERIMENTAL METHODS

A. Description of Data

There were two sources of 3D ultrasound data. The first was the real-time 3D ultrasound scanner
manufactured by Volumetrics, Inc. This scanner produced a sequence of volumes, shaped
approximately like a truncated pyramid, with 60 degrees azimuth and elevation angular spans, at
a frame rate of 25 Hz. The scan depth was 140 mm for the data sets used in the present study.
Volumetrics data sets were acquired natively on a spherical grid with a higher spatial sampling
rate along the radial direction (referred to as the z axis henceforth). The number of samples along
the z axis was less than 512; the actual number depended on the scan depth and the length of the
null space coinciding with the near field of the ultrasonic beam. There were 64 samples along
azimuth and elevation angles, the lateral sampling rate consequently varied with depth. To
preserve the relatively higher spatial resolution along the z-axis, the data sets were scan-
converted to a 128 x 128 x 512 rectilinear grid before further processing. The rectilinear grid
coincided with the bounding box of the spherical grid. Five data sets (three from one patient and
two from another) showing the left ventricle at different phases of the cardiac cycle were used.
These clinical data sets were acquired in the Department of Cardiology at our institution.

Another type of 3D data set, which we call semi-synthetic, was created from time-series 2D
images of the heart to simulate the type of volumetric data the real-time 3D ultrasound scanner
that our group is developing will produce. All 2D images spanning a full cardiac cycle were
spatially arranged to mimic the orientation resulting from the internal, user-transparent rocking
motion of the transducer array, effectively converting time into a synthetic spatial axis. A cross-
section of the resulting volumetric data parallel to the synthetic axis resembled a warped version
of the familiar M-mode image. Although the semi-synthetic data did not represent realistic
anatomy, such data closely approximated the higher lateral spatial resolution data that our
scanner will provide. Since the success and accuracy of registration, to a great extent, is
anticipated to depend on image resolution rather than the exact nature of the structure of the
underlying anatomy, we believed semi-synthetic data would provide a closer estimate of the
performance expected when our future images are registered. Semi-synthetic data sets originated
from two image sequences that extended over three cardiac cycles each and showed the four-
chamber view of the heart. The images were acquired in two patients as part of routine clinical
diagnosis in the department of cardiology at our institution. The scan depth was 140 mm and the
pixel size in the scan-converted 2D images 0.38 x 0.38 mm. Since the heart rate was stable, the
number of 2D images per cardiac cycle was the same.

B. Data Preparation

The original 128 x 128 x 512 resolution of Volumetrics data sets overwhelmed the computer
because 3D registration is computationally intensive. The sets were therefore subsampled by a
factor of two to create 64 x 64 x 256 resolution data with a voxel size of 2.2 x 2.2 x 0.55 mm. A
further subsampling along the z axis to create 64 x 64 x 64 resolution data sets was also
performed for one of the experiments. In both cases, median filtering for speckle removal was
performed. The overall data dimension was 140 x 140 x 140 mm.
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To create semi-synthetic 3D data sets, a central square portion in each of the original clinical
images was chosen; the surrounding annotation and ECG waveform were cropped out.
Following 3 x 3 medial filtering, 32 consecutive cropped images (originating from one cardiac
cycle) were stacked at an angular spacing of 1.8 degrees such that the apex of the underlying
ultrasonic acquisition sectors mert at a unique point. The resulting space of ultrasonic data was
resampled to a 128 x 64 x 128 rectilinear grid with a voxel size of 1.0 x 1.9 x 1.0 mm, hence
overall dimensions of 128 x 122 x 128 mm. The poorer resolution corresponded to the synthetic
spatial axis, i.e., y axis.

An important preprocessing step was to create a 3D mask to match the shape of the acquired
ultrasound volume within the rectangular volume obtained following scan-conversion. The
volume of overlap needed to compute mutual information was always the volume of overlap of
the two masks. There was one unique mask for the Volumetrics data sets and another for the
semi-synthetic data.

C. Experiments and Validation

We tagged, retrospectively, the frames of Volumetrics data sets with the cardiac phase and
registered identical phase frames from two different scans of the same patient. The registration
was found visually satisfactory in all cases; however, a quantitative validation could not be
performed because the ground truth was not known. The experiments proved the feasibility of
mutual information-based registration of ultrasound volumes. To determine the accuracy of
registration of 3D ultrasound data sets for the four transformation modes and two types of 3D
ultrasound data, we took a self-validation approach. Deforming the secondary volume in an
otherwise registered pair of volumes simulated the starting misalignment. The goal of
registration was then to overcome the user-introduced deformation by applying an exactly
opposite transformation to the secondary. Comparing the known misalignment with the solution
of registration allowed us to determine the expected accuracy. For each of the five Volumetrics
data sets, two adjacent end-diastolic frames (separated in time by 40 ms) were chosen as the
primary and the secondary sets. The proximity (in time) of the two frames and the end-diastolic
phase, when the heart is momentarily stationary, allowed us to assume matching shape and size
of the cardiac anatomy in the two frames. It further allowed us to assume the perfect anatomic
alignment with partially, if not fully, uncorrelated noise. For each of the two semi-synthetic data
sets, a 3D image pair was produced from two adjacent cardiac cycles. Since the heart rate was
regular and the acquisition was fast, it was assumed that the deformation pattern of the heart was
similar in the two cycles. Consequently, the two volumes were assumed to be registered initially
without correlated noise.

We picked starting misalignment in the transformation parameter domain that allowed us to
experiment with several different combinations of transformation parameters. We conceptually
constructed a hypercube in the parameter domain centered at the origin with a side length of 12
parameter units. The number of vertices of the hypercube depended on the dimensionality of the
space, which in turn depended on the transformation mode. It was 26, 27, 29 and 212, respectively,
for RB, RB + US, RB + NS and AT modes. We picked 20 vertices of the hypercube at random
for each transformation mode as 20 different starting misalignments. Each misalignment was
then decomposed into its basic constituents (geometric transformation parameters) and applied to
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the secondary before initiating registration. To summarize, each image pair for each
transformation mode was registered 20 times starting from 20 different misalignments.

Upon registration, the known and the searched geometric transformation parameters were
compared directly to assess accuracy. As discussed before, the actual physical displacement of
each voxel of a 3D data set upon a complicated transformation (involving more than translation)
is not identical. The physical displacement is usually greatest at the farthest comers or the
vertices of the data volume. An alternative approach to estimate the accuracy of registration with
just one metric was to consider the average error in the registration of the eight vertices of the
data volume. Since the size of Volumetrics and semi-synthetic volumes differed, we averaged
the errors at the vertices of a hypothetical cube of 100 mm side length centered with the data for
a fair comparison of accuracy between the two kinds of data. This metric was termed average
distance error and was measured in millimeters.

A subsequent goal of our experiments was to estimate the capture range for each transformation
mode. The general idea was to plot average distance error against starting misalignment and look
for a transition point beyond with average distance error increased dramatically. As before, we
worked in the parameter domain. Conceptually, nine random rays were drawn originating from
the origin. Starting misalignments were points along the ray between 4 and 15 units at unit
interval. The capture range estimated in parameter units was converted to physical units.

V. RESULTS

A. Effect of Median Filtering

We discussed earlier the effect of median filtering on smoothening of mutual information
function to facilitate convergence. In this section, we first present results demonstrating the
effect of median filtering on the accuracy of registration for Volumetrics data sets. The average
distance error, although increased with increasing complexity of deformation, was consistently
smaller when the data sets were median filtered prior to registration (see Figure 2). Although not
shown, the error in the estimation of each geometric transformation parameter was less with
median filtering. All subsequent results include median filtering performed as part of
preprocessing.

B. Registration of Real-Time 3D Ultrasound Data

The registration of one of the five Volumetrics data pair is shown in Figure 3. For each
transformation mode corresponding to a row, two orthogonal cross-sections (x-y and y-z planes)
of the fused volume data are presented. Each cross-section is presented twice, showing the
relative orientation of the primary and the secondary before and after registration. The primary
has been depicted with shades of green using the green channel of the RGB color triplet, whereas
shades of magenta (red and blue channels) depict the secondary. Shades of gray result upon
registration when comparable intensities of green and magenta are fused. A visual approach to
evaluate the success of registration, therefore, is to look for a higher occurrence of gray.
Qualitatively, a greater matching of anatomical structures is apparent following registration in all
transformation modes.
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Results of registration on all five Volumetrics data sets are shown in Table 1. The average
distance error, averaged for all five data sets, is presented in the second column. This error
increases with the complexity of transformation. The root mean squared (rms) deviation (or
estimation error) of each parameter from the expected solution is reported in subsequent
columns. The bottom number in each row is the deviation from the zero transformation, the
obvious expected solution. Since there is bound to be some, although very small, mismatch in the
two starting frames we used, the zero transformation may not be the ideal solution. As an
alternative, we considered the median of all solutions (to be called median solution) as the
expected solution and measured rms deviation of each geometric parameter from it. The numbers
in the top of each row designate deviation from the median solution. Not surprisingly, the
estimated parameters were closer to the median solution than the zero transformation solution. A
general trend was increasing error in the estimation of each transformation parameter with
increasing complexity of transformation. d, (translation along x axis) is estimated with 0.41 mm
rms error in RB mode, whereas the same error increases to 3.4 mm in the AT case. This
observation is likely due to the ambiguity arising from a higher number of parameters with more
complex transformation modes. A single basic transformation or a combination of them may
approximate another single basic transformation. As an example, scaling along z axis may
correct for translational error along the same axis in some parts of the volume. If the scaling is
not allowed at all, as would be the case in RB mode, translation parameter will be more
accurately determined. The anisotropic image resolution also has an effect in estimating
transformation parameters. In general, any parameter that moved the data parallel to the axis of
lower image resolution entailed more error.

One of our goals was to estimate the capture range for each transformation mode. A desirable
way to express capture range is to define a range of values for relevant geometric parameters.
However, geometric transformation parameters interact in a complex manner. A large translation
could be recovered when present by itself, but the optimization may fail if the same translation is
present along with rotation and scaling. An alternate way to determine capture range is in terms
of parameter units encompassing the effect of all applicable parameters. The parameter unit can
be converted to physical displacement for a more intuitive measure of capture range. In the four
panels of Figure 4, the accuracy of registration (average distance error) is plotted against
misalignment in parameters units. The boundary of capture range was estimated to be located at
the point of inflexion where the slope of the fitted line changed. According to the preceding
definition, the capture range was estimated to be 11, 10, 8 and 6 units, respectively, for RB, RB +
US, RB + NS and AT transformation modes. These numbers translate to 14, 12.5, 10 and 7.5 mm
in physical units, respectively. As expected, the capture range shrinks with increasing complexity
of the transformation mode.

C. Registration of Semi-synthetic 3D Ultrasound Data

The images showing the result of registration on one of the semi-synthetic data sets are presented
in Figure 5 in exactly the same layout as that of Figure 3. The success of registration is visually
apparent by comparing pre- and post-registration images, especially the fused images following
registration. As before, the accuracy is higher for simpler transformation modes. One can see that
the algorithm did not achieve good registration upon convergence in the AT mode for the data
set shown.
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Table 2 presents a numeric summary of results for the semi-synthetic data sets. As before,
the error in registration and estimation of a transformation parameter increased by increasing the
complexity of the transformation mode. A difference is in the relative magnitudes of error
between three forms of translation, rotation and so on. Due to lower sampling rate and the lack of
closed features to constrain registration along the synthetic (y) axis, estimation of parameters that
moved one volume with respect to another along the y axis was less accurate. As a result, the
error in dr was more than the error in d, and dz, and the error in s. more than that in s, and s,.
Since Oy, the rotation about the y axis, affects x and z coordinates which were more finely
sampled, it was more accurately estimated than 0, and 0, that affected the y coordinate as well.

By the same token, 0, was more accurately determined in comparison to the other two forms of
shear.

Semi-synthetic data, in comparison to Volumetrics data, do not show dramatic improvement in
average distance error. In fact, the error worsens in all cases except the RB + US case. The
expected improvement was not achieved because the parameters associated with the synthetic
axis could not be determined with high accuracy. The parameters not associated with the
movement of data along the synthetic axis, dx, dz, Oy, s,, s, and 0:, showed comparatively better
accuracy. The average distance error significantly improved if the starting misalignment and the
ensuing optimization left out the parameters associated with movement of data along the
synthetic axis (see Table 3). This confirms a direct relationship between image resolution and the
accuracy of registration.

D. Multiresolution Registration and Execution Times

In an attempt to test multiresolution strategy of image registration for Volumeterics data,
the registration was attempted at several levels of resolution. The registration at the original data
resolution, 128 x 128 x 512, failed due to its overwhelming computing requirements. The
registration did not succeed for a resolution coarser than 64 x 64 x 64, allowing very little scope
for multiresolution registration. In Table 4, we present results of registration at 64 x 64 x 64 and
64 x 64 x 256 resolution levels. As expected, the average distance error was smaller for more
finely sampled data. A limited two-level registration approach, which will first perform a coarser
registration at 64 x 64 x 64 resolution followed by the same at 64 x 64 x 256, reducing the
convergence time, is possible.

The convergence time of registration is important for its clinical acceptability and suitability for
specific applications. Although not optimized, execution times for the registration program
written in Matlab (The Mathworks, Inc., Natick, MA) and running on a 450 MHz Pentium-Il
personal computer with 512 MB of memory are reported in Table 5.

The timings were four times as much for 64 x 64 x 256 resolution data sets. We expect the
timing to improve by at least factor of two by porting Matlab code to compiled language
(C/C++) code. An additional factor-of-two improvement will result by running the program on a
late-model computer with a 900 MHz or higher CPU clock.
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VI. DISCUSSION

We have demonstrated that it is feasible to register ultrasound volumes, despite their relatively
poor image quality and the presence of several image artifacts, using the mutual information
property of voxel similarity. Furthermore, we have demonstrated that the image registration can
recover a global deformation as simple as a rigid-body transformation and as complex as an
affine transformation. We discuss the features and performance of our algorithm and the likely
clinical applications below.

A successful approach to ultrasound image registration should be fundamentally 3D and
compensate for both rigid and nonrigid deformations of the underlying organ. Moreover, it
should be robust, accurate and fast and should require minimal user intervention. Our method is
3D and accommodates global nonrigid deformation of an organ between image acquisitions. We
note that the shape mismatch between two representations of an organ from two different instants
could arise from two sources. The first is the deformation due to patient positioning and the
other, any physiological and pathological changes in the organ itself. For successful temporal
comparison, it is imperative that the registration account for only the patient positioning
component, not the physiological and pathological changes. The shape of a deformable soft tissue
organ cannot be the same between differing patient positions such as the supine and the prone
due to gravity and pressure changes from neighboring organs. Even small variations in a given
position (supine, for example) between image acquisitions could contribute to deformation.
Although this deformation will in general be nonrigid, it is expected to be global primarily
because gravity, the major contributor, is uniform. The physiological and pathological changes
such as tissue growth or decay, on the other hand, are expected to be local. Although a totally
elastic registration is possible within the mutual information-based image registration
framework, a caveat with elastic image registration is the loss of tissue changes that are of
clinical interest. Constraining deformation to a global transformation during registration, at least
in principle, allows serial follow-up without patient positioning errors. An enhancement would
exclude any local regions of pathology from the registration process. Meyer et al. [19] showed
that the affine transformation was adequate for registering images of the breast, a highly
deformable organ. A totally elastic registration, however, does make sense in intermodality
registration, where local tissue changes are not an issue and the goal is fusion of complementary
information.

Our work is anticipatory. Image registration is one of the core image analysis technologies we
are developing in parallel with our development of a high-resolution real-time 3D ultrasound
scanner based on synthetic aperture beam forming. The utilization of Volumetrics data sets was
to enable registration algorithm development, realizing that the accuracy and the capture range of
the algorithm will improve with higher resolution images produced by our future scanner. We
picture the accuracy and capture range derived from Volumetrics images as the lower bounds of
the respective quantities. To estimate the expected accuracy better at the present time, we
employed semi-synthetic volumes created from clinical images; however, parameters associated
with the synthetic axis could not be determined very accurately. The accuracy (average distance
error) by excluding parameters associated with synthetic axis was found to be 0.86 mm in the
rigid-body case and 1.6 mm in the full affine case. These numbers serve as the upper bounds of



15

accuracy and are comparable to the voxel size. Given the poor image quality of ultrasound,
achievement of subvoxel accuracy in registration is not anticipated.
In general, and as discussed by Carrillo et al. [16] also, the accuracy of image registration is
difficult to assess for organs that can deform or move with respect to the exterior of the body,
which includes virtually all organs imaged by ultrasound. An external marker-based approach
that has been used successfully in the validation of brain image registration does not apply to the
case of deformable organs, thus limiting one to comparing internal landmarks, concurrence with
experts and recovery of user-introduced transformations. We took the latter approach, registering
two frames closely spaced in time. The temporal proximity allowed us to assume equality of
anatomy without co-related noise. Despite real-time acquisition of Volumetrics images and
regular heartbeat in the case of semi-synthetic data, a slight, difference in anatomy, which might
have affected the reported accuracy, could not be ruled out. Overall, the accuracy was acceptable
in the RB and RB + US transformation modes. Studholme et al. [15] reported 3 mm and 4
degrees (7 mm displacement 100 mm away from the center of axis) as the limits of accuracy
when human experts performed a manual registration of MRI and Positron Emission
Tomography (PET) brain images. The specified numbers for translational accuracy were
comparable to the voxel size of PET, the lower resolution image in the pair. Although no such
data are available for ultrasound images of the heart, optimistic limits of human accuracy could
be considered equivalent to the voxel size. Using the voxel dimension yardstick, the accuracy is
satisfactory in RB and RB + US transformation modes. The same cannot be claimed for RB +
NS and AT modes. We do point out that all the accuracy numbers reported by us included the
effect of outliers as well. A quantitative measure to separate cases that converged to an
acceptable solution from those that did not was difficult to define. The accuracy numbers,
therefore, also reflect the robustness of registration. The RB + NS and AT modes are thus less
robust. The starting misalignment was kept at 6 parameter units for all experiments. We also note
that the capture range was estimated to be 6 parameters units for affine transformation. The lack
of robustness in the affine case may in part be due to the starting misalignment bordering the
limit of convergence.

We have found simplex optimization to be most successful with ultrasound data even though
Powell's method has typically been used in voxel similarity registration in reported studies [15,
16]. Simplex optimization is, however, time-consuming as reflected in the execution times we
have reported. Since the use of voxel similarity registration for real-time 3D ultrasound images is
not a widely investigated area, our immediate focus was effectiveness, not speed. Encouraged by
our result and convinced that a generalized nonrigid registration of ultrasound volumes is indeed
feasible, we are exploring ways to improve execution of the algorithm. We have looked at the
possibility of well-known multiresolution strategy; however, the existing image quality of
ultrasound does not allow effective registration at lower resolutions. Since the algorithm spends
80% of the time in resampling the secondary, we are investigating hardware acceleration for a
factor-of-five increase in speed. Since the execution time is proportional to the dimensionality of
the parameter space, and the capture range shrinks with the complexity of transformation, a
progressive refinement approach, which will both save time and improve accuracy, is desirable.
Starting with a rigid-body transformation, one would proceed to affine transformation through
intermediate limited affine transformation modes while the size of the search space progressively
becomes narrower.
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Clinical applications of a generalized, accurate and robust 3D image registration technique could
be many. At the very least, it would allow comparison, in quantitative terms, of the images of the
organs such as the kidney and the liver, Image quality could be improved by registration and
subsequent superimposition of several successive scans. Many cardiac applications are possible
as well. One specific application to which we are applying the developed techniques is the
alignment of pre- and post-stress ultrasound 3D images of the heart. Once registered, a side-by-
side presentation of pre- and post-stress images along any arbitrary orientation is possible,
allowing a physician to perform accurate and comprehensive diagnosis.

VII. CONCLUSION

We have demonstrated that mutual information-based registration, previously developed for
multimodality registration of brain images, is effective for registration of 3D ultrasound images.
Furthermore, given the deformable nature of any organ typically imaged with ultrasound, we can
apply the same framework for nonrigid deformations such as rigid-body transformation with
both uniform and nonuniform scaling and affine transformation. The accuracy of the registration
is comparable to voxel dimensions; however, the capture range shrinks with the complexity of
deformation. We expect both accuracy and capture range to improve with higher resolution
images to be produced by a synthetic aperture real-time 3D ultrasound scanner being developed
at our institution.

APPENDIX

TRANSFORMATION MATRIX FORMULATION

A generalized affine transformation is the product of scaling (S), shearing (H), rotation (R) and
translation (D) matrices. For the translation vector {d(, dy, dz} and the scaling vector {sx, sy, s.},
the translation and scaling matrices are expressed as

1 00 d', s, 00 0

01 1 0 d0s 00
D and S =

= 0 1d 0 0s 0

0 001 0 001

The rotation matrix is the product of three matrices representing individual rotation about the x, y
and z axes, respectively, by angles 0, Oy and &, R = R,*Ry*Rx, where

cos0 - sin 0 0 0 cosi/ 0 -sinO: 0,

= sin 0 cos¢0 0 0 0 1 0 0and
0 0 1 0 sin 0, 0 cos, 0 a

0 0 01 0 0 0 1

1 0 0 0

0 cos 0, -sin o 0
R 0 0 sin x cos 0, 0

0 0 0 1
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The shearing matrix is a product of six matrices of the form
1 hý,. 0

Ha6 = h I h1. 0

h~x h-V 1 0

0 01
wherehca f- tanGOo ifa = cand b =d

where h~d = ,ab , a, b, c and d assume values x, y and z.L 0, otherwise

Each pair'of axes produces two shears, 0ab and &,, but only one of them is unique. Consequently,
only three out of six shear parameters need to be used for transformation matrix formulation for
registration. To prove this, let us consider the transformation H 3 achieved with the set of three
redundant shears.

1 0 - tanG~ 0,,

-tan9 0,' 1 0 0
H3 = HYX * HXz *H = tan x. * tan OzY - tan 0ZV 1 0

0 0 0 1

Let us consider a second transformation H 9 incorporating scaling, three rotations and the other
three shear matrices.

H 9 =S *Hxy *HX *HYZ *Rx *RY *RZ =
s(cosOs, -(sin , tan Ox + cosox tan q, tan ý,)sin Oy)cos¢ - sx((cos . tan Ox. -sin .P tan0 tanG.• )sin¢,

Sy (sin 0. + cos ¢x tan 0,.) sin 0. costz + s. (cos ,. - sin 0,. tan 0,.z )sin 0,
- st(cosqOy tanOz, - cos Ox sin 0y)cos z + sz sin 0, sin 0,

0
sX(cosoy -(sin0, tanq . +cosOb tan0, tansyz)sin y)sin Oz-s,(coos• tanqy -sinOX tan0 taný,,)cos,..

_s .(sin0. + cos 0tan O.z)sin 0. sin , + s.,(cos0 -sin Ox tan0,.,)cosOz .

sz (cos ¢y tan O. - cos x sin 0y)sin Oz + sz sin .,• cosoz

0

. s sin , + sx (sin Ox tan Ox + cos O tan q, tan Gy)cosO 0Y
.. _Sy(sin Ox+ cos Ox tan0yZ) cosO 0y

-s (sin 0, tan 0,, - cos Ox cos 0) 0
0

Element by element comparison of matrices H 3 and H 9 provides the following set of equations
and solution.

H9(2,3) = 0 Oyz = -0;
H9(1,2) = 0 0, = arctan(-tanoz coso. cosox);
H9(2,1)* H9 (3,2) = H9(3,1) 0 ,. = arctan(tanoy cosox);
H9(],1) = 1 => sr = cosoz / cost,;
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H9(2,2) = 1 = SY = cos.,. / cost ;
H9(3,3) = 1 => sZ = cosV, / cost.
H9(2, 1) =-tan~y O. => =-Oy. ;

H9(1,3) = -tanG, 0> y = arctan(tanOz /cos0z);
H9(3,2) = -tany =:> = arctan(-tana /(cosy coso,)).

To summarize, three shearing parameters of H3 can be expressed in terms of the other three

shearing, three rotation and three scaling parameters.
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TABLE 1

SUMMARY OF REGISTRATION RESULTS FOR ALL FIVE VOLUMETRICS DATA SETS.

rms Estimation Error of Transformation Parameter

d c, d), dci )I~ (Aý 0 A sz , s, s, ,

(mm) (mm) (mm) (deg) (deg) (deg) (%) (%) (%) (deg) (deg) (deg)

RB 1.4 0.34 0.39 0.16 0.24 0.18 0.73
0.41 0.47 0.63 0.31 0.21 0.74

RB+US 2.5 0.60 0.36 0.18 0.36 0.27 1.6 0.38
0.83 0.53 0.68 0.40 0.29 1.7 1.1

RB+NS 6.2 1.5 0.79 2.3 1.1 1.6 1.3 5.9 2.6 7.2
1.6 0.96 2.4 1.2 1.7 1.4 6.2 3.3 7.2

AT 14.1 3.2 2.5 4.0 2.7 5.3 6.2 7.3 5.1 15.0 5.4 5.0 4.5
3.4 2.9 4.6 2.8 5.3 6.3 7.8 6.7 15.0 5.5 5.3 5.3

TABLE 2

SUMMARY OF REGISTRATION RESULTS FOR ALL SEMI-SYNTHETIC DATA SETS.

o

rms Estimation Error of Transformation Parameter
0 Eg

ca d, cidi , 9ý Y z 0 0),(mm) (mm) (mm) (deg) (deg) (deg) (%) (%) (%) (deg) (deg) (deg)

RB 2.0 0.17 0.38 0.25 0.52 0.13 0.35
0.33 0.99 0.27 0.62 0.13 1.2

RB+US 1.7 0.18 0.56 0.26 0.22 0.18 0.42 0.35
0.38 0.68 0.35 0.58 0.18 0.93 0.35

RB+NS 12.7 0.38 2.0 0.73 2.1 0.29 1.3 1.1 26.0 2.3
0.71 2.4 0.75 2.2 0.40 1.5 1.2 25.0 2.3

AT 15.4 0.73 2.5 0.98 5.3 2.2 3.4 1.0 24.0 10.9 4.3 5.4 2.1
0.97 3.0 1.00 6.0 2.3 4.6 1.1 25.0 11.0 5.1 5.8 2.1
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TABLE 3

SUMMARY OF REGISTRATION RESULTS FOR SEMI-SYNTHETIC DATA SETS
EXCLUDING TRANSFORMATION PARAMETERS AFFECTING DATA ALONG THE

SYNTHETIC (Y) AXIS.

S-rms Estimation Error of Transformation Parameter

-. . .. d, d, , y , s. SSx s, S9 9

(mm) (mm) (mm) (deg) (deg) (deg) (%) (%) (%) (deg) (deg) (deg)

RB 0.86 0.40 0.47 0.20
0.41 0.52 0.20

RB+US

RB+NS 1.3 0.48 0.53 0.30 0.37 0.43
0.51 0.61 0.31 0.37 0.48

AT 1.6 0.66 0.65 0.25 0.60 1.10 0.39
1 1 0.68 1 0.80 0.25 0.61 1.20 1 0.40

TABLE 4

ACCURACY OF REGISTRATION FOR VOLUMETRICS DATA SETS AT TWO LEVELS
OF RESOLUTION.

Data Resolution Deformation Average Distance
mode Error (mm)

RB 2.0
64 x 64 x 64 RB + US 4.1

RB + NS 8.2
AT 14.2
RB 1.6

64 x 64 x 256 RB + US 2.7
RB + NS 6.2

AT 11.6

TABLE 5

EXECUTION TIME FOR 64 X 64 X 64 RESOLUTION VOLUMETRICS DATA.

Transformation Execution time
mode (min)

RB 6-8
RB + US 8-10
RB + NS 12-15

AT 20-25
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(c) US + US following medial filtering (d) US + US, median filtering + 6 bit quantization

Figure 1 Mutual information as a function of misalignment for an MRI and SPECT image pair
(panel (a)) and a 3D ultrasound (US) image pair (panel (b)) with no preprocessing. Panels (c) and
(d) show the mutual information surface plots, following medial filtering, for 8 and 6 bits of
intensity quantization, respectively. Note the inherent smoothness of the mutual information
surface for the non-ultrasound image pair in panel (a) and the roughness of the same for the
ultrasound image pair in panel (b). The effect of preprocessing to smooth the surface through
median filtering and then intensity quantization is apparent in panels (c) and (d).
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Figure 2 Average distance error with and without median filtering for the four transformation
modes of image registration. Note the error is smaller with median filtering in each of the four
transformation modes.
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(a) RB mode

(b) RB + US mode

(c) RB + NS mode

(d) AT mode

Figure 3 Fused primary and secondary Volumetrics data sets before and after registration for all
four deformation modes. Each row has a pair of fused images before and after registration for
two orthogonal cross-sections of the 3D data.
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Figure 4 Accuracy of registration as a function of misalignment. The panels (a), (b), (c) and (d)
correspond to RB, US, NUS and AT transformations, respectively. Note that the capture range,
defined by the point of inflexion, shrinks with increasing complexity of transformation.
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(a) RB mode

(b) RB + US mode

(c) RB + NS mode

(d) AT mode

Figure 5 Fused primary and secondary semi-synthetic data before and after registration for all four
transformation modes. Each row shows a pair of fused images before and after registration for two
orthogonal cross-sections.



Appendix 4: Abstract of the paper to be presented at SPLE Medical Imaging Symposium in San
Diego in February 2001 - Vladimir Zagrodsky, Raj Shekhar, and J. Fredrick Cornhill,
"Multifunction extension of simplex optimization method for mutual information based
registration of ultrasound volumes."



(To be presented at SPIE Medical Imaging Symposium in San Diego, February 2001)

Multi-Function Extension of Simplex Optimization Method for Mutual Information Based Registration of
Ultrasound Volumes

Vladimir A. Zagrodsky, Raj Shekhar, J. Fredrick Cornhill (The Cleveland Clinic Foundation, Cleveland, OH 44195)

Mutual information has been demonstrated to be an accurate and reliable criterion function to perform registration of
medical data. Due to speckle noise, ultrasound volumes do not provide a smooth mutual information function.
Consequently the optimization technique used must be robust to avoid local maxima and converge on the desired
global maximum eventually. While the well-known simplex direct search optimization uses a single criterion
function, our extension to multi-function optimization uses three criterion functions, namely mutual information
computed at three levels of intensity quantization and hence three degrees of speckle noise suppression. Registration
was performed with rigid as well as simple non-rigid transformation modes for real-time 3D ultrasound datasets of
the left ventricle. Pairs of frames corresponding to the most stationary end-diastolic cardiac phase were chosen, and
the initial misalignment was introduced artificially. The multi-function simplex optimization reduced the failure rate
by a factor of two in comparison to the standard direct search, while the average accuracy for the successful cases
was unchanged. A more robust registration resulted from the parallel use of criterion functions. The additional
computational cost was negligible, as each of the three implementations of mutual information used the same joint
histogram and required no extra spatial transformation.
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