
UNCLASSIFIED

AD NUMBER

ADB264541

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Proprietary Info.; Jun
2000. Other requests shall be referred to
U.S. Army Medical Research and Materiel
Command, 504 Scott Street, Fort Detrick,
MD 21702-5012.

AUTHORITY

USAMRMC ltr, 8 Jan 2003

THIS PAGE IS UNCLASSIFIED



AD

Award Number: DAMD17-97-1-7193

TITLE: Methods for Evaluating Mammography Imaging Techniques

PRINCIPAL INVESTIGATOR: Carolyn Rutter, Ph.D.

CONTRACTING ORGANIZATION: Center for Health Studies
Seattle, Washington 98101-1448

REPORT DATE: June 2000

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government
agencies only (proprietary information, Jun 00). Other requests
for this document shall be referred to U.S. Army Medical Research
and Materiel Command, 504 Scott Street, Fort Detrick, Maryland
21702-5012.

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.

20010323 027



"NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER
DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER
THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY
OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS,
SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE
HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY
ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL
ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-97-1-7193
Organization: Center for Health Studies
Location of Limited Rights Data (Pages):

Those portions of the technical data contained in this report marked as
limited rights data shall not, without the written permission of the above
contractor, be (a) released or disclosed outside the government, (b) used by
the Government for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c)
used by a party other than the Government, except that the Government may
release or disclose technical data to persons outside the Government, or
permit the use of technical data by such persons, if (i) such release,
disclosure, or use is necessary for emergency repair or overhaul or (ii) is a
release or disclosure of technical data (other than detailed manufacturing or
process data) to, or use of such data by, a foreign government that is in the
interest of the Government and is required for evaluational or informational
purposes, provided in either case that such release, disclosure or use is made
subject to a prohibition that the person to whom the data is released or
disclosed may not further use, release or disclose such data, and the
contractor or subcontractor or subcontractor asserting the restriction is
notified of such release, disclosure or use. This legend, together with the
indications of the portions of this data which are subject to such
limitations, shall be included on any reproduction hereof which includes any
part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

Publicoeporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining

the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for

reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of

Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 2000 Annual (19 May 99 - 19 May 00)

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Methods for Evaluating Mammography Imaging Techniques DAMD17-97-1-7193

6. AUTHOR(S)
Carolyn Rutter, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Center for Health Studies REPORT NUMBER

Seattle, Washington 98101-1448

E-MAIL:
rutter.c@ghc.org
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information,
Jun 00). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command,
504 Scott Street, Fort Detrick, Maryland 21702-5012.

13. ABSTRACT (Maximum 200 Words)

The purpose of this award is to enable Dr. Rutter to develop biostatistical methods for
evaluating the accuracy of breast cancer screening. This four year program includes
advanced training in the epidemiology of breast cancer, training in clinical detection of
breast cancer, development of statistical methodology, and graduate teaching. A basic
knowledge of the epidemiology, disease process and detection of breast cancer guides the
development of statistical methods.

During this third funding year, Dr. Rutter has continued to expand her knowledge of breast
cancer epidemiology and detection. She has published two articles during the third
funding year. The 1st describes bootstrap estimation of accuracy statistics when patients
are assessed at multiple patient sites. The 2 nd published article compares performance of
mammographers in a test setting to performance in clinical practice. Dr. Rutter also has a
third article that is under review by JAMA that compares changes in breast density among
women who initiate, discontinue, and continue use of hormone replacement therapy.

During her fourth funding year, Dr. Rutter will teach an introductory graduate level
statistics course and will focus on methods for estimating sensitivity and specificity
that incorporate growth curve models.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Breast Cancer 63
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102



FOREWORD

Opinions, interpretations, conclusions and recommendations are
those of the author and are not necessarily endorsed by the U.S.
Army.

Where copyrighted material is quoted, permission has been

obtained to use such material.

Where material from documents designated for limited

distribution is quoted, permission has been obtained to use the
material.

Citations of commercial organizations and trade names in

this report do not constitute an official Department of Army
endorsement or approval of the products or services of these
organizations.

N/A In conducting research using animals, the investigator(s)
adhered to the "Guide for the Care and Use of Laboratory
Animals," prepared by the Committee on Care and use of
Laboratory Animals of the Institute of Laboratory Resources,
national Research Council (NIH Publication No. 86-23, Revised
1985).

X For the protection of human subjects, the investigator(s)
adhered to policies of applicable Federal Law 45 CFR 46.

N/A In conducting research utilizing recombinant DNA technology,
the investigator(s) adhered to current guidelines promulgated by
the National Institutes of Health.

N/A In the conduct of research utilizing recombinant DNA, the
investigator(s) adhered to the NIH Guidelines for Research
Involving Recombinant DNA Molecules.

N/A In the conduct of research involving hazardous organisms,
the investigator(s) adhered to the CDC-NIH Guide for Biosafety
in Microbiological and Biomedical Laboratories.

PI - Sig e Date



Table of Contents

Cover ................................................................................................

SF 298 ............................................................................................ 2

Foreword ........................................................................................ 3

Introduction ...................................................................................... 5

Achievement of Year 3 Technical Objectives .................................... 5

Technical Objective 1: Gain additional training in breast cancer
epidemiology, detection and treatment ......... 5

Technical Objective 2: Develop methods for multiple patient
assessments ................................................. 5

Technical Objective 3: Extend exact methods for ordinal
regression models .......................................... 5

Technical Objective 4: Develop methods to adjust for error in
measurement of disease status ................ 6

Technical Objective 5: Develop and teach a course in methods for
assessing diagnostic tests ............................. 6

Key Research Accomplishments ....................................................... 7

Reportable Outcomes ......................................................................... 7

Conclusions ...................................................................................... 7

References ........................................................................................ 8

Appendices .................................................................................... 10
A. Statement of Work ...................................................................................
B. Bootstrap Estimation of Diagnostic Accuracy Using

Patient-Clustered Data ............................................................................
C. Assessing Mammographers' Accuracy:

A comparison of clinical and test performance ........................................
D. Changes in Breast Density associated with Initiation, Discontinuation,

and Continuing use of Hormone Replacement Therapy (HRT)
[unpublished: confidential] ...................................................................

4



Introduction
The purpose of this Department of Defense Breast Cancer Research Program Career
Development Award is to enable Dr. Rutter to develop biostatistical methods for evaluating the
accuracy of breast cancer screening. This four year program includes advanced training in the
epidemiology of breast cancer, training in clinical detection of breast cancer, development of
statistical methodology, and graduate teaching. A basic knowledge of the epidemiology, disease
process and detection of breast cancer will guide the development of statistical methods.
During the third funding year, Dr. Rutter's research has shifted away from ordinal measures
based on ROC analyses and towards dichotomous outcomes (see Technical Obiective 3).
There has also been a shift in emphasis, away from purely statistical research and toward
epidemiological and health services research. During her fourth funding year, Dr. Rutter will
teach an introductory graduate level statistics course (see Technical Obiective 5), and will focus
on methods for estimating sensitivity and specificity that incorporate growth curve models (see
Technical Obiective 4).

Achievement of Year 3 Technical Obiectives

Technical Objective 1: Gain additional training in breast cancer epidemiology, detection and
treatment.
Dr. Rutter has continued to expand her knowledge about breast cancer through attendance
scientific seminars at the Fred Hutchinson Cancer Research Center (FHCRC) and the
University of Washington (UW). Dr. Rutter also participates in a Diagnostic Methods working
group that includes faculty from both FHCRC and UW. Dr. Rutter also attends Breast Cancer
Surveillance Consortium (BCSC) meetings that have provided her with important practical
information about radiologists' interpretation of mammograms, and the timing and execution of
diagnostic procedures. Through additional reading and analysis of BCSC data, Dr. Rutter has
gained specialized knowledge about the interrelationships among hormone replacement
therapy, breast density and breast cancer.

Technical Objective 2: Develop methods for multiple patient assessments.
This objective was completed during year two of this CDA award. The article describing
nonparametric bootstrap ROC estimation for correlated data is currently in press at Academic
Radiology (see Appendix B). This article compares an iterative bootstrap estimation approach
to estimating and comparing the area under the ROC curve with a non-iterative method that
uses sums of squares to adjust variance estimates for correlation between observations.[1] Both
methods are theoretically valid, and both perform well in a simple situation. However, the
bootstrap estimator can more easily be used in complex sampling situations that include
multiple sources of correlation.

Technical Objective 3: Extend exact methods for ordinal regression models.

This is no longer a key research objective for two reasons. First, ordinal regression models are
of limited usefulness in the mammographic screening setting. Instead, most interest focuses on
the sensitivity and specificity of mammography based on particular definitions of positivity. In
addition, most mammograms are assessed using BI-RADS ratings[2], and these ratings do not
use a pure ordinal scale. The second reason for moving away from this objective is that
Dr. Rutter is using data from the BCSC, a surveillance project that captures information from
large populations of women.[3] Although small sample problems are of interest when diagnostic
tests are compared using small samples, they are less useful in the context of evaluation of
screening tests based on large population-based samples.
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Technical Objective 4: Develop methods to adjust for error in measurement of disease status.
Dr. Rutter is currently working to develop new methods that adjust for error in measurement of
disease status. The proposed work will use hierarchical Bayesian modelling approaches to
incorporate models for tumor growth rate into estimation of sensitivity and specificity. Currently,
a fixed one or two year follow-up period is used to define true state. A fixed follow-up period
approach to defining disease outcome ignores variability in growth rates by age and tumor type.
There is some evidence that tumors in younger women grow faster than tumors in older women
[4-6]. Growth rates may also vary by tumor type. Thus, sensitivity and specificity are incorrectly
estimated for young women or women with particular tumor types. Such biased estimates of
sensitivity and specificity of screening mammography ultimately affect health policy decisions.

During the fourth funding year (and potentially extending into a fifth year based on a no-cost
extension), Dr. Rutter will examine estimation of sensitivity and specificity using probabilistic
disease estimates. That is, rather than estimating a disease state (present/absent), models will
estimate the probability of screen detectable disease at the time of mammography. Modesl for
the probability of screen detectable disease will use state of the art models for tumor growth rate
[5,7-12], tumor size for patients diagnosed with cancer, and the time from screening
mammography to either biopsy or end of follow-up.

Because these models focus on screen detectability, preliminary research will estimate the
minimum size of screen detectable tumors using BCSC data. In particular, we will examine the
distribution of tumor size by age and breast density among screen-detected cases, assessing
the impact of these covariates on the distribution of screen detectable tumor size. As part of
these analyses, we will examine the distribution of tumor size by age and breast density among
clinically detected cases. Publication of these results will provide important information for
research examing breast cancer modelling.

Primary analyses will examine the effects of incorporating tumor growth rates on estimates of
sensitivity and specificity. These analyses will explore the impact of various growth rate models
on accuracy estimates, as well as the impact of alternate definitions of screen detectable tumor
size, focusing on definitions that depend on breast density.

Subsequent analyses will focus on improvement of growth models based on observed
mammographic tumor size. Challenges faced in this research include appropriate treatment of
true interval cancers (i.e., cancers that are not observable at the mammogram prior to clinical
discovery) and treatment of calcifications that have no measurable tumor mass. Because these
analyses require primary data collection from mammograms, they are beyond the scope of the
current proposed research, and instead will be the subject of future grant applications.

Technical Objective 5: Develop and teach a course in methods for assessing diagnostic tests.
This technical objective is no longer possible, as Dr. Margaret Pepe, a full professor at
University of Washington, will teach a special topics course on Medical Diagnostic Testing in
Spring 2000. Instead, Dr. Rutter will gain teaching experience by teaching introductory
biostatistics to health services students (Biostatistics 509). While teaching a graduate level
survey course was not the original intent of the training grant, this experience will be valuable
training and will enhance Dr. Rutter's career development. Successfully teaching this
introductory course will increase Dr. Rutter's chance of teaching special topics courses in the
future.
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* V

Key Research Accomplishments
During this third funding year, Dr. Rutter has continued to expand her knowledge of breast
cancer epidemiology and detection. She has published two articles during the third funding
year. The first [13] describes bootstrap estimation of accuracy statistics (TP, FP, AUC) when
patients are assessed at multiple patient sites. The second published article [14] compares
performance of mammographers in a test setting to performance in clinical practice. Dr. Rutter
also has a third article that is under review by JAMA (see Appendix D) that compares changes
in breast density among women who initiate, discontinue, and continue use of hormone
replacement therapy.

Reportable Outcomes
1. Rutter CM, Taplin S. "Assessing Mammographers' Accuracy: A comparison of clinical and

test performance," Journal of Clinical Epidemiology, 2000: 443-450.
2. Rutter CM. Bootstrap estimation of diagnostic accuracy using patient-clustered data. in

review, in press, Academic Radiology.
3. Taplin S, Rutter CM, Elmore JG, Seger D, White E, Brenner RJ. "Accuracy of Screening

Mammography on Single Versus Independent Double Reading," American Journal of
Roentgenology, 2000 174:1257-62.

4. Rutter CM, Mandelson MT, Laya MB, Seger DJ, Taplin S. "Changes in Breast Density
associated with Initiation, Discontinuation, and Continuing use of Hormone Replacement
Therapy (HRT),"submitted to JAMA.

5. Rutter CM, Gatsonis CG. A hierarchical regression approach to meta-analysis of diagnostic
test accuracy. in submission Statistics in Medicine, in process of revising for resubmission.

6. Participated in Workshop on Assessment and Improvement of Interpretive Skills in
Mammography, sponsored by the American Cancer Society, June 11/12, 1999.

7. Presented "Assessing mammographers' accuracy: A comparison of clinical and test
performance" at the International Conference on Health Policy Statistics: Methodologic
Issues in Health Services and Outcomes Research, Santa Monica, California, December
3-5, 1999

Conclusions
"* Regarding bootstrap estimation: Bootstrap estimation of the area under the receiver

operating characteristic curve, sensitivity, and specificity allows simple and accurate
calculation of confidence intervals for single tests and comparisons between tests.

"* Regardinq the use of tests data sets: Direct estimation of mammographer's clinical
accuracy requires the ability to capture screening assessments and correctly identify which
screened women have breast cancer. Use of screening sets offers an attractive alternative
method for estimating mammographers' accuracy. Unfortunately, we found that there was
little concordance between performance on a test film set and performance in clinical
practice. There is the potential for bias in both types of assessment, and our research
cannot distinguish which approach is best. It does, however, raises questions about
construction of and use of test film sets.

"* Regarding use of HRT and breast density: Initiation of hormone replacement therapy (HRT)
has been shown to increase breast density [15-19]. Several lines of evidence indicate that
breast density is strongly related to breast cancer risk [20-23] and that increased density
decreases mammographic sensitivity [24]. Using an cohort of 5213 naturally
postmenopausal women 40 to 96 years old, we used consecutive mammograms and
pharmacy records to examine the relationship between initiation, cessation and continuing
use of HRT on breast density. We found that women who initiated HRT were more likely
than nonusers to show increases in density (OR=3.24, 95% Cl (2.47,4.23)), while women
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who discontinued were more likely show decreases in density (OR=1.92, 95% CI
(1.03,3.35)), and women who continued use of HRT were more likely to show both
increases in density (OR=1.37, 95% C0 (0.89,2.06)) and sustained high density (OR=1.72,
95% CI (1.50,1.98)). Continuing HRT use was more strongly associated with sustained high
density among women with high BMI (p<0.05). These results provide strong evidence that
breast density changes associated with HRT are dynamic, increasing with initiation and
decreasing with discontinuation. Continued HRT use results in persistent changes,
particularly among women with high BMI.
Regarding estimation of sensitivity and specificity for screening mammography: Several
lines of evidence demonstrate variability in tumor growth rates. Estimates of mammography
performance can be improved through incorporation of growth rate model.
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Appendix A. Statement of Work

Technical Objective 1: Gain additional training in breast cancer epidemiology, detection
and treatment.

Task 1: Months 1-4: Review of information on the epidemiology, diagnosis and treatment of
breast cancer as suggested by Dr. Margaret Mandelson.

Task 2: Months 1-48: Attend seminars sponsored by the Seattle Breast Cancer Research
Program.

Technical Objective 2: Statistical research, aim 1: develop methods for multiple patient
assessments.

Task 3: Month 6: Review current research for generalized estimating equation and random
effect approaches for nonlinear models.

Task 4: Months -11: Test bootstrap, robust covariance adjustment and generalized estimating
equation methods for breast-level analyses using simulation studies.

Task 5: Months 12-21: Develop methods for woman-level analysis, possibly including software
development for random effects in generalized ordinal regression models.

Technical Objective 3: Statistical research, aim 2: extend exact methods for ordinal
regression models

Task 6: Month 22: Review current research in exact methods.

Task 7: Months 23-34: Extend exact methods and write computational algorithms and programs
to compute distributions of sufficient statistics.

Technical Objective 4: Statistical research, aim 3: Develop methods to adjust for

measurement error in disease status

Task 8: Month 36: Review current research in errors-in-measurement models.

Task 9: Months 37-48: Develop simple combined corrections for verification and follow-up bias.
These methods will be extended to allow adjustments in general ordinal regression models.

Technical Objective 5: Develop and teach a course in methods for assessing diagnostic
tests.

Task 10: Months 1-24: Collect relevant references and outlining lectures for the methods
course. During this time, specific lectures may be presented in other University of Washington
courses.

Task 11: Months 25-36: Offer methods course at University of Washington through the
Department of Biostatistics.
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running head: BOOTSTRAP ESTIMATION OF DIAGNOSTIC ACCURACY

Original Investigations

Bootstrap Estimation of Diagnostic Accuracy with Patient-

clustered Data'

Carolyn M. Rutter, PhD

Rationale and Objectives. The purpose of this study was to

describe a simple bootstrap approach for estimating sensitivity,

specificity, and the area under the receiver operating

characteristic curve for multisite test outcome data.<a>

Materials and Methods. The performance of bootstrap estimates was

evaluated and compared with that of analytic estimates X using a

simulation study. Bootstrapping was demonstrated1,using data

from a previous study comparing two angiographic methods.

Results. Analytic and bootstrap estimates had similar coverage

rates for 95% confidence intervals. With many sites per patient,

bootstrap estimates had slightly better coverage than analytic

estimates. Bootstrap percentile intervals had better coverage

than asymptotic normal bootstrap intervals.

Conclusion. Bootstrapping is a useful method for estimating

confidence intervals for the area under the receiver operating

characteristic curve, sensitivity, and specificity when data are

a Au: Please note journal style calls for the purpose as
stated in the abstract to match that as stated in the text.
Please confirm all necessary information has been included.
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correlated.
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(AUC); sensitivity; specificity.

Acad Radiol 2000; 7:000-000

'From the Group Health Cooperative of Puget Sound, Center for

Health Studies, 1730 Minor Ave, Suite 1600, Seattle, WA 98101.

Received July 6, 1999; revision requested December 2; revision

received December 15; accepted December 23. Address

correspondence to C.M.R.

OAUR, 2000

Diagnostic evaluation often requires simultaneous assessment of

disease at multiple body sites. Examples of multisite diagnostic

assessments include screening mammography to detect breast

cancer, computed tomography (CT) of the liver to detect

metastatic colorectal cancer (1), and magnetic resonance (MR)

angiography of leg vessels to detect occlusive peripheral

vascular disease (2). Although the accuracy of these multisite

tests can be estimated by using information from a single body

site, studies using all available information have greater

statistical power. Reducing the site-level data to patient-level

data is the simplest approach to multisite diagnostic assessment.

Composite patient-level measures of true state and test outcome,

however, reduce the amount of information regarding test accuracy
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contained in multisite assessments. These composite measures also

ignore disease localization, which can be more important than

global determination of disease presence when making treatment

decisions.

Estimates of diagnostic accuracy that use multisite data

must account for within-patient correlation. Methods of handling

multiple assessment of a single site, by using different

modalities or readers, are well developed. Song (3) provides an

overview of current approaches. These methods require that

patients are either diseased or not diseased, and they can be

used to evaluate multisite assessments when the true state is

constant across sites within patients.

When both disease state and test outcomes are dichotomous,

marginal regression models can be used to estimate the

sensitivity, the specificity, and the effects of patient

covariates on the sensitivity and specificity (4). This flexible

modeling approach provides standard errors that reflect the

clustering of data within patients because of the assessment of

multiple sites and assessment by multiple readers or modalities.

When the disease state is dichotomous, logistic regression

models can be used to estimate the relationship between true

state and test outcomes (2). When data are clustered within

patients, standard methods can be used to adjust the logistic

regression coefficient covariance matrix for within-patient
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correlation (5). The logistic model conditions on the test

results and estimates their association with disease state.<b>

These models do not result in standard measures of accuracy,

however, thereby making comparisons with the results of other

studies difficult.

Obuchowski (6) described a method Q standard

errors for the area under the empiric receiver operating

characteristic curve (AUC) on the basis of the sums of squares.

This method allows estimation of the standard error of the AUC

for a single test or of the difference between AUC statistics for

two tests. Obuchowski's approach requires the definition and

calculation of appropriate sums of squares, however, and this can

become complicated with multiple sources of correlation (eg, when

patients are evaluated at multiple sites by more than one test

and each test is independently evaluated by more than one

reader).

Pepe (7) proposed a general regression method that allows

multisite assessments. This regression approach estimates the

effects of covariates on the receiver-operating characteristic

(ROC) curve. Interpretation of the regression coefficients

depends on the functional form that is chosen for the ROC curve.

Coefficients estimated from a logistic model can be interpreted

as the log-odds of correctly classifying a diseased subject for a

b Au: Please confirm/clarify: "conditions on" correct? Ja-,
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fixed specificity. Pepe suggests using bootstrap resampling to

estimate standard errors of regression coefficients when

correlated data are included in these models.

This study demonstrates a simple bootstrap approach for

estimating sensitivity, specificity, and AUC for multisite test

outcome data. This bootstrap approach is useful for simple

comparisons between tests in situations with no covariates. When

regression approaches are used, bootstrap estimates can provide

supplemental descriptive statistics. This approach also is easy

to use with multiple sources of correlation, and the resulting

confidence intervals (CIs) are asymptotically consistent.

MATERIALS AND METHODS<c>

Nonparametric Accuracy Statistics

The accuracy of an imaging examination depends on the

radiologist's interpretation of disease state. These

interpretations typically are measured by using a five-point

ordinal scale that ranges from "definitely not diseased" to

"definitely diseased." Sensitivity, specificity, and the AUC are

the basic statistics used to measure test accuracy. These

statistics condition on the true disease state, treating it as

being fixed and known and treating test outcomes (ie, ratings) as

being randomly distributed. When the disease state is known

c Au: Please note text heads have been edited to conform DK.

with journal style. Please confirm heads are accurate and as F .
meant. • i. mW J••-.•• •, ,
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without error, these accuracy statistics are independent of

disease prevalence.

When test outcomes are dichotomous, sensitivity and

specificity measure test accuracy. Sensitivity is the probability

of a positive test outcome (ie, indicating presence of disease)

when the target disease is present. Specificity is the

probability of a negative test outcome when the target disease is

absent. When test outcomes are ordinal, sensitivity and

specificity can be calculated by dichotomizing the outcomes. A

single sensitivity-specificity pair, however, cannot completely

describe the accuracy of an ordinal test, because both rates

depend on test stringency. Analysis of the ROC curve accounts for

the tradeoff in these rates as the test stringency varies. For

example, suppose that the ordinal outcome of a diagnostic test t,

takes values in {I, 2, , K}, with increasing values of t1

corresponding to stronger evidence of disease. There are K + 1

possible ways to dichotomize the ordinal test, including "all

positive" and "none positive," and each way is associated with a

sensitivity-specificity pair.

The empirical ROC curve is drawn by plotting pairs of

observed rates, (I - specificity) versus sensitivity, and

connecting the K + 1 consecutive points with straight lines. The

empirical ROC curve provides a simple, graphical description of

test performance.
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The overall accuracy of an ordinal test can be summarized by

the AUC, which estimates the probability of correctly ranking a

randomly selected (diseased, not-diseased) pair on the ordinal

test scale. The AUC ranges from 0 to 1, with the value 1

corresponding to a perfect diagnostic test. A test that is no

better than chance has an AUC equal to one-half. The AUC

statistic is unbiased, and it is asymptotically and normally

distributed. The test of H0 :AUC = ½ based on the asymptotic

distribution is equivalent to a Mann-Whitney test (8).

Essentially, the AUC test is a test for differences in the

distribution of test outcomes among the diseased and not-diseased

groups.

Bootstrap Estimation

Sensitivity, specificity, and the AUC are all generalized U-

statistics of order 1, and each statistic is a sum of the

functions of statistically independent quantities (9). Because

sensitivity, specificity, and the AUC are U-statistics, bootstrap

resampling provides consistent point and interval estimates

(10,11).

Let ti = (t11 , ti 2 ,..., tim)' be the vector of ordinal test

outcomes across m sites for the ith subject, and let d. =

(dil, d 1 2 ,..., dim)' be the corresponding vector of true states,

where da. = 1 if the jth site of the ith patient is diseased and

dij = 0 if otherwise. Written in U-statistic form, sensitivity
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and specificity for the kth cut point are

[COMP: PLEASE PICKUP EQUATION El]

and

[COMP: PLEASE PICKUP EQUATION E2]

with kernel function cpk(ti, di) = ,j5k(tij)dij, where 5 k(t) = 1 if t

Žk and 6 k(t) = 0 if otherwise. The associated sample sizes are
nD = jand n• = j(l - dij). Here, D indicates the presence

of disease and D indicates the absence of disease.

The AUC statistic is given by

[COMP: PLEASE PICKUP EQUATION E3]

with kernel function

[COMP: PLEASE PICKUP EQUATIONS E4]

When both diseased and not-diseased sites can occur within a

patient, the sum corresponding to the AUC statistic includes the

functions of correlated pairs of diseased and not-diseased
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observations, thereby violating the properties of U-statistics.

Relatively few correlated (D, T) pairs, however, are included in

the sum. Let pp be the patient-prevalence of disease, and let p,

be the expected proportion of sites with disease given that a

patient has disease. If all patients with disease have the same

number of affected sites, the proportion of correlated (D, D)

pairs is

[COMP: PLEASE PICKUP EQUATION E5]

When all patients have a single disease state, P, = 1, there are

no correlated (D, 7) pairs. The number of correlated pairs is

maximized at 1/N when all N patients have disease (pp = 1). With

correlated pairs, the U-statistic properties of the AUC statistic

can be maintained by excluding correlated pairs from the AUC

sums. In most cases, this exclusion is unnecessary because the

number of correlated comparisons quickly becomes negligible as

the sample size increases. This study, however, examines

bootstrap resampling applied directly to AUC statistics without

excluding correlated pairs.

Bootstrap samples were constructed by stratifying patients

on overall disease state (any or none) and then drawing patients

(ie, the independent units) with replacement from these strata.

Resampling patient-level data incorporates all sources of within-



10

patient variability. Stratifying the bootstrap samples by

patient-level disease state corresponds to conditioning on true

disease state. Disease-state stratification was used to ensure

that all the accuracy statistics examined (ie, sensitivity,

specificity, AUC) were estimable. Because each of these

statistics conditions on disease state, stratified sampling does

not bias the point estimates. Accuracy statistics were calculated

for each bootstrap sample, and expected accuracy was estimated by

using the average of each statistic across the bootstrap samples.

The accuracy of two tests can be compared by calculating the

difference in the accuracy statistics for each bootstrap sample

and incorporating between-test correlation. Standard errors were

estimated 'b• using the observed standard errors across the

bootstrap samples; standard error estimates should be based on at

least 100 draws. CIs can be estimated by using the bootstrap-

estimated standard errors with a normal approximation. CIs also

can be estimated by using percentiles, although this requires at

least 1,000 bootstrap draws.

Angiographic Study _X C

COnvzntional angiography is the usual method of mapping

vascular occlusion before coronary artery bypass graft surgery in

patients with peripheral vascular disease. MR angiography is an

alternative method of obtaining the same diagnostic information.

MR angiography is less invasive than conventional angiography,



however, because it does not require injection of contrast

material. The ability of both conventional angiography and MR

angiography to identify open vessel segments correctly was

compared by using a prospective study, with intraoperative

angiography considered to be the gold standard (2). Analyses were

based on 96 patients with peripheral vascular disease for whom

intraoperative angiographic results and at least one preoperative

angiographic test result were available. Eleven of these patients

did not undergo MR angiography.

Patients were evaluated at 15 sites (ie, vessel segments).

On average, 33% of each patient's vessel segments were occluded.

Overall, 335 (36%) of 932 segments with gold standard information

were occluded. Study radiologists rated the occlusion of each

vessel segments by using a five-point scale: (a) normal, (b)

minimal disease (ie, <50% stenosis), (c) stenotic (ie, a single

lesion with ;50% stenosis but not fully occluded), (d) diffuse

disease (multiple lesions with Ž50% stenosis but not fully

occluded); and (e) fully occluded. Ratings within patients were

moderately correlated, with similar degrees of correlation for

the two imaging examinations. Overall, correlation (based on

Kendall T) was 0.20 for conventional angiography and 0.19 for MR

angiography. Correlation between sites with the same disease

state was 0.49 for conventional angiography and 0.46 for MR

angiography. Correlation between sites with different disease
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states was -0.34 for conventional angiography and -0.36 for MR

angiography. Correlation between conventional angiography and MR

angiographic ratings of the same site was 0.62.

Original analyses examined both detection of near-normal

(ie, patent) vessel segments (ratings 1 and 2) and detection of

open segments (ratings 1-4). CT and MR angiography had similar

accuracy when identifying open vessel segments. Both modalities

had an 81% specificity, with conventional angiography having an

83% sensitivity and MR angiography an 85% sensitivity. When

identifying patent segments, conventional angiography was less

sensitive than MR angiography (77% vs 82%) but also more specific

(92% vs 84%). On the basis of these descriptive data and

statistical tests for the differences in odds ratios, the

original investigators concluded that conventional angiography

and MR angiography had similar diagnostic abilities.

Bootstrap estimation allowed us to estimate AUC statistics

for patent segments, to examine whether differences likely

resulted from a threshold effect, and to place CIs on estimated

sensitivity and specificity. Bootstrap percentile intervals were

based on 1,000 bootstrap samples. The bootstrap estimate for the

sensitivity of conventional angiography was 76% (95% CI: 70.5,

81.8). For MR angiography, the bootstrap estimate for sensitivity

was 82% (95% CI: 76.8, 87.0). Bootstrap estimates of specificity

were 93% (95% CI: 89.8, 95.9) for conventional angiography and
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84% (95% CI: 79.4, 88.1) for MR angiography.

Both conventional angiography and MR angiography had similar

empirical AUC statistics. For conventional angiography, the

empiric AUC was 0.879 (95% CI: 0.847, 0.910). For MR angiography,

the empiricAUC was 0.874 (95% CI: 0.844, 0.904). The bootstrap

estimate of the difference in AUC statistics was 0.005 (95% CI:

-0.035, 0.044).

Simulation Study

This simulation study describes characteristics of bootstrap

accuracy and compares them to the analytic estimates previously

reported by Obuchowski (6). Bootstrap CIs determined on the basis

of normal approximations used 100 bootstrap samples. Bootstrap

CIs determined on the basis of percentiles used 1,000 bootstrap

samples. Comparisons focused on the observed coverage of 95% CIs

for the differences between two AUC statistics. The description

of bootstrap estimates also included coverage rates for the

estimated specificity.

Simulated data represent comparisons between two tests (A

and B), with outcomes being scored with a five-point ordinal

scale. Test A has an empiric AUC of 0.8 and specificities of 0.5,

0.7, 0.9, and 0.95. Test B had the same specificities and an AUC

statistic of 0.80 or 0.85. The ability of the bootstrap to handle

multiple sources of variability was evaluated by simulating the

outcomes for two readers per test. The overall diagnostic
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accuracy of each test was determined on the basis of the average

of the two readers' AUC statistics. Data simulated for two

readers assumed that readers evaluating the same test had equal

accuracy, with the same specificities and the same AUC

statistics. Two-reader bootstrap AUC estimates were calculated by

estimating each reader's AUC statistic and then averaging these

values within each bootstrap sample.

Ordinal test outcomes were simulated by categorizing

continuous multivariate normal (MVN) pseudodeviates. One MVN

pseudodeviate of length 4m was generated for each patient-

observation, with m being the number of sites within patients.<d>

Each independent MVN pseudodeviate represented a single patient's

unobservable, continuous test outcome for two tests and two

readers. Within-patient correlation was induced on the continuous

scale. The simulations examined the characteristics of estimators

for three within-subject correlation structures: (a) independent,

(b) compound symmetry, and (c) disease-dependent. Under the

compound symmetry structure, multiple observations within

subjects were equicorrelated (correlation, 0.50). The disease-

dependent structure was identical to the compound symmetry

structure with one exception: Under the disease-dependent

structure, observations from sites with different disease states

d Au: Do you mean the number of sites within each patient or

overall (for the patient group)?
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(ie, [D, D] pairs) were negatively correlated (correlation,

-0.50).

The simulation examined three sampling scenarios. In the

first scenario (ie, small N), 100 patients (50 with disease and

50 without) were evaluated at four sites. In the second scenario

(ie, large m), 100 patients (all with disease) were evaluated at

15 sites. In the third scenario (ie, large N), 500 patients (250

with disease and 250 without) were evaluated at four sites. For

each scenario, patients with disease were expected to have

disease at half the sites examined. The number of disease-

positive sites for each patient was simulated by using a binomial

random-number generator. Ordinal ratings were derived from MVN

deviates by assuming an underlying bivariate, normal ROC model

(12). In other words, "cut points" for each of the five rating

categories were set equal to 60 = -- ; Ok = D-1(1 - specificityk) ; k

= 1,..., 4; and 05 = +-. Given p and 0, the sensitivities were

sensitivityk = c(ZEk + p) . The desired empirical AUC statistics

were obtained with p = 1.29 for an AUC of 0.80 and p = 1.949 for

an AUC of 0.85. For disease-negative sites, the ordinal rating

corresponding to the MVN deviate y was equal to k when ek-1 < Y <

0 k. For disease-positive sites, the MVN deviates were first

shifted by an appropriate p, with simulated ratings determined on

the basis of categorizing y + p.

Simulation results were determined on the basis of 5,000



16

simulated data sets for each combination of AUCB (0.80 or

0.85),<e> sampling scenario (small N, large m, or large N), and

correlation structure (independent, equicorrelated, and disease-

dependent).

RESULTS

Table 1 shows the observed within-patient correlations for

the simulated categoric data. These rating data are inherently

correlated, because diseased sites are more likely than not-

diseased sites have high scores.

Table 2 shows coverage rates of the 95% CIs for the

difference between AUCA and AUCB as determined on the basis of

Obuchowski's analytic estimator, the single-reader bootstrap

percentile interval, and the two-reader bootstrap percentile

interval. Coverage rates for normal-approximation bootstrap

intervals are not shown, because they were similar to those of

the percentile intervals but with slightly poorer coverage

properties. In general, coverage rates of the normal-

approximation bootstrap interval fell between the coverage rates

for analytic and bootstrap percentile intervals. Table 2 lists

coverage rates by sampling scenario and correlation structure,

because true differences between the two AUC statistics did not

affect the coverage. The bootstrap and analytic CIs had very

similar coverage rates for the small N and the large N scenarios.

e Au: Any mention of AUCA needed here?
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Bootstrap intervals had better coverage for the large m scenario.

Bet-hSingle- and two-reader bootstrap intervals had similar rates

of coverage.

Bn•. Vhe analytic and the single-reader bootstrap estimates

had a similar mean squared error. Across the simulated data sets,

the mean squared error of the bootstrap estimate for one reader

was less than 0.1% higher than the mean squared error for the

analytic estimate. The mean squared error for the two-reader

bootstrap estimates was approximately half the mean squared error

of either single-reader estimate.

Table 3 shows the coverage rates of bootstrap percentile

interval estimates by specificity. Generally, coverage rates were

less than the nominal level but improved as the specificity

decreased from 0.95 to 0.50 and as the amount of data available

for estimation increased. Percentile intervals had better

coverage rates than the asymptotic normal intervals (not shown).

When the specificity was 0.95, a few (=0.5%)<f> of the asymptotic

normal bootstrap intervals fell outside of the (0, 1) range.

DISCUSSION

Diagnostic evaluation often involves testing patients at

multiple sites. Bootstrap and analytic estimation methods allow

for simple comparisons of AUC statistics o~ntho bais of

f Au: Please provide raw numbers to accompany this
percentage. •4/501 D00
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clustered patient data. These methods are asymptotically

consistent; however, diagnostic tests rarely are evaluated on the

basis of large samples. We used a simulation study to evaluate

the small-sample characteristics of Obuchowski's analytic AUC

estimator and bootstrap AUC estimators applied to ordinal test

data. When comparing two tests with one reader per test, the

bootstrap and analytic estimators had similar performance. Both

methods produced CIsX,4 Ibbserved coverage rates(elow the

nominal level. Coverage rates of bootstrap percentile CIs were

nearly identical with the asymptotic normal intervals for AUC

statistics. Percentile intervals, however, had better coverage

than asymptotic normal intervals for proportions. These methods

are asymptotically consistent, but results of the simulations

suggest that when the test outcomes are ordinal and the tests

themselves are relatively accurate, large samples are needed

before asymptotic results hold.

The simulations in this study demonstrated poorer

performance for Obuchowski's estimator than was originally

reported. 4.mportant differences were between the

simulations in this study and those reported by Obuchowski. Two

key differences are the site-level prevalence of disease and the

scale of the test outcome. In the small-sample setting, the

patient-level prevalence of disease was 50%, and among patients

with disease, an average of 50% of sites were affected, thereby
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resulting in an overall site-level prevalence of 25%. Obuchowski

simulated data with an overall site-level prevalence of 50%.

Obuchowski also generated outcomes on a continuous scale of 0 to

100 rather than on the five-point ordinal scale more commonly

found in radiology. A continuous scale allows for more

variability in sensitivity and specificity. Thus, a comparison

between continuous scales would be more informative than a

comparison between corresponding ordinal scales, because there

are no ties in scoring.

Simulation studies examine the behavior of estimators in

specific settings. The present simulation study examined

plausible scenarios. In radiologic research, test outcomes often

are measured by using a five-point ordinal scale, and these tests

can be highly accurate, with relatively high specificity. Overall

sample sizes often are small as well, including less than 100

subjects. Some important assumptions, however, may have limited

the conclusions that can be drawn from the simulation study

findings. One important assumption made for these simulations was

that the two compared tests had the same underlying

sei itv1ltS. Perhaps the strongest assumption made for the

simulated data was that when two readers were involved, each had

identical ROC curves. In real-life settings, the readers' ROC

curves almost certainly will differ. In this context,

investigators must determine whether estimating the average AUC
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statistic is valuable.
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Table 1
Average Observed Correlation of Simulated Rating Data (Kendallrs "•) QP•nTýt

Correlation Structure

Compound Disease
Correlation Type Independence Symmetry Dependent

Between tests 0.199 0.478 0.478
Between sites, same disease state 0.164 0.457 0.457
Between sites, different disease state 0.000 0.348 -0.240
Between readers VOUXI-A 45-t1--0.200 0.478 0.478

Note.-Correlation (when both tests are assessed by reader 1 with AUC = 0.80, between
sites when both are assessed by reader 1 using test A, and between readers when both
evaluate the same site with test A.

Table 2
Observed Coverage Rates of 95% Confidence Intervals for AUC Differences

Sampling Design

Correlation Structure Estimator Small N Large m Large N

Independent Analytic 0.934 0.932 0.946
1-Reader bootstrap 0.939 0.944 0.946
2-Reader bootstrap 0.935 0.947 0.949

Equicorrelated Analytic 0.936 0.934 0.952
1-Reader bootstrap 0.939 0.946 0.950
2-Reader bootstrap 0.939 0.947 0.950

Disease-Dependent Analytic 0.939 0.936 0.950
1-Reader bootstrap 0.940 0.943 0.948
2-Reader bootstrap 0.938 0.944 0.950

Note.-Coverage rates are for AUCA - AUCB, where AUCA = 0.8 and AUCG = 0.80
(5,000 simulations) or AUGC = 0.85 (5,000 simulations). Small N simulations generated
data from 50 patients with and 50 patients without disease, each of whom was evaluated
at four sites during both tests. Large m simulations generated data from 100 patients
with disease, each of whom was evaluated at 15 sites during both tests. Large N simu-
lations generated data from 250 patients with and 250 patients without disease, each of
whom was evaluated at four sites during both tests.
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Table 3
Observed Coverage Rates of 95% Confidence Intervals for
Specificity

Correlation Structure Small N Large m Large N

Specificity = 0.95 ." ..

Independent observations AUC- Ki.j)eI) (i'j') v(t,, t ,i ) ....
Asymptotic normal 0.929 0.936 0.941 f11) l17T

Percentile 0.940 0.939 0.944

Equicorrelated (correlation, 0.5) //
Asymptotic normal 0.912 0.923 0.935 S0444 V"

Percentile .0.925 0.926 0.949 4 HT'.

Dependent on disease state
Asymptotic normal 0.911 0.912 0.939

Percentile 0.925 0.925 0.949

Specificity = 0.50

Independent Observations

Asymptotic normal 0.942 0.942 0.945 1 if t0. > ti...
Percentile 0.944 0.949 0.948

Equicorrelated (correlation, 0.5) ti/( tjfti'j , ) = = t. o
Asymptotic normal 0.941 0.941 0.948 0 if tij < ti.j,
Percentile 0.949 0.945 0.949 .*--

Dependent on disease state

Asymptotic normal 0.941 0.941 0.949 . - L:
Percentile 0.949 0.941 0.948

Note.-Coverage rates were calculated with data from 10,000 Fry' =•.2

simulations. Small N simulations generated data from 50 patients. .
with and 50 patients without disease, each of whom was evaluat-
ed at four sites during both tests. Large m simulations generated
data from 100 patients with disease, each of whom was evaluated iv-Py'
at 15 sites during both tests. Large N simulations generated data (.i..) 0
from 250 patients with and 250 patients without disease, each of (I--0p N - /

whom was evaluated at four sites during both tests. -- N ý I I

#A
,..

sensitivity, As

s i =

U" "•Z-. speciticityk {1(--¢,[t;,(1-d4/]} Sv- n,
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Appendix C:
Assessing Mammographers' Accuracy:

A comparison of clinical and test performance
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Abstract

Direct estimation of mammographers' clinical accuracy requires the ability to capture screening assessments and correctly identify
which screened women have breast cancer. This clinical information is often unavailable and when it is available its observational nature
can cause analytic problems. Problems with clinical data have led some researchers to evaluate mammographers using a single set of films.
Research based on these test film sets implicitly assumes a correspondence between mammographers' accuracy in the test setting and
their accuracy in a clinical setting. However, there is no evidence supporting this basic assumption. In this article we use hierarchical mod-
els and data from 27 mammographers to directly compare accuracy estimated from clinical practice data to accuracy estimated from a test
film set. We found moderate positive correlation [p = 0.206 with 95% credible interval (-0.142-0.488)] between mammographers' overall
preponderance to call a mammogram positive. However, we found no evidence of correlation between clinical and test accuracy
[A = -0.025 with 95 % credible interval (-0.484-0.447)]. This study is limited by the relatively small number of mammographers evaluated,
by the somewhat restricted range of observed sensitivities and specificities, and by differences in the types of films evaluated in test and
clinical datasets. Nonetheless, these findings raise important questions about how mammographer accuracy should be measured. © 2000
Elsevier Science Inc. All rights reserved.

Keywords: Sensitivity; Specificity; Hierarchial models; Mammography

1. Introduction culty of films varies with characteristics of the women eval-
uated (e.g., breast density), characteristics of lesions (e.g.,

Screening marl tamgbreaphst cance effecive, mthodinof - size), and characteristics of technical film quality (e.g., po-
tecting early stage breast cancer. However, the diagnostic sitioning). Variability in film difficulty results in chance dif-
value of a mammogram depends on both technical qual- ferences among mammographers. Systematic differences in
ity of the film and a mammographer's ability to interpret the difficulty of films reviewed can also occur, for example,
that film. In the last decade mammographic technology has whnm morpestdtoeddifclcastoaa-

been relatively stable, allowing researchers to focus on the t ar ollag Derenc in te number o fimsr-
subjctie iterretaionof ammgram (eg.,[1,]).ticular colleague. Differences in the number of films re-

subjective interpretation ofmammograms (e.g., [1,2]). viewed also affects comparisons between mammographers
The Mammography Quality Standards Act recognized through the variability of estimated performance. Because

the effect of mammographers' interpretations on screening performance estimates based on fewer patients tend to be
assessments and encouraged medical audits of mammogra- more variable, and therefore more extreme, comparisons
phers' clinical assessments. Evaluating mammographers that ignore differences in variability can be misleading. Sta-
performance using clinical assessments is intuitively ap- tistical models have a limited ability to adjust for differ-

pealing, because this is "real life" performance. For many ecstin thels rea by achlmammorapher [4,f].

researchers, the medical audit is the gold standard measure estin ofi clinical accuracisfrther cmlaeb
of prfomanc [3. Hweve, or ablit todrawconlu- Estimation of clinical accuracy is further complicated by

siofsaboutthe performance[3].How , ou pabticuliy todraw cthe influence that clinical assessments have on the probabil-
sions about the performance of particular mammographers ity of detecting breast cancer. When estimating screening

from these clinical assessments is limited because each
accuracy, we focus on the correspondence between a mam-

mammographer reviews a different set of films. The diffi- mographer's clinical interpretation and a woman's true dis-
* Corresponding author. Group Health Cooperative, Center for Health ease state. Because most women only undergo biopsy if a

Studies, 1730 Minor Avenue, Suite 1600, Seattle, WA 98101, USA. mammographer finds an abnormality, undetected breast

Tel: 206-287-2190; fax: 206-287-2871. cancer cases emerge symptomatically or during a second
E-mail address: rutter.c@ghc.org screening exam. Thus, undetected breast cancer can only be

0895-4356/00/$ - see front matter © 2000 Elsevier Science Inc. All rights reserved.
PII: S0895-4356(99)00218-8
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identified when follow-up information exists. A one year Both clinical and test data sets use films from women
follow-up is generally used, with women classified as dis- who remained enrolled in the HMO for at least two years af-
ease positive at the time of a screening mammogram if ter their index mammogram. Women with breast cancer
breast cancer is diagnosed within one year [3]. were identified using the regional Surveillance Epidemiol-

Estimation and comparison of clinical screening perfor- ogy and End Result registry [8]. Our reference standard for
mance is also hampered by the relatively low incidence of true disease state called a woman "disease positive" at the
breast cancer. The one year incidence of invasive breast time of her screening mammogram if either invasive cancer
cancer is approximately 3.5 per 1,000 among American or ductal carcinoma in situ were detected within the follow-
women who are over 49 years old [6]. Low incidence rates ing two years. We used a two-year definition because rou-
make it difficult to precisely estimate a mammographer's tine follow-up care included mammographic follow-up at
rate of cancer detection, since most mammographers will either one-year or two-year intervals, depending on a
evaluate very few cancers in a single year. woman's particular risk factors for breast cancer.

Standardized testing of mammographers is an alternative
way to estimate their accuracy. Using standardized film sets 2. ]. Clinical data
removes many of the problems with clinical data. Each Clinical data used mammographers' final interpretations
mammographer views the same films in the same setting and recommendations based on mammograms from asymp-
and with the same patient information. Test Sets exclude tomatic women screened from 1990 through 1994. Mai-
films from women without necessary follow-up informa- mographers' interpretations and recommendations have been
tion, so that true disease state is known with a high degree collected as part of clinical practice for every mammogram

of certainty. Test sets can also include m ore film s from evaluated sincer 1986,c usinga standardizedr datar collection

women with breast cancer than would be seen in clinical forms.tDuringe time peiod weaexamined mammogaer
forms. During the time period we examined, mammographer

practice, allowing more precise estimation of sensitivity. In interpretations could be coded as "negative," "inconclu-

summary, use of a test film set controls for film difficulty, sive," or "positive." Final interpretations and recommenda-
film quality and the information presented during film eval-uatonoffrin a elaivey smpl mehodof esimaing tions were combined and coded into one of five possible
uation, offering a relatively simple method of estimating clinical assessments: (1) negative mammogram and recom-
mammographers' accuracy under standardized conditions. mendation for mamnmographic follow up at I year or later;

Although estimating accuracy from assessments of stan- (aC, (2) inconclusive mammogram and recommendation for
dardized film sets avoids many of the problems with clinical mammographic follow up at 1 year or later; (3) inconclusive
data, the artificial conditions introduce other problems.

Mammographers know that in the test setting their decisions mammogram and recommendation for follow up in less

willnotrafpaernt car The test iselfimaytbebr den than 1 year (short interval follow-up); (4) inconclusive
will not affect patient care. The test itself may be burden- mammogram and recommendation for biopsy or surgical
some given time constraints. There is also evidence suggest- referral; and (5) positive mammogram.
ing that the higher prevalence of disease in test film sets in-
troduces bias. Egglin [7] found that radiologists were more1-1 r__2.2. Test data
likely to interpret arteriograms as positive for pulmonary
emboli when viewed in a higher prevalence film set, regard- Mammographers were evaluated using test film sets dur-
less of true disease state. When this "context bias" exists, ing late 1994 and early 1995. As part of an educational in-
sensitivity increases with increasing prevalence while speci- tervention, each mammographer assessed the same set of
ficity decreases. screening mammograms. Test mammograms were drawn from

Studies describing mammographer variability based on the population of women screened between 1985 and 1991, us-
test film sets (e.g., [1,2]) implicitly assume a strong correla- ing stratified random sampling. Most (92.5%, 111/120) films
tion between mammographers' performance estimated from were selected from the 1990/1991 time period. Films were
test sets and mammographers' performance in clinical prac- stratified by the woman's true disease state and the original
tice. However, this assumption has never been tested. In this (clinical) mammographer's assessment. We defined recom-
article we directly compare mammographers' clinical and mendations for short interval follow-up, request for addi-
test performance, tional work-up, referral to biopsy, and positive mammogramn

interpretations as positive mammographic assessments, cor-
responding to clinical assessment categories 3, 4, and 5.

2. Data Based on each screened woman's true state and dichoto-
mous clinical assessment, we created four strata: (1) true

We analyzed data from 27 mammographers practicing at positive (TP) films (positive assessment, breast cancer
a large staff model not-for-profit health maintenance orga- within one year); (2) false negati've (FN) films (negative as-
nization (HMO). The mammographers included in this sessment, breast cancer within one year); (3) true negative
study were voluntary participants, though this group essen- (TN) films (negative assessment, no breast cancer); and (4)
tially included all of the mammographers practicing with false positive (FP) films (positive assessment, no breast can-
the HMO at the time of the study. cer). From these strata, we randomly selected 23 TP films, 9
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FN films, 72 TN films, and 16 FP films. Because of the defined ratings 3, 4, and 5 as positive mammograms, corre-
stratified sampling scheme the test film set was not repre- sponding to recommendations for short interval follow-up or bi-
sentative of the mix of films seen in clinical practice: it in- opsy. Unfortunately, test assessments do not completely match
cluded an excess of films from women with breast cancer clinical assessments. This is partly because clinical assessments
and films that originally lead to incorrect assessments. Out were based on final recommendations whereas the test scale in-
of these 120 films, 7 films (3 TP films and 4 FP films) were cluded a recommendation for additional views. Clinical data did
excluded from analyses because marks were placed on films not include recommendations for additional views because this
during the course of the study. To allow correspondence is an intermediate clinical recommendation, with final recom-
with the clinical analyses, the reference standard for test films mendations based on these additional views. Given the differ-
was recalculated, using a 2-year follow-up period. Applying ence in these two measurement scales, we defined positive out-
the 2-year follow-up caused one TN film to be recoded as a come in the test set as a recommendation for short interval
FN. Within the 113 test mammograms used for analyses, follow-up, additional views, or biopsy in the test data set, corre-
original readers were 67% sensitive and 86% specific. The sponding to ratings 2, 3, 4, or 5. Mammographers' ratings of test
average age of screened women who contributed films to the films were based on an explicitly ordinal scale that defined a
test set was 50 years, ranging from 40 to 87 years. recommendation for additional films (possibly abnormal) as

Mammograms were displayed at each participating more strongly indicative of disease than a recommendation for
mammography clinic in a dedicated reading room. Films short interval follow-up (probably benign).
were displayed in four sets of 30, and each set was dis-
played for 2 weeks. Mammographers scheduled a time to
review films and were given 1 hour to read each set of 30 We used a hierarchical model to describe mammogra-
films. Each "film" included a two-view mammogram, rep- phers' test and clinical performance measures, and to exam-
resenting a single screening event, and the woman's most ine relationships between these measures (see Table 1).
recent prior two-view screening mammogram. Prior mam- Each mammographer contributed data from two 2 X 2 ta-
mograms were unavailable for 43 women (38%). No addi- bles, showing the overall agreement between their assess-
tional clinical information was provided, and mammogra- ments and womens' disease state.
phers were not provided with the disease prevalence in the The model we use accounts for within mammographer
test set. Mammographers provided one rating for each variability in estimated sensitivity and specificity by model-
breast, using standardized data collection forms. The 5 pos- ing the number of positive assessments each mammogra-
sible screening assessments were: (1) negative or benign; pher gave to diseased (yijl1 ) and not-diseased (Yi,0) women
(2) probably benign (short interval follow-up needed); (3) with Binomial(nijj,'rrji) and Binomial(njo,Tri 00 ) distributions.
possibly abnormal (additional views needed); (4) suspicious By using the observed sample sizes in Binomial distribu-
abnormality (biopsy should be considered); and (5) highly tions for each mammographer and data set, the model ac-

suggestive of malignancy. Each mammographer provided counts for differences in the amount of data available. The
data that was at least 98% complete (222/226 ratings) and binomial probability of a positive test is based on receiver
15 of the 27 mammographers provided complete data. operating characteristic models [9], and is given by:
There were no apparent patterns of missing data between
mammographers. These breast-level ratings were recoded rijk = logit-(0• + aJD11 k).

as woman-level assessments. If the woman was diagnosed If Dijk was coded 0 for disease negative films and I for dis-
with breast cancer within two years of the mammogram, ease positive films, then under this model the ith mammog-
then the rating given to the breast with disease was used in rapher evaluates the jth data set with specificity equal to
the analyses. If the woman did not develop cancer in the fol- 1 -logit-t(0,?.) and sensitivity equal to logit-l (,.i + a11). It is
lowing two years, then the ihaximum of the two breast rat- simpler to explain the interpretation of Oj and a(i in terms of
ings was used. false positive rates (equal to 1 - specificity) and true posi-

tive rates (equal to the sensitivity). The parameter 0,j cap-

3. Methods

We are primarily interested in the degree of correlation Table I

between mammographers' accuracy measured in a clinical Notation used to denote observed counts of films by mammographer (i),

setting and accuracy measured in a test setting. The accu- data source (j), disease state, and interpretation

racy measures we focused on are sensitivity and specificity. Mammographic interpretation

Sensitivity is the proportion of women with breast cancer Negative Positive

who had a positive mammogram assessment. Specificity is Breast cancer

the proportion of women without breast cancer who had a No Yijo YjI nijo
negative mammogram assessment. Yes yI0o Yii I nij

Calculation of sensitivity and specificity requires defini- Note: Where i = I ... , m, indicates mammographer andj = 1,2 indi-

tion of a positive assessment. For clinical assessments, we cates the data source (0 = test and 2 = clinical).
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tures the ilh mammographer's overall tendency to give posi- -______________=__.

tive assessments, so that true positive rates increase with crr(a 11l' 1 2) = P =2

increasing false positive rates. The parameter tii captures (MM 1)+ (Ta2

the difference between true positive and false positive rates
and measures the log-odds ratio of a positive test for films These correlation parameters are more informative than the
with breast cancer relative to films without breast cancer. between dataset correlation of sensitivity of specificity.
As in the ROC context, we call Oj "cutpoint parameters" Correlation in sensitivity and specificity can be driven by
and otij "accuracy parameters." mammographers' overall tendency to call a film positive.

The parameters 0,i and aiU could be calculated directly The correlation parameters Po and pa separate the overall
from the data. However, they are not estimable when either tendency to call a film positive from the ability to distin-
sensitivity or specificity is 100%, a situation that is more guish between films from women with and without breast
likely when a mammographer evaluates few films. The hier- cancer. Under this model, Pe measures the correlation be-
archical model uses all available information to better esti- tween cutpoint parameters that are associated with overall
mate these individual parameters. Under the hierarchical preponderance to call a film "positive" while p,a measures
model, both cutpoint parameters (0i) and accuracy parame- association between accuracy parameters that are indepen-
ters (cxj) are assumed to vary across mammographers and dent of these cutpoint parameters.
data sources. We assume 0ij and coii follow a bivariate nor- The hierarchical model is completed by specifying prior
mal distribution, implemented as: distributions for the remaining unknown parameters. Priors

2 were chosen to cover the range of plausible values of pa-
Oi IOi, (0, - N( 19, @eI) rameters and were selected to be uninformative. We used a

aiIIA1, a, I N(A1, ., ), Normal(0,10) prior for 01, 0, A,, and A2, and a Nor-
mal(0,100) prior for T and X. We used an inverse gamma,

where Oil and ai are conditionally independent and Fr-(0.5,2), for o0,0, a r,• and a,,2. This prior is diffuse,

but does not overweight large values. Quartiles of the
Oi2_oli, 021•.0,- , 2,i T, , 02 F-1(0.5,2) distribution are 3.03, 8.80, and 39.41. The pa-

S / 12 rameters 0, 0,2 A1, A', "r, X, (TO61, U02, ci' and (,, 1' and cr,•2
N 12 + r( 0in - m-X E ,"% 2 are assumed to be mutually independent.

This model was estimated using the BUGS program
[10]. To improve estimation, the disease state indicator Duik

12l(tX.1, U-21-.- ot,,, A2, I, aeQ was centered so that Dijk. = 1/2 for disease positive films
and D~ik = - 1/2 for disease negative films. This transforma-

N(A, + Xf•lx.,- 1oil, 2 c, tion does not affect the interpretation of the parameters Uijk

and Ojk. Standard model diagnostics were used to assess
where 0,2 and aX2 are conditionally independent. Thus, the convergence of the sampler, as described in the CODA
model assumes that within each data set, mammographers' cut- manual [ 11]. These models resulted in estimated posterior
point and accuracy parameters are (conditionally) independent. distributions for the model parameters. We present esti-

Because the regression model is centered, the expected mated posterior modes and 95% credible intervals based on
value of 0,2 is 02 and the expected value of Ot, 2 is A2. As- the 2.5% and 97.5% percentiles. The posterior mode was es-
suming that 0•j and ctij are normally distributed and linked timated by the posterior mean for approximately symmetric
via a regression model allows fuller use of the available distributions, and by the posterior median for skewed poste-
data, resulting in better estimation. Mammographer's cut- rior distributions.
point and accuracy parameters are smoothed toward overall
expected values O and A1, with the degree of smoothing de-
termined by the amount of data each contributes to the model. 4. Results
Estimates for mammographers with less data will tend to be
nearer to expected values than estimates for mammographers There was wide variability in the amount of clinical data
with more data, while corresponding interval estimates widen available for each mammographer (Table 2). The 27 main-
to reflect lack of information available for these parameters. mographers clinically evaluated an average of 1890 films

The linear regression models for 0i2 and cxn allow differ- during the four-year period (range 232 to 3818), and saw an
ent expected performance for the two film sets and build in average of 15 mammograms from women with breast cancer
correlation between cutpoint parameters and correlation be- (range 1 to 32). The average clinical prevalence rate across
tween accuracy parameters, with: mammographers was 8 cancers per 1,000 mammograms.

Tro Plots of the sensitivity and specificity suggest moderate pos-
corr(01 ,0,2) = p T = 2- itive correlation between clinical and test performance. Fig. 1

(To M _m1_ shows that overall, mammographers tended to be both more

ML )+ •sensitive and more specific in clinical practice. The observed
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Table 2 ical and test specificity was 0.408 with 95% credible inter-
Mammographic assessments of 27 mammographers: rate of positive val (0.161, 0.616).
assessments, indicating disease, with the total number of assessments in We found little evidence of correlation between clinical
parentheses and test performance parameters (Table 3). Our point esti-

Test data Clinical data mate of correlation between clinical and test cutpoints was
Specificity Sensitivity Specificity Sensitivity moderate (po = 0.220) although the 95% credible interval

Mammographer (N) (N) (N) (N) was broad and covered zero. The estimated probability that
1 0.880 (83) 0.897 (29) 0.922 (1715) 1.000(14) Po > 0 was 89.4%. Our point estimate of the correlation be-
2 0.687 (83) 0.833 (30) 0.816 (1492) 1.000 (14)3 0.687(83) 0.833(30) 0.804 (2341) 1.0.2(14) tween clinical and test accuracies was near zero (p,,3 0.687 (83) 0.833 (30) 0.804 (2341) 0.929 (14)

4 0.880(83) 0.833 (30) 0.823 (2129) 0.933(15) -0.026).
5 0.867 (83) 0.800 (30) 0.896 (2818) 0.880 (25) We found expected overall differences in test and clini-
6 0.756 (82) 0.733 (30) 0.917 (2221) 0.941 (17) cal accuracy. The test film set was constructed to be more
7 0.867 (83) 0.767 (30) 0.965 (1733) 0.684 (19) difficult than films seen in the usual clinical practice, and as
8 0.904 (83) 0.700(30) 0.911 (2045) 0.917 (12)
9 0.867 (83) 0.833 (30) 0.879 (1742) 0.826 (23) expected the estimated mean clinical accuracy parameter

10 0.831 (83) 0.800(30) 0.832 (1435) 0.833 (12) (A2 ) was greater than the estimated mean test accuracy pa-
l 1 0.867 (83) 0.800(30) 0.915 (3299) 0.935 (31) rameter (A,), indicating that overall readers were more ac-
12 0.831 (83) 0.724 (29) 0.865 (230) 1.000(2) curate when evaluating clinical data than test data.
13 0.867 (83) 0.833 (30) 0.870 (971) 0.800(10)
14 0.904 (83) 0.867 (30) 0.877 (675) 0.500 (2) Point estimates also demonstrated that mammographers
15 0.783 (83) 0.833 (30) 0.881 (2546) 0.955 (22) had an overall tendency to give more positive assessments
16 0.880 (83) 0.800(30) 0.930(441) 1.000(1) in their clinical practice than in the test setting (mode 02 <
17 0.855 (83) 0.867 (30) 0.883 (3167) 0.960 (25) mode 01), even though the prevalence of breast cancer was
18 0.854 (82) 0.867 (30) 0.822 (1451) 1.000(11) much higher in the test setting.
19 0.771 (83) 0.833 (30) 0.901 (3786) 0.875 (32)
20 0.904 (83) 0.767 (30) 0.905 (1276) 0.714 (7) Estimated between mammographer variability tended to
21 0.855(83) 0.833(30) 0.908 (3186) 0.800(25) be higher in clinical practice than in the test setting
22 0.904 (83) 0.733 (30) 0.880 (2585) 0.947 (19) (e.g., 02 > 2o0 and o 2 > oa'), possibly reflecting wider
23 0.855 (83) 0.793 (29) 0.943 (1643) 0.846 (13) variability in the films each mammographer reads in clinical
24 0.807 (83) 0.828 (29) 0.913 (1726) 1.000(10)
25 0.819 (83) 0.767 (30) 0.864 (1151) 1.000 (4) practice, or the relatively small number of cancer films each
26 0.892 (83) 0.900(30) 0.920 (2169) 0.842 (19) mammographer evaluated over the course of four years in
27 0.759 (83) 0.833 (30) 0.867 (663) 0.833 (6) clinical practice.

5. Discussion

correlation between clinical and test sensitivities was -0.096; These results represent a comprehensive comparison of
correlation between specificities was 0.446. mammographers' assessments in test and clinical settings.

The hierarchical model accounts for within mammogra- The clinical data was based on automated collection of
pher variability in sensitivity and specificity and accounts mammographers' interpretations and recommendations.
for differences in the number of films read in clinical prac- The data systems also allowed two-year follow-up of each
tice. The model can be used to better estimate each mam- woman screened. The test data included a relatively large set
mographer's clinical and test-based sensitivity and specific- of 113 mammograms and included 30 cancers. Finally, our
ity, and thus to better estimate between dataset correlation statistical model allowed for differences in the number of
in sensitivity and specificity. Model-based estimates of sen- films each mammographer assessed during clinical practice.
sitivity and specificity cormbine information from the en- There was general agreement between observed values
tire sample with each mammographer's information. The and hierarchical model results. Mammographers tended to
degree to which estimates differ from observed values re- be less accurate when evaluating the more difficult test film
flects the amount of data available, the values of other pa- set, and tended to give more positive assessments in theirramte esimte (ie. •i, iA A A A
rameter estimates (i.e., 6H, 40, (it, a,0, ', and X) and clinical practice. Thus, we found no evidence of context
underlying distributional assumptions. Estimates of clinical bias as described by Egglin [7]. That is, mammographers
specificity were equal to model estimates because these did not tend to make more positive assessments in the
were based on large number of films. In contrast, estimates higher prevalence test film set. However, we cannot con-
of clinical sensitivity were more strongly influenced by ad- clude from this study that context bias does not exist, be-
ditional information, especially for mammographers who cause the test context included both a higher disease preva-
evaluated very few films. Model-based estimates of be- lence and a more difficult set of films.
tween dataset correlation of sensitivity and specificity were Model-based estimates of between dataset correlation of
similar to observed correlation estimates. Correlation be- sensitivity were stronger than observed correlation, and the
tween clinical and test sensitivity was -0.185 with 95% estimated between dataset correlation of specificity was sta-
credible interval (-0.269, 0.593). Correlation between clin- tistically different from zero. However, between dataset
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Fig. 1. (A) Sensitivity in clinical practice versus sensitivity in a test setting for 27 mammographers. (B) Specificity in clinical practice versus sensitivity in a
test setting for 27 mammographers.

correlation of sensitivity and specificity appears to be apparent correlation between the hierarchical model's accu-
driven by correlation in the mammmographers tendency to racy parameters.
call tests positive rather than correlation in their accuracy. We do not believe that the lack of correlation between
We found moderate, but not statistically significant, correla- clinical and test accuracy resulted from differences in out-
tion between mammographer's overall preponderance to come scales. The basic assumption that we are testing is that
identify cancer using the two data sources. But there was no these two measures are correlated because both are mea-

Table 3
Hierarchical model estim~res from the posterior distribution

Estimates

Parameter and description Mode 95% Credible Region

01: expected cutpoint parameter, test data -0.101 (-0.333, 0.129)
A,: expected accuracy parameter, test data 3.220 (2.900, 3.560)

02: expected cutpoint parameter, clinical data 0.066 (-0.2 14, 0.352)
A 2: expected accuracy parameter, clinical data 4.360 (3.920, 4.8 10)

a0,. between-mammographer variance of cutpoints, test data 0.261 (0.155, 0.489)
0r20 1: between-mammographer variance of accuracy, test data 0.408 (0.212, 0.856)
a022: between-mammographer variance of cutpoints, clinical data 0.339 (0.191, 0.672)

ar,. 2 : between-mammographer variance of accuracy, clinical data 0.505 (0.250, 1.110)

-r. regression coefficient, cutpoint parameters 0.560 (-0.341, 1.530)
X: regression coefficient, accuracy parameters -0.048 (-1.020, 0.945)

pe: correlation between clinical and test cutpoints 0.206 (-0.142, 0.488)
p.,: correlation between clinical and test accuracy . -0.025 (-0.484, 0.447)
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Fig. 1. (Continued)

sures of the same underlying construct, mammographer ac- tect statistically significant correlation, although point esti-
curacy. We are not interested in the equality of these two mates suggest there was not clinically relevant correlation
measures; we expect these accuracy estimates to differ be- in accuracies. Examining mammographers practicing within
cause of differences in film difficulty, film quality, and the the same HMO may have reduced the variability of out-
information provided to mammographers, comes so that correlation was not observable. Many of the

We do not believe that the lack of correlation between mammographers in this study worked together and dis-
clinical and test accuracy resulted from dichotomnizing the cussed difficult cases with each other on a day-to-day basis.
outcome scales. We did not attempt to model the ordinal Finally, lack of correlation may have resulted from differ-
outcomes directly or via the area under the receiver operat- ences in the type of films included in the two data sets. Clin-
ing characteristic (ROC) curve because in both clinical and ical data included assessments of exams based on imaging
test settings mammographers' maximum false positive rates studies, such as ultrasound and magnification views. If eval-
were relatively low. Because of this, the area under their uation of 2 view mammograms requires different skills than
ROC curves were strongly influenced by false positive rates evaluation of additional work-up images, then the inclusion
that were outside of the observed data range especially for of these films in the clinical set could attenuate the esti-
clinical data. The sensitivity and specificity pairs we used in mated correlation between clinical and test accuracy. How-
analyses contained most of the information available from ever, excluding these films would drastically reduce the
ROC curves. number of cancer cases included in the clinical set and

Limitations of this study may have prevented us from ob- could bias comparisons by reducing the clinical data set to
serving correlation in these data. Our "gold standard" for films that the original reader was able to assess without ad-
true disease state was based on a two-year follow-up inter- ditional work-up. Because of the limitations of this study,
val, and mi sc lassifi cation of diseased and not diseased further work is needed to confirm these findings.
women may have attenuated observed correlation. Our sam- The apparent lack of correlation between test and clinical
ple of 27 mammographers may have been too small to de- accuracy could be interpreted in at least two ways. One in-
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Abstract

Background: Initiation of hormone replacement therapy (HRT) has been shown to

increase breast density (1-5). Several lines of evidence indicate that breast density is

strongly related to breast cancer risk (8-11) and that increased density decreases

mammographic sensitivity (6).

Objective: To examine the effect of initiation, discontinuation, and continuing use of

HRT on breast density using population based data.

Design: Observational cohort study.

Setting: Women enrolled in a large HMO in western Washington state (Group Health

Cooperative of Puget Sound).

Participants: 5213 naturally postmenopausal women 40 to 96 years old who had two

screening mammograms between 1996 and 1999.

Measurements: HRT use was assessed using automated pharmacy data. Breast

density was assessed using clinical radiologists' BIRADSTM ratings.

Results: Women who initiated HRT were more likely than nonusers to show increases

in density (OR=3.24, 95% CI (2.47,4.23)), while women who discontinued were more

likely show decreases in density (OR=1.92, 95% C0 (1.03,3.35)), and women who

continued use of HRT were more likely to show both increases in density (OR=1.37,

95% C0 (0.89,2.06)) and sustained high density (OR=1.72, 95% CI (1.50,1.98)).

Continuing HRT use was more strongly associated with sustained high density among

women with high BMI (p<0.05).

Conclusions: These results provide strong evidence that breast density changes

associated with HRT are dynamic, increasing with initiation and decreasing with

discontinuation. Continued HRT use results in persistent changes, particularly among

women with high BMI.
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Introduction

Several studies have shown that initiation of HRT increases parenchymal breast density
(1-5), and there is growing evidence that opposed estrogen has a stronger effect on
breast density than unopposed estrogen (4,5). Increases in density induced by HRT can
have important consequences. Increased density reduces the accuracy of screening
mammography (6) HRT has been directly associated with decreases in both sensitivity
and specificity of mammography (7-10), which is likely a result of corresponding
increases in density. Studies have also found an association between increased density
and increased risk of breast cancer (11-14).

Although the effect of initiating HRT on breast density has been well studied, the effects
of discontinuing HRT and continuing HRT have not been systematically examined. In
this study, we investigated the relationship between HRT use and density in a
population-based cohort of women undergoing at least two screening mammograms.
Specifically, we compared changes in breast density across four patterns of HRT use:
1) "Nonusers", who did not use HRT before either mammogram; 2) "Discontinuers", who
used HRT before the first mammogram, but not before their second mammogram;
3) "Initiators", who did not use HRT before their first mammogram, but began using HRT
before their second mammogram; and 4) "Continuing Users", who used HRT prior to
both mammograms. We also explore differential associations between patterns of HRT
use and change in breast density by body mass index (BMI).

Methods

Study Sample
Subjects were selected from women enrolled in Group Health Cooperative of Puget
Sound (GHC), a health maintenance organization with over 400,000 members in
western Washington state. Most mammographic screening at GHC is delivered through
the Breast Cancer Screening Program (BCSP), which was established in 1985 (15). The
BCSP collects demographic data, health and screening history, and risk-factor
information through a self-administered survey mailed to women 40 years of age and
older, and generates letters that invite women to begin breast cancer screening and
periodically remind them to return for regular screening. During the study period, women
were sent screening reminders every 1-2 years, with the reminder interval based on their
breast cancer risk factors. GHC physicians may also order screening mammography as
part of usual care or for evaluation of symptoms. Data on risk factors and screening
examination results, including density assessments, are maintained in a central
database.

Women were eligible for our study if they were postmenopausal and had at least two
screening exams occurring between January 1996 and December 1998, with the second
screening exam occurring at least 11 months, but no more than 25 months, after the
first. When women had more than two screening exams during the study period, we
chose the pair whose timing was closest to two years apart, corresponding to the most
common interval between recommended screenings. Screening consisted of a two-view
mammogram and clinical breast examination at dedicated centers within the GHC
delivery system.

Women were excluded from our study if they were under 40, had a hysterectomy, had a
self-reported history of breast cancer, had a diagnosis of cancer prior to either screening
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mammogram, or had undergone breast augmentation. Because we relied on pharmacy
data to estimate HRT, we restricted our sample to women who were continuously
enrolled in GHC during the year prior to each mammogram.

Measures
Measures of women's HRT use were based on automated pharmacy records. The
pharmacy data set captures all prescriptions filled at GHC pharmacies. We defined
hormone replacement therapy (HRT) to include estrogens alone and estrogens in
combination with a progestin, delivered orally or by patch. Women who filled
prescriptions for vaginal rings were excluded from our sample, because unlike other
modes of delivery, estrogen delivered via vaginal ring is not associated with higher blood
levels of estrogen (16). Women who filled prescriptions for estrogen creams were
included in our sample, but because estrogen creams were almost exclusively
prescribed for use on an as-needed basis, we did not consider women using creams to
be HRT users. We combined pharmacy dose and text instructions to estimate the
duration of each prescription and the average dose per day of estrogen and progestin.
We estimated the timing of HRT use by assuming that a woman began taking HRT the
day after she filled her prescription, with refills extending the duration of HRT use. When
a woman filled a prescription for a different HRT drug, or the same drug at a different
dosage, within 10 days of an earlier fill, we assumed that her physician had changed
either the dose or formulation, effective the day after the new prescription was filled.

We classified HRT use (yes/no) prior to each mammogram using the date of prescription
fills and the estimated duration of the prescription. Women classified as HRT users at
the time of screening filled a prescription for opposed or unopposed estrogen that lasted
for at least 30 days and was estimated to run out no more than six weeks before the
screening mammogram. Women classified as non-users at the time of screening had not
filled a prescription for estrogen in the prior year, or had filled a prescription that was
estimated to run out more than 24 weeks before the screening mammogram.

Our analyses compare four patterns of HRT use: 1) "Nonusers", who did not use HRT
before either mammogram; 2) "Discontinuers", who used HRT before the first
mammogram, but not before their second mammogram; 3) "Initiators", who did not use
HRT before their first mammogram, but began using HRT before their second
mammogram; and 4) "Continuing users", who used HRT prior to both mammograms.

In subset analyses we also used women's self-reported current use of HRT in
combination with pharmacy data to more stringently classify women using HRT. Self-
report data was not used for primary analyses because it does not distinguish as-needed
creams from daily preparations, nor does it account for duration or recency of use. Self-
reported data are also subject to both reporting errors and missing data. Our refined
sub-sample excluded women whose self-reported current HRT use disagreed with
pharmacy records.

Breast density was coded on a 4 point scale at the time of each mammogram using
American College of Radiology BI-RADS coding (17): 1) almost entirely fat, 2) scattered
fibroglandular tissue, 3) heterogeneously dense, and 4) extremely dense. Breast density
was coded by clinical radiologists and was captured using an automated reporting
system. Radiologists rated density separately for each breast, and the breast with the
highest density was used for analysis. To focus on clinically important changes in breast
density, we dichotomized density ratings into low (almost entirely fat and scattered
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fibroglandular tissue) and high (heterogeneously and extremely dense). For analysis, a
change in density was defined as a shift between these dichotomized categories.
Therefore, shifts between almost entirely fatty and scattered fibroglandular tissue, and
shifts between categories heterogeneously and extremely dense were not considered
density changes. "Change" in breast density was coded into four groups: low density
(1,2) at both evaluations, decrease in density (3,4)->(1,2), increase in density
(1,2)-4(3,4), and high density (3,4) at both evaluations.

Cancer outcomes were based on linkage to the Western Washington Surveillance
Epidemiology and End Result (SEER) cancer registry. Among women diagnosed with
breast cancer within two years of the second exam, we use breast density assessed in
the unaffected breast rather than the maximum breast density.

Statistical Analysis
We also examined the association between HRT and density adjusting for two
covariates associated with changes in breast density: age at first mammogram and
change in body mass index (BMI, kg/m 2). Change in BMI was based on a 5 category
measure of change that captured clinically important changes in BMI: 1) lean at both
exams (BMI<20), 2) initial BMI between 20 and 25 and a change of less than 1 BMI unit,
3) initial BMI between 20 and 25 and a decrease of at least 1 BMI unit, 4) initial BMI
between 20 and 25 and an increase of at least 1 BMI unit, and 5) heavy at both exams
(BMI>25). For a woman who is 5'6", a one-unit change in BMI roughly corresponds to a
6 pound weight change. We examined the relationships between HRT and density while
controlling for age and change in BMI using three separate logistic regression models to
describe the probability of: 1) increased density relative to all other changes, 2)
decreased density relative to all other changes, 3) high density at both exams relative to
all other changes.

We used stratified logistic regression to examine potential interactions between each
covariate (age, BMI) and the effect of HRT change on density change. Age was
categorized into 3 groups of approximately equal size (40-49, 50-69, 70+). BMI was
grouped into low (<25) versus high (Ž>25). Differential effects of HRT change were
estimated using interaction effects in logistic regression models that adjusted for age
and clinically significant BMI change (±1 unit change for women with initial BMI between
20 and 25).

Adjusted relative risks were approximated using a transformation of adjusted odds ratios
(18). Adjusted relative risks were used to shed light on differential effects of covariates
on odds ratios when there were differences between reference groups.
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Results

Among the 6314 women who met initial criteria for inclusion in our sample, 497 (7.9%)
had HRT use patterns that did not correspond to one of our four groups. These women
had estimated HRT use that ended from 7 to 24 weeks before either mammogram, or
had less than 30 days of HRT use prior to a mammogram. One woman who used a
vaginal ring prior to her second exam was excluded from our sample. Among the
remaining women, 604 (10.4%) were excluded from analyses because of missing
density or BMI information (1.1% were missing density and 9.4% were missing BMI).
Our final sample included 5212 women with complete density and covariate information.

At the time of the initial mammogram, the average age of women in our sample was 65
years old (sd=9.5, range=40 to 96). There were similar age ranges across the four HRT
use patterns, with Nonusers ranging from 43 to 96, Discontinuers from 42 to 80,
Initiators from 42 to 91, and Continuing Users from 40 to 92. As shown in Table 1,
women who were using HRT at the time of the first mammogram (Discontinuers and
Continuing Users) tended to be younger than other groups. Nonusers tended to be older
than other groups. Across all groups, approximately one third of women were 60 to 69
years old. However, 46.5% of Nonusers were 70 years or older, while 27.4% of Initiators,
18.9%of Discontinuers and 17.7% of Continuing users were 70 or older.

There were few differences in other risk factors across patterns of HRT use. Our sample
was predominately white (92.0%), reflecting the overall racial composition of women
enrolled in GHC. 96.1% (4891/5089) had a prior mammogram available to the radiologist
at the time of their initial screening mammogram. 15.9% (823/5190) were nulliparous,
and 13.8% (594/4299) had their first child after the age of 30. Family history of breast
cancer (mother, sister, or daughter) differed across groups, with 24.8% (703/2839) of
Nonusers, 20.2% (65/322) of Initiators, 17.1% (18/105) of Discontinuers, and 16.6%
(294/1767) of Continuing Users reporting a family history. Overall, there were 42 cancers
diagnosed within two years of their second screening exam, and most of these (n=35,
85.4%) were invasive carcinomas (Table 1).

At the time of the initial mammogram, the average BMI of women in our sample was
26.8 (sd=5.5). Differences in average BMI across patterns of HRT use were small,
though Discontinuers and Continuing Users tended to be somewhat leaner than other
groups (Table 1). About half of the women in this sample (51.7%) had a BMI that was
over 25 at both exams. Approximately equal numbers gained one unit or more on the
BMI scale (7.6%) or lost one unit or more (7.2%). About one third (29.6) changed less
than one BMI unit, and only a few (3.8%) had a BMI that was less than 20 at both
exams.

There were no observable differences in HRT dose or drug type across the three groups
of women who used HRT (Initiators, Discontinuers, and Continuing Users). Most women
who received HRT (93.4%) received a combination of an estrogen and a progestin, with
no differences among the three estrogen use groups. Among Continuing Users, only 20
(1.1 %) switched between opposed and unopposed estrogen. The most common
average daily dose of conjugated estrogen was 0.625mg (62.0% at time 1; 49.8% at
time 2). Few women received estrogen doses that were greater than 0.625mg/day (5.1%
at time 1; 5.4% at time 2). Some women received doses between 0.15mg/day and
0.50mg/day (15.1% at time 1; 12.1% at time 2). Most women were prescribed Estratab,
(86.5% at time 1; 86.8% at time 2); Premarin was the next most commonly prescribed
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estrogen (12.3% at time 1; 11.7% at time 2). There was somewhat more variability in the
type of estrogen prescribed to Continuing Users than to Discontinuers or Initiators.
Among women receiving combination therapy, nearly all were prescribed
medroxyprogesterone acetate (98.8% at time 1; 99.0% at time 2), though a few were
prescribed norethindrone (11 at time 1; 10 at time 2).

Most (80.6%) women had index screening exams during 1996, and most (64.7%)
women had their second mammogram between 21 and 25 months after their first. On
average, mammograms were separated by 21 months (sd=3.4). There were no
differences in timing of the index mammogram or time between mammograms across
patterns of HRT use. There was little loss of information due to use of the maximum
density; 99.0% of the women in our sample had equal density ratings in both breasts.
Using these maximum ratings, we found expected differences in the distribution of
density at the first exam (Table 1). Women using HRT at the time of the first
mammogram (Discontinuers and Continuing Users) tended to have higher density at the
initial screening than women who were not using HRT at the time of their first
mammogram (Initiators and Nonusers).

Table 2 shows the overall relationship between patterns of HRT use and change in
breast density. Relative to the Nonuser group, Initiators were more likely to have an
increase in breast density (28.4% versus 11.6%), Discontinuers were more likely to have
a decrease in breast density (12.6% versus 6.5%), and Continuing Users were more
likely to have high breast density at both exams (41.9% versus 25.7%). We reanalyzed
the data and found very similar results for 3 subsets of women with more stringent
definitions of HRT use: excluding 302 women who were not using HRT, but were using
estrogen cream; excluding 173 women using unopposed estrogen; and excluding 266
women whose self-reported HRT use differed from pharmacy records.

Table 3 shows estimated associations between pattern of HRT use and change in breast
density based on logistic regression models that adjusted for age at initial exam and
change in BMI between the two mammographic screening exams. Because few women
had BMI below 20 at both exams, these women were grouped with women who had a
less than one-unit change in BMI between evaluations. Initiation of HRT was
significantly associated with higher odds of an increase in density (OR=3.24, 95% CI
(2.47,4.23)) and lower odds of a decrease in density (OR=0.47, 95% CI (0.24,0.84)).
Discontinuation of HRT was significantly associated with higher odds of a decrease in
density (OR=1.92, 95% C1 (1.03,3.35)). Continuing HRT use was significantly associated
with higher odds of an increase in density (OR=1.38, 95% CI (1.15,1.66)) and higher
odds of high density at both exams (OR=1.72, 95% CI (1.50,1.98)). Analyses that
excluded women whose self-reported HRT use differed from pharmacy records were
virtually identical. Analyses that stratified by age (40-49, 50-69, 70+) showed similar
results across age groups.

The relationship between pattern of HRT use and change in breast density varied across
subgroups of women stratified by BMI (<25 versus Ž_25) at first mammogram (Table 4).
Initiation of HRT was significantly associated with increases in density for both groups,
with a somewhat stronger (though not statistically different) effect among women with
low BMI. Among women with high BMI, initiation of HRT use was also associated with
high density at both mammograms (interaction, p<0.05). When interactions with
baseline BMI were included, discontinuation of HRT was not significantly associated with
changes in breast density. Continuing HRT use was significantly associated with both
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increased density and high density at both exams for women in each BMI groups. The
association between continuing HRT use and high density at both exams was
significantly stronger among women with high BMI (interaction, p<0.05).

Among Nonusers, low BMI (<25) was associated with higher breast density. For
example, 39.9% of Nonusers with low BMI had low density at both mammograms,
versus 68.0% of Nonusers with high BMI. Similarly, 40.1% of Nonusers with low BMI
had high density at both mammograms, versus 15.2% of Nonusers with high BMI.
Table 5 shows adjusted relative risks for the outcome most strongly influenced by
differences in the reference groups, high density at both exams. Based on adjusted
relative risk estimates, Initiators were less likely to have high density at both exams than
Nonusers, with a somewhat stronger effect among women with low BMI. Discontinuers
with low BMI were more likely to have high density at both exams, while Discontinuers
with high BMI were less likely to have high density at both exams. Finally, continuing
users were more likely to have high density at both exams, particularly among women
with high BMI.

Discussion

This study has several strengths that distinguish it from earlier research. Automated
pharmacy data allowed us to measure HRT use across a large group of
mammographically screened women whose breast density was routinely recorded. We
believe that this is the largest study to date of HRT use and breast density changes. This
is the only study to simultaneously examine HRT initiation, discontinuation, and
continuing use relative to women not using HRT. We focused on clinically significant
changes in breast density, and distinguished women with fatty breasts at both exams
from women with dense breasts at both exams. This is also the first published study to
explore changes in density adjusting for co-occurring changes in BMI, and the first to
examine differential effects of HRT on density for women with high versus low BMI.

Our analyses provide important new information about women who discontinue HRT and
women who are continuing HRT users. Discontinuation of HRT was associated with
subsequent decreases in density, and increases in breast density were sustained by
continued HRT use. We also found that initiation of HRT was associated with increases
in parenchymal breast density. These results provide strong evidence that breast
density changes associated with HRT are dynamic, increasing with initiation and
decreasing with discontinuation.

We found some evidence of differential effects of change in HRT for women with low
versus high body mass index (BMI). Continuing HRT users who had high BMI were at
greater risk of consistently high mammographic density at both exams than continuing
users with low BMI. Recent studies based on retrospective self-report of HRT use have
associated HRT use with increased risk of breast cancer primarily among women with
low BMI (19,20). Our findings raise new concerns for women with a higher body mass
index. Increased density is associated with decreased mammographic accuracy and
increased cancer risk. (6) Because postmenopausal women with high BMI are at a
higher risk of breast cancer than women with low BMI (21-23), sustained increases in
breast density due to HRT use could have particularly deleterious effects among women
with high BMI, potentially increasing their breast cancer risk and likely decreasing the
accuracy of their screening mammograms.
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Our analyses confirmed findings from previous studies demonstrating an association
between initiation of HRT use and increases in parenchymal breast density (1-5). Like
these earlier studies, we examined changes in breast density among women who began
using HRT. Studies that have failed to find a difference compared the parenchymal
patterns of women using HRT to patterns of women not using HRT rather than
examining within woman changes (24,25).

We adjusted analyses for age and change in BMI because these covariates are known
to be related to change in density over time. Previous studies examining the effect of
HRT initiation on breast density have not consistently adjusted for age, and none have
been able to adjust for change in BMI. Laya and colleagues allowed adjustment for a
variety of covariates (including age, weight and height) via stepwise regression.
Greendale and colleagues adjusted for age, uterus status, baseline density, cigarette
smoking, and alcohol use, but not for baseline BMI or parity because they found that
neither affected change in density. Greendale and colleagues did not find evidence of
differential effects of HRT for various subgroups of patients, although they did not
provide results for baseline BMI. We found differential effects of HRT on sustained high
density by BMI. Because Greendale and colleagues focused on increases in density,
they excluded women who had high density at baseline, and thus could not have
observed this effect.

We measured density using the American College of Radiology Breast Imaging
Reporting and Data System (BI-RADS), with assessments made by a variety of clinical
radiologists. Studies finding increases in density associated with initiation of HRT have
used a variety of measures, though all relied on expert readers. Greendale and
colleagues (4) used BI-RADS coding. Several earlier papers were based on the Wolfe
classification scheme (2-3,5) and one study (1) used a simple measure of "Dense",
"Heterogenous", and "Fatty". These studies consistently demonstrated an association
between initiation of HRT and increased breast density across a variety of density
measures. Our study is consistent with previous research, showing clear associations
between initiation of HRT and increased breast density as measured in clinical practice.

We were able to examine changes in HRT use and breast density changes in a relatively
large group of women because of automated data collection. Previous studies of
initiators have also used detailed HRT dose information, though the source is sometimes
unclear. Two studies appear to rely on a combination of medical records and self report
for HRT dose information (1,2,5), while others used information from randomization
within in a treatment study. (3,4) Automated pharmacy data allowed broad capture of
information, but are also limited. HRT use was based on pharmacy fills, so some women
who filled prescriptions but did not subsequently take HRT may have been misclassified.
In addition, some women who filled HRT prescriptions at outside pharmacy facilities may
have been misclassified as nonusers. Timing information is especially sensitive, since
we cannot capture when a woman begins to take her prescription. Because of these
limitations, we used relatively stringent requirements for categorization into use and non-
use groups, resulting in the exclusion of women who had intermediate use patterns. We
also examined a subset of women whose self-reported current HRT use was consistent
with pharmacy estimated HRT use and found virtually identical results. Overall, only
5.1% of women self-reported HRT use that differed from pharmacy records. Thus, there
is little evidence of missclassification of HRT use and such misclassification would result
in attenuation of the effect of HRT use on density change.
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Like all previous studies of HRT use, the current study is subject to selection bias. This
is an inherent problem in studies of HRT use. Women chose whether and when to
initiate, continue or discontinue HRT use, and these choices may be related to
covariates that in turn bias these analyses. Randomized trials that include a placebo
control (4) come closest to controlling for potential selection bias, since all women,
including the placebo group, were willing to initiate HRT. Although a recent study of HRT
users suggests that there are fewer differences between users and nonusers than
previously expected (26), our results must be viewed in light of their observational
nature.

In addition, these data did not allow us to address several important factors that may
influence the effect of HRT on breast density. We were unable to examine the effects of
opposed versus unopposed estrogen and the effects of type of drug prescribed, because
there was not enough variability in these factors within our sample, reflecting the
selection of naturally postmenopausal (i.e., non-hysterectomized) women. In addition,
automated pharmacy data did not allow us to distinguish between cyclical and
combination estrogen, and progestin. We also lacked information about women's overall
duration of use.

This study shows strong associations between patterns of HRT use and changes in
breast density. Our findings suggest that in some women HRT increases breast density
but that increases are potentially reversible with cessation of HRT. This result has
important implications for breast cancer screening. Increased density adversely affects
the accuracy of screening mammography and is a strong, if not the strongest, risk factor
for cancer missed at screening (6). HRT itself is associated with decreases in both the
sensitivity and specificity of mammographic (7-10). Observed decreases in
mammographic accuracy among women using HRT are a likely result of corresponding
increases in density.

Previous studies have associated HRT with increased risk of breast cancer, with
stronger associations for estrogen combined with progestin (opposed estrogen) than
unopposed estrogen (19,20,27-29). Estrogen increases normal breast cell proliferation
(30,31), and this increased cell proliferation may be a pathway to both increased breast
density and increased risk of breast cancer. Thus, breast density may be an important
intermediate outcome on the pathway between HRT and breast cancer. We found that
density changes associated with HRT varied across women. These results suggest that
density changes associated with HRT use, particularly increases, may be a marker of
increased susceptibility to estrogen, and possibly increased risk for breast cancer.
Exploration of biological processes related to differential effects of HRT on breast
density could illuminate underlying processes related to breast cancer risk and
differential effects of HRT on breast cancer risk.
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Table 2: Change in Breast Density by Patterns of HRT use

Low density, Decrease at Increase at High density, OVERALL
both exams 2 nd exam 20d exam both exams

n=2509
n=345 n=705 n=1654 n (%)

HRT use:
Nonusers at 56.2% 6.5% 11.6% 25.7% 2942 (56.4%
both times

)

Initiated use 40.3% 3.3% 28.4% 28.1% 335 (6.4%)
before second
exam

Discontinued 39.6% 12.6% 10.8% 36.9% 111 (2.1%)
use before
second exam

Continuing use 37.1% 7.0% 14.0% 41.9% 1824 (35.0%

at both exams
)
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Table 3: Adjusted associations between patterns of HRT use and changes in breast

density.

Decrease in density Increase in density High density at both
at second exam, at second exam, exams, relative to
relative to no relative to no not high density at
decrease increase both exams

OR 95% Cl OR 95% Cl OR 95% Cl
HRT use:
Initiated use 0.47 (0.24,0.84) 3.24 (2.47,4.23) 0.98 (0.75,1.27)
before second
exam
Discontinued use 1.92 (1.03,3.35) 1.02 (0.52,1.81) 1.37 (0.89,2.06)
before second
exam
Continuing use 1.01 (0.79,1.29) 1.38 (1.15,1.66) 1.72 (1.50,1.98)
at both exams
Each odds ratio (OR) was estimated relative to any other density change at second

exam. Each group of women with some HRT use (Initiators, Discontinuers, and

Continuing Users) was compared to women with no HRT use. Odds ratios are adjusted

age and change in body mass index.
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Table 5: Adjusted associations between patterns of HRT use and changes in breast

density by BMI strata

High density at both exams,
relative to not high density at

BMI both exams
strata

RR 95% CI
HRT use:
Initiated use <25 0.53 (0.36,0.75)
before second
exam >25 0.81 (0.55,1.17)

Discontinued use <25 1.11 (0.63,1.97)
before second
exam >25 0.73 (0.38,1.40)

Continuing use <25 1.02 (0.85,1.22)
at both exams

_>25 1.28 (1.06,1.56)

Relative risks are estimated from baseline risk and adjusted odds ratios given in Table 4.

Relative risks adjusted for age at the time of the initial mammogram and clinically

significant change in BMI (initial BMI between 20 and 25 with a change of at least one

BMI unit).
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