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Foreword

What is PDESoLVE?

PDESOLVE is an environment for numerically solving partial differential
equation (PDE) problems. PDESOLVE combines object-oriented program-
ming with a natural framework for working with differential equations.
PDESOLVE's fundamental objects, differential equations, simulate and op-
timize a wide variety of scientific and engineering products.

PDESOLVE can be used to model any system whose underlying behavior
can be described with differential equations. PDESOLVE provides objects
to describe the various components of a PDE problem, its discretization,
and its solution.

PDEs are fundamental to many areas of science and engineering. PDESOLVE
can be used to solve PDE problems in many different fields, including fi-
nance, life sciences, engineering, and physics.

Who is Beam Technologies?

Beam Technologies is a scientific computing company based in Ithaca, NY.
Beam has developed new design tools and techniques that meet many of
the pressing needs of scientific and engineering enterprises. The funda-
mental technology driving Beam's vision is the creation of open standards
that allow the communication of comprehensive engineering information
on IP networks.



Foreword

For more information about Beam Technologies or to find out about our
other products, visit our web site: http://www.beamtech.com.

How to Get Help

Sample Programs

Sample programs are located in the (???) subdirectory of your PDESOLVE
directory.

PDESOLVE Web Page

(these are some suggestions for what might be there)

"* documentation

Tutorial

User's Guide

"* FAQ

"* updates (?)

"* more examples (?)

"* user contributed examples

this link contains examples of how PDESOLVE has been used by
our customers for various types of problems

• ...

Customer Support

Customer support is available by:
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"* phone-

"* email-

"* web site-http://www.beamtech.com

Please have the following information available when contacting customer
support:

"* software version number

"• platform

To display the version number of your copy of PDESOLVE, compile and
run the following PDESOLVE program:

#include "PDESoive.h"

void main()
I
// Outputs "PDESolve version 2.0"
cout << PDEGlobal::version(;
I

(This is what the version number function is planned to look like - it
doesn't work yet as far as I can tell. What if their problem is that they
can't compile? -vh)

PDESoLVEDocumentation

Organization of the Documentation Set

The PDESOLVE documentation is organized as follows:

Installation Guide:
This guide contains instructions on installing PDESOLVE and com-
piling an example and visualizing the results.

PDESOLVE User's Guide Version 2.0 Beta - August 28, 1998
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User's Guide:
This document contains a brief walk through of the basic ideas of
FEM and their implementation in PDESOLVE using several progres-
sively more sophisticated examples. It also contains detailed infor-
mation about using the Geometry classes provided by PDESOLVE for
constructing domains.

Reference Manual:
This document contains a detailed description of the entire PDESOLVE
class library.

Case Studies:
For FEM experts, this guide contains several non-trivial examples
with brief instructions on how to set up and solve the problems in
PDESOLVE.

Documentation Conventions

italic Roman font
book and section titles, references to code and directories, etc., within
the text, e.g.,

sample code is located in the directory Isome/directory.

constant width font
code fragments and PDESoLVEcommands. Sample names that should
be replaced by your own information are in italic font, e.g.,

to compile your program type make (filename).

Abbreviations

Abbreviations used throughout the documents:

FD Finite Difference

FEM Finite Element Method

PDE Partial Differential Equation

PDESOLVE User's Guide Version 2.0 Beta - August 28, 1998
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Chapter 1

Mathematics and PDESOLVE

This chapter describes the components of a typical PDE problem.

The first section, Anatomy of a PDE Problem, describes the various mathe-
matical components of a PDE problem and introduces mathematical termi-
nology that we will use throughout the documentation.

The second section, Anatomy of a PDESoLvE Program, discusses schemati-
cally the components necessary for a numerical solution to the PDE prob-
lem. (The Examples chapter provides detail on specific PDESOLVE syntax
for incorporating these mathematical components into your code.)

1.1 Anatomy of a PDE Problem

A partial differential equation (PDE) problem has several necessary math-
ematical components:

"* the PDE itself

"* the domain

"* appropriate boundary conditions (BC) or initial conditions (IC)

All of these components must be specified before you have a mathemati-
cally complete problem (with a unique solution).



2 Mathieniatics and PDESOLVE

1.1.1 The PDE

The PDE is the mathematical equation that models the behavior you are
trying to predict or understand. Some typical example PDEs are:

The wave equation (in 3 dimensions):

02u O2u 02u O2u

2 + y2+ 2= t2

The heat equation (in 2 dimensions):

02 u 02u O9u
O X'2 + O y2 =O-t

Poisson's equation (in 2 dimensions):

02 u 02u
Ox- + 7 = F(x, y).

Poisson's equation, for example, can be used to represent the steady-state
heat distribution over a given region.

1.1.2 The Domain

The domain is the region over which you are solving the PDE. PDESOLVE
supports one, two, and three-dimensional domains. The domain involved
in your problem may be a factor in choosing between using FD and FEM to
solve the problem. To use FD on a non-rectangular domain (of any dimen-
sion), you must have an invertible mapping from the domain to a domain
that is either rectangular or is a collection of rectangular sub-domains.

Your domain could be a simple or complex region. For example, you might
want to solve a 2-dimensional PDE over the unit disk x2 + y 2 < 1. Your
domain can also be a complicated region that can be approximated by a
combination of rectangles or disks. Or finally, your domain may be a very
complicated region that cannot be easily approximated as a combination of
simpler regions.
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1.1 Anatomy of a PDE Problem 3

1.1.3 Boundary Conditions

Boundary conditions specify the required behavior of your solution on the
boundaries of your domain. For a boundary-value PDE problem, you must
specify the behavior of the solution on every boundary of the domain.

Wn Warning: PDESoLvE does not check or enforce well-posedness of your
boundary conditions.

In second-order PDEs, there are two main categories of boundary condi-
tions. The first involves specifying the value of the function at the bound-
ary. This type of boundary condition is known as a Dirichlet, essential, geo-
metric, or forced boundary condition. We will use the term Dirichlet bound-
ary condition for this category. An example of a Dirichlet boundary condi-
tion is u(0) = 0 or u(0, y) = g(y), where g(y) is some specified function.

The second category involves specifying the value of the normal derivative
of the function at the boundary. This type of boundary condition is known
as a Neumann, natuiral, or force boundary condition. We will use the term
Neumann boundary condition for this category. An example of a Neumann
boundary condition is Ou/Ox = 0 at x = 0.

For example, when solving the two-dimensional Poisson equation on the
domain Q = { (x, y) 1 0 < x < 1, 0 < y < 1 }, your problem might require
that the solution obey Dirichlet boundary conditions on the x boundaries
of the square,

u(0, y) = 0, u(1, y) = 0,

and Neumann boundary conditions on the y boundaries of the square,

l =(X)h(x)

yy Y=0I

where g and It are specified functions.
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4 Mathematics and PDESOLVE

1.1.4 Initial Conditions

For time-dependent problems such as the heat equation and the wave equa-
tion, you must also specify initial conditions. If the time derivative is order
n, then you need n initial conditions.

For example, suppose you want to solve the two-dimensional heat equa-
tion on the domain Q as specified above for the Poisson equation. Then
you must specify boundary conditions just as above and the initial temper-
ature distribution

u(x, y, 0) = uo(x, y) for all (x, y) E Q.

To solve the wave equation on the same domain, we need the initial dis-
placement

u(x, y, O) = uo(x, y) for all (x, y) E Q,

as well as the initial velocity

-N(x, y,0) = vo(x,y) for all (x,y) E Q.

1.1.5 Weak Formulation of the PDE - FEM Only

To solve a PDE problem using Finite Differencing (FD), the mathematics
can stop here. We have specified the mathematical problem completely
and the next step is to incorporate all of the components into a PDESOLVE
program.

To solve a PDE problem using the Finite Element Method (FEM), we need
several further mathematical steps.

When solving with FEM, we represent the solution to the PDE as a linear
combination of functions from a (possibly infinite) set of basis functions. As
the PDE problem was originally formulated, these basis functions would
have to be differentiable to the extent required by the PDE. In Poisson's
equation, for example, the basis functions would have to be twice continu-
ously differentiable so that a linear combination of them would make sense
as a solution to the equation. This requirement is often more restrictive
than is necessary for a good numerical solution. In FEM, we work with
the "weak form" of the PDE. One advantage of the weak form is that it
decreases the continuity requirements on the basis functions.
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1.1 Anatomy of a PDE Problem 5

Consider the one-dimensional Poisson equation:

02u
,9iX2 = F(x),

on the domain a < x < b, with a Neumann boundary condition o9u/Ox =
atx = a, and a Dirichlet boundary condition u = 0 at x = b.

Let v(x) be an arbitrary (variational) function. Create a functional out of
the PDE and the Neumann boundary condition, 9u/Ox - 7r = 0 at x = a, as
follows:

b(V d2U )dx - (vF(x) )dx - v( -7r) 0.

The lefthand side of this equation is the functional applied to v. If u satisfies
the PDE, then this equation must be satisfied for any v. Conversely, if the
function u satisfies this equation for any function v, then it must also satisfy
the original PDE. Integrating by parts, we get

Zb du dv b du b au
(--)dx+ (vF(x))dx-v - V- + vr =0.dx dx f.J dXV a -VDX a a

In this example, we have a Dirichlet boundary condition at the point x = b,
so we do not want the function v to vary at that point. Consequently, we
assume that v(b) is zero (i.e., assume that v is any arbitrary function such
that v(b) = 0). The equation then becomes

1.b du dv •
d-u )dx + (vF(x))dx + 7rv(a) = 0.

This is the expression of the weak form that we use in the PDESOLVE pro-
gram.

More generally, if we have a PDE, Lu - F = 0, where L is a linear operator
on u and F is a function of x, over a domain Q with a Neumann bound-
ary condition, Ou/On - k = 0 on OaN, where OQ is the boundary of the
domain and ON is the subregion of the boundary on which the Neumann
boundary condition holds, k is a constant, and Ou/On represents the normal
derivative of u at each point of O9QN, the weak form of the PDE is found by
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6 Mathematics and PDESOLVE

creating a functional from the PDE and the Neumann boundary condition
as follows: j v(Lu - F -)d Q - v(-y - k) = 0.

For more information on weak formulation and on FEM techniques in gen-
eral, see one of the suggested FEM references.

1.2 Anatomy of a PDESOLVE Program

Like the mathematical problem, a PDESoLVE program must contain cer-
tain components to specify the problem completely so it can be solved nu-
merically. In this section we go through the components of a PDESOLVE
program schematically. In the next chapter, we work through many specific
examples.

1.2.1 Mathematical Components

A complete PDESOLVE program must contain all of the mathematical com-
ponents described in the previous section. In addition, there are several
components that are required for numerical solutions or for C++ programs
in general. You will see how the mathematical components are turned into
PDESOLVE code in the Examnples chapter. The following sections describe
the additional necessary components of a PDESOLVE program.

1.2.2 Include Files

Like any C++ program, your PDESOLVE program must contain an include
statement for any necessary header files. In particular, the file PDESolve.h
is required in every PDESOLVE program.

1.2.3 Solving the PDE and Viewing Results

Once you have the complete mathematical description of the PDE problem
in your PDESOLVE code and have incorporated the other necessary numer-
ical components, all that remains is to solve it and to display the results.
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1.2 Aiatomy of a PDESOLVE Program 7

PDESoLvE provides a simple solve command to get the solutions to the
problem.

There are several output formats available in PDESOLVE for viewing the
results of your solution. Depending on how you intend to view the results,
you will need to choose different data output formats.

For a complete description of the available output formats and provided
viewing tools, see the Viewing Your Results section.
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Chapter 2

Examples

In this chapter, we step through the Finite Element code for several in-
creasingly complicated problems. We start with a simple one-dimensional
Poisson PDE problem then proceed to solve a similar problem in two di-
mensions. Following this we solve two time-dependent problems: the
heat equation and a first order hyperbolic equation, both in one dimension.
The final example is a nonlinear problem (Burgers' equation). We explain
the basics of the PDESOLVE program as they arise in these example prob-
lems. For more sophisticated examples of the kinds of problems that can
be solved using PDESOLVE see the Case Studies document.

Complete code for example programs, including the ones in this chapter,
can be found in the /pdesolve/examples directory.

2.1 One-dimensional Poisson Equation

2.1.1 The Problem

Let us start with a one dimensional Poisson equation on a line with some
simple boundary conditions. This equation could represent, for example,
the steady-state heat flow in a wire.

In particular, let us work with the following Poisson equation:

OX2  = _ sin 7rx,

9
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on the domain 0 < x < 1, with a Neumann boundary condition au/Dx = 7r

at xr = 0, and a Dirichlet boundary condition u = 0 at x = 1.

As we discussed in the previous chapter, the mathematical PDE problem
has several necessary components: the PDE itself, the domain boundary
conditions and a weak formulation.

The exact solution to this problem is

u(x) = sin irx.

2.1.2 Walk-through of the FEM PDESOLVE code

The first step in solving this problem using the Finite Element Method is a
mathematical step - rewriting the PDE in its weak form.

Let v(:x) be an arbitrary (variational) function. Multiplying the PDE by v
and integrating, we get:

J d2 u [o1

v- 2 dx + vr2 sin rx dx = 0.

Notice that if the function u satisfies this equation for any function v, then
it must also satisfy the original PDE. Integrating by parts, we get

P du dv d v~r2 sin 7x dx - = 0.

In this example, we have a Dirichlet boundary condition at the point x = 1,
so we assume that v(1) is zero. Enforcing the Neumann boundary condi-
tion du/dx = 7r at x = 0, the equation becomes

du dv dx - vir2 sin 7rx dx + irv(0) = 0.dxr dx

This is the form of the problem that we put into the PDESOLVE program.
Now we will put together the PDESOLVE program to solve this problem.
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2.1 One-dimensional Poisson Equation 11

Outside main

As always, we need to include the PDESOLVE header file PDESolve.h.

#include "PDESolve.h"

Since this PDE is inhomogeneous, we need to set up the forcing function

f(x) = -7r2 sinrx.

We can set it up in PDESOLVE as follows:

Real f(const Coords& x)
{ return -MPI*M_PI* sin(MPI*x[0]); }

Real declares the function f to be a real-valued function.

Within main

Next we enter the main part of the program. This is where most of the
PDESOLVE coding will occur in this example.

First, we set up the differential operators needed to represent the PDE. The
weak formulation of the PDE problem involves only first derivatives with
respect to x, so the only differential operator needed is one representing a
single derivative with respect to x.

DiffOp dx(l,0);

This statement declares dx to represent a first derivative operator with re-
spect to the zeroth variable (x). Note that PDESOLVE follows the C/C++
convention that counting starts with zero.

Next, we declare the functions that are needed to represent the weak form
of the PDE problem. In this case, we need the inhomogeneous function f,
a function G representing the Neumann boundary condition, a function u
representing the solution to the PDE problem, and a variational function v
to use in the weak formulation of the problem.
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12 Examples

const int dim = 1;
const int order = 1;
Function F(dim, Scalar, f);
Function G((Real) MPI);
Function u(dim, Scalar, Lagrange(order));
Function v(dim, Scalar, Lagrange(order), VARIATIONAL);

Here we are setting F to refer to a pointer to the 1-dimensional scalar func-
tion f that we defined before main. G is declared to be the constant func-
tion with value ir (note that some compilers define the constant M_PI to be
long double, hence we must cast it to Real), u is declared to be a one-
dimensional scalar-valued unknown function, and v is declared to be a
one-dimensional scalar-valued variational function. (We could have used
the parameter UNKNOWN in the fourth slot in the declaration of u in the
same way that we declare v to be VARIATIONAL, but that is unnecessary
since UNKNOWN is the default.) The parameter Lagrange (order) tells
PDESOLVE to use a basis of first order (linear) Lagrange polynomials in
the discretization of u and v. Currently the only basis functions PDESOLVE
supports are Lagrange polynomials of any order.

The next step is to set up and discretize the domain of the problem. The
information on the geometry of the elements is kept in an object of the
class CellComplex which you can think of as being a collection of finite
elements on a region. The following lines set the domain to be the line
segment 0 < x < 1 divided into 20 elements (using 21 vertices).

const int n = 21;
CellComplex mesh = rectMeshGen(n, 0.0, 1.0);

Now that we have all of the differential operators and functions needed,
and have set up and discretized the domain, we can write out the weak
form of the PDE problem.

Expr eqn = Integral((dx*u)*(dx*v))
+ Integral(v*F) + Integral("x=O",G*v);

Notice that the equation is an expression, Expr. An Expr is a symbolic ex-
pression tree which can hold Functions, Di f fOps and constants as well as
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2.1 One-dimensional Poisson Equation 13

common operations and operators. G = 7r is the flux through the left-hand
boundary (point) given in the Neumann boundary condition of the prob-
lem. Note that the third integral in the equation, Integral ( "x=0 ", G*v),
is the "integral" over the point x = 0 and is equivalent to irv(0). The string
"x= 0" refers to the left-hand boundary in the x direction. This label was
assigned by the meshing function rectMeshGen ().

At the right-hand boundary, we replace the weak form with the Dirichlet
boundary condition u(1) = 0.

ReplaceBC bc("x=L", v*u);

This is the integral version of the boundary condition, where the "integral"
is over the point "x=L" which was defined by rectMeshGen. (Note that
L refers to the length of the interval.) Note that the Dirichlet boundary
condition effectively forces the variational functions v to integrate to 0 at the
point x = 1. With that restriction, the weak form that we have written into
our PDESOLvE program is equivalent to the form we got from integrating
by parts.

Finally, we convert the problem into a linear system of equations and solve.

LinearProblem poissonld(mesh, eqn, bc, u, v);
u = poissonld.solve);

The first line combines the information about the geometry, the equation
and the boundary conditions to construct a LinearProblem; i.e., a linear
system of equations. The second line solves this system and uses the re-
sult to construct a discretized function (a linear combination of the basis
functions) representing the solution.

Finally we can output our results as follows:

cout << u << endl;

Since we are using Lagrange interpolating polynomials as our basis func-
tions, the numbers we output are just the nodal values of the approximate
solution. If we were using second or higher order polynomials, the first n
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numbers would be the values at the vertices, and the remaining would be
the values at the internal nodes.

The entire listing of the PDESOLVE code for this problem is given below.
When we run this code, we get the following output:

FEFunc Lagrange(1)0.00323215
0.159344
0.311608
0.45627
0.589765
0.708802
0.810446
0.892189
0.952016
0.988448
1. 00059
0.988125
0.951369
0 .89122

0 .809153
0.707186
0.587826
0 .454008
0 .309022

0.156435
0

We could of course achieve a more accurate result by increasing the number
of elements or their order. Figure 2.1 displays the numerical result.
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Figure 2.1: Numerical solution to 1-D Poisson equation.

Program: Poissonld.cpp

// Copyright (c) 1998 BEAM Technologies Inc.//

I/ Solve the ID Poisson equation
/ $u_(xx) = -\pi^2\sin(\pi x)$ on $(0,i)$

// $u_x(O) = \pi$, $u(l) = 0$

// The exact solution is $u(x) = \sin(\pi x)$.

#include "PDESolve.h"
#include "ReplaceBC.h"

// Set up the right-hand side of the PDE

Real f(const Coords& x)
{ return -M_PI*M_PI* sin(MPI*x[0]);

int maino)

const int order = 1;
const int dim = 1;
const int n = 21;
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DiffOp dx(l,0);

/ Declare Functions

Function F(dim,Scalar,f);
Function G((Real) MPI);
Function u(dim,Scalar,Lagrange(order));
Function v(dim, Scalar,Lagrange(order),VARIATIONAL);

/ Discrete Mesh

CellComplex mesh = rectMeshGen(n, 0.0, 1.0);

/ Weak formulation of PDE with Neumann BC incorporated

Expr eqn = Integral((dx*u)*(dx*v)) + Integral(F'v) + Integral("x=0",G*v);

/ Dirichlet boundary condition

ReplaceBC bc("x=L", u*v);

II Set up the problem as a linear system of equations and solve.

LinearProblem poissonld(mesh,eqn,bc,u,v);
u = poissonld.solve();

// Write output

cout << u << endl;
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2.2 Two-dimensional Poisson Equation on a Square

2.2.1 The Problem

As our second example we again use a Poisson equation, but now we con-
sider a two-dimensional problem on a square domain. The change to two
dimensions will introduce a few more PDESOLVE concepts, while keeping
the basic problem familiar. In particular, let us solve the following two-
dimensional Poisson equation:

0x-2u + •0 =u x,y) = -27r sinirxsiniry,

on the square domain Q = { (x, y) I 0 < x < 1, 0 < y < 1 } with Dirichlet
boundary conditions, u(x, y) = 0, on all of the edges of the square except
the x 0 edge, and the Neumann boundary condition Vu. n = g(y) on
the x = 0 edge, where g(y) = -7r sin 7ry, and n is the outward unit normal
vector on OQ the boundary of Q).

The exact solution to this problem is:

u(x, y) = sin 7rx sin 7ry.

2.2.2 Walk-through of the FEM PDESOLVE code

As in the previous example, the first step in using FEM is rewriting the
PDE in its weak form. Let v(x, y) be an arbitrary (variational) function.
Multiplying the PDE by v and integrating we get:

V-(2± + k)vdxdy f jv dx dy.

Integrating by parts and applying the Divergence Theorem (or applying
Green's formula), we get:

jVu.Vv dx dy +fvdxdy - au -V=0.

SU' fn TnV=O
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To satisfy the Dirichlet boundary conditions, we require that v(x, y) = 0 on
all the edges except the x = 0 edge. Thus the line integral is zero every-
where except on the x = 0 edge where Du/an = g(y). Labelling this part of
the boundary rN, the equation becomes:

jVu.Vv dx dy + fvdxdy - gvds = 0.

This is the form of the equation that we will put into our PDESOLVE pro-
gram.

Outside inain

As always, we must include the PDESOLVE header file:

#include "PDESolve.h"

As in the previous example, we set up the inhomogeneous part of the PDE
outside uaiin. In this case, the inhomogeneous function is:

f(x, y) = -27r 2 sin 7rx sin 7ry,

which we write in PDESoLvE as:

Real f(const Coords& x)
{

return -2*MPI*M_PI*

sin(MPI*x[0])*sin(M_PI*x[l]);
I

Note that x [ 0 ] represents the x variable, and x [ 1] represents the y vari-
able. (PDESOLVE follows the C/C++ convention of counting from zero.)

Next we set up the function g(y) representing the flux along the x = 0 edge
of the unit square (the Neumann boundary condition).

Real g(const Coords& x)
{

return -M_PI*sin(M_PI*x[l]);

i
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Within main

In the main part of the program, we set up the weak form of the PDE, set
up and discretize the domain, and solve the problem.

First we set up the differential operators. In this case, we need first deriva-
tives with respect to x and y. In particular, we need to set up a gradient
operator which we can form by building a vector of differential operators.
In PDESOLVE, a vector is represented as a List. The gradient operator
is then a List whose first component is a partial derivative operator with
respect to .x and whose second component is a partial derivative operator
with respect to y. The syntax in PDESOLVE is:

DiffOp dx(1,0);
DiffOp dy(l,l);
Expr grad = List(dx,dy);

Recall that the first component of the argument to Di f f Op represents the
order of the derivative, and the second component represents the variable
with respect to which the derivative is taken. 0 refers to the first (x) vari-
able, 1 refers to the second (y) variable.

Notice that the gradient is declared to be an Expr so that it can be applied
symbolically to functions of two variables.

Next we declare the functions that will be needed in the statement of the
PDE:

const int dim = 2;
const int order = 2;
Function F(dim, Scalar, f);
Function G(dim, Scalar, g);
Function u(dim, Scalar, Lagrange(order));
Function v(dim, Scalar, Lagrange (order), VARIATIONAL);

Here we are declaring F and G to be 2-dimensional scalar-valued functions.
F is the inhomogeneous part of the PDE, and G represents the Neumann
boundary condition on the x = 0 edge of the domain. u is declared to be
a 2-dimensional scalar-valued unknown function, and v is declared to be a
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2-dimensional scalar-valued variational function. For this example we are
using second order (quadratic) Lagrange polynomials for our basis.

Next we set up and discretize the domain. In this case the domain is the
unit square, which we are meshing using 11 vertices in each direction.

const int n = 11;
CellComplex mesh = rectMeshGen(n,n,0.0,1.0,0.0,1.0);

The function rectMeshGen can be used to specify a rectangular domain
in either two or three dimensions. This function generates the mesh and
assigns the labels "x=O", "x=UL, "y=O" and "y=L' (and "z=O" and "z=L' in
the three dimensional case) to the appropriate parts of the boundary.

Now we have all of the pieces necessary to set up the weak form of the
PDE:

Expr eqn = Integral((grad*u)*(grad*v)) + Integral(F*v)
- Integral(h"x=0",G*v);

Note that the star operator, *, is being used in three ways in this fragment:
grad*u is applying the gradient operator to u (Vu), the * operating on
the two gradients is a dot product, and the star in F*v and G*v is scalar
multiplication.

Next we set up the Dirichlet boundary conditions on the remaining three
faces of the square:

ReplaceBC bcs = ReplaceBC("x=L", u*v)
&& ReplaceBC("y=O", u*v)
&& ReplaceBC("y=L", u*v);

Finally, we convert the problem into a linear system of equations and solve:

LinearProblem poisson2d(mesh, eqn, bcs, u, v);
u = poisson2d.solve(;
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The entire listing of the PDESOLVE code for this problem is given below.
When this code is run, the error returned is 0. 000362359.

Figure 2.2 displays the numerical result. Here we are using the MATLAB
script PDEPlot to read the output file and display the results. See the View-
ing Your Results section for details.

0.60

0.02
0.2,

-0.2

10.8

0.6 0.8
0.4 0.6

0.2 0.2 0.

0 0

Figure 2.2: Numerical solution to 2-D Poisson equation.

Figure 2.3 shows the same results looking down from the z-axis. In this
view you can see the undeformed mesh.
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//div(grad u) = f(x,y)
IIwith the boundary conditons:
IIu(x,y) = 0 (Dirichlet) on all the edges EXCEPT x = 0
IIflux = g(y) (Neumann) on the edge x = 0
IIThe exact solution, f, and g are given below.

#~include "PDESolve.h"
#include "ReplaceBC.h" // should be included by PDESolve.h ?

#define DIM 2 // 2-D problem

// Actual answer.

Real ans(const Coords& x)
return sin(MPI*x[O]l*sin(MPI*xfll);

IIInternal generation.

Real f(const Coords& x)
[return -2*MPI*MPI* ans(x);
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// Flux on x=0 edge. g(y) = - du/dx(x = 0).

Real g(const Coords& x)
( return -MPI*sin(MPI*x[l]); }

Real myL2Norm(const Expr& func, const CellComplex& cc, const int orderGL=4);

int main))

const int order = 2;
const int n = 11;

// Gradient operator.

Diffop dx(1,0);
Diffop dy(l,l);
Expr grad = List(dx, dy);

II Functions.

Function F(DIM, Scalar, f); // internal generation
Function G(DIM, Scalar, g); // boundary flux
Function u(DIM, Scalar, Lagrange(order)); // unknown function
Function v(DIM, Scalar, Lagrange(order), VARIATIONAL); // test functions

// Discrete mesh.

CellComplex mesh = rectMeshGen(n, n, 0.0, 1.0, 0.0, 1.0);

WI Weak formulation of the PDE.

Expr eqn Integral((grad*u)*(grad*v)) + Integral(F*v)
Integral("x=0",G*v);

I/ Essential (Dirichlet) boundary conditions.

ReplaceBC bcs = ReplaceBC("x=L",u*v) && ReplaceBC("y=0", u*v)
&& ReplaceBC("y=L",u*v);

I/ Set up the problem as a linear system of equations.

LinearProblem poisson2d(mesh, eqn, bcs, u, v);

I/ Solve the problem.

u = poisson2d.solve();

// Compute 2-norm of error.

Function answer(DIM, Scalar, ans);
cout << "error norm: " << myL2Norm(answer - u, mesh, 12) << endl;

Real myL2Norm(const Expr& func, const CellComplex& cc, const int orderGL)

PDESoLvE User's Guide Version 2.0 Beta - August 28, 1998



4

24 Examples

Real r = Integral(cc, func*func, GaussLegendre(orderGL));
return sqrt(r);

There are no significant conceptual differences in going from this two di-
mensional example to a three dimensional example. We have introduced
all of the PDESOLVE code that would be needed. For a three dimensional
example, see Poisson3d.cpp in your /pdesolve/exaniples directory.

2.2.3 Specifying Dirichlet Boundary Conditions By the Method
of Lagrange Multipliers

In the examples considered thus far we imposed the Dirichlet boundary
conditions using ReplaceBC. This method entails using the boundary con-
ditions to replace certain rows in the problem's matrix. This method works
whenever the coefficients in the expansion of a function in our basis are
related to the function values on a node-by-node basis. When using La-
grange interpolating polynomials, for example, the coefficients are simply
the nodal values of the function. However, with a different choice of basis
functions, say Legendre polynomials or trig functions, there is no simple
relationship between the coefficients and the function values at the nodes.
In this case, it is not simple to translate the constraints at a set of nodes to
changes in a few rows of the matrix; i.e., ReplaceBC will not work.

When we cannot use ReplaceBC we can instead use the method of La-
grange multipliers. To illustrate the method, suppose we want to solve the
following boundary value problem:

V2,u = f inQ
u, =g onP, cD Q

OnI- = h on r2 = - F1On

The weak form of the equation is

Vu" Vv dx + J fv dx = j v ds,
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which we obtain by projecting the strong form of the equation onto a space
of variational functions { v } and demanding that the residual on this space
be zero. Since the above equation must hold for all v, there are as many
rows in our system of equations as there are linearly independent varia-
tional functions.

We impose the Neumann boundary condition by replacing Ou/On = Vu. n
with the imposed flux on F2:

Vu. Vvx: + fvdx = j -jnvds + hvds"

To impose the Dirichlet boundary conditions, we introduce a new set of
variational functions, JA, which are linearly independent of the functions
n. We then add to the above system the projection of the condition u = g
onto the space 6A:

Vu .Vvdx + fvdx = DU -vds + hvds + 6A(u - g) ds.

Just as above, we get as many equations as there are linearly independent
variational functions; hence, we now have an overdetermined system. In
order to be able to solve the system, we must introduce additional degrees
of freedom. The obvious choice is to allow Vu . n to vary independently of
v. on the boundary 17. Replacing Ou/On with a new variable A we have

?vu Vvd +jnfvdx = (Av+6\(u -g)) ds+f2hvds.

We can now solve simultaneously for the two unknown functions u and A.

Now, let's look at the changes required in the PDESOLVE code when using

this method. To illustrate, we will solve the same 2D Poisson equation as
above.

First, we must add the declarations of the new unknown function A and its
variation 6A:

Function lambda(DIM, Scalar, Lagrange(order));
Function varLambda(DIM, Scalar, Lagrange(order),

VARIATIONAL);
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We change the weak formulation of the PDE to include the Dirichlet BCs:

Expr eqn = Integral((grad*u)*(grad*v)) + Integral(F*v)
- Integral("x=O",v*G)

"+ Integral ("x=L",u*varLambda+v*lambda)
"+ Integral ( "y=O" ,u*varLambda+v*lambda)
"+ Integral ("y=L", u*varLambda+v*lambda);

and we eliminate the line imposing the BCs by ReplaceBC.

When the linear problem is defined we need to solve for both the unknown
function u and the undetermined multiplier A.

LinearProblem problem(mesh, eqn, List(u, lambda),
List (v, varLambda));

Function soln = problem.solve);
u = soln[O];

Note that the solve () method returns a list that is arranged in the same
order that the problem was set in. Hence in the last line we set the solution
v, to the first element in the returned list.

The rest of the code is identical to the previous example. The complete
code can be found in the file Poisson2d-lagr.cpp in your /pdesolve/examples
directory.
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2.3 Time Dependent Problems

2.3.1 The Heat Equation

As our next example, we consider the following time dependent problem:,

On 02u
a-- on 0 < x < ir,O < t < T,at ax2

with Dirichlet boundary conditions, u(O, t) = 0 = u(7r, t), and the initial
condition u(x, 0) = sin(x).

The exact solution to this problem is:

u(x, t) = et sinx.

2.3.2 Walk-through of the FEM PDESOLVE code

Multiplying the PDE by the variational function v and integrating we get:

jv al dx = v a dx.

Integrating by parts and imposing the boundary conditions yields:

,ou OUdx= -o, Ou Ovdx.
vo Tt I--70x 7

We will illustrate time stepping using a backward Euler (implicit) method.
Given the solution uc at the current time tc, we want to approximate the
solution u+ at the time t+ = tc + At. We approximate the time derivative
,u+ by the backward difference

U t ( X , t + ) Z U +- -- "

Substituting into the above equation and regrouping the terms, we obtain
the form of the problem that we will put into our PDESOLVE program:

ir ?I+ v O+A u+ Ov dx 7r uCv dx
ju+vdx+At f x a ju vd

Now we put together the PDESOLvE code to solve the problem.
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Outside main

As always, we must include the PDESOLVE header file:

#include "PDESolve.h"

We also must set up the initial function:

Real uO(const Coords& x)
{ return sin(x[0]); }

Within inain

Much of this part of the code is quite similar to the first example. We declare
the differential operator:

DiffOp dx(l,0);

Next we declare the functions that will be needed in the solution of the
PDE. We need a function for the current value of u which will initially have
the value of 'uo, an unknown function for the next time step, and a varia-
tional function t.

const int order = 2;
Function ucurrent(l, Scalar, uO);
Function unext(l, Scalar, Lagrange(order));
Function v(l, Scalar, Lagrange(order), VARIATIONAL);

Next we set up and discretize the domain. In this case the domain is the
interval [0, 7r], which we are meshing using 11 vertices.

const int n = 11;
CellComplex mesh = rectMeshGen(n, 0.0, MPI);

Now we set up the time stepping loop.
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Expr eqn;
Real h = 0.01;
for (Real t=0.; t<= 1.0; t += h)
{

eqn = Integral( unext*v
+ h*Integral( (dx*u_next)*(dx*v)

== Integral( ucurrent*v );
ReplaceBC bcs ReplaceBC ("x=0", unext*v)

&& ReplaceBC("x=L", unext*v);
LinearProblem heatld(mesh, eqn, bcs, u-next, v);
u-current = heatld.solve();

Wn Warning: In the above code, the last line is mathematically equivalent to

u_next = heatld.solve(;
u_current = u-next;

Here we are solving for the next time step which will then become the cur-
rent time step the next time through the loop. This code will cause the
PDESOLVE program to fail, however, because the line

u_next = heatld.solve(;

causes unext to become a known function. Thus, the second time through
the loop, there will no longer be any UNKNOWN functions so PDESOLVE will
not know how to set up the equation.

The entire listing of the PDESOLVE code for this problem is given below.
When this code is run, the error returned is 0.0 017 7 3 9 4.

Program: FEheatldBackwardEuler.cpp

------------------------------------------------------------------------
// This program solves the heat equation (via an IMPLICIT semi-discrete
// finite element program).
//-------------------------------------------------------------------------
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#include "PDESoIve.h"
#include "ReplaceBC.h"

------------------------------------------------------------------------
II Initial data
//------------------------------------------------------------------------
Real uO(const Coords& x)

return sin(x[0]);

II-------------------------------------------------------------------------
II Final data (used to compare numerical solution to exact solution)

------------------------------------------------------------------------

Real ul(const Coords& x)

return exp(-l.0)*sin(x[Ol);

Real myL2Norm(const Expr& func, const CellComplex& cc, const int orderGL=6);

int main))

II-------------------------------------------------------------------------
I/ Finite element parameters (order: order of the elements)
I/ (dim: dimension of the problem)
// (n: number of finite elements + 1)

------------------------------------------------------------------------
const int order = 2;
const int dim = 1;
const int n = 11;
Real h = .01; // time step

DiffOp dx(l,0);

Function u-next (dim, Scalar,Lagrange(order));
Function u-current(dim,Scalar,uO);
Function uExact (dim,Scalar,ul);
Function v (dim, Scalar,Lagrange(order) ,VARIATIONAL);

CellComplex mesh = rectMeshGen(n, 0.0, MPI);
Expr w;

Timer loop-time("loop time");
loop-time.start((;
for (Real t=0; t<=1.0; t+=h)

w = Integral( u-next*v ) + Integral(h* (dx*u-next)*(dx*v)
== Integral( u-current*v );

ReplaceBC bcs = ReplaceBC("x=0", unext*v) && ReplaceBC("x=L",u_next*v);
LinearProblem heatld(mesh,w,bcs,u next,v);
u_current = heatld.solve((;

loop-time.stop((;
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cout << "The computed solution is:" << endl;
Function uOut = FEInterpolation(u current, mesh, 1);
cout << uOut << endl;
cout << "error norm is: " << myL2Norm(ucurrent-uExact), mesh, 12) << endl;

Real myL2Norm(const Expr& func, const CellComplex& cc, const int orderGL)

Real r = Integral(cc, func*func, GaussLegendre(orderGL));
return sqrt(r);

2.3.3 A Hyperbolic Equation

To introduce another time stepping method, we consider the first order one
dimensional hyperbolic equation

'u1 + a(a =0 inQ c (-oo, oo),0 <t<T

where (Y is a constant and T is the final time. We have the initial condition
',(x:, 0) = uo(x) where uO has compact support inside Q. The exact solution
is '(t, x) = 710(x - (t).

Choose a time step At and a value 0 with 0 < 9 < 1. (0 is a weighting
parameter between a purely explicit method (9 = 0) and a purely implicit
method (0 = 1).) Set t* = t + OAt and define the least-squares functional

I(t*) =fo ['ut(x,t*) + aux(x,t*)]2 dx.

Using Taylor series expansions about t* to find approximations to ut and
,u., we find

I1t*) + At) - U(t) + a(9uX(t + At) + (1 - 1)uX(t)) dx,
1(* ut+At I)xt) x

where we have suppressed the dependence on x. Now, taking variations
with respect to u(t + At), simplifying, and setting 6u = v, we obtain the
weak form of the equation:

. [u(t + At) - u(t) + aAt(Oux(t + At) + (1 --)ux(t))]

- (v + aAtOvx) dx = 0.

See the paper of Carey and Jiang for additional details.
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2.3.4 The PDESoLVE code

Just as in the previous example, we need functions ucurrent for the
value of '11(t) and u-next for the value of u(t + At). With these functions,
we set up the problem as follows:

First define

Real tt = time_step*theta;

Then within the time-stepping loop set up the equation as

Expr w = Integral( (u-next+alpha*tt*dx*unext)

* (v+alpha*tt*dx*v) )

Integral( (ucurrent + alpha*tt*(theta-1)
*dx*ucurrent) * (v+tt*dx*v) );

This code will cause PDESOLVE to fail, though, because ucurrent is ini-
tially a pointer to the C function u0, and we cannot apply a Di f fOp to a C
function.

W Warning: A Di f fOp can be applied only to discretized functions.

In order for the above code to work, we must declare u_current as fol-
lows after the construction of the mesh:

Function uO(dim,Scalar,uO);
Function ucurrent = FEInterpolation(u_0,mesh,order);

The complete code for this example is in the file Hyperbolic.cpp.

Reference

Graham F. Carey and B. N. Jiang. "Least-Squares Finite Elements for First-
Order Hyperbolic Systems." Intl. J. Ninm. Meth. Engr. Vol. 26, (1988),
pp. 81-93.
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2.4 A Nonlinear Problem

2.4.1 Burgers' Equation

For our final example we consider the inviscid Burgers' equation:

u, + U,,X = 0, U(x,O) = UO(x).

We can use the least-squares time stepping method used in Section 2.3.3
for the hyperbolic equation to solve this problem. The weak form of the
equation is (writing u+ for u(t + At) and uc for u(t))

[,1t+- "uc + AtOiul+7+ + At(1 - O)uCuz]

[v+AtO(u,+v+ u+vx)] dx = 0

This is a nonlinear equation in u+. To solve it we use a fixed point iteration.
Given li(O) - (0()(t + At), iterate u(k+l)(t + At) = u(k+1) satisfies

(k+1) A ~(k)u(k+l) + tj-OUc
U,(+I l + Atoll -X 9)u]

V+AtO (k4')V + U(k)Vx) dx = 0

for k = 0,1.

2.4.2 The PDESOLVE code

Since we are doing a fixed point iteration to solve a nonlinear problem
within each time step, we need several extra functions.

Function unext(1,Scalar,Lagrange(order));
Function u_store(l,Scalar,Lagrange(order));
Function uupdate(i, Scalar,Lagrange(order));

Within the fixed point iteration, u-next will represent the function u(k)

(initially ,t"), and uupdate represents U(k+l). Thus, uupdate must al-
ways be UNKNOWN, so when we solve the system, we will assign the solution
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to u-next. To test for convergence we compare the new value of unext
to its previous value which we have stored in u-store. Here is the code
for the time-stepping loop with the fixed point iteration inside.

for (int iStep = 1; iStep <= nSteps; iStep++)
{
u_next = ucurrent; // set up next time step
bool converged = false;
int iterations = 0;
Real eps;
do ( // fixed point iteration

u_store = u next; // save result of previous iterate
w = Integral( (uupdate + tt*unext*dx*uupdate)

* (v + tt*(dx*u_next*v+u_next*dx*v) ))
== Integral( (u-current - tt*(l.-theta)

*u_current*dx*u_current)
* (v + tt*(dx*u.next*v+unext*dx*v) ));

ReplaceBC bc = ReplaceBC("'x=0", v*(u__.update-0.5))
&& ReplaceBC( "x=L", v* (uupdate+0.5));

LinearProblem burgers(mesh, w, bc, uupdate, v);
u_next = burgers.solve(;
iterations++;
eps = myL2Norm(unext-u_store, mesh, glOrder);
if (eps < steptol)

converged = true;
] while (!converged && iterations < max-iters);

u_current = u-next;
]

For the complete code see the file Burgers.cpp.

2.4.3 Use of Reference Functions.

Notice that a consequence of time-stepping and the use of a fixed point
iterative algorithm is the repeated construction and assembly of the ma-
trix and right hand side vector of the FE problem with each invocation of
LinearProblem. For sufficiently large problems this can result in dra-
matic increases in memory and CPU usage costs. This is a terrible waste
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because it should be noted that really all that is changing is the value of
the function. The actual equations and boundary conditions don't alter at
all. PDESOLVE has a convenient way of reducing this waste by the use
of reference functions. As their name suggests these functions refer to the
functions to which they are pointing. Any changes made to the parent
function is immediatly reflected in the reference function. If one of these
reference functions is put into the expression that is to be discretized, then
as the parent function is updated in each timestep the reference function
and hence the expression and discretizer is immediately updated as well,
without having to be recreated! We just need to do a new solve. This also
makes the resulting PDESOLVE code remarkably clean and easy to main-
tain.

Let us walk through the use of PDESoLvE reference functions in the so-
lution of the Burgers' equation discussed in the last subsection. The first
change is that for every function whose updating will effect the statement
of the problem, a reference function is defined:

Function ucurrentref = Function(ucurrent,REFERENCE);
Function unextref = Function(u-next,REFERENCE);

The next change is that the equations and boundary conditions are defined
btLfre entering the time stepping and iterative loop! The LinearProblem
is invoked before the time stepping loop as well.

u_next = ucurrent;
Expr w = Integral(uupdate*v + tt*u_next_ref *dx*u_update*v

"+ tt*dx*u_next_ref*uupdate*v + tt*u_next_ref*u_update*dx*v
"+ tt*tt*u_nextref*dx*unextref*dx*u-update*v
"+ tt*tt*unextref*u_nextref*dx*u_update*dx*v) ==

Integral((u-currentref
- timestep*(l.-theta) *ucurrent_ref *dx*u_currentref)
(v + tt*(dx*unextref*v + u_next_ref*dx*v)));

ReplaceBC bc = ReplaceBC("x=O",v*(uupdate-0.5)) &&
ReplaceBC( "x=L", v* (uupdate+0.5));

LinearProblem burgersld(mesh, w, bc, uupdate, v);

Note the use of ucurrentref and unextref where ever ucurrent
or unext would appear in the expression w.
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And now the time stepping and iterative loop becomes extraordinarily sim-
ple.

for (Real time=0; time<=timefinal;
time=time+timestep) f

u_next = ucurrent;
converged = false;

int iterations = 0;
do

{
u_store = unext;
u-next = burgersld.solve(;
iterations++;
Function errFunc = myL2Norm(ustore-unext,mesh, 4);
Real eps = 12Norm(errFunc);
if (fabs(eps) < 1.0e-12)

converged = true;
I

while (!converged && iterations < 20);
u_current = u-next;

I

The full listing of this code may be found in the file Burgers-ref.cpp.

This use of reference functions results in CPU usage savings even for a
small problem. Without them the solution to the Burger's equation on a
Pentium 200 running Linux took 109 seconds to complete 20 time steps,
while with them the same machine took only 78 seconds.
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Viewing Your Results

PDESOLvE provides a set of DataWriter objects which can output data
in a variety of formats including ASCII, MATLAB, VTK and TecPlot. The
syntax is the same for all the different DataWriters. Currently only first
order Lagrange polynomials can be written using these objects. Suppose
we have solved a problem using second order Lagrange polynomials and
we wish to view our solution u. Since we used quadratic polynomials, we
must first project the solution onto a first order basis. The following lines
illustrate how we would use an ASCIIDataWriter to produce a "human-
readable" output file.

Function view = FEInterpolation(u, mesh, 1);
ASCIIDataWriter txtout(°'output.dat");
txtout .addScalarData (view, "U");
txtout.writeData (;

The first line "projects" our solution onto a basis of first order Lagrange
polynomials. The second line creates an ASCIIDataWriter object which
will write its results to the file named oitput.dat. On the third line we tell
the DataWriter to output the values of the scalar-valued function view
and to assign the label "U" to the results. When we look at the file that the
DataWri ter produces, we will see this label on the column with the func-
tion values. If we were using a VTKDataWriter or a TECPlotDataWriter,
the labels we assign would appear when we use the visualization package
to view our results. The fourth line causes the DataWriter to write the
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data to the file. We can add more data, including vector data, if desired.
For example if we have a vector-valued function named v which we wish
to view, we could insert the following lines between the third and fourth
lines above:

Function viewVl = FEInterpolation(v[0], mesh, 1);
Function viewV2 = FEInterpolation(v[l], mesh, 1);
Function viewV3 = FEInterpolation(v[21, mesh, 1);
txtout .addVectorData (viewVl, viewV2, viewV3, "VW);

In the output file, there will be a column labeled "U" containing the values
of the function ut. Beside that column there will be columns containing the
components of the values of the function v.

3.1 "Human-readable" Output Format

The "human-readable" output produced by the four lines of code above
contains the value of the function at all of the mesh points, and a listing of
all of the triangles used. Note that in one-dimensional problems, the "trian-
gles" are lines, and in three-dimensional problems, the triangles are on the
surface of the domain. For example, suppose we have solved the Poisson
equation in one dimension using a mesh with eleven equally spaced nodes,
and we output the solution using an ASCIIDataWriter to the file named
Poissonld.txt. The contents of this file will be as follows:

The first section in the file is the function output section. This section dis-
plays the results of the numerical solution of the PDE. The first column of
the function output section is an index number for each of the mesh points.
The next column labeled "X" is the mesh point, and the third column is the
value of the numerical solution at each point. Note that the heading on this
column is the label we assigned using the addScalarData () method.

The second section is a listing of the triangles used in the FEM solution.
The first column is an index number for each triangle and the next two
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or three columns are the locations of the points specifying each triangle. In
this example, the "triangles" are lines, so the points listed are the endpoints
of each line segment. Thus, the endpoints of line segment 0 are mesh points
0 and 1, the endpoints of line segment 1 are points 1 and 2, etc. In the future
when support for outputting second order functions is added, three points
will be required to specify the line segments: the two endpoints and the
midpoint.

The output is similar for two dimensional problems. For example, solving
a problem on the unit square using three mesh points in each direction, the
output file would look similar to the following:

In the function output section, the first column is again an index of the
mesh points, the second and third columns are the x and y components of
the mesh points, and the fourth column is the function value at each point.
In the second section, each triangle is specified by its three corner points.

3.2 MATLAB Output Format

The output produced by a MatlabDataWriter is very similar to the for-
mat described above. The numerical data will have the same format; the
only difference will be in the header lines. There are several MATLAB
script files provided with your PDESOLVE distribution to help you view
your output quickly. These scripts are somewhat limited; e.g., you cannot
use them to view vector-valued functions. You are free to modify them to
provide more sophisticated viewing capabilities. To use these scripts you
must make sure they are in a directory where MATLAB can find them. For
example, if they are in the directory /home/itserid/pdesolve/rnatlab , you must
make sure this directory is in MATLAB's search path. If it isn't you can add
it to the beginning of the search path using the MATLAB command:

path('/home/userid/pdesolve/matlab', path);
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3.2.1 The PDEPlot Script

To display your FEM output in MATLAB, you can use the PDEPlot script
provided with PDESOLVE.

In your PDESOLVE program, use a Mat labDataWriter to save your out-
put in a file called, say, otitput.rnatlab. Then in MATLAB, display the results
by typing

PDEPlot ( ' oitpit.matlab'

You may then want to use some of the following MATLAB commands to
manipulate your plot: color, colormap, view, shading, mesh, surf,
surf c.

You can also use the MATLAB print command to produce an Encapsu-
lated Postscript file for including in a TEXdocument. For example, Fig-
ures 2.2 and 2.3 were produced as follows:

First, the following lines were added to the file Poisson2d.cpp:

Function view = FEInterpolation(u, mesh, 1);
MatlabDataWriter matout( "poisson2d.matlab");
matout .addScalarData (view, "U");
matout .writeData (;

Then the following commands were entered in a MATLAB session:

PDEPlot( 'poisson2d.matlab')
print poisson2d -depsc
view(2)
axis ( 'square')
print poisson2d.view2.eps -depsc

For more details on the MATLAB commands available, type

help graph3d

in your MATLAB session.
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3.2.2 The PDEMovie Script

This script is for animating the solution of a time-dependent problem. There
is a script file called mymovie.m in /pdesolve/matlab. You can use it to an-
imate the results of the programs described in the time dependent section
of the User's Guide.

3.3 VTK Output Format

This format is almost identical to the Matlab or Ascii formats. With the Tcl
scripts provided in /pdesolve/VTK directory these output files can be used
inside the Visualization ToolKit Tcl/Tk interpreter to visualize the results of
PDESOLVE calculations.

3.4 TECPIot Output Format

TecPlot is a menu driven commercially available graphics package. The
TECPlot output format produces an ascii file that can be used inside the
TecPlot environment to read in and display the data from the PDESOLVE
calculations.
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Chapter 4

Using More Complicated
Domains

PDESOLVE provides the function rectMeshGen () for building a rectan-
gular domain and generating a simple mesh on it. There are many cases
however, which require that we have more control over the domain.

"* We may want to specify different boundary conditions on two parts
of the same edge of a square.

"* We may want to generate a mesh which has more elements concen-
trated in some subregion of our domain.

"* We may have a complicated domain (nonrectangular or having holes
in its interior).

"* We may want to design an optimal shape. This means that we need
to be able to change the domain programmatically.

In this chapter we describe the classes provided by PDESOLVE for building
a domain and generating a mesh on it. Currently there are two ways of
specifying the geometry of a domain: It can be built up from individual
components in a C++ program, or a description of its parts can be read in
from a file.
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4.1 Geometry Classes in PDESOLVE

The domain will be an instance of a Parameteri zedGeometry class, ei-
ther a ParameterizedGeometry2D or a ParameterizedGeometry3D.
Currently only the two dimensional geometry classes are available. A two
dimensional geometry is constructed from a collection of objects of the
class Part2D. A Part2D is an object whose boundary is composed of ob-
jects derived from Entity2D. Currently a geometry can contain only one
part. The entities which are available are: LabeledPoint2D, Origin2D,
SimpleLine2D (either horizontal or vertical), Line2D (a free angle line),
Arc2D (a section of an elliptical arc) and Nurbs2D (a more general curve).
Each of these entities has certain parameters which determine its form.
These parameters have names which we can use to set their values. In
addition, we can change the names in order to distinguish a parameter be-
longing to one entity from the same parameter belonging to another entity
of the same class. If we wish to be able to change the geometry after it is
initially constructed, we must "publish" the names of these parameters so
that we have access to them from within our C++ program. In this sec-
tion we describe each of the entities and their parameters. In the following
sections we show how to use these entities to build parts.

4.1.1 LabeledPoint2D

This class is provided as a means of assigning a label to a specific point.
It has no parameters and takes up no space. Its position is the previous
entity's endpoint.

4.1.2 Origin2D

An Or igin2D is a 2D point used to parameterize the origin of either a part
or a hole within a part. It allows the part builder to build parts and holes
that can be moved through geometry parameters, or that refer to other parts
so that they can update themselves in response to movement of other parts.
If no Origin2D is specified, the part will begin at (0, 0). Even if the part is
originally intended to begin at (0, 0) it is necessary to specify an Origin2D
if the part will be moved at a later stage.
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An Origin2D has two geometry parameters, initially named "x" and "Y".
These parameters are x and y vector components or point positions. Nei-
ther parameter is published by default. An Origin2D may be parameter-
ized in three ways:

" FIXED means X and Y represent x and y vectors from the local coor-
dinate system. In this case X and Y cannot be changed.

" RELATIVELOCAL means X and Y represent x and y vectors from the
local coordinate system that may be changed.

" RELATIVEENTITY means X and Y represent x and y vectors from a
given Entity2D's origin. This is the means for making one part's
origin relative to another part.

Note that Origin2D is only logically useful as the very first Entity2D of
a part or hole. Inserting it anywhere else has unpredictable results.

4.1.3 SimpleLine2D

A SimpleLine2D is either horizontal or vertical. It can be parameter-
ized in one of two ways: GIVENLENGTH (the default) or FIXEDEXTENT.
A SimpleLine2D has one parameter. For GIVENLENGTH, this parameter
represents the actual length of the line, and is initially called "length".
For FIXEDEXTENT, this parameter represents the endpoint of the line, in
either X or Y (depending on whether the line is horizontal or vertical). For
FIXEDEXTENT the geometry parameter is initially named "extent". Note
that the fixed (x, y) point is referenced to the entity's local coordinate space
(implicitly (0, 0) if not specified by an Origin2D at the Part2D level).

4.1.4 Line2D

A Line2D is a line which can form any angle with the horizontal. It can be
parameterized in one of three ways: FIXED, FREEVECTOR or FREEANGLE,
with the default FREEVECTOR. A Line2D has two parameters:
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" For FREEANGLE: the two parameters represent the angle of the line
and its length, and are initially named "theta" and "length", re-
spectively. The angle 0 is at the x axis, with increasing angles moving
counter-clockwise. It is specified in radians, and must be between 0
and 27r.

"* For FREEVECTOR: the two parameters represent the components of
the vector from the line's origin and are initially named "x" and "Y",
respectively.

"* For FIXED: the parameters represent the fixed endpoint of the line,
and are named "x" and "Y", respectively. Note that the fixed (x, y)
point is referenced to the entity's local coordinate space (implictly
(0, 0) if not specified by an Origin2D at the Part2D level).

4.1.5 Arc2D

An Arc2D is a section of an elliptical arc. To construct an arc, you specify
the size of the arc, either QUARTER, HALF, THREEQUARTER or FULL, the
lengths of the semi-axes, the direction of the arc (cw for clockwise or CCW
for counter-clockwise), and the orientation of the center of the ellipse from
the vertex of the major axis (the center can be UP, DOWN, LEFT or RIGHT
from the vertex).

An Arc2D is parameterized by the lengths of the semi-axes, given by pa-
rameter names "lengthA" and "lengthB".

The vertex of the major axis is implicitly at (0, 0), but within a part, the
vertex will be the previous entity's end point. The center point is computed
from the given axis lengths.

4.1.6 Nurbs2D

A Nurbs2D is a nonuniform rational B-spline. Three pieces of data are
required to construct a nurbs:

* The nurbs degree (must be greater than or equal to one).
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" An array of weighted control points (x, y, w) 3D Coords (Note the
constructor does not take homogeneous points (xw, yw, w))

" A knot vector (array of reals), if specified.

If you use the constructor that does not take knots, it will generate a clamped,
uniform (equally-spaced inner knots) nurbs. If you want a (rational) Bezier
curve (no inner knots), send in the appropriate control points with the cor-
rect degree (i.e., the number of control points is one greater than the de-
gree), and this constructor will make it for you.

The (length of the knot vector - 1) must equal the (degree + the number of
control points). The first control point must begin at (0,0). The control point
(:, y) values represent x,y vectors from the current entity origin.

Construction assumptions:

"* knots is an increasing sequence, with all knots normalized so that

0 < Ki < 1 where Ki is the ith knot. (Note that Ki may equal Ki+i)

"* control point weights are > 0

"* the first control point (x, y) is at (0,0)

A Nurbs2D makes the following parameters available: "PiX", "PiY" and
"PiW" which represent the ith (indexed from 0) control point's X, Y and
Weight value, respectively. The values are not homogeneous, so, e.g., the
third control point with (x,yw) = 2,4,3 will have parameters P2X==2, P2Y==4
and P2W==3. None are published by default, so the user must publish
them to change them.

For details about nurbs, see The NURBS Book.

4.2 Constructing the Domain Programmatically

In this section we work through several examples to show how to use the
entities described above to construct a domain within a C++ program. A
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Part2D is constructed by "stringing together" several Entity2Ds. For
each entity we must set values of the appropriate parameters, set a label
for the entire entity (for use in specifying boundary conditions) and set a
pointer to the next entity in the part. Once we have constructed the domain,
we can use a mesh generator to create a mesh.

4.2.1 A Square

For the first example, we take our domain to be the unit square. The twist
is that we want to be able to specify a Dirichlet BC on a part of the x = 1
edge and a Neumann BC on the rest of that edge.

First we need to declare some pointers to Entity2Ds:

Entity2D* root;
Entity2D* current;
Entity2D* prev;

We use root to point to the first entity so that we can use it later to make a
part. We use prev and c5 urrent to make one entity point to the next.

The first entity is a horizontal line of unit length with its initial endpoint at
the origin. We want to impose a Dirichlet BC on this part of the boundary.
We create this entity as follows:

root = new SimpleLine2D(SimpleLine2D::HORIZONTAL);
root->getParameter( "length") .setValue(l.0);
root->setLabel ("dirichlet");
prev= root;

Note that in order to set the value of a parameter, we must know how it
is named initially. The length parameter can be set to either a positive or
a negative value. A positive value means that the final endpoint is to the
right of (or, for a vertical line, above) the initial endpoint, and a negative
value means that the final endpoint is to the left of (or below) the initial
endpoint.

The next entity is a vertical line segment of length 1/2. This is the part of
the boundary on which we wish to impose the Neumann BC.
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current = new SimpleLine2D(SimpleLine2D::VERTICAL);
current->getParameter( "length") .setValue(O.5);
current->setLabel ( "neumann");
prev->setNext (current);
prev = current;

Note that the initial endpoint of this line is the final endpoint of the pre-
vious entity. (This is accomplished by the regenerate () method of the
Part2D. See below.)

Next we construct the other half of this edge:

current = new SimpleLine2D(SimpleLine2D: :VERTICAL);
current->getParameter( "length") .setValue(O.5);
current->setLabel ( "dirichlet ");
prev->setNext (current);
prev = current;

The next two edges each have a length of -1 since we move to the left and
then down to complete the construction of the square. When we are done,
we close the loop by setting the last entity to point to the first one (root)
as the next entity in the loop.

current = new SimpleLine2D(SimpleLine2D: :HORIZONTAL);
current->getParameter( "length") .setValue(-i.O);
current->setLabel ( "dirichlet ");
prev->setNext (current);
prev = current;

current = new SimpleLine2D(SimpleLine2D: :VERTICAL);
current->getParameter( "length") .setValue(-i.0);
current->setLabel ("dirichlet");
prev->setNext (current);

current->setNext (root);

Once we have put together all the entities, we use them to form a part
which we then add to the geometry:
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Part2D square(root);

ParamneterizedGeometry2D geom;
geom.addPart (square);
geom. regenerate (;

The regenerate () method traverses the loop (using the pointers we set
above using the setNext () method) and adjusts the endpoints of each
entity so that each one is connected to the next.

Now that we have constructed the domain, we can create a mesh on it: Cur-
rently the only mesh generator provided by PDESOLVE is the DelaunayMesher2D.

float cellSize = 0.2;
DelaunayMesher2D mesher;
GlobalMeshSettings& settings = mesher.getMesherSettingso;
settings.setValue(GlobalMeshSettings: :MAXELEMENT_SIZE, cellSize);

CellComplex mesh = mesher.createCellComplex(geom);

The domain and the mesh we have generated on it are shown in Figure 4.1.
Observe that there is a node at the point (1, 0.5). This will always be true
no matter how we set cellSize since that point is the endpoint of two
entities.

Now that we have meshed our domain, we can solve our PDE problem
just as in the examples considered in Chapter 2. For example, if we want to
impose the boundary conditions

"u, = g onE1 1 - = h on r 2

where r, and Pr are the parts of the boundary labelled "dirichlet" and
"neumann" above, we could use code similar to the folowing:

Expr eqn = Integral(...) + ... + Integral("neumann", H*v);
ReplaceBC bc("dirichlet", v*(u-G));

See the file Poisson2Dgeom.cpp in the /pdesolve/examples directory for the
complete code of a problem solved using this domain.
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Figure 4.1: A square domain constructed from Entity2Ds.

4.2.2 A Wedge

As our next example, we construct a domain which is a quarter of the
unit disk. Just as in the previous example, we begin by declaring root,
current and prey to be pointers to Entity2D objects. The first entity is
a horizontal line of length one:

root = new SimpleLine2D(SimpleLine2D::HORIZONTAL);
root->getParameter( "length") .setValue(l.0);
root->setLabel ("outside");
prey = root;

Next we have an arc which is a quarter of a circle:

current = new Arc2D(I.0,1.0,Arc2D::QUARTER,Arc2D: :CCW,Arc2D::LEFT);
current->setLabel ("outside");
prev->setNext (current);
prey = current;
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The first two arguments are the lengths of the semi-axes. Since they are
equal we are constructing a circular arc. The vertex of the major (A) axis is
at the endpoint of the previous entity; i.e., at (1, 0). The last argument says
that the center of the ellipse (circle) is to the left of this vertex; i.e., at the
origin (0, 0). To draw the arc, we move in a counter clockwise direction.
Thus, the arc lies in the first quadrant, and its final endpoint is at (0, 1). We
complete the loop by constructing a vertical line back to the origin:

current = new SimpleLine2D(SimpleLine2D: :VERTICAL);
current->getParameter( "length") .setValue(-1.0);
current->setLabel ("outside");
prev->setNext (current);
prey = current;

current->setNext (root);

Once we have all the entities, we create a part and add it to the param-
eterized geometry just as in the previous example. The domain we have
created (along with a mesh) are shown in Figure 4.2.

The complete code for generating this domain can be found in the file
WeLdge.cpp in the /pdesolve/exam ples directory.

4.2.3 A Triangular Region

To illustrate the use of Line2D we construct a triangular shaped region.
This example is exactly like the last one except that the arc is replaced by
a line with initial endpoint at (1,0) and final endpoint at (0, 1). Since we
know the final endpoint of the line, we choose the parameter type to be
FIXED. The only change from the previous example is that we replace the
line of code that creates the Arc2D with

current = new Line2D(O.0, 1.0, Line2D::FIXED);

The region and mesh are shown in Figure 4.3.

The complete code listing can be found in triangle.cpp.
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Figure 4.2: A Wedge shaped domain.
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Figure 4.3: A trianglar domain.
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4.2.4 A Domain With Interior Holes

For the next example we create a domain with interior holes. We publish
the parameters for the holes so that we can move them and change their
sizes. We begin by creating a circular domain:

root = new Origin2D(1.0, 0.0); // shift origin
root->setLabel ("outside");
prey = root;

current = new Arc2D(1.0, 1.0, Arc2D::FULL, Arc2D::CCW, Arc2D::LEFT);
current->setLabel ("outside");
prev->setNext (current);
current->setNext (root);

Since the arc will start at the origin, we shift the origin one unit to the right,
then draw the arc with the center to the left of the major axis vertex. This
will put the center at (0, 0).

Next we create a hole which we will put inside the domain. We make the
hole an ellipse, but we could make it as complicated as we like, consisting
of multiple entities.

Entity2D* hroot;
Entity2D* hprev;
Entity2D* hcurrent;

hroot = new Origin2D(0.1,0.1);
hroot->getParameter( "X") .setName( "Xl");
hroot->publishParameter ("Xl");
hroot->getParameter( "Y") .setName( "Yl");
hroot->publishParameter ( "YI");
hprev = hroot;

hcurrent = new Arc2D(0.2,0.2,
Arc2D: :FULL,Arc2D: :CW,Arc2D: :RIGHT);

hcurrent->setLabel ("holel");
hcurrent->setDistributionSize(0.06);
hcurrent->getParameter( "lengthA") .setName( "Al");
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hcurrent->publishParameter( "Al" );
hcurrent->getParameter( "lengthB") .setName( "BI");
hcurrent->publishParameter( "BI");
hprev->setNext (hcurrent);

We must change the names of the parameters before we publish them so
that we can distinguish the parameters belonging to one hole from those be-
longing to other holes. By using the setDistributionSize () method,
we can control the distribution of nodes on the hole when we generate the
mesh.

Next we create an array to hold the holes:

Array<Entity2D*> holes(l,hroot);

and then make another hole. The construction of the second hole is the
same as the first. We take the origin to be (-0.2, -0.2) and the lengths to be
0.1 and 0.2. We then add this hole to the array:

holes.append(hroot);

We could add more holes in the same way. Next we create a Part2D from
the outer domain and the array of holes:

Part2D dom(root,holes);

and add it to the geometry:

ParameterizedGeometry2D geom2D;
geom2D.addPart (dom);

We then regenerate () and create a mesh just as before. The resulting
domain with the mesh is shown in Figure 4.4.

Now, using the labels we assigned, we can move and resize the holes. For
this example, we leave hole two alone and change hole one as follows:

geom2D.getParameter( "Xl") .setValue(.3);
geom2D.getParameter( "YI") .setValue(.2);
geom2D.getParameter("Al") .setValue(.2);
geom2D.getParameter ( "BI") .setValue (. 15);
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Figure 4.4: A doinain zvithi holes.

Again we must regenerate () and create a new mesh. The resulting do-
main is shown in Figure 4.5.

4.3 Reading in a Description of a Domain

If you want to change anything about the domain programmatically, you
need to use the methods described in the previous section. To construct the
domain initially, though, you can read in its description from an ASCII file
as follows:

ifstream partFile("file.dat');
ParameterizedGeometry2D geom2D(partFile);
partFile.close);

wherefile.dat is a file containing the description of the part. The construc-
tor which reads in the description of the part automatically does an initial
regenerate (), so the part is now ready to use.
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Figure 4.5: The same domain with one hole changed.

In the description file, blank lines and anything following a pound sign
(#) are treated as comments. The file must adhere to the following format:
The first line contains the number of parts (currently only one part is sup-
ported). Next comes the "part section." The first line of this section contains
a character string with the name of the part. The next line has an integer
value for the number of boundary entities for the part, and the third line
has the number of holes in this part. For example, if the first four lines of
the file look like

1
partl
4
0

then the file contains the description of one part, the part will have the label
"partl", will be composed of four boundary entities and will contain no
holes.
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Within the part section there will be a section for each entity following the
format:
First line - entity type:

9 O-Origin2D

1 1 - LabeledPoint2D

S2- SimpleLine2D

S3- Line2D

* 4-Nurbs2D

• 5-Arc2D

Second line - entity label (string)
Third line - distribution type:

* 0 - None, use global mesher settings.

* 1 - Equal distribution. In this case you must specify the size by a real
number.

* 2 - Exponential distribution. In this case, you must specify a (real),
the number of points and the direction (1 for forward, 0 for back-
ward). The number of points must be greater than or equal to two.
The location of the normalized point t along the entity is given by
(, - 1)/(e" - 1).

Fourth line - number of published parameters. Following this line there is
one line for each published parameter. The format of these lines is
oldname (string) newname (string) value.
Next line(s) - entity data. The format of the entity data depends on the
type:

Origin2D

x y type entityRelativeTo

where type is 0 for FIXED, 1 for RELATIVELOCALor 2 for RELATIVEENTITY.
The entityRelativeTo is the number of the entity from the top of
the file. (Not yet supported.)
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"* LabeledPoint2D Nothing needed.

" SimpleLine2D

lineType parameterType parameterValue

where 1 ineType is 0 for HORIZONTAL, 1 for VERTICAL, and parameterType
is 0 for GIVENLENGTH, 1 for FIXEDEXTENT.

" Line2D

paramlValue param2Value parameterType

where parameterType is 0 for FREEVECTOR, 1 for FREEANGLE or
2 for FIXED.

" Nurbs2D. In this case several lines are required for the entity data.
The first line has the degree, the second has the number of control
points, and the third has the number of knots. Following this there
must be one line for each control point containing the x, y and w coor-
dinates. The data for the knots follow the data for the control points.

"* Arc2D

lengthA lengthB arcSize arcDirection centerOrientation

where arcSize is 0 for QUARTER, 1 for HALF, 2 for THREEQUARTER
or 3 for FULL, arcDirectionis 0 for CW, 1 for CCW, and centerOrientation
is 0 for UP, 1 for DOWN, 2 for LEFT or 3 for RIGHT.

Here is an example of an entity section:

3 # Line2D
y=0 # label is "y=0"
1 0.3 # dist type: equal with size 0.3
1 # one published parameter
X X1 1.0 # publish parameter "X" under the name "Xl"
1.0 1.0 2 # type = FIXED, endpoint is (1,1)

Note that the value of the parameter x is actually specified twice: once
on the line specifying the published parameter and again on the last line
giving the entity data. In this example the same value is specified in both
places. If these values should differ, the one given on the "publish param-
eters" line takes precedence.
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Below is the complete listing of a description file. The geometry constructed
from this file is shown in Figure 4.6.

1 # 1 part
partl # name of part 1
4 # 4 boundary entities
0 # no holes
3 # first entity -- Line2D ---------------------------
y=0 # label "y=0"
0 # dist type - none, use global mesher settings
0 # no published parameters
1 0 2 # type = FIXED, endpoint is (1,0)
4 # second entity - Nurbs2D--------------------------
x=L # label "x=L"
1 0.075 # dist type - equal, size = 0.075
2 # 2 published parameters
PIX myx 0.4 # old name = "PIX", new name = "myx", value = 0.4
PlY myy 0.2 # old name = "PlY", new name = "myy", value = 0.2
3 # degree = 3
4 # number of control points (degree + 1)
0 # number of knots
0 0 1 # first control point
0.4 0.2 3 # second (note values of parameters same as above)
0.4 0.8 7 # third
0 1 1 # fourth
2 # third entity - SimpleLine2D---------------------
y=L # label "y=L"
0 # dist type
0 # no published parameters
0 0 -1.0 # lineType = HORIZONTAL,

# parameterType = GIVENLENGTH, length -1.
2 # fourth entity - SimpleLine2D----------------------
x=0 # label "x=011
0 # use global mesher settings for distribution
0 # no published parameters
1 0 -1.0 # vertical, length = -1.

Observe that the x and Y parameters for the second control point are pub-
lished so that they can be changed. The file ReadGeometry.cpp in the /pdesolve/examples
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directory reads in this file then uses the published parameters to change the
region.

0.8
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Figure 4.6: A domain constructed by reading in an ASCIIfile.
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