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Executive Summary

Introduction:

This is the final report on the work done under contract DASG-60-92-C-0055 from Phillips
Labs and ARPA to the Department of Computer Science at the University of Maryland.
The work started 04/28/92. The goal of this project was to create an environment for
development and deployment of critical applications with hard real-time constraints in a
reactive environment . We have redesigned Maruti system to address these issues. In this
report we highlight the achievements of this contract. A publications list and a copy of each
of the publications is also attached.

Application Development Environment:

To support applications in a real-ime system, conventional application development
techniques and tools must be augmented with support for specification and extraction of
resource requirements and timing constraints, The application development system
provides a set of programming tools to support and facilitate the development of real-time
applications with diverse requirements. The Maruti Programming Language (MPL) is used
to develop induvidual program modules. The Maruti Configuration Language (MCL) is
used to specify how individual program modules are to be connected together to form an
application and the details of the hardware of which the application is to be executed.

In the current version, the base programming language used is ANSI C. MPL adds
modules, shared memory blocks, critical regions, typed message passing, periodic
functions, and message-invoked functions to the C language. To make analyzing the
resource usage of programs feasible, certain C idioms are not allowed in MPL; in
particular, recursive function calls are not allowed nor are unbounded loops containing
externally visible events, such as message passing and critical region transition.

MPL Modules are brought together into as an executable application by a specification file
written in the Maruti Configuration Language (MCL). The MCL specification determines
the application’s hard real-time constraints, the allocation of tasks, threads, and shared
memory blocks, and all message-passing connections. MCL is an interpreted C-like
language rather than a declarative language, allowing the instantiation of complicated
subsystems using loops and subroutines in the specification.

Analysis and Resource Allocations:

The basic building block of the Maruti computation mode] is the elemental unit (EU). In
general an elemental unit is an executable entity which is triggered by incoming data and
signals, operates on the input data, and produces some output data and signals. The
behavior of an EU is atomic with respect to its environment. Specifically:

e All resources needed by an elemental unit are assumed to be required for the entire
length of its execution.

e The interaction of an EU with other entities of the system occurs either before it starts
executing or after it finishes execution.

iv




In order to define complex executions , the EUs may be composed together and properties

_specified on the composition. Elemental units are composed by connecting an output port

of an EU with an input port of another EU. A valid connection requires that the input and
output of port types are compatible, i.e., they carry the same message type. Such a
connection marks a one-way flow of data or control, depending on the nature of the ports.
A composition of EUs can be viewed as a directed acyclic graph, called an elemental unit
graph (EUG), in which the nodes are the EUs, and the edges are the connections between
EUs. An incompletely specified EUG in which all input and output ports are not connected
is termed as a partial EUG (PEUG). A partial EUG may be viewed as a higher level EU.
In a complete EUG, all input and output ports are connected and there are no cycles in the
graph. The acyclic requirements come from the required time determinacy of execution. A
program with unbounded cycles or recursions may not have a temporally determinate
execution time. Bounded cycles in an EUG are converted into a acyclic graph by loop
unrolling. '

Program modules are independently compiled. In addition to the generation of the object
code, compilation also results in the creation of partial EUGs for the modules, i.e., for the
services and entries in the module, as well as the extraction of resource requirements such
as stack sizes or threads, memory requirements, and the logical resource requirements.

Given an application specification in the Maruti Configuration Language and the component
application modules, the integration tools are responsible for creating a complete application
program and extracting out the resource and timing information for scheduling and
resource allocation. The input of the integration process are the program modules, the
partial EUGs corresponding to the modules, the application configuration specification, and
the hardware specifications. The outputs of the integration process are: a specification for
the loader for creating tasks, populating their address space, creating the threads and
channels, and initializing the task; loadable executables of the program; and the complete
application EUG along with the resource description for the resource allocation and the
scheduling subsystem.

After the application 'program has been analyzed and its resource requirements and
execution constraints identified, it can be allocated and scheduled for a runtime system.

We consider the static allocation and scheduling in which a task is the finest granularity
object of allocation and an EU instance is the unit of scheduling. In order to make the
execution of instances satisfy the specification and meet the timing constraints, we consider
a scheduling frame whose length is the least common multiple of all tasks’ periods. As
long as one instance of each EU is scheduled in each period within the scheduling frame
and these executions meet the timing constraints, a feasible schedule is obtained.

Maruti Runtime System:

The runtime system provides the conventional functionality of an operating system in a
manner that supports the timely dispatching of jobs. There are two major components of
the runtime system - the Maruri core, which is the operating system code that implements
scheduling, message passing, process control, thread control, and low level herdware

control, and the runtime dispatcher, which performs resource allocation and scheduling or
dynamic arrivals.




The core of the Maruti hard real-time runtime system consists of three data structures:

o The calendars are created and loaded by the dispatcher. Kernel memory is reserved for
each calendar at the time it is created. Several system calls serve to create, delete,
modify, activate, and deactivate calendars. '

e The results table holds timing and status results for the execution of each elemental
unit; The maruti_calandar_results system call reports these results back up to the user
level, usually the dispatcher. The dispatcher can then keep statistics or write a trace
file.

e The pending activation table holds all outstanding calendar activation and deactivation
requests. Since the requests can come from before the switch time, the kernel must
track the requests and execute them at the correct time in the correct order.

The Maruti design includes the concept of scenarios, implemented at runtime as sets of
alternative calendars that can be switched quickly to handle an emergency or a change in
operating mode. These calendars are pre-scheduled and able to begin execution without
having to invoke any user-level machinery. The dispatcher loads the initial scenarios
specified by the application and activates one of them to begin normal execution.

vi
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Abstract

We consider the replication problem of series-paralle] (SP) task graphs where each task may
run orn more than one processor. The objective of the problem is to minimize the total cost
of task execution and interprocessor communication. We call it, the minimum cost replication
problem for SP graphs (MCRP-SP). In this paper, we adopt a new comrmunication model where
the purpose of replication is to reduce the total cost. The class of applications we consider
is computation-intensive applications in which the execution cost of a task is greater than
its communication cost. The complexity of MCRP-SP for such applications is proved to be
NP-complete. We present a branch-and-bound method to find an optimal solution as well as
ap approximation approach for suboptimal solution. The numerical results show that such
replication may lead to a lower cost than the optimal assignment problem (in which each task
is assigned to only one processor) does. The proposed optimal solution has the complexity of
O(n*2™ M), while the approximation solution has O(n*M?), where n is the numBer of processors
ip the systern and M is the number of tasks in the graph.



1 Introduction

Distributed computer systems have often resulted in improved reliability, fiexibility, throughput,
fault tolerance and resource sharing. In order to use the processors available in a distributed
system, the tasks have to be allocated to the processors. The allocation problem is one of the
basic problems of distributed computing whose solution has a far reaching impact on the usability
and efficiency of a distributed system. Clearly, the tasks of an application have to be executed
satisfying the precedence and other synchronization constraints among them. (Such constraints are

often specified in the form of a task graph.)

In executing an application, defined by its task graph, we have the option of restricting ourselves
to having only one copy of each task. The allocation problem, in this case, is referred to as
assignment problem. 1, on the other hand, a task may be replicated multiple times, the general
problem is called the replication problem. In this paper, we consider the replication problem and
present an algorithm to find the optimal replication of series-parallel graphs for computation-
intensive applications.

For distributed processing applications, the objective of the allocation problem may be the
minimum completion time, processor load balancing, or total cost of execution and communicatioxn,
etc. For the assignment problem where the objective is to minimize the total cost of execution and
interprocessor communication, Stone [11] and Towsley [12] presented O(n®M) algorithms for tree-
structure and series-parallel graphs, respectively, of M tasks and n processors. For general task
graphs, the assignment problem has been proven [9] to be NP-complete. Many papers [8]{9][10]
presented branch-and-bound methods which yielded an optimal result. Other heuristic methods
have been considered by Lo {7} and Price and Krishnaprasad [5]. All these works focused on the
assignment problem.

Traditionally, the main purpose of replicating 2 task on multiple processors is to increase the
degree of fault tolerance [2)[6]. If some processors in the distributed system fail, the application may
still survive using other copies. In such a communication model, a task has to communicate with
multiple copies of other tasks. As a consequence, the total cost of execution and communication
of the replication problem will be bigger than that of the assignment problem. In this paper, we
adopt another communication model in which the replication of a task is not for the sake of fault
tolerance but for decreasing of the total cost. In our model, each task may have more than one copy




and it may start its execution after receiving necessary data from one copy of each preceding task.
Clearly, in 2 heterogeneous environment the cost of execuntion of a task depends on the processor on
which it executes, and the communication costs depend on the topology, communication medium,
protocols used, etc. When a task { is allowed to have only one copy in the system, the sum
of the interprocessor communication costs between t and other tasks may be large. Sometimes
it will be more beneficial if we replicate ¢ onto multiple processors to reduce the inter-processor
communjcation, and to fully utilize the available processors in the systems. Such replication may
lead to a lower total cost than the optimal assignment problem does. An example illustrating this

point is presented in Section 3.

In the assignment problem, polynomial-time algorithms exist for special cases, such as tree-
structure [11] and series-parallel [12) task graphs. This paper represents one of the first few attempts
at finding special cases for the replication problem. The class of applications we consider in this
paper is computation-intensive applications in which the execution cost of a task is greater than its
communication cost. Such applications can be found in an enormous number of fields, such as digital
signal processing, weather forecasting, game searching, etc. We formally define 2 computation-
intensive application in Section 2.2. In this paper, we prove that for the computation-intensive
applications, the replication problem is NP-complete, and we present a branch-and-bound algorithm
to solve it. The worst-case complexity of the solutior is O(n?2"M). Note that the algorithm is
able to solve the problem in the complexity of the linear function of M.

We also develop an approximation approach to solve the problem in polynomial time. Given a
forker task s with KX successors in the SP graph, the method tries to allocate s to processors based

on iterative selection. The complexity of the iterative selection for a forker is O(n?K?), while the

overall solution for an SP -graph is O(n*M?).

* In the remainder of this paper, the series-parallel graph model and the computation model are
described in section 2. In section 3, the replication problem is formulated as the minimum cost
0-1 integer programming problem and the proof of NP completeness is given. A branch-and-bound
algorithm and pumerical results are given in section 4, while the 2pproximation methods and results
2re given in section 5. The overall algorithm is presented and conclusion remark is drawn in section
6.



2 Definitions
2.1 Graph Model

A series-parallel (SP) graph, G = (V, E), is a directed graph of type p, where p € {Tunit, Techain,
Tund, Tor} and G has a source node (of indegree 0) and a sink node (of outdegree 0). An SP graph
can be constructed by applying the following rules recursively.

1. A graph G = (V,E) = ({v}, @) is an SP graph of type Tyni:. (Node v is the source and the
sink of G.)

2. If G, = (W1, Ey) and Gz = (Vz, E3) are SP graphs then G' = (V’, E) is an SP graph of type
T.hain, Where V' =V} UV, and E' = By U B, U {<sink of G, source of G2 >}.

3. If each graph G; = (V;,E;) with source-sink pair (s;,!;), where s; is of outdegree 1, is an SP
graph, Vi = 1,2....,n, and new nodes s’ € V; and t' ¢ V,, V 1 are given then G' = (V', E') is
an SP graph of type Tyna(or type T, ), where V' =V UV, U ..UV, U {s,t'} and E' = E;
UVE V... UE U{<¢&s>|Vi=12,...n}Uu{<t,t>|Vi=12,...,n}. Thesource
of G, &', is called the forker of G'. The sink of G, ¥/, is called the joiner of G'. G’ is an SP
graph of type Tana(or type T, ) if there exists a parullel-and (or paraliel-or) relation among
G,’s.

A convenient way of representing the structure of an SP graph is via a parsing tree [4]. The
transformation of an SP graph to a parsing tree can be done in 2 recursive way. There are four
kinds of internal nodes in a parsing tree: Tunir, Tehoin, Jand and T, nodes. A Typni; node has only
one child, while a T.psin node has more than one child. Every internal node z, along with all its
descendant nodes induces a subtree S; which describes an SP subgraph G. of G. Each leaf node
in S; corresponds to an SP graph of type Tynit- A Tand(or Tor) node y consists of its type T, na(0r
T.,) along with the forker and joiner nodes of G,. We give an example of an SP grapk G, and its
parsing tree T(G) in Figure 1.




2.2 Computational Model

An application program consists of M tasks labeled m = 1, 2, ..., M. Its behavior is represented
by an SP graph with the tasks correspond to the nodes. Each task may be replicated onto more
than one processor. A task instancet;, is a replication of task i on processor p. A directed edge < i,
J > between nodes 7 and j exists if the execution of task j follows that of task i. Associated with
each edge < 7, j > is the communication cost incurred by the application. We are concerned with
types of applications where the cost of execution of a task is always greater than the communication
overhead it needs. The model is stated as follows.

Given a distributed system S with n processors connected by a communication network, an
application is computation-intensive if its associated SP graph G = (V, E) on S satisfies the

following conditions:

1. pij(p,0) 20,

2. Yo=1#i5(p.q) < miny(e;p). V< i,5>€ E,and 1 < p < n, where

o u;;(p,q)is the communication cost between tasks i and j when ti:ey are assigned to processors

P and ¢ respectively, and

e e;, is the execution cost when task i is assigned to processor p.

The first condition states that the communication cost between any two task instances (e.g.
t;» and 1;,) is not negative. The second one depicts that for every edge < 1,7 >, the worst-case
communication cost between any task instance t;; and all its snccessor task instances (i.e. ;4’s, V

g) is less than the minimum execution cost of task 3.

2.3 Communication Model

The communication model we considered is different from that of reliability-oriented replication.
In reliability-oriented replication problem, the objective is to increase the degree of fault tolerance.
To detect fault and maintain data consistency, each task has to receive multiple copies of data from
several task instances if its predecessor is replicated in more than one place.




The purpose of the replication problem considered in this paper is to decrease the sum of
execution and communication costs. Under such consideration, there is no need to enforce plural
communication between any two task instances. Hence, we propose the J-out-of-n communication
model. In the model, for each edge < ¢, 7 > € E, a task instance t;, may start its execution if it

receives the data from any one task instance of its predecessor, task :.

3 Problem Formulation and Complexity

Based on the computational model presented in Section 2.2, the problem of minimizing the total
sum of execution and communication costs for an SP task graph can be approached by replication
of tasks. An example where the replication may lead to a lower sum of execution costs and
communication costs is given in Figure 2, where the number of processors in the system is two, and
the execution costs and communication costs are listed in e table and u table respectively. If each
task is allowed to run on at most one processor, then the optimal allocation will be to assign task
e to processor 1, bto1l,ctol,dto2, eto2 and f to 1. The minimum cost is 68. However, if
each task is allowed to be replicated more than one copies, (i.e. to replicate task a to processors 1
and 2), then the cost is 67.

We introduce integer variable X;,’s, V1< i< M and 1 £ p < n, to formulate the problem
where eact X, = 1 if task 7 is replicated on processor p; and = 0, otherwise. We define a binary
function é(z). H z > 0 then 6(z) = 1 else §(z) = 0. We also associate an allocated flag F(w) with
each node w in the parsing tree, where F(w) = 1 if the allocation for tasks in the subtree S, is
valid; and = 0, otherwise. A valid allocation for the tasks in S, is an allocation that follows the
semantics of Tengin, Land, and T, subgraphs. A valid allocation is not necessarily the allocation in
which each task in S, is allocated to at least one processor. Some tasks in T,, subgraphs may be
peglected without effecting the successful execution of an SP graph.

Given an SP graph G, its parsing tree T'(G) and any internal node w in T'(G), allocated flag
F(w) can be recursively computed:




1. if wis a Tyyni; node with a child ¢, then
F(w) = F(i) = §(3_ X:5)
p=1

2. if w is @ Tepoin node with ¢ children, F(w) = F(childy) x F(childy) x ...x F(child.).

3. if w is @ T,pq node with forker s, joiﬁert and ¢ children, then F(w) = F(s) x F(t) x F(child,)
x F(child;) x ...x F(child.).

4. if wis a T,, node with forker s, joiner t and ¢ children, then F{(w) = F(s) x F(t) x é(F(child,)
+ F(childy) + ...+ F(child,)).

The minimum cost replication problem for SP graphs, MCRP-SP, can be formulated as 0-1
integer programming problem, i.e:

Z = Minimize [ZX.-,* &ip+ Z X@EI(#{J(P,Q)* i) )
ip <iJ>EE, 1<q<n "™

subject to FY(r) = 1, where 7 is the root of T(G) and X;, = 0 or 1,Vi,p. (1)

The restricted problem which allows each task to run on at most one processor has the following
jormulation.

Z = Minimize [Z Xip*eip+ z i * Xips Xj0 ]
i“p <ig>EEpg

”
subject to Y X;, < 1and F(r) =1,
p=1

where r is the root of T(G) and X;, = 0 or 1,Vi,p. (2)

The task assignment problem (2) for SP graphs of M tasks onto n processors, has been solved
in O(n®M) time [12]. However,the multiprocessor task assignment for general types of task graphs
without replication has been reported to be NP-complete {9]. As for the MCRP-SP problem, it
can be shown to be NP-complete. In this paper, we are able to solve the problem and present a
linear-time algorithm that is linear in the number of tasks when the number of processors is fixed
for computation-intensive applications.




3.1 Assignment Graph

Bokhari [1] introduced the assignment graph to solve the task assignment problem (2). To prove
the NP completeness of problem (1) and solve the problem, we also adopt the concept of the
assignment graph of an SP grapk. The assignment graph of an SP graph can be defined similarly.
The following definitions apply to the assignment graph. And we draw up an assignment graph for
an SP graph in Figure 3.

1. It is a directed graph with weighted nodes and edges.

2. It has M x n nodes. Each weighted node is labeled with a task instance, ;.

3. A layer 1 is the collection of n weighted nodes (t;3, ti2, ..., and t; ). Each layer of the
graph corresponds to a node in the SP graph. The layer corresponding to the source (sink)
is called source (sink) layer.

4. A part of the assignment graph corresponds to an SP subgraph of type Tenain, Tana OF Tor is
called a Tepain,s Tond OF Tor limbd respectively.

5. Communication costs are accounted for by giving the weight 4; ;(p, g) to the edge going from
liptot,, .

6. Execution costs are assigned to the corresponding weighted nodes.

Given an assignment graph, Bokhari [1] solves Problem (2) by selecting one weighted node
from each laver and including the weighted edges between any two selected nodes. This resulting
subgraph is called an allocation graph. To solve Problem (1), more than one weighted node from
each Jayer may be chosen. Similarly, a replication groph for Problem (1) can be constructed from
an assignment graph by including all selected nodes and edges between these nodes. Examples of
an allocation graph and a replication graph are shown in Figure 4 for an assignment graph shown
in Figure 3. Note that for each node z in the replication graph there is only one edge incident to
it from each predecessor layer of z.

In 2 replication graph, each layer may have more than one selected node. Let Variable X
= (X132, X12, ---» Xin) be 2 replication vector for layer ! in 2 replication graph. We define the




minimum activation cost of vector X; for layer i , Ai( X)), to be the minimum sum of the weights
of all possible nodes and edges leading to the selected nodes of layer i in a replication grapk.
Then the goal of Problem (1) can be achieved by computing the minimal value of { Aginx(Xaink) +
Tre1 Xainkp * €sink,p) over all possible values of Xink.

3.2 Complexity

In this section, we can show that Problem (1) for a2 computation-intensive application is NP-
complete provided we prove the following:

Lemma 1: For any layer [ in the replication graph, the minimum activation cost for two selected
nodes #;, and ¢, will be always greater than that for either node t;, or 1;; only.

Proof: The Lemma can be proven by contradiction. Let A; be the the minimum activation cost for
two nodes 115, and ?;, and A2 and A3 be the minimum costs for ¢/, and t;,, respectively. Assume
that A; < A; and 4; < As. Since 4, includes the activation cost of node ¢;5, an activation cost
for t;, only can be obtained from A;. The obtained value ¢ is not necessarily the minimum value
for 11;,,, hence A2 < ¢. The value ¢ is obtained by removing some weighted nodes and edges from
replication graph. This implies that ¢ < A;. From above, we find that A; < A,, which contradicts
the assumption. The same reasoning cax be applied to Az and reaches a contradiction. Therefore,
the assumptions are incorrect and Lemma 1 holds.

D

Lemma 1 can be further extended to the cases where more than two weighted nodes are chosen.
The conclusion we can draw is that the more nodes are selected from a layer, the bigger the
activation cost is.

Lemma 2: Given a computation-intensive application with its SP task graph G = (V, F) and its
assignment graph, if node i has outdegree one and edge < i,j > € E, then for any vector X;, the
minimal activation cost A;(X;) can be obtained by choosing only one weighted node from layer i.

(e 20ey Xip = 1)

Proof: The Lemma can be proven by contradiction. Since node i has outdegree one and edge
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< AED+ X reipt 3 min (X » pis(p.g)) = m.

=1 g=1"ip™

The result, m’ < m, contradicts our assumption. It means that the assumption is wrong and
Lemma 2 holds.

D

Lemma 3: Given a computatiop-intensive application with jts SP task graph G, the objective of
the minimum cost can be achieved by considering only the replication of the forkers.

Proof: We proceed to prove the lemma by contradiction. Let the minimum cost for task replication
problem be zp if only the forkers(i.e. outdegree > 1) are allowed to run on more than one processor.

Assume the total cost can be reduced further by replicating some task 1 which is not a forker. Then
there are two possible cases for i:

1. 1 has outdegree 0.

2. { bas outdegree ].

In cese 1, 7 is the sink of the whole graph. Also i may be the joiner of some SP subgraphs. If 7 is
allowed to run on an extra processor b, which is different from the one which i is initially assigned
10 (when zp is obtained), then the new cost will be 2 + €;4 + X cuiveE #di- APparently, the new
cost is grezter thar zp. This contradicts our assumption that the to:al cost can be reduced further
by replicating task :.

In cese 2, ¢ bas one successor. Let < {,j > € F. From the assumption, we know that the
replicatior of i can reduce the total cost. Hence, the minimum activation cost for task instances
in laver j, 4;(X;), is obtained when task i is replicated onto more than ope processor. This

contradicts Lemma 2. Hence, the assumption is incorrect and the objective of the minimum cost
can be achieved by considering only the replication of the forkers.

D

lemma 3 tells that, given an SP graph, if we can find out the optimal replication for the forkers,

Problem (1) for computation-intensive applications can be solved. Now, we show that the problem
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<1,7> € E, we know that

A;(X)) = min{4; (X:) + ZA ip* Cip+ Z iz, (Xse * #i3(p9))}-

q—l

Let us assume that the above equation reaches a2 minimal value m when more than one node
from layer i is selected and the optimal replication vector is X?. Since T0_; X, > 1 for X7, we
may remove one selected node from 1ayér i and obtain a new vector X!. Without loss of generality,
let us remove t;,. By removing node 1;,, 2 new value m’ is obtained. Since m is the minimum
value for layer 1, it implies that m < m'.

From Lemma 1, we obtain that 4;(X!) < 4;(X?). And for a computation-intensjve application,
the following holds that 3°7_; pi (P, ¢) € minpy(e;), V1 < p < n. Then,

m = k" Z ip* Cip <+ Z J:mn (X,,q * F;,J(pa q))

p=1 q—l

< (Xo)"" Z ipteipt zxmm (X0 * 1i5(P,9))

e=1""vwp

< MED)E (DX - )+zxzmn (Xsa = pis(P )
=1 g=1

= AXD)+ L XD eis+ [ min (Xje ()] eir
p=1 g=1 !

'™

< AXD)+ Exap sep+ IZ min (X:.v * pi (2, 9))) - mn(‘w)
p=1 =1 '.P

1IN

A(X°)+E ,'cs.»-!-IE min (X4 + pi5(P, q))l-ZAa(p,q)

p=1 g=1 '.P =1

n
< A,‘(}I',p)-i- Z XR, *ey

p=1

12



< A(XD)+ DX reint Zxxgifl(xj.q *pij(pg)) = m.

=1 g=1"ip~

“The result, m' < m, contradicts our assumption. It means that the assumption is wrong and
Lemma 2 holds.

D

Lemma 3: Giver a computation-intensive application with its SP task graph G, the objective of
the minimum cost can be achieved by considering only the replication of the forkers.

Proof: We proceed to prove the lemma by contradiction. Let the minimum cost for task replication
problem be zp if only the forkers(i.e. outdegree > 1) are allowed to run on more than one processor.

Assume the total cost can be reduced further by replicating some task ¢ which is not a forker. Then
there are two possible cases for 1:

1. 7 has outdegree 0.

2. 1 has outdegree 1.

In cese 1, 7 is the sink of the whole graph. Also 1 may be the joiner of some SP subgraphs. If 7 is
allowed to run on an extra processor b, which is different from the one which 1 is initially assigned
to (when zp is obtained), then the new cost will be zp + €5 + 2 cyiver Hd,i- Apparently, the new
cost is greater than z5. This contradicts our assumption that the total cost can be reduced further
by replicating task 1.

In case 2, 1 bas one successor. Let < 7,7 > € E. From the assumption, we know that the
replication of 1 can reduce the total cost. Hence, the minimum activation cost for task instances
in laver j, A;(X;), is obtained when task i is replicated opto more than one processor. This
contradicts Lemma 2. Hence, the assumption is incorrect and the objective of the minimum cost
can be achieved by considering only the replication of the forkers.

D

Lemmez 3 tells that, given an SP graph, if we can find out the optimal replication for the iorkers,

Problem (1) for computation-intensive applications can be solved. Now, we show that the problem
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of finding an optimal replication for the forkers iﬁ an SP graph is NP-complete. First, a special
form of the replication problem is introduced. '

Uni-Cost Task Replication (UCTR) problem is stated as follows:

INSTANCE: Graph G' = (V',E'), V' = VJ U V;, where | V] | =nand |V; | =m. Iz € V{ and
y € V, then edge < z,y > € E' (i.e. | E'| = m x n). For each z € V], there is an activation cost
m. Associated with each edge < z,y > € E’, there is a communication cost d-, = n X mor 0. A
positive integer X' < n X m is also given.

QUESTION: Is there a feasible subset Vi C V; such that, we have

[ Zm'*'zznéjﬁ(dz.y)]sj{? (3)

z€V, yev,

[Theorem 1]: Uni-Cost Task Replication problem is NP-Complete.

[Proof]: The problem is in NP because a subset Vj, if it exists, can be checked to see if the sum
of activation costs and communication costs is less than or equal to K. We shall now transform
the VERTEX COVER |[3] problem to this problem. Given any graph G = (V,F) and an integer C
< | V |, we shall construct a2 new graph G’ = (V',E') and V' = V] U V), such that there exists a
VERTEX COVER of size C or less in G if and only if there is a feasible subset of V{ in G’. Le:
|V]|=nand | EF|=m. To construct G’, (1) we create a vertex z; for each node in V, (2) we
number the edges in F, and (3) we create a vertex b; for each edge < u,v > € E where u, v € V.
Wedefine K =mxC, V= {v, 15, ....%}, Vo= {b,b....0m} and ' = {< v, > | v
Vi by € Vo ). Letd,,,, = 0,if v is an end point of the corresponding edge of vertex b,; and =

m

n X m, otherwise. An llustration, where n = 7 and m = 9, is shown in Figure 5.

Let us now argue that there exists a vertex cover of size C or less in G if and only if there is
a feasible subset of ¥} in G’ to satisfy that the sum of activation cost and communication cost is
m X C or less. Suppose there is a vertex cover of size C, then for each vertex b, (= < u,v>)in V3,
at least one of u and v belongs to the vertex cover. By selecting all the vertices in the vertex cover
into the subset of Vy, we know that the sum in Eq. (3) will be m x C. Since C < n, it implies that

mxC<axm.

Conversely, for any feasible subset V; C V{ such that the total cost is equal to or less than
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mC, we can see that the second term of Eq. (3) (i.e. the sum of communication cost) must be
zero. Suppose, for some g, € V5, the minimum communication cost between g, and vertices in V'
is nonzero, then the communication cost will be at least m x n. Since C £ n, it implies that m x n
> m x C. The total cost in Eq. (3) will be greater than m X C, which is a contradiction. Thus the
minimum communication cost between any vertex in V; and any vertex in V; is zero. It means that
at least one of two end points of each edge in E belongs to Vi. Since, there is at most C vertices in
Vi (the activation cost for each vertex is m), and by selecting the vertices in Vj, we obtain a vertex
cover of size C or less in G.

O

[Theorem 2): The problem, MCRP-SP for computation-iniensive applications, is NP-complete.
[Proof): From Lemma 3, we know that only the forker in an SP graph of type T.nq needs to run on

more than one processor. Consider the following recognition version of Problem (1) for SP graphs
of type Tona:

Given = distributed system of n processors, an SP graph G* = (V°,E°) of type ITong, its
assignment graph H and two positive integers m and r. Let r be 2 multiple of m, V* = {s. t,
1.2,..,r}and Ef = {< 50> |i=12,...7} U {<it>|i=12,..,r}. Task s (2) is the forker
(joiner) of G®. Execution cost e;, and communication cost u; ;(p,q) are defined in B,V < i,5 >
€ E* and V1 < p,g < n. Integer varable X;; = 1 if task i is assigned to processor p; and = 0,
otherwise. When 2 positive integer K < r is given, is there an assignment of X;;’s, such that

[D - Xipxeip+ D min (u;5(p,0)* Xj) ] < K?

ip <iG>€E, 1<g<n Xio=?

where 3 Xip =1, ViFgs, and ) Xip 21, i i=s. (4)

ip ip
We shall transform the UCTR problem to this problem. Given any graph G’ = (V) U V3,E)
considered in UCTR problem, we construct an SP graph of type Tuns, G° = (V°,.E°), and its
assignment graph H, such that G’ has a feasible subset of V' to allow the sum in Eq. (3) is X or
less if and only if there is an assigninent of X;,’s for G° and H to satisfv Eq. (4). Let | V]| = =,
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| VJ | = m, then the unit cost f = n x m. Assignt = mx f (= n xm?) and ¥ = n x m. The
forker and joiner of G*° are s and t respectively. Then V* = {s,1,1,2,...,r} and £* = {< 5,1 > | ¢
=12, ..,r}u{<it>|i=1.2,..,r]. We assign the execution costs and communication costs in
FH as follows. An illustration, where m = 2 and n = 3, is shown in Figure 7.

®

Vi<p<n,ep=m
eV1<i<r,V1<p<nifp=1thene,=0esee,=r.
o V1<p<nifp=1theney,=0elsee,=r.

eV1<i<r,V1<p<mletg= (i-1)div (m x n), where div is the integral division. If
d # 0 then p,:(p,1) = 1 else p,:(p,1) = 0.

vpbeds
g VlS’S’aVISPSn,V9¢1a#a.t(?a9)=0-

'VlSiSf,VlSP,QSﬂa#i.t(PaQ)-:o-

It is easy to verify that the SP graph constructed by the the above rules is of type T.,c and
computation-intensive. For each node in V; of G', we create f nodes in G°, where the communica-
tion cost between each node and source s is either one or zero.

Let us now argue that there exists a feasible subset of VJ for UCTR problem if and only if there
exists 2 valid assignment of X, ;'s such that the total sum in Eq. (4) is X or less. Suppose a jeasible
subset V; of V; exists such that the sum in Eq. (3)is C (< K) . Let ¥} be {v;,v2.....t5} Then we
can obtain 2 valid assignment by letting X;3 =1, X;2=0,.. ., Xja=0,V1<i<r,and X:h =
L, X2=0,..,Xsa=0,20d X,, =1,if v, € Vjs;a0d X,, = 0,if v, € Vi, V1 £ p < n. Since
each node z in V5 corresponds to f nodes in G®, it is sure that the communication cost between
node z and any node (t,) in V{ is equal to the total communication costs between these f nodes
and apy task instance of source (1,,) in G°. By summing up all the costs, we can obtain that the
total sum is C. Since C < K < n X m < r, this is a valid assignment.

Conversely, if there exists an assignment of X’ such that the sum in Eq. (4) is X or less,
then the following must be true that X;; =1, X;2=0,.., Xin=0,V1 <1 < rand X3 = 1,

X:2=0,..., Xsn = 0. It is because for some p # 1,1 X, = 1 then the sum must be greater than
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r, which causes a conflict. Hence the second term in Eq. (4} must be zero. Thus, we may obtain 2
subset of V; for UCTR problem by seiecting node z € V; if X, equals 1. Since the first term in

Eq. (3) is equivalent to the first term in Eq. (4), the total sum for UCTR problem will be also X
or less then. :

B

4 Optimal Replication for SP Graphs of Type Ty

In this section, we develop the branch-and-bound algorithm to find an optimal solution for Tons
subgraphs. The non-forker nodes only need to run on one processor. Hence, an optimal assignment
of non-forker nodes can be done after an optimal replication for forkers is obtained.

4.1 A Branch-and-Bound Method for Optimal Replication

Consider a Tyne SP graph with forker-joiner pair (s,k) shown in Figure 6. There are B subgraphs
connected by s and h. These B subgraphs have a parallel-and relationship. Since the joiner A bhas
only one copy in optimal solution (i.e. 7y Xpp = 1), we ciecompose the minimum cost replication
problem P for a Tune SP graph into n subproblems P9, ¢ = 1, 2, ..., n, where Pf is to find the
minimum cost when the joiner is assigned to processor g (i.e. Xpo = 1).

Given 2 joiner instance 1, ., subgraphs Gy's, b = 1, 2, ..., B, and the minimum costs C:,q"s
between each jorker instance 1, and joiner instance 2,,, V1 < p < nand 1 < b < B. we further
decompose problem P¥ into n subproblems P}, k = 1,2,..., n, where k is the number of replicated
copies that the forker s has. Basically; P; means the problem of finding an optimal replication for

k copies of forker s where the joiner A is assigned to processor g. Since the problem of finding an
optimal replication jor forker s is NP-complete, we propose a branch-and-bound algorithm jor each
subproblem 7.

We sort the forker instances according to their execution costs e,,’s into non-decreasing order.
Without loss of generality, we assume e,3 € €;2 < ...< €,,. We represent all the possible

combinations that s may be replicated by a combination tree with (}) leaf nodes. To make the

solution efficient, we shall not consider all combinatiops since it is time-consuming. We apply 2
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least-cost branch-and-bound algorithm to find an optimal solution by traversing a small portion of
the combination tree.

During the search, we maintain a variable Z to record the minimum value known so far. The
search is done by the expansion of intermediate nodes. Each intermediate node v at level y repre-
sents a combination of y out of » forker instances. The expa.n.sion of node v generates at most n—y
child nodes, while each child node inherits y forker instances from v and adds one distinct forker

instance to itsel{. For example, if node v is represented by < 1,;,, 450y, - - -y L5

4y >, Where i) < 1y

< ...< iy, then < 155, 40, - -y La,s Lo, +; > Tepresents a possible child node of v, V1 < j <
n-—1,. A combination tree, where k = 4 and n = 6, is shown in Figure 8. At any intermediate node
of a2 combination tree, we apply an estimation function to compute the least cost this node can
achieve. If the estimated cost is greater than Z, then we prune the node and the further expansion
of the node is not necessary. Otherwise, we insert this node along with its estimated cost into 2
gueue. The nodes in the queue are sorted into non-decreasing order of their estimated costs, where
the first node of the queue is always the next one to be expanded. When the expansion reaches
a leaf node, the actual cost of this leaf is computed. If the cost is less than 2, we update . The
algorithm terminates when the queue is empty.

4.1.1 The Estimation Function

The proposed branch-and-bound algorithm is characterized by the estimation function. Let node ¢
be at level y of the combination tree associated with subproblem P] and be represented by < 1,,,,
152 -+ o 155, >, Where 33 < 22 < ...< i;,. Axy leal node that can be reached from node v needs
k — y more forker instances. Let £ = < j;, J2, - .., Ji—y > be 2 tuple of k£ — y instances chosen from
the remaining n — i, instances, where j; < j2 < ...< ji-y. Let L be the set of all possible £’s. Let
g(v) be the smallest cost among all leaf nodes that can be reached from node v.

g(v) = Ze,,,. -+ lmn Ee,_,, + E et C:'q)] + Chyg-

e=1 ::Gl =1 ?""x v‘?v-ov‘y or

18



Since the complexity involved in computing g(v) is (::;’), we use the following estimation function

est(v) to approximate g(v):

ty+k—y

)= T + T e+ 3 mn  (Ch) + ene ()

P11 432 peemiyiiy 10y 2,000 h

e=l J=iy+l b=1
Since
iy+k=y
e e and min < Z min
Z “J z "J’ z ?—"y'*'l"y"‘z .... 19) ?El (
J—-'y'l'] J2€¢

it is easy to see that est(v) < g(v). Hence, we use est(v) as the lower bound of the objective

function at node v.

4.1.2 The Proposed Algorithm

Three parameters of the branch-and-bound algorithm are joiner instance (i54), the number of
processors that forker s is allowed to run (k), and the up-to-date minimum cost (£). The algorithm
BB(k, g, Z) is shown in Table 1.

The MCRP-SP probler can be solved by invoking BB(k, g, 2) n? times with parameters set 1o
different values. BB(k,g,#) solves the problem P], while the whole procedure, shown in Table 2,
solves P. '

4.2 Performance Evaluation

The essence of the branch-and-bound algorithm is the expansion of the intermediate nodes. Upon
the removal of 2 node from the queue its children are generated and their estimated values are
computed. U the estimation function performs well and gives a tight Jower bound of objective
function, the number of expanded nodes should be small. Then an optimal solution can be found
out as soon as possible.

We conduct two sets of experiments to evaluate the performance of the proposed solution. The
performance indices we consider are the pumber of enqueued intermediate nodes (EIM) and the
number of visited leaf nodes (VLF) during the search. We calculate EIM and VLF by inserting one
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counter for each index at lines 13 and 8 of Table 1 respectively. Each time the execution reaches
line 13 (8), EIM (VLF) is incremented by 1.

The first set of experiments is on SP graphs of type T,,4 where the communication cost between
any two task instances is arbitrary and is generated by random number generator within the range
[1,50). The execution cost for each task instance is also randomly generated within the same range.
The second set of experiments is on SP graphs of type T,ns With the constrain of computation-
intensive applications. We vary the size of the problem by assigning different values to the number
of processors in the system (n) and the number of parallel-and subgraphs connected by forker and
joiner (B). For each size of the problem (n, B), we randomly generate 50 problem instances and
solve them. The results, including the average values of EIM and VLF over the solutions of 50
problem instances, are summarized in Table 3.

From Table 3, we find out that the proposed method significantly reduces the number of ex-
pansions for intermediate nodes and leaf nodes. For example, for problem size (n, B) = ( 20, 40),
the total number of leal nodes is 2%° (= 1,048,576) if an exhaustive search is applied. However,
our algorithm only generates 16,857 nodes on the average, because we apply est(v), , and the
branch-and-bound approach.

The branch-and-bound approach and the estimation function even perform better for the
computation-intensive applications. We can see that EIM and VLF values are much more smalier
in Set II than those in Set I. It is because that in the computation-intensive applications an optimal
number of replications for the forker is smaller than that in general applications. The Z value in
function OPT() is able to refiect this fact and avoid the unnecessary expansions.

5 Sub-Optimal Replication for SP Graphs of Type T;ng

The branch-and-bound algorithm in section 4.1 yields an optimal solution for T,n¢ subgraphs.
However, the complexity involved is in exponential time in the worst case. Hence, we also consider
to find 2 pear-optimal solution in polynomial time.
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5.1 Approximation Method

For the problem P} defined in section 4.1, we exploit an appraximation approach to solve it in
polynomial time. The approach is based on iterative selection in a dynamic programming fashion.
Given 2 joiner instance ?; , and subgraphs Gy, b = 1, 2, ..., B, and minimum costs C’,‘,"‘7 between
thy and t;p, p=1,2,...,n,and b =1, 2, ..., B. we define Sub(p,b) to be the sub-optimal
solution for replication of forker s where forker instances 153,242 , - -, s, and subgraphs G, Ga,

..., Gp are taken into consideration.

Strategy 1:
Sub(p,b) cax be obtained from Sub(p— 1,d) by considering one more forker instance t,,. Strategy

1 consists of two steps. The first step is to initialize Sub(p,b) to be Sub(p~ 1,b) and to determine
ift,, is to be included into Sub(p, b) or not. If yes, then add 2, , in. The second step is to examine
if any instances in Sub(p — 1,b) should be removed or not. Due to the possible inclusion of 2, in
the first step, we may obtain 2 lower cost if we remove some instances i, ;’s, ¢ < p, and reassign the

commurications for some graphs G;’s from t, % to ;.

Strategy 2:

Sub(p,b) caxn also be obtained from Sud(p,b- 1) by taking one more subgraph G; into account.
Initially, Sub(p,b)is set to be Sub(p, b—1). The first step is to choose the best forker instance from
1,0: 25,2, . -+ 5 15p JOr Gp. Let the best instance be 1, ,. The second step is to see if ¢, ; isin Sub(p,b)
or not. I not, a condition is checked to decide whether I, ., should be added in or not. Upon the

addition of ¢, ;, we may remove some instances and reassign the communications to achieve a Jower
cost.

We compare two possible results obtained from the above two strategies and assign the ope with
lower cost to actual Sub(p,b). Hence by computing in a dynamic programming fashion, Sub(n, B)
can be obtained. The algorithm and jts graphical interpretation are shown in Figure 9.

5.2 Performance Evaluation

The complexity involved in each strategy described in section 5.1 is O(nB). Since the solving
of Sub(n, B) needs to invoke n x B times of strategies 1 and 2, the total complexity of solving

21




Sub(n, B) by the approximation method is O(n?B?).

We conduct a set of experiments to evaluate the performance of the approximation method. For
each problem size (n, B), we randomly generate 50 instances and solve them by using approximation
method and exhaustive searching. The data for computation and communication in the experiments
are based on the uniform distribution over the range [1,50]. We compare the minimum cost obtained
from exhaustive searching (EXHAUST') with those from from approximation (APPROX) and single
assignment solution (SINGLE). The optimal single assignment solution is the one in which only one

forker instance is allowed. Note that the solutions from SINGLE are obtained from the shortest
path algorithm [1]. The results are summarized in Table 4. From the table, we find out that the

zpproximation method yields a tight approximation of the minimum cost. On the contrary, the
error range for single copy solution is at least 20%. This again justifies that the replication can
lead to a Jower cost than an optimal assignment does.

6 Solution of MCRP-SP for computation-intensive applications

6.1 The Solution

Given a computation-intensive application with its SP graph, we generate its parsing tree and
assignmen: graph first. The algorithm finds the minimum weight replication graph from the as-
signment graph. Then the optimal solution is obtained from the minimum weight replication graph.

The 2lgorithm traverses the parsing tree in the postfix order. Namely, during the traversal, an
optimal solution of the subtree S.. induced by an intermediate node z alopg with all z°s descendant
nodes, can be jound only after the optimal solutions of z’s descendant nodes are jound. Given an
SP graph G and a distributed system S, we know that there is 2 one-to-one correspondence between
each subtree 5. in a parsing tree T(G) and 2 limb in the assignment graph of G on S. Whenever a
child node b of z is visited, the corresponding Limb in the assignment graph will be replaced with a
2 two-layer Tongin Bmb i bis @ Tpain- 0F Tor-tvpe node; and a one-layer Tynir limb if bis a Tone-type
node. The algorithm is shown in Table 5. A graphical demonstration of how the algorithm solves
the problem is shown in Figure 10.

Before the replacement of 2 Teioin limb is performed (i.e. z is a Toppin-type node), each con-
stituent child limb has been replaced with a Tynir Or two-laver T.s.in limb. Hence, the shortest

22



path algorithm [1) can be used to compute the weights of the new edges between each node in the
source layer and each node in the sink layer of the new Tppqn limb. The complexity, from lines 05
to 08 of Table 5, in transformation of the limb, corresponding to an intermediate node z with M
children, into a two-layer Topain Limb is O(Mn®). An example of ilustrating the replacement of a
Tehoin limb is shown from parts (b) to (c) and parts (d) to (e) in Figure 10.

For the replacement of 2 Tgn¢ limb, we have to compute C:'q’s. The values can also be computed

by the shortest path algorithm. Hence, the complexity involved in lines 16 and 17 is O(Bn?).
According to the computational model in section 2.2, each task instance s may start its execution
if it receives the necessary data from any task instance of its predecessor d. And, from Lemma
2, we know that the minimum sum of initialization costs of multiple task instances of s will be
always irom only one task instance of d. Therefore, the initialization of task instance i, , depends
on which task instance of d it communicates with. That is why ,in line 19, the communication
cost pgs(i,p) is added to the the execution cost of e,, before OPT() is invoked. And the most
significant part of the replacement is to compute the weights on the new edges from the source
laver to sink layer. The complexity is n? x O(OPT()), which in the worst case is 22", However, in
the average, our OPT function performs pretty well and reduces the complexity significantly. An
example of llustrating the replacement of a T,ng limb is shown from parts (c) to (d) in Figure 10.

We also consider to use the approximation method to find the sub-optimal replacement of 2
Tene imb. In that case, function OPT() i Line 22 is replaced with Sub(n, B). The total complexity
involved is O(n*B?) then.

Finally, for the replacement of a T, Limb, if there are B subgraphs connected between the forker
and the joiner, then the complexity will be O(Bn?) for the new edges and O(Bn®) for Cp ’s. An
example of illustrating the replacement of a T, limb is showr from parts (2) to (b) in Figure 10.

When the traversal reaches the root node of the parsing tree, the result of FIND() will give
us ejther one single laver or two layers, depending on the type of root node. All we have to do is
to select the lightest of these n (in single layer) or n? (in two layers) shortest path combinations.
An optimal replication graph itself is found by combining the shortest paths between the selected
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nodes that were saved earlier. The whole algorithia has the complexity of
O(An*2") + }:(R;ns) + Z(C;ns)

where A is the number of Tyng limbs, R; is the number of subgraphs in the.ith T, limb, and C; is
the pumber of layers in the ith Tihgin limb. This is not greater than O(Mn?2"), where M is the
total number of tasks in the SP graph. The complexity of the algorithm is a linear function of M
if the number of processors, n, is fixed.

6.2 Conclusion Remark

This paper bas focused on MCRP-SP, the optimal replication problem of SP task graphs for
computation-intensive applications. The purpose of replication is to reduce inter-processor commu-
nication, and to fully utilize the processor power in the distributed systems. The SP graph model,
which is extensively used in modeling applications in distributed systems, is used. The applications
considered in this paper are computation-intensive in which the execution cost of a task is greater
than its communication cost. We prove that MCRP-SP is NP-complete. We present branch-and-
bound and approximation methods for SP graphs of type Tons. The numerical results show that
the algorithm performs very well and avoids a lot of unnecessary searching. Finally, we present an
algorithm to solve the MCRP-SP problem for computatior-intensive applications. The proposed
optimal solution has the complexity of O(n®2" M) in the worst case, while the approximation solu-
tion is in the complexity of O(n*M?), where n is the number of processors in the system and M is
the number of tasks in the graph.

For the epplications in which the communication cost between two tasks is greater than the
execution cost of a task, the replication can still be used to reduce the total cost. However, in the
extreme case where the execution cost of each task is zero, the optimal allocation will be to assign
each task to one processor. We are studying the optimal replication for the general case.
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Figure 1: An SP graph and its parsing tree

H e table l[ processor 1 [ processor 2 "

task a op | 5 5
task b on 7 16
task ¢ on ' 10 20
task d on 25 8
task e on 14 6
task j onp | 10 13
| p table EIETIET I ETIETEETIE RS
| 2 to 1] 4] 1] 4] 1] 4] 1] 4]
[ 1.2 to 4 1| 4] 1 4 1| 4 1
to iyy from || 3 3 3 3 3 3 3 3
to tyo from || 3 3 3 3 3 3 3 3 j

Optimal Assignmen::

€ + Kea(l, 1) + Pva.c(l, 1) + po (1, 2) + Fe.e(l, 2) +ep1 + e

+€g2+ €2+ Fé.](l’ 1) + F'c.f(l’ 1) + l‘d.f(zb 1) + FGJ(2’ 1) + c_f.l = 68
Optimal Replication:

€ca T2+ e (1, 1)+ pe (1, 1) + Bed(2,2) F peoe(2, 2) + e

eyt €22 T 2+ pog(1.1)F pes(1,1)F peg(2,1) 4+ pe g (2,1)+ €49 = 67

Figure 2: An example to show how the replication can reduce the total cost



Figure 3: An SP graph and its assignment graph.

Figure 4: An allocation graph and a replication graph of Figure 3.
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| €125 = 0 12 12 |l psi(p,g)=0,V1<i<12,p=1.232nd g = 2.3
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Figure 7: An illustration about how to transform 2 UCTR instance to a T,pns SP graph
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Table 1: Function BB(k,g,): branch-and-bound algorithm for solving problem Pj ‘

01 Initialize the queue to be empty;
02 Insert root node vp into the queue;
03 While the queue is not empty do begin \

04 Remove the first node u from the queue; |
05 Generate all child nodes of u ; |
06 For each generated child node v do begin \
07 If v is a leaf node (i.e. v is at level k) then

08 Compute g(v) by setting L to be ¢ ;

09 Set 2 = min ( Z, g(v)); \
10 else begin /* v is an intermediate node */ ‘\
11 Compute est(v) by (5) ; |
12 If est(v) < Z then '

13 Insert v into the queue according to est(v) ; i
14 end;

15 end;

16 end;

17 Return($).
Teble 2: Function OPT(C;'G'S, €sp's): the optimal solution of MCRP-SP of type T,ne¢ when
Ch.’s and €,,’s ave given

01 Sort t,,’s into 2 non-decreasing order by values of €,,’s ;
02 For ¢ = 1 to n do begin

03 Let node v be 2 leaf node at level 1;
04 Set vto be?,; and k to be 1;

05 Compute g(v) by setting L to be ¢ ;
06 Injtialize Z to be g(v) ;

07 For k=1t ndo

08 z = BB(k,q,2) ;

09 Sete(g) = £;

10 end;

11 Output the combination with the minimum value among ¢(1), ¢(2), ..., ¢(n).
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Figure 9: Pseudo code, graphical demonstration, and dynamic programming

table for approximation methods

Sub(p—-1,b) — Sub(p,d): .
¥ ep < Tioy ([mincesusp-1)(C2)] — C;.v)+
begin ,
Sub'(p,b) = Sub(p-1,b) B 1,,
Reassign&Remove(Sub’(p, d))
end
Else Sub'(p,b) = Sub(p - 1,b)

Legend:
(z)* =z,ifz> 0.
(z)*=0,ifz < 0.

Sub(p—1,b)

Sub(p,b—1) — Sub”(p,b):

Let ¢, . be the one satisfys min, S;S,(Cﬁ q) .
i t,, € Sub(p,b—1) then
Sub"(p,d) = Sub(p,b-1)
Else
ife,. < Z?:} ([mianSub(p,b-l)(C;',q )] - C;.q)+
begin
Sub’(p,b) = Sub(p-1,8) & 15,
Reassign&Remove(Sub”(p, b))
end
Else Sub"(p,d) = Sub(p,b-1)

Sub(p,b—1)

1 2 3 »
! Sub(p,b— 1)
2
bl l Sub”(p,b)
B Sub(p— 1,0} —— | Sud(p,})
Sub'(p,b)

Sub(p,b) = Min_Cost(Sub'(p,b), Sub"(p,bd))
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Table 3: Computation Results for branch-and-bound approach

] Set I Set I Total Number of
» | B | EM¥ vir! | E;v? viE! leaves (2")
120 2 6 | 4 7 16
24 3 6 3 6 16
28 4 7 3 6 16
4 [32 4 7 3 6 16
36 4 7 4 7 16
L1404 3] 6y 31 64§ 16 |
120 36 74| 16 51 25 |
24 40 75 21 62 256
28 50 86 26 68 256
8 [ 32 63 94 37 78 256
36 73 96 47 84 256
40 81 97 50 86 256
T~ 120] 186 558 81 340 4,096
24 231 630 || 102 398 4,096
28| 349 839 || 167 543 4,096
12 [ 32 451 967 | 204 617 4,096
36 454 984 || 269 720 4,096
40 636 | 1,186 || 301 780 4,096
] 20 758 | 3.216 203 | 1,175 65,536 |
24 || 1,065 ] 4,161 | 329 1,711 | 65.536
28 || 1,335 | 4,862 || 546 | 2,496 65,536
16 |32 1,884 | 6.250 || 726 | 3,127 65,536
36 || 2,322 | 7,227 | 839 3,493 65,536
| [40] 2,880 | 8511 1,179] 4,510 65,536
[ |20 || 2,026 | 12,042 389 3,079]  1.048,576 |
24 || 3,579 | 18,866 || 761 | 5,280 1,048,576
28 || 5,551 | 27,018 || 1.227 | 7,905 1,048,576
20 [ 32| 6,405 | 30,521 || 1,709 | 10,357 1.048,576
36 || 9,517 | 40,767 || 2.681 | 15,032 1,048,576
| 40 11,651 | 48,087 || 3,086 | 16,857 1,048,576

1. Each value shown is the average value over 50 runs.
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Table 4: Simulation Results for Approximation Method

[ » | B [ SINGLE! | APPROXI | EXEAUST! | single error % [ approx error % |
20 2876 2407 2400 20 0.28 |
24 3463 2835 2831 22 0.16
28 4032 3264 3259 24 0.18
4 32 4606 3678 3673 25 0.11
36 5198 4084 4082 27 0.05
|40 5790 4514 4514 28 0.00 ]
- 20 2794 | 2282 2250 | 24 1.46
24 3356 2672 2636 27 1.38
28 3931 3060 3028 30 1.05
8 32 4540 3443 3413 33 0.88
36 5127 3831 3800 35 0.80
a0 5683 4215 4192 36 0.55 |
] 20 2767 2213 2161 28 242 |
24 3359 2502 2542 32 1.99
28 3912 2996 2941 33 _1.88
12 32 4491 3364 3209 36 1.97
36 5063 3736 3676 38 1.62
40 5610 4101 4043 | 39 143
20 2733 2167 2111 || 29 2.66 ||
24 3287 2558 2492 32 2.66
28 3844 2932 2865 34 2.31
16 32 4393 3315 3240 || 36 2.32
36 4991 3659 3584 || 39 2.10
[T 5558 4045 3970 || 40 1.89 |

single error% =

approx error% =

APPROX -~ EXHAUST

EXBAUST

}: Each value shown is the average value over 50 runs.

SINGLE - EXHAUST
EXHAUST

x 100%.




Table 5: Algorithm FIND(S.): the algorithm for finding the shortest path combinations from the
Limb which corresponds to the subtree S; induced by an intermediate node z and all z’s descendant
nodes in a parsing tree

01 Case of the type of intermediate node z:
02 Type Tehain :

03
04
05
06
07
08
08
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

For b = the first child node of z to the last one do

FIND(S:); /* Now the imb corresponding to S} is replaced */
Replace the imb corresponding to S; with a two-layer Tepain lmb where
the source (sink) layer of the old limb is the source (sink) layer of new 2-Jayer limb;
Put weights on the edges between source and sink layers equal to the shortest path
between the corresponding nodes;

Type Tona : [* Let x = [ Tond, forker s, joiner h ] */

Let d be the predecessor of forker s in G (i.e. < d,s> € V);
Let B be the number of child nodes of z in the parsing tree;
/* Le. there are B subgraphs connected by s and & */
For b = the first child node of z to the B-th child of z do
FIND(S:); /* Now the limb corresponding to S, is replaced */
Forp=liton,¢g=1tonandb=1to Bdo '
Compute the minimum replication cost Cp, from 1, 10 25, w.r.t. child b
For i = 1 to » do begin
Forp=1ltondo E,; = pg,(i,p)+ €, ;
/* E,» accounts for initialization by ?4; and execution cost itself. */
Forg=1tondo psa(i.g) = OPT(CL,'s,Eup's) ;
/* Create new edges from 2:,’s to 13 4's */
end;
Replace the Tpne mb with a Ty Iimb, where source layer = sink layer = layer &,
and there are new edges from laver d 1o layer A;

Type T, : /* Let x = [ T, forker s, joiner h ] */

Use the same method described above from lines 12 to 17 to compute C3's ;
Replace the T,, imb with a two-laver Tp,i Limb, where

the source (sink) layer of T, limb is the source (sink) layer of Topain Limb and
psh(pg) = miny(Ch ), Vpand g ;

32 end case;
33 Save the shortest paths betweer any node in source laver and any node

in sink layer for future reference.
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Figure 10. A graphical demostration of how to find an optimal solution for MCRP-SP
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Abstract

Traditional control systems have been designed to exercise control at regularly spaced time
instanis. When a discrete version of the system dynamics is used, a constant sampling interval is
assumed and a new control value is calculated and exercised at each time instant. In this paper
we formulate a new control scheme, temporal conirol, in which we not only calculate the control
value but also decide the time instants when the new values are to be used. Taking a discrete,
linear, time-invariant system, and a cost function which reflects a cost for computation of the
control values, as an example, we show the feasibility of using this scheme. We formulate the
temporal control scheme as a feedback scheme and, through a numerical example, demonstrate
the significant reduction in cost through the use of temporal control.
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1 Introduction

Control systems have been used for the control of dynamic systems by generating and exercising
control signals. Traditional approach for feedback controls has been to define the control signals,
u(t), as a function of the current state of the system, z(t). 'As the state of the system changes
continuously the controls change continuously, i.e. they are defined as functions of time, t, such
that time is treated as a continuous variable. When computers are used for implementing the
control systems, due to the discrete nature of computations, time is treated as a discrete variable
obtained by regularly spaced sampling of the time axis at A seconds. Many standard control
formulations are defined for the discrete version of the system, with system dynamics expressed at
discrete time instants. In these formulations the system dynamics and the control are expressed as
sequences, z(k) and u(k).

Most of the traditional control systems were designed for dedicated controllers which had only
one function, to accept the state values, z(k) and generate the control, u(k). However, when a
general purpose computer is used as 2 controller, it has the capabilities, and may, therefore, be
used for other functions. Thus, it may be desirable to take into account the cost of computations
and consider control lJaws which do not compute the new value of the control at every instant.
When no control is to be exercised, the computer may be used for other functions. In this paper
we formulate such 2 contro) law and show how it can be used for contro] of systems, achiei'ing the
s:;me degree of control as traditional control systems while reducing computation costs by changing
the control at a few, specific time instants. We term this temporal control.

To the best of our knowledge this approach to the design and implementation of controls has not
been studied in the past. However, taking computation time delay into consideration for real-time
computer contro] has been studied in several research papers [1, 3, 6, 9, 11, 13]. But, all of these
papers concentrated on examining computation time delay efiects and compensating them while
maintaining the assumption of exercising controls at regularly spaced time instants.

The basic idea of temporal control is to determine not only the values for u but also the time
instants at which the values are to be calculated 2nd changed. The control values are assumed
to remain constant between changes. By exercising control over the time instants of changes the
designer has an additional degree of freedom for optimization. In this paper we present the idea and
demonstrate its feasibility through an example using 2 discrete, linear, and time invariant system.
Clearly, the same idea can be extended to continuous time as well as non-linear system.

The paper is organized as follows. In Section 2, we formulate the temporal control problem and
introduce computation cost into performance index function. The solution 2pproach for temporal

control scheme is discussed in Section 8. In Section 4, implementation issues are addressed. We
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provide an example of controlling rigid body satellite in Section 5 . In this example, an optimal
temporal controller is designed. Results show that the temporal control approach performs better
than the traditional sampled data control approach with the same number of control exercises.
Section 6 deals with the application of temporal controls to the design of real-time control systems.

Finally, Section 7, we present our conclusions.

2 Problem Formulation

In temporal control, the number of control changes and their exercising time instants within the
controlling interval {0, Ty] is decided to minimize a cost function. To formulate the temporal control
problem for a discrete, linear time-invariant system, we first discretize the time interval [0, Ty] into
M subintervals of length A = Ty /M. Let Dps = {0,4,24,...,(M — 1)A} which denote M time
instants which are regularly spaced. Here, control exercising time instants are restricted within

D)y for the purpose of simplicity. The linear time-invariant controlled process is described by the

difference equation:

z(k+1)
y(k)

Az(k) + Bu(k) (1)
Cz(k)

Il

where k is the time index. One unit of time represents the subinterval A, whereas z € R™ and
u € R' are the state and input vectors respectively.

It is well known that there exists an optimal control law [4]

v() = flz(i)] i=0,1,.. M =1 (2)

that minimizes the guadratic performance index function (Cost)
M-1
Iu = 217 (F)Qa(k) + wT (k) Ru(k)] + =7 (M)Q=(M) (3)
) k=0

where Q € R™*™ is positive semi-definite and R € R!*! is positive definite.
As we can see, traditional controller exercises control at every time instant in D)s. However,

in temporal control, we are no longer constrained to exercise control at every time instant in Djy.
Therefore, we want to find an optimal control law, § and g for 1= 0,1,.... M - 1:

w(i) = w°(i—1) if 6(:)=0 (4)
v(d) = gla(8)] if 6() =1
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that minimizes 2 new performance index function

L M= M=
Tu = 31T ()Qz(k) + w7 (k)Ru(k)) + 2T (M)Qz(M) + 3 6()u (8)
k=0 k=0
= Juy+Cp

Here, u is the computation cost of getting a new control value at a time instant, and Cp =
M =1 5(k)1 denotes the total computation cost. Note that v = M>6(k) is the number of
control changes. Also, let D, = {to,1;,12,...,t,—1} consist of control changing time instants where
1o =0, = mA, ..., ty—1 = n,3A. That is, ng,n;,n9,...,n,-1 are the indices for control
changing time instants and 6(n;) = 1for ¢ =0,1,2,...v - 1.

With this new setting we need to choose v, D,, and control input values to find an optimal
controller which minimizes Jy,. This new cost function is different from Jps in two aspects. First,
the concept of computational cost is introduced in J,, as Cps term to regulate the number of control
changes choser. II we do not taxe this computation cost into consideration v is likely to become
M. If computation cost is high (i.e., 4 has a large value) then v is likely to be small in order to
minimize the total cost function. Second, in temporal control, not only do we seek optimal control
law u(z(t)), but also the control exercising time instants and the number of control changes. In the

next section, we present in detail specific techniques for finding an optimal temporal control law.

3 Temporal Control
We develop 2 three-step procedure for finding an optimal temporal controller.

Step 1. Find an optimal control law given v and D,
Step 2. Find best D, given v
Step 3. Find best v

First, iz the following two subsections(3.1 and 3.2) we derive a2 temporal control law which
minimizes the cost function J}W when D, is given, i.e., both time instants and number of controls
are fixed. Since v and D, are fixed we can use J)s defined in ( 5) as 2 cost function instead of
J;,. Secondly, assume that v is fixed but D, can vary. Then we present an algorithm in section
3.3 1o find 2 DY such that Jy (2nd J;w) is minimized. Finally, we will vary v from 1 t0 vpmeo
to search an optimal D? at which temporal control should be exercised. Section 3.4 presents this
iteration procedure. Section 3.5 explains how to incorporate ierminal state constraints into the

above procedure of getting an optimal temporal control law. And z complete algorithm of the
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above procedure is described in Section 3.6. Finally, in Section 3.7 we explain how to get optimal

temporal controllers over an initial state space.

3.1 Closed-loop Temporal Control with D, Given

Assume that v and D, are given. Then a new control input calculated at t; will be applied to the
actuator for the next time interval from #; to t;+1. Our objective here is to determine the optimal

control law
. (n;) = glz(n)) 1= 0,1,...,v -1 (6)

that minimizes the quadratic performance index function (Cost) Jys which is defined in ( 5).

State Cost
i
Sm+l
L
I | F.. F,
| -/
""" l | - 4
n — | ! 4! time
0 ceanee
1 2 3 - Db xl...n - B, ... n,
1
u(nv-l)
u(n,.)
Y
Control Input Cost

Figure 1: Decomposition of Jus into F;.

The principle of optimality, developed by Richard Bellman{2, 3) is the approach used here. That
is, if 2 closed loop control v°(n;) = g[z(n;)] is optimal over the interval 1o <t < ¢, then it is also

optimal over a2ny sub-intervel t, <t < t,, where 0 < m < v. As it can be seen from Figure 1, the
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total cost Jps can be decomposed into Fis for 0 < i < v where

E

2T (n)Qz(n) + 27 (s + I)Q;(n; + 1) (7)
2T (n; + 2)Qz(ni + 2) + ... + IT(n.;H - 1)Qz(niz1 — 1)
+ (nix1 = n)u7 (ni)Ru(n;)

+

That is, from ( 1),

5

Il

27 (n)Qz(n:) + (Az(n:) + Bu(n:))T Q(Az(n:) + Bu(n:)) (8)
+ (A%z(n;) + ABu(n;) + Bu(n;))TQ(Azz(n;) + ABu(n;) + Bu(n;))
2 (AT () 4 AR T2 By(n) + .+ ABu(n;) + Bu(n))TQ
(AM+ =™z (n)) + A™H "2 By(n;) + ... + ABu(n;) + Bu(n;))
+ (nis1 = ni)u? (ni)Ru(n:)

This can be rewritten as

nigy—ni—1

F o= a¥(n)Qz(n)+ 3 [4jz(m:) + Bju(ni)l Q[Aj2(ni) + Bju(ni)] 9

=1
+ (miy1 = n)u (n) Ru(n)

where 4; = A% and B; = $i7) AFB.

Then Jys can be expressed as
IM=Fo+h +F+..+ L. (10)
Let S, bethecostfromi=v—-—m+ltoi=vr:
Sm=Focmir+ Focmiz+ .+ Fucy = F, 1<m<v+ 1 (11)
These cost terms are well illustrated in the above Figure 1.

Therefore, by applying the principle of optimality, we can first minimize S; = F,, then choose
F,_, to minimize S; = F,_y + F, = 57 + F,_; where 57 is the optimal cost occurred at t,. We
can continue choosing F,.2 to minimize Sz = F,_2+ F,_1 + F, = F,_2 + 5% and so on until
S,+1 = Jp is minimized. Note that §; = F, = z7(n,)Qz(n,) is determined only from z(n,) which

is independent of any other control inputs.



3.2 Inductive Construction of an Optimal Control Law with D, Given

We inductively derive an optimal controller which changes its control at v time instants ip,1;,
..., lu—1. As we showed in the previous section, the inductive procedure goes backwards in time

from S¢ to S°.,. Since §; = F, = z7(n,)Qz(n,) + v7(n.)Ru(n,) and z(n,) is independent of

u(n, ), we can let u°(n,) = v®(M) = 0 and S° = z7(n,)Qz(n,) where Q is symmetric and positive
semi-definite.

Induction Basis: 5¢ = z7(n,)Qz(n,) where Q is symmetric.

Inductive Assumption: Suppose that
52 = 2T (Ryems1 )PV = m + 1)z(Mymmsa)

holds for some m where 1 < m < v and P(v — m + 1) is symmetric.

We can write 52, as

S;I = [A(ﬂv—m+l"ﬂv—m)z(n""m) + B(ﬁy—m-n —ﬂv—m)u(n”-m )]TP(V - m+ 1) (12)
[A(n,..,,,.(,.; —"‘V"'ﬂ)x(n”-m ) + B("w—m«)-l -ﬂv—m)u(n"—m )]

From the definition of S,, and ( 9),

Srn-{—l = S:z -+ Fu—m

= 5§ + :T(n,,_m)Qz(n,,_m)

(13)
Topmmea] =Tipemm=—1
- z [A_;:c(n‘,_m) - Bju(nu—m )}TQ[AjI(nu—m) -+ Bju(ny—m)]
=1
= (Puemir = Tmm )2 (R )R
And the above equation becomes
5m+1 = [A"v—mi»: -nv—mz(n"_m) + Bny-—m-(»} —Tepm=rn u(n"‘m)]TP(V -m + 1) (14)

IAT'u-m-H crpem I(Ryem) + Bny-—m-{»} e (R )]
-+ -TT(nu-—m )Qz(nu-—m )

Topemrnd) =hipmm—1

+ > [4z(nem) + Biu(ny—m )] Ql4sz(muem) + Biu(ni-m)]

i=1

-+ (nv—m+] = Ny )ur(nu—m )Ru(nu—m)
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If we differentiate S,oy with respect to u(n,_,, ), then

. asm-!-] T -
m = Bﬁv—ﬂu{»l-nv—m P(U -m + .1)Anv—v1\+)-nv—mz(n"_m) (lo)
+ (Azy-m.‘” -_Nye—m P(V - m + I)Bﬂy—mq-l —Ny—m )TI(nV‘m)
+ 2‘8771.,_",4,] —TNywm P(V —-m + 1)‘an—m+} ~—Ny=m u(nu—m)
Nyeme] = Bpem=—1
+ S [2B7QA4;2(nuem) + 2BT QBu(nuem)]
J=1
+ 2(Mpemil = Poem ) BU(Ryemn)
= 2B e P =m+ D An,_ e (16)
Tpmms) =Ru—m=—1
+ Z BJTQAJ-}z(n,,_m)
=1
+ 2{BI P(v—m+1)B -
i Tpmma+] =Npem - Tipeem+] —NRywem

Tpemat) =Noe—m =1

+ > BTQB; + (nuemi1 = Tem)R}2(n0em)

1=1

Note that P(v —~m+1) is symmetric and the following three rules are applied to differentiate Sp43

2bove.
-:—I(zTQz) = 2Qz
;;(ITQy) = Qv
270y = 07
Let -‘-;f(‘i—'::—;—) = 0, from Lemma 1 and Lemma 2 given later we can obtain v°(n,_.) which
minimizes S,4; 2nd thus obtain £7.;.
W(niem) = Bl emen P =Mt DB (17)

Tovwemal = TNpem -1

- Z BJTQBJ' + (Ryemsr — nv—m)R}-]
J=1

Nipmme) ~Topvem -1

{Bzv—m-n"nv—m P(V - m + I)Anv—m-b}""w—m + Z BEFQAJ}z(nV—m)
J=1
= -K(v-m)z(ner)

where K (v — m) is defined in ( 17).
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"
Therefore, we can write
Anemrmren3(m) F Boyon 8 (Beem) = (15)
Aaemss e = Bosems e B (v = )2
) If we use ( 17) and ( 18), we have
: 2is = {emirmren = Broms e K (¥ = m)J(ir)) TPy = m 4 1) (19)

{[An,,_.m.,,) —Npwm Bny—m-{-l —Nyem ‘I\’(V - m)]x(n’”"m)}

+ T (nyem)QE(mrm)

Ryemil —Np—m -1

D {4 - B (v~ m)e(nm)}T Q{45 BiK (v = m)]z(nsmm))

+ (Puemtr = e [E (v = m)2(nsm )T RIK (v = m)2(n0mm)]

This equation can be rewritten as

- fon-}-l zT(nV‘m){[Anv—m-{-] -Tyem Bnu—m-{-l"'nv—mK(V - m)]TP(V -m + 1) (20)
[Anv—m-n —~Nyern ‘Bny—m-}l =Ny —m K(V - m)]

+ @

Ryemstl =NRp=m=—1

+ >, 4= BiK(v-m)TQ[A; - B;K(v - m)]

=1
+ (Pyemil = Bem )BT (Ryem ) RE (v — m)}2(Ryem ).

= IT(ﬂu-—m)P(V - m)z(ny—m)

where P(v — m) is obtained from K (v - m) and P(vr -~ m+ 1) asin ( 20). Also note that knowing

P{v — m <+ 1) is enough 1o compute K (v — m) because other terms of ( 17) are known a priori.

Therefore, we find 2 symmetric matrix P(v—m) satisfying 58, = 27 (Ryem )P(v=m)z(npem ).
From ( 17) and ( 20), we have the following recursive equations for obtaining P(v — m) from

P(v—m+1)wherem=1,2,...,v.

Ewv-m) = {B,{y_m“ cmo P ~m+ 1B imn (21)
Npwmil =Tivmgm—1
- + > BIQB; + (tyems1 = Ny )R}

=1

Tipmrnat ] “NRpwmm -1

{'BT:"A-,_,,,+; =Ty —m P(U -m + l)Anv—m—:l = TNyem + z ‘B,?QAJ}

=1
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Plv=m) = [An _ironecm = By mnuem E(v = m)TP(v = m + 1) (22)
[Anu—m+l—nv—m - an—mﬁ-l-nv—m-ﬁ—(y - m)]

+ Q

Tpema4) ~Npem=—1

+ > [A; = B K (v - m))TQ[4; — B;K (v - m)]

=1

+ (Myemt1 = B ) KT (v = M)RK (v ~ m)

Also, we know that at each time instant n,_,, A

U(nyem) = =K (v —m)z(nyem) (23)

Hence, with P(v) = Q, we can obtain K (i) and P(i) for i = v — 1,v — 2,...,0 recursively using
( 21) and ( 22). At each time instant n;A, i=0,1,2,...,v ~ 1 the new control input value will be
obtained using ( 23) by multiplying K (i) by z(n;) where z(n;) is the estimate of the system state
at n;A. Also, note that the optimal control cost is J§, = §2.; = z7(0)P(0)z(0) where P(0) is

found from the above procedure.
To prove the optimality of this control law we need the following lemmas.

Lemma 1 IfQ is positive semi-definite and R is positive definite, then P(i), i = v,u~1,v-2,....0,
matrices are positive semi-definite. Hence, P(i)s are symmetric from the definition of a positive

semi-definite matriz.

Proof Since P(v) = @ , from assumption P(v) is positive semi-definite. Assume that for
= 1+ 1, P(k) is positive semi-definite. We use induction to prove that P(i) is semi-definiie. ¥ote

that Q is positive semi-definite and R is positive definite. From ( 22) we have

P(i) = [Anyy-n = Bripy=n K@) P(i+1) (24)
[An.'q»:—r-; - Br-.‘u-n;K(")]
+ Q

o] ~Ny—1

+ 30 [A;- B KGN Q4 - BiK (i)

=1

+ (nis - m)KTERE()
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Since P(1+ 1) and Q are positive semi-definite, R is positive definite, and (n;4y — n;) > 0, it
is easy to verify that for Yy € R™ : y7 P(i)y > 0. This means that P(3) is positive semi-definite.

This inductive procedure proves the lemma.

Lemma 2 Given D,, the inverse matriz in ( 21) always ezists.

- Y= —Nyem=~1
Proof Lt V=BL . .  Pw-m+1)Bn_ i enm+t g™t BIQB; +
(ny—m+1 = Nty )R. From Lemma 1, P(v — m + 1) is positive semi-definite. Therefore, Yy € R™ :
y? Vy > 0 because Q is positive semi-definite, R is positive definite and n,_my3 — 7y—m > 0. This

implies that V is positive definite. Hence the inverse matrix exists.

Theorem 1 GivenD,, K (i) (1= 0,1,2,...,v—1) obtained from the above procedure are the optimal
feedback gains which minimize the cost function Jp (and Jp,) on [0, MA).

Proof Note that given D,, Jys is a convex function of u(=n;),i = 0,1,...,v = 1. Thus the
above feedback control law is optimal.

Lemma 3 Ifp<gand D, C D, , then J,‘Z{P ?_-Jﬁ{q where J,‘;,p and J,‘{{q are the optimal costs of

controls which change controls at time instants in D, and D, respectively.

Proof Suppose that J§, < Jj, . then, in controlling the sysiem with D, if we do not
change controls at time instants in D, —~ D, and change controls at time instants in D, to the same
control inputs that were exercised to get J3, with D, we obtain J M, which s equal 10 J3, . This
contradicts the fact that J§, is the minimum cost obtainable with D, since we have found qu

which is equal to J§, and therefore less than J§, . Hence, J§, > Jj; .

This lemma implies that if we do not take computation cost, u, into consideration, then the
more contro] exercising points, the better the controller is (less cost). With the computation cost
being included in the cost function, the statement above is no longer true. Therefore we need to
search for an optimal D, which minimizes the cost function J,,. The following sections provide 2
detailed discussion on searching for such an optimal solution. Note that if we let D, = D)s then

the optimal temporal control law is the same as the traditional linear feedback optimal control law.
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3.3 Optimal Temporal Controln‘ Law over D, Space with v Given

When the number of control changing points, v, and an initial svstem state z(0) are given, we
search over a set of possible D,s and Q(Du)s such that the cost function Jys is minimized. This
can be done by varying v — 1 control changing time instant's, i, 1=1,2,...,v—1 (since g = 0)
over the discrete set, Dps = {0,4,24,...,(M —1)A} and applying the technique developed in the
previous section for each given D,. Let us denote such a D, which minimizes Jys as D?. Note
that when v is given, minimizing Jps is equivalent to minimizing J),. Since both D, and u(D,)
are control variates, to be able to find a global optimal solution, either an exhaustive search or
some global search methods like Genetic Algorithm or Simulated Annealing should be considered.
Later we present & numericgl example in which an exhaustive search with Steepest Desceni Search
method is used. Searching for 2 globally optimal solution for a temporal controller calls for further

research.

3.4 Optimal Temporal Control Law

Assume that a maximum number of control changing points, vmez, is given. By varying v from
1 t0 V- we can find DJ. to obtain a globally optimal temporal controller which minimizes J}V,.
This can be done by first searching for D} for each given v and then comparing the cost function
J}'.‘,, = Jpy +vp at each DS, v = 1,2,....Ume-. That is, let J}jy = :T(O)P(O):(O) -+ vu where
P(0) is calculated at DJ as in the previous section. Then we can obiain a global minimum cost

J)} = MiNi<ugime. {/). } 20d an optimal number of control changes, +°, at which Ie = a5

3.5 Terminal State Constraints

The terminal state constraints mav be used to check if the optimal temporal controlier with D2.
can drive the sysiem stale to a permissible final state within a given time. Let X; be a set of
allowed terminal states, if z(n,) € Xy, then the control law is said to be stable in terms of the
terminal state constraints and not stableif z(n,) € X;. I the globally optimal temporal controller
obtzined from the above procedure is not stable, v* should be increased until = stable one is found.
One way of specifying terminal state constraints for regulators might be | z(M); |< ¢; where z(M);

is the ith element of z(M) state vecior.
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3.6 Algorithm to Derive an Optirﬁal Temporal Controller

To summarize the above discussion, we provide in Figure 2 a complete algorithm to search for a

globally optimal temporal controller under the assumption that the initial state z(0) is given.

In the algorithm, 2 neighbor of D, = {nol,n1A,n24,...,n,_1A} is defined to be any member
of aset N(D,) = {{nyA,m8,...,n,_,A}] |ni=n;|< 1,i=1,2,...,v—1}.

3.7 Optimal Temporal Controllers over an Initial State Space

Note that D9 might become different if 2 new initial system state £(0) is used instead of z(0) when
the state vector is in R™*! where m > 2. This is because the cost function Jps = z7(0)P(0)z(0)
depends on z(0) as well as P(0). Thus, D} is dependent on the initial state z(0). However, when
m = 1it can be shown that D¢ is independent of any initial state. To see this let z(0) = kz(0) € R?
and P(0) and P(0) be the optimal matrices with initial states z(0) and £(0), respectively. i.e.,

Im(2(0)) = =(0)P(0)=(0)

Inm(£(0)) = £(0)P(0)£(0)
From the optimality of P(0) with respect to £(0),

£T(0)P(0)2(0) > 27(0)P(0)2(0) (25)
Multiplving the above inequality by iz? we have
k227 (0)P(0)2(0) z7(0)P(0)z(0)

k2z7(0)P(0)2(0)
27 (0)£(0)z(0) (26)

v i

On the other hand, due to the optimality of P(0) we have
zT(0)P(0)(0) > =z7(0)P(0)z(0) (27)

Therefore, P(0) = P(0). This implies the optimality of P(0) 20d D¢ for zny initial state
z(0) € RL.

Generally speaking, the above result will not hold for m > 2 cases. However, using the same
argument discussed above we can prove that for any initial state z(0) = £z(0), z(0) 2nd Z(0) will

bave the same D? as well as the same P(0).
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ve=1
J;f,} = -
for v = 110 vpmes {
/* Several different search starting points */
for i = 1 to NumlInitPts, {
D, = Dim'z,i
/* Iterate until a local minimum is found - Steepest Descent Search */
while (MinimumFound != True) {
Find optimal costs for neighboring points of D, using theorem 1
if ( J)s bas 2 Local Minimum at D,)
then {
MinimumFound = True
Jyy, = Cost(Jy) at D, }
else

D, = 2 neighbor of D, with the smallest J,,

}

J8 = mimcicNuminitPrs, { a7, }
if (Jg < 0% )

then {

}

Tigure 2: Complete algorithm to find an optimal temporal controller.
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4 Implementation

To implement temporal control, we need to calculate and store K'(i) matrices in ( 22) and use them
when controlling the system utilizing ( 23). Note that in traditional optimal linear control a similar
matrix is obtained and used at every time instant in Dy to generate control input value. While
the feedback gain matrices for traditional linear optimal controller are independent of injtial states,
the number of control exercises, v, and A '(7) matrices are dependent on initial states for temporal
contro] systems. But, if the possible set of initial states is in R* they are independent of the initial
states. Effective deployment of temporal control requires that we know the range of initial state
values and generate X (i) matrices for each group. A sensitivity analysis is required to determine
how many distinct matrices need to be stored.

In order to implement temporal control we require an operating system that supports scheduling
control computations at specific time instants. The Maruti system developed at the University of
Maryland is a suitable host for the implementation of temporal control [10, 8, 7]. In Maruti, all
executions are scheduled in time and the time of execution can be modified dynamically, if so
desired. This is in contrast with traditional cyclic executives often used in real-time systems, which
have 2 fixed, cyclic operation and which are well suited only for the sampled data control systems
operating in a static environment. It is the availability of the system such as Maruti that allows

us to consider the notion of temporal control, in which time becomes an emergent property of the
system.

5 Example

To illustrate the advantages of 2 temporal control scheme let us consider 2 simple example of rigid

body satellite control problem [12]. The svstem state equations are as jollows:

AT AT B P
k) =0 1R ons | M)
(k) = |1 1]z2(%)

where k represents the time index and one umnit of time is the discretized subinterval of length

A = 0.05. The linear quadratic performance index J,, in ( 3) is used here with the following

parameters.
10
Q =
01
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R = 0.0001

p = 0.02 & 0.01
M = 40

A = 0.05

& = 001, i=1,2

0.5

L J

The objective of the control is to drive the satellite to the zero position and the desired goal
state is z; = [0, 0)7. The terminal state constraint is | z;(40) |< ¢ i = 1,2. With the egual
sampling interval A = 0.05 and M = 40 the optimal linear feedback control of this system has cost
function Jy, = 0.984678 (without computational cost) and J}d = 1.784678 (with computational
cost) and is shown in Figure 3. The terminal state constraint is satisfied at 0.8sec.

If we 2pply the temporal control scheme presented 2bove to this problem with p = 0.02 we find
that the optimal number of control changes for this example is 3 and D§ = {0,24,10A} with a
cost J), = 1.08388. Note that the 40 step optimal linear feedback controller given above has 2 cost
Jys = 1.784678 when computation cost is considered. Table 1 shows how this optimal controller
is obtained when we sel vpmc- = 7. Figure 4(2) shows the system trajectory when this three-step
optimal temporal controlier is used to control the syvstem. This trajectory satisfies the terminal

state constraint at 0.8sec 2s well. Also, the maximum control input magnitudes, | % |mea=, In both

54




n | D° Cost(J),) with p = 0.02 | Cost(J,,) with g = 0.01
11 {0} 4.63089 + p = 4.65089 | 4.63089 + u = 4.64089
2 1{0,1} 1.44603 + 21 = 1.48603 1.44603 + 21 = 1.46603
3| {0,2,10} 1.02388 + 3x = 1.08388 | 1.02388+ 3u = 1.05388
410,2,9,11} 1.02224 + 4 = 1.10224 | 1.02224 + 4p = 1.06224
151{0,1,3,8,11) 0.996968 + 5u = 1.096968 | 0.996968 + 51 = 1.046968
6 | {0,1,3,8,11,24} 0.996746 + 6u = 1.116746 | 0.996746 + 61 = 1.056746

-

{0,1,3,8,11,23,25} | 0.996745+ Tu = 1.136745 | 0.996745 + 7p = 1.066745

Table 1: Calculating optimal temporal controllers.

controllers lie within the same bound B = 50, which may be another constraint on control.

The optimal temporal controller found with g = 0.01 has v = 5 and D¢ = {0,4,34,84,11A}
with a cost Jys = 0.996968. Note that this cost is even less than 1.01269 which is obtained from
the optimal controller with equal sampling period 0.1sec and 20 control changes.

If we change control values only at three time instants with equal sampling period, 13M =
0.65sec, the total cost incurred is 2.2823(without computational cost) on the time interval [0,2].
The cost is more than twice that of our optimal temporal controller and the terminal state constraint
is not satisfied even at the end of the controlling interval of 2.0sec. Figure’4(b) clearly shows the
advantages of using an optimal temporal controller over using an optimal controller of equidistant
samplings. Their periormances are noticeably different though both of them are changing controls
at three time instants. It is clear that the optimal temporal control with three control changes
performs almost the same as 40 step linear optimal controller does. This implies that enforcing the
constant sampling rate throughout the entire controlling interval may simply waste computational
power which otherwise could be used for other concurrent controlling tasks in critical sysiems.

Obtaining D3 jor this example was simple since J4o has only one minimum over the entire set
of possible D3s on [0,40A). Figure 5(z) and Figure 5(b) show that J4 has only one local{global)
minimum at D§ = {0,2A,10A}. We got this optimal D3 by doing steepest descent search with the
starting point D3 = {0, A,10A} after searching for only three points, {0, 4,104}, {0,24,104},
{0,34,10A}. Also, Figure 5(a) shows that choosing n; has greater infiuence on the total cost than
ny since the cost varies more radically along the n; axis in the figure. This means that the initial
stage of the contro] needs more attentior than the later stage in this linear control problem.

But, if we change one of the parameters of performance index functior, R, from 0.0001 to 0.001

we get 1wo local minima at D} = {0,A,2A} 2nd D2 = {0,3A,19A}, among which D3 is the
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(2)
03 _ \//s\i

(b)

Figure 4: Control trzjectories with 3 control changes. (a)Optimal temporal control with D§ =
{0.2A,10A}. (b)Opiimal Linear control with 134 (0.65sec) period.
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(b)

Figure 5: Cost function distribution over (ny,7n;). (2)Costs on D3 space. (b)Costs near D3
{0,24,104}.
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Cort

Figure 6: Costs near D} and D2 with R = 0.001.

optimal one with less cost. Figure 6 shows this fact. In this case we need to use steepest descent
search method at least twice with different search starting points to get an optimal solution. We
implemented this steepest descent search algorithm in Mathematica and used it to generate D¢ for
several examples by varving v. Yor our examples of linear time invariant system control problems
the pumber of local minima was not so large that we could efficiently apply this search method
just a few times with different initial Di™s to get a global minimum without doing an exhaustive

search over the entire D, space.

6 Daiscussion

Employing the temporal control methodology in concurrent real-time embedded syvstems will have
a2 significant impact on the way computational resources are utilized by control tasks. A minimal
amount of control computations can be obtained for a given regulator by which we can achieve
almost the same control performance compared to that of traditional controller with equal sampling
period. This significantly reduces the CPU times for each controlling task and thus increases the
number of real-time control functions which can be accommodated concurrently in one embedded
system. Particularly, in a hierarchical control system if temporal controllers can be emploved for
lower level controllers the higher level controllers will have z great degree of fiexibility in managing
resource usages by adjusting computational requirements of each lower level controller. For example,

in emergency situations the higher level controller may force the lower level controller to run as

58



infrequently as they possibly can (thus freeing computational resources for handling the emergency).
In contrast, during normal operations the temporal control tasks may run as necessary, and the
additional computation time can be used for higher level functions such 2s monitoring and planning,
etc. '

In addition, the method developed in Section 3.2, which calculates an optimal controller when
control changing time instants are given, can be applied to the case in which the control computing
time inStants cannot be periodic. For example, when a small embedded controller is used to
control several functions, it may be a lot better to design a temporal controller for each function
such that the required computational resources are appropriately scheduled while retaining the

required degree of control for each function.

7 Conclusion

In this paper we proposed a temporal control technique based on a new cost function which takes
into account computational cost as well as state and input cost. In this scheme new control input
values are defined at time instants which are not necessarily regularly spaced. For the linear
contro] problem we showed that almost the same quality of control can be achieved while much less
computations are used than in a traditional controller.

The proposed formulation of temporal control is likely to have a significant impact on the
way concurrent embedded real-time systems are designed. In hierarchical control environment,
this approach is likely to result in designs which are significantly more efficient and flexible than
traditional contro] schemes. As jt uses less computational resources, the lower level temporal
controllers will make the resources available to the higher level controllers without compromising

the quality of control.
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Abstract

The real-time systems differ from the conventional systems in that every task in the real-
time system has a timing constraint. Failure to execute the tasks under the timing constraints
may result in fatal errors. Sometimes, it may be impossible to execute all the tasks in the task
set under their timing constraints. Considering 2 system with limited resources, one solution
to handle the overload problem is to reject some of the tasks in order to generate a feasible
schedule for the rest. In this paper, we consider the problem of scheduling a set of tasks without
preemption in which each task is assigned criticality and weight. The goal is to generate an
optimal schedule such that all of the critical tasks are scheduled and then the non-critical tasks
are included so that the weight of rejected non-critical tasks is minimized. We consider the
problem of finding the optimal schedule in two steps. First, we select a permutation sequence
of the task set. Secondly, a pseudo-polynomial algorithm is proposed to generate an optimal
schedule for the permutation sequence. If the global optimal is desired, all permutation sequences
have to be considered. Instead, we propose to incorporate the simulated annealing technique to

~ deal with the large search space. Our experimental results show that our algorithm is able to
generate near optimal schedules for the task sets in most cases while considering only a limited

number of permutations.

“This work is supported in part by Honeywell under N00014-91-C-0195 and Army/Phillips under DASG-60-92-
C-0055. The views, opinions, and/or findings contained in this report are those of the author(s) and should not be
interpreted as representing the official policies, either expressed or implied, of Honeywell or Army /Phillips.
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1 Introduction

Real-time computer systems are essential for all embedded applications, such as robot control, flight
control, and medical Instrumentation. In such systems, the computer is required to support the
execution of applications in which the timing constraints of the tasks are specified by the physical
system being controlled. The correctness of the system depends on the temporal correctness as
well as the functional correctness of the tasks. Failure to satisfy the timing constraints can incur
fatal errors. How to schedule the tasks so that their timing constraints are met is crucial to the
proper operation of a real-time system.

As an example of an embedded system, let us consider the air defense systemm which monitors
an air space continuously using radars. Whenever an intruder is identified, the embedded control
system characterizes it and proceeds to initiate the responsive action in 2 timely manner. The
temporal constraints for this phase of processing are different depending on the intruder, whether
it is 2 missile, a fighter, 2 bomber, 2 dummy, etc. Such 2 system is designed to handle a number of
intruders concurrently. If the processing requests exceed the capacity of the system, we expect the
system to handle a set of the most significant intruders, and not any arbitrary set of intruders. This
involves rejecting the processing of some real-time tasks based on their importance. In this paper,
we consider the problem of creating a schedule jor 2 set of tasks such that all critical tasks are
scheduled, and then, among the non-critical tasks we select those which can be scheduled feasibly
while maximizing the sum of the weights of selected non-critical tasks.

As all systems have finite resources, their ability to execute a set of tasks while meeting the
temporal requirements is limited. Clearly, overload conditions may arise if more tasks have to be
proces;ed than the available set of resources can handle. Under such overload conditions, we have
two choices. We may augment the resources available, or reject some tasks (or both). In [8). 2
technique was presented to handle transient overloads by taking advantage of redundant computing
resources. Another permissible solution to this problem is to reject some of the tasks in order to
generate a feasible schedule for the rest. Once 2 task is accepted by the system, the system should

be able to finish it under its timing constraint. Some algorithms may have been shown to perform

64



well under low or moderate resource utilization. However, their performance degrades if the system
is overloaded [2). For exami)]e, the EDT algorithm has been shown to be optimal for 2 periodic task
set [6). If there exists a feasible schedule for the task set, EDF can come up with one. However,
if the task set is not feasible, EDF may perform unsatisfactorily. The reason is that a task with
urgent deadline may not be able to finish before its deadline. But, due to its urgent deadline, the
task has a high priority to use the processor and thus keeps wasting the CPU time until the task
expires after its deadline. The waste of CPU time may further prevent other tasks from meeting
their deadlines. The other problem is that there is little control over which tasks will meet their
deadlines and which will not. ’

For an overloaded system, how to select tasks for rejection on the basis of their importance
becomes a significant issue. When the tasks have equal weight, an optimal schedule can be defined
to be one in which the number of rejected tasks is minimized. In-our previous study |3], we used a
super sequence based scheduling algorithm to compute the optimal schedule for the tasks. In this
paper, the criticality of the tasks are taken into consideration. Basically, if 2 task can not meet
its deadline, it is rejected so that the CPU time would not be wasted. Secondly, we would like to
schedule tasks such that the less important tasks may be rejected in favor of the more important
tasks. We classify tasks into two categories: critical and non-critical. The critical tasks are crucial
to the system such that they must not be rejected. The non-critical tasks are given weights to
refiect their importance, and are aliowed to be rejected. A schedule is feasible if all critical tasks
in the task set are accepted and are guaranteed to meet their timing constraints. If there exists
no feasible schedule jor the task set, the task set is c'onsiderd infeasible. 'i‘he loss of a schedule is
defined. to be the sum of the weights of the rejected non-critical tasks. A schedule is optimal if it
is feasible and the loss of the schedule is minimum. '

We first propose a Permutation Scheduling Algorithm (PSA) to generate an optimal scheduiz
for 2 permutation, which is 2 well defined ordering of tasks. When it comes to scheduling a task set
of n tasks, in the worst case there might be up to n! permutations to consider. We propose 2 Set
Scheduling Algorithm (SSA) which incorporates the simulated annealing technique [9) to deal with
the large search space of permutations. PSA is invoked by SSA to compute the optimal schedule for
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cach permutation. Taking the feedback from the sclxedulabi.ﬁty and loss of the schedule generated
by PSA, SSA is able to control the progress of search for an optimal schedule for the task set. Our
experimex{tal results show that SSA is able to generate feasible schedules for task sets consisting of
100 tasks with success ratios no less than 98% and loss ratios less than 10% for most cases while
searching less than 5,000 permutations. For each permutation, the average number of schedules
computed to generate an optimal schedule‘by PSA, which is invoked by SSA, is usually less than
500. The SSA algorithm can be considered efficient in dealing with the exponential search space
for coming up with a satisfactorily near optimal schedule.

In the following section, we define the scheduling problem. In section 3, we present the idea
about how to schedule a permutation. In section 4, we incorporate the technique of simulated
annealing and discuss how to schedule a task set. In section 5, the results of our experiments are

presented, which is followed by our conclusion.

2 The Problem

A task set is represented as I' = {7},72,...,7n}. A task 7; can be characterized as a record of
(ri.€i.d;, w;), Tepresenting the ready time, computation time, deadline, and criticality of the ith
task. Time is expressed as z rezal number. A task can not be started before its ready time. Once
started, the task must use the processor without preemption for ¢; time units, and be finished
by its deadline. If a task is very important for the system such that rejection of the task is not
allowed, w; is set to be CRITICAL. Otherwise, u; is assigned an integral value to indicate its
importance, and is subject to rejection if necessary. A permutation sequence, or simply abbreviated
to 2 permnutation, is an ordered sequence of tasks in the task set. Scheduling is a process of binding
starting times to the tasks such that each task executes according to the schedule. Note that a
norn-preemptive schedule on a single processor implies a sequence for the execution of tasks. For the
convenience of our discussion, we hereafter use a sequence t0 represent the schedule in the context.
A permutation is denoted by w= {my,..,7n), Where 7; is the ith task in the permutation. A prefix

of 2 permutation is denoted by pi = (71,...,7x).

66




To schedule 2 task set, we need to takeinto consideration the possible permutations in the task
set. We first consider an algorithm for scheduling 2 permutation. The finish time of a schedule is
the finish time of the last task in the schedule. Let Si(1) denote a schedule of u; with finish time
no more than t. We use W(S5,(1)) to represent the weight of Si(1), which is the sum of the weights

of non-critical tasks in the schedule. A feasible schedule of u; is defined as follows:

Definition: Si(t),1 < k < n, is a feasible schedule of p at 1, if and only if:
1. Sk(t) is a subsequence of py,
2. the finish time of Sk(1) is less than or equal to ¢, and
3. al) critical tasks in pj are included in Si(2).

An optimal schedule of p; is defined as follows:

Definition: ok(t) is an optimal schedule of y; at t, if and only if:
1. ok(1) is a feasible schedule of yx, and
2. for any feasible schedule Si(2) of px, W(or(t)) 2 W(Sk(1)).

In other words, an optimal schedule is 2 feasible schedule with minimum loss. There are possibly
more than one optimal schedules for p; with finish time less than or equal to 1. We donote by
Zi(2) the set of all of the optimal schedules for p; 2t . Hence, if Si(t) € (1), Sk(?) is an optimal
schedule for p; at t.

The scheduling problem considered here is NP-complete. To prove that, its related decision
problem, which is defined to be computing a feasible schedule with loss no more than a given
bound, can be easily shown to be NP-complete. This can be done by restricting to PARTITION
problem [1) by setting r; = 0, w; = ¢;, d; =--15 =1Chforl<icn

3 Scheduling a Permutation

We consider the problem of finding an optimal schedule for the task set in two steps — select a
permutation, and find an optimal scheduie ior the permutation. The methodology is presented in

Figure 1.
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Loop 1: Cloose 2 permutation wof T
Loop & for ., k=1,2,...,»
Loop 3: compute o,(t)

Figure 1: Methodology

Clearly, to find the optimal schedule for the task set, all possible permutations have to be
considered. How to search the permutations will be addressed in section 4. In Loop 3, optimal
schedules for u; are computed at some time instants. Next, we discuss how to compute o,(1) for

given ¢ in the following, and ther discuss how to determine the time instants for p.

3.1 Computing o(t)

We use dynamic programming to compute oi(1) based on o,_;(t'), with ¢/ < t. The criticality of
7x plays an important role in computing ox(1).

I 74 is a critical task, we have to schedule it, possibly at the cost of rejecting some of the
non-critical tasks. Hence, o0i(1) = Si_1(t') © 7&, for some schedule S;-1(t'), where & means
concatenztion of the sequence and the task. The finish time of Sp-;(¢') must be no more than
t ~ ¢ in order 1o a2ccommodate 7, which leads to ' < t — ¢x. The best candidate could be

Oi-1(t = ci). Hence,
or(l) = it = ck)e'rk, (1)

which can be seen in Figure 2. Note that o,(t) only exists for 2 proper range of &. That is, ox(1) is
infeasible when 1 is beyond the proper range, e.g., 1 < Ti + €4, or if 041(t — ¢i) is infeasible. The
range would be considered in details later.

If 7, is non-critical, our concern is to obtain as large a weight for the schedule as possible, while

the critical tasks accepied previocusly must be kept in the schedule. Computation of o(t) is based
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Figure 2: Scheduling for 7

upon the choice between either including 74 or not. That is,

rey (1~ Ck T

oxt) =14 ° 1(l~c)B T or (@)
Ok-1(t)

which can be seen in Figure 2. The factors for making the choice are the feasibility and the weights

of the two candidate schedules. That is, the choser schedule has to be feasible in the first place,

and has a weight more than or equal to the other.

3.2 Time Instants for Computing o.(1)

From Equations 1 and 2, the computation of ok(t) is based on the results of ox-1(t) and ox—y(t~ck).
We do not need to look for all possible values for t. We can get the idea about howto determine the
time instants { by a simple example in Figure 3. The ready times, computation times, deadlines,
and weights are given to the tasks in p3 = {r, 72, 73).

The following schedules §or g3 can be easily verified.

03(1) = INFEASIBLE
o3() = (r3)
o3(t) = (72, 73)

o3(t) = (71,73)

W(os(1)) =0
W(oa(t)) =5
"V(Og(i)) =10
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k|
0.5 =6 . 12
n ——— l wi =10
2 =3 7.5
T e ws =3
3.5 ¢e3=25 10

Figure 3: p3 = (7, 72,73)

In general, there exist a number of subranges in each of which the schedules are exactly identical,
which are illustrated in Figure 4. We only need to compute the schedules at the time instants
which delimit the subranges, i.e., 6,7.5, and 9. We call these time instants scheduling points. The

scheduling points can be determined by the timing characteristics of the tasks. -

0 6 1.5 9 12
Figure 4: Identical subranges

3.3 Definition of Scheduling Points ': |

We denote the jth scheduling point for ux by Ax;, and call § the indez of A¢ ;. Hence, ox(Ai ;) de-
notes an optimal schedule for u; at the scheduling point Az ;. Let v, be the total number of schedul-
ing points zt which we need to schedule px. For simplicity, A; denotes the set of Aky, Ak2y- -y Akuys
and o4 the set of 0x(Ax1),06(Ak2),. .., 0k(Aiys, ). The scheduling points are defined as follows.

Deﬁnition: The set of scheduling points, A, is complete if and only if:
1. Jor any t < Axq, Zi(2) is empty,
2. Jorany Ay 1< Apgaanfori= 1,000 00~ 1, 0x{ 3 ) € Ti(t), and
3. for any 1 2 Ai o,y 0x( i, ) € Zi(2).

Note that Ii(t) being empty means that there is no feasible schedule with finish time less

than or equal to 1. And also remember that ox(Ax;) € Ti() means that o,()\i;) is an optimal
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schedule for px at {. The completeness of scheduling points indicates that al ef the optimal
schedules at the positive real time domain can be represented by the optimal schedules computed
at the scheduling points. In addition, the set of scheduling points, Ak, is minimum, if and ozly if
W(or(A;)) < W(ok(Akj+41)), for any 1 £ 7 < v — 1. This ensures that there does noi exist any
redundant scheduling point which, if removed, does not violate the completeness of the scheduling

points. The sets of scheduling points that we will discuss are complete and minimum.

3.4 An Example for Deriving Scheduling Points

The values of A, depend on the temporal relatlions between 7, and Ax_y. The example in Figure 5
is used to illustrate the relations. We only describe the idea of deriving scheduling points by the
example, and will discuss in more details |ater. Assume that there are 5 scheduling points for px_,,
and we consider to compute o, based on ok-¢. The current task, 7, may be ¢ritical or non-critical.

scheduling points for p-; :

Ak-1a Akm12  Ak-13  Ak-14 Ak-1.5
1 1 T
] T I

scheduling points for px: e+ e Apmio+cr Ak-13+ Ck

time

Tk di
I |

Figure 5: Scheduling Points

First, let us assume that 7; is critical, which means that 7, must be the last task in any feasible
schedules for u;. A schedule for u; is thus a schedule for u;_; concatenated by 7x. Hence, the
optimal schedules for p; can be computed by appending 74 to 033(j), 5 = 1,...,vx-1. One
restriction is that 7, must be able to execute during its time window, from r to di. Hence, the
scheduling points are Ax_y; + ¢k, 7 = 1,...,vx-, subject to the timing constraint of 7;. In the
example, because rx > Ax_y, the first scheduling point is Ax; = 7x + ¢z The first and the rest

scheduling points are expressed in Equations 3-5. Notice that Ax.y 4 + ¢x > di. Hence, there ar
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only 3 scheduling points for ;.

Ak =Tk ek and o3{Ax1) = Opr(Ak-1,) B Tk (3)
Ak2 = Ak-12+ ¢k and o(Ai2) = Or1{hea12) B Ti . : (4)
A3 = Mzt ex and ox(Ax3) = k1 (Ak-13) @ 7 (5)

On the other hand, let us assume that 7; is non-critical. As a non-critical task, 7 is not necessarily
included in the schedule of ux. Whether to include 74 or not depends on how much weight may be
gained by including 7. If 7 is included in the schedules, the new possible scheduling points for u;

are expressed in Equations 6-8.

k1 = Tk+Ck and 0, (AL;) = ok1(Pk-1,) B 7k (6)
A2 = Aoz + o and oi(Ak o) = ok (Mk12) © Tk (7)
Xia = Me-1a+ cr and 0;(Aia) = 0e1(Mk-13) BT (8)

If 74 s not included, the scheduling points for p; are Ax_y 5, = 1,..., vk—1. The scheduling points

for pj can be derived by, first, merging and sorting A} and A;_;, which gives

' '
Ak—l.la _>‘_k~1.2’ Ak,]a Ak-1.39 Ak—lﬂa Ak'z» )‘;;,33 Ak—l.s- (g)

Then, the resultant array of scheduling points should foliow the rule that the weights of the optimal
schedules 2t the scheduling points in the resultant array in Equation 9 should be strictly increasing.

We remove any scheduling point if necessary.

3.5 Deriving Scheduling Points

By the example illustrated in Figure 5, A; can be derived from A;_; and 7. Note that a scheduling
point indicates the finish time of a schedule. If we want to append Tk t0 0x—3(Ak-1;), T& can not be
started before Aj_y;. This implies that A\; can be determined by the temporal relations between
Ax-1, the finish times of oz, and the start time of 7. Specifically, we need to explore the temporal

relations between the earliest start time, r4, the latest start time, di ~ ¢k, of 74, and the lower and
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upper bounds 1o be defined below. We define the lower bound‘Lk_] = Ax-34,and the upper bound

Upo1 = Mkmlvpmy- 1D particular, they have the following meanings.

Li_1: the largest time instant such that there is no feasible schedule for k- with
finish time less than Li_1.
Ui-y: the Jeast time instant such that the optimal schedule for pr—y With finish time

greater than Ux-y can be ket Ak=t.vams)-

The six possible temporal relations in Equations 10-15 can be used to determine Ax.

di = ¢x < Li=1 £ Uia ' (10)
i < L=y S di = ¢k < Uk (11)
Loy < 1o < di = €& < Uk (12)
i < Lo S Uk S i~ G (i3)
Lisy <k SUra £ dy —ck (14)
Lioy S Uk-y < Tk (13)

The temporal relations are ilustrated in Figure 6, and can be summarized in three cases. The
method for constructing scheduling points according to the temporal relations is discussed mnext.

The correctness of the method, i.e., the completeness and minimization of the scheduling points ,

is verified later.

3.5.1 74 is Critical

The task 7x must be the last 1ask in any feasible schedule of . Remember that ox(t) can be
computed by Equation 1. In the following, we discuss how to derive the scheduling points for the
three cases. The readers may refer to the algorithm in section 3.7 for details:

Case 1 di — ¢k < Lix-1: ¥ is not feasible. Remember that there exists no {easible schedwe ior
px with finish time less than Li—y, due to e completeness cf scheduling points, and that dx — ¢k

is the Jatest start time for 7. Hence, px is not feasible, and thus the whole permutation, y, is not

{easible.
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Tk
Ty di — ¢k
l —
: Lx Uk-1 (10) ----casel
L Lie U (A1) 7
: : !
Lo o U (12) 0 e 2
Liy Uk-1 (13) :
Li-y Uk- (14) .
Ly Uk-1 . (15) --~=-(Case 3

Figure 6: Temporal relations

Case 2 (ry € Li~y < di = ci) or (Lk~y < 7k < Uk-1) : The scheduling points for pj is the
set of Ay + Cky J = 1,...,0k-1, Subject to the constraints that v4 must start after r, and finish

before d;. Specifically, Ax can be derived by Equations 16 and 17.
Ak.l = ma.:().k_m + Ci,Tr + Ck) (16)

Let Jmin 2nd Jmo- denote the smallest and the largest integers of j satisfying Ax1 < Ak—yj+cx < di.

The rest of the scheduling points can be computed by
Mei = Ape1g + €k, where Jmin €7 < Jmaz 0nd 1= J = Jimin + 2 (a7)

Note that vx = Jmez — Jmin + 2. The example giver in Figure 5 falls in this case.
Case 3 Ui—y < 7;: there is only one scheduling point. Since 74 is the earliest start time for 74,

the only scheduling point is v + ci.

3.5.2 7 is Non-critical

Remember that 0;(f) can be computed by Egquation 2. The non-critical task 7 is not necessarily
included in the schedule for uz. Whether to include 74 or not depends on how much weight may

be gained by induding 7. Let us consider the three cases.
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Case 1 dj — ¢ < Ly—y: do nothing. The latest start time of 7; is less than the lower bound,
Li_y; hence, 7, can not be included in any feasible schedule. The scheduling points and schedules
for px_; remain the same as the scheduling points and schedules for px. In our implementation,
to save time and sp.ace, Ak-y and A; use the same memory spaces; also, 0j—; and 0 use the same
memory spaces. So now Ay = Ay and 0f = 04_3.

Case 2 (r; € Lyoy € dx —c) or (Lgmy < 1 € Up—y) : I 74 is included, the new possible
scheduling points for puy is the set of Ax_y ;+ ¢k, 7 = 1,...,vk-1, subject to the constraints that 7
must start after ry, and finish before di. Specifically, the new possible scheduling points , A}, can

be derived by Equations 18 and 19.
Mea = maz(Apo1y + ek, Tk + ck) (18)

Let Jmin and Jmer denote the smallest and the largest integers of j satisfying A} ; < Akoy ek £ i

The rest of the scheduling points are

i = Mo1j + Cky where Jpmin <5< Jmez and i = 5 = Jmin + 2 (19)
If 7 is not included, the scheduling points for u; are the old ones for ux_y; i.e.,

Mic1gy 3= 1,000, Viss (20)

It is worth mentioning that some optimal schedules may include 74, and some may not. The

scheduling points, A, can be derived by the following two steps.

1. Merge and sort the two arrays of scheduling points, A} and Ms_;, in Lguations 18-20.

2. The resultant array of scheduling points should follow the rule that the weights of the optims]
schedules at the scheduling points should be strictly increasing. We remove any scheduling
point that has a smaller weight than that of its preceding scheduling point in the array.

The example given in Figure 5 falls in this case.

Case 3 Ui~y < 74: add one more scheduling point. The earliest start time of 7, is greater
than the upper bound, Ux_;; hence, the new scheduling point is 74 + ¢;. The weight of the
optimal schedule computed 2t this scheduling point is W(ot1(Ak=14,_,))+ws, which is larger than
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W (0k-1(Mk-1.3s_,))- So this scheduling point must be intluded to make the set of scheduling points
for py complete. Note again that the scheduling points and schedules for jix—, remain unchanged
as the scheduling points and schedules for p;; i.e., Akj = Ak-1,; and 0k(Aky) = 0k=1(Ak=1), for

j=1,...,04-1. However, Axy, = ri+ci and Ok(Akp, ) = Ok—1{Ak=1,0p_, )BTk, Where v = vy +1.

3.6 Completeness and Minimization of Scheduling Points

We would like to show that the sets of scheduling points derived in the three cases are complete
and minimum. Note that cases 1 and 3 are special cases, and are not difficult to verify. Hence, we
will only briefly discuss case 2. If 7, is critical, we would like to show that If Ax_; is complete and
minimum, Ax derived by Equations 16 and 17 is 2iso complete and minimum.

Condition 1 of completeness: Due to the completeness of Ax—j, Zx_1(t) is empty when ¢ <
MAk-11- Equivalently, T;_y(t — cx) is empty when t < k-1 + ¢ According to Equation 1,
ok(1) = 0x_1(t — cx) © 7x. Hence, ok(1) does not exist when ¢ < Xx-1,1 + ck- On the other hand,
since 74 is critical, ox(1) does not exist when ¢ < rx 4 ¢, which is the earliest finish time of
75. Therefore, Tx(t) is empty when t < Axjy. This shows that condition 1 of the definition of
completeness is satisfied.

Condition 2 of completeness: Due to the completeness of A;_y, ox—3{Ak=1) € Tk-1(t), for any
M—1; €t < Ajoyjey. By Equation 1, ok—1(Ak-15) © 7k is an optimal schedule at Ayx_y; + ¢k
for ui. Hence, o4_1(Mic1;) € 7k € Zk(1), for Ajoyy 4+ ek €1 < Apoyj41 + k- By Equation 17,
Aki = Aoy + ek, for i = J — Jpmin + 2, which indicates that ox(Ak;) = 0k-1(Ak-1;) & 7k. Besides,
Akt = Akc1g41 + &k, Jor i+ 1= j+ 1 = Jmin + 2, by Equation 17. Therefore, ox(Ars) € Zi(1),
for Ax ;<1< Agiz1. This shows that condition 2 of the definition of completeness is satisfied.

Condition 3 of completeness: We know that vy = Jmoz = Jmin + 2. By Equation 17, Ax,, =
Ake1Jme; + Ck, Which indicates that ox(Ax,.,) = Ok—1{Ai-1Jm.,) ©® & Due to the completeness
of Axo1, Oka1(Akctdmes ) € Tica(l), for Apmy gnr. € 1 < Akcidmes+1y OF Just Agy g, S tif
Jmez = k3. By Eguation 1, 04-1{dk-1 J..,) ® 7k is an optimal schedule at Ax_j J,.., + Ck

for px. Hence, 0xo3{Akct Jpmes) @ Tk € Zi(t), for Aky .., + ¢k < 1. Note that the range of
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1 < Ako1,Jmes+1 -+ Ck is removed. Because Jynqz is the largest integer of j satisfying Agqj+ ¢ < dy,
the schedule ox—3 (A ko1 Jomas+1) @. 7, would not be feasible. Sincr ok(A k. ) = Tk-1(Ak=1Tpeas) O 7k,
ok(Akv,) € Zk(t) for Mgy, < t. This shows that condition 3 of the definition ‘of completeness is
satisfied.

Minimization: By Equation 1, W(o(1)) = W(ox_1(t = ci) ® %) = W(0ok-1(L ~ cK)), Since a
critical task has no weight. Because Axy is minimum, W(ok-1(Ag-1,;)) < W(0k-1(Mk-1,j+1))
for any 1 € j £ wmy — 1. That is, W(ok—1(Ak=15) ® 7x) < W(ok-1{Ak=1,+1) & i), for any
1 < j £ vy — 1. By Equations 16 and 37, W(ok(Aio1; + cx)) < W(ok(Ak=1,j41 + cx)), and thus
W (0x(Aki)) < W(ok(Akie1)), for any 1 < i < vy — 1. This shows that Ay is minimum.

If 7 is non-critical, 74 may be included or not included in the optimal schedules for px. Assuming
that 7% is not included in any of the optimal schedules, Ay = Ax_; is complete, since Ax.; is
complete. However, including Tx may gain some more weight, so we also need to consider the
schedules including T;. If 74 s included in the optimal schedules, A} derived by Equationt 18 and
19 is the complete set of scheduling points for the optimal schedules including 7, by the same
reason described for the critical task. Hence, it is sufficient to construct the complete set of A;
by selecting from A} and A;_;. Since whether to include 7; or not does not affect the feasibility
of the schedules, we only need to consider the weights of the optimal schedules. A complete set
of scheduling points indicates that the weights of the optimal schedules at these scheculing points
should be non-decreasing. Furthermore. a complete and minimum set of scheduling points indicetes
that the weights of the optimal schedules at these scheduling ponts should be strictly increasing.
Hence, we can merge and sort the two arrays of A} and Ax_,, and remove any scheduling point

that has a smaller weight than that of its preceding scheduling point in the array. The resultant

scheduling points is thus complete and minimum.

3.7 The Permutation Scheduling Algorithm (PSA)

Algorithm PSA:
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Input: a permutation sequence p = (7y,72,...,Tn)

Output: an optimal schedule g,.(}, .,)

Initialization: vp = 1; Aga = 0; op{Ap2} = {}; W{oo(A01)) =0
fork=1lton
case 1 (dy — ¢x < Lg—y) : (i is not feasible)

exit

case 2 (rp £ Ly-y L di = cx) or (Lg—1 < i € Up—y)

Computation for the first scheduling point:
Aka = maz(Mioyy + ek, Th + Ck)
7 = 11if Apoy3 > 7&; otherwise, j is the greatest integer such that Ax_y; < i
(k) = Orc1(Axo1,;) © Tk
W(ok(Ara)) = W(ok-1(Ar-1,5))

Loop: 5 = Jmin 10 Jmez, Where Jmin and Jp.- denote the smallest and the Jargest

integers of j satisfying Axy < Apoy; + ¢k < dp.

1= 5 = Jmin + 2
Akg = Ak-1g + Gk ’
0r(Aii) = 0y (Ak=14) B T
W(ok(Ari)) = W(ok-1(Ai-1,5))

Vi = Jmoz = Jmin + 2

case 3 (Ux-y < 7¢) : (only one scheduling point )
Ak =Te+
Ok(Ak1) = 0k (Mbcr o, ) B T
W(ok(Ara)) = W(oia (A1, ,))

'Dk=1
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when |7y is non-critic&lj

case 1 (dy ~ ¢k < Li—y) : (scheduling points and schedules remain the same)
/* Do nothing; 7x cannot be included in any feasible schedule */

/* Hence, Ax = Ai—y and ok = 04—y */

case 2 (rx < Liey < di — cx) or (Lkey < & < Use) ©
Computation for the first new possible scheduling point:
ko= maz(Xe-1 + Ci, Tk + k)
j = 1if Axoyq > 7k otherwise, j is the greatest integer such that Ap_y; < 7%
o1 (A1) = ok (M) € i |
W (i (A1) = W(or-1(Me=15)) + wi
Loop: j = Jmin 10 Jmez, Where Jmin and Jmar denote the smallest and the largest
integers of j satisfying A}, < Ak-1; + ¢k £ dk-
i=7—Jmin+2
Aei = Mem1j + Ck
Gi(Aki) = Oke1(Akm15) © Tk
W (o (X)) = W(ok-1(Mg=r5)) + wr
construct o; from 04—, and 6; by
1) merging and sorting Ax—; and A} into one array
2) making the weights of the schedules in the resultant array strictly

increasing; removing any schedule off the array if necessary.

case 3 (Ui—~y < %) : (adding one more scheduling point)
Vi = Vp1 + 1
Akw, = Tk + Ck

Ok( k) = Ok (Aktimany ) © 7i
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W(ok(Akon)) = W(okor (boransy ) + 01
/* Note Lhat_}.),,_; = )\k—l,j a.nd Uk()\k,j) = Uk—]()‘k—l.j) A for J =1]to Vk-1 *_/

endfor

4 Scheduling a Task Set

To find an optimal schedule for the ta.sk'set, we may have to consider all possible (n!) permutations.
It is possible to reduce the search space by eliminating some infeasible permutations. For example,
if d; < 7;, there is no feasible schedale in which 7; is placed after 7j. Even after the reduction, the
search space might still be too large. We propose to use simulated annealing technique, recognizing

that while this technique reduces the search, it may yield sub-optimal results.

4.1 Simulated Annealing

Simulated annealing is a stochastic approach for solving large optimization problems. It was de-
veloped using statistical mechanics ideas to find a global minimum point in the energy space.
Kirkpatrick et el [5] had demonstrated the power and applications of simulated annealing to the
field of combinatorial optimization.

To find the optimal solution of the optimization problem is similar to finding the lowest energy
tate of metal. The metal is melted first. Then it is cooled down slowly until the freezing point
is reached. At each temperature, 2 number of trials are carried out to reach the equilibrium. The
temperature has to be controlled not to drop too quick; otherwise, it is possible to be trapped
in 2 lacal minimum energy configuration. Lower energy generally indicates a better solution.
The 2nnealing process starts from a randomly chosen configuration, proceeding to seek potentially
promising neighbor corfigurations. The neighbor configuration is derived by perturbing the current
configuration. If the neighbor configuration has a Jower energy, the change }s always accepted. The
distinct feature is that the neighbor configuration with a higher energy can also be accepted with
the probability of e(E=E'VT where T is the temperature, and £~ E’ represents the difference in the

energy of current and neighbor configurations. Notice that when the temperature is high, an energy
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up jump is more likely than it is when the temperature is low, as it may reach the configuratics,
although with higher energy, which may lead to a better solution. An up jump means a jump from

low energy to high energy, and a down jump means a jurp {rom high energy to low energy.

4.2 The Set Scheduling Algorithm (55A)

A permutation is used to represent the configuration. If a permutation is ordered in an Earliest
Deadline First (EDF) fashion, we call it an EDF permutation. An EDF permutation may be 2
good starting permutation for the process of simulated annealing for this problem. If the window
of a task is contained in the window of anotier task, we say that the latter task contams the former
task. If there are no containing relations among tasks, the EDF permutation is 2 permutation of
which an optimal schedule of the task set is a subsequence [4). Thus, an optimal schedule for the
task set can be generated by PSA by scheduling the EDF permutation. The energy function can

be expressed by a loss function:
loss = Z weight of rejected noncritical tasks

A schedule it not acceptable if critical tasks are rejected. We may say that the loss of a rejected
critical task is infinity. However, this kind of assignment makes it difficult to distinguish between
a very bad schedule (e.g., a critical task is rejected) and even a worse schedule (more critical tasks
are rejected). In general, the former schedule can be considered as an improvement over the latter
one. If the loss incurred by a rejected critical task is assigned infinity, there is no way to tell which
is better between the schedule in which one cntical task s rejected and that in which three critical
tasks are rejected. Hence, we assign 2 finite amournt of loss to rejected critical tasks. The loss
of 2 critical task must be large enough such that the scheduler will not reject a critical task to

accommodate a number of non-critical tasks.

The neighbor function may be obtained using one of the following two methods. In the first,
simple methed, we randomly select one task from those rejected. This task is inserted in a randomly

chosen location within a specified distance from its original location, where the distance is the
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number of tasks between two tasks in a permutation. The distance is used in this approach to
contro!l the degree of perturbation. '
The reason of rejecting @ task is due to the acceptance of other tasks. Given a schedule for
a permutation, it is sometimes difficult to identify which task results in the rejection of other
tasks, especially when tasks are congested together. However, the task immediately before or after
those rejected is likely to play a role. In the second method, we try to identily the task which
causes the largest loss of weight. As a simple approach, we attribute the rejection of a task to
the task accepted prior toit. Then we choose the task which causes the Jargest loss of weight and
insert it within a specified distance: Due to the robustness of simulated annealing technique, the
impact of not necessarily séiecting the task which caused the largest loss is minimal. Note that in
simulated annealing many parameters are randomized, and the energy function, together with the
temperature, control the progress of the annealing process. Tindell et al [9) commented that the
great beauty of the simulated annealing Les in that you only need to describe what constitutes a
good solution without worrying about how to reach it. According to our experiments, we find that
the first method performs better than the second method. However, the process in the first method
sometimes falls into a local minimum. The combination of the two methods does perform better
than any of the individual one. The Set Scheduling Algorithm (SSA) is presented in Figure 7.
The initial temperature has to be large enough such that virtually all up jumps are clicwed in
the beginning of the annealing process. According to [9], the way to compute new temperature is
that new temperature = x ¥ current temperature, where 0 < o < 1. A step denotes an iteration
In the inner loop in Figure 7, which is the process of scheduling 2 permutation and determining
whether the permutation would become the current permutation. The thermal equilibrium can be
reached if 2 certain number of down jumps or a certain number of total steps has been observed;
and the freezing point, or the stopping condition, can be reached if no further down juinp has been

observed in a certain number of steps |5, 9).
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- Algorithm SSA:

Begin
choose initial temperature T
choose edf permutation as the start;mg permutaion, u
schedule p by PSA and compute its energy, £
loop
loop

compute neighbor permutation p’

schedule p’' by PSA and compute its energy, £
if £/ < F then
making y' the current permutation: p — p' and £ — E'
else
if e&!'g > random(0.1) then
making ' the current permutation: p — p’ and £ — E'
else
p remains as the current permutation

untl]l thermal equilibrium is reached

compute new temperature: T — a* T
until stopping condition is reached
End

. Figure 7: Set Scheduling Algorithm
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5 Experiment Result

Experiments are conducted o stady the performance of SSA based on:

number of times that the algorithm generates a feasible schedule
number of times that there does exist a feasible schedule for the task set

o scheduling ability =

)
ol tio = loss of the schedule generated by SSA — loss of an optima) schedule
085 ralio = =5 weight of accepted noncritical tasks of an optimal schedule

e iterations = number of permutations that the simulated annealing algorithm goes through to

obtain the sub-optimal schedule

We start with an EDY permutation. To study how good the result would be by using PSA to
schedule the EDT permutation, the scheduling ability and loss ratio for the EDF permutation are
computed as well. In our experiments, a task set consists of 100 tasks. The number of permutations
in such 2 task set is 100! = 9.33 + 10'5”. To study how good the output of SSA is compared to an
optimal schedule, it is rather impractical to go through such a great number of permutations for 2
task set to derive the optimal schedule and its minimum loss for comparison. Instead, we choose
to make up a task set such that the task set is feasible and the loss of its optimal schedule is 0.
Although the SSA algorithm is primarily designed for an overloaded system, we 2pply SSA to such

task sets for measuring the performance. The parameters are shown in Figure 8.

paramelers value type

window length mean.W] = 20.0 truncated normal distribution

compuiation time | mean.C = m;n;;‘ﬂ truncated normal distribution

"Joad 20%, 40%, 60%, 80% constants
criticality ratio 25%, 50%, 75% constants
weight low_W=1, high W=50 | discrete uniform distribution

Figure 8: Parameters of the experiments

The mean of window length, mean W], is set to be 20 time units. The load is the ratio of total

computzation time to the largest deadline, D, in the task set. Hence, the load indicates the difficulty
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of scheduling the task set. The mean of compﬁtation time, mean.C, is one third of the mean of
window length, which allows the windows among tasks to overlap to some extent. How much the
windows overlap partially depends on the load. If the load is high, the windows are congested
together, and thus the overlapping is high. We expect some containing relations between tasks
to occur and thus increase the difficulty for scheduling. Note that, without containing relations,
scheduling the task set would be straightforward. The standard deviations of window length and
computation time are set to be their means, respectively. Criticality ratio indicates the percentage
of the critical tasks in the task set. It is set to be 25%, 50%, and 75%. The higher the criticality
ratio, the more difficult it is to gen'erate a feasible schedule for the task set. On the other hand,
although it is easier to come up with a feasible schedule when the criticality ratio is low, the loss
ratio may still be high. It may be necessary to go through many permutations before an acceptable
loss ratio is reached. In our experiments, the acceptable loss ratio is set to be 0%, which means
that SSA will keep trying different permutations until either the loss ratio is 0 or the stopping
condition is reached, in which SSA {fails to find an optimal schedule. Note that a big energy (loss),
1000, is incurred for a rejected critical task. Hence, for ar infeasible schedule, the loss ratio may
well be more than 100%. The weight of a non-critical task is an integer ranging from low . W=1 to
high W =50, determined by a discrete uniform distribution function. For each individval experiment
with dififerent parameters, 200 task sets, each with 100 tasks, are generated for scheduling. The
way of creating a feasible task set without loss is described in appendix A.

From Figure 9a, The scheduling ability of SSA is 98.5% when criticality ratio is 75% and load
is 80%, and is 100% for other lower criticality ratios and loads. This is because the simulated
annealing algorithm focuses on searching suitable neighbor permutations in such a way that the
rejected critical tasks, if any, may be accepted. Note that scheduling only the EDF permutation
can not always generate a feasible schedule. The scheduling ability of scheduling EDF permutation
degrades when load increases, which means tasks cong;ast more together. The scheduling ability
of scheduling EDF permutation also degrades when the criticality ratio increases, which makes
meeting the deadlires of all critical tasks become more difficult.
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As far as non-critical tasks are concerned, SSA can not guarantee the minimum loss. However,
even in the worst case given in Figure 9b, the loss ratio is less than 10%. The loss ratio becomes
less when criticality ratio or load is less. In many cases, the loss ratios are less than 5%. As for
scheduling the EDF permutation, the loss ratios are significantly larger.

The number of permutations to be searched in simulated annealing depends on the situations
of energy jumps, the way of reducing temperature, and how we define thermal equilibrium and
stopping conditions. In the experiments, we find that reducing temperature faster does not impose
a negative impact on the scheduling ability and loss. How to set the parameters in simulated
annealing differs a great deal from ¢;ne application to another. We do want to generate the result
as good as possible, but are not willing to spend more computation time than necessary. This
usually requires fine tuning the parameters to get the trade-off between the two goals. We find that
the following parameters are beneficial: initial temperature = 3000, a« = 0.8 (instead of 0.95 or even
0.99 suggested in other applications), the number of down jumps to obtain thermal equilibrium =
25, the number of total steps to obtain thermal equilibrium = 300, the number of steps with no
further down jump to obtain the {reezing point = 2000, which is also the stopping condition. The
average number of permutations sezarched in simulates annealing is given in Figure 9c. If SSA can
successfully generate a feasible schedule, the average number of permutations checked is no more
than 4000 times. The number increases a little if SSA fail: to find a feasible schedule, because in
this case SSA does not stop until the freezing point is reached. Note that the average numbers of
permutations are less than n?, which can roughly give us the idez about the complexity of searching
over the permutation space. Additional studies have shown that if we modify the above parameters
1o increase the average number of permutations by about 10 times, the loss ratios can be further
reduced by about 25% of the loss ratios obtained here.

If time can be expressed in integers, the dynamic programming technique used ir PSA can Be
applied by computing o4(1) att = 1,...,D. Let us call this approach the integral PSA, compared to
the original PSA with scheduling points, denoted by PSA SP in Figures 9d. Obviously, the integral
PSA tends to compute more schedules than the original PSA. We would like to see how more
efficient the original PSA algorithm is than the integral PSA. Specifically, we compare the average
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number of schedules required to derive the optimal schedule for a permutation. For the integral
PSA, the nurber of schedules computed is fixed, or n*D, as can be seen in Figure 1. For the original
PSA, TR, vk is the number of schedules needed to schedule a permutation. The average number
of schedules needed to schedule a permutation by PSA is computed over the permutations of a task
set, and is presented in Figure 9d. The number for the original PSA decreases with the criticality
ratio. This is because a critical task never increases the number of scheduling points; instead, the
number of scheduling points might be decreased due to the timing constraint of the critical task.
For the criticality ratios of 0.25,0.50, and 0.75, the average number of schedules required for a task
set of 100 tasks are approximately ;180,250, and 150, respectively. The complexity of the original
PSA seems linear in this sense. On the other hand, the complexity of the integral PSA is quite
high. The number decreases with load. This happens to be related to the way of generating the
task set, in which D = total.c / load. The number is equal to n = VD, where D might fluctuate a
Iittle.

6 Conclusion

In this paper, we study the scheduling problem for a real-time system which is overloaded. A
significant performance degradation may be observed in the system if the overload problem is not
addressed properly {2]. As not all the tasks can be processed, the set of tasks selected for processing
1s crucizl for the proper operation of an overloaded system. We assign to the tasks criticalities and
weights on the basis of which the tasks are selected. The objective is to generate an optimal
schedule for the task set such that all of the critical tasks are accepted, and then the loss of weights
of non-critical tasks is minimum.

We present a two step prdcess for generating a schedule. First, we develop 2 schedule for
2 permutation of tasks using 2 pseudo-polynomial algorithm. The concept of scheduling points
is proposed for the algorithm. In order to find the optimal schedule for the task set, we have to
consider 21l permutations. The simulated annealing technique is used to limit the search space while

obtzining optimal or near optimal results. Our experimental results indicate that the approach is
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very efficient. '

The work presented in this paper can be easily extended to address the overload issue for
periodic tasks. To schedule a set of periodic tasks with criticalities and weights, we can convert
the pe:riodic tasks in the time frame of the least common multiple of the task periods to aperiodic
tasks. The schedule generated for the frame can be applied repeatedly for the subsequent time
frames.

Our algorithm can also be applied to solving the problem of scheduling imprecise computations
[7), in which a task is decomposed logically into 2 mandatory subtask, which must finish before
the deadline, and an optional subta’sk, which may not finish. The goal is to find 2 schedule such
that the mandatory subtasks can all be finished by their deadlines and the sum of the computation
times of the unfinished optional subtasks is minimum. A schedule satisfies the 0/J constraint if
every optional subtask is either completed or discarded [7). We can solve this problem by using
our algorithm by setting the mandatory subtasks to be critical, and the optional subtasks to be

non-critical with weights equal to their computation times.

Appendix A. Generating a task set

Generate computation times for tasks according to mean_C and the standard deviation
D = (total computation time) / load
Assigning starting instants, si, to tasks such that
the intervals between the computation times are truncated normally distributed
For each task 7,
De;.errnjne the criticality by criticality_ratio and/or weight by low.W and high.W
Compute the window length of 7, according to mean W1 and the standard deviation
(note that window length > c;)
align the window with the computation time in their middle points:
Tr = maz(0,s; + % — ——-—-——&Wind”;“m h)

dy = min(D,r; + window length)
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The load determines how the tasks would be congested. Once the largest deadline, D, has been
computed, we separate the computation times of the tasks in such a way that the positions of the
computation times on the time axis stretches over the range from 0 to D. Note that the starting
instants of the computation times consist in an optimal schedule for the task set. In this way, all of
the tasks in the task set can be accepted. At last, the windows are aligned with the computation

times.
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Abstract

This paper introduces a new formulation of dynamic systems that subsumes both the classical diserete and differential
equation models as well as current trends in hybrid models. The key idea is to express the system dynamics using
symbols to which the notion of time is explicitly attached. The state of the system is described using symbols which

are active for 2 defined period of time. The system dynamics is then represented as relations between the symbolic
representations.

We describe the notation and give several examples of its use.
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1 Introduction

Traditionally, systems have been modelled using state variables defined in 2 metric space and the systemn dynamics
defined using differential equations. This approach uses continuous descriptions of space and time. When we use
computers for expressing and manipulating such models we have to use symbols to represent it. Symbols are discrete
by their very nature, and require use of mapping from the continuous spaces to discrete spaces. These mappings
cause problems unless carried out rather carefully. Further, when we consider the problems in which some aspects
of the system are genuinely discrete, hybrid models have been used. As different techniques have to be used for
continuous and discrete aspects of the system, significant complexity gets added to such models.

Recognizing that the computer systems only use symbols for any representations, in this paper we present a for-
mulation of system dynamics directly in terms of symbols. In order to handle the synamics, time interval over
which a symbol is considered valid is explicitly attached. The symbols describing different aspects of the system
may be from a set appropriate for that aspect. The dynamics is described in terms of rules connecting the symbolic
Tepresentations.

This paper contains the preliminary formulation of system dynamics in the framework of Symbol Dynamies.

2 Descriptions of System Behavior

For the purposes of this paper, behavior includes all the relationships among parts of a system at the same or difierent
times. In particular, the combined relationships among parts of a system at the same time is usually called structure.
Both of these aspects are subsumed in our use of the term behavior.

We assume that our ability to generate or derive new information about the system behavior changes only at discrete
points in time, since we expect to perform these processes on digital computers. The event times define the time
scale. In this paper, we introduce Symbol Dynamics, a totally symbolic way to represent the important aspects of
dynamical systems and processes, so that we can reason about them using computers.

3 Concepts and Notations

This section contains the basic notions of Symbol Dynamics.

3.1 State Variable

We assume that systems exist and change over time. We are looking for 2 method of describing those changes so we
can compute how to control them.

The systems we consider can be described with state variables. Each state variable is an observation on the system
or z aerivation from other state variables.

We may or mzy nct know 2 priori which state variables are important, or even which ones are determinable (i.e., the
system comes first, and the state variables are chosen 1o be helpful in describing the behavior). We might call the
state veriables altributes of the state.

3.2 Symbol

We want 10 measure and compute with information about a system, so we need to map the system into formal spaces
we understand better.

A type is 2 symbol set, both representing a set of values and including some operations on those values; this is the
notion of formal space used here. It includes collections of mutually dependent types and functions between difierent
tvpes.

A symbol of 2 given type is an element of the set of values that type. Any notions of credibility, confidence, or
uncertainty are part of the type system that is used. It is especially important 10 define the allowable operations on
these kinds of types. For example, for measurements of a system, the symbo)] would include the measured value and
the associated uncertainty vaiue.

3.3 Attribute Identifier

We assume that we will want to know different things about the systemn behavior. We need names to keep track of
the difierent things we measure or compute.
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An attribute identifier is a name for a state variable (a state variable is like 2 probe into some aspect of the system
behavior, and the attribute identifier is only the label).

3.4 Expression

An expression is & pair
(attribute identifier: symbol),
which is interpreted to mean the assertion that the state variable can be described by the symbol {when the expression
is active). We will describe the precise semantics of these expressions later on.
These are models of the state variable values.

3.5 Interval

An interval is a pair

[star: time, end time),
assumed Lo describe 2 half-open interval (to save us from trouble with the topology). The end time may be omitted,
in which case it is interpreted to mean infinity by default.

3.6 Characterizer

A characterizer is 2 pair

(expressiorn, interval),
2lso written

(attribute identifier: symbol; start time, end time),
interpreted to mean that the expression is active during the specified interval. It becomes active at the start time,
and becomes inactive at the end time. Each characterizer has 2 range (its interval of activity) and 2 scope (the set
of attribute jdentifiers that occur in its expression).
We may 2lso consider a symbol set that includes arithmetic expressions that contain an explicit time variable ¢. For
example,

(P:po+wvoxtito.ty)
represents z continuous change along the interval.
We will also have oceasion 1o reason about conditions at particular points in time, so the assertion language will 2iso
have characierizers of the form

(expression, point).

3.7 Ewvent

An event is the activation or deactivation of a characterizer. We make no limiting assumptions about simultaneous
events.

4 System Description

A system description is 2 finite sel of characterizers, so we assume explicitly that 2 system can be described by 2
finite set of characterizers. We insist that only a finite set of characterizers be active at any one time. Since each of
those characierizers is aciive over a positive interval, there is therefore some small interval thereafter during which
2l of them are still active.

Everything we know zbou: & system’s behavior is described by characterizers and relationships among the charac-
terizers. Domain models and context can be written as characterizers, generally with large intervals.

4.1 Dynamics

Relationships among characterizers are rules that define the dynamics. These rules take the form:
il these characterizers (with 2 list) are active on these intervals, then this new one is 2lso active on this
other interval {not necessarily contained in the intersection of the original intervals).
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Rules can contain variable identifiers, with implicit universal quantification.

Relationships hold on intervals and the combination may extend the range. We generate new characterizers according
Lo the relationships, either predictive (range extension) or deductive (knowledge extension).

The language in which the rules are written is important, since it has to accommodate notations from many different
types, many of which will not be known when the language is defined. Some basic concepts that will be in any of
these languages are continuity and derivatives.

It is important 1o remember that the system comes first, and that the state variables are our choices for modeling
and understanding the system. This means in particular that the coordinate systems we use are temporary, and that
the constraints among the state variables are expressed explicitly as relationships.

4.2 Normalization and Continuation

Characterizers may have overlapping intervals. Normalization is the process of breaking each characterizer into two
or more others, to fit the time scale. If ¢ is an event time, and
{a:2;s,e)
is a characterizer with s <t £ ¢, then we can replace it with two characterizers
(e:v;8,1) and (0 :v;t,¢€).
If two characterizers use the same attribute,
{a:v;s,¢€)
and
(a:w;t,u),
then we say that the second one continues the first one iff they are adjacent in time, so t = e. Continuity considerations
in the transition from v to w at time ¢ are treated in the next section.
In any system with 2 finite density of event times, if we split every characterizer that spans an event time, then we
end up with characterizers that start and stop at consecutive event times (though they may be continued by other
characterizers). This has some computational conveniences.
If we have two characterizers
(Q BN 11,12)
and
(a:witata),
so that the second one continues the first, then we need some kind of explicit characterizer for the transition, active
in 2n interval containing the transition time. If there is a description u in an appropnate domain for which
v, fort; €t<iy,
w, fori; <t<is,
then we can conclude
{a:u;t;,13).
This is the opposite of normalization.
1f there is an overlep, that is, if the two characterizers

u =

(e:zity,13)
and

(e :w;its, i)
have

ft1.12) N |t3, &) non-empry,
and

v{t) = w(t) for ¢t € |max(t;,t3), min(ta, L)),
then we can also conclude
(e : u;min(ty, t2), max(ts, t)).

4.3 Continuation and Continuity-

One aspec: of continuity is transitions from one symbol o another across interval boundaries. The transition
relations are extra conditions that have to hold at the transition time (usually they are smoothness conditions for
mode! transitions).
A typicz] smoothness property is infinitesimal: for characterizers

(a‘ . v, to, tl)
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and
(a:w;ty, t2),
we normally want smoothness, written

dv _dw
dt 12 3% dt ;=z';’

and continuity, written
v(t= t;) =wt= i?) ‘
Both of these are point conditions on the attributes and their derivatives, and we can consider only conditions on -
attributes by using whatever derivatives are needed in the conditions: instead of
(a:vito, 1),
we use
(a:(x,7v');t0,t1),
and write our smoothness condition as
v _(w
adt - !
Y =g v t=tg
1T we also require continuity in each attribute, so that
wt =17) = w(t =1;),
then the upper limit in the previous expression can be omitted.
It is therefore clear that we must deal with point events at transitions
fto...t1) [ta...2)
but not with point characterizers. 1{f we make the transition continuity a property of the definition of continuation,
then we can assert it or not in any given model.
Of course, the expression ¢ = {J means that the interval [¢; —¢, ;) is part of the limit computation for every ¢ small
enough, so we might be zble 10 use these intervals for some small enough ¢ without having to take the limits.
We will deal with these considerations in the simplest way possible. We have a characterizer that asserts continuity of
the relevant attribute across a larger interval, such as [tp, t2) above. The only place that the continuity characterizer
has new information is at the transition point t;, but we simply do not worry about the redundancy.

4.4 Characterizer Semantics and Inference

A characterizer is what we want to zssurme zbout what is true over its interval. It need not be consistent with
ihe other characterizers in 2 svsiem description; we explbicitly allow false assertions here, so we can reason using
counterfactuals.

4.4.1 Inference

We can mzke injerences within intervals, according to some rules. 1{, say, there is a rule
51880 = 53,
zné two characterizers
(v:s:ito,01)
and
(v :s33ta,13)
with 1p < 12 < 1; < 13, then we can conclude
(v:s3ita,0y).

4.4.2 Prediction

We can 2iso mzke inierences that extend intervals in some cases. They take the form: If
(v:siitoty)

and
(w:saito,1y)

are cnaracterizers with tp < t;, then there is a characterizer
(= :s3312,13)

for some 13,13, wWith tp < 12 < ¢ < ts.
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4.4.3 Truth Maintenance

Because we do not presume that the characterizers in a system are truths, we need to be much more careful about
when they can be used together, especially in the inference and prediction processes. Since the inference rules
themselves are time dependent, we need 1o keep track of the dependencies of every characterizer, both how and when
it was derived (how tells us about hypotheses and inference rules; when helps us in checking temporal consistency)
and its interval of activity.

We also need a way to indicate which characterizers we DO want to be true, so that different collections of charac-
terizers can be compared and contrasted within the same context. We might want to consider computing various
maximal consistent sets of irredundant assertions as an aid in this process.

Various rules can be activated that lead to new conclusions in an interval, which can supersede old ones; we also
assume partial deduction, not total. We therefore need to use some kind of non-monotonic logic.

4.5 Analysis

Simulation is 2 continuing surprise.

We want tools with analytic power to help reduce our reliance on simulation, so we can make reliable predictions
about the system behavior.

All of our computations are performed from the symbols active at a given time. The advantage of dealing explicitly
with time in this formulation is that we can sit outside the usual sequencing of events, taking a kind of “side-long”
look at the entire time line, and piece together parts of the models that we know more about regardless ef whether
or not they are the first ones in our time interval of interest.

We can also perform the deductions in an order that is different from 4he order imposed by time, using any of a
number of simple mechanisms, such as rule-based systems or rewrite iogics; both are being investigated.

5 Examples

This section contains several examples that illustrate the utility of the notation.

5.1 ODE

A simple example that shows range extension is an ordinary differential equation (ODE). For ODEs, the solution
method is part of changing an ODE into 2 set of characterizers.
So let vs consider 2 simple second-order ODE for the sine function,

1

= -y,
y'(0) = 1,
y(0) = 0,

and solve it with Euler’s method (a particularly bad one for this kind of problem, by the way).
First, we transform the equations into 2 first order system (in the uswal wey) by ldding 2=y,

- = -y,
Y z,
=(0) = 1,
v(0) = 0,

1 1

and we 2lso define 2z = =’ = ¢".

5.1.1 First-Order

Now the way Euler’s method works is by linear extrapolation, so for a given time t = 1o, if we have

=(to) = =zo,
v(¢) = o,
then we have

20 = :(to) = =¥,

and we take
:(Z) = Zp-+20= (2 - to),
y{t) = yo+zo=(t-tg),
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for t in some small interval

ltO|t} =to+d-£) '
The characterizers that describe this situation are: '

(: tZo+zo= (t - to);io, o+ dl.),

(v 1o+ Zo = (t — to); to, to + d2),
which we want to be true for all choices of zg, yp, %0, and d¢ (which ones we actually use in our systemn description
depend on how we choose the time intervals in the solution). )
The characterizers that describe the initial conditions are difficult, because they cannot be described with half-open |
intervals of the shape we have thus far described:

(z:1;0),

(y:0:0),
which is always going to be a problem in systems that start at a certain time.
In a more sophisticated system, the choice of next time interval would depend on the computed accuracy of the
current solution,
For this example, we simply make all the time intervals the same, and say that the characterizer pair

(I Tyt 2z = (2 - t;);t;,t; -+ dt),

(yim+z=(t-4)ity, 0y +adt)

propagates the pair

(I IZp<2p > (l - to);to,to - dt),

(y:yo+zo=(t - to);to, 20+ dt)

iff -
) = ZTo+zxd,
vi = yo+zoxd,
ty = to- 4,

which zre the conditions for the first pair to meet the second (the condition z; = —y; is part of the definition of
these characterizer pairs).
Extending the iteration, we have

z(0) = 1,
v(0) = O 1
s{k+1) = =(k)-ylk)=a,
yE+1) = yE)+z(k)=a,
which ean be written 25 2 vector equation we put the matrix on the right so we can use row vectors)
{(=.y;(0) = (1,0,
Eat=1) = o (4 §).

so if we write J for the identity matrix and J jor the matrix
0 1 3}
-1 0 /)
then we have (with X = (x,v))
X0 = (,0),
X(k+1) = X(k){T+J=2), .
S0
X (k)= (1,0) (J + J = a2)k,
which can be compuied exactly.
Since the eigenvalues of (J + J = dt) are 1 =1i=dt, which have magnitude 1+ d¢?, the successive powers of the matrix " g
diverge for 2ny 2f > 0, 2nd therefore so does the iteration.

5.1.2 Second-Order Example

In this section, we use the same diffierential equation problem, with 2 different solver, = second-order one that is
2lmost able 1o converge properly. We therefore have
7

' = -y,
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1

Yy =,
z(0) 1,
y(0) = 0,
as above. Our initial conditions are
(z:1;0),
(v :0,0),
as before.

The method we use is a simplified second-order Runge-Kutta method [?], {?}, which basically amounts to averaging
the usua) Euler approximation in an interval with a linear reapproximaticn at the endpoint of the interval. At a
given time t = g, if we have
z(to) = =zo,
y(to) = wo.
then we have
z(t) = zZp~yordt—zo= dt?/2,
y(t) = wo+zoxdt—yoxd?/2,
and it is the extra dt? terms that make the method second-order.
As above, we assume equal time intervals and get an iteration
z(0) = 1,
v(0) = 0,

z(k;l) z(k) —y(k):dt—::(k):dt"’/z

y(k+1) = y(k)+z(k)=dt - y(k) = dt?/2,
which can be written as a vector equatlon
(z,v)(0) = (1,0),

it

@ty = @aw (TR L, ),

and we have as above
X)) = (1,0,

X(k+1) = X(k)I=(Q=-dt?/2)+J=at),
[

X(E) = (1,0) (I = (1 - d22/2) + J = dt)K,
which can be computed exactly.
Since the eigenvalues of (I = (1 — dt?/2)+ J = dt) are 1 — dt?/2 = i « ¢, which have magnitude 1 + dt* /4, this simple
method s:ill does not converge {but much more slowly).

5.1.3 Higher-Order Exampie

A similar a2nalysis of the usual 4th-order Runge-Kutta method leads to an iteration
z(t) = =zo-yoxdt—zp=t? 2 yoxdt3/6+ zpxdtt /24,

y(t) = yo-'IO'd"-yO d~2/2—203d-3/6q-y0td1 /24‘
with matrix
1—dr?/2+de/24 dt —dt?/6
—dt+d¢3/6 1—d2/24 dtt /U

and eigenvalue magnitude of 1 -+ dt®/36 + dt®/242, which is still greater than one. In fact, since this equation (in
(=, v) space) represents moving around 2 circle, any extrapolation method based on tangents at a single point will
f2il, since 21l of the tangent vectors point outward from the circle. We note that the iteration equations do have the
first terms of the usual Maclaurin series for sin(dt) and cos(dt), so we try out 2 difierent iteration:

z(t) = =zo=>cos(dt) — yo = sin(dt),

y(1) = yo=cos(dt)+ zp = sin(dt)},
which can be written as 2 vector equation

(z.¥)(0) = (1,0),
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et = @ (G ).
and we have as above
X(0) = (1,0),
X(k+1) = X(k)I »cos(dt)+ J = sin(dL)),

SO
X(E) = (1,0) (I = cos{dt) + J » sin(dt))¥,
= {(1,0) (I = cos{k = dL} + J = sin(k » dt}),
and
z(k=dt) = cos(k=dl),

y(k=dt) = sin(k=adt),
from which we can hazard a guess as to the correct solution.

5.2 Measurement

Let us take a simple system in which the velocity and position are occasionally known through inexact measurement.
Our state variables are p for the position, v for the velocity, and a for the unknown acceleration.
We assume that the acceleration a is bounded by some constant A, so that for any times 25 < ¢
o{t1) = v(to)l < Jt1 ~to] = A.
We assume that we have characterizers
(a(t)iti-y, i)
that describe the acceleration, and mode) characterizers
(v=p507,-),
{e=12";0",-).
Therefore, we can compute the velocity and position by

(1) = v(tp) =+ / a(u) cu,

to<ut
PO)=plo) + [ o) du
to<u:
The prodiem is 1o choose measurement times znd variables that maintain 2 certain accuracy in the estimates of
DOSition.
We a2ssume that we can measure position within a bound
 lpmeas(t) = p(t)] < P,
2nd thzt we can measure velocity within 2 bound
tvmeas (i) — ()] < V,
but that we want 1o keep our estimale pecy of position either more accurately than the position measurement error
(this might or might not be possible) or using 2s few measurements as possible.
We assume first that zg, vp are known, and consider an interval {to,t1). We compute
iw{t) —vol < Jta —to] = A,
ang therefore .
z{t)) —=zof < =]t - o’ = A,
so we would have to choose

A=t -1
so that
At £ V/A|

to keep the velocity within bounds, and
(&2 < 12x P/4]
10 keep the position within bounds.
But of course, we don’t know z{t) or u(t) after the first time interval, so we need to change the previous derivation
X \ , g
2 bit.
We assume that we know =g and vp, and that
jz{te) ~=z0] € A =z
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describes the accuracy of our knowledge of z(t) at time t = ¢, and
fe(to) —w] < 8w
describes the accuracy of our knowledge of u(t) at time ¢ = to. Then the above inequalities become
() —vol € Bw+|ty = to] = 4,
and therefore
1
|:(t1)—z°| < AIQ-}-If-l ""OI'A v0+§ ‘Itl —tolztA,
so we have 1o have '
At S |(V-5w)/Al
to keep the velocity within bounds, and

B2+ 222 (A1) < 22 (P =4 z0)/4]

to keep the position within bounds.

At this point, we are stuck unless we can say something more helpful about the acceleration. Suppose we know that
the acceleration jumps around, and that it has a distribution of values with mean 0 and variance R. In this case, we
might be able to reduce the estimates for position and velocity and improve the time intervals.
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Allocation and Scheduling of Real-Time Periodic Tasks with
Relative Timing Constraints®
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Abstract

Allocation problem has always been one of the fundamental issues of building the applica-
tions in distributed computing systems (DCS). For real-time applications on DCS, the allocation
problem should directly address the issues of task and communication scheduling. In this con-
text, the allocation of tasks has to fully utilize the available processors and the scheduling
of tasks bas to meet the specified timing constraints. Clearly, the execution of tasks under
the allocation and schedule has to satisfv the precedence, resources, and other synchronization
copstraints among them.

Recently, the timing requirements of the real-time systems emerge that the relative timing
constraints are imposed on the consecutive executions of each task and the inter-task temporal
relationships are specified across task periods. In this paper we consider the allocation and
scheduling problem of the periodic tasks with such timing requirements. Given 2 set of periodic
tasks, we consider the Jeast common multiple (LCM) of the task periods. Each task is extended
to several instances within the LCM. The scheduling window for each task instance is derived to
sauisfy the timing constraints. We develop a simulated anpealing algorithm as the overall control
algorithm. An example problem of the sanitized version of the Boeing 777 Aircraft Information
Management System is solved by the algorithm. Experimental results show that the algorithm
solves the problem in a reasonable time complexity.

“This work is supported in part by Honeywell under N00014-91-C-0185 and Army/Phillips under DASG-60-92-
C-0055. The views, opinions, and/or findings contained ir this report are those of the author(s) and should not be
interpreted as representing the official policies, either expressed or implied, of Boneywell or Army/Phillips.
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1 Introduction

The task allocation and scheduling problem is one of the basic issues of building real-time ap-
plications on a distributed computing system (DCS). DCS is typically modeled as a collection of
" processors interconnected by a2 communication network. For hard real-time applications, the allo-
cation of tasks over DCS is to fully utilize the available processors and the scheduling is to meet
their timing constraints. Failure to meet the specified timing constraints or inability to respond
correctly can result in disastrous consequence.

For the hard real-time applications, such as avionics systems and nuclear power systems, the
approach to guarantee the critical timing constraints is to allocate and schedule tasks a priori
The essential solution is to find an static allocation in which there exists a feasible schedule for the
given task sets. Ramamritham [Ram90) proposes a global view where the purpose of allocation
should directly address the schedulability of processors and communication network. A heuristic
approach is taken to determine an allocation and find a feasible schedule under the allocation.
Tindell et al. [TBW92] take the same global view and exploit 2 simulated annealing technique
to allocate periodic tasks. A distributed rate-monotonic scheduling algorithm is implemented. In
each period 2 task must execute once before the specified deadline. The transmission times for
the communications are taken into account by subtracting the total communication time from the

deadiine and making the execution of the task more stringent.

Simply assuring that one instance of each task starts after the ready time and completes before
the specified deadline is no* enough. Some real-time applications have more complicated timing
constraints jor the tasks. For example, the relative timing constraints may be imposed upon
the comsecutive executions of a task in which the schedrling of two consecutive executions of 2
periodic task must be separated by 2 minimum execution interval. Communication latency can be
specified to make sure that the time difference between the completion of the sending task and the
start of the receiving task does not exceed the specified value. The Boeing 777 Aircraft Information
Management System is such an example [CDHC94). For such applications, the algorithms proposed
in Bterature do not work because the timing constraints are imposed across the periods of tasks. In
this paper, we consider the relative timing constraints for real examples of real-time applications
in Section 2. Based on the task characteristics, we propose the approach to allocate and schedule
these applications in Section 3. A simulated annealing algorithm is developed to solve the problem
in which the reduction on the search space is given in Section 4. In Section 5, we evaluate the
practicality and show the significance of the algorithm. Insiead of randomly generating the ad hoc
test cases, we 2pply the algorithm to 2 real example. The example is the Boeing 777 AIMS with
various numbers of processors. The-experimental results are shown in Section 3.
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2 Problem Description

Various kinds of periodic task models have been proposed to represent the real-time system char-
acteristics. One of them is to model an application 2s an independent set of tasks, in which each
task is executed once every period under the ready time and deaciine constraints. Synchronization
(e.g. precedence and mutual exclusion) and communications are simply ignored. Another model
to take the precedence relationship and communications into account is to model the application
as a task graph. In a task graph, tasks are represented as nodes while communications and prece-
dence relationship between tasks are represented as edges. The absolute timing constraints can
be imposed on the tasks. Tasks have to be allocated and scheduled to meet their ready time and
deadline constraints upon the presence of synchronization and communications. The deficiency
of task graph modeling is inability of specifying the relative constraints across task periods. For
example, one can not specify the minimum separation interval between two consecutive executions
of the same task.

In the work [CA93], we modified the real-time system characteristics by tzking into account
the relative constraints on the instances of a task. We considered the scheduwling problem of the
periodic tasks with the relative timing constraints. We analyzed the timing constraints and derive
the scheduling window for each task instance. Based on the scheduling window, we presented
the time-based approach of scheduling a task instance. The task instances are scheduled one by
one based on their priorities assigned by the proposed algorithms. In this paper we augment the
real-time system characteristics by considering the inter-task communication on DCS.

2.1 Task Characteristics

The problem considered in this chapter has the following charactenstics.

¢ The Fundamentals: A task is denoted by the 4-tuple < p;, €;, A;, 7; > denoting the period,
computation time, low jitter and high jitter respectively. One instance of 2 task is executed

each period. The execution of 2 task instance is non-preemptable. The start times of two

consecutive instances of task 7; are at least p; — A; and at most p; + n; apart. Let & and

1

f? be the start time and finish time of task instance ,—,’ respectively. The timing constraints

specified in Equations 1 through 4 must be satisfied.

= d+e (1)
st = s+ 1CM (2)
s> €7 4N (3)
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s < S dpit (4)
Vi=2,...,n;+ 1.

* Asynchronous Communication: Tasks cormmunicate with each others by sending and
receiving data or messages. The frequencies of sending and receiving tasks of a communication
can be different. In consequence, communications between tasks may cross the task periods.
When such asynchronous communications occur, the semantics of undersampling is assumed.
When two tasks of different frequencies are communicating, schedule the message only at
the lower rate. For example, if task A (of 10HZ) sends a message to task B (of SHZ), then
in every 200ms, one of two instances of task A has to send a message to one instance of
task B. If the sending and receiving tasks are assigned to the same processor, then a local
communication occurs. We assume the time taken by a local communication is negligible.
When an interprocessor communication (IPC) occurs, the communication must be scheduled
on the communications network between the end of the sending task execution and the start
of the receiving task execution. The transmission time required to communicate the message

1 over the network is denoted by p;.

e Communication Latency: Each communication is associated with 2 communication la-
tency which specifies the maximum separation between the start time of the sending task and
the completion time of the receiving task.

e Cyclic Dependency: Research on the allocation problem has usually focused on acvclic
task graphs [Ram90, HS92]. Given an acyclic task graph G = {V, E}, if the edge irom task
A to tesk B isin E then the edge from B t0 A can not be in E. The use of acyclic task
graphs excludes the possibility of specifving the cyclic dependency among tasks. For example,
consider the following situation in which one instance of task A can not start its execuiion

until it receives data from the Jast instance of task B. After the instance of task A finished
I1s execution, it sends data to the next instance of task B. Since tasks A and B are periodic,

the communication pattern goes on throughout the lifetime of the application. To be able to

accommodate this situation, we take cyclic dependency into consideration.

The timing constraints described above are shown in Figure 1. For periodic tasks A and B, the
start times of each and every instance of task execution and communication are pre-scheduled such
that (1) thé execution intervals fall into the range between p~ A and p+ 1 and (2) the time window
between the siart time of sending task and the completion time of receiving task is less than the
latency of the communication. In Figure 2, we illusirate examples of all possible communication
patierns considered in this paper. The description of the communications in the task system is in
the jorm of “From sender-task-id (of frequency) To receiver-task-id (of frequency)”. If the sender
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Figure 1: Relative Timing Constraints

frequency is n times of the receiver frequency and no cyvclic dependency is involved. then one
of every n instances of the sending task has to communicate with one instance of the receiving
task. (Examples of this situation are shown in Figures 2.2.1 and 2.2.2. Likewise, for the case in
which the receiver {requency is n time tha: of the sender frequency and no cyclic dependency is
present, the patterns are shown in Figures 2.b.1 and 2.b.2. For an asynchronous communication, the
sending (receiving) task in Jow frequency sends (receives) the message 10 (from) the nearestreceiving
(sending) task as shown in Figure 2.2 (2.b). The cases where cyclic dependency is considered are
shown in Figures 2.c and 2.d.

2.2 System Model

A real-time DCS consists of 2 number of processors connected together by a communications
network. The execution of an instance on 2 processor is nonpreemptable. To provide predictable
communicatior and to 2void contention for the communication channel at the run time, we make the
ioliowing assumptions. (1) Each IPC occurs at the pre-scheduled time as the schedule is generated.

(2) At most one communication can occur at auy given time on the network.
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200 ms |
(2.2)
From A (of 10EZ) to B (of 5EZ)

] A ] ® o
(b.1)
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200 ms l
(b.2)

From A (of 5HZ) to B (of 10HZ)

(c)

From A (of 10BZ) 1o B (of 5HZ)
From B (of 3BZ) to A {of 10BZ)

L 1 = *°
L
Al | Al e o
o
'.’.OOx:ns1
(d)

From A (of 10EZ) to B (of 10EZ)

from B (of 10EZ) 10 A (of 10EZ)

Figure 2: Possible Communication Patterns
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2.3 Problem Formulation

We consider the static assignment and scheduling in which a task is the finest granularity ob’sct
of assignment and an instance is the unit of scheduling. We applied the simulated annealing
algorithm [KGV83] to solve the problem of real-time periodic task assignment and scheduling with
hybrid. timing constraints. In order to make the execution of instances satisfy the specifications
and meet the timing constraints, we consider a scheduling frame whose length is the least common
multiple (LCM) of all periods of tasks. Given a task set I’ and its communications C, we construct
a set of task instances, J, and a set of multiple communications, M. We extend each task ; € T
to n; instances, 7}, 77, ..., and 7. These n; instances are added to . Each communication 7; =
7; € C is extended to min(n;,n;)} undersampled communications where n; = LCM/p; and n; =

LCM/p;. These multiple communications are added to M. The extension can be stated as follows.

. 2 2 ; -
o If n; < nj, then 7 — 7; is extended to 7} = 7/, 7% — 7/, ..., 2a0d 77 — 7},

. ” - - ne
o I{ n; > nj, then 7; — 7; is extended to 77 = 7}, 7/ = 77, ...,20d 7} = 7.”

o If n; = nj, then 7 — 7; is extended to 7} = 7}, 7% — 72, ..., and 77" = 7

A task ID with a superscript of question mark indicates some instance of the task. For example,

=1 . =7

r} —~ 7/ means that 7} communicates with some instance of v;. We describe how we assign the
nearest instance for each communication in Section 4.1.2.
The problem can be formulated as foliows. Given a set of task instance, J, its communications

M, we find an assignment &, a total ordering ¢. of 2ll instances, and = toial ordering o, of all
communicalions 10 minimize

E(6.0m0:) = 3 bpi-X-dP+d) 23 8T -5l pim )
E ig
+ M-+ Y S = 1,00 - 5)
ig ikl
+ }: 6(f} - & - Latency (7 to 7%)) (3)
ik

subject to s} > 7 and S(t} — th,0)> 7, VI — 1L,

where

3 - - . - 0 . . -
Due to undersampling, when an asynchropous communication is extended to multiple communications, the
number of multiple communications is the smaller number of sender and receiver instances.




. s{ is the start time of 77 under op,.

. f;’. is the completion time of ‘r,j under o,,.

e =g x{j-1)+7, and 4 =p; x (§-1) + ds.
e §(z)=0,z<0;and = z,ifz > 0.

o ¢(7;) is the ID of processor which 7; is assigned to.

e 77— 1} is the communication from 7 to 7). I é(n) = é(7x), then 7/ — 7| is a local

communication.

o 5(c,0o.) is the start time of communication ¢ on the network under o..

o F(c,0.) is the completion time of communication ¢ on the network under o..

The minimum value of E(@,0m,0.) is zero. It occurs when the executions of all instances
meet the jitter constraints and 21l communications meet their Jatency comstraints. A feasible
multiprocessor schedule can be obtained by collecting the values of &] and f], V i and j. Likewise,

2 feasible network schedule can be obtzined {from S(c,o0.)s and F(c.c.)s.

Since the task system is asynchronous and the communication pattern could be in the form of
cvclic dependency, we solve the problem of finding 2 feasible solution (&, &m, o) by exploiting the

cvelic scheduling technique and embedding the technique into the simulated annealing algorithm.

3 The Approach

3.1 Bounds of a Scheduling Window

Define the scheduling window for 2 task instance as the time interval during which the task can
start. Traditionally, the lower and upper bounds of the scheduling window for a task instance are
called earliest start time (est) and latest start time (Ist) respectively. These values are given and
independent of the start times of the preceding instances.

We consider the scheduling of periodic tasks with relative timing constraints described in Equa-

tions 3 and 4. The scheduling window for 2 task instance is derived from the start times of its

preceding instances. A feasible scheduling window for 2 task instance 77 is a scheduling window

in which any start time in the window makes the timing relation between s!”’ and s} satisfy

1

112



Equations 3 and 4. Forma.ll_\'; given s}, s?, ..., and ..., s{'l, the problem is to derive the feasible

scheduling window for -,’ such that a feasible schedule can be obtained if 77 is scheduled within

1

the window.

Proposition 1 {CA93]: Let the est and Ist of 7 be

est(7) = maz{(s]7 +pi— X)), (s]+ (G- xpi= (i =i+ 1) xm)), (6)

and Ist(r}) = min{(s] 7 +pi4m), (P4 (G- 1) xpi+ (i -5+ 1) x X)) (7)

I sf is in between the est('r,-j ) and lst(rij ), then the estimated est and ist of s, based on s} and

b

s ¥ specify a feasible window.

3.2 Cyclic Scheduling Technique

The basic approach of scheduling = set of synchronous periodic tasks is to consider the execution
of al! instances within the scheduling frame whose length is the LCM of all periods. The release
times of the first periods of all tasks are zero. As long as one instance is scheduled in each period
within the frame and these executions meet the timing constraints, a feasible schedule is obtained.
In 2 jeasible schedule, all instances complete the executions before the LCM.

On the other hand, in asynchronous task svstems, as depicted in Figure 2 in which the LCM
is 200mns, the peniods of the two tasks are out of phase. It is possible that the completion time

of some instence in a feasible schedule exceeds the LCM. To find 2 feasible schedule for such an
asvnchronous system, 2 technigue of handling the time value which exceeds the LCM is proposed.

The technique is based on the linked list structure described in the work [CA93). Without loss
of generality, we assume the minimum release time among the first periods of all tasks is zero. We
keep 2 linked list for each processor and a separated list for the communication network. Each
element in the list represents 2 time slot assigned to some instance or communication. The fields of

2 time slot of some processor p: (1} task id ¢ and instance id j indicate the identifier of the time slot.

(2) start time st and finish time ft indicate the start time and completion time of 'r;’ respectively.

(3) prev ptr and nezt ptr are the pointers to the preceding and succeeding time slots respectively.
The list is arranged in an increasing order of stari-time. Any two time slots are nonoverlapping.
Since the execution of an instance is nonpreemptable, the time difference between start_time and
finish_time equals the execution time of the task.
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Before: After:

LCM| 0

F F

r r+e—-LCM

Unscheduled Instance: - where F < r < LCM

Figure 3: Insertion of a new time slot

3.2.1 Recurrence

Giver any solution point (&, om,cc), We construct the schedule by inserting time slots to the linked
Iists. Let cpm: task_id X instance.id — integer. The insertion of a time slot for r7 precedes tha: for

% i om () < om(7D).

Recall that Equations 6 and 7 specify the bounds of the scheduling window for a task instance.

Due 1o the communications, esy(77) in Equation 6 may not be the earliest time for +7. We define

the effective start time as the time when (1) the hybrid constraints are satisfied and (2) "f receives

21l necessary data or messages from all the senders.

Given the effective start time r and the assignment of 7; (i.e. p = ¢(7;)), 2 time slot of processor
P is 2ssigned to ';’ where stert.time > r and finish_time — stori.time = ¢;. Note that we have
1o make sure the new time slot does not overlap existent time slots. Since (1) the executions of
2ll instances within one scheduling frame recur in the next scheduling frame and (2) it is possible
that the time slot for some instance is over LCM, we subtract one LCM from the start_time or

finish.timeifitis greater than LCM. It means the time slot for this task instance will be modulated
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and wrapped to the beginning of the schedule. As shown in Figure 3 The start_time of the new
slot is 7 while the completion time is 7 + e~LCM.

3.3 Pseudo Instances

As stated in Section 2, we consider the communication pattern in which cyclic dependency exists
among tasks. Given a set of tasks, I', a set of task instances, J, a set of communications, C, and
any solution point, (&, Om,c.), We introduce pseudo instances 1o solve this problem. For any task
7z, if there exists 2 tesk 7, in Which (1) om(72) < om(7)), ¥ i, (2) nz = ny, and (3) 7= — 7 €
C and 7, — 7= € C, then 2 pseudo instance 77*+? js added 1o J. A pseudo instance is always 2
receiving insiance. No insertior of time slots for pseudo instances is needed. For a2 pseudo instence,
only the effective start time is concerned. The effective start time of 2 pseudo instance 77=+! in
the constructed schedule based on (&, om, 0.) s checked to see whether it is less than LCM + s or
not. If ves, then the execution of 7! for the next scheduling frame may start at LCM + s which

is exactly one LCM away from the execution of 72 for the current scheduling frame. A graphical
illustration of the introduction of pseudo imstance to solve the synchronous communications of
cvclic dependency is given in Figure 4 in which n. = 2.

As for the asynchronouns communications of cyclic dependency, no pseudo instances are needed.
For example, if both 72 = 7, and 7, = 7 exist and n. = n, X n, then for each 7,3, where 7 = 1,
2, ..., my, find a sending instance 72 € I and 2 receiving instance 7% € I such that (1) fi < s,

(2) f] < <, and (3) 71 — 7J and 77 «— 7¥ are the communications. The relationship between i, 7,
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and k can be stated as
-1)xn<i<ck<jxn. (8)

A graphical illustration can be found in Figure 5. In the example, the values of 7, j, k, and n are

6, 2, 8, 4 respectively. The communications 72 = 77 and 77 — 72 are scheduled before and after

the scheduling of 77 respectively.

4 The Simulated Annealing Algorithm

Kirkpatrick et al. [KGV83] proposed 2 simulated annealing algorithm for combinatorial optimiza-
tion problems. Simulated annealing is 2 globa! optimization technique. It is derived from the
cbservation that an optimization problem can be identified with 2 fluid. There exists an analogy
betweer finding an optimal solution of 2 combinatorial problem with many veriables and the slow
cooling of 2 molten metal until it reaches its Jow energy ground state. Hence, the terms about
energy function, temperature, and thermal equilibrium are mostly used. During the search of an
optimal solution, the algorithm always accepts the downward moves from the current solution point
to the points of lower energy values, while there is still 2 small chance of accepting upward moves
10 the points of highes energy values. The probability of accepting an uphill move is a function of
current temperature. The purpose of hill climbing is to escape from a local optimal configuration.
If there are no upward or downward moves over 2 number of iterations, the thermal equilibrium
is reached. The temperature then is reduced to a smaller value and the searching continues from
the current solution point. The whole process terminates when either (1) the lowest energy point

is jound or (2) no upward or downward jumps have been taken for a2 number of successive thermal
equilibrium.

The structure of simulated annealing (SA) algorithm is shown in Figure 7. The first step of
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the algorithm is to randomly choose an assignment ¢, a total ordering of instances within one
scheduling {rame, o, and a total ordering of communications for the instances, o.. A solution
point in the search space of SA is a 3-tuple (¢,0,m,0.). The energy of a solution point is computed by
equation {5). For each solution point P which is infeasible, (i.e. E, is nonzero), a neighbor finding
strategy is invoked to generate a neighbor of P. As stated before, if the energy of the neighbor is
lower _tha.n the current value, we accept the neighbor as the current solution; otherwise, a probability

function (i.e. ezp( 52%5—'4)) is evaluated to determine whether to accept the neighbor or not. The
parameter of the probability function is the current temperature. As the temperature is decreasing,
the chance of accepting an uphill jump (i.e. 2 solution point with a higher energy level) is smaller.
The inner and outer loops are for thermal equilibrium and termination respectively. The number of
iterations for the inner loop is also a function of current temperature. The lower the temperature
is, the bigger the number is. Methods about how to model the numbers of iterations and how
to assign the number for each temperature have been proposed [LH91). In this dissertation, we
consider a simple incremental function. Namely, N = N + A where N is the number of iterations
and A is a constant. The termination condition for the outer loop is E, = 0. Whenever thermal
equilibrium is reached at a temperature, the temperature is decreased. Linear or nonlinear approach
of temperature decrease function can be simple or complex. Here we consider a simple multiplication
function (3.e. T = T X a, where a < 1).

4.1 Evaluation of Energy Value for a Solution Point (8, ¢um, 0.)

The computation of the energy value stated in Equation 5 , is done by constructing multi-processor
schedules and 2 network schedule, and collecting the the start and completion times of each task
instance and communication from these schedules.

The construction of the schedules is characterized by the priority assignment of the task in-
stances in the set. The priority assignment algorithm determines the scheduling order among all
the task instances. Each time when a task instance is chosen o be scheduled, the incoming com-

munications of the instance are scheduled first and then the task instance itself. After all the
task instances have been scheduled, the scheduling of the outgoing communications is performed.

An algorithmic description about how to compute the energy value for a solution point is given
in Figure 6. Note that a communjcation is an incoming communication to a task instance if the
frequency of the receiving task instance is equal to or less than that of the sending task instance.

For example, 7; — 77 and 7] — 7 are incoming communications to 77. On the other hand, if
the sender frequency is less than the receiver frequency, then the communication is an outgoing

communication. (e.g. 73 — 7; is the outgoing communication of 77).
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4.1.1 Priority Assignment of Task Instances: o,

In the work [CA93], we presented the SLsF algorithm and the performance evaluation. The re-
sults showed that SLsF outperforms SPF and SJF. In this paper we use the SLsT as the priority
assignment algorithm for the task instances in J.

Formally, if Ist(r7) < Ist(rf), then om(7}) < om(7f). And the insertion of a time slot for

77 precedes that for 7f if Om(T}) < Om(7f). The time-based scheduling algorithm for a task
instance is used to find a time slot for a task instance once the effective start time is given. We
define the effective start time of a task instance as the earliest start time when the incoming
cormmunications are taken into account. Let ¢ be the maximum completion time among all the
incoming communications of a task instance, then the effective start time of the task instance is set
to the bigger value among ¢ and est (as stated in Equation 6).

4.1.2 Scheduling the Incoming Communications:o,

There are two kinds of incoming communications. The first kind is called the synchronous com-
munication in which the frequencies of the sender and receiver are identical. The other kind is
called the asynchronous communication in which the sending task instance is associated with a
question mark. For such an asynchronous communication, we have to decide which instance of the
sending task should communicate with the receiving task instance. The approach we take is 1o find
the nearest instance of the sending task. The reason is that, by finding the nearest instance, the
time difference between start time of the receiving instance and the completion time of the sending
instance is the smallest. The chance of vioiating the latency constraint of a communication will be
the smellest then.

The nearest instance of a sending task can be found using the following method. Given an
incoming communication 7} — 7;’ , and the effective start time of 7',’ , eft we search through the
linked list of processor ¢(7x) up to time eft. If there is some instance of 74, say 7, whose completion
time is the latest among all scheduled instances of 7;, then the nearest instance is found. Otherwise,

we continue to search through the linked list until an instance of 7; is found. We set the effective
start time of the communication to be the completion time of the found instance. We also erase

the guestion mark such that 7} — 77 is changed to 7§ ~ 77. For the synchronous communication,
the effective start time of the communication is simply assigned as the finish time of the sending
task instance.

The scheduling of the communication is done by inserting 2 time slot to the linked list for the
communications network. The start time of the time slot can not be earlier than the effective start
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time of the communication. Once the time slot is inserted, we check the effective start time of 7/

to make sure that it is not less than the finish time of the time slot. If it is, the effective start time

of 77 is updated to be the finish time of the time slot.

If a task instance has more than one incoming communication, the scheduling order among these
communications is based on their latency constraints. The bigger the latency value is, the earlier
the communication is scheduled. The incoming communication with the tightest latency constraint
is scheduled last. It is because the effective start time of the receiving task instance is constantly
updated by the scheduling of the incoming communications. It is possible that the scheduling of
the later incoming communications increases the effective start time of the receiving task instance

and make the early scheduled communication violate its latency constraint if the constraint is tight.

4.1.3 Scheduling the Outgoing Communications: o,

The scheduling of the outgoing communications for the whole task set is performed after all the
task instances have been scheduled. The scheduling order among these communications is based
on the finish times of the sending task instances. The task instance with the smallest finish time is
considered first. When a task instance is taken into account, all its outgoing communications are
scheduled one by one according to their latency constraints. The communication with the tightest
latency constraint is scheduled first.

Given 2n outgoing communication 77 ~— 7, and the finish time of 77, f7, the effective start
time of the communication is set 10 be f7. Based on the effective start time, 2 time slot in inserted

for this communication. Then the nearest instance of receiving task can be found based on the
Anish time of the time slot.

For the example shown in Figure 5, The incoming communication marked with “(1)” is scheduled
before the scheduling of 73. The sixth instance of 7; is chosen as the nearest instance. As for the
outgoing communication marked with “(3)7, it is scheduled after the scheduling of 72, 7€, 77, and

72, In this example, 72 is the nearest instance of the ountgoing communication.

4.2 Neighbor Finding Strategy: ¢

The neighbor finding strategy is used to find the next solution point once the current solution point
is evaluated as infeasible (i.e. energy velue is nonnegative). The neighbor space of a solution point

is the set of points which can be reached by changing the assignment of one or two tasks. There
are several modes of neighbor finding strategy.




e Balance Mode: We randomly move a task from the heavily-loaded processor to the lightest-
loaded processor. This move tries to balance the workload of processors. By balancing the
workload, the chance to find a neighbor with a lower energy value is bigger.

» Swap Mode: We randomly choose two tasks 7; and 7; on processors p and g respectively.

Then we change ¢ by setting ¢(7;) = ¢ and ¢(7;) = p.

o Merge Mode: We pick two tasks and move them to one processor. By merging two tasks to
a processor, we increase the workload of the processor. There is an opportunity of increasing
the energy level of the new point by increasing the workload of the processor. The purpose of
the move is to perturb the system and allow the next move to escape from the local optimum.

o Direct Mode: When the system is in a low-energy state, only few tasks violate the jitter
or Jatency constraints. Under such a circumstance, it will be more beneficial to change the

assignment of these tasks instead of randomly moving other tasks. From the conducted ex-

periments, we find that this mode can accelerate the searching of a feasible solution especially

when the system is about to reach the equilibrium.

The selection of the appropriate mode to find a neighbor is based on the current system state.
Given a randomly generated initial state (i.e. solution point), the workload discrepancy between
the processors may be huge. Hence, in the early stage of the simulated annealing, the balance
mode is useful to balance the workload. After the processor workload is balanced out, the swap
mode and the merge mode are frequently used 1o find a Jower energy state until the system reaches
near-termination state. In the final stage of the annealing. the direct mode tries 1o find a jeasible
solution. The whole process terminates when 2 feasible solution is found in which the energy value

is zero.

5 Experimental Results

We implemented the algorithm as the framework of the allocator o0 MARUTI [GMK*Qi, MSAQ2,
SdSA94], a real-time operating svstem developed at the Unjversity of Maryland, and conducted
extensive experiments under various task characteristics. The iests involve the allocation of real-
time tasks on = homogeneous distributed svstem connected by 2 communication channel.

To test the practicality of the approach and show the significance of the algorithm, we consider a
simnplified 2nd sanitized version of 2 real problem. This was derived from actual development work,
and is thereiore representative of the scheduling requirements of an actual avionics system. The

Boeing 777 Aircraft Information Management System (AIMS) is to be running on a multiprocessor
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10_Proc | 9.Proc | 8.Proc 7 Proc 6-Proc
Exec.Time (Sec) 2369 5572 | 19774 36218 78647
= Hr: Min: Sec 0:_\:39:29 1:32:52 5:2_%34 10:03:38 | 21:50:47

Table 1: The execution times of the AIMS with different number of processors

system connected by a SafeBus (TM) ultra-reliable bus. The problem is to find the minimum
number of processors needed to assign the tasks to these processors. The objective is to develop
an off-line non-preemptable schedule for each processor and one schedule for the SafeBus (TM)
ultra-reliable bus.

The AIMS consists of 155 tasks and 951 communications between these tasks. The frequencies
of the tasks vary from 5HZ to 40HZ. The execution times of the tasks vary from Oms to 16.650ms.
The NEI and XEI of a task 1; are p, — 500us and p; + 500us respectively. Since 6 = 1000us = 1ms
< 3—“’—;’3, the smallest-period-first scheduling algorithm can be used in this case. Tasks communicate
with others asynchronously and in mutuality. The transmission times for communications are in the
range from Ops to 447.733us. The latency constraints of the communications vary from 68.993ms
to 200ms. The LCM of these 135 tasks is 200ms. When the whole system is extended, the total

number of task instances within one scheduling frame is 624 and the number of communications is
1580.

For such 2 real and tremendous problem size, pre-analysis is necessary. We caiculate the resource
utilization index 1o estimate the minimum number of processors needed to run AIMS. The index
is defined as

LCM

where e; is the execution of task t; and ¢; = -L—f:-"i. The obtained index for AIMS is 5.14. It means

there exist no feasible solutions for the AIMS if the number of processors in the multiprocessor
svstem is less than 6.

The number of processors which the ATMS is allowed to run on is a2 parameter to the scheduling
problem. We start the AIMS scheduling problem with 10 processors. After a feasible solution is
iound, we decrease the number of processors by one and solve the whole problem again. We run
the 2lgorithm on 2 DECstation 5000. The execution time for the AIMS scheduling problem with
different numbers of processors is summarized in Table 1. The algorithm is able to find a feasible
solution of the AIMS with six processors which is the minimum number of processors according
to the resource utilization index. The time to find such a feasible solution is less than one day

(approximately 22 hours).
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5.1 Discussions

For feasible solutions of the AIMS with various numbers of processors, we calculate the processor
utilization ratio (PUR) of each processor. The processor utilization ratio for a processor p is defined
as
z&(l;)zp(e‘i X 9‘)
LCM '

The results are shown in Figure 8. The ratios are sorted into a2 non-decreasing order given a fixed
number of processors. The algorithm generates the feasible solutions for the AIMS with 6,7, 8, 9
and 10 processors respectively. For example, for the 6-processor case, the PURs for the heaviest-
loaded and lightest-loaded processors are 0.91 and 0.76 respectively. For the 10-processor cases, the
PURs are 0.63 and 0.28 respectively. We find that the ratio difference between the heaviest-loaded
processor and the lightest-loaded processor in the 6-processor case is smaller than those in other
cases. It means the chance for 2 more load-balanced allocation to find a feasible solution is bigger
when the number of processors is smaller.

The detailed schedules for the 6-processor case are shown in Figure 9. The results are shown
on an interactive graphical interface which is developed for the design of MARUTI The time scale
shown in Figure 8 is 100us. So the LCM is shown as 2000 in the figure. (i.e. 2000 x 100us =
200ms.) This solution consists of seven ofi-line non-preemptive schedules: one for each processor
and one for the SafeBus (TM). Eachk of these schedules will be one LCM long where an infinite
schedule can be produced by repeating these schedules indefinitely. Note that the pseudo instances
2re introduced to make sure the wrapping around at the end of the LCM-long schedules should
satisfv the latency and nexi-execution-interval requirements across the point of wrap-around. The
pseudo instances are not shown in Figure 8. v

The inciusion of resource and memory constraints into the problem can be done by modifying
neighbor-finding strategy. Once a neighbor of the current point is generated, it is checked to
ascertain that the constraints on memory etc. are met. If not, the neighbor is discarded and
another neighbor is evaluated.
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f Given a solution point P = (@, o0m, 0¢) \
While there is some unscheduled task instance do
Find the next unscheduled instance. /* By the SLsF algorithm */
Let the instance be 77. .
Sort all the incoming communications of 77 based on
the latency values into a descending order.
Schedule each incoming communication starting from
the biggest-latency one to the tightest-latency ome.
Schedule the instance 77.
End While.
Mark each instance 2s un-examined.
While there is some un-examined task instance do
Find the next un-examined task instance. /* By the finish times */
Sort all the outgoing communications of the task instance based
on the latency values into an increasing order.
Schedule each oulgoing communication starung from
the tightest-latency one to the biggest-latency one.
Mark the task instance examined.
End While.
Collect the start time and finish time informztions for each task instance and communication.
Compute the epergy velue using Equation 3.

. /

Figure 6: The pseudo code for computing the energy value
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f Choose an initial temperature T \
— Choose randomly a starting point P = (@, Om, 0¢)
E, := Energy of solution point P
if £, = 0 then
output £, and exit /* E, = 0 means a feasible solution */
end if
repeat
repeat
Choose N, a neighbor of P
E, := Energy of solution point N
. if E,, = 0 then
output E, and exit /* E, = 0 means 2 feasible solution */
end if
if En < Ep then
P:=N

else

end if
until thermal equilibrium at T
T:=ax T (wherea < 1)
until stopping criterion

Figure 7: The structure of simulated annealing algorithm.

125




Processor Lshzaton
Lrilization Razao

.95 - — -
.90
D.0S
.90 =
.78
0.70 p-
0.88 =
0.60 =
0.55 b=
C.50 p~
0.45 t=

0.e0 -

.30

(-]

.28 -
20 = -
28 =
.10 L -
oS - i -
.00 -
) t ] } ]
.00 4.0C 6.0¢ 3.00 ac.00

o © o © o©

Figure 8: Processor Utilization Ratios for different cases

LF“' I, _lrach  Rllocerr "-J Morwsng File: Total EP_RIMS

0 100 200 300 400 500 600 700 BOC 900 1000 13100 1200 1300 1400 31500 1600 1700 1BOO 1900 200C

P m%y&s 5€NE3 SN .'4!5 IQS l164512 168 @:zs;_gz 6.5%‘,&11 %2‘5} , ‘166514 169 F‘g
s v 42 SeeST eSS4 SRS ITEALTOS | SHSESH LT 43 1, feSs 67327

Pa: mmm::m:: 0= mﬁm%mu 7% s a2 w113) o 1o—

P 2: 233'35 %250'3(105%{_{.’5353 zqzs«z-qnsmt m«gm«sgss 8155841 %m

T A 11 |6 5 S . s ¢ ) jenmnie] o

_ursoz 447.17 44LIT318 ag 448 Ba4 Siedq 15)‘828 «9 18 544172128 450 545 403

P3:op £ . DO s ] s R o G s B o

40 < Am 4

P‘:zss_:so’ 2652426 2663 452 ssoezn%m__l 262228120, 2667 53 Azssza;we I
. RI2ZOMEYLIRT T2 1R nm1 9 & R2T22 W22 4 1034 505

B e s il i s e e P ] e e o e e s B o S T s e i

TS S5 £ d 23 U WCS M I

Pt WH~MW%~%&§.WM’W&W&M &&k.&*ﬂ’%«k&hée

Figure 9: The Allocation Results and Schedules for AIMS with 6 processors

126



REPORT DOCUMENTATION PAGE

Form approved
OMB No 074-0188

1. AGENCY USE ONLY (leave blank)] 2. REPORT DATE

January 1995

3. REPORT TYPE END DATES COVERED
Techn

ical Report

4. TITLE AND SUBTITLE

Allocation and Scheduling of Real-Time Periodic Tasks with Relative
Timing Constraints

5. FUNDING NUMNBERS

N00014091-C-0195
DSAG-60-C-0055

6. AUTHOR(S)
Sheng-Tzong Cheng and Ashok K. Agrawala

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland
Department of Computer Science
A.V. Williams Building
College Park, MD 20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

CS-TR-3402

UMIACS-TR-95-6

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Phillips Laboratory

Directorate of Contracting

3651 Lowry Avenue, SE
Kirtland AFB, NM 871175777

Honeywell Inc.
3600 Technology Drive
Minneapolis, MN 55148

10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT

12.b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Allocation problem has always been one of the fundamental issues of building the applications in distributed computing
systems (DCS). For real-time applications on DCS, the allocation problem should directly address the issues of task and
communication scheduling. In this context, the allocation of tasks has to fully utilize the available processors and the
scheduling of tasks has to meet the specified timing constraints. Clearly, the execution of tasks under the allocation and
schedule has to satisfy the precedence, resources, and other synchronization constraints among them.

Recently, the timing requirements of the real-time systems emerge that the relative timng constraints are imposed on the
consecutive executions of each task and the inter-task temporal relationships are specified across task periods. In this
paper we consider the allocation and scheduling problem of the periodic tasks with such timing requirements. Given a set of
periodic tasks, we consider the least common multiple (LCM) of the task periods. Each task is extended to several
instances within the LCM. The scheduling window for each task instance is derived to satisfy the timing constraints. We
develop a simulated annealing algorithm as the overall control algorithm. An example problem of the sanitized version of the
Boeing 777 Aircraft Information Management Systems is solved by the algorithm. Experimental results show that the

algorithm solves the problem in a reasonable time complexity.

14. SUBJECT TERMS
Process Management; Special Purpose and Application-Based Systems

15. NUMBER OF PAGES
22

16. PRICE CODE

. SIFICATIO 116, SECURITY CLASSIFICATION |19, SECURITY CLASSIFICATION | 20. LIMITATION OF
17. SECURITY CLASSIFICATION OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified Unlisted
MSN 7540-01 280-5500 Standard Form 298 (Rev 2-89)

127




128



Scheduling of Periodic Tasks with Relative Timing Constraints *

Sheng-Tzong Cheng and Ashok K. Agrawala
Institute for Advanced Computer Studies
Systems Design and Analysis Group
Department of Computer Science
University of Maryland
College Park, MD 20742
{stcheng,agrawala}@cs.umd.edu

Abstract

The problem of non-preemptive scheduling of a set of periodic tasks on 2 single processor
has been traditionally considering the ready time and deadline on each task. As a consequence,
2 feasible schedule finds that in each period one instance of each task starts the execution afier
the ready time and completes the execution before the deadline .

Recently, the timing requirements of the real-time systems emerge that the relative timing
copstraints are imposed on the consecutive executions of each task. In this paper, we consider
the scheduling probiem of the periodic tasks with the relative timing constraints imposed on two
consecutive executions of 2 task. We analyze the timing constraints and derive the scheduling
window for each task instance. Based opn the scheduling window, we present the time-based
approach of scheduling a task instance. The task instances are scheduled one by one based on
their priorities assigned by the proposed algorithms in this paper. We conduct the experiments
to compare the schedulability of the algorithms.
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1 Introduction

The task scheduling problem is one of the basic issues of building real-time applications in which the
tasks of applications are associated with timing constraints. For the hard real-time applications,
such as avionics systems and nuclear power systems, the approach tp guarantee the critical timing
constraints is to schedule periodic tasks a priori. A non-preemptive schedule for 2 set of periodic
tasks is generated by assigning a start time to each execution of a task to meet their timing

constraints. Fallure to meet the specified timing constraints can result in disastrous consequence.

Various kinds of periodic task models have been proposed to represent the real-time system
characteristics. One of them is to model an application as a set of tasks, in which each task is
executed once every period under the ready time and deadline constraints. These constraints impose
constant intervals in which a task can be executed. In literature, many techniques {2, 3,4, 5, 6, 7, §)
have been proposed to solve the scheduling problem in this context. The deficiency of this modeling
is the inability of specifying the relative constraints across task periods. For example, one can not

specify the 1iming relationship between two consecutive executions of the same task.

Simply assuring that one instance of each task starts the execution az'te,r the ready time and
completes the execution before the specified deadline is not enough. Some real-time applications
bave more complicated timing constraints jor the tasks. For example, the relative timing constraints
may be imposed upon the consecutive executions of a task in which the scheduling of two consecutive
executions of a periodic task must be separated by 2 minimum execution interval. The Boeing 777
Aircraft Information Management System is such an example [1]. One possible solution to the
scheduling problem of such applications is to consider the instances of tasks rather than the tasks.
A task instance is defined as one execution of a task within 2 period. With the notion of task
instances, one is a2ble to specify the various timing constraints and dependencies among instances
of tasks.

In this paper, we consider the relative timing constraints imposed on two consecutive instances
of a task. The task model and the analysis of the timing constraints are introduced in Sections 2
and 3 respectively. Based on the apalysis, we are a2ble 10 derive the scheduling window for each
task instance. Given the scheduling window of a task instance, we present the time-based approach
of scheduling a task instance in Section 4. We propose three priority assignment algorithms for the
task instances in Section 5. The task instances are scheduled one by one based on their priorities.

In Section 6. we evaluate the three algorithms a2nd show the experimental results.
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2 Problem Statement

Consider a set of periodic tasks T = { 7; | i = 1, ... n }, where 7; is a 4-tuple < pi, &, A, 7 >
denoting the period, computation time, Jow jitter and high jitter respectively. One instance of a
task is executed each period. The execution of a task instance is non-preemptable. The start times
of two consecutive instances of task 7; are at least p; — A; and at most p; + 7; apart.

In order to schedule periodic tasks, we consider the least common multiple (LCM) of all periods

of tasks. Let n; be the number of instances for task 7; within 2 schedule of length LCM. Hence, n;

LC

= % A schedule for a set of tasks is the mapping of each task 7; to n; task instances and the

assigning of 2 start time sf to the j-th instance of task 7;, T,-j, Vi=1,...nandj=1,...,n;. A
Jeasible schedule is a schedule in which the following conditions are satisfied for each task 7;:

= sd+e 1)
st = g4 LCM (2)
g2 T apen (3)
s < T sn+m (4)

Vi=2,...,n;+ 1.

The non-preemption scheduling discipline leads to Equation 1 where ff is the finish time of 'r,j .
Another condition for non-preemption scheduling is that given any i, 7, k and £, ':fsf < st then f,-j
< si. It means the schedule for any two instances is non-overlapping. The constructed schedule of

length LCM is invoked repeatedly by wrapping-around the end point of the first schedule to the
start point of the next one. Hence, as shown in Equation 2, the start time of the first instance in
the next schedule is exactly one LCM away from that of the first schedule. Finally, Equations 3
and 4 specify the relative timing constraints between two consecutive instances of a task.

3 Analysis of Relative Timing Constraints

Define the scheduling window for a task instance as the time interval during which the task can
stert. Traditionally, the lower and upper bounds of the scheduling window for 2 task instance are
called earliest start time (est) and latest start time (Ist) respectively. These values are given and

independent of the siart times of the preceding instances.

131




| Instance ID | est = &7 4+ p; = \; | Ist= 7”7 + p; + 7; | actual start time (s7)
i 0 - 40 4
¢ 39 49 40
75 75 85 7
=3 112 12 113
73 148 158 ®

Table 1: An example to show the wrong setting of scheduling windows

We consider the scheduling of periodic tasks with relative timing constraints described in Equa-
tions 3 and 4. The scheduling window for a task instance is derived from the start times of its
preceding instances. A feasible scheduling window for a task instance 7,J is a scheduling window
in which any start time in the window makes the timing relation between .sf-"] and sf. satisfy
Equations 3 and 4. Formally, given s}, s?, ..., and ..., sf‘l, the problem is to derive the feasible
scheduling window for -;’ such that a feasible schedule can be obtained if .-,’ is scheduled within

the window.

Yor the sake of simplicity, we assume that r; = 0 and d; = p;. V 1, in this section. Then, simply
assigning est and Ist of ",’ as 5;?'-1 + p; — A; and sf-"l <+ p; + 7; Tespeciively where1=1,2, ..., n
and j = 1, 2, ..., m;, is not tight enough 10 guarantee 2 feasible solution. For example, consider
the case shown in Table 1 in which = periodic task 7; is to be scheduled. Let LCM, p;, );. and =:
be 200, 40, 5, and 5 respectively. Hence, there are 5 insiances within one LCM (i.e. n; = 5). The
first column in Table 1 indicates the instance IDs. The second and third columns give the est and
Ist of the scheduling windows for the task instances specified in the first column. The ]ast column
shows the actual start times scheduled for the particular task instances. The actual start time is
a value in between est and Ist of each task instance. For instance, the est and Ist of 72 are 39 and
49 respectively. It means 39 < s? < 49. The scheduled value for s?, in the example, is 40. Since
s8 = s} + LCM = 204, we find that any value in the interval [148,158) can not satisfy the relative

timing constraints between +7 and 7f. As a consequence, the constructed.schedule is infeasible.

We draw z picture 1o depict the relations among the start times of task instances in Figure 1.

When =7 is taken into account, the scheduling window for s? is obtained by considering its relation

. y—1 . . . ;. . .
with &7 as well as that with s* and s™¥'. We make sure that once & is determined, the estimated
est and Ist of 7, based on ] and s™7?, specify a feasible scheduling window for <™. Namely, the

interval which is specified by the estimated est and Ist of s, based on & . overlaps the interval
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Figure 1: The relations between the task instances

[T = (pr = 1), sTH = (p = M)

Proposition 1: Let the est and Ist of T;’ be

est(7)) = maz{(sS T4+ pi-A), (F+ (G- xpi—(ni—j+1)xm)), (3)
and Ist(7?) = min{(s] T +pim), 1+ (G -1)xpi+(m—5+1)x M)} (6)

I sf is in between the est(rf) and lst(ff), then the estimated est and Ist of s, based on s;’ and

n,+1
3

s . specify e feasible window.

Proof: Let £ and u be the estimated est and Ist of s, based on 3, respectively.

1

Hence,

£=sl +(ni=j) x (i = X) (7)
p=s+(n= )% (i +m) (8)

To guarantee the existence of feasible start time of 7", the interval [£,u] has to overlap the

n,+1

interval [s™ 1= (p; + ), 577 = (pi — A;)). Hence the following conditions have to be satisfied:

S; -L{2>p - A (9)




P —p<pit (10)

N

By replacing { in Equation 8 with sf + {n: =7} x {p: = A;), we obtain

$< S - (ni- 1) x (pim M)

= $}+LCN‘[—(n;—j+l)X(p,’—)\;)

= sSt+n;xp—(n=-j+1)x(p—N)

S+HE-Dxpi+(ri—i+1)x N (11)

Likewise, by replacing yp in Equation 10 with sf + (ni = 37) x (p:i + m;), we have

1},'-1-]

s! i = (s =+ 1) x (pi+ )

v

st +LCM = (n;— 7+ 1) X (pi + m)

S+ -Dxp—(ni-j+)xmn (12)

So, According 1o Equations 12 and 3, we choose the bigger value between (s’,-'—1 + p; — A;) and
(s} = (j=1)xp: = (ni—J+ 1) x m) as the est of 7’,’ Similarly, according 1o Equations 11 and 4,
we 2ssign the smeller value of (.rj“l + pi + ;) and (¢

+{(7-1) xpi+ (ri=J+1) X A;) as the
Ist.

0

Example 3.1: To show how Proposition 3 gives a tighter bound to find feasible scheduling windows,
we consider the case shown in Table 1 again. We apply Equations 5 and 6 to compute the est and
Ist of each instance. The results are shown in Table 2. Note that the scheduling windows for 7}
and 77 are tighter than those in Table 1. As a conseguence, any start time in the interval [159,160)

for 77 satisfys the relative timing constraints between 7} and 7f.

3.1 Property of Scheduling Windows

Define P;(z,y,z) as the predicate in which the estimated est and Ist of 77, based on s7 and &7,
specify 2 feasible scheduling window jor v}. In Proposition 3 , we prove that for any & in between

est(r{) and lst(r,-j) as specifed in Equations 5 and 6, P;(j.n;.n; + 1) is true.
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Instance ID | estfrom Equation 5 | Ist from Equation 6 | actual start time (s])
7] 0 ' 40 4
7! 39 49 40
7P 75 85 77
77 114 122 115
> 159 160 159 ~ 160

Table 2: The correct setting of scheduling windows based on Proposition 3.1.

., and sf, if,Vk=2..,7 est(tF) < sk < lst(z}, as specified in
Equations § and 6, then P;(j,y,n;+ 1) istrue, Vy = j+1, 7+ 2,

Lemma 1 Given s}, &2, ..

ceey T

nio4l

3

Proof: We prove that the estimated est and Ist of 77, based on sf-' and s , speofy a feasible

scheduling window, by showing that (1) the estimated scheduling window cf sy, based on &, is
specified by the interval

[l + (v=3) % (o = M)l + (v = 3) x (e + ), (13)
(2) the estimated scheduling window of s¥, based on s7 ™, is specified by the interval
[ = (i =y 1) % (pi - m)y T = (mi =y =+ 1) x (i = M), (14)

and (3) the intervals in Equations 13 and 14 overlap.

In Figure 2, we see that the necessary and sufficient conditions for the overlapping of the
intervals specified in Equations 13 and 14 are
S+y-)x(E=x) € = (n-y+1)x(pi-X)

and &7~ (ni—y+ 1) x(p4m) < &4 (y-75)x (pi+m)

By solving the Equations 15 and 16, we obtain

IA

s ST+ (G- xpi+(ni-7+1)x )

and 5] 2 s+ (- xpi-(m-j+1)xn

The 2bove two equations describe the same conditions as Equations 11 and 12 do. Hence, P;(4,y, n; + 1)

Istrue, Yy=7+1.5+2,..,7n.
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7_‘|‘+1

ST = (i-y+ ) x(pidn) P - (u-y+ ) x(w=X)

n e ke

Figure 2: The overlapping of two intervals

Lemma 2 Given s}, 52, ..., s), and an integer no, where 1 < g < 5, if,Vk =2, ..., j, est(~F)
1 1 1

< sF < Ist(7F) are specified as in Eguations § and 6, then Pi(j,y,n; + ng) is true, Vy = 5+ 1,
j +2,..., 0.

Proof: We use the same method in Lemma 1 to prove it. We show that (1) the estimated scheduling

window of s!, based on &, is specified by the interval

[+ (= 7)) x (i = X). & + (y = 7) % (p: + m)), (17)
(2) the estimated scheduling window of s¥, based on s7*~ ™, is specified by the interval

[s77™ = (ni+ no— ) X (pi + %), 5™ = (my + mp — v) X (i — A)), (18)

and (3) these two intervals overlap.

The following conditions have to be satisfied to make sure the overlapping of the two intervals.

s

IA

PG -Dxpit (=it 1) x - (pi—A)xno—1 (18)

L/
-

and sf > s?"—:(j—l)x;:;-—(n;—j-}-1)'X77,'—(p,‘+1),~)xn0-1. (20)

Since s} < s7° = (pi=A) X (np—-1)and & > ™ — (p;+ 7)) x (no—1), we rewrite Equations 19
and 20

S S G- xpi+(n—j+1)x A=(pi =) X ng—1
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SSHG - xpit(m=-7+1)x N

IN

and s;f P (=) xpi— (ni =5+ 1) x ni=(pi + ;) X no — 1.

v

> s+ (U-Dxp-(m-j+1)xn
Hence P;(j,y,n;+ np) holds for any 1 < ng < 5.
D

Theorem 1 Given s}, s?, ..., and sf, ,Vk=2 ..,7 est(rF) < s& <lst(7}) as specified in
Equations 5 and 6, then Pj,y,z) tstrue, Vy=j+1,54+2,..,n,andz=mn;+ 1, n; + 2, ...,

n;+ 7.

By combining the proofs in Lemmas 1 and 2, it is easy to see that Theorem 1 holds. Based on

Theorem 1, we can assign the scheduling window for 7 by using Equations 5 and 6 once s, s?,
=

..o,s,‘

Before we present the scheduling technique for a task instance, let us consider the following
objective. The objective can be formulated as follows. Given a set of tasks with the characteristics
described in Section 2, we schedule the task instances for each task within one LCM to minimize

*

= T ad-d7-m) (21)

‘.lj
Subject to  the constraints specified in Equations 1 through 4,

where a(z) =1z, if 2 > 0; = —z, otherwise.

Basically, we try to schedule every instance of a task one period apart from its preceding

instance. An optimal schedule is a feasible schedule with the minimum total deviation value from
one period apart for instances.

4 The Time-Based Scheduling of a Task Instance

We consider the time-based solution to the scheduling problem by using 2 linked list. Each element
in the list represents a time slot assigned to a task instance. A time slot w has the following fields:

(1) task id i and instance id j indicate the identifier of the time slot. (2) start time st and finish time

ft indicate the siart time and completion time of 77 respectively. (3) prev ptr and nezt pir are the




new arriving instence: - {c.st(r;"), lst(rf)] ,

(4
A s2 f2 s3 fa
.
" LCM

Before: | O | /1 ~ S2 | f2 o s3 | fa ____L-

After: 0 fi h V1 +e 52 J2 s3] fa —_1_

Figure 3: Insertion of 2 new time slot

pointers to the preceding and succeeding time slots respectively. We arrange the time slots in the
list in increasing order by using the start time as the key. Any two time slots are non-overlapping.
Since the execution of an instance is non-preemptable, the time difierence between start time and

finish time eguals the execution time of the task.

4.1 Creating a Time Slot for the Task Instance

Consider a set of n tasks. Giver = linked list and 2 task instance 77, we schedule the instance by
inserting  time slot to the list. According 1o equations 5 and 6, we compute the es(7]) and Ist(7;)

first. Let S be the set of unoccupied time intervals that overlap the interval [est(r;-" ) lst('r,-j )] in the
linked List. The unoccupied time intervals in S are collected by going through the list. Each time

when 2 pair of time slots (w,w <+ 1) is examined, we compute { = max{ est(fji), ft(w)} and p=
min{ls¢(7), st{w =+ 1)}, where f2(w) is the finish time of the time slot w, and st(w +1) is the start

time of the slot next to w. H £ < p, then we add the intervel [£, p] to S.

The free intervels in S are the potential time slots which r;’ can be assigned to. Since we try

‘1

to schedule 77 as close 10 one period away from the preceding instance 727! as possible, we sort 5,

based on the function of the Jower bound of each interval, a(sf:'] + p; — {), in ascending order.

Without loss of generality, we assume that S after the sorting is denoted by {int;. inla, . ... inls)}
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The idea is that if 7',-" is scheduled to ini, then the value in equation 21 will be smaller than that

of the case in which 7 is scheduled to intgys.

The scheduling of ',’ can be described as follows. Starting from int;, we check whether the

length of the interval is greater or equal to th= =xecution time of 7-;’ or not. If yes, then we schedule
the instance to the interval. One new time slot is created in which the start time is the lower bound
of the interval and the finish time equals the start time plus the execution time. The created time
slot is added to the linked list and the scheduling is done. If the length is smaller than the execution
time, then we check the length of the next interval until all intervals are examined. An example is

shown in Figure 3 in which the slot with dark area represents 7. In this example we assume that

est(77) < fy and s; — f; > e. It means the free slot between the first z2::d second occupied slots

can be assigned to 77.

4.2 Sliding of the Time Slots

In case none of the intervals in S can accommodate a task instance, the sliding technique is used
1o create 2 big enough interval by sliding the existence time slots in the list.

To make the sliding technique work, we maintain two values for each time slot: left lazity and
right lezity. The value of left laxity indicates the amount of time units by which 2 time slot cax be
left-shifted to 2 earlier start time. Similarly, the night laxity indicates the amount of time units by
which z time slot can be right-shifted to a later start time.

Given the time slots w;—y, wi, and w1, where ¢ and b are the task and instance identifiers of
wy respectively, the laxity values of the time slot w; can be computed by:

leftdazity(wy) = min{st - est’, & — fi(wio1) + leftdezity(wiy)} (22)
rightJazity(wy) = min{lst' — sb, st(wisy) — J2 + rightdezity(1.41)} (23
where est’ = maz{est(r), o7 = (po + 10)}
and Ist' = min{lst{}), st = (p. = Ad)).

Note that the intervel [est’, Ist'] defines the sliding range during which 72 car start without

shifting 7272 or 72*. A schematic illustration of equations 22 and 23 is given in Figure 4.

From equations 22 and 23, we see that the computing of left.lazity(w;) depends on that of w;_;

and the computing of rightJazity(w,) depends on that of wi.;. It implies 2 Two-pass computation
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st~ ft(wki-zg Y——“ st(wis1) = f7
[ ‘ M Wi+

b-1 Wk s+l
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‘ 1 |

| est(s?)
]
o 1st(st)

> Po + Me ]

o

1 Do — )\o _]

I ]

est’ Ist'

Figure 4: An illustration of left_lazity(w,) and rightdazity(wy)

is needed to compute the Jaxity values for all time slots. The complexity is O(2N) where N is the
number of time siots in the linked list.

The basic idez of the sliding technique is described as follows. Given a task instance 'J and 2
set of unoccupied intervels, § = {inty, inty, ..., int5 )}, we check one interval at a time to see if
the interval cav be enlarged by shifting the existent time slots. Two possible ways of enlargement
are (1) by either shifting the time slots, that precede the intervel, to the left or (2) shifting the
slots, that jollow the interval, to the right. The shifting depends on which direction minimizes the
objective funclion in Equation 21.

4.3 The Algorithm

An algorithmic description about how to schedule 2 task instance, as described in Sections 4.1
and 4.2, is given in Table 3.

The procedures Left_Shift(wy time_units) and Right_Shift(w;,time.units) in Table 3 may involve
the shifting of more than one time slot recursively. For example, consider the case in Figure 4, if
Right Shift(w;.Ist’ ~ s}) is invoked (i.e. w; is to be shifted right by Ist’ — st time units), then

Wi+ bas to be shifted too. It is because the gap between w; and wiyy is st(wisy) — fb which is
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smaller than Ist' — sb. In this case, Right_Shift(wii1,lst’ — st — st(wiyq) + f2) is invoked.

We do not enlarge an interval at both ends. Enlarging an interval at both ends needs to shift
certain amount of preceding time slots to the left and shift some succeeding slots to the right. It is

possible that some task instance 7Y is shifted left, while 72+ is shifted right. As a consequence, the
timing constraints between s¥ and s¥*? could be violated. For exampie, Let s¥ and s¥*! before the
shifting be 10 and 20 respectively. The execution time for 7; is 5 time units. Assume the left lazity

of 7¥ is 5 and the right lazity of 72! is 5. It implies s¥*! — s¥ < 15. Consider the scheduling of a
task instance T,-j with execution time 15. If we enlarge the interval between rY¥ and 7¥*? by shifting
7Y left 5 time units and 7¥*? right 5 time units, then we get a new interval with 15 time units for

77. However, it turns out that s¥*! = 23, s¥ = 5, and the relative timing constraints between 7¥

and 7¥*? is violated.

5 The Priority-Based Scheduling of a Task Set

We consider the priority-based algorithms for scheduling 2 set of periodic tasks with hybrid timing
constraints. Given a set of periodic tasks I = { s | i = 1, ..., n } with the task characteristics
described in Section 2, we compute the LCM of all periods. Each task 7; is extended to n; task
instances: 7}, 77, ..., 7. A scheduling algorithm o for T is to totally order the instances of all

taske within the LCM. Namely, o : task.id X instance.id — integer.

Three algorithms are considered. They are smallest latest-start-time first/SLsF), smaliiest period
first (SPF), and smallest jitter first (SJF) algorithms.

5.1 SLsF

The scheduling window for 2 task instance 77 depends on the scheduling of its preceding instance.

y =1 . . . . . .
Once &7 is determined, the scheduling window of the instance can be computed by equations 5

and 6. The scheduling window for the first instance of 2 task 7; is defined as [r;,d; — ¢;).

The idea of the SLsF algorithm is to pick one candidate instance with the minimum lst among

all tasks at 2 time. One counter for each task is maintained to indicate the candjdate instance. All
counters are initialized to 1. Each time when a task instance with the smallest Ist is chosen, the

algorithm in Table 3 is invoked to schedule the instance. After the scheduling of the instance is

done, the counter is increased by one. The counter for 7; overfows when it reaches n; + 1. It means
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that all the instances of 7; are scheduled. The algorithm terminates when all counters overflow.

We can compute the relative deadline for a task instance by adding the execution time to the
Ist. If the execution times for all tasks are identical, the SLsF algorithm is equivalent to the earliest

deadline first (EDF) algorithm.

5.2 SPF

The task periods determine the LCM of ' and the numbers of instances for tasks within the LCM.
In the most cases, the task with the smaller period has the tighter timing constraints. Namely,
(A + ;) £ (X5 + ;) if p; € p;. To make the tasks with the smaller periods meet their timing

constraints, the SPF algorithm favors the tasks with smaller periods.

The SPF algorithm uses the period as the key to arrange all tasks in non-decreasing order. The
task with the smallest period is selected to schedule first. The instances of 2 particular task are
scheduled one by one by invoking the algorithm in Table 3. After all the instances of a task are
scheduled, the next task in the sequence is scheduled.

5.3 SJF

We define the jitter of a task 7 as (A\; + m). It is proportional to the range of the scheduling

window. Hence, The schedulability of a task also depends on the jitter.

Instead of using the period as the measurement, the SJF algorithm assigns the higher priority
1o the tesks with the smaller jitters. The task with the smallest jitter is scheduled first.

5.4 The Solution

The composition of the time-based scheduling of a task instance and the priority assignment of
task instances is shown in Figure 5. The priority assignment can be done by using SLsF, SPF, or
SJF. The function Schedule_An_Instance()} is invoked to schedule a single task instance.

6 Experimental Evaluation

We conduct two experiments to study and compare the performance of the three algorithms. The

purpose of the first experiment is to study the effect of the number of tasks and utilization on

142

-



A set of tasks is given

Find the next unscheduled task instance
By some priority-based assignment,
Such as SLsF, SPF, ard SJF.

Y

Schedule.An_Instence() as shown in Table 8

Some instance is unscheduled

All instances are scheduled

Y

Figure 5: A schematic flowchart for the solution
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the schedulability of each algorithm. The objective of the second experiment is to compare the
performance of the three algorithms.

6.1 The First Experiment

The task generation scheme for the first experiment is characterized by the following parameters.

o Periods of the tasks: We consider 2 homogeneous system in which the period of one task
could be either the same as or multiple of the period of another. We consider a system with
40, 80, 160, 320, and 640 as the candidate periods. There may be more than one task with

the same period.

 The execution time of a task, e; : It has the uniform distribution over the range [0,%], where
p; is the period of the task 7;. The execution time could be a real value.
o The jitters of 2 task: A; = n; = 0.1 x p;.
We define the utilization of a task system as
N
2 (24)
=1 Pi

In tne first experiment, the utilization value and the number of tasks in 2 set are the controlled
veriables. Given an utilization value U znd the number of tasks N the scheme first generaies a
Tun of raw datz by randomly generating 2 set of N tasks based on the the selecied periods, jitter
values, and the execution time distribution. The untilization of the raw data, v, is then computed by
Equation 24. Finally, the utilization value of the raw datz is scaled up or down to U by multiplying
£ 10 the execution time of each generated task. Asa consequence, we obtain 2 set of tasks with

the specified (U,N) value.

For each combination of (U,N) in whick U = 5%, 10%, 15%, ... 100% and N = 10, 20, and
30, we apply the scheme to generate 35000 cases of input data and use the three algorithms to
solve them. The scheduiability degree of each {U/,N'} combination for an algorithm is obtained by
dividing the number of solved cases by 5000. Since the jitter values is 1/10 of periods, it is observed
that the SPF and SJF algorithms yield the same results. The results are shown in Figure 6.

As can be seen in Figures 6(a) and (b) the number of tasks has the different effects on the

three algorithms. For SLsF, given a fixed utilization value, the schedulability degree increases

144



- ®
- Sehedulablility Schesulabiisty

SeATT K = 30 T T T T T\ SPT/E0F. K & 10

e e
S vy 1 1.00 TOF/SIT: K v 30

3.00
v.98 0.9%
- ©.90 - ©.90
c.08 - 0.05
o.90 e 0.8
0.75 - 0.7%
0.%0 - 0.9
[ N1 - .63
.60 - ' 0.6
0.3% - 0.5%
0.%0 - 0.3%0
0.45 ~ 0.45
0.40 - 0.40

0.3% o 0.3%

- '3

-l .25

8.30
©.2%

.20

]

©.30
[ 313

t.30

€.38

©.30

B I W |

©.08 ©.0%

8.00

o.00

-£.0%

{lizatasait) -0.08 - 1
ac.ot 4C.00 4D.00 3c.0t 100.00 30.00 46,00 0. 00 ap.0C i0c.0C

Drilizatienty)

Figure 6: The effect of the numbers of tasks on the schedulability

2s the number of tacks in a system becomes bigger. It is beacuse the execution time of 2 task
becormes smaller as the number of tasks increases. For a task svstem with smaller execution time
distribution, the chance for SLsF to find 2 feasible solution is ¥igger. The same phenomenon is
2lso found in Figure 6(b) for SPF and SJT in the low-utilization cases (i.e. U < 20%). However,
for the high-utilization cases in Figure 6(b), the complexity of the number of tasks dominates the
algorithms and the schedulability decreases.

6.2 The Second Experiment

The task generatior scheme for the second experiment is characterized by the following parameters.

o« LCM = 300
e The pumber of tasks is 20.

o Periods of the tasks: We consider the factors of the LCM as the periods. They are 20, 30,
50, 60, 100, 130, and 300. There may be more than one task with the same period.
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o The execution time of a task, e; : It has the uniform distribution over the range [0,2], where

p; is the period of the task 7;. The execution time could be a real value.

o Thejittersof a task: A; = 7, = 0.1 X p; + 2 X ¢;.

The generation scheme for the second experiment is similar to the first one. Given an utilization
value U, a set of 20 tasks is randomly generated according to the parameters listed above and then
the execution time of each task is normalized in order to make the utilization value equal to U

exactly.

We generate 5000 cases of different task sets for each utilization value ranging from 0.05 to 1.00.
The schedulability degree of each algorithm 6n a particular utilization value is obtained by dividing
the number of solved cases by 5000. We compare the schedulability degrees of the algorithms on
difierent utilization values. The results are shown in Figure 7(2).

As can be see in Figure 7(2) the SLsF algorithm outperforms the other two algerithms. For
example, when the utilization = 50%, the schedulability degree of SLsF is 0.575 while those of SPF
and SJF are less than 0.2. It is because the way of assigning the priorities to the task instances in

the SLsF algorithm reflects the urgency of task instances by considering the latest start times.

We also compare the objective function value 7 in Equation 21 among the three algorithms.
We define the normalized objective function for an algorithm as

5000
i= g 5_066" (25)
1 if the algorithm cen not find a feasible solution 10 case 1.
where z; = ¢ 0 if maz(i) = min(1).

=, ~min{1)

mes()—mm() Otberwvise.

Given case 1, the velues of min(i) and mez(i) are calculated among the objective values obtained
irom the algorithms which solve the case. For the algorithms which can not find a feasible solution
to case 1, the objective values are not taken into account when min(i) and maz(i) are calculated.
The results of the nrormalized objective functions for each algorithm on different utilization values

-~

are shown in Figure 7(b).

1 is observed that in the Jow-utilization cases SJTF finds feasible solutions with smaller objective
velues. It is because that SJT schedules the tasks with the smallest jitters first. By scheduling
the tasks with smaller jitter value first it is more easier to make the instances of a task one period

apart. we can find a feasible solution with smaller objective value. However, in the middle- or
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high-utilization cases, the schedulabilitv dominates the normalized objective junction, and SLsF

outperforms the other two algorithms in these regions.

7

Summary

In this paper we have considered the static non-preemptive scheduling algorithm on a single proces-
sor for a set of periodic tasks with hybrid timing constraints. The time-based scheduling algorithm
1s used to schedule 2 task instance once the scheduling window of the instance is given. We also have

presenied three priority assignment algorithms for the task instances and conducted experiments
to compare the perjormance. From the experimenta] results, we see that the SLsF outperforms the
other two 2algorithms.

The techniques presented in this chapter can be applied to multi-processor real-time systems.
Communication and synchronization constraints can be also incorporated. In our future work, the
extension to & distributed computing systems will be investigated.

147




References

1)

[2)

[3]

[4]

T. Carpenter, K. Driscoll, K. Hoyme, and J. Carciofini. Arinc 659 scheduling: Problem defini-
tion. In Proceedings of IEEE Real-Time Systems Symposium, San Juan, PR, Dec. 1994.

M. L. Dertouzos and A.K. Mok. Multiprocessor on-line scheduling of hard real-time tasks. IEEE
Transactions on Software Engineering, 15(12):1497-1506, Dec. 1989.

M.G. Harbour, M.H. Klein, and J.P. Lehoczky. Fixed priority scheduling of periodic tasks
with varying execution priority. In Proceedings of IEEE Real-Time Sysiems Symposium, pages
116-128, Dec. 1991.

Krithi Ramamritham. Allocation and scheduling of complex periodic tasks. In Proceedings of
the 10th International Conference on Distributed Computing Systemns, pages 108-1135, Paris,

France, 1990.

T. Shepard and J.A.M. Gagne. A pre-run-time scheduling algorithm for hard real-time systems.
IEEE Transactions on Softwere Engineering, 17(7):669-677, July 1991.

} X. Tindell, A. Burns, and A. Wellings. An extendible approach for analyvzing fixed priority hard

real-time tasks. Real-Time Systems, 6(2), March 1984.

J.P.C. Verboosel, £.J. Luit, D.K. Hamme:, and E. Jansen. A static scheduling algorithm for

distributec harc real-iime sysiems. Real-Time Sysiems, pages 227-246, 1901,

J. Xu and D.L. Parnas. Scheduling processes with release times, deadlines, precedence, and

exclusion relations. JEEE Transactions on Software Engineering, 16(3):360-369, March 1990.

148



Ghedule_An.Instance (rf)

Input: A linked list, a task instance 77 and 2 sequence of sorted free intervals, S = { inty, inty, ..., intg ],
in which each interval overlaps [est(77),lst(77)). :
Let the execution time of 77 be e.
For n = 110 |5]| do
Let int, be [L,u].
IHp-102> ethen
Return a new time slot with start time = £ and finish time = £ + e.
End if.
End for. i
Compute left lazity and right lezity for each time slot in the linked list by equations 22 znd 23.
For n =1 10]5] do
Let tnt, be [£,u].
Ie> s;?"1 -+ p; ther /* Try left shift first then right shift */
Let the time slot that immediately precedes int, be wy.
If left lezity{wy) + p — £ > e then /™ Left shift =/
Leit Shift(wi.e — p + £).
Return 2z new time slot with start time = u — e and finish time = p.
Zlse
Let the time slot that immediztely follows ini, be w;.
I mpht lezity(we) + p — £ 2 e then /* Right shift =/
Right.Snift(w..e = p + £).
Return 2 new time siot with starz time = £ and Rnishk time = [ < e.
i End L.
End I
Eise /* Tryv right skift first then left shift =/
Let the time slot tb2at immediateiv follows int, be w;.
I mght.lezity(wy) + p — £ > € then /* Right shift */
Right Shift(wg.e — p + £).
Return 2 pew time slot with star? time = £ and finish time = £ + ¢.
Else
Let the time slot that immediately precedes ini, be w;.
I lefilezity(wr) + p — £ > e then /* Left shift */
Left Shift(w;.e — u =+ £).
Return 2 new time slot with start time = y — € 2nd finish time = p.
Inc L
End If.
End I.
End jor.

@edule -f 2t the end of linked bet. : /

Teble 3: The Scheduling.zf 2 Task Instance
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Abstract

High-speed petworks, such as ATM networks, are expected to support diverse quality-of-
service {QoS) requirements, including real-time QoS. Real-time QoS is required by many appli-
cations such as voice and video. To support such service, routing protocols based on the Virtual
Circuit (VC) model have been proposed. However, these protocols do not scale well to large
networks in terms of storage and communication overhead.

In this paper, we present a scalable VC routing protocol. It is based on the recently proposed
viewserver hierarchy, where each viewserver maintains a partial view of the network. By querying
these viewservers, a source can obtain 2 merged view that contains a path to the destination.
The source then sends a request packet over this path to setup a real-time VC through resource
reservations. The request is blocked if the setup fails. We compare our protocol to a simple
approach using simulation. Under this simple approach, a source maintains 2 full view of the
petwork. In addition to the savings in storage, our results indicate that our protocol performs
close to or better thar the simple approach in terms of VC carried load and blocking probability
over 2 wide range of real-time workioad.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—packe! networks; store and forward networks; C.2.2 [Computer-Communication Net-
works): Network Protocols—proiocol architecture; C.2.m [Routing Protocols); F.2.m [Computer Network
Routing Protocols].
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of C. Alaettinoflu is also supporied by National Science Foundation Grant No. NCR 93-21043. The views, opinions,
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1 Introduction

Integrated services packet-switched networks, such as Asynchronous Transfer Mode (ATM) net-
works [21], are expected to carry a wide variety of applications with heterogeneous quality of ser-
vice (QoS) requirements. For this purpose, new resource allocation algorithms and protocols have
been proposed. including link scheduling. admission control. and routing. Link scheduiing defines
how the link bandwidth is allocated among the different services. Admission control defines the
criteria the network uses to decide whether to accept or reject a new incoming application. Routing
concerns the selection of routes to be taken by application packets (or cells) to reach their desti-
nation. In this paper, we are mainly concerned with routing for real-time applications (e.g., voice,
video) requiring QoS guarantees (e.g., bandwidth and delay -guarantees).

To provide real-time QoS support, a number of virtual-circuit (VC) routing approaches have
been proposed. A simple (or straightiorward) approach to VC routing is the link-state full-view
approach. Here, each end-system maintains a view of the whole network, i.e. a2 graph with a vertex
for every node’ and an edge between two neighbor nodes. QoS information such as delay, band-
width, and loss rate are attached to the vertices and the edges of the view. This QoS information
is flooded regularly to all end-systems to update their views. When a new application requests ser-
vice from the network, the source end-system uses its current view to select a source route to the
destination end-system that is likely to support the application’s requested QoS, i.e., a sequence of
node ids starting from the source end-system and ending with the destination end-system. A VC-
setup message is then sent over the selected source route to try to reserve the necessary resources
(bandwidth, buffer space, service priority) and establish a VC.

Typically, at every node the VC-setup message visits, a set of admission control tests are
performed to decide whether the new VC, if established, can be guaranteed its requested QoS
without violating the QoS guaranteed to already established VCs. At any node, if these admission
tests are passed, then resources are reserved and the VC-setup message is forwarded to the next
node. On the other hand, if the admission tests fail, a VC-rejected message is sent back towards
the source node releasing resource reservations made by the VC-setup message, and the application
request is either blocked or another source route is selected and tried. If the final admission tests
at the destination node are passed, then a VC-established message is sent back towards the source
node confirming resource reservations made during the forward trip of the VC-setup message. Upon

receiving the VC-established message, the application can start transmitting its packets over its

! We refer to switches and end-systems collectively as nodes.
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reserved VC. This VC is torn down and resources are released at the end of the transmission.

Clearly, the above simple routing scheme does not scale up to large networks. The storage at
each end-system and the communication cost are proportional to N x d, where N is the number of
nodes and d is the average number of neighbors to a node.

A traditional solution to this scaling problem is the area hierarchy used in routing protocols
such as the Open Shortest Path First (OSPF) protocol [18]. The basic idea is to aggregate nodes
hierarchically into areas: “close” nodes are aggregated into level 1 areas, “close™ level 1 areas are
aggregated into level 2 areas, and so on. An end-system maintains a view that contains the nodes
in the same level 1 area, the level 1 areas in the same level 2 area, and so on. Thus an end-system
maintains a smaller view than it would in the absence of hierarchy. Each arez has its own QoS
information derived from that of the subareas. A major problem of an area-based scheme is that
aggregation results in loosing detailed link-level QoS information. This decreases the chance of the
routing algorithm to choose “good” routes, i.e. routes that result in high successful VC setup rate

(or equivalently high carried VC load).

Our scheme

In this paper, we present a scalable VC routing scheme that does not suffer from the problems of
areas. Our scheme is based on the viewserver hierarchy we recently proposed in [3, 2] for large
internetworks and evaluated for administrative policy constraints. Here, we are concerned with the
sup;boﬁ of performance/QoS requirements in large wide-area ATM-like networks, and we adapt our
viewserver protocols accordingly.

In our scheme, views are not maintained by every end-svsiem but by special switches called

viewservers. For each viewserver, there is a subset of nodes around it, referred to as the viewserver’s

precinct. The viewserver only maintains the view of its precinct. This solves the scaling problem |

for storage requirement.

A viewserver can provide source routes for VCs between source and destination end-systems
in its precinct. Obtaining a route between a source and a destination that are not ir any single
view involves accumulating the views of 2 sequence of viewservers. To make this process efficient,
viewservers are organized hierarchically in levels, and an associated addressing structure is used.
Each end-system has a set of addresses. Each address is 2 sequence of viewserver ids of decreasing
levels, starting at the top level and going towards the end-system. The idea is that when the views

of the viewservers in an address are merged, the merged view contains routes to the end-system
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from the top level viewservers.

We handle dynamic topology changes such as node/link failures and repairs, and link cost
changes. Nodes detect topology changes affecting itself and neighbor nodes. Each node commu-
nicates these changes by flooding to the viewservers in a specified subset of nodes; this subset is
referred to as its flood area. Hence, the number of packets nsed during flooding is proportional to
the size of the flood area. This solves the scaling problem for the communication requirement.

Thus our VC routing protocol consists of two subprotocols: a view-guery protocol between end-
systems and viewservers for obtaining merged views; and 2 view-update prozocol-between nodes and

viewservers for updating views.

Evaluation

In this paper, we compare our viewserver-based VC routing scheme to the simple scheme using
VC-level simulation. In our simulation model, we define network topologies, QoS requirements,
viewserver hierarchies, and evaluation measures. To the best of our knowledge, this is the firs
evaluation of a2 dynamic hierarchical-based VC routing scheme under real-time workload.

Our evaluation measures are the amount of memory required at the end-systems, the amount
of time needed to construct a path?, the carried VC load, and the VC blocking probability. We
use network topologies each of size 2764 nodes. Our results indicate that our viewserver-based VC
routing scheme performs close to or better than the simple scheme in terms of VC carried load
and blocking probability over a wide range of workload. It also reduces the amount of memory

requirement by up to two orde: of magnitude.

Organization of the paper

In Section 2, we survey recent approaches to VC routing. In Section 3, we present the view-query
protocol for static network conditions, that is, assuming all links and nodes of the netwosk remain
operational. In Section 4, we present the view-update protocol to handle topology changes. In
Section 5, we present our evaluation model. Qur results are presented in Section 6. Section 7

concludes the paper.

? We use the terms route and path interchangeably.
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2 Related Work

In this section, we discuss routing protocols recently proposed for packet-switched QoS networks.
These routing protocols can be classified depending on whether they help the network support
qualitative QoS or guantitative (real-time) QoS. For a qualitative QoS, the network tries to provide
the service requested by the application with no performance guarantees. Such 2 service is often
identified as “best-eflort”. A quantitative QoS provides performance guarantees (typically required
by real-time applications); for example, an upper bound on the end-to-end delay for any packet
received zt the destination.

Routing protocols that make routing decisions on a per VC basis can be used to provide either
qualitative or quantitative QoS. For a2 quantitative QoS, some admission control tests should be
performed during the VC-setup message’s trip to the destination to try to reserve resources along
the VC’s path as described in Section 1.

On the other hand, the use of routing protocols that make routing decisions on 2 per packet
basis is problematic in providing resource guarantees [5], and qualitative QoS is the best service
the network can offer.

Since we are concerned in this paper with real-time QoS, we limit our following discussion to
VC routing schemes proposed or eveluated in this context. We refer the reader to [19, 6] for 2 good
survey on many other routing schemes.

Most of the VC routing schemes proposed for real-time QoS networks are based or the link-
staie full-view approach described in Section 1 [6, 1, 10, 24]. Recall that in this approach, each
end-system maintains a view of the whole network, i.e. 2 graph with a2 vertex for everv node and
an edge between two neighbor nodes. QoS information is attached to the vertices and the edges of
the view. This QoS irformation is distributed regularly to all end-systems to update their views
and thus enable the selection of appropriate source routes for VCs, i.e. routes that are likely to
meet the requested QoS. The proposed schemes mainly differ in how this QoS information is used.
Generally, 2 cost function is defined in terms of the QoS information, and used to estimate the
cost of a path to the VC’s destination. The route selection algorithm then favors short paths with
minimum cost. See {17, 22] for ar evaluation of several schemes.

A number of VC routing schemes have also been designed for networks using the Virtual Path
(VP) concept [13, 14]. This VP concept has been proposed 1o simplify network management and
contro] by having separate (logically) fully-connected subnetworks, typicaliv one for each service

class. In each VP subnetwork, simple routing schemes that only consider one-hop and two-hop
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paths are used. However, the advantage of using VPs can be offset by a decrease in statistical
multiplexing gains of the subnetworks [15). In this work, we are interested in general network
topologies, where the shortest paths can be of arbitrary hop length and the overhead of routing
protocols is of much concern.

All the above VC routing schemes are based on the lick-state approachk. VC routing schemes

based on the path-vector approach have also been proposed [13]. In this approach, for each desti-

* nation a node maintains a set of paths, one through each of its neighbor nodes. QoS information

is attached to these paths. For each destination, a node exchanges its best feasible path® with its
neighbor nodes. The scheme in [13) provides two kinds of routes: pre-computed and on-demand.
Pre-computed routes match some well-known QoS requirements, and are maintained using the
path-vector approach. On-demand routes are calculated for specific QoS requirements upon re-
quest. In this calculation, the source broadcasts a special packet over all candidate paths. The
destination then selects a feasible path from them and informs the source [13, 23]. One drawback
of this scheme is that obtaining on-demand routes is very expensive since there are potentially
exponential number of candidate paths between the source and the destination.

The link-state approach is often proposed and favored over the path-vector approach in QoS
architectures for several reasons {16]. An obvious reason s simplicity and complete control of the
source over QoS route selection.

The 2bove VC routing schemes do not scale well to large QoS networks in terms of storage
and communication requirements. Several techniques to achieve scaling exist. The most common
technique is the area hierarchy described in Section 1.

The landmark hierarchy [26, 25] is another approgch for solving the scaling problem. The link-
state approach can not be used with the landmark hierarchy. A thorough study of enforcing QoS
and policy constraints with this hierarchy has not been done.

Finelly, we should point out that extensive effort is currently underway to fully specify and

standardize VC routing schemes for the future integrated services Internet and ATM networks [9).

3 Viewserver Hierarchy Query Protocol

In this section, we present our scheme for static network conditions, that is, all links and nodes

remain operational. The dynamic case is presented in Section 4.

* A feasible path is a path that satisfies the QoS constraints of the nodes in the patk.
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Conventions: FEach node has a unique id. Nodelds denotes the set of node-ids. For a node u, we
use nodeid(u) to denote the id of u. NodeNeighbors(u) denotes the set of ids of the neighbors of u.

In our protocol, 2 node u uses two kinds of sends. The first kind has the form “Send(m) to v”,
where m is the message being sent and v is the destination-id. Here, nodes v and v are neighbors,
and the message is sent over the physical link (u,v). If the link is down, we assume that the packet
is dropped.

The second kind of send has the form “Send(m) to v using s7”, where m and v are as above
and sr is a source route between u and v. We assume that as long as there is a sequence of up
links connecting the nodes in sr, the message is delivered to v. This requires a transport protocol
support such as TCP [20].

To implement both kind of sends, we assume there is a reserved VC on each link for sending
routing, signaling and control messages [4]. This also ensures that routing messages do not degrade

the QoS seen by applications.

Views and Viewservers

Views are maintained by special nodes called viewservers. Each viewserver has a precinct, which is
a set of nodes around the viewserver. A viewserver maintains a view, consisting of the nodes in its
precinct, links between these nodes and links outgoing from the precinct®. Formally, a viewserver

z maintains the following:
Precinct. C Nodelds. Nodes whose view is maintained.
View.. View of z.
= {(u, timestamp, ezxpirytime, {(v, cost) : v € NodeNeighbors(u)}) :
u € Precinct.}

The intention of View. is to obtain source routes between nodes in Precinct,. Hence, the
choice of nodes to include in Precinct. and the choice of links to include in View, are not arbitrary.
Precinct: and View. must be connected; that is, between any two nodes in Precinct,, there should
be 2 path in View,. Note that View. can contain links to nodes outside Precinct.. We say that a
node u is in the view of 2 viewserver z, if either u is in the precinct of z, or View. has a link from
2 node Ir the precinct of £ to node u. Note that the precincts and views of difierent viewservers

car be overlapping, identical or disjoint.

¢ Not 2ll the links need to be included.
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For a link (u,v) in the view of 2 viewserver z, View, stores a cost. The cost of the link (u,v)
equals a vector of values if the link is known to be up; each cost value estimates how expensive it
is to cross the link according to some QoS criteria such as delay, throughput, loss rate, etc. The
cost equals oo if the link is known to be down. Cost of a link changes with time (see Section 4).

The view also includes timestamp and ezpirytime fields which are described in Section 4.

Viewserver Hierarchy

For scaling reasons, we cannot bave one large view. Thus, obtaining a source route between 2 source
and a destination which are far away, involves accumulating views of a sequence of viewservers. To
keep this process efficient, we organize viewservers hierarchically. More precisely, each viewserver is
assigned a hierarchy level from 0,1,..., with 0 being the top level in the hierarchy. A parent-child
relationship between viewservers is defined as follows:

1. Every level 7 viewserver, 1 > 0, has a parent viewserver whose level is less than :.

2. If viewserver z is a parent of viewserver y then z’s precinct contains y and y’s precinct

contains z.

3. The precinct of a top level viewserver contains all other top level viewservers.
In the hierarchy, 2 parent can have many children and 2 child can have many parents. We extend
the range of the parent-child relationship to ordinary nodes; that is, if Precinci; contains the node
u, we say that u is a child of z, and z is a parent of u. We assume that there is at least one parert
viewserver for each node.

For =z node u, an address is defined to be a sequence (z¢,23,...,2¢) such that z; for i < t is
a viewserver-id, zo is a top level viewserver-id, z, is the id of u, and z; is 2 parent of z,;;;. A
node may have many addresses since the parent-child relztionship is many-to-many. Jf a source
node wants to establish a VC to a destination node, it first queries the name servers to obtain a
set of addresses for the destination®. Second, it queries viewservers to obtain an accumulated view
containing both itself and the destination node (it can reach its parent viewservers by using fixed
source routes to them). Then, it chooses a feasible source route from this accumulated viewx and

initiates the VC setup protocol on this patkh.

View-Query Protocol: Obtaining Source Routes

We now describe how a source route is obtained.

® Querying the name servers can be done in the same way as is done currently in the Internet.
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We want a sequence of viewservers whose merged views contains both the source and the
destination nodes. Addresses provide a way to obtain such a sequence, by first going up in the
viewserver hierarchy starting from the source node and then going down in the viewserver hierarchy
towards the destination node. More precisely, let (sg,...,5¢) be an address of the source. and
(do,- ..,d;) be an address of the destin#tion. Then, the sequence (s;-1,...,50,do,...,d)—1) meets
our requirements. In fact, going up all the way in the hierarchy to top level viewservers may not
be necessary. We can stop going up at a viewserver s; if there is a viewserver d;, j < [, in the view
of s; (one special case is where s; = d;).

The view-query protocol uses two message types:

o {(RequestViev, s.address, d_address)

where s_address and d.address are the addresses for the source and the destination respec-
tively. A RequestView message is sent by a source node to obtain an accumulated view con-
taining both the source and the destination nodes. When a viewserver receives a RequestView
message, it either sends back its view or forwards this request to another viewserver.

» (ReplyView, s.address, d.eddress, accumview)

where s_address and d-address are as above and accumview is the accumulated view. A
ReplyView message is sent by a viewserver to the source or to another viewserver closer to
the source. The accumuview field in 2 ReplyView message equals the union of the views of
the viewservers the message has visited.

We now describe the view-query protocol in more detail (please refer to Figures 1 and 2). To
establish 2 VC to 2 destination node, the source node sends a RequestView packet containing the
source anc the destination addresses to its parent in the source address.

Upon receiving 2 RequestView packet, a viewserver z checks if the destinztion node is in its
precinet®. If it is, z sends back its view in a ReplyView packet. If it is not, z forwards the request
packet to another viewserver as follows (details in Figure 2): z checks whether any viewserver in
the destination address is in its view. If there is such a viewserver, z sends the RequestView packet
to the last such one in the destination address. Otherwise z is a viewserver in the source address,
and it sends the packet to its parent in the source address.

When 2 viewserver z receives 2 ReplyView packet, it merges its view to the accumulated view
in the packet. Then it sends the ReplyView packet towards the source node in ihe same way it

would send a RequestView packet towards the destination node (i.e. the roles of the source address

¢ Ever though the destination can be in the view of z, its QoS charactenstics is not in the view if it is not in the
precinct of =.
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Constants

FizedRoutes,(z), for every viewserver-id z such that z is a parent of u,
= {{v1,..-1¥n) : yi € NodeIds)}. Set of routes to z

Events
RequestView,(s.address, d.address) {Executed when v wants a source route}
Let s_address be (s, -..,5:-1, 1), and sr € FizedRoutes, (5:1-1);
Send(RequestView, s.address, d.address) to s;—; using sr

Receive, (ReplyView, s.address, d_address, accumview)
Choose a feasible source route using accumview;
If a feasible route is not found
Execute RequestView, again with apother source address and/or destination address

Figure 1: View-query protocol: Events and state of a source node .

Constants

Precinct;. Precinct of z.
Variables

View.. View of z.

Events
Receive, (RequestView, s_address, d_address)
Let d_address be {dy,...,ds);
if d; € Precinct; then
forward (RequestView, s.address, d_address, {});

else forward:(ReplyVies, d_address, s_address, View.); {addresses are switched}
endif

Receive, (ReplyVies, s_address, d.address, view)
Jorward-(ReplyView, s_address, d_address, view U View;)

where procedure forward-(type, s_address, doddress, view)
Lei s_address be (sg, ..., &), d.address be (dp, ..., d);
if 37 : d; ip Vieu. then
Let : = max{; : d; in View.};

target = d;;
else target := s; such that 5,4y = nodeid(z);
endif;

sr := choose a route to target from nedeid(z) using View,;
if 1iype = RequestView then
Send(RequestView, s_address, d_noddress) to target using sr;

else Send(ReplyView, s.address, d.oddress, view) to target using sr;
endif :

Figure 2: View-query protocol: Events and state of a viewserver z.

and the destination address are interchanged).
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When the source receives a ReplyView packet, it chooses a feasible path using the accumview
in the packet. If it does not find a feasible path, it can try again using a different source and/or
destination addresses. Note that the source does not have to throw away the previous accumulated
views; it can merge them all into a richer accumulated view. In fact, it is easy to change the protocol
so that the source can also obtain views of individual viewservers to make the accumulated view
even richer. Once a feasible source route is found, the source node initiates the VC setup protocol.

Above we have described one possible way of obtaining the accumulated views. There are
varjous other possibilities, for example: (1) restricting the ReplyView packet to take the reverse
of the path that the RequestView packét took; (2) having ReplyView packets go all the way
up in the viewserver-hierarchy for a richer accumulated view; (3) having the source poll the
viewservers directly instead of the viewservers forwarding request/reply messages to each other;
(4) not including non-transit nodes (e.g. end-systems) other than the source and the destination
nodes in the accumview; (5) including some QoS requirements in the RequestView packet, and

having the viewservers filter out some nodes and links.

4 Update Protocol for Dynamic Network Conditions

Iz this sectiorn, we first describe how topology changes such as link/node failures, repairs and cost
change:, are detected ané communicated to viewservers, i.e. the view-update protocol. Then, we

modifv the view-guery protocol appropriately.

View-Update Protocol: Updating Views

Viewservers do not communicate with each other to maintain their views. Nodes detect and
communicate topology changes to viewservers. Updates are done periodically and also optionally
after 2 change in the outgoing Link costs.

The communication between 2 node and viewservers is done by flooding over a set of nodes.
This set is referred to as the fiood area. The topology of a flood area must be a conrected graph.
For efficiency, the flood area can be implemented by a hop-count.

Due to the nature of flooding, 2 viewserver can receive information out of order from 2 node. In
orders to avoid old informailon replacing new information, each node includes successively increasing
time stzmps in the messages it sends. The tzmestamp field in the view of a viewserver equals the

largest timestamp received from each node.’
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Due to node and link failures, communication between a node and a viewserver can fail, resulting
in the viewserver having out-of-date information. To eliminate such information, a viewserver
deletes any information about a node if it is older than a time-to-die period. The ezpirytime field
in the view of a viewserver equals the end of the time-to-die period for 2 node. We assume that

nodes send messages more often than the time-to-die value (to avoid false removal).

The view-update protocol uses one type of message as follows:

o (Update, nid, timestamp, floodarea, ncostset)
is sent by the node to inform the viewservers about current costs of its outgoing links. Here,
nid and timestamp indicate the id and the time stamp of the node, ncostset contains a cost
for each outgoing link of the node, and floodarea is the set of nodes that this message is to

be sent over.

Constants:

FloodArea,. (C Nodelds). The flood area of the node.
Variables:

Clock, : Integer. Clock of g.

Figure 3: State of 2 node g.

The state maintained by a node g is listed in Figure 3. We assume that consecutive reads of

Clockg returns increasing values.

Constants: “I
Precinct. . Precinct of z.
TimeToDie. : Integer. Time-to-die value.
Variables:
View.. View of z.
Clock. : Integer. Clock of z.

Figure 4: State of a viewserver z.

The state maintained by a viewserver z is listed in Figure 4.
The events of node g are specified iz Figure 5 The events of a viewserver z are specified in
Figure 6. When a viewserver z recovers, View. is set to {}. Its view becomes up-to-date as it

receives new information from nodes (and remove false information with the time-to-die period).
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Update, {Executed periodically and also optionally upon a change in outgoing link costs}
ncosiset ;= compute costs for each outgoing link;
flood,((Update, nodeid(g), Clocky, FloodArea,, ncostset));

Receive, (packet) {an Update packet}
fiood,{packet)

where procedure flood,(packet)
if nodeid(g) € packet.floodarea then
{remove g from the flood area to avoid infinite exchange of the same message.}
packet. flooderea := packet. floodarea — {nodeid(g)};
for all h € NodeNeighbors(g) A h € packet.floodarea do
Send(packet) to h;
endif

Node Failure Model: A node can uandergo fatlures and recoveries at anytime. We assume failures are
fail-siop (i.e. a failed node does not send erroneous messages).

Figure 5: View-update protocol: Events of a node g.

Receive. (Update, nid, ts, FloodArea, neset)
if nid € Precincl. then
if 3(nid, timestamp, ezpirylime, ncostset) € View. A ts > timesiamp then
{received is more recent; delete the old one}
delete {nid, timestemp, ezpirytime, ncostset) from View,;
endif
if =3{nid, timestemp, expirytime, ncostsel) € View. then
ncostset := subset of edge-cost pairs in neset that are in View,;
insert (nid, ts, Clock. + TimeToDie., ncostset) 1o Vieu.;
endif
epdif
Delete. {Executed periodically 1o delete entries older than the time-to-die period}
for all (nid, tstamp, ezpirylime, ncset) € View. A ezpirutime < Clock. do
delete (nid, tstamp, ezpirytime, ncset) from View,;

Viewserver Failure Model: A viewserver can undergo failures and recoveries at apvtirne. We assume
failures are fail-stop. When a viewserver z recovers, View. is set to {}.

Figure §: View update events of 2 viewserver z.

Changes to View-Query Protocol

We now enumerate the changes needed to adapt the view-query protocol to the dynamic case (the
formal specification is omitted for space reasons).

Due 1o link and node failures, RequestView and ReplyView packets can get lost. Hence, the
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source may never receive a ReplyView packet after it initiates a request. Thus, the source should -
try again after a time-out period.

When a viewserver receives a RequestView message, it should reply with its views only if the
destination node is in its precinct and its view contains a path to the destination. Similarly during
forwarding of RequestView and ReplyView packets, a viewserver, when checking whether a node

Is in its view, should also check if its view contains a path to it.

5 Ewvaluation

In this section, we present the parameters of our simulation model. We use this model to com-
pare our viewserver-based VC routing protocols to the simple approach. The results obtained are

presented in Section 6.

Network Parameters

We model 2 campus network which consists of a2 campus backbone subnetwork and several depart-
ment subnetworks. The backbone network consists of backbone switches and backbone links.

Each department network consists of 2 hub switch and several non-hub switches. Each non-hub
switch has a link to the department’s hub switch. And the department’s hub switch has a link to
one of the backbone switches. A non-hub switch can have links to other non-hub switches in the
same department, to non-hub switches in other departments, or to backbone switches.

End-systems are connected to non-hub switches. An example network topology is shown in
Figure 7. .

In our topology, there are 8 backbone switches and 32 backborne links. There are 16 departments.
There is one hub-switch in each department. There 1s a total of 240 non-hub switches randomly
assigned 1o difierent departments. There are 2500 end-systems which are randomly connected to
pon-hub switches. Thus, we have a total of 2764 nodes. .

In addition to the links connecting non-hub switches to the hub switches and hub switches to
the backbone switches, there are 720 links from non-hub switches to non-hub switches in the same
department, there are 128 links from non-hub switches to non-hub switches in different departments,
and there are 64 links from non-hub switches to backbone switches.

The end-points of each link are chosen randomly. However, we make sure that the backbone

network is connected; and there is 2 link from node u to node v iff there is a link from node v 10
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Figure 7: An example network topology.

node u.

Ezch link has 2 total of C units of bandwidth.

QoS and Workload Parameters

In our evzluation model, we assume that 2 VC requires the reservation of a certain amount of
bandwidth that is enough to ensure an acceptable QoS for the application. This reservation amount
can be thought of either as the peak transmission rate of the VC or its “effective bandwidth” [12]
varying between the peak and average transmission rate.

VC setup requests arrive to the network according to 2 Poisson process of rate A, each requiring
one unit of bandwidth. Each VC, once it iz successfully setup, has 2 lifetime of exponential duration
with mean 1/u. The source and the destination end-systems of a2 VC are chosen randomly.

An arriving VC is admitted to the network if at least one feasible path between its source and
destination end-systems s found by the routing protocol, where a feasible path is one that has links
with non-zero aveilable capacity. From the set of feasible paths, 2 minimum hop path is used to
establish the VC; one unit of bandwidth is allocated on each of its links for the lifetime of the VC.
On the other hand, if  feasible path is not found, then the arriving VC is blocked and lost.

We assume that the available link capacities in the views of the viewservers are updated instan-
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taneously whenever a VC is admitted to the network or terminates.

Viewserver Hierarchy Schemes

We have evaluated our viewserver protocol for several different viewserver hierarchies and query
methods. We next describe the different viewserver schemes evaluated. Please refer to Figure 7 in
the jfoliowing discussion. . |

The first viewserver scheme is referred to as base. Each switch is a viewserver. A viewserver’s
precinct consist of itself and the neighboring nodes. The links in the viewserver’s view consist of
the links between the nodes in the precinct, and links outgoing from nodes in the precinct to nodes
not in the precinct. For example, the precinct of viewserver w.consists of nodes u,v, w,s-

As for the viewserver hierarchy, a backbone switch is a level 0 viewserver, a hub switch is a
level 1 viewserver and a non-hub switch is a level 2 viewserver. Parent of a hub switch viewserver
is the backbone switch viewserver it is connected to. Parent of a non-hub switch viewserver is the
hub switch viewserver in its department. Parent of an end-system is the non-hub switch viewserver
it 1s connected to.

We use only one address for each end-system. The viewserver-address of an end-system is the
concatenation of four ids. Thus, the address of s is z.v.u.s. Similarly, the address of d is z.v.z.d.
To obtain a route between s and d, it suffices to obtain views of viewservers u, v, z.

The second viewserver scheme is referred to as base-QT (where the QT stands for “query up
1o top”). It is identical to base except that during the query protocol all the viewservers in the
source and the destination addresses are queried. That is, to obtain a route between s and d, the
views of v, v, z,z are obtaiped.

The third viewserver scheme is referred to as vertex-extension. It is idextical to base except
that viewserver precincts are extended as follows: Let P denote the precinct of a viewserver in the
base scheme. For each node u in P, if there is a link from node u to node v and v is not in P, node
v 1s added to the precinct; among v’s links, only the ones to nodes in P are added to the view. In
the example, nodes z,y,z,¢ are added to the precinct of u, but outgoing links of these nodes to
other nodes are not included (e.g. (z,p) and (z,g) are not included). The advantage of this scheme
is that even though it increases the precinct size by 2 factor of d (where d is the average number of
neighbors to a node), it increases the number of links stored in the view by a factor less than 2.

The fourth viewserver scheme is referred 1o as veriex-extension-Q7T. It is jaentical to vertez-

eztension except that during the query protocol all the viewservers in the source and the destination
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addresses are queried.

6 Numerical Results

6.1 Reéults for Network 1

The parameters of the first network topology, referred to as Network 1, are given in Section 5. The
link capacity C is taken to be 20 [6], i.e. a link is capable of carrying 20 VCs simultaneously.

Our evaluation measures were computed for a (randomly chosen but fixed) set of 100,000 VC
setup requests. Table 1 lists for each viewserver scheme (1) the minimum, average and maximum
of the precinct sizes (in number of nodes), (2) the minimum, average and maximum of the merged
view sizes (in number of nodes), and (3) the minimum, average and maximum of the number of

viewservers queried.

Scheme Precinct Size Merged View Size | No. of Viewservers Queried
base 5/16.32 /28 4 / 56.46 / 81 1/549/6
base-QT 5/16.32 /28 27 / 59.96 / 81 6/6.00/6
vertez-eztension 22 /88.11 /288 | 14 / 155.86 / 199 1/549/6
vertez-eztension-QT || 22 / 88.11 / 288 | 113 / 163.28 / 199 6/6.00/6

Table 1: Precinct sizes, merged view sizes, and number of viewservers queried for Network 1.

The precinct size indicates the memory requirement at a viewserver. More precisely, the memory
requirement at 2 viewserver is O(precinct size x d), except for the vertez-eziension and vertez-
eztension-QT schemes. In these schemes, the memory requirement is increased by a factor less
than two. Hence these schemes have the.same order of viewserver memory requirement as the base
and base-QT schemes.

The merged view size indicates the memory requirement at z source end-system during the
query protocol; i.e. the memory requirement at a source end-system is O(merged view size x d)
except for the vertez-eztension and vertez-eztension-QT schemes. Note that the source end-system
does not need to store information about end-systems other than itself and the destination. The
numbers in Table 1 take advantage of this.

The number of viewservers queried indicates the communication time required to obtain the
merged view at the source end-system. Hence, the “real-time” communication time required to

obtain the merged view at 2 source is slightly more than one round-trip time between the source
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and the destination.

As is apparent from Table 1, using a QT scheme increases the merged view size by about 6%,
and the number of viewservers queried by about 9%. Using the vertez-eztension scheme inc:cases
the merged view size by about 3 times (note that the amount of actual memory needed increases
only by a factor less than 2).

The above measures show the memory and time requirements of our protocols. They clearly
indicate the savings in storage over the simple approach as manifested by the smaller view sizes. To
answer whether the viewserver hierarchy finds many feasible paths, other evaluation measures such
as the carried VC load and the percent VC blocking are of interest. They are defined as follows:

o Carried VC load is the average number of VCs carried by the network.

o Percent VC blocking is the percentage of VC setup requests that are blocked due to the fact

that a feasible path is not found.”

. In our experiments, we keep the average VC lifetime (1/u) fixed at 15000 and vary the arrival
rate of VC setup requests (). Figure 8 shows the carried VC load versus A for the simple approach
and the viewserver schemes. Figure 9 shows the percent VC blocking versus A. At low values of A,
all the viewserver schemes are very close to the simple approach. At moderate values of A, the base
and base-QT schemes perform badly. The vertez-eztension and vertez-eztension-QT schemes are
still very close to the simple approach (only 3.4% less carried VC load). Note that the performance
of the viewserver schemes can be further improved by trying more viewserver addresses.

Surprisingly, at high values of A, all the viewserver schemes perform better than the simple
zpproach. At A = 0.5, the network with the base scheme carries about 30% higher load thaw the
simple approach. This is an interesting result. Our explanation is as follows. Elsewhere [2], we
have found that when the viewserver schemes can not find an existing feasible path. thic path s
usually very long (more than 11 hops). This causes our viewserver hierarchy protocols to reject
VCs that are admitted by the simple approach over long paths. The use of long paths for VCs is
undesirable since it ties up resources at more intermediate nodes, which can be used to admit many
shorter length VCs. _

In conclusion, we recommend the vertez-eztension scheme as it performs close to or better
than all other schemes in terms of VC carried lo.ad and blocking probability over a wide range of

workload. Note that for all viewserver schemes, adding Q7T yields slightly further improvement.

" Recall that we assume a blocked VC setup request is cleared (i.e. lost).
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Figure 9: Percent VC blocking versus arrival rate for Network 1.

6.2 Results for Network 2

The parameters of the second network, referred to as Network 2, are the same as the parameters

of Network 1. Kowever, 2 different seed is used for the random number generation, resulting in 2

different topology and distribution of source-destination end-system pairs for the VCs.

We again take C = 20, and we fix 1/p at 15000. Our evaluation measures were computed for
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a set of 100,000 VC setup requests. Table 2, and Figures 10 and 11 show the results. Similar
conclusions to Network 1 hold for Network 2. An interesting exception is that at high values of A,
we observe that the vertez-eztension scheme performs slightly better than the vertez-eztension-QT
scheme (about 4.2% higher carried VC load). The reason is the following: Adding QT gives richer
merged views, and hence increases the chance of finding a feasible path that is possibly long. As

explained ir Section 6.1, this results in performance degradation.

Scheme Precinct Size | Merged View Size | No. of Viewservers Queried
base 4/16.32/ 33 4 /57.61/ 80 1/552/6
base-QT 4/16.32/33 30 / 60.64 / 80 6/6.00/6
vertez-eztension 17/ 90.36 / 282 | 16 / 159.70 / 214 1/552/6
vertez-eztension-QT || 17 /90.36 / 282 | 113 / 166.97 / 214 6/6.00/6

Table 2: Precinct sizes, merged view sizes, and number of viewservers queried for Network 2.

We have repeated the above evaluations for other networks znd obtained simiiar cuaciusions.

7 Conclusions

We presented 2 hierarchical VC routing protocol for ATM-like networks. Our protocs! zaticfes QeS
constraints, adapts to dynamic topology changes, and scales well to large number of nodes.

Our protocol uses partial views maintained by viewservers. The viewservers are organized
hjerarchically. To setup 2 VC, the source end-system queries viewservers 10 obtain z merged view
thet contains jtself and the destination end-system. This merged view is then used to compute 2
source route for the VC.

We evaluated several viewserver hierarchy schemes and compared them to the simple approach.
Our results on 2764-node networks indicate that the vertez-ezlension scheme performs close 1o or
better than the simple approach in terms of VC carried load and blocking probability over a wide
range of real-time workload. It also reduces the amount of memory requirement by up to two order
of magnitude. We note that our protocol scales even better on larger size networks [3).

In all the viewserver schemes we studied, each switch is a viewserver. In practice, not all
switches need to be viewservers. We may associate one viewserver with a group of switches. This is
particularly attractive in ATM networks where each signaling entity is responsible for establishing

VCs across a group of nodes. In such an environment, viewservers and signaling entities can be
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vantage of each switch being 2 viewserver; that is, source nodes do not

to their parent viewservers (in the view-query protocol). This reduces

the amount of hand configuration required. In fact, the base and base-QT viewserver schemes do

not require any hand configuration.

Our evaluation mode] assumed that views are instantaneously updated, i.e. no delaved feedback
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between link cost changes and view/route changes. We plan to investigate the effect of delayed feed-
back on the performance of the different schemes. We expect our viewserver schemes to outperform
the simple approach in this realistic setting as the update of views of the viewservers requires Jess
time and communication overhead. Thus, views in our viewserver schemes will be more up-to-date.

As we pointed out in [3], the only drawback of our protocol is that to obtain a source route
jor a VC, views are merged at (or prior to) the VC setup, thereby increasing the setup time. This
drawback is not unique to our scheme [8, 16, 7, 11]. Reference (3] describes several ways, including

cacheing and replication, to reduce the setup overhead and improve performance.

References

(1) B. Abmadi, J. Chen, and R. Guerin. Dynamic Routing and Call Control in High-Speed Integrated
Networks. In Proc. Workshop on Systems Engineering end Traffic Engineering, ITC’]3, pages 18-26,
Copenhagen, Denmark, June 1991.

[2] C. Alaettinoglu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol and
its Evaluation. Technical Report UMIACS-TR-93-98, CS-TR-3151, Department of Computer Science,
University of Maryland, College Park, October 1993. Earlier version C5-TR-3033, February 1993.

{3] C. Aleettinoglu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol. In
Proc. JEEE INFOCOM °9, Toronto, Canada, June 1994.

[4) A. Alles. ATM in Private Networking: A Tutorial. Hughes LAN Systems, 1993.

[5) P. Almquist. Type of Service in the Internet Protocol Suite. Technical Report RFC-1349, Network
Working Group, July 1992.

[6) L. Breslau, D. Estrin, and L. Zbang. A Simulation Study of Adaptive Source Routing in Iniegrated
Services Networks. Available by anonymous ftp at catarina.usc.edu:pub/breslaun, September 1993.

[7) 3. N. Chiappa. A New IP Routing and Addressing Architecture. Big-Internet mailing list., 1992.
Available by anonymous fip from munnari.oz.au:big-internet/list-archive.

[81 D.D. Clark. Policy routing in Internet protocols. Request for Comment RFC-1102, Network Information
Center, May 1986.

[9] R. Coltun and M. Sosa. VC Routing Criteria. Internet Draft, March 1993.

[10] D. Cosmer and R. Yavatkar. FLOWS: Performance Guarantees in Best Efiort Delivery Systems. In Proc.
JEEE INFOCOM, Ottewa, Carada, pages 100-109, April 1989.

[11] D. Estrin, Y. Rekhter, and S. Hotz. Scalable Inter-Domain Routing Architecture. In Proc. ACM
SIGCOMM ’92, pages 40-52, Baltimore, Maryland, August 1092.

[12] R. Guerin, H. Ahmadi, and M. Naghshineb. Equivalent Capacity and its Application to Bandwidth
Aglgocation in High-Speed Networks. JEEE J. Select. Areas Commun., SAC-9(7):968-981, September
1981.

[13] A. Guillen, R. Kia, and B. Sales. Ap Architecture for Virtual Circuit/QoS Routing. In Proc. JEEE
International Conference on Network Protocols 93, pages 80-87, San Francisco, California, October
1993. :

[14) S. Gupta, K. Ross, and M. ElZarki. Routing in Virtual Path Based ATM Networks. In Proc. GLOBE-
COM ’92, pages 571-575, 1992.

[15) R-H. Bwang, J. Kurose, and D. Towsley. MDP Routing in ATM Networks Using Virtual Path Concept.
Ir Proc. JEEE INFOCOM, pages 1509~1517, Toronto, Ontario, Canada, June 1994.

{16] M. Lepp and M. Steenstrup. An Architecture for Inter-Domain Policy Routing. Internet Draft. Available
from the authors., June 1992.

{17] 1. Matta and A.U. Shankar. An Iterative Approach to Comprehensive Performance Evaluation of Inte-
grated Services Networks. In Proc. JEEE International Conference on Nelwork Proiocols '9, Boston,
Massachusetts, October 1994. To appear. .

[18] J. Moy. OSPF Version 2. RFC 1247, Network Information Center, SRI International, July 1991.

173




{19] C. Parris and D. Ferrari. A Dynamic Connection Management Scheme for Guaranteed Performance
Services in Packet-Switching Integrated Services Networks. Technical Report TR-83-005, International
Computer Science Institute, Berkeley, California, January 1993.

[20] J. Postel. Transmission Control Protocol: DARPA Internet Program Protocol Specification. Request
for Comment RFC-793, Network Information Center, SRI International, 1981.

[21] M. Prycker. Asynchronous Transfer Mode - Solution for Broadband ISDN. Ellis Horwood, 1991.

122]) S. Rampal, D. Reeves, and D. Agrawal. Ap Evaluation of Routing and Admission Control Algorithms
for Multimedia Traffic in Packet-Switched Networks. Available from the authors, 1994.

[23] H. Suzuki and F. Tobagi. Fast Bandwidth Reservation Scheme with Multi-Link and Multi-Path Routing
in ATM Networks. In Proc. JEEE INFOCOM 92, pages 2233-2240, Florence, Italy, May 1992.

[24) E. Sykas, K. Vlakos, 1. Venieris, and E. Protonotarios. Simulative Analysis of Optimal Resource Allo-
cation and Routing in IBCN’s. JEEE J. Select. Areas Commun., 9(3):486—492, April 1991.

[25) P. F. Tsuchiva. The Landmark Hierarchy: Description and Analysis, The Landmark Routing: Ar-
chitecture Algorithms and Issues. Technical Report MTR-87W00152, MTR-87W00174, The MITRE
Corporation, McLean, Virginia, 1987.

[26] P. F. Tsuchiva. The Landmark Hierarchy:A New Hierarchy For Routing In Very Large Networks. In
Proc. ACM SIGCOMM ’88, August 1988.

174



REPORT DOCUMENTATION PAGE OMB No 070¢-0188

TIAQE ! AU DEC TIDOMNE IRTIUDING TAE 1IME 10! FEview rg INIITUCHIDML, 33 TEAAG € LIRS BALs WOVICES,
SRE CAHEAUOA AT 1minem 3 n0m  Aang (Ammenty PRCITQING TR DUrGEA PAIFMILE OF 20v HTRer J10eCY 01 Thy
VOIRAQICS 92 s00LI e Yervicey D OCIIPILE 107 1O M 10N DBeraUon ons Repons 1215 Jeternon

4D™ N =y\l.Mmatel D

PuDter 1EDON T DLIIT™ TOF they  Sreliedn I°
JBTP ARG ARE 0T ARG TRe T ata FemOrg 4
LOMCLIDN LT entarm 00R  ALu0 T 3 JQONC N °0

n D een

Dern LR gy L, 00 TI0E wrnmgiza L2 Q20003010 aestt e T m gt Manegemant ey hucae: SapeiaOrn keout\1On Prow et (C704.0188) Washington DS 20501

1. AGENCY USE ONLY (Leave bianc; 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1994 Technical

4. TITLE AND SUBTITLE S. FUNDING NUMBIERS

A Scalable Virtual Circuit Routing Scheme for ATM Networks] C DASG60-92-0055
G NCR 89-04590

6. AUTHOR(S) G NCR 93-21043

Cengiz Alazettinoglu, Ibrahim Matta and A. Udave Shankar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science REPORT NUMBER
A. V. Willliams Building CSTR-3360
University of Maryland UMIACS~TR 94-115

College Park, MD 20742

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

Phillips Laboratory
Directorate of Contracting
3651 Lowry Avenue SE
Kirtland AFB NM 87117-5777

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRALT (Maximum 200 wores)

High-speed networks, such as ATM networks, are expected to support diverse
guality-oi-service (QoS) requirements, including real-time QoS. Real-time QoS is
required by many applications such as voice and video. To support such service,
routing protocols based on the Virtual Circuit (VC) model have been proposed. However.
these protocols do not scale well to large networks in terms of storage and j:
communication overhead.

In this paper, we present 2 scalable VC routing protocol. It is based on the
recently proposed viewserver hierarchy, where each viewserver maintains a partial
view of the network. By querying these viewservers, a source can obtain a merged view
that contains 2 pathto the destination. The source then sends a request packet over
this path to setup & real-time VC through resource reservations. The request is
blocked if the setup fails. We compare our protocol to a simple approach using
simulation. Under this simple approach , a2 source maintains a full view of the
network. In addition to the savings in storage, our results indicate that our
i protocol performs close or better than the simple approach in terms of VC carried
i load and blocking probabilitv over a wide range of real-time workload.

4. SUBJECT TERMS 15. NUMBER OF PAGES

22 pages
16. PRICE CODE

Computer~Communication Networks: Network Architecture and
Design, Network Protocols;Routing Protocols: Computer Network
Xouting Prorocols

+17. SECURITY CLASSIFICATION | 1B. SECURITY CLASSIFICATION | 15. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
(OF REPORT OF THIS PAGE Of ABSTRACT
unciassiiiec Unclassifiied Uncliassified Unlimited
MON 7320.0%-280-5500 ) Starg2ro form J9% Rev 2-B9)
175 > o ey




176



Hierarchical Inter-Domain Routing Protocol
with On-Demand ToS and Policy Resolution®

Cengiz Alaettinoglue, A. Udaya Shanker

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, Maryland 20742

June 20, 1994

Abstract

Traditional inter-domain routing protocols based on superdomains maintzin either “strong”
or “weak” ToS and policy constraints {or each visible superdomain. With strong constraints,
2 valid path may not be found even though one exists. With weak constraints, an invalid
domain-level path may be treated as a valid path.

We present zn inter-domain routing protocol based on superdomains, wnich always finds
a valid path if ope exists. Both strong and weak copstraints are maintained for each visible
superdomain. If the strong constraints of the superdomains on 2 path are satisfied, then the
path is vaiid. If only the weak constraints are satisfied for some superdomains on the path, the
source uses z query protocol to obtain 2 more detailed “internal” view of these superdomains,
2nd searches again for 2 valid path. Qur protocol handles topology changes, inciuding node/link
{aijures that pertition superdomains. Evaluation results indicate our protocol scales well 1o large
internetworks.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks): Network Archi-
tecture and Design—packet networks; siore and forward networks; C.2.2 [Computer-Communication Net-
works]: Network Protocols—protocol architecture; C.2.m [Routing Protocols]; F.2.m [Computer Network
Routing Protocols]. ’

This work is supporied in part by ARPA a2nd Philips Labs under contract DASGS0-$2-0055 to Depariment
of Computer Sdence, University of Maryland, and by National Science Foundation Grani No. NCR 83-04590. The
views, opinjons, and/cr findings contained in this report are those of the author(s) and should not be interpreted as
representing the cFadal polides, either expressed or implied, of the Advanced Research Projects Agency, PL, NST,
or the U.S. Government. Computer {aclities were provided in part by NSF grant CCR-8811634.
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1 Introduction

A computer internetwork, such 25 the Internet, is an interconnection of backbone networks, regional
networks, metropolitan arez networks, and stub networks (campus networks, office networks and
other smel networks)?. Stuh networks are the producers anc consumers of Liie internetwork irafic,
while backbones, regionals and MANSs are transit networks. Most of the networks in an internetwork
are stub networks. Each network consists of nodes (hosts, routers) and links. A node that has 2

Ink to 2 node in another network is called 2 gateway. Two networks are neighbors when there is

one or more links between gateways in the two networks (see Figure 1).
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igure 1: A portion of an internetwork. (Circles represent stub networks.)

An internetwork is organized into domains®. A domair is 2 set of networks (pessibly consisting

of oniv on

M

nsiwork) administered by the same agency. Domains are typically subject 1o poiicy
consirginis, which are administrative restrictions on inter-demein traffic |7, 12, &, 3). The policy
constirainis ¢l @ domain U zre of two types: transit policies, which specifv how other domains
can use the resources of U (e.g. $0.01 per packet, no trafiic {rom domain V'); and source policies,
which specifv comstraints on traffic originating from U (e.g. domains to avoid/prefer, acceptable
connection cost). Transit policies of z domain are public (i.e. available to other domains), whereas
source policies are usually private.

Within ezch domain, ar intra-domein routing protocolis executed that provides routes between
source and Cestination noces in the comain. This protocol can be any of the typiczl ones, i.e.,

nexi-hop O source routes computed using distance-vector or link-state zligorithms. To satisfy

1
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cr example, NSFNET, MILNET are backbones, and Suranet, Cer{Net are regicnais.

2 Also referred 1o 25 routing domcins or acministrotive domcins.



type-of-service (ToS) constraints of applications (e.g. low delay, high throughput, high reliability,
minimum monetary cost), each node maintains 2 cost for each outgoing link and ToS. The intra-
domain routing protocol should choose optimal paths based on these costs.

Across all domains, an inter-domain routing protocol is executed that provides routes between
source and destination nodes in differert domains, using the.services of the inira-domain routing
protocols within domains. This protocol should have the following properties:

(1) It showld satisfy the policy constraints of domains. To do this, it must keep track of the
policy constraints of domains [3].

(2) An inter-domain routing protocol should also satisfy ToS constraints of applications. To do
this, it must keep track of the ToS services offered by domains [3].

(3) &n intes-domain routing protocol should scale up to very large internetworks, i.e. with a very
large pumber of domains. Practiczlly this means that processing, memory and comrmunicztion
reguiremenis should be much i2ss than linear in the number of domains. It should zlso

randle non-hierarchical domain interconnections zt any level [8] (e.g. we do not want to
hand-configure special routes as “back-doors™).
(4) Aninter-domain routing protocol should automatically adapt to link cost changes and node/link

feilures and repairs, including failures that partition domains [13].

A Straight-Forward Approach

A straighi-forwarc approach to initer-comain routing is domairn-level source routing with link-siate
7, 3). 1n this approach, eact router® maintains z domein-leve! view of the internetwork,
i.e., 2 graph with a vertex for every comain and an edge between every 1wo neighbor domazizs.
Policy and ToS information is attached to the vertices and the edges of the view.

When 2 source node needs to reack z destination node, it (or z router® in the source’s domain)
first exzmines this view and determines z domain-level source route satisfving ToS and policy
constraints, j.e., 2 sequence of domain ids starting from the source’s domain and ending with the
destination’s domain. Then packets zre routed to the destinztion using this domain-level source
route zxd the intra-domain routing proiocols of the domains crossed.

For examnple, consider the internetwork of Figure 2 (each circie is 2 domain, and each thin line

* Not 2 nodes maintain routing tabies. A router is a node that maintzins 2 routing table.

' referred to 2s the policy server in [7)
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i1s a domain-level interconnection). Suppose a2 node in d1 desires a2 connection to a node in d7.
Suppose the policy constraints of d3 and d19 do not allow transit traffic originating from d1. Every
pode maintains this information in its view. Thus the source node can choose 2 valid path from

source domain dl to destination domain d7 avoiding d3 and d19 (e.g. thick line in the figure).

valid path

Figure 2: An exzmple interdomain topology.

The disadvaniage of this straight{orward scheme is that it does not scale up jor large internet-
works. The storage at each router is proportionzl to Np x Ep, where Np is the number of domains
and Ep is ihe zverage number of neighbor domains to a domzin. The communication cost for
updating views is proportional to Ng x Ex, where Np is the number of routers in the internetwork

and L is the average rouier neighdors of & router (topology changes are fiooced to 2ll routers in

The Superdomain Approach

To achieve scaling, several approaches based on hierarchically aggregating domains into superdo-
mains have been proposed [16, 14, 6]. Here, each domain is a level 1 superdomazin, “close” level 1
~ superdomains 2re grouped into level 2 superdomains, “close” level 2 superdomairs are grouped into
level 3 superdomzins, and so on (see Figure 3). Each router z maintains 2 view that contains the
level 1 superdomains in z’slevel 2 superdormmzin, the level 2 superdomains in z’s level 3 superdomain
(excluding the z's level 2 superdomain), 2nd so on. Thus 2 router maintzins z smaller view than

it would in the zDsence of hierarchy. For the supercomain hierarchy of Figure 3, the views of two

180



level 1 superdomain

leve] 2 superdomain 1

leve] 3 superdomain ——

Figure 3: An example of superdomain hierarchy.

routers (one in domain dl and one in domain d16) are shown in Figures 4 and 5.

Figure 4: View of a router in dl. Figure 3: View of 2 souder-in d16.

The superdomain approach has several problems. One problem is that the aggregation results
in loss of domain-level ToS and policy information. A superdomain is usually characterized by a
single set of ToS and policy constraints derived from the ToS and policy constraints of the domains
in it. Routers outside the superdomain assume that this set of constraints applies uniformly to
each of its children (and by recursion to each domain in the superdomain). If there are domains
with different (possibly contradictory) constraints in a superdomain, then there is no good way of
deriving the ToS and policy constraints of the superdomain.

The usual technique [16] of obtaining ToS and policy constraints of 2 superdomain is to obtain

either a strong set of constraints or a weak set of constraints® from the ToS and policy constraints of

* “strong” and “weak” are referred 1o respectively as “union™ and “ntersection” in [16)
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the children superdomains in it. If strong (weak) constraints are used for policies, the superdomain
enforces a policy constraint if that policy constraint is enforced by some (all) of its children. If
strong (weak) constraints are used for ToS constraints, the superdomain is assumed to support a
ToS if that ToS is supported by all (some) of its children. The intention is that if strong (weak)
constraints of 2 superdomain are (are not) satisfied then any (no) path through that superdomain
is valid.

Each appr-oach has problems. Strong constraints can eliminate valid paths, and weak constraints
can allow invalid paths. For example in Figure 3, d16 allows transit traffic from d1 while d19 does
not; with strong constraints G would not allow transit traffic from d1, and with weak constraints
G would allow transit traffic from d] to be routed via d19.

Other problems of the superdomain approach are that the varying visibilities of routers compli-
cates superdomain-level source routing and handling of node/link failures (especially those that par-
tition superdomains). The usual technigue for solving these problems is to augment superdomain-

level views with gateways [16] (see Section 3).

Our Contribution

In this paper, we present an inter-domain routing prot6c01 based on superdomains, which finds
a valid patk if and only if one exists. Both strong and weak constraints are maintained for each
visible superdomain. I the strong comstraints of the superdomains on 2 path are satisfied, then
the path is valid. If only the weak constraints are satisfied for some superdomains on the path, the
source uses a query protocol to obtain a more detailed “internal” view of these superdomains, and
searches again for a valid path.

We use superdomain-level views with gateways and a link-state view update protocol to handle
topology changes including failures that partition superdomains. The storage cost is O(log Np x
log Np) without the guery protocol. We demonstrate the scaling properties of the query protocol
by giving evaluation results based on simulations. Our evaluation results indicate that the query
protocol can be performed using 15% extra space.

Our protocol comsists of two subprotocols: a view-query protocol for obtaining views of
greater resolution when needed; and a view-update protocol for disseminating topology changes

to the views.
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Several approaches to scalable inter-domain routing have been proposed, based on the super-
domain hierarchy [1, 14, 16, 9, 6], and the landmark hierarchy [18, 17). Some of these approaches
suffer from loss of ToS and policy information (and hence may not find a valid path which exists).
Others are still in a preliminary stage. (Details in Section 8)

One important difference between these approaches and ours is that ours uses a query mechanism
to obtain ToS and policy details whenever needed. In our opinion, such a mechanism is needed
10 obtain a scalable solution. Query protocols are also being developed to enhance the protocols
in [9, 6). Reference [2] presents protocols based on a new kind of hierarchy, referred to as the
viewserver hierarchy (more details in Section 8).

A preliminary version of the view-query protocol was proposed in reference [1]. That version
differs greatly from the ope in this paper. Here, we angment superdomain-level views with gate-
ways. In {1}, we augmented superdomain-level views with superdomain-to-domain edges (details in
Section 8). Both versions have the same time and space complexity, but the protocols in this paper

are much simpler conceptually. Also the view-update protocol is not in reference [1).

Organization of the paper

In Section 2, we present some definitions used in this paper. In Section 3, we define the view data
structures. In Section 4, we describe how views are affected by topology changes. In Section 3, we
present the view-query protocol. In Section 6, we present the view-update protocol. In Section 7,
we present our evaluation model and the results of its application to the superdomain hierarchy.
In Section 8§, we survey recent approaches 1o inter-domain routing. In Section 9, we conclude and

describe cacheing and heuristic schemes to improve performance.

2 Preliminaries

Each domain has a unique id. Let Domainlds denote the set of domain-ids. Fach node has 2
unique id. Let Nodelds denote the set of node-ids. For a node z, we use domainid(z) to denote
the domain-id of z’s domain. ’

The superdomain hierarchy defines the following parent-child relationship: & level 7, i > 1,

superdomain is the parent cf each leve]l i — 1 superdomain it contains. Top-level superdomains
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have no parents. Level 1 superdomains, which are just domains, have no children. For any two
superdomains X and Y, X is a sibling of Y iff X and Y have the same parent. X is an ancestor
(descendant) of Y iff X' = Y or X is an ancestor (descendant) of ¥’s parent (child).

Each router maintains information about a subset of superdomains, referred to as its visible
superdomains. The visible superdomains of a router z are (1) z’s domain itself, (2) siblings of z’s
domain, and (3) sibiings of ancestors of z’s domain. In Figure 3, the visible superdomains of a
router in dl are dl,d2,d3,B,C,G,J (these are shown in Figure 4). Note that if 2 superdomain U
is visible to a router, then no ancestor or descendant of I is visible to the router.

Each superdomain has a unique id, i.e. unique among all superdomains regardless of level. Let
SuperDomainlds denote the set of superdomﬁn-ids. DomainIds is a subset of SuperDomainlds.
For a superdomain U, let 1evel(U) denote the level of U in the hierarchy, let Ancestors(U) denote
the set of ids of ancestor superdomains of U in the hierarchy, and let Children(U) denote the set
of ids of child superdomains of U in the hierarchy.

For a router z, let VisibleSuperDomains(z) denote the set of ids of superdomains visible from

We extend the above definitions by allowing their arguments to be nodes, in which case the node

stands for its domain. For example, if z is a node in domain d, Ancestors(z) denotes Ancestors(d).

3 Superdomain-Level Views with Géteways

For routing purposes, each domain (and node) has an address, defined as the concatenation of the
superdomain ids starting from the 1op level and going down to the domain (node). For example in
Figure 3, the address of domain d15 is G.E.d15, and the address of a node A in d15 is G.E.d15.A.

When 2 source node needs to reach a destination node, it first determines the visible superdo-
main in the destination address and then by examining its view determines a superdomain-level
source route (satisfying ToS and policy constraints) to this superdomain. However, since routers
in different superdomains maintain views of different sets of superdomains, this superdomain-level
source route can be meaningless at some intermediate superdomain’s réuter z because the next
superdomain in this source route is not visible to z. For example in Figure 4, superdomain-level
source route (d2,B,G,C) created at a router in d2 becomes meaningless once the packet is in G,

where C is not visible.
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The usual technique of solving this problem is to augment superdomain-level views with gate-
ways and edges between these gateways.

Define the pair U:g to be an sd-gateway iff U is a superdomain and g is a node that is in U and
has a link to a node outside U. Equivalently, we say that g is a gateway of U.

Define (U:g, h) to be an actual-edge iff U:g is an sd-gateway, h is a gateway not in U, and there
is a link from g to h.

Define (U:g, h) 1o be a virtual-edge iff U:g and U:h are sd-gateways and g # h (note that there
may not be a link between g and h).

(U:g, k) is an edge iff it is an actual-edge or a virtual-edge. An edge (U:g,k) is also said to be
an outgoing edge of U:g. Define edges of U:g to be the set of edges outgoing from U:g. Define edges
of U to be the set of edges outgoing from any gateway of U.

Let Gateways(U) denote the set of node-ids of gateways of U. Let Edges(U:g) denote the edges
of U:g. Note that we never use “edge™ as a synonym for ink.

A gateway g of a domain can generate many sd-gateways, specifically, U:g for every ancestor U
of g’s domain such that ¢ has a link to a2 node outside U. A link (g,h) where g and h are gateways
in different domains, can generate many actual-edges; specifically, actual-edge (U:g,h) for every
ancestor U of ¢'s domain such that U is not an ancestor of A’s domain.

For the internetwork topology of Figure 2, the corresponding gateway-level connections are
shown in Figure 6 where black rectangies are gaieways. For the hierarchy of Figure 3, gateway
g in Figure € generates sd-gateways d16:g, E:g, and G:g9. The link (¢,h) in Figure 6 generates
actual-edges (d16:g. k), (E:g, h), (G:g,h).

To 2 router, at most one of the sd-gateways generated by 2 gateway g is visible, namely U:g
where U is an ancestor of ¢’s domain and U is visible to the router. At most one of the actual-edges
generated by a Iink (g, k) between two gateways in different domains is visible to the router, namely
edge (U:g,h) where U:g is visible to the router. None of the actual-edges are visible to the router
if g and h are inside 2 visible superdomain. For example in Figure 3, of the actual-edges generated
by Link (g,h), only (G:g,h) is visible to a router in d1, and only (d16:g, k) is visible to a router in
dl6.

A router maintains a view consisting of the visibse sd-gateways and their outgoing actual- and

virtual-edges. An edge (U:g.h) in the view of a router connects the sd-gateway U:g to the sd-
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@ D gateway h  gateway g

Figure 6: Gateway-level connections of internetwork of Figure 2.

gateway V:h such that V:h is visible to the router. For the superdomain-level views of Figures 4

and 3, the new views are shown in Figures 7 and 8, respectively.

Figure 7: View of a router in d1. Figure &: View of a router in d16.

The view of 2 router z contains, for each superdomain U that is visible to z or is an ancestor
of z, the strong and weak constraints of U and a set referred to as Gatewaysé&SEdges.(U). This
set contains, for each gateway y of U, the edges of U:y and their costs. The reason for storing
information about ancestor superdomains is given in Section 5. The cost field is used to satisfy ToS

constraints and is described in Section 4. The timestamp field is described in Section 6. Formally,

the view of z is defined as follows:
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View,. View of z.
= {{U, strong_constraints(U), weak_constraints(U), Gateways&Edges (U)) :
U € VisibleSuperDomains(z) U Ancestors(z) }
where
GateﬁaysfﬁEdgesr(U ). Sd-gateways and edges of U.
= {(y, timestamp, {{z, cost) : (U:y,z) € Edges(U:y)}): v € Gateways(U) }.

ToS and policy constraints can also be specified for each sd-gateway and edge. Our protocols
can be extended to handle such constraints, but we have not done so here in order to keep their
descriptions simple.

A superdomain-level source route is now a sequence of sd-gateway ids. With this definition, it
is easy to verify that whenever the next superdomain in 2 superdomain-level source route is not
visible to a router, there is an actual-edge (hence z link) between the router and the next gateway

in this route.

4 ZEdge-Costs and Topology Changes

A cost is associated with each edge. The cost of an edge equals a vector of values if the edge is up;
each cost value indicates how expensive it is to cross the edge according to some ToS constraint.
The cost equals oc if the edge is an actual-edge and it is down, or the edge is a virtual-edge (U:g, h)
and & can not be reached irom g without leaving U.

Since an actual-edge represents a physical link, its cost can be determined from measured link
statistics. The cost of a virtual-edge (U:g,h) is an aggregation of the cost of physical links in
U and is calculated as follows: If U is 2 domain, the cost of (U:g,k) is calculated as the maxi-
mum/minimum/average cost of the routes within U from g to h [4]. For higher level superdomains
U, the cost of (U:g,h) is derived from the costs of edges between the gateways of children super-
domains of U.

Link cost"changes and link/node failures and repairs correspond to cost changes, failures and
repairs of actual- and virtnal-edges. Thus the attributes of edges in the views of routers must be

regularly updated. For this, we employ a view-update protocol (see Section 6).
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Link/node failures can also partition a superdomain into cells, where a cell of a superdomain
is defined to be 2 maximal subset of nodes of the superdomain that can reach each other without
leaving the superdomain. Superdomain partitions can occur at any level in the hierarchy. Yor
example, suppose U is a2 domain and V is its parent superdomain. U can be partitioned into cells
without V' being partitioned (i.e. if the cells of U can reach each other without leaving V). The
opposite can also happen: if all links between U and the other children of V' fail, then V becomes
partitioned b;Jt U does not. Or both U and V can be partitioned. In the same way, link/node
repairs can merge cells into bigger cells.

We handle superdomain partitioning as follows: A router detects that a superdomain U is
partitioned when a virtual-edge of U in the fouter’s view has cost co. When a router forwards
a packet to a destination for which the visible superdomain, say U, in the destination address is
partitioned into cells, 2 copy of the packet is sent to each cell by sending a copy of the packet to
each gateway of U; the id U in the destination address is “marked” in the packet so that subsequent

routers do not create new copies of the packet for U."

5 View-Query Protocol

When a source node wants a superdomain-level source route to a2 destination, 2 router in its domain
examines its view and searches for a valid path (i.e. superdomain-level source route) using the
destination address®. We refer to this router as the source router. Even though the source router
does not know the constraints of the individual domains that are to be crossed in each superdomain,
it does know the sirong and weak constraints of the superdomains. We refer to a superdomain
whose strong constraints are satisfied 2s 2 valid superdomein. If a superdomain’s weak constraints
are satisfied but strong constraints are not satisfied, then there may be a valid path through this
superdomain. We refer to such a superdomain as a candidate superdomain.

A path is valid if it involves only valid superdomains. A path cannot be valid if it involves
2 superdomain which is neither valid nor candidate. We refer to 2 path involving only valid and

candidate superdomains as a candidate path.

¢ We assume that the source has the destination’s address. 1{ that is not the case, it would first query the name
servers to obtain the address for the destination. Querying the name servers can be done the same way it is done
currently in the Internet. It requires nodes to have a set of fixed addresses to name servers. This is also sufficient in
our case.
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If the source router’s view contains a candidate path (Up:gogs - - -5 U0:90m,s Ur:9105 - - > U191y 5 =
Umi@mgs - - +s Um Gmn,, ) to the destination (and does not contain a valid path), then for each candi-
date superdomain U; on this path, the source router queries gateway g;, of U; for the internal view of
U;. This internal view consists of the constraints, sd-gateways and edges of the child superdomains
of U{.

When a router z receives a request for the internal view of an ancestor superdomain U, it

returns the following data structure:

IView.(U). Internal view of U at router z.

= {{V, strong.constraints(V), veak_constraints(V), Gateways&Edges_(V)) € View, :

V € Children(U)}

It is to simplify the construction of IView (U) that we store information about ancestor su-
perdomains in the view of router z. Instead of storing this information, router z could construct
IView.(U) from the constraints, sd-gateways and edges of the visible descendants of U. We did
not choose this alternative because the extra information does not increase storage complexity.

When the source router receives the internal view of a superdomain U, it does the following:
(1) it removes the sd-gateways and edges of U from its view; (2) it adds the sd-gatewayvs and edges
of children superdomains in the internal view of U; and (3) searches for a valid path again. If there
is still no valid path but there are candidate paths, the process is repeated.

For example, consider Figure 3. For a router in superdomain dl (see Figure 7), G is visible and
is 2 candidate domain. The internal view of G is shown in Figure 9, and the resulting merged view
is shown in Figure 10. The valid path through G (visiting d16 and avoiding d19) can be discovered
using this merged view (since the strong constraints of E are satisfied).

Consider 2 candidate route to a destination: (Up:goys - - -» U090y s Ur:010s - - -5 Urig1,,5 -+ s
 Umgmos+ -+ UmiGmn,, )- L superdomain U; is partitioned into cells, it may re-appear later in the
candidate path (i.e. for some j # i, U; = U;). In this case both gateways g;, and g;, are queried.

Timestamps are used to resolve conflicts between the information reported by these gateways.

The view-query protoco] uses two types of.messages as follows:

¢ (RequestIView, sdid, gid, s.address, d_address)
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F igu.re 9: Internal view of G. Figure 10: Merged view at d1.

Sent by 2 source router to gateway gid to obtain the internal view of superdomain sdid.

s.address is the address of the source router. d.address is the address of the destination
node (of the desired route).

o (ReplyIView,sdid, gid,iview,daddress)

where iview is the internal view of superdomain sdid, and other parameters are as in the
RequestIView message. It is sent by gateway gid to the source router.

The state mainiained by a source router z is listed in Figure 15. PendingReg. is used to
avoid sending new request messages before receiving all outstanding reply messages. WView, and
PendingReg, are allocated and deallocated on demand for each destination.

The events of router z are specified in Figure 15. In the figure, * is 2 wild-card matching any
value. Time(Qut, event is executed after a time-out period from the execution of Reguest. event 10
indicate that the request has not been satisfied. The source host can then repeat the same request
afterwards.

The procedure search- uses an operation “ReliableSend(m) to v”, where m is the message being
sent and ¢ is either an address of an arbitrary router or an id of a gateway of a visible superdomain.
ReliableSend is asynchronous. The message is delivered to v as long as there is 2 sequence of up
links between v and v.” (Note that an address is not needed to obtain an inter-domain route 10 a
gateway of a visible superdomain.)

Router Failure Model: A router can undergo failures and recoveries at anytime. We
assume failures are ia.i.l;stop (i.e. a failed router does not send erroneous messages). When a router
z recovers, the variables WView. and PendingReq. are lost i'o';r all destinations. The cost of each

edge in View, is set to oc. It becomes up-to-date as the router receives new information from other

* This involves time-outs, retransmissions, etc. 1t requires a transport protocol support such as TCP.
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routers.

6 View-Update Protocol

A gatewayr g, for each ancestor superdomain U, informs other routers of topology changes (i.e.
failures, repairs and cost changes) affecting U:g’s edges. The communication is done by flooding
messages. The flooding is restricted to the routers in the parent superdomain of U, since U is
visible only to these routers.

Due to the nature of flooding, 2 router can receive information out of order from a gateway. In
order to aveid old information replacing new information, each gateway includes increasing time
stamps in the messages it sends. Routers maintain for each gateway the highest received time
stamp (in the timestamp field in View.), and discard messages with smaller timestamps. Time
stamps do not have to be real-time clock values.

Due to superdomain partitioning, messages sent by a gateway may not reach all routers within
the parent superdomain, resulting in some routers having out-of-date information. This out-of-date
information can cause inconsistencies when the partition is repaired. To eliminate inconsistencies,
when 2 link recovers, the two routers at the ends of the link exchange their views and flood any new
information. As usual, information about a superdomain U is flooded over U’s parent superdomain.

The view-update protocol uses messages of the following form:

o (Update, sdid, gid, limestamp, edge-set)

Sent by the gateway g:d to inform other routers about current attributes of edges of sdid:gz:d.
timestamp indicates the time stamp of gid. edge-set contains a cost for each edge.

The state maintained by a router z is listed in Figure 16. Note that AdjLocalRouters. or
AdjForeignGateways, can be empty. Jntre.DomainRT, contains 2 route (next-hop or source)® for
every reachable node of the domain. We assume that consecutive reads of Clock. returns increasing
values.

Routers also receive and flood messages containing edges of sd-gateways of their ancestor su-
perdomains. This information is used by the query protocol (see Section 5). Also the highest

timestamp received from a gateway g of an ancestor superdomain is needed to avoid exchanging

® JntreDomainRT: is 2 view in case of a link-state routing protocol or 2 distance table in case of a distance-vecior
routing protocol.
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the messages of ¢ infinitely during flooding.

The events of router z are specified in Figure 16. We use Ancestor;(U) to denote the superdomain-
id of the ith ancestor of U, where Ancestorg(U) = U. In the view-update protocol, 2 node u uses
send operations of the form “Send(m) to +”, where m is the message being sent and v is the
destination-id. Here, nodes u and v are neighbors, and the méssage is sent over the physical link

{(u,v). I the link is down, we assume that the packet is dropped.

7 Evaluation

In the superdomain hierarchy (without the query protocol), the number of superdomains in a view
is logarithmic in the number of superdomains in the internetwork [10).° However, the storage
required for a view is proportional not to the number of superdomains in it but to the number of
sd-gateways in it. As we have seen, there can be more than one sd-gateway for a superdomain in
a view.

In fact, the superdomain hierarchy does not scale-up for arbitrary internetworks; that is, the
number of sd-gatéways in a view can be proportional to the number of domains in the internetwork.
For example, if each domain in 2 superdomain U has a distinct gateway with a link to outside U,
the number of sd-gateways of U would be linear in the number of domains in U.

The good news is that the superdomain hierarchy does scale-up for realistic internetwork topolo-
gies. A sufficient condition for scaling is that each superdomain has at most log Np sd-gateways;
this condition is satisfied by realistic internetworks since mos: domain interconnections are “hier-
archical connections™ i.e. between backbones and regionals, between regionals and MANs, and so
on.

In this section, we present an evaluation of the scaling properties of the superdomain hierarchy
and the query protocol. To evaluate any inter-domain routing protocol, we need 2 model in which
we can define internetwork topologies, policy/ToS constraints, inter-domain routing hierarchies,
and evaluation measures (e.g. memory and time requirements). We have recently developed such
2 model [3]. We first describe our model, and then use jt to evaluate our superdomain hierarchy.

Our evaluation measures are the amount of memory required at the routers, and the amount of

° Ever though the results in [10] were for intra-domain routing, it is easy to show that the analysis there holds
for inter-domain routing as well.
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time needed to construct a path.

7.1 Evaluation Model

We first describe our method of generaﬁng topologies and policy/ToS constraints. We then describe

the evaluation measures.

Generating Internetwork Topologies

For our purposes, an internetwork topology is a directed graph where the nodes correspond to
domains and the edges correspond to domain-level connections. However, an arbitrary graph will
not do. The topology should have the characteristics of a real internetwork, like the Internet.
That is, it should have backbones, regionals, MANS, LANS, etc.; there should.be hierarchical
connections, but some “non-hierarchical” connections should also be present.

For brevity, we refer to backbones as class 0 domains, regionals as class 1 domains, metropolitan-
area domains and providers as class 2 domains, and campus and local-area domains as class 3
domains. A (strictly) hierarchical interconnection of domains means that class 0 domains are
connected to each other, and for i > 0, class i domains are connected to class i — 1 domains.
As mentioned above, we also want some “non-hierarchical™ connections, i.e., domain-level edges
between domains irrespective of their classes (e.g. from z campus domain to another campus
domain or 1o a backbone domain).

In reality, domains span geographical regions and domain-level edges are often between do-
mains that are geographically close (e.g. University of Marvland campus domain is connected to
SURANET regional domain which are both in the east coast). We also want some edges that are
between far domains. A dass : domain usually spans a Jarger geographical region than a class i+ 1
domain. To generate such interconnections, we associate a “region” attribute to each domain. The
intention is that two domains with the same region are geographically close.

The region of a class ¢ domain has the form rg.rj.-:-.rj, where the 7;’s are integers. For
example, the region of a class 3 domain can be 1.2.3.4. For brevity, we refer to the region of a
class ¢ domain as & class  region.

Note that regions have their own hierarchy which should not be confused with the superdomain

hierarchy. Class 0 regions are the top level regions. We say tha: a class i region ro.ry.--+.Tj-1.T5
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is contained in the class 1 — 1 region ro.ry.---.rj_1 (where : > 0). Containment is transitive. Thus

region 1.2.3.4 is contained in regions 1.2.3,1.2 and 1.

Figure 11: Regions

Given any pair of domains, we classify them as local, remote or far, based on their regions.
Let X be 2 class i domain and Y a class j domain, and without loss of generalit_v let1<j. X
and Y are local if they are in the same class ¢ region. For example in Figure 11, A is local to
B,C.J,K,M,N,O,P,and Q. X and Y are remote if they are not in the same class 7 region but
they are in the same class ¢ — 1 region, or if i = 0. For example in Figure 11, some of the domains
A is remote to are D, E, F,and L. X and Y are far if they are not local or remote. For example
in Figure 11, Aisfar to I.

We refer to a domain-level edge as local (remote, or far) if the two domains it connects are local
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(remote, or far).

We use the following procedure to generate internetwork topologies:

L

We first specify the number of domain classes, and the number of domains in each class.
We next specify the regions. Note that the number of region classes equals the number of
domain classes. We specify the number of class 0 regions. For each class i > 0, we specify a
branching factor, which creates that many class i regions in each class i — 1 region. (That is,
if there are two class 0 regions and the class 1 branching factor equals three, then there are
six class 1 regions.)

For each class i, we-randomly map the class : domains into the class 7 regions. Note that
several domains can be mapped to the same region, and some regions may have no domain
mapped into them.

Tor every class 7 and every class j, 7 > i, we specify the number of local, remote and far
edges to be introduced between class : domains and class j domains. The end points of the
edges are chosen randomly (within the specified constraints).

We ensure that the internetwork topology is connected by ensuring that the subgraph of class
0 domains is connected, and each class i domain, for ¢ > 0, is connected to a local class 1 — 1
domain.

Each domain has one gateway. So all neighbors of 2 domain are connected via this gateway.

This is for simplicity.

Choosing Policy/ToS Constraints

We chose a simple scheme to model policy/ToS constraints. Each domain is assigned a color: green

or red. For each domain class, we specify the percentage of green domains in that class, and then

randomly choose a color for each domain in that class.

A valid route from a source to 2 destination is one that does not visit any red intermediate

domains; the source and destination domains are allowed to be red.

This simple scheme can model many realistic policy/ToS constraints, such as security constraints

and bandwidth requirements. It cannot model some important kinds of constraints, such as delay

bounds.
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Computing Evaluation Measures

The evaluation measures of most interest for an inter-domain routing protocol are its memory, time
and communjcation requirements. We postpone the precise definitions of the evaluation measures
to the next subsection.

The only analysis method we have at present is to numerically compute the evaluation measures
for a variety of source-destination pairs. Because we use internetwork topologies of large sizes, it
is not feasible to compute for all possible source-destination pairs. We randomly choose a set
of source-destination pairs that satisfy the following conditions: (1) the source and destination
domains are different stub domains, and (2) there exists a valid path from the source domain to the
destination domain in the internetwork topology. (Note that the straight-forward scheme would

always find such a path.)

7.2 Application to Superdomain Query Protocol

We use the above model to evaluate our superdomain query protocol for several different super-
domain hierarchies. For each hierarchy, we deﬁpe 2 set of superdomain-ids and a parent-child
relationship on them.

The first superdomain hierarchy scheme is referred to as ckild-domains. Each domain d (re-
gardless of its class) is a level-1 superdomain, also identified as d. In addition, for each backbone d,
we create z distinct level-4 superdomain referred to as d-4. For each regional d, we create 2 distinct
level-3 superdomain d-3 and make it 2 child of 2 randomly chosen level-4 superdomain e-4 such
that d and € are local and connected. For each MAN d, we creaté a distinct level-2 superdomain
@-2 2nd make it 2 child of 2 randomlyv chosen level-3 superdomain e-3 such that d and e are local
and connected. Please see Figure 12.

We next describe how the level-1 superdomazins (i.e. the domains) are placed in the hierarchy.
A backbone d is placed in, i.e. as a child of, d-4. A regional d is placed in d-3. A MAN d is placed
in d-2. A stub d is placed in €-2 such that d and e are local and connected. Please see Figure 12.

The second superdomain hierarchy scheme is referred 1o as stbling-domains. It is identical
to child-domains eicept for the placement of level-1 superdomains corresponding to backbones,
regionals and MANs. In sibling-domains, a backbone d is placed as a sibling of d-4. A regional d
is placed as a sibling of d-3. A MAN d is placed as a sibling of d-2. Please see Figure 13. .
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. Figure 12: child-domains

h:khm G

. Figure 13: sibling-domains

The third superdomain hierarchy scheme is referred to as leaf-domnains. It is identical to child-

domains except for the placement of level-1 superdomains corresponding 10 backbones and Tegionals.
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In leaf-domains, backbones and regionals are placed in some level-2 superdomain, as follows. A
regional d, if superdomain d-3 has a child superdomain e-2, is placed in e-2. Otherwise, a new level-
2 superdomain d-2 is created and placed in d-3. d is placed in d-2. A backbone d, if superdomain
d-4 has a child superdomain f-3, is placed in the level-2 superdomain containing the regional f.
Otherwise, a new level-3 superdomain d-3 is created and placed'in d-4, 2 new level-2 superdomain
d-2 is created and placed in d-3. dis placed in d-2. Please see Figure 14.

Note that in leaj-domains, all level-1 superdomains are placed under level-2 superdomains.
Whereas other schemes allow some level-1 superdomains to be placed under higher level superdo-

mains.

Figure 14: leaf-domains

The fourth superdomain hierarchy scheme is referred to as regions. In this scheme, the super-
domain hierarchy corresponds exactly to the region hierarchy used to generate the internetwork
topoloé’. That is, for a class 1 region x there is a distinct level 5 (top level) superdomain z-5. For
a class 2 regioz; x.y there is a distinct level 4 superdomain z.y-4 placed under level 5 superdomain

z-3, and so on. Each domain is placed under the superdomain of its region. Please see Figure 11.
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Results for Internetwork 1

The parameters of the first internetwork topology, referred to as Internetwork 1, are shown in

Table 1.

Cless i ]' No. of Domains | No. of Regions?® | % of Green Domains l Edges between Ciasses : ana j
Class 5 | Local | Remote | Far

0 10 4 0.80 0 8 6 0
1 100 16 0.75 0 180 20 0
1 26 3 0

2 1000 64 0.70 0 100 0 0
1 1060 40 0

2 200 40 0

3 10000 256 0.20 0 100 0 0
1 1C. U 0

2 10100 50 0

3 30 30 30

Table 1: Parameters of Internetwork 1.

Our evaluation measures were computed for a (randomly chosen but fixed) set of 100.000 source-

destination pairs. For a source-destination pair, we refer 1o the length of the shortest valid path in

the internetwork topology as the shortest-path length. or spl in short. The minimum sp! cf these

pairs was 2, the maximum sp! was 15, and the average spl was 6.84.

For each source-destination pair, the set of candidate paths is examined in shortest-first order

until either a valid path was found or the set was exhausted and no valid paths were found.

For each candidate path, RequestIView messages are sent to all candidate superdomains on this

path in paralle]l. All ReplyIView messages are received in time proportional to the round-trip

time to the farthest of these superdomains. Hence, total time requirement is proportional to the

number of candidate paths queried multiplied by the round-trip time to the farthest superdomain

in these paths. Let msgsize denote the sum of average RequestIView message size and average

'°Branching factor is 4 for all region classes.
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Scheme No query needed | Candidate Paths | Candidate Superdomains
chiid-domains 220 3.31/13 7.35/38
sibling-domains 220 3/10 6.17/22
leaf-domains 219 6.31/24 15.94/66
regions 544 3.70/12 7.79/30

Table 2: Queries for Internetwork 1.

ReplyIView message size. The number of candidate superdomains queried times msgsize indicates
the communijcation capacity required to ship the RequestIViev and ReplyIViev messages.

Table 2 Bists for each superdomain scheme the average and maximum number of candida.te paths
and candidate superdomains queried. As apparent from the table, sibling-domains is superior to
other schemes and leaf-domains is much worse than the rest. This is because in leaf~-domains, even
if only one domain d in 2 superdomain U is actually going to be crossed, all descendants of U
containing d may need o be queried to obtain a valid path (e.g. to cross backbone A in Figure 14,

it may be necessary to query for superdomain A4-4, then B-3, then C-2).

Injtial view size Merged view size

Scheme in sd- gateways | _in superdomains | in sd-gateways | in superdomains
child-domains 964 /1006 42/60 1089/1282 100/298
sibling-domains 1167/1269 70/99 1470/2190 148/337
leaf-domains 963/1006 40/60 1108/1322 130/411
regions 492/713 85/163 1042/2687 158/369

Table 3: View sizes for Internetwork 1.

Table 3 lists for each superdomain scheme the average and maximum of the initial view size
and of the merged view size. The initial view size indicates the memory requirement at a router
without using the query protocol {i.e. assuming the injtial view has a valid path). The merged view

size indicates the memory requirement at a router during the query protocol (after finding a valid
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path). The memory requirement at a router is O(view size in number of sd-gateways X Eg) where
Eg is the average number of edges of an sd-gateway. Note that the source does not need to store
information about red and non-transit domains in the merged views (other than the ones already
in the initial view). The numbers for the merged view sizes in Table 3 take advantage of this.

As apparent from the table, leaf-domains, child-domains and regions scale better than sibling-
domains. ;I‘here are two reasons for this. First, placing a backbone (regional or MAN) domain das a
sibling to d-4 {d-3 or d-2) doubles the number of level 4 (3 or 2) superdomains in the views of routers.
Second, since these domains have many edges to the domains in their associated superdomains, the
end points of each of these edges become sd-gateways of the associated superdomains. Note that
regions scales much superior to the other schemes in the initial view size. This is because most
edges are local (i.e. contained within regions), thus contained completely in superdomains. Hence,
their end points are not sd-gateways.

Overall, the child-domains and regions schemes scale best in space, time and communication
requirements. We have repeated the above evaluations for two other internetworks and obtained

similar conclusions. The results are in Appendix A.

8 Related Work

In this section, we survey recently proposed inter-domain routing protocels et support ToS and
policy routing for large internetworks.

Nimrod [6] and IDPR [16] use the link-state approach with domain-level source routing to
enforce policy and ToS constraints and superdomains to solve scaling problem. Nimrod is still in
a design stage. Both protocols suffer from loss of policy and ToS information as mentioned in the
introduction. A query protocol for Nimrod is being developed to obtain more detailed policy, ToS
and topology information.

BGP [12] and IDRP [14] are based on a path-vector approach [15]. Here, for each destination
domain a router maintains a set of paths, one through each of its ne_ighbor routers. ToS and policy
information is attached to these paths. Each router requires O(Np X Np x ER) space, where Np
is the average number of neighbor domains for & domain and Ng is the number of routers in the
internetwork. For each destination, a router exchanges its best valid path with its neighbor routers.

However, a path-vector algorithm may not find a valid path from a source to the destination even
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if such a route exists [16]*? (i.e. detailed ToS and policy information may be lost). By exchanging &
paths to each destination, the probability of detecting a valid path for each source can be increased.
But to guarantee detection, either all possible paths should be exchanged (exponential number of
paths in the worst case) or source policies should be made public and routers should take this into
account when exchanging routes. However, this fix increases space and communication requirements
drastically.

IDRP [14] uses superdomazins to solve the scaling problem. It exchanges all paths between
neighbor routers subject to the following comstraint: 2 router does not inform a neighbor router
of a route if usage of the route by the neighbor would violate some superdomain’s constraint on
the route. IDRP also suffers from loss of ToS and policy information. To overcome this problem,
it uses overlapping superdomains: that is, a domain and superdomain can be in more than one
parent superdomain. If a valid path over a domain can not be discovered because the constraints
of 2 parent superdomain are violated, the same path may be discovered through another parent
superdomain whose constraints are not violated. However, bandling ToS and policy constraints
in general requires more and more combinations of overlapping superdomains, resulting in more
storage reguirement.

Reference [9] combines the benefits of path-vector approach and link-state approach by having
two modes: Ax NR mode, which is an extension of IDRP and is used for the most common ToS
and policy constraints; and 2 SDR mode, which is like IDPR and is used for less frequent ToS and
policy requests. This study does not address the scalability of the SDR mode. Ongoing work by
this group considers a2 new SDR mode which is not based on IDPR.

Reference [19] suggests the use of multiple addresses for each node, one for each ToS and Policy.
This scheme does not scale up. In fact, it increases the storage requirement, since a router maintains
2 route for each destination address, and there are more addresses with this scheme.

The landmark hierarchy [18, 17) is another approach for solving scaling problem. Here, each
router is 2 landmark with a radius, and routers which are at most radius away-from the landmark
maintain a route jor it. Landmarks are organized hierarchically, such that radivs of a landmark

increases with its level. and the radii of top level landmarks include all routers. Addressing and

31 For example, suppose a router u has two paths Pl and P2 to the destination. Let u bave a router neighbor z,

which is in another domain. u chooses and informs v of one of the paths, say P1. But Pl may violate source policies
of v’s domain, and P2 may be 2 valid path for v.
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packet forwarding schemes are introduced. Link-state algorithms can not be used with the landmark
hierarchy, and a thorough study of enforcing ToS and policy constraints with this hierarchy has
not been done.

In [1], we provided an alternative solution to loss of policy and ToS information that is perhaps
more faithful to the original superdomain hierarchy. To handle superdomain-level source routing
and topology changes, we augmented each superdomain-level edge (U, V) with the address of an
“exit” domain u in U and an “entry” domain v in V. To obtain internal views, we added for
each visible superdomain U the edges from U to domains outside the parent of U. Surprisingly,
this approach and the gateway-level view approach have the same memory and communication
requirements. However, the first approach results in much more complicated protocols.

Reference 2] presents interdomain routing protocols based on a new kind of hierarchy, referred
1o as the viewserver hierarchy. This approach also scales well to large internetworks and does
not lose detail ToS and policy information. Here, special routers called viewservers maintain the
view of domains in a surrounding precinct. Viewservers are organized hierarchically such that
for each viewserver, there is a domain of a2 lower level viewserver in its view, and views of top
level viewservers include domains of other top level viewservers. Appropriate addressing and route

discovery schemes are introduced.

9 Conclusion

We presented a hierarchical inter-domain routing protocol which satisfies policy and ToS con-
straints, adapts to dynamic topology changes including failures that partition domains, and scales
well to large number of domains.

Our protocol achieves scaling in space requirement by using superdomains. Qur protocol main-
tains superdomain-level views with sd-gateways and handles topology changes by using a link-state
view update protocol. It achieves scaling in communication requirement by flooding topology
changes affecting a superdomain U over U’s parent superdomain.

Our protocol does not lose detail in ToS, policy and topology information. It stores both a
strong set of constraints and a weak set of constraints for each visible superdomain. X the weak
constraints but not the strong constraints of a superdomain U are satisfied (i.e. the aggregation has

resulted in loss of detail in ToS and policy information), then some paths through U may be valid.
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Our protocol uses a query protocol to obtain a more detailed “internal” view of such superdomains,
and searches again for a valid path. Qur evaluation results indicate that the query protocol can be
performed using 15% extra space.

One drawback of our protocols is that to obtain a source route, views are merged at or prior
to the connection setup, thereby increasing the setup time. This drawback is not unique to our
scheme |7, 16, 6, 9]. There are several ways to reduce this setup overhead. First, source routes
to frequent]y' used destinations can be cached. Second, the internal views of frequently queried
superdomains can be cached at rovters close to the source domain. Third, better heuristics to
choose candidate paths and candidate superdomains to query can be developed.

We 2lso described an evaluation model for inter-domain routing protocols. This model can be
applied to other inter-domain routing protocols. We have not done so because precise definitions of
the hierarchies in these protocols are not available. For example, to do a fair evaluation of IDPR[16],
we need precise guidelines for how to group domains into superdomains, and how to choose between

" the strong and weak methods when defining policy/ToS constraints of superdomains. In fact, these

protocols have not been evaluated in a way that we can compare them to the superdomain hierarchy.
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A Results for Other Internetworks

Results for Internetwork 2

The parameters of the second internetwork topology, referred to as Internetwork 2, are the same as

the parameters of Internetwork 1 but a different seed is used for the random number generation.
Our evaluation measures were computed for a set of 100,000 source-destination pairs. The

minimum spl! of these pairs was 1, the maximum sp! was 14, and the average sp! was 7.13.

Table 5 and Table 4 shows the results. Similar conclusions as in the case of Internetwork 1 hold.

Results for Internetwork 3

The parameters of the third internetwork topology, referred to as Internetwork 3, are shown in
Table 6. Internetwork 3 is more connected, more class 0, 1 and 2 domains are green, and more

class 3 domains are red. Hence, we expect bigger view sizes in number of sd-gateways.
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Scheme No query needed | Candidate Paths | Candidate Superdom.ains
child-domains 205 4.52/20 10.22/47
sibling-domains 205 3.01/8 6.50/21
leaf-domains 205 8.80/32 ' 21.34/82
regions 640 3.52/10 . 1.85/28

Table 4: Queries for Internetwork 2.

Initial view size Merged view size
Scheme In sd-gateways | in superdomains |in sd-gateways |in superdomains
child-domains 958/1012 43/60 1079/1269 118/306
sibling-domains| 1153/1283 72/101 1480/2169 160/324
leaf-domains 956/1009 41/58 1095/1281 156/387
regions 624/1024 110/231 1356/3578 206/435

Table 5: View sizes for Internetwork 2.

Our evaluation measures were computed for a set of 100,000 source-destination pairs. The
minimum sp! of these pairs was 1, the maximum spl was 11, and the average sp! was 5.95.
Table 8 and Table 7 shows the results. Similar conclusions as in the cases of Internetwork 1

and 2 hold.

*2Branching factor is 4 for 2l domain classes.
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Class 7 || No. of Domains | No. of Regions!? | % of Green Domains | Edges between Classes ¢ and j
| Class § | Local { Remote | Fa-
0 : 10 4 0.85 0 8 7. 0
1 100 16 0.80 0 190 20 0
1 50 20 0
2 1000 . 64 ' 0.75 0 5(;; 50 0
1 1200 1200 | 0
2 200 40 0
3 10000 256 0.10 0 300 30 0
250 100 0
2 10250 150 50
3 200 150 100
Table 6: Parameters of Internetwork 3.
Scheme No query needed | Candidate Paths | Candidate Superdomains
child-domains 142 ‘?:99/29 7.70/45 ]
sibling-domains 142 2.95/10 5.39/22
leaf-domnains 142 9.65/70 18.99/103
regions 676 3.47/17 6.25/21

Table 7: Queries for Internetwork 3.
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Initial view size

Merged view size

Scheme in sd-gateways |in superdomains |in sd-gateways |in superdomains
child-domains 2160/2239 43/60 2354 /2647 107/348
sibling-domains| 2365/2504 72/101 2606/3314 148/356
leaf-domnains 2159/2236 41/58 2386/2645 - 160/648
regions 1107/1644 110/231 1850/3559 194/436

Table 8: View sizes for Internetwork 3.
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Variables:
View,. Dynamic view of z.

WView,(d_address). Ternporary view of z. d_oddress is the destination address.
Used for merging internal views of superdomains to the view of z.

PendingReq.(d_address). Integer. d_address is the destination address.
Number of outstanding request messages.

Events:
Request.(d-address) {Executed when z wants a valid domain-level source route}
allocate WView.(d_address) := View;; allocate PendingReq-(d.address) := 0;
search_(d.address);

where
search_(d_address)
if there is a valid path to d_address in WView.(d_address) then
result := shortest valid path;
deallocate WView (dnddress), PendingReq.(daddress);
return result;
else if there is a candidate path to d.address in WView, (d.address) then
Let cpath = (Up:90,, - - -2 Un:900g» Ur 19105 - - -, Ua G1ays 0 1 UmiGmes- -2 UmiGma,, )
be the shortest candidate path;
for U; in cpath such that U; is candidate do
ReliableSend(RequestIVies, Uy, g;,. address(z), d-address) 1o g;,
PendingReg-(d_address) := Pending Reg-(d_address) + 1;
else
deallocate WView.(d_address), PendingReg.(d_address);
return failure;
endif
endif

TimeOut.(d.address) {Executed after a time-out period and PendingReg,(d-address) # 0.}
deallocate WView:(d.address), PendingReg-(d_address);

return failure;

Figure 15: view-query protocol: State and events of a router z. (Figure continued on next page.)
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Receive. (RequestIVier, sdid, z, s.address, d_address)
ReliableSend(ReplyIVies, sdid, z, ] View(U), d.address) to s.address; l

Receive. (ReplylVies, sdid, gid, iview, d_address)
if PendingReg.(d.address) # 0 then {No time-out happened}
PendingReq.(d_address) := PendingReq.(d-address) — 1;
{merge internal view}
delete (sdid, =, =, =) from WView.;
for (child, scons, wcons, gateway-sel) in iview do
if =3{child,»,*,») € WView. then
insert (child, scons, wecons, gaeleway-set) in WView,;
else
for {(gid, ts, edge-set) in gatewsy-set do
if 3(gid, timestamp, *) € Gateways&Edges_(child) N ts > timestamp then
delete (gid, =, =) from Geteways&Edges_(child);
endif;
if =3(gid, =, x) € Galeways&Edges_(child) then
Insert (gid, is, edge-set) to Gateways&SEdges_(child);
endif ]
endif
if PendingReg.(d_address) = 0 then {All pending replies are reczived}
search.(d-address);
endif
endif

Figure 15: view-query protocol: State and events of a router z. (cont.)
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Constants:
AdjLocalRouters_. (C Nodelds). Set of neighbor routers in z’s domain.
AdjForeignGateways,. (C Nodelds). Set of neighbor routers in other domains.
Ancestor;(z). (C SuperDomainIds). ith ancestor of z.

Variabies:
View.. Dynamic view of z.
IntraDomainRT.. Intra-domain routing table of z. Initially contains no entries.
Clock, : Integer. Clock of z.

Events:
Receive (Update, sdid, gid, ts, edge-set) from sender

if 3(gid, timestamp, =) € Gateways&Edges_(sdid) A ts > timestamp then
delete (gid, =, ) from Gateways&Edges_(sdid);

endif;

if =3{gid, », =} € Gateways&Edges_(sdid) then
flood-((Update, sdid, gid, s, edge-sel));
insert {gid, ts, edge-set) 1o Galeways&Edges_(sdid);
update.parent.domains.(level(sdid) + 1);

endif

where
update_pareni_domains. (startinglevel)
for level := startinglevel to number of levels in the hierarchy do

sdid := Ancestorjeyel(z);

if = € Gateways(sdid) then
edge-set ;= aggregate edges of sdid:x using View,,IniraDomainRT, and links of z;
timestamp = Clock.;
flood ((Update, sdid, =z, timestamp, edge-set));
delete (z, =, =) from GatewayséSEdges, (sdid);
insert (z, timestamp, edoe-set) to Gateweys&Edges_(sdid);

endif

Do Update. {Executed periodically and upon a change in IntraDomainRT or links of z}
update_parent_domains. (1)

Link_Recovery: (y) {(z,v) is a link. Executed when (z,y) recovers.}
for all {sdid, =, =, =) in View. do
if 51 : Ancestor;(y) = Ancestor;(sdid) then
for all (gid, timestamp, edge-set) in Gateways&Edges_(sdid) do
Send((Update, sdid, gid, timestamp, edge-set)) to y;
endif

flood.(packet)
for all ¥ € AdjLocalRouters_ do
Send(packet) o y;
for all y € AdjForeignGatevays, A 3i: Ancestor;(y) = Ancestor;(packet.sdid) do
Send(packe?) 10 y;

Figure 16: view-update protocol: State and events of 2 router z.
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