
UNCLASSIFIED

AD NUMBER

ADB222369

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution: Further dissemination only
as directed by U.S. Army Strategic Defense
Command, Attn: SCCD-IM-PA, P.O. Box 1500,
Huntsville, AL 35807-3801, Jan 97 or
higher DoD authority.

AUTHORITY

Phillips Lab. [AFMC] Kirtland AFB, NM ltr
dtd 30 Jul 97

THIS PAGE IS UNCLASSIFIED

PL-TR-96-1126, Pt. 1 PL-TR-
96-1126,

Pt 1

ADVANCED HARD REAL-TIME OPERATING SYSTEM,

THE MARUTI PROJECT

Part 1 of 2

Ashok K. Agrawala
Satish K. Tripathi

Department of Computer Science
University of Maryland
College Park, MD 20742

January 1997

Final Report

WARNING - This document contains technical data whose

Further dissemination only as directed by the U.S. Army export is restricted by the Arms Export Control Act (Title 22,

Strategic Defense Command, ATTN: SCCD-IM-PA, P.O. U.S.C., See 2751 et sea.) or The Export Administration Act

Box 1500, Huntsville, AL 35807-3801, January 1997, or of 1979, as amended (Title 50, U.S.C., App. 2401, et seg.).

higher DoD authority. Violations of these export laws are subject to severe criminal
penalties. Disseminate IAW the provisions of DoD Directive
5230.25 and AFT 61-204.

DESTRUCTION NOTICE - For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual,
Section I-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX. For unclassified, limited documents, destroy
by any method that will prevent disclosure of contents or reconstruction of the document.

PHILLIPS LABORATORY 19970415 061
Space Technology Directorate
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

PL-TR-96-1126

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data, does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

If you change your address, wish to be removed from this mailing list, or your organization
no longer employs the addressee, please notify PL/VTS, 3550 Aberdeen Ave SE, Kirtland
AFB, NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

This report has been approved for publication.

i RUSSELL, Capt, USAF
roject Manager

FOR THE COMMANDER

NANCY L. USA CHRISTINE M. ANDERSON, SES
Chief, Satellite Control and Simulation Director, Space Technology
Division

DRAFT SF 298
1. Report Date (dd-mm-yy) 2. Report Type 3. Dates covered (from... to)
January 1997 Final 4/92 to 10/96

4. Title & subtitle 5a. Contract or Grant #
Advanced Hard Real-Time Operating System, The Maruti
Project DASG-60-92-C-0055

5b. Program Element # 62301E

6. Author(s) 5c. Project # DRPB
Ashok K. Agrawala
Satish K. Tripathi 5d. Task# TB

5e. Work Unit # AT

7. Performing Organization Name & Address 8. Performing Organization Report #
Department of Computer Science
University of Maryland
College Park, MD 20742

9. Sponsoring/Monitoring Agency Name & Address 10. Monitor Acronym
Phillips Laboratory
3550 Aberdeen Ave. SE
Kirtland, AFB, NM 87117-5776 11. Monitor Report #

PL-TR-96-1126, Part 1

12. DistributionlAvailability Statement
Further dissemination only as directed by the U.S. Army Strategic Defense Command, ATTN: SCCD-IM-PA, P.O.
Box 1500, Huntsville, AL 35807-3801, January 1997, or higher DoD authority.

13. Supplementary Notes

14. Abstract System correctness for real-time systems relies on both functional and temporal correctness of
the system components. In order to allow creation and deployment of critical applications with hard real-time
constraints in a reactive environment, we have developed the Maruti environment, which consists of the Maruti
operating system and runtime environment, and an application development and environment that uses the
Maruti Programming Language (MPL), an extension of ANSI C; the Maruti Configuration language (MCL), which
specifies how MPL modules are to be connected and any environmental constraints; and various analysis and
debugging tools. The core of the Maruti runtime system is the Elemental Unit (EU) and calendar. An EU is an
atomic entity triggered by incoming data/signals, that produces data/signals. A calendar specifies the
execution order and time for each EU. Calendars are static entities created during application design and
development, thus allowing temporal debugging of applications before they are executed on the machine. A
given application may have more than one calendar to allow contingency or degraded operation.

15. Subject Terms
Real-Time operating systems, fault tolerance, concurrency, embedded systems, environments

Security Classification of 19. Limitation 20. # of 21. Responsible Person
of Abstract Pages (Name and Telephone #)16. Report 17. Abstract 18. This Page

Unclassified Unclassified Unclassified Limited 220 Capt Jim Russell

(505) 846-8986 ext 352

:•/11

TABLE OF CONTENTS

1. Executive Summary i-rn

2. "Optimal Replication of Series-Graphs for Computation-Intensive 1-37
Applications"

By: A. K. Agrawala and S.-T. Cheng

3. "Designing Temporal Controls" 39-61
By: A. K. Agrawala, S. Choi, and L. Shi.

4. "Scheduling an Overloaded Real-Time System" 63-92
By: S.-I. Hwang, C.-M. Chen, and A. K. Agrawala

5. "Notes on Symbol Dynamics" 93-104
By: A. K. Agrawala and C. A. Landauer

6. "Allocation and Scheduling of Real-Time Periodic 105-127
Tasks with Relative Timing Constraints"

By: S.-T. Cheng and A. K. Agrawala

7. "Scheduling of Periodic Tasks with Relative Timing Contraints" 129-150
By: S.-T. Cheng and A. K. Agrawala

8. "A Scalable Virtual Circuit Routing Scheme for ATM Networks" 151-175
By: C. Alaettinoglu, I. Matta, and A. U. Shankar

9. "Hierarchical Inter-Domain Routing Protocol with 177-212
On-Demand ToS and Policy Resolution"

By: C. Alaettinoglu and A. U. Shankar

10. "Optimization in Non-Preemptive Scheduling for a pPriodic Tasks" 213-257
By: S.-I. Hwang, S.-T. Cheng, and A. K. Agrawala

11. "A Decomposition Approach to Non-Preemptive Real-Time Scheduling" 259-279
By: A. K. Agrawala, X. Yuan, and M. Saksena

12. "Viewserver Hierarchy: a Scalable and Adaptive 281-314
Inter-Domain Routing Protocol."

By: C. Alaettinoglu and A. U. Shankar

13. '•Temporal Analysis for Hard Real-Time Scheduling" 315-322
By: M. Saksena and A. K. Agrawala

14. "Implementation of the MPL Compiler" 323-340
By: J. M. Rizzuto and J. da Silva

15. "Maruti 3.1 Programmers's Manual, First Edition" 341-380
By: Systems Design and Anlysis Group,
Department of Computer Science, UMCP

16. "Maruti 3.1 Design Overview, First Edition" 381-406
By: Systems Design and Anlysis Group,
Department of Computer Science, UMCP

iii

Executive Summary

Introduction:

This is the final report on the work done under contract DASG-60-92-C-0055 from Phillips
Labs -and ARPA to the Department of Computer Science at the University of Maryland.
The work started 04/28/92. The goal of this project was to create an environment for
development and deployment of critical applications with hard real-time constraints in a
reactive environment. We have redesigned Maruti system to address these issues. In this
report we highlight the achievements of this contract. A publications list and a copy of each
of the publications is also attached.

Application Development Environment:

To support applications in a real-time system, conventional application development
techniques and tools must be augmented with support for specification and extraction of
resource requirements and timing constraints, The application development system
provides a set of programming tools to support and facilitate the development of real-time
applications with diverse requirements. The Maruti Programming Language (MPL) is used
to develop induvidual program modules. The Maruti Configuration Language (MCL) is
used to specify how individual program modules are to be connected together to form an
application and the details of the hardware of which the application is to be executed.

In the current version, the base programming language used is ANSI C. MPL adds
modules, shared memory blocks, critical regions, typed message passing, periodic
functions, and message-invoked functions to the C language. To make analyzing the
resource usage of programs feasible, certain C idioms are not allowed in MPL; in
particular, recursive function calls are not allowed nor are unbounded loops containing
externally visible events, such as message passing and critical region transition.

MPL Modules are brought together into as an executable application by a specification file
written in the Maniti Configuration Language (MCL). The MCL specification determines
the application's hard real-time constraints, the allocation of tasks, threads, and shared
memory blocks, and all message-passing connections. MCL is an interpreted C-like
language rather than a declarative language, allowing the instantiation of complicated
subsystems using loops and subroutines in the specification.

Analysis and Resource Allocations:

The basic building block of the Maruti computation model is the elemental unit (EU). In
general an elemental unit is an executable entity which is triggered by incoming data and
signals, operates on the input data, and produces some output data and signals. The
behavior of an EU is atomic with respect to its environment. Specifically:

"* All resources needed by an elemental unit are assumed to be required for the entire
length of its execution.

"* The interaction of an EU with other entities of the system occurs either before it starts
executing or after it finishes execution.

iv

In order to define complex executions, the EUs may be composed together and properties
specified on the composition. Elemental units are composed *by connecting an output port
of an EU with an input port of another EU. A valid connection requires that the input and
output of port types are compatible, i.e., they carry the same message type. Such a
connection marks a one-way flow of data or control, depending on the nature of the ports.
A composition of EUs can be viewed as a directed acycli graph, called an elemental unit
graph (EUG), in which the nodes are the EUs, and the edges are the connections between
EUs. An incompletely specified EUG in which all input and output ports are not connected
is termed as a partial EUG (PEUG). A partial EUG may be viewed as a higher level EU.
In a complete EUG, all input and output ports are connected and there are no cycles in the
graph. The acyclic requirements come from the required time determinacy of execution. A
program with unbounded cycles or recursions may not have a temporally determinate
execution time. Bounded cycles in an EUG are converted into a acyclic graph by loop
unrolling.

Program modules are independently compiled. In addition to the generation of the object
code, compilation also results in the creation of partial EUGs for the modules, i.e., for the
services and entries in the module, as well as the extraction of resource requirements such
as stack sizes or threads, memory requirements, and the logical resource requirements.

Given an application specification in the Maruti Configuration Language and the component
application modules, the integration tools are responsible for creating a complete application
program and extracting out the resource and timing information for scheduling and
resource allocation. The input of the integration process are the program modules, the
partial EUGs corresponding to the modules, the application configuration specification, and
the hardware specifications. The outputs of the integration process are: a specification for
the loader for creating tasks, populating their address space, creating the threads and
channels, and initializing the task; loadable executables of the program; and the complete
application EUG along with the resource description for the resource allocation and the
scheduling subsystem.

After the application program has been analyzed and its resource requirements and
execution constraints identified, it can be allocated and scheduled for a runtime system.

We consider the static allocation and scheduling in which a task is the finest granularity
object of allocation and an EU instance is the unit of scheduling. In order to make the
execution of instances satisfy the specification and meet the timing constraints, we consider
a scheduling frame whose length is the least common multiple of all tasks' periods. As
long as one instance of each EU is scheduled in each period within the scheduling frame
and these executions meet the timing constraints, a feasible schedule is obtained.

Maruti Runtime System:

The runtime system provides the conventional functionality of an operating system in a
manner that supports the timely dispatching of jobs. There are two major components of
the runtime system - the Maruti core, which is the operating system code that implements
scheduling, message passing, process control, thread control, and low level hardware
control. and the runtine dispatcher. which performs resource allocation and schedulin2 or
dynamic arrivals.

V

The core of the Maruti hard real-time runtime system consists of three data structures:

"* The calendars are created and loaded by the dispatcher. Kernel memory is reserved for
each calendar at the time it is created. Several system calls serve to create, delete,
modify, activate, and deactivate calendars.

" The results table holds timing and status results for the execution of each elemental
unit; The maruticalandarresults system call reports these results back up to the user
level, usually the dispatcher. The dispatcher can then keep statistics or write a trace
file.

"* The pending activation table holds all outstanding calendar activation and deactivation
requests. Since the requests can come from before the switch time, the kernel must
track the requests and execute them at the correct time in the correct order.

The Maruti design includes the concept of scenarios, implemented at runtime as sets of
alternative calendars that can be switched quickly to handle an emergency or a change in
operating mode. These calendars are pre-scheduled and able to begin execution without
having to invoke any user-level machinery. The dispatcher loads the initial scenarios
specified by the application and activates one of them to begin normal execution.

vi

Optimal Replication of Series-Parallel Graphs for
Computation-Intensive Applications*

Sheng-Tzong Cheng
Ashok K. Agrawala

Institute for Advanced Computer Studies
Systems Design and Analysis Group

Department of Computer Science
University of Maryland, College Park, MD 20742

{stcheng,agrawala}@cs.umd.edu

"This work is supported in paxt by Boneywe.a under NO0014-91-C-0195 and Army/Phillips under DASG-60-92-
C-0055. The views, opinions, and/or findings contaimed in this report are those of the authoi(s) and should mot be
interpreted as representing the official policies, either expressed or implied, of Boneywel. or Army/Phillips.

1 d

Optimal Replication of SP Graphs for Computation-Intensive Applications

Prof. Ashok K. Agrawala

Department of Computer Science

University of Maryland at College Park

A.V. Williams Building

College Park, Maryland 20742

(Tel): (301) 405-2525

Abstract

We consider the replication problem of series-parallel (SP) task graphs where each task may

run on more than one processor. The objective of the problem is to rinimi e the total cost

of task execution and interprocessor communication. We call it, the minimum cost replication

problem for SP graphs (MCRP-SP). In this paper, we adopt a new communication mode] where

the purpose of replication is to reduce the total cost. The class of applications we consider

is computation-intensive applications in which the execution cost of a task is greater than

its communication cost. The complexity of MCR.P-SP for such applications is proved to be

NP-complete. We present a branch-and-bound method to find an optimal solution as well as

an approximation approach for suboptimal solution. The numerical results show that such

replication may lead to a lower cost than the optimal assignment problem (in which each task

is assigned to only one processor) does. The proposed optimal solution has the complexity of

0(n'22'M). while the approximation solution has O(n4M2), where n is the number of processors

in the system and M is the number of tasks in the graph.

2

1 Introduction

Distributed computer systems have often resulted in improved reliability, flexibility, throughput,

fault tolerance and resource sharing. In order to use the processors available in a distributed

system, the tasks have to be allocated to the processors. The allocation problem is one of the

basic problems of distributed computing whose solution has a fax reaching impact on the usability

and efficiency of a distributed system. Clearly, the tasks of an application have to be executed

satisfying the precedence and other synchronization constraints among them. (Such constraints are

often specified in the form of a task graph.)

In executing an application, defined by its task graph, we have the option of restricting ourselves

to having only one copy of each task. The allocation problem, in this case, is referred to as

assignment problem. If, on the other hand, a task may be replicated multiple times, the general

problem is called the replication problem. In this paper, we consider the replication problem and

present an algorithm to find the optimal replication of series-parallel graphs for computation-

intensive applications.

For distributed processing applications, the objective of the allocation problem may be the

minimum completion time, processor load balancing, or total cost of execution and communication,

etc. For the assignment problem where the objective is to minimize the total cost of execution and

interprocessor communication, Stone [11] and Towsley [12] presented O(n 3 M) algorithms for tree-

structure and series-parallel graphs, respectively, of M tasks and n processors. For general task

graphs, the assignment problem has been proven [9] to be NP-complete. Many papers [8][9][10]

presented brancb-and-bound methods which yielded an optimal result. Other heuristic methods

have been considered by Lo [7] and Price and Krishnaprasad [5]. All these works focused on the

assignment problem.

Traditionally, the main purpose of replicating a task on multiple processors is to increase the

degree of fault tolerance [2][6]. If some processors in the distributed system fail, the application may

still survive using other copies. In such a communication model, a task has to communicate with

multiple copies of other tasks. As a consequence, the total cost of execution and communication

of the replication problem will be bigger than that of the assignment problem. In this paper, we

adopt another communication model in which the replication of a task is not for the sake of fault

tolerance but for decreasing of the total cost. In our model, each task may have more than one copy

3

!

and it may start its execution after receiving necessary data from one copy of each preceding task.

Clea•rly. in a heterogeneous environ=ent the cost of execution of a task depends on the processor on

which it executes, and the communication costs depend on the topology, communication medium,

protocols used, etc. When a task I is allowed to have only one copy in the system, the sum

of the interprocessor communication costs between t and other tasks may be large. Sometimes

it will be more beneficial if we replicate l onto multiple processors to reduce the inter-processor

communication, and to fully utilize the available processors in the systems. Such replication may

lead to a lower total cost than the optimal assignment problem does. An example illustrating this

point is presented in Section 3.

In the assignment problem, polynomial-time algorithms exist for special cases, such as tree-

structure [11] and series-parallel [12] task graphs. This paper represents one of the first few attempts

at finding special cases for the replication problem. The class of applications we consider in this

paper is computation-intensive applications in which the execution cost of a task is greater than its

communication cost. Such applications can be found in an enormous number of fields, such as digital

signal processing, weather forecasting, game searching, etc. We formally define a computation-

intensive application in Section 2.2. In this paper, we prove that for the computation-intensive

applications. the replication problem is NP-complete, and we present a branch-and-bound algorithm

to solve it. The worst-case complex-ty of the solution is O(n 22TM). Note that the algorithm is

able to solve the problem in the complexity of the linear function of M.

We also develop an approximation approach to solve the problem in polynomial time. Given a

forker task s with K successors in the SP graph, the method tries to allocate s to processors based

on iterative selection. The complexity of the iterative selection for a forker is O(n 2 K 2), while the

overall solution for an SP -graph is 0(n 4M 2). *1

In the remainder of this paper, the series-parallel graph model and the computation model are

described in section 2. In section 3, the replication problem is formulated as the minimum cost

0-1 integer programming problem and the proof of NP completeness is given. A branch-and-bound

aýgorithm and numerical results are given in section 4, while the approximation methods and results

are given in section 5. The overall algorithm is presented and conclusion remark is drawn in section

6.

4

2 Definitions

2.1 Graph Model

A series-parallel (SP) graph, G = (V, E), is a directed graph of type p, where p E IT,,,,t, Tcin,

Tod, T,) and G has a source node (of indegree 0) and a sink node (of outdegree 0). An SP graph

can be constructed by applying the following rules recursively.

1. A graph G = (V,E) ({v}, 0) is an SP graph of type T=,,t. (Node v is the source and the

sink of G.)

2. If G1 = (VI,Fq) and G2 = (V2,F2) are SP graphs then G' = (V', E') is an SP graph of type

Th,, where V' = V1 U V2 and E' = EI u E2 u {<sink of G1, source of G2 >}.

3. If each graph Gi = (V.,Ej) with source-sink pair (si,ti), where si is of outdegree 1, is an SP

graph, V i = 1,2,... ,n, and new nodes s' 0 I' and t' f V1, V i are given then G' = (V', E') is

an SP graph of type T.,d(or type To), where V' = V U V2 u... U V,,•U •s', t) and E' = E-

U E2 U ... U E,, U {< s',si > I V i = 1,2,...,n } U {< ti,f > I V i = 1,2,...,n }. The source

of C', s', is called the forker of G'. The sink of G', t', is called the joiner of G'. C' is an SP

graph of type T,,d(or type To.) if there exists a parallel-and (or parallel-or) relation among

Gi's.

A convenient way of representing the structure of an SP graph is via a parsing tree [4]. The

transformation of an SP graph to a parsing tree can be done in a recursive way. There are four
kinds of internal nodes in a parsing tree: T,,,i,, T.i,., T... and T., nodes. A T,,,., node has only

one child, while a Ti,, node has more than one child. Every internal node z, along with all its

descendant nodes induces a subtree S. which describes an SP subgraph G, of G. Each leaf node

in S. corresponds to an SP graph of type %,it- A T.,•(or T0,) node y consists of its type T.,,d(or

T,) along with the forker and joiner nodes of GO. We give an example of an SP graph G, and its

parsing tree T(G) in Figure 1.

5

U

2.2 Computational Model

AAn application program consists of M tasks labeled m = 1. 2, ... , M. Its behavior is represented
by an SP graph with the tasks correspond to the nodes. Each task may be replicated onto more
than one processor. A task instance ti,,, is a replication of task i on processor p. A directed edge < i,

j > between nodes i and j exists if the execution of task j follows that of task i. Associated with
each edge < i, j > is the communication cost incurred by the application. We axe concerned with

types of applications where the cost of execution of a task is always greater than the communication
overhead it needs. The model is stated as follows.

Given a distributed system S with n processors connected by a communication network, an
application is computation-intensive if its associated SP graph C = (V, E) on S satisfies the

following conditions:

1. .'Ai(pq) > 0,

2. F= #jj(p q) < minp(eip). V < i,j >E E, and 1 < p < n, where

* p.d(p, q) is the communication cost between tasks i and j when they are assigned to processors

p and q respectively, and

"* ei,, is the execution cost when task i is assigned to processor p.

The first condition states that the communication cost between any two task instances (e.g.
ti,, and tj,,) is not negative. The second one depicts that for every edge < i,j >, the worst-case

communication cost between any task instance ti,, and all its successor task instances (i.e. tj,,•s, V

q) is less than the minimum execution cost of task i.

2.3 Communication Model

The communication model we considered is different from that of reliability-oriented replication.
In reliabilir'-oriented replication problem, the objective is to increase the degree of fault tolerance.
"To detect fault and maintain data consistency, each task has to receive multiple copies of data from
several task instances if its predecessor is replicated in more than one place.

6

The purpose of the replication problem considered in this paper is to decrease the sum of

execution and communication costs. Under such consideration, there is no need to enforce plural

communication between any two task instances. Hence, we propose the 1-out-of-n communication

model. In the model, for each edge < i, j > E E, a task instance ti,, may start its execution if it

receives the data from any one task instance of its predecessor, task i.

3 Problem Formulation and Complexity

Based on the computational model presented in Section 2.2, the problem of minimizing the total

sum of execution and communication costs for an SP task graph can be approached by replication

of tasks. An example where the replication may lead to a lower sum of execution costs and

communication costs is given in Figure 2, where the number of processors in the system is two, and

the execution costs and comrnunication costs are listed in e table and p table respectively. If each

task is allowed to run on at most one processor, then the optimal allocation will be to assign task

a to processor 1, b to 1, c to 1, d to 2, e to 2, and f to 1. The minimum cost is 68. However, if

each task is allowed to be replicated more than one copies, (i.e. to replicate task a to processors I

and 2), then the cost is 67.

We introduce integer variable X,'s, V 1 S i < M and 1 5 p S nz, to formulate the problem

where eac Xj,,, = 2 if task i is replicated on processor p; and = 0, otherwise. We define a binary

function 6(z). If x > 0 then 6(z) = I else 6(z) = 0. We also associate an allocated flag F(w) with

each node wo in the parsing tree, where F(w) I if the allocation for tasks in the subtree S• is

-al3d; and = 0, otherwise. A valid allocation for the tasks in S,, is an allocation that follows the

semantics of Thi•,, T.,,, and T, subgraphs. A valid allocation is not necessarily the allocation in

which each task in S, is allocated to at least one processor. Some tasks in T, subgraphs may be

neglected without effecting the successful execution of an SP graph.

Given an SP graph G, its parsing tree T(G) and any internal node w in T(G), allocated fag

F(w) can be recursively computed:

7|

1. if w is a Ti, node with a child i, then

71

F(w) = F(i) = 6(ZX1 ,o)

2. if w is a TcAi, node with c children, F(w) = F(childi) x F(child2) x .. x F(child,).

3. if w. is a T.,,0 node with forker s, joiner I and c children, then F(w) = F(s) x F(t) x F(childl)

x F(child2) x ... x F(child,).

4. if w is a To, node with forker s, joiner t and c children, then F(w) = F(s) x F(t) x 6(F(childi)

+ F(chiid 2) + ... + F(child,)).

The minimum cost replication problem for SP graphs, MCRP-SP, can be formulated as 0-1
integer programming problem, i.e:

Z = Minimize [EXj e4,+ min (ij(p, q) * Xj,)
i.P <ij>EE, 2<9<n"X/'P=1

subject to F(r) = 1, where r is the root of T(G) and Xi, = 0 or 1,Vi,p. (1)

The restricted problem which allows each task to ran on at most one processor has the following

formulation.

Z = Minimize IF.x1•, e,', + A. i * X,.,* Xj.q
i'P <ij>EE~P,q

subject to • Xi,p < 1 and F(r) = 1,

where r is the root of T(G) and Xi, = 0 or 1,Vi, p. (2)

The task assignment problem (2) for SP graphs of M tasks onto n processors, has been solved

in O(n 3M) time [12]. However,the multiprocessor task assignment for genera] types of task graphs

without replication has been reported to be NP-complete 19]. As for the MCRP-SP problem, it

can be shown to be NP-complete. In this paper, we are able to solve the problem and present a

linear-time algorithm that is linear in the number of tasks when the number of processors is fixed

for computation-intensive applications.

8

3.1 Assignment Graph

Bokhari I1l introduced the assignment graph to solve the task assignment problem (2). To prove

the NP completeness of problem (1) and solve the problem, we also adopt the concept of the

assignment graph of an SP graph. The assignment graph of an SP graph can be defined similarly.

The following definitions apply to the assignment graph. And we draw up an assignment graph for

an SP graph in Figure 3.

1. It is a directed graph with weighted nodes and edges.

2. It has M x n nodes. Each weighted node is labeled with a task instance, ti,,.

3. A layer i is the collection of n weighted nodes (ti,j, ti, 2, ... , and t,,,). Each layer of the

graph corresponds to a node in the SP graph. The layer corresponding to the source (sink)

is called source (sink) layer.

4. A part of the assignment graph corresponds to an SP subgraph of type Thi,,, T, or To,. is
called a Ti,•, T.,d or T, limb respectively.

5. Communication costs are accounted for by giving the weight pj(p, q) to the edge going from

tj'P to tj.q.

6. Execution costs are assigned to the corresponding weighted nodes.

Given an assignment graph, Bokhar! 11] solves Problem (2) by selecting one weighted node

from each laver and including the weighted edges between any two selected nodes. This resulting

subgraph is called am allocation graph. To solve Problem (1), more than one weighted node from

each layer may be chosen. Similarly, a replication graph for Problem (1) can be constructed from

an assignment graph by including all selected nodes and edges between these nodes. Examples of
an allocation graph and a replication graph are shown in Figure 4 for an assignment graph shown

in Figure 3. Note that for each node : in the replication graph there is only one edge incident to

it from each predecessor layer of z.

In a replication graph, each layer may have more than one selected node. Let Variable .T1

= (X1, 1, X 1,2 , ... , Xl,,,) be a replication vector for layer I in a replication graph. We define the

9

N

minimum activation cost of vector X, for layer i , Ai(X 1), to be the minimum sum of the weights

of all possible nodes and edges leading to the selected nodes of layer i in a replication graph.

Then the goal of Problem (1) can be achieved by computing the minimal value of jAji(XA,,) +

P=I X•,p * esji,p) over all possible values of X~i.

I
3.2 Complexity

in this section, we can show that Problem (1) for a computation-intensive application is NP-

complete provided we prove the following:

Lemma 1: For any layer 1 in the replication graph, the minimum activation cost for two selected

nodes tz,• and ti,q will be always greater than that for either node t1• or I,, only'.

Proof: The Lemma can be proven by contradiction. Let A1 be the the minimum activation cost for

two nodes 11,, and tj,9 , and A2 and A3 be the minimum costs for it,p and tl,, respectively. Assume

that A, < A2 and A, < A3 . Since A, includes the activation cost of node tl,,, an activation cost

for t,,,• only can be obtained from A,. The obtained value c is not necessarily the minimum value

for tj,p hence A2 < c. The value c is obtained by removing some weighted nodes and edges from

replication gaph. This implies that c < A,. From above, we find that A2 < Al , which contradicts

the assumption. The same reasoning cam be applied to A3 and reaches a contradiction. Therefore,

the assumptions are incorrect and Lemma 1 holds.

Lemrma I can be further extended to the cases where more than two weighted nodes are chosen.

The conclusion we can draw is that the more nodes are selected from a layer, the bigger the 3
activation cost is.

Lemma 2: Given a computation-intensive application with its SP task graph G = (V, E) and its

assignment graph, if node i has outdegree one and edge < ij > E E, then for any vector tX, the

minimal activation cost Ai (.Xi) cam be obtained by choosing only one weighted node from layer i.

(i.e. F = 1)

Proof: The Lemma can be proven by contradiction. Since node i has outdegree one and edge

10 I

< + Z) Xi,, e1,,, + n~dmm (X,,q *, jj(p, q)) = m.,,• e 9=2 •X9 =I

The result, m' < m, contradicts ouT assumption. It means that the assumption is wrong and

Lemma 2 holds.

0

Lemma 3: Given a computation-intensive application with its SP task graph G, the objective of

the minimum cost can be achieved by considering only the replication of the forkers.

Proof: We proceed to prove the lemma by contradiction. Let the minimum cost for task replication

problem be zo if only the forkers(i.e. outdegree > 1) are allowed to run on more than one processor.

Assume the total cost can be reduced further by replicating some task i which is not a forker. Then
there are two possible cases for i:

1. i has outde,ree 0.

2. i bas ou:de'ree 1.

In case i. i is the sink of the whole graph. Also i may be the joiner of some SP subgrkphs. If i is
allowed to run on an extra processor b, which is difierent from the one which i is initially assigned

tLo (when z0 is obtained), then the new cost will be ao + ei.b + _<,d,i>E Fdk. Apparently, the new

cos: is greate. than zo. This contradicts our assu~mption that the total cost can be reduced further

by replicating task i.

IM case 2, i has one successor. Let < Qj > E E. From the assumption, we know that the
repbication of 2 can reduce the total cost. Hence, the minimum activation cost for task instances

in layer j, Ai(X'), is obtained when task i is replicated onto more than one processor. This

contradicts Lemma 2. Hence, the assumption is incorrect and the objective of the minimum cost

can be achieved by considering only the replication of the forkers.

0

Lemma 3 tells that, given an SP graph, if we can find out the optimal replication for the forkers,

Problem (1) for computation-intensive applications can be solved. Now, we show that the problem

11

U

< i,j > E E, we know that

.4(X) mn{~(~)+ e , + M .in (Xj' A i~j(p,qg))).p = 1 9= 1 " i° • .

Let us assume that the above equation reaches a minimal value m when more than one node

from laver i is selected and the optimal replication vector is Xfo. Since E_.=, Xi, > 1 for ko, we

may remove one selected node from layer i and obtain a new vector X'. Without loss of generality,

let us remove %i,,. By removing node ti., a new value m' is obtained. Since m is the minimum

value for layer i, it implies that m < in'.

From Lemma 1, we obtain that Aj(Xj') < Ai(go). And for a computation-intensive application,

the following holds that = pij(p, q) < minp(ej.,), V 1 _< p < n. Then,

< •(&o+ ExL,• •o ÷E min /li., - (p,•)

=-d~ 4 ,, e,,., + [m (X ,•(p, q))- .

+t x I 2'1'

< A•(.X?) + X * ex , 4 m (X,, +Xri p.j(p, q))

-= X".=2

< -(+ (+' Z min,,+

121

='P A('=,; Xjfy q)))p, q))
P=1 q := l

< Ai(X1
0) +~ Ej X90 + [min (Xi,9 * pj(p)) -mn(ei,)

P=1 ~ ~ y 1' =1X =

SAj(.9) + * eiJ, + mZ in(X i~,q) s~~,q

P=2 q=2 '=D

n

,p1

12

< A;(Xo)+ EX ,9 e, + E min (X ij(p. = M.lV=1 q=1 I.aDP

-The result, 7n' < m, contradicts our assumption. It means that the assumption is wrong and

Lemma 2 holds.

0

Lemma 3: Given a computation-intensive application with its SP task graph G, the objective of

the minimum cost can be achieved by considering only the replication of the forkers.

Proof: We proceed to prove the lemma by contradiction. Let the minimum cost for task replication

problem be z0 if only the forkers(i.e. outdegree > 1) are allowed to run on more than one processor.

Assume the total cost can be reduced further by replicating some task i which is not a forker. Then

there are two possible cases for i:

1. i has outdegree C.

2. i has outdegree 1.

In case 1. i is the sink of the whole graph. Also i may be the joiner of some SP subgraphs. If i is

allowed to run on an extra processor b, which is different from the one which i is initially assigned

to (when z0 is obtained), then the new cost will be zo + ei. + Z< ',;>Er,a. Apparently, the new

cost is greater than zo. This contradicts our assumption that the total cost can be reduced further

by replicating task i.

In case 2. i has one successor. Let < i,j > E E. From the assumption, we know that the

replication of i can reduce the total cost. 'Hence, the minimum activation cost for task instances

in laver j, A(Xfj), is obtained when task i is replicated onto more than one processor. This

contradicts Lemma 2. Hence, the assumption is incorrect and the objective of the minimum cost

can be achieved by considering only the replication of the forkers.

0

Lemma 3 tells that, given an SP graph, if we can find out the optimal replication for the forkers,

Problem (1) for computation-intensive applications can be solved. Now, we show that the problem

13

of finding an optima] replication for the forkers in an SP graph is NP-complete. First, a special

form of the replication problem is introduced.

Uni-Cost Task Replication (UCTR) problem is stated as follows:

INSTAN CE: Graph G' = (V',E'), V' = V(U V2, where I V2' I =n and I V2'= -. If x E Vi' and

y E V2' then edge < =,y > E E' (i.e. I E' I = m x n). For each z E Vj', there is an activation cost

m. Associated with each edge < x,y > E E', there is a communication cost d_., = n x mn or 0. A j
positive integer K :5 n x m is also given.

QUESTION: Is there a feasible subset Vk C V,' such that, we have

E m +Zm =in(d.,,)) <K? (3)
XEVA ,evF C EV2, -

[Theorem 1]: Uni-Cost Task Replication problem is NP-Complete.

[Proofj: The problem is in NP because a subset Vk, if it exists, can be checked to see if the sum

of activation costs and communication costs is less than or equal to K. We shall now transform

the VrERTEX COVER [3) problem to this problem. Given any graph G = (V,E) and an integer C

_5 1 V 1, we shaDl construct a new graph T' = (V',E') and V' = 17' U V2, such that there exists a

VERTEX COVER of size C or less in G if and only if there is a feasible subset of V, in G'. Let

I V I = n and I E£ = 7n. To const,-ct C', (1) we create a vertex ri for each node in V, (2) we

number the edges in £. and (3) we create a vertex b. for each edge < u,v > E E where u, v E V.

We define K = m x C, {V,' = f , v-, ... , n)•,, V = f{bI b2 , ... ,m,,) and E' = f{< %:.b, > Itv E

V3', b E W2). Let eb = 0, if t; is an end point of the corresponding edge of vertex b,; and =

n x m, otherwise. An illustration, where n = 7 and m = 9, is shown in Figure 5.

Let us now argue that there exists a vertex cover of size C or less in C if and only if there is

a feasible subset of V•' im C' to satisfy that the sum of activation cost and communication cost is

7n x C or less. Suppose there is a vertex cover of size C, then for Pach vertex b. (= < u,v >) in V',

at least one of v and v belongs to the vertex cover. By selecting a]] the vertices in the vertex cover

into the subset of I', we know that the sum in Eq. (3) will be m x C. Since C _< n, it implies that

m x C < n x m.

Conversely, for any feasible subset Vk _ V,' such that the total cost is equal to or less than

14

mC, we can see that the second term of Eq. (3) (i.e. the sum of communication cost) must be

zero. Suppose, for some gy E V2, the minimum communication cost between gy and vertices in V'

is nonzero, then the communication cost will be at least m x n. Since C < n, it implies that m x n

> mx C. The total cost in Eq. (3) will be greater than m x C, which is a contratiction. Thus the

minimum communication cost between any vertex in V2 and any vertex in Vk is zero. It means that

at least one of two end points of each edge in E belongs to Vk. Since, there is at most C vertices in

* - V, (the activation cost for each vertex is mn), and by selecting the vertices in Vk, we obtain a vertex

cover of size C or less in G.

0

[Theorem 2): The problem, MCR.P-SP for computation-intensive applications, is NP-complete.

[Proofj: From Lemma 3, we know that only the forker in an SP graph of type T.r• needs to run on

more than one processor. Consider the following recognition version of Problem (1) for SP graphs

of type T.•:

Given a distributed system of n processors, an SP graph G' = (V8 E£) of type T,,d, its

assignment graph H and two positive integers m and r. Let r be a multiple of m, V" - {is t,

1.2,...,r} and .E' = {< s,i > I i = 1.2,...,r) u {< i,t > I i = 1,2,...r}. Task s (t) is the forker

(joiner) of G'". Execution cost eim and commrnzication cost/zij(p, q) are defined in H, V < ij >

E E' and V I < p,q <5 n. Integer variable Xi,, = I if task i is assigned to processor p; and = 0,

otherwise. When a positive integer E < r is given, is there an assignment of Xp',s, such that

i X ei,,, + min ((pq) * X <,q)) K?
"ip <'iJ>eZ,27<

where Z Xir = 1, Vi#s, and EXi,, ? 1, ifi=s. (4)
it, it,

We shall transform the UCTR problem to this problem. Given any graph G' = (V2' U V2,E')

considered in TUCTR problem, we construct an SP graph of type T.,,, G' = (V*..E), and its

assignment graph E, such that G' has a feasible subset of V2' to allow the sum in Eq. (3) is K or

less if and only if there is an assignment of Xip's for G° and Ef to satisfy Eq. (4). Let V1' n,= ,

15

17'- rm, then the unit cost f = n x m. Assign r = mx f (= n x m2) and K= nxm. The

forker and joiner of G* are s and t respectively. Then V* = {s, t,1,2,...,r) and £* = {< s,i > I i

= 1,2,...,r) u {< i,f > I i = 1,2,...,r). We assign the execution costs and communication costs in

H as follows. Am illustration, where rn = 2 and n = 3, is shown in Figure 7.

"* V 1 S p < n, e,.c : m.

"* V I <i< r, V I p < n, ifp= 1 then ei, =0 else ei,= r.

"* V I < p _ n, ifp= I then et 0 else et,: r.

* V I _< i < r, V 1 .. p < n, let q (i - 1) div (m x n), where div is the integral division. If

d , 1# 0 then y.,i (p, 1) = I else/A,,;(p, 1) = 0.

•V 1 <5 i < r, V 1 <5 p < n, Vq # ,•,i(p, q) :O

* VI _ i < r, Vi 1 p,<q ,:5 n, Ps,(p,q) = 0.

It is easy to verity that the SP graph constructed by the the above rules is of type T8 • and

computation-intensive. For each node in V2 of G', we create f nodes in G', where the comnmunica-

tion cost between each node and source s is either one or zero.

Let us now argue that there e.ists a feasible subset of V,' for UCTR problem if and only if there

exists a. valid assignament of X,,'s such that the total sim in ,q. (4) is K or less. Suppose a feasible

subset Vi of V" exists such that the sum in Eq. (3) is C (< K). Let V"' be {ft,v....v,) Then we

can obtain a valid assignment by letting X i., = 1, Xi.2 = 0, ... , . = 0, V 1 < i < r, and X:.J

1, X:2 = 0, ... , X:.,, = 0, and X,,, = 1, if v p 1E/; and X,.;= O, if v,, ý Vk, V ,1 5 _p n. Since

each node . in V2 corresponds to f nodes in C', it is sure that the communication cost between

node T and any node (u.) in V,' is equal to the total communication costs between these f nodes

and amy task instance of source (1,,p) in G". By summing up all the costs, we can obtain that the

total sum is C. Since C <: K < n x m < r, this is a valid assignment.

Conversely, if there ex-ists an assignment of Xip's such that the sum in Eq. (4) is K or less,

then the following must be true that Xi., = 1, Xi,2 = 0, ... Xi, = 0, V 1 :5 i 5 r, and X.., = ,

X:.2 = 0, ... , X,.,, = 0. It is because for some p 1 1, if Xi,, = I then the srm must be greater than

16

I

r, which causes a conflict. Hence the second ter= in Eq. (4) must be zero. Thus, we may obtain a

subset of V2 for UCTR problem by selecting node x E V, if X, equals 1. Since the first term in

Eq. (3) is equivalent to the first term in Eq. (4), the total sum for UCTR problem will be also K

or less then.

0

4 Optimal Replication for SP Graphs of Type T0 nd

In this section, we develop the branch-and-bound algorithm to find am optimal solution for T8,j

subgraphs. The non-forker nodes only need to run on one processor. Hence, an optimal assignment

of non-forker nodes can be done after am optimal replication for forkers is obtained.

4.1 A Branch-and-Bound Method for Optimal Replication

Consider a T. SP graph with forker-joiner pair (s,h) shown in Figure 6. There are B subgraphs

connected by s and A. These B subgraphs have a parallel-and relationship. Since the joiner h has

only one copy in optimal solution (i.e. E_=, .h, = 1), we decompose the minimum cost rep.ication

problem 7 for a T. SP graph into n subproblems P9, q = 1, 2, ... , n, where P; is to find the

minimum cost when the joiner is assigned to processor q (i.e. Xi,,, = I).
Given a joiner instance i,, subgrazphs Gb's, b = 1, 2. ... , B, and the minimum costs Cb ,s

between each forker instance t,, and joiner instance %i,, , I < p :5 n and I < b < B. we fixther

decompose problem P7 into n subproblems rk, k = 1, 2,..., n, where k is the number of replicated

copies that the forker s has. Basically; P.9 means the problem of finding an optimal replication for

k copies of forker s where the joine: h is assigned to processor q. Since the problem of finding an

optimal replication for forler s is NP-complete, we propose a branch-and-bound algorithm for each

subproblem Pk.

We sort the forker instances according to their execution costs e,, 's into non-decreasing order.

Without loss of generality, we assume e,, _ e: , 2_ ... _ < •.We represent all the possible

combinations that s may be replicated by a combination tree with (") leaf nodes. To make the

solution efficient, we shall not consider all combinations since it is time-consuming. We apply a

17

least-cost brancb-and-bound algorith.n to find an optima] solution by traversing a small portion of

the combination tree.

During the search, we maintain a variable i to record the minimum value known so far. The

search is done by the expansion of intermediate nodes. Each intermediate node v at level y repre-

sents a combination of y out of n forker instances. The expansion of node v generates at most n -

child nodes, while each child node inherits y forker instances from v and adds one distinct forker

instance to itself. For example, if node V is represented by -< i i,,2, .. , 1,134 >-, where il < i2

< ... < i., then -< ,t:i2 , Ia,i2, 1..-, s,.iy, toi,+j >- represents a possible child node of v, V 1 5 j <

n- i,. A combination tree, where k = 4 and n = 6, is shown in Figure S. At any intermediate node

of a combination tree, we apply an estimation function to compute the least cost this node can

achieve. If the estimated cost is greater than i, then we prune the node and the further expansion

of the node is not necessary. Otherwise, we insert this node along with its estimated cost into a

queue. The nodes in the queue are sorted into non-decreasing order of their estimated costs, where

the first node of the queue is always the next one to be expanded. When the expansion reaches

a leaf node, the actual cost of this leaf is computed. If the cost is less than i, we update I. The

algorithm terminates when the queue is empty.

4.1.1 The Estimation Function

The proposed branch-and-bound algorithm is characterized by the estimation function. Let node v

be at level y of the combination tree associated with subproblem P' and be represented by -< %,, I

13i, I..., I.i >-, Where i2 < i2 < < i.. Any leaf node that can be reached from node v needs

k - y more forkei instances. Let I - -< j2, ., ... , _ >- be a tuple of k - y instances chosen from

the remaining n - i, instances, where j, < j 2 < ... < jk-_. Let L be the set of all possible Vs. Let

9(v) be the smallest cost among all leaf nodes that can be reached from node v.

VB
= e.* + min[Z e1j + E =in (C,,)I + CA,

=8EL O

181

Since the complexity involved in computing g(v) is we use the following estimation function

esf(v) to approximate g(v):

e~st(V) = ej 0 + C ej + E mi b2~(t, A, 5
0 .=1 j=iy 4-1 b . --- 2 P i ,2 ,--,Y'i+I '+2 (C-.)-+n(5)

Since
i,+k-y B B

C~j ~j.,and mai i C
2= (CP, 9) Prz P19 Ct)--IF+ p'-= .i -...... b-- pI

it is easy to see that est(v) _< g(v). Hence, we use est(v) as the lower bound of the objective

function at node v.

4.1.2 The Proposed Algorithm

ThTee parameters of the branch-and-bound algorithm are joiner instance (ti,,), the number of

processors that forker s is allowed to run (k), and the up-to-date minimum cost (z). The algorithm

BB(k, q, f) is shown in Table 1.

The M CRP-SP problem can be solved by invoking BB(k, q, 1) n2 times with parameters set to

different values. BB(k, q. i) solves the problem ?k, while the whole procedure, shown in Table 2,

solves P.

4.2 Performance Evaluation

The essence of the branch-a.d-bound algorithm is the expansion of the intermediate nodes. Upon

the remova) of a node from the queue its children are generated and their estimated values are

computed. If the estimation function performs well and gives a tight lower bound of objective

function, the number of expanded nodes should be small. Then an optimal solution can be found

out as soon as possible.

We conduct two sets of experiments to evaluate the performance of the proposed solution. The

performance indices we consider are the number of enqueued intermediate modes (EIM) and the

number of visited leaf nodes (VLF) during the search. We calculate EIM and VLF by inserting one

19

U

counter for each index at lines 13 and 8 of Table 1 respectivel3y Each time the execution reaches

line 13 (8), EIM (VLF) is incremented by 1.

The first set of experiments is on SP graphs of type T.,a where the communication cost between
any two task instances is axbitrary and is generated by random number generator within the range

[1,50). The execution cost for each task instance is also randomly generated within the same range.

The second set of experiments is on SP graphs of type T.,0 with the constrain of computation- I
intensive applications. We vary the size of the problem by assigning different values to the number

of processors in the system (n) and the number of parallel-and subgraphs connected by forker and

joiner (B). For each size of the problem (n, B), we randomly generate 50 problem instances and

solve them. The results, including the average values of EIM and NrLF over the solutions of 50

problem instances, are summarized in Table 3.

From Table 3, we find out that the proposed method significantly reduces the number of ex-

pansions for intermediate nodes and leaf nodes. For example, for problem size (n, B) = (20, 40),

the totalnumber of leaf nodes is 221 (= 1,048,576) if an exhaustive search is applied. However,

our algorith. only generates 16,857 nodes on the average, because we apply est(v), i, and the

branch-and-bound approach.

The branch-and-bound approach and the estimation function even perform better for the
computation-intensive applications. We can see that EIM and "7LF values are much more smaller

in Set fl than those in Set I. it is because that in the computation-intensive applications an optimal

number of replications for the forker is smaller than that in genera] applications. The i value in

function OPT() is able to reflect this fact and avoid the unnecessary expansions.

5 Sub-Optimal Replication for SP Graphs of Type T0 ,d

The branch-and-bound algorithm in section 4.1 yields an optima] solution for T.,,, subgraphs.

However, the complex6ty involved is in exponential time in the worst case. Hence, we also consider

to find a near-optimal solution in polynomial time.

20

I I

5.1 Approximation Method

For the problem Pk defined in section 4.1, we exploit am approximation appToach to solve it in

polynomial time. The approach is based on iterative selection in a dynamic programming fashion.

Given a joiner instance t i,, and subgraphs Gb, b = 1, 2, ... , B, and minimum costs C,"b between

th.q and p = 1, 2, ... , n, and b = 1, 2, ... , B. we define Sub(p,b) to be the sub-optimal

solution for replication of forker s where forker instances 4,,2, i,, , ... , t,, and subgraphs GC, G2,

Gb are taken into consideration.

Strategy 1:

Sub(p, b) can be obtained from Sub(p - 1, b) by considering one more forkeT instance t.,,,. Strategy

1 consists of two steps. The first step is to initialize Sub(p, b) to be Sub(y - 1, b) and to determine

if Z,,, is to be included into Sub(p, b) or not. If yes, then add t,,, in. The second step is to exam.ine

if any instances in Sub(p - 1, b) should be removed or not. Due to the possible inclusion of .,,p in

the first step, we may obtain a lower cost if we remove some instances t,,i's, i < p, and reassign the

communications for some graphs Gi"s from t,.j's to t"','

Strategy 2:

Stb(pb) cam also be obtained from Siub(p, b - 1) by taking one more subgraph Gb into account.

Initially, Sub(p, b) is set to be Sub(p, b- 1). The first step is to choose the best forkez instance from

4 ,2 - s., - - , Is~ for Gb. Let the best instance be t,,. The second step is to see if t., is in Stub(p, b)
or no:. Lf not, a condition is checked to decide whether t,, should be added in or not. Upon the

addition of ±,, we may remove some instances and reassign the communications to achieve a lower

cost.

We compare two possible results obtained from the above two strategies and assign the one with

lower cost to actual Sub(p, b). Bence by computing in a dynamic programming fashion, Sub(n, B)

ca.n be obtained. The algorithm and its graphical interpretation are shown in Figure 9.

5.2 Performance Evaluation

The complexity involved in earc strategy described in section 5.1 is O(nB). Since the solving

of Sub(n, B) needs to invoke n x B times of strategies I and 2, the total complexity of solving

21

Sub(n, B) by the approximation method is 0(n'2B2).

We conduct a set of experiments to evaluate the performance of the approximation method. For

each problem size (n, B), we randomly generate 50 instances and solve them by using approximation

method and exhaustive searching. The data for computation and communication in the experiments

are based on the uniform distribution over the range [1,50]. We compare the minimum cost obtained

from exhaustive searching (EXHIAUST) with those from from approximation (APPR.OX) and single

assignment solution (SINGLE). The optimal single assignment solution is the one in which only one

forker instance is allowed. Note that the solutions from SINGLE are obtained from the shortest

path algorithm [1). The results are summarized in Table 4. FRom the table, we find out that the

approximation method yields a tight approximation of the minimum cost. On the contrary, the

error range for single copy solution is at least 20%. This again justifies that the replication can

lead to a lower cost than an optimal assignment does.

6 Solution of MCRP-SP for computation-intensive applications

6.1 The Solution

Given a computation-intensive application with its SP graph, we generate its parsing tree and

assig•nment graph first. The algorithm finds the minimum weight replication graph from the as-

signment graph. Then the optimal solution is obtained from the minimum weight replication graph.

The algorithm traverses the parsing tree in the postfix order. Namely, during the traversal, an

optimal solution of the subtree S., induced by an intermediate node r along with all x's descendant

nodes, can be found only after the optimal solutions of :'s descendant nodes are found. Given an

SP graph C and a distributed system S, we know that there is a one-to-one correspondence between

each subtree S. in a parsing tree T(G) and a limb in the assignment graph of G on S. Whenever a

child node b of : is visited, the corresponding limb in the assignment graph will be replaced with a

a two-layer Ti limb if b is a Tk- or T,, -type node; and a one-layer %,,if limb if b is a T0,,-rype

node. The algorithm is shown in Table 5. A graphical demonstration of how the algorithm solves

the problem is shown in Figure 10.

Before the replacement of a T limb is performed (i.e. z is a T"oi8 ,-tyrpe node), each con-

stituent child limb has been replaced with a T,•, or two-layer T i,• limb. Bence, the shortest

22

path algorithm 11) can be used to compute the weights of the new edges between earh node in the

source layer and each node in the sink layer of the new Thp, limb. The complexity, from lines 05

to 08 of Table 5, in transformation of the limb, corresponding to an intermediate node = with M

children, into a two-layer T,;, limb is O(Mn3). An example of Mustrating the replacement of a

Ta limb is shown from parts (b) to (c) and parts (d) to (e) in Figure 10.

For the replacement of a Tand limb, we have to compute C6q 's. The values can also be computed

by the shortest path algorithbm. Hence, the complexity involved in lines 16 and 17 is O(3n 3).

According to the computational model in section 2.2, each task instance s may start its execution

if it receives the necessary data from any task instance of its predecessor d. And, from Laemma

2, we know that the minim-un su=m of initialization costs of multiple task instances of s will be

always irom only one task instance of d. Therefore, the initialization of task instance t,,p depends

on which task instance of d it communicates with. That is why ,in line 19, the communication

cost '.U,(i,p) is added to the the execution cost of e,,, before OPT() is invoked. And the most

significant part of the replacement is to compute the weights on the new edges from the source

layer to sink layer. The complexity is n2 x O(OPTO), which in the worst case is n22'. However, in

the average, our O.PT function performs pretty well and reduces the complexity sig-nificantly. An

example of illustrating the replacement of a T.,, limb is shown from parts (c) to (d) in Figure 10.

We also consider to use the approximation method to find the sub-optimal replacement of a

T,,,d limb. In that case, function OPT() in line 22 is replaced with Sub(n, B). The total complexity

involved is 0(n'B4.) then.

Finally, for the replacement of a T, limb, if there are B subgraphs connected between the forker

and the joiner, then the complexity will be O(Bn l) for the new edges and O(Bn3) for Cb 's. An

example of illustrating the replacement of a T, limb is shown from parts (a) to (b) in Figure 10.

When the traversal reaches the root node of the parsing tree, the result of FIND() will give

us either one single laver or two layers, depending on the type of root node. All we have to do is

to select the lightest of these n (in single laver) or n2 (in two lavers) shortest path combinations.

An optimal replication graph itself is found by combining the shortest paths between the selected

23

nodes that were saved earlier. The whole algorithma has the complexity of

O(An2 2") + Z(Rn 3) + E(C~n3)

where A is the number of T.0 limbs,2 R is the number of subgraphs in the.ith T, limb, and Ci is

the number of layers in the ith Thin limb. This is not greater than O(Mr 22"), where M is the

total number of tasks in the SP graph. The complexity of the algorithm is a lineal function of M

if the number of processors, n, is fixed.

6.2 Conclusion Remark

This paper has focused on MCRP-SP, the optimal replication problem of SP task graphs for

computation-intensive applications. The purpose of replication is to reduce inter-processor commnu-

nication, and to fully utilize the processor power in the distributed systems. The SP graph model,

which is extensively used in modeling applications in distributed systems, is used. The applications

considered in this paper axe computation-intensive in which the execution cost of a task is greater

than its communication cost. We prove that MCRP-SP is NP-complete. We present branch-and-

bound and approximation methods for SP graphs of type T.,d. The numerical results show that

the algorithm performs very well and avoids a lot of unnecessary searching. Finally, we present an

algorithm to solve the MCRP-SP problem for computatiom-intensive applications. The proposed

optimal solution has the complexity of O(n22'M) in the worst case, while the approximation solu-

tion is in the complexity of O(n•M 2), where n is the number of processors in the system and M is

the number of tasks in the graph.

For the applications in which the communication cost between two tasks is greater than the

execution cost of a task. the replication can still be used to reduce the total cost. However, in the

extreme case where the execution cost of each task is zero, the optimal allocation will be to assign

each task to one processor. We are studying the optimal replication for the general case.

References

[1) S.H. Bokhari, Assignment Problems in Paraliel and Distributed Computing, Kluwer Academic

Publisheds, MA, 1987.

24

12) Y. Chen and T. Chen, "Implementing Fault-Tolerance via Modular Redundancy with Com-

parison," IEEE Trans. Reliability, Vol. 39, pp 217-225, June, 1990.

[31- M.1%. Gaxey and D.S. Johnson, Computers and Intractability: A Guide to Theory of NP-

Completeness, San Francisco: W.H. Freeman & Company, Publishers, 1979.

1[4] 1. Jan, D. Liang and S.K. Tripathi, "A Linear-Time Algorithm for Computing Distributed

Task Reliability in Pseudo Two-Terminal Series-Parallel Graphs," submitted for publication

to Journal of Parallel and Distributed Computing.

15] C.C. Price and S. Krishnaprasad, "Software Allocation Models for Distributed Computing

Systems," in Proc. 4th International Conference on Distri:-,i:ed Computing Systems, pp 40-48,

May 1984.

[6] D. Liang, A.K. Agrawala, D. Mosse, and Y. Shi, "Designing Fault Tolerant Applications in

Maruti," Proc. 3rd International Symposium on Software Reliability Engineering, pp. 264-273,

Research Triangle Park, NC, Oct. 1992.

[7] V.M. Lo, "Heuristic Algorithms for Task Assignment in Distributed Systems," in Proc. 4th

International Conference on Distributed Computing Systems, pp 30-39, May 1984.

[8] P.R. Ma., E.Y.S. Lee and M. Tsuchiya., "A Task Allocation Model for Distributed Computing

Systems," IEEE Trans. Computers, Vol. C-31, pp 41-47, Jan. 1982.

[9] V.F. Magirou and J.Z. Milis, "An Algorithm for the Multiprocessor Assignment Problem."

Operations Research Letters, Vol. 8, pp 351-356, Dec. 1989.

[103 C.C. Price and U.W. Pooch, "Search Techniques for a Nonlinear Multiprocessor Scheduling

Problem," Naval Res. Logist. Quart., Vol 29, pp 213-233, June 1982.

[11] H.S. Stone, "Multiprocessor Scheduling witl the Aid of Network Flow Algorithm," IEEE

Trans. Soft. Eng. Vol 3, pp 85-93, Jan. 1977.

[122 D. Towsley, "Allocating Programs Containing Branches and Loops Within a Multiple Pro-

cessor System,' IEEE Trans. Software Eng., Vol. SF_,2, pp. 1018-1024, Oct, 1986.

25

U

acai

AND
b c

d
[, d,] [T,., e, h]

T..if; T,,,it T,•;t T,,,iteI 1
OR

hb c f 9

Figure 1: An SP graph and its parsing tree

e table processor I processor 21
task a on 5 5
taskbon 7] 16
ta~sk c on 10 20

*dtask d on 25 8
task on' 14f 6
task f on 11 10 1 13

p table IF i- iT -T I i f , eiIl- I %.111-2
%..3 to T 1 4 1 -4-71 4 1 4%." to i 4, 1, 4, :1, 4 1 4 , 1

I.to j.j from 3 3 3 3 1 31 3 3
tIo tf.2 from 34 3J j 3 3 3 3]

Optimal Assignment:
cc') +j..b(, 1) + ,~11)-f+ PA.d(2, 2) +IL.c 2)+C, + +4
+Ce.2 + C,.2 + pI~j(1, 2) + p..f (1, 2)+ Mdjf(2 ,1) +,4.f(2 , 1) + £4=68

Optimal Replication:
.er2 -' e ,,2 + 1) (,u1,,)(, 1) + As.=(2, 2) + ,,,,(2, 2) + eb,2

+E.1 + eCd, + e4.2 + /Ab.(It 1) + j.<j(1, 1) + .sdj(2, 1) + i..j(2 , 1) + e.•, 67

Figure 2: An example to show how the replication can reduce the total cost

26

UC

Figure 3: An SP graph and its assignment graph.

Figure 4: An allocation graph and a replication graph of Figure 3.

27

VI V2V3, 4 V5V6 V

bb

b5 b6

b3

8s Legen d:

.. *...... n x m = 63

Figure 5: An illustration about how to transform a graph to a IJCTE. instnace

fromut,

to I~I

Fiur 6 A T.,, S g ap ad he grah clit n e aino ..B

28

viVI V3

Legend:

d........... :d,b,-=w m x n=2x3=6

e tabloe p -= p- 2lp3p _ t _11 pi l tp =2T - p =31
c.,;,__ 2 2j2 p1) 0 0~
e -., 0 12 12 ,.(2(P, 1) 0 1
e2,-= o 12I 12 u..3(p,1i)= 0°1 01 1
e,. 0 12 12 P.s(A, 1) = 01
c.,;= 0 12 1 1211 j,.r,-= (1 2 -0

0 .r2= 0 1 12 1 '...(PI) 0 0 o
____= 01 121 12 LU.7(P,1) 1 01 0C7_; = o0 12 1 '.S(PC 1)= 1 -0 7 - 0

- 12112 A..9.], 1)= I 11 01 0
0!l 1- 1 A..,o(p1, : 1 11 01 0
0 12 12 .(P,1) 1 0 0
0 12 12 .;(p,)0, V1 < i < 12, p= 1.2.3 and 9= 2.3

I __,_ 21 121 i.(p,q)= 0, V< i <12, V 1 < pq 3

Figure 7: Am ilustration about bow to transform a UECTR. instance to a T. , SP graph

29

t,,3 t.,,s,

3a

.e :iti.4 tree o t.,4 Ise w tere t-,4 a.S 13,5 =

11

t, 94 4,6 tsS t is,4 tsi G Is's i s, ia iG 65 t

5 6 7 9 10 12 5 1 (g (21 3 2 2 1 3

Figure 8: A combiati.~on tree for the case where k =4 and n~ 6

30

Table 1: Function BB(k, q, i): branch-a~nd-bound algorithm for solving problem .

01 lnitialize the queue to be empty;
02 Insert root node v0 into the queue;
03 While the queue is not empty do begin
04 Remove the first node u from the queue;
05 Generate all child nodes of u
06 For each generated child node v do begin
07 If v is a leaf node (i.e. v is at level k) then
08 Compute g(v) by setting L to be 4)
09 Set i = min (Z, g(v));
10 else begin /* v is an intermediate node */
11 Compute est(v) by (5)
12 If est(v) < i then
13 Insert v into the queue according to esi(v)
14 end;
15 end;
16 end;
17 Rleturn(l).

Table 2: Function OPT(C,','s, e5 ,•'s): the optimal solution of MCIRP-SP of type T2r• when
CP, s and e,,'s axe given

01 Sort ,,'. into a non-decreasing order by values of e
02 For c = 2 to nt do begin
03 Let node v be a leaf node at level 1;
04 Set v to be %.2 and k to be 1;
05 Compute g(v) by setting L to be 4)
06 Initialize • to be g(v)
07 Fork=ltondo
08 i =BB(k, q, i)
09 Set c(q) =I;
10 end;
12 Output the combination with the minimum value among c(a), c(2), ... , c(n).

31

Figure 9: Pseudo code, graphical demonstration, and dynamic programmling
table for approximation methods

Sub(p - 2, b) --+ Sub'(p, b): Sub(p, b- 1) -. SIub"(p, b):
If Ca,:5 Zý ýji(fMiLC-Su(p-1,b)(C-,q)1 -,,) Let t,, be the one satisfys mm 2 zj<j~(Ciý,9)
begin If t.., E Sub(P, b 1) then

Sub'(p, b) = Sub(p - 1, b) e) IS Siub"(p,b) Siub(p,b- 1)
Rzassign&Itemove(Sub'(p, b)) Else

end if e.,. :5 ([~n6b -b

Else Sub'(p, b) = Sub(p - 1, b) begin
Sub"(p, b) = Stsb(p - 1, b) E)i

Legend: R~ea~ssign&R~emove(Sub"(p, b))
(2)+ = , if x>O0. end

(=+= 0, if:2 < 0. Else Sub"(p, b) =Sub(p, b- 1)

Sub(p - I, b) upb-1

subgrapbG G,1' G ~ -

subgraph Gb

2 2 3 n

1 Sub(p, b -1)
2

b .. Sub"(p, b)

B Sub(p - 1, b)-.~ Sub(p, b)
Sub'(p, b)

Sub(p, b) =Af irs-.Cost(Sub'(p, b), Sub"(p, b))

32

Table 3: Computation Results for brancb-and-bound approach

! Set I Set II Total Number of

n lIB EIMI VLFI tEMP VLF, leaves (2")
20 2 6 4 7 16
24 3 6 3 6 16
28 4 7 3 6 16

4 32 4 7 3 6 16
36 4 7 4 7 16
40 3 6 3 6 16

20 36 74 16 51 256
24 40 75 21 62 256
28 50 86 26 68 256

8 32 63 94 37 78 256
36 73 96 47 84 256
40 81 97 50 86 256

20 186 558 81 340 4,096
24 231 639 102 398 4,096
28 349 839 167 543 4,096

12 32 451 967 204 617 4,096
36 454 984 269 7201 4,096
40 I 636i 1,186 301.1 7801 4,096

20 758 3.216 203, 1,175 65,536
24 1,065 4,161 329 1,11 65.536
28 1,335 I 4,862 546 2,496 65,536

16 32 1,884 6.250 726 3,127 65.536
36 2,322 7,227 839 3)493 65,536
40 2,880 8,511 1,179[4,510 65,536

20 2,026 12,042 389 3,079 1,048,576
24 3,579 18,866 761 5,280 1,048,576
28 I 5,551 27,018 1,227 7,905 1,048,576

20 32 6,405 30,521 1,709 10,357 1.048,576
36 9,517 40,767 2,681 15,032 1,048,576
40 113,651 48,087 3,086 16,857 1,048,576

3: Lath value shown is the average value over 50 runs.

33

U

Table 4: Simulation Results for Approximation Method

0B SINGLE7 AP 2ROX [EXHAUSTI single error % approx error0

20 2876 2407 2400 20 0.28
24 3463 2835 2831 22 0.16
28 4032 3264 3259 24 0.18

4 32 4606 3678 3673 25 0.11
36 5198 4084 4082 27 0.05
40 5790 4514 4514 28 0.00
20 2794 2282 2250 24 1.46

24 3356 2672 2636 27 1.38
28 3931 3060 3028 30 1.05

8 32 4540 3443 3413 33 0.88
36 5127 3831 3800 35 0.80
40 5683 4215 4192 36 0.55

20 2767 2213 2161 28 2.42
24 3359 2592 2542 32 1.99
28 3912 2996 2941 33 1.88

12 32 4491 3364 3299 36 1.97
"36 5063 3736 36761= 38 1.62
40 5610 4101 4 1.43 3
20 2733 2167 2111 29 2.66
24 3287 2558 2492 32 2.66
28 3844 2932 2865 34 2.31

26 32 4393 3315 3240 36 2.32
36 4991 3659 3584= 39 2.10

L __ 40 5558 40451 3970 1 40 1.89

: ach value shown is the average value over 50 runs. 3
SINGLE - EXhaUST

single error% = EX HAUST x 100%.

APPROX - EXHAUST

approx error% = EXHAUST x 100%.

34 1

Table 5: Algorithm FIN D(S.): the algorithm for finding the shortest path combinations from the
limb which corresponds to the subtree Sý induced by an intermediate node z and all :'s descendant
nodes in a parsing tree

01 Case of the type of intermediate node z:
02 Type T,, :
03 For b = the first child node of z to the last one do
04 FINID(Sb); /* Now the limb corresponding to Sb is replaced */
05 Replace the limb corresponding to S, with a two-layer Td. limb where
06 the source (sink) layer of the old limb is the source (sink) layer of new 2-layer limb;
07 Put weights on the edges between source and sink layers equal to the shortest path
08 between the corresponding nodes;
09
20 Type T.,d : /* Let x = T,, forker s, joiner hA */
11 Let d be the predecessor of forker s in G (i.e. < d, s > E V);
22 Let B be the number of child nodes of : in the parsing tree;
13 /* I.e. there are B subgraphs connected by s and h */
14 For b = the first child node of : to the B-th child of z do
15 FIND(Sb); /* Now the limb corresponding to Sb is replaced */
16 Forp=]ton, q= Itonandb= 1 toBdo
17 Compute the minimum replication cost C, from t,, to' tA,; w.r.t. cubild b;
i8 For i = I to n do begin
19 For p = 1 to n do E,,, = gd.,(i,p) + e.,;
20 /* E, accounts for inihtialization by t.f and execution cost itself. /
22 For q = I to n do u.dh (i.q) = O"PT(C', 's,.E,E,',s)
22 /# Create new edges from %d,;'s to tis "/
23 end;
24 Replace the Ts.e limb with a T,•,•i limb, where source laver = sink layer = layer h,
25 and there are new edges from laver d to layer h;
26
27 Type T,. : /* Let x = [T•, forker s, joiner h /
28 Use the same method described above from lines 12 to 17 to compute Cb s'

29 Replace the T,. limb with a two-laver Th.if limb, where
30 the source (sink) layer of T., limb is the source (sink) layer of To,• limb and
32 .Lsh(p,)= minb(C.,),v•pVand q
32 end case;
33 Save the shortest paths between any node in source laver and any node

in sink layer for future reference.

35

.......

0 0

(a.) (b)

0)

(C) (d) (e)

Figure 10. A graphica1 demostration. of how to find an optima] solution for MCRY-SP

36

Aform ,pfroved

REPORT DOCUMENTATION PAGE 1o,,B No 0704.O088
*u~. *OO~ .. 3',Q h. ~#'@ -a.~ *S~'C :1 or,.O If .O .*"~'t .. I-, 'e,..C' n~uln. W&vr"..Q .%..g~n cal. " 4n.

.-. - .. a~o . al. .. ,ce *.C ,-r*:*.0 .- - - - - -* %. -Cb ("1% t.. . "0.Q b*'oef "1-.1e.~ WC' *v * tf ofl I...*

1. AGENCY USE ONLY ULej"e biar}) 2. REPOR;T DATE 3. REPORT TYPE AND DATES COVERED

10 / 12 /94 Technical
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Optimal Replication of Series-Parallel Graphs for N00014-91-C-0195
Computation-Intensive Applications Revised Version DASG-60-92-C-0055

6. AUTHOR(S)

Sheng-Tzong Cheng and Ashok K. Agrawala

"2. PERFORMING ORGANIZATION NAME(S) AND ADDR.SS(ES) E. PERFORMING ORGANIZATION

REPORT NUMBER

Department of Computer Science Revised Version
A. V. Williams Building CS-TR-3020.1
University of Maryland
College Park, MD 20742 UMIACS-TR-93-4.1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Honeywell, Inc. Phillips Laboratory

3600 Technology Drive Directorate of Contracting

Minneapolis, MN 55418 3651 Lowry Avenue SE
Kirtland AFB NM 87117-5777

11. SUPPLEMENTARY NOTES

This version supercedes the previous version.

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (tbaxzmrun. 200 worcs)

We consider the replication problem of series-parallel(SP) task graphs where
each task may run on more than one processor. The objective of the problem is to
minimize the total cost of task execution and interprocessor communication. We call
it, the minimum cost replication problem for SP graphs (MCRP-SP). In this paper, we
adopt a new comunication model where the purpose of replication is to reduce the
total cost. The class of applications we consider is computation-intensive applicat-it
in which the execution cost of a task is greater than its communication cost. The
complexity of MCRP-SP for such applications is proved to be NP-complete. We present
a branch-and-bound method to find an optimal solution as well as an approximation
approach for suboptimal solution. The numerical results show that such replication

imay lead to a lower cost than the optimal assignment problem (in which each task is
lassigned to only one processor) does. The proposed optimal solution has the complexi
of O(n,2n.), while the approximation solution has O(n 4 M2), where n is the number of
processors in the system and M is the number of tasks in the graph.

14'. SUBIECT TERMS Operating Systems 5 NUMBER OF PAGES

Storage Management, Communications Management 56. R pages
1.PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 1.. SECURITY CLASSIFICATION 20. LIM;TATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclasssified Unclassified Unclassified Unlimited

ý:SN' 75--0 . -2S0.-SS0 37 -- a •o -. 295 '!ev 2.89)

I

38

Designing Temporal Controls *4

Ashok K. Agrawala Seonho Choi Leyuan Shi
Institute for Advanced Computer Studies Department of Industrial Engineering

Department of Computer Science University of Wisconsin
University of Maryland Madison, WI 53706

College Park, MD 20742 leyuan~ie.engr.wisc.edu
{agrawala. seonho) @cs.umd.edu

Abstract

Traditional control systems have been designed to exercise control at regularly spaced time
instants. When a discrete version of the system dynamics is used, a constant sampling interval is
assumed and a new control value is calculated and exercised at each time instant. In this paper
we formulate a new control scheme, temporal control., in which we not only calculate the control
value but also decide the time instants when the new values are to be used. Taking a discrete,
linear, time-invariant system, and a cost function which reflects a cost for computation of the
control values, as an example, we show the feasibility of using this scheme. We formulate the
temporal control scheme as a feedback scheme and, through a numerical example, demonstrate
the significant reduction in cost through the use of temporal control.

"This work is supported in part by ONR and DARPA under contract N000D24-91-C-0195 to Honeywell and Com-
puter Science Department at the University of Maryland. The views, opinions, and/or findings contained in this
report are those of the author(s) and should not be interpreted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency, ON0R, the U.S. Government or Boneywe.l. Computer
facilities were provided in part by NSF grant CCR-8811954.

IThis work is supported in part by ARPA and Philips Labs under contract DASG-60-92-C-0055 to Department of
Computer Science, University of Maryland. The views, opinions, and/or findings contained in this report are those
of the author(s) and should not be interpreted as representing the officiaJ policies, either expressed or implied, of the
Advanced Research Projects Agency, PL, or the 13.S. Government.

39

1 Introduction

Control systems have been used for the control of dynamic systems by generating and exercising |

control signals. Traditional approach for feedback controls has been to define the control signals,

u(t), as a function of the current state of the system, z(t). -As the state of the system changes

continuously the controls change continuously, i.e. they are defined as functions of time, t, such

that time is treated as a continuous variable. When computers are used for implementing the

control systems, due to the discrete nature of computations, time is treated as a discrete variable

obtained by regularly spaced sampling of the time axis at A seconds. Many standard control

formulations are defined for the discrete version of the system, with system dynamics expressed at

discrete time instants. In these formulations the system dynamics and the control are expressed as

sequences, x(k) and u(Jz).

Most of the traditional control systems were designed for dedicated controllers which had only)

one function, to accept the state values, z(k) and generate the control, u(k). However, when a

general purpose computer is used as a controller, it has the capabilities, and may, therefore, be

used for other functions. Thus, it may be desirable to take into account the cost of computations

and consider control laws which do not compute the new value of the control at every instant.

When no control is to be exercised, the computer may be used for other functions. In this paper

we formulate such a control law and show how it can be used for control of systems, achieving the

same degree of control as traditional control systems while reducing computation costs by changing

the control at a few, specific time instants. We term this temporal control.

To the best of our knowledge this approach to the design and implementation of controls has not

been studied in the past. However, taking computation time delay into consideration for real-time

computer control has been studied in several research papers [1, 5. 6. 9. 11t 13]. But, all of these

papers concentrated on examining computation time delay eff•ects and compensating them while

maintaining the assumption of exercising controls at regularly spaced time instants.

The basic idea of temporal control is to determine not only the values for u but also the time

instants at which the values are to be calculated and changed. The control values are assumed

to remain constant between changes. By exercising control over the time instants of changes the

designer has an additional degree of freedom for optimization. In this paper we present the idea and

demonstrate its feasibility through an example using a discrete, lineaz, and time invariant system.

Clearly, the same idea can be extended to continuous time as well as non-lineaz system.

The paper is organized as follows. In Section 2, we formulate the temporal control problem and -u
introduce computation cost into performance index function. The solution approach for temporal

control scheme is discussed in Section 3. In Section 4, implementation issues are addressed. We

40

provide an example of controlling rigid body satellite in Section 5 . In this example, an optimal

temporal controller is designed. Results show that the temporal control approach performs better

than the traditional sampled data control approach with the same number of control exercises.

Section 6 deals with the application of temporal controls to the design of real-time control systems.

Finally, Section 7, we present our conclusions.

2 Problem Formulation

In temporal control, the number of control changes and their exercising time instants within the

controlling interval [0, Tj] is decided to minimize a cost function. To formulate the temporal control

problem for a discrete, linear time-invariant system, we first discretize the time interval [0, Tj] into

M subintervals of length A = Tf/M. Let DM = {0, A,2A,...,(M - 1)A) which denote M time

instants which are regularly spaced. Here, control exercising time instants are restricted within

DM for the purpose of simplicity. The linear time-invariant controlled process is described by the

difference equation:

x(k+1) = Ax(k)+.Bu(k) (1)

y(k) = Cx(k)

where k is the time index. One unit of time represents the subinterval A, whereas x E IZ' and

u E 7R' are the state and input vectors respectively.

It is well known that there exists an optimal control law [4]

U°(") =[z(i)] i= 0,I,....!M- 1 (2)

that minimizes the quadratic performance index function (Cost)

M-2

j = Z [=(k)Qx(k) + R2(k)k .,(k)] + =z'(M)Qz(M) (3)
k=O

where Q E R"' is positive semi-defimite and R E 7Z"x! is positive definite.

As we can see, traditional controller exercises control at every time instant in LiM. However,

in temporal control, we are no longer constrained to exercise control at every time instant in DM.

Therefore, we want to find an optimal control law, 6 and _ for i = 0, 1, ... M - 1:

0 (0) = °(i - 1) if 6(i)= 0 (4)

U°(') = [z(O)] if (i) =

41

that minirrmizes a new performance index function

M-I

S= Z[J(k)Qx(k) + VT (k)Ru(k)] + ÷ T (M)Qx(M) + Z 6 (k)4 (5)
k=O k=O

JM +CM

Here, IL is the covapixtation cost of getting a new control value at a time instant, and CM "

L- 6(k)__ ,A n)tes -the tow compaafion cosL Note that v = 6 3(k) is the number of

control changes. Also, let D, = {to, t, t2,.. t.) consist of control changing time instants where

- to = 0, tj = niA, ... , It-j = n,•A. That is, no,n 1 ,n 2,...,n,,- are the indices for control

changing time instants and b(nj) = I for i = 0, 1,2,.. .v - 1.

With this new setting we need to choose v, DL,, and control input values to find an optimal

controller which minimizes J4. This new cost function is different from JM in two aspects. First,

the concept of computational cost is introduced in J' as CM term to regulate the number of control

changes chosen. IH we do not take this computation cost into consideration v is likely to become

M. If computation cost is high (i.e., y has a large value) then v is likely to be small in order to

minimize the total cost function. Second, in temporal control, not only do we seek optimal control

law u(z(t)), but also the control exercising time instants and the number of control changes. In the

next section, we present in detail specific techniques for finding an optimal temporal control law.

3 Temporal Control

We develop a three-step procedure for finding an optimal temporal controller.

Step 1. Find an optimal control law given v and D,

Step 2. Find best D, given v

Step 3. Find best v

First. in the following two subsections(3.2 and 3.2) we derive a temporal control law which

minimizes the cost function JY when DL, is given, i.e., both time instants and number of controls

are fixed. Since v and D,, are fixed we can use JM defined. in (5) as a cost function instead of

Jf. Secondly, assume that v is fixed but DL, can v.a,. Then we present an algorithm in section

3.3 to find a D' such that JM (and J') is minimized. Finally, we will vary v from 1 to z',ax

to search an optimal D' at which temporal control should be exercised. Section 3.4 presents this

iteration procedure. Section 3.5 explains how to incorporate terminal state constraints into the

above procedure of getting an optimal temporal control law. And a complete algorithm of the

42

above procedure is described in Section 3.6. Finally, in Section 3.7 we explain how to get optimal

temporal controllers over an initial state space.

3.1 Closed-loop Temporal Control with D, Given

Assume that v and D, are given. Then a new control input calculated at tj will be applied to the

actuator for the next time interval from ti to t;+2. Our objective here is to determine the optimal

control law

U_(n;) = g[X(ni)] i = 0,1,...,v- 1 (6)

that minimizes the quadratic performance index function (Cost) JM which is defined in (5).

State Cost

S +

FvF,

no time.... 1 3 n +21... n =•ý n.., ... D,

D D (.,)

©U(n..)

Control Input Cost

Figure 1: Decomposition of JM into Fi.

The principle of optirnality, developed by Richard Bel]manl[2 3] is the approach used here. That

is, if a closed loop control .uo(nj) = g[z(nj)] is optimal over the interval t0 t< ti_<, then it is also

optimal over any sub-interval t,,•< << f, where 0 _< n < V. As it can be seen from Figure 1, the

43

total cost JAf can be decomposed into F.s for 0 < i < v where

F; = T (n3)Qz(n,) + xZ(n, + I)Qz(n; + 1) (7)

+ X7(n; + 2)Qz(nj + 2) + ... + xT(n;+i - 1)Qx(n;+l - 1)

+ (nj+i - n;)u(n;)Ru(n)

That is-, from (1),

Fj= zT(nj)Qx(nj) + (Ax(n,) + Bu(n))TQ(Ax(nj) + .Bu(nj)) (8)

+ (A 2 xz(ni) + ABu(n1) + Bu(ni))TQ(A'x(nj) + ABu(n1) + Bu(nj))

+ (A '-''z(nj) + A '-" 2 Bu(n,) + + ABBu(nj)+ Bu(ni))TQ

(A '÷'-nj-I (n,) + A"'+1-nj-2B.(n,) + ... + ABu(n-) + Bu(n,))

+ (nj,+j - n•)uT(nI)-)R•(•n)

This can be rewritten as

." = XT(ni)Qz(nj) + • [Aix(nj) + Biu(n.;)]TQ[Aix(nj) + Biu(ni)] (9)
j=1

+ (nj+j - n)uT(n)Ru(n)

where A, = Aj and Bj = _.7=o AkE.

Then JM can be expressed as

JM = Fo + F, F+ ... + F.v (10)

Let S'. be the cost from i = v - m +- 1 to i = :

These cost terms are well iflustrazed in the above Figure 1.

Therefore, by applying the principle of optimality, we cam first minimize S, =F 4,, then choose

_1% to minimize S2 =F , _ + F4, = So + F,_-1 where So is the optimal cost occurred at t,,. We

can continue choosing F,- 2 to minimize S3 = F1,-2 F,-_ + F,, = F,,- 2 + S2 and so on until

S,+I = JM is minimized. Note that S, = F, - xT (n.)Qz(n4 ,) is determined only from x(n,) which

is independent of any other control inputs.

44

a!

3.2 Inductive Construction of an Optimal Control Law with D, Given

We inductively derive an optimal controller which changes its control at v time instants to, t,

. ,-_. As we showed in the previous section, the iniductive procedure goes backwards in time

from S, to S0+1. Since S2 = F, = Zx(n)Qx(n,) + ?JT(n,)Ru(n,) and z(n,) is independent of

L(n,), we can let uO(n,) = u*(M) = 0 and So = zT(n,)Qz(n,) where Q is symmetric and positive

semi-definite.

Induction Basis: S' = zTY(n,)Qz(n,) where Q is symmetric.

Inductive Assumption: Suppose that

= zT~n 1)P(v - m + 1)=(n,-,+,)

holds for some mn where 1 < rn < v and P(v - m + 1) is symmetric.

We can write S, as

= S m....Y.)on,..)T~v-m+1 (12)

From the definition of S, and (9),

S,.+, ," F•-r•,• -M

==
+ (S.•+ -- z ._•)Qx(n ._m) (13)Z Az~~m)+Biu(nL.-,)'7Q [Aix(.) + Bun-,)

And the above equation becomes

Sn+ = [Ar.m. _ n,-._(fl-..) + Bn..-.,_._(fl_-)]
T P(V - M + 1) (14)

In...__+, -n.-_ M(•-M) + B. _.+,-n._v u(n-.)]

Z IA 5 (~&,~m)+B~iu(n,-,m)]7QIAix(n],-,) + Biu(flim)J

"+" (7L,~- �, -)Ru(n

45

If we differentiate S,,, with respect to u(n_,-), then

_ BT - - - + 1)A., _•,z(n_,,) (15)

+ (An +2- MP(VM + 1)B,,,.+ -4 n.-2TX(a72v7m)

+ _ _ P(- m + 1)B -n.-_,,,U(n,._,)

+ Z: [2BTQA1 x(nflwm) + 2BfQB,1Lnfl-,)]

+ (
+ J _ P(v - m + 1)A,.._. _ (16)

n*t,,-m - n.•v -m n.-+ I

+ z: BTQA 1 }Z(n,-,)
j=1

+ 2{f ,_-n P(v - m + 1)A _(

ni,--,÷ i -- n-m -I

+ Z BTQBz + (n,-.+, - -m)R)u(n--m)

Note that P(v - m + 1) is symmetric and the following three rules are applied to differentiate Sm+2

a•Dove.

-(zrQz) = 2Q,

T-(z Qy) = QY

a (z Qy) = z

Let . 0. from Lemma I and Lemma 2 given later we cam obtain (n•_.) which

minimize S•+ and thus obtain S' 1 .

7" -r P(v - +)B._+_._ (17)

7 -' (17)

j=1
n*,--.+. :--r-,,-, -I•

{.B7,P(v - m -2)A,ý _r._m + B7QA 3 (n.)

where K(v - m) is defined in (17).

46

I

Therefore, we can write

[A.._•.+3_,,n_- B,.Kv+, -n-.,l(,- m)](Z(n,_,,)

If we use (17) and (18), we have

s = A- _ _ (- m)]x(n,_..)m))7P(I/ - m) (19)

{ [An,-, 4 , -n,., - B m-42 -n,__)I~nm)

+ zT(n,_,)Qx(n,•,,)

+ • {[A - BjK(v - m)]z(n-,,_))}Q{[A5 - BjK(v - m)]z(nL,_,))

+ (l-m2 fzm)(-m)x(n,....)ITR[K(v/ - mn)x(n,,-))

This equation can be rewritten as

M+l = ZT(7i.-,.){[An..•_.+,_.nv._, - + _•_._,,K(v- -m)]TP(v - m + 1) (20)

[Amn_.m+2_.-_ - B -.._ 2 _._K(- in)]

+ Q

+ [Aj- BiK(y -- ,)7mQ)Aj - Bj.K(zR- 7)]
j=.l

where P(v - m) is obtained from K(v - m) and P(v - m + 1) as in (20). .Aso note that knowing

P(v - m + 1) is enough to compute E(v - m) because other terms of (17) are known a priori.

Therefore, we find a symmetric matrix P(v- m) satisfying SO+ 1 = zTr(n,,_)P(v- m)z(n,,_).

From (17) anad (20), we have the following recursive equations for obtaining P(v - m) from
P(v - m + 1) where 7n 1 2, ... , V.

,V m_) = _ .-7, P('/ - M + _ (21)

Z]: •BJTQBj + (nZ,,-,-+, - n,,-m)R)-

r.-_ P(zl - m +)A,__, _nm + Z B7QAj

47

(-,) = [-_• .m)]Tp(v - m + 1) (22)

- -7 [A�K--�-m)QA7.n--)

+ (,,,._,+ - n,,)T(V -- m).)(", - m)

I
Also, we know that at each time instant n,-,, A

-°(n,,_,.) = -K(v - m)x(n,,,m) (23)

Hence, with P(v) = Q, we can obtain K(i) and P(i) for i = v - 1, v - 2,..., 0 recursively using

(21) and (22). At each time instant njA, i = 0,1,2,...,v- 1 the new control input value will be

obtained using (23) by multiplying K(i) by x(nj) where z(nj) is the estimate of the system state

at n;A. Also, note that the optimal control cost is Jý- = - xT(0)P(O)x(O) where P(0) is

found from the above procedure.

To prove the optimality of this control law we need the following lemmas.

Lemma 1 If Q is positive semi-definite and R is positive definite, then P(i), i = v, v-1. v- -2. 0,

matrices are positive semi-definite. Hence, P(i)s are symmetric from the definition of a positive

semi-definite matriz.

Proof Since P(vl) = Q , from assumption P(v) is positive semi-defimite. Assume that for

k = i 1, P(k) is positive semi-definite. We use induction to prove that P(i) is semij-definite. Note

that Q is positive semi-definite and R is positive definite. From (22) we have

P(i) = [A,-,,1 -,,- B.n. _,,,K(i)].P(i+ 1) (24)

ni+ -ni--

S(n48 - .K(i)

48

Since P(i + 1) and Q are positive semi-definite, R is positive definite, and (n;+1 - ni) > 0, it

is easy to verify that for Vy E R' : yTP(i)y >. 0. This means that P(i) is positive semi-definite.

This inductive procedure proves the lemma.

Lemma 2 Given D,, the inverse matrix in (21) always exists.

Proof Let V BT _ P(v - m +)B, ,, + n -=1B]Q +

(nLn+l - n7tv..)R. From Lemma 1, P(v - m + 1) is positive semi-definite. Therefore, Vy E Rm •

-- yVy > 0 because Q is positive semi-definite, R is positive definite and n,,-,+, - n,-, > 0. This

implies that V is positive definite. hence the inverse matrix exists.

Theorem 1 Given D,, K(i) (i = 0, 1, 2, ... , v-I) obtained from the above procedure are the optimal

feedback gains which minimize the cost function JM (and J'f) on [0, MA).
\.

Proof Note that given Dr, JM is a convex function of u(n,), i = 0, 1, ... , V - 1. Thus the

above feedbac]k control law is optimal.

Lemma 3 If p q andD, , then Jk Ž J' where J' and Jf are the optimal costs of

controls which change controls at time instants in D, and D, respectively.

Proof Suppose that J7•. < Jý, then, in controlling the system with D,? if we do not

change controls at time instants in Dq - Dp and change controls at time instants in Dp to the same

control inputs that were exercised to get J° with Dy., we obtain JM• which is eauaml to J,. This

contradicts the fact that J° is the minimum cost obtainable with Dq since we have found JMq

which is equal to J',, and therefore less than J,. Hence, JI > J7.

This lemma implies that if we do not take computation cost, a, into consideration, then the

more control exercising points, the better the controller is (less cost). With the computation cost

being included in the cost function, the statement above is no longer true. Therefore we need to

search for an optimal DL, which minimizes the cost function J•. The following sections provide a

detailed discussion on searching for such an optimal solution. Note that if we let D, = DM then

the optimal temporal control law is the same as the traditional linear feedback optimal control law.

49

3.3 Optimal Temporal Control Law over D,, Space with v Given

When the number of control changing points, v, and an initial system state z(O) are given, we
search over a set of possible D1,s and u(D,)s such that the cost function JM is minimized. This
can be done by varying v - 1 control changing time instants, ti, i = 1,2,..., v - 1 (since to = 0)

over the discrete set, DM = {0, A, 2A,..., (M - 1)A) and applying the technique developed in the

previous section for each given D,. Let us denote such a D, which minimizes JM as DI. Note
that when v is given, minimizing .M is equivalent to minimizing Ji¢. Since both D•, and u(D•)
are control variates, to be able to find a global optimal solution, either an exhaustive search or

some global search methods like Genetic Algorithm or Simulated Annealing should be considered.

tafer wepresent a n•umerical twampk %n which an exhaustive search with Steepest Desceni Search
method is used. Searching for a globally optimal solution for a temporal controller calls for further

research.

3.4 Optimal Temporal Control Law

Assume that a maximum number of control changing points, , is given. By varying V from
1 to v,,m, we can find DI. to obtain a globally optimal temporal controller which minimizes JM"
This can be done by first searching for D' for each given v and then comparing the cost function
JM = JM + vy at each D', v = 1,2.. That is, let J' = xT(0)P(0)x(0)+ vy where

P(0) is calculated at DI as in the previous section. Then we can obtain a global minimum cost
= mmi,<,<,<,.{J. } and an optimal number of control changes, v0. at which = J".

3.5 Terminal State Constraints

The terminal state constraints may be used to check if the optimal temporal controller with D'.
cam drive the system state to a permissible final state within a given time. Let Xj be a set of

allowed terminal states, if x(n,,) E Xj, then the control law is said to be stable in terms of the
terminal state constraints and not stable if z(n,,) ' Xj. If the globally optimal temporal controller

obtained from the above procedure is not stable, v" should be increased until a stable one is found.

One way of specitying terminal state constraints for regulators might be I x(M)i 1_< ci where z(M)i
is the ith element of z(M) state vector.

50

3.6 Algorithm to Derive an Optimal Temporal Controller

To summarize the above discussion, we provide in Figure 2 a complete algorithm to search for a

globally optimal temporal controller under the assumption that the initial state x(O) is given.

In the algorithm, a neighbor of D, = {noA, nA, n2A,... , ,-jA) is defined to be any member

ofaset N(Dv,)= {{-oAnlA,...,n A).I} I n'-n, J 1, i= 1,2,...,v- I).

-- 3.7 Optimal Temporal Controllers over an Initial State Space

Note that D' might become different if a new initial system state £(O) is used instead of z(O) when

the state vector is in R"X' where m > 2. This is because the cost function JM = zT(0)P(0)z(0)

depends on x(O) as well as P(O). Thus, D* is dependent on the initial state x(O). However, when

m = I it can be shown that D' is independent of any initial state. To see this let x(O) = ki(O) E R1Z

and P(O) and .25(0) be the optimal matrices with initial states z(O) and i(O), respectively. i.e.,

JM(z(O)) = z(O)P(O)z(O)

JM(E(0)) = j(0)P(0)j(0)

From the optimality of .P(O) with respect to E(0),

iJ(O)P(O)i(o) > •T(o)P(o)i(o) (25)

Multiplying the above ineoualitv by k-2 we have

k2 Jr(O)P(O)i(O) = xZ(O)P(O)x(O)

> k2•(0)P(0)X(0) (6
= ZT(O)P(O)x(O) (26)

On the other hand, due to the optimality of P(O) we have

JZ(o)2P(o)z(o) >_ =T(o)P(o)x(o) (27)

Therefore, P(O) = P(O). This implies the optimality of P(o) and D/ for any initial state

z(0) E ?Z1.

Generally sDealing, the above result will not hold for 7n > 2 cases. However, using the same

argument discussed above we can prove that for any initial state x(O) = k-i(O). z(O) and ±(0) will

have the same/D' as well as the same 9(0).

51

V0 = 1

for v = I to

/* Several different search starting points */

for i = I to N umInitPts, {
D, = D'n''

/* Iterate until a local minimum is found - Steepest Descent Search */

while (MinimumFound != True) {
Find optimal costs for neighboring points of D, using theorem 1

if (JT has a Local Minimum at D,)

then J

MinimumFound = True

J• = Cost(J•) at D")
else

D, = a neighbor of Dh. with the smallest J-4

}
=

then{

-igure 2: Complete algorithm to find an optimal temporal controller.

52

4 Implementation

To implement temporal control, we need to calculate and store K(i) matrices in (22) and use them

when controlling the system utilizing (23). Note that in traditional optimal linear control a similar

matrix is obtained and used at every time instant in DM to generate control input value. While

the feedback gain matrices for traditional linear optimal controller are independent of initial states,

the number of control exercises, v, and K(i) matrices are dependent on initial states for temporal

control systems. But, if the possible set of initial states is in R-1 they are independent of the initial

states. Effective deployment of temporal control requires that we know the range of initial state

values and generate .U(i) matrices for each group. A sensitivity analysis is required to determaine

how many distinct matrices need to be stored.

In order to implement temporal control we require an operating system that supports scheduling

control computations at specific time instants. The MarutJ system developed at the University of

Maryland is a suitable host for the implementation of temporal control [10, 8, 7]. In Maruti, all

executions are scheduled in time and the time of execution can be modified dynamically, if so

desired. This is in contrast with traditional cyclic executives often used in real-time systems, which

have a fixed, cyclic operation and which are well suited only for the sampled data control systems

operating in a static environment. It is the availability of the system such as Maruti that allows

us to consider the notion of temporal control, in which time becomes an emergent property of the

system.

5 Example

To illustrate the advantages of a temporal control scheme let us consider a simple example of rigid

body satellite control problem [12]. The system state equations are as follows:

x(kA) 0 [r]z(k) + [O U(k)

(k)= [1 1(k)

where k represents the time index and one unit of time is the discretized subinterval of length

L = 0.05. The linear quadratic performance index J7 in (5) is used here with the following

parameters.

53

0.6

0.4

0.2

Figure 3: Optimal Linear Control with A = 0.05.

R = 0.0001

p = 0.02 & 0.01

M = 40

A = 0.05

c = 0.01, i= 1,2 2

X(0) = 0.5 1 (28)
L0. 5 J

The objective of the control is to drive the satellite to the zero position and the desired goal

state is zx = 10, 0]7. The terminal state constraint is I xi(40) 1•_ ci i = 1,2. With the equal

sampling interval A = 0.05 and M = 40 the optimal linear feedback control of this system has cost

function JM = 0.984678 (without computational cost) and Jý = 1.784678 (with computational

cost) and is shown in Figure 3. The terminal state constraint is satisfied at 0.8sec.

If we apply the temporal control scheme presented above to this problem with p = 0.02 we find

that the optimal number of control changes for this example is 3 and D' = {0, 2A, 10A} with a

cost Jf = 1.08388. Note that the 40 step optimal linear feedback controller given above has a cost

Jý = 1.784678 when computation cost is considered. Table 1 shows how this optimal controller

is obtained when we set i, 1 .: = 7. Figure 4(a) shows the system trajectory when this three-step

optimal temporal controller is used to control the system. This trajectory satisfies the terminal

state constraint at 0.8sec as well. Also, the maximum control input magnitudes, I U Imc., in both

54

n DL, ICost(Ji) with u -- 0.02 Cost(JM) with p = 0.01

I 40) 4 .6 3 0 S9 + = 4.65089 4.63089 +.u= 4.64089

2 {0, 1) 1.44603 + 2, = 1.4S603 1.44603 + 2u = 1.46603

3 {0, 2,10} 1.02388 + 3,u= 1.08388 1.02388 + 3= 1.05388

4 {0, 2,9,11) 1.02224 + 4y = 1.10224 1.02224 + 41 = 1.06224

5 {O,1,3,8,11) 0.996968+ 511 = 1.096968 0.996968+ 5y = 1.046968

6 {0,1,3,8,1!,24} 0.996746+6y = 1.116746 0.996746+6y = 1.056746

7 0,1 ,3,8, 11,23,25) 0.996745+7A= 1.136745 0.996745+7j7y= 1.066745

Table 1: Calculating optimal temporal controllers.

controllers lie within the same bound B = 50, which may be another constraint on control.

The optimal temporal controller found with u = 0.01 has v = 5 and D' = 40, A, 3A, 8A, 11A)

with a cost JM = 0.996968. Note that this cost is even less than 1.01269 which is obtained from

the optimal controller with equal sampling period 0.1sec and 20 control changes.

If we change control values only at three time instants with equal sampling period, 13M =

0.65sec, the total cost incurred is 2.2823(without computational cost) on the time interval [0, 2].

The cost is more than twice that of our optimal temporal controller and the terminal state constraint

is not satisfied even at the end of the controlling interval of 2.Osec. Figure 4(b) clearly shows the

advantages of using an optimal temporal controller over using an optimal controller of equidistant

samplings. Their performances are noticeably different though both of them are changing controls

at three time instants. It is clear that the optimal temporal control with three control changes

performs almost the same as 40 step linear optimal controller does. This implies that enforcing the

constant sampling rate throughout the entire controlling interval may simply waste computational

power which otherwise could be used for other concurrent controlling tasks in critical systems.

Obtaining D' for this example was simple since J4o has only one minimum over the entire set

of possible D3s on 10, 40A]. Figure 5(a) and Figure 5(b) show that J40 has only one local(global)

minimum at D' = {0, 2A, 10A). We got this optimal D3 by doing steepest descent search with the

starting point D"i' = 40, A, 10A) after searching for only three points, {0, A, 10A), {0, 2A, 10A),

40, 3A, bOA). Also, Figure 5(a) shows that choosing n2 has greater iniuence on the total cost than

n2 since the cost varies more radically along the na axis in the figure. This means that the initial

stage of the control needs more attention than the later stage in this linear control problem.

But, if we change one of the parameters of performance index function, R, from 0.0001 to 0.001

we get two local minima at D' {0, A,2A} -.nd D• - {0,3A,19A}, among which D' is the

55

M

3

5.2

(b)

Figun'e 4: Control trajectories with 3 control changes. (a)Optimal temporal control with D'

j0: 2A: 10Ag). (b)Op-,imal linear control with 13L (0.65sec) period.

56.

(a.)4

(b)

Figure 5: Cost function distribution over (7ni, n2). (a)Costs on Ds space. (b)Costs near D

.{O. 2A, 10A).

57

U

C..t

.41

Figure 6: Costs near D' and DI with .R = 0.001.

optimal one with less cost. Figure 6 shows this fact. In this case we need to use steepest descent

search method at least twice with different search starting points to get an optimal solution. We

implemented this steepest descent search algorithm in Mathematica and used it to generate D' for

several examples by varying v. For our examples of linear time invariant system control problems

the number of local minima was not so large that we could efficiently apply this search method

just a few times with different initial Dis to get a global minimum without doing an exhaustive

search over the entire D, space.

6 Discussion

Employing the temporal control methodolon, in concurrent real-time embedded systems will have

a significant impact on the way computational resources are utilized by control tasks. A minimal

amount of control computations can be obtained for a given regulator by which we can achieve

almost the same control performance compared to that of traditional controller with equal sampling

period. This significantly reduces the CPU times for each controlling task and thus increases the

number of real-time control functions which can be accommodated concurrently in one embedded

system. Particularly. in a hierarchical control system if temporal controllers can be employed for

lower level controllers the higher level controllers will have a great degree of flexibility in mazaging

resource usages by adjusting computational requirements of each lower level controller. For example,

in emergency situations the higher level controller may force the lower level controller to run as

58

infrequently as they possibly can (thus freeing computational resources for handling the emergency).

In contrast, during normal operations the temporal control tasks may run as necessary, and the

additional computation time can be used for higher level functions such as monitoring and planning,

etc.

In addition, the method developed in Section 3.2, which calculates an optimal controller when

control changing time instants are given, can be applied to the case in which the control computing

time instants cannot be periodic. For example, when a small embedded controller is used to

control several functions, it may be a lot better to design a temporal controller for each function

-- such that the required computational resources are appropriately scheduled while retaining the

- required degree of control for each function.

7 Conclusion

In this paper we proposed a ternporal control technique based on a new cost function which takes

into account computational cost as well as state and input cost. In this scheme new control input

values are defined at time instants which are not necessarily regularly spaced. For the linear

control problem we showed that almost the same quality of control can be ach3ieved while much less

computations are used than in a traditional controller.

The proposed formulation of temporal control is likely to have a significant impact on the

wa, concurrent embedded real-time systems are designed. In hierarchical control environment,

this approach is likely to result in designs which are significantly more efficient and flexible than

traditional control schemes. As it uses less computational resources, the lower level temporal

controllers will make the resources available to the higher level controllers without compromising

the aualitv o-i control.

References

[1] A. Belleisle. Stability of systems with nonlinear feedback through randomly time-varying

delays. IEEE Transactions on Automatic Control, AC-20:67-75, February 1975.

12] P. Bellman. Adaptive Control Process: A Guided Tour. Princeton,NJ: Princeton University

Press, 1961.

[3] R. Bellman. Bellman special issue. IEEE Transactions on Automatic Control, AC-26, October

1981.

59

[4] P. Dorato and A. Levis. Optimal linear regulators: The discrete time case. IEEE Transactions

on Automatic Control, AC-16:613-620, December 1971.

15] A. Gosiewski and A. Olbrot. The effect of feedback delays on the performance of multivariable

linear control systems. IEEE Transactions on Automatic Control, AC-25(4):729-734, August

1980.

[6] K. Hirai and Y. Satoh. Stability of a system with variable time delay. IEEE Transactions on

Automatic Control, AC-25(3):552-554, June 1980.

[7] S. T. Levi, Satish K. Tripathi, Scott Carson, and Ashok K. Agrawala. The MARUTI hard J
real-time operating system. ACM Symp. on Op. Syst. Principles, Op. Syst. Review, 23(3),

July 1989.

[8] Shem-Tov Levi and Ashok K. Agrawala.. Real Time System Design. McGraw Hill, 1990.

[9] Z. Rekasius. Stability of digital control with computer interruptions. IEEE Transactions on

Automatic Control, AC-31:356-359, April 1986.

[10) Manas Saksena, James da Silva, and Ashok K. Agrawala. Design and Implementation of

Maruti-II, chapter 4. Prentice Hall, 1995. In Advances in Real-Time Systems, edited by Sang

H. Son.

[11] K. G. Shin and H. Kim. Derivation and application of hard deadlines for real-time control

systems. IEEE Transactions on Systems, Man and Cybernetics, 22(6):1403-1413, November

1992.

[12] G.S. Virk. Dicital Computer Control Systems, chapter 4. McGraw Hill, 1991.

[13] K. Za~hr and C. Slivinsky. Delay in multivariable computer controlled linear systems. IEEE

Transactions on Automatic Control, pages 442-443, August 1974.

6

60

REPORT DOCUMENTATION PAGE- o C7•.o?8

- *.~ * .V. ~rC *... . t.*0 - 'ow 0 A*0..O r 0.0 fecO. 100. 1% 2 0* P C 2D1,03'4~ Wml

1. AGENCY USE ONLY ILeve bIJnc, 2. REPORT DATE.. 3"REPORT -YPE AND DATES COVERED

I Jul 1995Technical Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Designing Temporal Controls N00014-91-C-0195 and
DSAG-60-92-C-0055

S. AUTHOR(S)

Ashok K. Agrawala, Seonho Choi & Leyuan Shi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B B. PERFORMING ORGANIZATION
REPORT NUMBER

University of Maryland CS-TR-3504
A.V. Williams Building LMCS-T R-95-80 1
College Park, Maryland 20742

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

AGENCY REPORT NUMBER
Honeywell Phillips Labs
3660 Technology Drive 3550 Aberdeen Ave. SE
Minneapolis, N 55418 Kirtland AFB, NM

87117-5776

1I1. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximtrr- 2D-worcs)
Traditional control systems have been designed to exercise control at regularly

spaced time instants. When a discrete version of the system dynamics is used, a
constant sampling interval is assumed and a new control value is calculated and
exercised at each time instant. In this paper we formulate a new control scheme,
temporal control, in which we not only calculate the control value but also decide
time instants when the new values are to be used. Taking a discrete, linear, time-
invariant system, and a cost function which reflects a cost for computation of the
control values, as an example, we show the feasibility of using this scheme. -We
formulate the temporal control scheme as a feedback scheme and, through a numerical
example, demonstrate the significant reduction in cost through the use of temporal
control.

14. SU7E• TERMS 15. NUMBER OF PAGES

22 pagesComputing Methodologies 16. PRICE CODE

7. SECURITY CLASSIFIC-TION 1 1. SECURITY CLASSIFICATION 'IS. SECURITY CLASSIFICATION 20. LIMiTATION OF ASTRAC
OF REPORT OF THIS PAGE OF ABSTRACI
'Unclassified I Unclassified Unclassified Unlimited

:":SN 75-t1-01 -0 .SS-5500 : - ;-orm 295 !Rev 2-89)

61

U

II

I

!

.il

62 I

Scheduling an Overloaded Real-Time System

Shyh-In Hwang, Chia-Mei Chen, and Ashok K. Agrawala

Institute for Advanced Computer Studies

Department of Computer Science

University of Maryland, College Park, MD 20742

Abstract

The real-time systems differ from the conventional systems in that every task in the real-

time system has a timing constraint. Failure to execute the tasks under the timing constraints

may result in fatal errors. Sometimes, it may be impossible to execute all the tasks in the task

set under their timing constraints. Considering a system with limited resources, one solution

to handle the overload problem is to reject some of the tasks in order to generate a feasible

schedule for the rest. In this paper, we consider the problem of scheduling a set of tasks without

preemption in which each task is assigned criticality and weight. The goal is to generate an

optimal schedule such that all of the critical tasks are scheduled and then the non-critical tasks

are included so that the weight of rejected non-critical tasks is minimized. We consider the

problem of finding the optimal schedule in two steps. First, we select a permutation sequence

of the task set. Secondly, a pseudo-polynomial algorithm is proposed to generate an optimal

schedule for the permutation sequence. If the global optimal is desired, all permutation sequences

have to be considered. Instead, we propose to incorporate the simulated annealing technique to

deal with the large search space. Our experimental results show that our algorithm is able to

generate near optimal schedules for the task sets in most cases while considering only a limited

number of permutations.

"This work is supported in part by Honeywell under N00014-91-C-0195 and Army/Philips under DASG-60-92-
C-0055. The views, opinions, and/or findings contained in this report axe those of the author(s) and should not be

interpreted as representing the oficial policies, either expressed or implied, of Honeywell or Army/Phillips.

63

U

I Introduction

Real-time computer systems are essential for all embedded applications, such as robot control, flight

control, and medical instrumentation. In such systems, the computer is required to support the

execution of applications in which the timing constraints of the tasks are specified by the physical

system being controlled. The correctness of the system depends on the temporal correctness as

well as the functional correctness of the tasks. Failure to satisfy the timing constraints can incur

fatal errors. How to schedule the tasks so that their timing constraints are met is crucial to the

proper operation of a real-time system.

As an example of an embedded system, let us consider the air defense system which monitors

an air space continuously using radars. Whenever an intruder is identified, the embedded control

system charazterizes it and proceeds to initiate the responsive action in a timely manner. The

temporal constraints for this phase of processing are different depending on the intruder, whether

it is a missile, a fighter, a bomber, a dummy, etc. Such a system is designed to handle a number of

intruders concurrently. If the processing requests exceed the capacity of the system, we expect the

system to handle a set of the most significant intruders, and not any arbitrary set of intruders. This

involves rejecting the processing of some real-ibme tasks based on their importance. In this paper,

we consider the problem of creating a schedule for a set of tasks such that all critical tasks are

scheduled, and then, among the non-critical tasks we select those which can be scheduled feasibly

while maximizing the sum of the weights of selected non-critical tasks.

As all systems have finite resources, their ability to execute a set of tasks while meeting the

temporal requirements is limited. Clearly, overload conditions may arise if more tasks have to be

processed than the available set of resources can handle. Under such overload conditions, we have

two choices. We may augment the resources available, or reject some tasks (or both). In [8), a

technique was presented to handle transient overloads by taking advantage of redundant computing

resources. Another permissible solution to this problem is to reject some of the tasks in order to

generate a feasible schedule for the rest. Once a task is accepted by the system, the system should

be able to finish it under its timing constraint. Some algorithms may have been shown to perform

64

well under low or moderate resource utilization. HoweveT, their performance degrades if the system

is overloaded [2). For example, the EDF algorithm has been shown to be optimal for a periodic task

set 16), If there exists a feasible schedule for the task set, EDF can come up with one. However,

if the task set is not feasible, EDF may perform unsatisfactorily. The reason is that a task with

urgent deadline may not be able to finish before its deadline. But, due to its urgent deadline, the

task has a high priority to use the processor and thus keeps wasting the CPU time until the task

expires after its deadline. The waste of CPU time may further prevent other tasks from meeting

their deadlines. The other problem is that there is little control over which tasks will meet their

deadlines and which will not.

For an overloaded system, how to select tasks for rejection on the basis of their importance

becomes a significant issue. When the tasks have equal weight, an optimal scliedule can be defined

to be one in which the number of rejected tasks is minimized. In our previous study 131 we used a

super sequence based scheduling algorithm to compute the optimal schedule for the tasks. In this

paper, the criticality of the tasks are taken into consideration. Basically, if a task can not meet

its deadline, it is rejected so that the CPU time would not be wasted. Secondly, we would like to

schedule tasks such that the less important tasks may be rejected in favor of the more important

tasks. We classify tasks into two categories: critical and non-critical. The critical tasks are crucial

to the system such that they must not be rejected. The non-critical tasks are given weights to

reflect their importance, and are allowed to be rejected. A schedule is feasible if all cmritk.1 tasks

in the task set are accepted and are guaranteed to meet their tinung constraints. If there exists

no feasible schedule for the task set, the task set is considere infeasible. The loss of a schedule is

defined. to be the sum of the weights of the rejected non-critical tasks. A schedule is optimal if it

is feasible and the loss of the schedule is minfimum.

We first propose a Permutation Scheduling Algorithm (PSA) to generate an optimal schedu:-

for a permutation, which is a well defined ordering of tasks. When it comes to scheduling a task set

of n tasks, in the worst case there might be up to n! permutations to consider. We propose a Set

Scheduling Algorithm (SSA) which incorporates the simulated annealing technique [9) to deal with

the large search space of permutations. PSA is invoked by SSA to compute the optimal schedule for

65

II

each permutation. Taking the feedback from the schedulabilty and loss of the schedule generated

by PSA, SSA is able to control the progress of search for an optimal schedule for the task set. Our

experimental results show that SSA is able to generate feasible schedules for task sets consisting of

100 tasks with success ratios no less than 98% and loss ratios less than 10% for most cases while

searching less than 5,000 permutations. For each permutation, the average number of schedules

computed to generate an optimal schedule by PSA, which is invoked by SSA, is usually less than

500. The SSA algorithm can be considered efficient in dealing with the exponential search space

for coming up with a satisfactorily near optimal schedule.

In the following section, we define the scheduling problem. In section 3, we present the idea

about how to schedule a permutation. In section 4, we incorporate the technique of simulated

annealing and discuss how to schedule a task set. In section 5, the results of our experiments are

presented, which is followed by our conclusion.

2 The Problem

A task set is represented as r = {mr2,...,m}. A task r; can be characterized as a record of

(ri.cj.di,wi), representing the ready time, computation time, deadline, and criticality of the ith

task. Time is expressed as a real number. A task can not be started before its ready time. Once

started, the task must use the processor without preemption for ci time units, and be finished

by" its deadline. If a task is very important for the system such that rejection of the task is not

allowed, w,; is set to be CRITICAL. Otherwise, w; is assigned an integral ,value to indicate its

importance, and is subject to rejection if necessar,. A permutation sequence, or simply abbreviated

to a permutation, is an ordered sequence of tasks in the task set. Scheduling is a process of binding

starting times to the tasks such that each task executes according to the schedule. Note that a

non-preemptive schedule on a single processor implies a sequence for the execution of tasks. For the

convenience of our discussion, we hereafter use a sequence to represent the schedule in the context.

A permutation is denoted by ix= (r',,.. 41ro), where -r is the ith task in the permutation. A prefix -'

of a permutation is denoted by 4k = (ri,...,.'k)

66

To schedule a task set, we need to take into consideration the possible permutations in the task

set. We first consider an algorithm for scheduling a permutation. The finish time of a schedule is

the finish time of the last task in the schedule. Let Sk(i) denote a schedule of p.k with finish time

no more than t. We use W(Sk(i)) to represent the weight of Sk(t), which is the sum of the weights

of non-critical tasks in the schedule. A feasible schedule of ak is defined as follows:

Definition: Sk(t), I < k < n, is a feasible schedule of Yk at t, if and only if:

1. Sk(f) is a subsequence of/lk,

2. the finish time of Sk(t) is less than or equal to t, and

3. all critical tasks in Ik are included in Sk(t).

An optimal schedule of Yk is defined as follows:

Definition: Crk(t) is an optimal schedule of /k at t, if and only if.-

1. ck@() is a feasible schedule of ;Lk, and

2. for any feasible schedule S;.(t) of /k, W(ak(t)) > 147(Sk(t)).

In other words, an optimal schedule is a feasible schedule with minimum loss. There are possibly

more than one optimal schedules for pk with finish time less than or equal to t. We donote by
1,(t) the set of all of the optimal schedules for jk at t. Hence, if Sk(t) E Sk(i), Sk(t) is an optimal

schedule for uk at t.

The scheduling problem considered here is NP-complete. To prove that, its related decision

problem, which is defined to be computing a feasible schedule with loss no more than a given

bound, can be easily shown to be NP-complete. This can be done by restricting to PARTITION

problem 11] by setting r; = 0, w, = c, d;" c1, for 1 _< i < n.

3 Scheduling a Permutation

We consider the problem of finding an optimal schedule for the task set in two steps - select a

permutation, and find an optimal scheduie ior the permutation. The methodology is presenteA in

Figure 1.

67

Loop I. Chiom & permutaion g. of r
Loop 2_ for *k, k=-1,2,...,a

Loop 3: compute Uk(t)

Figure 1: Methodology

Cleary), to find the optimal schedule for the task set, all possible permutations have to be

considered. Bow to search the permutations will be addressed in section 4. In Loop 3, optimal

schedules for j•k are computed at some time insta'nts. Next, we discuss how to compute Uk(t) for a

given I in the following, and then discuss how to determine the time instants for /k-

3.1 Computing Uk(t)

We use dynamic programming to compute aOk() based on C,] (i'), with ' _< t. The criticality of

7k plays am important role in computing ak(t).

If rk is a critical task, we have to schedule it, possibly at the cost of rejecting some of the

non-critical tasks. Hence, ak(t) = Sk-l(i') e 7k, for some schedule Sk-.(i'), where E means

concatenation of the sequence and the task. The finish time of Sk_1(f) must be no more than

I - ck in order to accommodate rk, which leads to i - ck. The best candidate could be

k-l (% - Ck). Hence,

Ck (1) = j_ f- cik) e rk,()

which can be seen in Figure 2. Note that cr(t) only exists for a proper range of t. That is, ck(t) is

infeasible when t is beyond the proper range, e.g., f < rk + ck, or if Ok-.(t - ck) is infeasible. The

range would be considered in details later.

If Tk is non-critical, our concern is to obtain as large a weight for the schedule as possible, while

the critical tasks accepted previously must be kept in the schedule. Computation of ak(i) is based

68

a

Figure 2: Scheduling for rk

whic) (th

wvhich can be seen in Figure 2. The factors for making the choice are the feasibility and the weights

of the two candidate schedules. That is, the ýhosei, 5cheu4e has to be feasible in the first place,

and has a weight more than or equal to the other.

3.2 Time Instants for Computing ck(t)

From Equations 1 and 2, the computation of ok,(t)is based on the results of C-k (t) and ak.I(t--Ck).

We do not need to look for all possible values for t. We can get the idea aboul b owto deterininethe

time instants t by a simple example in Figure 3. lie. reay times, computation times, deadlines,

and weights are given to the tasks in g3 = (1i, 12, r3).

The following schedu|e5 for A,3 can be easily verified.

O3(f) = INFEASIILE fort< 6
"6(t = (w(7C)t))= 0 for 6:< t < 7.5

a(t) = (2, 73) w((t)) = 5 for 7.5 < t <9

C3 (t) = (TI,7 3) W(03 (t)) =10 for 9 -t

69

I

0.5 c 1 = 6 12
n II I II I }W3 = 10

2 c2 = 3 7.5

T 1W 2 ==5

3.5 c3 = 2.5 10

r3 w_ = CRITICAL

Figure 3: "3 = (r7,- 2 ,r 3)

In general, there exist a number of subranges in each of which the schedules are exactly identical,

which are illustrated in Figure 4. We only need to compute the schedules at the time instants

which delimit the subranges, i.e., 6,7.5, and 9. We call these time instants scheduling points. The

scheduling points can be determined by the timing characteristics of the tasks.

0 6 7.5 9 12

Figure 4: Identical subranges

3.3 Definition of Scheduling Points

We dcnote the jth scheduling point for lk by \jj, and call j the index of \kj. Hence, ck(jkj) de-

notes an optimal schedule for AA at the scheduling point Aij. Let vk be the total number of schedul-

ing points at which we need to schedule uk. For simplicity, Ak denotes the set of \k,,, Ak,2,. . ,

and ak the set of o(4 .1), c(k.2),. (A,). The scheduling points are defined as follows.

Definition: The set of scheduling points, A4, is complete if and only if:

1. for any f < Ak,1, Zk(t) is empty,

2. for aly Xkj % < • A•+l, forj= 1,...,vk - 1, k,(Xkj) E 'Ek(), and

3. for any t >_ X,•&, \k,(4,) E z&(t).

Note that Ek(t) being empty means that there is no feasible schedule with finish time less

than or equal to t. And also remember that ak(4dj) E Zk(t) means that ok(\.j) is an optimal

70
I

schedule for Ilk at t. The completeness of scheduling points indicates that all ef the optimal

schedules at the positive real time domain can be represented by the optimal schedules computed

at the scheduling points. In a& tioa, the set of scheduling points, Ak, is minimum, if and only if

W4'(aTk(Ak,j)) < W•(ak(AkJ+1)), for any I < j _Vk - I. This ensures that there does not ex3st any

redundant scheduling point which, if removed, does not violate the completeness of the scheduling

points. The sets of scheduling points that we will discuss are complete and minimum.

3.4 An Example for Deriving Scheduling Points

The values of Ak depend on the temporal relations between 'rk and 4.-1. The example in Figure 5

is used to illustrate the relations. We only describe the idea of deriving scheduling points by the

example, and will discuss in more details later. As•une that there are 5 scheduling points for pk-,

and we consider to compute Uk based on Ck-1. Tecurrent task, T1k1 may be critical or non-critical.

scheduling points for Isk-i

, ! 1 1 1 1 1 tim e

scheduling points for Ak : Tk + ck Ak-1,2 + Ck 14- + ck

rk *k + Ck 4

Figure 5: Scheduling Points

First, let us assume that rk is critical, which means that -r must be the last task in any feasible

schedules for uk. A schedule for ;Lk is thus a schedule for Al-I concatenated by rk. Hence, the

optimal schedules for Ak can be computed by appending 7r, to ._(). j = !,.. ,l_1 . On~e.

restriction is that rk must be able t execute 0uwring its time window, from rk to di. Hence, the

scheduling points are Ak-_j + ck, j = 1,.. -, u subject to the timing constraint of j.. In the

example, because rk > 4k1,2, the first scheduling point is Ak.I = rk + ck. The first and the rest

scheduling points are expressed in Equations 3-5. Notice that 4-1,4 + ck > d4. Hence, there aze

71

only 3 scheduling points for Jk.

Ak. = rk + Ck and Uk(Akk.) = ak- k-..41,1) e rk (3)

Ak.2 = Ak-1,2 + Ck and Uk (Ak, 2) = Ch -(,A1 1,2) E 7k (4)

\k,3 = Ak-1 + Ck and aok(Ak.3) = ak-1 (Ak.,.3) ED k (5)

On the other hand, let us assume that 1rk is non-critical. As a non-critical task, rk is not necessarily

included in the schedule of Ak. Whether to include rk or not depends on how much weight may be

gained by including rk. If rk is included in the schedules, the new possible scheduling points for Ilk

are expressed in Equations 6-8.

A = rk + ck and C(' A(A) = k-.1(,Xk.1,1) e rk (6)
Ak, 2 A=1-1, 2 + ck and EAC2) = Ok-Ak-l.2) e Tk (7)

Cr''\k2 Cr-L3÷ c-1,nd

3 = 4-(1,3 + c and uk4,3)) = - (-1,3) e Tk (8)

If 7k is not included, the scheduling points for ;L are Ak141 , j = 1,.. ., . The scheduling points

for PA can be derived by, first, merging and sorting A' and A\k-, which gives
I

S•a,,•-•s,,•_. ,2 , '\k• 31.a ,Ak •s (9)

Then, the resultant array of scheduling points should foliow the rule that the weights of the optimal

schedules it the scheduling points in the resultant array in Equation 9 should be strictly increasing.

We remove any scheduling point if necessary.

3.5 Deriving Scheduling Points

By the example illustrated in Figure 5, Ak can bo derived from A,-, and rk. Note that a scheduling

point indicates the finish time of a schedule. If we want to append rk to ok-.1 (Ak- 1j), rk can not be

started before Ak_1j. This implies thal \; can be determined by the temporal relations between

A;,-,, the finish times of o, and the start time of -r. Specifically, we need to explore the temporal

relations between the earliest start time, rk, the latest start time, dk - ck, of ?k, and the lower and

72 I

upper bounds to be defined below. We define the lower bound LI-I Skk_,, and the upper bound

In particular, they have the following meanings.

Lk•-: the largest time instant such th&t' there is no feasible schedule for 4k-I with

finish time less than Lk-i.

UA.--: the least time instant such that the co0timal schedule for /k- with finish time

greater than Uk-I can be (k-I(,Xk-I.•,-,)•

The six possible temporal relations in Equations 10-15 can be used to determine),.

dk.- cK < Lk-i _ k-
(n0)

rkj <Lk_ 1 < dk- Ck < Uk-I
(11)

L.-, < rk : dk -Ck < Uk-1
(12)

rk • Lk-I U- :5- dk -:3)

The temporal relations are illustrated in Figure 6, and can be summarized in three cases. The

method for constructing scheduling points according to the temporal relations is discussed next.

The correctness of the method, i.e., the coinpl~eefle&nesand minimization of the scheduling points ,

is verified later.

3.5.1 -k is Critical

The tasl- r must be the last task in any feasible schedule of A.- Remember that ak-(t) can be

computed by Equation 1. In the following, we discuss how to derive the sched&Uling points for the

three cases. The readers may refer to the algorithm in section 3.7 for detail,.

Case 1 d4 - Ck < Lk--: 1; is not feasible. Remember tht- there exists no feasible schedaue for

Ilk with finish time less than Lk-j, due to 0i9 completeness of tcheduling points, and that dk - ck

is the latest start time for T k. Hence, jak is not feasible, and thus the whole permutation, /, is not

feasible.

73

1

7 k
rk dk - ck

Lk-I Uk-i (10) ---- case 1

Lk-A Uk-. (11) -

Lk-I Uk-I (12) c-- case2
Lk-1 Ui-I (13)

LkI Vk-I (14) _!

L._I Uk- (15) ---- case 3

Figure 6: Temporal relations

Case 2 (rk _< Lk-I_ d - ck) or (Lk-I < rk <_ Uk-i) : The scheduling points for ilk is the

set of A,_•j + Ck, J = 1,.. .-, V subject to the constraints that -k must start after rk, and finish

before dk. Specifically, Ak can be derived by Equations 16 and 17.

Ak., = maZ(•,k-l. + Ck, rk + ck) (16)

Let J,•i• and J,.= denote the smallest and the largest integers of j satisfying 0k4 1 < ,lk-lj+ck <_ dk.

The rest of the scheduling points can be computed by

AA.j = Ak-ij + ck, where J .. j < J... and i = j - J.i + 2 (17)

N'ote that vk = J,,= - Ji, + 2. The example Eiven in Figure 5 falls in this case.

Case 3 Uk_3 < rk: there is only one scheduling point. Since rk is the earliest start time for rk, I
the only scheduling point is 7k + Ck.

3.5.2 7k is Non-critical

Remember that ak(i) can be computed by Equation 2. The non-critical task -rk is not necessarily

included in the schedule for Ak. Whether to include rk or not depends on how much weight may
-- |

be gained by including -k. Let us consider the three cases.

74

Case 1 dk - Ck < Lk_1: do nothing. The latest start time of Tk is less than the lower bound,

Lk,.- 1; hence, rk can not be included in any feasible schedule. The scheduling points and schedules

for j#k- remain the same as the scheduling points and schedules for Ik. In our implementation,

to save time and space, Ak-1 and Ak use the same memory spaces; also, Ok-1 and Uk use the same

memory spaces. So now Ak = Ak-. and Crk = Ck-1.

Case 2 (ri. < Lk-]. < d4 - Ck) or (Lk-1 < rk < Uk-1) : If rk is included, the new possible

scheduling points for Pkj is the set of A-,J + ck, i = 1,..., Vk-1, subject to the constraints that Tr

must start after rk, and finish before dk. Specifically, the new possible scheduling points , A' , can

be derived by Equations 18 and 19.

Ak.a = maz(Ak-1,1 + ck, rk + ck) (18)

Let Jmi, and Jma, denote the smallest and the largest integers of j satisfying A' < A, 1-, + ck < d4.

The rest of the scheduling points are

")ki = Ak-&J + ck, where J, i _ Jm,: and i = - Ji7 + 2 (19)

If 7- is not included, the scheduling points for gk are the old ones for Uk-1; i.e.,

"•,•-k.1 Y , . , -. (20)

It is worth mentioning that some optimal schedules may include -r, and some may not. The

scheduling points, Ak, can be derived by the following two steps.

1. Merge and sort the two arrays of scheduling points, A' and Ak-., in Elquations 18-20.

2. The resultant array of scheduling points should follow the rule that the weights of the optirmn-'

schedules at the scheduling Doints should be strictly increasing. We remove any scheduling

point that has a smaller wei-ht thln that of its preceding scheduling point in the array.

The example given in Figure 5 falls in this case.

Case 3 Uk-1 < rk: add one more scheduling point. The earliest start time of -rk is greater

"than the upper bound, Uk-.; hence, the new scheduling point is rk + Ck. The weight of the

optimal schedule computed at this scheduling point is W(ak-.(AA..,,,))+wk, which is larger than

75

W~ao._i (k-1.v,_,)). So this scheduling point must be intluded to make the set of scheduling points

for Pk complete. Note again that the scheduling points and schedules for lk-1 remain unchanged

as the scheduling points and schedules for uk; i.e., AkJ = Ak-1j and ck(Ajkj) = Uk-1(Ak1-j), for

j = 1,..., vk_.. However, \k,,, = rk, + Ck and Crk(Ak,,,,) = Uk-11 ,k- ,) E Tk, where Vk = Vk-. + 1.

3.6 Completeness and Minimization of Scheduling Points

We would like to show that the sets of scheduling points derived in the three cases are complete

and minimum. Note that cases 1 and 3 are special cases, and are not difficult to verify. Hence, we

will only briefly discuss case 2. If 7& is critical, we would like to show that If Ak,_ is complete and

minimum, Ak derived by Equations 16 and 17 is also complete and minimum.

Condition I of completeness: Due to the completeness of Ak-1, Zk-l(t) is empty when t <

Ak.-1,1. Equivalently, Ek-_(t - ck) is empty when f < ,k-1,1 + Ck. According to Equation 1,

Ck(f) = ak-l(f - ck) e 7-k. Hence, Ck(t) does not exist when t < Ak-1,1 + Ck. On the other hand,

since 7k is critical, Crk(t) does not exist when t < rk + ck, which is the earliest finish time of

•-* Therefore, Ek(t) is empty when t < Ak,l. This shows that condition I of the definition of

completeness is satisfied.

Condition 2 of completeness: Due to the completeness of -, a-(Ak-.j) E 1k-.(t), for any

Ak-..: < t < Ak-lj-],- by Equation 1, U (k-I(14-1j) E rk is an optimal schedule at A14-j + ck

for uk. Hence, ak-1 (Ak-1j) e 71 E 14(t), for ,-•-. + ck < f < Ak-_,+l + ck. By Equation 17,

,k'i = Ak-ij + ck, for i = j - J.i,, + 2, which indicates that Ck(Ak,() = ak-1(Ak-1j) E r7k. Besides,

Ak.;+1 = Aklj+l + ck, for i + 1 = j + 1 - J,.i. + 2, by Equation 17. Therefore, Uk(Ak,.) E Sk(f),

for A,; < ± < , This shows that condition 2 of the definition of completeness is satisfied.

Condition 3 of completeness: We know that v) = J,,. - J.. ",, + 2. By Equation 17, \k,,,, =

14-1.J.:. + ck, which indicates that (7k(Ac. 1,,) = (D _r(A_.1) e Tk. Due to the completeness

of A14-, Ck•- (Ak-1,J.,,) E Zk-i (t), for Ak-j,j.. < t < A-4..z+1, or just Ak- 1 jm. < if

,m,, = vk... By Equa.tion ED, 7-k-1(A,.-l.J.,) e 7 • is an optimal schedule at A\k-,,.J.J + Ck

for pj. Hence, Ck_}(Ak..' _ G,..) E 7k E F (t), for ,k-_,Jn.. + ck < t. Note that the range of

76

t< + +Ck is removed. Because Jmxis the largest integer of j satisfying + ~Ck •5 a'k,

the schedule .(a;;-l,Jm 1 (D 7-k would not be feasible. SinC-r Ck()4,,, = arI...1XkI ED 7k,

Crk(A\k,vk) E Flk(t) for A~k,uk, 5 t. This shows that conidition ý of 44 definition 'of com~pleteness is

satisfied.

Minimization: By Equation 1, W(urk(t)) = 1Wrk-1 (t - Ck) 9) 7k) = W4(C'k- 2 (t - C'k)), eince a

critical task has no weight. Because Ak..l is minimum, VV@7Ck..(Ak-l1y)) < W(Ck-j(Ak-1,)+l)),

for any 1 < vi...1 - 1. That is, (D(kl(ki 9 k) < E'~k1(k1+) 7k), for any

1 j .~- 1 By Equations 16 and 17, l'V(arkc)k-l, 1 + ck)) < (Ck(AM..1,j+1 + Ck)), and thus

l'l'(Ck(1ki)) < 14(ak(Ak,;41)), for any 1 < I •< Vk 1 This shows that \k is minimum.

If -rk is non-critical, 71. may be included or not included in the optimal schedules for Yk Assuming

that 7k is not included in any of the optimal schedules, Ak = Ak..l is complete, since Ak- is

complete. H-owe~ver) including nk may gain some more weight) so we also need to consider the

schedules including irk. If T*, is iiiluded in the optimal schedules, A' derived b~y Equl.tionz 18 and

19 is the complete set of scheduling points for the optimal schedules including 7k, by the same

reason described for the critical task. Hence, it is sufficient to construct the complete set Of 1\k

Iby selecting from A' and Ak-. 1. Since whether to include 7k or not does not afferctLbe feasibility

of the schedules, we only need to consider the weights of the optimal schedules. A zomplete set

of scheduling points indicates that the weights of the optimal schedules at these schezulingr points

should be non-decreasing. Furthe~rmore. a comple-e &ad mi-inimum set of schedulaing points in-dicaies

tha~t the weights of the optimal schedules at these kbchu.1rn peoins should be strictly increasing.

Hence, we can merge and sort the two arrays of A~' and \k-,., and remove any scheduling point

that has a. smaller weight than thal of its preceding scheduling point in the array. The resultant

scheduling points is thus complete and minimum.

3.7 The Permutation S^ých eduling Algorithm (PSA)

Algorithm PSA:

77

Input: a permutation sequence pi = (7-1 17,21 - n)

Output: an optimal schedule an(A•,.,)

Initialization: vo = 1; Ao, 1 = 0; ao(AoBA) = 0; W(Ca(Aoi.)) = 0

for k = 1 to n

when Iri is critical

case I (dk - ck < Lk-1) : (i is not feasible)

exit

case 2 (rkT < Lk-. < dk - ck) or (Lk-. < r7k Uk-):

Computation for the first scheduling point:

Ak.I = maz(xck_, 1 + ck, rk + cj-)

j = I. if Ak-I,, > Trj; otherwise, j is the greatest integer such that Ak-I _< ,rk

tCk(Ak,i) = 97k-I (Ak-1j) e rk

Loop: 5 = Ji.jn to Jm,., where Jmin and 3 ,•r denote the smallest and the largest

integers of j satisfying < A.-j + ck :5 d,,4.

i = 5 - J,. + 2

k,= Ak•-j + Ck

,= o,.-(Ak-.j)erk

vi, = J1. - J,,, + 2

I

case 3 (Uk-1 < rk) : (only one scheduling point)

AkI= Tk- + Ci,

1i(kC, ,.1)) = 1(, ,_ _

78
I

when rA. is non-critical-I

case I (dk - ck < Lk1-) : (scheduling points and schedules remain the same)

/* Do nothing; rk cannot be included in any feasible schedule *1

/* Hence, Ak = Akj and Uk = C'k-"

case 2 (rk _< Lk-_ _< dk - ck) or (LI_- < rk < Uk-.)

Computation for the first new possible scheduling point:

k. = Maz(Ak-1. + ck, rk + ck)

j = I if Ak-Il > rj,; otherwise, j is the greatest integer such that Ak-I1 :< rk

a.(k 1) = k-- (AkIj) e k

Loop: j = J1 l,, to Ymg:, where J;, and JY,,, denote the smallest and the lazgest

inepers oij satisfying A,., < Ak-l. + ck 5 dk.

i = j. - , + 2
A/,= ,- + Ck

C'(,') = Cr-l(A\-1.) e 7k

construct ak from ak,_ and a'

1) merging and sorting ,k4- and A' into one array

2) making the weights of the schedules in the resultant array strictly

increasi•g; removing any schedule off the array if necessary.

case 3 (Uk-I < rk) : (adding one more schedrlng point)

Vk = Vk-A + 1

Ak,., = rk + Ck

k(A..,, =ak-I (,k-I,,_)- r

79

= Wak..P~..1 'A~)+ Wk

/* Note that Ak•S = Akij and ak(Ak.j) = c•.-1(Ak-1j) for i = I to vk-. */

endfor

4 Scheduling a Task Set

To find an optimal schedule for the task set, we may have to consider all possible (n!) permutations.

It is possible to reduce the search space by eliminating some infeasible permutations. For example,

if d; < rj, there is no feasible schedule in which r; is placed after -j. Even after the reduction, the

search space might still be too large. We propose to use simulated annealing technique, recognizing

that while this technique reduces the search, it may yield sub-optimal results.

4.1 Simulated Annealing

Simulated annealing is a stochastic approach for solving large optimization problems. It was de-
veloped using statistical mechanics ideas to find a global minimum point in the energy space.

Kirkpatrick et al [5¶ had demonstrated the power and applications of simulated annealing to the

field of combinatorial optimization.

To find the optimal solution of the optimization problem is similar to finding the lowest energy
state of metal. The metal is melted first. Then it is cooled down slowly until the freezing point

is reached. At each temperature, a number of trials are carried out to reach the equilibrium. The
temperature has to be controlled not to drop too quick; otherwise, it is possible to be trapped

in a local rminimum energy configuration. Lower energy generally indicates a better solution.

The annealing process starts from a randomly chosen configuration, proceeding to seek potentially

promising neighbor configurations. The neighbor configuration is derived by perturbing the current

conf guration. If the neighbor configuration has a lower energy, the change is always accepted. The

distinct feature is that the neighbor configuration with a higher energy can also be accepted with
the probability of e(E-E')/T, where T is the temperature, and E - E' represents the difference in the

energy of current and neighbor configurations. Notice that when the temperature is high, an energy

80
i

up jump is more likely than it is when the temperature is low, as it may reach the configur=1.t,,

although with higher energy, which may lead to a better solution. An up jwf.- mneans a jump from

low energy to high energy, and a down jump means a jurmp from high energy to low energy.

4.2 The Set Scheduling Algorithm (SSA)

- A permutation is used to represent tihe configuration. If a permutation is ordered in an Earliest

- Deadline First (EDF) fashion, we call it an EDf permutation. An EDF permutation may be a

good starting permutation for the process a simulated annealing for this problem. If the window

of a task is contained in the window of anotiier task, we say that the latter task contamns-i•eirmer

task. If there are no containing relations among tasks, the EDF permutation is a perratbai6on of

which an optimal schedule of the task set is a subsequence [4]. Thus, an optimal schedule for the

task set can be generated by PSA 1:,y scha.ctling Ove E0F permutation. The energy function can

be expressed by a loss function:

loss = Z weight of rejected noncritical tasks

A schedule iz not acceptable if critical tasks are rejected. We may say that the loss of a rejected

critical task is infinity. However, this kind of assignment makes it difficult to distinguish between

a very bad schedule (e.g., a critical task is rej'eate) and even a worse schedule (more critical tasks

are rejected). In general, the former schedule can be considered as an improvement over Ahe latter

one. If the loss incurred by a rejected critical task is assigned infinity, there is no wax to tell which

is better between the schedule in which one cr;tical tasICs r-jected and that in which three critical

tasks are rejected. Hence, we assign a finite amount of loss to rejected critical tasks. The loss

of a critical task must be large enoutV siuak fha~t; the scheduler will not reject a critical task to

accommodate a number of non-critical tasks.

The xn3ghbor function may be obtained Using one of the following two methods. In the first,

simple meEhcdi, we randomly select one task from those rejected. This task is inserteci in a randomly

chosen locaton within a specified distance from its original location, where the di'stance is the

81

m

U

number of tasks between two tasks in a permutation. The distance is used in this approach to

.ontrol the degree of perturbation.

The reason of rejecting a task is due to the acceptance of other tasks. Given a schedule for

a permutation, it is sometimes difficult to identify which task results in the rejection of other

tasks, especially when tasks are congested together. However, the task immediately before or after

those rejected is likely to play a role. Inthe second method, we try to identify the task which

causes the largest loss of weight. As a simple approach, we attribute the rejection of a task to

the task accepted prior to it. Then we choose the task which causes the largest loss of weight and

insert it within a specified distance. Due to the robustness of simulated annealing technique, the

impact of not necessarily selecting the task which caused the largest loss is minimal. Note that in

simulated annealing many parameters are randomized, and the energy function, together with the

temperature, control the progress of the annealing process. Tindell et al [9) commented that the

great beauty of the simulated annealing lies in that you only need to describe what constitutes a

good solution without worrying about how to reach it. According to our experiments, we find that

the first method performs better than the second method. However, the process in the first method

sometimes falls into a local minimum. The combination of the two methods does perform better

than any of the individual one. The Set Scheduling Algorithm (SSA) is presented in Figure 7.

The initial temperature has to be large enough such that virtually all up jumps are :.-Icved in

the beginning of the annealing process. According to 19], the way to compute new temperature is

that new temperature = c * current temperature, where 0 < o < 1. A step denotes an iteration

in the inner loop in Figure 7, which is the process of scheduling a permutation and determining

whether the permutation would become the current permutation. The thermal equilibrium can be

reached if a certain number of down jumps or a certain number of total steps has been observed;

and the freezing point, or the stopping condition, can be reached if no further down jump has been

observed in a certain number of steps 15, 9).

82
I

Algorithm SSA:

Begin

choose initial temperature T

choose edf permutation as the starting permutaion, y

schedule a by PSA and compute its energy, E

loop

loop

compute neighbor permutation 1'

schedule y' by PSA and compute its energy, E'

if E' < E then

making u' the current permutation: u -- p' and E -E'

else
z-rI

if e -- > random(O.1) then

making g' the current permutation: A - A' and E - E'

else

y remains as the current permutation

until thermal equilibrium is rearched

compute new temperature: T - e * T

until stopping condition is reached

End

Figure 7: Set Scheduling Algorithm

83

I

5 Experiment Result

Experiments ame cvndud-4c to stady the performance of SSA based on:

" Se i anumber of times that the algorithm generates a feasible schedulescheduling ability =number of Limes that there does exist a feasible schedule for the task set
t

Sloss ratio = nlo, of the schedule xenerated by SSA - loss of an optimal schedule"lrotal weight of acCepted noncritical tasks of an optimal schedule

" iterations = number of permutations that the simulated annealing algorithm goes through to

obtain the sub-optimal schedule

We start with an EDF permutation. To study how good the result would be by using PSA to

schedule the EDP permutation, the scheduling ability and loss ratio for the EDP permutation are

computed as well. In our experiments, a task set consists of 100 tasks. The number of permutations

in such a task set is 100! = 9.33 * 10157. To study how good the output of SSA is compared to an

optimal schedule, it is rather impractical to go through such a great number of permutations for a

task set to derive the optimal schedule and its minimum loss for comparison. Instead, we choose

to make up a task set such that the task set is feasible and the loss of its optimal schedule is 0.

Although the SSA algorithm is primarily designed for an overloaded system, we apply SSA to such

task sets for measuring the performance. The parameters are shown in Figure 6.

parameters value type

window length meaI_.WI = 20.0 truncated normal distribution

computation time mean1C ,3e=.W1 truncated normal distribution

load 20%, 40%, 60%, 80% constants

criticality ratio 25%, 50%, 75% constants

weight low..W-1, hig1 W=50 disciete uniform distribution

Figure 8: Parameters of the experiments

The mean of window length, mean-_, is set to be 20 time units. The load is the ratio of total

computation time to the largest deadline, D, in the task set. Hence, the load indicates the diiculty

84 |

of scheduling the task set. The mean of computation time, meanC, is one third of the mean of

window length, which allows the windows among tasks to overlap to some extent. How much the

windows overlap partially depends on the load. If the load is high, the windows are congested

together, and thus the overlapping is high. We expect some containing relations between tasks

to occur and thus increase the difficulty for scheduling. Note that, without containing relations,

scheduling the task set would be straightforward. The standard deviations of window length and

S- computation time are set to be their means, respectively. Criticality ratio indicates the percentage

of the critical tasks in the task set. It is set to be 25%, 50%, and 75%. The higher the criticality

ratio, the more difficult it is to generate a feasible schedule for the task set. On the other hand,

although it is easier to come up with a feasible schedule when the criticality ratio is low, the loss

ratio may still be high. It may be necessary to go through many permutations before an acceptable

loss ratio is reached. In our experiments, the acceptable loss ratio is set to be 0%, which means

that SSA will keep trying different permutations until either the loss ratio is 0 or the stopping

condition is reached, in which SSA fails to find an optimal schedule. Note that a big energy (loss),

2000, is incurred for a rejected critical task. Hence, for at. infeasible schedule, the loss ratio may

well be more than 100%. The weight of a non-critical task is an integer ranging from lowW=:1 to

high.W=50, determined by a discrete uniform distribution function. For each individu al experiment

with different parameters, 200 task sets, each with 100 tasks, are gernerated for scheduling. The

wNa of creating a feasible task set without loss is described in appendix A.

From Figure 9a, The scheduling ability of SSA is 98.5% when criticality ratio is 75% and load

is 80%, and is 100% for other lower criticality ratios and loads. This is because the simulated

annealing algorithm focuses on searching suitable neighbor permutations in such a way that the

rejected critical tasks, if any, may be accepted. Note that scheduling only the EDF permutation

can not always generate a feasible schedule. The scheduling ability of scheduling EDF permutation

degrades when load increases, which means Jasks congest more together. The scheduling ability

of scheduling EDF permutation also dera-de5 when the criticality ratio increases, which makeF

meeting the deadlines of all critical tasks become more difficult.

85

m,

1

As far as non-critical tasks are concerned, SSA can not guarantee the minimum loss. However,

even in the worst case given in Figure 9b, the loss ratio is less than 10%. The loss ratio becomes

less when criticality ratio or load is less. In many cases, the loss ratios are less than 5%. As for

scheduling the EDF permutation, the loss ratios are significantly larger.

The number of permutations to be searched in simulated annealing depends on the situations

of energy jumps, the way of reducing temperature, and how we define thermal equilibrium and

stopping conditions. In the experiments, we find that reducing temperature faster does not impose

a negative impact on the scheduling ability and loss. How to set the parameters in simulated

annealing differs a great deal from one application to another. We do want to generate the result

as good as possible, but are not willing to spend more computation time than necessary. This

usually requires fine tuning the parameters to get the trade-off between the two goals. We find that

the following parameters are beneficial: initial temperature = 3000, a = 0.8 (instead of 0.95 or even

0.99 suggested in other applications), the number of down jumps to obtain thermal equilibrium =

25, the number of total steps to obtain thermal equilibrium = 300, the number of steps with no

further down jump to obtain the freezing point = 2000, which is also the stopping condition. The

average number of permutations searched in simulates annealing is given in Figure 9c. If SSA can

successfully generate a feasible schedule, the average number of permutations checked is no more

than 4000 times. The number increases a little if SSA failt to find a feasible schedule, bec.use in

this case SSA does not stop until the freezing point is reached. Note that the average numbers of

permutations are less than n2 , which can roughly give us the idea about the complexity of searching

over the permutation space. Additional studies have shown that if we modify the above parameters

to increase the average number of permutations by about 10 times, the loss ratios can be further

reduced by about 25% of the loss ratios obtained here.
If time can be expressed in integers, the dynamic programming technique used in PSA can be

applied by computing ck(t) at t = ... , D. Let us call this approach the integral PSA, compared to

the original PSA with scheduling points, denoted by PSA SP in Figures 9d. Obviously, the integral

PSA tends to compute more schedules than the original PSA. We would like to see how more

efficient the original PSA algorithm is than the integral PSA. Specifically, we compare the average

86
!

(a) Schedulability (b) Loss

IS -
IM II

C 9

0.30 CA0

0.73 . 0.75

- CM\1. 0.105

010 *
.0AD

0.355
0.55

0.50 0.30

0.45 -0.45

0.40-
0.40

Ox x

0.30 -03

0.13 OAS3

0.10
0.10

-GAS 35.5MO 45. 35.5 45.5 700.M NO= No= 5. 45.5 55.5 MO.D 'D MW

(c) of Permutations (c) av'erage of schedules computed per task set

WA~a~ I Cw

2M I

lKG;.-e.VJ c 2 --

I. L-t - I

MOM 6UD I =01 XOM ACOM OM M IMM aCCI

Figur 9: 1a)Shdlblt;()Ls;() IT nuain;('-S eu
77, 7r

87

number of schedules required to derive the optimal schedule for a permutation. For the integral

PSA, the number of schedules computed is fixed, or n*D, as can be seen in Figure 1. For the original

PSA, X1..-- Vk is the number of schedules needed to schedule a permutation. The average number

of schedules needed to schedule a permutation by PSA is computed over the permutations of a task

set, and is presented in Figure 9d. The number for the original PSA decreases with the criticality

ratio. This is because a critical task never increases the number of scheduling points; instead, the

number of scheduling points might be decreased due to the timing constraint of the critical task.

For the criticality ratios of 0.25, 0.50, and 0.75, the average number of schedules required for a task

set of 100 tasks are approximately 480,250, and 150, respectively. The complexity of the original

PSA seems linear in this sense. On the other hand, the complexity of the integral PSA is quite

high. The number decreases with load. This happens to be related to the way of generating the

task set, in which D = total-c / load. The number is equal to n * D, where D might fluctuate a

little.

6 Conclusion

In this paper, we study the scheduling problem for a real-time system which is overloaded. A

significant perfornaace degradation may be observed in the system if the overload problem is not

addressed properly 121. As not all the tasks can be processed, the set of tasks selected for processing

is crucial for the proper operation of an overloaded system. We assign to the tasks criticalities and

weights on the basis of which the tasks are selected. The objective is to generate an optimal

schedule for the task set such that all of the critical tasks are accepted, and then the loss of weights

of non-critical tasks is minimum.

We present a two step process for generating a schedule. First, we develop a schedule for

a permutation of tasks using a pseudo-polynomial algorithm. The concept of scheduling points

is proposed for the algorithm. In order to find the optimal schedule for the task set, we have to

consider a2l permutations. The simulated annealing technique is used to limit the search space while

obtaining optimal or near optimal results. Our experimental results indicate that the approach is

88 I

very efficient.

The work presented in this paper can be easily extended to address the overload issue for

periodic tasks. To schedule a set of periodic tasks with criticalities and weights, we can convert

the periodic tasks in the time frame of the least common multiple of the task periods to aperiodic

tasks. The schedule generated for the frame can be applied repeatedly for the subsequent time

frames.

Our algorithm can also be applied to solving the problem of scheduling imprecise computations

[7], in which a task is decomposed logically into a mandatory subtask, which must finish before

the deadline, and an optional subtask, which may not finish. The goal is to find a schedule such

that the mandatory subtasks can all be finished by their deadlines and the sum of the computation

times of the unfinished optional subtasks is minimum. A schedule satisfies the 0/1 constraint if

every optional subtask is either completed or discarded [7]. We can solve this problem by using

our algorithm by setting the mandatory subtasks to be critical, and the optional subtasks to be

non-critical with weights equal to their computation times.

Appendix A. Generating a task set

Generate computation times for tasks according to mean.C and the standard deviation

D = (total computation time) / load

Assigning starting instants, sk, to tasks such that

the intervals between the computation times axe truncated normally distributed

For each task rk

Determine the criticality by criticality.xatio and/or weight by low..W and highW

Compute the window length of rk according to mean-WI and the standard deviation

(note that window length _> ck)

align the window with the computation time in their middle points:

rk =Ma~z(o' Sk + EL- Winclow-leznrg

dk = rnin(D, rk + windowJength)

89

I

The load determines how the tasks would be congested: Once the largest deadline, D, has been

computed, we separate the computation times of the tasks in such a way that the positions of the

computation times on the time axis stretches over the range from 0 to D. Note that the starting

,nstants of the computation times consist in an optimal schedule for the task set. In this way, all of

the tasks in the task set can be accepted. At last, the windows are aligned with the computation 1
times.

References

11) M. L. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of

NP-Completeness. W. H. Freeman Company, Sai Francisco, 1979.

[2] Jayant R. Haritsa, Miron Livny, and Michael J. Caxey. Earliest deadline scheduling for real-time

database systems. In IEEE Real- Time Systems Symposium, Dec. 1991.

[3] Shyh-In Hwang, Sheng-Tzong Cheng, and Ashok K. Agrawala. An optimal solution for schedul-

ing real-time tasks with rejection. In International Computer Symposium, Dec. 1994. I
14] Shyh-In Hwang, Sheng-Tzong Cheng, and Ashok K. Agrawala. Optimization in non-preemptive

scheduling for aperiodic tasks. Technical Report CS-TR-3216. UM1ACS-TR-94-14, Department

of Computer Science, University of Maryland at College Park, Jan. 1994.

[5] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Sci-

ence(220), pages 671-680, 1983.
I

16] C. L. Liu and J. Layland. Scheduling algorithm for multiprogramming in a hard Teal-time

environment. Journal of the A CM, 20(1):46-61, Jan. 1973.

[7] W.K. Shih, J. Liu, and J.Y. Chung. Fast algorithms for scheduling imprecise computations. In

IEEE Real-Time Systems Symposium, pages 12-19, Dec. 1989.
90

90
I

I

[8] Philip Thambidura] and Kishor S. Trivedi. Transient overloads in fault-tolerant rea-time sys-

tems. In IEEE Real-Time Systems Symposium, Dec. 1989.

[9] K.W. Tindell, A. Burns, and A.J. Wellings. Allocating hard real-time tasks: An np-hard

problem made easy. The Journal of Real-Time Systems, 4(2):145-165, June 1992.

91

I Form AP~roved tiM

REPORT DOCUMENTATION PAGE 10,B- No O,04.O,8

"AGENCY USE ONLY (Leave .anX) 2. REPORT' DATE 3. REPORT TYPE AND DATES COVERED

! November_]c4 Technical Report
SI7LE AND SUBTITLE 5. FUNDING NUMBERS

Scheduling an Overloaded Real-Time System N00014-91-C-0195

6. AUTHOR(S) DASG-60-92-C-0055

Shyh-In Hwang, Chia-Mei Chen and Ashok K. Agrawala

-. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) B. PERFORMING ORGANIZATION

University of Maryland REPORT NUMBER

Department of Computer Science CS-TR- 3377
A. V. Willliams Building UMIACS-TR-94-128
College Park, MD 20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING ,
AGENCY REPORT NUMBER

Honeywell, Inc. Phillips Laboratory
3600 Technology Drive Directorate of Contracting
Minneapolis, HN 55418 3651 Lowry Avenue SE C

0
Kirtland AFB NM 87117-5777 U

11. SUPPLEMENTARY NOTES ,4

.2a. DISTRIBUTION i AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

&JJ

I~

-AESTRACT (Maximmin~ w:UzA)

The real-time systems differ from the conventional systems in that every task in A

the rea2-time system has a timng constraint. Failure to execute the tasks under the W E
:tiing constraints may result in fatal errors. Sometim'es, it may be impossible to V

execute all the tasks in the task set under their timing constraints. Considering a
system with limited resources, one solution to handle the overload problem is to A.

reject some of the tasks in order to generate a feasible schedule for the rest. In
this paper, we consider the problem of scheduling a set of tasks without preemption in
Iwhich each task is assigned vriticality amd weight. The goal is to generate an optimal
:.:hedule such that all of the critical tasks are scheduled and then the non-critical
-asks are included so that the weight of rejected non-critical tasks is minimized.
we consider the problem of finding the optimal schedule in two steps. 'irst, we selec-

permutation sequence of the task set. Secondly, a pseudo-polynomial algorithm is
*roposed to generate an optimal schedule for the permutation sequence. If the global --
optimal is desired, all permutation sequences have to be considered. Instead, we.S
1ropose to incorporate the simulated annealing technique to deal with the large search '--
nace. OUT exein rp etFc;Ur_ ch'- r)0_•ae.Or xeTete Pm3• hv hrnpl mizm h i.s able n. Penerpte near---- Do
4. SUBJECT TERMS 15. NUMER OF PAGES

Process Management; Nonnumerical Algorithms and Problems 29
16. PRICE CODE

17. SECURITY CLASSIFICATION 1*. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited
.23. 0.500 92 I', -orrn 29B (,;ev 2-89)

92••. o. .m

Notes on Symbol Dynanics"t

Ashok K. Agrawala
Department of Computer Science, University of Maryland

College Park, Maryland 20742

E-mail: agrawala@cs.umd.edu

Christopher Landauer
System Planning and Development Division, The Aerospace Corporation

The Hallmark Building, Suite 187, 13873 Park Center Road, Herndon, Virginia 22071

Phone: (703) 318-1566, FAX: (703) 31S-5409

E-mail: cal@aero.org

13 February 1995

Abstract

This paper introduces a new formulation of dynamic systems that subsumes both the classical discrete and differentia]
equation models as well as current trends in hybrid models. The key idea is to express the system dynamics using
symbols to which the notion of time is explicitly attached. The state of the system is described using symbols which
are active for a defined period of time. The system dynamics is then represented as relations between the symbolic
representations.
We describe the notation and give several examples of its use.

"*This work is supportred in pan- by ONR and DARPA under contract N00014-91-C-0195 to Honeywell and Computer Science Depart-
ment at the Univerity of Ma.-v.land The views, opinions, and/or findings contained in this report are those of the author(s) and should
no- be interpreted as representing the officia] policies, eithes expressed or implied, of the Defense Advanced Research Projects Agency,
ON1R. the U.S. Government o: Honeywell.
Compute: E'cilities were provided in part by NSF grant CCR-8811954.

IThis work is supported in par. by ARPA and Philips Labs undoer contrac DASG60-92-0055 to Department of Computer Science,
Unive-sity of Ma-"yland. The views, opinions, and/or Endings contained in this report are those of the author(s) and should not be
interp.eted as Tepresenting the official policies, either expressed or implied, of the Advanced Resemch Projcts Agency, PL, or the U.S.
Governmenm.

93

Contents

1 Introduction 3

2 Descriptions of System Behavior 3 m

3 Concepts and Notations 3
3.1 State Variable 3
3.2 Symbol.. 3

3.3 Attribute Identifier 3
3.4 Expression... 4

3.5 Interval 4...4
3.6 Characterizer... 4
3.7 Event..4

4 System Description 4
4.1 Dynamics.. 4
4.2 Normalization and Continuation ... 5
4.3 Continuation and Continuity 5
4.4 Characterizer Semantics and Inference .. 6

4.4.1 Inference... 6

4.4.2 Prediction 6
4.4.3 Truth Maintenance .. 7

4.5 Analysis.. 7

5 Zxamples 7
5.1 ODE.. 7

5.1.2 First-Order. ... 7
5.1-2 Second-Order Example .. 8
5.2.3 Higher-Order Example ... 9

.2Measurement...0

94 .

U

. Introduction

Traditionally, systems have been modelled using state variables defined in a metric space and the system dynamics
defined using differential equations. This approach uses continuous descriptions of space and time. When we use
computers for expressing and manipulating such models we have to use symbols to represent it. Symbols are discrete
by their very nature, and require use of mapping from the continuous spaces to discrete spaces. These mappings
cause problems unless carried out rather carefully. Further, when we consider the problems in which some aspects
of the system are genuinely discrete, hybrid models have been used. As different techniques have to be used for
continuous and discrete aspects of the system, significant complexity gets added to such models.
Recognizing that the computer systems only use symbols for any representations, in this paper we present a for-
mulation of system dynamics directly in terms of symbols. In order to handle the synamics, time interval over
which a symbol is considered valid is explicitly attached. The symbols describing different aspects of the system
may be from a set appropriate for that aspect. The dynamics is described in terms of rules connecting the symbolic
representations.
This paper contains the preliminary formulation of system dynamics in the framework of Symbol Dynamics.

2 Descriptions of System Behavior

For the purposes of this paper, behavior includes all the relationships among parts of a system at the same or different
times. In particular, the combined relationships among parts of a system at the same time is usually called structurt.
Both of these aspects are subsumed in our use of the term behavior.
We assume that our ability to generate or derive new information about the system behavior changes only at discrete
points in time, since we expect to perform these processes on digital computers. The event times define the time
scale. In this paper, we introduce Symbol Dynamics, a totally symbolic way to represent the important aspects of
dynam-ical systems and processes, so that we can reason about them using computers.

3 Concepts and Notations

This section contains the basic notions of Symbol Dynamics.

3.1 State Variable

We assume that systems exist and change over time. We are looking for a method of describing those changes so we
can compute how to control them.
The systems we consider can be described with state variables. Each state variable is an observation on the system
or a derivation from other state variables.
We may or rn.--y =n know a priori which state variables are important, or even which ones are determinable (i.e., the
system comes first, and the state variables are chosen to be helpful in desc-ribing the behavior). We might call the
state variables at-ibutes of the state.

3.2 Symbol

We wan: to measure and compute with information about a system, so we need to map the system into formal spaces
we understand better.
A •y•e is a symbol set, both representing a set of values and including some operations on those values; this is the
notion of formal space used here. It includes collections of mutually dependent types and functions between different
types.
A symbol of a given type is an element of the set of values that type. Any notions of credibility, confidence, or
uncertainty are part of the type system that is used. It is especially important to define the allowable operations on
these kinds of types. For example, for measurements of a system, the symbol would include the measured value and
the associated uncertainty value.

3.3 Attribute Identifier

We assume that we will want to know different things about the system behavior. We need names to keep track of
the different things we measure or compute.

95

An attribute identifier is a name for a state variable (a state variable is like a probe into some aspect of the system
behavior, and the attribute identifier is only the label).

3.4 Expression

An e-"pression is a pair
(attribute identifier: s)ymbol),

which is interpreted to mean the assertion that the state variable can be described by the symbol (when the expression
is active). We will describe the precise semantics of these expressions later on.
These are models of the state variable values.

3.5 Interval

An interval is a pair
Istart time, end time),

assumed to describe a half-open interval (to save us from trouble with the topology). The end time may be omitted,
in which case it is interpreted To mean infinity by default.

3.6 Characterizer

A characterizer is a pair
(expression, interval),

also written
(attribute identifier: symbol; start time, end time),

interpreted to mean that the expression is active during the specified interval. It becomes active at the start time,
and becomes inactive at the end time. Each characterizer has a range (its interval of activity) and a scope (the set
of attribute identifiers that occur in its expression).
We may also consider a symbol set that includes arithmetic expressions that contain an explicit time variable t. For
example,

(P:;D PC-o - t; to.. ti)

represents a continuous change along the interval.
We will also have occasion to reason about conditions at particular points in time, so the assertion language will also
have chazracterizers of the form

(expression, point).

3.7 Event

An event is the activation or deactivation of a characterizer. We make no limiting assumptions about simultaneous
events.

4 System Description

A system description is a finite set of characterizers, so we assume explicitly that a system can be described by a
finite set of characterizers. We insist that only a finite set of characterizers be active at any one time. Since each of
those chmracterize-s is active ovei a positive interval, there is therefore some small interval thereafter during which
all of them are sifll active.
Ever.thing we know about a system's behavior is described by characterizers and relationships among the charac-
tenters. Domain models and context can be written as characterizers, generally with large intervals.

4.1 Dynamics

Relationships among characterizers are rules that define the dynamics. These rules take the form:
if these characterizers (with a list) are active on these intervals, then this new one is also active on this
other interval (not necessarily contained in the intersection of the original intervals).

96

| ,

Rules can contain variable identifiers, with implicit universal quantification.
Relationships hold on intervals and the combination may extend the range. We generate new characterizers according
to the relationships, either predictive (range extension) or deductive (knowledge extension).
The language in which the rules are written is important, since it has to accommodate notations from many different
types, many, of which will not be known when the language is defined. Some basic concepts that will be in any of
these languages are continuity and derivatives.
It is important to remember that the system comes first, and that the state variables are our choices for modeling
and understanding the system. This means in particular that the coordinate systems we use are temporary, and that
the constraints among the state variables are expressed explicitly as relationships.

4.2 Normalization and Continuation

Characterizers- may have overlapping intervals. Nornalization is the process of breaking each characterizer into two
or more others, to fit the time scale. If t is an event time, and

(a : v; s, e)
-_ is a characterizer with s < t < e, then we can replace it with two characterizers

(a: v; s, t) and (a : v; t, e).
If two characterizers use the same attribute,

(a V; S, e)
and

(a :W; t U),
then we say that the second one continues the first one iff they are adjacent in time, so t = e. Continuity considerations
in the transition from v to w at time t are treated in the next section.
In any system with a finite density of event times, if we split every characterizer that spans an event time, then we
end up with characterizers that start and stop at consecutive event times (though they may be continued by other
characterizers). This has some computational conveniences.
If we have two characterizers

(a: V; t, t2)
and

(a: W;t 2 , t3),
so that the second one continues the first, then we need some kind of explicit characeiizer for the transition, active
in an interval containing the transition time. If there is a description u in an appropriakr. d&main for which{V, for t 3:5 < <t2,

lW, for t2St <t 3 ,
then we can conclude

(a : U; t , t).
This iS the opposite of normalization.

If there is an overlap, that is, if the two characterizers

and
(W; t;3, '14)

have

It , t 2) r) It3 , t&) non-empty,
and

•(•t) = w(t) fort E Imax(t, t3), min(t 2 , t,)),
then we can also conclude

(0 : U; Min(t:, t2), MZX(t3, t4)).

4.3 Continuation and Continuity-

One aspect of continuity is transitions from one symbol to another across interval boundaries. The trza.ns;ion
relations are extra conditions that have to hold at the transition time (usually they are smoothness conditions for
model transitions).
A ty'picaJ smoothness property is infinitesimal: for charTacterizers

(a : u, to, ti)

97

and
(a : w; t1 , t2),

we normally want smoothness, written

and continuity, writtenV(4' = t-) = W(t = t').
Both of these are point conditions on the attributes and their derivatives, and we can consider only conditions on
attributes by using whatever derivatives are needed in the conditions: instead of

(a : to, t),
we usee u (v,v');to, t),

and write our smoothness condition as

If we also require continuity in each attribute, so that
W(t = t") = w(t =]),

then the upper limit in the previous expression can be omitted.
It is therefore clear that we must deal with point events at transitions

Ito ... t)1 .. •)
but not with point characterizers. If we make the transition continuity a property of the definition of continuation,
then we can assert it or not in any given model.
Of course, the expression t = 1.7 means that the interval [It - e, tj) is part of the limit computation for every e small
enough, so we might be able to use these intervals for some small enough e without having to take the limits.
We will deal with these considerations in the simplest way possible. We have a characterizer that asserts continuity of
the relevant attribute across a larger interval, such as [to, t2) above. The only place that the continuity characterizer
has new information is at the transition point tj, but we simply do not worry about the redundancy.

4.4 Characterizer Semantics and Inference

A cha.,acterizer is what we want to assume about what is true over its interval. It need not be consistent with
the other characterizers in a sys-ern description; we explcitly allow false assertions here, so we can reason using
counterfactuals.

4.4.1 Inference

WAe can make inferences within intervals, accorcing to some rules. If, say, there is a rule

S3L&S2 - 3

and two characterizers

and

with to < t2 <t t < t3, then we can conclude
(V : S3; t2, 10-

4.4.2 Prediction

WKe can also make inferences that extend intervals in some cases. They take the form: If
(V : - ;

and

are characterizers with to < t:, then there is a characterizer
S3 ;' 2 , t3)

for some 2 ,t3, with to < t2 < tj < 3.

98

4.4.3 Truth Maintenance

Because we do not presume that the characterizers in a system are truths, we need to be much more careful about
when they can be used together, especially in the inference and prediction processes. Since the inference rules
themselves are time dependent, we need to keep track of the dependencies of every characterizer, both how and when
it was derived (how tells us about hypotheses and inference rules; when helps us in checking temporal consistency)
and its interval of activity.
We also need a way to indicate which characterizers we DO want to be true, so that different collections of charac-
terizers can be compared and contrasted within the same context. We might want to consider computing various
maximal consistent sets of irredundant assertions as an aid in this proces.
Various rules can be activated that lead to new conclusions in an interval, which can supersede old ones; we also
assume partial deduction, not total. We therefore need to use some kind of non-monotonic logic.

4.5 Analysis

Simulation is a continuing surprise.
We want tools with analytic power to help reduce our reliance on simulation, so we can make reliable predictions
about the system behavior.
All of our computations are performed from the symbols active at a given time. The advantage of dealing explicitly
with time in this formulation is that we can sit outside the usual sequencing of events, taking a kind of "side-long"
look at the entire time line, and piece together parts of the models that we koow more about regardlest of whether
or not they are the first ones in our time interval of interest.
We can also perform the deductions in an order that is diffe-ent from +6' order imposed by time, using any of a
number of simple mechanisms, such as rule-based systems or rewrite iogics; both are being investigated.

5 Examples

This section contains several examples that illustrate the utility of kie Potafon.

5.1 ODE

A simple exa--mple that shows range extension is an ordinary differential equation (ODE). For ODEs, the solution
method is part of changing an ODE into a set of characterizers.
So let us consider a simple second-order ODE for the sine function,

(0)= 2,
•(o) = 0,

and solve it with Buler's method (a particularly bad one for this kind of pb•em, by the way).
First, we transform the equations into a firs order system (in the u.al wAy) * hdz4 •.-y,

-•D) = 2l,

Y(o)= 0,
and we also define z = = V"

5.1.1 First-Order

Now the way Eulers method works is by linear extrapolation, so for a given time t = to, if we have=(4o) = zo,
yv(o) = Yo,

then we have
2, = Z(to)

and we take

=(t) = zo + - to),
11t) = Yo + =0 - (t - to),

99

for t in some small interval
[to, t- = to + d). ,

The characterizers that describe this situation are:
=o + zo (t - to); to, to + dl),

(y •o + zo (t - to); to, to + d-0),
which we want to be true for all choices of z 0 ,yo, to, and dt (which ones we actually use in our system description
depend on how we choose the time intervals in the solution).
The characterizers that describe the initial conditions are difficult, because they cannot be described with half-open
intervals of the shape we have thus far described:

(= : .; o),
(Y : O; o),

which is always going to be a problem in systems that start at a certain time. I
In a more sophisticated system, the choice of next time interval would depend on the computed accuracy of the
current solution.
For this example, we simply make all the time intervals the same, and say that the charact.erizer pair

(=1 :+ zi - (t- ti); t, t + dt),

(V:,• +.-=I • (t - ti);ti, t, + dt)

propagates the pair
(z : +0 + zo - (t - to); to, to + dt),

(y : o + =o - (t - to);t o, o + dt)
iff

Y., = Y•O'-O =0 dt,
tj = to-'-d.,

which are the conditions for the first pair to meet the second (the condition z, = -y is part of the definition of
these characzerizer pairs).
Extending the iteration, we have

=(0) = 1,
Y(O) = 0,
=.)= =(k-) - y(k) - dt,

V(k. + 1) = ,(k-) + x(k) * d•,•
which can be written as a vector equation (we put the matrix on the right so we can use row vectors)

() = (,0),

= (z'Y)(k•)(- &

so if we write I for the identity matrix and J for the matrix

then we have (with X = (xy))
X(0) = (1,0),

X(k-I) = X(k)(.J-J.d),
so X (h) = (2, 0) (1 + J- d' .,k,
which can be computed exactly.
Since the eigenvalues of (I÷ J= d:) are I - i = d, which have magnitude I - d2., the successive powers of the matrix X
diverge for 2ny d, > 0, and therefore so does the iteration.

5.1.2 Second-Order Example

In this section, we use the same differential equation problem, with a different solver, a second-order one that is
almost able to converge properly. We therefore have

100

:-(o) = 1,

Y(0) = 0,
as above. Our initial conditions are

(=1; 0),
(90; 0),

as before.
The method we use is a simplified second-order Runge-Kutta method [?], [?], which basically amounts to averaging
the usual Euler approximation in an interval with a linear reappr6ximation at the endpoint of the interval. At a
given time t = to, if we have

X(to) = o,
*(to) Y= 0,

then we have
=(t) = xo-Yo*d-=o* ,212,

y(t) = yo+=0- y- o t2/2,

and it is the extra dt 2 terms that make the method second-order.
As above, we assume equal time intervals and get an iteration

X(0) = 1,
v(0) = 0,
4(k - 1) =(k) - y(k) * dt (k) 2,

y(•÷-=-2) =• k -y(k)*dt2 12,
which can be written as a vector equation

(Yy)(0) = (1,0),

, 1 = (z,9i)(�.�-)a(~ dt2/12 -dt
-d,' - dt/2

and we have as above
X(0) = (1, 0),

X(k - 1) =x(k)(1. (I - dt212) + .7 dt),

so
X(k) = (1, 0) (1. (2 - d+22) , j * dt)k,

which can be computed exactly.
Since the eigenvwaues of (I - (I - d+2/2) + J - dtý) are I - d12 /2 i d 4, which have magnitude I - dt 4 /4, this simple
method still does no- converge (but much more slowly).

5.1.3 Higher-Order Exampie

A similar- analysis of the usual 4th-order Runge-Kutta method leads to an iteration
= o-3 / o~dt-zo~d 2 /2 ,c&6-z~~/4::() = =o - yo * dt - =o - d/ yo - d- +/ o * &f/24,

y(t) y o÷:.=o-d,-yo-&2/2-.,o~d,:3/6÷•o~dtl/24,

with mat-ix(a d:2/2÷d.-'/24 dt-d13 /6
_dtz-:-d,, 3/6 I -d: 2 /2 + d14/24 J

and eigennalue magnitude of I + dit/36 + dts/24 2 , which is still greater than one. In fact, since this equation (in
(=, V) space) represents moving around a circle, any extrapolation method based on tangents at a single point will
fail, since all of the tangent vectors point outward from the circle. We note that the iteration equations do have the
first terms of the usual Maclaurin series for sin(dt) and cos(dt), so we try out a different iteration:

=(t) = zo - cos(dt) - y/. sin(dt),
y(t) = yo - cos(dt) + =o sin(dt),

which can be written as a vector equation
(Yy)(0) = (2,0),

101

(=,1 ,)(k--+1) = (=y)(k) (-cos(dt) sin(dt)

and we have as above -sin(di) cos(dt)

X(0) = (1,0),
X(k + I) = X(k) (I cos(dt) + J sin,(dt)),

so

= (, 0) (1 cos()J + J sin(;. * t)),

and
S(k -d) = cos(k * dt),

y(;. *dt) = sin(k *dt),
from which we can hazard a guess as to the correct solution.

5.2 Measurement

Let us take a simple system in which the velocity and position are occasionally known through inexact measurement.
Our state variables are p for the position, v for the velocity, and a for the unknown acceleration.
We assume that the acceleration a is bounded by some constant A, so that for any times to < t.

Iv(ti) - v(to)l < Itl - to] A.
We assume that we have characterizers(a(t);_t , - ,)t--
that describe the acceleration, and model characterizers(v = p'; o-,-),

(cP='; 0,-).

Therefore, we can compute the velocity and position by

V~)= V(to) j a(u) du,

P(t) = p(to) V ,(U) du.

The problem is to choose measurement times and variables that maintain a certain accuracy in the estimates of
positior.
WVe assume that we can measure position wiýthin a bound

LmePas(t)-(l < P,
and that- we can measure velocity vithin a bound

I"-eas(.)-V(t)I < V,
but that we want to keep ou: estimate pest of position either more accurately than the position measurement error
(this might or might not be possible) or using as few measurements as possible.
We assume first that =o, yo are Imown, and consider an interval Ito, t1). We compute

jv(ti)- vol < Itj - to0 - A,
and therefore

2
so we would have to choose

SL=2 --to
so that

L < IV/AI

to keep the velocity Aithin bounds, and
(A t) < 2 2- PIAI

to keep the position within bounds.
But of course, we don't know =(,) or v(t) after the first time interva., so we need to change the previous derivation
a bii.
We assume that we know z0 and vo, and that

I=('0) - zol -< A =0

102 .i

describes the accuracy of our knowledge of x(t) at time t = to, and
describes Vhe accuracy of our knowledge of v(1) at time t - to. Then the above inequaities become

Mt(h - vol < L too + Itl - tol •A,
and therefore

IX(ti) - zoi < L zo + IX - tol L * o + It, - t0 12 A,
so we have to have

L t < l(V- - L v0)/AI

to keep the velocity within bounds, and

(Lt)2+2*A o*(L) < 12 A(P-A o)/AIA
to keep the position within bounds.
At this point, we are stuck unless we can say something more helpful about the acceleration. Suppose we know that
the acceleration jumps around, and that it has a distribution of values with mean 0 and variance R. In this case, we
might be able to reduce the estimates for position and velocity and improve the time intervals.

References

11] P. Henrici, Elements of Numerical Analysis, Wiley (1964)

[2] J. Stoer, R. Bulirsch, Einfu:hrung in die Numerische Mathematik, II Springer (1973)

103

REPORT DOCUMENTATION PAGE I OMB1S Cv 7OZ-0'85

A. ITE ND UBI-LEFebruarv 13, 19951 Technical Report
S. FUNDING NUMBERS

Notes on Symbol Dynamics N00014-91-C-0195 and
__ DSAG-60-92-C-0055

6. AUTHOR(S)

Ashok K. Agrawala and Christopher Landauer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

University of M~arylandREOTNMR
A.V. Williams Building CS-TR -3411

College Park, Maryland 20742 MAST-951

9. SPONSOr:NG IMONIIORING AGENCY NAME(S) AND ADDRLSS(ES) 10. SPONSORING/I MONITORING

Honeywell Phillips Labs AEC EOTNME

3660 Technology Drive 3550 Aberdeen Ave. SE
Minneapolis, IM 55418 Kirtland AFB, N~MI

87117-5 77 6

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION I AVAIL.ABILITY 57ATEMENT 12b. DISTRIBUTION CODE

123. A!STRAC- (Mazyrnurn200 worcý

This Dave7 i.ntroduces a new formulation of dynamic systems that
subsumes both the classical discrete and differential equation
models as well as current trends in hyb-rid models. The key idea
is to express the system dynamics using symbols to which the noti on
of time is explicitly attached. The state of the system is
described using symbols which are active for a defined period
of time. The system dynamics is then represented as relations
between the sy~mbolic representations. 'We describe the notation
and give several examples of its use.

h.SUBJEC7 SERMS 15. NUMBER OF PAGES

11 Da~esC.=, Miscellaneous 16. PRICE CODE

17. SiCURITY CLA.SSIFIZC.TION 1E. SECURITY CLASSIFICA.-lON 1S. SECUR17Y CLASSIF1-,i1jT)N 20. LIMIT ATION OF ABS7R
OF ;f:RfP OF THIS PAGE OF AESTR4,7

'Unclassified 'Unclassified 'Unclassified 'Unlimited

Allocation and Scheduling of Real-Time Periodic Tasks with
Relative Timing Constraints*

Sheng-Tzong Cheng and Ashok K. Agrawala
Institute for Advanced Computer Studies

Systems Design and Analysis Group
Department of Computer Science

University of Maryland
College Park,-MD 20742

{ stcheng,agrawala} @cs.umd.edu

Abstract

Allocation problem has always been one of the fundamental issues of building the applica-

tions in distributed computing systems (DCS). For real-time applications on DCS, the allocation

problem should directly address the issues of task and communication scheduling. In this con-

text, the allocation of tasks has to fully utilize the available processors and the scheduling

of tasks has to meet the specified timing constraints. Clearly, the execution of tasks under

the allocation and schedule has to satisfy the precedence, resources, and other synchronization

constraints among them.
Recently, the timing requirements of the real-time systems emerge that the relative timing

constraints are imposed on the consecutive executions of each task and the inter-task temporal

relationships are specified across task periods. in this paper we consider the allocation and

scheduling problem of the periodic tasks with such timing requirements. Given a set of periodic

tasks, we consider the least common multiple (LCM) of the task periods. Each task is extended

to several instances within the LCM. The scheduling window for each task instance is derived to

satisfy the timing constraints. We develop a simulated annealing algorithm as the overall control

algorithm. An example problem of the sanitized version of the Boeing 777 Aircraft Information

Management System is solved by the algorithm. Experimental results show that the algorithm

solves the problem in a reasonable time complexity.

"This work is supported in part by Boneywel] under NOOD14-91-C-0195 and A.rmy/Phfllips under DASG-60-92-
C-0055. The views, opinions, and/or findings contained in %his report are those of the author(s) and should not be
interpreted as representing the official policies, either expressed or implied, of Boneywel] or Army/Phillips.

105

1 Introduction

The task allocation and scheduling problem is one of the basic issues of building real-time ap-

plications on a distributed computing system (DCS). DCS is typically modeled as a collection of

processors interconnected by a communication network. For hard real-time applications, the allo-

cation of tasks over DCS is to fully utilize the available processors and the scheduling is to meet
their timing constraints. Failure to meet the specified timing constraints or inability to respond

correctly can result in disastrous consequence.

For the hard real-time applications, such as avionics systems and nuclear power systems, the

approach to guarantee the critical timing constraints is to allocate and schedule tasks a priori.

The essential solution is to find an static allocation in which there exists a feasible schedule for the

given task sets. R.amamritham [Rza=m90] proposes a global view where the purpose of allocation

should directly address the schedulability of processors and communication network. A heuristic

approach is taken to determine an allocation and find a feasible schedule under the allocation.

Tindell et al. [TBW92] take the same global view and exploit a simulated annealing technique

to allocate periodic tasks. A distributed rate-monotonic scheduling algorithm is implemented. In

each period a task must execute once before the specified deadline. The transmission times for

the communications axe taken into account by subtracting the total communication time from the

deadline and making the execution of the task more stringent.
U

Simply assuring that one instance of each task starts after the ready time and completes before

the specified deadline is not enough. Some real-time applications have more complicated timing

constraints for the tasks. For example, the relative timing constraints may be imposed upon

the consecutive executions of a task in which the scheduling of two consecutive executions of a

periodic task must be separated by a minimum execution interval. Communication latency can be

specified to make sure that the time difference between the completion of the sending task and the

start of the receiving task does not exceed the specified value. The Boeing 777 Aircraft Information

Management System is such an example ICDHC94). For such applications, the algorithms proposed

in literatu.re do not work because the timing constraints axe imposed across the periods of tasks. In

this paper, we consider the relative timing constraints for real examples of real-time applications

in Section 2. Based on the task characteristics, we propose the approach to allocate and schedule
these applications in Section 3. A simulated annealing algorithm is developed to solve The problem

in which the reduction on the search space is given in Section 4. In Section 5, we evaluate the

practicality ard show the significance of the algorithm. Instead of randomly generating the ad hoc

test cases, we apply the algorithm to a real example. The example is the Boeing 777 AIMS with

various numbers of processors. The .experimental results are shown in Section 5.

106

2 Problem Description

Various kinds of periodic task models have been proposed to represent the real-time system char-

acteristics. One of them is to model an applica:io-. as an independent set of tasks, in which each

task is executed once every period under the ready time and dea.Line constraints. Synchronization

(e.g. precedence and mutual exclusion) and communications are simply ignored. Another model

to take the precedence relationship and communications into account is to model the application

as a task graph. In a task graph, tasks are represented as nodes while communications and prece-

dence relationship between tasks are represented as edges. The absolute timing constraints can

be imposed on the tasks. Tasks have to be allocated and scheduled to meet their ready time and

deadline constraints upon the presence of synchronization and communications. The deficiency

of task graph modeling is inability of specifying the relative constraints across task periods. For

example, one can not specify the minimum separation interval between two consecutive executions

of the same task.

In the work [CA93], we modified the real-time system characteristics t'y ta3king into account

the relative constraints on the instances of a task. We considered thi s6heiig problem of the

periodic tasks with the relative timing constraints. We analyzed the timing constraints and derive

the scheduling window for each task instance. Based on the scheduling window, we presented

the time-based approach of scheduling a task instance. The task instances are scheduled one by

one based on their priorities assigned by the proposed algorithms. In this paper we augment the

real-time system characteristics by considering the inter-task communication on DCS.

2.1 Task Characteristics

The problem considered in this chapter has the following characteristics.

• The Fundamentals: A task is denoted by the 4-tuple < pi, ei, Ai, 77i > denoting the period,

computation time. low jitter and high jitter respectively. One instance of a task is executed

each period. The execution of a task instance is non-preemptable. The start times of two

consecutive instances of task 7i are at least pi - X; and at most pi + 7; apart. Let sý and

f' be the start time and finish time of task instance ,' respectively. The timing constraints

specified in Equations I through 4 must be satisfied.

Si= +~~ e; 1)

S. + LCM (2)

74 + (3)

107

. < +Pi+ (4)

Vj =2, . . . , ni .

"Asynchronous Communication: Tasks communicate with each others by sending and
receiving data or messages. The frequencies of sending and receiving tasks of a communication
can be different. In consequence, communications between tasks may cross the task periods.

When such asynchronous communications occur, the semantics of undersampling is assumed.

When two tasks of different frequencies are communicating, schedule the message only at

the lower rate. For example, if task A (of 10HZ) sends a message to task B (of 5HZ), then

in every 200ms, one of two instances of task A has to send a message to one instance of

task B. If the sending and receiving tasks are assigned to the same processor, then a local

communication occurs. We assume the time taken by a local communication is negligible.

When an interprocessor communication (IPC) occurs, the communication must be scheduled

on the communications network between the end of the sending task execution and the start

of the receiving task execution. The transmission time required to communicate the message

i over the network is denoted by jj.

" Communication Latency: BEach communication is associated with a communication la-
tency which specifies the maximum sepaxation between the start time of the sending task and

the completion time of the receiving task.

" Cyclic Dependency: Research on the allocation problem has usually focused on acyclic

task graphs LPam9O, HS92). Given an acyclic task graph G = {V,E}), if the edge from task

A to task B is in E then the edge from B to A cam not be in E. The use of acyclic task
graphs excludes the possibility of specifying the cyclic dependency among tasks. For example.

consider the following situation in which one instance of task A can not start its execu-.,on

urntil it receives data from the last instance of task B. After the instance of task A finished
its execution. it sends data to the next instance of task B. Since tasks A and B are periodic.
the communication pattern goes on throughout the lifetime of the application. To be able to

accommodate this situation, we take cyclic dependency into consideration.

The timing constraints described above axe shown in Figure 1. For periodic tasks A and B, the
start times of each and every instance of task execution and communication are pre-scheduled such

that (1) the execution intervals fall into the range between p- A and p+ 77 and (2) the time window

between the start time of sending task and the completion time of receiving task is less than the

latency of the communication. In Figure 2, we illusTrate exainples of all possible communication

patterns considered in this paper. The description of the communications in the task system is in

the form of "From sender-task-id (of frequency) To receiver-task-id (of frequency)". If the sender

108

I

Time

PA--AA ST PA+ 7A

A A_]
T < Latency (B to A)

PB - AB < T < Pa + 77B

T < Latency (A to B)

Proe , F:i

A toB B toA AtoB

Network:

Figure 1: Relative Timing Constraints

frequency is n times of the receiver frequency amd no cyclic dependency is involved, then one

of every n instances of the sending task has to communicate with one instance of the receiving

task. (Examples of this situation are shown in Figures 2.a.1 and 2.a.2. Likewise, for the case in

which the receiver frequency is n time tha: of the sender frequency and no cyclic dependency is

present. the patterns are shown in Figures 2.b.2 and 2.b.2. For an asynchronous communication. the

sending (receiving) task in low frequency sends (receives) the message to (from) the nearest receiving

(sending) task as shown in Figure 2.a (2.b). The cases where cyclic dependency is considered are

shown in Figures 2.c and 2.d.

2.2 System Model

A real-time DCS consists of a number of processors connected together by a communications
network. The execution of an instance on a processor is nonpreemptable. To provide predictable

communication and to avoid contention for the communication channel at the run time, we make the
following assumptions. (1) Each IPC occurs at the pre-scheduled time as the schedule is generated.
(2) At most one communication can occur at amy given time on the network.

109

B eB 7B

A~ AA 0

(a.1)
(b.1)

I 200 ms

200 ms

(a.2) (b.2)

From A (of 10EZ) to B (of 5HZ) From A (of 5HZ) to B (of 10EZ)

[77B" 1 7B I 7B " "

A A

1200 ms

200 ms

(C)
(d)

From A (of I0EZ) to B (of 5HZ) From A (of 10HZ) to B (of 10HZ)

From B (of 5HZ) to A (of 10HZ) From B (of 10HZ) to A (of 10EZ)

-m

Figure 2: Possible Communication Patterns

110

2.3 Problem Formulation

We consider the static assignment and scheduling in which a task is the finest granularity ob ,:ct

of assignment and an instance is the unit of scheduling. We applied the simulated annealing

algorithm [KGV83] to solve the problem of real-time periodic task assignment and scheduling with

hybrid- timing constraints. In order to make the execution of instances satisfy the specifications

and meet the timing constraints, we consider a scheduling frame whose length is the least common

multiple (LCM) of all periods of tasks. Given a task set r and its communications C, we construct

a set of task instances, I, and a set of multiple communications, M. We extend each task r7 E r
to ni instances, -r, ... , and 1i;. These ni instances are added to I. Each communication 7i

U E C is extended to min(n;,n,)I undersampled communications where ni = LCM/pi and nj =

LCM/pý. These multiple communications are added to M. The extension can be stated as follows.

"° If ni < n, then r-;i 7-j is extended to -; ,?, - 7? , an d 7?.

"*If ni > nj, then r- - r7 is extended to -"* I , 71 ... , and

" Iffn -=nj, then ' -ýr-jisextendedto r ! ,7 ? 2 and, _n; .

A task ID with a superscript of question mark indicates some instance of the task. For example,

, 7; means that - communicates with some instance of -j. We describe how we assign the

nearest instance for each communication in Section 4.1.2.

The problem can be formulated as follows. Given a set of task instance, I its communications
M. we find an assignment 6, a total ordering c, of all instances. and a total ordering a, of all

commun3ications to minimize

E(61 -, I CI = Z P Ai 4Si) + (i(÷ - Pi - 17i)
ij

+ 'dj) + 1:b(~i ',c, '
id ij,k,l

+ (fk - - Latency (-, to rk)) (5)

subject to s4_> r and S(e - 4,Vc)f V 1- ,

where

3Due to undersampling, when an asynchronous communication is extended to multiple communications, the
number of multiple communications is the smaller number of sender and receiver instances.

111

* is the start time of 7 under ac.

* fi is the completion time of r,. under c,

b(-) = O, ifz _< 0; and = x, ifz > 0.

* ¢(ij) is the ID of processor which ri is assigned to.

9 k-t is the communication from ,9 to rk. If) (,k), then ,• - 7k is a local

communication.

• S(c, c,) is the start time of communication c on the network under ac.

* F(c, c,) is the completion time of communication c on the network under c-.

The minimum value of E(6,,c, ac) is zero. It occurs when the executions of all instances

meet the jitter constraints and all communications meet their latency constraints. A feasible

multiprocessor schedule can be obtained by collecting the values of s• and fi, V i and i. Likewise,

a feasible network schedule can be obtained from S(c. c,)s and F(c, c,)s.

Since the task system is asynchronous and the communication pattern could be in the form of

cyclic dependency, we solve the problem of finding a feasible solution (6, ca, ac) by exploiting the

cyclic scheduling technique and embedding the technique into the simulated annealing algorithm.

3 The Approach

3.1 Bounds of a Scheduling Window

Define the scheduling window for a task instance as the time interval during which the task can

start. Traditionally, the lower and upper bounds of the scheduling window for a task instance are

called earliest start time (est) and latest start time (]st) respectively. These values are given and

independent of the start times of the preceding instances.

We consider the scheduling of periodic tasks with relative timing constraints described in Equa-

tions 3 and 4. The scheduling window for a task instance is derived from the start times of its

preceding instances. A feasible scheduling window for a task instance 9i is a scheduling window

in which any start time in the window makes the timing relation between sf!- and 4' satisfy

112

Equations 3 and 4. Formally, given si, s,..., and ... , , the problem is to derive the feasible

scheduling window for •.? such that a feasible schedule can be obtained if •' is scheduled within

the window.

Proposition I ICA931: Let the est and ist of ii be

e()= maz{(s + p, - \+-), (s + -1)p, - (n - j+ 1) x (6)

and lst(r,) = min{(sf-1 + pi + 77j), (s, + (j - 1)xp + (n - j+ 1) x). (7)

If s• is in between the est(r/) and lst(r,'), then the estimated est and ist of s!", based on s, and

c' •, specify a feasible window.

3.2 Cyclic Scheduling Technique

The basic approach of scheduling a set of synchronous periodic tasks is to consider the execution
of a2i instances within the scheduling frame whose length is the LCM of all periods. The release

times of the first periods of all tasks are zero. As long as one instance is scheduled in each period

within the frame and these executions meet the timing constraints, a feasible schedule is obtained.

In a feasible schedule, all instances complete the executions before the LOM.

On the other hand. in asynchronous task systems, as depicted in Figure 2 in which the LCM
is 200ms, the periods of the two tasks are out of phase. It is possible that the completion time
of some instance in a feasible schedule exceeds the LCM. To find a feasible schedule for such an
asynchronous system, a technique of handling the time value which exceeds the LCM is proposed.

The technique is based on the linked list structure described in the work [CA93). Without loss
of generality, we assume the minimum release time among the first periods of all tasks is zero. We

keep a linked list for each processor and a sepaxated list for the communication network. Each

element in the list represents a time slot assigned to some instance or communnication. The fields of

a time slot of some processor p: (1) tas) id i and instance id j indicate the identifier of the time slot.

(2) start time st and finish time f indicate the start time and completion time of < respectively.

(3) prey ptr and next ptr are the pointers to the preceding and succeeding time slots respectively. !

The list is arranged in an increasing order of starl-time. Any two time slots are nonoverlapping.

Since the execution of an instance is nonpreemptable, the time difference between start-time and

finish.time equals the execution time of the task.

113

Before: After:

F

r r+ e- LCM

Unscheduled Instance: where F < r < LCM

Figure 3: Insertion of a new time slot

3.2.1 Recurrence

Given any solution point (6. o•. c.), we construct the schedule by inserting time slots to the linked

lists. Let c,,: task-id x instance-id - integer. The insertion of a time slot fJrr,. precedes tha: for

Recal] that Equations 6 and 7 specify the bounds of the scheduling window for a task instance.

Due to the communi cations, est(,-j) in Equation 6 may not be the earliest time for ,x . We define

the effective start time as the time when (1) the hybrid constraints are satisfied and (2) ,r• receives

al necessary data or messages from all the senders.

Given the effective start time r and the assignment of -,i (i.e. p = a(7,)), a time slot of processor

p is assigned to ,' where start-time > r and finish-time - start-time = e;. oVte that we have

to make sure the new time slot does not overlap existent time slots. Since (i) the executions of
al1 instances within one scheduling frame recur in the next scheduling frame and (2) it is possible
that the ti=e slot for some instance is over LCM, we subtract one LCM from the start-time or

fi nish.-ime if it is greater than LCM. It means the time slot for this task instance will be modulated

114

m

T1g -21

I C

12 773

I-

LCM IPseudo Instance

Figure 4: The introduction of a pseudo instance

and wrapped to the beginning of the schedule. As shown in Figure 3 The start-time of the new

slot is r while the completion time is r + e-LCM.

3.3 Pseudo Instances

As stated in Section 2, we consider the communication pattern in which cyclic dependency exists
among tasks. Given a set of tasks, r, a set of task instances, 1, a set of communications, C, and

any solution point, (a, c, c,), we introduce pseudo instances to solve this problem. For any task

if there exists a task : in which (1) CQ.") < a,(,,(), V i, (2) n, = n•,: and (3) - T E

C and 3 - E C, then a pseudo instance " is added to I. A pseudo instance is always a

receiving instance. No insertion of time slots for pseudo instances is needed. For a pseudo instance,

only the effective start time is concerned. The effective start time of a pseudo instance T2"+' in

the constructed schedule based on (0. a,, a,) is checked to see whether it is less than LCM + s$ or 3
not. If yes, then the execution of TŽ for the next scheduling frame may start at LCM + s Which

is exactly one LCM away from the execution of r for the current scheduling frame. A graphical

illustration of the introduction of pseudo instance to solve the synchronous communications of

cyclic dependency is given in Figure 4 in which n- = 2.

As for the asynchronous communications of cyclic dependency, no pseudo instances axe needed.

For•example, ifboth .-- 'and7-' , -- exist and n. = n• x n, then for eachT, where j=1,

2...., nyt find a sending instance ' E I and a receiving instance T± E I such that (1) f= _< s!

(2) fj = <st, and (3) -and ,ý 7 k axe the communications. The relationship between i, j,

115

I

0 0 e 0 0 o 0

s'4 X PM

Figure 5: Asynchronous communications in mutuality

and k can be stated as
• CY - l) x n• < i < k < j x n•.()

A graphical illustration can be found in Figure 5. In the example, the values of i, j, k, and n are

6, 2, 8, 4 respectively. The communications an . ax -a ' • are scheduled before and after

the scheduling of r2 respectively.

4 The Simulated Annealing Algorithm

Kirklatrick et al. IKGV83] proposed a simulated annealing algorithmn for combinatorial optimiza-
tion problems. Simulated annealing is a global optimization technique. It is derived from the
cbservation that an optimization problem can be identified with a :Buid. There exists an analogy
between finding an optimal solution of a combinatorial problem with many variables and the slow
cooling of a molten metal until it reaches its low energy ground state. Hence. the terms abou,
energy function, temperature, and thermal equilibrium are mostly used. During the search of an
optimal solution, the algorithm always accepts the downwaxd moves from the current solution point
to the points of lower energy -alues, while there is still a small chance of accepting upwaxd moves
to the points of highe; energy values. The probability of accepting an uphill move is a function of
current temperature. The purpose of hill climbing is to escape from a local optimal configu•ration.
If there are no upward or downward moves over a number of iterations, the thermal equilibrium
is reached. The temperature then is reduced to a smaller value and the searching continues from

the current solution point. The whole process terminates when either (1) the lowest energy point

is found or (2) no upward or downward jumps have been taken for a number of successive thermal

equilibrium.

The structure of simulated annealing (SA) algorithm is shown in Figure 7. The first step of

116

mm

the algorithm is to randomly choose an assignment 0, a total ordering of instances within one

scheduling frame, cr, and a total ordering of communications for the instances, c,. A solution I
point in the search space of SA is a 3-tuple (The energy of a solution point is computed by

equation (5). For each solution point P which is infeasible, (i.e. E. is nonzero), a neighbor finding

strategy is invoked to generate a neighbor of P. As stated before, if the energy of the neighbor is

lower than the current value, we accept the neighbor as the current solution; otherwise, a probability

function (i.e. ezp(E -E)) is evaluated to determine whether to accept the neighbor or not. The

parameter of the probability function is the current temperature. As the temperature is decreasing,

the chance of accepting an uphill jump (i.e. a solution point with a higher energy level) is smaller.

The inner and outer loops are for thermal equilibrium and termination respectively. The number of

iterations for the inner loop is also a function of current temperature. The lower the temperature

is, the bigger the number is. Methods about how to model the numbers of iterations and how

to assign the number for each temperature have been proposed [LH91]. In this dissertation, we

consider a simple incremental function. Namely, A' = N + A where NV is the number of iterations

and A is a constant. The termination condition for the outer loop is Ep = 0. Whenever thermal

equilibrium is reached at a temperature, the temperature is decreased. Linear or nonlinear approach

of temperature decrease function can be simple or complex. Here we consider a simple multiplication

function (i.e. T = T x a. where a < I).

4.1 EvNaluation of Energy Value for a Solution Point (0, a, ,, or)

The computation of the energy value stated in Equation 5 . is done by constructing multi-processor

schedules and a network schedule, and collecting the the start and completion times of each task

instance and communication from these schedules.

The construction of the schedules is characterized by the priority assig-nment of the task in-

stances in the set. The priority assignment algorithm determines the scheduling order among all

the task instances. Each time when a task instance is chosen to be scheduled, the incoming com-

munications of the instance are scheduled fa'st and then the task instance itself. After all the
task instances have been scheduled, the scheduling of the outgoing communications is performed.

.An algorithhmic description about how to compute the energy value for a solution point is given

in Figure 6. Note that a communication is an incoming communication to a task instance if the

freauenc3v of the receiving task instance is equal to or less than that of the sending task instance.

For example. - - 7 and f are incoming communications to 'rj. On the other hand, if

the sender frequency is less than the receiver frequency, then the communication is an outgoing

communication. (e.g. - is the outgoing communication of "k

117

4.1.1 Priority Assignment of Task Instances: a,

In the work [CA93], we presented the SLsF algorithm and the performance evaluation. The re-

sults showed that SLsF outperforms SPF and SJF. In this paper we use the SLsF as the priority

assignment algorithm for the task instances in I.

Formally, if 1st(7-) < Ist-rf), then) < a•(-•). And the insertion of a time slot for

- precedes that for Tk if once() < or.(-r). The time-based scheduling algorithm for a task
- instance is used to find a time slot for a task instance once the effective start time is given. We

define the effective start time of a task instance as the earliest start time when the incoming

communications are taken into account. Let t be the maximum completion time among all the

incoming communications of a task instance, then the effective start time of the task instance is set

to the bigger value among t and est (as stated in Equation 6).

4.1.2 Scheduling the Incoming Communications:o c

There are two kinds of incoming communications. The first kind is called the synchronous com-
munication in which the frequencies of the sender and receiver are identical. The other kind is

called the asynchronous communication in which the sending task instance is associated with a

auestion mazk. For such an asynchronous communication, we have to decide which instance of the

sending task should communicate with the receiving task instance. The approach we take is to find

the nearest instance of the sending task. The reason is that, by finding the nearest instance, the

time diference between start time of the receiving instance and the completion time of the sending

instance is "he smallest. The chance of violating the latency constraint of a communication will be

the smallest then.

The nearest instance of a sending task can be found using the following method. Given an

incoming commnunication i- - r,, and the effective start time of rf eft we search through the

linked list of processor 6(-r;) up to time eft. If there is some instance of 7, say -1, whose completion

time is the latest among all scheduled instances of -',, then the nearest instance is found. Otherwise,
we continue to search through the linked list until an instance of -, is found. We set the effective

start time of the communication to be the completion time of the found instance. We also erase

the ouestion marh such that - - 4 is changed to .- ,*. For the synchronous communication.

the effective start time of the communication is simply assigned as the finish time of the sending

task instance.

The scheduling of the communication is done by inserting a time slot to the linked list for the

commnunications network. The start time of the time slot can not be earlier than the effective start

118

time of the communication. Once the time slot is inserted, we check the effective start time of 4'

to make sure that it is not less than the finish time of the time slot. If it is, the effective start time

of r is updated to be the finish time of the time slot.

If a task instance has more than one incoming communication, the scheduling order among these

communications is based on their latency constraints. The bigger the latency value is, the earlier

the communication is scheduled. The incoming communication with the tightest latency constraint

is scheduled last. It is because the effective start time of the receiving task instance is constantly

updated by the scheduling of the incoming communications. It is possible that the scheduling of

the later incoming communications increases the effective start time of the receiving task instance

and make the early scheduled communication violate its latency constraint if the constraint is tight.

4.1.3 Scheduling the Outgoing Communications: c,

The scheduling of the outgoing communications for the whole task set is performed after all the

task instances have been scheduled. The scheduling order among these communications is based

on the finish times of the sending task instances. The task instance with the smallest finish time is

considered first. When a task instance is taken into account, all its outgoing communications are

scheduled one by one according to their latency constraints. The communication with the tightest

latency constraint is scheduled first.

Given an outgoing communication - and the finish time of if,, the effective start

time of the communication is set to be fi. Based on the effective start time. a time slot in inserted

for this communication. Then the nearest instance of receiving task can be found based on the

finish time of the time slot.

For the example shown in Figure 5, The incoming communication marked with "(1)71 is scheduled

before the scheduling of '-. The sixth instance of r is chosen as the nearest instance. As for the

outgoing communication marked with "(3)'7, it is scheduled after the scheduling of ,s! . and

_s,. In this example, , is the nearest instance of the outgoing communication.

4.2 Neighbor Finding Strategy: 6

The neighbor finding strategy is used to find the next solution point once the current solution point

is evaluated as infeasible (i.e. energy value is nonnegative). The neighbor space of a solution point

is the set of points which can be reached by changing the assignment of one or two tasks. There

are several modes of neighbor finding strategy.

119

" Balance Mode: We randomly move a task from the heavily-loaded processor to the lightest-

loaded processor. This move tries to balance the workload of processors. By balancing the

workload, the chance to find a neighbor with a lower energy value is bigger.

" Swap Mode: We randomly choose two tasks 'rj and 7j on processors p and q respectively.

Then we change 6 by setting 0(s) = q and 0(-j) = p.

" Merge Mode: We pick two tasks and move them to one processor. By merging two tasks to

a processor, we increase the workload of the processor. There is an opportunity of increasing

the energy level of the new point by increasing the workload of the processor. The purpose of

the move is to perturb the system and allow the next move to escape from the local optimum.

" Direct Mode: When the system is in a low-energy state, only few tasks violate the jitter

or latency constraints. Under such a circumstance, it will be more beneficial to change the

assignment of these tasks instead of randomly moving other tasks. From the conducted ex-

periments, we find that this mode can accelerate the searching of a feasible solution especially

when the system is about to reach the equilibrium.

The selection of the appropriate mode to find a neighbor is based on the current system state.

Given a randomly generated initial state (i.e. solution point), the workload discrepancy between

the processors may be huge. Hence, in the early stage of the simulated annealing. the balance

mode is useful to balance the workload. After the processor workload is balanced out, the swap

mode and the merge mode are frequently used to find a lower energy state until the system reaches

neax-termination state. In the final staoe of the annealing, the direct mode tries to find a feasible

solution. The whole process terminates when a feasible solution is found in which the energy value

is zero.

5 Experimental Results

We implemented the algorithm as the framework of the allocator on MARUTI[GMK+91, MSA92,

SdSA94), a real-time operating system developed at the I3nversity of Maryland, and conducted

extensive experiments under various task characteristics. The tests involve the allocation of real-

time tasks on a homogeneous distributed system connected by a communication channel.
0 -- I

"To test the practicality of the approach and show the significance of the algorithm, we consider a

simplified and sanitized version of a real problem. This was derived from actual development work.

and is therefore representative of the scheduling requirements of an actual avionics system. The

Boeing 777 Aircraft Information Management System (AIMNIS) is to be running on a multiprocessor

120

10-Proc 9_Proc 82roc 7_Proc 6-Proc
Exec-Time (Sec) 2369 5572 19774 36218 78647

H= r : Afin : Sec 0:39:29 1:32:52 5:29:34 10:03:38 21:5047

Table 1: The execution times of the AIMS with different number of processors

system connected by a SafeBus (TM) ultra-reliable bus. The problem is to find the minimum

number of processors needed to assign the tasks to these processors. The objective is to develop

an off-line non-preemptable schedule for each processor and one schedule for the SafeBus (TM)

ultra-reliable bus.

The AIMS consists of 155 tasks and 951 communications between these tasks. The frequencies

of the tasks vary from 5HZ to 40HZ. The execution times of the tasks vary from Oms to 16.650mas.

The NEI and XEI of a task t, are pi - 500Ags and pi + 500gs respectively. Since 6 = 1000'as = ims
< 2s*.... the smallest-period-first scheduling algorithm can be used in this case. Tasks communicate

with others asynchronously and in mutuality. The transmission times for communications are in the

range from 0gs to 447.733As. The latency constraints of the communications vary from 68.993ms

to 200ms. The LCM of these 155 tasks is 200ms. When the whole system is extended, the total

number of task instances within one scheduling frame is 624 and the number of communications is

1580.
For such a reai and tremendous problem size. pre-analysis is necessary. We calculate the resource

utilza~tion index to estimate the minimum number of processors needed to run AIMS. The index

is defined as

LCM

where ei is the execution of task %j and q9 = LC-_._- The obtained index for AIMTS is 5.14. It means
P.

there exist no feasible solutions for the AIMS if the number of processors in the multiprocessor

system is less than 6.

The number of processors which the AIMS is allowed to run on is a parameter to the scheduling

problem. We start the AIMS scheduling problem with 10 processors. After a feasible solution is

found, we decrease the number of processors by one and solve the whole problem again. We run

the algorithm on a DECstation 5000. The execution time for the AIMS scheduling problem with
different numbers of processors is summarized in Table 1. The algorithm is able to lnd a feasible
solution of the AIMS with six processors which is the minimum number of processors according

to the resource utilization index. The time to find such a feasible solution is less than one day

(approximately 22 hours).

121

5.1 Discussions

For feasible solutions of the AIMS with various numbers of processors, we calculate the processor

utilization ratio (PUR) of each processor. The processor utilization ratio for a processor p is defined
as

LCM

The results are shown in Figure 8. The ratios are sorted into a non-decreasing order given a fixed
number of processors. The algorithm generates the feasible solutions for the AIMS with 6, 7, 8, 9
and 10 processors respectively. For example, for the 6-processor case, the PURs for the heaviest-
loaded and lightest-loaded processors are 0.91 and 0.76 respectively. For the 10-processor cases, the
PUJRs are 0.63 and 0.28 respectively. We find that the ratio difference between the heaviest-loaded
processor and the lightest-loaded processor in the 6-processor case is smaller than those in other
cases. It means the chance for a more load-balanced allocation to find a feasible solution is bigger
when the number of processors is smaller.

The detailed schedules for the 6-processor case are shown in Figure 9. The results are shown
on an interactive graphical interface which is developed for the design of MAR UTI. The time scale

shown in Figure 9 is 100pts. So the LCM is shown as 2000 in the figure. (i.e. 2000 x 100,±s =

200mrs.) This solution consists of seven off-line non-preemptive schedules: one for each processor

and one for the SafeBus (TM). Each of these schedules will be one LCM long where an infinite
schedule can be produced by repeating these schedules indefinitely. Note that the pseudo instances
are introduced to make sure the wrapping around at the end of the LCM-iong schedules should
satisfy the latency and next-execution-interva requirements across the point of wrap-around. The
pseudo instances are no- shown in Figure 9.

The inclusion of resource and memory constraints into the problem can be done by modifying
neighbor-finding strategy. Once a neighbor of the current point is generated, it is checked to
ascertain that the constraints on memory etc. are met. If not, the neighbor is discarded and

another neighbor is evaluated.

References
-u

1CA93] Sheng-Tzong Cheng and Ashok K. Agrawala. Scheduling of periodic tasks with relative
timing constraints. Technical Report CS-TR-3392. UM1ACS-TR-94-135, Department of
Computer Science, University of Maryland, College Park, December. 1993. Submitted
to the 1Oth Annual IEEE Conference on Computer Assurance, COMPASS '95.

122

[CDH~C94] T. Carpenter, 1K. Driscoll, K. Hoyme, and J. Carciofini. Arinc 659 scheduling: Problem

definition. In Proceedings of IEEE Real- Time Systems Symposium, San Juan, PR, Dec.
1994.

IGMI{+9lJ 6. Gudmundsson, D. Mossi, K.T. Ko, A.K. Agrawala., and S.K. Tripa-thi. Maruti: A
platform for hard real-time applications. In K. Gordon, A.K. Agrawala, and P. Hiwang

(eds.), editors, Mission Critical Operating Systems. IOS Press, 1991.

[HS92] Chao-Ju Hou and Kang G. Shin. Allocation of periodic task moduiles with precedence

and deadline constraints in distributed real-time systems. 1n Proceedings of the 1992

IEEE 13th Real- Time Systems Symposium, pages 146-155, Phoenix, AZ, 1992.

[KG V83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220(4598):672-680, May 1983.

[LH92] Feng-Tse Lin and Ching-Chi H~su. Task assignment problems in distributed comput-

ing systems by simulated annealing. Journal of the Chinese Institute of Engineers,

14(5):537-550, Sept. 1991.

[MSA92) Daniel Mossi, M.C. Saksena., and Ashok K. Agrawala. Maxuti: An approach to real-

time system design. Technical Report CS-TR-2845, XJMIACS-TR-92-21, Department

of Computer Science, Uiniversity of Maryland, College Park, 1992.

[Ram9OJ Kritbi R~amama-itham. Allocation and scheduling of complex periodic tasks. In Pro-

ceedings of the 10th International Conference on Distributed Computing Systems, pages

1OS-uS. Paris. France, 1990.

[SdSA94] M. Sa~ksena., J. da Silva, and A. K. Agrawala.. Design and implementation of maruti-

ii. Technical Report CS-TR-2645, Department of Computer Science, University of

Maryland, College Park, 2994.

[TB W92J K. W. Tindell, A. Burns, and A. J. Weflings. Allocating hard real-time tasks: an

NP-bard problem made easy. Real- Time Systems, 4(2):145-165, June 1992.

123

ii

Given a solution point P =ac)

While there is some unscheduled task instance do
Find the next unscheduled instance. /* By the SLsF algorithm */

Let the instance be •,.
Sort all the incoming communications of •-I based on

the latency values into a descending order.
Schedule each incoming communication starting from

the biggest-latency one to the tightest-latency one.

Schedule the instance ,'.
End While.
Mark each instance as un-examined.
While there is some un-examined task instance do

Find the next un-examined task instance. /* By the finish times */
Sort all the outgoing communications of the task instance based

on the latency v-alues into an increasing order.
Schedule each outgoing communication starting from

the tightest-latency one to the biggest-latency one.
Mark the task instance examined.

End W1•ile.
Collect the start time and £nish time infornations for each task instance and communication.
Compute the energy value using Equation 5.

I

Figure 6: Thepseudo code for computing the energy value

124

Choose an initial temperature T
Choose randomly a starting point P = (a, ao, oc)
Ep := Energy of solution point P
if re = 0 then

output EP and exit /4 •P = 0 means a feasible solution */
end if
repeat

repeat
Choose N, a neighbor of P
E, := Energy of solution point N
if E,, = 0 then

output E,, and exit /* E = 0 means a feasible .olution */
end if
if E,, < E. then

P:=NEp E,.•

else
z-:=

if e= > random(O.,l) then
A:='

.4 := £
end if

end if
S~until thermal equilibrium at T

T := a x T (where a < 2)

until stopping criterion

Figure 7: The structure of simulated aanealing algorithm.

125

0.70

0.40 ---- -'po

0.101-

0.2$

0.20

0.15

0.'0 L
0.55

0.00

0.C.

2.30

Fiue80.oesrUilzto2ato$o ffrn ae

Fil Iurc'sp, 116u vW kýK-r F11: c0.20_~r

0 100 200 3W 40~~~~0. 350 W 0C OW W D 100= 302M L 6 10IM 90

p~~~~ LF16 eQt 5II6,.65218 ITI7--015ýl43 mm si 6

. , 11 .:i: F 0 .c - -- 1 .. 0 I - , 1 i!2

0 : RL 2=25NM 164M 512M5 162=3

4*rM447.17 4mC4731a "a4 48414 P'4 399 Oj25OEW 449 1s W44 17212 572 .450, 5445402

P 3: = t D C ,,I -=

FigIure 9: The Allocation Results and Scheduales for AIMS with 6 pDrocessors

126

REPORT DOCUMENTATION PAGE Form approved
I OMB No 074-0188

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE END DATES COVERED
January 1995 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMNBERS
Allocation and Scheduling of Real-Time Periodic Tasks with Relative N0001 4091 -C-01 95
Timing Constraints DSAG-60-C-0055

6. AUTHOR(S)
Sheng-Tzong Cheng and Ashok K. Agrawala

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

University of Maryland CS-TR-3402

Department of Computer Science UMIACS-TR-95-6

A.V. Williams Building

College Park, MD 20742

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSORING/ MONITORING

Honeywell Inc. Phillips Laboratory AGENCY REPORT NUMBER

3600 Technology Drive Directorate of Contracting
Minneapolis, MN 55148 3651 Lowry Avenue, SE

Kirtland AFB, NM 87117-5777

11. SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT 12.b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Allocation problem has always been one of the fundamental issues of building the applications in distributed computing

systems (DCS). For real-time applications on DCS, the allocation problem should directly address the issues of task and
communication scheduling. In this context, the allocation of tasks has to fully utilize the available processors and the
scheduling of tasks has to meet the specified timing constraints. Clearly, the execution of tasks under the allocation and
schedule has to satisfy the precedence, resources, and other synchronization constraints among them.

Recently, the timing requirements of the real-time systems emerge that the relative timng constraints are imposed on the
consecutive executions of each task and the inter-task temporal relationships are specified across task periods. In this
paper we consider the allocation and scheduling problem of the periodic tasks with such timing requirements. Given a set of
periodic tasks, we consider the least common multiple (LCM) of the task periods. Each task is extended to several
instances within the LCM. The scheduling window for each task instance is derived to satisfy the timing constraints. We
develop a simulated annealing algorithm as the overall control algorithm. An example problem of the sanitized version of the
Boeing 777 Aircraft Information Management Systems is solved by the algorithm. Experimental results show that the
algorithm solves the problem in a reasonable time complexity.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Process Management; Special Purpose and Application-Based Systems 22

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIIFICATION 19. SECURITY CLASSIFICATION 20. UMrIATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified Unlisted

MSN 7540-01 280-5500 Standard Form 298 (Rev 2-89)
1'27

Ul

U

I

II

II

1-28 1I

Scheduling of Periodic Tasks with Relative Timing Constraints *

Sheng-Tzong Cheng and Ashok K. Agrawala.
Institute for Advanced Computer Studies

Systems Design and Analysis Group
Department of Computer Science

University of Maryland
College Park, MD 20742

{stcheng,agrawaJa)} cs.umd.edu

Abstract

The problem of non-preemptive scheduling of a set of periodic tasks on a single processor

has been traditionally considering the ready time and deadline on each task. As a consequence,

a feasible schedule finds that in each period one instance of each task starts the execution after

the ready time and completes the execution before the deadline.

Recently, the timing requirements of the real-time systems emerge that the relative timing
constraints are imposed on the consecutive executions of each task. In this paper, we consider

the scheduling problem of the periodic tasks with the relative timing constraints imposed on two

consecutive executions of a task. We analyze the timing constraints and derive the scheduling

window for each task instance. Based on the scheduling window, we present the time-based

approach of scheduling a task instance. The task instances are scheduled one by one based on

their priorities assigned by the proposed algorithms in this paper. We conduct the experiments

to compare the schedulability of the algorithms.

"This work is supported in part by foneywell under N00014-92-C-0195 and Army/Philips under DASG-60-92-
C-0055. The views, opinions, and/or findings contained in this report are those of the avthor(s) and should not be
interpreted as representing the official policies, either exvressed or implied, of Honeywell or Army/Philfps.

129

U

1 Introduction

The task scheduling problem is one of the basic issues of building real-time applications in which the

tasks of applications are associated with timing constraints. For the hard real-time applications,

such as avionics systems and nuclear power systems, the approach to guarantee the critical timing -1
constraints is to schedule periodic tasks a priori. A non-preemptive schedule for a set of periodic

tasks is generated by assigning a start time to each execution of a task to meet their timing

constra3nts. Failure to meet the specified timing constraints can result in disastrous consequence.

Various kinds of periodic task models have been proposed to represent the real-time system

characteristics. One of them is to model an application as a set of tasks, in which each task is

executed once every period under the ready time and deadline constraints. These constraints impose

constant intervals in which a task can be executed. In literature, many techniques [2, 3, 4. 5, 6, 7, 8)

have been proposed to solve the scheduling problem in this context. The deficiency of this modeling
is the inability of specifying the relative constraints across task periods. For example, one can not

specify the timing relationship between two consecutive executions of the same task.

I
Simply assuring that one instance of each task starts the execution after the ready time and

completes the execution before the specified deadline is not enough. Some real-time applications

have more complicated timing constraints for the tasks. For example, the relative timing constraints

may be imposed upon the consecutive executions of a task in which the scheduling of two consecutive

executions of a periodic task must be separated by a minimum execution interval. The Boeing 777

Aircraft Information Management System is such an example [1). One possible solution to the

scheduling problem of such applications is to consider the instances of tasks rather than the tasks.

A task instance is defined as one execution of a task within a period. With the notion of task

instances, one is able to specify the various timing constraints and dependencies among instances

of tasks.

In this paper, we consider the relative timing constraints imposed on two consecutive instances

of a task. The task model and the analysis of the timing constraints are introduced in Sections 2

and 3 respectively. Based on the analysis, we are able to derive the scheduling window for each

task instance. Given the scheduling window of a task instance, we present the time-based approach

of scheduling a task instance in Section 4. We propose three priority assignment algorithms for the

task instances in Section 5. The task instances are scheduled one by one based on their priorities.

In Section 6. we evaluate the three algorithms and show the experimental results.
130

2 Problem Statement

Consider a set of periodic tasks r = { i 1, ... n), where 7i is a 4-tuple < pi, e,, Ai, 77; >
denoting the period, computation time, low jitter and high jitter respectively. One instance of a

task is executed each period. The execution of a task instance is non-preemptable. The start times

of two consecutive instances of task 7-i are at least p; - Ai and at most pi + i/i apart.

In order to schedule periodic tasks, we consider the least common multiple (LCM) of all periods

of tasks. Let ni be the number of instances for task T; within a schedule of length LCM. Hence, ni

= C_ A schedule for a set of tasks is the mapping of each task Ti to ni task instances and thePi

assigning of a start time s to the j-th instance of task Tri, 7,-., V i = 1, ... n and j = 1, ... , ni. A

feasible schedule is a schedule in which the following conditions axe satisfied for each task r,.:

1 + LCM (2)

4< > + Pi- (3)

S < + pi + (4)

/=2,...ni + I.

The non-preemption scheduling discipline leads to Equation I where f' is the finish time of •.

Another condtion for non-preemption scheduling is that given any i, j, k and e, 'i f < st then fi

< s'. It means the schedule for any two instances is non-overlapping. The constructed schedule of

length LCM is invoked repeatedly by wrapping-around the end point of the first schedule to the

start point of the next one. Hence, as shown in Equation 2, the start time of the first instance in
the next schedule is exactly one LCM away from that of the first schedule. Finally, Equations 3

and 4 specify the relative timing constraints between two consecutive instances of a task.

3 Analysis of Relative Timing Constraints

Define the scheduling window for a task instance as the time interval during which the task can

start. Traditionally, the lower and upper bounds of the scheduling window for a task instance are

called earliest start time (est) and latest start time (Ist) respectively. These values axe given and

independent of the start times of the prereding inszances.

131

Instance ID est s- . +pi - A, Ist + pj +77 actual start time
, _ I C. 40 4

,. I391 49 40

___ _ 75 85 77
__1, 112 122 113

•_•1 148 158 *

Table 1: An example to show the wrong setting of scheduling windows

We consider the scheduling of periodic tasks with relative timing constraints described in Equa-

tions 3 and 4. The scheduling window for a task instance is derived from the start times of its

preceding instances. A feasible scheduling window for a task instance -] is a scheduling window

in which any start time in the window makes the timing relation between si and s1 satisfy

Equations 3 and 4. Formally, given si, s?, ... , and ... , si , the problem is to derive the feasible

scheduling window for ,j such that a feasible schedule can be obtained if •-' is scheduled within

the window.

For the sake of simplicity, we assume that ri = 0 and d, = pi. V i, in this section. Then. simply

assigning est and Ist of •? as s-. P -),i and - p. 7-7, respectively where i = 1, 2., n

and j = i; 2, ... ni, is not tight enough to guarantee a feasible solution. For example. consider

the case shown in Table 2 in which a periodic task -, is to be scheduled. Let LCM, pi.).it and .

be 200, 40, 5, and 5 respectively. Hence, there are 5 instances within one LCM (i.e. it, = 5). The

first column in Table 1 indicates the instance IDs. The second and third columns give the est and

1st of the scheduling windows for the task instances specified in the first column. The last column

shows the actual start times scheduled for the particular task instances. The actual start time is

a value in between est and ,st of each task instance. For instance, the est and Ist of ri are 39 and

49 respectively. It means 39 < s? < 49. The scheduled value for s?, in the example, is 40. Since

6-

•6= s. + LCM = 204. we find that an3" value in t.he interva 1148,158) can not satisfy the relative

timing constraints between -i and i. As a consequence, the constructed-schedule is infeasible.

We draw a picture to depict the relations among the start times of task instances in Figure 1.

When , is tal-ken into account, the scheduling window for s, is obtained by considering its relation

with z- as well as that with s"• and s'+'. We make sure that once s is determined, the estimated

est and Ist of s> based on s. and s;, specify a feasible scheduling window for s". Name]y. the

interval-•hi is specified by the estimated est and 1st of s. based on s. over] aps the interval

132
I

•i'-i

II

S.•

Si.

Si

Figure 1: The relations between the task instances

r.. - (Pi+ 77;), Sný. _ (pi - \,)].

Proposition 1: Let the est and 1st of 7 be

and 1st(7') = minf(s~ ±Pi +77). (S ~ X (j)xP--(, Xj 1 ki) x (6)

If s~is in between the est(-,') and lst(<)f, then the estimated es n s ~~,based on s~and
+, specify a feasible window.

Proof: Let t and u be the estimated est and lst of Sn, based on s, respectively.

Hence,

S. (nj - j) x (pi -A) (7)

= + (n,.-j)x(P-+ 7) (6)

To guarantee the existence of feasible start time of ,i ' the interv-al ji,/ has to overlap the

inter-al - (P[= n) "- (p- - A1)]. Hence the following conditions have to be satisfied:

S> p(9)

133

P P +p4 1+7• (10)

By replacing t in Equation 9 with s, + (- jx - A), we obtain

1 < 1. (ni - j + I x (pi -)

-s!+LCM-(ni -j+1) x(Pi-Ai)

-s+n;)X pi ± (n j+1) x(i A()

si, + Xj -)xpi + (ni - j + I) X A j1

Likewise, by replacing p in Equation 10 with s• + (n. - j) x (pi + i7j), we have

= s.+LCM-(ni-j+1) x(pj+77)

= s3+(j-) xpi- (n- x1) xi (12)

So. According to Fquations 22 and 3. we choose the bigger value between (s-i+ pi; - A)) and

(s (j -1) x p- - (n. - j 1) x as) a the est of j. Similarly, according to Equations 11 and 4,
(4-2

we assign the sm?-ller value of (,s p j 77i) and (s! + (j - x) x pi (n. - j +1) x Aj) as the

D

Example 3.1: To show how Proposition 3 gives a tighter bound to find feasible scheduling windows,

we consider the case shown in Table I again. We apply Equations 5 and 6 to compute the est and

Ist of each instance. The results are shown in Table 2. Note that the scheduling windows for •-

and r are tighter than those in Table 1. As a consequence, any staxt time in the interval [159,160]

for -,j satisfys the relative timing constraints between ri and ;•.

3.1 Property of Scheduling Windows

Define .j(x, y, z) as the predicate in which the estimated est and Ist of i, based on sm and .5-,

specify a feasible scheduling window for -j'. In Proposition 3 , we prove that for any s" in between

est(7f) and lst(<r) as specified in Equations 5 and 6. P'(. ni, n, -1) is true.

134

xInstance ID es! from Equation 5 -1st from Equation 6 actual start time (s)
nT0 40 4

39 49 40

_ 3,_ 75 85 77

7i4 114 122 115
,_ _ 159 160 159 - 160

Table 2: The correct setting of scheduling windows based on Proposition 3.1.
Ss2, and 5? sfýa pciidi

Lemma 1 Given s,, ... , and s, if, V k = 2, ... , J,est(r') < I' _ lst/Ij as specife in

Equations 5 and 6, then Pi(j,y, n + 1) is true, V y= j+ 1, j + 2, ... ,

j.41 •~yafail

Proof: We prove that the estimated est and 1st of 7,', based on s; and " ,e6fy a feasible

scheduling window, by showing that (1) the estimated scheduling window of -4, based on s, is

specified by the interval

[(Y- j) X (pi- Aj), (+ - j) X (P +- 77:)], (13)

(2) the estimated scheduling window of s', based on s>+, is specified by the interval

(n" j - Y- + 1) x (pi+ 77j),s' -- (n - Y + (2) x (Pi), (14)

and (3) the interv-als in Equations 13 and 14 overlap.

In Figure 2, we see that the necessary and sufficient conditions for the overlapping o& the

intervals specified in Equations 13 and 14 are

(- - j) x (p; -.) _< .'+ - (nj - y+) x (p-A,) (-, "

and s"+' N -(nY-+-4 1) X(P:-.- +17) :5Si s (y j) X(pj + 77). (16)

By solving the Equations 15 and 16, we obtain

S < ! + (j - 1)x pi + (n - j + 1)x j

and s- > s,+(j-1) xpi-(n2 -j+1)x,-..

The above two equations describe the same conditions as Equations 11 and 12 do. Hence, Pj(j, y, n, + 1)

is true, V y = j+ 1.j+ 2...,n.

135

1

Figure 2: The overlapping of two intervals

Lemma 2 Given si, s?, ... , sý, and an integer no, where 1 < no :5 j, if, V k =2, *.,j, est(-,j)

<5 sý 5 Ist (rj) are specified as in Equations 5 and 6, then Pi (j, y, n + no) is true, V y j+ 1,

j'1 ,. , ni.

Proof: We use the same method in Lemma I. to prove it. We show that (1) the estimated scheduling

wAindow of J, based on sis specified by the interval

4- (y-j P tS A 0,(7

(2) the estimated scheduling window ofs 4. based on .52. is specified by the interval

(ni o -)x (+s (

and (3) these two intervals overlap.

The following conFitions have to be satisfied to make sure the overlapping of the two intervals.

an 4, .. - 1)d x• pim - o he - + 1)' 7 < - , (pi + 7;- x no -.. ,s(20)

Snea s <i (1o

Sincf:-e s(pi - A) x (no- i1) and s! > pro (pi +.) x (no - I). we rewrite Eqhuations 19

and 20

[-•~ ~ p + (n- -)×(, ;, + 1•) x A;(p.÷ - A), x n -

136

< 1,+U - 1) X Pi+ (n; j+ 2) xAj
an s > ,•an d s; > .5-0 + (-)x pi - (n,' - j + 1) x 77j-(p, + 77;) x no - 1.

s! L,+ (j - 1) x pi - (ni - j+ 1) x 77i

Hence Pi(j, y, ni + no) holds for any 1 < no < j.

Theorem 1 Given sý, s?, ... , and sj, if, V k = 2, est(r3) <s < lst(.) as specified in

Equations 5 and 6, then Pi(j, y,z) is true, V y =j+ 1, j + 2, ... , ni, and z = ni + 1, n- + 2,

nt +j.

By combining the proofs in Lemmas 1 and 2, it is easy to see that Theorem 1 holds. Based on

Theorem 1 , we can assign the scheduling window for ,-' by using Equations 5 and 6 once s;, s,

Before we present the scheduling technique for a task instance, let us consider the following
objective. The objective can be formulated as follows. Given a set of tasks with the chazacteristics
described in Section 2. we schedule the task instances for each task within one LCM to minimize

P (21)

Subject to the constraints specified in Equations I through 4,

where a(z) = z, if x > 0; = -z, otherwise.

Basically, we try to schedule every instance of a task one period apart from its preceding
instance. A.n optimal schedule is a feasible schedule with the minimum total deviation talue from
one period apart for instances.

4 The Time-Based Scheduling of a Task Instance

We consider the time-based solution to the scheduling problem by using a linked list. Each element
in the list represents a time slot assigned to a task instance. A time slot w has the follUwing fields:
(1) task id i and instance idj indicate the identifier of the time slot. (2) start time st and finish tirne

ft ind3caze the start time and completion time of r respectively. (3) prey ptr and next pt7 are the

137

eU
new arriving instance: {est~r7), lst(7N)

I. A S2 f2 53 h3

LCM

Before: 0 2 12 .53 13

After: 0 h f + 1 -e -12 f 3

Figure 3: Insertion of a new time slot

pointers to the preceding and succeeding time slots respectively. We arrange the time slots in the

list in increasing order by using the start time as the key. Any two time slots are non-overlapping.

Since the execution of an instance is non-preemptable, the time difference between start time and

finish time equals the execution time of the task.

4.1 Creating a Time Slot for the Task Instance

Consider a set of n tasks. Given a linked list and a task instance , we schedule the instance by

inserting a time slot to the list. According to equations 5 and 6, we compute the est(,) and 1st(-')

first. Let S be the set of unoccupied time intervals that overlap the inter-al jest(l, IstQ')] in the

linked list. The unoccupied time inter-als in S are collected by going through the list. Each time

when a pair of time slots (w, w + 1) is examined, we compute £ = max{est(rf), ft(w)} and p -

=ini{s(•). st(w -' 1)), where ft(w) is the finish time of the time slot w, and st(w + I) is the start

time of the slot next to w. U C < g, then we add the interval [t, y] to S.

The free inter-als in S are the potential time slots which -' can be assigned to. Since we try

to schedule ' as close to one period awky from the preceding instance ,'-' as possible, we sort S,

based on the function of the lower bound of each interval, c(,?-- + pi - £), in ascending order.

Without loss of generality, we assume that S after the sorting is denoted by {inti. int2 , int3Sl)

138

I

The idea is that if -? is scheduled to intk, then the value in equation 21 will be smaller than that

of the case in which r' is scheduled to i:ftk4l.

The scheduling of ,, can be described as follows. Starting from in 1 , we check whether the

length of the interval is greater or equal to •execution time of 7' or not. If yes, then we schedule

the instance to the interval. One new time slot is created in which the start time is the lower bound
of the interval and the finish time equals the start time plus the execution time. The created time
slot is added to the linked list and the scheduling is done. If the length is smaller than the execution

time, then we check the length of the next interval until all intervals are examined. An example is

shown in Figure 3 in which the slot with dark area represents r'. In this example we assume that

est('4) <JA and S2 - fA > e. It means the free slot between the first a.:d second occupied slots

can be assigned to r7?.

4.2 Sliding of the Time Slots

In case none of the inter-als in S can accommodate a taskc istan-ce, the sliding technique is used
to create a big enough interval by sliding the existence time slots in the list.

To make the sliding technique work, we maintain two values for each time slot: left laxity and
right lc.iZy. The -alue of left laxity indicates the amount of time units by which a time slot ca_. be

left-shifted To a earlier start time. Similarly" the right Iv'jV iyndicak. the amount of time units by
which a time slot can be right-shifted to a later start+,ine.

Given the time slots wk,_, wk. and Wk-+, where a and b are the task and instance identifiers of
wk respectively, the laxity values of the time slot wk can be computed by:

lef•iaJily(wk) = mi{.fs - esi', sb - ft(wk_) + lef LI axii(wk._.)} (22)
b b~t

righj,.Jaity(wk) = min{Ist' - s', st(w+j) - J,+ right laxity(t. 4+1)} (23)

where es'&' = mna.xfest(7j), 56'- +p 77.))

and 1st' = mninflst(7,,). sz-, - (P. -

Note that the interval jest', 1st') defines the sliding range during which -1 can start without

shifting 0, or ,1 A schematic illustration of equations 22 and 23 is given in Figure 4.

From equations 22 and 23, we see that the computing of left.laxity(wk) depends on that of wk-,

and the computing of righ',lazity(wj.) depends on that of wk+.;. It implies a two-pass computation

139

S0 b est'
Ist - $ b

-t -.--- st(W~~ - 41

b-1 1k S b+1"• a •JJWk -1I

est' 1st'

Figure 4: An illustration of lef o.-Zity(wk) and right•lxitiy(wk)

is needed to compute the]axity values fo- all time slots. The complexity is 0(2N) where N is the
numbe7 of time slots in the linked list.

The basic idea of the sliding technique is described as follows. Given a task instance ? and a
set of unoccupied interva-s. S = {int,, in12, ... , int1 Sl}, we check one interval at a time to see if

the interval cam be enlarged by shzifting the existent time slots. Two possible ways of enlargement
are (3) by either shifting the time slots, that precede the interval-, to the left or (2) shifting the
slots, that follow the inter-al, to the right. The shifting depends on which direction minimizes the
objective function in Equation 21.

4.3 The Algorithm

An algorithmic description about how to schedule a task instance, as described in Sections 4.1
and 4.2. is given in Table 3.

The procedures Left-.Shift(wu. timeunrts) and RightShift(wk time-units) in Table 3 may involve
the shifting of more than one time slot recuzsively. For example, consider the case in Figure 4. if

Right..Shift(wkist' - s4) is invoked (i.e. wk is to be shifted right by Ist' - sb time units), then

Wk+. has to be shifted too. It is because the gap between wk and wk+÷ is st(wk+l) - f• which is

140 I

6

smaller than Ist' - s.b In this case, RightShift(wk+1 ,lst' - sa - St(Wk+l) + fb) is invoked.

We do not enlarge an interval at both ends. Enlarging an interval at both ends needs to shift

certain amount of preceding time slots to the left and shift some succeeding slots to the right. It is

possible that some task instance r7, is shifted]eft, while r7+1 is shifte4 righk. As a consequence, the

timing constraints between 4v and s"+' could be violated. For example, Let s4 and s11+2 before the

shifting be 10 and 20 respectively. The execution time for r., is 5 time units. Assume the left lazity

of 7r.' is 5 and the right laxity of -r.+ is 5. It implies sY+1 - s4 < 15. Consider the scheduling of a

task instance r' with execution time 15. If we enlarge the interval between r1 and ,Y+l by shifting

'Y left 5 time units and =''+1 right 5 time units, then we get a new interval with 15 time units for

.However, it turns out that s31+1 = 25, 4y = 5, and the relative timing constraints between r7

and :-Y+' is violated.

5 The Priority-Based Scheduling of a Task Set

We consider the priority-based algorithms for scheduling a set of periodic tasks with hybrid timing

constraints. Given a set of periodic tasks 1' = { I i = 1, ... , n) with the task characteristics

described in Section 2, we compute the LCM of all periods. Each task ri is extended to n, task

instances: -, i , ... , ,j-,. A scheduling algorithm c: for IF is to totally order the instances of all

tasks within the LCM. Namely, a : task-id x instance.id - inteoer.

Three algorithms are considered. They are smallest latest.start-4imefirst'SL sF), smalest perid

first (SPF), and smallest .jiter first (SJF) algorithms.

5.1 SLsF

The scheduling window for a task instance - depends on the scheduling of its preceding instance.

Once s- is determined, the scheduling window of the instance can be computed by equations 5

and 6. The scheduling window for the ?rm instance of a. task 7i is defined as [ri,di - ei].

The idea of the SLsF algorithm is to pick one candidate instance with the minimum Ist among

all tasks at a time. One counter for each task is maintained to indicate the candidate instance. All

counters are initialized to 1. Each time when a task instance with the smallest 1st is chosen, the

algorithm in Table 3 is invoked to schedule the instance. After the scheduling of the instance is

done, the counter is increased by one. The counter for 7j overflows when it reaches ni + 1. It means

141

I

that all the instances of 'r, are scheduled. The algorithm terminates when all counters overflow.

We can compute the relative deadline for a task instance by adding the execution time to the

1st. If the execution times for all tasks are identical, the SLsF algorithm is equivalent to the earliest

deadline first (EDF) algorithm.

5.2 SPF

The task periods determine the LCM of r and the numbers of instances for tasks within the LCM.

In the most cases, the task- with the smaller period has the tighter timing constraints. Namely,

(Aj + r73) < (Aý + rtj) if p. < pj. To make the tasks with the smaller periods meet their timing

constraints, the SPF algorithm favors the tasks with smaller periods.

The SPF algorithm uses the period as the key to arrange all tasks in non-decreasing order. The

task with the smallest period is selected to schedule first. The instances of a particular task are

scheduled one by one by invoking the algorithm in Table 3. After all the instances of a task are

scheduled, the next task in the sequence is scheduled.

5.3 SJF I
We define the jitter of a task 7i as (Ai -' 7i7). It is proportional to the range of the scheduling

window. Hence, The schedulabii•ty of a task also depends on the jitter.

Instead of using the period as the measurement. the SJF algorithm assigns the higher priority

to the tasks with the smaller jitters. The task with the smallest jitter is scheduled first.

5.4 The Solution

The composition of the time-based scheduling of a task instance an. the priority assignment of

task instances is shown in Figure 5. The priority assignment can be done by using SLsF, SPF, or

SJF. The function Schedule..An.Tnszance() is invoked to schedule a single task instance.

6 Experimental Evaluation

We conduct two experiments to study and compare the performance of the three algorithms. The

purpose of the first experiment is to study the effect of the number of tasks and utilization on

142 _1

i

A set of tasks is given

Find the next unscheduled task instance

By some priority-based assignment,

Such as SLsF, SPF, and SJF.

Schedule..AnInstance() as shown in Table 3

Some instance is unscheduled

All instances are scheduled

Figure 5: A schematic fowchart for the solution

143

U

the schedulability of each algorithm. The objective of the second experiment is to compare the

performance of the three algorithms.

6.1 The First Experiment

The task generation scheme for the first experiment is characterized by the following parameters.

Periods of the tasks: We consider a homogeneous system in which the period of one task

could be either the same as or multiple of the period of another. We consider a system with

40, 80, 160, 320, and 640 as the candidate periods. There may be more than one task with

the same period.

" The execution time of a task, ei : It has the uniform distribution over the range [0,)], where

pi is the period of the task -r. The execution time could be a real value.

"• The jitters of a task: A, = 7i = 0.1 x pi.

We define the utilization of a task system as

e_. (24)

In the first experiment, the utilization value and the number of tasks in a set are the controlled

vawriables. Given an utilization value U and the number of tasks N the scheme first generates a
run of raw data by ran6omiy generating a set of N tasks based on the the selected periods, jitter
values, and the execution time distribution. The utilization of the raw daza. u, is then computed by

Equation 24. Finally, the utilization ",.lue of the raw data is scaled up or down to U by multiplying
-"T to the execution time of each generated task. As a consequence, we obtain a set of tasks with

the specified (U,A") value.

For each combination of (U,N) in which U = 5%, 10%, 15%, ... 100% and N = 10, 20, and

30, we apply the scheme to generate 5000 cases of input data and use the three algorithms to

solve them. The schedulability degree of each (UN'1) combination for am algorithm is obtained by

dividing the number of solved cases by 5000. Since the jitter values is 1/10 of periods, it is observed

that the SPF and SJF algorithms yield the same results. The results are shown in Figure 6.

As can be seen in Figures 6(a) and (b) the number of tasks has the different effects on the

three algorithms. For SLsF, given a fixed utilization value, the schedulability degree increases

144 I

001.d0.10 llty 0.004lni•b10 0ty

I II $ *ar 2•• 0 I I S | "i $.s~lJF 0 * 10

0.90 0.90

0.10 0.600.S0 0.00ii

0 .4$

0.2s 0.Is

0.10 0.0

0.00 0.2s
0.00 0.30

0 .40
0.4*

O's: F
29.00 4C.00 60. &C.00 00 00.04 40.00 Go.00 bt.oD 20C.00

Figure 6: The effect of the numbers of tasks on the schedula]bility

as the number of tasks in a system becomes bigger. It is beacuse the execution time of a task

becomes smaller as the number of tasks increases. For a task system with smaller execution time

dis-ribution, the chance for SLsF to find a feasible sdukbor is ligei. The same pbhenomenon is

also found in Figure 6(b) for SPF and SJF in the low-utilization cases (i.e. U _5 20%). However,

for the high-utilization cases in Figure 6(b), the complexity of the number of tasks dominates the

algorithms and the schedulability decreases.

6.2 The Second Experiment

The task generation scheme for the second experiment is characterized by the following parameters.

"* LCM = 300

"* The number of tasks is 20.

"* Periods of the tasks: We consider the factors of the LCM as the periods. They are 20. 30,
50, 60, 100. 150, and 300. There may, be more than one task with the same period.

145

m

"* The execution time of a task, e; : It has the uniform distribution over the range [0,:f, where

pi is the period. of the task 7-. The execution time could be a real value.

"* The-jitters of a task: Aj = 77; = 0.1 x pi + 2 x e,.

The generation scheme for the second experiment is similaz to the first one. Given an utilization

value U, a set of 20 tasks is randomly generated according to the parameters listed above and then j
the execution time of each task is normalized in order to make the utilization value equal to U

exactly.

We generate 5000 cases of different task sets for each utilization value ranging from 0.05 to 1.00.

The schedulability degree of each algorithm on a particulaxr utilization value is obtained by dividing

the number of solved cases by 5000. We compare the schedulability degrees of the algorithms on

different utilization values. The results are shown in Figure 7(a).

As cam be see in Figure 7(a) the SLsF algorithm outperforms the other two algorithms. For

example, when the utilization = 50%, the schedulabiity degree of SLsF is 0.575 while those of SPF

and SJF are less than 0.2. it is because the way of assigning the priorities to the task instances in

the SLsF algorithm reflects the urgency of task instances by considering the latest start times.

We also compare the objective function value -, in Equation 21 among the three algorithms.

We define the normalized objective function for an algorithm as
50900

5000i(25)
i=2

I if the algorithm can not find a feasible solution to case '.
where - = 0 if maxz(i) = min(i).

I w()-,•() otherwise.

Given case i, the values of min(i) and max(i) are calculated among the objective values obtained

from the algorithms which solve the case. For the algorithms which can not find a feasible solution

to case i, the objective values are not taken into account when mnin(i) and max(i) are calculated.

The results of the normalzed objective functions for each algorithm on different utilization values

are shown in Figure 7(b). -

It is observed that in the low-utilization cases SJF finds feasible solutions with smaller objective

values. It is because that SJF schedules the tasks with the smallest jitters first. By scheduling

the tasks with smaller jitter value first it is more easier to make the instances of a task one period

apart. we can find a feasible solution with smaller objective value. However, in the middle- or

146 I

F 0.80

0.425

0.10 09F.15 0.41

0.0.4

0 .3 0 1 . 1

0i.2 s 7 :0 .3 8 0 . 0 4 .0 0 0 08 .0.05 F.SS

€0 .2 o5 " "
0 .2t

C.050

comparison of three algorithms

high-utilization ca~ses, the schedulability dominates the normalized objective iunction, and SLsF
outperforms the other two algorithms in these regions.

7 S ummary

in this paper we have considered the static non-preemptive scheduling algorithm on a single proces-

SOr for a Set of periodic tasks with hybrid timing constraints. The time-based scheduling algorithm
is used to schedule a task instance once the scbeduling window of the instance is given. We also have
presented three priority assignment algorithms for the task instances and conducted experiments
to compare the performance. From the experimenta] results, we see that the SLsF outperforms the
other two algorithms.

The techniques presented in this chapter can be applied to multi-processor real-time systems.
Conmmunica~tion and synchronization constra dnts can be also incorporated. In our future work, the
extension to a_ distributed computing systems will be investigated.

147

References 3

[1] T. Carpenter, K. Driscoll, K. Hoyme, and J. Carciofini. Arinc 659 scheduling: Problem defini-

tion. -In Proceedings of IEEE Real-Time Systems Symposium, San Juan, PR, Dec. 1994.

[23 M. L. Dertouzos and A.K. Mok. Multiprocessor on-line scheduling of hard real-time tasks. IEEE

Trnsactions on Software Engineering, 15(12):1497-1506, Dec. 1989.

[3) M.G. Rarbour, M.H. Klein, and ,.P. Lehoczky. Fixed priority scheduling of periodic tasks

with -varying execution priority. In Proceedings of IEEE Real- Time Systems Symposium, pages

116-128, Dec. 1991.

[4] Krithj Ramamritham. Allocation and scheduling of complex periodic tasks. In Proceedings of

the 10th International Conference on Distributed Computing Systems, pages 108-115, Paris,

France, 1990.

[5] T. Shepard and J.A.M. Gagne. A pre-run-time scheduling algorithm for hard real-time systems.

IEEE Transactions on Software Engineering, 17(7):669-677, July 1991.

!63 K. TindelU, A. Buns, and A. Weflings. An extendible approach for analyzing fixed priority hard

real-time tasks. Real-Time Systems, 6(2), March 1994.

17] J.P.C. Veiboosel. E.J. Luit, D.K. HRamme:. and E. Jansen. A static scheduling algorithm for

distributed hard real-time systems. Real-Time Systems. pages 227-246, 1991.

[8] 3. Xu and D.L. Parnas. Scheduling processes with release times, deadlines, precedence, and

exclusion relations. IEEE Transactions on Software Engineering, 16(3):360-369, March 1990.

148 .1

a

ScheduleAnInstance (rf):
Input: A linked list, a task instance ' and a sequence of sorted free intervlis, S - { infl, int2, ... , I)

in ývhich each interval overlaps lest(~',s(')

Let the execution time of < be e.
For n = I to 1S1 do

Let int, be [tp1.
If u - f > e then

Return a new time slot with start time = Z and finish time = £ + e.
End if.

End for.
Compute left lazity and right la=ity for each time slot in the linked list by equations 22 and 23.
For n = 2 to ISI do

Let ini. be [£,y].
If Z > s' + p; then /* T'y left shift first then right shift "/

Let the time slot that immediately precedes int, be wk.
I. 2efilcazity(w') p -C > e then /w Left shift "/

Left-Shift(wA;e - p + C).
Return a new time slot with star, time = p - e and finish time = U.

Else
Let the time slot that immediately follows int, be wi.
I-" riOhLaczizy(wk) + > - £ _ e then /* Right shift /

Ri gh:_Shiit(w•.,e - p• +).

Return a new %ime slot with sIar time = C aMd finish time = f+ e.
End If.

En d IS.
Else /' Try right shift first then left shift /

Let the time slot that Ilrnmeately follows int, be wk.
if righ-lazziy(wk) - u - >_ e then /" Right shift /

Right.Shift(wke - P + C).
Return a new time slot with stan time = £ and finish time = t + e.

Else
Let the time slot that immediately precedes int, be wk.
If ieft._a=fty(w,.) .. p - Z > e then /' Left shift */

Left.qhift(wk.e - p + C).
Return a new time slot with start time = p - e and finish time = u.

End If.
End If.

End If.
End for.
Schedule • at the end of linked list.

Table 3: T- Scheduling,.J a Task Instance

,149

REPORT DOCUMENTATION PAGE Form approved
I ROMB No 074-0188

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE . REPORT TYPE END DATES COVERED
1/3/1995 Technical Reports

4. TITLE AND SUBTITLE 5. FUNDING NUMNBERS
Scheduling of Periodic Tasks with Relative Timing Constraints N00014-91-C-0195 '

6. AUTHOR(S)
S.-T. Cheng and A. K. Agrawala

7. PERFORMING 'ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

University of Maryland CSTR 3392

Department of Computer Science 3

A.V. Williams Building I
College Park, MD 20742

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSORING/ MONITORING
PhillipsLaboratory AGENCY REPORT NUMBER

Director of Contracting
3651 Lowry Avenue SE
Kirtland AFB, NM 87117-5777

11. SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT 12.b. DISTRIBUTION CODE

I

13. ABSTRACT (Maximum 200 words)
The problem of non-preemptive scheduling of a set of periodic tasks on a single processor has been
traditionally considering the ready time and deadline on each task. As a consequence, a feasible schedule
finds that in each period one instance of each task starts the execution after the ready time and completes
the execution before the deadline. Recently, the timing requirements of the real-time systems emerge that
the relative timing constraints are imposed on the consecutive executions of each task. In this paper, we
consider the scheduling problem of the periodic tasks with the relative timing constraints imposed on two
consecutive executions of a task. We analyze the timing constraints and derive the scheduling window
for each task instance. Based on the scheduling window, we present the time-based approach of
scheduling a task instance. The task instances are scheduled one by one based on their priorities
assigned by the proposed algorithms in this paper. We conduct the experiments to compare the
schedulability of the algorithms.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Time constraints, timing requirements 21

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIIFICATION 19. SECURITY CLASSIRCATION 20. UMITATION OF
OF REPORT OFTHIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified Umlimited

MSN 7540-01 280-5500 1.50 Standard Form 298 (Rev 2-89)

A Scalable Virtual Circuit Routing Scheme for ATM Networks*

Cengiz Alaettinoklu bralim Matta A. Udaya Shankar
Information Sciences Institute Institute for Advanced Computer Studies

University of Southern California Department of Computer Science
Marina del Rey, CA 90292 University of Maryland

College Park, MD 20742

October 1994

Abstract

High-speed networks, such as ATM networks, are expected to support diverse quality-of-
service (QoS) requirements, including real-time QoS. Real-time QoS is required by many appli-
cations such as voice and video. To support such service, routing protocols based on the Virtual

Circuit (VC) model have been proposed. However, these protocols do not scale well to large
networks in terms of storage and communication overhead.

In this paper, we present a scalable VC routing protocol. It is based on the recently proposed
viewserver hierarchy, where each viewserver maintains a partial view of the network. By querying
these viewservers, a source can obtain a merged view that contains a path to the destination.
The source then sends a request packet over this path to setup a real-time VC through resource
reservations. The request is blocked if the setup fails. We compare our protocol to a simple
approach using simulation. Under this simple approach, a source maintains a full view of the
network. In addition to the savings in storage, our results indicate that our protocol performs
close to or better than the simple approach in terms of VC carried load and blocking probability
over a wide range of real-time workload.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Archi-

tecture and Design-packel networks; store and for-ward networks; C.2.2 [Computer-Communication Net-

works]: Network Protocols-protocol architecture; C.2.m [Routing Protocols]; F.2.m [Computer Network

Routing Protocols].

This work is supported in part by ARPA and Philips Labs under contract DASG6D-92-0055 to Department of
Computer Science, University of Maryland, and by National Science Foundation Grant No. NCR 89-04590. The work
of C. Alaettinoglu is also supported by National Science Foundation Grant No. NCR 93-21043. The views, opinions,
and/or findings contained in this report axe those of the author(s) and should no, be interpreted as representing the
official policies, either expressed or implied, of the Advamced Research Projects Agency, PL, the National Science
Foundation, or the 'U.S. Government.

151

Contents

1 Introduction]

2 Related Work 4

3 Viewserver Hierarchy Query Protocol 5

4 Update. Protocol for Dynamic Network Conditions 10

5 Evaluation 13

6 Numerical Results 16
6.] Results for Network 1 16
6.2 Results for Network 2 18

7 Conclusions 19

I

152

1 Introduction

Integrated services packet-switched networks, such as Asynchronous Transfer Mode (ATM) net-

works [21], are expected to caxry a wide variety of applications with heterogeneous quality of ser-

vice (QoS) requirements. For this purpose, new resource allocation algorithms and protocols have

been proposed, including link scheduling, admission control. and routing. Link scheduming definez

how the link bandwidth is allocated among the difierent services. Admission control defines the

criteria the network uses to decide whether to accept or reject a new incoming application. Routing

concerns the selection of routes to be taken by application packets (or cells) to reach their desti-

nation. In this paper, we are mainly concerned with routing for real-time applications (e.g., voice,

video) requiring QoS guarantees (e.g., bandwidth and delay -guarantees).

To provide real-time QoS support, a number of virtual-circuit (VC) routing approaches have

been proposed. A simple (or straightforward) approach to VC routing is the link-state full-view

approach. Here, each end-system maintains a view of the whole network, i.e. a graph with a vertex

for every node• and an edge between two neighbor nodes. QoS information such as delay, band-

width, and loss rate axe attached to the vertices and the edges of the view. This QoS information

is flooded regularly to all end-systems to update their views. When a new application requests ser-

vice from the network, the source end-system uses its current view to select a source route to the

destination end-system that is likely to support the application's requested QoS, i.e., a sequence of

node ids starting from the source end-system and ending with the destination end-system. A VC-

setup message is then sent over the selected source route to try to reserve the necessary resources

(bandwidth, buffer space, service priority) and establish a VC.

Typically, at every node the VC-setup message visits, a set of ahmiss' on control tests axe

performed to decide whether the new VC, if established, can be guaranteed its requested QoS

without violating the QoS guaranteed to already established VCs. At any node, if these admission

tests are passed, then resources are reserved and the VC-setup message is forwarded to the next

node. On the other hand, if the admission tests fall, a VC-rejected message is sent back towards

the source node releasing resource reservations made by the VC-setup message, and the application

request is either blocked or another source route is selected and tried. If the final admission tests

at the destination node are passed, then a VC-established message is sent back towards the source

node confirming resource reservations made during the forward trip of the VC-setup message. Upon

receiving the VC-established message, the application can start transmitting its packets over its

We refer to switches and end-systems collectively as nodes.

153

reserved VC. This VC is torn down and resources are released at the end of the transmission.

Clearly, the above simple routing scheme does not scale up to large networks. The storage at

each end-system and the communication cost are proportional to N x d, where N is the number of

nodes and d is the average number of neighbors to a node.

A trad-itional solution to this scaling problem is the area hierarchy used in routing protocols

such as the Open Shortest Path First (OSPF) protocol [18]. The basic idea is to aggregate nodes

hierarchically into areas: "close' nodes are aggregated into level 1 areas, "close" level 1 areas are

aggregated into level 2 areas, and so on. An end-system maintains a view that contains the nodes

in the same level I area, the level 1 areas in the same level 2 area, and so on. Thus an end-system

maintains a smaller view than it would in the absence of hierarchy. Earch area has its own QoS

information derived from that of the subareas. A major problem of an area-based scheme is that

aggregation results in loosing detailed link-level QoS information. This decreases the chance of the

routing algorithm to choose "good" routes, i.e. routes that result in high successful VC setup rate

(or equivalently high carried VC load).

Our scheme

In this paper, we present a scalable VC routing scheme that does not suffer from the problems of

areas. Our scheme is based on the viewserver hierarchy we recenfly proposed in [3, 2] for large

internetworks and evaluated for administrative policy constraints. Here, we are concerned with the

support of performance/QoS requirements in large wide-area ATM-like networks, and we adapt our

viewserver protocols accordingly.

In our scheme, views are not maintained by every end-system but by special switches called

viewservers. For each viewserver, there is a subset of nodes around it, referred to as the viewserver's

precinct. The viewserver only maintains the view of its precinct. This solves the scaling problem

for storage requirement.

A viewserver can provide source routes for VCs between source and destination end-systems

in its precinct. Obtaining a route between a source and a destination that are not in any single

view involves accumulating the views of a sequence of viewservers. To make this process eflicient,

viewservers are organized hierarchically in levels, and an associated addressing structure is used.

Each end-system has a set of addresses. Each address is a sequence of viewserver ids of decreasing

levels. starting at the top level and going towards the end-system. The idea is that when the views

of the viewservers in an address are merged, the merged view contains routes to the end-system

154

U

from the top level viewservers.

We handle dynamic topology changes such as node/link failures and repairs, and link cost

changes. Nodes detect topology changes affecting itself and neighbor nodes. Bach node commu-

nicates these changes by flooding to the viewservers in a specified subset of nodes; this subset is

referred to as its flood area. Hence, the number of packets used during fiooding is proportional to

the size of the flood area. This solves the scaling problem for the communication requirement.

Thus our VC routing protocol consists of two subprotocols: a view-query protocol between end-

systems and viewservers for obtaining merged views; and a view-update protocol between nodes and

viewservers for updating views.

Evaluation

In this paper, we compare our viewserver-based VC routing scheme to the simple scheme using

VC-level simulation. In our simulation model, we define network topologies, QoS requirements,

viewserver hierarchies, and evaluation measures. To the best of our knowledge, this is the firs-.

evaluation of a dynamic hierarchical-based VC routing scheme under real-time workload.

Our evaluation measures are the amount of memory required at the end-systems, the amount

of time needed to construct a path2, the carried VC load, and the VC blocking probability. We

use network topologies each of size 2764 nodes. Our results indicate that our viewserver-based VC

routing scheme performs close to or better than the simple scheme in terms of VC carried load

and blocking probability over a wide range of workload. It also reduces the amount of memory

requirement by up to two order of magnitude.

Organization of the paper

In Section 2, we survey recent approaches to VC routing. In Section 3, we present the view-query

protocol for static network conditions. that is, assuming all links and nodes of the network remain

operational. In Section 4, we present the view-update protocol to handle topology changes. In

Section 5, we present our evaluation model. Our results are presented in Section 6. Section 7

concludes the paper.

2We use the terms route and path intercha~ngeably.

155

2 Related Work

In this section, we discuss routing protocols recently propqsed for packet-switched QoS networks.

These routing protocols can be classified depending on whether they help the network support

qualizative QoS or quantitative (real-time) QoS. For a qualitative QoS, the network tries to provide

the service requested by the applica-tion with no performance guarantees. Such a service is often

identified as "best-effort". A quantitative QoS provides performance guarantees (typically required

by real-time applications); for example, an upper bound on the end-to-end delay for any packet

received at the destination.

Routing protocols that make routing decisions on a per VC basis can be used to provide either

qualitative or quantitative QoS. For a quantitative QoS, some admission control tests should be

performed during the VC-setup message's trip to the destination to try to reserve resources along

the VC's path as described in Section 1.

On the other hand, the use of routing protocols that make routing decisions on a per packet

basis is problematic in providing resource guarantees [5], and qualitative QoS is the best service

the network can offer.

Since we are concerned in this paper with real-time QoS. we limit our following discussion to

VC routing schemes proposed or evaluated in this context. We refer the reader to [19, 6] for a good

survey on many other routing schemes.

Most of the VC routing schemes proposed for real-time QoS networks are based on the link-

state full-view approach described in Section 1 [6, 1, 10, 24]. Recall that in this approach, each

end-system maintains a view of the whole network, i.e. a graph with a vertex for every node and

an edge between two neighbor nodes. QoS information is attached to the vertices and the edges of

the view. This QoS information is distributed regularly to all end-systems to update their views

and thus enable the selection of appropriate source routes for VCs, i.e. routes that are likely to

meet the requested QoS. The proposed schemes mainly differ in how this QoS information is used.

Generally, a cost function is defined in terms of the QoS information, and used to estimate the

cost of a path to the VC's destination. The route selection algorithzm then favors short paths with

minimum cost. See [17, 22) for an evaluation of several schemes.

A number of VC routing schemes have also been designed for networks using the Virtual Path

(VP) concept [15, 241. This VP concept has been proposed to simplify network management and

control by having separate (logically) fully-connected subnetworks, typically one for each service

class. In each VP subnetwork, simple routing schemes that only consider one-hop and two-hop

156

paths are used. However, the advantage of using VPs can be offset by a decrease in statistical

multiplexing gains of the subnetworks [15]. In this work, we are interested in general network

topologies, where the shortest paths can be of arbitrary hop length and the overhead of routing

protocols is of much concern.

All the above VC routing schemes are based on the link-state approach. VC routing schemes

based on the path-vector approach have also been proposed [13]. in this approach, for each desti-

nation a node maintains a set of paths, one through each of its neighbor nodes. QoS information

is attached to these paths. For each destination, a node exchanges its best feasible path' with its

neighbor nodes. The scheme in [13] provides two kinds of routes: pre-computed and on-demand.

Pre-computed routes match some well-known QoS requirements, and are maintained using the

path-vector approach. On-demand routes are calculated for specific QoS requirements upon re-

quest. In this calculation, the source broadcasts a special packet over all candidate paths. The

destination then selects a feasible path from them and informs the source [13, 23]. One drawback

of this scheme is that obtaining on-demand routes is very expensive since there are potentially

exponential number of candidate paths between the source and t6Ce destination.

The link-state approach is often proposed and favored over the path-vector approach in QoS

architectures for several reasons [163. An obvious reason is simplicity and complete control of the

source over QoS route selection.

The above VC routing schemes do not scale well to large QoS networks in terms of storage

and communication requirements. Several techniques to achieve scaling exist. The most common

technique is the area hierarchy described in Section 1.

The landmark hierarchy [26, 25] is another approa:h for solving the scaling problem. The link-

state approach can no, be used with the landmak hkierarchy. A thorou, study of enforcing QoS

and policy constraints with this hierarchy has not been done.

Finally, we should point out that extensive effort is currently underway to fully specify and

standardize VC routing schemes for the future integrated services Internet and ATM networks [9].

3 Viewserver Hierarchy Query Protocol

In this section, we present our scheme for static network conditions, that is, all links and nodes

remain operational. The dynamic case is presented in Section 4.

z A feasible path is a path that satisfies the QoS constraints of the nodes in the path.

157

Conventions: Each node has a unique id. Nodelds denotes the set of node-ids. For a node u, we

use nodeid(u) to denote the id of it. NodeNeighbors(u) denotes the set of ids of the neighbors of u.

In our protocol, a node u uses two kinds of sends. The first kind has the form "Send(m) to v",

where m is the message being sent and v is the destination-id. Here, nodes u and v are neighbors,

and the message is sent over the physical link (u, v). If the link is down, we assume that the packet

is dropped.

The second kind of send has the form "Send(m) to v using sr", where m and v are as above

and sr is a source route between u and v. We assume that as long as there is a sequence of up

links connecting the nodes in sr, the message is delivered to v. This requires a transport protocol

support such as TCP [20].

To implement both kind of sends, we assume there is a reserved VC on each link for sending

routing, signaling and control messages [4). This also ensures that routing messages do not degrade

the QoS seen by applications.

Views and Viewservers

Views are maintained by special nodes called viewservers. Each viewserver has a precinct, which is

a set of nodes around the viewserver. A viewserver maintains a view, consisting of the nodes in its

precinct, links between these nodes and links outgoing from the precinct 4 . Formally, a viewserver

z maintains the following:

Precinct- C Nodelds. Nodes whose view is maintained.

View_. View of Z.

= {iimesiamp, expirytime, {(v, cost) :v E Node.Neighbors(u)))

u E Precinct-}

The intention of View, is to obtain source routes between nodes in Precinct,. Hence, the

choice of nodes to include in Precinct-, and the choice of links to include in View. are not arbitrary.

Precinct. and View- must be connected; that is, between any two nodes in Precinct4, there should

be a path in View.. 'Note that View, can contain links to nodes outside Precinct. We say that a

node u is in the view of a viewserver z, if either v is in the precinct of z, or View. has a link from
-._

a node in the precinct of z to node u. Note that the precincts and views of different viewservers

can be overlapping, identical or disjoint.

No- all the links need to be included.

158

a

For a link (u, v) in the view of a viewserver z, View, stores a cost. *The cost of the link (u, v)

equals a vector of values if the link is known to be up; each cost value estimates how expensive it

is to cross the link according to some QoS criteria such as delay, throughput, loss rate, etc. The

cost equals oo if the link is known to be down. Cost of a link changes with time (see Section 4).

The view also includes timestamp and expirytime fields which axe described in Section 4.

Viewserver Hierarchy

For scaling reasons, we cannot have one large view. Thus, obtaining a source route between a source

and a destination which are far away, involves accumulating views of a sequence of viewservers. To

keep this process efficient, we organize viewservers hierarchically. More precisely, each viewserver is

assigned a hierarchy level from 0, 1,..., with 0 being the top level in the hierarchy. A parent-child

relationship between viewservers is defined as follows:

1. Every level i viewserver, i > 0, has a parent viewserver whose level is less than i.

2. If viewserver z is a parent of viewserver y then z's precinct contains y and y's precinct

contains x.

3. The precinct of a top level viewserver contains all other top level viewservers.

In the hierarchy, a parent can have many children and a child can have many parents. We extend

the range of the parent-child relationship to ordinary nodes; that is, if Precinct, contains the node

u, we say that ti is a child of z, and z is a parent of u. We assume that there is at least one parent

viewserver for each node.

For a node u, an address is defined to be a sequence (z0, 2 .,...,:•) such that xi for i < t is

a viewserver-id, z0 is a top level viewserver-id, zx is the id of u, and x. is a parent of xj+j. A

node mav have many addresses since the parent-child relationship is many-to-many. If a source

node wants to establish a VC to a destination node, it first queries the name servers to obtain a

set of addresses for the destination5 . Second, it queries viewservers to obtain an accumulated view

containing both itself and the destination node (it can reach its parent viewservers by using fixed

source routes to them). Then, it chooses a feasible source route from this accumulated vie- and

initiates the VC setup protocol on this path.

View-Query Protocol: Obtaining Source Routes

We now describe how a source route is obtained.

SQuerying the name servers cain be done in the same way as is done currently in the Internet.

159

We want a sequence of viewservers whose merged views contains both the source and the

destination nodes. Addresses provide a way to obtain such a sequence, by first going up in the

viewserver hierarchy starting from the source node and then going down in the viewserver hierarchy

towards the destination node. More precisely, let (so,..., st) be an address of the source. and

(do,. .. ,d1) be an address of the destination. Then, the sequence (st-I, ... , so, do,. . ., da- 1) meets

our requirements. In fact, going up all the way in the hierarchy to top level viewservers may not

be necessary. We can stop going up at a vjewserver si if there is a viewserver dj,j < 1, in the view

of s, (one special case is where si = dj). .

The view-query protocol uses two message types:

a (RequesTViev, s.address, d-address)

where s-address and d.address are the addresses for the source and the destination respec-

tively. A RequestView message is sent by a source node to obtain an accumulated view con-

taining both the source and the destination nodes. When a viewserver receives a RequestView

message, it either sends back its view or forwards this request to another viewserver.

• (?.eplyViev, s-address, d-address, accumview)

where s-address and d-address are as above and accumview is the accumulated view. A

RepJyView message is sent by a viewserver to the source or to another viewserver closer to

the source. The accumview field in a ReplyViev message equals the union of the views of

the viewservers the message has visited.

We now describe the view-query protocoi in more detail (please refer to Figures I and 2). To

establish a VC to a destination node, the source node sends a RequestVier packet containing the

source and the destination addresses to its parent in the source address.

Upon receiving a Reques-tView packet, a viewserver z checks if the destination node is in its

precinct,. If it is, x sends back its view in a ReplyView packet. If it is not, z forwards the request a
packet to another viewserver as follows (details in Figure 2): x checks whether any viewserver in

the destination address is in its view. If there is such a viewserver, x sends the RequestView packet

to the last such one in the destination address. Otherwise x is a viewserver in the source address,

and it sends the packet to its parent in the source address.

When a viewserver z receives a ReplyViev packet, it merges its view to the accumulated view
-3

in the packet. Then it sends the ReplyView packet towards the source node in the same way it

would send a RequestViev packet towards the destination node (i.e. the roles of the source address

f Even though the destination can be in the view of z, its QoS characteristics is not in the view if it is not in the

precinct of :.

160
_i

Constants

FizedRoutes,(z), for every viewserver-id z such that z is a parent of u,

= {(yi,...,Yn) :Yi E NodeIds). Set of routes to x

Events

RequestView,(s-address, d.address) {Executed when u wants a source route)

Let s.address be (so,.. .,st.. 1 ,hS), and sr E FixedRoutes,(s,_.i);

Send(RequestVi er, s.address, d.address) to s,_i using s'r

Receiveu(ReplyViev, s.address, d-address, accumview)

Choose a feasible source route using accumview;

If a feasible route is not found

Execute RequestView• again with another source address and/or destination address

Figure 1: View-query protocol: Events and state of a source node u.

Constants

Precinct.. Precinct of x.

Variables

View-. View of X.

Events
Receive,(RequestView, s.address, d-address)

Let d.address be (do,...,d,);
if d, ý Precinct, then
forwardz(RequestView, s.address, d.address, {));
else forward:(ReplyVie;, d.address, s-address, View.); {addresses are switched)

endif

Receive: (ReplyVier, s.address, d.address, view)
f orward-(ReplyVier, s.address, d.address, view U Viewz)

where procedure forward-(type, s.address, d-address, view)

Let s-address be (so, .. .,s,), d.address be (do..., di);

if 3i : d, in Viewu= then
Let i = max{j : dj in View-);
target := dj;
else target := si such that sj+1 = nodeid(z);

endif;
sr := choose a route to target from nodeid(z) using View,;

if type = RequestViev then
Send(Requestvier, s.address, d.address) to target using sr;

else Send(ReplyVie;, s-address, d.address, view) to target using sr;
endif

Figure 2: View-query protocol: Events and state of a viewserver x.

and the destination address are interchanged).

161

Jmm

W\hen the source receives a ReplyView packet, it chooses a feasible path using the accumview

in the packet. If it does not find a feasible path, it can try again using a different source and/or U

destination addresses. Note that the source does not have to throw away the previous accumulated

views; it can merge them all into a richer accumulated view. In fact, it is easy to change the protocol

so that the source can also obtain views of individual viewservers to make the accumulated view

even richer. Once a feasible source route is found, the source node initiates the VC setup protocol.

Above we have described one possible way of obtaining the accumulated views. There are

various other possibilities, for example: (1) restricting the ReplyViev packet to take the reverse

of the path that the RequestView packet took; (2) having ReplyView packets go all the way

up in the viewserver-hier archy for a richer accumulated view; (3) having the source poll the

viewservers directly instead of the viewservers forwarding request/reply messages to each other;

(4) not including non-transit nodes (e.g. end-systems) other than the source and the destination

nodes in the accumview; (5) including some QoS requirements in the RequestView packet, and

having the viewservers filter out some nodes and links.

4 Update Protocol for Dynamic Network Conditions

In this section., we firs- describe how topology changes such as link/node failures, repairs and cost

change_,. are detected and communicated to viewservers, i.e. the view-update protocol. Then, we

modify the view-query protocol appropriately.

"View-Update Protocol: Updating Views

Viewservers do not communica.te with each other to maintain their views. Nodes detect and

communicate topology changes to viewservers. 'Updates are done periodically and also optionally I
after a change in the outgoing link costs.

The communication between a node and viewservers is done by flooding over a set of nodes.

This set is referred to as the flood area. The topology of a flood area must be a connected graph.

For efficiency, the flood area can be implemented by a hop-count.

Due to the nature of flooding, a viewserver can receive information out of order from a node. In

order to avoid old information replacing new information, each node includes successively increasing

time stamps in the messages it sends. The limestamp field in the view of a viewserver equals the

largest timestamp received from each node.

162 I

Due to node and link failures, communication between a node and a viewserver can fail, resulting

in the viewserver having out-of-date information. To eliminate such information, a viewserver

deletes any information about a node if it is older than a time-to-die period. The ezpirytime field

in the view of a viewserver equals the end of the time-to-die period for a node. We assume that

nodes send messages more often than the time-to-cae %slue (to avoid false removal).

The view-update protocol uses one type ci message a& iollows:

• (Update, nid, timestamp, floodarea, ncostset)

is sent by the node to inform the viewservers about current costs of its outgoing links. Here,

-id and timestnamp indicate the id and the time stamp of the node, ncostset contains a cost

for each outgoing link of the node, and floodarea is the set of nodes that this message is to

be sent over.

Constants:

FloodArea 9 . (C Nodelds). The flood area of the node.

Variables:

Clock9 : Integer. Clock of g.

Figure 3: State of a node g.

The state maintained by a node g is listed in Figure 3. We assuzme that consecutive reads of

Clock, returns increasing values.

Constants:

Precinc4. Precinct of x.

TimerToDie= : Integer. Time-to-die value.

"Variables:
Viewu-. View of:.

Clock, : Integer. Clock of z.

Figure 4: State of a viewserver z.

The state maintained by a viewserver x is listed in Figure 4.

The events of node g are specified in Figure 5. The events of a viewserver x are specified in

Figure 6. When a viewserver x recovers, View. is set to {). Its view becomes up-to-date as it

receives new information from nodes (and remove false information with the time-to-die period).

163

Update, {Executed periodically and also optionally upon a change in outgoing link costs)
ncostset := compute costs for each outgoing link;
floods((Update, nodeid(g), Clock,, FloodArea.,,ncostset));

Receive, (packet) {an Update packet)
f iood. (packet)

where procedure flood, (packet)
if nodeid(g) E packet floodarea then
{remrove g from the flood area to avoid infinite exchange of the same message.)
packet.floodarea :=packet. floodarea - { nodeid(g));
for all h E NodeNeighbors(g) A h E packet.floodarea do I
Send(packet) to h;
endif

Node Failure Model: A node can undergo failures and recoveries at anytime. We assume failures are
fail-stop (i.e. a failed node does not send erroneous messages).

Figure 5: View-update protocol: Events of a node g.

Receive, (Update, nid, ts, FloodArea, neset)
if nid E Precinct then
if 3(nid, timestamp, expirytime, ncostset) E View: A ts > timestarnp then
{received is more recent; delete the old one)
delete (nid, timeslamp. expirytime, ncostset) from View.;
endif
if -3(nid, timestamp, expirytime, ncosiset) E View: then I
ncostset := subset of edge-cost pairs in ncset that are in View:;
insert (nid, is, Clock., + TimeToDie., ncostset) 'Lo View:;
endif
endif

Delete= {Executed periodically to delete entries older than the time-to-die period)
f[or all (nid, isiamnp, expiryie, ncset) E View= A expi-'rtime < Clock, do
delete (nid, istamp, ezpirytime, ncset) from View.;

Viewserver Failure Model: A viewserver can undergo failures and recoveries at anytime. We assume
failures are fail-stop. When a viewserver z recovers, View, is set to {}.

Figwue 6: View update events of a viewserver z.

Changes to View-Query Protocol

We now enumerate the changes needed to adapt the view-query protocol to the dynamic case (the

formal specification is omitted for space reasons).

Due to link and node failures, RequestViev and ReplyViev packets can get lost. Hence, the

164

source may never receive a ReplyView packet after it initiates a request. Thus, the source should

try again after a time-out period.

When a viewserver receives a RequestView message, it should reply with its views only if the

destination node is in its precinct and its view contains a path to the destination. Similarly during

forwarding of RequestView and ReplyView packets, a viewserver, when checking whether a node

is in its view, should also check if its view contains a path to it.

5 Evaluation

In this section, we present the parameters of our simulation model. We use this mode] to com-

pare our viewserver-based VC routing protocols to the simple approach. The results obtained are

presented in Section 6.

Network Parameters

We model a campus network which consists of a campus backbone subie-Lwor-kand several depart-

ment subnetworks. The backbone network consists of backbone switches and backbone links.

Each department network consists of a hub switch and several non-hub switches. Each non-hub

switch has a link to the department's hub switch. And the department's hub switch has a link to

one of the backbone switches. A non-hub switch can have links to other non-hub switches in the

same department, to non-hub switches in other departments, or to backbone switches.

End-systems are connected to non-hub switches. An examnle network topology is shown in

Figure 7.

in our topology, there are 8 backbone switches and 32 backbone links. There are 16 departments.

There is one hub-switch in each department. There is a total of 240 non-hub switches randomly

assigned to d3fferent departments. There are 2500 end-systems which are randomly connected to

non-hub switches. Thus, we have a total of 2764 nodes.

In addition to the links connecting non-hub switches to the hub switches and hub switches to

the backbone switches, there are 720 links from non-hub switches to non-hub switches in the same

department, there are 128 links from non-hub switches to Don-hub switches in different departments,

and there are 64 links from non-hub switei to backbone switches.

The end-points of each link are chosen rmndomly. However, we make sure that the backbone

network is connected; and there is a link from node u to node v iff there is a link from node v to

165

Backbone

*Backbone switchesI

I * Hub switches

I 0 Non-bub switches

s I D End-systems

Department 1 Department 2

Figure 7: An example network topology.

node u.

Each link has a total of C units of bandwidth.

QoS and Workload Parameters

In our evaluation model, we assume that a VC requires the reservation of a certain amount of

bandwidth that is enough to ensure an acceptable QoS for the application. This reservation amount

can be thought of either as the peak transmission rate of the VC or its '"effective bandwidth'* [12)

varying between the peak and average transmission rate.

VC setup requests arrive to the network according to a Poisson process of rate A, each requiring

one unit of bandwidth. Each VC, once it is successfully setup, has a lifetime of exponential duration

with mean I/si. The source and the destination end-systems of a VC are chosen randomly.

An arriving VC is admitted to the network if at least one feasible path between its source and

destination end-systems is found by the routing protocol, where a feasible path is one that has links

with non-zero available capacity. From the set of feasible paths, a minimum hop path is used to

establish the VC; one unit of bandwidth is allocated on each of its links for the lifetime of the VC.

On the other hand, if a feasible path is not found, then the arriving VC is blocked and]ost.

We assume that the available link capacities in the views of the viewservers are updated instan-

166 -I

taneously whenever a VC is admitted to the network or terminates.

Viewserver Hierarchy Schemes

We have evaluated our viewserver protocol for several different viewserver hierarchies and query

methods. We next describe the different viewserver schemes evaluated. Please refer to Figu~re 7 in

the following discussion.

The first viewserver scheme is referred to as base. Each switch is a viewserver. A viewserver's

precinct consist of itself and the neighboring nodes. The links in the viewserver's view consist of

the links between the nodes in the precinct, and links outgoing from nodes in the precioct to nodes

not in the precinct. For example, the precinct of viewserver u.-consists of nodes U,v IUr's.

As for the viewserver hierarchy, a backbone switch is a level 0 viewserver, a hub switch is a

level 1 viewserver and a non-hub switch is a level 2 viewserver. Parent of a hub switch viewserver

is the backbone switch viewserver it is connected to. Parent of a non-hub switch viewserver is the

hub switch viewserver in its department. Parent of an end-system is the non-hub switch viewserver

it is connected to.

We use only one address for each end-system. The viewserver-address of an end-systern is the

concatenation of four ids. Thus, the address of s is z.v.u.s. Similarly, the address of d is z.v.x.d.

To obtain a route between s and d, it suffices to obtain views of viewservers u. v, X.

The second viewserver scheme is referred to as base-QT (where the QT stands for "query up

to top"). It is identical to base except that during the query protocol all the viewservers in the

source and the destination addresses are queried. That is, to obtain a route between s and d, the

views of u, v. z, z are obtained.

The third viewserver scheme is referred to as vertex-extension. It is idcz;Ical to base except

that viewserver precincts are extended as follows: Let F denote the precinct of a viewserver in the

base scheme. For each node u ill P, if there is a link from node u to node v and v is not in P, node

v is added to the precinct; among v's links, only the ones to nodes in P are added to the view. In

the example, nodes z, y,z, q are added to the precinct of u, but outgoing links of these nodes to

other nodes are not included (e.g. (x,p) and (z, q) are not included). The advantage of this scheme

is that even though it increases the precinct size by a factor of d (where d is A.ere average number of

neighbors to a node), it increases the number of links stored in the view by a fvator less than 2.

The fourth viewserver scheme is referred to as ver-ex-extension-QT. It is iaentical to vertez-

eztension except that during the query protocol all the viewservers in the source and the destination

167

addresses are queried.

6 Numerical Results

6.1 Results for Network 1

The parameters of the first network topology, referred to as Network 1, are given in Section 5. The

link capacity C is taken to be 20 [6], i.e. a link is capable of carrying 20 Wes simultaneously.

Our evaluation measures were computed for a (randomly chosen but fixed) set of 100.000 VC

setup requests. Table I lists for each viewserver scheme (1) the minimum, average and maximum

of the precinct sizes (in number of nodes), (2) the minimum, average and maximum of the merged

view sizes (in number of nodes), and (3) the minimum, average and maximum of the number of

viewservers queried.

Scheme Precinct Size Merged View Size [No. of Viewservers Queried

base 5 /16.32 /28 4 4/56.46/ 81 1 /5.49/ 6

base-QT 5 /16.32 /28 27 /59.96 /81 6 /6.00/ 6

vertez-ezxension 22 / 88.11 / 288 14 / 155.86 / 199 [1 / 5.49 / 6

vertex-eztension-QT 22 / 88.11 / 288 1113 / 163.28 / 199 6 / 6.00 / 6

Table 1: Precinct sizes, merged view sizes, and number of viewservers queried for Network 1.

The precinct size indicates the memory requirement at a viewserver. More precisely, the memory

requirement at a viewserver is O(precinct size x d), except for the vertez-ezxtension and vertez-

eztension-QT schemes. In these schemes, the memory requirement is increased by a factor less

than two. HFence these schemes have the.same order of viewserver memory requirement as the base

and base-QT schemes.

The merged view size indicates the memory requirement at a source end-system during the

query protocol; i.e. the memory requirement at a source end-system is O(merged view size x d)

except for the vertez-eztension and vertez-ezxension -QT schemes. Note that the source end-system

does not need to swore information about end-systems other than itself and the destination. The

numbers in Table I take advantage of this.

The number of viewservers queried indicates the communication time required to obtain the

merged view at the source end-system. Hence. the "real-time" communication time required to

obtain the merged view at a source is slightly more than one round-trip time between the source

168

and the destination.

As is apparent from Table 1, using a QT scheme increases the merged view size by about 6%,

and the number of viewservers queried by about 9%. Using the vertez-eztension scheme inc:•ases

the merged view size by about 3 times (note that the amount of actual memory needed increases

only by a factor less than 2).

The above measures show the memory and time requirements of our protocols. They clearly

indicate the savings in storage over the simple approach as manifested by the smaller view sizes. To

answer whether the viewserver hierarchy finds many feasible paths, other evaluation measures such

as the carried VC load and the percent VC blocking are of interest. They are defined as follows:

* Carried VC load is the average number of VCs carried by the network.

* Percent VC blocking is the percentage of VC setup requests that are blocked due to the fact

that a feasible path is not found.7

In our experiments, we keep the average VC lifetime (1/1y) fixed at 15000 and vary the arrival

rate of VC setup requests (A). Figure 8 shows the carried VC load versus A for the simple approach

and the viewserver schemes. Figure 9 shows the percent VC blocking versus \. At low values of A,

all the vjeewserver schemes are very close to the simple approach. At moderate values of \, the base

and base-QT schemes perform badly. The vertez-eztension and vertez-eztension-QT schemes are

still very close to the simple approach (only 3.4% less carried VC load). Note that the performance

of the viewserver schemes can be further improved by trying more viewserver addresses.

Surprisingly, at high values of A, all the viewserver schemes perform better than the simple

apvroach. At A = 0.5. the network with the base scheme carries about 30% higher load thaL the

simple approach. This is an interesting result. Our explanation is as follows. Elsewhere [2], we

have found that when the viewserver schemes can not find an existing feasible path. thiF path LS

usually very long (more than 11 hops). This causes our viewserver nlerarchy protocols to reject

VCs that are admitted by the simple approach over long paths. The use of long paths for VCs is

undesirable since it ties up resources at more intermediate nodes, which can be used to admit many

shorter length VCs.

In conclusion, we recommend the vertez-eztension scheme as it performs close to or better

than all other schemes in terms of VC carried load and blocking probability over a wide range of

workload. Note that for all viewserver schemes, adding .QT yields slightly further improvement.

7 Recall that we assume a blocked VC setup request is cleared (i.e. lost).

169

CARRIED VC LOAD vs Arrival rate ,

20004

1500

70

U

3000f00
base

/" 20 base-QT -0--
vertcx-extexnson

vemrtgx-extension-QT ----
500

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Arrival rate

Figure 8: Caerred VC load versus arrival rate for Network 1.

PERCENT VC BLOCKING vs Arrival rate
70 1

60

50 - -

--.

3017

flat-

20 -- base ---
/base--QT -0--

X_ Veltax-eZteflsjon
10 -verztx-extension-Q

0' -

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Arrival rate

Figure 9: Percent VC blocking versus arrival rate for Network 1 .

6.2 Results for Network 2

The parameteris d the sercond network, referred to as Network 2, are the same as the parameters

of _Network 2. However. a ddi~erent seed is used for the random number generation, resulting in a

diff~erent topology arnd distribution of source- destin ati on end-system pairs for the NI~s.

We again take C = 20, and we fix 1/p at 15000. Our evaluation measures were computed for

170

I

a set of 100,000 VC setup requests. Table 2, and Figures 10 and 11 show the results. Similar

conclusions to Network 1 hold for Network 2. An interesting exception is that at high values of A,

we observe that the vertez-eztension scheme performs slight]), better than the vertez-eztension-QT

scheme (about 4.2% higher carried VC load). The reason is the following: Adding QTgives richer

merged views, and hence increases the chance of finding a feasible path that is possibly long. As

explained i. Section 6.1, this results in performance degradation.

Scheme Precinct Size Merged View Size No. of Viewservers Queried

base 4 /16.32 / 33 4 /57.61 /80 1/ 5.52/ 6

base-QT 4 /16.32 /33 30 /60.64 /80 6 /6.00/ 6

vertez-eztension 17/ 90.36 / 282 16 / 159.70 / 214 1 / 5.52 / 6

vertez-eztension-QT 17 /90.36 / 282 113 /166.97 / 214 6 / 6.00 / 6

Table 2: Precinct sizes, merged view sizes, and number of viewservers queried for Network 2.

We have repeated the above evaluations for other networkF -nd obtained similar c'jciusions.

7 Conclusions

We presented a hierarchical VC routing protocol for ATM-like networks. Our Drot•_.:)c zati-fieS QoS

constraints, adapts to dynamic topology changes, and scales well to large number of nodes.

Our protocol uses partial views maintained by viewservers. The viewservers are organized

hierarchical]y. To setup a VC, the source end-system queries viewservers to obtain a merged view

that contains itself and the destination end-system. This merged view is then used to compute a

source route for the VC.

We evaluated several viewserver hierarchy schemes and compared them to the simple approach.

Our results on 2764-node networks indicate that the vertez-eztension scheme performs close to or

better than the simple approach in terms of VC carried load and blocking probability over a wide

range of real-time workload. It also reduces the amount of memory requirement by up to two order

of magnitude. We note that our protocol scales even better on larger size networks.[3].

In all the viewserver schemes we studied, each switch is a viewserver. In practice, not all

switches need to be viewservers. We may associate one viewserver with a group of switches. This is

particularly attractive in ATM networks where each signaling entity is responsible for establishing

VCs across a group of nodes. In such an environment, viewservers and signaling entities can be

171

U

CARRIED VC LOAD vs Arxival rate

2000

S 1500
U

U

I

base
base-QT -0--

vcnex-extension

venex-extension-QT

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Arrival rate

Figure 10: Carried VC load versus arrival rate for Network 2.

PERCENT VC BLOCKING vs Arrival rate
70 i i i i

60

50

.2 401
U

30 -

2-20 7 baseQ ...¢r i w-QT -o-- -
venex-exlrnsion

10 "vcnex-extension-QT

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1
Arrival rate

Figure Ih: Percent VC blocking versus arifval rate for Network 2.

combined.

However, there is an advmntage of each switch being a viewserver; that is, source nodes do not

reouire fixed source routes to their parent viewservers (in the view-query protocol). This reduces

the amount of hand configuration required. In fact, the base and base-QT viewserver schemes do

not require any hand configuration.

Our evaluation model assumed that views are instantaneously updated, i.e. no delayed feedback

172

I

between link cost changes and view/route changes. We plan to investigate the effect of delayed feed-

back on the performance of the different schemes. We expect our viewserver schemes to outperform

the simple approach in this realistic setting as the update of views of the viewservers requires less

time and communication overhead. Thus, views in our viewserver schemes will be more up-to-date.

As we pointed out in [3], the only drawback of our protocol is that to obtain a source route

for a VC, views are merged at (or prior to) the VC setup, thereby increasing the setup time. This

drawback is not unique to our scheme [8, 16, 7, 11]. Reference [3] describes several ways, including

cacheing and replication, to reduce the setup overhead and improve performance.

References
[1) H. Ahmadi, 3. Chen, and R. Guerin. Dynamic Routing and Call Control in High-Speed Integrated

Networks. In Proc. Workshop on Systems Engineering and Traffic Engineering, ITC'13, pages 19-26,
Copenhagen, Denmark, June 1991.

[2] C. Alaettinoglu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol and
its Evaluation. Technical Report UMIACS-TR-93-98, CS-TR-3151, Department of Computer Science,
University of Maryland, College Park, October 1993. Earlier version CS-TR-3033, February 1993.

[3] C. Alaettinoklu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol. In
Proc. IEEE INFOCOM '94, Toronto, Canada, June 1994.

[4] A. Alles. ATM in Private Networking: A Tutorial. Hughes LAN Systems, 1993.
[5] P. AJmquist. Type of Service in the Internet Protocol Suite. Technical Report RFC-1349, Network

Working Group, July 1992.
[6] L. Breslau, D. Estrin, and L. Zhang. A Simulation Study of Adaptive Source Routing in integrated

Services Networks. Available by anonymous ftp at catarina.usc.edu:pub/breslau, September 1993.
[7] 3. N. Chiappa. A New IP Routing and Addressing Architecture. Big-Internet mailing list., 1992.

Available by anonymous ftp from munnari. oz. au:big-internet/list-axchive.
[81 D.D. Clark. Policy routing in Internet protocols. Request for Comment RFC-1102, Network InformationCenter, May 1989.
[91 R. Coltun and M. Sosa. VC Routing Criteria. Internet Draft, March 1993.

[10] D. Comer and R. Yavatkar. FLOWS: Performance Guarantees in Best Efiort Delivery Systems. In Proc.
IEEE INFOCOM, Otawa, Canada, pages 100-109, April 1989.

[11] D. Estrin. Y. Rekhter, and S. Hotz. Scalable Inter-Domain Routing Architecture. In Proc. ACM
SIGCOMM '92, pages 40-52, Baltimore, Maryland, August 1992.

[12) R. Guerin, H. Ahmadi, and M. Naghshineh. Equivalent Capacity and its Application to Bandwidth
Allocation in High-Speed Networks. IEEE J. Select Areas Commun., SAC-9(7):968-981, September
1991.

[13] A. Guillen, R. Kia, and B. Sales. An Architecture for Virtual Circuit/QoS Routing. In Proc. IEEE
International Conference on Network Protocols '93, pages 80-87, San Francisco, California, October
1993.

[14) S. Gupta, K. Ross, and M. ElZarki. Routing in Virtual Path Based ATM Networks. In Proc. GLOBE-
COM '92, pages 571-575, 1992.

[15] R-E. Hwang, 3. Kurose, and D. Towsley. MDP Routing in ATM Networks Using Virtual Path Concept.
In Proc. IEEE INFOCOM, pages 1509-1517, Toronto, Ontario, Canada, June 1994.

[16] M. Lepp and M. Steenstrup. An Architecture for Inter-Domain Policy Routing. Internet Draft. Available
from the authors., June 1992.

[17] 1. Matta and A.U. Shankar. An Iterative Approach to Comprehensive Performance Evaluation of Inte-
grated Services Networks. In Proc. IEEE International Conference on Network Protocols '94, Boston,
Massachusetts, October 1994. To appear.

[181 J. Moy. OSPF Version 2. RFC 1247, Network Information Center, SRI International, July 1991.

173

U

[19] C. Parris and D. Ferrari. A Dynamic Connection Management Scheme for Guaranteed Performance
Services in Packet-Switching Integrated Services Networks. Technical Report TR-93-005, International
Computer Science Institute, Berkeley, California, January 1993.

120] J. Postel. Transmission Control Protocol: DARPA Internet Program Protocol Specification. Request
for Comment RFC-793, Network Information Center, SRI International, 1981.

[21] M. Prycker. Asynchronous Transfer Mode - Solution for Broadband ISDN. Ellis Horwood, 1991.

[22] S. Rampal, D. Reeves, and D. Agrawal. An Evaluation of Routing and Admission Control Algorithms
for Multimedia Traffic in Packet-Switched Networks. Available from the authors, 1994.

[23] P. Suzuki and F. Tobagi. Fast Bandwidth Reservation Scheme with Multi-Link and Multi-Path Routing
in ATM Networks. In Proc. IEEE INFOCOM '92, pages 22303-2240, Florence, Italy, May 1992.

[24] E. Sykas, K. Vlakos, I. Venieris, and E. Protonotarios. Simulative Analysis of Optimal Resource Allo-
cation and Routing in IBCN's. IEEE J. Select. Areas Commun., 9(3):486-492, April 1991.

[25] P. F. Tsuchiya. The Landmark Hierarchy: Description and Analysis, The Landmark Routing: Ar-
chitecture Algorithms and Issues. Technical Report MTR-87W00152, MTR-87W00174, The MITRE
Corporation, McLean, Virginia, 1987.

[26j P. F. Tsuchiva. The Landmark Hierarchy:A New Hierarchy For Routing In Very Large Networks. In
Proc. ACM SIGCOMM '88, August 1988.

I

U

174

I

REPORT DOCUMENTATION PAGE .MB No 0704-0185

as" --. 0 A*C *0C!. -__1 - - %-o C _ 0_ 'O'Q l, bW6r 0 '' * 18 01 8

1. AGENCY USE ONLY (Le••e blJr, 1 2. REPORT DATE J 3. REPORT TYPE AND DATES COVERED

October 1994 Technical
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Scalable Virtual Circuit Routing Scheme for ATM Networks C DASG60-92-0055
G NCR 89-04590

6. AUTHOR(S) G NCR 93-21043

Cengiz Alaettinoglu, Ibrahim Matta and A. Udaya Shankar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Department of Computer Science REPORT NUMBER

A. V. Willliams Building CSTR-3360
University of Maryland UMIACS-TR 94-115
College Park, ND 20742

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

Phillips Laboratory
Directorate of Contracting
3651 Lowry Avenue SE
Kirtland AFB NM 87117-5777

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximurr 2DOworcl)

High-speed networks, such as ATM networks, are expected to support diverse
quality-of-service (QoS) requirements, including real-time QoS. Real-time QoS is
required by many applications such as voice and video. To support such service,
routing protocols based on the Virtual Circuit (VC) model have been proposed. Howeve:,
these protocols do not scale well to large networks in terms of storage and
communication overhead.

in this paper, we present a scalable VC routing protocol. It is based on the
recently proposed viewserver hierarchy, where each viewserver maintains a partial
view of the network. By querying these viewservers, a source can obtain a merged vie
that contains a path to the destination. The source then sends a request packet over

S Ithis path to setup a real-time VC through resource reservations. The request is
Sblocked if the setup fails. We compare our protocol to a simple approach using

simulation. Under this simple approach , a source maintains a full view of the
network. In addition to the savings in storage, our results indicate that our

1protocol performs close or better than the simple approach in terms of VC carried
"iload and blocking probability over a wide range of real-time workload.

'4. SUBJECT TERMS f 15. NUMBER OF PAGES

Computer-Communication Networks: Network Architecture and 22 pages

Design, Network Protocols;Routing Protocols: Computer Network 16. PRICE CODE
houtinp Protocol--

17 SECURITY CLASSIFICATION 8. SECURITY CLASSIFICATION I1. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
SEURT IMASSIACATIO OFABTRC

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified -Unclassified 'Unclassified Unlimited

175 '- ",9 'Rev 2-89)>!SN 7•'C'-0"•2$0-5500 175 Sa~ '":". .

U

176 1|

Hierarchical Inter-Domain Routing Protocol
with On-Demand ToS and Policy Resolution*

Cengiz Alaettinogiu. A. Udaya Shankar

Institute for Advanced Computer Studies

Department of Computer Science

University of Maryland

College Park, Maryland 20742

June 20, 1994

Abstract

Traditional inter-domain routing protocols based on superdomains maintain either "strong"
or "weak" ToS and policy constraints for each visible superdomain. With strong constraints,
a valid path may not be found even though one exists. With weak constraints, an invalid
domain-level path may be treated as a valid path.

We present an inter-domain routing protocol based on superdomains, which always finds I
a valid path if one exists. Both strong and weak- constraints are maintained for each visible

superdomain. If the strong constraints of the superdomains on a path are satisfied, then the
path is valid. If only the weak constraints are satisfied for some superdomains on the path. the
source uses a query protocol to obtain a more detailed 'internal" view of these superdomains,
and searches again for a valid path. Our protocol handles topology changes, including node/link
failures that partition superdomains. Evaluation results indicate our protocol scales well to large
internetworks.

Categories and Subject Descriptors: C.2.1 [Computer-:Communication Networks]: Network Archi-
tecture and Design-packet networks; store arid forward networks: C.2.2 [Computer-Communication Net-

worksl: Network- Protocols-prolocol ar-chitecture; C.2.m [Routing Protocolsi; F.2.m [Computer Network

Routing Protocols].

This work is supported in part by ARPA and Philips Labs under contract DASG60-92-0055 to Department
of Computer Science, University of Maryland, and by National Science Foundation Grant No. NCR 89-04590. The
views, opinions, and/or findings contained in this report are those of the author(s) and should not be interpreted as
representing the c.E.ciaJ polices, either expressed or implied, of the Advance.d Research Projects Agency, PL, NSF,
or the U.S. Government. Computer facilities were provided in part by INSF grant CCR-8s12954.

177

1 Introduction

Acomp~ute: internetwork, such as the Internet, isa-necneto fbcbn ewrks, regional

networks, metropolitan area networks, and stub networks (camnpus networks, offfice networks and,

othae: srCaL netwc,73.s)3. St,,:-_ networ.*-s a.7e the producers and consumers oi th~e in*terneTwor:z -kramfc,

while b ack-b ones, regionals and MAN's are transit networks. Most of the networks in an internetworx-

are stub networks. Each network consists of nodes (hosts, routers) and links. A node that has a

link to a node in another network- is called a. gateway. Two networks are neighbors when there is

one or more links between gateways in the two networks (see Figure 1).

>backbone A / Z7 r= aK

b2 E I o

in mronal D

Figzure 1: A -Do-,ton of an internetwork. (Circles represent stub networks.)

An i~nternetrwork is organied into domains2. A domain is a set ofl networks (possibly consisting

of on'-, one network) adnil:_istered- by the same agency. Domains are typically subject to poiicy

corlslýrcanls. wrc.are ad-----;S::-ative restri ctions on inter-c omain trafc [7. 21 . 51. T'he Policy

constr-adnts c' a domain U are of two tyDes: tranisit policies, which specify how other domains

can use the resources olf U (e.g. 30.01 pDer packet, no traffic from domain V); and source policies.

wnjcl- SDec_::V constraints on tra"-ic originating from U (e.g. domains to avoid/prefer, acceptable

connection cost). Transit polic~es of a_ domain are public (i.e. available to other domains), whereas

Source policIes are usua~ly privýate.

Within each domain, an intra-domain routing pro tocol is executed that provides routes between

source a-nd diestination nodes in the domain. This protocol caM be anl) of the tVoical ones, i.e..,

nex*,-no-D o: sour,-ce routes comp.-uted using distance-vector or !link-state Lizorithms. To sa.tisfy;

ex=Dle, .\S:7 E-7, MILNET axe backbones, and Sunrnet, CeriNet axe regionals.
tolorfe:di as routl . g a IOrnac. s or a ri.i £trati.ve domcnris.

178

type-of-service (ToS) constraints of applications (e.g. low delay, high throughput, high reliabiLity.

minimum monetary cost), each node maintains a cost for each outgoing link and ToS. The intra-

domain routing protocol should choose optimal paths based on these costs.

Across all domains, an inter-domain routing protocol is executed that provides routes between

source and destination nodes in different domains, using the-services of the intra-domain routing

protocols within domains. This protocol should have the following properties:

(1) It should satisfy the policy constraints of domains. To do this, it must keep track of the

pohlcy constraints of domains [51.

(2) An inter-domain routing protocol should also satisfy ToS constraints of applications. To do

tis, it must keep track of the ToS services offered by domains [5].

(3) An inte7-domaim routing protocol should scale up to very large internetworks. i.e. with a very

la-ze number of domains. Practically this means that processing, memory and communication

requirements should be much iess than Uinear in the number of domains. It should also

handle non-hierarchical domain interconnections at any level [8] (e.g. we do not want to

hand-conafgure special routes as "'back-doors").

(4) An inter-domain routing protocol should automatically adapt to link cost changes and node/link

faidures and repairs, including failures that partition domains [13].

A Straight-Forwa-rd Approach

A st-a-iit-forward approacn to inter-comain routing is domain-level source routing with link-state

approach~ [7. 5]. in this approach, each -outer3 maintains a domc-n-ieve! view of the internetwor-:.
..e.. a :raph with a vertex for every domain and an edge between every two nei-hbor domains.

Policy and ToS information is attached to the vertices and the edges of the view.

When2 a source node needs to reach 2- destination node. it (or a router' in the source's domain)

first exam=nes this view and determmnes a domain-level source route satisfyming ToS and policy

constr-ants. i.e.. a secuence of domain ids starting from the source's domain and ending with the

destination's domain. Then packets are routed to the destinattion using this domain-level source

route and the intra-domain routing protocols of the domains crossed.

For examnple. consider the internetwork of Figure 2 (each circle is a domain. and each thin line

SNo" aJI no6es maintain routing .zbles..- router is a node tha-t maint. us 2- roting table.
xre:,::ed to as the policv se:ve: i, [71

17!"

is a domain-level interconnection). Suppose a node in dl desires a connection to a node in d7.

Suppose the policy constraints of d3 and d19 do not allow transit traffic originating from dl. Every

node maintains this information in its view. Thus the source node can choose a valid path from

source domain dl to destination domain d7 avoiding d3 and d19 (e.g. thicl line in the figure).

'a lid path

213

d24

d26 d2 o

Figure 2: An example interdomain topology.

The disadvantage of this straightforward scheme is that it does not scale up for large internet-

works. The storage at each router is proportional to -ID x ED. where 2vD is the number of domains

and ZD ;s the average number of neighbor domans to a domain. The communication cost for

updating views is proportional to NR x ER. where -R is the number of routers in the internetworh

and ER is the average router neignhors of a router (topology changes are flooded to all routers in

the nternetwork:.

The Superdornain Approach

To achieve sca-ling, several approaches based on hierarchically aggregating domains into superdo-

mains have been proposed [16, 14, 6]. Here. each domain is a level 1 superdomain, "cose" level 1

superdomains axe grouped into level 2 superdomains, "ucose" level 2 superdomains are grouped into

level 3 superdomains, and so on (see Fig-ure 3). Each router x maintains a view that contains the

level I sunerdomains in z's level 2 superdomain. t he level 2 superdomains in z's level 3 superdom2in

(excluding the z~s level 2 superdomadn). ad so on. Thus a router maintains a smaller view than

it would in the absence of hiera-ch.v For the suoerdomain hierarchy of Figure 3, the views of two

180

V"L, path

level I super :om sin
A

d I

Ievel 2 Superomain D d1l

le'vel 3 superdomain ed1

]D csti-m io•

°

d23404 46 427 428

Figure 3: An example of superdomain hierarchy.

routers (one in domain dl and one in domain dl6) are shown in Figures 4 and 5.

Figuare 4: View of a router in d41. Fig'ure 5: View of a s!&•'in d16.

The superdomain approach has several problems. One problem is that the aggregation results

in loss of doma~in-level ToS and policy information. A superdomain is usually characterized by a

single set of ToS and policy constraints derived from the ToS and policy constraints of the domains

in it. Routers outside the superdomain assume that this set of constraints applies uniformly to

each of its children (and by recursion to each domain in the superdomain). If there axe domains

". ~ with dliffer-ent (possibly contradictory) constraints in a superdom a.in, then there is no good way of

deriving the ToS and policy constraints of the superdomain.

The usual technique [16] of obtaining ToS and policy- constraints of a superdomain is to obtain

either a sirorng set of constraints or a weak= set of constraints
5 from the ToS and policy constraints of

s 'strong" arid 'weal?• are referred to respectively a~s 'uriion•" and "intersection'" in [1 6]

181

M

the children superdomains in it. If strong (weak) constraints are used for policies, the superdomain

enforces a policy constraint if that policy constraint is enforced by some (all) of its children. If

strong (weak) constraints are used for ToS constraints, the superdomain is assumed to support a U

ToS if that ToS is supported by all (some) of its children. The intention is that if strong (weak)

constraints of a superdomain are (are not) satisfied then any (no) path through that superdomain

is valid.

Each approach has problems. Strong constraints can eliminate valid paths, and weak constraints

can allow invalid paths. For example in Figure 3, d16 allows transit traffic from dl while d19 does

not; with strong constraints G would not allow transit traffic from dl, and with weak constraints

G would allow transit traffic from di to be routed via d19.

Other problems of the superdomain approach are that the varying visibilities of routers compli-

cates superdomain-level source routing and handling of node/link failures (especially those that par-

tition superdomains). The usual technique for solving these problems is to augment superdomain-

level views with gateways [16] (see Section 3).

Our Contribution

In this paper, we present an inter-domain routing protocol based on superdomains, which finds

a valid path if and only if one exists. Both strong and weak constraints are maintained for each

visible superdomain. If the strong constraints of the superdomains on a path are satisfied, then

the path is valid. If only the weak constraints are satisfied for some superdomains on the path, the

source uses a query protocol to obtain a more detailed "internal" view of these superdomains, and

searches again for a valid path.

We use superdomain-level views with gateways and a link-state view update protocol to handle

topology changes including failures that partition superdomains. The storage cost is O(log.NLD x I
log AD) without the query protocol. We demonstrate the scaling properties of the query protocol

by giving evaluation results based on simulations. Our evaluation results indicate that the query

protocol can be performed using 15% extra space.

Our protocol consists of two subprotocols: a view-query protocol for obtaining views of

greater resolution when needed; and a view-update protocol for disseminating topology changes -,

to the views.

182
i

Several approaches to scalable inter-domain routing have been proposed, based on the super-

domain hierarchy [1, 14, 16, 9, 6], and the landmark hierarchy [18, 17]. Some of these approaches

suffer from loss of ToS and policy information (and hence may not find a valid path which exists).

Others are still in a preliminary stage. (Details in Section 8.)

One important difference between these approaches and ours is that ours uses a query mechanism

to obtain ToS and policy details whenever needed. In our opinion, such a mechanism is needed

to obtain a scalable solution. Query protocols are also being developed to enhance the protocols

in [9, 6]. R~eference [2] presents protocols based on a new kind of hierarchy, referred to as the

viewserver hierarchy (more details in Section 8).

A preliminary version of the view-query protocol was proposed in reference [1]. That version

differs greatly from the one in this paper. Here, we augment superdomain-level views with gate-

ways. In [1], we augmented superdomain-level views with superdomain-to-domain edges (details in

Section 8). Both versions have the same time and space complexity, but the protocols in this paper

are much simpler conceptually. Also the view-update protocol is not in reference [1].

Organization of the paper

In Section 2, we present some definitions used in this paper. In Section 3, we define the view data

structures. In Section 4, we describe how views are affected by topology changes. In Section 5, we

present the view-query protocol. In Section 6, we present the view-update protocol. In Section 7,

we present our evaluation model and the results of its application to the superdomain hierarchy.

In Section 8, we survey recent approaches to inter-domain routing. In Section 9, we conclude and

describe cacheing and heuristic schemes to improve performance.

2 Preliminaries

Each domain has a unique id. Let Domainlds denote the set of domain-ids. Each node has a

unique id. Let Nodelds denote the set of node-ids. For a node z, we use domainid(z) to denote

the domain-id of z's domain.

The superdomain hierarchy defines the following parent-child relationship: a level i, i > 1,

superdomain is the parent of each level i - I superdomain it contains. Top-level superdomains

183

have no parents. Level I superdomains, which are just domains, have no children. For any two

superdomains X and 3', X is a sibling of Y iff X and Y have the same parent. X is an ancestor

(descendant) of Y if[X = Y or X is an ancestor (descendant) of Y's parent (child).

Each router maintains information about a subset of superdomains, referred to as its visible

superdomains. The visible superdomains of a router z are (1) x's domain itself, (2) siblings of z's

domain, and (3) siblings of ancestors of x's domain. In Figure 3, the visible superdomains of a

router in di are dl, d2,d3,3B,C, G,J (these are shown in Figure 4). Note that if a superdomain U

is visible to a router, then no ancestor or descendant of U is visible to the router.*

Each superdomain has a unique id, i.e. unique among all superdomains regardless of level. Let

SuperDomainlds denote the set of superdomain-ids. Domainlds is a subset of SuperDomainlds.

For a superdomain U, let level(U) denote the level of U in the hierarchy, let Ancestors(U) denote

the set of ids of ancestor superdomains of U in the hierarchy, and let Children(U) denote the set

of ids of child superdomains of U in the hierarchy.

For a router :, let VisibleSuperDomains(z) denote the set of ids of superdomains visible from

We extend the above definitions by allowing their arguments to be nodes, in which case the node

stands for its domain. For example, if x is a node in domain d, Ancestors(z) denotes Ancestors(d).

3 Superdomain-Level Views with Gateways

For routing purposes, each domain (and node) has an address, defined as the concatenation of the

superdomain ids starting from the top level and going down to the domain (node). For example in

Figure 3, the address of domain d15 is G.E.dlS, and the address of a node h in d15 is G.E.dl5.h.

When a source node needs to reach a destination node, it first determines the visible superdo-

main in the destination address and then by examining its view determines a superdomain-level

source route (satisfying ToS and policy constraints) to this superdomain. However, since routers

in different superdomadns maintain views of different sets of superdomains, this superdomain-level

source route can be meaningless at some intermediate superdomain's router 2 because the next

superdomain in this source route is not visible to z. For example in Figure 4, superdomain-level

source route (d2, B2, G, C) created at a router in d2 becomes meaningless once the packet is in G,

where C is not visible.

184
i

The usual technique of solving this problem is to augment superdomain-level views with gate-

ways and edges between these gateways.

Define the pair U:g to be an sd-gateway iff U is a superdomain and g is a node that is in U and

has a link to a node outside V. Equivalently, we say that g is a gateway of U.

Define (U:g,h) to be an actual-edge iff U:g is an sd-gateway, h is a gateway not in U, and there

is a link from g to h.

Define (U:g, h) to be a v~rtual-edge iff U:g and U:h are sd-gateways and g 9 h (note that there

maoy not be a link between g and h).

(U:g, h) is an edge iff it is an actual-edge or a virtual-edge. An edge (U:g, h) is also said to be

an outgoing edge of U:g. Define edges of U:g to be the set of edges outgoing from U:g. Define edges

of U to be the set of edges outgoing from any gateway of U.

Let Gatevays(U) denote the set of node-ids of gateways of U. Let Edges(U:g) denote the edges

of U:g. Note that we never use "edge' as a synonym for link.

A gateway g of a domain can generate many sd-gateways, specifically, U:g for every ancestor U

of 9 s domain such that g has a link to anode outside U. A link (9 , h) where 9 and h are gateways

in different domains, can generate many actual-edges; specifically, actual-edge (U:g, h) for every

ancestor U of g's domain such that U is not an ancestor of h's domain.

For the internetwork topology of Figure 2, the corresponding gateway-level connections are

shown in Figure 6 where black rectangles are gateways. For the hierarchy of Figure 3, gateway

9 in Figure 6 generates sd-gateways d16:9, E:g, and G:g. The link (g,h) in Figure 6 generates

actual-edges (dl6:g. h), (E:g, h), (G:9, h).

To a router, at most one of the sd-gateways generated by a gateway 9 is visible, namely U:g

where U is an ancestor of 9's domain and U is visible to the router. At most one of the actual-edges

generated by a link (g, h) between two gateways in different domains is visible to the router, namely

edge (U:g, h) where U:g is visible to the router. None of the actual-edges are visible to the router

if g and h are inside a visible superdomain. For example in Figure 3, of the actual-edges generated

by link (g, h), only (G:g, h) is visible to a router in dl, and only (d16:g, h) is visible to a router in

d16.

A router maintains a view consisting of the visibie sd-gateways and their outgoing actual- and

virtual-edges. An edge (U:gh) in the view of a router connects the sd-gateway U:g to the sd-

185

igaeway h gateway, g

Figure 6: Gateway-level connections of internetwork of Figure 2.

gateway V:h such that V:h is visible to the router. For the superdomain-leve] views of Figures 4

and 5, the new views are shown in Figures 7 and 8, respectively.

gateway B :h gate.wa, d)6:g '

II

Figu•re 7: View of a router in dJ.. Figuare 8: View of" a router in d16.

The view of a router z contains, for each superdomain U that is visible to x or is an ancestor

of z: the strong and w~eak constraints of U and a set referred to as Gat~eways•.Edges..(U). This

set contains, for each gateway Fi of U, the edges of U:y and the~ir costs. The reason for storing

information about anucestor superdomains is given in Section 5. The cost hield is used to satisfy ToS

constraints and is described in Section 4. The timest amp hfeld is described in Section 6. FormaJlJy,

the view- of z is defined as foflows:

186
I

IView,. View of z.

= { (U, strong -constraints(U), weak-constraints(U), Gateways&Edges=(U)):

U E VisibleSuperDomains(z) U Ancestors(x) I

where

Gateways&Edges.(U). Sd-gateways and edges of U.

= {(y, iimestamp, {(z, cost) : (U:y,z) E Edges(U:y)}) : yE Gateways(U)).

ToS and policy constraints can also be specified for each sd-gateway and edge. Our protocols

can be extended to handle such constraints, but we have not done so here in order to keep their

descriptions simple.

A superdornain-level source route is now a sequence of sd-gateway ids. With this definition. it

is easy to 'verify that whenever the next superdomain in a superdomain-level source route is not

visible to a router. there is an actual-edge (hence a link) between the router and the next gateway

in this route.

4 Edge-Costs and Topology Changes

A cost is associated with each edge. The cost of an edge equals a vector of values if the edge is up;

each cost value indicates how expensive it is to cross the edge according to some ToS constraint.

The cost equals cc if the edge is an actual-edge and it is down, or the edge is a virtual-edge (U:g, h)

and h can not be reached irom g without leaving U.

Since an actual-edge represents a physical link, its cost cam be determined from measured link

statistics. The cost of a virtual-edge (U:g, h) is an aggregation of the cost of physical links in

U and is calculated as follows: If U is a domain, the cost of (U: 9,h) is calculated as the maxi.-

mum/minimum/average cost of the routes within U from g to h [4). For higher level superdomains

U, the cost of (U:9, h) is derived from the costs of edges between the gateways of children super-

domains of U.

Link cost changes and link/node failures and repairs correspond to cost changes, failures and

repairs of actual- and virtual-edges. Thus the attributes of edges in the views of routers must be

regularly updated. For this, we employ a view-update protocol (see Section 6).

187

Link/node failures can also partition a superdomain into cells, where a cell of a superdomain

is defined to be a maximal subset of nodes of the superdomain that can reach each other without

leaving the superdomain. Superdomain partitions can occur at any level in the hierarchy. For

example, suppose U is a domain and V is its parent superdomain. U can be partitioned into cells

without V being partitioned (i.e. if the cells of U can reach each other without leaving V). The

opposite can also happen: if all links between U and the other children of V fail, then V becomes

partitioned but U does not. Or both U and V cam be partitioned. In the same way, link/node

repairs can merge cells into bigger cells.

We handle superdomai.n partitioning as follows: A router detects that a superdomain U is

partitioned when a virtual-edge of U in the router's view has cost oo. When a router forwards

a packet to a destination for which the visible superdomain, say U, in the destination address is

partitioned into cells, a copy of the packet is sent to each cell by sending a copy of the packet to

each gateway of U; the id U in the destination address is "marked" in the packet so that subsequent

routers do not create new copies of the packet for U.

5 View-Query Protocol

When a source node wants a superdomain-level source route to a destination, a router in its domain

examines its view and searches for a valid path (i.e. superdomain-level source route) using the

destination address6 . We refer to this router as the source router. Even though the source router

does not know the constraints of the individual domains that are to be crossed in each superdomain,

it does know the strong and weak constraints of -the superdomains. We refer to a superdomain

whose strong constraints are satisfied as a valid superdomain. If a superdomain's weak constraints

are satisfied but strong constraints are not satisfied, then there may be a valid path through this

superdomain. We refer to such a superdomadn as a candidate superdomain.

A path is valid if it involves only valid superdomains. A path cannot be valid if it involves

a superdomain which is neither valid nor candidate. We refer to a path involving only valid and

candidate superdomains as a candidate path.

' We assume that the source has the destination's address. If that is not the case, it would first query the name

servers to obtain the address for the destination. Querying the name servers can be done the same way it is done
currently in the Internet. It requires nodes to have a set of fixed addresses to name servers. This is also suficient in
our case.

188

If the source router's view contains acandidate path (Uo:9og,. ., Uo:90,,0 U1:9 10 ,. • -, U1:91. 2 1,

: -., U , to the destination (and does not contain a valid path), then for each candi-

date superdomain UJ on this path, the source router queries gateway 9j0 of U; for the internal view of

U]. This internal view consists of the constraints, sd-gateways and edges of the child superdornains

of U..

When a router x receives a request for the internal view of an ancestor superdomain U, it

returns the following data structure:

IView,(U). Internal view of U at router x.

= {(V, strong-cons-craints(V), weak-constraints(V7), Gateways &Edges.(V)) E View.:

V E Chi dren(U)}

it is to simplify the construction of MView(U) that we store information about ancestor su-

perdomains in the view of router z. Instead of storing this information, router X could construct

JView:(U) from the constraints, sd-gateways and edges of the visible descendants of U. We did

not choose this alternative because the extra information does not increase storage complexity.

When the source router receives the internal view of a superdomain U, it does the following:

(1) it removes the sd-gateways and edges of U from its view; (2) it adds the sd-gateways and edges

of children superdomains in the internal view of U; and (3) searches for a valid path again. If there

is still no valid path but there are candidate paths, the process is repeated.

For example, consider Figure 3. For a router in superdomain dl (see Figure 7). G is visible and

is a candidate domain. The internal view of G is shown in Figure 9, and the resulting merged view

is shown in Figure 10. The valid path through G (visiting d16 and avoiding d19) can be discovered

using this merged view (since the strong constraints of E are satisfied).

Consider a candidate route to a destination: (Uo:g 0o,.. -, Uo:go0 , U1:9 1 0 ,..., U1:91,,",

U,:go,. .. , :. .If superdomain Uj is partitioned into cells, it may re-appear later in the

candidate path (i.e. for some j . i, Uj = Ui). In this case both gateways gi0 and 9g are queried.

Timestamps are used to resolve conflicts between the information reported by these gateways.

The view-query protocol uses two types of.messages as follows:

(RequestMVi ev;, sdid gid, s.-address, d-address)

189

c F

F

Figure 9: Internal view of G. Figure 10: Merged view at dl.

Sent by a source router to gateway gid to obtain the internal view of superdomain sdid. i

s-address is the address of the source router. d.address is the address of the destination

node (of the desired route).

(ReplylView, sdid, gid, iview, d-address)

where iview is the internal view of superdomain sdid, and other parameters axe as in the

RequestlView message. It is sent by gateway gid to the source router.

The state maintained by a source router z is listed in Figure 15. Pending~eq= is used to

avoid sending new request messages before receiving all outstanding reply messages. WVieu; and

PendingReq, are allocated and deallocated on demand for each destination.

The events of router z axe specified in Figure 15. In the figure, * is a wild-card matching any

value. Timeout., event is executed after a time-out period from the execution of Request, event ,o o

indicate that the request has not been satisfied. The source host can then repeat the same request

afterwards.

The procedure search_ uses an operation "ReliableSend (in) to v', where m is the message being

sent and v is either an address of an arbitrary router or an id of a gateway of a visible superdomain.

RMeliableSend is asynchronous. The message is delivered to v as long as there is a sequence of up

links between u and v.' (Note that an address is not needed to obtain an inter-domain route to a

gateway of a visible superdomain.)

Router Failure Model: A router can undergo failures and recoveries at anytime. We

assume failures axe fail-stop (i.e. a failed router does not send erroneous messages). When a router

z recovers, the variables WView, and PendingReq, are lost for all destinations. The cost of each

edge in View. is set to oc. It becomes up-to-date as the router receives new information from other

This involves time-outs, retranusmissions, etc. It requires a transport protocol support such as TCP.

190 -I

I

routers.

6 View-Update Protocol

A gateway 9, for each amcestor superdomadrn U, informs other routers of topology chaiges (i.e.

failures, repairs and cost changes) affecting U:g's edges. The communication is done by flooding

messages. The flooding is restricted to the routers in the parent superdomain of U, since U is

visible only to these routers.

Due to the nature of flooding, a router can receive information out of order from a gateway. In

order to avoid old information replacing new information, each gateway includes increasing time

stamps in the messages it sends. Routers maintain for each gateway the highest received time

stamp (in the timestamp field in View.), and discard messages with smaller timestamps. Time

stamps do not have to be real-time clock values.

Due to superdomain partitioning, messages sent by a gateway may not reach all routers within

the paxent superdomain, resulting in some Touters having out-of-date information. This out-of-date

information can cause inconsistencies when the partition is repaired. To eliminate inconsistencies,

when a link recovers, the two routers at the ends of the link exchange their views and flood any new

information. As usual, information about a superdomain U is flooded over U's parenT superdomain.

The view-update protocol uses messages of the following form:

9 (Update, sdid, gid, tirnestamp, edge-set)

Sent by the gateway gid to inform other Touters about current attributes of edges of sdid:gid.

timestamp indicates the time stamp of gid. edge-set contains a cost for each edge.

The state maintained by a router z is listed in Figure 16. Note that AdjLocalRouters= or

AdjForeignGateways, can be empty. IntraDomainRT_ contains a route (next-hop or source)' for

every reachable node of the domain. We assume that consecutive reads of Clock, returns increasing

values.

Routers also receive and flood messages containing edges of sd-gateways of their ancestor su-

perdomains. This information is used by the query protocol (see Section 5). Also the highest

timestamp received from a gateway 9 of an ancestor superdomain is needed to avoid exchanging

J]traDomaini]AT is a view in case of a link-state routing protocol or a distance table in case of a distance-vectoz
routing protocol.

191

the messages of g infinitely during flooding.

The events of router z are specified in Figure 16. We use Ancestori(U) to denote the superdomain-

id of the ith ancestor of U, where Ancestoro(U) = U. In the view-update protocol, a node u uses

send operations of the form "Send(m) to v", where m is the message being sent and v is the

destination-id. Here, nodes u and v are neighbors, and the message is sent over the physical link

(u, v). If the link is down, we assume that the packet is dropped.

7 Evaluation i
In the superdomain hierarchy (without the query protocol), the number of superdomains in a view

is logarithmic in the number of superdomains in the internetwork [10].9 However, the storage

required for a view is proportional not to the number of superdomains in it but to the number of

sd-gateways in it. As we have seen, there can be more than one sd-gateway for a superdomain in

a view.

In fact, the superdomain hierarchy does not scale-up for arbitrary internetworks; that is, the

number of sd-gateways in a view can be proportional to the number of domains in the internetwork.

For example, if each domain in a superdomain U has a distinct gateway with a link to outside U,

the number of sd-gateways of U would be linear in the number of domains in U.

The good news is that the superdomain hierarchy does scale-up for realistic internetwork topolo-

gies. A suficient condition for scaling is that each superdomain has at most log NVD sd-gateways;

this condition is satisfied by realistic internetworks since most domain interconnections are "hier-

archiical connections' i.e. between backbones and regionals, between regionals and MANs, and so

on.

In this section, we present an evaluation of the scaling properties of the superdomain hierarchy

and the query protocol. To evaluate any inter-domain routing protocol, we need a model in which

we can define internetwork topologies, policy/ToS, constraints, inmter-domain routing hieraxchies,

and evaluation measures (e.g. memory and time requirements). We have recently developed such

a model 13). We first describe our model, and then use it to evaluate our superdomain hieraxchy.

Our evaluation measures are the amount of memory required at the routers, and the amount of

9 Ever. though the results in [101 were for intra-domain routing, it is easy to show that the analysis there holds
for intei-domain routing as wefl.

192
i

time needed to construct a path.

7.1 Evaluation Model

We first describe our method of generating topologies and policy/ToS constraints. We then describe

the evaluation measures.

Generating Internetwork Topologies

For our purposes, an internetwork topology is a directed graph where the nodes correspond to

domains and the edges correspond to domain-level connections. However, an arbitrary graph will

not do. The topology should have the characteristics of a real internetwork, like the Internet.

That is. it should have backbones, regionals, MANS, LANS, etc.; there should~be hierarchical

connections, but some "non-hierarchical" connections should also be present.

For brevity, we refer to backbones as class 0 domains, regionals as class I domains, metropolitan-

area domains and providers as class 2 domains, and campus and local-area domains as class 3

domains. A (strictly) hierarchical interconnection of domains means that class 0 domains are

connected to each other, and for i > 0, class i domains are connected to class ' - 1 domains.

As mentioned above, we also want some "non-hierarchical" connections, i.e., domain-level edges

between domains irrespective of their classes (e.g. from a campus domain to another campus

domain or to a backbone domain).

In reality, domains span geographical regions and domain-level edges are often between do-

mains that are geographically close (e.g. University of Maryland campus domain is connected to

SLYRANET regional domain which are both in the east coast). We also want some edges that are

between far domains. A class i domain usually spans a larger geographical region than a class i + 1

domain. To generate such interconnections, we associate a "region" attribute to each domain. The

intention is that two domains with the same region are geographically close.

The region of a class i domain has the form ro.r 1. -. . .ri, where the r1 's are integers. For

exaxmple, the region of a class 3 domain can be 1.2.3.4. For brevity, we refer to the region of a

class i domain as a class i region.

Note that regions have their own hierarchy which should not be confused with the superdomain

hierarchy. Class 0 regions are the top level regions. We say that a class i region r0.rz....

193

m

is contained in the class i- 1 region ro.r. ---. rjI- (where i > 0). Containment is transitive. Thus

region I .2.3.4 is contained in regions 1.2.3, 1.2 and 1.

NII

SNN.

/ / -
/ /\ '

/ /1.1

I/ \/

IN

., .

/

\ %.•I,

-- - \- -

--- - - -,-

Figure 11: Rlegions

Given any' pair of domains, we classify them as local, remote or far, based on their regions.

Let X be a class i domain and Y a class j domain, and without loss of generality let i < j. X

a.nd Y are local if they are in the same class i region. For example in Figure 11, A is local to

B, C, J, K, M,N, O, P, and Q. X and Y are remote if they are not in the same class i region but

they are in the same class i - 1 region, or if i = 0. For example in Figure 11, some of the domains

A is remote to are D,.E, Fj and L. X and Y are far if they are not local or remote. For example

in Figure 11, A is far to 1.
-E

We refer to a domain-level edge as local (remote. or far) if the two domains it connects axe local

194

.!

(remote, or far).

We use the following procedure to generate internetwork topologies:

"* We first specify the number of domain classes, and the number of domains in each class.

"* We next specify the regions. Note that the number of region classes equals the number of

domain classes. We specify the number of class 0 regions. For each class i > 0, we specify a

branching factor, which creates that many class i regions in each class i - 1 region. (That is,

if there are two class 0 regions and the class 1 branching factor equals three, then there are

six class I regions.)

"* For each class i, we-randomly map the class i domains into the class i regions. Note that

several domains can be mapped to the same region, and some regions may have no domain

mapped into them.

"* For every class i and every class j, j > i, we specify the number of local, remote and far

edges to be introduced between class i domains and class j domains. The end points of the

edges are chosen randomly (within the specified constraints).

"* We ensure that the internetwork topology is connected by ensuring that the subgraph of class

0 domains is connected, and each class i domain, for i > 0, is connected to a local class i - 1

domain.

"* Each domain has one gateway. So all neighbors of a domain are connected via this gateway.

This is for simplicity.

Choosing Policy/ToS Constraints

We chose a simple scheme to model policy/ToS constraints. Each domain is assigned a color: green

or red. For each domain class, we specify the percentage of green domains in that class, and then

randomly choose a color for each domain in that class.

A valid route from a source to a destination is one that does not visit any red intermediate

domains; the source and destination domains are allowed to be red.

This simple scheme can model many realistic policy/ToS constraints, such as security constraints

and bandwidth requirements. It cannot model some important kinds of constraints, such as delay

bounds.

195

Computing Evaluation Measures

The evaluation measures of most interest for an inter-domain routing protocol are its memory, time

and communication requirements. We postpone the precise definitions of the evaluation measures

to the next subsection.

The only analysis method we have at present is to numerically compute the evaluation measures

for a variety of source-destination pairs. Because we use internetwork topologies of large sizes, it

is not feasible to compute for all possible source-destination pairs. We randomly choose a set

of source-destination pairs that satisfy the following conditions: (1) the source and destination

domains are different stub domains, and (2) there exists a valid path from the source domain to the

destination domain in the internetwork topology. (Note that the straight-forward scheme would

always find such a path.)

7.2 Application to Superdomain Query Protocol

We use the above model to evaluate our superdomain query protocol for several different super-

domain hierarchies. For each hierarchy, we define a set of superdomain-ids and a parent-child

relationship on them.

The first superdomain hierarchy scheme is referred to as child-domains. Each domain d (re-

gardless of its class) is a level-i superdomain., also identified as d. In addition, for each backbone d, I
we create a distinct levei-4 superdomain referred to as d-4. For each regional d, we create a distinct

level-3 superdomain d-3 and make it a child of a randomly chosen level-4 superdomain e-4 such

that d and e are local and connected. For each MAN d, we create a distinct level-2 superdomain

d-2 and make it a child of a randomly chosen level-3 superdomain e-3 such that d and e are local

and connected. Please see Figure 12.

We next describe how the level-1 superdomains (i.e. the domains) are placed in the hierarchy.

A backbone d is placed in, i.e. as a child of, d-4. A regional d is placed in d-3. A MAN d is placed

in d-2. A stub d is placed in e-2 such that d and e are local and connected. Please see Figure 12.

The second superdomain hierarchy scheme is referred to as sibling-domains. It is identical

to child-domains except for the placement of level-i superdomains corresponding to backbones,

regionals and MANs. In sibling-domains, a backbone d is placed as a sibling of d-4. A regional d

is placed as a sibling of d-3. A MAN d is placed as a sibling of d-2. Please see Figure 13.

196

C-4

C-2A

Figure 13: chibln-domains

The tird uperdmainb~ieArcyshm srfre t sla-oan.Ii dnia ocid

domans xcep fo th plaemet o levl-isuprdominscorespodin tobac1bons ad reionals

E97

In leaf-domains, backbones and regionals are placed in some level-2 superdoma~in, as follows. A

regional d, if superdomain d-3 has a child superdomain e-2, is placed in e-2. Otherwise, a new level-

2 superdomain d-2 is created and placed in d-3. d is placed in d-2. A backbone d, if superdomain

d-4 has a child superdomain f-3, is placed in the level-2 superdomain containing the regional f.

Otherwise, a new level-3 superdomain d-3 is created and placed in d-4, a new level-2 superdomain

d-2 is created and placed in d-3. d is -placed in d-2. Please see Figure 14.

Note that in leaf-domains, all level-I superdomains are placed under level-2 superdomains.

Whereas other schemes allow some level-1 superdomains to be placed under higher level superdo-

mains.

A-4 G-4

backbo xm A

IC- I

Figure 14: leaf-domains

The fourth superdomain hierarchy scheme is referred to as regions. In this scheme, the super-

domain hierarchy corresponds exactly to the region hierarchy used to generate the internetwork

topology. That is, for a class 1 region x there is a distinct level 5 (top level) superdomain z-5. For

a class 2 region x. y there is a distinct level 4 superdomain z.y-4 placed under level 5 superdomain

z-5, and so on. Each domain is placed under the superdomain of its region. Please see Figure 11.

198

Results for Internetwork 1

The parameters of the first internetwork topology, referred to as Internetwork 1, are shown in

Table 1.

Class i No. of Domains N~o. of Regions 7 % of Green Domains Edges between Classes z and '

Class jjLocal I Remote Far

0 10 4 0.80 0 8 6 1 0

1 100 16 0.75 0 190 20 0

1 26 51 0

1000 64 0.70 0 100 0 0
1 1060 40 0

6.2 200 40 0

S10000 256 0.20 0 100 0 0

_I I c, 0 I 0

2 I0100 50 0

3 50 50 50

Table 1: Parameters of Internetwork 1.

Our evaluation measures were computed for a (random],. chosen but fixed) set of 100.000 source-

destination pairs. For a source-destination pair, we refer to the length of the shortest valid path in

the internetvork topology as the shortest-path length, or spI in short. The minimum spI of these

pairs was 2. the maximu= spl was 15, and the average spI was 6.84.

For each source-destination pair, the set of candidate paths is examined in shortest-first order

until either a valid path was found or the set was exhausted and no valid paths were found.

For each candidate path, RequestlVie, messages are sent to all candidate superdomains on this

path in parallel. All Reply!Viev messages are received in time proportional to the round-trip

time to the farthest of these superdomains. HIence, total time requirement is proportional to the

number of candidate paths queried multiplied by the round-trip time to the farthest superdomain

in these paths. Let msgsize denote the sum of average RequestIVier message size and average

"1 0Branching factor is 4 for all region classes.

199

Scheme [No query needed Candidate Paths Candidate Superdomans

chiid-domains 220 3.31/13 7.35/38

sibling-domains 220 3/10 6.17/22

leaf-domains 219 6.31/24 15.94/66

regions 544 3.70/12 7.79/30

Table 2: Queries for Internetwork 1.

ReplylViev message size. The number of candidate superdomains queried times msgsize indicates

the communication capacity required to ship the RequestIViev and ReplyIViev messages.

Table 2 lists for each superdomain scheme the average and maximum number of candidate paths

and candidate superdomains queried. As apparent from the table, sibling-domains is superior to

other schemes and leaf-domains is much worse than the rest. This is because in leaf-domains, even

if only one domain d in a superdomain U is actually going to be crossed, all descendants of U

containing d may need to be queried to obtain a valid path (e.g. to cross backbone A in Figure 14,

it may be necessary to query for superdomain A-4, then B-3, then C-2).

Initial view size Merged view size

Scheme in sd-gatewavs in superdomains in sd-gatewas in superdomains

child-domains 964/1006 42/60 1089/1282 100/298

sibling-domains 1167/1269 j 70/99 1470/2190 148/337

leaj-domains 963/1006 40/60 1108/1322 130/411

regions 492/715 85/163 1042/2687 158/369

Table 3: View sizes for Internetwork 1.

Table 3 lists for each superdomain scheme the average and maximum of the initial view size

and of the merged view size. The initial view size indicates the memory requirement at a router

without using the query protocol (i.e. assuming the initial view has a valid path). The merged view
I

size indicates the memory requirement at a router during the query protocol (after finding a valid -

200

I

path). The memory requirement at a router is O(view size in number of sd-gateways x EG) where

EG is the average number of edges of an sd-gateway. Note that the source does not need to store

information about red and non-transit domains in the merged views (other than the ones already

in the initial view). The numbers for the merged view sizes in Table 3 take advantage of this.

As apparent from the table, leaf-domains, child-domains and r-egions scale better than sibling-

domains. There are two reasons for this. First, placing a backbone (regional or MAN) domain d as a

sibling to d-4 (d-3 or d-2) doubles the number of level 4 (3 or 2) superdomains in the views of routers.

Second, since these domains have many edges to the domains in their associated superdomains, the

end points of each of these edges become sd-gateways of the associated superdomains. Note that

regions scales much superior to the other schemes in the initial view size. This is because most

edges are local (i.e. contained within regions), thus contained completely in superdomains. Hence,

their end points axe not sd-gateways.

Overall, the child-domains and regions schemes scale best in space, time and communication

requirements. We have repeated the above evaluations for two other internetworks and obtained

similar conclusions. The results axe in Appendix A.

8 Related Work

In this section. we survey recent)y" proposed inter-domain routing protoco]Sjt support ToS and

pobcy routing for large internetworks.

Nimrod [6] and IDPR [16] use the link-state approach with domain-level source routing to

enforce policy and ToS constraints and superdomains to solve scaling problem. Nimrod is still in

a design stage. Both protocols suffer from loss of policy and ToS information as mentioned in the

introduction. A query protocol for Nimrod is being developed to obtain more detailed policy, ToS

and topology information.

BGP [12] and IDR? [14] axe based on a path-vector approach [15). Here, for each destination

domain a router maintains a set of paths, one through each of its neighbor routers. ToS and policy

information is attached to these paths. Each router requires O(ND x A:D x ER) space, where Nv"D

is the average number of neighbor domains for L. domain and .NR is the number of routers in the

internetwork. For each destination, a router exchanges its best valid path with its neighbor routers.

However, a path-vector algorithm may not find a valid path from a source to the destination even

201

mm

if such a route exists [161"2 (i.e. detailed ToS and policy information may be lost). By exchanging k

paths to each destination, the probability of detecting a valid path for each source can be increased.

But to guarantee detection, either all possible paths should be exchanged (exponential number of u
paths in the worst case) or source policies should be made public and routers should take this into

account when exchanging routes. However, this fix increases space and communication requirements

drastically.

IDRP [14] uses superdomains to solve the scaling problem. It exchanges all paths between

neighbor routers subject to the following constraint: a router does not inform a neighbor router

of a route if usage of the route by the neighbor would violate some superdomain's constraint on

the route. IDRP also suffers from loss of ToS and policy information. To overcome this problem,

it uses overlapping superdomains: that is, a domain and superdomain can be in more than one

parent superdomain. If a valid path over a domain can not be discovered because the constraints

of a parent superdomain are violated, the same path may be discovered through another parent

superdomain whose constraints are not violated. However, handling ToS and policy constraints

in general requires more and, more combinations of overlapping superdomains, resulting in more

storage requirement.

Reference [9] combines the benefits of path-vector approach and link-state approach by having

two modes: _Axn NR mode, which is an extension of IDRP and is used for the most common ToS

and policy constraints; and a SDR mode, which is like IDPR and is used for less frequent ToS and

policy requests. This study does not address the scalability of the SDR mode. Ongoing work by

this group considers a new SDPR mode which is not based on IDPR.

Reference [19] suggests the use of multiple addresses for each node, one for each ToS and Policy.

This scheme does not scale up. In fact, it increases the storage requirement, since a router maintains

a route for each destination address, and there are more addresses with this scheme.

The landmark hierarchy [18 17] is another approach for solving scaling problem. Here, each

router is a landmark with a radius, and routers which are at most radius away-from the landmark

maintain a route for it. Landmarks are organized hierarchically, such that radius of a landmark

increases with its level, and the radii of top level landmarks include all routers. Addressing and

"' For example, suppose a router u has two paths PI and P2 to the destination. Let ,z have a router neighbor r,
which is in another domain. tu chooses and informs v of one of the paths, say Pi. But Pi may violate source policies
of v's domain, and P2 may be a valid path for v.

202
-I

packet forwarding schemes are introduced. Link-state algorithms can not be used with the landmark

hierarchy, and a thorough study of enforcing ToS and policy constraints with this hierarchy has

not been done.

In [1], we provided an alternative solution to loss of policy and ToS information that is perhaps

more faithful to the original superdomain hierarchy. To handle superdomain-level source routing

and topology changes, we augmented each superdomain-level edge (U,V) with the address of an

"exit" domain u in U and an "entry" domain v in V. To obtain internal views, we added for

- each visible superdomain U the edges from U to domains outside the parent of U. Surprisingly,

this approach and the gateway-level view approach have the same memory and communication

requirements. However, the first approach results in much more complicated protocols.

Reference [2] presents interdomain routing protocols based on a new kind of hierarchy, referred

to as the viewserver hierarchy. This approach also scales well to large internetworks and does

not lose detail ToS and policy information. Here, special routers called viewservers maintain the

view of domains in a surrounding precinct. Viewservers are organized hieraxchically such that

for each viewserver, there is a domain of a lower level viewserver in its view, and views of top

level viewservers include domains of other top level viewservers. Appropriate addressing and route

discovery schemes are introduced.

9 Conclusion

We presented a hierarchical inter-domain routing protocol which satisfies policy and ToS con-

straints, adapts to dynamnic topology changes including failures that partition domains, and scales

well to large number of domains.

Our protocol achieves scaling in space requirement by using superdomains. Our protocol main-

tains superdomain-level views with sd-gateways and handles topology changes by using a link-state

view update protocol. It achieves scaling in communication requirement by flooding topology

changes affecting a superdomain U over U's parent superdomain.

Our protocol does not lose detail in ToS, policy and topology information. It stores both a

strong set of constraints and a weak set of constraints for each visible superdomain. If the weak

constraints but not the strong constraints of a superdomain U are satisfied (i.e. the aggregation has

resulted in loss of detail in ToS and policy information), then some paths through U may be valid.

203

Our protocol uses a query protocol to obtain a more detailed "internal" view of such superdomains,

and searches again for a valid path. Our evaluation results indicate that the query protocol can be

performed using 15% extra space.

One drawback of our protocols is that to obtain a source route, views are merged at or prior

to the connection setup, thereby increasing the setup time. this drawback is not unique to our

scheme [7, 16, 6, 9]. There are several ways to reduce this setup overhead. First, source routes

to frequently used destinations can be cached. Second, the internal views of frequently queried

superdomains cam be cached at routers close to the source domain. Third, better heuristics to

choose candidate paths and candidate superdomains to query can be developed.

We also described an evaluation model for inter-domain routing protocols. This model can be

applied to other inter-domain routing protocols. We have not done so because precise definitions of

the h-ierzrchies in these protocols are not available. For example, to do a fair evaluation of IDPR[16],

we need precise guidelines for how to group domains into superdomains, and how to choose between

the strong and weak methods when defining policy/ToS constraints of superdomains. In fact. these

protocols have not been evaluated in a way that we can compare them to the superdomain hierarchy.

References

[1] C. Alaettinoklu and A. U. Shankar. Hierarchical Inter-Domain Routing Protocol with On-Demand
ToS and Poicy Resolution. In Proc. IEEE International Conference on .Networkintg Protocols '95, San
Fransisco, California, October 1993.

[2] C. Alaettinoglu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol and
its Evaluation. Technical Report UMIACS-TR-93-98, CS-TR-3151. Department of Computer Science,
University of Maryland, College Park, October 1993. Earlier version CS-TR-3033, February 1993.

[3] C. Alaettinotlu and A. 'U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol. In
Proc. .EEE .INFOCOM '94, Toronto, Canada, June 1994. To appear.

[4] A. Bar-Nov and M. Gopal. Topology Distribution Cost vs. E5cient Routing in Large Networks. In
Proc. ACM SIGCO.MIM '90, pages 242-252, Philadelphia, Pennsylvania, September 1990.

[5] L. Breslau and D. Estrin. Design of inter-Administrative Domain Routing Protocols. In Proc. ACM
SJGCOMMj '90, pages 231-241, Philadelphia, Pennsylvania, September 1990.

[6] I. Castineyra, J. N. Chiappa, C. Lynn, R. Ramanatban, and M. Steenstrup. The Nimrod Routing Archi-
tecture. Internet Draft., March 1994. Available by anonymous ftp from research. Itp. co,:pub/nimrod.

[7] D.D. Clark. Policy routing in Internet protocols. Request for Comment RFC-I102, Network information
Center, May 1989.

[8] D. Estrin. Policy requirements for inter Administrative Domain routing. Request for Comment R.FC- -u
1125, Network Information Center, November 1989.

204

.I

[9] D. Estrin, Y. Rekhter, and S. Hotz. Scalable Inter-Domain Routing Architecture. In Proc. ACM
SIGCOMM '92, pages 40-52, Baltimore, Maryland, August 1992.

[10] L. Kleinrock and F. Karnoun. Hierarchical Routing for Large Networks. Computer Networks and ISDN
Systems, (1):155-174, 1977.

[11] B.M. Leiner. Policy issues in interconnecting networks. Request for Comment RFC-1124, Network
Information Center, September 1989.

[12] K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). Request for Comment RFC-1105,
Network Information Center, June 1989.

[13) R. Perlman. Hierarchical Networks and Subnetwork Partition Problem. Computer Networks and ISDN
Systems, 9.297-303, 1985.

[14] Y. Rekhter. Inter-Domain Routing Protocol (IDRP). Available from the author., 1992. T.J. Watson
Research Center, IBM Corp.

[15] K. G. Shin and M. Chen. Performance Analysis of Distributed Routing Strategies Free of Ping-Pong-
Type Looping. IEEE Transactions on Computers, 1987.

[16] M. Steenstrup. An Architecture for Inter-Domain Policy Routing. Request for Comment RFC-1478,
Network Information Center, July 1993.

[17] P. F. Tsuchiya. The Landmark Hierarchy: Description and Analysis, The Landmark Routing: Ar-
chitecture Algorithms and Issues. Technical Report MTR-87W00152, MTR-87W00174, The MITRE
Corporation, McLean, Virginia, 1987.

[16] P. F. Tsuchiya. The Landmark Hierarchy:A New Hierarchy For Routing In Very Large Networks. In
Proc. A CM SIGCOMM '88, August 1988.

[19] P. F. Tsuchiya. Efficient and Robust Policy Routing Using Multiple Hierarchical Azizesses. In Proc.
A CM SIGCOMM '91, pages 53-65, Zurich, Switzerland, September 1991.

A Results for Other Internetworks

Results for Internetwork 2

The parameters of the second internetwork topology, referred to as internetwork 2, are the same as

the parameters of Internetwork 1 but a different seed is used for the random number generation.

Our evaluation measures were computed for a set of 100,000 source-destination pairs. The

minimum spl of these pairs was 1, the maximum spI was 14, and the average spI was 7.13.

Table 5 and Table 4 shows the results. Similar conclusions as in the case of Internetwork 1 hold.

Results for Internetwork 3

The parameters of the third internetwork topology, referred to as Internetwork 3, axe shown in

Table 6. Internetwork 3 is more connected, more class 0, 1 and 2 domains axe green, and more

class 3 domains are red. Hence, we expect bigger view sizes in number of sd-gateways.

205

Scheme No query needed Candidate Paths_ Candidate Superdornains

child-domains 205 4.52/20 [10.22/47

sibling- domains 205 3.01/8 6.50/21

leaf-domains 205 8.80/32 21.34/82

regions 640 3.52/10 7.85/28

Table 4: Queries for Intemetwork 2.

Initial view size Merged view size

Scheme in sd-gateways in superdomains in sd-gateways I in superdomains

child-domains 958/1012 43/60 1079/1269 118/306

sibling-domains 1153/1283 72/101 1480/2169 160/324

leaf-domains 956/1009 41/58 1095/1281 156/387

regions 624/1024 11 0/231 1356/3578 206/435

Table 5: View sizes for Internetwork 2.

Our evaluation measures were computed for a set of 100,000 source-destination pairs. The

mnfimum spl of these pairs was 1, the maximum spl was 11. and the average spl was 5.95.

Table 8 and Table 7 shows the results. Similar conclusions as in the cases of Internetwork I

and 2 hold.

1

4

' 2Branching factor is 4 for all domain classes.

206

-I

Class i No. of Domains No. of Rlegions1 % of Green Domains Edges between Classes i and j

Class j Local Remote I Far

o0 10 4 0.85 0 877.I 07

1 100 16 0.80 0 190 20 0
1 _50 20 .

2 1000 64 0.75 0 500 50 0

1 1200 100 0

2 200 40 0

10000 256 0.10 0 300 50 0

1 250 100 0

2 10250 150 50
3 200 150 100

Table 6: Parameters of Internetwork 3.

Scheme fNo query needed Candidate Paths Camdidate Superdo

child-domains 142 3.99/29 7.70/43

sibling-domains 142 2.95/10 5.39/22

leaf-domains 142 9.65/70 18.99/103

regions 676 3.47/17 6.25/21

Table 7: Queries for Internetwork 3.

207

U

II

Initial view size Merged view size

Scheme in sd-gateways in superdomains in sd-gateways [in superdomains

child-domains 2160/2239 43/60 2354/2647 107/348

sibling-domains 2365/2504 72/101 2606/3314 148/356

leaf-domains 2159/2236 41/58 2386/2645 160/648

regions 1107/1644 110/231 1850/3559 194/436

I
Table 8: View sizes for Internetwork 3.

2

-3

208
i

Variables:

View.. Dynamic view of z.

WView.(d.address). Temporary view of x. d.address is the destination address.
Used for merging internal views of superdomains to the view of z.

PendingReeqg(d-address). Integer. d.address is the destination address.
Number of outstanding request messages.

Events:
Request,(d.address) {Executed when z wants a valid domain-level source route)

allocate WVZiew:(d.address) := View.; allocate Pending Req: (d.address) := 0;
search, (d..address);

where
search- (d-address)

if there is a valid path to d-address in WView. (d.address) then
result := shortest valid path;
deallocate WView.,(d.,address), PendingRegq.(d-address);
return result;

else if there is a candidate path to d-address in WView, (d.address) then
Let cpath = (Uo:go ,...., Uo:g 0.o, U1 :91 0 ,. -U : . , U,:gIMo,.. .,- - :9,.)

be the shortest candidate path;
for Ui in cpath such that U; is candidate do

RehableSend(RequestIVier, Uj, gi,. address(x), d.address) to
P endingReq,(d-address) := P ending Req((d-address) -- 1;

else
deallocate WView,(d.address), Pending Reqg (d.address);
return failure;

endif
endif

-TimeOut,(d.address) JExecuted after a time-out period and PendingReqa(d.address) • 0.)
deallocrate WView.,(d.address), PendingReq,(d ,,ddress);
return failure;

Figure 15: view-query protocol: State and events of a router ". (Figure continued on next page.)

209

i

Receive, (RequestliVier, sdid, z, s-address, d.address)
ReliableSend(ReplylViev, sdid, z, IView= (U), d.address) to s.address; .

Receive: (Rep2yiVier, sdid, gid, iview, d.address)
if PendingReq,(d.address) • 0 then {No time-out happened)

PendingReq:(d-address) := PendingReq.(d.address) - 1;
4merge internal view)

delete (sdid, *, *, *) from WView-;
for (child, scons, wcons, gateway-set) in iview do

if -3B(child,,*,-,) E WView: then
insert (child, scons, wcons, gateway-set) in WView.;

else
for (gid, ts, edge-set) in gateway-set do

if 3(gid, timestamp, *) E Gateways&Edges_(child) A ts > timestamp then
delete (gid, s, *) from Gateways &Edges.(child);

endif;
if ý3(gid, w, *) E Gateways&Edges- (child) then

insert (gid, ts, edge.set) to Gateways&Edges..(child);
endif j

endif

if PendingReq,(d.address) = 0 then {AI] pending replies are received)
search, (d.address);

endif
endif

Figure 15: view-query proTocol: State and events of a router z. (cont.)

2I

210

Constants:

AdjLocalRouters:. (C Nodelds). Set of neighbor routers in x's domain.

AdjForeignGat evays.. (C Nodelds). Set of neighbor routers in other domains.

Ancestori(z). (C SuperDomainIds). ith ancestor of z.
Variables.

View,-. Dynamic view of z.

JntraDomainRT:. Intra-domain routing table of x. Initially contains no entries.

Clock. : Integer. Clock of x.

Events:
Receive.(Update, sdid, gid, ts, edge-set) from sender

if 3(gid, timestamp, -) E Gateways&Edges.(sdid) A ts > timestamp then
delete (gid, s, *) from Gaieways&Edges. (sdid);

endif;
if -3(gid, s, a) E Gateways &Edges.(sdid) then

flood,((Update, sdid, gid, ts, edge-sef));
insert (gid, ts, edge-set) to Gateways &Edges, (sdid);
update.-parenLtdomains.(.evel(sdid) + 1);

endif

where

update.parent-domains: (startingleve!)
for level : startinglevel to number of levels in the hierarchy do

sdid := Amcestorjev,,e(z);
if x E Gateways(sdid) then

edge-set := aggregate edges of sdid:: using Views, IntraDomainRTz and links of z;
fimestamp = Clock.;
flood(((UJ.date. sdid. z, timestamp, edge-sef));
delete (z, ,) from Gateways &Edges.(sdid);
insert (x, timestamp, edge-sei) to Gateways&Edges, (sdid);

endif

Do-Update: {Executed periodically and upon a change in JntraDomainRT: or links of 2)
update.-parent.-domains. (1)

Link..Recovery: (y) {(Z, y) is a link. Executed when (z, y) recovers.)
for all (sdid, -, -, *) in View: do

if 3i : Ancestori(y) = kacestor2(sdid) then
for all (9id, timestamp, edge-set) in Gateways&Edges,(sdid) do

Send((Updaze, sdid, gid, timestamp, edge-set)) to y;
endif

flood: (packet)
for all y E AdjLoca.RTouters- do

Send(packel) to y;
for all y E AdjForeignGazevays, A 3i : Mcestori(y) = Ancestor , (packei.sdid) do

Send(packet) to y;

Figure 16: view-update protocol: State and events of a router X.

211

-torm A.pp:roveO

REPORT DOCUMENTATION PAGE OABNo 0704-0188

-u+€":O•' o• •.+ *C t+,@ *':. "O "•,h e .C(~ *'h'" ~*~VC ."*tO* W ,t

I.. - CPOvq t s :'*. .- .r - 1-0- 1�, bW .. t .q'~*eI'* O.J.0 Oo 1'a t e01s .' teO s. - 01 Ift"
) -.. -.. .' . ". -" •' -'*•;.:'. ,-% 22,, ' ;z . +•. - ' •' I - *' • ,, *. c , .,0. ftec~1O P',OcI WWO.- O (8.0S$) wat%.,qO.. DC 2O503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 20, 1994 Technical

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Hierarchical Inter-Domain Routing Protocol with DASG-60-92-C-0055
On-Demand ToS and Policy Resolution

6. AUTHOR(S)

Cengiz Alaettinoglu and A. Udaya Shankar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of Maryland CS-TR 3299
A. V. Williams Building UMIACS-TR-94-73
Department of Computer Science
College Park, MD 20742

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

Phillips Labs
3550 Aberdeen Ave. SE
Kirtland AFB, NM 87117-5776

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT 110axium 200worcs)

Traditional inter-domain routing protocols based on superdomains maintain
either "strong" or "weak" ToS and policy constraints for each visible super-

domain. With strong constraints, a valid path may not be found even though
one exists. With weak constraints, an invalid domain-level path may be
treated as a valid path.

We present an inter-domain routing protocol based on superdomains, which

always finds a valid path if one exists. Both strong and weak constraints are

maintained for each visible superdomain. If the strong constraints of the

superdomains on a path are satisfied, then the path is valid. If only the weak
constraints are satisfied for some superdomains on the path, the source uses
a query protocol to obtain a more detailed "internal" view of these super-

domains, and searches again for a valid path. Our protocol handles topology

changes, including node/link failures that partition superdomains. Evaluation
results indicate our protocol scales well to large internetworks.

SUBJECT TERMS (Routing Protocols); (Computer Network Routing Proto csIUMBER OF PAGES

(Computer-Communication Networks): Network Architecture and 16. PRICE CODE

Design- packet networks; store and forward networks; (Computer

Communication Nerworks:N-erwn-,'v N/ DS____________

"17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF A.ST, AC7

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

%:SN 7SC*-01-2S0-550S'.a-d -O'm 29B 'kev 2-89)
212

DEPARTMENT OF THE AIR FORCE
PHILLIPS LABORATORY (AFMC)

30 Jul 97

MEMORANDUM FOR DTIC/OCP

FROM: Phillips Laboratory/CA
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776

SUBJECT: Public Releasable Abstracts

1. The following technical report abstracts have been cleared by Public Affairs for
unlimited distribution:

PL-TR-96-1126, Pt 1 ADB222369 PL 97-0685 (clearance number)
PL-TR-96-1126, Pt 2 ADB222192 PL 97-0685

2. Any questions should be referred to Jan Mosher at DSN 246-1328.

C

JANET E. MOSHER
Writer/Editor

cc:
PL/TL/DTIC (M Putnam)

