UNCLASSIFIED

AD NUMBER

ADB222192

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution: Further dissemination only
as directed by US Army Strategic Defense
Command, Attn: SCCD-IM-PA, PO Box 1500,
Huntsville, AL 35807-3801, Jan 97 or
higher DoD authority.

AUTHORITY

Phillips Lab. [AFMC] Kirtlnad AFB, NM ltr
dtd 30 Jul 97

THIS PAGE IS UNCLASSIFIED

PL-TR-96-1126, Pt. 2 | PL-TR-
96-1126,

. : , Pt2
L

ADVANCED HARD REAL-TIME OPERATING SYSTEM,
THE MARUTI PROJECT

Part 2 of 2

Ashok K. Agrawala
Satish K. Tripathi

Department of Computer Science
University of Maryland
College Park, MD 20742

January 1997

Final Report

‘ » WARNING - This document contains technical data whose

Further dissemination only as directed by the US. Army - export is restricted by the Arms Export Control Act (Title 22,

i . U.S.C., Sec 2751 et seq.) or The Export Administration Act
Strategic Defense Command, ATTN: SCCD-IM-PA, P.O. > == =2
Box 1500, Huntsville, AL 35807-3801, January 1997, or of 1979, as amended (Tlﬂe 50, US.C, App 2401, et seq.).
higher Dof) authority. ’ : Violations of these export laws are subject to severe criminal

penalties. Disseminate IAW the provisions of DoD Directive ’
5230.25 and AFI 61-204.

DESTRUCTION NOTICE - For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual,
Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX. For unclassified, limited documents, destroy

by any method that will prevent disclosure of contents or reconstruction of the document.

19970410 103

PHILLIPS LABORATORY
Space Technology Directorate

PL-TR-96-1126

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data, does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

If you change your address, wish to be removed from this mailing list, or your organization
no longer employs the addressee, please notify PL/VTS, 3550 Aberdeen Ave SE, Kirtland
AFB, NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

This report has been approved for publication.

FOR THE COMMANDER

@“ LEY, Lt Col, USA CHRISTINE M. ANDERSON, SES
Chief, Satellite Control and Simulation Director, Space Technology
Division

DRAFT SF 298

1. Report Date (dd-mm-yy) }2. Report Type 3. Dates covered (from... to)
January 1997 Final 4/92 to 10/96

4. Title & subtitle ' 5a. Contract or Grant #
Advanced Hard Real-Time Operating System, The Maruti

Project IDASG-60-92-C-0055

5b. Program Element # 62301E

6. Author(s) 5¢. Project# DRPB
Ashok K. Agrawala
Satish K. Tripathi 5d. Task# TB

5e. Work Unit# AT

7. Performing Organization Name & Address
Department of Computer Science

University of Maryland

College Park, MD 20742

8. Performing Organization Report #

9. Sponsoring/Monitoring Agency Name & Address 10. Monitor Acronym
Phillips Laboratory

3550 Aberdeen Ave. SE

: 11. Monitor Report #
Kirtland, AFB, NM 87117-5776 PL-TR-96-1126, Part 2

12. Distribution/Availability Statement
Further dissemination only as directed by the U.S. Army Strategic Defense Command, ATTN: SCCD-IM-PA, P.O.
Box 1500, Huntsville, AL 35807-3801, January 1997, or higher DoD authority.

13. Supplementary Notes

14. Abstract System correctness for real-time systems relies on both functional and temporal correctness of
the system components. In order to allow creation and deployment of critical applications with hard real-time
constraints in a reactive environment, we have developed the Maruti environment, which consists of the Maruti
operating system and runtime environment, and an application development and environment that uses the
Maruti Programming Language (MPL), an extension of ANSI C; the Maruti Configuration language (MCL), which
specifies how MPL modules are to be connected and any environmental constraints; and various analysis and
debugging tools. The core of the Maruti runtime system is the Elemental Unit (EU) and calendar. An EU is an
atomic entity triggered by incoming data/signals, that produces data/signals. A calendar specifies the
execution order and time for each EU. Calendars are static entities created during application design and
development, thus allowing temporal debugging of applications before they are executed on the machine. A
given application may have more than one calendar to allow contingency or degraded operation.

15. Subject Terms
Real-Time operating systems, fault tolerance, concurrency, embedded systems, environments

Security Classificationof -~ =~ o - -119. Limitation | 20. # of |21. Responsible Person
. - 4 of Abstract | Pages (Name and Telephone #)

16. Report 17. Abstract 18. This Page

Unclassified Unclassified | Unclassified Limited 200 Capt Jim Russell

(505) 846-8986 ext 352

i/ii

Optimization in Non-Preemptive Scheduling for

Aperiodic Tasks *

Shyh-In Hwang Sheng-Tzong Cheng
Ashok K. Agrawala
Institute for Advanced Computer Studies
and
Systems Design and Analysis Group
Department of Computer Science
University of Maryland
College Park, MD 20742

Abstract

Real-time computer systems have become more and more important in many ap-
plications, such as robot control, fiight control, and other mission-critical jobs. The
correctness of the system depends on the temporal correctness as well as the functional
correctness of the tasks. We propose a scheduling algorithm based on an analytic
model. Our goal is to derive the optimal schedule for 2 given set of aperiodic tasks
such that the number of rejected tasks is minimized, and then the finish time of the
schedule is also minimized. The scheduling problem with 2 nonpreemptive discipline
in 2 uniprocessor system is considered. We first show that if a total ordering is given,
this can be done in O(n?) time by dynamic programming technique, where = is the
size of the task set. When the restriction of the total ordering is released, it is known

*This work is supported in part by Honeywell under N00014-91-C-0195 and Army/Phillips under DASG-
60-92-C-0053. The views, opinions, and/or findings contained in this report are those of the author(s) and

should not be interpreied as representing the official policies, either expressed or implied, of Honeywell or
Army/Phillips.

213

to be NP-complete [3]. We discuss the super sequence {18] which has been shown to
be useful in reducing the search space for testing the feasibility of a task set. By ex-
tending the idea and introducing the concept of conformation, the scheduling process
can be divided into two phases: computing the pruned search space, and computing
the optimal schedule for each sequence in the search space. While the complexity of
the algorithm in the worst case remains exponential, our simulation results show that

the cost is reasonable for the average case.

214

1 Introduction

In a hard real-time system, the computer is required to support the execution of applications
in which the timing constraints of the tasks are specified. The correctness of the system
depends on the temporal correctness as well as the functional correctness of the tasks. Failure
to satisfy the timing constraints can incur fatal errors. Once a task is accepted by the system,
the system should be able to finish it under the timing constraint of the task. A task T; can
be characterized as a triple of (r;, ¢;, d;), representing the ready time, the computation time,
and the deadline of the task, respectively. A task can not be started before its ready time.
Once started, the task must use the processor for a consecutive period of ¢;, and be finished
by its deadline. The task set is represented as I' = {13, T3,...,Tn}. A task set is feasible if
there exists a schedule in which all the tasks in the task set can meet their timing constraints.
Scheduling is a process of binding starting times to the tasks such that each task executes
according to the schedule. A sequence S = (T, T,...,T7), where k < n. T represents
the ith task of the sequence S for any 1 < 7 < k. A sequence specifies the order in which the
tasks are executed. Without confusion, a schedule can be represented as a sequence. How
to schedule the tasks so that the timing constraints are met is nontrivial. Many scheduling
problems are known to be intractable [3] in that finding the optimal schedule requires large
amounts of computations to be carried out.

The approaches adopted to date for scheduling algorithms can be generally ciassified
into two categories. One approach is to assign priorities to tasks so that the tasks can be
scheduled according to their priorities [1, 7, 8, 10, 12, 15, 14). This approach is called priority
based scheduling. The priority can be determined by deadline, execution time, resource
requirement, laxity, period, or can be programmer-defined [4]. The other is time based
scheduling approach [9, 13]. A time based scheduler generates as an output a calendar which
specifies the time instants at which the tasks start and finish. .

Generally speaking, scheduling for aperiodic task sets without preemption is NP-complete
~ [3]. Due to the intractability, several search algorithms [11, 17, 19, 20) are proposed for com-
puting optimal or suboptimal schedules. Analytic techniques may also be used for optimal
scheduling. A dominance concept by Erschler et al [2] was proposed to reduce the search
space for checking the feasibility of task sets. They explored the relations among the tasks

215

and determined the partial orderings of feasible schedules. Yuan and Agrawala [18] proposed
decom;;osition methods to substantially reduce the search space based on the dominance
concept. A task-set is decomposed into subsets so that each subset can be scheduled in-
dependently. A super sequence is constructed to reduce search space further. Saksena and
Agrawala [13] investigated the technique of temporal analysis serving as a pre-processing
stage for scheduling. The idea is to modify the windows of two partially ordered tasks
which are generated by the temporal relations so that more partial orderings of tasks may
be generated recursively.

The time based model is employed by several real-time operating systems currently being
developed, including MARUTI [5], MARS [6], and Spring [16]. In this paper, we study an
analytic approach to optimal scheduling under the time based model. When complicated
timing constraints and task interdependency are taken into consideration, the schedulability
analysis of priority based scheduling algorithms becomes much more difficult. By analytic
approach, we believe that the time based scheduling algorithm and analysis require reason-
2ble amounts of computations to produce 2 feasible schedule.

The rest of this paper is organized as follows. In section 2, we describe how to compute
the optimal schedule for 2 sequence. In section 3, releasing the restriction of total ordering
on &z sequence, we present ihe approach to computing the optimal schedule for a task set.
Related theorems are aiso presented. In section 4, 2 simulation experiment is conducted to
compare the performance of different algorithms. The last section is our conclusions.

2 Scheduling a Sequence

The size of 2 sequence (task set) is the number of tasks in the sequence(task set), and is
denoted by [S] (IT]). A sequence S is feasible if all tasks in S are executed in the order of
the sequence and the timing constraints are satisfied. For convenience, we further define an
instence, I, to be 2 sequence such that |I| = IT'|. We denote the instance I by

I=(T!T.,....Th.

Notice that {} is used to represent a task set, and () a sequence. Let T; and T; be two
tasks belonging 10 sequence S. If T; ic located before T; in the sequence S, we say that

216

Figure 1: An instance I = (T}, T{,...,T{)

(T:,T;) conforms to S. A sequence S1 conforms to a sequence S2, if, for any T; and Tj,
(T;,T;) conforming to S1 implies (T},T;) conforming to S2. We use o(k) to represent the
optimal schedule of (T],T7,...,T{) in the sense that for any feasible sequence S conforming
to (T1,T,...,T}), either

IS < lo(k),

or

IS| = |o(k)] and s 2 fowry, (1)

where fs and foq) is the finish time of S and o(k) respectively. o(k) is thus the optimal
schedule for the first k tasks of J. The opiimal schedule for an instance J car thus be
represented by o(n). For simplicity, let uy = jo(k)]. In this section, we will discuss the
scheduling for an instance. However, the approach is generally applicable to any sequence.

2.1 Preliminary

We assume that r; + ¢; < d; holds for each task T in the task set T. At the first glance, one
may attempt to compute o(k) based or o(k — 1). However, with careful examination, we
can find that merely computing o(k — 1) does not suffice to compute o'(k). This is illustrated
by the example in Figure 1. From this example, we can obtain

o(1) = (Ty)

217

o(2) = (T{,T3).

At the next step, 6(2) ® (T{) is not feasible, where the operator @ means concatenation
of two sequences. One task must be rejected, which is 7Y in this case. Hence, we got

o(3) = 0(2) = (T}, T3).

A problem arises at the next step. o(3) @ (T7) is not feasible either. If we try to fix it
by taking a task off this sequence, the result is

o'(4)=0o(3) = (TY,T}).
However, the correct result should be
o(4) = (TJ,T)).

Although both ¢'(4) and o(4) are of the same size, the latter comes with a shorter finish
time, which becomes significant 2t next step. We get

o(n) = o(5) = o(¢) & (T)) = (T, T, TY).
However, with ¢'(4), we would have
o'(8) = o'(¢) = (T{,).

This example shows that merely computing ¢(k — 1) does not suffice to compﬁte o(k).
When o(k — 1) is obtained, it can not be predicted as to which tasks would be included in
o(k). The approach has to be modified as follows.

218

)

2.2 Sequence-Scheduler Algorithm

We denote by S(k, j) the sequence such that S(k,) conforms to (T{,T/,...,T}) and |S(k, 7)| =
7, where j < |o(k)]. S(k,j) represents any sequence of j tasks picked up from the first k
tasks of 5. We further define a sequence, denoted by o(k, 7), to be the optimal schedule with
degree j for (T],T],...,T}) in the sense that for any feasible sequence S(k, j), we have

fotkg) € Fsir.g)-

Notice that o(k) is an abbreviation of o(k, u;). If a2 sequence S(k,7) is not feasible,
Fswhgy = 0.

We would like to compute o (k,) based on o(k—1,5"), where j' < j < |o(k)|. The basic
idea is as follows. We know o(k, ;) either contains T} or mot. If so, then the other j — 1
tasks are picked up from the first k — 1 tasks, and o(k— 1,7 — 1) is one of the best choices.
In this case, o(k,j) = o(k—=1,7 —1) @ T{. I o(k,7) does not contain T{, all of the j tasks
should be picked up from the first k — 1 tasks, and o(k — 1,7) is one of the best choices. In
this case, o(k,j) = o(k—1,7). Whether taking T}/ or not is determined by comparing which
one of the sequences comes with a shorter finish time. Therefore, o(k, j) can be determined
by o(k - 1,5 = 1), and o(k - 1,5). The computation of o(k — 1,7) is in turn based on
o(k-2,7-1),and o(k—2,7). In general, at each step k, we need to compute o(k,7) for
7 =12,...,|0(k)|. The algorithm Segquence-Scheduler in Figure 2 formalizes this idez. If is
worth mentioning that the condition of the "while” statement in the algorithm is designed
to let j increase from 1 through |o(k)|. The correctness is verified in the next sectior.

2.3 Verification of Sequence-Scheduler Algorithm

The proof of the correctness of the algorithm along with some related lemmas are given
below.

Lemma 1 Let S1 and S2 be two sequences suck that fg < fsr. U 52 & (T2) is feasible,

—

then faigim) < fs20(7s)-

219

Algorithm Sequence-Scheduler:

Input: an instance I = (Y, T7,..., T
Output: the optimal schedule ¢(n) = o(n,u,) for I

c(0,0) :=={(); up=10
for £:=1,2,...,n
7:=1
while (7 € up-y) or ((j = up—y + 1) and (o(k ~ 1, up-1) © (T7) is feasible))
¥ fotr-15-n0(1)y < Jo(k-14)
o(k.3) = o(k = 1,j = 1) & (T})
else
o(k,j)=0o(k-1,7)
endif
Ji=g1
endwhile
upi=3—1
endior

Figure 2: Sequence-Scheduler Algorithm

220

PROOF: This is straightforward via the following equations.

f51e(T:) = maz(fsx,rr,)+CT,

maz(fs:, 71,) + ¢z,

IA

1

Is2e(1.)

jm]

Corollary 1 Let S1 and 52 be two sequences such that fs; < fso. If 52 © S3 is feasible,
where S3 is another sequence, then foigss < fs2@s3-

PRroOOF: This is a direct result of applying Lemma 1 repeatedly through the tasks in 53. D
Lemma 2 u; = upq O up = upy + 1.

PROOF: It is obvious that u; > u,_;, where both u; and u;-, are integers. Let us assume
that up = up_1+a, and o > 2. We are going to show that this assumption does not hold. We
know o(k,u;) either contains T} or not. If o(k,u;) contains T/, we can represent o(k,u;)
as S(k — 1,uz — 1) ® (T}), by picking up a proper sequence S{k — 1,u; — 1). However,
from the assumption above, we have u;_y = up —a < wp —1 = |S(k = 1,ux~ 1)|. This
contradicts the definition of u;_;. On the other hand, if o(k,u;) does not contain T], we
can represent o (k,u;) as S(k—1,u;). We have u;_y = v — e < u;, which is a contradiction.
The assumption thus does not hold. Therefore, we have o < 1. D

From this lemme, o(k,j) does exist for j < u;—;. Furthermore, in the algorithm, j =
u;—y + 1 s tested to see if up = uz_; + 1.

Theorem 1 For k = 1,2,...,n, and j = 1,2,...,uy, if fo(k-l.j-l)e('r{) < fg(k-ij), then
o(k,j) = o(k—1,j = 1) ® (T{); otherwise, o(k,j) = o(k - 1,5).

PROOF: The proof is by induction on k. When k=1,], = (T}). Since u; <1 and (T}) is
feasible, o(1,1) = (T7). It is easy to come up with the same result through this theorem.
Thus holds the base case. We assume that we can compute o(k—1,7),for j = 1,2,..., us-y,

221

in the same way, and consider the case of k. Let us first bring forward three basic equations.
Since fo(x-15-1) < fs(k-1,4-1), the following equation holds by Lemma 1

Jou-15-1y0tr)y < Sspr-1.-1)0(Ty): (2)

By induction hypothesis on o(k — 1, 7) such that fox-15) < fsx-15), We have

if fopers-nerrny < Jet-15), then fousone)) < fst-r.)- (3)

From Equation 2, we have

i fotk-15) £ Soh-r-veirys then Soor5) S Fs(im15-1)0(1)y- (4)

From Lemma 2, we know either up= uj_y+1 or up= ux_;. The two cases are discussed
below.

Case L: up= u;_3+1. We first discuss the situation when j = 1,2,...,u; — 1. We know
that a feasible sequence S(k, 7) is either in the form of S(k —1,57) or S(k—1,5 — 1) & (T}).
B foppr-vaimly < fotr-15)> 1hen Jouy s ngirsy < Sspr-15) by Equation 3. Also we have
Jotk-15-nety) £ Is-15-1y8(77) by Equation 2. This means fo(4uy s-1)e(z7) < Fs(r.j) for any
feasible sequence S(k,7). Consequently, o(k,7) = o(k— 1,5 — 1) @ (T7), which justifies the
theorem. Orn the other hand, if fv(k-l.-}—l)e(r;') 2 for-1,): then forra14) <]-5(;,_1’5_1)5(?3)
by Equation 4. In addition, fy(i-15) < fs-1,) by induction hypothesis on o(k ~ 1, 7). So
Jeok=15) £ fs(rs) for any feasible sequences S(k, ;). In this case, o(k,j) = o(k—1,7), which
justifies the theorem.

Then we discuss the situation when j = u,. Since wz= up_3+1, it is clear that (T})
belongs to o(k); otherwise, we need to pick up ui_;+1 tasks from Ii—; to make 2 feasible
sequence, which violates the definition of uz;. Therefore, o(k, 7) can be expressed as S(k—1,
u;-1) & (T}) by picking up 2 proper sequence S(k—1, ux-3). Note that uz_y= j—1 here. By
Equation 2, we have f.(;_y jo1)e(ry) fsprm s-1)e()), for any sequence S(k—1,;~1)&(T; 7).
Thus, o(k,j) = o(k = 1,7 — 1) © (T{). Now let us check the theorem. The sequence
o(k —1,7) = o(k =1, up_y+1) is not feasible; thus its finish time is co. The condition
Jotk-15-1y8(71) < Jo(r-13) is satisfied. So o(k,j) = o(k —1,j — 1) & (T}). This justifies the
theorem.

Case II: uz= u;—;. The reasoning follows the discussion of the first part in Case I. D

222

3 Scheduling a Task Set

In this section we discuss how to schedule a task set by using Sequence-Scheduler. The
opitmal schedule, p, of a task set is defined as follows: for any feasible sequence S consisting
of tasks in T, we have either

15| < lel,
or

1S = lel and Is 2 o

For simplicity, we use optimal schedule to represent the optimal schedule of the task
set, when there is no confusion. Note that the optimal schedule of the task set is the best
one of the optimal schedules of all instances in the task set. Erschler et al [2] proposed the
dominance concept to reduce the number of permutations that should be examined for the
feasibility test of a task set. Yuan and Agrawala [18] proposed the super sequence to further
reduce the search space for testing the feasibility of a task set. In this section, we show that
for our optimization problem, the super sequence provides a valid and pruned search space.
In other words, there exists one optimal schedule which conforms to an instance in the super
sequence of the task set. Thus we may use Sequence-Scheduler to schedule for the instances
extracted from the super sequence to derive the optimal schedule. There may exist more
than one optimal schedule for a task set. Qur interest is on how to derive one of them.

3.1 Super Sequence

Temporal relations between two tasks T; and T are summarized in the following. They are
illustrated by Figure 3.

o leading : T; < T3, if r; <'r;,d; < d;, but both of the equalities do ﬁot hold at the sarne
time. '

o matching: T; || T, if r; = 7;,d; = d;.

o containing : T;UT;, if r; < r;,di > d;.

223

T 1 T | T 1
T, | | T L] T]
(i)

T N T |
T, | | T, | |
(i) (i)

Figure 3: (i) Ty < Tj; (83) T || Ty (685) T:U Ty

A task A is called a top task if there is no task contained by h. A task is called a nontop
task if it contains at Jeast one task. Assume that we have t top tasks in the task set, denoted
by hi,ha,...,h, respectively. Denote by M, the set of tasks that contain the top task h,,
including h;, and by M; the set of tasks in the task set T that do not belong to M;. We say
that T; is weakly leading to T, denoted by i 9 T3, U T < Ty or T || T;. HTi < T for all T
belonging to S, then I; < €.

The dominance concept is originally developed by Erschler et af [2] to reduce the search
space for testing the feasibility of a task set. The idea is extended with the super seguence
proposed by Yuan and Agrawala [18]. An instance] dominates an instance I’ iff:

I' feasible = I feasible.

It can be considered that 7 is a better candidate 2s a feasible schedule than I'. A
dominant insiance is an instance such that for each possible instance I of the task set, if
] dominates the dominant instance, then the dominant instance dominztes J. Thus the

dominani instance can be considered as the best candidate of the feasible schedule. A set of .
instances is szid to be 2 dominant set, if J does not belong to the dominant set, then there -

exists & dominant instance in the dominant set such that the dominant instance dominates

I

224

A super sequence A serves similarly as a dominant set in that there exists a dominant
instance in the super sequence; and it is more appropriate for solving our problem. A super
sequence is a sequence of tasks, where duplicates of tasks are allowed. The purpose is to
extract instances from the super sequence for scheduling. The super sequence is constructed
according to the dominant rules [2, 18] described below. Whenever a task satisfies one of the
conditions specified by the rules, a duplicate of the task is inserted into the super sequence.
Note that duplicates can only be generated for nontop tasks. The top tasks appear once and
only once in the super sequence.

Rule R1: Let T, and T be any two top tasks. If T, < Tp, then T, is positioned before Tj.
If T, || T3, the order of the two top tasks is determined arbitrarily.

A unique order of the top tasks can be thus determined for the super sequence. Let us
denote the sequence composed of the top tasks by H = (hk3,ha,..., k). The rule implies
that if T, is positioned before T} in the super sequence, then T, < Tp. So by d hz ... < A:.

Rule R2:

(1) A pontop task can be positioned before the first top task h; only when it contains k;.
(2) A nontop task can be positioned after the last top task h; only when it contains A,.

(3) A noniop task can be positioned between hy and Ay only when it contains kg or hisa.

The 7 top tasks delimit the super sequence into ¢ + 1 regions by rule R1. Now we have
t + 1 subsets of nontop tasks separated by the t top tasks by rule R2. Generally speaking,
a nontop task has more than one possible location. Denote the kth subset by Ai, which is
between top tasks A; and hiy;. From rule R2, it can be deduced that

A= Bk,k—-:-l UBiks1 U Bi,k-na where)
B, = Mi N Misz, Biksr = Mi N Misa, Biypy = My N M.

Next rule is to specify the order of the tasks within each subset.

225

Rule R3: In each subset A, for k=10,1,...,n,

(1) the tasks in B, 337 are ordered according to their deadlines, and tasks with the same
deadlines are ordered arbitranily,

(2) the tasks in Bj i41 are ordered arbitrarily,

(3) the tasks in By, ., are ordered according to their ready times, and tasks with the same
ready times are ordered arbitrarily,

(4) the tasks in B, ;7 are positioned before those in Bj x42, which in turn are positioned
before those in By, ;-

Now we are ready to construct the super sequence with these three rules. Top tasks are
first picked out and ordered, forming ¢+ 1 regions. In each region, there is a subsequence
of nontop tasks. An instance extracted out of the super sequence is one that conforms to
the super sequence without duplication of tasks. Let ¢ be the number of top tasks that a
nontop task contains. The number of possible regions the nontop task can fall into is g + 1.
The pumber of instances in the super sequence thus sums up to

=t

N = T(g+ 1),
e=1
where n, is the number of nontop tasks which contains g top tasks. Compared with
an exhaustive search which takes up to n! instances (permutations) into account, the super
sequence generally leads to 2 smaller set. Noiice that it takes O(n) time to check if an

instance is feasible. Hence, the time complexity of the feasibility test for the task set is
O(N = n).)

3.2 Leading Theorem

The super sequence is not only useful in testing the feasibility of a task set; we will show that
it is 2lso useful in reducing the number of instances to be examined in order to obtain the
optimal schedule of a task set. We will show that there exists at least one optimal schedule
which conforms to an instance in the super sequence A. Hence, it suffices to check through
A to obtain the optimal schedule of T.

226

It is worth attention that the top tasks in p may not be the same top tasks of I. This
arises because some of the top tasks of I' may be rejected, introducing new top tasks in
p. Before proceeding to verify the rules for the super sequence, we will first introduce the
Leading Theorem. 1t serves as the base for further analysis in the Dominanc> Theorem and
Conformation Theorem to be described later. The Leading Theorem tells that under certain
condition we can adjust the order of tasks to satisfy the Weakly Leading Condition to be
defined below and do not introduce a schedule with greater finish time.

Assume that S is a feasible sequence, with L,,., L, and L,,s subsequences of S such that

S = Lpn e L@ Lposi-
Let us denote L by
L= (Tﬁ,Tz;,sz-"’TzwaTa)’

where w > 0. A frame F is defined to be a time interval characterized by = beginning
time br, and an ending time ep. We say that F is a frame corresponding to L, if b = sg,
and er = f., where sz is the starting time of T, and f, is the finish time of T,.

Theorem 2 (Leading Theorem) Assume that S = L,,. ®L & L,.s is 2 feasible sequence,
where L = {Tp,T.,,Tz,,.. ., T, Ta). Let F be a frame corresponding to L. If T,, < T, and
there does not exist 2 task T:;, 1 < i <, such that F UTL,, then there exists a sequence L
which is a permutation of L such that

() (T,,Ts) conforms to L, and

(i) S LoreSLELyos </ Lpre©LBLpost -

Beiore we can proceed to prove the theorem, the following definition is useful.

Weakly Leading Condition: a sequence § = (T7,7T7,...,TF) satisfies Weakly Leading
Conditien H TP < Ty < ...a T7.

Lemma 3 Let S be a sequence satisfying Weakly Leading Condition. If {T:,T;) conforms
to S and T; || T, then all tasks located between T; and T; in S must match 7; and T;.

227

PROOF: For any task T: located between T; and Tj, according to the definition of Weakly
Leading Condition, we have r; < 7, < r; and d; < d; £ d;. Since T; || T, r; = r; and
d; = d;. Therefore, we have r; = r; = r; and d; = d: = d;. So, T: matches T; and T;. o

To obtain I, let us modify the tasks in L in the following way. If the ready time of a
task is less than br, then its ready time is set to dr. If the deadline of a task is greater than
er, then its deadline is set to er. The computation times remain unchanged. Let L’ be a
sequence consisting of the modified tasks with the same order of L, i.e.,

L'= (Tg, T,

3

T I, T.

Since To < Tp, dp 2 do 2 fo = ep. Sodj =d, = er. Alsor, <75 < sg = bF, 50
., = rp = br. This is illustrated in Fig 4 (ii).

Note that swapping T and T, in the sequence does not result in a feasible sequence in
this example. It is essential that we adjust the order of the tasks located between them. Let
L’ be 2 sequence which is a permutatior of L' and satisfies the Weakly Leading Condition,
and to which (T, T;) conforms. Furthermore, L' satisfies an even stronger condition. If T,-j"
is positioned before Tf" in L', then T,'f" < T,-f"; if, furthermore, T,;' 1 Tf", the corresponding
tasks TF' and T} satisfies that TF' < TX. The idea of such arrangement is that when
interchanging T and T, we do not produce 2 new reversed pair ke them. By reversed pair
we mean for example T,, < T5 but T is positioned before T, in the sequence. So, if (Tif", TJ-I.")
conforms to L’, the corresponding tasks satisfies the condition that either T <« Tfr' or
TE¥ UTE or TH UTE. One possibility of I’ is illustrated in Fig 4 (iii), or

I'= (T_.’:,T;,f::,Té,T;J,Tz").

The existence of such a sequence is proved later. Finally, L can be a sequence with
the same order of L', but the ready times and deadlines of the tasks are recovered to their
original settings. This is illustrated in Fig 4 (iv). The figures give the rough idea about how
the adjustment of task order can be made to sztisfy the conditions described in the Leading
Theorem. Here below is the proof of the Leading Theorem.

228

pyd

| ON | @)

- (i) | ': (iv)

Figure 4: (i) L = (Tp, ey Tegs Tosy Tepy To) (i) L' = (T4, T2

T
= FRLT X
(T;,T;,T;v ésT:I,’T;.) (]V) L= (TzzaTc’Tza,TB’TSnTzc)

T: T}

x4?

T.) () L'

229

PROOF (of Leading Theorem): We would first show the existence of L. The modification of
ready times and deadlines of the tasks for L' is done in such a way that their started times
are not affected. In addition, their computation times remain the same. It is clear that L'
is feasible, and

prrceL' = prrceL‘

We can obtain I’ in the following way. At the first step, the first task T{." of L’ is the task
in L' such that, for any task T belonging to L', T, l‘t' <7T.. Such a task T{-" exists because there
are no containing relations among the modified tasks, and ties can be broken arbitrarily. T lf"
1s exchanged with the task located just left to it in L'. Continue the exchanging process
until Tlf" occupies the first location in the sequence. At the second step, the second task
Tzf" of L’ is the task in L’ such that, for any task T} belonging to L’ except Tlf", T aT..
Exchange T,f"' with its left neighbor task consecutively until it occupies the second location
in the sequence. At the ith step, the ith task T,-j" of L' is the task in L' such that, for any task
T- belonging to L' except T through T,-‘-L_'l, TL g T.. Exchange T,-f" with its left neighbor
task consecutively until it occupies the ¢th location in the sequence. We keep perfiorming this
operation until we finally obtain L'. Insertion of T,-f", 1 < i < |1'], into the ith position of
the sequence by consecutive swapping is possible because T,-‘;" QT for all T, not belonging to
(T; JL es T;‘E_ 1)- In 2 word, the adjustment is possible because there are no containing relations
among the modified tasks, and hence there exists a total ordering of the modified tasks by
the Weakly Leading Condition. The resultant L’ is existent and is a sequence satisfying the
Weakly Leading Condition.

There is 2 chance that (T, T,) conforms to I'. By Lemma 3, 2ll tasks located between T
and T, must match each other. Hence the order of these tasks does not make any difference.
We can thus exchange the position of T and T, which makes (T, T,,) conform to L’

During the process of adjusting the position of Tf"', 1<i <, ’I}Z' leads to or matches
any task in the sequence except (T f" ...TE.). Thus we can apply Lemma 4, to be described
next, which assures that the resultant sequence r.iier swapping T2 to the ith location comes
with a shorter or equal finish time. This explains

fipeelr € flpmeol = fipel-

230

L is 2 sequence with the same order of L', but the ready times and deadlines of the
tasks are recovered to their original values. Each task in L can be started no later than the
- starting time of the same task in L'. Consequently,

prn@L s prreeL’

By Corollary 1, we have

.- fLPrgeLeL”“ S pru@LeL,o.: .

Lemma 4 Assume that S1© 52& (T;) & 53 is feasible, where S1, 52, and 53 are sequences.
If T; < 52, then faig()es2es3 < Fsies2e(Ty)@ss-

PROOF: We will prove the theorem by induction on {S2|. When |5§2| = 0, it is vacuously
true. Assume that it is true when |[S2| = k. We would Like to show that it is true when
|52] = k+ 1. Let 52 = (T;) © 52/, where |52'| = k; i.e.,

S18528(T;)eS83=518(T)eS2 e (T;) e S3.

We can view 516 (T}) as a single sequence, and because |S2/| = A, by induciion bypotb-
esis, we have

Isiememyesress £ InetTesrer;)ess-
By definition,

fsiemyerr;y = maz(mez(fs,mi)+ci,75)+¢;

= mez(fs+eate,rita+e,ri+c)
Since T; < 52, which indicates that T; 9 T;, we have r; <my, and 75+ ¢; S+ 6+ G

. Iswemer) = maz(fs+a o g.rit 6 +¢j)

231

»

On the other hand,

Isismery = maz(mez(fs,m5)+cm)+a)

= maz{fs+c+e¢,r;+a+e,rita)

Because T;+c+c Sri+a+c;, we have l

Isiemyem) < Isieme;):
By Corollary 1,

Isiem)emeszess < fsieme(T;)es2ess-

. .

Thereiore,

fsiem)esess £ faies2e(T))es53-

3.3 Dominance Theorem

The super sequence is constructed for the feasibility test of a task set. If a task set is feasible,

we say that there exists a full schedule of the task set. There mav exist more than one full
schedule for 2 given task set. An optimal full schedule is a full schedule whose finish time is
shortest among all the possible full schedules. Note that 2 full schedule is 2 feasible instance.

In this section, we prove that if a task set is feasible, there exists an optimal full schedule |
coniorming to the super sequence * Hence, the super sequence provides a valid and pruned
search space for deriving the optimal full schedule of 2 task set.

"1n [2), Erschler ef ol.’s theorem implied 2 similar result: if a task set is feasible, there exdsts 2 full schedule
in the dominant set. Our theorem further shows that there exists such 2 full schedule, with the minimum
finisk time among all full schedules, that conforms 1o the super sequence. We prove the existence of such an
optimal full schedule in 2 more svstematic way.

232

Theorem 3 Assume that the task set I' is feasible and p is an optimal full schedule of I'.
Let T, and T be two top tasks of p such that T, < T. If (T, T,) conforms to p, then there
exists another optimal full schedule p’ such that (T, Tp) conforms to p'.

Proor: T, and T; are two top tasks. Let F be a frame such that b = sz and er = f,.
T, < Tp means bp = sp > 75 > 7o, and ef = f, < d,. U there exists a task T such
that F U T, then T, U T: too. This contradicts to the fact that T, is a top task. Hence
F cannot contain any task. By the Leading Theorem, there exists another sequence p' such
that (T,,Ts) conforms to p', and both |p'| = |p| and fy < f, bold, which means p’ is an
optimal full schedule too. D

When two tasks match each other, it dose not matter which task is executed first. This
gives rise to the following Corollary.

Corollary 2 Assume that the task set T is feasible and p is an optimal full schedule of T'.
Also assume that (hy,...,Ts, T4, .., ht), the subsequence of the top tasks in p, conforms to p.
Ii T, < T, then there exists another optimal full schedule p’ such that (hy,...,Tu, T8, ., hs)
conforms to p'.

PrROOF: Theorem 3 holds when T, < Tp, because when two tasks match each other, the
execution order of the two tasks is arbitrary. Also by looking at the adjustment process of
Leading Theorem, we can find that the tasks located before and after T, and T have not
been adjusted. This verifies the corollary.]

Corollary 3 Let H = (hy,ha,...,h;) be top tasks of the task set I such that k; < k2 <
... < hy. I T is feasible, there exists an optimal full schedule p’ to which H conforms.

PROOF: Since T’ is feasible, there exdists an optimal full schedule p. Let X = (k;,kz,..., k)
be a sequence which is a permutation of H such that X conforms to p. We would like to
adjust the order of the tasks in K so that K is transformed successively into H. Ve locate
the corresponding task of A, in K, where z is chosen in the order of 1 through ¢, and adjust

233

it to the zth position in K by consecutively swapping A, with its left neighbor. This leads
to the sequence H. During the swapping, k. always weakly leads to its left neighbor, for
hi,...,ho-y are in positions 1,...,z2 — 1. By Corollary 2, there always exists an optimal full
schedule to which the intermediate resultant sequences conform. Therefore, there exists an
optimal full schedule p’ to which (hy, hs,..., k) conforms. _ o

Given an optimal full schedule p, we can always obtain another optimal full schedule p’
in which the top tasks are ordered according to the weakly leading relations by Corollary 3.
Therefore the rule R1 is verified.

Before we can go further, the following definitions are useful. Let A; be a top task and
T- = nontop task of a sequence S. We say that (hy,T:) is 2 disorder pair of S if (hy,T:)
conforms to S5 and T < A;. Similarly, (T, ki) is a disorder pair of S if (T, ki) conforms to
S and k; < T.. The disorder degree of S is defined to be the number of disorder pairs in S.

Theorem 4 Assume that the task set I is feasible and p is an optimal full schedule of T.
Let hyQhy<...<hy be top tasks and Tt 2 nontop task of p. Assumethat p = Ly ©LE Lpost
such that

{(hiz1s..., k) conforms to Lyos.

We bhave the following properties:

(1) if To < ki and L = (hy,...,T:), then there exists another optimnal full schedule o' =
L,,;e Le Loos: such that Lisa permutation of L, and (T, A;) conforms to L; besides, the
disorder degree of p’ is less than that of p '

(2) i Ry < T: and L = (T.,...,ks), then there exists another optimal full schedule ¢’ =
Lpe © Le Loos such that Lisa permutation of L, and (hs,T:) conforms to L; besides, the
disorder degree of p' is less than that of p A

PROOF: We will prove (1) first. Let F be a frame with bp = s;, and er = f.. Since T: < ki,
er = f: £d. < di,. Also by = 55, 2 75,. M there exists a task T, located between h; and

234

T; such that FUT,,, then h; U T, too. This contradicts to the fact that k; is a top task.
The condition of the Leading Theorem is satisfied. Hence there exists a sequence L which
is a permutation of L such that (T, k) conforms to L and SLpre@l@Lyon < Jo- Therefore,
Lye ® L@ Lyo, is also an optimal full schedule. Now let us look at Figure 4(iv). This is
the schedule after the adjustment process of the Leading Theorem is made. For the tasks
whose deadlines are less than e, they all lead to A;. Note that the disorder is a relationship
defined between a nontop task and a top task, and h; is the only top task in the frame
F. Therefore, no new disorder pairs with A; are introduced among these tasks. Similarly,
for the tasks whose ready times are greater than br, they are all led by hi. Therefore, no
new disorder pairs are introduced. As for the tasks otherwise, including T and ki, whose
deadlines are greater than or equal to er and ready times less than or equal to br, they can
be ordered arbitrarily. Hence, we can position T before k;, and remove the disorder pairs,
if any, in these tasks by rearranging the proper orders for them. Thus the disorder degree of
L is decremented by at least one. So the disorder degree of p' is less than that of p. Property
(2) holds for the same reason. D

Note that 7. does not match k; or hyy1; otherwise T is also a top task, which contradicts
our assumption.

Theorem 5 Assume that the task set I is feasible and p is an optimal full schedule of T..
Let hy < hy <4 ... < k. be top tasks of p. There exists an optimal full schedule p’ such that
{(hy,ha, ..., k) conforms to p’, and for any nontop task T such that (hk,Ty, hkss) conforms
to o', either T- U Ay or To U hyys.

PROOF: Assume that T, is 2 nontop task such that (A, T, hisy) conforms to p'. If T, does
not contain k; and T, does not contain hi4i, then either T. < ki or hiyy < T.. Hence,
either (ki, T:) or (Tz, hi41) is 2 disorder pair. We can eliminate it through Theorem 4, and
the disorder degree is decremented by at least ope. Whenever there is a disorder pair in the
schedule, we can always apply Theorem 4 to eliminate it. The disorder degree is decremented
in this way until finally reaching zero. Hence, (hj, T, hi4;) conforming to p’ impliesibat T,
is not leading to k; and hi4; is not leading to T.. The only possibilities are either T U h;

235

or T: & hk+] . D

Theorem 5 confirms the validity of rules R1 and R2.

Theorem 6 (Dominance Theorem) If a task set T is feasible, there exists an optimal
full schedule p such that p conforms to the super sequence of I'.

ProOF: In Theorem 5, we verify the existence of the optimal full schedule such that the
top tasks are ordered according to their weakly leading relations, and the nontop tasks
are Jocated in the appropriate subsets between top tasks. The only work left is to order
the nontop tasks in each subset. The adjustment process of the Leading Theorem can be
appled, and the resultant order is exactly specified by rule R3. So we can conclude that
there exists an optimal full schedule p which conforms to the super sequence. D

3.4 Conformation Theorem

If there is no task rejected in p, there exists an optimal full schedule conforming to the
super sequence of I. However, i{ T is not feasible, some tasks in T’ should be rejected. The
dominant rules are deveioped based on the assumption that no task is rejected. When tasks
are allowed to be rejected, the situation is difierent. The issue to be raised is whether the
decent solution for feasibility test can be applied to our optimization problem. Remember
that by opiimization we mean that the number of rejecied tasks in the schedule is minimized
and then the finish time of the schedule is also minimized. When 2 task set is feasible, the
optimal schedule is also the optimal full schedule. The difficulties are addressed in the next
section, followed by the approach and proof to solving the difficulties.

3.4.1. Difficulties

We wish to make use of the super sequence as search space in our scheduling problem. The
difficulties are twofold.

First, when a task is allowed to be rejected, the dominant rules specifving the relations
among contzining tasks and contained tasks need to be modified, because the rules are

236

Figure 5: The optimal schedule may not conform to the super sequence.

developed based on the assumption that no task is to be rejected. The new rules can
become quite complicated. Let’s look 2t the example depicted in Figure 5. Assume that the
task set is

I'={N,12,T5,T4Ts},
and the super sequence of the task set is
A = (T]_,T2,T3,T4,T2,T3,T1,T5).

The top tasks are typed in bold letters for emphasis. I' is not feasible. We can see that
one possibility of the optimal schedule could be

Po = (T2=T1=T3-.Ts)-

Apparently, po does not conform to A. One may be abie 10 snow that ancther optimal
schedule (T3,T4,75,7Ts) conforms to A. However; given an arbitrary task set, it is mot
guaranteed that one is always able to do so. In the example, Ty is rejected. If we recompute

the super sequence without Ty, we would get a different super sequence. The new super
sequence would be

AO = (TlaT23T13T3’T1aT5)a

to which po conforms. This gives a great difficulty. It seems that we need to check

against each task. Construct z super sequence in condition that the task is acceptec, ad

237

construct another super sequence in condition that the tesk is rejected. In general, we need
to comstruct 27 super sequences in this way. This is too formidable to schedule, considering
that the number of instances in each individuai super sequence can be exponential io the
size of the iask set.

Secondly, while rejeciing a nontop tasks does noi affect much, rejecting 2 top task coulid
zfiect the duplication and positions of the noatop tasks or might even result in some new
top tasks. Thus, the super sequences can be totzlly different. Look at the szme example in
Figure 5. The rejection of Ty results in two more top tasks, re., T, and T5. This makes Ay
completely cifferent from A.

We propose 2 swepping and replacing procedure to overcome the difficulties. The proce-

dure would de d‘acr&bed end verified in the following seciion.

The jdez of our approach is stzied briefly below, jollowed a formal prooi. Let I' and A be the
is
Le

exisis zn optimal s “eux.le which is unknown to us, for aoy iask set.
set which is composed of the tasks of the unknown optimal schedule, and Ag be the su

sequence oi Ty Iy and Ag are also unknown to vs. As mentioned adbove, Ay might be quite
difierent from A. Noiice that the unknown opiimal schedule of T is also zn optimal (full)
schedule of I'p. Since I'p is feasible, by the Dominance Theorem, there exists an opiimel mll

<cnecn.le for Tg, szv po, such that pp conforms to Ap. Our problem is that we 2re not zble o

compute py Tom Ag, because Ag is unknown. We are able to compute A from T by applyving
the dominzzt rules. The swzpping znd replacing procedure expioits the way to adjust the
order of tasks in gp and io replace some tasks if necessary, so as 10 transiorm pp into & new

.

schedule o such thzt p is 2iso 2n optimeal schedule and best of 211 p conforms 1o an instance

of A. For ine szke of simplicity, we will say a schedule coniorms to A, when the schedule

conforms to 2n instance of A. So we can use A 25 2 vald search space when scheduling T

238

This example is so simplified that the existence of p can be verified by mere intuition.
However, the reasoning is far more complicated than it appears at the first glance. We are
going to prove in the follow,ing theorem that such an optimal schedule p that conforms to A
always exists. The corresponding lemmas are presex..d in the nexi section.

Theorem 7 (Conformation Theorem) Given a task set I’ = {1}, T: 2,'..., T.}, there exists
an optimal schedule p such that p conforms to the super sequence A of T'.

PROOF: Given any task set T, there exists at least one optimal schedule, which is unknown
to us. Assume that we need to reject w tasks from I' to make a feasible schedule. Let Ty be
the task set which is composed of the tasks in the unknown optimal schedule. I'p is 2 subset
of T. The super sequence of T is denoted by A,. In addition, weuse I';, 0 £ 7 < w, to
represent a task set derived by adding j tasks into I'p, A; the super sequence of I';, and p;
an optimal schedule of I';. When we say adding j tasks into Iy, we mean that the resultant
task set T'; is composed of distinct tasks and T'; is a subset of I'. In particular, T, 1s T.
We will prove by induction on w to show that there exists an optimal schedule p,, for T
conforming to A,,.

Base step w = 0: there is no task rejected. I’ = T. Since I is feasible, by the Dominance
Theorem, there exists an optimal (full) schedule pgp for I' such that py conforms to Ay.

Induction hypothesis: assume that the theorem holds when w = 3, i.e., |pol = n—j. For
the task set I'; which is derived by adding j tasks into I'o, there exists an optimal scheduie
p; for T such that p; conforms to A;. Notice that |p;| = |pol, and |T;| = To| + ;.

Now consider the case when w = j + 1, i.e., |po| = n — (§ + 1). We need to reject j + 1
tasks to make a feasible schedule. There exists an optimal schedule p; for T’ conforming to
A; by induction hypothesis. We want to show that, by swapping and replacing the 1asks
in p;, the resultant sequence p;4; conforms to Ajyy; besides, |pjua] = |p;l, and f,;,, < S,
which implies that p;41 is also an optimal schedule for I'. Let T: be the task added into T;
to make I';41. So, T; U {T.} = Tj41. There are two possibilities when adding T:.

If T. is 2 nontop task of T';4,, adding - does not add 2 top task into I';. The orders
of the top tasks in both A;;; and A; derived through ruie R1 are exactly the same. Rule
R2 specifies the relation between a nontop tesk and 2 top task. Adding 2 nontop task T

239

does not affect the relations between the already existent nontop tasks and top tasks. The
positions (duplicates) of the already existent nontop tasks in A; are preserved in A;4,. Rule
R3 specifies how to arrange the order of the nontop tasks within each subset. Again adding
a nontop task T does not alter the orders of the already existent nontop tasks in each subset
in A;. Therefore, if the task being added is a nontop task, A; is a subsequence of A;;;. Let
us look at the example in Figure 5. Assume that I'; and T';4; are

I'; = {732,T5,T4,Ts}, and
Tis1 = {1, 15,15, T4, T5 3,
where T is a nontop task. The corresponding super sequences would be
A= (T3,13,T4,73,T5,Ts), and
L5 ={N,13,75, T4, 13,75, 11, Ts).

We can see in the example how A; conforms to A;4;.
therwise, T. is 2 top task of I';4y. T: does not contain other tasks in Tj;y. Two
situations are possible.

(i) I: is not contained by other tasks. The number of top tasks in I';.; is one more than
that of the top tasks in T;. The order of the top tasks in A; is preserved in A;,,, since
the relations of the top tasks are not altered by adding T.. Furthermore, T. does not alter
apy exastent orders among the nontop tasks and top tasks, or among the orders between the
nontop tesks and nontop tasks, specified by ruies R2 and R3, respectively. Therefore, A; is
2 subsequence of Aj;;. Let us look at the example in Figure 6. Assume that T; and T4y
are

Iy= {Tlstqu,Ts}, and
rj-l-l = {T13T27T3’T4’T5}3

where T3 is 2 top task not contained by other tasks. The corresponding super sequences

would be

AJ = (T1>T2:T1aT4:T57T4>: and

] T3 | Ts | |
Loy T N

Figure 6: The added top task T3 is not contained by other tasks.

A.‘H-l = (TlaTZa Tl) T3s T4, T5> T4)

We can see in the example bow A; conforms to A ;4.

(i1) T: is contained by some top tasks and/or nontop tasks of I';. Let the top tasks of
T; containing T. " be 91,---,9m, indexed in the weakly leading order. This situation is more
complicated, because g;,i = 1,...,m, turn out to be nontop tasks in T';;;. There exists a
total ordering of them by weakly leading relations, because there is no containing relations
among g;. By rule R1, the super sequence of I';;; can be expressed as

Aj-i-l = (-",hk-la'-'sgla"wgv‘na--whh--->913--°ag!'ns'--ahk-l-la--')a

where hy, ..., kg1, Rk, hk4q, ... are the top tasks in I'j4;, and in particular, hy represents
T.. By rule R3, the super sequence of I';,; can also be expressed &s

. — - S e - > /
AJ-H = < v hk—l : Bk-l_ka Bk—l.k- Bk-l,kf hks B);,k.;.l 3 Bk.k-Ht Bk'&.;.] s Rksay - ')) \6)
Q;‘H .

0,41

where (), represents the subsequence of A;,; between h;_; and h;4;, excluding Ay,
and hg4y, 2s depicied above, and 2,4, = B, _1 76911858z ,.,, Where @ means concatenation
of sequences. Remember that g;,...,gm are top tasks of ;. All the top tasks in T'; are in
the order of Ay,...,R4-1,015- -+, 9m, Bis1, ... by the weakly leading relations. By rule R1,
the super sequence of T; can be expressed as

Aj = ("shk-lal" 29153 Gms - o hk+1a"‘)1 (7)
9

241

where (); represents the subsequence of A; between hi-y and hy.y, excluding hi—y and
his1, as depicted above. Notice that in Equations 6 and 7, the subsequences before hj_,
of both A;4; and A; are exactly the same, because the addition of the top task &, or Te,
affects only the subsequence between h,.; and hj4y. Similarly, the subsequences after ;4
of both A;4; and A; are exactly the same too. Hence an instance of Aj4; will differ from
an instance of A; only in the the subsequences of §2;4; and ;.

Now we would like to check what tasks in §); should follow immediately after hi_y. By
Lemma 7, all the tasks in Q; can be found in Q;4; — k. So we only need to check the tasks
m Q4 — hi. If 2 task contains hr—y but not h;, the task must not contain g,. Because
9y contains h;, any task which contains g, should also contain hx. When constructing the
subseguence of A; between hx_, and g, by rule R2, all the tasks which appear in B, _, 7 of
A4y should follow immediately after hx-i; and by rule R3, the order of the subsequence is
exactly the same as B, _, 3.

One may observe that some tasks in Bi_y contain kix.; but do not contain g;, so they
would also be positioned between h;.; and g;. These tasks would follow after the tasks of
Bz
tasks in B, , 3. For the same reason, all the tasks which appear in Bz, , of 4;4; should be

This is because they do contain h; and bence have greater deadiines than those

located immediately before h;;; when constructing A;, and the order is the same. Hence,
the 4; can be further expressed as

A;' = (' .. :hk-lsBk-];‘."‘ 1 G1erc s Gma- -sz');..na hk-‘rlt' . ')3 (8)

o -

where {1} represents the subsequence between B;_, 7 and By, of A;, excluding B, _, 5
and B; We bave ;= B, €58 B;,;,,. By Lemmz 9, all the tasks in 2} are either

k k41

in Bioy or in B,

Let us Jook at an example in Figure 7. The task set in the figure is T'j43. And T4y — A

would be I';. g, and g, contain only kh;. So g, and g, are classified as nontop tasks in T4,

242

Figure 7: The added top task k; is contained by other tasks.
and as top tasks in I';, We can compute the super sequences as follows.

A5+1 = (T),T;,Ta,,Tq,hk_l, \Tj, >T2,T33T1»glag2,hkaTQ’gl,ghT& EI/) Ef/’hk+1’T13T5)’

B&-:t,I Broaa BI__M Bx.k—ﬁ B k4 B;.A-n
o, B
541
A5=<T1’T2=T33T4ehk-—la T4 9T2$T37Tlag19T3eTlsgz’T3eTla TS :hk+17T1aT5>-
- - 2~
Bz Q; Bixe1

~ ——

——

8,

Now going back to examine Equations 6 and 8, we can find that A; and A, only differ in
the middle subsequences represented by 2} and 2),,. This can also be seen in the example in
Figure 7. The instances extracted from A; would conform to A;., except the corresponding
middle subsequence mentioned above. Remember that p; conforms to A;. We would try to
adjust the order of the tasks of the subsequence in p; which correspond to £ for the purpose
that the resultant schedule p;4y conforms to Aj4y and p;4; is also an optimal schedule of

T. The adjustment procedure, called the swepping and replacing method, applied to p; is
described below:

243

C1: for all tasks T, € 2} such that f, < dy,, they are sorted by their ready times r,.
C2: {or all tasks T, €) such that s, > rj,, they are sorted by their deadlines d,.
C3: a task can be sorted by Cl or C2 described above if the task satisfies both conditions.

C4: if there exists a task T, € Q) such that s, < 74, and f, > da,, T} is replaced by A;.

We would like to show that the adjustment does make p;4; conform to A;y,. Remember
that A; and Aj4; only differ in the middle subsequences represented by €} and Q},,. We
only swap and replace the tasks of p; located in §1; to derive p;4;. Since p; conforms to
4;, the head and the tail of p;4; also conforms to A;4;. So we only need to check the
middle subsequence of p;;; to see if the whole sequence of p;4; conforms to Aj4;. The
tasks adjusted by the swapping and replacing procedure are either in By i or in B,
by Lemma ¢. Let us first check the adjustment of Cl. In Aj44, the order of the tasks in
Bi_14 car be determined arbitrarily according to rule R3, so it does not matter which task
is located before which. And in A, the order of the tasks in By, is determined by their
ready times. During the adjustment of C1, all the qualifying tasks are ordered according to
their ready {imes. We know that the ready times of the tasks in Bj.j; are less than the
ready times of the tasks in Bz—3,. So, in the resultant schedule p;.;, the tasks of Bioys
are positioned before the tasks of By ;. This indicates that the order of these tasks in
ps+1 afier the adjustment of C1 conforms to A;4;. For the same reason, the adjustment of
C2 makes the order of the swapped iasks conform to 4;;;. In condition C4, if such a T,
exists, replacing T by h; also coniorms to Ajiy, Which can be seen in Equation 6. Each
task T, € {2} satisfies one of the conditions by Lemma 11. Hence, all the tasks in the middle
subsequence of p;;; ate adjusted in such a way that the order conforms to Ajiy. So pijm
conforms to A4,

Now we would Like to show that p;41, in addition to conforming to Ajy,, can also be
finished no later than p;. We can view the tasks satisfying condition C1 as having the same
virtual deadlines of dj,, because they all finish before this time instant. Hence, there is a
total ordering among the tasks with virtual deadlines by weakly leading relations, which
is achieved by sorting their ready times. Bv Lemma 10, the finish time of the resultant

244

schedule after the adjustment of C1 would not be greater than that of the original schedule.
Similarly, the tasks satisfying condition C2 can be viewed as having the same virtual ready
times of), , because they all start after this time instant. For the same reason, the finish
time of the resultant schedule after the adjustment of CZ would not be greater thaz ihat of
the original schedule. In condition C3, the qualifying tasks can be sorted in either way and
does not affect the result. In condition C4, if there exists a task T, whose computation time
covers the whole window of the rejected task hjx, we may as well replace T, by hi, and the
finish time of the resultant schedule after the adjustment of C4 would not be greater than
that of the original schedule. Each task T, € 0} satisfies one of the conditions by Lemma 11.
Hence, al] the tasks in the middle subsequence of p;,; are adjusted in such a way that p;4;
would be finished no later than p;. Therefore, |p;+1] = |p;], and f,.,, < f,,;- Since p; is an
optimal schedule of T, p;41 is also an optimal schedule of I'.

How the adjustment procedure makes the finish time shorter is illustrated by Figures 8.
In Figure 8(i), both Ty and T3 satisfy condition C3, and T satisfies condition Cl. The
procedure of C1 is applied to all these three tasks and makes the finish time shorter. The
dotted task window frame in the figure indicates that k; is a rejected task. In Figure 8(ii),
C1 is applied to the qualifying tasks 73 and T>. And by C4, T; is replaced by hi. This,
makes the finish time shorter. While it is h; that is rejected before the adjustment, it turns
out that T3, whose computation time covers the whole window of h;, is rejected after the
adjustment.

So far, we have shown that p;;; conforms 26 44, and that pj4; is also an optimal
schedule of I'. The theorem 1s thus verified by the induction. It deserves our attention that
we do not really apply the swapping and replacing procedure to any schedule. We just want
to show the existence of the optimal schedule which is p;+; in the context. To make it clear,
the structure of the theorem is illustrated in Figure 9. D

3.4.3 Corresponding Lemmas
The lemmas used by the conformation theorem are demonstrated as jollows.

Lemma 5 Bk-}l’ N Bic1s = Bic1 i N BT—T,): = B}:-l,ﬁ N BI:f,k =0

245

(i)

Figure 8: The swapping and replacing procedure C1, C3 and C4.

Bimn Bigsr = Bran1 N By = Bz N Biisy =0

PROOF: We first show that B, ;7 N Bicax = 8. Given any task T, € B,_,3, Ty does not
contain ki by definition. Hence, T} does not belong to Bi-1.k. So B, ;1N Bi1s=0. The
others can be proved similarly. D

Lemma 6 Bio: U B}'——z,k = Bk';';; U Bik+1-

PROOP: We first prove that if a task T, € Bioyx U Big, then T, € B,z U Bran-
Because T, contains h; by definition, Ty must have a location after hx too by rule R2.
T, € Bz U Brpna U Brin Ty does not belong to Briu: 50Ty € B, x5 U Birsr- We
can prove similarly that if & task Ty € Byzmm U Brass then T, € Bi-1s U Bz, So
B;,_l,k U B';:;'k = Bk,’h—:l' U B}_,k.;.] . D

246

3 an optimal schedule

. | Dominance Theorem Dominant Rules
Po & Do ¢ T'o
Swapping & ' Adding
- Replacing \L .. a Task
. \L conforming to Dominant Rules
P; i ---------------- > 4 ¢ I
duction H thes:
Swapping & nduction 'ypo esis . Adding
Repfacing \L conforming to Dominant Rules \l, a Task
Piv1 TN TATTToTIITOT > Dj € Tina

? > ¢ g is derived from p by method r
p’> ¢ p is related to q by relation r

Figure 9: The Structure of the Conformation Theorem

Lemma 7 Iandonly i Ty € B,_; 3UBic14UBr , UB, 757U Bi k1 UB; ., then T, € ;.

ProOF: We will first prove the "if” part. By Lemma 6, Bi—14 U B, = B, 757U Bixs1- So
we only need to check against B, , UBi-14UB=,UB;,,,. U1, € B, ;zor T, € Bioy s,
then T bas 2 location between the top tasks ki_; and g; in A;. This is because T, contains
hi-1, T, has 2 location after hi_y by rule R2. So T, € Q;. Then consider T, € B T,
3 is either 2 top task or 2 nontop task in A;. If T} is a top task in A;, T, must be one of
the g;, 1 = 1,...,m by the definition of g;. If T, is 2 nontop task in A;, it must contain at
least ope top task, which is a top task among g1, ... ;gm, O kisy by referring to Equation 7.
Notice that T, must not contain h4-; since T, € Br—;,. No matter whether T; is a top or
nontop task in A;, T, has a location in); by rule R2. f T, € Bg,.,, then T} has 2 location
| between the top tasks g and hi4y in A; by rule R2. So T, € Q.

1 247

Now we prove the "only if” part. Let T}, be a task located in ;. If T}, is one of the top
tasks of 91;-+-»9m, Iy contains hy. Either T, € By, or Ty € By—,. Otherwise, T, is a non-
top task of A;. By rule R2, T, contains at least one of the top tasks of Rxy,91,.- -, Gm, Rkar.
If T, contains one of ¢y,...,gm, then T}, also contains hi. So T, contains either hy_;, or hy,
or hr41. By rule R2, T, should fall between h;_; and hj, and/or between by and hiyy. So
T, € Bk—lf UBiax U Bk—-T.k U Bk.f-}-_f U By U BI.&-H']

This lemma means that the tasks in Q;4; — h; are exactly the same tasks which are in
Q.

Lemma 8 Ii T, € Q}, T, contains &;.

PROOF: We would like to show that if T}, does not contain h;, then T, does not belong to
;. Since g;, ¢ = 1,...,m, contains k;, that T, does not contain h; means that T, does
not contain g; either. Hence T, can not have a location in the subsequence between g; and
g 10 Q). The only possible locations of T, to fall in €2 are either between h4~; and g;, or
between gm and hiyy. I T, {alls between hi—y and g, that T, does not contain g, implies
that T, contains hi—y by rule R2. That is T, € B,_, 3. A nontop task cannot have duplicate B |
positions in the same region between two adjacent top tasks. B, _, 7 is locaied between h;.,
and g; by Equation 8. T, does not bave a location in the head of 0} beiore g,. For the same
reason, T, does not have 2 location in the tail of {2} after gm. So T, does not belong to Q.
Therefore, if T, € O, T, contains &;. o

Lemma9 I T, € Q;,Ty € Bi—ax U B:'i,k = .Bk",;:; U Bi k41- , |

Proor: H T, € O, then T, € Q. By Lemma 7, T, € B, ;1 U B34 U B, UB,z:7 U
Bi k41U Bz ., We know that T, contains A, by Lemma g, so T, € Bi-1,4 UBr—g U B, 5 U

kk1
Bii+1. Also by Lemma 6, we have T, € By, , U Bi=, = Biim VU B D

Lemma 10 Assumethat S = L,..©LE Lo, is a feasible sequence, where L = (T%,, Te,y ..o, T).
Ii there exists 2 sequence L = (T,,,T,,,...,Ty,) such that L is 2 permutation of L and the
tasks of L are ordered by the weakly leading relation. We have Tlpeeioloon S TLpreBLOLoon-

248

PROOF: We bubble sort the tasks of L in weakly leading order. The swapping only occurs
between two adjacent tasks. For each swapping, we apply the Leading Theorem to the adja-
cent tasks, which correspond to T and T, respectively in the theorem. No other tasks lie in
between the two tasks during each individual swapping. So the finish time of the resultant

schedule is not greater than that of the original schedule according to the Leading Theorem.
D

Lemma 11 A task T, € 2} should satisfy one of the conditions C1, C2, C3 or C4.

Proor: If T, €), then T € Bi-14 U By, by Lemma 9, which implies that T} LJ hy. We
have ry, < r4, and d, > di,. There are four possibilities.

(1) sy <7, and f, > dy,: C4 is satisfied.
(1) sy, >4, and f, < dy,: C3 is satisfied.
(i1) sy < 74, and f, < dy,: Cl is satisfied.
(iv) sy 2 ra, and f, > di,: C2 is satished.

3.5 Set-Scheduler Algorithm

By Conformation Theofem, we have shown that there exists an optimal schedule which
conforms to the super sequence A. Hence, we can use Sequence-Scheduier to schedule for
each instance in the super sequence, and pick up the best one. Since Sequence-Scheduler
obtzins the optimal schedule for each instance, we end up with the optimal schedule for
the task set. The algorithm for scheduling a task set is given in Figure 10. The Sequence-
Scheduler takes O(n?) time for each instance, while there are

g=1

N = Tlg+1)™

g=1

insiances to check in the super sequence as illustrated in the previous section. The time
complexity of Set-Scheduler algorithm is thus O(N * n?).

249

Algorithm Set-Scheduler:

Input: atask set I' = {1}, T3, ..., Tn}
Output: the optimal schedule p for T
compute the super sequence A for T’
o= ()
for each instance I in the super sequence A
invoke Sequence-Scheduler to compute the optimal schedule o(n) of T
i (lp] < lo(n)]) or
(lel = je(n)] and £, > form))
p = o(n)
endif
endfor

Figure 10: Set-Scheduler Algorithm

4 Evaluation

Experiments are conducted to compare the performance of Set-Scheduler with those of the
well-known Earliesi-Deadline-First and Least-Laxity-First heuristic algorithms. The rela-
tions among the tasks are important for the schedulability of the tasks. To study the dii-
ierences between different cases, we allow the variation of the computation times, and the
interarrival times, which are the time intervals between the ready times of two consecutive
tasks. Tasks in a task set are generated in non-descending order by their ready times. The
parameters of the experiments are random variables with truncated normal distribution, as
shown in Figure 11. I the computation time of 2 task is greater than its window length, the
computation lime is truncated to its window length. Such a truncation is not applied to the
interarrival times.

The mean of Window is fixed. Computation time ratio is the ratio of the computation
time to the window length. The mean of Interarrivel time ranges from 10% io 100% of the
mean of Window. The standard deviation of these three random variables are set to be

250

paramelers mean
Window length 10.0
Computation time ratio | 0.25 0.5 0.75
Interarrival time 1.0, 2.0, ..., 10.0

Figure 11: Parameters of the experiments

20%, 50%, and 80% of their means. For simplicity, the ratios of the three random variables
are set to be the same for each individual experiment. For each experiment with different
parameters, 100 task sets, each with 12 tasks, are generated for scheduling.

We compare the performance of these algorithms by (1) Perceniage of accepted tasks:
the number of accepted tasks by the algorithm over the number of the tasks of the optimal
schedule by exhaustive search; (2) Success ratio: the number of times that the algorithm
comes up with an optimal schedule in the 100 task sets; and (3) Comparisons per task set:
the number of comparisons per task set that each algorithm takes. When interarrival times
are small, more containing relations among tasks are likely to happen. Figure 12 shows that
the heuristic algorithms perform worse under this condition and tend to reject more tasks,
especially when the computation time ratio is larger. Set-Scheduler always reaches 100%
acceptance rate since it is an optimal scheduler. In the figure, because the characteristics
of the data with difierent standard deviation ratios are similar, only the data with standard
deviation ratio egual to 0.8 are depicted. When success ratio is concerned, which can be seen
in Figure 4, the heuristic 2lgorithms performs even worse. Genperally speaking, the heuristic
algorithms can usually produce suboptimal schedules, but fail to produce the optimal ones
most of the time. The search space is shown in Figure "<. Set-Scneduler performs well at
the expense of the complexity, which may become very large when the interarrival times are

smell. The cost is more reasonable while the interarrivel times between tasks are not too
small. |

251

(a)
premntge
v 1 1 el eTaachales .
10 d
os PO [x4

()

ERERESTIBESRS

[:] o ® 0 ©
EEEEER
".' Ban 20ns At AR e R e S s St pme Bl Sat Sl Tt pant Rutel fuad
Il‘q
’

g .

l

-

BB

SRBRERERSERE

T rrrrrryrrrrvrrrr T T rrirTrTy

n
-

[

g
2

CRRRREGS

¢
)
]
’
3
’
.
)
.

3 L

| W IO (O O O TN WO VO VNN U N Y O SN A T

BEEEEEECREREREIIRREEE

El

e of wararival S

Percentage of accepted tasks (a) EDF (b) LLF compared with Set-Scheduler

T ; d T T 50 S '
»
- o TP RS Gt
L B85 iy Yot e
- -
- -
- -
- -
— o=t
o -
L -
- - . l
o / wd d -
L L -
N »”° -
P -
= '.-Q' . -
" .
™ Kol o = -
- e —— p
"." KT ag .
J: s
}[s -
r -
oS- S
P-4 &0 (8.] 30 o i

Figure 13:. Success Ratio (a) EDF (b) LLF compared with Set-Scheduler

252

..............

ool = -
L3 o -
-
\\.‘
ik 22, -
o e - e e . e e o e
WOl ., \ = o imcrmrioal e
LD 400 «00 00 pL Y- -]

Figure 14: Number of comparisons per task set

5 Conclusion Remarks and Future Work

In this paper, we discuss the optimization techniques in real-time scheduling for aperi-
odic tasks in a uniprocessor system with the non-preemptive discipline. We first propose
& Sequence-Scheduler algorithm to compute the optimal schedule jor a sequence in O(n?)
time. Then a Set-Scheduler algorithm is proposed based on the super sequence and Sequence-
Scheduler algorithm. The complexity of our Set-Scheduler algorithm is O(N *n?), compared
to O(N = n) for the feasibility test by Erschler et al., where N might be as large as expo-
nential in the worst case. However, our simulation results show that the cost is reasonzble
for the average case. We explore the temporal properties concerning the optimization issues,
and present several theorems to formalize the results. The study of temporal properties on
2 uniprocessor may serve as a base for the more complex cases in multiprocessor systems.
For the future work, we propose to incorpoi'ate the decomposition technique [18] into
our scheduling algorithm. Under this approach a task set can be decomposed into subsets,
which results in backtracking points to reduce the search space. This has been shown to be

253

useful in reducing the search space substantially when the task set is well decomposable.

References

[1] M. Dertouzos. Contro] robotics: The procedural control of physical processes. In
Proceedings of the IFIP Congress, pages 807-813, 1974. |

[2] J. Erschler, G. Fontan, C. Merce, and F. Roubellat. A new dominance concept in
scheduling n jobs on a single machine with ready times and due dates. Operations
Research, 31(1):114-127, Jan. 1983.

[3) M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory
of NP-Completeness. W. H. Freeman Company, San Francisco, 1976.

[4] D. W. Gillies and J. W-S. Liu. Greed in resource scheduling. In JEEE Real-Time
Sysiems Symposium, pages 285-294, Dec. 1989.

[3]) O. Gudmundsson, D. Mosse, K.T. Ko, A.K. Agrawala, and S.K. Tripathi. Maruti: A
platiorm for hard real-time applications. In Workshop on Operating Systems jor Mission
Critical Computing, pages C1-Cl14, Sep. 1989.

[6) H.Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zainlinger.
Distributed fault tolerant rezl-time systems: The mars approach. JEEE Micro, 9(1):25~
40, Feb. 1989.

[7) J. P. Lehoczky. Fixed priority scheduling of periodic tasks with arbitrary deadlines. In
IEEE Real-Time Systems Symposium, pages 201~209, Dec. 1990.

[8) J.Y. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks. Performance Evaluation, 2(4):237-250, 1982.

[9] S.T. Lewvi, S.K. Tripathi, S.D. Carson, and A.K. Agrawalz. The maruti hard real-time
operating system. ACM SIGOPS, Operaiing Sysiems Review, 23:90-106, July 198¢.

254

[10) C. L. Liu and J. Layland. Scheduling algorithm for multiprogramming in a hard real-
time environment. Journal of the ACM, 20(1):46-61, Jan. 1973.

[11] G. McMahon and M. Florian. On scheduling with ready times and due dates to minimize
maximum lateness. Operations Research, 23(3):475-482, May 1975.

[12] A. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-Time
Environment. PhD thesis, MIT Laboratory for Computer Science, May 1983.

[13] Manas Saksena and Ashok Agrawala. Temporal analysis for static hard-real time
scheduling. In Proceedings 12th International Phoeniz Conference on Computers and
Communications, pages 538-544, March 1993.

[14]) L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protccols: An Approach
to Real-Time Synchronization. IEEE Transactions on Computers, 39(9):1175-1185,
Sep. 1990.

[15) L. Sha, R- Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An approach v
real-time synchronization. Technical Report CMU-CS-87-181, Department of Computer
Science, Carnegie-Mellon University, 1987.

[16] J.A. Stankovic and K. Ramamritham. The spring kernel: Operating system support for
critical, bard real-time systems. In Workshop on Operating Systems for Mission Critical
Computing, pages A1-A9, Sep. 1989.

[17) J. Xuv and D. L. Parnas. Scheduling processes with release times, deadlines, precedence,
and exclusion relations. JEEE Transactions on Software Engineering, SE-16(3):360-369,
March 1990.

[18] X. Yuan and A. K. Agrawala. A decomposition approach to nonpreemptive séheduling
in hard real-time systems. In JEEE Real-Time Systems Symposium, Dec. 1988.

[19] W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive scheduling under time

and resource constraints. IEEE Transactions on Computers, C-36(8):949-960, Aug.
1987.

255

[20] W. Zhao, K. Ramamritham, and J. A. Stankovic. Scheduling tasks with resource re-
quirements in a hard real-time system. IEEE Transactions on Software Engineering,

SE-13(5):564-577, May 1987.

256

REPORT DOCUMENTATION PAGE Form approved
OMB No 074-0188

1. AGENCY USE ONLY (leave blank)] 2. REPORT DATE |3. REPORT TYPE END DATES COVERED

January 1994 Technical Report
4. TITLE AND SUBTITLE ‘ 5. FUNDING NUMNBERS
Optimization in Non-Preemptive Scheduling for Aperiodic Tasks N00014-91-C-0195

DSAG-60-92-C-0055

6. AUTHOR(S)
Shyh-In Hwang, Sheng-Tzong Cheng and Ashok K. Agrawala

7. PERFORMING- ORGANIZATION NAME(S) AND ADDRESS(ES) 8. P:g:::TMm‘:‘Bg:GAN'ZAT'ON

University of Maryland CS-TR-3216
Department of Computer Science TR.04.
A.V. Williams Building UMIACS-TR-54-14
College Park, MD 20742

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)10. SPONSORING/ MONITORING

Honeywell Inc. Phillips Laboratory AGENCY REPORT NUMBER
3600 Technology Drive Directorate of Contracting
Minneapolis, MN 55148 3651 Lowry Avenue, SE

Kirland AFB, NM 871175777

11. SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT 12.b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Real-time computer systems have become more and more important in many applications, such as robot control, flight
control, and other mission-critical jobs. The correctness of the system depends on the temporal correctness as well as the
functional correctness of the tasks. We propose a scheduling algorithm based on an analytic model. Qur goal is to derive
the optimal schedule for a given set of aperiodic tasks such that the number of rejected tasks is minimized, and then the
finish time of the schedule is also minimized. The scheduling problem with a nonpreemptive discipline in a uniprocessor
system is considered. We first show that if a total ordering is given, this can be done in O(n2) time by dynamic
programming technique, were n is the size to the task set. When the restriction of the total ordering is released, it is known
to be NP-complete [3]. We discuss the super sequence [18] which has been shown to be usefu! in reducing the search
space for testing the feasibility of a task set. By extendng the idea and introducing the concept of conformation, the
scheduling process can be divided into two phases: computing the pruned search space and computing the optimal
schedule for each sequence in the search space. While the complexity of the algorithm in the worst case remains
exponential, our simulation results show that the cost is reasonable for the average case.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Operating Systems Process, Process Management 44

Analysis of Algorithms and Problem Complexity, Nonnumerical Algorithms

and Problems 16. PRICE CODE

7. SECURITY CLASSIFICATION {18. SECURITY CLASSIIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
! OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified Unisted

MSN 7540-01 280-5500 257 Standard Form 298 (Rev 2-89)

258

UMIACS-TR-89-109 November, 1989
CS-TR -2345 .
A Decomposition Approach to

Nonpreemptive Real-Time
Scheduling®

Xiaoping (George) Yuan'! and Ashok K. Agrawala
Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

Let us consider the problem of scheduling a set of n tasks on a single processor
such that a feasible schedule which satisfies the time constraints of each task is
generated. It is recognized that an exhaustive search may be required to generate
such a feasible schedule or to assure that there does not exists one. In that case
the computational complexity of the search is of the order n!.

We propose to generate the feasible schedule in two steps. In the first step
we decompose the set of tasks into m subsets by analyzing their ready times and
deadlines. An ordering of these subsets is also specified such that in a feasible
schedule all tasks in an earlier subset in the ordering appears before tasks in 2 Jater
subset. With no simplification of scheduling of tasks in a subset, the scheduling
complexity is O(T iz, n:!), where n; is the number of tasks in the ith subset.

The improvement of this approach towards reducing the scheduling complexity
depends on the the number and the size of subsets generated. Experimental results
indicates that significant improvement can be expected in most situations.

*This work is supported in part by contract DSAG60-87-0066 from the U.S. Army Strategic
Defense Command to the Department of Computer Science, University of Maryland at College
Park. The views, opinions and/or findings contained in this report are those of the authors and
should not be construed as an official Department of Defense position, policy, or decision, unless
so designated by other official documentation.

1System Design and Analysis Group and Department of Computer Science, University of
Marvland, College Park. MD.

259

Contents

J Introduction 1
II Background 2
IIIThe Leading Schedule Sequence 3
v Tasi-c Decomposition 5
A. Philosophy e e 5

B. DecompositionScheme L L e 5

C. Decomposition Algorithm 6

D. SchedulingScheme L 8

V Empirical Study 8
A, Experiment 8

B. The Result Explanation and Observation 9
VIFinal Remarks . 11

260

I Introduction

Consider the problem of nonpreemptive scheduling of n tasks on a single CPU of a hard
real-time system. For task T;, identified as 1, the scheduling request consists of a triple < ¢;,
r;, d; > where ¢; is the computation time, r; the ready time before which task 7 can not
start, and d; the deadline before which the computation must be completed. Time interval
[7;, d;] is called the time window denoted by w;. The window length |w;|is d; — 7;. In a
hard real-time system, a schedule is called feasible if all tasks are processed within their
individual windows.

The result of the scheduling process is a schedule in which for any task 1, a start time
s; and 2 finish time f; is identified, where f; = s; + ¢;. Clearly, a schedule is feasible, if for
every task 1,

n<si<di—c (1)
The scheduling process is not preemptive only if for any two tasks ¢ and j,
s; <sj = si+ ¢ <85 (2)

In other words, when task i is scheduled, a span of nonpreemptable processing time,
¢;, is allocated for it. No other task may be in execution during that time span. Thus the
scheduling problem is to find a2 mapping from a task set {1} to a start time set {s;}, such
that constraints in (1) and (2) are met. Note that for a given set of tasks {i}, there may
be none, one or many feasible schedules.

In general the nonpreemptive real-time scheduling problem is known to be NP-complete
[Gare79]. To find a feasible schedule, the number of schedules to be examined is O(n!),
which we count as the scheduling complezity. Heuristic techniques can be used [Ma84,
McMa73, Mok83, Zhao87] to reduce the complexity. This reduction, however, is achieved
at the cost of obtaining a potentially sub-optimal solution. That is, when looking for feasible
schedules, heuristic techniques may not yield a feasible schedule, even though one exists.
Schedules based on the earliest-deadline-first, or minimum-laxity-first rules are examples of
such heuristics used in scheduling. .

An alternate approach is to develop analytical methods for scheduling [Ersc83, Liu73].
This approach analyzes the relationships among real-time tasks and schedules. The purpose
is to precisely determine optimal task schedules, or narrow the search scope from the original
search space.

The objective of this research is to develop correct and efficient algorithms for nonpre-
emptive real-time scheduling. We call a scheduling algorithm correct, if whenever a feasible
schedule exists, the algorithm can find it.

261

In this paper, we present an analytical decompoesition approach for real-time scheduling.
The strategy is to divide a set of tasks into a sequence of subsets, such that the search for
feasible schedules is only performed within each subset. The decomposition technique used
for generating the sequence of subsets assures that in a feasible schedule all tasks in a subset
earlier in the sequence are scheduled before any task in a later subset. Backtracking in the
search is bounded within each subset, which significantly reduces the scheduling complexity.

There are several different strategies which can be used to subset tasks. The decompo-
sition strategy discussed in this paper is to use a relation called the leading relation which
depends on the tasks’ relative window positions.

We performed an experiment which examined the number and size of subsets with
regard to the number of tasks, task arrival rate, and window length. We found that, in
general, the number of tasks in any subset is independent of the total number of tasks to
be scheduled, if the task window lengths are bounded. The decomposition scheduling is a
polynomial computation. As a consequence, the decomposition method is very practical for
the implementatijon.

In section II we present some basic notions used in the paper. In section III we discuss
a case where all the tasks have the leading relation with each other. Our approach of
decomposition scheduling is introduced in section IV along with concepts of the single
schedule subset and decomposed leading schedule sequence. We present our experiment
tesults in section V. Our conclusion and future research in section VII.

II Background

If we consider any two tasks 7 and j, they must have one of these three relations:

fyry

. leading - 1 < j (or j < 7), where if r; < 7;, d; £ d; and w; # w;.

(3%

. maiching - i}jj, i r; = r; and d; = d;.
3. containing - iU j (or jUi),ifr; < rjand d; < d;.

These three relations are shown in Fig. 1. It is easy to see that the leading, matching
and containing relations are 2ll transitive. Additionally, if i}|j or iU j, we say that 7 and j
are concurreni. '

A length is associated with a schedule which is the finish time of the last task in the
schedule. One example is shown in Fig. 2.

The concept of dominance was introduced in [Ersc83), and we will use it later in the
discussion. '

Definition 1 For two schedules Sy and S;, S; dominates S if and only if:

S, feasible = 5y feasible.

262

7 | i | J L1
T d,'
7 | I | 1 |
T d,'
1. Leading 2. Matching 3. Containing
time

Figure 1: Task window relations

Definition 2 A set of schedules, S, is dominant if VS, €S, 35; €S such that S; commates
Ss.

A schedule is dominant if it dominates ali other schedules.

IIT The Leading Schedule Sequence

Let us consider the case where for a set of task {i}, every pair of tasks in this set has a
leading relation,i.e. 1 < jor j < i, for every 7, 5,7 # ;.

Based on the leading relation we can defire a total order of tasks for the set. We define
the leading schedule sequence (LSS) to be a sequence o +asis in which tasks are in order
according to the leading relation, that is, for any i and j, i — j <= i < j, where i — j
means that i js scheduled in front of j.

Theorem 1 For a set of tasks all of which have a pairwise leading redation, the schedule
where tasks are sequenced in order of the leading schedule sequence is 2 dominant one.

Proof: We prove this theorem by construction.

263

o

time

0 schedule length

Figure 2: An example of one schedule

Suppose this set of tasks has a feasible schedule S in which tasks occur in a different
seguence than the Jeading schedule sequence. When we examine this schedule, let 7 and j
be the first pair of tasks that are not ordered by the leading relation, i.e. i < j, but j — i.
From the leading relation we know that r; < r; and 4, < d;.

Since 7 and 7 are the first such pair, deadlines of all tasks between ;7 and 7 in S must
be greater than or equal to d; as well as d;. In S, let us construct another schedule S’ by
moving : from the current position in S to the position just in front of 5. The start time
and finish time of tasks between j and 7 including j will be increased by no more than ;.
And so, no task between j and t including j will finish later than d;. Meanwhile, the rest of
this schedule is unchanged. Thus if S is feasible, the new schedule S’ will be feasible too.

By repeating the process of constructing S’ from S, we obtain a schedule which has all
tasks ordered according to the leading relation, such that if the original schedule is feasible,
so is the constructed one. u]

Thus if there exists a set of feasible schedules, the set must contain schedules that are
conforming to the order of the leading schedule sequence. The result can be generalized
to the situation where there exist matching windows. The generalization is to combine

264

o

the tasks with the same window into one task whose computation time is the sum of the
computation times of al] these tasks.

We will see that the above leading schedule sequence is a special case of the decomposed
leading schedule sequence introduced in the next section.

IV Task Decomposition

A. Philosophy

To solve the general real-time scheduling problem with n tasks, the number of schedules to
be examined can be as much as O(n!). However, taking a closer look, we find that every
task has an important property called the locality of a task, that is, a task is time-bounded
by its time window. Furthermore, if any two task windows are not overlapping, there is
only one possible order for them. The above facts motivate us to separate the tasks into
subsets according to their different time localities.

The decomposition scheduling can be divided into two steps: decomposition and schedul-
ing.

First, a set of n tasks is decomposed into a sequence of m subsets such that the orders ¢f
subsets are fixed. The order of a task is determined only relative to the other tasks within
its own subset. The sequence of the subsets is called the decomposed schedule sequence.
The decomposition should be so developed that the schedulability of tasks is not damaged
at all. The decomposition by using the leading relation introduced in this paper shows this
property.

The second step is to schedule the subsets in the sequence order. It always selects
2 schedule for each subset with the shortest length, so that when & subset is schedulec,
the time span available for it is maximized. In this way, the total number of scheduies
10 be examined is only O(T 7%, n:!), where n; 15 1he number of tasks in the ith subset
(ZiZ1ni = 1)

The only remaining problem is how to decompose a set of tasks into a sequence of
subsets of tasks such that a feasible schedule is guaranteed to be found if one exists. In the

rest of this paper, we outline how to use the leading relation as a means to divide the task
set.

B. Decomposition Scheme

A set of tasks is called the single schedule subsef (sss), represented as 7, if

Vier3djer (fug)v(ud)v ().

In other words, each task window is coniained in the window of another task, contains
the window of another task, or matches the window of another task in the subset.

Given a set of tasks {i}, we can decompose it into a sequence of single schedule subsets
71, 72 ... 7% such that all the tasks in 77 are leading to all the tasks in r'*!,

The decomposed leading scledule seqguence (DLSS) is defined to be a sequence of single
schedule subsets, denoted as:

DLSS=710720---07’“;

such that Vki € 7' VEJ € 79 k¥ < k7, for 1 < i < j < m, (denoted as 7% < 77), and 7' can not
be further decomposed, for i = 1,---, m. Symbol o represents a concatenating operation.

Note that if a task in 7' does not lead another task in 77 for i < 7, they must have
a matching or containing relation. If this happens, 7' and 77 can not be different single
schedule subsets. Clearly, all n tasks may belong to a single schedule subset.

Theorem 2 The set of schedules conforming to the decornposed leading schedule sequence
is dominant. '

Proof: Assume that if there are two tasks k* € 7% and k7 € 77, where 7* < 7. Thereis no
common concurrent task with both &' and k7. k7 is positioned in front of k' in a feasible
schedule (§). Specifically, S = (---)o (k7 o---k*) o (---). Let us define S’ = (k7 0---k') for
abbreviation (§ = (---) 0 5’ o (- - -}). The new schedule created by exchanging k*'s position
with &7’s is still feasible.

Without loss of generality, suppose that k' and k7 are the first such pair in S. Tasks
between k7 and k' are led by k7, or concurrent with k7, but not leading to and not concurrent
with k'. Since k' < k7 (i.e. 7; < r;), switching k*'s and k’’s positions will not increase the
finish time of S’, which is defined as the finish time of the last task in S’. All the tasks
between k' and &/, including k7, are led by k', i.e. having deadlines greater than or equal
to di. I S is feasible with k' as the last task in S’, it will be still feasible after the
switching. D

Note that if the set of schedules that are following the decomposed leading schedule
sequence is empty, there is no feasible schedule available for the tasks to be scheduled.
C. Decomposition Algorithm

Decomposing 2 set of tasks into single schedule subsets, the algorithm starts with the tasks
having been sorted by their ready times (using their deadlines if their ready times are the
same).

266

The algorithm uses one single loop to determine which single schedule subset the cur-

rent task should belong to. The loop consists of two parts. The first part is a while loop

which merges singie schedule subsets into one, if the current task is contained by them. The

second part decides whether the current task can form a new single schedule subset, or join

with another single schedule subset.

The Leading-relation Decomposition Algorithm

begin

end

/* Initialization. */

k=1; 7 ={1};

Tn =75 00 = dy;

for = 2 to n do /* Go over the task list. */

od

l=k—1; /*lis the index of single schedule subsets. */
continue = TRUE;
while (I > 0) A (continue) do

/* Merge single schedule subsets if the current task is concurrent
with tasks in different subsets. */
if (d,.z > d,’)‘
= rkur
d,: = d.,.h;
k=1;
else
continue = FALSE;

l=1-1;

if (rox <) A (di < doi)

/* The current task is concurrent with tasks in the current subset.*/
k= o5y {i};

else if (1.« < ;) A(dx £ d5)

/* The current task is led by all the tasks in the current subset.
A new single schedule subset is created only containing the current task.*/
k=k+1;

= {i};
Tok = T}
d.. = d;.

267

In this algorithm, the outer loop is executed n times. The wkhile loop is executed no

more than the number of time proportional to n in total, since no more than n subsets can

be merged during the whole execution of the algorithm with n tasks. Thus the complexity
of this algorithm is only O(n). lf we count in the sorting complexity, the decomposition
will cost no more than O{niogn).

D. Scheduling Scheme

After tasks has been decomposed into a sequence of subsets, scheduling should be performed
on each subset in the sequence order, such that the schedule on each subset is of the
shortest length. A brute force method is to give an exhaustive search whose computational
complexity amounts to O(n;!}, where n; is the number of tasks in the ith subset.

In [Yuan89b), other scheme is explored for scheduling 2 subset. The method is to first
build a super-sequence where tasks may have several occurrences. The occurrence of a task
is decided by its relative window position in the subset. Selecting one occurrence for every

Lnien?
task in the super-sequence forms a schedule. A complete search costs O(n?(n' ™)) in the

)

Lin
worst case. When we made a few calculation samples of n? (i with n; less than 100,

_’5(*1-'-11.-})

is a much smaller number than n;!, as shown in the cited paper.

Since the set of schedules following the decomposed leading schedule sequence is .domi-
nant, ancd since the subsets are scheduled in the sequence order with their shortest length, it
is proved that the decomposition scheduling with the leading relation is correct [Yuan89b).

.V Empirical Study

A. Experiment

In order to observe the behavior of the number of tasks in a singie schedule subset and
number of the subsets to be created with regard to the number of tasks to be scheduled,
task arrival rate, and task window length, we conduct an experiment as an example to see
the feasibility of our approach for practical implementation.

The outputs we are interested in are: '

1. the number of single schedule subsets (sss),
2. the number of window concurrences,
3. the maximum number of tasks in single schedule subsets,

4. the minimum number of tasks in single schedule subsets, and

268

5. the average number of tasks in single schedule subsets.
One window concurrence is counted for anyv two tasks i and 7 if ¢ and 7 have @ concurrent
relation. We call the number of tasks in a single schedule subset as the size of 1. * subset.

Meanwhile, we change the following parameters independently to watch the cha.iges in

the outputs,

1. the number of total tasks,
2. task arrival rate, and

3. window length.
The data is shown in Table 1-4! in the end of this paper. Following are basic rules in
the experiment.

1. The computation time is uniformly distributed over (0, a).
2. The task interarrival is uniformly distributed over [0, 8). The arrival rate is 2/8.

3. The window length is also randomly created by controlling the laxity for each task.
The laxity of a task is the difference between its window length and its computation
time. The laxity is uniformly distributed [0, 7). The distribution guarantees the
window length greater than the computation time for the task.

We notice that the arrival rate should be less than or equal to the service rate, otherwise,
there are congestions in the system, which wil] result in deadline-missing. In other words,

2/8 £ 2/a. That is,
o< 5.

The random numbers are provided by function drand() in the UNIX operating system.

The numbers are uniformly distributed over [0, 1) [StevS§).
In the experiment, we found that the minimum size of single schedule subsets is always

one.

B. The Result Explanation and Observation

From the experiment results , we found that when the average window length increases
(v increases), the number of single schedule subsets veduces and the maximum size of
single schedule subsets slightly increases. The result s expected, since the larger some iask

'In the tables, number is represented by num. Window by W. Concurrences by concurr. Average by

avg. The Single schedule subset by sss.

269

windows zre. the more tasks may be concurrent with them. These tasks may be in the same
single schedule subset.

When f increases, that is, the arrival rate decreases, the number of single schedule
subsets increases, and maximum size of single schedule subsets decreases. The result is also
expected, since when the arrival rate decreases, the opportunity of tasks concurrent with
each other decreases too. Most tasks have the leading relation with each other.

Ty=2
maxi;, (n:)
4 ty=4
amms—— | ‘7’ — 6
------- ty=28
N ——— T= 10
\-
,/'/ \'_
12— J/ AN
/ AN ———————
I/ .\'\ /‘/', L -
/ S~ e .t
// '_\.\. ’,- ".
S / P :
./ P - --
./ ------
; s
| I 1 1 | L "
0 50 100 150 200 250 300

Figure 3: The relationship between the size of single schedule subsets and the number of
tasks with regard to the laxity parameter 74, where a =4, f = 4.

Fig. 3 shows the relationship between the maximum size of single schedule subsets and
the number of tasks to be scheduled. From the experiment, we found that the size of 2
single schedule set never exceeds 14 even when there are 300 tasks being scheduled. The
observation indicates that for most cases maz™>,(n;) is 2 constant.

We show the relationship between the number of subsets (m) and number of tasks to
be scheduled in Fig. 4 and Fig. 5 with regard to different window length and arrival rate
distributions.

270

m T
250 —
=2
=4
200 - =6
=8
150 -
=10
100 {—
50
1 | ! ! ! 1 i
0 50 100 150 200 250 300

Figure 4: The relationship between the number of single schedule subsets and the number
of tasks with regard to the laxity parameter v, where a = 4, 8 = 4.

VI Final Remarks

In this paper, we examine the problem of nonpreemptive scheduling of n tasks on a single
CPU in hard real-time systems. We propose a correct decomposition strategy for the
scheduling. The strategy significantly reduces the scheduling complexity for most cases.

In this paper we have examined a decomposition technique based only on the windows
of tasks. By taking into account the computation time requirements, the decomposition
can be made stronger [Yuan89a). The decompesition approach may also be extended to
consider precedence and other deperdeaces among tasks. This aspect of decomposition
technique needs further study.

Acknowledgements
Thanks to S. Mukherjee for his help in coding the decomposition algorithm for our

271

150

100 1~

1 | 1 I | | n
0 50 100 150 200 250 300

Figure 5: The relationship between the number of single schedule subsets and the number
of tasks with regard to the arrival rate parameter B, where a =4, v = 2.

experiment.

References

[Ersc83] Erschler, J., Fontan, G., Merce, C., and Roubellat, F., “A New Dominance
Concept in Scheduling » Jobs on a Single Machine with Ready Times and Due
Dates™, Operations Research, Vol. 31, No. 1, pp. 114-127, Jan. 1983.

[Gare79] Garey, M. R. and Johnson, D. S., Computers and Intractability, e Guide-to the
Theory of NP-Completeness, W. H. Freeman Company, San Francisco, 1979.

[Liu73] Liu, C. L. and Layland, J., “Scheduling Algorithm for Multiprogramming in a
- Hard Real-Time Environment”. Journal of the ACM.. Vol. 20, pp. 46~61. Jan.

272

[Mag4]

McMaT5)

[Moks3]

[Stevs6)

[Yuzn89a)

[Yuan89b)

[Zhao8T7)

1973.

Ma, P. R., “A Model to Solve Timirg-Critical Application Problems in Dis-
tributed Computing Systems”, IEEE Computer, Vol. 17, pp. 62-68, Jan. 1584.

McMahon, G. and Florian, M., “On Scheduling with Ready Times and Due
Dates to Minimize Maximum Lateness”, Operations Researzh, Vol. 23, No. 3,
Pp. 475-482, May 1975.

Mok, A. K., “Fundamental Design Problems for the Hard Real-time Environ-
ments”, May 1983, MIT Ph.D. Dissertation.

Steven V. Earhart, Ed., UNIX Programmer’s Menual: System Calls and Library
Routines, Volume Volume 2, CBS College Publishing, 1986.

Yuan, X. and Agrawala, A. K., Decomposition with e Strongly-Leading Relation
for Hard Real-Time Scheduling, Technical Report to be Published, Dept. of
Computer Science, Univ. of Maryland, Coll. Pk., MD 20742. Mar. 1989.

Yuan, X. and Agrawala, A. K., Scheduling Real-Time Task in Single Schedule
Subsets, Technical Report to be Published, Dept. of Computer Science, Univ. of
Maryland, Coll. Pk., MD 20742, Mar. 1989.

Zhao, W., Ramamritham, K., and Stankovic, J. A., “Scheduling Tasks with
Resource requirements in a2 Hard Real-Time System”, IJEEE Trans. on Sofi.
Eng., Vol. SE-13, No. 5, pp. 564-577, May 1987.

273

Tablel: a=4, =4

num cf | 4 | avg W. ! numof | num of s5s size

tasks lengtn | concurr. sss max | avg
2 3.02 5 45 2 1.11

4 4.33 18 35 3 1.43

50 6 5.08 27 25 5 2.00
S 6.53 14 36 5 1.3¢8

10 7.03 26 30 6 1.67

2 [31 18 82 3 | 1.22

4 4.18 28 74 5 1.35

100 6 4.34 37 68 6 1.47
8 5.84 - 56 55 6 1.82

10 7.01 77 41 14 2.44

2 3.09 32 118 4 1.27

4 3.78 40 114 4 1.32

150 6 4.93 68 92 6 1.63
8 5.85 91 73 7 2.05
10__6.56 11_1_ 68 B 10 | 2.21

2 | 3.11 Y 159 | 4 |1.26

4 3.67 64 144 4 1.39

200 6 4.94 98 116 6 1.72
8 5.94 102 113 8 1.77

10 727_ 161 81 8 2.47

2 | 3.02 | 46 | 204 | 4 |1.23

4 3.82 93 167) 1.50

250 6 4.83 107 | 160 6 |1.56
§ 6.33 162 121 8 2.07

& 7.29 186 103 11 2.43

2 | 2.98 66 237 | 4 | 1.27

4 3.90 105 205 3 1.46

300 6 5.09 125 194 6 1.55
8 6.21 178 153 11 1.96

10 6.92 228 125 11 | 2.40

274

Table2: o =4, f=6

numof | v |avg W. { numof | numof | ssssize |
tasks length | concurr. sss max | avg
2 2.79 13 38 3 1.32

4 4.22 7 43 3 1.16

50 6 4.45 16 36 3 1.39
8 6.21 2] 31 4 1.61

10 6.82 23 30 S 1.67

2 2.96 16 85 3 1.18

4 3.93 16 85 3 1.18

100 6 3.93 16 85 3 1.18
8 6.32 31 73 4 1.37

10 7.21 52 58 7 1.72

2 3.29 20 130 4 1115

4 3.98 .29 125 S 1.20

150 6 5.33 42 111 4 1.35
8 5.90 55 100 S 1.50

10 6.96 77 83 8 1.81

2 3.04 25 175 4 1.14

4 3.90 48 153 3 1.31

200 6 5.18 55 148 9 1.35
8 5.95 87 128 8 1.56

10 7.18 84 128 6 1.56

2 2.93 45 206 3 1.21

4 4.08 55 200 6 1.25

250 [6 1 5.10 55 167 | 5 | 127
8 €.156 78 175 8 1.43

10 6.78 98 162 7 1.54

2 3.00 2 250 4 1.20

4 4.13 47 254 S 1.18

300 6 4.97 67 236 4 127
8 5.82 96 214 5 1.40

10 6.97 161 158 8 1.88

275

Table3:a=4, =8

num of]

numof | ¥ | avg W. | num of 555 size
tasks length | concurr. | sss max | avg
2 3.24 9 42 3 1.19
4 3.56) 45 3 1.11
30 6 4.67 11 40 3 1.25
18 5.95 3 Y 2 1.06
10 6.51 20 32 5 1.56
2 2.99 6 94 2 1.06
4 4.20 13 87 3 1.15
100 6 5.04 26 75 3 1.33
8 5.77 29 73 5 1.37
10 6.91 33 70) 1.43
2 | 2.99 23 127 4 |118]
4 4.01 28 126 4 1.19
150 6 5.27 28 122 3 1.23
8 6.00 32 120) 1.25
10 7.22 39 112 6 1.34
2 3.09 19 182 3 1.10
4 3.94 18 182 3 1.10
200 € 4.87 31 171 4 1.17
§ 5.91 51 154 5 1.30
10 6.96 78 130 6 1.54
2 2.91 23 227 3 |1.10
4 4.01 48 206 4 1.21
250 6 5.01 52 204) 1.23
8 5.84 56 195) 1.28
10 7.48 60 191 4 1.31
2 | 2.99 35 267 | 4 | 1.12
4 4.05 30 270 3 1.11
300 6 5.07 60 24} 4 1.24
8 5.99 63 240 4 1.25
10 7.13 110 199 6 1.51

276

Tabled: a =4, =10

num of

|

v [avg W. | numof | numof | sss size
tasks length | concurr. l sss max | avg
2 | 3.44 2 48 2 | 1.04
4| 4an 5 45 3 |1n
50 [6 550 4 46 3 |1.09
8§ | 6.69 11 41 4 |1.22
10| 6.61 15 38 5 | 1.32
2 | 302 | .. g9 | 4 [1.12
4| 4.01 14 §7 4 |1.15
100 | 6 | 4.95 21 80 4 |1.25
8 | 6.59 18 82 3 |1.22
10| 6.68 25 6 5 |1.32
2| 300 | 6 | 144 2 | 1.04 |
4 | 3.98 11 139 3 | 108!
130 | 6| 4.72 11 139 2 | 1.08
8 | 5.9 37 17 5 |1.28
10 720 | 43 109 | 6 |1.38
2] 300 | 18 182 3 |1.10]
s | 3.97 27 174 5 {115 |
200 | 6 | 5.9 23 | 177 3 113
8 | 6.16 34 | 1867 4]1.20
10 | 6.90 52 | 183 | ¢ |13
2 | 2.94 24 | 2286 | 3 [1.10]
4 | 412 32 | 28 | 3 |13
230 6. 830 | 43 | 213 | 4 |1.17
8§ | 6.07 45 206 | 3 | 121
10| 6.96 5) 200 | 4 }1.25 |
2| 305 | 21 | 214 1| 3 1109]
4| 407 | 21 280 | 3 ,1.07 |
30 | 6| 5.04 54 251 | 6 |1.20
8 | 6.18 46 254 3 |1.18
10| 6.61 61 243 8§ |1.23
277

e

- REPORT DOCUMENTATION PAGE rUlin appibved
. ' OMB No 074-0188

1. AGENCY USE ONLY (leave blank)] 2. REPORT DATE |3. REPORT TYPE END DATES COVERED

Novemebr 1989 Technical Report
4. TITLE AND SUBTITLE 5. FUNDING NUMNBERS
A Decomposition Approach to Nonpreemptive Real-Time Scheduling DASG60-87-X-0066

6. AUTHOR(S)
Xiaoping (George) Yuan, Ashok K. Agrawala, and Manas C. Saksena

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. nggg"‘mﬁ B‘é:GAN'ZAT'ON

University of Maryland CS-TR-89-109
Department of Computer Science A

A.V. Williams Building UMIACS-TR-2345
College Park, MD 20742

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)10. SPONSORING/ MONITORING

US Army Strategic Defense Command AGENCY REPORT NUMBER
Contr. & Acq. Mgt. Office
CSSD-H-CRS, P.0. Box 1500
Huntsville, AL 35807-3801

11. SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT 12.b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Consider the problem of scheduling a set of n tasks on a uniprocessor such that a feasible schedule that

satisfies each task's time constraints is generated. Traditionally, researchers have looked at all the tasks as a
group and applied heuristic or enumeration search to it. We propose a new approach called the

decomposition scheduling where tasks are decomposed into a sequence of subsets. Tasks are scheduled in
each subset independently in the order of the sequence. It is proved that a feasible schedule can be generated
as long as one exists for the tasks. In addition, the overall scheduling cost is reduced to the sum of the
scheduling costs of the tasks in each subset.

, Simulation experiments were conducted to analyze the performance of decomposition scheduling approach.
l The results show that in many cases decomposition scheduling performs better than the traditional

i branch-and-bound algorithms in terms of scheduling cost, and heuristic algorithms in terms of percentage of
finding feasibie schedules over randomiy-generated task sets.

14. SUBJECT TERMS 15. NUMBER OF PAGES
17

16. PRICE CODE

17. SECURITY CLASSIFICATION 118. SECURITY CLASSIIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified Unlisted
MSN 7540-01 280-5500 Standard Form 298 (Rev 2-89)

278

SECURITY CLASSIFICATION OF THIS PAGE

Let us consider the problem of scheduling a set of n tasks on a single processor
such that a {easible schedule which satisfies the time constraints of each task is
generated. It 1s recognized that an exbaustive search may be required to generate
such a feasible schedule or to assure that there does not exists one. In that case
the computational complexity of the search is of the order n!.

We propose to generate the feesible schedule in two steps. In the first step
we decompose the set of tasks into m subsets by analyzing their ready times and
deadlines. An ordering of these subsets is also specified such that in a feasible
schedule all tasks in an earlier subset in the ordering appears before tasks in a later
subset. With no simplification of scheduling of tasks in a subset, the scheduling
complexity is O(T 2, n;!}, where n; is the number of tasks in the ith subset.

The improvement of this approach towards reducing the scheduling complexity
depends on the the number and the size of subsets generated. Experimental results
indicates that significant improvement can be expected in most situations.

5

[X2=1]

O

—_—

UNCLASSIFIED

279

SECURITY CLASSIFICATION OF TRIS PAGE

280

TTTRTRY,

Viewserver Hierarchy:
A New Inter-Domain Routing Protocol and its Evaluation®

Cengiz Alaettinoglu! A. Udaya Shankar

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, Maryland 20742

October 1993

Abstract

A simple approach to inter-domain routing is domain-level source routing with link-state
approach where each node maintains a domain-level view of the internetwork. This does pot scale
up to large internetworks. The usunal scaling technique of aggregating domains into superdomains
loses ToS and policy detail.

We present 2 mew viewserver hierarchy and associated protocols that (1) satisfies policy
and ToS constraints, (2) adapts to dynamic topology changes including failures that partition
domains, and (3) scales well to large number of domains without losing detail. Domain-level
views are maintained by special nodes called viewservers. Each viewserver maintains a domain-
level view of a surrounding precinct. Viewservers are organized hierarchically. To obtain domain-
level source routes, the views of one or more viewservers are merged (upto 2 maximum of twice
the levels in the hierarchy).

We also present a model for evaluating inter-domain routing protocols, and apply this model
to compare our viewserver hierarchy against the simple approach. Our results indicate that the
viewserver hierarchy finds many short valid paths and reduces the amount of memory require-
ment by two orders of magnitude.

Categories and Subject Descriptors: C.2.1 {Computer-Communication Networks]: Network Archi-
tecture and Design—packet networks; store and forward networks; C.2.2 [Computer-Communication Net-
works]: Network Protocols—protocol archiiecture; C.2.m [Routing Protocols]; F.2.m [Computer Network
Routing Protocols). :

* This work is supported in part by ARPA and Philips Labs under contract DASG60-92-0055 to Department of
Computer Science, University of Maryland, and by National Science Foundation Grant No. NCR 89-04590. The
views, opinions, and/or findings contained in this report are those of the author(s) and should not be interpreted as
representing the offidal polices, either expressed or implied, of the Advanced Research Projects Agency, PL, or the
U.S. Government.

1The anthor is also supported by University of Maryland Gradnate School Fellowship and Washington DC Chapter
of the ACM Samuel Alexander Fellowship.

281

1 Introduction

A computer internetwork, such as the Internet, is an interconnection of backbone networks, regional
networks, metropolitan area networks, and stub networks (campus networks, office networks and
other small networks)®. Stub networks are the producers and consumers of the internetwork traffic,
while backbones, regionals, and MANs are transit networks. (Most of the networks in an internet-
work are stub networks.) Bach network consists of nodes (hosts, routers) and knks. Two networks

are neighbors when there is one or more links between nodes in the two networks (see Figure 1).

Figure 1: A portion of an internetwork. (Circles represent stub networks.)

Az internetwork is organized into domains®. A domain is a set of networks (possibly consisting of
only one network) administered by the same agency. Within each domain, an intra-domain routing
protocol is executed that provides routes between source and destination nodes in the domain. This
protocol can be any of the typical ones, i.e., next-hop or source routes computed using distance-
vector or link-state algorithms.

Across all domains, an inter-domain routing protocol is executed that provides routes be-
tween source and destination nodes in different domains. This protocol must satisfy various con-
straints: .

(1) It must satisfy policy constraints, which are administrative restrictions on the inter-domain
traffic [8, 12, 9, 5]. Policy constraints are of two types: transit policies and source policies.
The tramnsit policies of 2 domain A specify how other domains can use the resources of A

(e.g. $0.01 per packet, no trafiic from domain B). The source policies of 2 domain A specify

! For example, NSFNET, MILNET are backbones and Suranet, CerfNet are regionals.
? also referred to as routing domains

282

.

constraints on trafiic originating from A (e.g. domains to avoid/prefer, acceptable connection
cost). Transit policies of a domain are public (j.e. available to other domains), whereas source
policies are usually private.

(2) An inter-domain routing protocol must also satisfy type-of-service (ToS) constraints of ap-
plications (e.g. low delay, high throughput, high reliability, minimum monetary cost). To do
this, it must keep track of the types of services offered by each domain [5].

(3) Inter-domain routing protocols must scale up to very large internetworks, i.e. with a very large
number of domains. Practically this means that processing, memory and communication
requirements should be much less than linear in the number of domains.

(4) Inter-domain routing protocols must automatically adapt to link cost changes, node/link
failures and repairs including failures that partition domains [15]. It must also handle non-
hierarchical domain interconnections at any level [9] (e.g. we do not want to hand-configure

special routes as “back-doors™).

A simple (or straightforward) approach to inter-domain routing is domain-level source routing
with link-state approach {8, 5]. In this approach, each router® maintains a domain-level view of the
internetwork, i.e., a graph with a vertex for every domain and an edge between every two neighbor
domains. Policy and ToS information is attached to the vertices and the edges of the view.

When a source node needs to reach a destination node, it (or a router? in the source’s domain)
first examines this view and determines a domain-level source route satisfying ToS and policy
constraints, i.e., 2 sequence of domain ids starting from the source’s domain and ending with the
destination’s domain. Then, the packets are routed to the destination using this domain-level
source route and the intra-domain routing protocols of the domairs crossed.

The disadvantage of this simple scheme is that it does not scale up for large internetworks. The
storage at each router is proportional to Np x Ep, where Np is the number of domains and Ep
is the average number of neighbor domains to a domain. The communication cost is proportional
to Nr x Eg, where Ng is the number of routers in the internetwork and Epg is the average router
neighbors of a router (topology changes are flooded to all routers in the internetwork).

To achieve scaling, several approaches based on aggregating domains into superdomains have

> Not all nodes maintain routing tabies. A router is 2 node that maintains a rovting table.
* referred to as the policy server in [8)

283

been proposed [13, 16, 6]). This approaches have drawbacks because the aggregation results in loss
of detail (discussed in Section 2).

Our protocol

In this paper, we present an inter-domain routing protocol that we have proposed recently|3). It
combines domain-level views with a novel hierarchical scheme. It scales well to large internetworks,
and does not suffer from the problems of superdomains.

Ip our scheme, domain-level views are not maintained by every router but by special nodes
called viewservers. For each viewserver, there is a subset of domains around it, referred to as the
viewserver’s precinct. The viewserver maintains the doma.'m-level view of its precinct. This solves
the scaling problem for storage requirement.

A viewserver can provide domain-level source routes between source and destination nodes in
its precinct. Obtaining a domain-level source route between a source and a destination that are
not in any single view, involves accumulating the views of a sequence of viewservers. To make this
process efficient, viewservers are organized hierarchically in levels, and an associated addressing
structure is used. Each node has a set of addresses. Each address is a sequence of viewserver ids of
decreasing levels, starting at the top level and going towards the node. The idea is that when the
views of the viewservers in an address are merged, the merged view contains domain-level routes
10 the node from the top level viewservers. {Addresses are obtained from name servers in the same
way as is currently done in the Internet.)

We handle dynamic topology changes such as node/link failures and repairs, link cost changes,
and domain partitions. Gateways® detect domain-level topology changes affecting its domain and
neighbor domains. For each domain, there is a reporting gateway that communicates these changes
by flooding to the viewservers in a specified subset of domains; this subset is referred to as its flood
crea. Hence, the number of packets used during flooding is proportional to the size of the flood
area. This solves the scaling problem for the communication requirement. '

Thus our inter-domain routing protocol consists of two subprotocols: a view-query p.roto-
col between routers and viewservers for obtaining merged views; and a view-update protocol

between gateways and viewservers for updating domain-level views.

® A node is called a gateway if it has a link to another domain.

284

Evaluation

Many inter-domain routing protocols have been proposed, based on various kinds of hierarchies.
How do these protocols compare against each other and against the simple approach? To answer this
question, we need a model in which we can define internetwork topologies, policy/ToS constraints,
inter-domain routing hierarchies, and evaluation measures (e.g. memory and time requirements)
for inter-domain routing protocols. None of these protocols have been evaluated in a way that they
can be compared against each other or the simple approach.

In this paper, we present such a model, and use it to compare our viewserver hierarchy to the
simple approach. Our evaluation measures are the amount of memory required at the source and
at the routers, the amount of time needed to construct a path, and the number of valid paths
found (and their lengths) in comparison to the number of available valid paths (and their lengths)
in the internetwork. We use three internetwork topologies each of size 11,110 domains (roughly the
current size of the Internet). Our results indicate that the viewserver hierarchy finds many short

valid paths and reduces the amount of memory requirement by two orders of magnitude.

Organization of the paper

In Section 2, we survey recent approaches to inter-domain routing. In Section 3, we present the
view-query protocol for static network conditions, that is. assuming all links and nodes of the
network remain operational. In Section 4, we present the view-update protocol to handle topology
changes (this section is not needed for the evaluation part). In Section 5, we present our evaluation
model angd results from its application to the viéwserve: hierarchy. In Section 6, we conclude and

describe how to add fault-tolerance and cacheing schemes to improve performance.

2 Related Work

In this section, we survey recently proposed inter-domain routing protocols that support ToS and
Policy routing for large internetworks (14, 16, 13, 10, 6, 20, 2, 19, 18, 7).

Several inter-domain routing protocols (e.g. BGP [14], IDRP [16], NR [10]) are based on path-
vector approach [17]. Here, for each destiration domain a router maintains a set of paths, one

through each of its neighbor routers. ToS and policy information is attached to these paths. Each

285

router requires O(Np X Np X ER) space. For each destination, a router exchanges its best valid
patk® witk its neighbor routers. However, a path-vector algorithm may not find a valid path
from a source to the destination even if such a route exists [13]". By exchanging k paths to each
destination, the probability of detecting a valid path for each source can be increased.

The most common approach to solve the scaling problem is to use superdomains® (e.g. IDPR [13],
IDRF [16), Nimrod [6]). Superdomains extend the idea of areas hierarchy [11). Here, domains are
grouped hierarchically into superdomains: “close” domains are grouped into level 1 superdomains,
“close™ level 1 superdomains are grouped into level 2 superdomains, and so on. Each domain
A is addressed by concatenating the superdomain ids starting from a top level superdomain and
going down towards A. A router maintains a view that contains the domains in the same level 1
superdomain, the level 1 superdomains in the same level 2 superdomain, and 5o on. Thus a router
maintains a smaller view than it would in the absence of hierarchy. Each superdomain has its own
ToS and policy constraints derived from that of the subdomains.

There are several major problems with using superdomains. One problem is that if there are
domains with different (possibly contradictory) constraints in a superdomain, then there is no good
way of deriving the ToS and policy constraints of the superddma.in. The usual techniques are to
take either the union or the intersection of the constraints of the subdomains {13]. Both techniques
have problems®. Other problems are described in [6, 2. Some of the problems can be relaxed by
having overlapping superdomains, but this increases the storage requirements drastically.

Nimrod {6} and IDPR [13] use the link-state approach, domain-level source routing, and super-
domains (non-overlapping superdomains for Nimrod). IDRP [16] uses path-vector approach and
superdomains.

Reference [10] combines the benefits of path-vector approach and link-state approach by having
two modes: An NR mode, which is an extension of IDRP and is used for the most common ToS

and policy constraints; and 2 SDR mode, which is like IDPR and is used for less frequent ToS and

© A valid path is 2 path that satisfies the ToS and palicy constraints of the domains in the path.

7 For example, suppose a router u bas two paths Pl and P2 to the destination. Let u have a router neighbor v,
which is in another domain. u chooses and informs v of one of the paths, say P1. Bat Pl may violate source policies
of v’s domain, and P2 may be a valid path for .

® also referred to as ronting domain confederations

? For example, if the union is taken, then a subdomain A can be forced to obey constraints of other subdomains;
this may eliminate a path through A which is otherwise valid. If the intersection is taken, then a subdomain A can
be forced to accept traffic it would otherwise not accept.

286

policy requests. This study does not address the scalability of the SDR mode.

In [2], we proposed another protocol based on superdomains. It always finds a valid path if
one exists. Both union and intersection policy and ToS constraints are maintained for each visible
superdomain. If the union policy constraints of superdomains on a path are satisfied, then the path
is valid. If.the intersection policy constraints of a superdomain are satisfied but the union policy
constraints are not, the source uses a query protocol to obtain 2 more detailed “internal” view of
the superdomain, and searches again for a valid path. The protocol uses a link-state view update
protocol to handle topology changes, including failures that partition superdomains at any level.

The landmark hierarchy [19, 18] is another approach for solving the scaling problem. Here,
each router is a landmark with a radius, and routers which are within a radius away from the
landmark maintain a route to it. Landmarks are organized hierarchically, such that the radius
of a landmark increases with its level, and the radii of top level landmarks include all routers.
Addressing and packet forwarding schemes are introduced. Link-state algorithms can not be used
with the landmark hierarchy, and a thorough study of enforcing ToS and policy constraints with
this hierarchy has not been done.

The landmark hierarchy may look similar to our viewserver hierarchy, but in fact they are quite
opposite. In the landmark hierarchy, nodes within the radius of the landmark maintain a route to
the landmark, and the landmark may not have a route to these nodes. In the viewserver hierarchy,
viewserver maintains routes (i.e. a view) to the nodes in its precinct.

Route fragments {7] is an addressing scheme. A destination route fragment, called a route
suffiz, is a sequence of domain ids from a backbone to the destination domain. A source route
fragment, called a route prefiz, is the reverse of a route suffix of that domain. There are also route
middles, which are from transit domains to transit domains. These addresses are static (i.e. they
are not updated with topology changes) and stored at the name servers. A source queries' a name
server and obtains destination route suffixes. It then chooses an appropriate route suffix for the
destination and concatenates it with its own route prefix (and uses routes middles if route suffix
and route prefix do not intersect). This scheme can not handle topology changes and does not

address handling policy and ToS constraints.

287

3 Viewserver Hierarchy Query Protocol

In this section, we present our scheme for static network conditions, that is, all links and nodes

remain operational. The dynamic case is presented in Section 4.

Conventions: Each domain has 2 unique id. DomainIds denotes the set of domain-ids. Each
node has an id which is unique in its domain. NodeIds denotes the set of node-ids. Thus, a node is
totally identified by the combination of its domain’s id and its node-id. Totallds denotes the set
of total node-ids. For a node u, we use domainid(u) to denote the domain-id of ¢’s domain. We
use nodeid(u) and totalid(u) to denote the node-id and total-id of u respectively. For a domain 4,
we use domainid(A) to denote the domain-id of A. NodeNeighbors(u) denotes the set of node-ids
of the neighbors of . DomainNeighbors(A) denotes the set of domain-ids of the domain neighbors
of A. We use the term gateway-id (or viewserver-id) to mean the total-id of 2 gateway node (or a
viewserver node).

In our protocol, 2 node u uses two kinds of sends. The first kind has the form “Send(m) to v”,
where m is the message being sent and v is the total-id of the destination. Here, nodes u and v
are neighbors, and the message is sent over the physical link (u,v). If the link is down, we assume
that the packet is dropped.

The second kind of send has the form “Send(m) to v using dlsr™, where m and v are as above
and dlsr is 2 domaixn-level source route between z and v. Here, the message is sent using the intra-
domain routing protocols of the domains in dlsr to reach v1°. We assume that as long as thereis a
sequence of up links connecting the domains in disr, the message is delivered to v*!. X the u and

v are in the same domain, dlsr equals ().

Views and Viewservers

Domain-level views are maintained by special nodes called viewservers. Each viewserver has a
precinct, which is a set of domains around the viewserver, and a static view, which is a domain-level

view of the precinct and outgoing edges. The static view includes the ToS and policy constraints

3° Recall that giver 2 domain-level source route to a destination, using the intra-domain routing protocols we can
reach the destination.
11 This involves time-outs, retransmissions, etc. It requires a transport protocol support such as TCP.

288

.

of domeains iv the precinct and of domain-level edges’?. Formally, 2 viewserver z maintains the

following:
Precinct,. (C Domainlds). Domain-ids whose view is maintained.

SView.. Static view of z.

= {(4, policy&tos(A), {(B, edge_policy&tos(A,B)): B € subset of DomainNeighbors(A)}) :

A € Precinct.}

SView; can be implemented as adjacency list representation of graphs [1]. The intention of
SView, is to obtain domain-level source routes between nodes in Precinct.. Hence, the choice of
domains to include in Precinct, and the choice of neighbors of domains to include in SView, is
not arbitrary. Precinct; and SView, must be connected; that is, between any two domains in
Precinct_, there should be a path in SView. that lies in Precinct.. Note that SView, can contain
edges to domains outside Precinct,. We say that a domain A is in the view of a viewserver z, if
either A is in the precinct of z or SView, has an edge from a domain in precinct to A. Note that
the precincts and views of different view servers can be overlapping, identical or disjoirt.

If there is a viewserver £ whose view contains both the source and the destination domains,
then z’s view can be used to obtain the required domain-level source route to reach the destination.
The source needs to reach z to obtain its view. If the source and z are in the same domain, z
can be reached using the intra-domain routing protocol. If z is ir. another domain, then the source
needs to have a2 domain-level source route to it!3. In this case, we assume that source has 2 set of

fixed domain-level source routes to z.

Viewserver Hierarchy

For scaling reasons, we cannot have one large view. Thus, obtaining a domain-level source route
between a source and a destination which are far away, involves accumulating views of a sequence of
viewservers. To keep this process efficient, we organize viewservers hierarchically. More precisely,
each viewserver is assigned a hierarchy level from 0, 1, .. , with 0 being the top level in the hierarchy.

A parent/child relationship between viewservers is defined as follows:

32 Not all the domain-level edges need 1o be included. This is becanse some domains may have many neighbors
czusing 2 big storage requirement.
33 We cannot obtain this domain-level sonrce route from z, i.e. chicken-egg problem.

1. BEvery level ? viewserver, 1 > 0, has a parent viewserver whose level is less than :.

[]

. X viewserver z is a parent of viewserver y then z’s view contairs y’s domain and y’s view
contains z's domain®*.
3. The view of a top level viewserver contains the domains of all other top level viewservers.
(typically, top level viewservers are placed in backbones).
Note that the second constraint does not mean that all top level viewservers have the same view.
In the hierarchy, a parent can have many children and a child can have many parents. We extend
the range of the parent-child relationship to ordinary nodes; that is if the Precinct. contains the
domain of node u, we say that u is a child of z, and z is a parent of u (note that an ordinary node
does not have a child). We assume that there is at Jeast one parent viewserver for each node.
For 2 node u, an address is defired to be a sequence (zo, Z1,...,2:) such that z; fori < tis
a viewserver-id, zg is a top level viewserver-id, z is the total-id of u, and z; is a parent of z;4;.
Note that a node may have many addresses since the parent-child relationship is many-to-many. If
2 source wants a domain-level source route to a destination, it first queries the name servers ?* to
obtain z set of addresses for the destination. Then, it queries viewservers to obtain an accumulated
view containing both its domain and the destination’s domain.
Querying the name servers can be done the same way it is done currently in the Internet. It
requires nodes to have a set of fixed addresses to name servers. This is also sufficient in our case.
However, we can improve the performance by having a set of fixed domain-level source routes

instead.

View-Query Protocol: Obtaining Domain-Level Source Routes

We now describe how a domain-level source route is obtained (regardless of whether the source and
the destination are in a2 commorn view or not). |

We want a sequence of viewservers whose merged views contains both the source and the
destination domains. Addresses provide 2 'way to obtain such a sequence, by first going up in
the viewserver hierarchy starting from the source node and then going down in the viewserver

hierarchy towards the destination node. More precisely, let (sp,...,s:) be an address of the source,

1% Note that z and y do not have to be in each other’s precinct.
3% In fact, name servers are called domain name servers. Bowever, domain names and the domains used in this
pape:r are different. We use “name servers” to avoid confusion.

290

and (dp,...,di) be an address of the destination. Ther, the sequence (s,_;,...,s0,d0,.--,di-1)
meets our requirements.’® In fact, going up all the way in the hierarchy to top level viewservers
may not be necessary. We can stop going up at a viewserver s; if there is a viewserver d;,j < [
such that the domain of d; is in the view of s; (one special case is where s; = d;).
The view-query protocol uses two message types:
e (RequestView, s.address, d_.address)
where s_address and d.address are the addresses for the source and the destination respec-
tively. A RequestView message is sent by a source to obtain an accumulated view containing
both the source and the destination domains. When a viewserver receives 2 RequestView
message, it either sends back its view or forwards this request to another viewserver.

e (ReplyView, s.address, doddress, sccumview)

where s_address and d.address are as above and accumview is the accumulated view. A
ReplyView message is sent by a viewserver to the source or to another viewserver closer to
the source. The accumview field in a ReplyView message equals the union of the views of
the viewservers the message has visited.

We now describe the events of a source node (see Figure 2). The source node!” sends a
RequestView packet containing a source and a destination address to its parent in the source ad-
dress (using a fixed domain-level source route). When the source receives a ReplyView packet, it
chooses a valid path using the sccumview in the packet. If it does not find a valid path, it can
iry again using a different source and/or destination address. Note that, the source does not have
to throw away the previous accumulated views, but merge all accumulated views into a richer ac-
cumulated view. In fact, it is easy to change the protocol so that source can also obtain views of
individual viewservers to make the accumulated view even richer.

The events of a viewserver z are specified in Figure 3. Upon receiving a RequestView packet,
z checks if the destination domain is in its precinct!®. If it is, z sends back its view in a ReplyView
packet. If it is not, z forwards the request packet to another viewserver as follows: z checks if the

domain of any viewserver in the destination address is in its view or not. If there is such 2 domain,

3¢ This is similiar to matching ronte fragments[7). However, in our case the sequence is computed in 2 distributed
{ashion (these is needed to handle topology changes).

37 or the policy server in the source’s domain

1* Even though destination can be in the view of z, its policies and ToS’s are not in the view if it is not in the
precnct of z.

291

Constants

FizedRoutesy(z), for every viewserver-id = such that z is a parent of u,
_ 1A if domainid(u) = domainid(z)
- i {{dy,...,dn) : d; € DomainIds}. Set of domain-level routes to z otherwise
Events
RequestView,(s.address, d_address) {Executed when u wants a valid domain-level source route}
Let s_address be (sp,...,8:—1,8:), and disr € Fized Routesy(s;-1);
Send(RequestView, s.address, daddress) to s;—) using disr

Receive, (ReplyView, s_address, d-address, accumview)
Choose 2 valid domain-level source route using accumview;
If a valid route is not found
Execute RequestView, again with another source address and/or destination address

Figure 2: Vievé-query protocol: Events and state of a source u.

Constants
Precinct.. Precincet of z.
SView.. Static view of z.

Events

Receive_(RequestView, s_address, d.address)
Let d_.address be (do,...,ds);
if domainid(d;) € Precinct, then

forward:(RequestView, s_address, d_address, {});

else forward.(ReplyView, d.address, s_address, SView.); {addresses are switched}
endif

Receive-(ReplyView, s_oddress, d_address, view)
forwerd-(ReplyVies, s.address, d.address, view U SView.)

where procedure jorwerd:(lype, s.address, d_address, view)
Let s_address be (sp,...,s:), d-address be (do,...,d);
if 3i : domainid(d;) in SView, then
Let i = max{; : domainid(d;) in SView.};

target := d;;
else torget := s; such that 5,4y = totalid(z);
endif;

disr := choose a route to domainid(target) from domainid(z) using SView.;
if type = ReguestView then

Send(RequestView, s.address, d_address) to target using disr;
else Send(ReplyView, s.address, d.address, view) to target using disr;
endif

Figure 3: View-guneryv protocol: Events and state of 2 viewserver z.

z sends the RequestView packet to the last such one. Otherwise z is a viewserver in the source

292

address and sends the packet 1o its parent in the source address. (Note that i z is a viewserver in
the destination address, its child in the destination address is definitely in its view.)

When a viewserver z receives a ReplyView packet, it merges its view to the accumulated view
in the packet. Ther it sends the ReplyView packet towards the source node same way it would
send a RequestView packet towards the destination node (i.e. the role of the source address and
the destination address are changed). |

Above we have described one possibie way of obtaining the accumulated views. There are
various other possibilities, for example: (1) restricting the ReplyView packet to take the reverse
of the path that the RequestView packet took; (2) having ReplyView packets go all the way
up in the viewserver-hierarchy for a richer accumulated view; (3) source polling the viewservers
directly instead of viewservers forwarding request /reply messages to each other; (4) not including
the non-transit stub domains other than the source and the destination domains in the accumuview;
(3) including some source policy constraints and ToS requirements in the RequestView packet,

and having the viewservers filter out some domains.

4. Update Protocol for Dynamic Network Conditions

In this section, we first examine how topology changes such as link/node failures, repairs, and cost
changes, map into Gomain-level topology changes. Second, we describe how domain-level topology
changes are detected and communicated to viewservers, i.e. view-update protocol. Third, we modify

the view-query protocol appropriately.

Mapping Topology Changes to Domain-Level Topology Changes

Costs are associated with domain-level edges. The cost of the domain-level edge (4, B) equals 2

vector of values if the link is up; each cost value indicates how expensive it is to cross domain A

to reach domain B according to some criteria such as delay, throughput, reliability, etc. The cost -

equals co if all links from A to B are down!®. Each cost value of 2 domain-level edge (4, B) can

be derived from the cost values of the intra-domain routes in A and links from A to B [4]%°.

3¥ Note that if a gateway connecting A to B is down, its links are also considered 1o be down.
20 For example, the delay of 2 domain-level edge (4, B) can be calculated as the maximum/average delay of the
rontes from any gateway in A to first gateway in B.

293

Link cost changes and link/node failures and repairs correspond to cost changes, failures and
repairs of domain-level edges. Link/node failures can alse partition a domain into cells[15]. A cell
is a2 maximal subset of nodes of a domain that can reach each other without leaving the domain.
With partitioning, some nodes as well as some neighbor domains may not be accessible by all
cells. In the same way, link/node repairs may merge cells into bigger cells. We identify a cell
with the minimum node-id of the gateways in the cell. #* In this paper, for uniformity we treat
an unpartitioned domain as 2 domain with one cell; we do not consider cells that do not isolate
gateways since such cells do not affect inter-domain routes.

If 2 domain gets partitioned, its vertex in the domain-level views should be split into as many
pieces as there are cells. And when the cells merge, the corresponding vertices should be merged
as well.

Since a domain can be partitioned into many cells, domain-level source routes now include cell-
ids as well. Hence, the intra-domain routing protocol of 2 domair should inciude a route to each

reachable neighbor domain cell.??

View-Update Protocol: Updating Domain-Level Views

Viewservers Go not communicate with each other to maintain their views. Gateways detect and
communicate domain-ievel topology changes to viewservers. Each gateway periodically (and op-
tionally after 2 change in the intra-domain routing table) inspects its intra-domain routing table
and determines the cell it belongs. For each cell, only the gateway whose node-id is the cell-id
(i.e. the gateway with the minimum node-id} is responsible for communicating domain-level topol-
ogy changes. We refer to this gateway as the reporting gatewsy. Reporting gateways compute
the domain-level edge costs for each neighbor domain cell, and report them to parent viewservers.
They are also responsible for informing the viewservers of the creation and deletion of cells.
The communication between a reporting gateway and viewservers is done by flooding over 2

set of domains. This set is referred to as the fiood area®®. The topology of a fiood area must

31 Our cells are like the domain components of IDPR[13).

2 This involves the jollowing changes in the intra-domain routing protocol: (1) Whenever the cell-id of a gateway
changes, it reports its new cellid 1o adjacent gateways ir neighbor domains. When they receive this information,
they update their intra-domain routes to include the pew cell-id. (2) Usually when a node recovers from a failure,
it guenies its neighbors in its domain for their intra-domain routes. When a gateway recovers, it should also guery
adjacent gateways in neighbor domains for their cell-ids.

% For efficency, the flood area can be implemented by 2 radius and some forwarding limits (e.g. do not flood

294

be 2 connected graph. Due 1o the nature of flooding, a viewserver can receive information out of
order for a domain cell. In order to avoid old information replacing new information, each gateway

includes successively increasing time stamps in the messages it sends.

Due to node and Link failures, communication between a reporting gateway and a viewserver
can fail, resulting in the viewserver having out-of-date information. To eliminate such information,
a viewserver deletes any information about a2 domain cell if it is older than a time-to-die period. We
assume that gateways send messages more often than the time-to-die value (to avoid falsé removal).

When a viewserver learns of a new domain cell, it adds it to its view. To avoid adding a domain
cell which was just deleted?*, when a viewserver receives a delete domain cell request, it only marks

the domain cell as deleted (and removes the entry after the time-to-die period).

The view-update protocol uses two types of messages as follows:

o (UpdateCell, domainid, cellid, timestamp, floodarea, ncostset)
is sent by the reporting gateway to inform the viewservers about current domain-level edge
costs of its cell. Here, domainid, cellid, and timmestamp indicate the domain, the cell and the
time stamp of the reporting gateway, ncostset contains a cost for each neighbor domain cell,
and floodarea is the set of domains that this message is to be sent over.

o (DeleteCell, domainid, cellid, timestamp, floodarea)

where the parameters are as in the UpdateCell message. It is sent by a reporting gateway
when it becomes non-réporti:ug (because its cell expanded to include a gateway with lower
id), to inform viewservers to delete the gateway’s old cell.

The state maintained by a gateway g is listed in Figure 4. Note that LocaiViewservers_, and
LocalGateways, can be empty. IntraDomainRT, contains a route (next-hop or source) for every
reachable node of the domain and for every reachable neighbor domain cell*®>. We assume that
consecutive reads of Clock, returns increasing values.

The state maintained by 2 viewserver z is listed in Figure 5. DView. is the dynamic part of

z’s view. For each domain cell*® known to z, DView. stores a timestamp field which equals the

beyond backbones) instead of a set.

24 H the domain cell was removed, the timestamp for that domain cell is also Jost.

2 IntraDomainRT,is a view in case of a link-state routing protocol or a distance table in case of a distance-vector
routing protocol.

26 We use A:g to denote the cell ¢ of domain A.

295

Constants:
LocalViewservers,. (C Totallds). Set of viewservers in ¢'s domain.
LocalGateways,. (C Totallds). Set of gateways in g’s domain excluding g.
AdjForeignGateways,. (C Totallds). Set of adjacent gateways in other domains.
FloodAreay. (C DomainIds). The flood area of the domain (includes domain of g).
Variables:
IntraDomainRT, . Intra-domain routing table of g. Initially contains no entries.
Cellld, : ¥odelds. The id of ¢’s cell. Initially = co
Clock, : Integer. Clock of g.

Figure 4: State of a gateway g.

Constants:

Precinct.. Precinct of z.

SView.. Static view of z.

TimeToDie. : Integer. Time-to-die value.
Variables:

DView,. Dynamic view of z.
= {(A:g, timestamnp, ezpirytime, deleted,
{{B:h, cost) : B € DomainNeighbors(A) A h € BodeIdsU {=} }):
A € Precinct. A g € Bodelds)

Clock_ : Integer. Clock of z.

Figure 5: State of a viewserver z.

Jargest timestamp received for this domain cell, an ezpirytime field which equals the end of the
time-10-die period for this domain cell, a deleted field which marks whether or not the domain cell
is deleted, and a cost set which indicates a cost for every neighbor domain cell whose domain is in
SView,. The cell-id of 2 neighbor domain equals » if no cell of the neighbor domain is reachable.

The events of gateway g and a viewserver z are specified in Appendix A.

Changgs to View-Query Protocol

We now enumerate the changes needed to adapt the view-query protocol to the dynamic case (the
formal specification is omitted for space reasons).

Due to link and node failures, RequestView and ReplyView packets can get lost. Hence, the

296

source may never receive a ReplyVies packei after it initiates a requesi. Thus, the source should
try again after a time-out period.

When a viewserver receives 2 RequestView message, in the static case it replies with its view
if the destination domain is in its precinct. Now, because domain-level edges can fail, it must also
check its dynamic view and reply with its views only if its dynamic view contains a path to the
destinatic;n. Similarly during forwarding of RequestViev and ReplyView packets, a viewserver,
while checking whether é domain is in its view, should also check if its dynamic view contains a
path to it.

Finally, when a viewserver sends 2 message to a node whose domain is partitioned, it should
send a copy of the message to each cell of the domain. This is because a viewserver does not know

which cell contains the node.

5 Ewvaluation

Many inter-domain routing protocols have been proposed, based on various kinds of hierarchies.
How do these protocols compare against each other and against the simple approach? To answer this
question, we need 2 model in whick we can define internetwork topologies, policy/ToS constraints,
inter-domain routing hierarchies, and evaluation measures (e.g. memory and time requirements)
ior inter-domain routing protocols.

In this section, we first present such a model, and then use the model to evaluate our viewserver
hierarchy and compare it to the simple approach. Our evaluation measures are the amount of
memory required at the source and at the routers, the amount of time needed to construct a path,
and the number of paths found out of the total number of valid paths.

Even though the model described here can be applied to other inter-domain routing protocols,
we have not dome so, and hence have not compared them against our viewserver hierarchy. This
is because of lack of time, and because precise definitions of the hierarchies in these protocols is
not available. For example, to do a fair evaluation of IDPR[13], we peed precise guidelines for
how to group domains into super-domains, and how to choose between the union and intersection
methods when defining policy/ToS constraints of super-domains. In fact, these protocols have not
been eveluated in 2 way that we can compare them to the viewserver hierarchy. To the best of our

knowledge, this paper is the first to evaluate a hierarchical inter-domain routing protocol against

297

explicitly stated policy constraints.

5.1 Evaluation Model

We first describe our method of generating topologies arnd policy/ToS constraints. We then describe

the evaluation measures.

Generating Internetwork Topologies

For our purposes, an internetwork topology is a directed graph where the nodes correspond to
domains and the edges correspond to domain-level connections. However, an arbitrary graph will
not do. The topology should have the characteristics of a real internetwork, like the Internet. That
is, it should have backbones, regionals, MANS, LANS, etc.; these should be connected hierarchically
(e.g. regionals to backbones), but “non-hierarchical” connections (e.g. “back-doors”) should also
be present.

For brevity, we refer to backbones as class 0 domains, regionals as class 1 domains, metropolitan-
area domains and providers as class 2 domains, and campus and local-area domains as class 3
domains. A (strictly) hierarchical interconnection of domains means that class 0 domains are
connected to each other, and for ¢ > 0, class i domains are connected to class i — 1 domains.
As mentioned above, we also want some “non-hierarchical” connections, i.e., domain-level edges
between domains irzespective of their classes (e.g. from a2 campus domain 1o another campus
domain or to a backbone domain).

In reality, domains span geographical regions and domain-level edges are usually between do-
mains that are geographically close (e.g. University of Maryland campus domain is connected to
SURANET regional domain which is in the east cost). A dlass { domain usually spans a larger
geographical region than 2 class i + 1 domain. To generate such interconnections, we associ#.te a
“region” attribute to each domain. The intention is that two domains with the same region are
geographically close.

The region of a class 7 domain has the. form To.r;.---x;, where the r;’s are integers. For
example, the region of 2 class 3 domain can be 1.2.3.4. For brevity, we refer to the region of a
class ¢ domain as a class ¢ region.

Note that regions have their own hierarchy. Class 0 regions are the top level regions. We say

298

thati a ciass 1 region To.Tq.--.T; is coniainedin the class i — 1 region xo.ry.---.Ti—1 (Where i > 0).

Containment is transitive. Thus region 1.2.3.4 is contained in regions 1.2.3, 1.2 and 1.

Figure 6: Regions

Given any pair of domains, we classify them as local, remote or far, based on their regions.
Let X be a class : domain and Y a class j domain, and (without loss of generality) let < j.
X and Y are local if they are in the same class i region. For example in Figure 6, A is local to
B,C,J,K,M,N,0,P,and Q. X and Y are remote if they are not in the same class i region but
they are in the same class i — 1 region, or if i = 0. For example in Figure 6, some of the domains
- A is remote to are D, E,F,and L. X and Y are far if they are not local or remote. For example

in Figure 6, A4 is far to I.

We refer to = domain-level edge as local (remote, or faor) if the two domains it connects are local

299

(remote, or far).

We use the foliowing procedure to generate internetwork topologies:

o We first specify the number of domain classes, and the number of domains in each class.

e We next specify the regions. Note that the number of region classes equals the pumber of
domain classes. We specify the number of class 0 regions. For each class i > 0, we specify 2
branching factor, which creates that many class i regions in each class ¢ — 1 region. (That is,
if there are two class 0 regions and the class 1 branching factor equals three, then there are
six class 1 regions.)

e For each class i, we randomly map the class i domains into the class ¢ regions. Note that
several domains can be mapped to the same region, and some regions may have no domain
mapped into them.

o TFor every class : and every class j, 7 > %, we specify the number of local, remote and far

edges to be introduced between class i domains and class j domains. The end points of the
edges are chosen randomly (within the specified constraints).

We ensure that the internetwork topology is connected by ensuring that the subgraph of class
0 domains is connected, and each class 7 domain, for 2 > 0, is connected to a local class i—1

domain.

Choosing Policy /ToS Constraints

We chose a simple scheme tc model Policy/ToS constraints. Each domain is assigned a color: green
or red. For each domain class, we specify the percentage of green domains in that class, and then
randomly choose a color for each domair in that class.

A valid route from 2 source to a destination is one that does not visit any red intermediate do-
mains; the source and destination are allowed to be red. Notice that this models transit poliéy /ToS

constraints. We are working on extending this model to source policy/ToS constraints.

Computing Evaluation Measures

The evaluation measures of most interest for an inter-domain routing protocol are its memory and
time requirements, and the number of valid paths it finds (and their lengths) in comparison to

the number of available valid paths (and their lengths) in the internetwork (e.g. could it find the

300

shortest valid path in the internetwork).

The only analysis method we have at present is to numerically compute the evaluation measures
for a variety of source-destination pairs. Because we use internetwork topologies of large sizes, it is
not feasible to compute for all possible source-destination pairs. We randomly choose a set of source-
destination pairs that satisfy the following conditions: (1) the source and destination domains are
different, and (2) there exists a valid path from the source domain to the destination domain in
the internetwork topology. (Note that the simple scheme would always find such a path.)

For a source-destination pair, we {efer to the length of the shortest valid path in the internetwork
topology as the shortest-path length. Since the number of paths between a source-destination pair
is potentially very large (factorial in the number of domains), and we are not interested in the
paths that are too long, we only count the number of paths whose lengths are not more than the
shortest-path-length plus 2. .

The evaluation measures described above are protocol independent. However, there are also
important evaluation measures that are protocol dependent (e.g. number of levels traversed in
some particular hierarchy). Because of this we postpone the precise definitions of the evaluation

© measures to the next subsection (their definition is dependent of viewserver hierarchy).

5.2 Application to Viewserver Protocol

We have used the above model to evaluate our viewserver protocol for several different viewserver
hierarchies and query methods. We first describe the different viewserver schemes evaluate2. Please
refer to Figure 6 in the following discussioxn.

The first viewserver sche.me is referred to as base. It has exactly one viewserver in each domain.
Each viewserver is identified by its domain-id. The domains in a viewserver’s precinct consist of
its domain and the neighboring domains. The edges in the viewserver’s view consist of the edges
between the domains in the precinct, and edges outgoing from domains in the precinct to domains
not in the precinct. For example, the precinct of viewserver A (i.e. the viewserver in doﬁain A)
consists of domains A, B, J; the edges in the view of viewserver A consists of domain-level edgés
(A, B),(4,7),(B,J),(J,M),(J,K),(J, F), and (J,D).

As for the viewserver hierarchy, a viewserver’s level is defined to be the class of its domain. That

is, a viewserver in a class i domezin is a level 1 viewserver. For each level 1 viewserver, ¢ > 0, its

301

parent viewserver is chosen randomly from the 1e§e1 i — 1 viewservers in the parent region such that
there is a domain-level edge between the viewserver’s domain and the parent viewserver’s domain.
For example, for viewserver C, we can pick viewserver J or K’; suppose we pick J. For viewserver
J, we have no choice but to pick M (N and O are not connected to J). For M, we pick P (out of
P and Q).

We use only one address for each domain. The viewserver-address of a stub domain is con-
catenation of four viewserver (i.e. domain) ids. Thus, the address of A is P.M.J.A. Similarly, the
address of H is PM.K.H. To obtain a route between A and H, it suffices to obtain views of
viewservers A, J, K, H.

The second viewserver scheme is referred to as base-QT (where the QT stands for “query upto
top™). It is identical to base except that during the query protocol all the viewservers in the source
and the destination addresses are queried. That is, to obtain a route between A4 and H, the views

of A,J,M,P,K,H are obtained.

The third viewserver scheme is referred to as locals. It is identical to base except that now a -

viewserver’s precinct also coﬁta.ins domains that have the same region as the viewserver’s domain.
That is, the precinct of viewserver A has the domains A,B,J,C. Note that in this scheme a
viewserver’s view is not necessarily connected. For example, if the edge (C, J) is removed, the view
of viewserver A is no longer connected. (In Section 3, we said that the view of a viewserver should
be connected. Here we have relaxed this condition to simp]ify testing.)

The fourth viewserver scheme is referred to as locals-QT. It is identical 10 locals except that
during the query protocol all the viewservers in the source and the destination addresses are queried.

The fifth viewserver scheme is referred to as vertex-extension. It is identical to base except
that viewserver precincts are extended as follows: Let P denote the precinct of a viewserver in the
base scheme. For each domain X in P, if there is an edge from domain X to domain Y and Y
is not in P, domain Y is added to tﬁe precinct; among Y’s edges, only the ones to domains in P
are added to the view. In the example, domains M, K, F, D are added to the precinct of 4, but
outgoing edges of these domains to other domains are not included (e.g. (F,G) is pot included).
The advantage of this scheme is that even though it increases the precinct size by a factor which
is potentially greater than 2, it increases the number of edges stored in the view by a factor less

thaz 2. (In fact, if the same edge cost and edge policies are used for both directions of domain-

302

level edges, then the only other information that needs to be stored by the viewservers is the policy
constraints of the newly added domains.)

The sixth viewserver scheme is referred to as full-QT. It is constructed in the same way as
vertez-eztension except that the locals scheme is used instead of base scheme to define the P in
the construction. In full-QT, during the query protocol all the viewservers in the source and the
destination addresses are queried.

In all the above viewserver schemes, we have used the same hierarchy for both domain classes
and viewservers. In practice, not all domains need to have a viewserver, and a viewserver hierarchy
different from the domain class hierarchy can be deployed. However, there is an advantage of
having a viewserver in each domain; that is, source nodes do not require fixed domain-level source
Toutes to their parent viewservers (in the view-query protocol). This reduces the amount of hand
configuration required. In fact,the base scheme does not require any hand configuration, viewservers
can decide their precincts from the intra-domain routing tables, and nodes can use intra-domain

routes to reach parent viewservers.

Results for Internetwork 1

The parameters of the first internetwork topology, referred to as Intermetwork 1, are shown in
Table 1.

Our evaluation measures were computed for 2 (randomly chosen but fixed) set of 1000 source-
destination pairs. For brevity, we use spl to refer to the shortest-path length (i.e. the length of
the shortest valid path in the internetwork topology). The minimum spl of these pairs was 2, the
maximum sp! was 13, and the average spl was 6.8. Table 2 lists for each viewserver scheme (1) the
minimum, average and maximum precinct sizes, (2) the minimum, average and maximum merged
view sizes, and (3) the minimum, average and maximum number of viewservers queried.

The precinct size indicates the memory requirement at a viewserver. More precisely, the memory
requirement at a viewserver is O(precinct size x d) where d is the average number of neighbor
domains of 2 domain, except for the vertez-eztension and full-QT schemes. In these schemes, the
memory requirement is increased by a factor less than two. Hence the vertez-eztension scheme has

the same order of viewserver memory requirement as the base scheme and the full-QT scheme has

#7Branching factor is 4 for all region classes.

303

Class 7 || No. of Domains | No. of Regions?” | % of Green Domains | Edges between Classes i and j
| _ | Classj | Local | Remote | Far |
o [1w s | T o s | 6 |o
1 [YOO 16 T 0;'5"—' B 0 190 20 0
1 26 | 5 |0
2 1000 64 0.70 0 166-— 0 —0—_
1 1060 40 0
2 200 40 0
3 B 10000 256) 0.20 0 100 F 0
1 100 0 0
2 10100 50 0
3 50 50 50
Table 1: Parameters of Internetwork 1.
Scheme Precinct Size Merged View Size | No. of Viewservers Queried
base 2/32/68 7 / 71.03 / 101 3/7.51/8
base-QT 2/32/68 | 30/76.01/101 8/8.00/8
locals 2/52.0/103 | 3/09540/ 143 2/742/8
locals-QT 2/52.0 /103 | 43 /101.86 / 143 8/8.00/8
vertez-eztension | 3 /19.2 /796 | 23 / 362.15 / 486 3/751/8
full-QT 11/ 102.9 / 796 | 228 / 396.80 / 519 8/8.00/8

Table 2: Precinct sizes, merged view sizes, and number of viewservers queried for Internetwork 1.

the same order of viewserver memory requirement as the locals scheme.

The merged view size indicates the memory requirement at a source; i.e. the memory require-

ment at 2 source is O(merged view size x &) except for the vertez-eztension and full-QT schemes.

Note that the source does not need to store information about red and non-transit domains. The

numbers in Table 2 take advantage of this.

The number of viewservers queried indicates the communication time required to obtain the

merged view at the source. Because the average sp! is 6.8, the “real-time” communication time

304

-

required to obtain the merged view at a source is slightly more than one round-trip time between
the source and the destination.

As is apparent from Table 2, using a2 QT scheme increases the merged view size and the number
of viewservers queried only by about 5%. Using 2 locals scheme increases the merged view size
by about 30%. Using the vertez-eztension scheme increases the merged view size by 5 times (note
that the -a.mount of actual memory needed increases only by a factor less than 2). The number of
viewservers queried in the locals scheme is less than the number of viewservers queried in the base
scheme. This is because the viewservers in the locals scheme have bigger precincts, and a path from
the source to the destination can be found using fewer views.

Table 3 shows the average number of spl, spl + 1, spl + 2 length paths found for a source-
destination pair by the simple approach and by the viewserver schemes. All the viewserver schemes
are very close to the simple approach. The vertez-eztension and full-QT schemes are especially close
(they found 98% of all paths). Table 3 also shows the number of pairs for which the viewserver
schemes did not find a path (ranging from 1.4% to 5.9% of the source-destination pairs), and
the number of pairs for which the viewserver schemes found longer paths. For these pairs, more
viewserver addresses need to be tried. Note that the localsand vertez-eztension schemes decrease the
number of these pairs substantially (adding QT yields further improvement). Our policy constraints
are source and destination domain independent. Hence, even a class 2 domain, if it is red, can not
carry traffic to a class 3 domain to which it is connected. We believe that these figures would
improve with policies that are dependent on source and destination domains.

As is apparent from Table 3 and Table 2, the locals scheme does not find many more extra
paths than the base scheme even though it has larger precinct and merged view sizes. Hence it is
not recommended. The vertez-eztension scheme is the best, but even base is adeguate since it finds
many paths.

We have repeated the above evaluations for two other internetworks and obtained similar con-

clusions. The results are in Appendix B.

6 Concluding Remarks

We presented hierarchical inter-domain routing protocol that (1) satisfies policy and ToS con-

straints, (2) adapts to dvnamic topology changes including failures that partition domains, and

305

Number of paths found | No. of pairs No. of pairs
Scheme spl | spl+1| spl+2 | with no path | with longer paths
simple 2.51 | 1848 | 131.01 N/A N/A
base 241 | 15.84 99.42 59 3 by 1.33 hops
base-QT 241 15.86 { 100.16 . 54 3 by 1.33 hops
locals 2.41 | 16.17 | 103.54 29 3 by 1 hop
locals-QT 2.41 | 16.29 | 105.02 20 3 by 1 bop
veriez-eztension || 2.51 | 18.38 | 128.19 22 0 by 0 bops
full-QT 2.50 | 18.40 | 128.90 14 0 by 0 hops

Table 3: Number of paths found for Internetwork 1.

(3) scales well to large number of domains.

Our protocol uses partial domain-level views to achieve scaling in space requirement. It floods
domain-level topological changes over 2 flood area to achieve scaling in communication requirement.

It does not abstract domains into superdomains; hence it does not lose any domain-level detail
in ToS and policy information. It merges a sequence of partial views to obtain domain-level source
routes between nodes which are far away. The number of views that need to be merged is bounded
by twice the number of levels in the hierarchy.

To evaluate and compare inter-domain routing protocols against each other and against sim-
ple approach, we presented 2 model in which one can define internetwork topologies, policy/ToS
constraints, inter-domain routing hierarchies, and evaluation measures. We applied this model to
evaluate our viewserver hierarchy and compared it to the simple approach. Our results indicate
that viewserver hierarchy finds many short valid paths and reduces the amount of memory require-
ment by two order of magnitude.

Our protocol recovers from fail-stop failures of viewservers and gateways. When a viewserver
fails, an address which indudes.the viewserver’s id becomes useless. This deficiency can be overcome
by replicating each viewserver at difierent nodes of the domain (in this case a viewserver fails only
if all nodes implementing it fail}. This replication scheme requires viewserver ids to be independent

of node ids, which can be easily accomplished?®.

?* For example, if node-ids of nodes implementing a viewserver share a prefix, this prefix can be used as the

306

The only drawback of our protocol is that to obtain a domain-level source route, views are

merged at (or prior to) the connection (or flow) setup, thereby increasing the setup time. This
drawback is not unique to our scheme [8, 13, 6, 10].

There are several ways to reduce the setup overhead. First, domain-level source routes to fre-
quently used destinations can be cached. The cacheing period would depend on the ToS require-
ment of the applications and the frequency of domain-level topology changes. For example, the
period can be long for electronic mail since it does not require shortest paths.

Second, views of frequently queried viewservers can be replicated at “mirror” viewservers in the
source domain. A viewserver would periodically update the views of its mirror viewservers.

Third, connection setup also involves traversing the name server hierarchy (to obtain destination
addresses from its names). By integrating the name server hierarchy with the viewserver hierarchy,

we may be able to do both operations simultaneously. This requires further investigation.

References

[1) A.V. Aho, J.E. Hoperoft, and J.D. Ulman. The Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[2] C. Alaettinogln and A. U. Shankar. Hierarchical Inter-Domain Routing Protocol with On-Demand
ToS and Poicy Resolution. In Proc. IEEE International Conference on Networking Protocols °98, San
Fransisco, California, October 1993.

[3] C. Alaettinoglu and A. U. Shankar. Viewserver Hierarchy: A Scalable and Adaptive Inter-Domain
Routing Protocol. Technical Report UMIACS-TR-93-13, CS-TR-3033, Departmeni of Computer Sci-
ence, University of Maryland, College Park, February 1993.

[4] A. Bar-Noy and M. Gopal. Topology Distribution Cost vs. Eficient Routing in Large Networks. In
Proc. ACM SIGCOMM ’90, pages 242-252, Philadelphia, Pennsylvania, September 1990.

[3) L. Breslau and D. Estrin. Desigp of Inter—Administrative Domain Routing Protocols. In Proc. ACM
SIGCOMM ’90, pages 231-241, Philadelphia, Pennsylvania, September 1990.

[6] 3. N. Chiappa. ‘A New IP Routing and Addressing Architecture. Big-Internet ma.lhng hst 1992.
Available by anonymous ftp from munnari.oz.an:big-internet/list~archive.

[7) D. Clark. Route Fragments, A Routing Proposal. Big-Internet mailing list., July 1992. Available by
anonymous ftp from munnari.oz.au:big-internet/list-archive.

[8] D.D. Clark. Policy routing in Internet protocols. Requst for Comment RFC-1102, Network Information
Center May 1986.

[9] D. Estrin. Policy requirements for inter Administrative Domain routing. Request for Comment RFC-
1125, Network Information Center, November 1989.

[10] D. Estrin, Y. Rekhter, and S. Hotz. Scalable Inter-Domain Routing Architecture. In Proc. ACM
SIGCOMM °’92, pages 40-52, Baltimore, Maryland, August 1992.

viewserver id. Intra-domain routing would forward a packet destined to a viewserver to any operational node with
this prefix.

307

[11} F. Kamoun and L. Kleinrock. Stochastic Performance Evaluation of Hierarchical Routing for Large
Networks. Computer Networks and ISDN Systems, 1979.

[12} B.M. Leiner. Policy issues in interconnecting networks. Request for Comment RFC-1124, Network |

Information Center, September 1989.

[13) M. Lepp and M. Steenstrup. An Architecture for Inter-Dornain Policy Routing. Internet Draft. Available
from the authors., June 1992,

[14) K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). Request for Comment RFC-1105,
Network lnformation Center, June 1989.

[15] R. Perlman. Hierarchical Networks and Subnetwork Partition Problem. Computer Networks and ISDN
Systems, 9:297-303, 1985.

[16] Y. Rekhter. Inter-Domain Routing Protocol (IDRP). Available from the author., 1992. T.J. Watson
Research Center, IBM Corp.

[17] K. G. Shin and M. Chen. Performance Analysis of Distributed Routing Strategies Free or Ping-Pong-
Type Looping. IEEE Transactions on Computers, 1987.

[18] P. F. Tsuchiya. The Landmark Hierarchy: Description and Analysis, The Landmark Routing: Ar-
chitecture Algorithms and Issues. Technical Report MTR-87W00152, MTR-87TW00174, The MITRE
Corporation, McLean, Virginia, 1987.

[19] P. F. Tsuchiya. The Landmark Hierarchy:A New Hierarchy For Routing In Very Large Networks. In
Proc. ACM SIGCOMM '88, August 1988.

[20] P. F. Tsuchiva. Efficient and Robust Policy Routing Using Multiple Hierarchical Addresses. In Proc.
ACM SIGCOMM 91, pages 53-65, Zurich, Switzerland, September 1991.

A View-Update Protocol Event Specifications

The events of gateway ¢ are specified in Figure 7. When a gateway g recovers, Cellld, is set to
nodeid(g). Thus, when g next executes Update,, it sends either an UpdateCell or a DeleteCell
message 10 viewservers, depending on whether it is no longer the minimum id gateway in its cell?®.

The events of a viewserver z are specified in Figure 5. Note that when z adds an entry to
DView. (upon receiving a UpdateCell message), it selectively chooses subset of neighbors from
the cost set in the packet to include only the neighbor domains which are in SView.. When
a viewserver z recovers, DView, is set to {}. Its view becomes up-to-date as it Teceives new

information from reporting gateways (and remove false information with the time-to-die period).

2% Sending 2 DeleteCell message is essential. Because prior to the failure, g may have been the smallest id
gateway in its cell. Hence, some viewserver’s may still contain an entry for its old domain cell.

308

Update, {Executed periodically and also optionally upon a change in IntraDomainRT,}
{Determines the id of g’s cell and initiates UpdateCell and DeleteCell messages if needed.}
OldCellld = Cellld,;

Cellld, := compute cell id using Local!Gateways; and IntraDomainRT,;
if nodeid(g) = Cellld, then
ncostset := compute costs for each neighbor domain cell using IntraDomainRT,;
flood,((UpdateCell, domainid(g), Cellld,, Clock,, FloodArea,,ncostset));
endif
if nodeid(g) = OldCellld # Cellld, then
flood,((DeleteCell, domainid(g), nodeid(g), Clocky, FloodArea,));
endif

Receivey(packet) {either an UpdateCell or a DeleteCell packet}

flood,(packet)

where procedure flood,(packet)
if domainid(g) € packet.floodarea then
{remove domain of g from the fiood area to avoid infinite exchange of the same message.}
packet. floodarea = packel.floodarea — {domainid(g)};
for all A € LocalGateways, U LocalViewservers, do
Send(packet) to h using (); ‘
endif
for all h € AdjForeignGateways, A domainid(h) € packet.floodarea do
Send(packet) to h;

Gateway Failure Model: A gateway can undergo failures and recoveries at anytime. We assume failures
are fail-stop (i.e. a failed gateway does not send erroneous messages). When 2 gateway g recovers, Cellld,
is set to nodeid(g).

Figure 7: View-update protocol: Events of 2 gateway ¢

B Results for Other Internetworks

Results for Internetwork 2

The parameters of the second internetwork topology, referred to as Internetwork 2, are the same
as the parameters of Internetwork 1 (a different seed is used for the random number generation).
Our evaluation measures were computed for.a set of 1000 source-destination pairs. The mini-
mum sp! of these pairs was 2, the maximum sp! was 13, and the average spl was 7.2.
Table 4 and Table 5 shows the results. Similar conclusions to Internetwork 1 hold for Internet-
work 2. In Table 5, the reason that local and QT schemes have more pairs with longer paths than
the base scheme is that these schemes found some paths (which are not shortest) for some pairs for

which the base scheme did not find a2ny path.

309

Receive. (UpdateCell, did, cid, ts, FloodArea, ncset)
if did € Precinct; then
if 3(did:cid, timestarnp, ezpirytime, deleted, ncostset) € DView: A

ts > timestamp then {received is more recent; delete the old one}
delete (did:cid, timestamp, ezpiryiime, deleted, ncostset) from DView.;
endif

if =3(did:cid, timestamp, ezpiryiime, deleted, ncostset) € DView, then
Choose ncostset from ncset using SView.;
insert (did:cid, ts, Clock, + TimeToDie., false, ncostset) to DView;
endif
endif

Receive (DeleteCell, did, cid, ts, floodarea)
if did € Precinct, then
if 3(did:cid, timestamp, ezpirytime, deleted, ncostset) € DView: A

ts > timestamp then {received is more recent; delete the old one}
delete (did:cid, timestamp, ezpirytime, deleted, ncostset) from DView.;
endif

if =3(did:cid, timestamp, expirytime, deleted, ncostset) € DView. then
insert (did:cid, ts, Clock. + TimeToDie., true,{}) to DView,;
endif
endif
Delete. {Executed periodically to delete entries older than the time-to-die period}
for all (A:g, tstamp, ezpirytime, deleted, neset) € DView: A ezpirytime < Clock. do
delete (A:g, tstamp, ezpirytime, deleted, ncset) from DView;;

failures are fail-stop. When a viewserver z recovers, DView: is set to {}.

Viewserver Failure Model: A viewserver can undergo failures and recoveries at anytime. We assume

Figure 8: View update events of a viewserver z.

Scheme i Precinct Size | Merged View Size | No. of Viewservers Queried
base 2/32/76 . 4/66.62 /96 3/755/8
base-QT 2/32/76 29 /72.76 /] 96 8/8.00/8
locals 3/69.8 /149 4 [101.32 / 148 2/736/8
locals-QT 3/69.8/149 | 35/110.32/ 152 8/800/8
vertez-eztension || 3 / 19.47 / 817 | 15 / 339.60 / 469 3/755/8
Sull-QT 11 /135.2 / 817 | 186 / 402.51 / 503 8/8.00/8

Table 4: Precinct sizes, merged view sizes, and no of viewservers queried for Internetwork 2.

Results for Internetwork 3

The parameters of the third internetwork topology, referred to as Internetwork 3, are shown in

Tzble 6. Internetwork 3 is more connected, more class 0, 1 and 2 domains are green, and more

310

Number of paths found | No. of pairs No. of pairs
Scheme spl | spl+ 1| spl+2 | with no path | with longer paths
simple 2.21 | 13.22 | 74.30 N/A N/A
base 1.8 | 8.20 34.40 123 13 by 1.08 hops
base-QT 1.98 | 8.36 35.62 110 15 by 1.13 hops
locals 2.08} 9.18 40.50 97 23 by 1.39 hops
locals-QT 2.08 | 9.38 42.08 67 23 by 1.30 hops
vertez-eztension || 2.18 | 12.57 64.98 19 6 by 1 hop
Sull-QT 2.19 | 12.85 67.37 4 4 by 1 hop

Table 5: Number of paths found for Internetwork 2.

class 3 domains are red. Hence, we expect more valid paths between source and destination pairs.

QOur evaluation measures were computed for a set of 1000 source-destination pairs. The mini-

mum spl! of these pairs was 2, the maximum spl was 10, and the average sp! was 5.93.

Class i || No. of Domains | No. of Regions® | % of Green Domains | Edges between Classes 7 and j
a . N Clajs 3J _Eocal Remote | Far
B 0 10 o 4‘ l o 0.85 - -6 :8 ; _L

1 100 16] 0.80 i J_J-.QO _257 0
. 1 50 20 0
2 i 1000 64 0.75 0 500 50 0

1 1200 100 0

| L ~ N 2_ 200 40 0
—3 IOE k256- 0.10 0— 3-(;6 50 0
1 250 100 0

2 10250 | 150 30

3 200 150 100

Table 6: Parameters of Internetwork 3.

39 Branching factor is 4 for all domain classes.

311

Table 7 and Table 8 shows the results.

Interpetwork 3.

Similar conclusions to Internetwork 1 and 2 hold for

Scheme Precinct Size Merged View Size | No. of Viewservers Queried
base 2/35/171 | 5/134.41/ 206 3/7.26/8
base-QT 2/35/171 | 55/154.51 / 206 8/8.00/8
locals’ 3/7017 /171 | 4/164.16/ 257 2/7.00/8
locals-QT 3/70.17 /171 | 57 / 191.06 / 258 8/8.00/8
vertez-eztension || 5 / 34.17 / 1986 | 18 / 601.56 / 695 3/7.26/8
full-QT 14 / 155.5 / 1986 | 503 / 655.79 / 743 8/8.00/8

Table 7: Precinct sizes, merged view sizes, and no of viewservers queried for Internetwork 3.

Number of paths found | No. of pairs No. of pairs
Scheme spl | spl+1 | spl+2 | with no path | with longer paths
simple 3.34 | 37.55 | 368.97 N/A N/A
base 2.83 | 24.25 | 178.08 17 11 by 1.09 bops
base-QT 2.87 | 25.53 | 193.41 12 8 by 1.12 hops
locals 2.87 | 25.62 | 196.33 21 8 by 1 hop
locals-QT 2.97 | 27.59 | 218.63 2 6 by 1 hop
vertez-eztension || 3.32 | 35.73 | 332.54 5 1bv 1hop
fll-QT 3.33 | 36.47 | 346.44 0 0 by 0 hops

Table 8: Number of paths found for Internetwork 3.

Figure 9 through Figure 11 show the number of spl, sp! + 1 and spl + 2 length paths found by
the schemes as 2 function of sp! (we only show results for spl values for which more than .10 pairs
were found). We do not include bdase-QT, locals and locals-QT schemes since they are very close
to base scheme. As expected, as spl! increases, the number of paths for a source-destination pair

increases, and the gap between the simple scheme and the viewserver schemes increases.

312

//

splh+1 length paths lound sp! length paths found

spl+2 length paths found

o
"
pes
-
-

2 NWbHLOOONOWO
Y v

: flat ——
base ——
- vertex-extension -e— -
fU"-QT b ot . /_—-————'—-"
- /, -
3 4 5 6 7 8 9

spl length

Figure 9: Number of spl length paths found for Internetwork 3.

120 1 LY ' 11

100 F flat ——
base ——

80 I veriex-extension -&--- e i

full-QT .

80 ¢ ol

40+ — i

20 t |
T

O - 4 1 L 3
3 4 5 8 7 8 =]
spl length

Figure 10: Number of spl + 1 length paths found for Internetwork 3.

1200

1000

T

800 F vertex-extension -&--
full-QT

800
400 r
200 +

0 =

’

]] i i

filat ~—
base —

3

4

5 : 6 7 8 8
spl length

Figure 11: Number of spl + 2 length paths found for Internetwork 3.

313

REPORT DOCUMENTATION PAGE

Form approved
OMB No 074-0188

1.

AGENCY USE ONLY (leave blank){ 2. REPORT DATE |[3. REPORT TYPE END DATES COVERED
10/15/93 . Technical Report

4. TITLE AND SUBTITLE

Viewserver Hierarchy: A New inter-Domain Routing Protocol and its
Evaluation

. AUTHOR(S)

Cengiz Alaettinoglu, and A. Udaya Shankar

5. FUNDING NUMNBERS
DASG-60-92-C-0055

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland

Department of Computer Science

A.V. Williams Building

College Park, MD 20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

CS-TR-3151

UMIACS-TR-93-98

SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

PhillipsLaboratory

Director of Contracting

3651 Lowry Avenue SE
Kirtland AFB, NM 87117-5777

10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT

12.b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A simple approach to inter-domain routing is domain-level source routing with link-state approach where each
node maintains a domain-level view of the internetwork. This does not scale up to large internetworks. The
usual scaling tecnnique of aggregating domains into superdomains loses ToS and policy detail.

We present a new viewserver hierarchy and associated protocols that (1) satisfies policy and ToS constraints,
(2) adapts to dynamic topology changes including failures that partition domains, and (3) scales well to large
nuimber of dominas without losing detail. Domain-level views are maintained by special nodes called
viewservers. Each viewserver maintains a domain-level view of surrounding precinct. Viewservers are organized
hierarchically. To obtain domain-level source routes, the views of one or more viewservers are merged (upto a

maximum of twice the levels in the hierarchy.

We also present a mode! for evaluating inter-domain routing protocols, and apply this model to compare our

viewserver hierarchy against the simple approach . Our results indicate that

short valid paths and reduces the amount of memory requirement by two orders of magnitude.

the viewserver hierarchy finds many

14. SUBJECT TERMS
Network Architecture and Design

15. NUMBER OF PAGES
33

16. PRICE CODE

SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION 20. LIMITATION OF

17.
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified Unlimited

MSN 7540-01 280-5500 314 - Standard Form 298 (Rev 2-89)

-

TEMPORAL ANALYSIS FOR HARD REAL-TIME SCHEDULING"

Manas C. Saksena and Ashok K. Agrawala

Department of Computer Science
University of Maryland
College Park, MD 20742

Abstract

Static time driven scheduling has been advocated for use in
Hard Real-Time systems and is particularly appropriate for
many embedded systems. The approaches taken for static
scheduling often use search techniques and may reduce the
search by using heuristics. In this paper we present a tech-
nique for analyzing the temporal relations among the tasks,
based on non-preemptive schedulability. The relationships
can be used effectively to reduce the average complexity of
scheduling these tasks. They also serve as a basis for selective
preemption policies for scheduling by providing an early test
for infeasibility. We present examples and simulation results
to confirm the usefulness of temporal analysis as a phase prior
to scheduling.

1 Introduction

Many safety critical real-time applications like process con-
trol, embedded tactical systems for military applications, air-
traffic control, robotics etc. have stringent timing constraints
imposed on their computations due to the characteristics of
the physical system. A failure to observe the timing con-
straints can result in intolerable system degradation and in
some cases it may have catastrophic consequences. _

Scheduling is the primary means of ensuring the satisfaction
of timing constraints for such systems[1]. As a result, signif-
icant effort has been invested in research on hard real time
scheduling [2, 3, 4]. In this paper we discuss a scheduling
technique for static scheduling to guarantee timely execution
of time critical tasks.

The time driven scheduling model is being used by many
experimental systems, including MARS[5], MARUTI|[6] and
Spring Kernel[7]. The static time driven scheduling technique
involves constructing a schedule offline, which may be repre-
sented as a Gantt chart[8] or calendar[6] (Figure 1). Tasks
are invoked at run-time whenever they are scheduled to exe-
cute. Such a scheduling model is particularly appropriate for
many embedded systems. Recent effort in this direction has
shown the viability of such an approach for practical real-time
applications[9).

*This research was supported in part by ONR and DARPA under
contract NOO014-91-¢c-0195.

315

N

Figure 1: Gantt Chart or Calendar

The intractability of most scheduling problems has led to
approaches based on search techniques for scheduling of real-
time tasks. The feasibility of a task set is determined through
construction of a schedule; failure to construct a schedule
denotes infeasibility. Heuristics are often used as a means
of controlling the complexity of scheduling. In many cases,
heuristics perform well enough to result in an acceptable so-
lution.

There has been little emphasis on the use of analytic tech-
niques to assist in time driven scheduling. Decomposition
scheduling[10] based on dominance properties of sequences[11]
uses analytic techniques to decompose a set of tasks into a se-
quence of subsets. Significant reduction in average complexity
can be achieved if the set of tasks can be decomposed into a
large number of subsets, each having a small number of tasks.

In this paper, we present an analysis technique for time
driven scheduling based on the timing requirements of tasks.
The analysis results in the establishment of a set of temporal
relations between pairs of tasks based on a non-preemptive

scheduling model. These relations can be used by scheduling”

algorithms to reduce the complexity of scheduling in the av-
erage case, and as an early test for infeasibility. As a test for
infeasibility, it provides a good basis for policies using selec-
tive preemption to enhance feasibility. When infeasibility is
not detected, the temporal relations may be used by a search
algorithm to effectively prune large portions of search space,
thereby controlling the cost of scheduling.

2 Time Driven Scheduling

The time driven scheduling approach constructs a calendar
for the set of tasks in the system. The tasks may be sched-
uled preemptively or non-preemptively. The non-preemptive
scheduling problem for a uniprocessor is known to be NP-
Complete[12]. When the tasks are mutually independent, and
can be preempted at any time, it is known that the earliest
deadline first policy is optimal[13] and obviates the need for
non-preemptive scheduling. However, when tasks synchronize

using critical sections, the preemptive scheduling problem is
also known to be intractable(NP-Hard)[14].

In general, when the overhead of preemption is negligible,
the non-preemptive solutions form a subset of preemptive
solutions[8]. However, when tasks may interact with each
other, the non-preemptive models are simpler, easier to im-
plement and closer to reality[15]. They are also necessary for
certain scheduling domains like I/O scheduling and provide a
basis for selective preemption policies.

2.1 Task Model

We consider a set of n tasks I' = {n; : i = 1,2,...,n} to
be scheduled for execution on a single processor. Each task
;, abbreviated as 1, is a 3-tuple [r;, ¢;, d;] denoting the ready
time, computation time and deadline respectively. The time
interval [ry, d;] is called the timing window w; of task 7;, and
indicates the time interval during which the task can execute.
The computation time of each task is less than the window
length jw;|'. All tasks are assumed to be independent for
simplicity of exposition even though such a requirement is
not necessary for the analysis.

In a hard real-time system, processes may be periodic or
sporadic [14]. Such a set of processes may be mapped to our
scheduling model by techniques identified in [1, 14, 16] and
constructing a schedule for the least common multiple of the
periods of the tasks.

2.2 Non-Preemptive Scheduling Model

A non-preemptive schedule is the mapping of each task 7; in I
to a start time s;. The task is then scheduled to run without
preemption in the time interval [s;, f;], with its finish time
being f; = s; + ¢;. A feastble schedule is a schedule in which
the following conditions are satisfied for each task 7;:

ri < 8 (1)
fi £ d (2)

It is useful to consider a non-preemptive schedule as an
ordered sequence of the set of tasks. To get a maximally
packed schedule from a sequence [m,T2,...,7,), we can re-
cursively derive the start time s; and finish time f; of the
tasks as follows:

si = maz(r;, fim1) (3)
fi = sit+a (4)
with
S§1=n

The scheduling problem can thus be considered as a search
over the permutation space. A permutation (sequence) is fea-
sible if the corresponding schedule is feasible. Notice that
for any permutation schedule derived as above, equation 1 is
implied by (3) and we only need to verify the deadline con-
straints for the tasks.

ll'u.i.'|= d; — 1

RN P s

r 1 d

Figure 2: Infeasibility of task A executing before task B

3 Temporal Analysis

Temporal analysis uses pairwise schedulability analysis of
tasks to generate a set of relations to eliminate sequences
which cannot lead to feasible solutions. In this section we de-
fine the temporal relations and show how they may be derived
from the timing constraints of tasks.

3.1 Definitions of Temporal Relations

Consider two tasks 7; and 7;. We wish to find out what we
can say about the relative ordering of these tasks, given their
timing constraints. A set of relations are identified below
which identify the different possibilities.

Precedence Relation: A precedence relation denoted as
7y —+ 7;, implies that in any feasible schedule 7; must
execute before 7;.

Infeasible Relation: An infeasible relation denoted by
7 © 7; implies that in any feasible schedule, 7 and 7;
cannot run in a sequential order.

Concurrent Relation: 1; || 7; if there is no precedence or
infeasible relation between them. A concurrent relation
indicates that a feasible schedule may exist with any or-
der of the tasks 7; and 7;. It does not, however, indicate
the existence of a feasible schedule.

For each task 7; let us define two terms ¢; and I;, denoting
the earliest finish time and the latest siart lime as:

ri+ i | (5)
d; = ¢ (6)

e =
i =

A preliminary set of relations can be established using the
following rules, for every pair of tasks 7; and ;.

(e,- < Ij) A (l,‘ < Cj) = T =T (7)
(ei>h)n(lize) = 77— (8)
(<L) A(lize) = 7in 9
(e; > Ij) A (1,‘ < ej) = T @‘rj (10)

The basic idea is that if the. earliest finish time of a task A is
greater than the latest start time of a task B, then a feasible
schedule cannot be found in which A is scheduled before B

316

T

~-=-="a

H e r

Figure 3: Window Modification (A — B)

2

/

Figure 5: Precedence Graph for example of Figure 4

5

(Figure 2). Thus, for instance the first part of condition for
rule 10 says that 7; cannot precede 7;, and the second part
says that 7; cannot precede 7;, establishing the infeasible re-
lation.

3.2 Window Modification

Consider two tasks 7, and 7;, and a precedence relation
T — Tp between them. As this indicates that in any fea-
sible schedule 7, must precede 7,, we can update the timing
windows, as follows (Figure 3):

Sy
|

min(dg, 1)

maz(ry, e,)

(11)
(12)

The window modification does not alter the scheduling
problem in the sense that every feasible sequence with the
original timing constraints is a feasible sequence with the
modified timing constraints and vice-versa. Further, the
schedules for feasible sequences are identical in both cases.
A task’s window may shrink because of window modification.
This may lead to a change in the relation of the modified task
with other tasks. The procedure may be applied iteratively
till no further changes can be made or an infeasible relation
1s detected.

3.3 Examples

(a) Consider a set of five tasks as shown in Figure 4. The
temporal analysis leads us to the following set of prece-
dence relations, sans the redundant ones:

{72 - T73,7T) —* 75,73 —* T5,7Tq — Ts}

The set of precedence relations may be represented as
a precedence graph (Figure 5) and impose a partial or-
der on the task set. Only sequences which are consistent

317

with this partial order need to be considered for schedul-
ing. For 5 tasks, the total number of permutations is
120(= 5!). The number of total orders consistent with
the partial order of Figure 5 is 12, which is a drastic re-
duction in the number of sequences that need to be con-
sidered for scheduling. The modified task set is shown in
Figure 4(b), with the modified values in bold.

(b) As another example, consider the set of 4 tasks as shown
in Figure 6. The task set in different stages of temporal
analysis is shown, with the new temporal relations? at
each stage. This example shows how successive refine-
ment of temporal relations can lead to detecting infeasi-

bility.

3.4 Complexity of Temporal Analysis

It is easy to see that the initial set of relations can be estab-
lished in O(n?) time. Further, each phase of refinement also
takes no more than O(n?). An upper bound for the num-
ber of phases is n. Therefore, the worst case complexity of
temporal analysis is O(n3). In practice, however, the cost of
temporal analysis can be significantly less since concurrent re-
lations and relations between non-overlapping tasks need not
be generated explicitly. Furthermore, the number of phases
required to stabilize window modification can be reduced if
the release times are modified in the topological sort order
of the precedence graph and deadlines are modified in the
reverse topological sort order.

In any case, the cost of temporal analysis for static schedul-
ing is not significant when used in conjunction with an expo-
nential time scheduling algorithm. In section 5, we show em-
pirically that the cost of temporal analysis is not a significant
factor for static scheduling.

4 Non Preemptive Scheduling using
Temporal Analysis

The relations established through temporal analysis serve as a
basis for scheduling of the tasks. Temporal analysis may thus
be perceived as a pre-processing stage for scheduling. The
result of this pre-processing stage is one of the following:

1. The task set was detected to be infeasible, due to the
existence of one or more infeasible relations.

2. A set of precedence relations were established generat-
ing a precedence graph. The precedence graph imposes
a partial order on the set of tasks. It serves as an in-
put to the scheduler which may exploit the partial order
generated to prune the search space.

4.1 Detecting Infeasibility

Whenever, an infeasible relation exists between two tasks, it
is known that no ordering of the two tasks is feasible. Thus,

2Concurrent Relations are not shown.

T T2 T3 T4 Ts
0151971018
ci 7| 8418113
dj29|16|23]30] 42

(a)

Figure 4: Window Modification: (a) Original Task Set (b) Task Set after Temporal Analysis

T1 T2 73 T4
r {40 | 30 0 0
e | 53|55 | 25 25
c| 15125 25 25
1145165 75 75
d 60| 904 100 | 100

| n—mwn |
(2)

Ty | T2 | 78 | T4
r| 40130 0 0
e | 55|55 25| 25
c| 1525|251 25
1145 65| 40 | 40
d|60]90]| 65| 65

| 3—7n, Ta— 7 |

(c)

7Ty | T2 | T3 T4 | Ts
0] 5 ([13] 0 17
c| 718 4 8 {13
d| 2901612329142
(b)
S T2 73 T4
r |40 | 55 0 0
e| 55180 25 23
c|{ 15125} 25 25
1145165 75 75
d} 604 90| 100} 100
[T3 —* T2, Tq — T2 |
(b)
T1 T2 T3 T4
r{40 |55 0 0
e{ 55180251 25
c{ 1525|251} 25
1 145]65] 20 20
d|{ 60|90 |45 | 45
! T3Q@ T4 |
(d)

Figure 6: Example for Determining Infeasibility with Temporal Analysis

the detection of an infeasible relation at any stage in tem-
poral analysis indicates that the task set is infeasible. Even
though only pairwise schedulability analysis is used for estab-
lishing relations, successive refinement of relations results in
a possible percolation of this effect to other tasks too. This
eflect is exemplified in the example of Figure 6, where sev-
eral iterations lead to a infeasible relation. It must be noted
that whenever infeasibility is detected, the resulting task set
and their relations also provide a good feedback as to what
caused it. The feedback information may be used to allo-
cate more resources, change resource allocation or allow for
selective preemption as the case may be.

4.2 Search Technique for Scheduling

The intractability of non-preemptive scheduling has led to
implicit enumeration techniques based on branch and bound
search methods. The search space is the set of all possible
permutation sequences. One way of enumerating schedules is
to generate an initial schedule and then successively refine it
using heuristics to generate “better” schedules, until a feasible
schedule is obtained {3, 17, 16].

In this paper, we concentrate on another enumeration
method which constructs a schedule in an incremental man-
ner. Variants of this method have been used in [4, 18, 19,
20, 21] The search space is represented as a search tree. The

318

root (level 0) of the tree is an empty schedule. The nodes
of the tree represent partial schedules. A node at level k
gives a partial schedule with k tasks. The leaves are complete
schedules. The successors of an intermediate node are imme-
diate exlensions of the partial schedule corresponding to that
node. From a node at level k, there are at most n—k branches
with each branch corresponding to an extension of the partial
schedule by appending one more task to the schedule. Search
is done in a branch and bound manner, wherein parts of the
search tree are pruned when it is determined that no feasible
schedule can arise from them. For each node being expanded,
the following conditions must hold.

1. All immediate extensions of the node must be feasible
[4, 18].

2. The remaining computational demand must not exceed
the difference between the largest deadline of remaining
tasks and current scheduling time [4].

If any condition is violated then no feasible schedule can
be generated in the subtree originating from this node. No
search is conducted on the subtree rooted at such a node.

4.2.1 Heuristically Guided Scheduling

Heuristics are commonly used to guide search in many combi-
natorial searching problems. For non-preemptive scheduling

heuristics may be used to guide search along paths which are
more likely to lead feasible schedules. Search is done in a
depth first manner until either a complete feasible schedule is
found, in which case the search terminates, or it is determined
that no possible extensions of the current node can lead to a
feasible schedule. Heuristics are used to determine which of
the many children of a node should be searched next. Back-
tracking takes place when no further extensions of a node can
be made. We evaluate temporal analysis using such a heuris-
tic search for scheduling.

5 Empirical Evaluation of Temporal
Analysis

In the previous sections, we have shown how temporal anal-
vsis may be used to restrict the search space for scheduling.
Clearly, the existence of even a few precedence relations re-
sults in a drastic reduction of search space®. However, the
usefulness of the scheme is not obvious since we are only in-
terested in feasible schedules, hence a large part of the search
space may never need to be examined. We have conducted
various simulations to verify that indeed temporal analysis
results in improved performance for scheduling. For reasons
of space, we mention only a few significant results.

We used a heuristic search technique for scheduling as de-
scribed in section 4.2. The heuristic used for our simulation
study was a two level heuristic. The primary heuristic was
earliest start time(EST).

EST; = maz(r;, fi)

where k is the last task in the partial schedule at that node.

In the case of a conflict, the secondary heuristic earliest
deadline was used. Further conflicts were resolved arbitrarily.
The heuristic has a natural intuitive appeal and is known to
produce good results among linear heuristics[22].

For each set of parameters, we generated 200 “feasible”
task sets with 100 tasks each. The task sets were gener-
ated with 100% utilization as this presents the most difficulty
for scheduling. The computation times were generated using
uniform distributions and laxities using normal distribution.
\We compared the success percentage (i.e. percentage of suc-
cessfully scheduled task sets) of scheduling with and without
temporal analysis as a pre-processing stage. The success per-
centage (SP) is plotted against “cut-off-time”, indicating the
maximum time allowed to the scheduling algorithm to suc-
cessfully generate a schedule.

Our simulation results show that temporal analysis is not
needed for scheduling when both the mean and the variation
in laxities is low since the simple heuristics were able to sched-
ule almost all task sets (success ratio ~ 1.0). However, when
the laxities are high (as compared to computation times) and
the variation in laxities is also high®, then the heuristics do

3Even one relation reduces the search space by half.
4Note that the task set utilization is 100%

319

sP

100.00
95.00

TAS:
YAS.

85.00
3000
7%.00
70.00
65.00

55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00

0.00

Cuteof(-Time

0.00 50.00 100.00 150.00 200.00 250.00 300.00

Figure 7:
COV, =10

Success Ratio vs Cut-off-Time, pug = 5.0uc,

not perform as well and the use of temporal analysis results
in 10 — 20% improvement in success ratio.

As an illustration, we show a few plots which plot the
success percentage (SP) of scheduling with temporal analy-
sis (TAS) contrasted with success percentage of scheduling
without temporal analysis, i.e. the baseline scheduling model
(BM). For scheduling with temporal analysis, we consider two
cases, one in which overhead of temporal analysis is added to
scheduling time (TAS+) and the other in which it is not {TAS-
). The parameters varied are the mean laxity pc in terms of
mean computation times pc, and the coefficient of variation
for laxity COV. . Figures 7 and 8 show the plots for low
laxity mean with low and high variation. For this case, there
is no significant performance improvement due to temporal
analysis and both schemes achieve almost 100% success per-
centage. On the other hand when the average laxity is high
(Figures 9 and 10), coupled with high variation, we see that
temporal analysis results in significant improvement in per-
formance. The plots also show that the curves for {TAS+)
and (TAS-) are almost identical showing that the overhead of
temporal analysis is minimal when compared to the schedulng
costs.

6 Concluding Remarks

In this paper we have presented temporal analysis as a tech-
nique for analyzing the timing relationships among a set of
tasks to establish constraints on scheduling which are dis-
cernible from a pairwise analysis. The implications and the
benefits of the approach as a pre-processing stage for schedul-
ing has been shown through examples and simulation.

Time Driven Scheduling theory has relied heavily on search
techniques for scheduling and little work has been done in

sP

100.00
oo E L
E [

25.00 3
20,00
75.00
70.00
65.00
60.00
$5.00
5000
4500
40.00
35.00
30.00
23.00
2000
15.00
10.00
5.00
000

Cut-off-Time

0.00 50.00 100.00 150.00 200.00 250.00 300.00
Figure 8: Success Ratio vs Cut-offi-Time, pz = 5.0uc,

COV, =20

developing analytic techniques. Temporal analysis is a step
in this direction and provides an efficient way of analyzing a
task set and deducing valuable information for scheduling.

The existence of an infeasible relation in a task set gives
a sufficient condition for infeasibility. This provides an early
test for infeasibility, which can then be used as a basis for

‘selective preemption to enhance feasibility. Alternatively, the
detection of infeasibility may be used to allocate more re-
sources or change resource allocation.

The precedence relations generated as a result of temporal
analysis impose a partial order on the task set and may be
eflectively used to prune the search space for scheduling. Our
simulations confirm that temporal analysis helps in improving
the performance of a scheduling algorithm without incurring
a significant overhead. In the simplest scheduling case, when
heuristics perform very well, temporal analysis might be per-
ceived as a way of formalizing the heuristics. For static time
driven scheduling to be a feasible technique, it becomes im-
perative that the scheduling cost be controlled as the size of
- the problem increases. Temporal analysis provides a step in
" the right direction.

In this paper we have been concerned with single proces-
sor scheduling. An interesting extension of temporal analysis
would be to use it for multi-processor scheduling. One way
to exiend the analysis to multi-processor scheduling is to per-
form it in two phases. In the first phase the infeasible and
concurrent relations may be used to obtain an allocation of

_tasks to processors. Then in the second phase, the analy-
sis shown in this paper can be used for each processor for
scheduling.

Many real-time system specifications impose relative tim-
ing constraints on the tasks[23, 24]. In this paper, we have
restricted ourselves to absolute constraints on the start and
finish times of tasks. When more complex constraints are

100.00
93.00
90.00
85.00
$0.00
75.00
7000 £
€5.00
sao0{—{-§ /f
55.00
s000 {2
4£5.00 /
a000 |
35.00 I
30.00 I
25.00
20.00
15.00
10.00
$.00
0.00

GEE

\

Cut-off-Time
0.00 50.00 100.00 150.00 200.00 250.00 300.00
Figure 9: Success Percentage vs Cut-off-Time, pz = 10.0p¢,

COV, =10

imposed on tasks, the role of temporal analysis in reducing
the search space becomes even more important since simple
heuristics are unlikely to perform well. It would be interest-
ing to see how temporal analysis can be extended to use such
constraints to further prune the search space.

We are currently implementing a scheduling tool based on
the results shown in this paper. The tool is being developed
for the MARUTI project, an experimental real-time system
prototype being developed at the University of Maryland,
based on the concept of pre-scheduling[6].

References

(1] J. Xu and D. L. Parnas, “On Satisfying Timing Con-
straints in Hard-Real-Time Systems™, in Proceedings of
the ACM SIGSOFT’91 Conference on Sofiware for Crit-
ical Systems, pp. 132-146, December 1991.

[2] C.L.LiuandJ. Layland, “Scheduling algorithm for nmul-
tiprogramming in a hard real-time environment”, Jour-
nal of the ACM., vol. 20, pp. 46~61, Jan. 1973.

(3] J. Xu and D. L. Parnas, “Scheduling processes with
release times, deadlines, precedence, and exclusion re-
lations”, IEEE Transactions on Software Engineering,
vol. SE-16, pp. 360-369, March 1990.

[4] W. Zhao, K. Ramamritham, and J. A. Stankovic,
“Scheduling Tasks with Resource requirements in 2 Hard
Real-Time System”, IEEE Transaclions on Sofiware En-
gineering, vol. SE-13, pp. 564-577, May 1987.

[5) H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani,
W. Schwabl, Ch. Senft, and R. Zainlinger, “Distributed

320

sr

10000 - : ;
20.00 !
EAY)
000
1500
000 I
1)

A —
ANO0 pay
Anon
ano0 il
40.00
3s.00
3000
23.00
2000
13.00
10.00
3.00
Q.00

TAY.
TAS

A .

1|
—

] i 1

[-Y. 4 20.00 100.00

L
150.00

] QusealT-Tume
300.00

200.00 2%0.00

Figure 10: Success Percentage vs Cut-ofl-Time, p¢c = 10.0uc,
COVL' =20

Fault-Tolerant Real-Time Systems: The MARS Ap-
proach™, IEEE Micro, vol. 9, pp. 25-40, Feb. 1989.

[6) S. T. Levi, S. K. Tripathi, S. D. Carson, and A. K.
Agrawala, “The MARUTI Hard Real-Time Operating
System”, ACM SIGOPS, Operating Systems Review, vol.

" 23, pp. 90-106, July 1989.

[7} 3. A. Stankovic and K. Ramamritham, “The Spring
Kernel: A New Paradigm for Real-Time Operating Sys-
tems”, ACM SIGOPS, Operating Sysiems Review, vol.
23, pp. 54-71, July 1989.

[8] E. G. Cofiman, Computer and Job-Shop Scheduling The-
ory, Ed., Wiley, New York, 1976.

19} T. Shepard and J. A. M. Gagne, “A Model of The F-1§
Mission Computer Software for Pre-Run Time Schedul-
ing”, in Proceedings IEEE 10'® International Conference
on Distributed Computer Sysiems, pp. 62-69, May 1990.

[10]) X. Yuan and A. K. Agrawala, “A Decomposition Ap-
proach to Nonpreemptive Scheduling in Hard Real-Time
Svstems”, in Proceedings JEEE Real-Time Systems Sym-

s pusium, Dec. 1989.

[11) J. Erschler, G. Fontan, C. Merce, and F. Roubellat, “A
New Dominance Concept in Scheduling n Jobs on a Sin-
gle Machine with Ready Times and Due Dates”, Opera-
tions Research, vol. 31, pp. 114~127, Jan. 1983.

[12) M. R. Garey and D. S. Johnson, Computers and Jn-
tractability, ¢ Guide to the Theory of NP-Completeness,
\W. H. Freeman Company, San Francisco, 1979.

{13) M. Dertouzos, “Contro] Robotics: the Procedural Con-
trol of Phyvsical Processes”, Pruceedings of the JFIP
Congress, pp- 807-813, 1974.

© 321

{14] Al Mok, Fundamental Dcsign Problems for the lard
Real-Time Environment, PhD thesis, Massachussets In-
stitute of technology, 1983.

[15] K. Jeffay, D. F. Stanat, and C. U. Martel, “On Non-
Preemptive Scheduling of Periodic and Sporadic Tasks™,
in Proceedings IEEE Real- Time Sustems Sympostum. pr-
120-139. December 1991.

[16] T. Shepard and J. A. M. Gagne, “A Pre-Run-Time
Scheduling Algorithm for Hard Real-Time Systems”,
IEEE Transactions on Software Engincering, vol. 17, pp.
669-677, July 1991.

G. McMahon and M. Florian, “On scheduling with ready
times and due dates to minimize maximum lateness™,
Operations Research, vol. 23, pp. 475-482, May 1973.

(18] P. Bratley, M. Florian, and P. Robillard, “Scheduling
with Earliest Start and Due Date Constraints™, Nanal.

Res. Log. Quart., vol. 18, pp. 511-519, Dec. 1971.

[19] K. R. Baker and Z. Su, “Sequencing with Due-Date and '
Early Start Times to Minimize Maximum Tardiness”,

Nuaval Res. Log. Quart., vol. 21, pp. 171-176, 1974.

J. P. C. Verhoosel, E. J. Luit, D. K. Hammer, and
E. Jansen, " A Static Scheduling Algorithm for Dis-
tributed Hard Real-Time Systems™, Journal of Reol
Time Sysiems, pp. 227-246, 1991.

[20]

[21.] G. Fohler and C. Koza, “Heuristic Scheduling for Dis-
tributed Real-Time Systems”, MARS 6/89, Technische

Universitat Wien, Vienna, Austria, April 1989.

[22]) W. Zhao and K. Ramamritham, “Simple and Integrated
Heuristic Algorithms for Scheduling Tasks with Time and
Resource Constraints”, Journa! of Systems and Software,
pp. 195-205, 1987.

[23] R. Gerbe: and W. Pugh and M. Saksena, “Paramet-
ric Dispatching of Hard Real-Time Tasks", Technical
Report CS-TR-2985, UMIACS-TR-92-118, University of
Marvland, Oct. 1992.

[24] C. C. Ban and K. J. Lin, “Job scheduling with tempo-
ral distance constraints”, Technical Report UIUCDCS-
R-89-1560, University of Illinois at Urbana-Champaign,
Department of Computer Science, 1989.

REPORT DOCUMENTATION PAGE

Form approved
OMB No 074-0188

1.

AGENCY USE ONLY (leave blank)] 2. REPORT DATE

1/20/1993

3. REPORT TYPE END DATES COVERED
Technical Reports

4. TITLE AND SUBTITLE

Temporal Analysis and its Application in Non-Preemptive Scheduling

AUTHOR(S)
Manas C. Saksena and Ashok K. Agrawala

5. FUNDING NUMNBERS
N00014-91-C-0195

PhillipsLaboratory

Director of Contracting

3651 Lowry Avenue SE
Kirtland AFB, NM 87117-5777

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. P:g:g:TM:":J%B‘égGAN'ZAT'oN
University of Maryland
. CS-TR-2698
Department of Computer Science UMIACS-TR-91-88
_ AV. Williams Building
. College Park, MD 20742
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ESY10. SPONSORING/ MONITORING

AGENCY REPORT NUMBER

11.

SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT

12.b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In the problem of non-preemptive scheduling of a set of tasks on a single processor, each task has a ready
time, a deadline and a computation time. A feasible schedule for this set requires that a start time be assigned to
each task. The approaches taken for scheduling often use search techniques and may reduce the search by
using heuristics. In this paper we present a technique for analyzing the temporal relations among the tasks to
establish pairwise relationships among them. These relationships can then be used effectively to reduce the
complexity of scheduling these tasks. We present simulation results to confirm the usefulness of temporal

analysis as a phase prior to scheduling.

14. SUBJECT TERMS

15. NUMBER OF PAGES

322

7
16. PRICE CODE
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIIFICATION |19, SECURITY CLASSIFICATION 20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified Unlisted
MSN 7540-01 280-5500 Standard Form 298 (Rev 2-89)

Implementation of the MPL Compiler*

Jan M. Rizzuto and James da Silva

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, MD 20742

February 14, 1995

Abstract

The Maruti Real-Time Operating System was developed for applications that must
meet hard real-time constraints. In order to schedule real-time applications, the timing
and resource requirements for the application must be determined. The development
environment provided for Maruti applications consists of several stages that use various
tools to assist the programmer in creating an application. By analyzing the source code
provided by the programmer, these tools can extract and analyze the needed timing and
resource requirements. The initial stage in development is the compilation of the source
code for an application written in the Maruti Programming Language (MPL). MPL is
based on the C programming language. The MPL Compiler was developed to provide
support for requirement specification. This report introduces MPL and describes the
impliementation of the MPL Compiler.

*This work is supported in part by ONR and DARPA under contract N0D014-91-C-0195 to Honeywell
and Computer Scence Department at the University of Maryland. The views, opinions, and/or findings
contained in this report are those of the author(s) and should not be interpreted as representing the ofical
polices, either expressed or implied, of the Defense Advanced Research Projects Agency, ONR, the U.S.
Government or Honeywell.

Computer fadlities were provided in part by NST grant CCR-B811954.

"This work is supported in part by ARPA and Philips Labs under contract DASG60-82-0055 to Depart-
ment of Computer Science, University of Maryland. The views, opinions, and Jor findings contained in this
report are those of the author(s) and should not be interpreted as representing the offidal policies, either
expressed or implied, of the Advanced Research Projects Agency, PL, or the U.S. Government.

323

1 Introduction

A regl-time system requires that an application meet the timing constraints specified for it.
For hard real-time, a failure to meet the specified timing constraints may result in a fatal
error [2]. Timing constraints are not as critical for soft real-time. The Maruti Operating
System was developed to meet the real-time constraints required by many applications. In
order to schedule and run an application under Maruti, the timing and resource requirements
for that application must be determined. The development environment for Maruti consists
of several tools that can be used to extract and analyze these requirements [2].

The Maruti Programming Language (MPL) is a language developed to assist users in
creating applications that can be run under Maruti. MPL is based on the C programming
language, and assumes the programmer is familiar with C."MPL provides some additional
constructs that are not part of standard C to allow for resource and timing specification [1].
In addition, when an MPL file is compiled, some of the resource requirements can be
recognized and recorded to an output file. This output file is used as input to the integration
stage, which is the next stage in the development cycle. During integration, additional
timing requirements may be specified.

Previously, an MPL file was compiled by first running the source code through the
Maruti pre-compiler, which created a C file that was then compiled using a C compiler [1].
The pre-compiler extracted the necessary information, and converted the MPL constructs
that were not valid C statements into C code. This required the additional pass of the
pre-compiler over the source code. We have created a compiler for MPL that integrates
both the actions of the pre-compiler and the compiler into one stage. In this report, we
present MPL, and a description of the compiler we implemented. Section 2 defines the
abstractions used in Maruti. In Section 3, the svntax of the constructs unique to MPL is
defined. The details of the implementation of the compiler are given in Section 4. Section 5
describes the resource information that is recorded during compilation. Conclusions appear
in Section 6, followed by an Appendix containing 2 sample MPL file, and the resource
information recorded for that file.

2 Maruti Abstractions

An MPL application is broken up into units of computation called elemental units (EUs).
Execution within an EU is sequential, and resource and timing requirements are specified
for each EU. A thread is 2 sequential unit of execution that may consist of multiple EUs.
MPL allows threads of execution to be specified by the programmer through several of the
constructs provided. A task consists of a single address space, and threads that execute in
that address space. Modules contain the source code of the application as defined by the
programmer. An application may consist of several modules. During execution, modules
are mapped to one or more tasks.

3 MPL Constructs

There are several constructs defined in MPL that are not 2 part of standard C. These
constructs have been implemented in the MPL compiler.

324

3.1 Module Name Specification

A module may consist of one or more source files written in MPL. At the start of each MPL
file, the name of the module that the source file corresponds to must be indicated. This is
given by the following syntax: .

modulé-name-spec ::= ‘module’ <module-pame> ’;’.

The modnle-name may be any valid identifier that is accepted by standard C. The module
name specification must appear at the beginning of the source file, before any other MPL
code. The specification is not compiled into any executable code. It is simply used to
indicate the module that the functions within the file belong to.

3.2 Shared Buffers

A shared buffer can be used to declare memory that may be shared by several tasks, to
permit communication between the tasks. A declaration of a shared buffer requires the type
be defined as with a variable declaration. The syntax of a shared declaration is:

shared-buffer-decl ::= ’shared’ <type-specifier> <shared-buffer-name>.

The shared-butfer-name can be any valid identifier, and the type-specifier can be any
valid tvpe for a variable. A shared declaration is compiled as a pointer to the type given in
the declaration of the shared buffer, rather than the type given.

3.3 Region Constructs

The are two constructs used to allow for mutual exclusion within an application.

3.3.1 Region Statement

The region statement is used to enforce mutual exclusion globally throughout an entire
epplication, and is given by the syntax:

Tregion-statement ::= ’‘region’ <regiop-name>
{ mpl-statements }.

The mpl-statements may be any number of valid MPL statements. These statements
make up a critical section.

3.3.2 Local Region Statement

The local_region statement is used to enforce mutual exclusion within a task, and follows
the same syntax of the region statement:

local-region-statemert ::= ’local_region’ <local-Tegion-name>
{ mpl-statements }.

325

3.4 Channel Declarations

Channeis are used to allow for message passing within a Marutj application. Each channel
declared has a type associated with it given by a valid C type-specifier. This type indicates
the type of data that the channel will carry.

Channels may be declared in both entry and service functions, which will be defined
below. The syntax for channel declarations is:

channel-declaration-list-opt ::= { channel-declaration-list }.
channel-declaration-1list ::= channel-declaration { channel-declaration }.
channel~declaration ::= channel-type channels ’;’.

channel-type ::= ’out’ | ’in’ | ’in-first’ | ’in-last’.

channels ::= channel { ’,’ channel }.

channel ::= <channel-name> ’:' type-specifier,

3.5 Entry Functions

An entry function is a special type of function that may be defined in an MPL source file.
Each entry function corresponds to 2 thread within the application. The syntax for an entry
function definition is:

eptry-function ::= ’entry’ <emtry-name> *(’ ’)’ entry-function-body.
entry-function-body ::= channel-declaration-list-opt mpl-function-body.

3.6 Service Functions

Service functions are another type of special function supported by MPL. A service function
is invoked when 2 message is received from a client. Each service function definition requires
2n in channel and message buffer be included in the definition. The service function will
be executed when there is 2 message on the channel given in the definition. The definition
of a service function is similar to that of an entry function:

service-function ::= ’‘service’ <service-name>

’(? <in-channel-name> ’:’ Type_specifier ’,’ <msg-ptr-pame> ')’
service-function-body.
service-function-body ::= channel-declaration-list~opt mpl-fnnctior-body.

3.7 Communication Function Calls

There are several library functions used to allow for message passing within a Maruti ap-
plication.

3.7.1 Send Calls

Each call to the send function must specify an outgoing channel for the message:

void send (cbannel chammel_name, veid *message_pTr);

326

3.7.2 Receive and Optreceive Calls

Both receive calls, and optreceive calls must be associated with an incoming channel (in,
in_first, or in_last):

void receive (channel channel name, void »message_ptr);
int optreceive (channel channel name, void *message_ptr);

A call to receive requires that there be a message on the incoming channel. Optreceive
should be used when a message may or may not be on the channel. Optreceive checks for
the message, and returns a value indicating if a message was found.

3.8 Initialization Function

Each task has an initielization routine that is executed when the application is loaded. This
function is specified by the user with the following name and arguments:

int maruti_main (int argc, char =sargv)

4 Implementation

We started with version 2.5.8 of the Gnu C compiler. By modifying the source code for
the C compiler, we have created a compiler for applications written in MPL. In addition
to what the standard Gou C compiler does, this modified compiler handles the additional
constructs defined in MPL, and records information about the sousce code that is needed
by Maruti. A source code file written in MPL is specified with an mpl extension.

4.1 Modifications to GCC File Structure

In the process of modifying the compiler, some existing files were modified. In addition,
some new files were also created. The source code for version 2.5.8 of GCC allows compilers
10 be created for several difierent languages: C, C++, and Objective C. The GCC compiler
uses different executable files for the different languages that it compiles. There are separate
files for C, C++, and Objective C (ccl, eclplus, eclobj). The GCC driver, gec.c, uses the
extension of the source file specified to determine the appropriate executable (and therefore
language) to compile the source file. The driver then executes the compiler, passing on the
appropriate switches. The driver was modified to accept input files with an mp! extension.
Cclmpl is the new executable that was created to compile MPL source files. When 2 file
with an mpl extension is specified as a source file to be compiled, this new executable file is
used. When an MPL file is compiled, it automatically passes on the switch - Maruti.output,
which indicates that the needed output should be recorded 10 a file with an eu extension.
The executable files for each language are composed of many object files. Some of these
files are common to all the languages, and some of the files are language-specific. The
language-speciiic files added for compiling MPL files are those files with an mp!- prefix.
Gperf is 2 tool used to generate 2 perfect hash function for 2 set of words. Gperf is used
to create 2 hash function for the reserved words for each language. The files containing
the input to gperf are indicated by a file name with 2 gper/ extension. There are several
different *.gper/ files containing the reserved words jor the different languages recognized by

327

the compiler. The mpl-parse.gperf file contains all the reserved words for C, in addition to
those added for MPL. For each language, the output from running gper{ is then incorporated
into the *-lez.c file. This output includes a function is_reserved_word() that is used to check
if a token is a reserved word. The file mpl-lez.c is basically the c-lez.c file, with the output
of running gper{ on mpl-parse.gperf instead of c-parse.gper].

The file maruti.c contains the routines that have been written to implement MPL. This
file is linked in with the executable for all of the languages, to prevent undefined symbol
errors from occuring. Calls to the routines contained in this file occur in both the language-
specific, and the common files. The flag maruti_dump is set in main() to indicate whether
information about the source code should be recorded to the appropriate output file. This

- flag prevents calls to the routines in maruti.c which are made in the common files from

occuring for the languages other than MPL. The files containing these calls are:

calls.c
ezplow.c
ezpr.c
function.c
toplev.c

There are several reasons why the new language-specific files have to be created for
MPL. The files mpl-lez.k and mpl-lez.c needed to be created for MPL because MPL contains
several additional reserved words not present in C, as mentioned earlier. The file c-common.c
relies on information in the header file c-lez.h. Since MPL uses mpl-lez.h, mpl-common.c
includes mpl-lez.h, instead of c-lez.kh. Bison is a tool that allows 2 programmer to define
2 grammar through rules, and converts them into 2 C program that will parse an input
file. The *-parse.y files are the bison files used to create the grammar to parse a source
file. Since the grammar for MPL needed to be modified to accept the additional constructs,
the mpl-parse.y file was created. There is one function used in compiling MPL source files
that is defined in mpl-parse.y, instead of maruti.c. This function needed to access the static
veriables declared in mpl-parse.y, and in order to do so, the function definition was placed
in that file. Finally, the file mpl-decl.c was created, because of its dependence on mpl-lez.h,
and also to allow for an additional type specification used in MPL.

4.2 Compiling MPL Constructs

MPL extends the C language to allow for various constructs. In order to implement these
extensions, the grammar used to recognize C in GCC had to be extended. The following
are recognized as reserved words for MPL, in addition to the standard reserved words for C:
shared, region, local_region, module, in, out, in_first, inlast, entry, service, send, receive,
and optreceive. The keywords in and out were reserved words in the c-* files, because
they are used by Objective C, but in MPL they are used as channel types. In addition to
the new reserved words, rules were added and modified resulting in the rules in mpl-parse.y.

4.2.1 Module Name Specification

A rule was added to the grammar to parse the module name specification in an MPL file.
The rule for 2 whole program was also modified to include this module statement. This
rule expects the module statement to appear before any other definitions. Since the module

328

name specification does not result in any executable code, the only action taken is to record
the module name given by the programmer.

4.2.2° Shared Buffers

There are no rules added to the grammar for 2 shared buffer declaration. When a variable
declaration is parsed, a tree is created that keeps track of all the specification information
given Jor that declaration. For example, typedef and eztern are two of the possible type
specifications. The token shared is recognized as a type specification, just as typedef and
eztern are recognized. When a declaration is made, these specifications are processed in
the function grokdeclerator() in mpl-decl.c. When a shared specification is encountered,
the declaration is converted to a pointer to the type specified, instead of just the type
specified. Other than this conversion to a pointer, the declaration is compiled just as any
other declaration would be compiled in C.

4.2.3 Region Constructs

The region constructs are considered statements in MPL. Several rules were added to parse
these constructs, and the region and local_region statements were added as options for a
valid statement in the grammar for MPL.

Both region and local region statements are compiled in the same manner. Each region
has a name, and a body which is the code within the critical section. In order to protect
these critical sections, calls are made to the Maruti library function maruti_eu(). When 2
region is parsed, the compiler generates two calls to maruti_eu(), in addition to the code
in the body of the region. The first call is generated just before the body, and the second
call just after. These calls are generated through functions in maruti.c. The functions are
based on the actions that would have been taken, had the parser actually parsec iie calls
to maruti_eu() in the source file.

4.2.4 Channel Declarations

The rules added for 2 channel declaration allow any number of channels to be declared in
either an entry or a service function. Each channe! declaration requires several pieces of
information:

o Channel-type
e Channel-name
o Type specifier indicating the type of data that channel carries

A linked list of declared channels is maintained. For each declared channe] the following
information is saved:

o Channel-name
e Type information
1. Size in bytes
2. String encoding the type of the data

e Channel-id

329

The channel-id is a unique identification number assigned to each declared channel.
Channe] declarations do not add to the compiled code. The channels are not allocated
memory. The information describing each channel is simple stored in the linked list. During
compilation, whenever a channel is referenced, the appropriate information is obtained from
this list.

4.2.5 Entry Functions

Entry function definitions are compiled differently than other function definitions. An entry
function would appear in an MPL file in the following form:

entry <entry_name> ()
<channel_declaration_list_opt>

{
<mpl_function_body>

}

Where entry.name is an identifier that is the name of the entry function, the
channel declarationlist.opt contains any channels the user wants to define for that func-
tion, and mpl_function body is any function body that would be accepted as a definition in
a standard MPL function. Semantically the entry function is equivalent to the following
MPL code:

_maruti_entry_name ()
{
while(1)
{
maruti_en();
encry_name () ;
}
}

entry_name ()
{
mpl_Zunction_body

b

Ar entry function is compiled into two functions, as if the two functions given above had
been part of the source file. Essentially, the first function is just a stub function that calls
maruti_eu(), then calls the second function compiled. As with generating function calls,
the routines to generate the code for entry function definitions are based on the actions
that would have been taken had the parser actually parsed the code for the two separate
functions.

4.2.6 Service FPunctions

Service functions definitions are handled very much like entry function definitions. The
syntax of a service function difiers shightly from that of an entry function, since it requires
that an incoming channel and 2 message bufier be defined:

330

service <service_name> (<in_channel_name> : <type_specifier>, <msg_pfr_nane>)
<channel_declaration_list_opt>
{
<mpl_function_body>
}

Like the entry functions, service functions are semantically equivalent to two functions,
where one is simply a stub function calling the second function that is generated:

_maruti_service_name ()
{

type_specifier _maruti_msg_ptr_name ;

while(1)

{
if (optreceive (_maruti_in , id , & _maruti_msg_ptr_name, size))
{

service_name (& _maruti_msg ptr_name);

3
}
¥

service_name (msg_ptr_name)
type.specifier =msg_ptr_name;
{

mpl_function_body

3

The service.name, channel declarationlist, and mpl_functiocz.body are all the same
as described previously for entry functions. In addition, service functions have two other
itemms specified in their definitions. The first is 2 channel. Every service function requires
2 channel be specified. This channel is always declared as an in channpel with the name
in_channel name. The type is given by type.specifier as if it had been declared in the
channel.declarationlist. The channel is used to invoke the service function. This in
channe] is used by the optreceive in the stub function that calls the function containing the
service function body. When a message is received on this channel, the service function is
executed. The second additional item is a message buffer used by the service function. The
name of this message buffer is given by msg.pt=name, the type is given by type_specifier.
This buffer is used to hold the message received from the client that invoked the service
function, and is passed to the second function containing the body of the service function.

4.2.7 Communication Function Calls

There were three library functions provided for message passing mentioned previously: send,
receive, and optreceive. Function calls to any of these three library functions are handled
differently than other function calls. In the MPL grammar, send, receive, and optreceive
are all reserved words. The MPL syntax for all of these calls is the following:

<function-name> (<channel-name>, <parameter-2>);

331

Channel-name should be a previously declared channel, and parameter-2 should be a
pointer. These function calls must be compiled differently, since these are not the actual
parameters used when the call is generated. In the case of a call to send, the actual
parameters must be as follows:

send (<channel-id>, <parameter-2>, <channel-size>);
In the case of a call to either receive, or optreceive, the parameters required are:

receive | optreceive (<channel-type>, <channel-id>, <parameter-2>, <channel-size>);

The channel-type for a receive or optreceive call is an integer generated by the compiler
that will indicate an in, in.first, or in_last channel. _

When one of these three function calls are encountered, there are special rules in the
grammar to handle it. A function in maruti.c is called which generates the appropriate
parameters, and then the function call itself. These function calls are generated as men-
tioned above for the calls to maruti_ex(). The channel-name specified by the user is used
to obtain the necessary parameters. Given the channel name, the linked list of chanmels is
searched to find the corresponding channel, then the channel-id and the channel-size are
obtained from that node in the linked list. There is also some ¢ype checking done at this
stage. The compiler verifies that only an outgoing channel is specified for a send call, or an
incoming channel for the receive and optreceive calls. The compiler also checks that any
channel referenced has been previously defined.

The grammar for MPL was modified so that a call to any of the communication functions
may occur anywhere that a primary expression occurs, since that is where other function
calls are permitted to occur.

4.2.8 Initialization Function

The user-defined function maruti_main() is compiled 2s an ordinary C function.

5 PEUG File

The source code of an MPL file is broken up into elemental units. Each elemental unit

identifies the resources that it requires. These elemental units are used later in the develop-

ment process for scheduling the application. The output file created by the MPL compiler

creates a Partial Elemental Unit Graph (PEUG) for the given source file. The name of this

file is the name of the source file, with the mpl extension replaced by an eu extension.
There are several different types of information recorded in this PEUG file.

5.1 Module Name
The first line in the output file indicates the name of the module, and will appear as:

veng <module-name>

The modrle-nane is taken directly from the module name specification given in the MPL
source file.

332

5.2 File Name

The second line in the source file indicates the name of the target file that is created by the
compiler, where file-name is the target:

file <file-name>

5.3 Shared Buffers

Each time a shared buffer is declared jts name and type information is recorded to the
output file:

shared <shared-buffer-name> : (type-description~string>, <type-size>)

The type-description-string and type-size of a shared buffer is obtained from the
type specification, and is represented in the same manner as the type and size for a chan-
nel. Although the shared buffer is actually a pointer to the type it is declared as, the
type-description-string represents the object being pointed to, and not the pointer itself.

5.4 Entry, Service, and User Function Definitions

In MPL, a user may define ordinary functions in addition to the entry and service functions
that are permitted in MPL. For each entry, service or ordinary user-defined function, there
is an entry in the output file. This entry bas the following format:

<funnction-type> <function-name>

size <stack-size>

Functien-type can be either function, entry, or service, indicating which type of function
is being defined. Function-name is the declared name of the function in the source file.
Tack-size is the maximum stack size needed by this function. This stack~size includes the
arguments pushed onto the stack preceding any function calls occuring within the function
body. There will also be other information concerning the body of the function that will
appear between the function-name, and the stack-size. The entry for the maoruti_main()
function will be the same as those for other user defined functions. Entry and service
functions will contain some additional information not applicable to ordinary functions
that will be described below.

5.4.1 Channels

For each channel that is declared, a description of the channel is written to the output file.
These descriptions will occur right after the statement indicating the name of the current
function:

<channel-type> <mame> : (<description-string>, <size>)

333

The channel-type and channel-name will be the type and name specified in the source
file. The description-string and size are based on the type specification in the channel
declaration. Channel descriptions will occur only in entry and service functions. A service
function will always contain at least one channel description, since the syntax of a service
function requires a channel be named in the definition. A channel description will also be
output for every send, receive, and optreceive call, since these calls require a channel as one
of their parameters.

5.4.2 Function Calls
Each time a function call is parsed, there will be a line in the output file:
calls <function-pame> {in_cond} {in_loop}

This line indicates where a function call occurs, and which function is being called. The
in_cond and inloop indicate if this function call appears within a conditional statement or
within a loop. These labels will be seen only if their respective conditions are true.

5.4.3 Communication Function Calls

Any call to 2 communication function is recorded similarly to other function calls. There is
2 line indicating the name of the function, as shown above for 2 function call. In addition,
there will be a line describing the channel associated with that communication function call.
This line will appear just as the line for the channel definition described above appears.

5.4.4 EU Boundaries

The output file jor an MPL source file 1nd.1cates where each elernental unit (EU) begins by
the followmg

eu <F> {region_list}

The N indicates an EU number. Each EU within a source file has 2 unique number.
There are several places where EU boundaries are created:

Start of a function

Sta"t o region
on

1
Ezplzczt calﬁ to maruti_eu()

® & o o

The initial EU occuring at the beginning of a function that is not 2 service or entry function
is a special case. This is always labeled as “eu 0" in the output file, and does not represent

an actual EU.
Each EU may also be followed by a list describing one or more regions. This list
represents the regions that this EU occurs within. The description of 2 region a2ppears as:

(region~name instance access tType)

The region-name is just that given by the user, and the type indicates if a region is local
(local_region construct) or global (region construct). The access indicates if the access is
read or write. The instance indicates the instance of this region within the source file.
Each instance for 2 region within 2 source file is unique.

334

6 Conclusions

Basing MPL on C has simplified the development of both the language and its compiler.
The language is easy to learn for any programmer that has used C before, since there
are 2 limited number of additional constructs unique to MPL. Using the GCC C source
code provided an existing compiler, rather than implementing a new one. The source code
for GCC only needed to be modified to handle some additional constructs, and produce
some additional output. This made the implementation fairly simple. However, the GCC
C compiler also provides some functionality that is not needed by MPL. Much of this
functionality provided is not even permitted. These restrictions are not enforced by the
compiler, but should be detected within the development cycle.

Prior to the development of the MPL compiler using GCC, compiling an MPL source
file required two steps. The source files were injtially passed through a pre-compiler to
extract the available resource information and parse the MPL constructs. The pre-compiler
was responsible for converting the MPL code into valid C code, which was then compiled
using a standard C compiler. The new implementation of the compiler eliminates some
of the redundant processing that is done when the pre-compiler is used. The information
obtained through the pre-compiler already existed in the internal structure used by the GCC
compiler. This information just needed to be recorded. Instead o parsing source code files
in the two steps independently, the functionality of the pre-compiler has been incorporated
into the compiler itself. The MPL compiler provides a single tool that extracts all the
available information at the initial stage of develpment.

In the future, 2 version of MPL may be implemented that is based on the Ada pro-
gramming Janguage. GNAT is a compiler for Ada 9X that is being developed at NYU.
GNAT depends on the backend of the GCC compiler. Using the source code for GNAT,
an implementation of MPL based on Ada would be similar to the current implementation
based on C.

335

Appendix

A MPL File

The following is a sample of MPL source code:

module timer;

typedef struct {
int seconds;
int minutes;
int hours;
} time_type;

shared time_type global_time;

maruti_main(arge, argv)

int arge;

char =*argv;

{

global_time->seconds = 0;
global_time->minutes = O;

global_time->hours = 0;

retuxn O;

}

entry update_second()
ort €isp : time_tType;
{

Time_type msg;

Tegion time_region {
giobal_time->seconds++;
i7 (glodal_time->seconds == 60)
global _time->seconds = 0;
msg = =global_time;

3

send (disp, &msg);
}

entry update_minunte()
out display : tTime_type;
{

time_type msSg;

Tegion time_region {
gElobal time->minutes++;

336

it (glodal_time->minutes == 60)
global_time->minutes = 0;

msg = sglobal_time;

)

send (display, &msg);
>

entry update_hour()
out display : time_type;
- {

time_type msg;

region time_region {
global_time->hours++;
if (global_time->hours == 24)
global_time->hours = 0;
msg = =global_time; '

-_— }
send (display, &msg);
}
service display_time(inchar : time_type, time)
gzinti(“Cu:zent Time: %4 : %4 : %d", time->hours, time->minutes, time->seconds);

337

B PEUG File

The corresponding PEUG file for the source code above is:

peug timer
file timer.o
shared global_time : ($(iii), 12}
function maruti_main
" en O
size 4
entry update_second
out disp : ($(iii), 12)
ou 2
ev 3 (time_region 1 W global)
calls maruti_en

eu &

calls maruti_eun

calls send

out disp : ($(iii), 12)
size 32

entry update_minute
out display : ($(iii), 12)
eu §
en 6 (time_region 2 ¥ global)
calls maruti_en

eu 7

calls maruti_exn

calls send

or: display : ($(iii), 12)
size 32

entry update_hour
out display : ($(iii), 12)
euv &
ex S (time_Tegiom 3 ¥ global)
calls maruti_en

en 10

calls maruti_en

calls send

out display : ($(iii), 12)
size 32

service display_time .
in inchan : ($(iii), 12)

eu 11
calls optreceive
in inchan : ($(iii), 12)
calls printt

size 52

338

References

[1) James da Silva, Eric Nassor, Seongsoo Hong, Bao Trinh, and Olafur Gudmundsson.
Maruti 2.0 Programmer’s Manual. Unpublished.

[2) Manas Saksena, James da Silva, and Ashok Agrawala. Design and Implementation of
Maruti-II. In Sang H. Son, editor, Advances in Real-Time Systems, chapter 4. Prentice
Hall, 1995.

[3] Richard Stallman. The GNU C compiler, version 2.5.8., Manual. Info file obtained from
gee.texi in source code distribution.

339

o NN -

- ety ST e e s (\ME NO CTi-Uioo

VIS -]

CwBnwt CPROTES PSP Y97 f0uy St iedm
D8°0 0 0o g pOC ™ ¢ T efniud VR T oL, Pemmgag e
CPBARTY R 0 SRS OIm 4t e S el T wm JOMMKC

sora et mas bo ' VIC4 mewmgiie L3 223303000

SUITT ONUTS A EMLMSTEC TD M ART | N BT MDD Sl GBIAG TR 1He U0V SRt eng IRV LIS IO, WP el (RINg FIRTAG BALS SOMICEY,

TR SR P s mw Cmn Spes g ¢ UL, Sang ¢ CFDLIDINY TR DuIBPA PAUINNLIE OF oRY MR SUBECL OF They
SW NI TN DHCEE 1T A ANINE =P SDBU I Yo D PN a1r (O miCem 1000 DORTAIIDn, oAG ReDOML, 121 seReron
TV T THES 3 Mangomment ohd SUCIT Pe0r mOrs SROuNO Prowert 1D 104.0108) Warnmmgion, D 20303

1. AGENCY USE ONLY {Leove Dvanc)

2. REPORT DATE 3. REPORT TYPE &AND DATES COVERLID

February 14, 1995 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

N00014-91-C~0195 and
DSAG-60-92~C-0055

Implementation of the MPL Compiler

6. AUTHOR(S)

Jan M. Rizzuto and James da Silva

» NIZATION NAM AND ADDRESS(ES
7. PERFORMING DRGANIZATION E{S) AND (ES) REPORT NUMBER

8. PERFORMING ORGANIZATION i

University of Marvland
A.V. Williams Building

College Park, Maryland 20742 UMIACS-TR- 95-17

CS-TR-3413 |

10. SPONSORING / MONITORING

7 TORING AGENCY NAME(S) AND ADDRESS(ES)
S. SPONSORING /MODNITORING AGE {S) AGENCY REPORT NUMBER

Honeywell Phillips Labs

3660 Technology Drive 3550 Aberdeen Ave. SE

Minneapolis, MN 55418 Kirtland AFB, NM
87117-5776

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION 7 AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

12, ABSTRALDT (Maximwrs 200 wores)

The Maruti Rezl-Time Operating System was developed for applications
that must meet hard rezl-time constraints. In order to schedule real-time
applications, the timing and resource requirements for the application must
be determined. The development environment provided for Maruti applications
consists of several stages that use various tools to a2ssist the programmer
in creating an applicaztion. By analyzing the source code provided by the
pProgrammer, these tools can extract and analyze the needed timing and
resource requirements. The initial stage in development is the compilation
of the source code for an application written in the Maruti Programming
Language (MPL). MPL is based on the C programming language. The MPL
compiler was developed to provide support for requirement specification.
This report introduces MPL and describes the implementation of the MPL
Compiler.

15. NUMBER OF PAGES
17 pages

4. SURJECT TERMS

D.3.2, language Classifications
D.4.7, Organization and Design

1€. PRICE CODE

£17. SECURITY CLASSIFICATION [16. SECURITY CLASSIFICATION | 15. SECURIY CLASSIFICATION | 20. LIMITATION OF ABSTRAC
! OF REPORT OF THIS PAGE OF &BSTRACT
! Unclassified Unclassified Unclassified Unlimited

MON 7530-0%.280-8500

siamgere -orm 298% fRev 2-BS;

340

Maruti 3.1
Programmer’s Manual
First Edition

Systems Design and Analysis Group
Department of Compter Science
University of Maryland at College Park

December 1996

341

Contents
1. Introduction
1.1 General Program Organization.........ccceceeeieeemmemeevueneenennnenee.
1.1.1. Maruti Programming Language.........ccccccccerirvinninnnnnen.
1.1.2. Maruti Configuration Language.......ccccceemiiiiiiininnnnnn.
2. Tutorial
2.1. Basic Maruti Program Structure...........ccecceeevemvviiineennenneenenns
2.2. Using the Graphics Library......ccccccoiiiimiiiiininiiinnne.
3. MPL/C Reference
3.1. EBNF Syntax NOtatioD.......ccccccvvmmrrrieirereriieiieeeesieniiccnnnn.
3.2, MPL MoOQUIES....ciemiiuirinreieeaeiiieiieeeienieneae e eaneen
3.3. Module Initialization.......ccccccoieiimirmiireniiiniinnicinniiinienneen.
3.4. Entry FunctionS......ccccccccoeermeieniiiiinieiniiien e eeaeeees
3.5. Service FunCtiOnS......ccccciieiieiieeierieererreiieieiriaeiaeiaeeneenes
3.6. MPL Channels......ccccieiuieuieniereniriiiciiniiiinieenaienenenceanes
3.7. Communications Primitives........cccccoeeiiceniiumiiiieniininncinnnee.
3.8. Critical RegIONS....ccitiuerruireieiriiiieieciiinctnreaeenenaenes
3.9. Shared Buffers.......cccooiiieiiiiiiiiiiiiiiiiiiiiccceeea
3.10. Restrictions to ANSI in MLP.....cccviniiiiiiiiniiiiiiniiiineninnnn.
4. MCL Reference
4.1. Top-Level Declarations......cccceeeremiiiniiieniinnriruniennnininnnn.
4.1.1. The Application Declaration........ccccecuvuememennisiienneenens
4.1.2. The System Declaration.......cccceeererrecemeeuenunciiciiiennes
4.1.3. Block Declaration......c..cccceeeniienierencinieneenneeneneneennes
4.1.4. Variable Declarations.........ccceevuviieiiineienrercnenennenennens
4.2 InStIUCTIONS. cueuiiiiiiiieiiiaeeneaneenenenaeanenenaarnraraenanenences
4.2.1. Compound inStruCtiONS.......cceuuuurieennreiiunnirinennneenneees
4.2.2. TasK. it
4.2.3. Job Initialization.........cccceiimiiniinniinennienciereneeeaaeeecn.
4.2.4, CONDECHIONS. ccuiinienireareneennaraeaearerensnemecnacnencasassenns
4.2.5. Allocation Introduction........cccccevueieeeniirrinnirrennnncenns.
4.2.6. Link InStrucCtionS....cccceeeeuernrenieeereeneeneraerenrensenecanns
4.2.7. Print INStrUCHIONS..c.ciuiiniiiiniiieeiaiereeenerennceneenneenenns
4.3, EXPIesSiOnS...ccciiciieiiiiiiiiiiiiiiiiee it tetneeire e eneaeneans
5. Maruti Runtime System Reference
5.1. Core Library Reference......cccccooiiuiimiiiiiiniiiiiniiiicincaeeeennnnne.
5.1.1. MPL Built-in Primitives........ccccoeeeiiiiieiiniinienneenneenne.
5.1.2. Calendar Switching.....cccccvvuiiirieiinimiiiiniien e,
5.1.3. Calendar ModificationS......ccoeevemuerienciienerrennceenennennns
5.1.4. date and Time Manipulation.....ccccceerrervereeereeeeeeceeceena.
5.1.5. Miscellaneous Functions........cccceeceeveieecerieenceriennenenne.
5.2. Console Library Reference..........ccoeoiimiiiiiiiuiiireninreenccennnnee
5.2.1. Screen ColorS.ciiiuiiieiiiiiii e eere e e e
5.2.2. Graphics FuncCtionS.......cc.ccoiuiiiinieniiiiiiicinnnrenneenenns.
5.2.3. Keyboards and Speaker Functions........cccceevruuveeenenne.
5.3. Maruti / Virtual Monitor.....coccivieeiiiiimmiiieeieiicecceeeeereeeeeee
5.3.1. Controlling Virtual Time.....ccocoeirmmiiimimieerrrniernrenennns
342

5.3.2. Single-Keystroke

Operation.......ccecvcuveerreerseraesrannnnnens

5.3.3. Command-Line Operation.........cc.cceeeveeeivierenenvennecnenes
6 Maruti Tools Reference

6.1. Maruti Builder......cooooiniiiiniiiiniiircerieere e e e
6.2. MPL/C COmpPiler...cc.ccoiirimenieieniirereneriinicrecniaieennicrannenes
6.3. MCL INtegrator.....ccccueeiureieianirinienrincnniienieraeeneenennrennes
6.4. Allocator / Scheduler....cccoeeereueiiriieniiiiiiiniiniiieniiriraecennees
6.5. Maruti binder.......ccoooiiiiiiiiiiiiiiie e
6.6. Timing Trace ANAlYZer.......ccccocvvrmiiriiiiiriorieiiiiiicreniineeaeanens
6.7. Timing Status MODItOr......ccoovmueiiiiieiieireenererseiinanrenrennenaaes

Chapter 1

Introduction

The Maruti Programming Language (MPL) is used to write Maruti application code.
Currently, MPL is based on the ANSI C programming language, with extensions to
support modules, real-time constructs, communications primitives, and shared memory.

The Maruti Configuration Language (MCL) is used to specify how individual
program modules are to be connected together to form an application and the details of the
hardware platform on which the application is to be executed.

11. General Program Organization

A complete Maruti system is called an application. Applications can be large, distributed
systems made up of many subsystems. Each application is defined by a configuration file,
which defines all the subsystems and their interactions. The following entities make up an
application:

Jobs Jobs are the active entities in a Maruti application. Jobs are specified in the
configuration file with timing constraints, including the job period. A job is made
up of multiple entry points, which are the threads of execution that will be run for
the job.

Modules The code of an application is divided into modules. Each module consists of
entry points, which define the code which will be executed as part of a job,
services, which define code to be invoked on behalf of a client module, and
Sfunctions, which are called from entries and services.

Tasks At run-time, modules map to tasks (a module may be mapped to more than one

task). Each task consists of an address spac and threads of execution for the entry
points and services of the module.

Channels Channels are the communication paths for Maruti applications. Each channel is
a one-way connection through which typed messages are passed. The end points
are defined by out and in channel specifiers, and are connected as specified in the
application configuration file. Each end point is associated with one entry or
service, and its message type and channel type are declared within the entry or
service header. The types of the in and out channel specifiers must match.

Regions Regions are the mechanism for mutual exclusion between Maruti threads: only
one thread can enter a particular region at a time. Two types of regions may be
specified: global regions enforce exclusion for the entire Maruti application, while
local regions enforce exclusion only within a single task.

Shared buffers Named memory buffers can be shared between tasks. The buffer is
mapped into the address space of each task that uses that buffer.

1.1.1. Maruti Programming Language

Rather than develop completely new programming languages, we have taken the approach
of using existing languages as base programming languages and augmenting them with
Maruti primitives needed to provide real-time support.

In the current version, the base programming language used is ANSI C. MPL adds
modules, shared memory blocks, critical regions, typed message passing, periodic
functions, and message-invoked functions to the C language. To make analyzing the
resource usage of programs feasible, certain C idioms are not allowed in MPL; in
particular, recursive function calls are not allowed nor are unbounded loops containing
externally visible events, such as message passing and critical region transitions.

e The code of an application is divided into modules. A module is a collection of
procedures, functions, and local data structures. A module forms an independently
compiled unit and may be connected with other modules to form a complete application.
Each module may have an initialization function which is invoked to initialize the
module when it is loaded into memory. The initialization function may be called with
arguments.

e Communication primitives send and receive messages on one-way, typed channels.
There are several options for defining channel endpoints that specify what to do on
buffer overflow or when no message is in the channel. The connection of two end-
points is done in the MCL specification for the application - Maruti insures that end-
points are of the same type and are connected properly at runtime.

e Periodic functions define entry points for execution in the application. The MCL
specification for the application will determine when these functions execute.

e Message-invoked functions, called services, are executed whenever messages are
received on a channel.

e Shared memory blocks can be declared inside modules and are connected together as
specified in the MCL specifications for the application.

e (Critical Regions are used to safely maintain data consistency between executing
entities. Maruti ensures that no two entities are scheduled to execute inside their critical
regions at the same time. '

1.1.2. Maruti Configuration Language

MPL Modules are brought together into as an executable application by a specification file
written in the Maruti Configuration Language (MCL). The MCL specification determines
the application's hard real-time constraints, the allocation of tasks, threads, and shared
memory blocks, and all message-passing connections. MCL is an interpreted C-like
language rather than a declarative language, allowing the instantiation of complicated
subsystems using loops and subroutines in the specification. The key features of MCL
include:

345

Tasks, Threads, and Channel Binding. Each module may be instantiated any
number of times to generate tasks. The threads of a task are created by instantiating the
entries and services of the corresponding module. An entry instantiation also indicates
the job to which the entry belongs. A service instantiation belongs to the job of its
client. The instantiation of a service or entry requires binding the input and output ports
to a channel. A channel has a single input port indicating the sender and one or more
output ports indicating the receivers. The configuration language uses channel variables
for defining the channels. The definition of a channel also includes the type of
communication it supports, i.e., synchronous or asynchronous.

Resources. All global resources (i.e., resources which are visible outside a module)
are specified in the configuration file, along with the access restrictions on the resource.
The configuration language allows for binding of resources in a module to the global
resources. Any resources used by a module which are not mapped to a global resource
are considered local to the module.

Timing Requirements and Constraints. These are used to specify the temporal
requirements and constraints of the program. An application consists of a set of
cooperating jobs. A job is a set of entries (and the services called by the entries) which
closely cooperate. Associated with each job are its invocation characteristics, i.e.,
whether it is periodic or aperiodic. For a periodic job, its period and, optionally, the
ready time and deadline within the period are specified. The constraints of a job apply
to all component threads. In addition to constraints on jobs and threads, finer level
timing constraints may be specified on the observable actions. An observable action
may be specified in the code of the program. For any observable action, a ready time
and a deadline may be specified. These are relative to the job arrival. An action may not
start executing before the ready time and must finish before the deadline. Each thread is
an implicitly observable action, and hence may have a ready time and a deadline.

Apart from the ready time and deadline constraints, programs in Maruti can also specify
relative timing constraints, those which constrain the interval between two events. For each
action, the start and end of the action mark the observable events. A relative constraint is
used to constrain the temporal separation between two such events. It may be a relative
deadline constraint which specifies the upper bound on time between two events, or a delay
constraint which specifies the lower bound on time between the occurrence of the two
events. The interval constraints are closer to the event-based real-time specifications, which
constrain the minimum and/or maximum distance between two events and allow for a rich
expression of timing constraints for real-time programs.

Replication and Fault Tolerance. At the application level, fault tolerance is achieved
by creating resilient applications by replicating part, or all, of the application. The
configuration language eases the task of achieving fault tolerance, by allowing
mechanisms to replicate the modules, and services, thus achieving the desired amount
of resiliency. By specifying allocation constraints, a programmer can ensure that the
replicated modules are executed on different partitions.

346

Chapter 2

Tutorial

2.1.- Basic Maruti Program Structure

Maruti applications are built up out of one or more MPL modules, and tied together with a
configuration file written in MCL. We'll start our tutorial with an explanation of a very
simple application consisting of one module, called simple.mp. Our simple application will
contain a producer thread that sends out integer data, and a consumer thread, which
receives integer values and prints them out.

The Module

module simple;
int data;

maruti_main(int argc, char **argv)
{
if(argc < 1) {
printf("simple: requires an integer argument\n");
return 1;

}

data = atoi(argv{0]);
return 0;

}

This first part of the module will be similar in all Maruti modules. The module
always starts with the module name declaration. After the module declaration, the MPL
module is much like any ANSI C program, but with some special Maruti definitions.

Every module must contain a function named maruti_main, which initializes the
module at load time. This initialization would normally include things like device probing
or painting the screen. The maruti_main function, exactly like the main function of a C
program, takes an argument count and list as its parameters, and returns an error code to its
environment. In Maruti, the environment is the system loader, and any non-zero return
results in a load failure, in which case the application will not run. In our example,
maruti_main is responsible for setting the initial value of our datum from the environment,
and returning a failure code if there is no argument .

347

Periodic Functions

entry producer()
out och: int;
{
data++; /* produce data */
send(och, &data);

}

The producer is a periodic function, or Maruti entry point. It serves as the top-level
function for a Maruti thread that will be invoked repeatedly, with a period specified in the
MCL config file (which we will see below).

The producer outputs its data on a Maruti channel, using the built in MPL send
function. The channel och is declared as part of the function header of producer. Maruti
channels are declared to have a type, usually a structure but in this case a simple integer.
All messages sent on the channel will be of the same type.

Note that there is no open, bind, or connect statement needed to initiate
communication on the channel. The connection of the channel will be specified in the
config file, and initiated automatically by the runtime system.

Message-Invoked Functions

service consumer(ich: int, msg)

{
printf("consumer got %d\n", *msg); /* consume data */

}

The consumer is a message-invoked function, or Maruti service. It serves as the
top-level function for a Maruti thread that is invoked whenever there is a message delivered
on the channel declared in the function header. The msg parameter is the name of the
pointer to the message buffer that will contain the delivered message.

Since the receipt of the invoking message is automatic for a Maruti service, the only
thing our consumer has to do is print out the data value contained in the message. -

This completes our simple module, but in order to have a Maruti application, we
must have a config file that tells the system how to run our program.

The Config File

The config file is written in the Maruti Configuration Language (MCL), an interpreted C-
like language with constructs that allow an application to be built up from pieces and
interconnected. The MCL processor, called the integrator, builds a program graph from
the specifications, analyses it for type correctness and completeness, and checks for
dependency cycles. Here is the config file, simple.cfg, that goes with our application :

348

application simple {

job j; /* declare variables */
task si;
channe] c;

init j: period 1 s; /* specify job parameters */
start si: simple(27); /* specify task parameters */

<> si.producer <c>1inj; /* producer thread */
<c> si.consumer <>; /* consumer thread */

}

The variables in MCL correspond to the objects that make up an application, such
as channels, tasks, and jobs. As in C, these variables must be declared before they are
used.

In Maruti, a job is a logical collection of threads that run with the same period. All
entry functions in the application must be put in some job. The init statement sets the
period for a particular job. In our case, the job j will run once every second.

A task is the runtime instantiation of an MPL module, just as in Unix a process is
the runtime image of a program. Many tasks may be executed from the same module, each
will run independently in the Maruti application. The MCL start command instantiates a
task from a module. In our example, we instantiate one task from the module simple and
pass it the initial data value of 27.

We instantiate the threads for the entry and service functions inside a particular task,
with particular input and output channels. In our example, the statement

<> si.producer <c>1inj; /* producer thread */

instantiates the si.producer thread in job j with no input channels and one output channel,
c. Likewise, the statement

<C> si.consumer <>; /* consumer thread */

instantiates the si.consumer thread with one input channel ¢, and no output channels.
Service functions are not put in a job, but rather inherit the scheduling characteristics of the
thread that is sending to their invoking channel.

The integrator checks to insure that the use of producer and consumer in the config
file match the declarations in the program module.
Building and Running the Application

We can build the simple application by putting simple.mpl and simple.cfg in a directory,
and running the mbuild command there:

% 1s

simple.cfg simple.mpl

% mbuild

mbuild: extracting module info from MCL file ‘simple.cfg’
mbuild: creating obj subdirectory for output files.

mbuild: generating obj/simple-build.mk

mbuild: running make -f obj/simple-build.mk

Mbuild takes care of running the MPL compiler, the MCL integrator, as well as the
analysis and binding programs needed to build the runnable Maruti application. By default,
mbuild creates both a stand-alone binary that can be booted on the bare machine, and a
Unix binary that runs in virtual real time from within the Unix development environment.
These different versions of the runtime system are called flavors.

We can try out the simple application by running the ux+xII flavor from the
command line:

% obj/simple.ux+x11
<... startup messages ...>
consumer got 28
consumer got 29
consumer got 30
consumer got 31
consumer got 32
consumer got 33
consumer got 34
consumer got 35
consumer got 36
consumer got 37

application quit

The application boots up and outputs the consumer message once every second.
We can exit the application by typing ‘q’.

22. Using the Graphics Library

Many Maruti programs will want to use the graphical screen as a monitor for an embedded
system, producing oscilloscope or bar-graph style displays, or for animating a simulation
or demonstration. Maruti provides a console graphics library as an integral part of the
system to make the development of visually oriented applications simpler. Our next
example application, clock, demonstrates the use of the graphics library as well as the use
of multiple jobs to take advantage of Maruti's scheduling abilities.

350

\ /
\. /
N s
10 7 2
~ P
~ -
~ -
g — -3
- ~
- ~
- ~
e/ \4
/7 AN
// \\
7/// \\\s
Py

Figure 2.1: Dsiplay of clock example application

The clock application will display a circular clock face on the screen, with the hour,
minute, and second hands moving as independent Maruti threads in different jobs. The
clock screen is shown in Figure 2.1.

We will now go through the clock.mpl module and see how it works.

module clock;

#include <maruti/mtime.h>
#include <maruti/console.h>
#include <math.h>

#include "clock.h"

#define CENTER_X (CONSOLE_WIDTH/2) /* useful constants */
#define CENTER'Y (CONSOLE_HEIGHT/2)

void check_for_quitkey(void); /* subroutines */
void polar_point(int pos, int radius, int *x, int *y);

void xor_triangle(int pos, int apex_radius,int color);

void xor_ray(int pos, int color);

int sec_pos, min_pos, hour_pos; [* system state */

351

The first part of the module is much like any other ANSI-C program, with #
includes, # defines, and function prototype declarations for subroutines to be used later in
the program. Notice the two Maruti header files included: <maruti/mtime.h> contains
declarations related to Maruti time management, and <maruti/console.h> contains
declarations that define the graphics library interface. The "clock.h" header, which we'll
see below, will contain definitions that customize the look of the clock face.

maruti_main()
{
int i, x1, y1, x2, y2, color;
char num_str{4];
mtime curtime;
mdate curdate;

/* initialize screen library, paint screen black */

cons_graphics_init();
cons_fill_area(0, 0, CONSOLE_WIDTH, CONSOLE_HEIGHT, BLACK);

The maruti_main function in the clock application draws the clock face display and
initializes the system state - in our case, the positions of the three clock hands. Before
drawing on the screen, the application must call cons_graphics_init, and initialize the
contents of the screen. The call to cons_fill_area does this by filling the entire screen with
the color BLACK.

/* draw tick marks for clock face */

for(i=0;1 < 60; i++) {
polar_point(i*POS_PER_TICMARK, OUTER_RADIUS, &x1, &y1);
polar_point(i*POS_PER_TICMARK, INNER_RADIUS, &x2, &y2);

if(i % 5) color = GRAY;
else color = WHITE;

cons_draw_line(x1, y1, x2, y2, color);
}

The step in initialization is to draw the tick marks for the clock face. There will be
sixty tick lines drawn around the circle, one for each second. Every fifth tick mark will be
WHITE to mark the hour positions, and the rest will be GRAY. The lines are drawn using
the cons_draw_line library routine, which draws a one-pixel-wide line between two points
in the desired color.

The location of the endpoints of our tick marks are calculated using a helper routine,
polar_point (shown below), which calculates the cartesian coordinates for a given angle

352

and radius. We conveniently adopt integer angle positions starting from O at the top,
clockwise around up to 60*POS_PER_TICMARK back at the top again.

/* draw numerals for clock face */

forG=1;i<=12;i++) {
sprintf(num_str, "%d", 1);
polar_point(i*5¥*POS_PER_TICMARK, NUMBER_RADIUS, &x1, &y1);
y1 -= 8; x1 -= strlen(num_str)*8 / 2; /* center the string */
cons_print(x1, y1, num_str, strlen(num_str), YELLOW);
}

The numerals are placed on the clock face similarly to the tick marks. The
cons_print graphics library function places text on the screen at a given position and color.

/* initialize the hand positions to current time */

maruti_get_current_time(&curtime);
curdate = maruti_time_to_date(curtime);

sec_pos = curdate.second * POS_PER_TICMARK;
min_pos = curdate.minute * POS_PER_TICMARK +
curdate.second * POS_PER_TICMARK/ 60 ;
hour_pos = (curdate.hour % 12) * 5 * POS_PER_TICMARK +
curdate.minute * 5 * POS_PER_TICMARK / 60;

return 0;

}

The final part of the initialization is the calculation of the initial placement of the
clock hands. The maruti_get_current_timelsystem call returns the current system time,
given as a mtime structure. The system time is kept just as in Unix---as the number of
seconds and microseconds since the Epoch time, defined as 00:00 GMT on January 1,
1970. The maruti_time_to_date library routine does the job of calculating the date and
time-of-day from an mtime value.

entry sec_hand()
{

static int erase = 0;

if(erase) xor_ray(sec_pos, WHITE);
else erase = 1;

353

sec_pos = (sec_pos + POS_PER_TICMARK) % NUM_POSITIONS;
xor_ray(sec_pos, WHITE);

check_for_quitkey();
}

The periodic function sec_hand will be run once per second. It erases the
previously placed second-hand ray, calculates the new position and draws again there. The
check_for_quitkey subroutine (shown below) will poll the keyboard and exit the
application if a key is pressed.

entry min_hand()
{

static int erase = 0;

if(erase) xor_triangle(min_pos, MIN_RADIUS, MIN_COLOR);
else erase = 1;

min_pos = (min_pos + 1) % NUM_POSITIONS;
xor_triangle(min_pos, MIN_RADIUS, MIN_COLOR);
}

entry hour_hand()
{

static int erase = 0;

if(erase) xor_triangle(hour_pos, HOUR_RADIUS,HOUR_COLOR);
else erase = 1;

hour_pos = (hour_pos + 1) % NUM_POSITIONS;
xor_triangle(hour_pos, HOUR_RADIUS, HOUR_COLOR);
)

The min_hand and hour_hand periodic functions update their respective hand positions by
one each time they are called. The second hand jumps forward one second each time it is
called, but the minute and hour hands creep forward in smaller relative increments (rather
than jumping forward once per minute or hour, which would not look right).

void polar_point(int pos, int radius, int *x, int *y)

{

double angle = (2.0*M_PIU/NUM_POSITIONS) * (NUM_POSITIONS-pos) +
M_P1/2;

354

*x = CENTER_X + cos(angle) * radius;
*y = CENTER_Y - sin(angle) * radius;
}

Finally we come to the helper functions. The polar_point function converts from
our convenient “positions"” to real angles in radians, taking into account that radians start at
the right and run counter-clockwise, whereas our positions start at the top and run
clockwise. Given an angle in radians and a radius from the center, the x and y coordinates
of the point are found by taking the cosine and sine of the angle. The final twist is that in
cartesian coordinates, the y axis points up, whereas in screen coordinates it traditionally
points down, so the y coordinate must be flipped around.

void xor_ray(int pos, int color)

{
intx,y;
polar_point(pos, SEC_RADIUS, &x, &y);
cons_xor_line(CENTER_X, CENTER_Y, x, y, color);

}

void xor_triangle(int pos, int apex_radius, int color)

{
int xbl, ybl, xb2, yb2, xp, yp;
int bp1, bp2;
bp1 = (pos + TRIANGLE_BASEIL/2) % NUM_POSITIONS;
bp2 = (pos - TRIANGLE_BASEL/2) % NUM_POSITIONS;

polar_point(bpl, TRIANGLE_BASER, &xbl, &ybl);
polar_point(bp2, TRIANGLE_BASER, &xb2, &yb2);
polar_point(pos, apex_radius, &xp, &yp);

cons_xor_line(xbl, ybl, xb2, yb2, color); /* base of triangle */
cons_xor_line(xbl, ybl, xp, yp, color); /* first arm */
cons_xor_line(xb2, yb2, xp, yp, color); /* second arm */

}

These graphic helper routines draw the line for the second hand and the triangle for
the minute and hour hands. The cons_xor_line routine is similar to cons_draw_line, but
exclusive-or's its pixels with the screen rather than just painting them. The xor technique is
often used in graphics programming because it allows the drawing and erasing of objects
without disturbing the background. When multiple objects overlap, the overlapping
portions may become a strange color due to xor'ing, but you are guaranteed that when the
objects are erased by xor'ing them a second time in the same location, whatever color was
there before will be restored.

355

void check_for_quitkey(void)
{

console_event_tev;

if(cons_poll_event(&ev) != 0 && ev.device = EVENT_KEYBOARD
&& ev.keycode == KEY_SPACE)

quit();

The final helper routine polls the console keyboard for events, and quits the
application if the space bar is pressed. The cons_poll_eventlsystem call reports both key
press and key release events, and reports a scan-code rather than an ASCII value. This
interface is rather low level, but allows the application complete access to the up/down state
of every key on the keyboard.

This completes the clock.mpl module. The clock.cfg config file follows:

#include "clock.h"
application clock {

job sec_job; init sec_job: period SEC_PERIODs; /* jobs */
job min_job; initmin_job: period MIN_PERIOD s;
job hour_job; init hour_job: period HOUR_PERIOD s;

task ct; start ct: clock; /* task ¥/

<>ct.sec_hand <> in sec_job; /* threads */
<> ct.min_hand <> in min_job;
<> ct.hour_hand <> in hour_job;

}

| Notice that the config file can include header files just like the MPL module can.
| This allows the programmer to put configuration-related constants in one header and use
them in both the config file and the application modules.
The clock config simply creates one task, plus a job for each hand of the clock.
The periods are defined in “clock.h”:

#define INNER_RADIUS 235
#define OUTER_RADIUS (INNER_RADIUS+15)
#define NUMBER_RADIUS (OUTER_RADIUS+15)

#define TRIANGLE_BASER 30

356

#define TRIANGLE_BASEL 50
#define SEC_RADIUS INNER_RADIUS

#define MIN_COLOR YELLOW
#define MIN_RADIUS (SEC_RADIUS-50)

#define HOUR_COLOR GREEN
#define HOUR_RADIUS (MIN_RADIUS-50)

#define NUM_POSITIONS 240
#define POS_PER_TICMARK (NUM_POSITIONS/60)

#define SEC_PERIOD 1 /* jumps 1 tickmark/sec */
#define MIN_PERIOD (60/POS_PER_TICMARK) /* creeps 1 tickmark/min */
#define HOUR_PERIOD (3600/5/POS_PER_TICMARK) /* creeps 5 tickmarks/hr */

First, a number of constants describing the visual appearance of the clock face are
defined. These can be modified to taste.

Second, the timing characteristics of the program are given. The key parameter is
NUM_POSITIONS, which gives the number of positions which the minute and hour
hands take around the clock face. The larger this number, the smaller the distance the
hands move each time, and the more frequently their jobs are executed. The minute hand
must move through all 60 tick marks once every hour, and the hour hand 5 tick marks each
hour. With NUM_POSITIONS set to 240, each hand moves four times for each tick mark
on the face of the clock, which works out to one move every 15 seconds for the minute
hand, and one move every 180 seconds for the hour hand.

357

Chapter 3
MPL / C References

Maruti Programming Language (MPL) is a simple extension to ANSI C to support
modules, synchronization and communications primitives, and shared memory variables.
MPL adds some restrictions that enable analysis of the CPU and memory requirements of
the program. This chapter will define the MPL-specific features that differ from ANSIC.

3.1. EBNF Syntax Notation

In this manual, syntax is given in Extended Backus-Naur Formalism (EBNF). In this
notation:

literal strings are quoted, e.g. ‘module’.

other terminal symbols are bracketed, e.g. <inodule-name>.
XIY denotes alternatives.

{Z} denotes zero-or-more.

{X} denotes zero-or-one.

32. MPL Modules

The module is the compilation unit in MPL. It is presented to the MPL compiler as one
file, but may contain normal C #include directives so that the parts of the module can be
kept as distinct files. The MPL compiler generates a binary object file for the module, as
well as a partial EU graph file for the module, which contains information about the
module needed by the Maruti analysis tools.

At runtime, each MPL module is mapped to a Maruti task, which logically runs in
its own address space. Communication between tasks is through channels or shared
blocks. Each task can contain multiple threads of execution, each thread corresponding to
an entry or service function of MPL.

Each module starts with the module name declaration:

module_name_spec ::= 'module’ <module-name>.

3.3. Module Initialization

‘When the task corresponding to a module is loaded, the Maruti runtime system executes a
non-real-time initializer function provided by the programmer. The initializer is a normal C
function, but it must be present in every module. It is declared as:

int maruti_main(int argc, char **argv);

358

The job of this function is to initialize the state of the task, taking any parameter
values into account. If the initializer returns 0, then the task is considered successfully
loaded, otherwise the load fails. The initializer thread can not send or receive messages on
Maruti channels.

34. Entry Functions

Maruti entry functions occur as top-level definitions in the MPL source file, similar in
syntax to normal C function definitions.

entry-function ::= 'entry' <entry-name> (' ‘)’ entry-function-body.
entry-function-body :: = channel-declaration-list c-function-body.

Entry functions serve as the top-level function of a Maruti thread which is invoked
repeatedly with a period as specified externally, in the MCL configuration. Multiple
instances of the entry thread can be active in a single task at runtime, so care must be taken
to protect accesses to shared data with a region or local_region construct.

3.5. Service Functions

Maruti service functions also occur as top-level definitions in the MPL source file.

service-function ::= 'service' <service-name>
'(‘'<in-channel-name>":'<type_specifier>','<smsg-ptr-name>")'
service-function-body.
service-function-body :: = channel-declaration-list c-function-body.

Services are declared with the initiating channel and pointer to a message buffer. A
service thread is invoked whenever a message on the channel has been received, thus it
inherits the scheduling characteristics of the sender to the channel. Multiple instances of the
service may be active in a single task at the same time, servicing messages from different
senders, so care must be taken to protect accesses to shared data with a region or
local_region construct.

The receipt of the invoking message into private storage is automatic, and the
service function is called with a pointer to the message buffer. Fore example, given the
service declaration:

service consumer(inch: ch_type, msg) { ... }
The service is actually invoked as if it were a C function declared:

void consumer(ch_type *msg) { ... }

359

3.6. MPL Channels

In Maruti, channels are one-way, typed, communications paths whose traffic patterns are
analyzed and scheduled by the system. The channel end-points are declared as part of the
entry or service functions which take part in the communication. The endpoints are
connected in the MCL configuration for the application. '

" The syntax of MPL channels is similar to a C variable declaration:

channel-declaration-list ::= [channel-decl { channel-decl }].
channel-declaration ::= channel-type channel { ', channel } ';'.

channel-type ::= 'out' | 'in' | 'in_first' | in_last'.
channe] ::= <channel-name> "' type-specifier.

A channel endpoint declaration will normally be either an out endpoint or an in
endpoint, used in the sending thread and receiving thread, respectively. There are two
special variants of in endpoint, in_first and in_last, which denote asynchronous channels in
which the communications will not be scheduled, and the input buffers are allowed to
overflow. For in_first channels, the first messages received will be retained and the rest
dropped, for in_last the most recent messages will be retained and older messages
overwritten.

3.7. Communication Primitives

The message passing primitives appear as normal C function calls, but they are built in
primitives of the MPL compiler, and their use is recorded so that the communications on
the channel can be analyzed.

The three primitives each take a channel name and a pointer to a message buffer.
Their declarations would look something like this:

void send (out ch_name, ch_type* message_ptr);
void receive (in ch_name, ch_type* message_ptr);
int optreceive(in ch_name, ch_type* message_ptr);

There are two variants of the receive primitive. A normal receive is used in most cases, and
it raises an exception if there is no message delivered at the time it is executed. Normally
the Maruti scheduler will arrange things so that this is never happens. When messages
might not be present when the receiver is run, as when threads are communicating
asynchronously with in_first and in_last channels, or when the sender sometimes will not
send the message due to run time conditions, an optreceive must be used. The optreceive
variant checks if a message is present, and receives it if so. It returns 1 if a message was
delivered, or 0 if no message was delivered.

360

3.8. Critical Regions

Mutual exclusion is often necessary to prevent the corruption of data structures modified
and accessed by concurrent threads. In Maruti, the region statement delineates a critical
region.

region-statement ::= (‘region'l'local_region') <region-name> c-statement.

The local region variant is used within a task, usually to serialize multiple thread access to
data structures. The region variant is global to the application, and is used to serialize
access to shared buffers and other application-defined resources, as specified in the MCL
configuration for the application.

39. Shared Buffers

Finally, MPL adds shared buffers to the C language. Shared buffers declarations are
similar in syntax to typedef declarations:

shared-buffer-decl ::= ‘shared' <type-specifier> <shared-buffer-name>.

The shared buffer declaration is effectively a pointer declaration. For
example:

shared some_type shared_buffer;
is treated as if it were a declaration of the form:

some_type *shared_buffer = &some_buffer;

The MPL specification for the application determines which tasks share each shared
memory area. The runtime system takes care of allocating memory for the shared buffers,
and initializing the buffer pointers. The MPL program can at all times dereference the
pointer.

3.10. Restrictions to ANSI C in MPL

The Maruti real-time scheduling methodology requires that the tools be able to analyze the
control flow and stack usage of the MPL programs, and that synchronization points be well
known. Thus the following restrictions to ANSI C must be followed by the MPL
programmer:

e No receive primitives are allowed within either loops or conditionals.
e No region construct are allowed within either loops or conditionals.
e No send primitive within a loop.

¢ Direct or indirect recursion is not allowed.

¢ Function calls via function pointers should not be used.

361

Chapter 4

MCL Reference

Maruti Configuration Language (MCL) is used to specify how individual program modules
are to be connected together to form an application and to specify the details of the
hardware platform on which the application is to be executed. ‘

MCL is an interpreted C-like language. The MCL processor is called the
integrator. The integrator interprets the instructions of the MCL program, instantiating and
connecting the components of the application, checking for type correctness as it goes, and
outputs the application graph and all allocation and scheduling constraints for further
processing by other Maruti tools.

41. Top-level Declarations
Like a C program, an MCL configuration file is composed of a number of top-level
declarations. The C preprocessor is invoked first, so the configuration file may contain
#include and #define directives to make the configuration very customizable.
configuration ::= {toplevel-declaration}.
toplevel-declaration ::= variable-declaration | system-declaration
block-declaration | application-declaration.

The declarations may occur in any order---they do not have to be defined before used. The
four types of top level declaration are described in more detail below.

4.1.1. The Application Declaration

application-declaration ::= ‘application’ <application-name>
"{' {instruction} '}".

Like the main function of C, the application declaration is where the integrator will begin
execution of the configuration directives. Only one application may be declared in the
configuration.

4.1.2. The System Declaration

system-declaration ::= 'system' <system-name>
{' {node-declaration} '}

node-declaration ::= 'node' <variable-name> ['with' attributes].
attributes ::= attribute {', attribute}.

attribute ::= <symbol> ['=' <integer> | '=' <symbol> | '=' <string>].
Like the application declaration, the system declaration can occur at most once in a

configuration. It is not needed for single-node operation. The system declaration names
the nodes that an application will run on, and specifies attributes for them. For example:

362

system hdw {
node northstar with address = " {0x00,0x60,0x8¢,0xb1,0xfb,0xc6}", master;
node raduga with address = "{0x00,0x60,0x8¢c,0xb1,0xf6,0x67}";

}

The integrator does not assign any meaning to the attributes declared for the nodes,
it just passes the information along. However, the Maruti binder does require the
addresslattribute for each node, which specifies the node's ethernet address, and the master
attribute on only one node, to specify which node will be the boot and time master. The
Maruti/Virtual environment further requires that the node <variable-name> correspond to
the hostname of the node in the testbed environment.

4.1.3. Block Declarations

block-declaration ::= 'block' <block-name> '(' [block-parameters] ')’
block-parameter-channels
"{' {instruction} '}".

A block is something like a function in C. When a block is declared, it may be
called by any other block, except that no self-recursion is allowed. A block can not be
declared inside another block. A block is called by giving its name and parameters. There
are 2 kinds of parameters: classical parameters and channel parameters.

block-parameters ::= parameter { ', parameter }.
parameter ::= ['var'] <parameter-name> ['[]'] [":' type].

Classical parameters are like function parameters in C or Pascal. They can be
passed by value or by variable (var for variable passing). Arrays may also be be given as
var parameters. The type of the parameter must be given for the first parameter. It may be
omitted for following parameters: the integrator will assume that the parameter with no
given type has the same type as the previous parameter.

block-paraméter-channels ::= { ('in"'out’) channel-names ;' }.
channel-names ::= channel { ',' channel }.
channel ::= <channel-name> [' <integer> 7'].

The channel parameters decribe the inputs and outputs of the block. The in and out
keywords do not have exactly the same meaning has in MPL: they only show which
channels are connected at the left and which are connected at the right of the block call (see
connection below). The communication type of the channel in_first, in_last, or
synchronous) and the type of the messages on the channel are determined by the
connections of the channels to the tasks.

When there is an array of channel parameters, the connections will occur in
ascending order. For example:

block foo()
i? ch[}3];

363

application bar {
channel a[3];
<a[0..2]> foo() <; /* a[0]->ch[0], a[1]->ch[2], a[2]->ch[2] */

}

4.1.4. Variable Declarations
variable-declaration ::= type variable-names ‘.

type ::= 'float' | int' | 'string’ | 'time' | 'channel’
| 'task’ | 'job' | 'node’ | 'shared' | 'region’.

variable-names ::= variable { ', variable }.
variable ::= <variable-name> [’ <integer> '] [’ <integer> T'].

Variables may be declared globally at the top-level, or locally in a block. Global
variables can be accessed in all blocks, while local variables can only be accessed in the
block where they are declared. A local variable (or a parameter) may be declared with the
same name as a global variable. In this case only the local variable (or the parameter) can
be accessed in the block.

The order of the variable declarations does not matter. For example:

block foo()
i=4s + 5mn; /* correct ¥/
time i;

}

Arrays may be declared. As in C, the array indicies are numbered from O to size-of-
array less 1. Arrays of 1 or 2 dimensions are accepted. For example:

- block foo()
string s[10];
s[5] = "a string"; /* correct */
s[0] = s[5] + " foo"; /* correct */
sf10]=""; /* incorrect: out of array limits */
}

42. Instructions

The MCL integrator interprets a number of instructions that express the way an application
is to be built up from components. The different instructions are explained below.

instruction ::= variable-declaration
| task-initialization
| job-initialization
| connect-declaration
| link-intruction

364

| allocation-instruction
| expression ;'
| print-instruction
| compound-instruction
I'{' {instruction} '}".

4.2.1. Compound Instructions

compound-instruction ::=
if' (' test-expression ')’ intruction
| 'if '(" test-expression ')’ intruction ‘'else’ instruction
| 'do’ instruction 'while' ‘(' test-expression ')’ ;'
| ‘while' '(' test-expression ')’ instruction
| 'for' '(' expression ';' test-expression ';' expression ')’
instruction.
test-expression ::= expression.

The meaning of these constructs is the same as in the C language. The test-
expression should evaluate to an integer, where 0 means false, and all other values mean
true.

4.2.2. Tasks

task-initialization ::= 'start' names "' <module-name> [module-parms]
[instantiation] [task-allocation] ';'

module-parms ::= '(' [module-parameter-list] ')".
module-parameter-list ::= expression {',' expression}.

instantiation ::= 'with' <symbol> '=' constant
{',) <symbol> '=' constant }.

task-allocation ::= 'on' expression.

A variable of type task must be initialized before it can be used. This initialization consists
of giving the name of a module: the task will be an instantiation of this module. Module
parameters may be given: after evaluation they will be given to the initializer thread of the
module. The initializations during the loading of an application will take place in exactly
the same order as thay are found by the intergrator during the execution of the
configuration.

All the shared buffers and the global regions of the module must be instantiated
using the with clause: the corresponding shared or region variables must be given.

The on clause may be used to force allocation of the task on a particular node.

4.2.3. Job Initialization

job-initialization ::= 'init' names "' timing-job ';".
timing-job ::= { 'period' expression }.

A variable of type job must be initialized before it can be used. The job will refer to a
collection of threads with the same period.

365

4.2.4. Connections

connect-declaration ::= chan-list connect-name chan-list
{in-job] {timing-service} [task-alloc]';'.
chan-list ::= '<' [names] '>".
connect-name ::= <task-name> ['expression’]’] '.' <routine-name>
| <block-name> '(' [expression {',' expression}]).
in-job ::='in' constant.
timing-service ::= ('ready’ expression | 'deadline’ expression).

There are two types of connections: routine connections and block connections. In both
cases the inputs are connected (or mapped) to the channels declared at the left of the
connection and the outputs at the right. The number of input (or ouput) channels must be
the same as in the definition of the routine (or the block). The mapping is done following
the order of this definition.

In a routine connection the inputs and ouputs of an entry or a service of a task are
connected to channels. This connection creates a new instance of a service if the routine
was a service, otherwise it creates the only instance of an entry. An entry can not be
connected many times.

For an entry connection a job name must be given, the entry will be a part of this
job. For a service, a job can not be declared: the job of the service is implicitly given by the
connection: the first input channel of a service is the triggering channel of the service. The
job of the service is the same as the job of the origine of the triggering channel.

A timing characterization may only be given to a routine connection.

In a block connection the input and output channels of the block are mapped to the
given channels. A mapping is also done for all the block parameters, following the order in
the block definition. The number of parameters must be the same as in this definition, and
all the types must be coherent.

4.2.5. Allocation Instructions

allocation-instruction ::= 'separate' '(' names ‘)" *;'

| 'together' '(' names ")' ;.

A separate instruction is a command to the allocator to keep the tasks on different nodes in
the final system. A together instruction specifies that all tasks must be allocated to the
samenode.

4.2.6. Link Instruction
link-intruction ::= 'link' expression 'to' expression ;.

In a few cases the connections are not sufficient to describe a communication graph with
the structure of the blocks. In these cases a link instruction may be used.

A link between two channels means that the two channels are the same.

Example: if we want to connect directly an input and an output channel of a block a
link must be used.

366

block foo()
in in_channel;
out out_channel];

link in_channel to out_channel;

}

4.2.7. Print Instruction
print-instruction ::= 'print (' expression {',' expression} ");'".

The print instruction outputs messages to the standard output during integration. This
instruction can be used for the debugging of a configuration file. Any string, number, or
time may be printed. A newline is added at the end.

43. Expressions
Expressions in MCL are very similar to C expressions:

expression ::= expression '=' expression
| expression 'll' expression

| expression '&&' expression

| expression '==' expression

| expression '!=' expression

| expression '<' expression

| expression ">' expression

| expression '<=' expression

| expression '>="' expression

| expression ('d'I'h'I'mn'l's'lI'ms'l'us’)
| expression '+' expression

[expression '-' expression

| expression "*' expression

| expression /' expression

| expression '%' expression

| "' expression

| '(" expression ')’

| expression '++'

| expression '--'

| constant

constant ::= <symbol> [[' expression ']'] [' expression ']
| <symbol> '[' expression '.." expression ']' ['[' expression 7']
| <symbol> ' expression 1' '[' expression ".." expression '}’
| <integer>
| <double>
| <string>.

In addition to the usual C expressions, MCL supports time unit expressions, for example,
‘3 s + 500 ms’ is a time expression that evaluates to 3.5 seconds.

Also, MCL supports array range notation as a shorthand for lists. For example, the
expression ‘c[2..4]’ is shorthand for c[2], ¢[3], c[4]’. This notation is most often used for
passing arrays of channel values to blocks or in connection instructions.

368

CHAPTER 5

Maruti Runtime System Reference

The Maruti runtime system is bound together with the application binary files by the mbind
utility. Only those parts of the runtime needed by the application are linked in. There are
several versions of the runtime system available depending on the environment in which the
application will be run. For example, there are two different versions of the core library: a
stand-alone version that can boot directly on bare hardware, and a Unix version that runs as
a user-level process under Unix, providing virtual-time execution and access to debugging
tools.

The set of library versions that an application links with are called flavors. Flavors
are specified by the programmer as strings of library names separated by a ‘+’, for
example, ‘ux+x11’.

5.1. Core Library Reference

#include <maruti/maruti-core.h>

The Maruti core library implements the scheduling, thread and memory management, and
network communication subsystem. It provides primitives for applications to send and
receive messages, insert preemption points, manipulate the schedule (via calendars), and do
time and date calculations. There are currently two flavors of the core library:

e sa -- The Maruti/Standalone core library. Applications linked with this flavor can be
booted directly (by the NetBSD boot blocks). It includes the distributed operation
support, based on the 3Com 3¢507 Etherlink/16 adapter.

e ux -- The Maruti/Virtual debugging core library. Applications linked with this flavor are
run as normal Unix processes from the NetBSD command line. It includes a virtual-
time scheduler and debugging monitor (described below) and implements distributed
operation using normal Unix TCP/IP networking facilities.

5.1.1. MPL Built-in Primitives
void maruti_eu(void)

The maruti_eu primitive inserts a Maruti EU break into the program at the location of the
call. Itis not normally used explicitly in an application, as the system tools put EU breaks
where necessary for synchronization. Itis useful, however, for breaking up long-running
EUs -- the maruti_eu then serves as a possible preemption point.

void send(out ch_name, ch_type* message_ptr)
void receive(in ch_name, ch_type* message_ptr)
int optreceive(in ch_name, ch_type* message_ptr)

369

The communications primitives are documented in section 3.7. in the MCL Reference
Chapter.

5.1.2. Calendar Switching

int maruti_calendar_activate(int calendar_num, mtime switch_time, mtime offset_time)
void maruti_calendar_deactivate(int calendar_num, mtime switch_time)

- Maruti calendars may be activated and deactivated (switched on or off) at any time.
The switch_time is the time at which the de/activation should take place. The switch can
occur at any point in the future, and the switch requests can come out of order with respect
to the switch time. Requests with the same switch time are executed in the order of the
requests. :

4 Calendars can be activated with a particular offset_time, which is the relative
position within the calendar to start executing at the switch time. The offset time will
normally be zero, but can be any relative time up to the Icm time of the calendar.

The runtime system does not check the feasibility of the combined schedules
represented by the calendars - that should be done offline.

5.1.3. Calendar Modification

void maruti_calendar create(int calendar_num, int num_entries, mtime lcm_time) void
maruti_calendar_delete(int calendar num)

Calendars are normally created offline and compiled into the Maruti application, but
it is possible to create new calendars at runtime. The application is responsible for insuring
that the generated schedules are feasible.

When a calendar is created, the maximum number of entries it will contain must be
specified, as well as the lem_time, which is the period of the calendar as a whole. At the
end of its period, the calendar will wrap around and begin executing from the beginning
again.

typedef struct calendar_s {
entry_t *entries;
int num_entries;
mtime lcm_time;
mtime base_time;
entry_t *cur; /* cur-entries is the current offset */
<.>
} calendar t;
typedef struct {
int eu_thread, eu_id;
mtime eu_start, eu_deadline;
int eu_type;
define EU_EMPTY 0 /*empty EUslot ¥/
define EU_PERIODIC 1 /*periodic EU */
<.>

} entry_t;

370

void maruti_calendar_get_header(int calendar_num, calendar_t *calendarp)
void maruti_calendar_get_entry(int calendar_num, int entry_num, entry_t *entryp)
void maruti_calendar_set_entry(int calendar_num, int entry_num, entry_t entry)

The maruti_calendar_set_entry call is used to populate new calendars. It can
overwrite any entry in any inactive calendar. The entry eu_start and eu_deadline times are
the earliest start time and latest end time, respectively. The eu_id serves to identify the eu
when tracing or reporting timing results.

. The maruti_calendar_get_header and maruti_calendar_get_entry calls can be used to
query the contents of a calendar. These arc useful when ‘cloning’ an existing calendar into
a new calendar, perhaps with modifications.

5.1.4. Date and Time Manipulation
#include <maruti/mtime.h>

The Maruti core library provides routines and macros for simple time and date calculations.

typedef struct {

long seconds;

long microseconds;
} mtime;

#define time_cmp(a,b) /* like strcmp, 0 if eq, 1t 0 if a < b, etc */
#define time_add(a,b) - [*a+=b*

#define time_sub(a,b) [*a-=b¥

#define time_add_scalar(t, s) /* t +=s (s is an int, in microseconds) */
#define time_sub_scalar(t, s) /* t-=s (s is an int, in microseconds) */
#define time_mul_scalar(t, s) /* t *=s (s is an int) */

#define time_div_scalar(t, s) /*t/=s (sis an int) */

The mtime type is the basic Maruti time structure. A number of convenience macros for
arithmetic on mtime values are provided. Two mtime values may be compared, added, or
subtracted. In addition, an integer time in microseconds may be added to and subtracted
from an mtime value, and mtime values may be multiplied or divided by integer scaling
factors.

Note: The microseconds field is always in the range 0 to 999999, and the time
represented by an mtime value is always the number of seconds plus the number of
microseconds. These rules hold even for negative mtime values, which can arise when

subtracting mtimes. Thus the mtime representation for the time -1.3 seconds is { -2,
700000 }.

void maruti_get_current_time(mtime *curtime)
The current system time is returned by maruti_get current time. Maruti, like Unix,

represents absolute time as the number of seconds and microseconds since the Epoch time,
defined as 00:00 GMT on January 1, 1970.

371

typedef struct {

short year; [* year - 1900 */
short month; /* month (0..11) */
short wday; /* day of week (0..6) */
short mday; /* day of month (1..31) */
short yday; /* day of year (0..365) */
short second, minute; /* 0..59 */
short hour; /*0.23 */
int microsecond; /* 0..999999 */

} mdate;

mtime maruti_date_to_time(mdate d)
mdate maruti_time_to_date(mtime t)

mtime maruti_gmtdate_to_time(mdate d)
mdate maruti_time_to_gmtdate(mtime t)

int maruti_set_gmtoff(int gmtoff)
int maruti_get_gmtoff(int *gmtoffp)

Applications will often want to view the time as something more convenient than the
number of seconds since the Epoch. The Maruti mdate type denotes a time expressed as a
date plus a time of day. The functions maruti_time_to_gmtdate and
maruti_gmtdate_to_time convert between mtime and mdate values using the GMT
timezone. The functions maruti_time_to_date and maruti_date_to_time convert using the
local offset from GMT.

The local timezone used in these conversions is initially set by the runtime system,
but may be changed by the application. The timezone is expressed as an offset from GMT
in seconds. For example the U.S. timezone EST is 5 hours behind GMT, or -18000
seconds offset.

Note: Maruti does not at this time attempt to handle leap seconds or automatically
switching the local timezone to account for daylight savings times. The cost of providing
these features in code and table space was deemed prohibitive. L

5.1.5. Miscellaneous Functions
void quit(int exitcode)

The quit call terminates the application. The exit code is not usually relevant in an
gmbeddeq system, but will be returned to the environment where that makes sense (such as
in the Unix debugging environment).

372

52. Console Library Reference

#include <maruti/console.h>

The Maruti console graphics library provides access to the console device,
including the keyboard and speaker, but most importantly the graphical display. The
graphics library includes support for placing text anywhere on the screen, simple 2d
geometry primitives suitable for generating line and bar graphs, and includes optimized
routines for moving bitmaps without flicker, for animated simulations. There are currently
three flavors of the graphics library implemented:

e etdk -- This flavor supports Super VGA graphics cards based on the Tseng Labs
ET4000 chip and its accelerated descendents, like the ET4000/W32. The etdk
flavor runs the screen at a resolution of 1024x768 in 256 color mode.

® vgal6 -- This flavor supports all standard VGA graphics cards, running the screen
at a resolution of 640x480, in 16 color banked mode.

e x11 -- This flavor works with the {\bf ux} core flavor, displaying the Maruti screen
in an X11 window under Unix.

5.2.1. Screen Colors

The Maruti console graphics library supports the following colors, defined in
<maruti/console.h>:

#define BLACK

#define DARK_BLUE
#define DARK_GREEN
#define DARK_CYAN
#define DARK_RED
#define DARK_VIOLET
#define DARK_YELLOW
#define DARK_WHITE
#define BROWN

#define BLUE

#define GREEN

#define CYAN

#define RED 12

fidefine VIOLET 13

#define YELLOW 14

#define WHITE 15

/* aliases */

#define GREY DARK_WHITE
#define GRAY DARK_WHITE

O oo A bW —=O

Pk ek
— O

373

The maximum screen size supported is also defined:

#define CONSOLE_WIDTH 1024
#define CONSOLE_HEIGHT 768

5.2.2. Graphics Functions

void cons_graphics_init(void)

The cons_graphics_init function must be called before any other graphics functions,
usually from the maruti_main function of the application's screen driver task.

void cons_fill_area(int X, int y, int width, int height, int color)
void cons_xor_area(int X, int y, int width, int height, int color)

These functions paint an area of the screen, specified by its upper-left coordinates
(%, y), and its width and height, in the given color. The cons_fill_area variant overwrites
the ‘previous contents of that area of the screen,while cons_xor_area exclusive-or's the
screen contents with the specified color.

function cons_draw_pixel(int x, int y, int color)
function cons_xor_pixel(int x, int y, int color)

These functions draw and xor, respectively, a single pixel at (x', y) in the specified
color.

void cons_draw_line(int x1, int y1, int x2, int y2, int color)
void cons_xor_line(int x1, int y1, int X2, int y2, int color)

_ These functions draw and xor, respectively, a single-pixel width line from
coordinates (x1, y1) to (x2, y2) in the specified color.

void cons_draw_bitmap(int x, int y, int width, int height,
void *bitmap, int color)

void cons_xor_bitmap(int x, int y, int width, int height,
void *bitmap, int color)

These functions draw and xor, respectively, a width-by-height sized bitmap onto
the screen in the specified color, with its upper-left corner at (x, y). The bitmap is in

standard X bitmap format, with eight pixels per byte, and an even multiple of eight pixels
per scan line.

void cons_move_bitmap(int x1, int y1, int X2, int y2, int width, int height,

374

void *bitmap, int color)
void cons_xor_move_bitmap(int x1, int y1, int X2, int y2, int width, int height,
void *bitmap, int color)

These functions optimize the erasing and redrawing of a bitmap by combining the
operations into one loop, modifying one scan-line at a time. This optimization eliminates
the flicker that can occur when erasing the entire bitmap then redrawing it, making
animations more effective.

The call cons_move_bitmap(x1,y1,x2,y2,w,h,b,c) is equivalent to the sequence:

cons_draw_bitmap(x1,x2,w,h,b,BLACK);
cons_draw_bitmap(x2,y2,w,h,b.c);

The call cons_xor_move_bitmap(x1,y1,x2,y2,w,h,b,c) is equivalent to the sequence:

cons_xor_bitmap(x1,y1,w,h,b,c);
cons_xor_bitmap(x2,y2,w,h,b,c);

void cons_puts(int x, int y, int color, char *string)
void cons_xor_puts(int x, int y, int color, char *string)

These functions draw and xor, respectively, a text string at (x, y) in the specified color.
5.2.3. Keyboard and Speaker functions

typedef struct
{
unsigned char device; /* just keyboard works for now */
define EVENT_OTHER 0
define EVENT_KEYBOARD 2
unsigned char keycode;
} console_event_t;

int cons_poll_event(console_event_t *event)

The cons_poll_event call returns 1 if a console event has occurred, 0 otherwise.
There there is a pending console event, the event structure is filled in. The device field is
set to EVENT_KEYBOARD and the keycode field is set to the scan code of the key that
was pressed. The list of scan codes is in <maruti/keycodes.h>.

void cons_start_beep(int pitch)
void cons_stop_beep(void)

375

The console speaker can be tumed on and off with these functions. The
cons_start_beep call programs the speaker to sound at a particular frequency, in hertz,
and cons_stop_beep turns it

off.
53. Maruti/Virtual Monitor

The ux flavor of the Maruti core library includes some basic debugging facilities called ﬂme
Maruti monitor. While an application compiled with wx is running, aspects of its execution
can be controlled from the Unix tty (which will be distinct from the console keyboard
device). The monitor provides the following facilities:

Tracing scheduler actions. The user can independently toggle the tracing of elemental unit
executions, calendar wrap-around events, and calendar-switch events.

Single-stepping calendars or elemental units. The user can toggle single stepping
through each elemental unit execution, or a whole calendar's execution.

Controlling virtual-time execution speed. The user can control the speed of the
application in two ways. First, the user can toggle as-soon-as-possible execution of
elemental units, called asap mode. Second, the user can set the speed at which virtual time
advances relative to real clock time.

Both single-keystroke and command-line operation. All monitor switches may be
toggled with a single keystroke while the application continues running. Also, the user can
enter a command-line mode in which various parts of the system state may be queried and
modified.

5.3.1. Controlling Virtual Time

The Maruti monitor contains a user-settable speed variable which determines the rate at
which virtual time advances relative to the actual clock time.

The speed may be set to any floating point value greater than zero. Thus virtual
speed may be set to run, for example, five times faster than clock time (speed = 5) or at
four times slower (speed = 0.25). The speed is logically limited on the side by the
utilization of the CPU. The execution of application code can not be sped up, only the idle
time between executions.

Idle time can be eliminated completely by turning on as-soon-as-possible
scheduling of elemental unit (asap-mode). In asap-mode the virtual time is advanced to
the start time of the next elemental unit as soon as the previous one completes, resulting
1n the execution of all EUs in immediate succession. Asap-mode is separate from the

speed variable -- it can be toggled independently, and when turned off, scheduling
continues at the previously set speed.

5.3.2. Single-Keystroke Operation

The following keys are active from the Unix tty session (not the console keyboard) while
the application is running:

376

shows the list of keystrokes and current values for the toggle switches.
toggle as-soon-as-possible mode.

toggle elemental unit tracing.

toggle calendar tracing.

toggle calendar-switch tracing.

toggle elemental unit single-stepping.

toggle calendar single-stepping.

quit application completely.

<ESC> stop application and enter command-line mode.

N 7 B T R T R RPN

5.3.3. Command-line Operation

The following commands are available from command line mode. At this time, command-
line mode is a just a framework with just a few commands. More commands to query and
set the system state are envisioned for future releases.

help

Get a list of command-line mode commands.
quit

Quit the application completely.

vars
Show all user-settable monitor variables and their values.

speed <value>
Set the virtual-time speed to value. The value can be any floating point value greater than
zero.

cstep [onloff]
Set or toggle calendar single-stepping.

estep [onloff]
Set or toggle eu single-stepping.

ctrace [onloff]
Set or toggle calendar tracing.

etrace [onloff]
Set or toggle eu tracing.

strace [onioff]
Set or toggle calendar switch tracing.

377

Chapter 6

Maruti Tool Reference

6.1. - Maruti Builder

The mbuild program automates the process of building a runnable Maruti application. This
involves building the constituent application binaries, integrating and scheduling the
application, and binding the application with the desired Maruti runtime flavor.

Mbuild is normally run in the directory in which the application config file and
constituent module source files are located. It will automatically find the config file by its
.cfg extension, read it, and generate a makefile that builds what modules it finds used there,
then calls the other Maruti tools. Mbuild works by creating an obj subdirectory, and
putting all output files there.

If there is more than one config file in the current directory, the desired file must be
specified with the -f <config file> option.

The user may optionally customize the mbuild actions by providing an Mbuild.inc
file in the current directory. This file will be included into the makefile generated by
mbuild. In addition to providing additional build targets and dependency lines, the user
may set some variables to modify the mbuild actions themselves:

FLAVORS Default: ux+x11 ux+etdk sa+etdk The list of runtime flavors with which to
link the application.

MPC Default: mpc. The program executed to compile MPL programs. Not normally
modified by users.

MPC_FLAGS Default: <empty>. Supplemental flags for the MPL compiler. Most
GCC flags will work here. Most often the user will want to customize the include
directories with -I <dir>.

CFG Default: cfg. The program executed to interpret the MCL config file and integrate the
application. Not normally modified by users.

CFG_FLAGS Default: <empty>. Supplemental flags for the MPC integrator. Not
normally modified by users.

ALLOCATOR Default: allocator. The program executed to allocate and schedule the
application. Not normally modified by users.

ALLOCATOR_FLAGS Default: -p 1. Flags for the Allocator. See section 6.4. on the
Allocator below for more details.

MBIND Default: mbind. The program executed for binding the application and runtime
system. Not normally modified by the users.

MBIND_FLAGS Default:<empty>. Flags for the Mbind program. Not normally
modified by users.

378

62. MPL/C Compiler

The MPL/C compiler (mpc) consists of a modified gcc plus some attendant scripts to post-
process the compiler output. It generates a .o file for a module, plus a .eul file containing a
partial elemental-unit graph to be read by the integrator.

The mpc program will accept GCC command-line options. See the gcc(l) manual
page for details on the available options. The most commonly used option will be -I dir to
customize the include directories.

63. MPL/C Integrator

The MCL Integrator (cfg) reads the application config file (appname.cfg) and all the module
elemental-unit graph files (modulename.eul), then generates and checks all the jobs, tasks,
threads, and connections for the application. It outputs a loader map file (appname.ldf}),
and a complete application elemntal-unit graph annotated with allocation and scheduling
constraints and communication parameters (appname.sch). There are no cfg options
normally used.

64. Allocator/Scheduler

The Allocator/Scheduler (allocator) attempts to find a valid allocation for the application
tasks across the nodes of the network, and a valid schedule for each node and for the
network bus. The allocation and schedules are considered valid if all allocation,
communication, and scheduling constraints are met.

The allocator/scheduler stops when a valid allocation and schedule is found, or
when it is determined that one cannot be found. There is no attempt to load-balance the
nodes or minimize network communications beyond what is needed for a minimally valid
schedule. The allocator outputs an allocation information file (appname.alloc) and calendar
schedules file (appname.cal).

The allocator takes two flags:

-p <number of processors> Default: 1. The number of processors in the target system.
It should match the number of nodes defined in the config file.

-t <tdma slot size> Default: 1000. The Time Division Multiplexed Access (TDMA) slot
size for the network bus. This is the time, in microseconds, that each node will be alloted to
transmit on the network. All the nodes get a TDMA slot in turn. The tdma slot size should
stay between 1000 and 16000 microseconds, depending on the application's latency
requirements and the network hardware's buffering capacity.

6.5. Maruti Binder

The Maruti Binder (mbind) reads in the loader map .1df file, the allocation .alloc file, and
the calendars .cal file, and generates the static data structures needed by the runtime system
(appname-globals.c). It also generates a makefile (appname-bind.mk) that manages the
linking of each task of the application within its own logical address space, then linking all
tasks together with the various flavors of the runtime library.

379

6.6. Timing Trace Analyzer

The Timing Trace Analyser (timestat) takes a list of timing output files as generated by
the runtime system and generates a .wcet file that contains the worst case execution
times for the elemental units, as needed by the allocator. Timestat also prints other
statistics generated by the runtime system.

6.7. . Timing Stats Monitor

Timing information is output from a stand-alone Maruti system through a serial port when
the application terminates. The mgettimes program, running on another computer
connected to the other end of that serial line, will receive the timing data and store it in a file
suitable for processing by timestat. Mgettimes can process the output of multiple runs on
the test setup, even from different applications. Simply leave the program running and any
data that is received will be saved.
Mgettimes is called as follows:
~ mgettimes <speed> <serial-port>

where <speed> is the communications rate at which the times will be output (19200 bps in
the default core), and <serial-port> is the device file for the communications port (for
example, /dev/tty00 for the PC's COM1 port).

380

Maruti 3.1
Design Overview
First Edition

Systems Design and Analysis Group
Department of Computer Science
University of Maryland at College Park

1. Introduction

Many complex, mission critical systems depend not only on correct functional behavior,
but also on correct temporal behavior. These systems are called. The most critical systems
in this domain are those which must support applications with hard real-time constraints,
in which missing a deadline may cause a fatal error. Due to their criticality, jobs with hard
real-time constraints must always execute satisfying the user specified timing constraints,
despite the presence of faults such as site crashes or link failures.

A real-time operating system, besides having to support most functions of a
conventional operating system, carries the extra burden of guaranteeing that the execution
of its requested jobs will satisfy their timing constraints. In order to carry out real-time
processing, the requirements of the jobs have to be specified to the system, so that a
suitable schedule can be made for the job execution. Thus, conventional application
development techniques must be enhanced to incorporate support for specification of timing
and resource requirements. Further, tools must be made available to extract these
requirements from the application programs, and analyze them for schedulability.

Based on the characteristics of its jobs, a real-time system can be classified as static,
dynamic or. In a static system, all (hard real-time) jobs and their execution characteristics
are known ahead of time, and thus can be statically analyzed prior to system operation.
Many such systems are built using the cyclic executive or static priority architecture. In
contrast, there are many systems in which new processing requests may be made while the
system is in operation. In a dynamic system, new requests arrive asynchronously and must
be processed immediately. However, since new requests demand immediate attention, such
systems must either have “soft’ constraints, or be lightly loaded and rely on exception
mechanisms for violation of timing constraints. In contrast, reactive systems have certain
lead time to decide whether or not to accept a newly arriving processing request. Due the
presence of the lead time, a reactive system can carry out analysis without adversely
affecting the schedulability of currently accepted requests. If adequate resources are
available then the job is accepted for execution. On the other hand, if adequate resources
are not available then the job is rejected and does not execute. The ability to reject new jobs
distinguishes a reactive system from a completely dynamic system.

The purpose of the Maruti project 1s to create an environment for the development
and deployment of critical applications with hard real-time constraints in a reactive
environment. Such applications must be able to execute on a platform consisting of
distributed and heterogeneous resources, and operate continuously in the presence of
faults.

The Maruti project started in 1988. The first version of the system was designed as
an object-oriented system with suitable extensions for objects to support real-time
operation. The proof-of-concept version of this design was implemented to run on top of
the Unix operating system and supported hard and non-real-time applications running in a

381

distributed, heterogeneous environment. The feasibility of the fault tolerance concepts
incorporated in the design of Maruti system were also demonstrated. No changes to the
Unix kernel were made in that implementation, which was operational in 1990. We realized
that Unix is not a very hospitable host for real-time applications, as very little control over
the use of resources can be exercised in that system without extensive modifications to the
kernel. Therefore, based on the lessons leamed from the first design, we proceeded with
the design of the current version of Maruti and changed the implementation base to CMU
Mach which permitted a more direct control of resources.

Most recently, we have implemented Maruti directly on 486 PC hardware,
providing Maruti applications total control over resources. The initial version of the
distributed Maruti has also been implemented, allowing Maruti applications to run across a
network in a synchronized, hard real-time manner. _

In this paper, we summarize the design philosophy of the Maruti system and
discuss the design and implementation of Maruti. We also present the development tools
and operating system support for mission critical applications. While the system is being
designed to provide integrated support for multiple requirements of mission critical
applications, we focus our attention on real-time requirements on a single processor
system.

2. Maruti Design Goals

The design of a real-time system must take into consideration the primary characteristics of
the applications which are to be supported. The design of Maruti has been guided by the
following application characteristics and requirements.

® Real-Time Requirements. The most important requirement for real-time systems is
the capability to support the timely execution of applications. In contrast with many
existing systems, the next-generation systems will require support for hard, soft,and
non-real-time applications on the same platform.

e Fault Tolerance. Many mission-critical systems are safety-critical, and therefore have
fault tolerance requirements. In this context, fault tolerance is the ability of a system to
support continuous operation in the presence of faults.

Although a number of techniques for supporting fault-tolerant systems have been suggested
in the literature, they rarely consider the real-time requirements of the system. A real-time
operating system must provide support for fault tolerance and exception handling
capabilities for increased reliability while continuing to satisfy the timing requirements.

e Distributivity. The inherent characteristics of many systems require that multiple
autonomous computers, connected through a local area network, cooperate in a
distributed manner. The computers and other resources in the system may be
homogeneous or heterogeneous. Due to the autonomous operation of the components
which cooperate, system control and coordination becomes a much more difficult task
than if the system were implemented in a centralized manner. The techniques learned in
the design and implementation of centralized systems do not always extend to
distributed systems in a straightforward manner.

382

3.

Scenarios. Many real-time applications undergo different modes of operation during
their life cycle. A scenario defines the set of jobs executing in the system at any given
time. A hard real-time system must be capable of switching from one scenario to
another, maintaining the system in a safe and stable state at all times, without violating
the timing constraints.

Integration of Multiple Requirements. The major challenge in building operating
systems for mission critical computing is the integration of multiple requirements.
Because of the conflicting nature of some of the requirements and the solutions
developed to date, integration of all the requirements in a single system is a formidable
task. For example, the real-time requirements preclude the use of many of the fault-
handling techniques used in other fault-tolerant systems.

Design Approach and Principles

Maruti is a time-based system in which the resources are reserved prior to execution.
Resource reservation is done on the time-line, thus allowing for reasoning about real-time
properties in a natural way. The time-driven architecture provides predictable execution for
real-time systems, a necessary requirement for critical applications requiring hard real-time
performance. The basic design approach is outlined below:

Resource Reservation for Hard Real-Time Jobs. Hard real-time applications in
Maruti have advance resource reservation resulting in a priori guarantees about the
timely execution of hard real-time jobs. This is achieved through a calendar data
structure which keeps track of all resource reservations and the assigned time intervals.
The resource requirements are specified as early as possible in the development stage of
an application and are manipulated, analyzed, and refined through all phases of
application development.

Predictability through Reduction of Resource Contention. Hard real-time jobs are
scheduled using a time-driven scheduling paradigm in which the resource contention
between jobs is eliminated through scheduling. This results in reduced runtime
overheads and leads to a high degree of predictability. However, not all jobs can be
pre-scheduled. Since resources may be shared between jobs in the calendar and other
jobs in the system, such as non-real-time activities, there may be resource contention
leading to lack of predictability. This is countered by eliminating as much resource
contention as possible and reducing it whenever it is not possible to eliminate it entirely.
The lack of predictability is compensated for by allowing enough slack in the schedule.

Integrated Support for Fault Tolerance. Fault tolerance objectives are achieved by
integrating the support for fault tolerance at all levels in the system design. Fault
tolerance is supported by early fault detection and handling, resilient application
structures through redundancy, and the capability to switch modes of operation. Fault
detection capabilities are integrated into the application during its development,
permitting the use of application specific fault detection and fault handling. As fault
handling may result in violation of temporal constraints, replication is used to make the
application resilient. Failure of a replica may not affect the timely execution of other
replicas and, thereby, the operation of the system it may be controlling. Under
anticipated load and failure conditions, it may become necessary for the system to
revoke the guarantees given to the hard real-time applications and change its mode of
operation dynamically so that an acceptable degraded mode of operation may continue.

383

Separation of Mechanism and Policy. In the design of Maruti, an emphasis has been
placed on separating mechanism from policy. Thus, for instance, the system provides
basic dispatching mechanisms for a time-driven system, keeping the design of specific
scheduling policies separate. The same approach is followed in other aspects of the
system. By separating the mechanism from the policy, the system can be tailored and
optimized to different environments.

Portability and Extensibility. Unlike many other real-time systems, the aim of the
Maruti project has been to develop a system which can be tailored to use in a wide
variety of situations---from small embedded systems to complex mission-critical
systems. With the rapid change in hardware technology, it is imperative that the design
be such that it is portable to different platforms and makes minimal assumptions about
the underlying hardware platform. Portability and extensibility is also enhanced by
using modular design with well defined interfaces. This allows for integration of new
techniques into the design with relative ease.

Support of Hard, Soft, and Non-Real-Time in the Same Environment. Many
critical systems consist of applications with a mix of hard, soft, and non-real-time
requirements. Since they may be sharing data and resources, they must execute within
the same environment. The approach taken in Maruti is to support the integrated
execution of applications with multiple requirements by reducing and bounding the
unpredictable interaction between them.

Support for Distributed Operation. Many embedded systems require several
processors. When multiple processors function autonomously, their use in hard real-
time applications requires operating system support for coordinated resource
management. Maruti provides coordinated, time-based resource management of all
resources in a distributed environment including the processors and the communication
channels.

Support for Multiple Execution Environments. Maruti provides support for
multiple execution environments to facilitate program development as well as execution.
Real-time applications may execute in the Mamti/Mach or Maruti/Standalone
environments and maintain a high degree of temporal determinacy. The
Maruti/Standalone environment is best suited for the embedded applications while
Maruti/Mach permits the concurrent execution of hard real-time and non-real-time Unix
applications. In addition, the Maruti/Virtual environment has been designed to aid the
development of real-time applications. In this environment the same code which runs in
the other two environments can execute while access to all Unix debugging tools is
avaajila}ble. In this environment, temporal accuracy is maintained with respect to a virtual
real-time.

Support for Temporal Debugging. When an application executes in the
Maruti/Virtual environment its interactions are carried out with respect to virtual real-
time which is under the control of the user. The user may speed it up with respect to
actual time or slow it down. The virtual time may be paused at any instant and the
debugging tools used to examine the state of the execution. In this way we may debug
an application while maintaining all temporal relationships, a process we call temporal

debugging.

384

4. Application Development Environment

To support applications in a real-time system, conventional application development
techniques and tools must be augmented with support for specification and extraction of
resource requirements and timing constraints. The application development system
provides a set of programming tools to support and facilitate the development of real-time
applications with diverse requirements. The Maruti Programming Language (MPL) is used
to develop individual program modules. The Maruti Configuration Language (MCL) is
used to specify how individual program modules are to be connected together to form an
application and the details of the hardware platform on which the application is to be
executed.

4.1. Maruti Programming Language

Rather than develop completely new programming languages, we have taken the approach
of using existing languages as base programming languages and augmenting them with
Maruti primitives needed to provide real-time support.

In the current version, the base programming language used is ANSI C. MPL adds
modules, shared memory blocks, critical regions, typed message passing, periodic
functions, and message-invoked functions to the C language. To make analyzing the
resource usage of programs feasible, certain C idioms are not allowed in MPL; in
particular, recursive function calls are not allowed nor are unbounded loops containing
externally visible events, such as message passing and critical region transitions.

® The code of an application is divided into modules. A module is a collection of
procedures, functions, and local data structures. A module forms an independently
compiled unit and may be connected with other modules to form a complete application.
Each module may have an initialization function which is invoked to initialize the
module when it is loaded into memory. The initialization function may be called with
arguments.

¢ Communication primitives send and receive messages on one-way typed channels.
There are several options for defining channel endpoints that specify what to do on
buffer overflow or when no message is in the channel. The connection of two end-
points is done in the MCL specification for the application-Maruti insures that end-
points are of the same type and are connected properly at runtime.

® Periodic functions define entry points for execution in the application. The MCL
specification for the application will determine when these functions execute.

® Message-invoked functions, called services, are executed whenever messages are
received on a channel.

® Shared memory blocks can be declared inside modules and are connected together as
specified in the MCL specifications for the application.

® An action defines a sequence of code that denotes an externally observable action of the
module. Actions are used to specify timing constraints in the MCL specification.

385

® Critical Regions are used to safely access and maintain data consistency between
executing entities. Maruti ensures that no two entities are scheduled to execute inside
their critical regions at the same time.

4.2. Maruti Configuration Language

MPL Modules are brought together into as an executable application by a specification file
written in the Maruti Configuration Language (MCL). The MCL specification determines
the application's hard real-time constraints, the allocation of tasks, threads, and shared
memory blocks, and all message-passing connections. MCL is an interpreted C-like
language rather than a declarative language, allowing the instantiation of complicated
subsystems using loops and subroutines in the specification. The key features of MCL
include:

® Tasks, Threads, and Channel Binding. Each module may be instantiated any
number of times to generate tasks. The threads of a task are created by instantiating the
entries and services of the corresponding module. An entry instantiation also indicates
the job to which the entry belongs. A service instantiation belongs to the job of its
client. The instantiation of a service or entry requires binding the input and output ports
to a channel. A channel has a single input port indicating the sender and one or more
output ports indicating the receivers. The configuration language uses channel variables
for defining the channels. The definition of a channel also includes the type of
communication it supports, i.e., synchronous or asynchronous.

® Resources. All global resources (i.e., resources which are visible outside a module) are
specified in the configuration file, along with the access restrictions on the resource.
The configuration language allows for binding of resources in a module to the global
resources. Any resources use by a module which are not mapped to a global resource
are considered local to the module.

e Timing Requirements and Constraints. These are used to specify the temporal
requirements and constraints of the program. An application consists of a set of
cooperating jobs. A job is a set of entries (and the services called by the entries) which
closely cooperate. Associated with each job are its invocation characteristics, i.e.,
whether it is periodic or aperiodic. For a periodic job, its period and, optionally, the
ready time and deadline within the period are specified. The constraints of a job apply
to all component threads. In addition to constraints on jobs and threads, finer level
timing constraints may be specified on the observable actions. An observable action
may be specified in the code of the program. For any observable action, a ready time
and a deadline may be specified. These are relative to the job arrival. An action may not
start executing before the ready time and must finish before the deadline. Each thread is
an implicitly observable action, and hence may have a ready time and a deadline.

Apart from the ready time and deadline constraints, programs in Maruti can also specify
relative timing constraints, those which constrain the interval between two events. For each
action, the start and end of the action mark the observable events. A relative constraint is
used to constrain the temporal separation between two such events. It may be a relative
deadline constraint which specifies the upper bound on time between two events, or a delay
constraint which specifies the lower bound on time between the occurrence of the two
events. The interval constraints are closer to the event-based real-time specifications, which
constrain the minimum and/or maximum distance between two events and allow for a rich
expression of timing constraints for real-time programs.

386

® Replication and Fault Tolerance. At the application level fault tolerance is achieved by
creating resilient applications by replicating parts, or all, of the application. The
configuration language eases the task of achieving fault tolerance by allowing
mechanisms to replicate the modules, and services, thus achieving the desired amount
of resiliency. By specifying allocation constraints, a programmer can ensure that the
replicated modules are executed on different partitions.

S. - Analysis and Resource Allocation

This phase involves analyzing the resource allocation and scheduling of a collection of
applications in terms of their real-time and fault-tolerance properties. The properties of the
system are analyzed with respect to the system configuration and the characteristics of the
runtime system, and resource calendars are generated.

The analysis phase converts the application program into fine-grained segments
called elemental units. All subsequent analysis and resource allocation are based on EUs.

5.1. Elemental Unit Model

The basic building block of the Maruti computation model is the elemental unit (EU). In
general, an elemental unit is an executable entity which is triggered by incoming data and
signals, operates on the input data, and produces some output data and signals. The
behavior of an EU is atomic with respect to its environment. Specifically:

e All resources needed by an elemental unit are assumed to be required for the entire
length of its execution.

e The interaction of an EU with other entities of the systems occurs either before it starts
executing or after it finishes execution.
The components of an EU are illustrated in Figure 1 and are described below:

input data/signals

input ports
input monitor status/erro
Resource Requirements
Timing Constraints
status/erro
output monitor i
output ports

outvut data/sienals

Figure 1: Structure of an Elemental Unit

387

¢ Input and Output Ports. Each EU may have several input and/or output ports. Each
port specifies a part of the interface of the EU. The input ports are used to accept
incoming input data to the EU, while the output ports are used for feeding the output of
the EU to other entities in the system.

¢ Input and Output Monitors. An input monitor collects the data from the input ports,
and provides it to the main body. In doing so, it acts as a filter, and may also be used
for error detection and debugging. The input monitors are also used for supporting
different triggering conditions for the EU. Similar to input monitors, the output
monitors act as filters to the outgoing data. The output monitor may be used for error
detection and timingconstraint enforcement. The monitors may be connected to other
EUs in the system and may send (asynchronous) messages to them reporting errors or
status messages. The receiving EU may perform some error-handling functions.

e Main Body. The main body accepts the input data from the input monitor, acts on it,
and supplies the output to the output monitor. It defines the functionality provided by
the EU. ,

Annotated with an elemental unit are its resource requirements and
timingconstraints, which are supplied to the resource schedulers. The resource schedulers
must ensure that the resources are made available to the EU at the time of execution and that
its timing constraints are satisfied.

5.2. Composition of EUs

In order to define complex executions, the EUs may be composed together and properties
specified on the composition. Elemental units are composed by connecting an output port
of an EU with an input port of another EU. A valid connection requires that the input and
output port types are compatible, i.e., they carry the same message type. Such a connection
marks a one-way flow of data or control, depending on the nature of the ports. A
composition of Eus can be viewed as a directed acyclic graph, called an elemental unit
graph (EUG), in which the nodes are the EUs, and the edges are the connections between
EUs. An incompletely specified EUG in which all input and output ports are not connected
is termed as a partial EUG (PEUG). A partial EUG may be viewed as a higher level EU.
In a complete EUG, all input and output ports are connected and there are no cycles in the
graph. The acyclic requirement comes from the required time determinacy of execution. A
program with unbounded cycles or recursions may not have a temporally determinate
execution time. Bounded cycles in an EUG are converted into an acyclic graph by loop
unrolling.

The composition of EUs supports higher level abstractions and the properties associated
with them. By carefully choosing the abstractions, the task of developing applications and
ensuring that the timing and other operational constraints are satisfied can be greatly
simplified. In Maruti, we have chosen the following abstractions:

® A thread is a sequential composition of elemental units. It has a sequential flow of
control which is triggered by a message to the first EU in the thread. The flow of
control is terminated with the last EU in the thread. Two adjacent EUs of a thread are
connected by a single link carrying the flow of control. The component elemental units
may receive messages or send messages to elemental units outside the thread. All EUs
of a thread share the execution stack and processor state.

388

® A job is a collection of threads which cooperate with each other to provide some
functionality. The partial EUGs of the component threads are connected together in a
well defined manner to form a complete EUG. All threads within a job operate under a
global timing constraint specified for the job.

5.3. Program Analysis

Program modules are independently compiled. In addition to the generation of the object
code, compilation also results in the creation of partial EUGs for the modules, i.e., for the
services and entries in the module, as well as the extraction of resource requirements such
as stack sizes for threads, memory requirements, and logical resource requirements.

Invocation of an entry point and service call starts a new thread of execution. A
control flow graph is generated for each service and entry. The control flow graph and the
MPL primitives are used to delineate EU boundaries. Note that an EU execution is atomic,
i.e., all resources required by the EU are assumed to be used for the entire duration of its
execution. Further, all input messages are assumed to be logically received at the start of an
EU and all output messages are assumed to be logically sent at the end of an EU. At
compilation time, the code for each entry and service is broken up into one or more
elemental units. The delineation of EU boundaries is done in a manner that ensures that no
cycles are formed in the resultant EUG. Thus, for instance, a send followed by a receive
within the same EU may result in a cyclic precedence and must be prevented. We follow
certain rules of thumb to delineate EU boundaries, which may be overridden and explicitly
changed by the user. The EU boundaries are created at a receive statement, the beginning
and end of a resource block, and the beginning and end of an observable action. For each
elemental unit a symbolic name is generated and is used to identify it. The predecessors and
successors of the EU as well as the source code line numbers associated with the EU are
identified and stored. The resource and timing requirements that can be identified during
compilation are also stored, and place holders are created for the remaining information.

Given an application specification in the Maruti Configuration Language and the
component application modules, the integration tools are responsible for creating a
complete application program and extracting out the resource and timing information for
scheduling and resource allocation. The input to the integration process are the program
modules, the partial EUGs corresponding to the modules, the application configuration
specification, and the hardware specifications. The outputs of the integration process are: a
specification for the loader for creating tasks, populating their address spaces, creating the
threads ad channels, and initializing the task; loadable executables of the program; and the
complete application EUG along with the resource descriptions for the resource allocation
and scheduling subsystem.

5.4. Communication Model

Maruti supports message passing and shared memory models for communication.

e Message Passing. Maruti supports the notion of one-way message passing between
elemental units. Message passing provides a location-independent and architecture-
transparent communication paradigm. A channel abstraction is used to specify a one
way message communication path between a sender and a receiver. A one-way
message-passing channel is set up by declaring the output port on the sender EU, the
input port on the receiver EU, and the type of message. The communication is
asynchronous with respect to the sender, i.e., the sender does not block.

389

e Synchronous Communication. Synchronous communication is used for tightly
coupled message passing between elemental units of the same job. For every invocation
of the sender there is an invocation of the receiver which accepts the message sent by
the sender. The receiver is blocked (de-scheduled) until message arrival under normal

circumstances. The messages in a synchronous communication channel are delivered in
FIFO order.

e Asynchronous Communication. Asynchronous communication may be used for
message passing between elemental units not belonging to the same job. It may also be
used between real-time and non-real-time jobs. In such communication, neither the
sender nor the receiver is blocked (i.e., there is no synchronization). Since the sender
and receiver may execute at different rates, it is possible that no finite amount of buffers
suffice. Hence, an asynchronous communication channel is inherently lossy. The
receiver may specify its input port to be inFirst or inLast to indicate which messages to
drop when the buffers are full. The first message is dropped in an inLast channel, while
the last message is dropped in an inFirst channel.

There may be multiple receivers of a message, thus allowing for multi-cast messages.
Similar to a one-to-one channel, a multicast channel may also be synchronous or
asynchronous. All receivers of a multi-cast message must be of the same type.

e Shared Memory. Shared memory is also supported in Maruti. The simplest way to
share memory between EUs is to allow them to exist within the same address space.
We use task abstraction for this purpose. A task consists of multiple threads operating
within it, sharing the address space. The task serves as an execution environment for
the component threads. A thread may belong to only one task. In addition to the shared
memory within a task, inter-task sharing is also supported through the creation of
shared memory partitions. A shared memory partition 1s a shared buffer which can be
accessed by any EU permitted to do so. The shared memory partitions provide an
efficient way to access data shared between multiple EUs. The shared memory
communication paradigm provides just the shared memory - it is the user's
responsibility to ensure safe access to the shared data. This can be done by defining a
logical resource and ensuring that the resource is acquired every time the shared data is
accessed. By providing appropriate restrictions on the logical resource, safe access to
data can be ensured.

5.5. Resource Model

A distributed system consists of a collection of autonomous processing nodes connected
via a local area network. Each processing node has resources classified as processors,
logical resources, and peripheral devices. Logical resources are used to provide safe access
to shared data structures and are passive in nature. The peripheral devices include sensors
and actuators. Restrictions may be placed on the preemptability of resources to maintain
resource consistency. The type of the resource determines the restrictions that are placed on
the preemptability of the resource and serves to identify operational constraints for the
purpose of resource allocation and scheduling. We classify the resources into the following
types based on the restrictions that are imposed on their usage.

390

Non-preemptable. The inherent characteristics of a resource may be such that it
prevents preemptability, i.e., any usage of the resource must not be preempted. Many
devices require non-preemptive scheduling. For resources which require the use of
CPU, this implies non-preemptive execution from the time the resource is acquired until
the time the resource is released.

Exclusive. Unlike a non-preemptive resource, an exclusive resource can be preempted.
However, the resource may not be granted to anyone else in the meantime. A critical
section is an example of a resource which must be used in exclusive mode.

Serially Reusable. A serially reusable resource can not only be preempted but may
also be granted to another EU. The state of such resources can be preserved and
restored when the resource is granted back.

Shared. A shared resource may be used by multiple entities simultaneously. In a single
processor system, since only one entity is executing at a given time, there is no
distinction between a shared resource and a serially reusable resource.

A non-preemptable resource is the most restrictive and a shared resource is the

least restrictive in terms of the type of usage allowed. An application requesting the use of a
resource must specify when the resource is to be acquired, when it is to be released, and
the restrictions on the preemptability of the resource. The resource requirements for
applications may be specified at different levels of computational abstractions as identified
below. '

EU level. The lowest level a resource requirement can be specified at is the EU level. A
resource requirement specified at the EU level implies that the resource is acquired and
released within the EU. For scheduling purposes, it is assumed that the resource is
required for the entire duration of the execution of the EU.

Thread Level. Resource specification at the thread level is used for resources which
are acquired and released by different EUs belonging to the same thread. For instance,
a critical section may be acquired in one EU and released in another one.

Job Level. Job-level resource specifications are used to specify resources which are not
acquired and released for each invocation of a periodic or sporadic job. Instead, these
resources are acquired at the job initialization and released at job termination. For a
periodic job, an implicit resource associated with each thread are the thread data
structures (including procesor stack and registers).

5.6. Operational Constraints

The execution of EUs is constrained through various kinds of operational constraints. Such
constraints may arise out of restricted resource usage or through the operational
requirements of the application. Examples of such constraints are: precedence, mutual
exclusion, ready time, and deadline. They may be classified into the following categories:

Synchronization Constraints. Synchronization constraints arise out of data and
control dependencies or through resource preemption restrictions. Typical examples of
such constraints are precedence and mutual exclusion.

391

e Timing Constraints. Many types of timing constraints may be specified at different
levels, i.e., at job level, thread level, or EU level. At the job level, one may specify the
ready time, deadline, and whether the job is periodic, sporadic, or aperiodic. For
threads, a ready time and deadline may be specified relative to the job arrival. Likewise,
aready time and deadline may be specified for an individual EU. We also support the
notion of relative timing constraints, i.e., constraints on the temporal distance between
the execution of two EUs.

e AHocation Constraints. In our model, tasks are allocated to processing nodes.
Allocation constraints are used to restrict the task allocation decisions. Allocation
constraints often arise due to fault-tolerance requirements, where the replicas of EUs
must be allocated on different processing nodes. Similarly, when two tasks share
memory, they must be allocated on the same processing node. Sometimes a task must
be bound to a processing node since it uses a particular resource bound to the node
(e.g., a sensor).

The operational constraints are made available to the resource allocation and
scheduling tools which must ensure that the allocation and scheduling maintains the
restrictions imposed by the constraints. The model does not place any a priori restrictions
on the nature of the constraints that may be specified. However, the techniques used by the
resource allocator and scheduler will depend on the type of constraints that can be
specified.

5.7. Allocation and Scheduling

After the application program has been analyzed and its resource requirements and
execution constraints identified, it can be allocated and scheduled for a runtime system.

This final phase of program development depends upon the physical characteristics
of the hardware on which the application will be run, for example, the location of devices
and the number of nodes and type of processors on each node in the distributed system.

Maruti uses time-based scheduling and the scheduler creates a data structure called a
calendar which defines the execution instances in time for all executable components of
the applications to be run concurrently.

We consider the static allocation and scheduling in which a task is the finest
granularity object of allocation and an EU instance is the unit of scheduling. In order to
make the execution of instances satisfy the specifications and meet the timing constraints,
we consider a scheduling frame whose length is the least common multiple of all tasks'
periods. As long as one instance of each EU is scheduled in each period within the
schedulcilng frame and these executions meet the timing constraints a feasible schedule is
obtained.

As a part of the Maruti development effort, a number of scheduling techniques have
been developed and are used for generating schedules and calendars for task sets. These
techniques include the use of temporal analysis and simulated annealing. Schedules for
single-processor systems as well as multiple-processor networks are developed using these
techniques.

392

6.

Maruti Runtime System

The runtime system provides the conventional functionality of an operating system in a
manner that supports the timely dispatching of jobs. There are two major components of
the runtime system - the Maruti core, which is the operating system code that implements
scheduling, message passing, process control, thread control, and low level hardware
control, and the runtime dispatcher, which performs resource allocation and scheduling for
dynamic arrivals.

6.1. The Dispatcher

The dispatcher carries out the following tasks:

Resource Management. The dispatcher handles requests to load applications. This
involves creating all the tasks and threads of the application, reserving memory, and
loading the code and data into memory. All the resources are reserved before an
application is considered successfully loaded and ready to run.

Calendar Management. The dispatcher creates and loads the calendars used by
applications and activates them when the application run time arrives. The application
itself can activate and deactivate calendars for scenario changes.

Connection Management. A Maruti application may consist of many different tasks
using channels for communication. The dispatcher sets up the connections between the
application tasks using direct shared buffers for local connections or a shared buffer
with a communications agent for remote connections.

Exception Handling. Rogue application threads may generate exceptions such as
missed deadlines, arithmetic exceptions, stack overflows, and stray accesses to
unreserved memory. These exceptions are normally handled by the dispatcher for all
the Maruti application threads. Various exception handling behaviors can be
configured, from terminating the entire application or just the errant thread, to simply
invoking a task-specific handler.

6.2. Core Organization

The core of the Maruti hard real-time runtime system consists of three data structures:

The calendars are created and loaded by the dispatcher. Kernel memory is reserved for
each calendar at the time it is created. Several system calls serve to create, delete,
modify, activate, and deactivate calendars.

The results table holds timing and status results for the execution of each elemental
unit. The maruti_calendar_results system call reports these results back up to the user
level, usually to the dispatcher. The dispatcher can then keep statistics or write a trace
file.

The pending activation table holds all outstanding calendar activation and deactivation
requests. Since the requests can come before the switch time, the kernel must track the
requests and execute them at the correct time in the correct order.

!

393

The scheduler gains control of the CPU at every clock tick interrupt. At that time, if
a Maruti thread is currently running and its deadline has passed its execution is stopped and
an exception raised.

If any pending activations are due to be executed those requests are handled,
thereby changing the set of active calendars. Then the next calendar entry is hecked to see if
it is scheduled to execute at this time. If so, the scheduler switches immediately to the
specified thread. If no hard real-time threads are scheduled to execute, the calendar
scheduler falls through to the soft and non-real-time, priority-based schedulers.

~ Maruti threads indicate to the scheduler that they have successfully reached the end
of their elemental unit with the maruti_unit_done system call. This call marks the current
calendar entry as done and fills in the time actually used by the thread. The Maruti thread is
then suspended until it next appears in the calendars. Soft and non-real-time threads can be
run until the next calendar entry is scheduled and are executed using a priority based
scheduling for the available time slots.

At all times the Maruti scheduler knows which calendar entry will be the next one to
run so that the calendars are not continually searched for work. This is recalculated when
maruti_unit_done is called or whenever the set of active calendars changes.

6.3. Multiple Scenarios

The Maruti design includes the concept of scenarios, implemented at runtime as sets of
alternative calendars that can be switched quickly to handle an emergency or a change in
operating mode. These calendars are pre-scheduled and able to begin execution without
having to invoke any user-level machinery. The dispatcher loads the initial scenarios
specified by the application and activates one of them to begin normal execution. However,
the application itself can activate and deactivate scenarios. For example, an application
might need to respond instantaneously to the pressing of an emergency shutdown button. A
single system call then causes the immediate suspension of normal activity and the running
of the shutdown code sequence. Calendar activation and deactivation commands can be
issued before the desired switch time. The requests are recorded and the switches occur at
the precise moment specified. This allows the application to insure smooth transitions at
safe points in the execution.

L Speifcatio

{MPL/C Compiler, Partial EUG File Integratar)

Figure 2: Maruti System Architecture

394

7. Maruti 3.1 System Architecture

Maruti 3.1, the current version of the operating system, implements most of the above
design with a series of development tools that operate in a Berkeley Unix development
environment (NetBSD 1.0) on IBM-compatible 486 or Pentium PCs. Maruti applications
can be run stand-alone on the bare hardware or under a Unix-based debugging
environment.

e MPL code is processed by the MPL compiler, a modified version of the GNU C
compiler. The MPL compiler generates both the compiled object code and partial EUG
file that contains all information extracted from the module for further analysis,
including the boundaries of the elemental units of the program.

o The application's MCL specification is read and interpreted by the integrator. The
PEUG file describing each module used in the application is processed and intermodule
type checking performed. The integrator generates a file specifying the full application
EUG, allocation, and scheduling constraints.

e The allocator/scheduler reads in the data supplied by the integrator and a description of
the physical system on which to allocate the application. The allocator searches for an
arrangement of elemental units on the nodes of the network that satisfies all the timing
and allocation constraints, considering the computation times for each elemental unit. If
a feasible schedule can be found, a calendar file for each resource is generated. A
loader map is also generated which describes, for the runtime system, each task,
thread, shared memory area, and communications link so that all the resources can be
reserved when the application is loaded.

e The computation time analyzer takes timing trace information generated by the runtime
system and generates worst-case execution times for all the Eus of the application. This
timing information can be used in subsequent runs of the scheduler to refine the
schedule and verify its feasibility given changes in computation times. Use of the
timing tool during testing leads to very high confidence in the schedule.

7.1. Runtime Environments

Compiled and analyzed Maruti applications can be executed in multiple runtime
environments.

e The Maruti/Virtual runtime environment allows the debugging of Maruti applications
within the development environment. Applications run in virtual real-time under Unix,
allowing temporal debugging, including single stepping the real-time calendars.

e The Maruti/Mach runtime environment is a modified version of Mach which allows the
running of real-time Maruti programs within the Mach environment, where the real-time
and non-real-time task can co-exist and interact in the same host.

o The Maruti/Standalone runtime environment runs the application on the bare hardware,
suitable for embedded systems. The application is linked with a minimal Maruti core
library and can be booted directly. -

395

7.2. Maruti/Virtual Runtime Environment

Testing real-time programs in their native embedded environments can be tedious and very
time-consuming because of the lack of debugging facilities and the requirement to reload
and reboot the target computer every time a change is made. Maruti provides a Unix-based
runtime system that allows the execution of Maruti hard-real-time applications from within
the Unix development environment. This Unix execution environment supports the
following features:

e The Maruti application has direct control of its I/O device hardware.

¢ Graphical output and keyboard input can go either to the PC console, as in the
Maruti/Standalone and Maruti/Mach environments, or appear in an X window on any
Unix workstation, possibly across the network.

e The application can be run under the Unix GNU Debugger, allowing the examination
of program variables and stack traces, setting of breakpoints, and post-mortem
analysis.

MA&J&

MRRUTY HARD REFRL-TIME, m@ PERIOOD

® xs
® 19
® 19
[J 19

.
v
'
I
)
t
[
i
[
i
v
'
'
'
]
[y

s

Figure 3: Maruti/Virtual screen running in the development environment

e The application has access to Unix standard output so it can print debug and status
messages to the interactive session while running.

® The Maruti application runs in virtual real-time; that is, it sees itself running in hard-
real-time against a virtual time base.

396

The virtual time can be manipulated through the runtime system for temporal
debugging. Virtual ime can be slowed down or sped up, and individual elemental units
(EU) or whole calendars can be single-stepped or traced.

7.3. Maruti/Standalone Real-Time Environment

Maruti/Standalone provides a minimal runtime system for the execution of a Maruti
application on the bare hardware. The stand-alone environment has the following
attributes:

The stand-alone version of an application is built from the same object modules as are
used in the Unix and Maruti/Mach execution environments.

All the modules of the application are bound with only those routines of the Maruti core
that are needed into one executable, suitable for booting directly or converting into
ROM.

The application has complete control of the computer hardware.
The application runs in hard real-time with very low overhead and variability.

The minimal Maruti/Standalone core library currently consists of about 16 KB of code
and 16 KB of data.

The optional Maruti Distributed Operation support (including network driver) is about
14 KB of code and 9 KB of data.

The optional Maruti graphics package currently consists of, for the standard VGA
version, 10 KB of code and 20 KB of data (plus 150K for a secondary frame buffer for
best performance).

7.4. Maruti/Mach Real-Time Environment

The original execution environment for Maruti-2 was a modified version of the CMU Mach
3.0 kernel. Maruti/Mach is potentially useful in hybrid environments in which the real-time
components co-exist with Mach and Unix processes on the same CPU. Because of
preemptability problems in CMU Mach we will not be distributing Maruti/Mach until it can
be rehosted onto OSF1/MK real-time kernels.

The Maruti/Mach features include the following:

A calendar-based real-time scheduler has been added to the CMU Mach 3.0 kemel.
This scheduler takes precedence over the existing Mach scheduler, running Maruti
elemental units from the calendar at the proper release time.

The Maruti application and most of the runtime system run as normal Mach user-level
tasks and threads, which are wired down in memory.

397

e The Maruti application may communicate with non-Maruti Unix and Mach processes
through shared memory.

e The Maruti/Mach kemel maintains runtime information for each elemental unit
executed, and makes that information available to the user-level code for worst-case
computation time analysis.

e Parts of the CMU Mach kernel remain unpreemptable. Nevertheless, on a dedicated
system we can achieve release time variability of about 100 microseconds. The context
switch time is about 200 microseconds.

¢ The new release of OSF Research Institute Mach MK6.0 addresses most of the Mach
kernel preemptability concerns. We will be porting Maruti/Mach to this base in the near
future.

8. Future Directions

The Maruti Project is an ongoing research effort. We hope to extend the current system in
a number of possible directions. Of course, since this is a research project, we expect our
ideas to evolve over time as we gain experience and get feedback from users.

8.1. Scheduling and Analysis Extensions
Preemptable Scheduling of Hard-Real-Time Tasks

We are planning to extend our scheduling approach to incorporate controlled preemptions
of tasks. To date we have concentrated on using non-preemptable executions of tasks,
which simplifies scheduling and eases exclusion problems in application development.
However, the non-preemptability assumption to exclusion is mnot scalable to a
multiprocessor, as threads running on different processors can interfere with each other.
Controlled preemption is more powerful, as it allows scheduling of long-running tasks
concurrently with high frequency tasks. Preemption will remain under the control of the
application.

Language support for atomic actions will be developed to replace the assumption of
non-preemptable EU's. Action statements will serve to delineate sections of code on which
precise timing requirements can be imposed by the application designer. Combined with
critical region statements (already implemented), actions will allow the programmer to
specify precisely the desired timing and resource interrelationships in a manner that is
scalable to a multiprocessor or network cluster, unlike the non-preemptability assumption.

We will extend the Maruti run-time system to handle preemptable hard real-time
tasks. This will be done in coordination with the analysis tools which will generate
multiple calendar entries for the preempted EUs. All but the last entry for the EU will be
marked as preemptable, and all but the first will be marked as continuation entries. This is
enough information for the run-time scheduler to correctly handle the preemption in a
controlled manner, even when the EU completes early.

398

Integration of Time-based and Priority-Based Scheduling

We plan to integrate the time-based and priority-based scheduling in a single framework.
To date we have concentrated on time-based scheduling only. To support other scheduling
paradigms within the time-based framework, we may reserve time slots in the schedule and
associate a queue of waiting tasks which are executed on the basis of their priorities. In this
way we can implement rate-monotonic style static priority schemes as well as Earliest-
Deadline-First style dynamic priority schemes within the Maruti framework. However, in
order to assure that the tasks executed under priority-based scheduling will continue to meet
their temporal requirements, extensions to the analysis techniques are required. We will
develop analysis techniques suitable for this purpose.

We will extend the Maruti implementation to support non-calendar schedulers, such
as priority based or earliest-deadline-first based schedulers. These schedulers will run in
particular slots specified in the Maruti calendar, or when the calendar is idle.

POSIX-RT Subset API

In a related area, we plan to study the use of a subset of the POSIX API as the Maruti API
for soft and non-real-time tasks. We will implement as much of the POSIX-RT API as is
appropriate and practicable.

Asynchronous Events

Generally, in a time-based system, events are polled for at the maximum frequency at
which they are expected. This type of event handling is easy to analyze within the time-
based framework, and makes explicit the need to reserve enough time to handle the event
stream at its worst-case arrival rate. At this worst-case rate, polling is more efficient than
interrupt-driven event handling because the interrupt overhead is avoided. However, at low
event rates, polling is less efficient and fragments the cpu idle time (where we define idle
time from the point of view of hard real-time tasks). While conservation of idle time is not
an issue for small controllers, it becomes very important when there are soft- and non-real-
time tasks running in the system.

Currently, Maruti takes the polling approach to ease analysis and to better handle
the worst case rate. We plan to study the analysis required to accommodate asynchronous
events within a calendar schedule. Our intended approach is to work with a specified
maximum frequency, relative deadline, and computation time of the asynchronous event,
and to reserve enough time in the calendar for the event to occur at its maximum frequency.

We will extend the Maruti run-time system to register and dispatch event handlers in
response to external events. Included in this extension will be the ability to detect and
appropriately handle overload conditions (i.e. when the events occur more quickly that
expected). '

Multi-Dimensional Resource Scheduling Research

A typical real-time application requires several resources for it to execute. While CPU is the
most critical resource, others have to be made available in a timely manner. Generation of
schedules for multiple resources is known to be a difficult problem. Our approach to date
has been to develop efficient search techniques, such as one based on simulated annealing.

Realistic problems contain a variety of interdependencies among tasks which must
be reflected as constraints in scheduling. We plan to develop efficient techniques for
scheduling the allocation and deallocation of portions of multidimensional resources. In
particular, we will address the problems of allocation and management of resources such as
memory and disk space, that can accommodate many entities simultaneously.

399

Scheduling System-Specific Topologies

In a related area, many communications networks have more complex structures than a
simple bus and cannot be treated as a single dedicated resource. We will study the
extension of our scheduling algorithms to support point-to-point meshes of nodes (with
store-and-forward of messages), switched networks (such as MyriNet), and sophisticated
backplanes such as that used in the Intel Paragon.

We will investigate the use of a general framework for specifying the properties of
connection topologies to the Maruti scheduler. In the worst cases, the scheduler for a
complex interconnection technology may have to be programmed explicitly. To handle
such cases, we will develop a modular interface into our allocator/scheduler into which
such backplane-specific schedulers can be plugged.

Static Estimation of Execution 'Iﬁmes

Currently, execution times are derived through extensive testing of the program on the
target hardware environment. Deriving the execution time through static analysis is
hampered by the data dependencies present in large number in most programs.

We will investigate the use of static analysis to help prove the execution time limits
of programs. While generating a reasonable computation time estimate through static
analysis is not feasible in general, it is possible to get accurate results for large segments of
a program, and to clearly identify the existing data dependencies so that the programmer
can-through program modifications or directives to the analysis tool-eliminate, curtail, or
characterize the data dependencies well enough to get very useful verification of the time
properties of the program.

Temporal Debugging

When we develop real-time applications we need techniques for observing the temporal
behavior of programs. For their functional characteristics we can use standard debuggers
which permit the observation of the state of execution at any stage. This, however,
destroys the temporal relationships completely. In Maruti/Virtual we provide the facilities of
controlling the execution of all parts of an application with respect to a virtual time which
advances under the control of keyboard directives. Thus we can pause the execution at any
virtual time instant with the assurance that all temporal relationships with respect to this
instant are accurately reflected in the state of the program. We use the term temporal
debugging for this.

We will conduct research on the theoretical aspects of the issues of temporal
debugging and consider the implications of temporal debugging. In particular, we will
study how the interactions of programs executing in virtual time with external events which
occur with respect to their own time line should be captured in temporal debugging. We
will also study how the virtual times of several nodes in a distributed environment should
be coordinated.

We will extend our implementation of temporal debugging tools in the
Maruti/Virtual environment to support temporal debugging of distributed programs, and to
support fine grained modification of the time line.

Dynamic Schedule Generation

We will develop the notion of time horizons to support controlled modifications of the hard
real-time calendars at runtime to support programs that generate schedules dynamically.
While the run-time mechanisms for modifying the calendars are already implemented,
research issues relating to finding safe points to switch schedules, and scheduling the
schedulers themselves, have to be studied before effective use can be made of on-line
calendar generation.

8. 2; Fault Tolerance

Maruti currently supports several powerful mechanisms for building fault tolerant
applications:

® Maruti Configuration Language (MCL) constructs allow the application designer to
specify replication of application subsystems with forkers and joiners inserted into the
communication streams, as well as the allocation constraints necessary to correctly
partition the replicated subsystems for the desired level of fault tolerance.

® Maruti Programming Language (MPL) allows the programming of application specific
fault tolerance components such as forkers and joiners, elemental unit monitors, and
channel monitors.

* The run-time system supports multiple calendars, allowing the application to switch to
emergency or fault handling scenarios in real time.

We plan to extend the existing mechanisms by providing tools and new
mechanisms to better automate the process of building fault folerant applications. The new
features will include:

® Alibrary of forkers and joiners that can be incorporated into applications.
* Support for multicast messages.
* Better support in Maruti Programming Language (MPL) for EU and channel IONtors.

* Automatic replication of subsystems, and analysis of fault tolerance properties through
MAGIC, the graphical integrator described below.

8.3. Clock Synchronization

Currently, distributed Maruti handles clock drift at boot-up time, and thereafter time slave
nodes simply adopt the time-master's clock periodically. This scheme is suitable for many
applications, but is not ideal for embedded control systems that will suffer from a
discontinuous time jump.

To address this problem we plan to develop and implement time-synchronization
algorithms that operate concurrently with the distributed real-time program to continually
adjust the clocks on all the nodes, taking into account changes in their relative drift. This

401

will most likely involve a regular time pulse from a master clock, from which the other
nodes continually measure their drift and fine-tune their tick rates. Since the clock drifts are
about one order of magnitude less than the communication latency variances, a simple
algorithm will not suffice here.

8.4. Heterogeneous Operation

We will extend our communications agents and boot protocol to translate typed Maruti
messages between heterogeneous hosts when needed. The off-line Maruti analysis tools
already collect information on the types of the channel endpoints for type-checking the
connection. We will carry this information through to the run-time system for use in those
channels that are connected between heterogeneous nodes.

8.5. MPL/Ada

We will incorporate Maruti Programming Language (MPL) features and analysis into the
Ada 95 programming language as we did for ANSI C in the current MPL, which we will
now refer to as MPL/C. Implementing MPL/Ada will involve the following tasks:

e A detailed design review studying those features of Ada which are compatible with
Maruti and those that are not, and how best to proceed with the implementation of
MPL/Ada.

e Port GNU Ada (GNAT) to our NetBSD development environment.

e Implement as much of the Ada run-time environment as is practicable on the‘ Maruti
run-time.

e Install hooks into GNAT to extract the resource usage information we need. We expect
this work will leverage heavily from the MPL/C work, as GNAT is derived from the
same back-end code base as GNU C.

e Develop and enforce within GNAT those restrictions on Ada constructs needed in order
to preserve the properties needed for our hard real-time analysis.

e Add support for Maruti primitives to the language. Some Maruti primitives might be
implementable directly through existing Ada facilities and thus will not require language
extensions.

402

Figure 4: Prototype Graphical Program Integrator Tool.

8.6. Graphical Tools

Graphical Program Development Tools

Currently, Maruti applications are pulled together by an MCL specification, which takes the
form of a procedural language whose primitive operations instantiate and bind together the
parts of the application. This type of specification language is complete, allowing the
specification of large, complex applications connected in arbitrary ways. However, such
completeness makes MCL relatively low-level and tedious to program.

We are developing graphical program development tools which allow the
application designer to pull together the modules using an entirely graphical user interface-
avoiding MCL programming. The on-screen representation of modules can be
interconnected with channels and grouped into hierarchical subsystems. The application
designer will be able to zoom in and out to view the application at several levels.

The graphical environment will allow both the integration of existing modules and
the development of the interfaces of modules that have not yet been written. The tools will
generate template MPL code for those modules. In this way the graphical environment
functions as a design tool and program generator as well as an integration environment.

The graphical environment will have fault-tolerance analysis built into it. Single
points of failure will be identified on-screen. The user will be able to replicate entire
subsystems at once, with the forker and joiner modules and allocation constraints
introduced into the application automatically by the system.

This graphical style of application integration will greatly facilitate the building and
deployment of reusable software components modules built to be easily customized and
reintegrated into many applications. Given a suitable library of reusable component
modules and the graphical integrator, it will be possible for non-programmers to build large
custom applications from these parts.

403

Figure 5: Prototype Graphical Resource Scheduling Tool

Graphical Resource Management Tools

Along with the graphical software development tools, we are pursuing graphical resource
management tools. These are a non-programmer's interface into the advanced Maruti
scheduling technology. The Maruti allocator/scheduler works with the abstract concepts of
schedulable entities, available resources, and various types of constraints on the placement
of entities and resources. In the Maruti operating system, the scheduling entities are EUs,
and the resources are CPUs, network, memory, and devices - but in fact any type of entity
or resource can be manipulated by the allocator/scheduler.

A graphical resource management tool will allow the specification of these entities,
resources, and constraints on screen in a way more oriented towards the general user. With
this tool users should be able to use Maruti scheduling technology to schedule classes,
busses, or projects, for example.

We have built a small prototype of the graphical resource manager. The prototype
displays the EU graph input to the scheduler as well as the calendar output of the scheduler.
The user can edit the EU graph and its constraints and reschedule with the click of a button.
The resulting resource calendar is redisplayed. ‘

9. Availability

We are pleased to announce the availability of the Maruti 3.1 Hard Real-Time Operating
System and Development Environment.

With Maruti 3.1, we are entering a new phase of our project. We have an operating
system suitable for field use by a wider range of users, and we are embarking on the
integration of our time-based, hard real-time technology with industry standards and more
traditional event-based soft- and non-real-time systems. For this, we are greatly interested
in the feedback from users as to the direction of evolution of the system.

For the Maruti 3.1 project, we will be pursuing the integration of a POSIX interface
for soft and non-real-time applications, the use of Ada for Maruti programming, support
for asynchronous events and soft/non-real time schedulers within the time-based
framework, and heterogeneous Maruti networks.

For this user-oriented phase of the project we will be making regular releases of our
software available to allow interested parties to track and influence our development. To
begin this phase we are making our current base hard real-time operating system and its
development environment available. This is an initial test release.

. Maruti 3.1 will be made available to interested parties on request, via Intemnet ftp.
Please send electronic mail to maruti-dist@cs.umd.edu for details. More information about
the Maruti Project, as well as papers and documentation, are available via the World Wide
Web at:

http://www.cs.umd.edu/projects/marut/|

9.1. Runtime System

The Maruti 3.1 embeddable hard real-time runtime system for distributed and single-node
systems includes the following features:

e The core Maruti runtime system is small - 16 KB code for the single node core, 30 KB
code for the distributed core.

e The core provides a calendar-based scheduler, threads, distributed message passing
using Time Division Multiplexed Access (TDMA) over the network, and tight time
synchronization between network nodes.

e Also included in the runtime system is a graphics library suitable for system monitoring
displays as well as simulations.

e Maruti runs on PC-AT compatible computers using the Intel i386 (with i387
coprocessor), i486DX, or Pentium processors. Distributed operation currently requires
a 3Com 3¢507 ethernet card. The graphics library supports standard VGA and Tseng-
Labs ET-4000-based Super-VGA. Support for other SVGA chipsets is forthcoming
soon.

9.2. Development Environment

Maruti 3.1 includes a complete development environment for distributed embedded hard
real-time applications. The development environment runs on NetBSD Unix and includes
the following:

e d The Maruti/Virtual debugging environment - simulates the Maruti runtime system
within the development environment. The system clock in this environment tracks
virtual time, which can be sped up, slowed down in relation to the actual time, or
single-stepped or stopped. This allows temporal debugging of the application. Within
Maruti/Virtual traces of the application scheduling and network traffic can be monitored
in the debugging session.

405

The ANSI-C based Maruti Programming Language (MPL/C). MPL adds modules,
message passing primitives, shared memory, periodic functions, message-invoked
functions, and exclusion regions to ANSI C. MPL is processed by a version of the
GNU C compiler which has been modified to recognize the new MPL features, and to
output information about the resources used by the MPL program.

The Maruti Configuration Language (MCL). MCL allows the system designer to
specify the placement, timing constraints, and interconnections of all the modules in an
application. MCL is a powerful interpreted C-like language, allowing complex,
hierarchical configuration specifications, including replication of components and
installation-site specific sizing of the application. The MCL processor analyses the
application graph for completeness, and type-checks all connections.

The Maruti Allocator/Scheduler. The Maruti allocation and schedulingtool analyses the
information generated by the MPL compiler and the MCL integrator to find an
allocation and scheduling of the tasks of a distributed application across the nodes of a
Maruti network. All relative and global timing, exclusion, and precedence constraints
are taken into account in finding a schedule, as are the network speed and scheduling
parameters.

The Maruti Timing Trace Analyzer. The Timing Analyzer calculates worst-case
computation times from timing files output by the runtime system. Computation times
are calculated for each scheduling unit in the application, and these times can be fed
back into the Allocator/Scheduler for more precise scheduling analysis.

The Maruti Runtime Binder (mbind). One of the features of Maruti is the late binding
of an application to a particular runtime system. The same application binaries can be
combined with different system libraries to build a binary customized for a particular
application in a particular setting. Only those portions of the system library needed for
that binding are included. Mbind manages this final step.

The Maruti Application Builder (mbuild). Mbuild automates the process of building an
application by generating for the programmer a customizable makefile that manages the
_ complete process of compiling, configuring, scheduling, and binding an application.

406

DISTRIBUTION LIST

AUL/LSE
Bldg 1405 - 600 Chennault Circle
Maxwell AFB, AL 36112-6424

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218

AFSAA/SAI
1580 Air Force Pentagon
Washington, DC 20330-1580

PL/SUL
Kirtland AFB, NM 87117-5776

PL/HO
Kirtland AFB, NM 87117-5776

Official Record Copy
PL/VTS/Capt Jim Russell
Kirtland AFB, NM 87117-5776

PL/VT

Dr Hogge
Kirtland AFB, NM 87117-5776

407/408

1cy

2 cys

1cy

2 cys

1cy

2 cys

lcy

DEPARTMENT OF THE AIR FORCE
PHILLIPS LABORATORY (AFMC)

30 Jul 97

MEMORANDUM FOR DTIC/OCP

FROM: Phillips Laboratory/CA
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776

SUBJECT: Public Releasable Abstracts

1. The following technical report abstracts have been cleared by Public Affairs for
unlimited distribution:

PL-TR-96-1126, Pt 1 ADB222369 PL 97-0685 (clearance number)
PL-TR-96-1126, Pt 2 ADB222192 PL 97-0685

2. Any questions should be referred to Jan Mosher at DSN 246-1328.

Sl t) Jeadien_

JANET E. MOSHER
Writer/Editor

cc:
PL/TL/DTIC (M Putnam)

