
UNCLASSIFIED

AD NUMBER

ADB222192

NEW LIMITATION CHANGE

TO
Approved for public release, distribution

unlimited

FROM
Distribution: Further dissemination only
as directed by US Army Strategic Defense
Command, Attn: SCCD-IM-PA, PO Box 1500,
Huntsville, AL 35807-3801, Jan 97 or
higher DoD authority.

AUTHORITY

Phillips Lab. [AFMC] Kirtlnad AFB, NM ltr
dtd 30 Jul 97

THIS PAGE IS UNCLASSIFIED

PL-TR-96-1126, Pt. 2 PL-TR-
96-1126,

Pt 2

ADVANCED HARD REAL-TIME OPERATING SYSTEM,

THE MARUTI PROJECT

Part 2 of 2

Ashok K. Agrawala
Satish K. Tripathi

Department of Computer Science
University of Maryland
College Park, MD 20742

January 1997

Final Report

WARNING - This document contains technical data whose
,Further dissemination only as directed by the U.S. Army export is restricted by the Arms Export Control Act (Title 22,
Strategic Defense Command, ATTN: SCCD-IM-PA, P.O. U.S.C., Sec 2751 et seq.) or The Export Administration Act
Box 1500, Huntsville, AL 35807-3801, January 1997, or of 1979, as amended (Title 50, U.S.C., App. 2401, et sea.).
higher DoD authority. Violations of these export laws are subject to severe criminal

penalties. Disseminate IAW the provisions of DoD Directive
5230.25 and AF 61-204.

DESTRUCTION NOTICE - For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual,
Section 11-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX. For unclassified, limited documents, destroy
by any method that will prevent disclosure of contents or reconstruction of the document.

II

19970410 103
±PHILLIPS LABORATORY

Space Technology Directorate
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

Lf'l'.L QUILLTY I O'±D 2X

PL-TR-96-1126

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data, does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

If you change your address, wish to be removed from this mailing list, or your organization
no longer employs the addressee, please notify PL/VTS, 3550 Aberdeen Ave SE, Kirtland
AFB, NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

This report has been approved for publication.

SI RUSSELL, Capt, USAF
r oject Manager

FOR THE COMMANDER

NANCY L. 0 LEY,LtCol,US CHRISTINE M. ANDERSON, SES
Chief, Satellite Control and Simulation Director, Space Technology
Division

DRAFT SF 298
1. Report Date (dd-mm-yy) 2. Report Type 3. Dates covered (from... to)
January 1997 Final 4/92 to 10196

4. Title & subtitle 5a. Contract or Grant #
Advanced Hard Real-Time Operating System, The Maruti
Project DASG-60-92-C-0055

5b. Program Element # 62301E

6. Author(s) 5c. Project# DRPB
Ashok K. Agrawala
Satish K. Tripathi 5d. Task # TB

5e. Work Unit# AT

7. Performing Organization Name & Address 8. Performing Organization Report #
Department of Computer Science
University of Maryland
College Park, MD 20742

9. Sponsoring/Monitoring Agency Name & Address 10. Monitor Acronym
Phillips Laboratory
3550 Aberdeen Ave. SE 11. Monitor Report#
Kirtland, AFB, NM 87117-5776 PL-TR-96-o126, Part 2

12. Distribution/Availability Statement
Further dissemination only as directed by the U.S. Army Strategic Defense Command, ATTN: SCCD-IM-PA, P.O.
Box 1500, Huntsville, AL 35807-3801, January 1997, or higher DoD authority.

13. Supplementary Notes

14. Abstract System correctness for real-time systems relies on both functional and temporal correctness of
the system components. In order to allow creation and deployment of critical applications with hard real-time
constraints in a reactive environment, we have developed the Maruti environment, which consists of the Maruti
operating system and runtime environment, and an application development and environment that uses the
Maruti Programming Language (MPL), an extension of ANSI C; the Maruti Configuration language (MCL), which
specifies how MPL modules are to be connected and any environmental constraints; and various analysis and
debugging tools. The core of the Maruti runtime system is the Elemental Unit (EU) and calendar. An EU is an
atomic entity triggered by incoming data/signals, that produces data/signals. A calendar specifies the
execution order and time for each EU. Calendars are static entities created during application design and
development, thus allowing temporal debugging of applications before they are executed on the machine. A
given application may have more than one calendar to allow contingency or degraded operation.

15. Subject Terms
Real-Time operating systems, fault tolerance, concurrency, embedded systems, environments

Security Classification of 19. Limitation 20. # of 21. Responsible Person
of Abstract Pages (Name and Telephone #)

16. Report 17. Abstract 18. This Page
Unclassified Unclassified Unclassified Limited 200 Capt Jim Russell

(505) 846-8986 ext 352

i /ii

Optimization in Non-Preemptive Scheduling for

Aperiodic Tasks *

Shyh-In Hwang Sheng-Tzong Cheng

Ashok K. Agrawala

Institute for Advanced Computer Studies

and

Systems Design and Analysis Group

Department of Computer Science

University of Maryland

College Park, MD 20742

Abstract

Real-time computer systems have become more and more important in many ap-
plications, such as robot control, fight control, and other mission-critical jobs. The
correctness of the system depends on the temporal correctness as well as the functional
correctness of the tasks. We propose a scheduling algorithm based on an analytic
model. Our goal is to derive the optimal schedule for a given set of aperiodic tasks
such that the number of rejected tasks is minimized, and then the finish time of the

schedule is also miniTmied. The scheduling problem with a nonpreemptive discipline
in a uniprocessor system is considered. We first show that if a total ordering is given,

this can be done in 0(n 2) time by dynamic programming technique, where n is the

size of the task set. When the restriction of the total ordering is released, it is known

"This work is supported in part by Honeywell under N00014-91-C,-0195 and Army/Phillips under DASG-
60-92-C-0055. The views, opinions, and/or findings contained in this report are those of the author(s) and
should not be interpreted as representing the oflcial policies, either expressed or implied, of Honeywell or
Army/Phillips.

213

to be NP-complete [3]. We discuss the super sequence [18) which has been show-n to

be useful in reducing the search space for testing the feasibility of a task set. By ex-

tending the idea and introducing the concept of conformation, the scheduling process

cam be divided into two phases: computing the pruned search space, and computing

the optimal schedule for each sequence in the search space. While the complexity of

the algorithm in the worst case remains exponential, our simulation results show that

the cost is reasonable for the average case.

214

1 Introduction

In a hard real-time system, the computer is required to support the execution of applications
in which the timing constraints of the tasks are specified. The correctness of the system

depends on the temporal correctness as well as the functional correctness of the tasks. Failure
to satisfy the timing constraints can incur fatal errors. Once a task is accepted by the system,
the system should be able to finish it under the timing constraint of the task. A task 2 can

be chaxacterized as a triple of (ri, cj, di), representing the ready time, the computation time,
and the deadline of the task, respectively. A task can not be started before its ready time.

Once started, the task must use the processor for a consecutive period of cq, and be finished
by its deadline. The task set is represented as r = {T1, T2, ... , T,}. A task set is feasible if
there exists a schedule in which all the tasks in the task set can meet their timing constraints.

Scheduling is a process of binding starting times to the tasks such that each task executes
according to the schedule. A sequence S = (TI , T2,..., Tjs), where T < n. Tks represents

the ith task of the sequence S for any 1 < i < k. A sequence specifies the order in which the
tasks are executed. Without confusion, a schedule can be represented as a sequence. How

to schedule the tasks so that the timing constraints are met is nontrivial. Many scheduling
problems are known to be intractable 13) in that finding the optimal schedule requires large

amounts of computations to be carried out.

The approaches adopted to date for scheduling algorithms can be generally classified
into two categories. One approach is to assign priorities to tasks so that the tasks can be
scheduled according to their priorities 11, 7, 8. 10, 12, 15, 14). This approach is called priority

based scheduling. The priority can be determined by deadline, execution time, resource
requirement, lax.ity, period, or can be programmer-deined [4]. The other is time based

schedulinc approach [9, 13). A time based scheduler generates as an output a calendar which
- - specifies the time instants at which the tasks start and finish.

Generally speaking, scheduling for aperiodic task sets without preemption is NP-complete

13]. Due to the intractability, several search algorithms [11, 17, 19, 20) are proposed foi com-
puting optimal or suboptimal schedules. Analytic techniques may also be used for optimal

scheduling. A dominance concept by Erschler et al 12) was proposed to reduce the search
space for checking the feasibility of task sets. They explored the relations among the tasks

215

and determined the partial orderings of feasible schedules. Yuan and Agrawala [18] proposed

decomposition methods to substantially reduce the search space based on the dominance

concept. A task set is decomposed into subsets so that each subset can be scheduled in-

dependently. A super sequence is constructed to reduce search space further. Salksena and

Agrawala [13] investigated the technique of temporal analysis serving as a pre-processing

stage for scheduling. The idea is to modify the windows of two partially ordered tasks

which are generated by the temporal relations so that more partial orderings of tasks may

be generated recursively.

The time based model is employed by several real-time operating systems currently being

developed, including MARUTI 15), MARS [6), and Spring [16). In this paper, we study an

analytic approach to optimal scheduling under the time based model. When complicated

timing constraints and task interdependency are taken into consideration, the schedulability

analysis of priority based scheduling algorithms becomes much more difiicu]t. By analytic

approach, we believe that the time based scheduling algorithm and analysis require reason-

able amounts of computations to produce a feasible schedule.

The rest of this paper is organized as follows. In section 2, we describe how to compute

the optimal schedule for a sequence. In section 3, releasing the restriction of total ordering

on a sequence, we present the approach to computing the optimal schedule for a task set.

Related theorems are also presented. In section 4, a sinulation experiment is conducted to

compare the performance of different algorithms. The last section is our conclusions.

2 Scheduling a Sequence

The size of a sequence (task set) is the number of tasks in the sequence(taslk set), and is

denoted by ISI (IrI). A sequence S is feasible if all tasks in S axe executed in the order of

the sequence and the timing constraints are satisfied. For convenience, we further define am

instance, I, to be a sequence such that jIl = Iri. We denote the instance I by

I = 71:,T21,...,ITT,. "

Notice that {) is used to represent a task set, and () a sequence. Let T; and Ti be two

tasks belonging to sequence S. If Tj is located before T. in the sequence S, we say that

216

I

T

~T•

2

3
I

SI Ts

Figure 1: An instance I- (T2,T2,..TI)

(T;, Tý) conform.s to S. A sequence Si conforms to a sequence S2, if, for any Tj and Ti,

(Ti,Tj) conforming to Si implies (T;,Tj) conforming to S2. We use a(k) to represent the

optimal schedule of (T,, T2, Tk,,) in the sense that for any feasible sequence S conforming

to (TT 2'1.. .,TA, either

ISI < (),

or

ISl = I'(k)I and fs > f.ck), (1)

where fs and f,(k) is the finish time of S and or(k) respectively. o'(k) is thus the optimal

schedule for the first k tasks of 1. The optimal schedule for an instance I can thus be

represented by or(n). For simplicity., let uk = 1a(k)I. In this section, we will discuss the

scheduling for an instance. However, the approach is generally applicable to any sequence.

2.1 Preliminary

We assume that ri + ci 5 di holds for each task Tj in the task set r. At the first glance, one

may attempt to compute o(k) based on o-(k - 1). However, with careful examination, we

can find that iberely computing a(k - 1) does not suffice to compute a(k). This is illustrated

by the example in Figure 1. From this example, we can obtain

u (i) = (T1
1)

217

U

(2)= (T', T2.

At the next step, a(2) ED (7T3) is not feasible, where the operator ED means concatenation
of two sequences. One task must be rejected, which is T37 in this case. Hence, we got

ao(3) = o-(2) = (TI',T2'~).

A problem arises at the next step. o(3) ED (T,) is not feasible either. If we try to fix it
by taking a task off this sequence, the result is

&'(4) = a(3) = (TI, T2).

However, the correct result should be

a(4) = (T3,T,).

Although both a'(4) and o(4) are of the same size, the latter comes with a shorter finish
time, which becomes significant at next step. We get

a(7) = o(5) = a(4) e (TI) = (T3,TY, TI).

However, with a'(4), we would have

o&(5) -= (. = (TjT,T2).

This example shows that merely computing o(k - 1) does not sufce to compute or(k).
When 0(k - 1) is obtained, it can not be predicted as to which tasks would be included in
o-(k). The approach has to be modified as follows.

218
-i

2.2 Sequence-Scheduler Algorithm

We denote by S(k,j) the sequence such that S(k,j) conforms to (T,,T 2 ,...,T') and IS(k,j.)I =
j, where '5 < j(k)j. S(k,j) represents any sequence of j tasks picked up from the first k
tasks of S. We further define a sequence, denoted by o(k,j), to be the optimal schedule with
degree j for (Tf, T2, ... , Tl) in the sense that for any feasible sequence S(k,j), we have

f.u(kj) < fs(k j).

"Notice that a(k) is an abbreviation of o(k, Uk). If a sequence S(k,j) is not feasible,

fS(,j) = Wo.

We would lke to compute o(k,j) based on o(k - 1,j), where j' < j < lo(k)I. The basic

idea is as follows. We know a(k,j) either contains Tk or not. If so, then the other j - 1
tasks axe picked up from the first k - 1 tasks, and o(k - 1, j - 1) is one of the best choices.

In this case, u(k,j) = (k - 1,j - 1) e Tk. Ifo (k,j) does not contain Tl, all of the j tasks
should be picked up from the first k - 1 tasks, and a(k - 1.) is one of the best choices. In
this case, a(kj) = o,(k- 1,j). Whether taking Tk or not is determined by comparing which
one of the sequences comes with a shorter finish time. Therefore, a(k, j) can be determined
by o-(k - 1,j - 1), and o-(k - 1J). The computation of o(k - 1,j) is in turn based on

a(k - 2,j - 1), and a(k - 2,j). In general, at each step k, we need to compute o(k,j) for

j = 1.2,... , 1o(k)]. The algorithm Sequence-Scheduler in Figure 2 formalizes this idea- It is
worth mentioning that the condition of the "'while" statement in the algorithm is designed
to let j increase from I through I a(k) 1. The correctness is verified in the next section.

2.3 Verification of Sequence-Scheduler Algorithm

The proof of the correctness of the algorithm along with some related lemmas are given

below.

Lemma 1 Let SI and S2 be two sequences such that fS < fs 2 . If S2 E (T.) is feasible,
then f$•e(r) <fsue(T•).

219

I

Algorithm Sequence-Scheduler.

Input: an instance I = (T7, T,,..., T,)
Output: the optimal schedule a(n) =- o(n,un) for I

o(O, o) = 0; u = 0
for k:= 1,2,...,n

j := I

whlse u,-)o k +1an ak-1 -2ED(kisfail)
a(kj) := a(k - 1,j) (Tl)

else

endif

endwhile

Uk :=j- I
endfor

Figure 2: Sequence-Scheduler Algorithm

220

Ii

PROOF: This is straightforward via the following equations.

fsle(T,) = maz(fsl,rT.) + cT.

< max(S2), rT.) + cT,

Corollary 1 Let S1 and S2 be two sequences such that fsl 5 fs2. If S2 (S3 is feasible,

where S3 is another sequence, then fsless3 < fs2es3.

PROOF: This is a direct result of applying Lemma 1 repeatedly through the tasks in S3. 0

Lemma 2 Uk = Uk-3 or Uk = Uk-1+ 1.

PROOF: It is obvious that uk >_ uk-1, where both uk and uk-1 are integers. Let us assume

that u, = uk-, + a, and a > 2. We are going to show that this assumption does not hold. We
know a(kU•k) either contains Tr or not. If a(k,uk) contains Ti, we can represent a(k,uk)
as S(k - 1,Uk - 1) e (TI), by picking up a proper sequence S(k - 1,Uk - 1). However,

from the assumption above, we have uk-1 = uk - a < uk - I = JS(k - 1,uk- 1)1. This

contradicts the definition of uki-. On the other hand, if a(k, Uk) does not contain Ti', we
can represent o(k, uk) as S(k - 1, uk). We have uk-.a = uk - a < uk, which is a contradiction.

The assumption thus does not hold. Therefore, we have a < 1. 0

From this lemma, o(k,j) does exist for j _ uk.-2. Furthermore, in the algorithm,j =

uk-_ + I is tested to see if uk = Uk.-I + 1.

Theorem 1 For k = 1,2,...,n, and.j = 1, 2 ,...,uk, if f,(k-1ja-)e{(T:) < , then

,(k,j) = a(k - 1,j - 1) e (Tj); otherwise, c.(k,j) = u(k - 1,j).

PROOF: The proof is by induction on k. 'When k = 1, 11 = (TJ). Since u1 <1 and (T,) is

feasible, cr(l, 1) = (T,). It is easy to come up with the same result through this theorem.
Thus holds the base case. We assume that we can compute a(k- 1,j), for j = 1, 2,..., Uk_1,

221

in the same way, and consider the case of k. Let us first bring forward three basic equations.
Since - <Js(k-ia-1), the following equation holds by Lemma I

ff(2)

By induction hypothesis on a(k - 1,j) such that f,,(-.lj) < fs(k:-•.i), we have J
if f0(k-Ij-2)e(Tr) < f,(k-1,i), then fU(k-1J--)e(T:) < fs(k-1j). (3)

From Equation 2, we have

if fo(k-lj) --< fk(k--)e(T), then f.(k-1J) < fs(k-1j-1)e~r•)" (4)

From Lemma 2, we know either uk= uk--+1 or Uk= Uk-i. The two cases are discussed
below.

Case I: uk= ui-,+a. We first discuss the situation when j = 1,2,... ,uk - 1. We know
that a feasible sequence S(k,j) is either in the form of S(k - 1,j) or S(k - 1,j - 1) e (TZ).
If f-(k-3.J-3)e(TA) < fa(k-1j), then f(k-•.-.)•T:) < fs(k-lj) by Equation 3. Also we have

f,(k-1d-1)e(T:) < fs(k-1J-1)e(T() by Equation 2. This means f,(,-i.-i)e(T•) < fs(kj) for any
feasible sequence S(k,5). Consequently, c(kj) = - 1,5 - 1) a (Tl), which justmies the
theorem. On the other hand, if fik-kI-)e(T),) > (then f,,(k-ij) < .s__ ,-

by Equation 4. In addition, f(5 fs(k-i) by induction hypothesis on o(k - 1,j). So

V(k-I5) < fs(ki) ior any feasible sequences S(k,j). In this case, u(kj) = or(k - 1,J), which
justifies the theorem.

Then we discuss the situation when 5 = u;. Since uk= u--1,, it is clear that (Tk)
belongs to or(k); otherwise, we need to pick up ul. 2 -' tasks from I.-. to make a feasible 1
sequence, which violates the definition of uk.-i. Therefore, a(k,j) can be expressed as S(k-1,

V-I) - (Tk) by picking up a proper sequence S(k- 1, uk-1). Note that Uka 5-1 here. By
Equation 2 , we have f,(k--.d-)e(T) < fS(k-iJ-i)e(T.)), for any sequence S(k-1,5-1)e(Tk').
Thus, a(k,j) = o(k - 1,5 - 1) E) (TI). Now let us check the theorem. The sequence
cr(k - 1,j) = (k -- 1, Uk•-+1) is not feasible; thus its finish time is oo. The condition

< f0 (-.-id is satisfied. So a(k,5) = ((:- 1,5 - 1) e (T.). This justifies the -

theorem.
Case I1: v..= uý.-I. The reasoning follows the discussion of the first part in Case I.

222

I

3 Scheduling a Task Set

In this section we discuss how to schedule a task set by using Sequence-Scheduler. The

opiimal schedule, p, of a task set is defined as follows: for any feasible sequence S consisting

of tasks in r, we have either

ISI < Ipi,

or

ISI = pl and fs > fp.

For simplicity, we use optimal schedule to represent the optimal schedule of the task

set, when there is no confusion. Note that the optimal schedule of the task set is the best

one of the optimal schedules of all instances in the task set. Erschler ef al [2] proposed the

dominance concept to reduce the number of permutations that should be examined for the

feasibility test of a task set. Yuan and Agrawala [18] proposed the super sequence to further

reduce the search space for testing the feasibility of a task set. In this section, we show that

for our optimization problem, the super sequence provides a valid and pruned search space.

In other words, there exists one optimal schedule which conforms to an instance in the super

sequence of the task set. Thus we may use Sequence-Scheduler to schedule for the instances

extracted from the super sequence to derive the optimal schedule. There may exist more

than one optimal schedule for a task set. Our interest is on how to derive one of them.

3.1 Super Sequence

Temporal relations between two tasks T, and T1 are summarized in the following. They are

illustrated by Figure 3.

* leading : Tj -< Ti, if ri < "ri, di: dj, but both of the equalities do not hold at the same

time.

* matching : j1 Ti, if ri = rj, di = dj.

* containing: T•UL Tj, if ri < rj, d, > dj.

223

I

T. Ti ~ T. L

Tj T

Ti L 1 1

(ii) (iii)

Figure 3: (i) T-< T; (ii) Tj 1l T; (iii) T, U T1

A task h is called a top task if there is no task contained by h. A task is called a nontop
task if it contains at least one task. Assume that we have t top tasks in the task set, denoted
by ha1 h2,... ,h% respectively. Denote by M)k the set of tasks that contain the top task hk,

including hk, and by Vk the set of tasks in the task set r that do not belong to Mk. We say
that Tj is weakly leading to T1 , denoted by Tj < Tj, if Tj -< Tj or Tj 11 Tj. If Tj < Tj for all Tj
belonging to S, then Tj" < S.

The dominance concept is originally developed by Erschler ef a! [2] to reduce the search
spatce for testing the feasibility of a task set. The idea is extended with the super sequence
proposed by Yuan and Agrawala [18]. An instance I dominates an instance I' iff:

I' feasible =, I feasible.
N

It can be considered that I is a better candidate as a feasible schedule than I'. A
dominant instance is an instance such that for each possible instance I of the task set, if
I dominates the dominant instance, then the dominant instance dominates I. Thus the
dominant instance can be considered as the best candidate of the feasible schedule. A set of
instances is said to be a dominant set, if I does not belong to the dominant set, then there
exists a dominant instance in the dominant set such that the dominant instance dominates

I.

224

I

A super sequence A serves similarly as a dominant set in that there exists a dominant

instamce in the super sequence; and it is more appropriate for solving our problem. A super

sequence is a .sequence of tasks, where duplicates of tasks axe allowed. The purpose is to

extract instances from the super sequence for scheduling. The super sequence is constructed

according to the dominant rules 12, 18] described below. Whenever a task satisfies one of the

conditions specified by the rules, a duplicate of the task is inserted into the super sequence.

Note that duplicates can only be generated for nontop tasks. The top tasks appear once and

only once in the super sequence.

Rule RI: Let T, and To be any two top tasks. If To -< To, then T, is positioned before To.

If T, 11 T6, the order of the two top tasks is determined arbitrarily.

A unique order of the top tasks can be thus determined for the super sequence. Let us

denote the sequence composed of the top tasks by H = (hi, h2, .. . , ht). The rule implies

that if Tr, is positioned before To in the super sequence, then T, < To. So h <• h2 < ... < ht.

Rule R2:

(1) A nontop task can be positioned before the first top task hA only when it contains ha.

(2) A nontop task can be positioned after the last top task ht only when it contains h,.
(3) A nontop task can be positioned between h, and hk-a only when it contains hk or h+..

The t top tasks delimit the super sequence into t + I regions by rule RI. Now we have

t÷ I subsets of nontop tasks separated by the t top tasks by rule R2. Generally speaking.
a nontop task has more than one possible location. Denote the kth subset by Ak, which is

between top tasks hk and hk+]. From rule R2, it can be deduced that

Ak = Bk,l;.. U Bi ,k+l U .zk+I, where (5)

B,.•--1 = Mk n M*+a, Bkk+1 = Mk n M,+,, B.,k+l = Mkn l Ik+i.

Next rule is to specify the order of the tasks within each subset.

225

U

Rule R3: In each subset Ak, for k = 0, 1,...,n,

(1) the tasks in Br,•- are ordered according to their deadlines, and tasks with the same

deadlines are ordered arbitraxily,

(2) the tasks in Bk,k+1 are ordered arbitrarily,

(3) the tasks in B-,k+, are ordered according to their ready times, and tasks with the same

ready times are ordered arbitrarily,

(4) the tasks in By,,-,-T are positioned before those in Bkk+•, which in turn are positioned

before those in Blk+i.

Now we are ready to construct the super sequence with these three rules. Top tasks are
first picked out and ordered, forming t + 1 regions. In each region, there is a subsequence
of nontop tasks. An instance extracted out of the super sequence is one that conforms to
the super sequence without duplication of tasks. Let q be the number of top tasks that a

nontop task contains. The number of possible regions the nontop task can fall into is q + 1.
The number of instances in the super sequence thus sums up to

N = fl(q+ l)'-,,I
-=1

where n. is the number of nontop tasks which contains g top tasks. Compared with

an exhaustive search which takes up to n! instances (permutations) into account, the super
sequence generally leads to a smaller set. Notice that it takes O(n) time to check if an
instance is feasible. Hence, the time complexity of the feasibility test for the task set is

O(N)

3.2 Leading Theorem

The super sequence is not only useful in testing the feasibility of a task set; we will show that
it is also useful in reducing the number of instances to be examined in order to obtain the
optimal schedule of a task set. We will show that there exists at least one optimal schedule
which conforms to an instance in the super sequence A. Hence, it sufces to check through

A to obtain the optimal schedule of r.

226

|

It is worth attention that the top tasks in p may not be the same top tasks of r. This

arises because some of the top tasks of r may be rejected, introducing new top tasks in

p. Before proceeding to verify the rules for the super sequence, we will first introduce the

Leading Theorem. it serves as the base for further analysis in the Domina.nce Theorem and
Conformation Theorem to be described later. The Leading Theorem tells that under certain

condition we can adjust the order of tasks to satisfy the Weakly Leading Condition to be

defined below and do not introduce a schedule with greater finish time.

Assume that S is a feasible sequence, with Lpre, L, and L•,, subsequences of S such that

S = Lpe E L E) LP0,.

Let us denote L by

L = (TOý,T • .. ,,, T),

where w > 0. A frame F is defined to be a time interval characterized by a beginning

time bF, and an ending time eF. We say that F is a frame corresponding to L, if bF = so,
and eF = f,, where sc is the starting time of T6, and f,, is the finish time of T'.

Theorem 2 (Leading Theorem) Assume that S = Lp., E L S Lpo, is a feasible sequence,
where L = (To. T, T.,..., T=,, T.). Let F be a frame corresponding to L. If T, -< Ts, and

there does not ewdst a task T_, 2 < i < w, such that F UT=,, then there exists a sequence J,
which is a permutation of L such that

(i) (T, T•) conforms to L, and

Before we can proceed to prove the theorem, the following definition is useful.

Weakly Leading Condition: a sequence S = (TjS, T2,... , Ts) satisfies Weakly Leading

Condition if Ti. < T2 < ... < Ti.

Lemma 3 Let S be a sequence satisfying Weakly Leading Condition. If (T;,T 1) conforms
to S and Tj 11 Tj, then all tasks located between T j and T1 in S must match Tj and Ti.

227

PROOF: For any task T. located between Ti and Ti, according to the definition of Weakly
Leading Condition, we have ri :_ r_ _< ri and di ,5 d. < dj. Since Tj II Ti, ri = rj and

di = dj. Therefore, we have ri = r= = ry and di = d. = di. So, T. matches Tj andT . 0

To obtain L, let us modify the tasks in L in the following way. If the ready time of a
task is less than bF, then its ready time is set to bF. If the deadline of a task is greater than \

eF, then its deadline is set to eF. The computation times remain unchanged. Let L' be a
sequence consisting of the modified tasks with the same order of L, i.e.,

(T'= T, OT;,, 1 . . .I T• T')

Since T, -< Tp, d > d, 2! f_, = er. So d' = d" = eF. Also r, 5 rp < sp = bF, so

r= 8 = bh. This is illustrated in Fig 4 (ii).

Note that swapping T; and T.' in the sequence does not result in a feasible sequence in
this example. It is essential that we adjust the order of the tasks located between them. Let
L' be a sequence which is a permutation of L' and satisfies the Weakly Leading Condition,
and to which (Tr, T') conforms. Furthermore. L' satisfies an even stronger condition. If Tp'

is positioned before T!-' in D/, then 2 L' < TL'; if, furthermore, Tm' 11 Tj', the corresponding
tasks T2fr and Tf,' satisfies that T,' < TY'. The idea of such arrangement is that when

interchanging Tý and T.. we do not produce a new reversed pair like them. By reversed pair
we mean for example T, -< Tr but T6 is positioned before T, in the sequence. So. , if(Tr', T)
conforms to L', the corresponding tasks satisfies the condition that either Ym' -T, or

Trý' U T' or T' U Ti, . One possibility of L' is illustrated in Fig 4 (iii), or N

Z'=T.., Z'2, 4 _1-, "A T).

The existence of such a sequence is proved later. Finally, L can be a sequence with
the same order of L', but the ready times and deadlines of the tasks are recovered to their

original settings. This is illustrated in Fig 4 (iv). The figures give the rough idea about how 1
the adjustment of task order can be made to satisfy the conditions described in the Leading

Theorem. Here below is the proof of the Leading Theorem.

228

b e
F

JT

T

______ U._____
(iii (iv

22

rU

PRooF (of Leading Theorem): We would first show the existence of L. The modification of

ready times and deadlines of the tasks for L' is done in such a way that their started times

are not affected. In addition, their computation times remain the same. It is clear that L'

is feasible, and

fipreL = fL,.eL.

We can obtain 1' in the following way. At the first step, the first task TL' of L' is the task

in L' such that, for any task T, belonging to L', T1!' < T'. Such a task TL' exists because there

are no containing relations among the modified tasks, and ties can be broken arbitrarily. T1L'
is exchanged with the task located just left to it in L'. Continue the exchanging process

until TjL' occupies the first location in the sequence. At the second step, the second task
T2L' of Z' is the task in L' such that, for any task T belongg to L' except 2L T, ' < 2'.
Exchange T2' with its left neighbor task consecutively until it occupies the second location

in the sequence. At the ith step, the ith task Tf' of D is the task in L' such that, for any task
2!- belonging to L' except TL' through T _T,!1 2' <3 Z-. E:chzge Tf' with its left neighbor
task consecutively until it occupies the ith location in the sequence. We keep performing this
operation until we finally obtain L'. Insertion of T, ' , I< < i < JL'J, into the ith position of

the seouence by consecutive swapping is possible because T,' <1 T for all T.: not belonging to
(TIL' ... 2,+-). In a word. the adjustment is possible because there are no containing relations

among the modified tasks, and hence there exists a total ordering of the modified tasks by
the Weakly Leading Condition. The resultant LD is existent and is a sequence satisfying the

Weakly Leading Condition.

There is a chance that (Tr, T.) conforms to D'. By Lemma 3, all tasks located between Tp
and T, must match each other. Hence the order of th€ese tasks does not make any difference.
We can thus exchange the position of Te and T., which makes (Ta, T.) conform to L'

During the process of adjusting the position of Tý', 1 :5 i < IL'1, T•' leads to or matches

any task in the sequence except (TL'... •2_). Thus we can apply Lemma 4, to be described
next, which assures that the resultant sequence •er swapping Tfý to the ith location comes

with a shorter or equal finish time. This ex.Lains

fiLveet' <fL eL' = fL,,.9eL.

230

UI

L is a sequence with the same order of L', but the ready times and deadlines of the

tasks are recovered to their original values. Each task in L can be started no later than the

starting time of the same task in 1'. Consequently,

By Corollary 1, we have

. fL,7.eLeL,., -< fL,.eeLeL,..,.

Lemma 4 Assume that S1 E S2 e (Tj) e S3 is feasible, where Si, S2, and S3 are sequences.

If T, < S2, then fSle9(T)eS2eS3 - fs1eS2e(i)es3.

PPaOoF: We will prove the theorem by induction on JS21. When]S21 = 0, it is vacuous]y

true. Assume that it is true when $S21 = k. We would lke to show that it is true when

$S21 = k + 1. Let S2 = (TZ) ST2', where JS2'I = k; i.e.,

SI e S2 e (T) e S3 = S e G (T) e S2' e (T3 e S3.

We can view S1 E (Ti) as a single sequence, and because 1521 A, by induction hypoth-

esis, we have

.fse(z.)e(ljes2'es3 < fs~e(2r.)es2'elr~es3-

By definition,

fsm)e;(7) = maz(ma(fs,r) + c;,r) + cj

=maz(fs+4ý+cj,rj+cý+cIj,ri+cj)

Since T <S 2 , which indicates that Ti < Ti, we have ri _< ri, and rj -c. r + c + cj.

fsie(T,)e(Tj = max(fs + c . cj.ri- + ci + ci)

231

U

On the other hand,

fsj9(;,)e(T.) = mcx(mnax(fs,r1) + c,rj) + c

= max(fs+ci+c., r +ci•+-ci, r+ ci)

Because rj + ci + ci : ri + ci + cj, we have

filemT)eCT,) <-- f lem w•e(i).

By Corollary 1,

fSeIaei()e9()esS2'es3 < fs9e(Tj)e(Tsi) 'es3.

Therefore,

fs6e(-)es2eS3 :. fsles2e(7i)es3-

3.3 Dominance Theorem

The super sequence is constructed for the feasibility test of a task set. If a task set is feasible,

we say tha, there e>6sts a full schedule of the task set. There may exist more than one full

schedule for a given task set. An optimal full schedule is a full schedule whose finish time is

shortest among all the possible full schedules. Note that a full schedule is a feasible instance.

In this section, we prove that if a task set is feasible, there exists an optimal full schedule

coniorming to the super sequence " Hence, the super sequence provides a valid and pruned

search space for deriving the optimal full schedule of a task set.

"1n 12), Erschler ef ci. 's theorem implied a similar result: if a task set is feasible, there exists a full schedule

in the domiman- set. Our theorem further shows that there exast such" a full schedule, with the minimum
finish time among all full schedules, that conforms to the super sequence. We prove the eýstence of such an

optimal full schedule in a more sYstematic w•a.

232

I

Theorem 3 Assume that the task set r is feasible and p is an optimal full schedule of r.

Let Ta and Tp be two top tasks of p such that Ta -< To. If (Tp, T,) conforms to p, then there

exists another optimal full schedule p' such that (Ta, Tp) conforms to p'.

PROOF: Ta and To are two top tasks. Let F be a frame such that bF = so and eF = f=.

Ta -< To means bF = so / rŽ _> rT, and eF=f 0 < d,,. If there exists a task T, such

that F U T., then Ta U T. too. This contradicts to the fact that T, is a top task. Hence

F cannot contain any task. By the Leading Theorem, there exists another sequence p' such

- that (T0, To) conforms to p', and both]p'J = JpJ and f,, • f, hold, which means p' is an
optimal full schedule too. D

When two tasks match each other, it dose not matter which task is executed first. This

gives rise to the following Corollary.

Corollary 2 Assume that the task set r is feasible and p is an optimal full schedule of r.

Also assume that (hl,... , To, T.,..., hi), the subsequence of the top tasks in p, conforms to p.

If Ta, < Yo, then there exists another optimal full schedule p' such that (hi,... ,T,, T,..., h)

conforms to p'.

PROOF: Theorem 3 holds when Ta < Ts , because when two tasks match each other, the

execution order of the two tasks is arbitrary. Also by looking at the adjustment process of

Leading Theorem, we can find that the tasks located before and after Ta and T5 have not
been adjusted. This verifies the corollary. D

Corollary 3 Let H = (hI , h2,. .. , ht) be top tasks of the task set r such that h1 <• h 2 <1

... < hi. if r is feasible, there exists an optimal full schedule p' to which H conforms.

PROOF: Since r is feasible, there exists an optimal full schedule p. Let K = (k1 , k2,. ., i)
be a sequence which is a permutation of H such that K conforms to p. We would like to

adjust the order of the tasks in K so that K is transformed successively into H. 'We locate

the corresponding task of h. in K, where x is chosen in the order of 1 through t, and adjust

233

it to the xth position in K by consecutively swapping h, with its left neighbor. This leads
to the sequence H. During the swapping, h. always weakly leads to its left neighbor, for

. --j are in positions 1,...,x - 1. By Corollary 2, there always exists an optimal full
schedule to which the intermediate resultant sequences conform. Therefore, there exists an
optimal full schedule p' to which (hj, h2,..., ht) conforms. 0

Given an optimal full schedule p, we can always obtain another optimal full schedule p'
in which the top tasks axe ordered according to the weakly leading relations by Corollary 3.
Therefore the rule Ri is verified.

Before we can go further, the following definitions are useful. Let hk be a top task and
T= a nontop task of a sequence S. We say that (hk, Tz) is a disorder pair of S if (hk, T)
conforms to S and T. -< hk. Similarly, (Ti., h.:) is a disorder pair of S if (T,, hk) conforms to
S and hk -< T=. The disorder degree of S is defined to be the number of disorder pairs in S.

Theorem 4 Assume that the task set r is feasible and p is an optimal full schedule of r.
Let h, <, h2<•... < h, be top tasks and T. a nontop task of p. Assume that p = Lpre Le Leot
such that

(hi, . ,hk-) conforms to L,,r,
..) conforms to .

"WVe have the following properties:

(1) if 2I- -< hk and L = (hk,,..T:), then there exists another optimal full schedule p'
L,'c L e Lpos: such that L is a permutation of L, and (7-./.) conforms to L; besides, theh

disorder degree of p' is less than that of p
(2) if hk -< T= and L = (T=,..., hl), then there exists another optimal full schedule p' =

Lpe L• e L.o., such that L is a permutation of L, and (hAk, T.) conforms to L; besides, the
disorder degree of p' is less than that of p

PROOF: We will prove (1) first. Let F be a frame with bp = si and ev = f-. Since T. -< hk,
-= f < d < dh,. Also by- = sh, _> rh,. .f there exists a task T, located between h, and

234

T. such that F U T,, then hk U T., too. This contradicts to the fact that hk is a top task.

The condition of the Leading Theorem is satisfied. Hence there exists a sequence L which
is a permutation of L such that (Ta, hk) conforms to L and L e f,, . Therefore,

Lpre e E) Lpo,, is also an optimal full schedule. Now let us look at Figure 4(iv). This is

the schedule after the adjustment process of the Leading Theorem is made. For the tasks

whose deadlines are less than eCF, they all lead to hk. Note that the disorder is a relationship

defined between a nontop task and a top task, and hk is the only top task in the frame

F. Therefore, no new disorder pairs with hA. are introduced among these tasks. Similarly,

for the tasks whose ready times are greater than bF, they are all led by hk. Therefore, no

new disorder pairs axe introduced. As for the tasks otherwise, including T., and hk, whose

deadlines are greater than or equal to ej- and ready times less than or equal to bF, they can

be ordered arbitrarily. Hence, we can position T. before hA,, and remove the disorder pairs,

if any, in these tasks by rearranging the proper orders for them. Thus the disorder degree of

L is decremented by at least one. So the disorder degree of p' is less than that of p. Property

(2) holds for the same reason. 0

Note that T. does not match h,. or hk+1; otherwise T. is also a top task, which contradicts

our assumption.

Theorem 5 Assume that the task set r is feasible and p is an optimal full schedule of I'.

Let h2 < h2 < ... <• h- be top tasks of p. There exists an optimal full schedule p' such that

(ha, h2, ... , hý) conforms to p', and for any nontop task T, such that (hk, T', hk+l) conforms

to p', either T: U h, or T. U hk+,.

PROOF: Assume that T, is a nontop task such that (hk,,T-, hi.+,) conforms to p'. If T, does
not contain hA and T, does not contain hk++, then either T= -< hA or h,+l -< T,. Hence,
either (hk, T") or (T,, hA++) is a disorder pair. We can eliminate it through Theorem 4, and

the disorder degree is decremented by at least one. Whenever there is a disorder pair in the

schedule, we can always apply Theorem 4 to eliminate it. The disorder degree is decremented
in this way until finally reaching zero. Hence, (h,, T, h,+4) conforming to p' implieh{bat T:
is not leading to hA and hA+ 1 is not leading to 2. The only possibilities are either T U h,

235

'Ul

or T. U hk+1. 0

Theorem 5 confirms the validity of rules Ri and R2.

Theorem 6 (Dominance Theorem) If a task set r is feasible, there exists an optimal I
full schedule p such that p conforms to the super sequence of r.

PROOF: In Theorem 5, we verify the existence of the optima] full schedule such that the
top tasks are ordered according to their weakly leading relations, and the nontop tasks
are located in the appropriate subsets between top tasks. The only work left is to order
the nontop tasks in each subset. The adjustment process of the Leading Theorem can be
applied, and the resultant order is exactly specified by rule R3. So we can conclude that
there exdsts an optimal full schedule p which conforms to the super sequence. C

3.4 Conformation Theorem

If there is no task rejected in p, there exists an optimal full schedule conzforming to the
super sequence of r. However, if P is not feasible, some tasks in P should be rejected. The
dominant rules are developed based on the assumption that no task is rejected. When tasks
are allowed to be rejected, the situation is diffferent. The issue to be raised is whether the
decent solution for feasibility test can be applied to our optimization problem. Remember
that by optimization ve mean that the number of rejected tasks in the schedule is minimized
and then the finish time of the schedule is also minirni ed. When a task set is feasible, the
optimal schedule is also the optimal full schedule. The difculties are addressed in the next
section, followed by the approach and proof to solving the d~tiiculties.

3.4.1. Difficulties

We wish to -make use of the super sequence as search space in our scheduling problem. The
difficulties are twofold.

First, when a task is allowed to be rejected, the dominant rules specifying the relations
among containing tasks and contained tasks need to be modified, because the rules axe

236

II

T4 ~jT 5 h77

T9)

T3 L

Figure 5: The optimal schedule may not conform to the super sequence.

developed based on the assumption that no task is to be rejected. The new rules can
become quite complicated. Let's look at the example depicted in Figure 5. Assume that the

task set is

r = {TI.T 2 ,T3,T4.Ts),

and the super sequence of the task set is

A = (TIT 2,T3 .T4 ,T2,T3,TITs)

The top tasks are typed in bold letters for emphasis. F is not feasible. We can see that
one possibility of the optimal schedule could be

po =7 2 -Ti-T3.T5).

Apparently, po does not confor to A. One may be able to show that another optimal
schedule (T2 ,T4, T3, Ts) conforms to A. Hox-•ver, given an arbitrary task set, it is not
guaranteed that one is always able to do so. In the example, T4 is rejected. If we recompute
the super sequence without T4, we would get a different super sequence. The new super

sequence would be

Ao = (TI, T2, TI, T3, TI, Ts),

to which po conforms. This gives a great dLiffcullv. It seems that we need to check

against each task. Construct a super sequence in condition that the task is accepte•, .

237

construct an-,othe-r suner sequence in condition that the task is rejected'. In g:eneral, wve need

to construct 27' suoe-, seouences in thas way. This is too formaidable to schediule, con-sidering0

that, the number of instance-s in ea-ch ia vid'ual supe.- sequence can be exoonential to the

s i ze of th e t1ýask set-..

Secondly , while rejecting a nontop tasks does notý affect uich. rejectin' to tas cu'ld

azect. the duo-licati on and positiozs of[the nontop tpasks or migh,'t even result in some new

o~tasks. Thos. the super sequence~s can, De totally d~~rn.Look at th'e same exam-ple, in

Figure 5. The rejection of-T resu-lts in two more top tasks. i.e., T:2 and T3. Thwis mna.es A0

completely d,5,erent. irom A

"We ~ro-,ose a.sc~n an ' rteplacing procedure to overcome the Ei~culties. The' oe

duze wvould1 be esclnibed- and ver-i,^ed intne fo1Alowlng sect~oz

3.4.2 ATn-)-oacri azrid P-roof

The idiea o ou-r approach is stat~ed a evblw oloe omloo Let I' anidA be the

orgnlt-askI Set. and the"- su-pel sequence of the taskl setrespecti- vely. It is cleax that there-

exasts an- oD`tima. sced le.whch is unknown to us, :o7 amv ;ýak set. Let.P be the taský

set1 Which ý's co-noosedof, t-,he tasks Ofl the UZL:Own- ont*irnal schedule, and' AD be the suner

sequence of T, . 10 an-d A0 are al1so un-known to us. As mention-ed above, AD mi-ght be qui-te,
diferent foam A. Notice th-at thL nkononia scedle oI' P i alo a o 1al (full)

schedule of P'o. Since 'lo is fea-sible. 'by the Dominance T'heorem- thaere exzists 2n, onDtimal fl

schedulle f1o-r Po, say pD., such that Do, confo:=s to A0 . Our- problem is that we are not able to

co0MD u 1e .0 0 = A0.t lbecas e 0 is 0-,wn. We are, able to computle -L Ero- Ifby zapl-l

the doiatrulles. The sw~ig and eplazinga proceduire exnioits the way. to adjustth

order Of tas-52:! I'D ao an to 7replace some tasks if' necessary. so as to transfo=-~ ,o into a new

schedule o such t'lat P ;s also an onti=al schedule an-d best of all p conforms to an iansta-nce

o{ - ne sa-ke of- £.mDhlc~v. we will sa-v a schedule coaio~_s to A. when the schedulle

Conior-ms to an inasta-nce Of A. So we can- use -A a-s a valid search s-nace when schedul-ing P.

I n th e e xa=,ple o -F Figur e 5, vwe tran--sror-m p0 Into

p= (T2 2T4 71-T 5TS

238

This example is so simplified that the existence of p can be verified by mere intuition.

However, the reasoning is far more complicated than it appears at the first glance. We are

going to prove in the following theorem that such an optimal schedule p that conforms to A

always exists. The corresponding lemmas are preseL.: . in the next section.

Theorem 7 (Conformation Theorem) Given a task set r = {T 1, T2,..., T,}, there exists

-- an optimal schedule p such that p conforms to the super sequence A of r.

PROOF: Given any task set r7, there exists at least one optimal schedule, which is unknown

to us. Assume that we need to reject w tasks from r to make a feasible schedule. Let 170 be
the task set whi:ch is composed of the tasks in the unknown optimal schedule. 1o is a. subset

of r. The super sequence of P0 is denoted by Ao. In addition, we use r5, 0 < _ w, to
represent a task set derived by adding j tasks into Po, Aj the super sequence of r1, and pj

an optimal schedule of ri. When we say adding j tasks into ro, we mean that the resultant
task set rj is composed of distinct tasks and 173 is a subset of r. In particular, r, is r.

We will prove by induction on w to show that there exists an optimal schedule p, for r

conforming to A,,.

Base step w = 0: there is no task rejected. r = "o. Since r is feasible, by the Dominance

Theorem, there exists an optimal (full) schedule po for r such that p0 conforms to A0 .
Induction hypothesis: assume that the theorem holds when w = j, i.e., jpol = n - j. For

the task set ri which is derived by adding 5 tasks into ro, there exists at) op~mad schedule

pi for r such that p, conforms to A,. Notice that IpjJ = Ipol, and 1i'I = ITol + j.
Now consider the case when w 5 + 1, i.e., Lpol = n - (j + 1). We need to reject j + 1

tasks to make a feasible schedule. There exists an optimal schedule p1 for r conforming to

Aj by induction hypothesis. We want to show that, by swapping and replacing the iasks

in pj, the resultant sequence pj+2 conforms to A1+2; besides, lpi+1I = Ipi1, and f,,,+ _< fj,
which implies that pj,1 is also an optimal schedule for* P. Let T, be the task added into Pý
to make P1 +1 . So, Pj U {T.} = rý+,. There are two possibilities when adding T=.

If T= is a nontop task of 1j+1 , adding T, does not add a top task into r,. The orders

of the top tasks in both A1 +l and Ai derived through rule R1 are exactly the sa•,e. Rule

P2 specifies the relation between a nontop task and a top task. Adding a nontop task T=

239

I

does not affect the relations between the already existent nontop tasks and top tasks. The
positions (duplicates) of the already existent nontop tasks in Ai are preserved in Ai+3. Rule

R3 specifies how to arrange the order of the nontop tasks within each subset. Again adding
a nontop task T, does not alter the orders of the already existent nontop tasks in each subset

in Aý. Therefore, if the task being added is a nontop task, A1 is a subsequence of Aj+1 . Let

us look at the example in Figure 5. Assume that ri and rP+l axe

r T= { T2, T3, T4, T.}5, and

r,+, = {T,,TT 3 , T4, Ts),

where T, is a nontop task. The corresponding super sequences would be

Aj = (T2,T3, T4,T 2,T3, T,), and

Ai+j = (TI,T 2,T 3,T 4 ,T2 ,T 3,TI,T 5).

We can see in the example how Ai conforms to A1 +I.

Otherwise, T. is a top task of r 1+.. T= does not contain other tasks in li+j. Two
situations axe possible.

(i) T. is not contained by other tasks. The number of top tasks in r 1 +j is one more than
that of the top tasks in F,. The order of the top tasks in Ai is preserved in A1 +1 , since
the relations of the top tasks are not altered by adding T. Furthermore, T- does not alter

any existent ordexs among the nontop tasks and top tasks, or among the orders between the
nontop tasks and nontop tasks, specified by rules R2 and R3, respectively. Therefore, Aý is
a subsequence of Ai+.. Let us look at the example in Figure 6. Assume that P, and P,+i

are

r. = IT1,T2, T, Ts), and

r7+' = {T1 ,T2 ,T 3,T 4 ,T5),

w5here T3 is a top task not contained by other tasks. The corresponding super sequences ,
would be

A5= (TI, T2 TI, T4 .T 5, T4), and

240

A

T 9Li T3 LiT 5 L
T1 , T4 ~

Figure 6: The added top task 7'3 is not contained by other tasks.

Aj+a= (T1,T 2 ,T 1,T3, T4 , T5 ,T4).

We can see in the example how Aj conforms to AŽ+I.

(ii) T• is contained by some top tasks and/or nontop tasks of r3. Let the top tasks of
rj containing T be 91,..., g,, indexed in the weakly leading order. This situation is more
complicated, because gi, i = 1,..., m, turn out to be nontop tasks in ri+,. There exists a

total ordering of them by weakly leading relations, because there is no containing relations

among 9i. By rule Ri, the super sequence of Fi+l can be expressed as

A~j+ l , hk-a, .. ,, --,9 , Ig m, , h k, - 9..., l .• • Mg• ... , h k+ I.... ,

where hl, ... , hk-,. hk, hk-+,..• are the top tasks in ri+j, and in particular, hk represents

T,. By rule R3, the super sequence of rj+1 can also be expresse8 as

A = (... hk_ k, B-.... 3 k- .k. Bz,k , hk, IBk Bk,k+, Bk, t(6)

11114 2

where nj÷l represents the subsequence of &ý+j between hk-. and hk+., excluding hk_-
and hk+a. as depicted above, and n2j+ = 3 k.,1Enf¼+1 eB-,k+,, where E means concatenation
of sequences. Remember that g9,..., 9, axe top tasks of r,. All the top tasks in rj axe in
the order of hl,..., hk_,l,. .. ,-M,h&+i,... by the weakly leading relations. By rule. R!,
the super sequence of rF can be expressed as

Aj hk -,91, - 19rn- -=4-.2•_, .- , (7)

241

1

where ffl represents the subsequence of Aj between hk-1 and hk+l, excluding hk-1 and

hk++, as depicted above. Notice that in Equations 6 and 7, the subsequences before hk-I

of both Aj+l and Aj are exactly the same, because the addition of the top task hk, or T ,
affects only the subsequence between hk-. and hk+I. Similarly, the subsequences after hk+l

of both Aj+. and Aj are exactly the same too. Hence an instance of Ai+3 will differ from

an instance of Aj only in the the subsequences of fl2 +l and fl-.

Now we would like to check what tasks in Sli should follow immediately after hk_•. By

Lemma 7. all the tasks in f~j can be found in fli+j - hk. So we only need to check the tasks

in Qj+l - hk. If a task contains hk-A but not hk, the task must not contain 91. Because

91 contains hk, any task which contains 91 should also contain hk. When constructing the

subsequence of Aj between hk-1 and 91, by rule R2, all the tasks which appear in B+_Ij of
Aj+1 should follow immediately after hk-1; and by rule R.3, the order of the subsequence is
exactly the same as Bk_ , .

One may observe that some tasks in Bk.-.1k contain hk-. but do not contain gi, so they
would also be positioned between h+-a and 91. These tasks would follow after the tasks of

•-. This is because they do contain hk and hence have greater deadlines than those
tasks in Bki, ;. For the same reason, all the tasks which appeaz in Bl,.+, of Aj+ should be
located imnmediately before hk+i when constructing Aj, and the order is the same. Hence,

the Aj can be further expressed as

A,= (.... ,.hk..), (8)

where £Q' represents the subsequence between B_, and BI,,+1 of A, excluding 3Bk-,1"

and B;,.+. We have %Ij = B_: e S .. By Lemma 9, all the tasks in M are either

in 3 k..x,k or in B-3i..k-
Let us look at an example in Figure 7. The task set in the figure is ri+,. And ri+l - hk

would be F1. 91 and 92 contain only hk. So 92 and 92 are classified as nontop tasks in Fj+2,

242

-I

a

g1 I T5

92

T4 L
T)1 I

T3 1 __

Tal I

Figure 7: The added top task hk is contained by other tasks.

and as top tasks in ri. We can compute the super sequences as follows.

Aj÷2 = (TI,T 2,T 3,T4 ,hk_1, T4 .T 2,T 3 ,T1 ,P1 ,g2 ,hk,T2,g,g92,T3, T, Ts ,hk+÷ITI,TS),
Bk_1.7 B B.-..k Bk Bk.1- Bk.k+2 B-k'A÷1

J43

.~=(TIT 2, 3 ,T 41hk..l, 224 ,T2,T3,TI,g 1,T3,TI,g 2,T3 ,T1 , T hk+I-TITS).

Now going back to examine Equations 6 and 8, we can find that Ai and Ai+l only differ in
the middle subsequences represented by 0' and £2>. This can also be seen in the example in

Figure 7. The instances extracted from Ai would conform to Aj+2 except the corresponding
middle subsequence mentioned above. Remember that pi conforms to AL. We would try to
adjust the order of the tasks of the subsequence in pj which correspond to IT for the purpose

that the resultant schedule pi+j conforms to A 1+2 and pj+2 is also an optimal schedule of

r. The adjustment procedure, called the swapping and replacing method, applied to pi is

described below:

243

U

Cl: for all tasks T. E M2, such that fv < da,, they are sorted by their ready times r,.

C2: for all tasks T, E fl such that s, ?. rh,, they are sorted by their deadlines d,.

C3: a task can be sorted by C1 or C2 described above if the task satisfies both conditions.

C4: if there exists a task Ty E f1j such that sY < rhk and f,> dh,, T, is replaced by hk.

We would like to show that the adjustment does make pj+l conform to A+ 1 .-Remember
that Aý and Aj+l only differ in the middle subsequences represented by fIS and Qý+,. We
only swap and replace the tasks of p, located in flý to derive P1+'- Since pi conforms to
Aj, the head and the tail of pi+, also conforms to As+,. So we only need to check the
middle subsequence of pi+, to see if the whole sequence of p5+1 conforms to Aj+i. The
tasks adjusted by, the swapping and replazing procedure are either in Bk_.B,k or in Br•y,
by Lemma 9. Let us first check the adjustment of C1. In A5+1 , the order of the tasks in
B.-,,i can be determined arbitrarily according to rule R3. so it does not matter which task
is located before which. And in A•+a, the order of the tasks in B- is determned by their

ready times. During the adjustment of CI, all the qualifying tasks axe ordered according to
their ready times. We know that the ready times of the tasks in Bk-_,k are less than the
ready times of the tasks in B7-i,- So, in the resultant schedule pj÷1, the tasks of B ,
aee positioned before the tasks of _-.. This indicates that the order of these tasks in

p,÷, after the adjustment of Cl conforms to A-&+,. For the same reason. the adjustment of
C2 makes the order of the swapped tasks conform to -5+2. In condition C41, if such a T,
exists, replacing T, by hi also conforms to Ai+4 , which can be seen in Equation 6. Each
task T, E Q' satisfies one of the conditions by Lemma 11. Hence, all the tasks in the middle
subsequence of Pj++ are adjusted in such a way that the order conforms to A1 +l. So pj+1
conforms to &+ 1.

Now we would like to show that pi+1, in addition to conforming to A1 +.., can also be
finished no later than pj. We can view the tasks satisfying condition CI as having the same
viritua deadlines of dh, because they all finish before this time instant. Hence, there is a
total ordering among the tasks with virtual deCadlines by weakly leading relations, which
is a-chieved by sorting their ready times. By Lemma 10, the finish time of the resultant

244

I

a

schedule after the adjustment of C1 would not be greater than that of the original schedule.

Similarly, the tasks satisfying condition C2 can be viewed as having the same virtual ready

times of rj,, because they all start after this time instant. For the same reason, the finish

time of the resultant schedule after the adjustment of C2 would not be greater tha:- that of

the original schedule. In condition C3, the qualifying tasks can be sorted in either way and

does not affect the result. In condition 04, if there exists a task T, whose computation time

covers the whole window of the rejected task hk, we may as well replace Tv by hk, and the

finish time of the resultant schedule after the adjustment of 04 would not be greater than

that of the original schedule. Each task T. E f2, satisfies one of the conditions by Lemma 11.

Hence, all the tasks in the middle subsequence of Pj+l are adjusted in such a way that P3+l

would be finished no later than pj. Therefore, IPj+p. = jpjJ, and p+, < f,,. Since pi is an

optimal schedule of F, pý+, is also an optimal schedule of r.

How the adjustment procedure makes the finish time shorter is illustrated by Figures 8.

In Figure 8(i), both T, and T3 satisfy condition C3, and T2 satisfies condition C1. The

procedure of C1 is applied to all these three tasks and makes the finish time shorter. The

dotted task window frame in the figure indicates that hk is a rejected task. In Figure 8(ii),

C1 is applied to the qualifying tasks T, and T2. And by C4, T3 is replaced by hk. This,

makes the finish time shorter. While it is hk that is rejected before the adjustment, it turns

out that T3 , whose computation time covers the whole window of hi, is rejected after the

adjustment.

So far, we have shown that p,+l conforms ko Aj1, and that pj+l is also an optimal

schedule of I. The theorem is thus verified by the induction. It deserves our attention --hat

we do not really apply the swapping and replacing procedure to any schedule. We just want

to show the existence of the optimal schedule which is p3+2 in the context. To make it clear,

the structure of the theorem is illustrated in Figure 9. D

3.4.3 Corresponding Lemrnas

The lemmas used by the conformation theorem are demonstrated as follows

Lemma 5 Bk-1,k; n Bk-3 ,k = Bk.-..1 -.f = 7_I, -- = B•

245

hk hk

............ ..i-
T3LFM 1 Cl C3 T3~ . . .

T 1 1 _____ T, yz

T2 • I T2 I07=-

Figure 8: The swapping and replacing procedure CI, C3 and C4.

B•,:171 n B.,k+j = B.,k. ,k+ = n = @.

PpROOF: We first show that B,_,i n Bk-,.k = 0. Given any task T, E Bk_.-l;, T. does not

contain hk by deflnition. Hence, T,, does not belong to B•._. So B,.-; n Bfl ; = 0. The

others can be proved similarly. D

Lemma 6 BE_-.k U B- = U B..k+l.

PRooF: We first prove that. if a task T, E Bk-.I.k U BI--,,, then T, E B),7-,i U Bkk+.

Because T. contains hk by definition, T, must have a location after hk too by rule R92.

Tv E Bk..: U Bk.+ U B.-,; . T. does not belong to B. so TB E BTUBk,.+. We

can prove similarly that il a task Ty E Bj.--T U B÷,k+ then T. E Bk_,.i. U B7'_,,,. So

Bý._,& U B7_•,,. = B.,- U Bk.,+2. D

246

3 an optimal schedule

Dominance Theorem Dominant Rules

Po < ro
Swapping & i Adding
Replacing 4. a Task

I __

conforming to Dominant Rules
Pj ------------------ (F

Induction Hypothesis
Swapping 9z Adding
Replacing conforming to Dominant Rules adda Task

- > Aji+ r+
P1i-i induction for j + 1

p --> q q is derived from p by method r
r

p -> q p is related to q by relation r

Figure 9: The Structure of the Conformation Theorem

Lemma 7 If and only if T, E Bk-; ULBk.-3.,k UBj-,., UBk.7•yUBk,k+j U BZ,+ then T, E flj.

PROOF: We wi first prove the "if" part. By Lemmma 6, Bk-_,k U BI-, = B3 ,r+1 U Bo,k+i. So
we only need to check against B,_.;U Bk.1,k U B•i2,k UBik+3. I:f Ts E Bk:3i or T. E Bk-1.k,

then T, has a location between the top tasks hk,_ and 9i in Aj. This is because T, contains

h;,-., T, has a location after hk_.- by rule R2. So T, E fl2. Then consider T. E B3 -1,k. T,
is either 2. top task or a nontop task in Aj. If Ty is a top task in Aj, T, must be one of

the 9g, i = 1,..., by the definition of gi. If T1, is a nontop task in Ai, it must contain at

least one top task, which is a top task among 1,.... ,,,, or hk+l by referring to Equation 7.
Notice that T, must not contain hk-. since T. E Brk. No matter whether T, is a top or

nontop task in Aj, T. has a location in f~j by rule R2. If Ts E Bjk+2 , then T. has a location

between the top tasks 9, and hk+1 in Aj by rule R2. So T, E fEj.

247

Now we prove the "only if" part. Let T. be a task located in fkj. If T, is one of the top

tasks of g1 ,--.,g,, T, contains h,. Either T, E Bk.,i. or T, E Br-1.k. Otherwise, T, is a non-

top task of Ai. By rule R2, T. contains at least one of the top tasks of h;_-, gl,..., IgM hk+.

If T. contains one of 91,. . , ,g, then T. also contains hk. So T, contains either hk- 1 , or h;.,

or h;,+,. By rule R2, T,, should fall between h and hk, and/or between hk and h So

T, E Bk-,U -U U Bl- U B u-,• U B,.-k+ U BUk+.0

This lemma means that the tasks in flja - hk are exactly the same tasks which are in
fnj.

Lemma 8 If T, E M., T. contains hi.

PROOf: We would like to show that if T, does not contain hk, then T, does not belong to
.MY. Since gi, i = 1,... ,mn, contains hk, that T. does not contain hk means that T, does

not contain gi either. Hence T. can not have a location in the subsequence between g., and
g,, in fl". The only possible locations of T1, to fall in ff axe either between hk- 2 and 91, or
between 9, and hi,+1. If T,, falls between hij,- and 91, that T. does not contain 91 implies
that T, contains hk-2 by rule R2. That is T, E Bkl.. A nontop task cannot have duplicate
positions in the same region between two adjacent top tasks. B_. ; is located between hk_•

and 93 by Equation 8. T. does not have a location in the head of SY• before 9g. For the same
rezson, T. does not have a location in the tail of flt after 9,,,. So T, does not belong to Q.
Therefore, -if T3 E PQ, T. contains hi..

Lemma 9 If Ts E fE , Ty E Bi_-3.,k U B =, - . U BA,•+).

PROOF: If T3 E .Q, then T, E fE . By Lemma 7, T, E BA,_. U Bk.,_. U Bkrj,- U . U

BRi.k+1 u Bl•+. We know that T. contains hi. by Lemma 8, so T. E Bi,.-Ik U Br-i.u Bi,
Bk..+l. Also by Lemma 6, we have T, E Bi-.,, U B-k ,.k = Bik+2 U Bii++. C

Lemma 10 Assume that S = L.L.Lpos is a feasible sequence, where L = (Tz, Tx,..., Tx.).-
If there exists a sequence L = (Tn, TY,.. ., T,,) such that L is a permutation of L and the
tasks of L are ordered by the weakly leading relation. We have fL•rL9L,., < fLPceLeL,,st-

248

PROOF: We bubble sort the tasks of L in weakly leading order. The swapping only occurs

between two adjacent tasks. For each swapping, we apply the Leading Theorem to the adja-

cent tasks, which correspond to T6 and T, respectively in the theorem. No other tasks Le in

between the two tasks during each individual swapping. So the finish time of the resultant

schedule is not greater than that of the original schedule according to the Leading Theorem.

C

Lemma 11 A task T. E Sl. should satisfy one of the conditions C1, C2, C3 or C4.
PROOF: If Ty E f2., then Ty E .k-1,k U B-yk by Lemma 9, which implies that T, Li hk. We

have rV < rhk and d, > dh,. There are four possibilities.

(i) s. < rh, and fy > dh,: C4 is satisfied.

(ii) s, > rh, and f,, < d,: C3 is satisfied.

(iii) s, < rh, and f, <4d: C1 is satisfied.

(iv) s, ? rh, and f, > dh4: C2 is satisfied.

3.5 Set-Scheduler Algorithm

By Conformation Theorem, we have shown that there exists an optimal schedule which

conforms to the super sequence A. Hence, we can use Sequence-Scheduler to schedule for
each instance in the super sequence, and pick up the best one. Since Sequence-Scheduler
obtains the optimal schedule for each instance, we end up with the optimal schedule for

the task set. The algorithm for scheduling a task set is given in Figure 10. The Sequence-
Scheduler takes 0(n2) time for each instance, while there are

N = 1l(.q+.ay)

instances to check in the super sequence as illustrated in the previous section. The time

complexity of Set-Scheduler algorithm is thus O(NV * n2).

249

Algorithm Set-Scheduler:

Input: a task set r = {Ti, T2 ,... I, }
Output: the optimal schedule p for r J
compute the super sequence A for r
p:= 0
for each instance I in the super sequence A

invoke Sequence-Scheduler to compute the optimal schedule a(n) of I

if (PLo < ja(n)[) Or

(Ipj = Ia(n)l and f,> >fo(,))

p := a(n)

en dif

endfor

Fig•ure 10: Set-Scheduler Algorithm

4 Evaluation

Experiments are conducted to compare the performance of Set-Scheduler with those of the
well-known EBaliest-Deadline-First and Least-Laxity-First heuristic algorithms. The rela-

tions anmong the tasks aze important for the schedulability of the tasks. To study the dif-

ferences between different cases, we allow the variation of the computation times, and the
interarrival times, which are the time intervals between the ready times of two consecutive

tasks. Tasks in a task set are generated in non-descending order by their ready times. The

parameters of the experiments are random variables with truncated normal distribution, as

shown in Figure .1. If the computation time of a task is greater than its window length, the

computation time is truncated to its window length. Such a truncation is not applied to the

interarrival times. -p

The mean of Window is fixed. Computation time ratio is the ratio of the computation
time to the window length. The mean of Interarrival time ranges from 10% to 100% of the

mean of Window. The standard deviation of these three random variables are set to be

250

|

parameters mean
Window length 10.0

Computation time ratio 0.25 0.5 0.75
Interarrival time 1.0, 2.0, ... , 10.0

Figure 11: Parameters of the experiments

20%, 50%, and 80% of their means. For simplicity, the ratios of the three random variables

are set to be the same for each individual experiment. For each experiment with different
parameters, 100 task sets, each with 12 tasks, are generated for scheduling.

We compare the performance of these algorithms by (1) Percentage of accepted tasks:
the number of accepted tasks by the algorithm over the number of the tasks of the optimal
schedule by exhaustive search; (2) Success ratio: the number of times that the algorithnm

comes up with an optimal schedule in the 100 task sets; and (3) Comparisons per task set:
the number of comparisons per task set that each algorithm takes. 'When interarrival times
are small, more containing relations among tasks are likely to happen. Figure 12 shows that
the heuristic algorithms perform worse under this condition and tend to reject more tasks,

especially when the computation time ratio is larger. Set-Scheduler always reaches 100%
acceptance rate since it is an optimal scheduler. In the figure, because the characteristics
of the data with different standard deviation ratios are similar, only the data with standard
deviation ratio equal to 0.8 are depicted. When success ratio is concerned, which can be seen
in Figure 4, the heuristic algorithms performs even worse. Generally speaking, the heuristic
algorithms can usually produce suboptimal schedules, but fail to produce the optimal ones
most of the time. The search space is shown in Figure 4. Set-Scneduler performs well at
the expense of the complexity, which may become very large when the interarrival times are

small. The cost is more reasonable while the interarnriva times between tasks are not too

small.

251

(a) (b)

I.lx- WA• " L.

ON - --- J I

Lm :A -
L ~ ~ ~ ~ ~ ~ a £-L ~ 1~ m L C

-. L

ON- L79

cCi7i..

Gib - aO -

0.•1 " ,"

F Fg12 Prenta3e Su ccessRtio (a)k (a)D D (b) LLF compared wt St-ShSeduSledr e

25 2

a."-

OA4''•

.- •- ~ ~ ~ ~ ~ O / ..- "{ ..
O•-. Im ..- I..-

0.0 L ..

JIM I

Compledty

2 5

5

Figure 14: Number of comparisons per task set

5Conclusion Remarks and Future Work

In this paper, we discuss the optimization techniques in real-time scheduling for aperi-

odic tasks in a un'processor system with the non-preemptive discipline. We first propose

a. Sequence- Scheduler algorithmn to compute the optimal schedule for a sequence in O(n 2)

time. Then a Set-Scheduler algorithm is proposed based on the super sequence anc' Sequence-

Scheduler algorithm. The comple~xity of[our Set-Scheduler algorithm is O(Ar ,* n'•), compared

to O(JV - n) for the feasibility test by E~rschler et al., whbere Nv might be as large as expo-

nentiaJ in the worst case. However, our simulation results show that the cost is reasonable

f[or the average case. We explore the temporal properties concerning the optimization issues,

and present several theorems to formalize the results. The study of temporal properties on

a un~processor may serve as a base for the more complex cases in multiprocessor systems.

For the f[uture work, we propose to incorporate the decomposition technique [18] into

our scheduling algorithm. Under this approach a task set can be decomposed into subsets,

which results in backtrackang points to reduce the search space. Th:is has been shown to be

253

useful in reducing the search space substantially when the task set is well decomposable.

References

11] M. Dertouzos. Control robotics: The procedural control of physical processes. In.

Proceedings of the IFIP Congress, pages 807-813, 1974.

12] J. Erschler, G. Fontan, C. Merce, and F. Roubellat. A new dominance concept in

scheduling n jobs on a single machine with ready times and due dates. Operations

Research, 31(l):114-127, Jan. 1983.

13] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory
of NP-Completeness. W. H. Freeman Company, San Francisco, 1979.

[4] D. W. Gillies and J. W-S. Liu. Greed in resource scheduling. In IEEE Real-Time
Systemns Symposium, pages 285-294, Dec. 1989.

[5] 0. Gudmundsson, D. Mosse, K.T. Ko, A.K. Agrawala, and S.K. Tripathi. Maruti: A
platform for hard real-time applications. In Workshop on Operating Systems for Mission

Critical Computing, pages C1-C14, Sep. 1989.

[6] H. Iopetz, A. Daumm, C. Koza, M. Mulazzami, W. Schwabl, C. Senft, and RL Zainlinger.
Distributed fault tolerant real-time systems: The mars approach. IEEE Micro, 9(1):25-

40, Feb. 1989.
N

17) J. P. Lehoczky. Fixed priority scheduling of periodic tasks with arbitrary deadlines. In
IEEE Real-Time Systerms Symposium, pages 201-209, Dec. 1990.

[8] J.Y. Leung and J. Whitehead. On the Comple>6ty of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks. Performance Evaluation, 2(4):237-250, 1982.

[9] S.T. Le-i, S.K. Tripathi, S.D. Carson, and A.K. Agrawala. The maruti hard real-time "

operating system. A CM SIGOPS, Operating Systems Review. 23:90-106, July 1989.

254
!1

110) C. L. Liu and J. Layland. Scheduling algorithm for multiprogramming in a hard real-

time environment. Journal of the ACM, 20(1):46-61, Jan. 1973.

[11] G. McMahon and M. Florian. On scheduling with ready times and due dates to minimize

maximum lateness. Operations Research, 23(3):475-482, May 1975.

[12] A. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-Time

Environment. PhD thesis, MIT Laboratory for Computer Science, May 1983.

[13] Manas Saksena and Ashok Agrawala. Temporal analysis for static hard-real time

scheduling. In Proceedings 12th International Phoeniz Conference on Computers and

Communications, pages 538-544, March 1993.

114] L. Sha, R R.ajkumar, and 3. P. Lehoczky. Priority Inheritance Protc-zols: An Approach

to Real-Time Synchronization. IEEE Transactions on Computers, 39(9):1175-1185,

Sep. 1990.

[15] L. Sha, R. Rzjkumar, and J.P. Lehoczky. Priority inheritance protocols: An approach

real-time synchronization. Technical Report CMU-CS-87-181. Department of Computer

Science, Carnegie-Mellon University, 1987.

[16] J.A. Stankovic and K. Ramaaritham. The spring kernel: Operating system support for

critical, hard real-time systems. In Workshop on Operating Systems for Mission Critical

Computing, pages AI-A9, Sep. 1989.

127] J. Xu and D. L. Pamnas. Scheduling processes with release times, deadlines, precedence,

and exclusion relations. IEEE Transactions on Software Engineering, SE-16(3):360-369,

March 1990.

[18] X. Yuan and A. K. Agrawala. A'decomposition approach to nonpreemptive scheduling

in hard real-time systems. In IEEE Real-Time Systems Symposium, Dec. 1989.

[19] W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive scheduling under time

and resource constraints. IEEE Transactions on Computers, C-36(8):949-960, Aug.

1987.

255

[20] W. Zhao, K. Ramnamritham, and J. A. Stankovic. Scheduling tasks with resource re-
quirements in a hard real-time system. IEEE Transactions on Software Engineering,

SE-13(5):564-577, May 1987.

.5

|

"-I

256

-.I

REPORT DOCUMENTATION PAGE Form approved

I__OMB No 074-0188
1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE END DATES COVERED

January 1994 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMNBERS
Optimization in Non-Preemptive Scheduling for Aperiodic Tasks N0001 4-91 -C-01 95

DSAG-60-92-C-0055

6. AUTHOR(S)

Shyh-In Hwang, Sheng-Tzong Cheng and Ashok K. Agrawala

8. PERFORMING ORGANIZATION
7. PERFORMING- ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER

University of Maryland CS-TR-3216
Department of Computer Science UMIACS-TR-94-14
A.V. Williams Building
College Park, MD 20742

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
Honeywell Inc. Phillis Laboratory AGENCY REPORT NUMBER

3600 Technology Drive Directorate of Contracting
Minneapolis, MN 55148 3651 Lowry Avenue, SE

Krfiand AFB, NM 87117-5777

11. SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT 12.b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Real-time computer systems have become more and more important in many applications, such as robot control, flight

control, and other mission-critical jobs. The correctness of the system depends on the temporal correctness as well as the
functional correctness of the tasks. We propose a scheduling algorithm based on an analytic model. Our goal is to derive
the optimal schedule for a given set of aperiodic tasks such that the number of rejected tasks is minimized, and then the
finish time of the schedule is also minimized. The scheduling problem with a nonpreemptive discipline in a uniprocessor
system is considered. We first show that if a total ordering is given, this can be done in O(n2) time by dynamic
programming technique, were n is the size to the task set. When the restriction of the total ordering is released, it is known
to be NP-complete [3]. We discuss the super sequence [18] which has been shown to be useful in reducing the search
space for testing the feasibility of a task set. By extendng the idea and introducing the concept of conformation, the
scheduling process can be divided into two phases: computing the pruned search space and computing the optimal
schedule for each sequence in the search space. While the complexity of the algorithm in the worst case remains
exponential, our simulation results show that the cost is reasonable for the average case.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Operating Systems Process, Process Management
Analysis of Algorithms and Problem Complexity, Nonnumerical Algorithms 44

and Problems 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIlFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified Unlisted

MSN 7540-01 280-5500 257 Standard Form 298 (Rev 2-89)

U

I

1

3

p

258 I

UMIACS-TR-89-109 November, 1989
CS-TR -2345

A Decomposition Approach to
Nonpreemptive Real-Time

Scheduling*

Xiaoping (George) Yuant and Ashok K. Agrawala
Institute for Advanced Computer Studies

Department of Computer Science
University of Maryland

College Park, MD 20742

ABSTRACT

Let us consider the problem of scheduling a set of n tasks on a single processor
such that a feasible schedule which satisfies the time constraints of each task is
generated. It is recognized that an exhaustive search may be required to generate
such a feasible schedule or to assure that there does not exists one. In that case
the computational complexity of the search is of the order n!.

We propose to generate the feasible schedule in two steps. In the first step
we decompose the set of tasks into m subsets by analyzing their ready times and
deadlines. An ordering of these subsets is also specified such that in a feasible
schedule all tasks in an earlier subset in the ordering appears before tasks in a later
subset. With no simplification of scheduling of tasks in a subset, the scheduling
complexity is O(E'= ni!), where ni is the number of tasks in the ith subset.

The improvement of this approach towards reducing the scheduling complexity
depends on the the number and the size of subsets generated. Experimental results
indicates that significant improvement can be expected in most situations.

"This work is supported in part by contract DSAG60-87-0066 from the U.S. Army Strategic
Defense Command to the Department of Computer Science, University of Maryland at College
Park. The views, opinions and/or findings contained in this report are those of the authors and
should not be construed as an official Department of Defense position, policy, or decision, unless
so designated by other official documentation.

t System Design and Analysis Group and Department of Computer Science, University of
Maryland, College Park. MD.

259

Contents

I Introduction I

II Background 2

IIIThe Leading Schedule Sequence 3

IV Task Decomposition 5

A. Philosophy. ... 5

B. Decomposition Scheme 5
C. Decomposition Algorithm 6

D. Scheduling Scheme .. 8

V Empirical Study 8

A. Experiment .. 8
B. The Result Explanation and Observation 9

VI Final Remarks I1

I

260

I

I Introduction

Consider the problem of nonpreemptive scheduling of n Lask.S on a single CPU of a hard

real-time system. For task Ti, identified as i, the scheduling request consists of a triple < c4,

ri, di > where ci is the computation time, ri the ready time before which task i can not
start, and di the deadline before which the computation must be completed. Time interval

[rk, di] is called the time window denoted by wi. The window length 1w•i is di - ri. In a
hard real-time system, a schedule is called feasible if all tasks are processed within their

individual windows.

The result of the scheduling process is a schedule in which for any task i, a start time

s- and a finish time fi is identified, where fi = si + c;. Clearly. a schedule is feasible, if for
every task i,

rT _ si < di -c1 . (1)

The scheduling process is not preemptive only if for any two tasks i and j,

si _< si = Si + ci _ s.. (2)

In other words, when task i is scheduled, a span of nonpreemptable processing time,
ci, is allocated for it. No other task may be in execution during that time span. Thus the
scheduling problem is to find a mapping from a task set {i) to a start time set {sj), such
that constraints in (1) and (2) are met. Note that for a given set of tasks {i), there may
be none, one or many feasible schedules.

In general the nonpreemptive real-time scheduling problem is known to be NP-complete
[Gare79]. To find a feasible schedule, the number of schedules to be examined is O(n!),
which we count as the scheduling complezitv. Heuristic techniques can be used [Ma84,
McMa75, Mok83, ZhaoST] to reduce the complexity. This reduction, however, is achieved
at the cost of obtaining a potentially sub-optimal solution. That is, when looking for feasible
schedules, heuristic techniques may not yield a feasible schedule, even though one exists.

Schedules based on the earliest-deadline-first, or minimum-laxity-first rules are examples of
-- such heuristics used in scheduling.

An alternate approach is to develop analytical methods for scheduling [ErscS3, Liu73].
This approach analyzes the relationships among real-time tasks and schedules. The purpose
is to precisely determine optimal task schedules, or narrow the search scope from the original

search space.
The objective of this research is to develop correct and efficient algorithms for nonpre-

emptive real-time scheduling. We call a scheduling algorithm correct, if whenever a feasible
schedule exists, the algorithm can find it.

261

In this paper, we present an analytical decomposition approach for real-time schedulingl .

The strategy is to divide a set of tasks into a sequence of subsets, such that the search for

feasible schedules is only performed within each subset. The decomposition technique used

for generating the sequence of subsets assures that in a feasible schedule all tasks in a subset

earlier in the sequence are scheduled before any task in a later subset. Backtracking in the

search is bounded within each subset, which significantly reduces the scheduling complexity.

There are several different strategies which can be used to subset tasks. The decompo-

sition strategy discussed in this paper is to use a relation called the leading relation which

depends on the tasks' relative window positions.

We performed an experiment which examined the number and size of subsets with

regard to the number of tasks, task arrival rate, and window length. We found that, in

general, the number of tasks in any subset is independent of the total number of tasks to

be scheduled, if the task window lengths are bounded. The decomposition scheduling is a

polynomial computation. As a consequence, the decomposition method is very practical for

the implementation.

In section II we present some basic notions used in the paper. In section III we discuss
a case where all the tasks have the leading relation with each other. Our approach of

decomposition scheduling is introduced in section IV along with concepts of the single

schedule subset and decomposed leading schedule sequence. We present our experiment

results in section V. Our conclusion and future research in section VII.

II Background

If we consider any two tasks i and j, they must have one of these three relations:

2. leading-i -< j (or j -< i), where if ri < rj, di < dj and w 1i wj.

2. matching - ijjj , if r, rj and di = d,.

3. containing, i Li j (or j L i), if ri < rj and dj < di.

These three relations are shown in Fig. 1. It is easy to see that the leading, matching

and containing relations are all transitive. Additionally, if ilij or i U j, we say that i and j

axe concurrTent.

A length is associated with a schedule which is the finish time of the last task in the

schedule. One example is shown in Fig. 2.

The concept of dominance was introduced in [ErscS3], and we will use it later in the

discussion.

Definition 1 For two schedules S, and S2 , S, dominates S2 if and only if:

S2 feasiblc =. S, .feasible.

262

iI i I I
ri di

j L J] I ! I I
rj dj

1. Leading 2. Matching 3. Containing

time

Figure 1: Task window relations

Definition 2 A set of schedules, S, is dominant if VS2 €S, 38 ES such that S loný%rniz-5

S2.

A schedule is dorninant if it dominates all other schedules.

III The Leading Schedule Sequence

Let us consider the case where for a set of task {i), every pair of tasks in this set has a
leading relation, i.e. i -< j or j -< i, for every i, j, i • j.

Based on the leading relation we can define a toa orcker of tasks for the set. We define
the leading schedule sequence (LSS) to be a sequence c +aL6 'in which tasks are in order

according to the leading relation, that is, for any i and j, i -:+ j 4 i -< j, where i -* j

means that i is scheduled in front of j.

Theorem 1 For a set of tasks all of which have a pairwise lea&lri rd(Akon, the schedule
where tasks are sequenced in order of the leading schecuie sequence is a dominant one.

Proof: We prove this theorem by construction.

263

3I

3

[] time

7771 --1 F--1

0 schedule length

Figure 2: An example of one schedule

Suppose this set of tasks has a feasible schedule S in which tasks occur in a different
sequence than the leading schedule sequence. When we examine this schedule, let i and j
be the first pair of tasks that are not ordered by the leading relation, i.e. i -< j, but j I i.
From the leading relation we know that ri _5 rj and d, d< .

Since j and i are the first such pair, deadlines of all tasks between j and i in S must
be greater than or equal to dj as well as di. In S, le.t us construct another schedule S' by
moving i from the current position in S to the position just in front of j. The start time
and finish time of tasks between j and i including j will be increased by no more than ci.
And so, no task between j and i including j will finish later than di. Meanwhile, the rest of
this schedule is unchanged. Thus if S is feasible, the new schedule S' will be feasible too.

By repeating the process of constructing S' from S, we obtain a schedule which has all
tasks ordered according to the leading relation, such that if the original schedule is feasible,
so is the constructed one. --

Thus if there exists a set of feasible schedules, the set must contain schedules that are
conforming to the order of the leading schedule sequence. The result can be generalized
to the situation where there exist matching windows. The generalization is to combine

264 ii

the tasks with the same window into one task whose computation time is the sum of the
computation times of all these tasks.

We will see that the above leading schedule sequence is a special case of the decomposed
leading schedule sequence introduced in the next section.

IV Task Decomposition

A. Philosophy

To solve the general real-time scheduling problem with n tasks, the number of schedules to
be examined can be as much as O(n!). However, taking a closer look, we find that every
task has an important property called the locality of a task, that is, a task is time-bounded
by its time window. Furthermore, if any two task windows are not overlapping, there is
only one possible order for them. The above facts motivate us to separate the tasks into
subsets according to their different time localities.

The decomposition scheduling can be divided into two steps: decomposition and schedul-
ing.

First, a set of n tasks is decomposed into a sequence of m subsets such that the orders cf
subsets axe fixed. The order of a task is determined only relative to the other tasks within
its own subset. The sequence of the subsets is called the decomposEtd rshedule sequence.
The decomposition should be so developed that the schedulability of tasks is not damaged
at all. The decomposition by using the leading relation introduced in this paper shows this
property.

The second step is to schedule the subsets in the sequence order. It always selects
a schedule for each subset with the shortest length, so that when a sub•et is scheduled.
the time span available for it is maximized. IT Wis way, the total number of schedules
to be examined is only O(Z_-_l n.!), where n: is Lhe number of tasks in the ith subset

= n).
The only remaining problem is how to decompose a set of tasks into a sequence of

subsets of tasks such that a feasible schedule is guaranteed to be found if one exists. In the
rest of this paper, we outline how to use the leading relation as a means to divide the task
set.

B. Decomposition Scheme

A set of tasks is called the single schedule-subsi (sss), represented as r, if

Vi E r 3i E (i 2 j) V (j U i) v (il6j).

265

ln other words, each task window is contained hi the window of another task, contains '

the window of another task, or matches the window of another task in the subset.

Given a set of tasks {i}, we can decompose it into a sequence of single schedule subsets

r7...2, .-- rk such that all the tasks in r7 are leading to all the tasks in r-+1 .
The decomposed leading schedule sequence (DLSS) is defined to be a sequence of single

schedule subsets, denoted as:

DLSS = r 1 0 T 2 o... O 7n,

such that Vk' E -"i Vkj E 7ý ki -< ki, for I < i < j : m, (denoted as T'i -< Tr), and -,T can not

be further decomposed: for i = 1,-.., m. Symbol o represents a concatenating operation.

Note that if a task in T' does not lead another task in Tr for i < j, they must have

a matching or containing relation. If this happens, Tr; and -'j can not be different single

schedule subsets. Clearly, all n tasks may belong to a single schedule subset.

Theorem 2 The set of schedules conforming to the decomposed leading schedule sequence

is dominant.

Proof: Assume that if there are two tasks ki E 7i" and kj E r", where 7-i -< Tj. There is no
common concurrent task with both ki and ki. ki is positioned in front of k' in a feasible

schedule (5). Specifically, S = (- .-) o (ki o ... k) o (...). Let us define S' = (kIa o ... k') for

abbreviation (S = (---)o S' o (.-)). The new schedule created by exchanging k*' s position

with kj's is still feasible.

Without loss of generality, suppose that k' and k- are the first such pair in S. Tasks

between k- and k' are led by k-, or concurrent with ki, but not leading to and not concurrent
with kI. Since k' -< k0 (i.e. ri <5 r7), switching k's and k-"s positions will not increase the

finish time of S', which is defined as the finish time of the last task in S'. All the tasks

between k; and kj, including ki, are led by ki, i.e. having deadlines greater than or equal

to dki. If S is feasible with k' as the last task in S', it will be still feasible after the

switching. C

.Note that if the set of schedules that are following the decomposed leading schedule

sequence is empty, there is no feasible schedule available for the tasks to be scheduled.

C. Decomposition Algorithm

Decomposing a set of tasks into single schedule subsets, the algorithm starts with the tasks

having been sorted by their ready times (using their deadlines if their ready times are the

samne).

266

The algorithm uses one single loop to determine which single schedule subset the cur-

rent task should belong to. The loop consists of t"wo parts. The first part is a while loop

which merges singie schedule subsets into one, if the current task is contained by them. The

second part.decides whether the current task can form a new single schedule subset, or join

with another single schedule subset.

The Leading-relation Decomposition Algorithm

begin

/* Initialization. */

k = 1; ri = {1);
rri = ri; d.. = dl;

for i = 2 to n do /* Go over the task list. */

= k - 1; /* I is the index of single schedule subsets. */

continue = TRUE;

while (I > 0) A (continue) do

/* Merge single schedule subsets if the current task is concurrent

with tasks in different subsets. */

if (di > d2)'
Irl _= IrkU 7'1

d-_, = d,,;
k=;

k = 1;

else

continue = FALSE;
l=i-1;

od

if (r-k < ri) A (di < dk)

/* The current task is concurrent with tasks in the current subset.*/
_k = _k u{}

else if (rk < ri) A (dk < di)

/* The current task is led by afl the tasks in the current subset.
A new single schedule subset is created only containing the current task.*/

k = k + 1;

7k= ii);

r1.k = r7;

dk = di.

od

end

267

In this algorithm, the outer loop is executed 7, times. The whilc loop is executed no

more than the number of time proportional to n in total, since no more than n subsets call

be merged during the whole execution of the algorithm with n tasks. Thus the complexity

of this algorithm is only O(n). If we count in the sorting complexity, the decomposition

will cost no more than 0(n iog n).

D. Scheduling Scheme

After tasks has been decomposed into a sequence of subsets, scheduling should be performed

on each subset in the sequence order, such that the schedule on each subset is of the

shortest length. A brute force method is to give an exhaustive search whose computational

complexity amounts to 0(n,!), where ni is the number of tasks in the ith subset.

In [Yuan89b], other scheme is explored for scheduling a subset. The method is to first

build a super-sequence where tasks may have several occurrences. The occurrence of a task

is decided by its relative window position in the subset. Selecting one occurrence for every

task in the super-sequence forms a schedule. A complete search costs O(n• in the

worst case. When we made a few calculation samples of n - with ni less than 100,

n? is a much smaller number than n;!, as shown in the cited paper.
Since the set of schedules following the decomposed leading schedule sequence is .domi-

nant, and since the subsets are scheduled in the sequence order with their shortest length, it

is proved that the decomposition scheduling with the leading relation is correct [YuanS9b].

V Empirical Study

A. Experiment

In order to observe the behavior of the number of tasks in a single schedule subset and

number of the subsets to be created with regard to the number of tasks to be scheduled,

task arrival rate, and task window length, we conduct an experiment as an example to see

the feasibility of our approach for practical implementation.

The outputs we are interested in are:

1. the number of single schedule subsets (sss),

2. the number of window concurrences,

3. the maximum number of tasks in single schedule subsets,

4. the minimum number of tasks in single schedule subsets, and

268

5. the average number of tasks in single schedule subsets.

One WAindow concurrence is counted for any two tasks i and j if i and j have a concurrent

relation. We call the number of tasks in a single schedule subset as the size of L. :nbset.

Meanwhile, we change the following parameters independently to watch the chaages il
the outputs,

1. the number of total tasks,

2. task arrival rate, and

3. window length.

The data is shown in Table 1-41 in the end of this paper. Following are basic rules in
the experiment.

1. The computation time is uniformly distributed over (0, a].

2. The task interarrival is uniformly distributed over [0, ,). The arrival rate is 2/P6.

3. The window length is also randomly created by controlling the laxity 'or each task.
The laxity of a task is the difference between its window length and its computation
time. The laxity is uniformly distributed j0, -y). The distribution guarantees the
window length greater than the computation time for the task.

We notice that the arrival rate should be less than or equal to the service rate, otherwise,
there are congestions in the system, which will result in deadline-missing. In other words,

2/5 < 2/a. That is,

a<B.

The random numbers are provided by function drand) in the UNLX operating system.
The numbers are uniformly distributed over [0, 1) (Stev86].

In the experiment, we found that the minimum size of single schedule subsets is always
one.

B. The Result Explanation and Observation

From the experiment results , we found that when the average window length increases
(-y increases), the number of single schedule subsets reduces and the maximum size of
single schedule subsets slightly increases. The result is exected, since the larger some task

'In the tables, number is repreented by num. Window by W. Concurrences by concurr. Average by

avg. The Single schedule subset by sss.

269

windows are. the more tasks may be concurrent with them. These i.asks may be in the same

single schedule subset.

When 3 increases, that is, the arrival rate decreases, the number of single schedule

subsets increases, and maximum size of single schedule subsets decreases. The result is also

expected, since when the arrival rate decreases, the opportunity of tasks concurrent with

each other decreases too. Most tasks have the leading relation with each other. 1

m ax __I(ni) " -2

- -y 4
"•-- 6

"----------- -- 8

".7=10
/ \..

/ \.'%

12 / ,

/ " . -

/ " w .g. t o ,
l.S -i/. - -- ".

/ ----. "

0 50 100 150 200 250 300

I

Figure 3: The relationship between the size of single schedule subsets and the number of

tasks wit•h regard to the laxity para~meter r, where a = 4, • = 4.

Fig. 3 shows the relationship between the maximum size of single schedule subsets and

the number of tasks to be scheduled. From the experiment, we found that the size of a -

single schedule set never exceeds 14 even when there are 300 tasks being scheduled. The

observation indicates that for most cases ma.: =1 (ni) is a constant.

We show the relationship between the number of subsets (mn) and number of tasks to

be scheduled in Fig. 4 and Fig. 5 with regard to different window length and arrival rate

distributions.

270

U

250

-"4
200- 6

150

100

50

l 10
0 50 100 150 200 250 300

Figure 4: The relationship between the number of single schedule subsets and the number
of tasks with regard to the laxity parameter -f, where o. = 4, 0 = 4.

VI Final Remarks

In this paper, we examine the problem of nonpreemptive scheduling of n tasks on a single
CPTU in hard real-time systems. We propose a correct decomposition strategy for the
scheduling. The strategy significantly reduces the scheduling complexity for most cases.

In this paper we have examined a decomposition technique based only on the windows
of tasks. By taking into account the computation time requirements, the decomposition
can be made stronger [Yuan89a]. The decomposition approach may also be extended to
consider precedence and other dcperdences among tasks. This aspecL of decomposition
technique needs further study.

Acknowledgernents

Thanks to S. Mukherjee for his help in coding the decomposition algorithm for our

271

m

.250

1. = 0 .

200=/ .- .I

150100 " ..

00 50 00.50 00 ,5030

F e Tpwe

,•¢..:."

50 " '

0 50 100 150 200 250 300

Figuare 5: The relationship between the number of single schedule subsets and the number

of tasks with regard to the arrival rate parameter ý, where a = 4, -, = 2.

experiment.

U
References

[ErscS3] Erschler, J., Fontan, G., Merce, C., and tRoubellat, F., "A New Dominance
Concept in Scheduling n Jobs on a Single Machine with Ready Times and Due

Dates", Operations Research, Vol. 31, No. 1, pp. 114-127, Jan. 1983.

[Gaxe79] Garey, M. BR. and Johnson, D. S., Computers and Intractability, a Guide-to the
Theory of NP-Completeness, W. II. Freeman Company, San Francisco, 1979.

[Liu73] Liu, C. L. and Layland, 3., "Scheduling Algorithm for Multiprogramming in a
Hard Real-Time Environment". Journal of the A CM.. Vol. 20. pp. 46-61. Jan.

272 U

1973.

IM a84] Ma. P. R.. "A Model to Solve Timing-Critical Application Problems in Dis-
tributed Computing Systems", IEEE Computer, Vol. 17, pp. 62-6S, Jan. 1984.

[McMa75) McMahon, G. and Florian, M., "On Scheduling with Ready Times and Due
Dates to Minimize Maximum Lateness", Operations Resea:.':h, Vol. 23, No. 3,

pp. 475-482, May 1975.

[MoIS3] Mok, A. K., "Fundamental Design Problems for the Hard Real-time Environ-

ments", May 1983, MIT Ph.D. Dissertation.

[StevS6] Steven V. Earhart, Ed., UNIX Programmer's Manual: System Calls and Library

Routines, Volume Volume 2, CBS College Publishing, 1986.

[YuanS9a] Yuan, X. and Agrawala, A. K., Decomposition with a Strongly-Leading Relation

for Rard Real-Time Scheduling, Technical Report to be Published, Dept. of

Computer Science, Univ. of Maryland, Coll. Pk., MD 20742. Mar. 1989.

[Yuam89b] Yuan, X. and Agrawala, A. K., Scheduling Real-Time Task in Single Schedule

Subsets, Technical Report to be Published, Dept. of Computer Science, Univ. of

Maryland, Coll. Ph., MD 20742, Mar. 1989.

[ZhaoS7] Zhao, W., Ramamritham, K., and Staml-ovic, J. A., "Scheduling Tasks with
Resource requirements in a Hard Real-Time System", IEEE Trans. on Soft.

Eng., Vol. SE-13, No. 5, pp. 564-577, May 1987.

"273

Table 1: a =4, /•4

num of avg W. Inum of num of sss size

tasks length 1 concurr. ssS max avg
2 3.02 5 45 2 1.11

4 4.33 is 35 3 1.43

50 6 5.08 27 25 5 2.00

1 6.53 14 36 5 1.39

""i"" 7.03 26 30 6 1.67

S2 3.1 i1 82 3 1.22

4 4.18 2S 74 5 1.35

100 6 4.34 37 68 6 1.47

8 5.84 - 56 55 6 1.82

10 7.01 77 41 14 2.44

2 3.09 32 11S 4 1.27

4 3.78 40 114 4 1.32

150 6 4.93 68 92 6 1.63

"- 5.85 91 73 7 2.05

10 6.56 111 68 10 2.21

2 i .11 41 159 4 1.26
4 3.67 64 144 4 1.39

200 6 4.94 9S 116 6 1.72

8 5.94 102 113 8 1.77
10 7.277 161 81 8 2.47

2 3.02 46 204 4 1.23

4 3.82 93 167 5 1 .50
250 6 4.83 107 160 6 1.56

S 6.33 162 121 s 12.07
0ol 7.29 I 1S6 103 1nI 421 2.9S 66 237 4] 1.27

3.90 105 205 s 1.4ý6

300 16 5.09 125 194 6 1I.55

8 J 6.21 179 153 11 J1.96
1o0 6.92 228 125 11J 2.40

-2

274

Table 2: a = 4, f3=6

num of y avg W. num of num of sss size
tasks lengt concurr. { sss max avg

2 2.79 13 38 3 1.32
4 4.22 7 43 3 1.16

5o 5 4.45 16 36 3 1.39

10 6.82 23 30 5 + 1.67
2 2.96 16 SS 3 1.18
4 3.93 16 85 3 1.18

100 6 3.93 16 85 3 1.18

8 6.32 31 73 4 1.37
10 7.21 52 58 7 1.72

2 3.29 20 1 230 1.15
4 3.98 29 j 125 1.20

150 6 5.33 42 f 111 4 1.35

8 5.90 55 100 5 1.50

10 6.96 77 83 8 181

2 3.04 25 175 4 1.14

4 3.90 48 153 I3 1.31
200 6 5.18 55 14F r9 1.35

8 5.95 87 128 '8 1.56
101 7.18 84 J 128 6 j1.56

T-293145 206 3~ 11.21
4 4.08 55 200 I6 11.25

250 6 5.o0 555 297 1.27

8 6.15s 78 _7s I 8 {1.43
10 6.78 98 162 7 TT.S41
2 3.00 I 4 250 4 1.20
4 4.13 47 254 5 1.18

300 6 4.97 67 236 4 1.27
8 5.82 96 214 5 1.40

1o0 6.97 616 159 8 1.89

275

Table 3" o = 4, 6 = 8
imn of -y avg W. num of num of I sss size
tasks length concurr. sss max avg 'I

2 3.24 9 42 3 1.19

4 3.56, 5 45 3 1.11

53 6 4.67 1 1i 40 3 1.25
8 1.95 3 47 2 1.06
1. . 20 32 5 1

2 2.99 6 94 21 1.06
4 4.20 13 87 3 1.15

100 6 5.04 26 75 3 1.33
8 5.77 29 73 5 1.37-

_.9 33 70 5 1.43
2 2.99 23 127 4 1.18

4 4.01 2S 1126 4 1.19
150 6 5.27 28 122 3 1.23

8 6.00 32 120 5 1.25

10 7.22 39 112 6 1 1.34

2 3.09 19 182 3 1.10
4 3.94 18 182 3 11.10

200 6 4.87 31 171 4 11.17
8 5.91 51 154 5
F01 6.96 78 130 6 1.54
21 2.91 23 f 227 3 1.101

41 4.01 48 206 14 1.21
250 6l 5.01 I 52 204 I 1.23

8 . I 56 I 195 I5 1.2S
1o0 7.46 1 60 I 191 4 4 1.31

2 2.99 3 267 1.12
4 4.05 30 1 270 3 1.11

300 6 5.07 60 241 4, 1.2
S 5.99 6 63 240
10 7.13 J 110 199 6 1.51

276

Table4: o=4, =10

num of 1 r iavg W. num of nunm of I sss size

tasks ~,length concurr. sss max avg
3.44__ 2 48 2 [1.04

4 4.111 5 45 3 1.11U
50 671 5.50 4 46 3 1.09

8 6.69 [11 41 4 1.22

10] 6.61 15 I3.8 1I 1.32
2] 3.02 .. 89 4 T.-172
41 4.01 14 6 7 4 11.151

100 6j 4.95 21 j 80 4 1.25
S8 6.59 is 82 3 1.22

0o 6.68 25 76 51.32
2 3.00 6 144 2 1.04

4 3.98 11 139] 3 10OS
150 6 4.72 11 139]2 1.08

8 5.91 37, 117 5 1.2S

lo 7.10 43 j 109 16 1.38

213.00 1 [182T]3 1.10
4I 3.97 27 1 174 I 5 1.151

200 6~ 75.19 1 3 f17 3 11.13
8 6.16 34 167 I4 11.201

10 6.90 52 15.s3 4 5.35

4I 4.121 32 2186 3 1.151LI.] 2.94 24 228 3 11.0o

250 6 .-10 43: 213 ; '11.171

1 6.07 45 206 3 1.2
10 6.96 52 200 4 1.25

21 3.05 1 2-7 I274 I3 11.091

77 4.07 21 280 j3 1.0
300 6 5.04 54 251 1.20

S 6.18 .46 2254 3 1.18
___ 0_ 6.61 J 61 j243 8 .2

2-7 7

REHU-Ui L)LUMEN-TI-ON PAGE ruihfliuveQ
OMB No 074-0188

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE END DATES COVERED

INovemebr 1989 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMNBERS
A Decomposition Approach to Nonpreemptive Real-Time Scheduling DASG60-87-X-0066

6. AUTHOR(S)
Xiaoping (George) Yuan, Ashok K. Agrawala, and Manas C. Saksena

7. PERFORMING- ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland CS-TR-89-1 09

Department of Computer Science UMIACS-TR-2345

A.V. Williams Building

College Park, MD 20742

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSORING/ MONITORING
US Army Strategic Defense Command AGENCY REPORT NUMBER
Contr. & Acq. Mgt. Office
CSSD-H-CRS, P.O. Box 1500
Huntsville, AL 35807-3801

11. SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT 12.b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Consider the problem of scheduling a set of n tasks on a uniprocessor such that a feasible schedule that

satisfies each task's time constraints is generated. Traditionally, researchers have looked at all the tasks as a
group and applied heuristic or enumeration search to it. We propose a new approach called the
decomposition scheduling where tasks are decomposed into a sequence of subsets. Tasks are scheduled in
each subset independently in the order of the sequence. It is proved that a feasible schedule can be generated
as long as one exists for the tasks. In addition, the overall scheduling cost is reduced to the sum of the
scheduling costs of the tasks in each subset.

Simulation experiments were conducted to analyze the performance of decomposition scheduling approach.
The results show that in many cases decomposition scheduling performs better than the traditional
branch-and-bound algorithms in terms of scheduling cost, and heuristic algorithms in terms of percentage of
finding feasible schedules over randomly-generated task sets.

14. SUBJECT TERMS 15. NUMBER OF PAGES

17

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIIFICATION 19. SECURiTY CLASSIFICATION 20. UMITATION OF
OFREPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassif ied Unlisted

MSN 7540-01 280-5500 278 Standard Form 298 (Rev 2-89)

5 ECURITY CLA.S.SIFICATIOW OF T0MIS PACE

Let us consider the problem of scheduling a set of n tasks on a single processor
such that a feasible schedule which satisfies the time constraints of each task is
generated. It is recognized that an exhaustive search may be required to generate
such a feasible schedule or to assure that there does not exists one. In that case
the computational complexity of the search is of the order n!.

We propose to generate the feasible schedule in two steps. In the first step
we decompose the set of tasks into m subsets by analyzing their ready times and
deadlines. An ordering of these subsets is also specified such that in a feasible
schedule all tasks in an earlier subset in the ordering appears before tasks in a later
subset. With no simplification of scheduling of tasks in a subset, the scheduling
complexity is 0(•=• n;!), where ni is the number of tasks in the ith subset.

The imDrovement of this approach towards reducing the scheduling complexity
depends on the the number and the size of subsets generated. Experimental results
indicates that significant improvement can be expected in most situations.

1 10

UNCLASSIFIED279
SECURITY CLASSIFICATION OF 7XIS PAGE

280

I •

Viewserver Hierarchy:

A New Inter-Domain Routing Protocol and its Evaluation*

Cengiz Alaettinolu. A. Udaya Shankar

Institute for Advanced Computer Studies
Department of Computer Science

University of Maryland
College Park, Maryland 20742

October 1993

Abstract

A simple approach to inter-domain routing is domain-level source routing with link-state
approach where each node maintains a domain-level view of the internetwork. This does not scale
up to large internetworks. The usual scaling technique of aggregating domains into superdomains
loses ToS and policy detail.

We present a new viewserver hierarchy and associated protocols that (1) satisfies policy
and ToS constraints, (2) adapts to dynamic topology changes including failures that partition
domains, and (3) scales well to large number of domains without losing detail. Domain-level
views are maintained by special nodes called viewservers. Each viewserver maintains a domain-
level view of a surrounding precinct. Viewservers are organized hierarchically. To obtain domain-
level source routes, the views of one or more viewservers are merged (upto a mas-mum of twice
the levels in the hierarchy).

We also present a model for evaluating inter-domain routing protocols, and apply this model
to compare our viewserver hierarchy against the simple approach. Our results indicate that the
viewserver hierarchy finds many short valid paths and reduces the amount of memory require-
ment by two orders of magnitude.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design-packet networks; store and forward networks; C.2.2 [Computer-Communication Net-
works]: Network Protocols-protocol architecture; C.2.m [Routing Protocols]; F.2.m [Computer Network
Routing Protocols).

This work is supported in part by ARPA and Philips Labs under contract DASG60-92-00g5 to Department of
Computer Science, University of Maryland, and by National Science Foundation Grant No. NCR 89-04590. The

* views, opinions, and/or findings contained in this report are those of the author(s) and should not be interpreted as
representing the ofial policies, either expressed or implied, of the Advanced Research Projects Agency, PL, or the
U.S. Governiment.

IThe anthor is also supported by University of Maryland Graduate School Fellowship and Washington DC Chapter
of the ACM Samuel Alexander Fellowship.

281

1 Introduction

A computer internetwork, such as the Internet, is an interconnection of backbone networks, regional

networks, metropolitan area networks, and stub networks (campus networks, office networks and

other small networks)1 . Stub networks are the producers and consumers of the internetwork traffic.

while backbones, regionals, and MALNs are transit networks. (Most of the networks in an internet-

work are stub networks.) Each network consists of nodes (hosts, routers) and links. Two networks

axe neighbors when there is one or more links between nodes in the two networks (see Figure 1).

==11

Figure 1: A portion of an internetwork. (Circles represent stub networks.)

.kn internetwork is organized into domains2. A domain is a set of networks (possibly consisting of

only one network) administered by the same agency. Within each domain, an intra-domain routing

protocol is executed that provides routes between source and destination nodes in the domain. This

protocol can be any of the typical ones, i.e., next-hop or source routes computed using distance-

vector or link-state algorithms.

Across all domains, am inter-domain routing protocol is executed that provides routes be-

tween source and destination nodes in diferent domains. This protocol must satisfy various con-

straints:

(1) It must satisfy policy constraints, which are administrative restrictions on the inter-domain

traffc [8, 12, 9, 51. Policy constraints are of two types: transit policies and source policies.

The transit policies of a domain A specify how other domains can use the resources of A

(e.g. $0.01 per packet, no trafic from domain B). The source policies of a domain A specify

For example, NSFNET, MILNET are backbones and Suranet, Ceroqet are regionals.
: also referred to as rmuting domains

282

B

constraints on traffic originating from A (e.g. domains to avoid/prefer, acceptable connection

cost). Transit policies of a domain axe public (i.e. available to other domains), whereas source

policies axe usually private.

(2) An inter-domain routing protocol must also satisfy type-of-ser-uice (ToS) constraints of ap-

plications (e.g. low delay, high throughput, high reliability, Tinimnum monetary cost). To do

this, it must keep track of the types of services offered by each domain [51.

(3) Inter-domain routing protocols must scale up to very large internetworks, i.e. with a very large

number of domains. Practically this means that processing, memory and communication

requirements should be much less than linear in the number of domains.

(4) Inter-domain routing protocols must automatically adapt to link cost changes, node/link

failures and repairs including failures that partition domains [15]. It must also handle non-

hierarchical domain interconnections at any level [9] (e.g. we do not want to hand-con.igure

special routes as "back-doors").

A simple (or straightforward) approach to inter-domain routing is domain-level source routing

with link-state approach [8, 5]. In this approach, each router3 maintains a domain-level view of the

internetwork, i.e., a graph with a vertex for every domain and an edge between every two neighbor

domains. Policy and ToS information is attached to the vertices and the edges of the view.

When a source node needs to reach a destination node, it (or a router4 in the source's domain)

first examines this view and determines a domain-level source route satisfying ToS and policy

constraints, i.e., a sequence of domain ids starting from the source's domain and ending with the

destination's domain. Then, the packets are routed to the destination using this domain-level

source route and the intra-domain routing protocols of the domains crossed.

The disadvantage of this simple scheme is that it does not scale up for large internetworks. The

storage at each router is proportional to ND x ED, where ND is the number of domains and ED

is the average number of neighbor domains to a domain. The communication cost is proportional

to NR x ER, where NE is the number of routers in the internetwork and ER is the average router

neighbors of a router (topology changes a-re flooded to all routers in the internetwork).

To achieve scaling, several approaches based on aggregating domains into superdomains have

3 Not all nodes maintain routing tables. A router is a node that maintains a routing table.
4 referred to as the policy server in [83

283

been proposed [13, 16, 6]. This approaches have drawbacks because the aggregation results in loss

of detail (discussed in Section 2).

Our protocol

In this paper, we present an inter-domain routing protocol that we have proposed recently[3). It

combines domain-level views with a novel hierarchical scheme. It scales well to large internetworks,

and does not suffer from the problems of superdomains.

In our scheme, domain-level views are not maintained by every router but by special nodes

called viewservers. For each viewserver, there is a subset of domains around it, referred to as the

viewserver's precinct. The viewserver maintains the domain-level view of its precinct. This solves

the scaling problem for storage requirement.

A viewserver can provide domain-level source routes between source and destination nodes in

its precinct. Obtaining a domain-level source route between a source and a destination that are

not in any single view, involves accumulating the views of a sequence of viewservers. To make this

process efficient, viewservers are organized hierarchically in levels, and an associated addressing

structure is used. Each node has a set of addresses. Each address is a sequence of viewserver ids of

decreasing levels, starting at the top level and going towards the node. The idea is that when the

views of the viewservers in an address are merged, the merged view contains domain-level routes

to the node from the top level viewservers. (Addresses are obtained from name servers in the same

way as is currently done in the Internet.)

We handle dynamic topology changes such as node/link failures and repairs, link cost changes,

and domain partitions. Gateways' detect domain-level topology changes affecting its domain and

neighbor domains. For each domain, there is a reporting gateway that communicates these changes

by -hooding to the viewservers in a specified subset of domains; this subset is referred to as its flood

area. Bence, the number of packets used during flooding is proportional to the size of the flood

area. This solves the scaling problem for the communication requirement.

Thus our inter-domain routing protocol consists of two subprotocols: a view-query proto-

col between routers and viewservers for obtaining merged views; and a view-update protocol

between gateways and viewservers for updating domain-level views. -

SA node is called a gateway if it has a link to another domain.

284 .!

Evaluation

Many inter-domain routing protocols have been proposed, based on various kinds of hierarchies.

How do these protocols compare against each other and against the simple approach? To answer this

question, we need a model in which we can define internetwork topologies, policy/ToS constraints,

inter-domain routing hierarchies, and evaluation measures (e.g. memory and time requirements)

for inter-domain routing protocols. None of these protocols have been evaluated in a way that they

- can be compared against each other or the simple approach.

In this paper, we present such a model, and use it to compare our viewserver hierarchy to the

simple approach. Our evaluation measures are the amount of memory required at the source and

at the routers, the amount of time needed to construct a path, and the number of valid paths

found (and their lengths) in comparison to the number of available valid paths (and their lengths)

in the internetwork. We use three internetwork topologies each of size 11,110 domains (roughly the

current size of the Internet). Our results indicate that the viewserver hierarchy finds many short

valid paths and reduces the amount of memory requirement by two orders of magnitude.

Organization of the paper

In Section 2, we survey recent approaches to inter-domain routing. In Section 3, we present the

Sview-ouerv protocol for static network conditions, that is. assuming all links and nodes of the

network remain operational. In Section 4, we present the view-update protocol to handle topology

changes (this section is not needed for the evaluation part). In Section 5, we present ou ev-aluation

model and results from its application to the viewserver hierarchy. In Section 6, we conclude and

describe how to add fault-tolerance and cacheing schemes to improve performance.

2 Related Work

In this section, we survey recently proposed inter-domain routing protocols that support ToS and

Policy routing for large internetworks [14, 16, 13, 10, 6, 20, 2, 19, 18, 7].

Several inter-domain routing protocols (e.g. BGP 114], IDR? [16], NR [10]) are based om path-

vector approach [17]. Here, for each destination domain a router maintains a set of paths, one

through each of its neighbor routers. ToS and policy information is attached to these paths. Each

285

router requires O(.VD x NVD X ER) space. For each destination, a router exchanges its best valid

pMth6 with its neighbor routers. -Ioweve:, a path-vector algorithm mav not find a valid path

from a source to the destination even if such a route exists [13]7. By exchanging k paths to each u

destination, the probability of detecting a valid path for each source can be increased.

The most common approach to solve the scaling problem is to use superdomainsB (e.g. MPR [13],

IDRP [16), Nimrod t6]). Superdomains extend the idea of area hierarchy [11]. Here, domains are

grouped hierarchically into superdomains: "sdose" domains are grouped into level 1 superdomaius,

dciose' level 1 superdomains are grouped into level 2 superdomains, and so on. Each domain

A is addressed by concatenating the superdomain ids starting from a top level superdomain and

going down towards A. A router maintains a view that contains the domains in the same level 1

superdomain, the level I superdomains in the same level 2 superdomain, and so on. Thus a router

maintains a smaller view than it would in the absence of hierarchy. Each superdomain has its own

ToS and policy constraints derived from that of the subdomains.

There are several major problems with using superdomains. One problem is that if there are

domains with different (possibly contradictory) constraints in a superdomain, then there is no good

way of deriving the ToS and policy constraints of the superdomain. The usual techniques are to

take either the union or the intersection of the constraints of the subdomains [13]. Both techniques

have problems'. Other problems are described in [6, 2]. Some of the problems cam be relaxed by

having overlapping superdomains, but this increases the storage requirements drastically.

Nimrod [6j and IPR [131 use the lik-state approach, domain-level source routing, and super-

domains (non-overlapping superdomains for Nimrod). IDRIP [16] uses path-vector approach and

superdomains.

Reference [10] combines the benefits of path-vector approach and link-state approach by having

two modes: An NR. mode, which is an extension of fIRP and is used for the most common ToS

and policy constraints; and a SDR mode, which is like IDPR and is used for less frequent ToS and

A valid path is a path that satisfies the ToS and policy constraints of the domains in the path.

' For example, suppose a router u has two paths P1 and P2 to the destination. Let u have a router neighbor V,
which is in another domain. u chooses and informs v of one of the paths, say Pt. But PI may violate source policies
of v's domain, and P2 may be a valid path for v.

a also referred to as routing domain confederations
' For example, if the union is taken, then a subdomain A cam be forced to obey constraints of other subdomains;

this may eliminate a path through A which is otherwise valid. If the intersection is taken, then a subdomain A can -t

be forced to accept traffc it would otherwise not accept.

286

policy requests. This study does not address the scalability of the SDR mode.

In [2], we proposed another protocol based on superdomains. It always finds a valid path if

one exists. Both union and intersection policy and ToS constraints are maintained for each visible

superdomain. If the union policy constraints of superdomains on a path are satisfied, then the path

is valid. If the intersection policy constraints of a superdomain are satisfied but the union policy

constraints are not, the source uses a query protocol to obtain a more detailed "internal" view of

the superdomain, and searches again for a valid path. The protocol uses a link-state view update

protocol to handle topology changes, including failures that partition superdomains at any level.

The landmark hierarchy [19, 18] is another approach for solving the scaling problem. Here,

each router is a landmark with a radius, and routers which are within a radius away from the

landmark maintain a route to it. Landmarks are orga.nized hierarchically, such that the radius

of a landmark increases with its level, and the radii of top level landmarks include all routers.

Addressing and packet forwarding schemes are introduced. Link-state algorithms caM not be used

with the landmark hierarchy, and a thorough study of enforcing ToS and policy constraints with

this hierarchy has not been done.

The landmark hierarchy may look similar to our viewserver hierarchy, but in fact they are quite

opposite. In the landmark hierarchy, nodes within the radius of the landmark maintain a route to

the landmark, and the landmark may not have a route to these nodes. In the viewserver hierarchy,

viewserver maintains routes (i.e. a view) to the nodes in its precinct.

Route fragments [7] is an addressing scheme. A destination route fragment, called a route

suffi;, is a sequence of domain ids from a backbone to the destination domain. A source route

fragment, called a route prefix, is the reverse of a route suffix of that domain. There are also route

middles, which are from transit domains to transit domains. These addresses are static (i.e. they

are not updated with topology changes) and stored at the name servers. A source queries a name

server and obtains destination route sufixes. It then chooses an appropriate route suffix for the

destination and concatenates it with its own route prefix (and uses routes middles if route sufx

and route prefix do not intersect). This scheme can not handle topology changes and does not

address handling policy and ToS constraints.

287

3 Viewserver Hierarchy Query Protocol

In this section, we present our scheme for static network conditions, that is, all links and nodes

remain operational. The dynamic case is presented in Section 4. '

Conventions: Each domain has a unique id. Domainlds denotes the set of domain-ids. Each

node has an id which is unique in its domain. Nodelds denotes the set of node-ids. Thus, a node is

totally identified by the combination of its domain's id and its node-id. Tota.llds denotes the set

of total node-ids. For a node u, we use domainid(u) to denote the domain-id of u's domain. We

use nodeid(u) and totalid(u) to denote the node-id and total-id of u respectively. For a domain A,

we use domainid(A) to denote the domain-id of A. NodeNeighbors(u) denotes the set of node-ids

of the neighbors of u. DomainNeighbors(A) denotes the set of domain-ids of the domain neighbors

of A. We use the term gateway-id (or viewserver-id) to mean the total-id of a gateway node (or a

viewserve: node).

In outr protocol, a node u uses two kinds of sends. The first kind has the form "Send(m) to v",

where m is the message being sent and v is the total-id of the destination. Here, nodes u and v

axe neighbors, and the message is sent over the physical link (u, v). If the link is down, we assume

that the packet is dropped.

The second kind of send has the form "Send(m) to v using dlsr", where m and v are as above

and dlsr is a domain-level source route between u and v. Here, the message is sent using the intra-

domain routing protocols of the domains in dlsr to reach v1°. We assume that as long as there is a

sequence of up links connecting the domains in disr, the message is delivered to v". If the u and

v are in the same domain, dlsr equals 0-

Views and Viewservers

Domain-level views are maintained by special nodes called viewservers. Each viewserver has a

precinct, which is a set of domains around the viewservez, and a static view, which is a domain-level

view of the precinct and outgoing edges. The static view includes the ToS and policy constraints

'0 Recal that givet a domain-level source route to a destinatioz, using the intra-domait routing protocols we can
rea.ch the destination.

• This involves time-outs, retransmissions, etc. It requires a transport protocol support such as TCP.

288

of domains in the precinct and of domain-level edgesI2. Formally, a viewserve: : maintains the

following:

Precinct.,. (C Domainlds). Domain-ids whose view is maintained.

SViewx. Static view of x.

= {(A, policy&tos(A), {(B, edge.policy&tos(A, B)): B E subset of DomainNeighbors(A)}):

A E Precincts)

- SView, can be implemented as adjacency list representation of graphs t1). The intention of

SView_ is to obtain domain-level source routes between nodes in Precincl4. Hence, the choice of

domains to include in Precinct. and the choice of neighbors of domains to include in SView, is

not arbitrary. Precinct, and SView. must be connected; that is, between any two domains in

Precinct., there should be a path in SViewtv that lies in Precinct. Note that SView= can contain

edges to domains outside Precinct.. We say that a domain A is in the view of a viewserver x, if

either A is in the precinct of x or SView. has an edge from a domain in precinct to A. Note that

the precincts and views of different view servers can be ove lppY% identical or disjoint.

If there is a viewserverx: whose view contains both the source and the destination domains,

then z's view can be used to obtain the required domain-level source route to reach the destination.

The source needs to reach x to obtain its view. If the source and x are in the same domain, x

can be reached using the intra-domain routing protocol. If x is in another domain, then the source

needs to have a domain-level source route to it"3 . In this case, we assume that source has a set of

fixed domain-level source routes to x.

Viewserver Hierarchy

_ }For scaling reasons, we cannot have one large view. Thus, obtaining a domain-level source route

between a source and a destination which are far away, involves accumulating views of a sequence of

viewservers. To keep this process efficient, we organize viewservers hierarchically. More precisely,

each viewserver is assigned a hierarchy level from 0,1, .. , with 0 being the top level in the hierarchy.

A parent/child relationship between viewservers is deined as follows:
12 !Not all the domain-level edges need to be included. This is because some domains may have many neighbors

"causing a big storage requirexment.
a We cannot obtain this domain-level source route from =, i.e. chicken-egg problem.

289

1. Every level i viewserver, i > 0, has a parent viewserver whose level is less than i.

2. If viewserver z is a parent of viewserver y then x's view contains y's domain and y's view

contains x's domain"4 . U

3. The view of a top level viewserver contains the domains of all other top level viewservers.

(typically, top level viewservers are placed in backbones).

Note that the second constraint does not mean that all top level viewservers have the same view.

In the hierarchy, a parent can have many children and a. child can have many parents. We extend

the range of the parent-child relationship to ordinary nodes; that is if the Precinct, contains the J
domain of node u, we say that u is a child of z, and z is a parent of u (note that an ordinary node

does not have a child). We assume that there is at least one parent viewserver for each node.

For a node u, an address is defined to be a sequence (zo, xl,..., xt) such that :z for.i < t is

a viewserver-id, x0 is a top level viewserver-id, xt is the total-id of u, and zi is a parent of xi+,.

Note that a node may have many addresses since the paxent-child relationship is many-to-many. If

a source wants a domain-level source route to a destination, it first queries the name servers 15 to

obtain a set of addresses for the destination. Then, it queries viewservers to obtain an accumulated

view containing both its domain and the destination's domain.

Querying the name servers can be done the same way it is done currently in the Internet. It

requires nodes to have a set of fixed addresses to name servers. This is also sufficient in our case.

However, we can improve the performance by having a set of fixed domain-level source routes

instead.

View-Query Protocol: Obtaining Domain-Level Source Routes

We now describe how a domain-level source route is obtained (regardless of whether the source and

the destination are in a common view or not).

We want a sequence of viewservers whose merged views contains both the source and the

destination domains. Addresses provide a way to obtain such a sequence, by first going up in

the viewserver hierarchy starting from the source node and then going down in the viewserver

hierarchy towards the destination node. More precisely, let (so,..., st) be an address of the source,
____ ____ ___ ____ ___-I

'4 Note that z and y do not have to be in each other's precinct.
: In fact, name servers are called domain name servers. Bowever, domain names amd the domains used in this

paper are diferent. We use "name servers' to avoid confusion.

290

and (do,..., d1) be an address of the destination. Then, the sequence 50- so, ,...Id-1)

meets our requirements. 16 In fact, going up all the way in the hierarchy to top level viewservers

may not be necessary. We can stop going up at a viewserver s, if there is a viewserver dij < I

such that the domain of di is in the view of s2 (one special case is where s, = d,).

The view-query protocol uses two message types:

. (RequestView, s-address, d.address)

where s-address and d.add•ess are the addresses for the source and the destination respec-

tively. A RequestView message is sent by a source to obtain an accumulated view cont ig

both the source and the destination domains. When a viewserver receives a RequestView

message, it either sends back its view or forwards this request to another viewserver.

(ReplyViev, s-address, d.address, accurmview)

where s-address and d.address are as above and accumview is the accumulated view. A

ReplyView message is sent by a viewserver to the source or to another viewserver closer to

the source. The accu7mview field in a ReplyViev message equals the union of the views of

the viewservers the message has visited.

We now describe the events of a source node (see Figure 2). The source node"' sends a

RequestView packet containing a source and a destination address to its parent in the source ad-

dress (using a fixed domain-level source route). When the source receives a ReplyView packet, it

chooses a valid path using the accumview in the packet. If.it does not find a valid path, it can

try again using a diferent source and/or destination address. Note that, the source does not have

to throw away the previous accumulated views, but merge all accumulated views into a richer ac-

cumulated view. In fact, it is easy to change the protocol so that source can also obtain views of

individual viewservers to make the accumulated view even richer.

The events of a viewserver z are specified in Figure 3. Upon receiving a RequestView packet,

z checks if the destination domain is in its precinct"'. If it is, z sends back its view in a ReplyView

packet If it is not, = forwards the request packet to another viewserver as follows: z checks if the

domain of any viewserver in the destination address is in its view or not. If there is such a domain,
U This is similiar to matching route fragments[7). However, in our case the sequence is cmputed in a distributed

fashion (these is needed to handle topology changes).
2 or the policy server in the source's domain
2s Even though destination cam be in the view of z, its policies and ToS's are not in the view if it is not in the

precinct of z.

291

Constants

Fi=edRoutes.(z), for every viewserver-id = such that z is a parent of u,
= I {0) if domainid(u) = domainid(z) u
- f {(di, d.) : di E DomainIds). Set of domain-level routes to z otherwise

Events
RequestView,(s.address, d-address) {Executed when vx wants a valid domain-level source route)

Let s-address be (so.... 4,s1-2,st), and dIsr E FizedRoutes.(s,_t);
Send((RequestViev, s.address, d.address) to s 1 _1 using disr

Receive, (ReplyViev, s.address, d.address, accumview)
Choose a valid domain-level source route using accumview;
If a valid route is not found

Execute RequestView. again with another source address and/or destination address

Figure 2: View-query protocol: Events and state of a source u.

Constants

Precinct.. Precinct of x.

SView.. Static view of z.

Events
Receive-(RequestViev, s.address, d.address)

Let d.address be (do,..., di);
if domainid(d:) 0 Precinc4 then

forward4(RequestVie,, s.address, d.address, {));
else forward=(ReplyViev, d.address, s-address, SView.); {addresses are switched}
endif

Receive,(ReplyViev, s.address, d.address, view)
forwcrd4(Eeplyliew, s.address, d-address, view USView.)

where procedure jorward,(type, s.address, d.address, view)
Let s-address be (se,...,s1), d.address be (do,...,dr);
if 3i : domainid(di) in SView: then

Let i = max{j : domainid(dj) in SView,);
target := dj;

else target := s such that s5 +1 = totalid(z);
endif;
disr := choose a route to domainid(target) from domainid(z) using SView,; I
if type = RequestView then

Send(RequestView, s.address;, d.address) to target using dlsr;
else Send(ReplyView, s-address, d.address, view) to target using disi;
endif

Figure 3: View-query protocol: Events and state of a viewserver z.

z sends the Reques-tView packet to the last such one. Otherwise = is a viewserver in the source

292

address and sends the packet io its parent in the source address. (Note that if z is a viewserver in

the destination address, its child in the destination address is definitely in its view.)

When a viewserver z receives a ReplyView packet, it merges its view to the accumulated view

in the packet. Then it sends the ReplyViev packet towards the source node same way it would

send a RequestView packet towards the destination node (i.e. the role of the source address and

the destination address are changed).

Above we have described one possibie way of obta g the accumulated views. There are

various other possibilities, for example: (1) restricting the ReplyView packet to take the reverse

of the path that the RequestView packet took; (2) having ReplyView packets go all the way

up in the viewserver-hierarchy for a richer accumulated view; (3) source polling the viewservers

directly instead of viewservers forwarding request/reply messages to each other; (4) not including

the non-transit stub domains other than the source and the destination domains in the accumview;

(5) including some source policy constraints and ToS requirements in the RequestView packet,

and having the viewservers filter out some domains.

4 Update Protocol for Dynamic Network Conditions

In this section., we first examine how topology changes such as link/node failures, repairs, and cost

changes, map into domain-level topology changes. Second, we describe how domain-level topology

changes are detected and communicated to viewservers, i.e. view-update protocol. Third, we modify

the view-query protocol appropriately.

Mapping Topology Changes to Domain-Level Topology Changes

Costs are associated with domain-level edges. The cost of the domain-level edge (A,B) equals a

vector of values if the link is upý each cost value indicates how expensive it is to cross domain A

to reach domain B according to some criteria such as delay, throughput, reliability, etc. The cost

equals oo if all links from A to B are downas. Bach cost value of a domain-level edge (A, B) can

be derived from the cost values of the intra-domain routes in A and links from A to B 14120.

a' Note that if a gateway connecting A to B is down, its links are also considered to be down.
20 For example, the delay of a domain-level edge (A, B) cam be calculated as the maximum/average delay of the

routes from any gateway in A to first gateway in B.

293

Link cost changes and link/node failures and repairs correspond to cost changes, failures and

repairs of domain-level edges. Link/node failures can also partition a domain into cells[153. A cell

is a maxcimal subset of nodes of a domain that can reach each other without leaving the domain. 3

With partitioning, some nodes as well as some neighbor domains may not be accessible by all

cells. In the same way, link/node repairs may merge cells into bigger cells. We identify a cell

with the minimum node-id of the gateways in the ceil. 2 In this paper, for uniformity we treat

an unpartitioned domain as a domain with one cell; we do not consider cells that do not isolate

gateways since such cells do not affect inter-domain routes.

If a domain gets partitioned, its vertex in the domain-level views should be split into as many

pieces as there are cells. And when the cells merge, the corresponding vertices should be merged

as well.

Since a domain can be partitioned into many cells, domain-level source routes now include cell-

ids as well. Hence, the intra-domaim routing protocol of a domain should include a route to each

reachable neighbor domain cell.22

View-Update Protocol: Updating Domain-Level Views

Viewservers do not communicate with each other to maintain their views. Gateways detect and

communicate domain-level topology changes to viewservers. Each gateway periodically (and op-

tionally after a change in the intra-domain routing table) inspects its intra-domain routing table

and determines the cell it belongs. For each cell, only the gateway whose node-id is the cell-id

(i.e. the gateway with the minim-n node-id) is responsible for communicating domain-level topol-

ogy changes. We refer to this gateway as the reporting gateway. Reporting gateways compute

the domain-level edge costs for each neighbor domain cell, and report them to parent viewservers.

They are also responsible for informing the viewservers of the creation and deletion of cells.

The communication between a reporting gateway and viewservers is done by flooding over a

set of domains. This set is referred to as the flood area•. The topology of a flood area must

21 Our cells are like the domain components of IDP4I13).
22 This involves the following changes in the inrxra-domain routing protocol: (1) Whenever the cell-id of a gateway

changes, it reports its new cell-id to adjacent gateways in neighbor domains. When they receive this information,
they update their intra-domaim routes to include the new cell-id. (2) Usually when a node recovers from a failure, -p
it queries its neighbors in its domain for their intra-domain routes. When a gateway recovers, it should also query
adjacent gateways in neighbor domains for their cell-ids.

23 For eficiency, the flood area can be implemented by a radius and some forwarding limits (e.g. do not hood

294

be a connected graph. Due to the nature of flooding, a viewserver can receive information out of

order for a domain cell. In order to avoid old information replacing new information, each gateway

includes successively increasing time stamps in the messages it sends.

Due to node and link failures, communication between a reporting gateway and a viewserver

can fail, resulting in the viewserver having out-of-date information. To eliminate such information,

a viewserver deletes any information about a domain cell if it is older than a time-to-die period. We

assume that gateways send messages more often than the time-to-die value (to avoid false removal).

When a viewserver learns of a new domain cell, it adds it to its view. To avoid adding a domain

cell which was just deleted24 , when a viewserver receives a delete domain cell request, it only marks

the domain cell as deleted (and removes the entry after the time-to-die period).

The view-update protocol uses two types of messages as follows:

" (UpdateCell, dornainid, cellid, timestamp, floodarea, ncostset)

is sent by the reporting gateway to inform the viewservers about current domain-level edge

costs of its cell. Here, domainid, celiid, and timestamp indicate the domain, the cell and the

time stamp of the reporting gateway, ncostset contains a cost for each neighbor domain cell,

and floodarea is the set of domains that this message is to be sent over.

" (DeleteCell, domainid, ceZlid, timesiamp, floodarea)

where the parameters are as in the UpdateCell message. It is sent by a reporting gateway

when it becomes non-reporting (because its cell expanded to include a gateway with lower

id), to inform viewservers to delete the gateway's old cell.

The state maintained by a gateway g is listed in Figure 4. Note that Loco2Viewoservers, and

LocalGeaeway•s, can be empty. IntraDomain.RT, contains a route (next-hop or source) for every

reachable node of the domain and for every reachable neighbor domain cells. We assume that

consecutive reads of Ciock, returns increasing values.

The state maintained by a viewserver z is listed in Figure 5. DView• is the dynamic part of
S's view. For each domain cell2 6 known to :, DView= stores a timestamp field which equals the

beyond backbones) instead of a set.
I2 If the domain cell was removed, the timestamp for that domain cell is also lost.

21 JntraDomainRT,, is a view in case of a link-state routing protocol or a distance table in case of a distaance-vector
routing protocol.

26 We use A:g to denote the cell 9 of domain A.

295

Constants:

LocallViewserverss. (C Tota•1lds). Set. of viewservers in g9s domain.

LocalGateways.. (g Tota•.lIs). Set of gateways in p's domain excluding g.

AdjForeignGatewayss. (C TotalIds). Set of adjacent gateways in other domains.

FloodArea,. (C Domainlds). The flood area of the domain (includes domain of g).

Variables:

IntraDomainRT.. Intra-domain routing table of g. Initially contains no entries.

CellIds : lodelds. The id of g's cell. Initially = oo

Clocks Integer. Clock of g....

Figure 4: State of a gateway g.

Constants:

Precinfct.. Precinct of z.

SView=. Static view of x.

TimeToDie, : Integer. Time-to-die value.

Variables:

DView.. Dynamic view of z.
- {(A:g, timestamp, ezpiriytime, deleted,

{(B:.h, cost) : B E DomainNeighbors(A) A h E NodeIds U {*})):
A E Precinct= A g E Nodelds}

Clock, : Integer. Clock of x.

Figure 5: State of a viewserver x.

largest timestamp received for this domain cell, an expiryrime field which equals the end of the

time-to-die period for this domain cell, a deleted field which marks whether or not the domain cell

is deleted, and a cost set which indicates a cost for every neighbor domain cell whose domain is in

SView2 . The cell-id of a neighbor domain equals * if no cell of the neighbor domain is reachable.

The events of gateway g and a viewserver z are specified in Appendix A.

Changes to View-Query Protocol

We now enumerate the changes needed to adapt the view-query protocol to the dynamic case (the

formal specification is omitted for space reasons). -,

Due to link and node failures, RequestViev and ReplyViev packets can get lost. Hence, the

296

source may never receive a ReplyViev packet after it initiates a request. Thus, the source should

try again after a time-out period.

When a viewserver receives a RequestViev message, in the static case it replies with its view

if the destination domain is in its precinct. Now, because domain-level edges can fail, it must also

check its dynamic view and reply with its views only if its dynamic view contains a path to the

destination. Similarly during forwarding of RequestView and ReplyViev packets, a viewserver,

while checking whether a domain is in its view, should also check if its dynamic view contains a

path to it.

Finally, when a viewserver sends a message to a node whose domain is partitioned, it should

send a copy of the message to each cell of the domain. This is because a viewserver does not know

which cell contains the node.

5 Evaluation

Many inter-domain routing protocols have been proposed, based on various kinds of hierarchies.

Eow do these protocols compare against each other and against the simple approach? To answer this

question, we need a model in which we can define internetwork topologies, policy/ToS constraints,

inter-domain routing hierarchies, and evaluation measures (e.g. memory and time requirements)

io: intez-domain routing protocols.

In this section, we first present such a model, and then use the model to evaluate our viewserver

hierarchy and compare it to the simple approach. Our evaluation measures axe the amount of

memory required at the source and at the routers, the amount of time needed to construct a path,

and the number of paths found out of the total number of valid paths.

Even though the model described here can be applied to other inter-domain routing protocols,

we have not done so, and hence have not compared them against our viewserver hieraxchy. This

is because of lack of time, and because precise defintions of the hierarchies in these protocols is

not available. For example, to do a fair evaluation of IDPR[13], we need precise guidelines for

how to group domains into super-domains, and how to choose between the union and intersection

methods when defining policy/ToS constraints of super-domains. In fact, these protocols have not

been evaluated in a way that we can compare them to the viewserver hierarchy. To the best of our

knowledge, this paper is the first to evaluate a hierarchical inter-domain routing protocol against

297

explicitly stated policy constraints.

5.1 Dvaluation Model U

We first describe our method of generating topologies and policy/ToS constraints. We then describe

the evaluation measures.

Generating Internetwork Topologies

For our purposes, an internetwork topology is a directed graph where the nodes correspond to I
domains and the edges correspond to domain-level connections. However, an arbitrary graph will

not do. The topology should have the characteristics of a real internetwork, like the Internet. That

is, it should have backbones, regionals, MANS, LANS, etc.; these should be connected hierarchically

(e.g. regionals to backbones), but "non-hierarchical" connections (e.g. "back-doors') should also

be present.

For brevity, we refer to backbones as class 0 domains, regionals as class 1 domains, metropolitan-

area domains and providers as class 2 domains, and campus and local-area domains as class 3

domains. A (strictly) hierarchical interconnection of domains means that class 0 domains are

connected to each other, and for i > 0. class i domains are connected to class i - 1 domains.

As mentioned above, we also want some "non-hierarchical"' connections, i.e., domain-level edges

between domains irrespective of their classes (e.g. from a campus domain to another campus

domain or to a backbone domain).

In reality, domains span geographical regions and domain-level edges axe usually between do-

mains that are geographically close (e.g. Utniversity of Maryland campus domain is connected to

StRANET regional domain which is in the east cost). A class i domain usually spans a larger

geographical region than a class i + 1 domain. To generate such interconnections, we associate a
"Uregion" attribute to each domain. The intention is that two domains with the same region are

geographically dose.

The region of a class i domain has the form r 0 .r. ---- i, where the rj's are integers. For

example, the region of a class 3 domain can be 1.2.3.4. For brevity, we refer to the region of a
-m

class i domain as a class i region.

Note that regions have their own hierarchy. Class 0 regions are the top level regions. We say

298

that a class i region zo.rl. ..-- ri is contained in the class i -1 region Io.rl. --. ri-I (where i > 0).

Containment is transitive. Thus region 1.2.3.4 is contained in regions 1.2.3, 1.2 and 1.

M 0

/ / ~ ~1.2 .•"

/ - /.,... ,,•\\

III

5- --- -- -- -- -- -- -- -- ---------- - - - -

Figure 6: Regions

Given any pair of domains, we classify them as local, remote or fax, based on their regions.

Let X be a class i domain and Y a class j domain, and (without loss of generality) let i < j.

X and Y are local if they are in the same class i region. For example in Figure 6, A is local to

B, C, J, K, M, NO, 0P, and Q. X and Y are remote if they axe not in the same class i region but

they are in the same class i - 1 region, or if i = 0. For example in Figure 6, some of the domains

A is remote to are D,E, F, and L. X and Y axe far if they are not local or remote. For example

in Figure 6, A is far to I.

We refer to a domain-level edge as local (remote, or far) if the two domains it connects are local

299

(remote, or far).

We use the foLlowing procedure to generate internetwork topologies:

* We first specify the number of domain classes, and the number of domains in each class.

* We next specify the regions. Note that the number of region classes equals the number of

domain classes. We specify the number of class 0 regions. For each class i > 0, we specify a

branching factor, which creates that many class i regions in each class i - I region. (That is,

if there are two class 0 regions and the class 1 branching factor equals three, then there are

six class ! regions.) !

* For each class i, we randomly map the class i domains into the class i regions. Note that

several domains can be mapped to the same region, and some regions may have no domain

mapped into them.

* For every class i and every class j, j >_ i, we specify the number of local, remote and far

edges to be introduced between class i domains and class j domains. The end points of the

edges are chosen randomly (within the specified constraints).

We ensure that the internetwork topology is connected by ensuring that the subgraph of class

0 domains is connected, and each class i domain, for i > 0, is connected to a local class i - 1

domain.

Choosing Policy/ToS Constraints

We chose a simple scheme tc model Policy/ToS constraints. Each domain is assigned a color: green

or red. For each domain class, we specify the percentage of green domains in that class, and then

randomly choose a color for each domain in that class.

A valid route from a source to a destination is one that does not visit any red intermediate do-

mains; the source and destination are allowed to be red. Notice that this models transit policy/ToS

constraints. We are working on extending this model to source policy/ToS constraints.

Computing Evaluation Measures

The evaluation measures of most interest for an inter-domain routing protocol are its memory and

time requirements, and the number of valid paths it finds (and their lengths) in comparison to

the number of available valid paths (and their lengths) in the internetwork (e.g. could it find the

300

I

shortest valid path in the internetwork).

The only analysis method we have at present is to numerically compute the evaluation measures

for a variety of source-destination pairs. Because we use internetwork topologies of large sizes, it is

not feasible to compute for all possible source-destination pairs. We randomly choose a set of source-

destination pairs that satisfy the following conditions: (1) the source and destination domains are

different, and (2) there exists a valid path from the source domain to the destination domain in

the internetwork topology. (Note that the simple scheme would always fid such a path.)

For a source-destination pair, we refer to the length of the shortest valid path in the internetwork

topology as the shortest-path length. Since the number of paths between a source-destination pair

is potentially very large (factorial in the number of domains), and we are not interested in the

paths that are too long, we only count the number of paths whose lengths are not more than the

shortest-path-length plus 2.

The evaluation measures described above are protocol independent. However, there are also

important evaluation measures that are protocol dependent (e.g. number of levels traversed in

some particular hierarchy). Because of this we postpone the precise definitions of the evaluation

measures to the next subsection (their definition is dependent of viewserver hierarchy).

5.2 Application to Viewserver Protocol

We have used the above model to evaluate our viewserver protocol for several different viewserver

hierarchies and query methods. We first describe the different viewserver schemes evaluate: .lease

refer to Figure 6 in the following discussion.

The frst viewserver scheme is referred to as base. It has exactly one viewserver in each domain.

Each viewserver is identified by its domain-id. The domains in a viewserver's precinct consist of

its domain and the neighboring domains. The edges in the viewserver's view consist of the edges

between the domains in the precinct, and edges outgoing from domains in the precinct to domaiMs

not in the precinct. For example, the precinct of viewserver A (i.e. the viewserver in domain A)

consists of domains A, B, J; the edges in the view of viewserver A consists of domain-level edges

(A, B), (A, J), (B, J), (J, M), (J,.K), (J, F), and (.7,D).

As for the viewservez hierarchy, a iiewserver's level is defined to be the class of its domain. That

is, a viewserver in a class i domain is a level i viewserver. For each level i viewserver, i > 0, its

301

parent viewserver is chosen randomly from the level i - I viewservers in the parent region such that

there is a domain-level edge between the viewserver's domain and the parent viewservcr's domain.

For example, for viewserver C, we can pick viewserver J or K; suppose we pick J. For viewserver

J, we have no choice but to pick M (N and 0 are not connected to J). For M, we pick P (out of

P and Q).

We use only one address for each domain. The viewserver-address of a stub domain is con-

catenation of four viewserver (i.e. domain) ids. Thus, the address of A is P.M.J.A. Similarly, the

address of E is P.M.K.H. To obtain a route between A and E, it suffices to obtain views of

viewservers A, J7, K, H.

The second viewserver scheme is referred to as base-QT (where the QT stands for "query upto

top"). It is identical to base except that during the query protocol all the viewservers in the source

and the destination addresses are queried. That is, to obtain a route between A and H, the views

of A,J,M,P, K, E are obtained.

The third viewserver scheme is referred to as locals. It is identical to base except that now a.

viewserver's precinct also contains domains that have the same region as the viewserver's domain.

That is, the precinct of viewserver A has the domains A, B,,J, C. Note that in this scheme a

viewserver's view is not necessarily connected. For example, if the edge (C, J) is removed, the view

of viewserver A is no longer connected. (In Section 3, we said that the view of a viewserver should

be connected. Here we have relaxed this condition to simplify testing.)

The fourth viewserver scheme is referred to as locals-QT. It is identical to locaLs except that

during the query protocol all the viewservers in the source and the destination addresses are queried.

The fifth viewserver scheme is referred to as vertex-extension. It is identical to base except

that viewserver precincts are extended as follows: Let P denote the precinct of a viewserver in the

base scheme. For each domain X in P, if there is an edge from domain X to domain Y and Y

is not in P, domain Y is added to the precinct; among Y's edges, only the ones to domains in P

are added to the view. In the example, domains M, K, F, D are added to the precinct of A, but

outgoing edges of these domains to other domains are not included (e.g. (F, C) is not included).

The advantage of this scheme is that even though it increases the precinct size by a factor which -_

is potentially greater than 2, it increases the number of edges stored in the view by a factor less

than 2. (In fact, if the same edge cost and edge policies are used for both directions of domain-

302

level edges, then the only other information that needs to be stored by the viewservers is the policy

constraints of the newly added domains.)

The sixth viewserver scheme is referred to as fu]-QT. It is constructed in the same way as

vertez-eztension except that the locals scheme is used instead of base scheme to define the P in

the construction. In fuUl-QT, during the query protocol all the viewservers in the source and the

destination addresses are queried.

In all the above viewserver schemes, we have used the same hierarchy for both domain classes

and viewservers. In practice, not all domains need to have a viewserver, and a viewserver hierarchy

different from the domain class hierarchy can be deployed. However, there is an advantage of

having a viewserver in each domain; that is, source nodes do not require fixed domain-level source

routes to their parent viewservers (in the view-query protocol). This reduces the amount of hand

configuration required. In fact, the base scheme does not require any hand configuration, viewservers

can decide their precincts from the intra-domain routing tables, and nodes can use intra-domain

routes to reach parent viewservers.

Results for Internetwork 1

The parameters of the first internetwork topology, referred to as Internetwork 1, are shown in

Table 1.

Our evaluation measures were computed for a (randomly chosen but fixed) set of 1000 source-

destination pairs. For brevity, we use spi to refer to the shortest-path length (i.e. the length of

the shortest valid path in the internetwork topology). The T -inimu spi of these pairs was 2, the

maximum spl was 13, and the average spl was 6.8. Table 2 lists for each viewserver scheme (1) the

minimum, average and maximum precinct sizes, (2) the minimum, average and maximum; merged

view sizes, and (3) the minimum, average and maximum number of viewservers queried.

The precinct size indicates the memory requirement at a viewserver. More precisely, the memory

requirement at a viewserver is O(precinct size x d) where d is the average number of neighbor

domains of a domain, except for the vertez-eztension and full-QT schemes. In these schemes, the

memory requirement is increased by a factor less than two. Hence the vertex-eztension scheme has

the same order of viewserver memory requirement as the base scheme and the full-QT scheme has

2 Branching factor is 4 for a]] region classes.

303

Class i No. of Domains No. of Regions 27 % of Green Domains Edges between Classes i and j

1 0Class j 1Local Remote Far

0 10 1 0.80 0 18] 6I0~

1 100 16 0.75 0 190 20 0

1 26 5 0

2 1000 64 0.70 0 100 0 0

1 1060 40 0

2 200 40 0

3 10000 256 0.20 0 100 0 0

1 100 0 0

2 10100 50 0

3 5050 50

Table 1: Parameters of Internetwork 1.

Scheme Precinct Size Merged View Size No. of Viewservers Queried

base 2 / 3.2 /68 7 /71.03 /101 3/ 7.51 /8

base-QT 2/3.2 68 30 /76.01 101 8 8.00 8

locals 2 /52.0 /103 3 /95.40 /143 2/7.42/ 8

locals-QT 2 /52.0 103 43 / 101.86 143 8 / 8.00 / 8

vertez-extension 3 / 19.2 / 796 23 /362.15 /486 3/ 7.51 /8

1ull-QT 1 /102.9 / 796 228 /396.80/ 519 8 /8.00/ 8

Table 2: Precinct sizes, merged view sizes, and number of viewservers queried for hternetwork 1.

the same order of viewserver memory requirement as the locals scheme.

The merged view size indicates the memory requirement at a source; i.e. the memory require-

ment at a source is O(merged view size x d) except for the vertez-eztension and fuJl-QT schemes.

Note that the source does not need to store information about red and non-transit domains. The

numbers in Table 2 take advantage of this.

The number of viewservers queried indicates the communication time required to obtain the

merged view at the source. Because the average spi is 6.8, the "real-time' communication time

304

required to obtain the merged view at a source is slightly more than one round-trip time between

the source and the destination.

As is apparent from Table 2, using a QT scheme increases the merged view size and the number

of viewservers queried only by about 5%. Using a locaLs scheme increases the merged view size

by about 30%. Using the vertex-extension scheme increases the merged view size by 5 times (note

that the amount of actual memory needed increases only by a factor less than 2). The number of

viewservers queried in the locals scheme is less than the number of viewservers queried in the base

scheme. This is because the viewservers in the locals scheme have bigger precincts, and a path from

the source to the destination can be found using fewer views.

Table 3 shows the average number of spl, spi + 1, spl + 2 length paths found for a source-

destination pair by the simple approach and by the viewserver schemes. All the viewserver schemes

are very close to the simple approach. The vertex-eztension and full-QT schemes are especially close

(they found 98% of all paths). Table 3 also shows the number of pairs for which the viewserver

schemes did not find a path (ranging from 1.4% to 5.9% of the source-destination pairs), and

the number of pairs for which the viewserver schemes found longer paths. For these pairs, more

viewserver addresses need to be tried. Note that the locals and vertex-eztension schemes decrease the

number of these pairs substantially (adding QTyields further improvement). Our policy constraints

are source and destination domain independent. Hence, even a class 2 domain, if it is red, can not

carry trafc to a class 3 domain to which it is connected. We believe that these figures would

improve with policies that are dependent on source and destination domains.

As is apparent from Table 3 and Table 2, the locals scheme does not find many more extra

paths than the base scheme even though it has larger precinct and merged view sizes. Hence it is

not recommended. The vertex-extension scheme is the best, but even base is adequate since it finds

many paths.

We have repeated the above evaluations for two other internetworks and obtained similar con-

clusions. The results are in Appendix B.

6 Concluding Remarks

We presented hierarchical inter-domain routing protocol that (1) satisfies policy and ToS con-

straints. (2) adapts to dynamic topology chamses including failures that partition domains. and

305

Number of paths found No. of pairs No. of pairs

Scbeme spl spi + 1 spi + 2 with no path with longer piths

simple 2.51 18.48 131.01 N/A N/A

base 2.41 15.84 99.42 59 3 by 1.33 hops

base-QT 2.41 15.86 100.16 54 3 by 1.33 hops

locals 2.41 16.17 103.54 29 3 by I hop

locals-QT 2.41 16.29 105.02 20 3 by I hop

vertez-eztension 2.51 18.38 128.19 22 0 by 0 hops

full-QT 2.50 18.40 128.90 14 0 by 0 hops

Table 3: Number of paths found for Internetwork 1.

(3) scales well to large number of domains.

Our protocol uses partial domain-level views to ac.hieve scaling in space requirement. It floods

domain-level topological changes over a flood area to achieve scaling in communication requirement.

It does not abstract domains into superdomains; hence it does not lose any domain-level detail

in ToS and policy information. It merges a sequence of partial views to obtain domain-level source

routes between nodes which are fax away. The number of views that need to be merged is bounded

by twice the number of levels in the hierarchy.

To evaluate and compare inter-domain routing protocols against each other and against sim-

ple approach, we presented a model in which one can define internetwork topologies, policy/ToS

constraints, inter-domain routing hierarchies, and evaluation measures. We applied this model to

evaluate our viewserver hierarchy and compared it to the simple approach. Our results indicate

that viewserver hierarchy finds many short valid paths and reduces the amount of memory require-

ment by two order of magntude. a
Our protocol recovers from fail-9top failures of viewservers and gateways. When a viewserver

fails, an address which includes the viewserver's id becomes useless. This deficiency can be overcome

by replicating each viewserver at diferent nodes of the domain (in this case a viewserver fails only

if all nodes implementing it fail). This replication scheme requires viewserver ids to be independent

of node ids. which can be easily accomplished'. -7

21 For example, if node-ids of nodes implementing a viewserver share a prefix, this preix cat be used as the

306 -I

The only drawback of our protocol is that to obtain a domain-level source route, views are

merged at (or prior to) the connection (or flow) setup, thereby increasing the setup time. This

drawback is not unique to our scheme [8, 13, 6, 10].

There are several ways to reduce the setup overhead. First, domain-level source routes to fre-

quently used destinations can be cached. The cacheing period would depend on the ToS require-

ment of the applications and the frequency of domain-level topology changes. For example, the

period can be long for electronic mail since it does not require shortest paths.

Second, views of frequently queried viewservers can be replicated at "mirror" viewservers in the

source domain. A viewserver would periodically update the views of its mirror viewservers.

Third, connection setup also involves traversing the name server hierarchy (to obtain destination

addresses from its names). By integrating the name server hierarchy with the viewserver hierarchy,

we may be able to do both operations simultaneously. This requires further investigation.

References
[1] A.V. Abo, 3.E. Hopcroft, and J.D. Ulman. The Design and Analysis of Computer Algorithms. Addison-

Wesley, 1974.

[2] C. Alaettinoglu and A. U. Shankar. Hierarchical Inter-Domain Routing Protocol with On-Demand
ToS and Poicy Resolution. In Proc. IEEE .nIternational Conference on Networking Protocols '95, San
Fransisco, California, October 1993.

[3] C. Alaettinoklu and A. U. Shankar. Viewserver Hierarchy: A Scalable and Adaptive Inter-Domain
Routing Protocol. 7echnical Report UM2ACS-TR-93-13, CS-TR-3033, Department of Computer Sci,-
ence, University of Maryland, College Park, February 1993.

[4] A. Bar-Noy and M. Gopal. Topology Distribution Cost vs. Efcient Routing in Large Networks. In
Proc. ACM SIGCOMM '90, pages 242-252, Philadelphia, Pennsylvania, September 1990.

[5] L. Breslau and D. Estrin. Design of Inter-Administrative Domain Routing Protocols. In Proc. A CM
SIGCOMM '90, pages 231-241, Philadelphia, Pennsylvania, September 1990.

[6) 2. N. Chiappa. A New IP Routing and Addressing Architecture. Big-Internet mailing list., 1992.
Available by anonymous ftp from =mnnari. oz. au: big-internet/list-archive.

[7] D. Clark. Route Fragments, A Routing Proposal. Big-internet mailing list., July 1992. Available by
anonymous ftp from 3=nnari. oz. au:big-intemret/.ist-arcbive.

[8] D.D. Clark. Policy routing in Internet protocols. Request for Comment R.FC-1102, Network Information
Center, May 1989.

[9] D. Estrin. Policy requirements for inter Administrative Domain routing. Request for Comment RFC-
1125, Network Information Center, November 1989.

[10] D. Estrin, Y. Rekhter, and S. Hotz. Scalable Inter-Domain Routing Architecture. In Proc. ACM
SIGCOMM '92, pages 40-52, Baltimore, Maryland, August 1992.

viewserver id. Intra-domain routing would forward a packet destined to a viewserver to any operational node with
this prefix.

307

[11) F. Kamoun and L. Kleinrock. Stochastic Performance Evaluation of Hierarchical Routing for Large
Networks. Computer Networks and ISDN Systems, 1979.

[12] B.M. Leiner. Policy issues in interconnecting networks. Request for Comment RFC-1124, Network
Information Center, September 1989.

[13) M. Lepp and M. Steenstrup. An Architecture for Inter-Domain Policy Routing. Internet Draft. Available
from the authors., .June 1992.

[14] K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). Request for Comment RPFC-1105,
Network information Center, June 1989.

[15] R. Perlman. Hierarchical Networks and Subnetwork Partition Problem. Computer Networks and ISDN
Systems, 9:297-303, 1985.

[16] Y. Rekhter. Inter-Domain Routing Protocol (IDRP). Available from the author., 1992. T.2. Watson
Research Center, IBM Corp.

[17] K. G. Shin and M. Chen. Performance Analysis of Distributed Routing Strategies Free or Ping-Pong-
Type Looping. IEEE Transactions on Computers, 1987.

[18] P. F. Tsuchiya. The Landmark Hierarchy: Description and Analysis, The Landmark Routing: Ar-
chitecture Algorithms and Issues. Technical Report MTR-87W00152, MTR-87W00174, The MITRE
Corporation, McLean, Virginia, 1987.

[19) P. F. Tsuchiya. The Landmark Hierarchy:A New Hierarchy For Routing In Very Large Networks. In
Proc. ACM SIGCOMM '88, August 1988.

[20] P. F. Tsuchiya. Efficient and Robust Policy Routing Using Multiple Hierarchical Addresses. In Proc.
ACM SIGCOMM '91, pages 53-65, Zurich, Switzerland, September 1991.

A View-Update Protocol Event Specifications

The events of gateway 9 are specified in Figure 7. When a gateway g recovers, Cellid, is set to

nodeid(g). Thus, when g ne-xt executes Update,, it sends either an UpdateCel). or a DeleteCel!

message to viewservers, depending on whether it is no longer the minimum id gateway in its cell 29 .

The events of a viewserver x are specified in Figure 5. Note that when z adds an entry to

DView, (upon receiving a Upda'teCell message), it selectively chooses subset of neighbors from

the cost set in the packet to include only the neighbor domains which are in SView.. When

a viewserver z recovers, DView= is set to {}. Its view becomes up-to-date as it receives new

information from reporting gateways (and remove false information with the time-to-die period).

9Sending a DeleteCell messa.ge is essential Because prior to the fialire, g may have been the smallest id

gateway in its ce.ll. Hence, some viewserver's may sti contain an entry for its old domain cell.

308

UpdateS {Executed periodically and also optionally upon a change in JntraDomainFTl }
(Determines the id of g's cell and initiates UpdateCell. and DeleteCe,.1 messages if needed.}
OldCellld = CellIds;
Cellld9 := compute cell id using LocalGatewayss, and IntraDomainRTs;
if nodeid(g) = CellIds then

ncostset := compute costs for each neighbor domain cell using IntraDomainRT,;
floods((UpdateCell, domainid(g), CeltId,, Clock,, FloodArea,,ncostset));

endif
if nodeid(g) = OldCellId - CellId, then

flood, ((DeleteCell, domainid(g), nodeid(g), Clock,, FloodAreas));
endif

-zceive, (packet) {either an UpdateCell or a DeleteCell packet}
flood, (packet)

where procedure flood, (packet)
if domainid(g) E packet.floodarea then

{remove domain of g from the flood area to avoid infinite exchange of the same message.)
packet. floodarea := packet floodarea - { domainid(g)};
for all h E LocalGateways, U LocalViewservers, do

Send(packet) to h using 0;
endif
for all h E AdjForeignGatewayss A domainid(h) E packet.floodarea do

Send(packet) to h;

Gateway Failure Model: A gateway can undergo failures and recoveries at anytime. We assume failures
are fail-stop (i.e. a failed gateway does not send erroneous messages). When a gateway g recovers, CellId,
is set to nodeid(g).

Figure 7: View-update protocol: Events of a gateway p.

B Results for Other Internetworks

Results for Internetwork 2

The parameters of the second internetwork topology, referred to as Internetwork 2, are the same

as the parameters of Internetwork 1 (a different seed is used for the random number generation).

Our evaluation measures were computed for .a set of 1000 source-destination pairs. The mini-

mum spi of these pairs was 2, the maximum spl was 13, and the average spI was. 7.2.

Table 4 and Table 5 shows the results. Similar conclusions to lnternetwork I hold for Internet-

work 2. In Table 5, the reason that local and QT schemes have more pairs with longer paths than

the base scheme is that these schemes found some paths (which are not shortest) for some pairs for

which the base scheme did not uid any path.

309

Receive,(U]pdateCe1l, did, cid, ts, FloodArea, ncset)
if did E Prfcinc4 then

if 3(did:cid, timestamp, expiryiime, deleted, ncostset) E DView,, A
ts > timestamp then {received is more recent; delete the old one)

delete (did:cid, timestamp, ezpiryiime, deleted, ncostset) from DView,;
endif
if -3(did:cid, tirnestamp, e-pirytime, deleted, ncostset) E DView, then

Choose ncostset from neset using SViewc;
insert (did:mid, ts, Clock. + TimeToDie:, Talse, ncostset) to DView,;

endif
endif

R•eceive,(DeleteCeli, did, cid, ts, floodarea)
if did E Pmcinc4 then

if 3(did:cid, timestarnp, expirytime, deleted, ncostset) E DView., A
ts > timestamp then {received is more recent; delete the old one)

delete (did:cid, timestamp, ezpirytirne, deleted, ncostset) from DView.;
endif
if -3(did:cid, timestamp, ezpirytime, deleted, ncostset) E DView., then

insert (did:cid, ts, Clock, + TimeToDiez, true, {J) to DView.;
endif

endif
Delete= {Executed periodically to delete entries older than the time-to-die period)

for all (A:g, tstamp, e/pir-gtime, deleted, neset) E DView. A ezpirytime < Clock. do
delete (A:g, tstamp, ezpirytime, deleted, neset) from DView,;

Viewserver Failure Model: A viewserver can undergo failures and recoveries at anytime. We assume
failures are fail-stop. When a viewserver z recovers, DView: is set to {).

Figure 8: View update events of a viewserver z.

Scheme Precinct Size I Merged View Size No. of Viewservers Queried

base 2/3.2/76 4 /66.62 /96 3 / 7.55 / 8

base-QT 2/3.2/76 29 /72.76 /96 8/8.00/8

locals 3 /69.8 / 149 4 /101.32 /148 2/7.36/8

Iocals-QT 3 / 69.8 / 149 35 / 110.32 / 152 8 / 8.00 / 8

vertex-eztension 3 / 19.47 / 817 15 / 339.60 / 469 3 / 7.55 / 8

full-QT 11 / 135.2 / 817 186 / 402.51 / 503 8 / 8.00 / 8

Table 4: Precinct sizes, merged view sizes, and no of viewservers queried for Intemetwork 2.

RLesults for Internetwork 3 -I

The parameters of the third internetwork topology, referred to as Internetwork 3, are shown in

Table 6. Internetwork 3 is more connected, more class 0, 1 and 2 domains are green, and more

310

Number of paths found No. of pairs No. of pairs

Scheme spI spI +I spi +2 with no path with longer paths

simple 2.21 13.22 74.30 N/A N/A

base 1.98 8.20 34.40 123 13 by 1.08 hops

base-QT 1.98 8.36 35.62 110 15 by 1.13 hops

locals 2.08 9.18 40.50 97 23 by 1.39 hops

locals-QT 2.08 9.38 42.08 67 23 by 1.30 hops

vertex-extension 2.18 12.57 64.98 19 6 by 1 hop

full-QT 2.19 12.85 67.37 4 4 by I hop

Table 5: Number of paths found for Internetwork 2.

class 3 domains are red. Hence, we expect more valid paths between source and destination pairs.

Our evaluation measures were computed for a set of 1000 source-destination pairs. The mini-

mum spi of these pairs was 2, the maximum spl was 10, and the average spi was 5.93.

Class i No. of Domains No. of Regions' % of Green Domains Edges between Classes i and j

Class ji Local I Remote I Par

F o lo4 0.85 0 8 1 7 10
1 100 16 0.80 0 190 1 20 0

1 50 20 0

2 1000 64 0.75 0 500 50 0

1 1200 400 0

_-12 200 40 0

3 10000 256 0.10 0 300 50 0

1 250 100 0

1 1 2 10250 150 50
]!3 200 150 1100

Table 6: Parameters of Internetwork 3.

3 0Bra.uching factor is 4 for all domain classes.

311

Table 7 and Table 8 shows the results. Similar conclusions to Internetwork 1 and 2 hold for

Internetwork 3.

Scheme Precinct Size Merged View Size No. of Viewservers Queried

base 2/3.5/171 5 /134.41 /206 3 / 7.26/ 8

base-QT 2 / 3.5 / 171 55 /154.51 /206 8/8.00/8

locals 3 /70.17 / 171 4 /164.16 /257 2/ 7.09/8

locals-QT 3 / 70.17 / 171 57 / 191.06 / 258 8 / 8.00 / 8

vertez-extension 5 / 34.17 / 1986 18 / 601.56 / 695 3 / 7.26 / 8

fIl-QT 14 / 155.5 / 1986 503 / 655.79 / 743 8 / 8.00 / 8

Table 7: Precinct sizes, merged view sizes, and no of viewservers queried for Internetwork 3.

Number of paths found No. of pairs No. of pairs

Scheme spI spl + 1 spl + 2 with no path with longer paths

simple 3.34 37.55 368.97 N/A N/A

base 2.83 24.25 178.08 17 11 by 1.09 hops

base-QT 2.87 25.53 193.41 12 8 by 1.12 hops

locals 2.87 25.62 196.33 21 8 by 1 hop

locals-QT 2.97 27.59 219.63 2 6 by 1 hop

vertex-extension 3.32 35.73 332.54 5 1 by 1 hop

=full-QT1 3.33 36.47 346.44 0 0 by 0 hops

Table 8: Number of paths found for Internetwork 3.

Figure 9 through Figure 11 show the number of spi, spl + 1 and spl + 2 length paths found by

the schemes as a function of spI (we only show results for spi values for which more than 10 pairs

were found). We do not include base-QT, locals and locals-QT schemes since they are very close

to base scheme. As expected, as spl increases, the number of paths for a source-destination pair

increases, and the gap between the simple scheme and the viewservei schemes increases.

312

'IO

1 0
.9

flat-
o 8 base -

7 vertex-extension ..--
"6 full-OT

0.

S 4
c
0 3
C- 2

3 4 5 6 7 8 9
spl length

Figure 9: Number of spI length paths found for Intenetwork 3.

120.

o I 00 flatF base-
s 80 vertex-extension -s...-,,-
60 fult-QT

_ 40

"20

3 4 5 6 7 8 9
spl length

Figure 10: Number of spI + 1 length paths found for Internetwork 3.

.i 1200

- 1000 s fiat _.
U, ~base-
800 vertex-extension ----

- 600full-QT

C 400 -

C? 200

3 4 5 6 7 8 9
spi length

Figure 11: Number of spI + 2 length paths found for Internetwork 3.

313

REPORT DOCUMENTATION PAGE Form approved

I_ OMB No 074-0188
1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 13. REPORT TYPE END DATES COVERED

10/15/93 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMNBERS
Viewserver Hierarchy: A New Inter-Domain Routing Protocol and its DASG-60-92-C-0055
Evaluation

6. AUTHOR(S)
Cengiz Alaettinoglu, and A. Udaya Shankar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

University of Maryland CS-TR-3151

Department of Computer Science UMIACS-TR-93-98

A.V. Williams Building
11

-College Park, MD 20742

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSORING/ MONITORING

PhillipsLaboratory AGENCY REPORT NUMBER

Director of Contracting
3651 Lowry Avenue SE
Kirtland AFB, NM 87117-5777

11. SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT 12.b. DISTRIBUTION CODE

I

13. ABSTRACT (Maximum 200 words)
A simple approach to inter-domain routing is domain-level source routing with link-state approach where each

node maintains a domain-level view of the internetwork. This does not scale up to large intemetworks. The
usual scaling tecnnique of aggregating domains into superdomains loses ToS and policy detail.

We present a new viewserver hierarchy and associated protocols that (1) satisfies policy and ToS constraints,
(2) adapts to dynamic topology changes including failures that partition domains, and (3) scales well to large
nuimber of dominas without losing detail. Domain-level views are maintained by special nodes called
viewservers. Each viewserver maintains a domain-level view of surrounding precinct. Viewservers are organized
hierarchically. To obtain domain-level source routes, the views of one or more viewservers are merged (upto a
maximum of twice the levels in the hierarchy.

We also present a model for evaluating inter-domain routing protocols, and apply this model to compare our
viewserver hierarchy against the simple approach. Our results indicate that the viewserver hierarchy finds many
short valid paths and reduces the amount of memory requirement by two orders of magnitude.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Network Architecture and Design 33

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified Unlimited

MSN 7540-01 280-5500 314 Standard Form 298 (Rev 2-89)

TEMPORAL ANALYSIS FOR HARD REAL-TIME SCHEDULING*

Manas C. Saksena and Ashok K. Agrawala

Department of Computer Science
University of Maryland

College Park, MD 20742

Abstract _ _T1 _M_ T3__ _ _ _

Static time driven scheduling has been advocated for use in
Hard Real-Time systems and is particularly appropriate for Figure 1: Gantt Chart or Calendar
many embedded systems. The approaches taken for static
scheduling often use search techniques and may reduce the
search by using heuristics. In this paper we present a tech- The intractability of most scheduling problems has led to
nique for analyzing the temporal relations among the tasks, approaches based on search techniques for scheduling of real-
based on non-preemptive schedulability. The relationships time tasks. The feasibility of a task set is determined through
can be used effectively to reduce the average complexity of construction of a schedule; failure to construct a schedule
scheduling these tasks. They also serve as a basis for selective denotes infeasibility. Heuristics are often used as a means
preemption policies for scheduling by providing an early test of controlling the complexity of scheduling. In many cases,
for infeasibility. We present examples and simulation results heuristics perform well enough to result in an acceptable so-
to confirm the usefulness of temporal analysis as a phase prior lution.
to scheduling. There has been little emphasis on the use of analytic tech-

niques to assist in time driven scheduling. Decomposition
scheduling[10] based on dominance properties of sequences[I 1]

1 Introduction uses analytic techniques to decompose a set of tasks into a se-
quence of subsets. Significant reduction in average complexity

Many safety critical real-time applications like process con- can be achieved if the set of tasks can be decomposed into a
trol, embedded tactical systems for military applications, air- large number of subsets, each having a small number of tasks.
traffic control, robotics etc. have stringent timing constraints In this paper, we present an analysis technique for time
imposed on their computations due to the characteristics of driven scheduling based on the timing requirements of tasks.
the physical system. A failure to observe the timing con- The analysis results in the establishment of a set of temporal
straints can result in intolerable system degradation and in relations between pairs of tasks based on a non-preemptive
some cases it may have catastrophic consequences. scheduling model. These relations can be used by scheduling

Scheduling is the primary means of ensuring the satisfaction algorithms to reduce the complexity of scheduling in the av-
of timing constraints for such systems[l]. As a result, signif- erage case, and as an early test for infeasibility. As a test for
icant effort has been invested in research on hard real time infeasibility, it provides a good basis for policies using selec-
scheduling [2, 3, 4]. In this paper we discuss a scheduling tive preemption to enhance feasibility. When infeasibility is
technique for static scheduling to guarantee timely execution not detected, the temporal relations may be used by a search
of time critical tasks. algorithm to effectively prune large portions of search space,

The time driven scheduling model is being used by many thereby'controlling the cost of scheduling.
experimental systems, including MARS[5], MARUTI[6] and
Spring Kernel[7]. The static time driven scheduling technique 2 Time Driven Scheduling
involves constructing a schedule offline, which may be repre-
sented as a Gantt chart[8] or calendar[6] (Figure 1). Tasks The time driven scheduling approach constructs a calendar
are invoked at run-time whenever they are scheduled to exe-
cute. Such a scheduling model is particularly appropriate for for the set of tasks in the system. The tasks may be sched-

many embedded systems. Recent effort in this direction has uled preemptively or non-preemptively. The non-preemptive

shown the viability of such an approach for practical real-time scheduling problem for a uniprocessor is known to be NP-
applications[9th Complete[12]. When the tasks are mutually independent, and

can be preempted at any time, it is known, that the earliest,

"*This research was supported in part by ONR and DARPA under deadline first policy is optimal[13] and obviates the need for
contract N00014-91-c-0195. non-preemptive scheduling. However, when tasks synchronize

315

using critical sections, the preemptive scheduling problem is
also known to be intractable(NP-Hard)[14]. A:

In general, when the overhead of preemption is negligible, d

the non-preemptive solutions form a subset of preemptive r d
solutions[S). However, when tasks may interact with each
other, the non-preemptive models are simpler, easier to im-
plement and closer to reality[15]. They are also necessary for B
certain scheduling domains like I/O scheduling and provide a

basis for selective preemption policies. r 1 d

Figure 2: Infeasibility of task A executing before task B
2.1 Task Model

We consider a set of n tasks r = ri: i = 1,2,.. .,n} to 3 Temporal Analysis
be scheduled for execution on a single processor. Each task
ri, abbreviated as i, is a 3-tuple [ri, ci, di] denoting the ready Temporal analysis uses pairwise schedulability analysis of
time, computation time and deadline respectively. The time tasks to generate a set of relations to eliminate sequences
interval [ri, di) is called the timing window wi of task ri, and which cannot lead to feasible solutions. In this section we de-
indicates the time interval during which the task can execute. fine the temporal relations and show how they may be derived
The computation time of each task is less than the window from the timing constraints of tasks.
length jwill. All tasks are assumed to be independent for
simplicity of exposition even though such a requirement is 3.1 Definitions of Temporal Relations
not necessary for the analysis.

In a hard real-time system, processes may be periodic or Consider two tasks r" and -rj. We wish to find out what we
sporadic [14]. Such a set of processes may be mapped to our can say about the relative ordering of these tasks, given their
scheduling model by techniques identified in [1, 14, 16] and timing constraints. A set of relations are identified below
constructing a schedule for the least common multiple of the which identify the different possibilities.
periods of the tasks. Precedence Relation: A precedence relation denoted as

2.2 Non-Preemptive Scheduling Model j -- + rj, implies that in any feasible schedule ri must
execute before rj.

A non-preemptive schedule is the mapping of each task ri in rf
to a start time si. The task is then scheduled to run without
preemption in the time interval [si, fi], with its finish time ri (7j implies that in any feasible schedule, ri and 7j

being fi = si +- ci. A feasible schedule is a schedule in which cannot run in a sequential order.

the following conditions are satisfied for each task ri: Concurrent Relation: -, 11 rj if there is no precedence or
infeasible relation between them. A concurrent relation

ri < Si (1) indicates that a feasible schedule may exist with any or-
fi < di (2) der of the tasks ri and -rj. It does not, however, indicate

the existence of a feasible schedule.
It is useful to consider a non-preemptive schedule as an

ordered sequence of the set of tasks. To get a maximally For each task Tr let us define two terms ei and li, denoting
packed schedule from a sequence [r1 ,r 2 , . . , rn], we can re- the earliest finish time and the latest start time as:
cursively derive the start time si and finish time fi of the
tasks as follows: ej = ri 4-cl (5)

Si = max(ri,fi 1) (3) li = di-ci (6)

fi = si + ci (4) A preliminary set of relations can be established using the

with following rules, for every pair of tasks -i and rj.

si = r (e 1 < lj) A (li < e1) --- rj (7)

The scheduling problem can thus be considered as a search (ei > lj) A (li ej) = j 7i (8)
over the permutation space. A permutation (sequence) is fea- (ei < 1j) A (l> ej) = • 11 r (9)
sible if the corresponding schedule is feasible. Notice that (ei > 1j) A (li < ej) => ri 0 rj (10)
for any permutation schedule derived as above, equation 1 is
implied by (3) and we only need to verify the deadline con- The basic idea is that if the earliest finish time of a task A is
straints for the tasks. greater than the latest start time of a task B, then a feasible

wdi= di -Tri schedule cannot be found in which A is scheduled before B

316

_A with this partial order need to be considered for schedul-
ing. For 5 tasks, the total number of permutations is
120(= 5!). The number of total orders consistent with

* the partial order of Figure 5 is 12, which is a drastic re-
S..duction in the number of sequences that need to be con-

I d sidered for scheduling. The modified task set is shown in

Figure 3: Window Modification (A B) Figure 4(b), with the modified values in bold.

(b) As another example, consider the set of 4 tasks as shown
in Figure 6. The task set in different stages of temporal
analysis is shown, with the new temporal relations2 at
each stage. This example shows how successive refine-

34 ment of temporal relations can lead to detecting infeasi-
f fbility.

3.4 Complexity of Temporal Analysis

It is easy to see that the initial set of relations can be estab-
Figure 5: Precedence Graph for example of Figure 4 lished in 0(n 2) time. Further, each phase of refinement also

takes no more than 0(n 2). An upper bound for the num-
ber of phases is n. Therefore, the worst case complexil.y of

(Figure 2). Thus, for instance the first part of condition for temporal analysis is 0(n 3). In practice, however, the cost of
rule 10 says that ri cannot precede r4, and the second part temporal analysis can be significantly less since concurrent re-
says that rj cannot precede T:, establishing the infeasible re- lations and relations between non-overlapping tasks need not
lation. be generated explicitly. Furthermore, the number of phases

required to stabilize window modification can be reduced if
3.2 Window Modification the release times are modified in the topological sort order

of the precedence graph and deadlines are modified in the
Consider two tasks r, and rb, and a precedence relation reverse topological sort order.
r, • r. between them. As this indicates that in any fea- In any case, the cost of temporal analysis for static schedul-
sible schedule -a must precede Tb, we can update the timing ing is not significant when used in conjunction with an expo-
windows, as follows (Figure 3): nential time scheduling algorithm. In section 5, we show em-

pirically that the cost of temporal analysis is not a significant
S-mnin(d0 ,) (11) factor for static scheduling.

r = max(rb,eo) (12)

The window modification does not alter the scheduling 4 Non Preemptive Scheduling using
problem in the sense that every feasible sequence with the Temporal Analysis
original timing constraints is a feasible sequence with the
modified timing constraints and vice-versa. Further, the The relations established through temporal analysis serve as a
schedules for feasible sequences are identical in both cases. basis for scheduling of the tasks. Temporal analysis may thus
A task's window may shrink because of window modification. be perceived as a pre-processing stage for scheduling. The
This may lead to a change in the relation of the modified task result of this pre-processing stage is one of the following:
with other tasks. The procedure may be applied iteratively
till no further changes can be made or an infeasible relation 1. The task set was detected to be infeasible, due to the
is detected. existence of one or more infeasible relations.

2. A set of precedence relations were established generat-
3.3 Examples ing a precedence graph. The precedence graph imposes
(a) Consider a set of five tasks as shown in Figure 4. The a partial order on the set of tasks. It serves as an in-

temporal analysis leads us to the following set of prece- put to the scheduler which may exploit the partial order

dence relations, sans the redundant ones: generated to prune the search space.

{'T - 7, 'r --- r, 7 3 - 7 5, r4 - r5 4.1 Detecting Infeasibility

The set of precedence relations may be represented as Whenever, an infeasible relation exists between two tasks, it
a precedence graph (Figure 5) and impose a partial or- is known that no ordering of the two tasks is feasible. Thus,
der on the task set. Only sequences which are consistent 2 Concurrent Relations are not shown.

317

1 72 73 74 75 Tr 72 3 r 75

r 0 5 9 0 8 r 0 5 13 0 17
c 7 8 4 8 13 c 7 8 4 8 13
d 29 16 23 30 42 d 29 16 23 29 42

(a) (b)

Figure 4: Window Modification: (a) Original Task Set (b) Task Set after Temporal Analysis

71 72 73 r 4 r1 r2 73 r4

r 40 30 0 0 r 40 55 0 0
e 55 55 25 25 e 55 80 25 25
c 15 25 25 25 c 15 25 25 25
1 45 65 75 75 1 45 65 75 75
d 60 90 100 100 d 60 90 100 100

71 --- 72 7r3 --- r2, 7/-4 --- 72

(a) (b)

7"1 T2 T3 7"4 71 72 73 '4
r 40 30 0 0 r 40 55 0 0
e 55 55 25 25 e 55 80 25 25
c 15 25 25 25 c 15 25 25 25
1 45 65 40 40 1 45 65 20 20
d 60 90 65 65 d 60 90 45 45

73 -- 71_ , _N -- 71 73074

(c) (d)

Figure 6: Example for Determining Infeasibility with Temporal Analysis

the detection of an infeasible relation at any stage in tern- root (level 0) of the tree is an empty schedule. The nodes
poral analysis indicates that the task set is infeasible. Even of the tree represent partial schedules. A node at level k
though only pairwise schedulability analysis is used for estab- gives a partial schedule with k tasks. The leaves are complete
lishing relations, successive refinement of relations results in schedules. The successors of an intermediate node are imme-
a possible percolation of this effect to other tasks too. This diate extensions of the partial schedule corresponding to that
effect is exemplified in the example of Figure 6, where sev- node. From a node at level k, there are at most n-k branches
eral iterations lead to a infeasible relation. It must be noted with each branch corresponding to an extension of the partial
that whenever infeasibility is detected, the resulting task set schedule by appending one more task to the schedule. Search
and their relations also provide a good feedback as to what is done in a branch and bound manner, wherein parts of the
caused it. The feedback information may be used to allo- search tree are pruned when it is determined that no feasible
cate more resources, change resource allocation or allow for schedule can arise from them. For each node being expanded,
selective preemption as the case may be. the following conditions must hold.

1. All immediate extensions of the node must be feasible
4.2 Search Technique for Scheduling [4, 18].

The intractability of non-preemptive scheduling has led to 2. The remaining computational demand must not exceed
implicit enumeration techniques based on branch and bound the difference between the largest deadline of remaining
search methods. The search space is the set of all possible tasks and current scheduling time [4].
permutation sequences. One way of enumerating schedules is If any condition is violated then no feasible schedule can
to generate an initial schedule and then successively refine it be generated in the subtree originating from this node. No w
using heuristics to generate "better" schedules, until a feasible search is conducted on the subtree rooted at such a node.

schedule is obtained [3, 17, 16].
In this paper, we concentrate on another enumeration 4.2.1 Heuristically Guided Scheduling

method which constructs a schedule in an incremental man-

ner. Variants of this method have been used in [4, 18, 19, Heuristics are commonly used to guide search in many combi-
20, 21] The search space is represented as a search tree. The natorial searching problems. For non-preemptive scheduling

318

heuristics may be used to guide search along paths which are
more likely to lead feasible schedules. Search is done in a SP

depth first manner until either a complete feasible schedule is iOO ! - - -' -

found, in which case the search terminates, or it is determined -. / -- - -

that no possible extensions of the current node can lead to a ss. --

feasible schedule. Heuristics are used to determine which of "M -- - -

75.00 - - -- - -

the many children of a node should be searched next. Back- 7--00 -

tracking takes place when no further extensions of a node can 6s.5 -|

be made. We evaluate temporal analysis using such a heuris- -s. -

tic search for scheduling. sOO - -

45.00 -

35.00

5 Empirical Evaluation of Temporal 2 00 •
25.00

Analysis 2.00-

15.000-" - -

In the previous sections, we have shown how temporal anal- 5.00 - -

ysis may be used to restrict the search space for scheduling. 000 - -. r.. 1
Clearly, the existence of even a few precedence relations re- 000 5000 00.00 150.00 20o.00 250.00 300.00

suits in a drastic reduction of search space3 . However, the
usefulness of the scheme is not obvious since we are only in- Figure 7: Success Ratio vs Cut-off-Time, vt =
terested in feasible schedules, hence a large part of the search COVlc = 1.0
space may never need to be examined. We have conducted
various simulations to verify that indeed temporal analysis not perform as well and the use of temporal analysis results
results in improved performance for scheduling. For reasons in 10 - 20% improvement in success ratio.
of space, we mention only a few significant results.e uspaced ae heuticn selyarchwtecniqueat frschdulias. As an illustration, we show a few plots which plot theW e used a heuristic search technique for scheduling as de- s c es p r et g S) o c e ui g wt e p rl a aysuccess percentage (SP) of scheduling with temporal analy-
scribed in section 4.2. The heuristic used for our simulation sis (TAS) contrasted with success percentage of scheduling
study was a two level heuristic. The primary heuristic was without temporal aalysis ie the baseline scheduling model
earliest start time(EST). (BM). For scheduling with temporal analysis, we consider two

ES•j = max(ri, fA:) cases, one in which overhead of temporal analysis is added to
scheduling time (TAS+) and the other in which it is not (TAS-

where k is the last task in the partial schedule at that node.). The parameters varied are the mean laxity z• in terms of

In the case of a conflict, the secondary heuristic earliest mean computation times pc, and the coefficient of variation

deadline was used. Further conflicts were resolved arbitrarily, for laxity CCO)V . Figures 7 and 8 show the plots for low J
The heuristic has a natural intuitive appeal and is known to laxity mean with low and high variation. For this case, there
produce good results among linear heuristics[22k, is no significant performance improvement due to temporal

For each set of parameters, we generated 200 "feasible" analysis and both schemes achieve almost 100% success per-
task sets with 100 tasks each. The task sets were gener- centage. On the other hand when the average laxity is high
ated with 100% utilization as this presents the most difficulty (Figures 9 and 10), coupled with high variation, we see that

temporal analysis results in significant improvement in per-
for scheduling. The computation times were generated using formance. The plots also show that the curves for (TAS+)
uniform distributions and laxities using normal distribution, and (TAS-) are almost identical showing that the overhead of
W\e compared the success percentage (i.e. percentage of suc- tem
cessfully scheduled task sets) of scheduling with and without cporal analysis is minimal when compared to the schedusngscosts.
temporal analysis as a pre-processing stage. The success per-
centage (SP) is plotted against "cut-off-time", indicating the
maximum time allowed to the scheduling algorithm to suc- 6 Concluding Remarks
cessfully generate a schedule.

Our simulation results show that temporal analysis is not In this paper we have presented temporal analysis as a tech-
needed for scheduling when both the mean and the variation nique for analyzing the timing relationships among a set of
in laxities is low since the simple heuristics were able to sched- tasks to establish constraints on scheduling which are dis-
ule almost all task sets (success ratio ; 1.0). However, when cernible from a pairwise analysis. The implications and the
the laxities are high (as compared to computation times) and benefits of the approach as a pre-processing stage for schedul-
the variation in laxities is also high4 , then the heuristics do ing has been shown through examples and simulation.

3
Even one relation reduces the search space by half. Time Driven Scheduling theory has relied heavily on search

4
Note that the task set utilization is 100% techniques for scheduling and little work has been done in

319

SP SP

100,00 "_ 10000 M -r

95 I.00 .- Ira; - -a.00 - -%CA-;9.....OO

$5.00 03.00 -

7 5 . 0 - -0
X000 - 7&00(-i
"65.00 - -- 5.00 - ,, -

62000 6&00 - -

55.00 - 55.00 -

X- -1---D
45.00 - - S.oi

35.00- - -- 35.00- -

3000 X - - 300
-.00 25.00-

200LO-O- .- 20.00-

15.00- - 01-- -l00-

10.00 -F- . - 1000 -I

(LO &00 0--

000 50.00 100L00 150.00 200.00 250.00 300.00 a00 50.00 100.00 150.00 200.00 M5.00 500.00

Figure 8: Success Ratio vs Cut-off-Time, uc = 5.Opuc, Figure 9: Success Percentage vs Cut-off-Time, ILC = 1.lc
COVZ = 2.0 CV~C = 1.0

developing analytic techniques. Temporal analysis is a step imposed on tasks, the role of temporal analysis in reduci ng
in this direction and provides an efficient way of analyzing a the search space becomes even more important since simple

-task set and deducing valuable information for scheduling, heuristics are unlikely to perform well. It would be interest-
The existence of an infeasible relation in a task set gives ing to see how temporal analysis can be extended to use such

a sufficient condition for infeasibility. This provides an early constraints to further prune the search space.
test 'for infeasibility, which can then be used as a basis for We are currently implementing a scheduling tool based on
*selective preemption to enhance feasibility. Alternatively, the the results shown in this paper. The tool is being developed
detection of infeasibility may be used to allocate more re- for the MARUTI project, an experimental real-time system
sources or change resource allocation, prototype being developed at the University of Maryland,

The precedence relations generated as a result of temporal based on the concept of pre-scheduling[6].
analysis impose a partial order on the task set and may be
effectively used to prune the search space for scheduling. Our
simulations confirm that temporal analysis helps in improving References
the performance of a scheduling algorithm without incurring
a significant overhead. In the simplest scheduling case, when [1] J. Xu and D. L. Parnas, "On Satisfying Timing Con-
heuristics perform very well, temporal analysis might be per- straints in Hard-Real-Time Systems", in Proceedings of
ceived as a way of formalizing the heuristics. For static time the ACM SIGSOFT'91 Conference on Software for Grii-
driven scheduling to be a feasible technique, it becomes im- zcal Systems, pp. 132-146, December 1991.
perative that the scheduling cost be controlled as the size of []C .LuadJ aln,"ceuigagrtmfrml

-the problem increases. Temporal analysis provides a step in 02 .L i n .Lyad "ceuigagrtmfrml
-the right direction. tiprogramming in a hard real-time envrironment", Jour-

In this paper we have been concerned with single proces- nal of the ACM., vol. 20, pp. 46-61, Jan. 1973.
sor scheduling. An interesting extension of temporal analysis [3] 3. Xu and D. L. Parnas, "Scheduling processes wixth
wvould be to use it for multi-processor scheduling. One way release times, deadlines, precedence, and exclusion re-
to extend the analysis to multi-processor scheduling is to per- lations", IEEE Transactions on Software Engineering,
form it in two phases. In the first phase the infeasible and vol. SE-16, pp. 360-369, March 1990.
concurrent relations may be used to obtain an allocation of
tasks to processors. Then in the second phase, the analy- [4] W. Zhao, K. Ramamritham, and J. A. Stankovic,
sis shown in this paper can be used for each processor for "Scheduling Tasks with Resource requirements in a Hard

-scheduling. Real-Time System", IEEE Transactions on Software En-
Many real-time system specifications impose relative tim- gineering, vol. SE-13, pp. 564-577, May 1987.

ing constraints on the tasks[23, 24]. In this paper, we have
restricted ourselves to absolute constraints on the start and [51 H. Kopetz, A. Damm, Ch. Koza, Ml. Mulazzani,
finish times of tasks. When more complex constraints are W. Schwabl, Ch. Senift, and R. Zainlinger, "Distributed

320

[14] Al Mok, Fundamental Design Problcms for the Han

1137m- Real-Time Environment, PhD thesis, .Massachussets hi-
4TA-r-stitute of technology, 1983.

[15) K. Jefray, D. F. Stanat, and C. U. Marnel, "On Non-
-" Preemptive Scheduling of Periodic and Sporadic Ti'L~ks,

, -. in Procecdinos IEEE Rcal-Time .S.tieril. Siyinpositt. p!.
, ". .. !.4 2 J !129-139. December 1991.

".Man [16] T. Shepard and .1. A. M. Gagiie, "A Prc-Rusu-Tiai1e

"0.0• Scheduling Algorithm for Hard Real-Time Systems",
d0I - IEEE Transactions on Software Enginecring, vol. 17, pp.

3A0 I t669-677, J`uly 1991.
.[17] G. McMahon and M. Florian, "On scheduling with ready

1S.00 - -17C. times and due dates to minimize madximum latenessd
""- - !- -Operations Research, vol. 23, pp. 475-482, May 1975.

..... e,.•.r, [18] P. Bratley, M. Florian, and P. Robillard, "Scheduling
with Earliest Start and Due Date Constraints", NoaL

Figure 10: Success Percentage vs Cut-off-Time, lc 1 , Res. Log. Quart., vol. 18, pp. 511-519, Dec. 1971.

COV, = 2.0 [19] K. R. Baker and Z. Su, "Sequencing with Due-Date and

Early Start Times to Minimize Maximum Tardiness",
Fault-Tolerant Real-Time Systems: The MARS Ap- Naval Res. Log. Quart., vol. 21, pp. 171-176, 1974.
proach", IEEE Micro, vol. 9, pp. 25-40, Feb. 1989. [20] J. P. C. \erhoosel, E. J. Luit, D. K. Hammer, and

[6) S. T. Levi, S. K. Tripathi, S. D. Carson, and A. K. E. Jansen, " A Static Scheduling Algorithm for Dis-
Agrawala, "The MARUTI Hard Real-Time Operating tributed Hard Real-Time Systems", Journal of Rwal
System", ACM SIGOPS, Operating Systems Review, vol. Time Systems, pp. 227-246, 1991.
23, pp. 90-106, July 1989. [21] G. Fohler and C. Koza, "Heuristic Scheduling for Dis-

[7] J. A. Stankovic and K. Ramamritham, "The Spring tributed Real-Time Systems", MARS 6/89, Techniscle
Kernel: A New Paradigm for Real-Time Operating Sys- Universitat Wien, Vienna, Austria, April 1989.
tems", AC'M SIGOPS, Operating Systems Review, vol.
23, pp. 54-71. July 1989. [22) W. Zhao and K. Ramamritham, "Simple and integrated

Heuristic Algorithms for Scheduling Tasks with Time and
[8] E. C. Coffman, Computer and Job-Shop Scheduling The- Resource Constraints", Journal of Systems and Softiwa7t,

ory, Ed., Wiley, New York, 1976. pp. 195-205, 1987.

[9) T. Shepard and ". A. M. Gagne, "A Model of The F-18 [23] R. Gerbe: and W. Pugh and M. Saksena, "Paramet-
Mission Computer Software for Pre-Run Time Schedul- tc Dispatching of Hard Real-Time Tasks", Technical
in", in Proceedings IEEE 10"' international Conferencc Report CS-TR-2985, UMIACS-TR-92-18. University of
on Distributed Computer Systems, pp. 62-69, May 1990. Maryland, Oct. 1992.

[10) X. Yuan and A. K. Agrawala, "A Decomposition Ap- [24] C. C. Han and K. J. Lin, "Job scheduling with tempo-
proach to Nonpreemptive Scheduling in Hard Real-Time ra der- S\'stems", in Proceedings IEEE Real- Time Systems Sym- ral distance constraints", Technical Report UIUCDCS-
Stm" ,: PR-89-1560, University of Illinois at Urbana-Champaign,
posiure, Dec. 1989. Department of Computer Science, 1989.

[11) J. Erschler, G. Fontan, C. Merce, and F. Roubellat, "A
New Dominance Concept in Scheduling n Jobs on a Sin-
gle Machine with Ready Times and Due Dates", Opera-
tions Research, vol. 31, pp. 114-127, Jan. 1983.

[12] M. R. Garey and D. S. Johnson, Computers and In-
tractability, a Guide to the Theory of NP-Completeness,
W. H. Freeman Company, San Francisco, 1979.

1133 M. Dertouzos, "Control Robotics: the Procedural Con-
trol of Physical Processes", Proceedings of the IFJP
Congress, pp. 807-813, 1974.

3.21

REPORT DOCUMENTATION PAGE Form approved
OMB No 074-0188

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE END DATES COVERED

1/20/1 993 Technical Reports

4. TITLE AND SUBTITLE 5. FUNDING NUMNBERS
Temporal Analysis and its Application in Non-Preemptive Scheduling N0001 4-91 -C-01 95

6. AUTHOR(S)
Manas C. Saksena and Ashok K. Agrawala

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

University of Maryland CS-TR-2698

Department of Computer Science UMIACS-TR-91-88

A.V. Williams Building U T

College Park, MD 20742

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSORING/ MONITORING
PhillipsLaboratory AGENCY REPORT NUMBER
Director of Contracting
3651 Lowry Avenue SE
Kirtland AFB, NM 87117-5777

11. SUPPLEMENTARY NOTES

12.a. DISTRIBUTION/ AVAILABILITY STATEMENT 12.b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
In the problem of non-preemptive scheduling of a set of tasks on a single processor, each task has a ready

time, a deadline and a computation time. A feasible schedule for this set requires that a start time be assigned to
each task. The approaches taken for scheduling often use search techniques and may reduce the search by
using heuristics. In this paper we present a technique for analyzing the temporal relations among the tasks to
establish pairwise relationships among them. These relationships can then be used effectively to reduce the
complexity of scheduling these tasks. We present simulation results to confirm the usefulness of temporal
analysis as a phase prior to scheduling.

14. SUBJECT TERMS 15. NUMBER OF PAGES

7

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIIFICATION 19. SECURITY CLASSIFICATION 20. uMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified Unlisted

MSN 7540"01 280.6500 Standard Form 298 (Rev 2-89)

322

Implementation of the MPL Compiler*T

Jan M. Rizzuto and James da Silva

Institute for Advanced Computer Studies
Department of Computer Science

University of Maryland
College Park, MD 20742

February 14, 1995

Abstract

The Maruti Real-Time Operating System was developed for applications that must
meet hard real-time constraints. In order to schedule real-time applications, the timing
and resource requirements for the application must be determined. The development
environment provided for Maruti applications consists of several stages that use various
tools to assist the programmer in creating an application. By analyzing the source code
provided by the programmer, these tools can extract and analyze the needed timing and
resource requirements. The initial stage in development is the compilation of the source
code for an application written in the Maruti Programming Language (MPL). MPL is
based on the C programming language. The MPL Compiler was developed to provide
support for requirement specification. This report introduces MPL and describes the
implementation of the MPL Compiler.

"*This work is supported in part by ONR a.nd DARPA under contract N00014-91-C-0195 to Eoneywell
and Computer Science Department at the University of Maryland. The views, opinions, and/or findings
contained in this report are those of the author(s) and should not be interpreted as representing the official
poliies, either expressed or implied, of the Defense Advanced Research Projects Agency, ONR, the U.S.
Government or Honeywell.
Computer facilities were provided in part by NSF grant CCR-8511954.

'This work is supported in part by AP..PA and Philips Labs under contract DASG60-92-0055 to Depart-
ment of Computer Science, University of Maryland. The views, opinions, and/or findings contained in this
report are those of the author(s) and should not be interpreted as representing the official policies, either
expressed or implied, of the Advanced Research Projects Agency, PL, or the U.S. Government.

323

1 Introduction

A real-time system requires that an application meet the timing constraints specified for it.
For hard real-time, a failure to meet the specified timing constraints may result in a fatal
error [2]. Timing constraints are not as critical for soft real-time. The Maruti Operating
System was developed to meet the real-time constraints required by many applications. In
order to schedule and run an application under Maruti, the timing and resource requirements
for that application must be determined. The development environment for Maruti consists
of several tools that can be used to extract and analyze these requirements [2].

The Maruti Programming Language (MPL) is a language developed to assist users in
creating applications that can be run under Maruti. MPL is based on the C programming
language, and assumes the programmer is familiar with C. -MPL provides some additional
constructs that are not part of standard C to allow for resource and timing specification [1].
In addition, when an MPL file is compiled, some of the resource requirements can be
recognized and recorded to an output file. This output file is used as input to the integration
stage, which is the next stage in the development cycle. During integration, additional
timing requirements may be specified.

Previously, an MPL file was compiled by first running the source code through the
Maruti pre-compiler, which created a C file that was then compiled using a C compiler [1].
The pre-compiler extracted the necessary information, and converted the MPL constructs
that were not valid C statements into C code. This required the additional pass of the
pre-compiler over the source code. We have created a compiler for MPL that integrates
both the actions of the pre-compiler and the compiler into one stage. In this report, we
present MPL, and a description of the compiler we implemented. Section 2 defines the
abstractions used in Maruti. In Section 3, the syntax of the constructs unique to MPL is
defined. The details of the implementation of the compiler are given in Section 4. Section 5
describes the resource information that is recorded during compilation. Conclusions appear
in Section 6, followed by an Appendix containing a sample MPL file, and the resource
information recorded for that file.

2 Maruti Abstractions

A.n MPL application is broken up into units of computation called elemental units (EUs).
Execution within an EU is sequential, and resource and timing requirements are specified
for each EU. A thread is a sequential unit of execution that may consist of multiple EUs.
MPL allows threads of execution to be specified by the programmer through several of the
constructs provided. A task consists of a single address space, and threads that execute in
that address space.. Modules contain the source code of the application as defined by the
programmer. An application may consist of several modules. During execution, modules
are mapped to one or more tasks.

3 MPL Constructs

There are several constructs defined in MPL that are not a part of standard C. These
constructs have been implemented in the MPL compiler.

324

A

3.1 Module Name Specification

A module may consist of one or more source files written in MPL. At the start of each MPL
file, the name of the module that the source file corresponds to must be indicated. This is
given by the following syntax:.

module-name-spec ::= 'module' <modul1e-name> ';'

The module-naze may be any valid identifier that is accepted by standard C. The module
-- name specification must appear at the beginning of the source file, before any other MPL

code. The specification is not compiled into any executable code. It is simply used to
indicate the module that the functions within the file belong to.

3.2 Shared Buffers

A shared buffer can be used to declare memory that may be shared by several tasks, to
permit communication between the tasks. A declaration of a shared buffer requires the type
be defined as with a variable declaration: The syntax of a shared declaration is:

shared-buffer-decl ::= 'shared' <type-specifier> <shared-bulfer-name>.

The shared-bulf er-name can be any valid identifier, and the type-specifier can be any
a--id type for a variable. A shared declaration is compiled as a pointer to the type given in

the declaration of the shared buffer, rather than the type given.

3.3 Region Constructs

The are two constructs used to allow for mutual exclusion within an application.

3.3.1 Region Statement

The reoion statement is used to enforce mutual exclusion globally throughout an entire
application, and is given by the syntax:

region-suzatement ::= 'region' <region-zame>
"{ mpl-statements).

The ,pl-statements may be any number of valid MPL statements. These statements
make up a critical section.

3.3.2 Local Region Statement

The IocaaLregion statement is used to enforce mutual exclusion within a task, and follows
the same syntax of the region statement:

ioca2-region-statement ::= 'local-region' <local-region-name>
"{ mpl-statements }.

325

3.4 Channel Declarations

Channeis are used to allow for message passing within a Maruti application. Each channel

declared has a type associated with it given by a valid C type-specifier. This type indicates
the type of data that the channel will carry.

Channels may be declared in both entry and service functions, which will be defined
below. The syntax for channel declarations is:

channel-declaration-list-opt { channel-declaration-list }.
channel-declaration-list ::= channel-declaration { chanmel-declaration }.
channel-declaration : := channel-type channels '; '.

channel-type ::= 'out' I 'in' I 'in-first' I 'in-last'.

channels ::= channel { ',' channel }.
channel :: <channel-name> ':' type-specifier.

3.5 Entry Functions

An entry function is a special type of function that may be defined in an MPL source file.
Each entry function corresponds to a thread within the application. The syntax for an entry
function definition is:

entry-tunction ::= 'entry' <entry-name> '(' ')' entry-function-body.
entry-lunction-body ::= chamnel-declaration-list-opt mpl-fruction-body.

3.6 Service Functions

Service functions are another type of special function supported by MPL. A service function
is invoked when a message is received from a client. Each service function definition requires
an i;r channel and message bufer be included in the definition. The service function will
be executed when there is a message on the channel given in the definition. The definition
of a service function is similar zto that of an entry function:

service-function :I: 'service' <service-name>
(' <in-channel-name> ':' type.specifier ', <sg-ptr-name> ')'

service-±=nction-body.
ser•ice-func-ion-body ::= channel-declaration-list-opt mpl-luncion-body.

3.7 Communication Function Calls

There are several library functions used to allow for message passing within a Maruti ap-
plication.

3.7.1 Send Calls

Each call to the send function must specify an outgoing channel for the message:
-U

void send (channel channel-name, void *message.ptr);

326

3.7.2 Receive and Optreceive Calls

Both receive calls, and optreceive calls must be associated with an incoming channel (in,
in.first, or in-last):

void receive (channel channel-naeme, void *message_p.tr);
int optreceive (chan.uel channel-name, void *message-ptr);

A call to receive requires that there be a message on the incoming channel. Optreceive
should be used when a message may or may not be on the channel. Optreceive checks for
the message, and returns a value indicating if a message was found.

3.8 Initialization Function

Each task has an initialization routine that is executed when the application is loaded. This
function is specified by the user with the following name and arguments:

int ma-r-•i-maim (int argc, char **argv)

4 Implementation

We started with version 2.5.8 of the Gnu C compiler. By modifying the source code for
the C compiler, we have created a compiler for applications written in MPL. In addition
to what the standard Gnu C compiler does, this modified compiler handles the additional
constructs defined in MPL. and records information about the soarcc code that is needed
by Maruti. A source code file written in MPL is specified with an lxpl extension.

4.1 Modifications to GCC File Structure

In the process of modifying the compiler, some existing files were modified. In addition,
some new files were also created. The source code for version 2.5.8 of GCC allows compilers
to be created for several different lamguages: C. C++, and Objective C. The GCC compiler
uses different executable files for the different languages that it compiles. There are separate
files for C. C++, and Objective C (ccl, cclplus, cclobj). The GCC driver, gcc.c, uses the
extension of the source file specified to determine the appropriate executable (and therefore
language) to compile the source file. The driver then executes the compiler, passing on the
appropriate switches. The driver was modified to accept input files with an mpl extension.
Cclmpl is the new executable that was created to compile MPL source files. Wrhen a file
with an mpl extension is specified as a source file to be compiled, this new executable file is
used. When an MPL file is compiled, it automatically passes on the switch -Maruti-output,
which indicates that the needed output should be recorded -to a OFe with am eu extension.

The executable files for each language are composed of many object files. Some of these
files are common to all the languages, and some of the files are language-specific. The
language-specific files added for compiling MPL files are those files with an mpl- prefix.

Gperf is a tool used to generate a perfect hash function for a set of words. Gperf is used
to create a hash function for the reserved words for each language. The files containing
the input to gperf are indicated by a file name with a gperf extension. There are several
different *.gperf files containing the reserved words for the different languages recognized by

327

the compiler. The mpl-parse.gperf file contains all the reserved words for C, in addition to

those added for MPL. For each language, the output from running gperf is then incorporated

into the *-lez.c file. This output includes a function is.reserved.word(that is used to check

if a token is a reserved word. The file mpl-lez.c is basically the c-lez.c file' with the output

of running gperf on mpl-parse.gperf instead of c-parse.gperf.

The file maruti.c contains the routines that have been written to implement MPL. This

file is linked in with the executable for all of the languages, to prevent undefined symbol

errors from occuring. Calls to the routines contained in this file occur in both the language-

specific, and the common files. The flag maruti-dump is set in main) to indicate whether

information about the source code should be recorded to the appropriate output file. This

flag prevents calls to the routines in maruti.c which are made in the common files from

occuring for the languages other than MPL. The files containing these calls are:

"* calls.c
"* ezplow.c
* ezpr.c
* function.c
9 topler.c

There are several reasons why the new language-specific files have to be created for

MPL. The files mpl-lez.h and mpl-lez.c needed to be created for MPL because MPL contains

several additional reserved words not present in C, as mentioned earlier. The file c-comrnon.c

relies on information in the header file c-lez.h. Since MPL uses mpl-lex.h, mpl-common.c

includes mpl-lex.h, instead of c-lez.h. Bison is a tool that allows a programmer to define

a grammar through rules, and converts them into a C program that will parse an input

file. The *-parse.y files are the bison files used to create the grammar to parse a source

file. Since the grammxar for MPL needed to be modified to accept the additional constructs,

the mpl-parse.y Ue was created. There is one function used in compiling MPL source files

that is defi.ned in mpl-parse.yt, instead of maruti.c. This function needed to access the static

v-ariables declared in mp1-varse.-y and in order to do so. the function definition was placed

in that file. Finally, the file mpl-decl.c was created, because of its dependence on mpl-lez.h,

and also to allow for an additional type specification used in MPL.

4.2 Compiling MPL Constructs

MPL extends the C language to allow for -vrious constructs. In order to implement these

extensions, the grammar used to recognize C in GCC had to be extended. The following

are recognized as reserved words for MPL, in addition to the standard reserved words for C:

shared, region, local-region, module, in, out, in-first, in-last, entry, service, send, receive,

and optreceive. The keywords in and out were reserved words in the c-* files, because

they are used by Objective C, but in MPL they are used as channel types. In addition to

the new reserved words, rules were added and modified resulting in the rules in mpl-parse.y.

4.2.1 Module Name Specification

A rule was added to the grammar to parse the module name specification in an MPL file.

The rule for a whole program was also modified to include this module statement. This

rule expects the module statement to appear before any other definitions. Since the module

328

name specification does not result in any executable code, the only action taken is to record
the module name given by the programmer.

4.2.2 Shared Buffers

There are no rules added to the grammaz for a shared buffer declaration. When a variable
declaration is parsed, a tree is created that keeps track of all the specification information
given for that declaration. For example, typedef and extern are two of the possible type
specifications. The token shared is recognized as a type specification, just as typedef and
eztern are recognized. When a declaration is made, these specifications are processed in
the function grokdeclarator() in mpl-decLc. When a shared specification is encountered,
the declaration is converted to a pointer to the type specified, instead of just the type
specified. Other than this conversion to a pointer, the declaration is compiled just as any
other declaration would be compiled in C.

4.2.3 Region Constructs

The region constructs are considered statements in MPL. Several rules were added to parse
these constructs, and the region and local-region statements were added as options for a
valid statement in the grammar for MPL.

Both region and local-region statements are compiled in the same manner. Each region
has a name, and a body which is the code within the critical section. In order to protect
these critical sections, calls are made to the Maruti library function maruti.euO. When a
region is parsed, the compiler generates two calls to maruti.euO, in addition to the code
in the body of the region. The first call is generated just before the body, and the second
Call just after. These calls are generated through functions in maruti.c. The functions axe
based on the actions that would have been taken, had the parser actually pa-se6 :; calls
to maruti.eu() in the source file.

4.2.4 Channel Declarations

The rules added for a channel declaration allow any number of channels to be declared in
either an entry or a service function. Each channel declaration requires several pieces of
information:

* Channel-type
* Channel-name
* Type specifier indicating the type of data that channel carries

A linked list of declared channels is maintained. For each declared channel the following
information is saved:

- Channel-name
& Type information

1. Size in bytes
2. String encoding the type of the data

9 Channel-id

329

The channel-id is a unique identification number assigned to each declared channel.
Channel declarations do not add to the compiled code. The channels are not allocated
memory. The information describing each channel is simple stored in the linked list. During U
compilation, whenever a channel is referenced, the appropriate information is obtained from
this list.

4.2.5 Entry Functions

Entry function definitions are compiled differently than other function definitions. An entry
function would appear in an MPL file in the following form:

entry <entry_-name> () I
<channel-declaration-listopt>
{

<mp!_functionbody>

Where entry-name is an identifier that is the name of the entry function, the
channel1-eclaration.-.ist-opt contains any channels the user wants to define for that func-
tion, and mpl-unction.body is any function body that would be accepted as a definition in
a standard MPL function. Semantically the entry function is equivalent to the following
MPL code:

ma-at i emtry-name C)

enryn..me(

entry.'_name C)

mp__.n:c': ion~body

An entry function is compiled into two functions, as if the two functions given above had
been part of the source file. Essentially, the first function is just a stub function that calls a
maruti.•uo, then calls the second function compiled. As with generating function calls,
the routines to generate the code for entry function definitions are based on the actions
that would have been taken had the parser actually parsed the code for the two separate
functions.

4.2.6 Service Functions

Service functions definitions are handled very much like entry function definitions. The
syntax of a service function differs sightly from that of an entry function, since it requires
that an incoming channel and a message buyer be defined:

330

A

service <service-name> (<in_channe1_zname> : <type-specifier>, <ms&_pt*r_anme>)

<chaanel-declaration-list-opt>

<mpl_-unction-body>

Like the entry functions, service functions are semantically equivalent to two functions,
where one is simply a stub function calling the second function that is generated:

_maruti-service-name ()
-- {

� type-specifier _maruti_msg_ptr_name

ihile (i)
{

it (optreceive (_maruti-in , id , _maruti-msg.ptr-name, size))
{

service-name (C _:maruti_msg_ptr_name);
}

service-name (msg&ptrname)
type-specifier vmsgS_prr_name;
{

=p!_function-body

The service.zame, chanmel.declaration..!ist, and mp!.func:iozbody are all the same

as described previously for entry functions. In addition, service functions have two other
items specified in their definitions. The first is a channel.]Every service function requires
a channel be specified. This channel is always declared as an in channel with the name
it~chazb--e2name. The type is given by type.specifier as if it had been declared in the
channe14eclaration.2ist. The channel is used to invoke the service function. This in
channel is used by the optreceive in the stub function that calls the function containing the
service function body. When a message is received on this channel, the service function is

_ executed. The second additional item is a message bufer used by the service function. The
name of this message buffer is given by msg.pt. .--. me, the type is given by type.specitier.
This buffer is used to hold the message received from the client that invoked the service
function, and is passed to the second function containing the body of the service function.

4.2.7 Communircation Function Calls

There were three library functions provided for message passing mentioned previously: send,
receive, and optreceive. Function calls to any of these three library functions are handled
differently than other function calls. In the MPL grammar, send, receive, and optreceive
axe all reserved words. The MPL syntax for all of these calls is the following:

<-=uction-name> (<channea -name>, <paramete--2>);

331

Chanel-name should be a previously declared channel, and paxameter-2 should be a
pointer. These function calls must be compiled differently, since these are not the actual
parameters used when the call is generated. In the case of a call to send, the actual m
parameters must be as follows:

send (<channel-id>, <parameter-2>, <chawlel-size>);

In the case of a call to either receive, or optreceive, the parameters required are:

zreceive I optreceive (<channel-type>, <cha.-nel-id>, <parameter-2>, <chamnel-size>);

The channel-type for a receive or optreceive call is an integer generated by the compiler
that will indicate an in, in.first, or in-last channel.

When one of these three function calls are encountered, there are special rules in the
grammar to handle it. A function in maruti.c is called which generates the appropriate
parameters, and then the function call itself. These function calls are generated as men-
tioned above for the calls to marutLeuo. The channel-name specified by the user is used
to obtain the necessary parameters. Given the channel name, the linked list of channels is
searched to find the corresponding channel, then the chanel.-id and the channel-size are
obtained from that node in the linked list. There is also some type checking done at this
stage. The compiler verifies that only an outgoing channel is specified for a send call, or an
incoming channel for the receive and optreceive calls. The compiler also checks that any
channel referenced has been previously defined.

The grammar for MPL was modified so that a call to any of the communication functions
may occur anywhere that a primary expression occurs, since that is where other function
calls are permitted to occur.

4.2.8 Initialization Function

The user-defined function maruti-main0 is compiled as an ordinary C function.

5 PEUG File

The source code of an MPL file is broken up into elemental units'. Each elemental unit
identifies the resources that it requires. These elemental units are used later in the develop-
ment process for scheduling the application. The output file created by the MPL compiler
creates a Partial Elemental Unit Graph (PEUG) for the given source file. The name of this
file is the name of the source file, with the mpl extension replaced by an eu extension.

There are several different types of information recorded in this PETJG file.

5.1 Module Name

The first line in the output flle indicates the name of the module, and will appear as:

peus <.odule-name> -

The module-name is taken directly from the module name specification given in the MPL
source file.

332 I!

5.2 File Name

The second line in the source file indicates the name of the target file that is created by the
compiler, where Iile-name is the target:

-oils <f ile-name>

5.3 Shared Buffers

Each time a shared buffer is declared its name and type information is recorded to the
output file:

shaxed <sha.red-buf1 er-name> : (type-description-string>, <type-size>)

The type-description-string and type-size of a shared buffer is obtained from the
type specification, and is represented in the same manner as the type and size for a chan-
nel. Although the shared buffer is actually a pointer to the type it is declared as, the
type-description-string represents the object being pointed to, and not the pointer itself.

5.4 Entry, Service, and User Function Definitions

In MPL, a user may define ordinary functions in addition to the entry and service functions
that are permitted in MPL. For each entry, service or ordinary user-defined function, there
is an entry in the output file. This entry has the following format:

<function-type> <.unction-name>

size <stack-size>

rFnction-type can be either function, entry, or service, indicating which type of function
is being defined. Fu.ction-name is the declared name of the function in the source file.
Stack-size is the maximum stack size needed by this function. This stack-size includes the
arguments pushed onto the stack preceding any function calls occuring within the function
body. There will also be other information concerning the body of the function that will
appear between the function-name, and the stack-size. The entry for the maruzi-main0
function will be the same as those for other user defined functions. Entry and service
functions will contain some additional information not applicable to ordinary functions
that will be described below.

5.4.1 Channels

For each channel that is declared, a description of the channel is written to the output file.
These descriptions will occur right after the statement indicating the name of the current
function:

<chkanel-type> <za=e> : (<description-string>, <size>)

333

The channel-type and channel-name will be the type and name specified in the source

file. The description-string and size are based on the type specification in the channel
declaration. Channel descriptions will occur only in entry and service functions. A service

function will always contain at least one channel description, since the syntax of a service
function requires a channel be named in the definition. A channel description will also be
output for every send, receive, and optreceive call, since these calls require a channel as one
of their parameters.

5.4.2 Function Calls

Each time a function call is parsed, there will be a line in the output file:

calls <function-name> {incond} {in.loop)

This line indicates where a function call occurs, and which function is being called. The
in..cond and iuloop indicate if this function call appears within a conditional statement or
within a loop. These labels will be seen only if their respective conditions are true.

5.4.3 Communication Function Calls

Any call to a communication function is recorded similazly to other function calls. There is
a line indicating the name of the function, as shown above for a function call. In addition,
there will be a line describing the channel associated with that communication function call.
This line will appear just as the line for the channel definition described above appears.

5.4.4 EU Boundaries

The output file for an MPL source file indicates where each elemental unit (EU) begins by
the following:

en <V> {regionlist)

The N indicates an EU number. Each EU within a source file has a unique number.
There are several places where EU boundaries are created:

"* Start of a function
" Start of a region
"* End ofa region
"* Explicit calls to maruti-eu()

The initial EU occuring at the beginning of a function that is not a service or entry function
is a special case. This is always labeled as "eu 0" in the output file, and does not represent

an actual EU.
Each EU may also be followed by a list describing one or more regions. This list

represents the regions that this EU occurs within. The description of a region appears as:

(region-name instance access type)

The region-name is just that given by the user, and the -ype indicates if a region is local
(localregion construct) or global (region construct). The access indicates if the access is

read or write. The izstance indicates the instance of this region within the source file.
Each instance for a. region within a source file is unique.

334

6 Conclusions

Basing MPL on C has simplified the development of both the language and its compiler.
The language is easy to learn for any programmer that has used C before, since there
are a limited number of additional constructs unique to MPL. Using the GCC C source
code provided an existing compiler, rather than implementing a new one. The source code
for GCC only needed to be modified to handle some additional constructs, and produce
some additional output. This made the implementation fairly simple. However, the GCC
C compiler also provides some functionality that is not needed by MPL. Much of this
functionality provided is not even permitted. These restrictions are not enforced by. the
compiler, but should be detected within the development cycle.

Prior to the development of the MPL compiler using GCC, compiling an MPL source
file required two steps. The source files were initially passed through a pre-compiler to
extract the available resource information and parse the MPL constructs. The pre-compiler
was responsible for converting the MPL code into valid C code, which was then compiled
using a standard C compiler. The new implementation of the compiler eliminates some
of the redundant processing that is done when the pre-compiler is used. The information
obtained through the pre-compiler already existed in the internal struttureused by the GCC
compiler. This information just needed to be recorded. Instead e" p•r•ing 5ource code files
in the two steps independently, the functionality of the pre-compller has been incorporated
into the compiler itself. The MPL compiler provides a single tool that extracts all the
available information at the initial stage of develpment.

In the future, a version of MPL may be implemented that is based on the Ada pro-
geramning language. GNAT is a compiler for Ada 9X that is being developed at NYU.
GNAT depends on the backend of the GCC compiler. Using the source code for GNAT,
an implementation of MPL based on Ada would be similar to the current implementation
based on C.

335

Appendix

A MPL File

The following is a sample of MPL source code:

module timer;

typedel struct{

int seconds;
int minutes;
int hiours;
I time-.type;

shared time-type global-t.ime;

ma-ruti-ma-in(argc, a~rgv)
i.n% argc;
char- **axgv;

global-.time->secouids = 0;
globa2...time->miniutes = 0;
global-time->hoiuxs = 0;

retu.rn 0;

entry update-second()
or% dist : ime...ype;

tzime-.tybe =sg;

region %ime-.region{
gioba-l-time->seconds.'+;
if (globa...Tizze->seconds ==60)

glob.l-time->seconds.s 0;
ms& = mgloba.2..time;

send Cdisp, Ltmsg);

entry updaze-minte C
out. display :time-.type; -

region time-.region{
globza-'Zme->minuzes++;

336

it (globaa...time->minutes ==60)

globaltime->minutes = 0;
us& = *globa.1-time;

send (display, hisg);

entry update..hour()
out display :time-.type;

time-.type msg;

region time-rXegion{
global-.time->hours++;
if Cgloba.1..time->hou~rs ==24)

globa.1-.time->hou~rs 0;
msg = Sloba...time;

send (display, kusg);

service display..time(inchan time-.type, time)

printf("Current Time: %~d :%d : %d", time->hours, 'time->mimutes, Time->seconds);

337

B PEUG File

The corresponding PEUG file for the source code above is:

peug timer
file timer.o
shared global-time : (S(iii), 12)
function marout i-main

eU 0
size 4

entry update-second
out disp : (S(iii), 12)
eu 2
eu 3 (tiine-region I W global)
calls marutieu
eu 4

calls maruti-eu
calls send
out disp : (iii), 12)

size 32
entry update-minute

out display : Ciii), 12)
eu S
eu 6 (time_region 2 V global)

calls marut i-eu
eu 7

calls maruti-eu
calls send
out display : ($(iii), 12)

size 321

entry update-hour
out display : ((iii), 12)
eu 8
eu 9 (timeregion 3 W global)

calls ma=-r-_eu
eu 10

calls max-•ieu
calls send
out display ($(iii), 12)

size 32
service display-time

in incham: ($(iii), 12)
eu 11

calls onvtreceive
in inchan : (S(iii), 12)
calls pridn:•

size 52

338

References

[1] James da Silva, Eric Nassor, Seongsoo Hong, Bao Trinh, and Olafur Gudmundsson.
Maruti 2.0 Programmer's Manual. Unpublished.

[2] Manas Saksena, James da Silva, and Ashok Agrawala. Design and Implementation of
Maruti-Il. In Sang H. Son, editor, Advances in Real-Time Systems, chapter 4. Prentice
Hall, 1995.

[3] Richard Stalnman. The GNU C compiler, version 2.5.8., Manual. Info file obtained from
gcc.texJ in source code distribution.

339

"4-- V_ -a . . - -'A-C I-e I-

J -j*.4 :2:: . V '.P .-A..--- -0 ... W'w * .-.0-0 60.M.0~c- V10-tj V2IC:41ZIIJ DC ?DVS01

1. AGENCY USE ONLY Ur.dovt b,,M0 RE PORT DATE 13. REPORT TYPE AND DATE$ COVERED

I February 14, 19951 Technical Report
4. TITLE AND SUBTILE S. FUNDING NUMBERS

Implementation of the MPL Compiler N00014-91-C-0195 and
DSAG-60-92-C-0055

6. AUTHOR(S)

Jan H. Rizzuto and James da Silva

7. PERFORMWIG ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

University of Maryland
REPORT NUMBER

A.V!. Williams Building CS-TR-3413
College Park, Maryland 20742 UMIACS-TR- 95-17

9. SPONSORING/MDNITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
Honeywell Phillips Labs
3660 Technology Drive 3550 Aberdeen Ave. SE
YMinneapolis, M 55418 Kirtland AFB, NM

87117-5776

11. SUPPLEMENTARY NOTES

12a. DSTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

12. ABSTRACT (Maxn"muc2DDwOrcs)

The Maruti Real-Time Operating System was developed for applications
that must meet hard real-time constraints. In order to schedule real-time
applications, the timing and resource requirements for the application must
be determined. The development environment provided for Maruti applications
consists of several stages that use various tools to assist the programmer
in creating an application. By analyzing the source code provided by the
programmer, these tools can extract and analyze the needed timing and
resource requirement. The initial stage in development is the compilation
of the source code for an application written in the Maruti Programming
Language (I-TL). NP-L is based on the C programming language. The MPL
compiler was developed to provide support for requirement specification.
This report introduces IL and describes the implementation of the ML
Compiler.

. SUJ ERS 15. NUMBER OF PGES
17 Daees

D.3.2, Language Classifications 16. PRICE CODE
D.4.7, Organization and Desi~gn

17. SECUR1TY CLASSIFIC-TION 15. SECURITTY CLASSIFIC-ATISN 1 . SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC
OF REPORT OF THIS PAGE OF ABSTRACT2

Unclassified Unclassified Unclassified Unlimited
4290 'e' 2-BS)

340 _

4

Maruti 3.1
Programmer' s Manual

First Edition

Systems Design and Analysis Group
Department of Compter Science

University of Maryland at College Park

December 1996

341

Contents

1. Introduction 344 -
1.1 General Program Organization .. 344

1.1.1. Maruti Programming Language 345
1.1.2. Maruti Configuration Language 345

2. " Tutorial 347
2.1. Basic Maruti Program Structure ... 347
2.2. Using the Graphics Library .. 350

3. MPLIC Reference 358
3.1. EBNF Syntax Notation ... 358
3.2. MPL M odules ... 358
3.3. Module Initialization .. 358
3.4. Entry Functions ... 359
3.5. Service Functions ... 359
3.6. MPL Channels ... 360
3.7. Communications Primitives .. 360
3.8. Critical Regions ... 361
3.9. Shared Buffers .. 361
3.10. Restrictions to ANSI in MLP .. 361

4. MCL Reference 362
4.1. Top-Level Declarations ... 362

4.1.1. The Application Declaration 362
4.1.2. The System Declaration ... 362
4.1.3. Block Declaration .. 363
4.1.4. Variable Declarations .. 364

4.2 Instructions .. 364
4.2.1. Compound instructions .. 365
4.2.2. Task .. 365
4.2.3. Job Initialization .. 365
4.2.4. Connections ... 366
4.2.5. Allocation Introduction .. 366
4.2.6. Link Instructions ... 366
4.2.7. Print Instructions ... 367

4.3. Expressions .. 367

5. Maruti Runtime System Reference 369
5.1. Core Library Reference ... 369

5.1.1. MPL Built-in Primitives ... 369
5.1.2. Calendar Switching .. 370
5.1.3. Calendar Modifications .. 370
5.1.4. date and Time Manipulation 371
5.1.5. Miscellaneous Functions .. 372 -.

5.2. Console Library Reference ... 373
5.2.1. Screen Colors ... 373
5.2.2. Graphics Functions .. 374
5.2.3. Keyboards and Speaker Functions 375

5.3. Maruti / Virtual Monitor .. 376
5.3.1. Controlling Virtual Time .. 376

342

5.3.2. Single-Keystroke Operation 376
5.3.3. Command-Line Operation ... 377

6. Maruti Tools Reference 378
6.1. M aruti Builder ... 378
6.2. M PL/C Compiler .. 379
6.3. M CL Integrator .. 379
6.4. Allocator / Scheduler .. 379
6.5. M aruti binder .. 379
6.6. Timing Trace Analyzer ... 380
6.7. Timing Status M onitor .. 380

343

Chapter 1

Introduction

The Maruti Programming Language (MPL) is used to write Maruti application code.
Currently, MPL is based on the ANSI C programming language, with extensions to
support modules, real-time constructs, communications primitives, and shared memory.

The Maruti Configuration Language (MCL) is used to specify how individual
program modules are to be connected together to form an application and the details of the
hardware platform on which the application is to be executed.

1.1. General Program Organization

A complete Maruti system is called an application. Applications can be large, distributed
systems made up of many subsystems. Each application is defined by a configuration file,
which defines all the subsystems and their interactions. The following entities make up an
application:

Jobs Jobs are the active entities in a Maruti application. Jobs are specified in the
configuration file with timing constraints, including the job period. A job is made
up of multiple entry points, which are the threads of execution that will be run for
the job.

Modules The code of an application is divided into modules. Each module consists of
entry points, which define the code which will be executed as part of a job,
services, which define code to be invoked on behalf of a client module, and
functions, which are called from entries and services.

Tasks At run-time, modules map to tasks (a module may be mapped to more than one
task). Each task consists of an address spac and threads of execution for the entry
points and services of the module.

Channels Channels are the communication paths for Maruti applications. Each channel is
a one-way connection through which typed messages are passed. The end points
are defined by out and in channel specifiers, and are connected as specified in the
application configuration file. Each end point is associated with one entry or
service, and its message type and channel type are declared within the entry or
service header. The types of the in and out channel specifiers must match.

Regions Regions are the mechanism for mutual exclusion between Maruti threads: only
one thread can enter a particular region at a time. Two types of regions may be
specified: global regions enforce exclusion for the entire Maruti application, while
local regions enforce exclusion only within a single task.

Shared buffers Named memory buffers can be shared between tasks. The buffer is
mapped into the address space of each task that uses that buffer.

344

1.1.1. Maruti Programming Language

Rather than develop completely new programming languages, we have taken the approach
of using existing languages as base programming languages and augmenting them with
Maruti primitives needed to provide real-time support.

In the current version, the base programming language used is ANSI C. MPL adds
modules, shared memory blocks, critical regions, typed message passing, periodic
functions, and message-invoked functions to the C language. To make analyzing the
resource usage of programs feasible, certain C idioms are not allowed in MPL; in
particular, recursive function calls are not allowed nor are unbounded loops containing
externally visible events, such as message passing and critical region transitions.

*_The code of an application is divided into modules. A module is a collection of
procedures, functions, and local data structures. A module forms an independently
compiled unit and may be connected with other modules to form a complete application.
Each module may have an initialization function which is invoked to initialize the
module when it is loaded into memory. The initialization function may be called with
arguments.

Communication primitives send and receive messages on one-way, typed channels.
There are several options for defining channel endpoints that specify what to do on
buffer overflow or when no message is in the channel. The connection of two end-
points is done in the MCL specification for the application - Maruti insures that end-
points are of the same type and are connected properly at runtime.

" Periodic functions define entry points for execution in the application. The MCL
specification for the application will determine when these functions execute.

" Message-invoked functions, called services, are executed whenever messages are
received on a channel.

"* Shared memory blocks can be declared inside modules and are connected together as
specified in the MCL specifications for the application.

"* Critical Regions are used to safely maintain data consistency between executing
entities. Maruti ensures that no two entities are scheduled to execute inside their critical
regions at the same time.

1.1.2. Maruti Configuration Language

MPL Modules are brought together into as an executable application by a specification file
written in the Maruti Configuration Language (MCL). The MCL specification determines
the application's hard real-time constraints, the allocation of tasks, threads, and shared
memory blocks, and all message-passing connections. MCL is an interpreted C-like
language rather than a declarative language, allowing the instantiation of complicated
subsystems using loops and subroutines in the specification. The key features of MCL
include:

345

" Tasks, Threads, and Channel Binding. Each module may be instantiated any
number of times to generate tasks. The threads of a task are created by instantiating the
entries and services of the corresponding module. An entry instantiation also indicates
the job to which the entry belongs. A service instantiation belongs to the job of its
client The instantiation of a service or entry requires binding the input and output ports
to a channel. A channel has a single input port indicating the sender and one or more
output ports indicating the receivers. The configuration language uses channel variables
for defining the channels. The definition of a channel also includes the type of
communication it supports, i.e., synchronous or asynchronous.

" Resources. All global resources (i.e., resources which are visible outside a module)
are specified in the configuration file, along with the access restrictions on the resource.
The configuration language allows for binding of resources in a module to the global
resources. Any resources used by a module which are not mapped to a global resource
are considered local to the mQdule.

"* Timing Requirements and Constraints. These are used to specify the temporal
requirements and constraints of the program. An application consists of a set of
cooperating jobs. A job is a set of entries (and the services called by the entries) which
closely cooperate. Associated with each job are its invocation characteristics, i.e.,
whether it is periodic or aperiodic. For a periodic job, its period and, optionally, the
ready time and deadline within the period are specified. The constraints of a job apply
to all component threads. In addition to constraints on jobs and threads, finer level
timing constraints may be specified on the observable actions. An observable action
may be specified in the code of the program. For any observable action, a ready time
and a deadline may be specified. These are relative to the job arrival. An action may not
start executing before the ready time and must finish before the deadline. Each thread is
an implicitly observable action, and hence may have a ready time and a deadline.

Apart from the ready time and deadline constraints, programs in Maruti can also specify
relative timing constraints, those which constrain the interval between two events. For each
action, the start and end of the action mark the observable events. A relative constraint is
used to constrain the temporal separation between two such events. It may be a relative
deadline constraint which specifies the upper bound on time between two events, or a delay
constraint which specifies the lower bound on time between the occurrence of the two
events. The interval constraints are closer to the event-based real-time specifications, which
constrain the minimum and/or maximum distance between two events and allow for a rich
expression of timing constraints for real-time programs.

Replication and Fault Tolerance. At the application level, fault tolerance is achieved
by creating resilient applications by replicating part, or all, of the application. The
configuration language eases the task of achieving fault tolerance, by allowing
mechanisms to replicate the modules, and services, thus achieving the desired amount
of resiliency. By specifying allocation constraints, a programmer can ensure that the
replicated modules are executed on different partitions.

346

Chapter 2

Tutorial

2.1. Basic Maruti Program Structure

Maruti applications are built up out of one or more MPL modules, and tied together with a
configuration file written in MCL. Well start our tutorial with an explanation of a very
simple application consisting of one module, called simple.mp. Our simple application will
contain a producer thread that sends out integer data, and a consumer thread, which
receives integer values and prints them out

The Module

module simple;

int data;

maruti_main(int argc, char **argv)
{

if(argc < 1) {
printf("simple: requires an integer argumentkn");
return 1;

)

data = atoi(argv[0]);
return 0;

This first part of the module will be similar in all Maruti modules. The module
always starts with the module name declaration. After the module declaration, the MPL
module is much like any ANSI C program, but with some special Maruti definitions.

Every module must contain a function named marutinmain, which initializes the
module at load time. This initialization would normally include things like device probing
or painting the screen. The maruti_main function, exactly like the main function of a C
program, takes an argument count and list as its parameters, and returns an error code to its
environment. In Maruti, the environment is the system loader, and any non-zero return
results in a load failure, in which case the application will not run. In our example,
marutimain is responsible for setting the initial value of our datum from the environment,
and returning a failure code if there is no argument.

347

Periodic Functions

entry producerO
out och: int;
{

data++; /* produce data *f
send(och, &data);

I

The producer is a periodic function, or Maruti entry point. It serves as the top-level
function for a Maruti thread that will be invoked repeatedly, with a period specified in the
MCL config file (which we will see below).

The producer outputs its data on a Maruti channel, using the built in MPL send
function. The channel och is declared as part of the function header of producer. Maruti
channels are declared to have a type, usually a structure but in this case a simple integer.
All messages sent on the channel will be of the same type.

Note that them is no open, bind, or connect statement needed to initiate
communication on the channel. The connection of the channel will be specified in the
config file, and initiated automatically by the runtime system.

Message-Invoked Functions

service consumer(ich: int, msg)
{

printf("consumer got %d\n", *msg); /* consume data */
I

The consumer is a message-invoked function, or Maruti service. It serves as the
top-level function for a Maruti thread that is invoked whenever there is a message delivered
on the channel declared in the function header. The msg parameter is the name of the
pointer to the message buffer that will contain the delivered message.

Since the receipt of the invoking message is automatic for a Maruti service, the only
thing our consumer has to do is print out the data value contained in the message.

This completes our simple module, but in order to have a Maruti application, we
must have a config file that tells the system how to run our program.

The Config File

The config file is written in the Maruti Configuration Language (MCL), an interpreted C-
like language with constructs that allow an application to be built up from pieces and
interconnected. The MCL processor, called the integrator, builds a program graph from
the specifications, analyses it for type correctness and completeness, and checks for
dependency cycles. Here is the config file, simple.cfg, that goes with our application

348

application simple {

job j; /* declare variables */
task si;
channel c;

init j: period 1 s; /* specify job parameters *1
start si: simple(27); /* specify task parameters */

<> si.producer <c> in j; /* producer thread */
<c> si.consumer <>; /* consumer thread */

The variables in MCL correspond to the objects that make up an application, such
as channels, tasks, and jobs. As in C, these variables must be declared before they are
used.

In Maruti, ajob is a logical collection of threads that nn with the same period. All
entry functions in the application must be put in some job. The init statement sets the
period for a particular job. In our case, the job j will run once every second.

A task is the runtime instantiation of an MPL module, just as in Unix a process is
the runtime image of a program. Many tasks may be executed from the same module, each
will run independently in the Maruti application. The MCL start command instantiates a
task from a module. In our example, we instantiate one task from the module simple and
pass it the initial data value of 2 7.

We instantiate the threads for the entry and service functions inside a particular task,
with particular input and output channels. In our example, the statement

<> si.producer <c> in j; /* producer thread */

instantiates the si.producer thread in job j with no input channels and one output channel,
c. Likewise, the statement

<c> si.consumer <>; /* consumer thread */

instantiates the si.consumer thread with one input channel c, and no output channels.
Service functions are not put in a job, but rather inherit the scheduling characteristics of the
thread that is sending to their invoking channel.

The integrator checks to insure that the use of producer and consumer in the config
file match the declarations in the program module.

Building and Running the Application

We can build the simple application by putting simple.mpl and simple.cfg in a directory,
and running the mbuild command there:

349

%ls
simple.cfg simple.mpl
% mbuild U

mbuild: extracting module info from MCL file 'simple.cfg'
mbuild: creating obj subdirectory for output files.
mbuild: generating obj/simple-build.mk
mbuild: running make -f obj/simple-build.mk

Mbuild takes care of running the MPL compiler, the MCL integrator, as well as the
analysis and binding programs needed to build the runnable Maruti application. By default,
mbuild creates both a stand-alone binary that can be booted on the bare machine, and a
Unix binary that runs in virtual real time from within the Unix development environment.
These different versions of the runtime system are called flavors.

We can try out the simple application by running the ux+xll flavor from the
command line:

% obj/simple.ux+xl 1
<... startup messages ...>

consumer got 28
consumer got 29
consumer got 30
consumer got 31
consumer got 32
consumer got 33
consumer got 34
consumer got 35
consumer got 36
consumer got 37

application quit

The application boots up and outputs the consumer message once every second.
We can exit the application by typing 'q'.

2.2. Using the Graphics Library

Many Maruti programs will want to use the graphical screen as a monitor for an embedded
system, producing oscilloscope or bar-graph style displays, or for animating a simulation
or demonstration. Maruti provides a console graphics library as an integral part of the
system to make the development of visually oriented applications simpler. Our next
example application, clock, demonstrates the use of the graphics library as well as the use
of multiple jobs to take advantage of Maruti's scheduling abilities.

350

12
±1 \ \ \ \ I I I / i

\ /

10

9- -3

/ \/\

6

Figure 2.1: Dsiplay of clock example application

The clock application will display a circular clock face on the screen, with the hour,
minute, and second hands moving as independent Maruti threads in different jobs. The
clock screen is shown in Figure 2.1.

We will now go through the clock.mpl module and see how it works.

module clock;

#include <maruti/mtime.h>
#include <maruti/console.h>
#include <math.h>

#include "clock.h"

#define CENTERX (CONSOLE_WLDTH/2) /* useful constants */

#define CENTERY (CONSOLE_HEIGHT/2)

void checkforquitkey(void); /* subroutines */

void polar-point(int pos, int radius, int *x, int *y);
void xor__triangle(int pos, int apexradiusint color);

void xorjray(int pos, int color);

int sec-pos, min.pos, hour-pos; /* system state */

351

The first part of the module is much like any other ANSI-C program, with #
includes, # defines, and function prototype declarations for subroutines to be used later in
the program. Notice the two Maruti header files included: <maruti/mtime.h> contains
declarations related to Maruti time management, and <maruti/console.h> contains U
declarations that define the graphics library interface. The "clock h" header, which we'll
see below, will contain definitions that customize the look of the clock face.

marutimainO
{

int i, xl, yl, x2, y2, color;
char numstr[4];
rmtime curtime;
mdate curdate;

/* initialize screen library, paint screen black */

cons&graphics-inito;
cons fill area(0, 0, CONSOLE_WIDTH, CONSOLEHEIGHT, BLACK);

The marutimain function in the clock application draws the clock face display and
initializes the system state - in our case, the positions of the three clock hands. Before
drawing on the screen, the application must call cons.graphicsjinit, and initialize the
contents of the screen. The call to cons-fill area does this by filling the entire screen with
the color BLACK

/* draw tick marks for clock face */ I

for(i = 0; i < 60; i++) {
polar-point(i*POSPERTICMARK, OUTERRADIUS, &xl, &yl);
polar..point(i*POSPERTICMARK, INNER_RADIUS, &x2, &y2);

if(i % 5) color = GRAY;
else color = WHITE;

cons_drawline(xl, yl, x2, y2, color);
}

The step in initialization is to draw the tick marks for the clock face. There will be
sixty tick lines drawn around the circle, one for each second. Every fifth tick mark will be -
WHITE to mark the hour positions, and the rest will be GRAY. The lines are drawn using
the consdraw_line library routine, which draws a one-pixel-wide line between two points
in the desired color.

The location of the endpoints of our tick marks are calculated using a helper routine,
polaripoint (shown below), which calculates the cartesian coordinates for a given angle

352

and radius. We conveniently adopt integer angle positions starting from 0 at the top,

clockwise around up to 60*POSPERTICMARK back at the top again.

/* draw numerals for clock face */

for(i = 1; i <= 12; i++) {
sprintf(numstr, "%d", i);
polar-point(i*5*POSPER_TICMARK, NUMBERRADIUS, &xl, &yl);

yl -= 8; xl -= strlen(numnstr)*8 / 2; /* center the string *I

cons_print(xl, yl, numstr, strlen(num-str), YELLOW);
)

The numerals are placed on the clock face similarly to the tick marks. The
cons-print graphics library function places text on the screen at a given position and color.

/* initialize the hand positions to current time *1

maruti-getcurrenttime(&curtime);
curdate = marutitimetodate(curtime);

sec-pos = curdate.second * POSPERTICMARK;
min-pos = curdate.minute * POS_PER_TICMARK +

curdate.second * POSPERTICMARK / 60 ;
hourpos = (curdate.hour % 12) * 5 * POS_PER_TICMARK +

curdate.minute * 5 * POS_PERTICMARK / 60;

return 0;
I

The final part of the initialization is the calculation of the initial placement of the
clock hands. The maruti-get currenttimelsystem call returns the current system time,
given as a rmtime structure. The system time is kept just as in Unix---as the number of
seconds and microseconds since the Epoch time, defined as 00:00 GMT on January 1,
1970. The maruti_timeto-date library routine does the job of calculating the date and
time-of-day from an mtime value.

entry sec_hando
{

static int erase =0;

if(erase) xorjray(sec-pos, WHITE);

else erase = 1;

353

sec-pos = (sec-pos + POSPER_TIGMARK) % NUM_POSITIONS;
xor_ray(secpos, WHITE);

check~jor._quitkey0;

I
The periodic function sechand will be run once per second. It erases the

previously placed second-hand ray, calculates the new position and draws again there. The
checkorquitkey subroutine (shown below) will poll the keyboard and exit the
application if a key is pressed.

entry nain-hand0
{

static int erase = 0;

if(erase) xorjtriangle(minpos, MIN_RADIUS, MINCOLOR);
else erase = 1;

min~pos = (minpos + 1) % NUMPOSITIONS;
xorjtriangle(min~pos, MIN_RADIUS, MIN_COLOR);

entry hourhandO

static int erase = 0;

if(erase) xor_triangle(hourpos, HOUR_RADIUS,HOUR_COLOR);
else erase = 1;

hour-pos = (hour._pos + 1) % NUMPOSmONS;
xor_triangle(hourzpos, HOURRADIUS, HOURCOLOR);

The minhand and hour-hand periodic functions update their respective hand positions by
one each time they are called. The second hand jumps forward one second each time it is
called, but the minute and hour hands creep forward in smaller relative increments (rather
than jumping forward once per minute or hour, which would not look right).

void polar._point(int pos, int radius, int *x, int *y)
{

double angle = (2.0*MPI/NUMPOSITIONS) * (NUMPOSITIONS-pos) +
M_PI/2;

354

*x = CENTER_X + cos(angle) * radius;

*y = CENTERY - sin(angle) * radius;

Finally we come to the helper functions. The polar._point function converts from
our convenient "positions" to real angles in radians, taking into account that radians start at
the right and run counter-clockwise, whereas our positions start at the top and run
clockwise. Given an angle in radians and a radius from the center, the x and y coordinates
of the point are found by taking the cosine and sine of the angle. The final twist is that in
cartesian coordinates, the y axis points up, whereas in screen coordinates it traditionally
points down, so the y coordinate must be flipped around.

void xor._ray(int pos, int color)
{

int x, y;
polar._point(pos, SECRADIUS, &x, &y);
consxor line(CENTER&X, CENTER.Y, x, y, color);

)
void xortriangle(int pos, int apexradius, int color)
{

int xbl, ybl, xb2, yb2, xp, yp;
int bpl, bp2;

bpl = (pos + TRIANGLE_BASELI2) % NUMPOSmONS;
bp2 = (pos - TRIANGLEBASEIL2) % NUMPOSmONS;

polar-point(bpl, TRIANGLEBASER, &xbl, &ybl);
polar._point(bp2, TRIANGLEBASER, &xb2, &yb2);
polar._point(pos, apexradius, &xp, &yp);

cons_xor_line(xbl, ybl, xb2, yb2, color); /* base of triangle */

cons_xor_line(xbl, ybl, xp, yp, color); /* first arm */
consxor_line(xb2, yb2, xp, yp, color); /* second arm */

These graphic helper routines draw the line for the second hand and the triangle for
the minute and hour hands. The consxor_line routine is similar to consdraw_line, but
exclusive-or's its pixels with the screen rather than just painting them. The xor technique is
often used in graphics programming because it allows the drawing and erasing of objects
without disturbing the background. When multiple objects overlap, the overlapping
portions may become a strange color due to xor'ing, but you are guaranteed that when the
objects are erased by xor'ing them a second time in the same location, whatever color was
there before will be restored.

355

void check_for._quitkey(void)
{

console_event.t ev;

if(conspoll.event(&ev) != 0 && ev.device = EVENTKEYBOARD
&& ev.keycode - KEYSPACE)
quitO;

The final helper routine polls the console keyboard for events, and quits the
application if the space bar is pressed. The cons._poll evendlsystem call reports both key
press and key release events, and reports a scan-code rather than an ASCII value. This
interface is rather low level, but allows the application complete access to the up/down state
of every key on the keyboard.

This completes the clock.mpl module. The clock.cfg config file follows:

#include "clock.h"

application clock {

job sec..job; init sec_.job: period SECPERIOD s; /* jobs */
job nmin.job; init min..job: period MN_PERIOD s;
job hour-job; init hour-job: period HOURPERIOD s;

task ct; start ct: clock; /* task */

<> ct.sechand <> in sec.job; /* threads */
<> ct.minhand <> in min..job;
<> ct.hour_hand <> in hourjob;

II
Notice that the config file can include header files just like the MPL module can.

This allows the programmer to put configuration-related constants in one header and use
them in both the config file and the application modules.

The clock config simply creates one task, plus a job for each hand of the clock.
The periods are defined in "clock.h":

#define INNERRADIUS 235
#define OUTERRADIUS (INNTERRADIUS+15)
#define NUMBERRADIUS (OUTERRADIUS+15)

#define TRIANGLEBASER 30

356

#define TRIANGLEBASEL 50

#define SECRADIUS INNERRADIUS

#define MIN COLOR YELLOW
#define MIN_RADIUS (SECRADIUS-50)

#define HOUR_COLOR GREEN
#define HOUR_RADIUS (MIN RADIUS-50)

#define NUMPOSITIONS 240
#define POSPER_T[CMARK (NUM_POSITIONS/60)

#define SEC_PERIOD 1 /* jumps 1 tickmark/sec */
#define MIN_PERIOD (60/POSPERTICMARK) /* creeps 1 tickmark/min */
#define HOURPERIOD (3600/5/POSPER_TICMARK) /* creeps 5 tickmarks/hr */

First, a number of constants describing the visual appearance of the clock face are
defined. These can be modified to taste.

Second, the timing characteristics of the program are given. The key parameter is
NUMPOSITIONS, which gives the number of positions which the minute and hour
hands take around the clock face. The larger this number, the smaller the distance the
hands move each time, and the more frequently their jobs are executed. The minute hand
must move through all 60 tick marks once every hour, and the hour hand 5 tick marks each
hour. With NUM_POSITIONS set to 240, each hand moves four times for each tick mark
on the face of the clock, which works out to one move every 15 seconds for the minute
hand, and one move every 180 seconds for the hour hand.

357

Chapter 3

MPL / C References
Maruti Programming Language (MPL) is a simple extension to ANSI C to support
modules, synchronization and communications primitives, and shared memory variables.
MPL adds some restrictions that enable analysis of the CPU and memory requirements of
the program. This chapter will define the MPL-specific features that differ from ANSI C.

3.1. EBNF Syntax Notation

In this manual, syntax is given in Extended Backus-Naur Formalism (EBNF). In this
notation:

"* literal strings are quoted, e.g. 'module'.
"* other terminal symbols are bracketed, e.g. <module-name>.
"* XIY denotes alternatives.
"* {Z) denotes zero-or-more.
"* {X} denotes zero-or-one.

3.2. MPL Modules

The module is the compilation unit in MPL. It is presented to the MPL compiler as one
file, but may contain normal C #include directives so that the parts of the module can be
kept as distinct files. The MPL compiler generates a binary object file for the module, as
well as a partial EU graph file for the module, which contains information about the
module needed by the Maruti analysis tools.

At runtime, each MPL module is mapped to a Maruti task, which logically runs in
its own address space. Communication between tasks is through channels or shared
blocks. Each task can contain multiple threads of execution, each thread corresponding to
an entry or service function of MPL.

Each module starts with the module name declaration:

module_name_spec ::= 'module' <module-name>.

33. Module Initialization

When the task corresponding to a module is loaded, the Maruti runtime system executes a
non-real-time initializer function provided by the programmer. The initializer is a normal C
function, but it must be present in every module. It is declared as:

int maruti_main(int argc, char **argv);

358

The job of this function is to initialize the state of the task, taking any parameter
values into account. If the initializer returns 0, then the task is considered successfully
loaded, otherwise the load fails. The initializer thread can not send or receive messages on
Maruti channels.

3.4. Entry Functions

Maruti entry functions occur as top-level definitions in the MPL source file, similar in
syntax to normal C function definitions.

entry-function ::= 'entry' <entry-name> (' ')' entry-function-body.
entry-function-body :: = channel-declaration-list c-function-body.

Entry functions serve as the top-level function of a Maruti thread which is invoked
repeatedly with a period as specified externally, in the MCL configuration. Multiple
instances of the entry thread can be active in a single task at runtime, so care must be taken
to protect accesses to shared data with a region or local-region construct.

3.5. Service Functions

Maruti service functions also occur as top-level definitions in the MPL source file.

service-function ::= 'service' <service-name>
'('<in-channel-name>':'<type.specifier>','<msg-ptr-name>')'

service-function-body.
service-function-body :: = channel-declaration-list c-function-body.

Services are declared with the initiating channel and pointer to a message buffer. A
service thread is invoked whenever a message on the channel has been received, thus it
inherits the scheduling characteristics of the sender to the channel. Multiple instances of the
service may be active in a single task at the same time, servicing messages from different
senders, so care must be taken to protect accesses to shared data with a region or
locaLregion construct.

The receipt of the invoking message into private storage is automatic, and the
service function is called with a pointer to the message buffer. Fore example, given the
service declaration:

service consumer(inch: chtype, msg) { ...)

The service is actually invoked as if it were a C function declared:

void consumer(ch-type *msg) { ... }

359

3.6. MPL Channels

In Maruti, channels are one-way, typed, communications paths whose traffic patterns are
analyzed and scheduled by the system. The channel end-points are declared as part of the U
entry or service functions which take part in the communication. The endpoints are
connected in the MCL configuration for the application.

The syntax of MPL channels is similar to a C variable declaration:

channel-declaration-list ::= [channel-decl { channel-decl }].
channel-declaration ::= channel-type channel { ',' channel) ';'. 1
channel-type ::= 'out' I 'in' I 'infirst' I 'inlast'.

channel ::= <channel-name> ':' type-specifier.

A channel endpoint declaration will normally be either an out endpoint or an in
endpoint, used in the sending thread and receiving thread, respectively. There are two
special variants of in endpoint, infirst and inlast, which denote asynchronous channels in
which the communications will not be scheduled, and the input buffers are allowed to
overflow. For in_first channels, the first messages received will be retained and the rest
dropped, for in_last the most recent messages will be retained and older messages
overwritten.

3.7. Communication Primitives

The message passing primitives appear as normal C function calls, but they are built in
primitives of the MPL compiler, and their use is recorded so that the communications on
the channel can be analyzed.

The three primitives each take a channel name and a pointer to a message buffer.
Their declarations would look something like this:

void send (out ch_name, chtype* messageptr);

void receive (in chname, ch..type* message.ptr);
int optreceive(in ch_name, ch_type* message.ptr);

There are two variants of the receive primitive. A normal receive is used in most cases, and
it raises an exception if there is no message delivered at the time it is executed. Normally
the Maruti scheduler will arrange things so that this is never happens. When messages
might not be present when the receiver is run, as when threads are communicating
asynchronously with infirst and inlast channels, or when the sender sometimes will not
send the message due to run time conditions, an optreceive must be used. The optreceive
variant checks if a message is present, and receives it if so. It returns 1 if a message was
delivered, or 0 if no message was delivered.

360

3.8. Critical Regions

Mutual exclusion is often necessary to prevent the corruption of data structures modified
and accessed by concurrent threads. In Maruti, the region statement delineates a critical
region.

region-statement ::= ('region'llocal-region') <region-name> c-statement.

The local region variant is used within a task, usually to serialize multiple thread access to
data structures. The region variant is global to the application, and is used to serialize
access to shared buffers and other application-defined resources, as specified in the MCL
configuration for the application.

3.9. Shared Buffers

Finally, MPL adds shared buffers to the C language. Shared buffers declarations are
similar in syntax to typedef declarations:

shared-buffer-decl ::='shared' <type-specifier> <shared-buffer-name>.

The shared buffer declaration is effectively a pointer declaration. For
example:

shared somejtype sharedbuffer;

is treated as if it were a declaration of the form:

sometype *sharedbuffer = &somebuffer;

The MPL specification for the application determines which tasks share each shared
memory area. The runtime system takes care of allocating memory for the shared buffers,
and initializing the buffer pointers. The MPL program can at all times dereference the
pointer.

3.10. Restrictions to ANSI C in MPL

The Maruti real-time scheduling methodology requires that the tools be able to analyze the
control flow and stack usage of the MPL programs, and that synchronization points be well
known. Thus the following restrictions to ANSI C must be followed by the MPL
programmer

"* No receive primitives are allowed within either loops or conditionals.
"* No region construct are allowed within either loops or conditionals.
"* No send primitive within a loop.
"* Direct or indirect recursion is not allowed.
"* Function calls via function pointers should not be used.

361

Chapter 4

MCL Reference
Maruti Configuration Language (MCL) is used to specify how individual program modules
are to be connected together to form an application and to specify the details of the
hardware platform on which the application is to be executed.

MCL is an interpreted C-like language. The MCL processor is called the
integrator. The integrator interprets the instructions of the MCL program, instantiating and
connecting the components of the application, checking for type correctness as it goes, and I
outputs the application graph and all allocation and scheduling constraints for further
processing by other Maruti tools.

4.1. Top-level Declarations

Like a C program, an MCL configuration file is composed of a number of top-level
declarations. The C preprocessor is invoked first, so the configuration fie may contain
#include and #define directives to make the configuration very customizable.

configuration::= {toplevel-declaration}.
toplevel-declaration ::= variable-declaration I system-declaration

block-declaration I application-declaration.

The declarations may occur in any order--they do not have to be defined before used. The
four types of top level declaration are described in more detail below.

4.1.1. The Application Declaration U

application-declaration ::='application' <application-name>
'{' {instruction)} '.

Like the main function of C, the application declaration is where the integrator will begin
execution of the configuration directives. Only one application may be declared in the
configuration.

4.1.2. The System Declaration

system-declaration ::='system' <system-name>
'{' { node-declaration) '}'.

node-declaration ::= 'node' <variable-name> ['with' attributes].
attributes ::= attribute {',' attribute).

attribute <symbol> ['=' <integer> I'=' <symbol> I '=' <string>].

Like the application declaration, the system declaration can occur at most once in a
configuration. It is not needed for single-node operation. The system declaration names
the nodes that an application will run on, and specifies attributes for them. For example:

362
I

[a

system hdw {
node northstar with address = "{OxOO,0x60,Ox8c,Oxb 1,Oxfb,Oxc6)}", master;
node raduga with address = "{ OxOO,0x60,Ox8c,Oxb 1,Oxf6,0x67 }";

The integrator does not assign any meaning to the attributes declared for the nodes,
it just passes the information along. However, the Maruti binder does require the
addre.sslattribute for each node, which specifies the node's ethernet address, and the master
attribute on only one node, to specify which node will be the boot and time master. The
Maruti/Virtual environment further requires that the node <variable-name> correspond to
the hostname of the node in the testbed environment.

4.1.3. Block Declarations

block-declaration ::= 'block' <block-name> '(' [block-parameters] ')'
block-parameter-channels

'{' {instruction} '}'.

A block is something like a function in C. When a block is declared, it may be
called by any other block, except that no self-recursion is allowed. A block can not be
declared inside another block. A block is called by giving its name and parameters. There
are 2 kinds of parameters: classical parameters and channel parameters.

block-parameters ::= parameter { ',' parameter }.
parameter ::= ['var'] <parameter-name> ['[]'] [':' type].

Classical parameters are like function parameters in C or Pascal. They can be
passed by value or by variable (var for variable passing). Arrays may also be be given as
var parameters. The type of the parameter must be given for the first parameter. It may be
omitted for following parameters: the integrator will assume that the parameter with no
given type has the same type as the previous parameter.

block-parameter-channels ::= { ('inl'out') channel-names ';' }.
channel-names ::= channel { ',' channel }.
channel ::= <channel-name> ['[' <integer> '].

The channel parameters decribe the inputs and outputs of the block. The in and out
keywords do not have exactly the same meaning has in MPL: they only show which
channels are connected at the left and which are connected at the right of the block call (see
connection below). The communication type of the channel infirst, in-last, or
synchronous) and the type of the messages on the channel are determined by the
connections of the channels to the tasks.

When there is an array of channel parameters, the connections will occur in
ascending order. For example:

block fooo
in ch[3];

363

application bar {
channel a[3];
<a[O..2]> foo0 <>;;/* a[O]->ch[O], a[1]->ch[2], a[2]->ch[2] */

} H

4.1.4. Variable Declarations

variable-declaration ::= type variable-names ';'.

type ::= 'float' I 'int' I 'string' I 'time' I 'channel'
I 'task' I 'job' I 'node' I 'shared' I 'region'.

variable-names ::= variable { ',' variable }.
variable ::= <variable-name> ['[' <integer> I]'] ['[' <integer> 'T'].

Variables may be declared globally at the top-level, or locally in a block. Global
variables can be accessed in all blocks, while local variables can only be accessed in the
block where they are declared. A local variable (or a parameter) may be declared with the
same name as a global variable. In this case only the local variable (or the parameter) can
be accessed in the block.

The order of the variable declarations does not matter. For example:

block foo0{
i = 4s + 5mn; /* correct*/
time i;I

Arrays may be declared. As in C, the array indicies are numbered from 0 to size-of-
array less 1. Arrays of 1 or 2 dimensions are accepted. For example:

block foo0{
string s[10];
s[5] = "a string"; /* correct */
s[0] = s[5] + " foo"; /* correct */
s[10] = ""; /* incorrect: out of array limits */

4.2. Instructions

The MCL integrator interprets a number of instructions that express the way an application
is to be built up from components. The different instructions are explained below.

-UI

instruction ::= variable-declaration
I task-initialization
I job-initialization
I connect-declaration
I link-intruction

364

I allocation-instruction
I expression ';'

I print-instruction
I compound-instruction
I '{' {instruction) '}'.

4.2.1. Compound Instructions

compound-instruction ::=
'if '(' test-expression ')' intruction

I 'if '(' test-expression ')' intruction 'else' instruction
I 'do' instruction 'while' '(' test-expression ')' ';'
I 'while' '(' test-expression ')' instruction
I 'for' '(' expression ';' test-expression ';' expression ')'

instruction.
test-expression ::= expression.

The meaning of these constructs is the same as in the C language. The test-
expression should evaluate to an integer, where 0 means false, and all other values mean
true.

4.2.2. Tasks

task-initialization ::= 'start' names ':' <module-name> [module-parms]
[instantiation] [task-allocation] ';'

module-parms ::='(' [module-parameter-hst] ')'.
module-parameter-list ::= expression {',' expression}.

instantiation ::= 'with' <symbol> '=' constant

{',' <symbol> '=' constant }.

task-allocation ::= 'on' expression.

A variable of type task must be initialized before it can be used. This initialization consists
of giving the name of a module: the task will be an instantiation of this module. Module
parameters may be given: after evaluation they will be given to the initializer thread of the
module. The initializations during the loading of an application will take place in exactly
the same order as thay are found by the intergrator during the execution of the
configuration.

All the shared buffers and the global regions of the module must be instantiated
using the with clause: the corresponding shared or region variables must be given.

The on clause may be used to force allocation of the task on a particular node.

4.2.3. Job Initialization

job-initialization ::= 'init' names ':' timing-job ';'.
timing-job ::= { 'period' expression }.

A variable of type job must be initialized before it can be used. The job will refer to a
collection of threads with the same period.

365

4.2.4. Connections

connect-declaration ::= chan-list connect-name chan-list
[in-job] {timing-service} [task-alloc]';'.

chan-list ::= '<' [names] '>'.
connect-name ::= <task-name> ['['expression']' '.' <routine-name>

I <block-name> '(' [expression {',' expression)] ')'.
in-job ::='in' constant.
timing-service ::= ('ready' expression I 'deadline' expression).

There are two types of connections: routine connections and block connections. In both
cases the inputs are connected (or mapped) to the channels declared at the left of the
connection and the outputs at the right. The number of input (or ouput) channels must be
the same as in the definition of the routine (or the block). The mapping is done following
the order of this definition.

In a routine connection the inputs and ouputs of an entry or a service of a task are
connected to channels. This connection creates a new instance of a service if the routine
was a service, otherwise it creates the only instance of an entry. An entry can not be
connected many times.

For an entry connection a job name must be given, the entry will be a part of this
job. For a service, a job can not be declared: the job of the service is implicitly given by the
connection: the first input channel of a service is the triggering channel of the service. The
job of the service is the same as the job of the origine of the triggering channel.

A timing characterization may only be given to a routine connection.
In a block connection the input and output channels of the block are mapped to the

given channels. A mapping is also done for all the block parameters, following the order in
the block definition. The number of parameters must be the same as in this definition, and
all the types must be coherent

4.2.5. Allocation Instructions

allocation-instruction ::= 'separate' '(' names ')' ';'

I 'together' '(' names ')' ';'.

A separate instruction is a command to the allocator to keep the tasks on different nodes in
the final system. A together instruction specifies that all tasks must be allocated to the
samenode.

4.2.6. Link Instruction .

link-intruction ::= 'link' expression 'to' expression ';'.

In a few cases the connections are not sufficient to describe a communication graph with
the structure of the blocks. In these cases a link instruction may be used.

A link between two channels means that the two channels are the same.
Example: if we want to connect directly an input and an output channel of a block a

link must be used.

366

block fooo
in inchannel;
out outchannel;

{
link inchannel to outchannel;}

4.2.7. Print Instruction

print-instruction ::='print (' expression {',' expression) ');'.

The print instruction outputs messages to the standard output during integration. This
instruction can be used for the debugging of a configuration file. Any string, number, or
time may be printed. A newline is added at the end.

4.3. Expressions

Expressions in MCL are very similar to C expressions:

expression ::= expression '=' expression
I expression 'I' expression
I expression '&&' expression
I expression '=' expression
I expression ' expression
I expression '<' expression
I expression '>' expression
I expression '<=' expression
I expression '>=' expression
I expression ('dThTmn'I's'I'ms'l'us')
I expression '+' expression
I expression '-' expression
I expression '*' expression
I expression '7' expression
I expression '%' expression
I ' expression
I '(' expression ')'
I expression '++'
I expression '--'

I constant

constant ::= <symbol> ['[' expression']'] ['['expression']']
I <symbol> '[' expression '..' expression ']' ['[' expression']']
I <symbol> '[' expression '1' '[' expression '..' expression ']'
I <integer>
I <double>
I <string>.

367

In addition to the usual C expressions, MCL supports time unit expressions, for example,
'3 s + 500 ms' is a time expression that evaluates to 3.5 seconds.

Also, MCL supports array range notation as a shorthand for lists. For example, the
expression 'c[2..4]' is shorthand for c[2], c[3], c[4]'. This notation is most often used for
passing arrays of channel values to blocks or in connection instructions.

I

368
N

CHAPTER 5

Maruti Runtime System Reference

The Maruti runtime system is bound together with the application binary files by the mbind
utility. Only those parts of the runtime needed by the application are linked in. There are
several versions of the runtime system available depending on the environment in which the
application will be run. For example, there are two different versions of the core library: a
stand-alone version that can boot directly on bare hardware, and a Unix version that runs as
a user-level process under Unix, providing virtual-time execution and access to debugging
tools.

The set of library versions that an application links with are called flavors. Flavors
are specified by the programmer as strings of library names separated by a '+', for
example, 'ux+xl 1'.

5.1. Core Library Reference

#include <maruti/maruti-core.h>

The Maruti core library implements the scheduling, thread and memory management, and
network communication subsystem. It provides primitives for applications to send and
receive messages, insert preemption points, manipulate the schedule (via calendars), and do
time and date calculations. There are currently two flavors of the core library:

"* sa -- The Maruti/Standalone core library. Applications linked with this flavor can be
booted directly (by the NetBSD boot blocks). It includes the distributed operation
support, based on the 3Com 3c507 Etherlink/16 adapter.

"* ux -- The Maruti/Virtual debugging core library. Applications linked with this flavor are
run as normal Unix processes from the NetBSD command line. It includes a virtual-
time scheduler and debugging monitor (described below) and implements distributed
operation using normal Unix TCP/IP networking facilities.

5.1.1. MPL Built-in Primitives

void marutieu(void)

The marutieu primitive inserts a Maruti EU break into the program at the location of the
call. It is not normally used explicitly in an application, as the system tools put EU breaks
where necessary for synchronization. It is useful, however, for breaking up long-running
EUs -- the maruti_eu then serves as a possible preemption point

void send(out ch._name, ch-type* message-ptr)
void receive(in ch -name, ch.type* message.ptr)

int optreceive(in ch name, ch-type* message.ptr)

369

The communications primitives are documented in section 3.7. in the MCL Reference

Chapter.

5.1.2. Calendar Switching

int maruti_calendaractivate(int calendarnum, mtiree switch_time, mrtire offset_time)
void maruticalendardeactivate(int calendar~num, metime switch-time)

' Maruti calendars may be activated and deactivated (switched on or off) at any time.
The switchtime is the time at which the de/activation should take place. The switch can
occur at any point in the future, and the switch requests can come out of order with respect
to the switch time. Requests with the same switch time are executed in the order of the
requests.

Calendars can be activated with a particular offset_time, which is the relative
position within the calendar to start executing at the switch time. The offset time will
normally be zero, but can be any relative time up to the lcm time of the calendar.

The runtime system does not check the feasibility of the combined schedules
represented by the calendars - that should be done offline.

5.1.3. Calendar Modification

void maruti_calendarcreate(int calendarnum, int num_entries, mtime lcm_time) void
maruti_calendardelete(int calendarh..num)

Calendars are normally created offline and compiled into the Maruti application, but
it is possible to create new calendars at runtime. The application is responsible for insuring
that the generated schedules are feasible.

When a calendar is created, the maximum number of entries it will contain must be
specified, as well as the lcm_time, which is the period of the calendar as a whole. At the
end of its period, the calendar will wrap around and begin executing from the beginning
again.

typedef struct calendars {
entryjt *entries;
int numentries;
retime lcmtime;
retime basetime;
entryjt *Cur, * cur-entries is the current offset */

< ... >

) calendar_t;
typedef struct {

int eujthread, euid;
mtime eu-start, eudeadline;
int eutype;

define EU_EMPTY 0 /* empty EU slot */
define EU_PERIODIC 1 /* periodic EU */

< ... >

} entryj;

370

void maruti_calendar-geLheader(int calendar-num, calendart *calendarp)
void maruti_calendar._geLentry(int calendar.num, int entry._num, entry t *entryp)
void maruti_calendarsetLentry(int calendarjnum, int entry__num, entry~t entry)

The maruticalendarseLentry call is used to populate new calendars. It can
overwrite any entry in any inactive calendar. The entry eu-start and eu_deadline limes are
the earliest start time and latest end time, respectively. The euid serves to identify the eu
when tracing or reporting timing results.

The maruti_calendar-getLheader and maruti_calendar-getentry calls can be used to
query the contents of a calendar. These are useful when 'cloning' an existing calendar into
a new calendar, perhaps with modifications.

5.1.4. Date and Time Manipulation

#include <mraruti/mtime.h>

The Maruti core library provides routines and macros for simple time and date calculations.

typedef struct {
long seconds;
long microseconds;

} mtime;

#define timescmp(ab) /* like strcmp, 0 if eq, It 0 if a < b, etc */
#define timeadd(ab) /* a += b */

#define time.sub(ab) /* a -= b */
#define timeadd.scalar(t, s) /* t += s (s is an int, in microseconds) */
#define timesubscalar(t, s) /* t -= s (s is an int, in microseconds) */

#define timemul.scalar(t, s) /* t *= s (s is an int) */
#define timedivscalar(t, s) /* t/= s (s is an int) */

The metime type is the basic Maruti time structure. A number of convenience macros for
arithmetic on rmtime values are provided. Two mtime values may be compared, added, or
subtracted. In addition, an integer time in microseconds may be added to and subtracted
from an mtime value, and rmtime values may be multiplied or divided by integer scaling
factors.

Note: The microseconds field is always in the range 0 to 999999, and the time
represented by an metime value is always the number of seconds plus the number of
microseconds. These rules hold even for negative metimee values, which can arise when
subtracting mrtimes. Thus the retime representation for the time -1.3 seconds is { -2,
700000).

void marutigetcurrent-time(mtime *curtime)

The current system time is returned by marutigetcurrent-time. Maruti, like Unix,
represents absolute time as the number of seconds and microseconds since the Epoch time,
defined as 00:00 GMT on January 1, 1970.

371

typedef struct {
short year;, /* year - 1900 */
short month; /* month (0.. 11) */
short wday; /* day of week (0..6) */
short mday; /* day of month (1..31) */
short yday; /* day of year (0..365) */
short second, minute; /* 0..59 */
short hour; /* 0..23 */
hit microsecond; /* 0..999999 */

} mdate;

mtime maruli_date_.toime(mdate d)
mdate maruti._imei.tojdate(mtime t)

mtime maruti-gmtdatetofime(mdate d)
mdate maratitime-to-gmtdate(mtime t)

int maruti-set.gmtoff(int gmtoff)
hit maruti-get.gmtoff(int *gmtoffp)

Applications will often want to view the time as something more convenient than the
number of seconds since the Epoch. The Maruti mdate type denotes a time expressed as a
date plus a time of day. The functions maruti_.time_to..gmtdate and
marti__gmtdate to time convert between mtime and mdate values using the GMT
timezone. The functions marutitime_to_date and maruti_datetotime convert using the
local offset from GMT.

The local timezone used in these conversions is initially set by the runtime system,
but may be changed by the application. The timezone is expressed as an offset from GMT
in seconds. For example the U.S. timezone EST is 5 hours behind GMT, or -18000
seconds offset.

Note: Maruti does not at this time attempt to handle leap seconds or automatically
switching the local timezone to account for daylight savings times. The cost of providing
these features in code and table space was deemed prohibitive.

5.1.5. Miscellaneous Functions

void quit(int exitcode)

The quit call terminates the application. The exit code is not usually relevant in an
embedded system, but will be returned to the environment where that makes sense (such as
in the Unix debugging environment).

372

52. Console Library Reference

#include <naruti/console.h>

The Maruti console graphics library provides access to the console device,
including the keyboard and speaker, but most importantly the graphical display. The
graphics library includes support for placing text anywhere on the screen, simple 2d
geometry primitives suitable for generating line and bar graphs, and includes optimized
routines for moving bitmaps without flicker, for animated simulations. There are currently
three flavors of the graphics library implemented:

"* et4k - This flavor supports Super VGA graphics cards based on the Tseng Labs
ET4000 chip and its accelerated descendents, like the ET4000/W32. The et4k
flavor runs the screen at a resolution of 1024x768 in 256 color mode.

"* vgal6 -- This flavor supports all standard VGA graphics cards, running the screen
at a resolution of 640x480, in 16 color banked mode.

"* xll -- This flavor works with the {\bf ux} core flavor, displaying the Maruti screen

in an XI1 window under Unix.

5.2.1. Screen Colors

The Maruti console graphics library supports the following colors, defined in
<maruti/console.h>:

#define BLACK 0
#define DARKBLUE I
#define DARKGREEN 2
#define DARKCYAN 3
#define DARKRED 4
#define DARKVIOLET 5
#define DARKYELLOW 6
#define DARK_WHITE 7
#define BROWN 8
#define BLUE 9
#define GREEN 10
#define CYAN 11
#define RED 12
#define VIOLET 13
#define YELLOW 14

-- #define WHITE 15

/* aliases */
#define GREY DARKWHITE
#define GRAY DARKWHrIE

373

The maximum screen size supported is also defined:

#define CONSOLE_WIDTH 1024

#define CONSOLE_HEIGHT 768

5.2.2. Graphics Functions

void cons..graphics-init(void)

The cons_graphicsjnit function must be called before any other graphics functions, 1
usually from the maruti_main function of the application's screen driver task.

void cons_fillarea(int x, int y, int width, int height, int color)

void consxorarea(int x, int y, int width, mnt height, int color)

These functions paint an area of the screen, specified by its upper-left coordinates
(x, y), and its width and height, in the given color. The cons.fill area variant overwrites
the previous contents of that area of the screen,while cons_xor_area exclusive-or's the
screen contents with the specified color.

function consdraw-pixel(int x, int y, int color)
function cons_xor._pixel(int x, int y, int color)

These functions draw and xor, respectively, a single pixel at (x, y) in the specified
color. x

void cons_draw_line(int xl, int yl, int x2, int y2, int color)
void cons_xor_line(int xl, int yl, int x2, int y2, int color)

These functions draw and xor, respectively, a single-pixel width line from
coordinates (xl, yl) to (x2, y2) in the specified color.

void cons_drawbitmap(int x, int y, int width, int height,
void *bitmap, int color)

void cons_xor_bitmap(int x, int y, int width, int height,
void *bitmap, int color)

These functions draw and xor, respectively, a width-by-height sized bitmap onto
the screen in the specified color, with its upper-left comer at (x, y). The bitmap is in
standard X bitmap format, with eight pixels per byte, and an even multiple of eight pixels
per scan line.

void consmovebitmap(int xl, int yl, int x2, int y2, int width, int height,

374

void *bitnap, int color)
void cons_xor_move_bitmap(int xl, int yl, int x2, int y2, int width, int height,

void *bitmap, int color)

These functions optimize the erasing and redrawing of a bitmap by combining the
operations into one loop, modifying one scan-line at a time. This optimization eliminates
the flicker that can occur when erasing the entire bitmap then redrawing it, making
animations more effective.

The call consmove bitmap(xl,ylx2,y2,w,h,b,c) is equivalent to the sequence:

cons_draw_bitmap(xl,x2,w,h,b,BLACK);

consdraw_bitmap(x2,y2,w,h,b,c);

The call consxormove..bitmap(xl,ylx2,y2,w,h,b,c) is equivalent to the sequence:

cons_xorbitmap(xl,yl,w,h,b,c);
cons__xor_bitmap(x2,y2,w,h,b,c);

void consputs(int x, int y, int color, char *string)

void cons_xorputs(int x, int y, int color, char *string)

These functions draw and xor, respectively, a text string at (x, y) in the specified color.

5.2.3. Keyboard and Speaker functions

typedef struct
{

unsigned char device; /* just keyboard works for now */

define EVENTOTHER 0
define EVENT_KEYBOARD 2

unsigned char keycode;

, } consoleevent_t;

int cons._polLevent(console_event_t *event)

The conspoll_event call returns 1 if a console event has occurred, 0 otherwise.
There there is a pending console event, the event structure is filled in. The device field is
set to EVENTKEYBOARD and the keycode field is set to the scan code of the key that
was pressed. The list of scan codes is in <maruti/keycodes.h>.

void consstart_beep(int pitch)
void cons-stopbeep(void)

375

The console speaker can be turned on and off with these functions. The
cons._start_beep call programs the speaker to sound at a particular frequency, in hertz,
and consstopbeep turns it
off.

5.3. Maruti/Virtual Monitor

The ux flavor of the Maruti core library includes some basic debugging facilities called the
Maruti monitor. While an application compiled with ux is running, aspects of its execution
can be controlled from the Unix tty (which will be distinct from the console keyboard
device). The monitor provides the following facilities:

Tracing scheduler actions. The user can independently toggle the tracing of elemental unit
executions, calendar wrap-around events, and calendar-switch events.

Single-stepping calendars or elemental units. The user can toggle single stepping
through each elemental unit execution, or a whole calendar's execution.

Controlling virtual-time execution speed. The user can control the speed of the
application in two ways. First, the user can toggle as-soon-as-possible execution of
elemental units, called asap mode. Second, the user can set the speed at which virtual time
advances relative to real clock time.

Both single-keystroke and command-line operation. All monitor switches may be
toggled with a single keystroke while the application continues running. Also, the user can
enter a command-line mode in which various parts of the system state may be queried and
modified.

5.3.1. Controlling Virtual Time

The Maruti monitor contains a user-settable speed variable which determines the rate at
which virtual time advances relative to the actual clock time.

The speed may be set to any floating point value greater than zero. Thus virtual
speed may be set to run, for example, five times faster than clock time (speed = 5) or at
four times slower (speed = 0.25). The speed is logically limited on the side by the
utilization of the CPU. The execution of application code can not be sped up, only the idle
time between executions.

Idle time can be eliminated completely by turning on as-soon-as-possible
scheduling of elemental unit (asap-mode). In asap-mode the virtual time is advanced to
the start time of the next elemental unit as soon as the previous one completes, resulting
in the execution of all EUs in immediate succession. Asap-mode is separate from the
speed variable -- it can be toggled independently, and when turned off, scheduling
continues at the previously set speed.

5.3.2. Single-Keystroke Operation

The following keys are active from the Unix tty session (not the console keyboard) while
the application is running:

376

? shows the list of keystrokes and current values for the toggle switches.
a toggle as-soon-as-possible mode.

e toggle elemental unit tracing.
c toggle calendar tracing.
x toggle calendar-switch tracing.

s toggle elemental unit single-stepping.
S. toggle calendar single-stepping.
q quit application completely.
<ESC> stop application and enter command-line mode.

5.3.3. Command-line Operation

The following commands are available from command line mode. At this time, command-
line mode is a just a framework with just a few commands. More commands to query and
set the system state are envisioned for future releases.

help
Get a list of command-line mode commands.

quit
Quit the application completely.

vars
Show all user-settable monitor variables and their values.

speed <value>
Set the virtual-time speed to value. The value can be any floating point value greater than
zero.

cstep [onloffj
Set or toggle calendar single-stepping.

estep [onloff]
Set or toggle eu single-stepping.

ctrace [onloff]
Set or toggle calendar tracing.

etrace [onloff]
Set or toggle eu tracing.

strace [onloffi
Set or toggle calendar switch tracing.

377

Chapter 6

Maruti Tool Reference

6.1. Maruti Builder
The mbuild program automates the process of building a runnable Maruti application. This
involves building the constituent application binaries, integrating and scheduling the
application, and binding the application with the desired Maruti runtime flavor.

Mbuild is normally run in the directory in which the application config file and
constituent module source files are located. It will automatically find the config file by its
.cfg extension, read it, and generate a makefile that builds what modules it finds used there,
then calls the other Maruti tools. Mbuild works by creating an obj subdirectory, and
putting all output files there.

If there is more than one config file in the current directory, the desired file must be
specified with the -f <config file> option.

The user may optionally customize the rebuild actions by providing an Mbuild.inc
file in the current directory. This file will be included into the makefile generated by
mbuild. In addition to providing additional build targets and dependency lines, the user
may set some variables to modify the mbuild actions themselves:

FLAVORS Default: ux+xll ux+et4k sa+et4k The list of runtime flavors with which to
link the application.

MPC Default: mpc. The program executed to compile MPL programs. Not normally
modified by users.

MPC\-_FLAGS Default: <empty>. Supplemental flags for the MPL compiler. Most
GCC flags will work here. Most often the user will want to customize the include
directories with -I <dir>.

CFG Default: cfg. The program executed to interpret the MCL config file and integrate the
application. Not normally modified by users.

CFG\-_FLAGS Default <empty>. Supplemental flags for the MPC integrator. Not
normally modified by users.

ALLOCATOR Default: allocator. The program executed to allocate and schedule the
application. Not normally modified by users.

ALLOCATOR_FLAGS Default: -p 1. Flags for the Allocator. See section 6.4. on the
Allocator below for more details.

MBIND Default mbind. The program executed for binding the application and runtime
system. Not normally modified by the users.

MBINDFLAGS Default:<empty>. Flags for the Mbind program. Not normally
modified by users.

378

62. MPL/C Compiler

The MPI.C compiler (mpc) consists of a modified gcc plus some attendant scripts to post-
process the compiler output. It generates a .o file for a module, plus a .eul file containing a
partial elemental-unit graph to be read by the integrator.

The mpc program will accept GCC command-line options. See the gcc(1) manual
page for details on the available options. The most commonly used option will be -I dir to
customize the include directories.

6.3. MPL/C Integrator

The MCL Integrator (cfg) reads the application config file (appname.cfg) and all the module
elemental-unit graph files (modulename.eul), then generates and checks all the jobs, tasks,
threads, and connections for the application. It outputs a loader map file (appname.ldf)),
and a complete application elemntal-unit graph annotated with allocation and scheduling
constraints and communication parameters (appname.sch). There are no cfg options
normally used.

6.4. Allocator/Scheduler

The Allocator/Scheduler (allocator) attempts to find a valid allocation for the application
tasks across the nodes of the network, and a valid schedule for each node and for the
network bus. The allocation and schedules are considered valid if all allocation,
communication, and scheduling constraints are met.

The allocator/scheduler stops when a valid allocation and schedule is found, or
when it is determined that one cannot be found. There is no attempt to load-balance the
nodes or minimize network communications beyond what is needed for a minimally valid
schedule. The allocator outputs an allocation information file (appname.alloc) and calendar
schedules file (appname.cal).
The allocator takes two flags:

-p <number of processors> Default 1. The number of processors in the target system.
It should match the number of nodes defined in the config file.

-t <tdma slot size> Default 1000. The Time Division Multiplexed Access (TDMA) slot
size for the network bus. This is the time, in microseconds, that each node will be alloted to
transmit on the network. All the nodes get a TDMA slot in turn. The tdma slot size should
stay between 1000 and 16000 microseconds, depending on the application's latency
requirements and the network hardware's buffering capacity.

6.5. Maruti Binder

The Maruti Binder (mbind) reads in the loader map .ldf file, the allocation .alloc file, and
the calendars .cal file, and generates the static data structures needed by the runtime system
(appname-globals.c). It also generates a makefile (appname-bind.mk) that manages the
linking of each task of the application within its own logical address space, then linking all
tasks together with the various flavors of the runtime library.

379

6.6. Timing Trace Analyzer

The Timing Trace Analyser (timestat) takes a list of timing output files as generated by
the runtime system and generates a .wcet file that contains the worst case execution
times for the elemental units, as needed by the allocator. Timestat also prints other
statistics generated by the runtime system.

6.7. Timing Stats Monitor

Timing information is output from a stand-alone Maruti system through a serial port when
the application terminates. The mgettimes program, running on another computer
connected to the other end of that serial line, will receive the timing data and store it in a file
suitable for processing by timestat. Mgettmes can process the output of multiple runs on
the test setup, even from different applications. Simply leave the program running and any
data that is received will be saved.

Mgettimes is called as follows:

mgettimes <speed> <serial-port>
where <speed> is the communications rate at which the times will be output (19200 bps in
the default core), and <serial-port> is the device file for the communications port (for
example, /dev/ttyO0 for the PC's COM1 port).

380

Maruti 3.1
Design Overview

First Edition

Systems Design and Analysis Group
Department of Computer Science

University of Maryland at College Park

1. Introduction

Many complex, mission critical systems depend not only on correct functional behavior,
but also on correct temporal behavior. These systems are called. The most critical systems
in this domain are those which must support applications with hard real-time constraints,
in which missing a deadline may cause a fatal error. Due to their criticality, jobs with hard
real-time constraints must always execute satisfying the user specified timing constraints,
despite the presence of faults such as site crashes or link failures.

A real-time operating system, besides having to support most functions of a
conventional operating system, carries the extra burden of guaranteeing that the execution
of its requested jobs will satisfy their timing constraints. In order to carry out real-time
processing, the requirements of the jobs have to be specified to the system, so that a
suitable schedule can be made for the job execution. Thus, conventional application
development techniques must be enhanced to incorporate support for specification of timing
and resource requirements. Further, tools must be made available to extract these
requirements from the application programs, and analyze them for schedulability.

Based on the characteristics of its jobs, a real-time system can be classified as static,
dynamic or. In a static system, all (hard real-time) jobs and their execution characteristics
are known ahead of time, and thus can be statically analyzed prior to system operation.
Many such systems are built using the cyclic executive or static priority architecture. In
contrast, there are many systems in which new processing requests may be made while the
system is in operation. In a dynamic system, new requests arrive asynchronously and must
be processed immediately. However, since new requests demand immediate attention, such
systems must either have "soft" constraints, or be lightly loaded and rely on exception
mechanisms for violation of timing constraints. In contrast, reactive systems have certain
lead time to decide whether or not to accept a newly arriving processing request. Due the
presence of the lead time, a reactive system can carry out analysis without adversely
affecting the schedulability of currently accepted requests. If adequate resources are
available then the job is accepted for execution. On the other hand, if adequate resources
are not available then the job is rejected and does not execute. The ability to reject new jobs
distinguishes a reactive system from a completely dynamic system.

The purpose of the Maruti project is to create an environment for the development
and deployment of critical applications with hard real-time constraints in a reactive
environment Such applications must be able to execute on a platform consisting of
distributed and heterogeneous resources, and operate continuously in the presence of
faults.

The Maruti project started in 1988. The first version of the system was designed as
an object-oriented system with suitable extensions for objects to support real-time
operation. The proof-of-concept version of this design was implemented to run on top of
the Unix operating system and supported hard and non-real-time applications running in a

381

distributed, heterogeneous environment. The feasibility of the fault tolerance concepts
incorporated in the design of Maruti system were also demonstrated. No changes to the
Unix kernel were made in that implementation, which was operational in 1990. We realized
that Unix is not a very hospitable host for real-time applications, as very little control over
the use of resources can be exercised in that system without extensive modifications to the
kernel. Therefore, based on the lessons learned from the first design, we proceeded with
the design of the current version of Maruti and changed the implementation base to CMU
Mach which permitted a more direct control of resources.

Most recently, we have implemented Maruti directly on 486 PC hardware,
providing Maruti applications total control over resources. The initial version of the
distributed Maruti has also been implemented, allowing Maruti applications to run across a
network in a synchronized, hard real-time manner.

In this paper, we summarize the design philosophy of the Maruti system and
discuss the design and implementation of Maruti. We also present the development tools
and operating system support for mission critical applications. While the system is being
designed to provide integrated support for multiple requirements of mission critical
applications, we focus our attention on real-time requirements on a single processor
system.

2. Maruti Design Goals

The design of a real-time system must take into consideration the primary characteristics of
the applications which are to be supported. The design of Maruti has been guided by the
following application characteristics and requirements.

"* Real-Time Requirements. The most important requirement for real-time systems is
the capability to support the timely execution of applications. In contrast with many
existing systems, the next-generation systems will require support for hard, soft,and
non-real-time applications on the same platform.

"• Fault Tolerance. Many mission-critical systems are safety-critical, and therefore have
fault tolerance requirements. In this context, fault tolerance is the ability of a system to
support continuous operation in the presence of faults.

Although a number of techniques for supporting fault-tolerant systems have been suggested
in the literature, they rarely consider the real-time requirements of the system. A real-time
operating system must provide support for fault tolerance and exception handling
capabilities for increased reliability while continuing to satisfy the timing requirements.

* Distributivity. The inherent characteristics of many systems require that multiple
autonomous computers, connected through a local area network, cooperate in a
distributed manner. The computers and other resources in the system may be
homogeneous or heterogeneous. Due to the autonomous operation of the components
which cooperate, system control and coordination becomes a much more difficult task
than if the system were implemented in a centralized manner. The techniques learned in
the design and implementation of centralized systems do not always extend to
distributed systems in a straightforward manner.

382

e

"* Scenarios. Many real-time applications undergo different modes of operation during
their life cycle. A scenario defines the set of jobs executing in the system at any given
time. A hard real-time system must be capable of switching from one scenario to
another, maintaining the system in a safe and stable state at all times, without violating
the timing constraints.

"* Integration of Multiple Requirements. The major challenge in building operating
systems for mission critical computing is the integration of multiple requirements.
Because of the conflicting nature of some of the requirements and the solutions
developed to date, integration of all the requirements in a single system is a formidable
task. For example, the real-time requirements preclude the use of many of the fault-
handling techniques used in other fault-tolerant systems.

3. Design Approach and Principles

Mamti is a time-based system in which the resources are reserved prior to execution.
Resource reservation is done on the time-line, thus allowing for reasoning about real-time
properties in a natural way. The time-driven architecture provides predictable execution for
real-time systems, a necessary requirement for critical applications requiring hard real-time
performance. The basic design approach is outlined below:

" Resource Reservation for Hard Real-Time Jobs. Hard real-time applications in
Maruti have advance resource reservation resulting in a priori guarantees about the
timely execution of hard real-time jobs. This is achieved through a calendar data
structure which keeps track of all resource reservations and the assigned time intervals.
The resource requirements are specified as early as possible in the development stage of
an application and are manipulated, analyzed, and refined through all phases of
application development

"* Predictability through Reduction of Resource Contention. Hard real-time jobs are
scheduled using a time-driven scheduling paradigm in which the resource contention
between jobs is eliminated through scheduling. This results in reduced runtime
overheads and leads to a high degree of predictability. However, not all jobs can be
pre-scheduled. Since resources may be shared between jobs in the calendar and other
jobs in the system, such as non-real-time activities, there may be resource contention
leading to lack of predictability. This is countered by eliminating as much resource
contention as possible and reducing it whenever it is not possible to eliminate it entirely.
The lack of predictability is compensated for by allowing enough slack in the schedule.

" Integrated Support for Fault Tolerance. Fault tolerance objectives are achieved by
integrating the support for fault tolerance at all levels in the system design. Fault
tolerance is supported by early fault detection and handling, resilient application
structures through redundancy, and the capability to switch modes of operation. Fault
detection capabilities are integrated into the application during its development,
permitting the use of application specific fault detection and fault handling. As fault
handling may result in violation of temporal constraints, replication is used to make the
application resilient. Failure of a replica may not affect the timely execution of other
replicas and, thereby, the operation of the system it may be controlling. Under
anticipated load and failure conditions, it may become necessary for the system to
revoke the guarantees given to the hard real-time applications and change its mode of
operation dynamically so that an acceptable degraded mode of operation may continue.

383

"* Separation of Mechanism and Policy. In the design of Maruti, an emphasis has been
placed on separating mechanism from policy. Thus, for instance, the system provides
basic dispatching mechanisms for a time-driven system, keeping the design of specific
scheduling policies separate. The same approach is followed in other aspects of the
system. By separating the mechanism from the policy, the system can be tailored and
optimized to different environments.

" Portability and Extensibility. Unlike many other real-time systems, the aim of the
Maruti project has been to develop a system which can be tailored to use in a wide
variety of situations---from small embedded systems to complex mission-critical
systems. With the rapid change in hardware technology, it is imperative that the design
be such that it is portable to different platforms and makes minimal assumptions about
the underlying hardware platform. Portability and extensibility is also enhanced by
using modular design with well defined interfaces. This allows for integration of new
techniques into the design with relative ease.

"* Support of Hard, Soft, and Non-Real-Time in the Same Environment. Many
critical systems consist of applications with a mix of hard, soft, and non-real-time
requirements. Since they may be sharing data and resources, they must execute within
the same environment. The approach taken in Maruti is to support the integrated
execution of applications with multiple requirements by reducing and bounding the
unpredictable interaction between them.

"* Support for Distributed Operation. Many embedded systems require several
processors. When multiple processors function autonomously, their use in hard real-
time applications requires operating system support for coordinated resource
management. Maruti provides coordinated, time-based resource management of all
resources in a distributed environment including the processors and the communication
channels.

" Support for Multiple Execution Environments. Maruti provides support for
multiple execution environments to facilitate program development as well as execution.
Real-time applications may execute in the Maruti/Mach or Maruti/Standalone
environments and maintain a high degree of temporal determinacy. The
Maruti/Standalone environment is best suited for the embedded applications while
Maruti/Mach permits the concurrent execution of hard real-time and non-real-time Unix
applications. In addition, the ManmtiNirtual environment has been designed to aid the
development of real-time applications. In this environment the same code which runs in
the other two environments can execute while access to all Unix debugging tools is
available. In this environment, temporal accuracy is maintained with respect to a virtual
real-time.

• Support for Temporal Debugging. When an application executes in the
Maruti/Virtual environment its interactions are carried out with respect to virtual real-
time which is under the control of the user. The user may speed it up with respect to
actual time or slow it down. The virtual time may be paused at any instant and the
debugging tools used to examine the state of the execution. In this way we may debug
an application while maintaining all temporal relationships, a process we call temporal
debugging.

384

4. Application Development Environment

To support applications in a real-time system, conventional application development
techniques and tools must be augmented with support for specification and extraction of
resource requirements and timing constraints. The application development system
provides a set of programming tools to support and facilitate the development of real-time
applications with diverse requirements. The Maruti Programming Language (MPL) is used
to develop individual program modules. The Maniti Configuration Language (MCL) is
used to specify how individual program modules are to be connected together to form an
application and the details of the hardware platform on which the application is to be
executed.

S-4.1. Maruti Programming Language

Rather than develop completely new programming languages, we have taken the approach
of using existing languages as base programming languages and augmenting them with
Maruti primitives needed to provide real-time support.

In the current version, the base programming language used is ANSI C. MPL adds
modules, shared memory blocks, critical regions, typed message passing, periodic
functions, and message-invoked functions to the C language. To make analyzing the
resource usage of programs feasible, certain C idioms are not allowed in MPL; in
particular, recursive function calls are not allowed nor are unbounded loops containing
externally visible events, such as message passing and critical region transitions.

0 The code of an application is divided into modules. A module is a collection of
procedures, functions, and local data structures. A module forms an independently
compiled unit and may be connected with other modules to form a complete application.
Each module may have an initialization function which is invoked to initialize the
module when it is loaded into memory. The initialization function may be called with
arguments.

0 Communication primitives send and receive messages on one-way typed channels.
There are several options for defining channel endpoints that specify what to do on
buffer overflow or when no message is in the channel. The connection of two end-
points is done in the MCL specification for the application-Maruti insures that end-
points are of the same type and are connected properly at runtime.

0 Periodic functions define entry points for execution in the application. The MCL
specification for the application will determine when these functions execute.

0 Message-invoked functions, called services, are executed whenever messages are
received on a channel.

0 Shared memory blocks can be declared inside modules and are connected together as
specified in the MCL specifications for the application.

• An action defines a sequence of code that denotes an externally observable action of the
module. Actions are used to specify timing constraints in the MCL specification.

385

0 Critical Regions are used to safely access and maintain data consistency between
executing entities. Maruti ensures that no two entities are scheduled to execute inside
their critical regions at the same time. 1

4.2. Maruti Configuration Language

MPL Modules are brought together into as an executable application by a specification file
written in the Maruti Configuration Language (MCL). The MCL specification determines
the application's hard real-time constraints, the allocation of tasks, threads, and shared
memory blocks, and all message-passing connections. MCL is an interpreted C-like
language rather than a declarative language, allowing the instantiation of complicated
subsystems using loops and subroutines in the specification. The key features of MCL
include:

"• Tasks, Threads, and Channel Binding. Each module may be instantiated any
number of times to generate tasks. The threads of a task are created by instantiating the
entries and services of the corresponding module. An entry instantiation also indicates
the job to which the entry belongs. A service instantiation belongs to the job of its
client. The instantiation of a service or entry requires binding the input and output ports
to a channel. A channel has a single input port indicating the sender and one or more
output ports indicating the receivers. The configuration language uses channel variables
for defining the channels. The definition of a channel also includes the type of
communication it supports, i.e., synchronous or asynchronous.

"* Resources. All global resources (i.e., resources which are visible outside a module) are
specified in the configuration file, along with the access restrictions on the resource.
The configuration language allows for binding of resources in a module to the global
resources. Any resources use by a module which are not mapped to a global resource
are considered local to the module. -

"* Timing Requirements and Constraints. These are used to specify the temporal
requirements and constraints of the program. An application consists of a set of
cooperating jobs. A job is a set of entries (and the services called by the entries) which
closely cooperate. Associated with each job are its invocation characteristics, i.e.,
whether it is periodic or aperiodic. For a periodic job, its period and, optionally, the
ready time and deadline within the period are specified. The constraints of a job apply
to all component threads. In addition to constraints on jobs and threads, finer level
timing constraints may be specified on the observable actions. An observable action
may be specified in the code of the program. For any observable action, a ready time
and a deadline may be specified. These are relative to the job arrival. An action may not
start executing before the ready time and must finish before the deadline. Each thread is
an implicitly observable action, and hence may have a ready time and a deadline.

Apart from the ready time and deadline constraints, programs in Maruti can also specify
relative timing constraints, those which constrain the interval between two events. For each
action, the start and end of the action mark the observable events. A relative constraint is U

used to constrain the temporal separation between two such events. It may be a relative
deadline constraint which specifies the upper bound on time between two events, or a delay
constraint which specifies the lower bound on time between the occurrence of the two
events. The interval constraints are closer to the event-based real-time specifications, which
constrain the minimum and/or maximum distance between two events and allow for a rich
expression of timing constraints for real-time programs.

386 _

0 Replication and Fault Tolerance. At the application level fault tolerance is achieved by
creating resilient applications by replicating parts, or all, of the application. The
configuration language eases the task of achieving fault tolerance by allowing
mechanisms to replicate the modules, and services, thus achieving the desired amount
of resiliency. By specifying allocation constraints, a programmer can ensure that the
replicated modules are executed on different partitions.

5. Analysis and Resource Allocation

This phase involves analyzing the resource allocation and scheduling of a collection of
applications in terms of their real-time and fault-tolerance properties. The properties of the
system are analyzed with respect to the system configuration and the characteristics of the
runtime system, and resource calendars are generated.

The analysis phase converts the application program into fine-grained segments
called elemental units. All subsequent analysis and resource allocation are based on EUs.

5.1. Elemental Unit Model

The basic building block of the Maruti computation model is the elemental unit (EU). In
general, an elemental unit is an executable entity which is triggered by incoming data and
signals, operates on the input data, and produces some output data and signals. The
behavior of an EU is atomic with respect to its environment Specifically:

"* All resources needed by an elemental unit are assumed to be required for the entire
length of its execution.

"• The interaction of an EU with other entities of the systems occurs either before it starts
executing or after it finishes execution.

The components of an EU are illustrated in Figure 1 and are described below:

input data/signals

input ports

statusferro

input monitor

Resource Requir ent
lining Constraints

B d ttser
status/erro

output m onitor iii•!.- .' •ii:i•!!!!i:.

output ports

output data/simnas

Figure 1: Structure of an Elemental Unit

387

" Input and Output Ports. Each EU may have several input and/or output ports. Each
port specifies a part of the interface of the EU. The input ports are used to accept
incoming input data to the EU, while the output ports are used for feeding the output of
the EU to other entities in the system.

" Input and Output Monitors. An input monitor collects the data from the input ports,
and provides it to the main body. In doing so, it acts as a filter, and may also be used
for error detection and debugging. The input monitors are also used for supporting
different triggering conditions for the EU. Similar to input monitors, the output
monitors act as filters to the outgoing data. The output monitor may be used for error
detection and timingconstraint enforcement. The monitors may be connected to other
EUs in the system and may send (asynchronous) messages to them reporting errors or
status messages. The receiving EU may perform some error-handling functions.

"* Main Body. The main body accepts the input data from the input monitor, acts on it,
and supplies the output to the output monitor. It defines the functionality provided by
the EU.

Annotated with an elemental unit are its resource requirements and
timingconstraints, which are supplied to the resource schedulers. The resource schedulers
must ensure that the resources are made available to the EU at the time of execution and that
its timing constraints are satisfied.

5.2. Composition of EUs

In order to define complex executions, the EUs may be composed together and properties
specified on the composition. Elemental units are composed by connecting an output port
of an EU with an input port of another EU. A valid connection requires that the input and
output port types are compatible, i.e., they carry the same message type. Such a connection
marks a one-way flow of data or control, depending on the nature of the ports. A
composition of Eus can be viewed as a directed acyclic graph, called an elemental unit
graph (EUG), in which the nodes are the EUs, and the edges are the connections between
EUs. An incompletely specified EUG in which all input and output ports are not connected
is termed as a partial EUG (PEUG). A partial EUG may be viewed as a higher level EU.
In a complete EUG, all input and output ports are connected and there are no cycles in the
graph. The acyclic requirement comes from the required time determinacy of execution. A
program with unbounded cycles or recursions may not have a temporally determinate
execution time. Bounded cycles in an EUG are converted into an acyclic graph by loop
unrolling.

The composition of EUs supports higher level abstractions and the properties associated
with them. By carefully choosing the abstractions, the task of developing applications and
ensuring that the timing and other operational constraints are satisfied can be greatly
simplified. In Maruti, we have chosen the following abstractions:

A thread is a sequential composition of elemental units. It has a sequential flow of
control which is triggered by a message to the first EU in the thread. The flow of
control is terminated with the last EU in the thread. Two adjacent EUs of a thread are
connected by a single link carrying the flow of control. The component elemental units
may receive messages or send messages to elemental units outside the thread. All EUs
of a thread share the execution stack and processor state.

388

A job is a collection of threads which cooperate with each other to provide some
functionality. The partial EUGs of the component threads are connected together in a
well defined manner to form a complete EUG. All threads within a job operate under a
global timing constraint specified for the job.

5.3. Program Analysis

Program modules are independently compiled. In addition to the generation of the object
code, compilation also results in the creation of partial EUGs for the modules, i.e., for the
services and entries in the module, as well as the extraction of resource requirements such
as stack sizes for threads, memory requirements, and logical resource requirements.

Invocation of an entry point and service call starts a new thread of execution. A
control flow graph is generated for each service and entry. The control flow graph and the
MPL primitives are used to delineate EU boundaries. Note that an EU execution is atomic,
i.e., all resources required by the EU are assumed to be used for the entire duration of its
execution. Further, all input messages are assumed to be logically received at the start of an
EU and all output messages are assumed to be logically sent at the end of an EU. At
compilation time, the code for each entry and service is broken up into one or more
elemental units. The delineation of EU boundaries is done in a manner that ensures that no
cycles are formed in the resultant EUG. Thus, for instance, a send followed by a receive
within the same EU may result in a cyclic precedence and must be prevented. We follow
certain rules of thumb to delineate EU boundaries, which may be overridden and explicitly
changed by the user. The EU boundaries are created at a receive statement, the beginning
and end of a resource block, and the beginning and end of an observable action. For each
elemental unit a symbolic name is generated and is used to identify it. The predecessors and
successors of the EU as well as the source code line numbers associated with the EU are
identified and stored. The resource and timing requirements that can be identified during
compilation are also stored, and place holders are created for the remaining information.

Given an application specification in the Maruti Configuration Language and the
component application modules, the integration tools are responsible for creating a
complete application program and extracting out the resource and timing information for
scheduling and resource allocation. The input to the integration process are the program
modules, the partial EUGs corresponding to the modules, the application configuration
specification, and the hardware specifications. The outputs of the integration process are: a
specification for the loader for creating tasks, populating their address spaces, creating the
threads ad channels, and initializing the task; loadable executables of the program; and the
complete application EUG along with the resource descriptions for the resource allocation
and scheduling subsystem.

5.4. Communication Model

Maruti supports message passing and shared memory models for communication.

Message Passing. Maruti supports the notion of one-way message passing between
elemental units. Message passing provides a location-independent and architecture-
transparent communication paradigm. A channel abstraction is used to specify a one
way message communication path between a sender and a receiver. A one-way
message-passing channel is set up by declaring the output port on the sender EU, the
input port on the receiver EU, and the type of message. The communication is
asynchronous with respect to the sender, i.e., the sender does not block.

389

" Synchronous Communication. Synchronous communication is used for tightly
coupled message passing between elemental units of the same job. For every invocation
of the sender there is an invocation of the receiver which accepts the message sent by
the sender. The receiver is blocked (de-scheduled) until message arrival under normal
circumstances. The messages in a synchronous communication channel are delivered in
FIFO order.

" Asynchronous Communication. Asynchronous communication may be used for
message passing between elemental units not belonging to the same job. It may also be
used between real-time and non-real-time jobs. In such communication, neither the
sender nor the receiver is blocked (i.e., there is no synchronization). Since the sender
and receiver may execute at different rates, it is possible that no finite amount of buffers
suffice. Hence, an asynchronous communication channel is inherently lossy. The 1
receiver may specify its input port to be inFirst or inLast to indicate which messages to
drop when the buffers are full. The first message is dropped in an inLast channel, while
the last message is dropped in an inFirst channel.

There may be multiple receivers of a message, thus allowing for multi-cast messages.
Similar to a one-to-one channel, a multicast channel may also be synchronous or
asynchronous. All receivers of a multi-cast message must be of the same type.

* Shared Memory. Shared memory is also supported in Maruti. The simplest way to
share memory between EUs is to allow them to exist within the same address space.
We use task abstraction for this purpose. A task consists of multiple threads operating
within it, sharing the address space. The task serves as an execution environment for
the component threads. A thread may belong to only one task. In addition to the shared
memory within a task, inter-task sharing is also supported through the creation of
shared memory partitions. A shared memory partition is a shared buffer which can be
accessed by any EU permitted to do so. The shared memory partitions provide an
efficient way to access data shared between multiple EUs. The shared memory
communication paradigm provides just the shared memory - it is the user's
responsibility to ensure safe access to the shared data. This can be done by defining a
logical resource and ensuring that the resource is acquired every time the shared data is
accessed. By providing appropriate restrictions on the logical resource, safe access to
data can be ensured.

5.5. Resource Model

A distributed system consists of a collection of autonomous processing nodes connected U
via a local area network. Each processing node has resources classified as processors,
logical resources, and peripheral devices. Logical resources are used to provide safe access
to shared data structures and are passive in nature. The peripheral devices include sensors
and actuators. Restrictions may be placed on the preemptability of resources to maintain
resource consistency. The type of the resource determines the restrictions that are placed on
the preemptability of the resource and serves to identify operational constraints for the
purpose of resource allocation and scheduling. We classify the resources into the following
types based on the restrictions that are imposed on their usage.

390

* Non-preemptable. The inherent characteristics of a resource may be such that it
prevents preemptability, i.e., any usage of the resource must not be preempted. Many
devices require non-preemptive scheduling. For resources which require the use of
CPU, this implies non-preemptive execution from the time the resource is acquired until
the time the resource is released.

* Exclusive. Unlike a non-preemptive resource, an exclusive resource can be preempted.
However, the resource may not be granted to anyone else in the meantime. A critical
section is an example of a resource which must be used in exclusive mode.

* Serially Reusable. A serially reusable resource can not only be preempted but may
also be granted to another EU. The state of such resources can be preserved and
restored when the resource is granted back.

e Shared. A shared resource may be used by multiple entities simultaneously. In a single
processor system, since only one entity is executing at a given time, there is no
distinction between a shared resource and a serially reusable resource.

A non-preemptable resource is the most restrictive and a shared resource is the
least restrictive in terms of the type of usage allowed. An application requesting the use of a
resource must specify when the resource is to be acquired, when it is to be released, and
the restrictions on the preemptability of the resource. The resource requirements for
applications may be specified at different levels of computational abstractions as identified
below.

" EU level. The lowest level a resource requirement can be specified at is the EU level. A
resource requirement specified at the EU level implies that the resource is acquired and
released within the EU. For scheduling purposes, it is assumed that the resource is
required for the entire duration of the execution of the EU.

"* Thread Level. Resource specification at the thread level is used for resources which
are acquired and released by different EUs belonging to the same thread. For instance,
a critical section may be acquired in one EU and released in another one.

" Job Level. Job-level resource specifications are used to specify resources which are not
acquired and released for each invocation of a periodic or sporadic job. Instead, these
resources are acquired at the job initialization and released at job termination. For a
periodic job, an implicit resource associated with each thread are the thread data
structures (including procesor stack and registers).

5.6. Operational Constraints

The execution of EUs is constrained through various kinds of operational constraints. Such
constraints may arise out of restricted resource usage or through the operational
"requirements of the application. Examples of such constraints are: precedence, mutual
exclusion, ready time, and deadline. They may be classified into the following categories:

* Synchronization Constraints. Synchronization constraints arise out of data and
control dependencies or through resource preemption restrictions. Typical examples of
such constraints are precedence and mutual exclusion.

391

"Timing Constraints. Many types of timing constraints may be specified at different
levels, i.e., at job level, thread level, or EU level. At the job level, one may specify the
ready time, deadline, and whether the job is periodic, sporadic, or aperiodic. For
threads, a ready time and deadline may be specified relative to the job arrival. Likewise,
a ready time and deadline may be specified for an individual EU. We also support the
notion of relative timing constraints, i.e., constraints on the temporal distance between
the execution of two EUs.

" Allocation Constraints. In our model, tasks are allocated to processing nodes.
Allocation constraints are used to restrict the task allocation decisions. Allocation
constraints often arise due to fault-tolerance requirements, where the replicas of EUs
must be allocated on different processing nodes. Similarly, when two tasks share
memory, they must be allocated on the same processing node. Sometimes a task must
be bound to a processing node since it uses a particular resource bound to the node
(e.g., a sensor).

The operational constraints are made available to the resource allocation and
scheduling tools which must ensure that the allocation and scheduling maintains the
restrictions imposed by the constraints. The model does not place any a priori restrictions
on the nature of the constraints that may be specified. However, the techniques used by the
resource allocator and scheduler will depend on the type of constraints that can be
specified.

5.7. Allocation and Scheduling

After the application program has been analyzed and its resource requirements and
execution constraints identified, it can be allocated and scheduled for a runtime system.

This final phase of program development depends upon the physical characteristics
of the hardware on which the application will be run, for example, the location of devices
and the number of nodes and type of processors on each node in the distributed system.

Maruti uses time-based scheduling and the scheduler creates a data structure called a
calendar which defines the execution instances in time for all executable components of
the applications to be run concurrently.

We consider the static allocation and scheduling in which a task is the finest
granularity object of allocation and an EU instance is the unit of scheduling. In order to
make the execution of instances satisfy the specifications and meet the timing constraints,
we consider a scheduling frame whose length is the least common multiple of all tasks'
periods. As long as one instance of each EU is scheduled in each period within the
scheduling frame and these executions meet the timing constraints a feasible schedule is
obtained.

As a part of the Maruti development effort, a number of scheduling techniques have
been developed and are used for generating schedules and calendars for task sets. These
techniques include the use of temporal analysis and simulated annealing. Schedules for
single-processor systems as well as multiple-processor networks are developed using these
techniques.

392

6. Maruti Runtime System

The runtime system provides the conventional functionality of an operating system in a
manner that supports the timely dispatching of jobs. There are two major components of
the runtime system - the Maruti core, which is the operating system code that implements
scheduling, message passing, process control, thread control, and low level hardware
control, and the runtime dispatcher, which performs resource allocation and scheduling for
dynamic arrivals.

6.1. The Dispatcher

The dispatcher carries out the following tasks:

"* Resource Management. The dispatcher handles requests to load applications. This
involves creating all the tasks and threads of the application, reserving memory, and
loading the code and data into memory. All the resources are reserved before an
application is considered successfully loaded and ready to run.

"* Calendar Management. The dispatcher creates and loads the calendars used by
applications and activates them when the application run time arrives. The application
itself can activate and deactivate calendars for scenario changes.

" Connection Management. A Maniti application may consist of many different tasks
using channels for communication. The dispatcher sets up the connections between the
application tasks using direct shared buffers for local connections or a shared buffer
with a communications agent for remote connections.

" Exception Handling. Rogue application threads may generate exceptions such as
missed deadlines, arithmetic exceptions, stack overflows, and stray accesses to
unreserved memory. These exceptions are normally handled by the dispatcher for all
the Maruti application threads. Various exception handling behaviors can be
configured, from terminating the entire application or just the errant thread, to simply
invoking a task-specific handler.

6.2. Core Organization

The core of the Maruti hard real-time runtime system consists of three data structures:

"• The calendars are created and loaded by the dispatcher. Kernel memory is reserved for
each calendar at the time it is created. Several system calls serve to create, delete,
modify, activate, and deactivate calendars.

" The results table holds timing and status results for the execution of each elemental
unit. The maruti_calendar_results system call reports these results back up to the user
level, usually to the dispatcher. The dispatcher can then keep statistics or write a trace
file.

"* The pending activation table holds all outstanding calendar activation and deactivation
requests. Since the requests can come before the switch time, the kernel must track the
requests and execute them at the correct time in the correct order.

393

The scheduler gains control of the CPU at every clock tick interrupt. At that time, if
a Maruti thread is currently running and its deadline has passed its execution is stopped and
an exception raised.

If any pending activations are due to be executed those requests are handled,
thereby changing the set of active calendars. Then the next calendar entry is hecked to see if
it is scheduled to execute at this time. If so, the scheduler switches immediately to the
specified thread. If no hard real-time threads are scheduled to execute, the calendar
scheduler falls through to the soft and non-real-time, priority-based schedulers.

o Maruti threads indicate to the scheduler that they have successfully reached the end
of their elemental unit with the maruti_unit-done system call. This call marks the current
calendar entry as done and fills in the time actually used by the thread. The Maruti thread is
then suspended until it next appears in the calendars. Soft and non-real-time threads can be
run until the next calendar entry is scheduled and are executed using a priority based
scheduling for the available time slots.

At all times the Maruti scheduler knows which calendar entry will be the next one to
run so that the calendars are not continually searched for work. This is recalculated when
maruti_unit_done is called or whenever the set of active calendars changes.

6.3. Multiple Scenarios

The Maruti design includes the concept of scenarios, implemented at runtime as sets of
alternative calendars that can be switched quickly to handle an emergency or a change in
operating mode. These calendars are pre-scheduled and able to begin execution without
having to invoke any user-level machinery. The dispatcher loads the initial scenarios
specified by the application and activates one of them to begin normal execution. However,
the application itself can activate and deactivate scenarios. For example, an application
might need to respond instantaneously to the pressing of an emergency shutdown button. A
single system call then causes the immediate suspension of normal activity and the running
of the shutdown code sequence. Calendar activation and deactivation commands can be
issued before the desired switch time. The requests are recorded and the switches occur at
the precise moment specified. This allows the application to insure smooth transitions at
safe points in the execution.

E Gs. M~o abn EU Comp *l'en

Tra=a

Figure 2: Maruti System Architecture

394 u

7. Maruti 3.1 System Architecture

Maruti 3.1, the current version of the operating system, implements most of the above
design with a series of development tools that operate in a Berkeley Unix development
environment (NetBSD 1.0) on IBM-compatible 486 or Pentium PCs. Maruti applications
can be run stand-alone on the bare hardware or under a Unix-based debugging
environment.

MPL code is processed by the MPL compiler, a modified version of the GNU C
compiler. The MPL compiler generates both the compiled object code and partial EUG
file that contains all information extracted from the module for further analysis,
including the boundaries of the elemental units of the program.

The application's MCL specification is read and interpreted by the integrator. The
PEUG file describing each module used in the application is processed and intermodule
type checking performed. The integrator generates a file specifying the full application
EUG, allocation, and scheduling constraints.

"* The allocator/scheduler reads in the data supplied by the integrator and a description of
the physical system on which to allocate the application. The allocator searches for an
arrangement of elemental units on the nodes of the network that satisfies all the timing
and allocation constraints, considering the computation times for each elemental unit. If
a feasible schedule can be found, a calendar file for each resource is generated. A
loader map is also generated which describes, for the runtime system, each task,
thread, shared memory area, and communications link so that all the resources can be
reserved when the application is loaded.

" The computation time analyzer takes timing trace information generated by the runtime
system and generates worst-case execution times for all the Eus of the application. This
timing information can be used in subsequent runs of the scheduler to refine the
schedule and verify its feasibility given changes in computation times. Use of the
timing tool during testing leads to very high confidence in the schedule.

7.1. Runtime Environments

Compiled and analyzed Maruti applications can be executed in multiple runtime
- - environments.

e The MarutilVirtual runtime environment allows the debugging of Maruti applications
within the development environment. Applications run in virtual real-time under Unix,
allowing temporal debugging, including single stepping the real-time calendars.

* The Maruti/Mach runtime environment is a modified version of Mach which allows the
running of real-time Maruti programs within the Mach environment, where the real-time
and non-real-time task can co-exist and interact in the same host.

* The Maruti/Standalone runtime environment runs the application on the bare hardware,
suitable for embedded systems. The application is linked with a minimal Maruti core
library and can be booted directly.

395

7.2. Maruti/Virtual Runtime Environment

Testing real-time programs in their native embedded environments can be tedious and very
time-consuming because of the lack of debugging facilities and the requirement to reload U
and reboot the target computer every time a change is made. Maruti provides a Unix-based
runtime system that allows the execution of Maruti hard-real-time applications from within
the Unix development environment. This Unix execution environment supports the
following features:

"* The Maruti application has direct control of its I/O device hardware.

"* Graphical output and keyboard input can go either to the PC console, as in the
Maruti/Standalone and Maruti/Mach environments, or appear in an X window on any
Unix workstation, possibly across the network.

"* The application can be run under the Unix GNU Debugger, allowing the examination
of program variables and stack traces, setting of breakpoints, and post-mortem
analysis.

•, .. ~ ii :: • ::::: • : • :ii~i:::::•ii......... -.1•i~ii~!•ii•:::iiii::
/ ,, o• ..- o "' "' ",,\ • i~ ii • • i•!ii!!iiii~ii!•iiiiiiiiiiiii....................iiii~i~i

.....• t •......

t \ \"."....i<• • ~ :• : ::::!i•!•!::::::••i••\ \ .. "..
•~~.i: i :• ~ • : !i ~ ~ : • i

• '-~~~~~.. ' :: : q: : : : :

- - -- - - - - - - - - - -

7-- 71T- -- _
.A .I . . .4 *~... f ~~

.....

X.I
.

M~ A' hUT IMF~ %DRF-IE I DPRO X.:. .
..

FigureON 3:P Mau./Vr.a screen... runnng.i.thedevlopmntev.romen
..............

* The pplicaion ha acces to0Uixs tnadotu oi anpitdbgadsau
messages0 to" th1neatv esinwiernig

* TheMarui aplicaion uns n vitualrealtime;thatis, t ses.itelf.unnig.inhard
real-time~ aginta itultiebae

3 9 6

* The virtual time can be manipulated through the nmtime system for temporal
debugging. Virtual time can be slowed down or sped up, and individual elemental units
(EU) or whole calendars can be single-stepped or traced.

7.3. Maruti/Standalone Real-Time Environment

* Maruti/Standalone provides a minimal runtime system for the execution of a Maruti
application on the bare hardware. The stand-alone environment has the following
attributes:

- The stand-alone version of an application is built from the same object modules as are
used in the Unix and Maruti/Mach execution environments.

"* All the modules of the application are bound with only those routines of the Maruti core
that are needed into one executable, suitable for booting directly or converting into
ROM.

"* The application has complete control of the computer hardware.

"* The application runs in hard real-time with very low overhead and variability.

"* The minimal Maruti/Standalone core library currently consists of about 16 KB of code
and 16 KB of data.

"* The optional Maruti Distributed Operation support (including network driver) is about
14 KB of code and 9 KB of data.

"* The optional Maruti graphics package currently consists of, for the standard VGA
version, 10 KB of code and 20 KB of data (plus 150K for a secondary frame buffer for
best performance).

7.4. Maruti/Mach Real-Time Environment

The original execution environment for Maruti-2 was a modified version of the CMU Mach
3.0 kernel. Maruti/Mach is potentially useful in hybrid environments in which the real-time
components co-exist with Mach and Unix processes on the same CPU. Because of
preemptability problems in CMU Mach we will not be distributing Maruti/Mach until it can
be rehosted onto OSF1/MK real-time kernels.

The Maruti/Mach features include the following:

e A calendar-based real-time scheduler has been added to the CMU Mach 3.0 kernel.
This scheduler takes precedence over the existing Mach scheduler, running Maruti
elemental units from the calendar at the proper release time.

* The Maruti application and most of the runtime system run as normal Mach user-level
tasks and threads, which are wired down in memory.

397I

"* The Maruti application may communicate with non-Maruti Unix and Mach processes
through shared memory.

" The Maruti/Mach kernel maintains runtime information for each elemental unit
executed, and makes that information available to the user-level code for worst-case
computation time analysis.

" Parts of the CMU Mach kernel remain unpreemptable. Nevertheless, on a dedicated
system we can achieve release time variability of about 100 microseconds. The context
switch time is about 200 microseconds.

"* The new release of OSF Research Institute Mach MK6.0 addresses most of the Mach
kernel preemptability concerns. We will be porting Maruti/Mach to this base in the near
future.

8. Future Directions

The Maruti Project is an ongoing research effort. We hope to extend the current system in
a number of possible directions. Of course, since this is a research project, we expect our
ideas to evolve over time as we gain experience and get feedback from users.

8.1. Scheduling and Analysis Extensions

Preemptable Scheduling of Hard-Real-Time Tasks

We are planning to extend our scheduling approach to incorporate controlled preemptions
of tasks. To date we have concentrated on using non-preemptable executions of tasks,
which simplifies scheduling and eases exclusion problems in application development.
However, the non-preemptability assumption to exclusion is not scalable to a
multiprocessor, as threads running on different processors can interfere with each other.
Controlled preemption is more powerful, as it allows scheduling of long-running tasks
concurrently with high frequency tasks. Preemption will remain under the control of the
application.

Language support for atomic actions will be developed to replace the assumption of
non-preemptable EU's. Action statements will serve to delineate sections of code on which
precise timing requirements can be imposed by the application designer. Combined with
critical region statements (already implemented), actions will allow the programmer to
specify precisely the desired timing and resource interrelationships in a manner that is
scalable to a multiprocessor or network cluster, unlike the non-preemptability assumption.

We will extend the Maxuti run-time system to handle preemptable hard real-time
tasks. This will be done in coordination with the analysis tools which will generate
multiple calendar entries for the preempted EUs. All but the last entry for the EU will be
marked as preemptable, and all but the first will be marked as continuation entries. This is
enough information for the run-time scheduler to correctly handle the preemption in a -.
controlled manner, even when the EU completes early.

398

Integration of Time-based and Priority-Based Scheduling

We plan to integrate the time-based and priority-based scheduling in a single framework.
To date we have concentrated on time-based scheduling only. To support other scheduling
paradigms within the time-based framework, we may reserve time slots in the schedule and
associate a queue of waiting tasks which are executed on the basis of their priorities. In this
way we can implement rate-monotonic style static priority schemes as well as Earliest-
Deadline-First style dynamic priority schemes within the Maruti framework. However, in
order to assure that the tasks executed under priority-based scheduling will continue to meet
their temporal requirements, extensions to the analysis techniques are required. We will
develop analysis techniques suitable for this purpose.

We will extend the Maruti implementation to support non-calendar schedulers, such
as priority based or earliest-deadline-first based schedulers. These schedulers will run in
particular slots specified in the Maruti calendar, or when the calendar is idle.

POSIX-RT Subset API

In a related area, we plan to study the use of a subset of the POSIX API as the Maruti API
for soft and non-real-time tasks. We will implement as much of the POSIX-RT API as is
appropriate and practicable.

Asynchronous Events

Generally, in a time-based system, events are polled for at the maximum frequency at
which they are expected. This type of event handling is easy to analyze within the time-
based framework, and makes explicit the need to reserve enough time to handle the event
stream at its worst-case arrival rate. At this worst-case rate, polling is more efficient than
interrupt-driven event handling because the interrupt overhead is avoided. However, at low
event rates, polling is less efficient and fragments the cpu idle time (where we define idle
time from the point of view of hard real-time tasks). While conservation of idle time is not
an issue for small controllers, it becomes very important when there are soft- and non-real-
time tasks running in the system.

Currently, Maruti takes the polling approach to ease analysis and to better handle
the worst case rate. We plan to study the analysis required to accommodate asynchronous
events within a calendar schedule. Our intended approach is to work with a specified
maximum frequency, relative deadline, and computation time of the asynchronous event,
and to reserve enough time in the calendar for the event to occur at its maximum frequency.

We will extend the Maruti run-time system to register and dispatch event handlers in
response to external events. Included in this extension will be the ability to detect and
appropriately handle overload conditions (i.e. when the events occur more quickly that
expected).

Multi-Dimensional Resource Scheduling Research

A typical real-time application requires several resources for it to execute. While CPU is the
most critical resource, others have to be made available in a timely manner. Generation of
schedules for multiple resources is known to be a difficult problem. Our approach to date
has been to develop efficient search techniques, such as one based on simulated annealing.

Realistic problems contain a variety of interdependencies among tasks which must
be reflected as constraints in scheduling. We plan to develop efficient techniques for
scheduling the allocation and deallocation of portions of multidimensional resources. In
particular, we will address the problems of allocation and management of resources such as
memory and disk space, that can accommodate many entities simultaneously.

399

Scheduling System-Specific Topologies

In a related area, many communications networks have more complex structures than a
simple bus and cannot be treated as a single dedicated resource. We will study the
extension of our scheduling algorithms to support point-to-point meshes of nodes (with
store-and-forward of messages), switched networks (such as MyriNet), and sophisticated
backplanes such as that used in the Intel Paragon.

We will investigate the use of a general framework for specifying the properties of
connection topologies to the Maruti scheduler. In the worst cases, the scheduler for a
complex interconnection technology may have to be programmed explicitly. To handle
such cases, we will develop a modular interface into our allocator/scheduler into which
such backplane-specific schedulers can be plugged.

Static Estimation of Execution Times

Currently, execution times are derived through extensive testing of the program on the
target hardware environment. Deriving the execution time through static analysis is
hampered by the data dependencies present in large number in most programs.

We will investigate the use of static analysis to help prove the execution time limits
of programs. While generating a reasonable computation time estimate through static
analysis is not feasible in general, it is possible to get accurate results for large segments of
a program, and to clearly identify the existing data dependencies so that the programmer
can-through program modifications or directives to the analysis tool-eliminate, curtail, or
characterize the data dependencies well enough to get very useful verification of the time
properties of the program.

Temporal Debugging

When we develop real-time applications we need techniques for observing the temporal
behavior of programs. For their functional characteristics we can use standard debuggers
which permit the observation of the state of execution at any stage. This, however,
destroys the temporal relationships completely. In Maruti/Virtual we provide the facilities of
controlling the execution of all parts of an application with respect to a virtual time which
advances under the control of keyboard directives. Thus .we can pause the execution at any
virtual lime instant with the assurance that all temporal relationships with respect to this
instant are accurately reflected in the state of the program. We use the term temporal
debugging for this.

We will conduct research on the theoretical aspects of the issues of temporal
debugging and consider the implications of temporal debugging. In particular, we will
study how the interactions of programs executing in virtual time with external events which
occur with respect to their own time line should be captured in temporal debugging. We
will also study how the virtual times of several nodes in a distributed environment should
be coordinated.

We will extend our implementation of temporal debugging tools in the
Maruti/Virtual environment to support temporal debugging of distributed programs, and to
support fine grained modification of the time line.

400

Dynamic Schedule Generation

We will develop the notion of time horizons to support controlled modifications of the hardreal-time calendars at runtime to support programs that generate schedules dynamically.
While the run-time mechanisms for modifying the calendars are already implemented,
research issues relating to finding safe points to switch schedules, and scheduling theschedulers themselves, have to be studied before effective use can be made of on-line
calendar generation.

8.2. Fault Tolerance

Maruti currently supports several powerful mechanisms for building fault tolerant
applications:

Maruti Configuration Language (MCL) constructs allow the application designer tospecify replication of application subsystems with forkers and joiners inserted into thecommunication streams, as well as the allocation constraints necessary to correctly
partition the replicated subsystems for the desired level of fault tolerance.

* Maruti Programming Language (MPL) allows the programming of application specificfault tolerance components such as forkers and joiners, elemental unit monitors, and
channel monitors.

e The rmn-time system supports multiple calendars, allowing the application to switch to
emergency or fault handling scenarios in real time.

We plan to extend the existing mechanisms by providing tools and newmechanisms to better automate the process of building fault tolerant applications. The new
features will include:

"* A library of forkers and joiners that can be incorporated into applications.

"• Support for multicast messages.

"* Better support in Maruti Programming Language (MPL) for EU and channel monitors.

"* Automatic replication of subsystems, and analysis of fault tolerance properties through
MAGIC, the graphical integrator described below.

8.3. Clock Synchronization

Currently, distributed Maruti handles clock drift at boot-up time, and thereafter time slavenodes simply adopt the time-master's clock periodically. This scheme is suitable for manyapplications, but is not ideal for embedded control systems that will suffer from a
discontinuous time jump.

To address this problem we plan to develop and implement time-synchronization
algorithms that operate concurrently with the distributed real-time program to continuallyadjust the clocks on all the nodes, taking into account changes in their relative drift. This

401

will most likely involve a regular time pulse from a master clock, from which the other
nodes continually measure their drift and fine-tune their tick rates. Since the clock drifts are
about one order of magnitude less than the communication latency variances, a simple
algorithm will not suffice here. U

8.4. Heterogeneous Operation

We will extend our communications agents and boot protocol to translate typed Manmti
messages between heterogeneous hosts when needed. The off-line Maruti analysis tools
already collect information on the types of the channel endpoints for type-checking the
connection. We will carry this information through to the run-time system for use in those
channels that are connected between heterogeneous nodes.

8.5. MPL/Ada

We will incorporate Maruti Programming Language (MPL) features and analysis into the
Ada 95 programming language as we did for ANSI C in the current MPL, which we will
now refer to as MPI/C. Implementing MPL/Ada will involve the following tasks:

"* A detailed design review studying those features of Ada which are compatible with
Maruti and those that are not, and how best to proceed with the implementation of
MPL/Ada.

"• Port GNU Ada (GNAT) to our NetBSD development environment.

" Implement as much of the Ada run-time environment as is practicable on the Maruti
run-time.

I
" Install hooks into GNAT to extract the resource usage information we need. We expect

this work will leverage heavily from the MPIC work, as GNAT is derived from the
same back-end code base as GNU C.

"* Develop and enforce within GNAT those restrictions on Ada constructs needed in order
to preserve the properties needed for our hard real-time analysis.

"• Add support for Maruti primitives to the language. Some Maruti primitives might be
implementable directly through existing Ada facilities and thus will not require language
extensions.

402

ii~ ~ ~ ~ ~.iiiiiii

Graphcal PogramDevelpmentTool

We Fagre 4ev Prototypegraphical Program de ntegraeor tools hc lo h

8.6.caio G einrt ultgte h oue sn netrl raphical Toolstrfce

Gaphicalg MprogramDeloment. Toeol-scenrpsntioofmdlsanb

Currernnetly, Maruh aplchations are prulled itogehierbyanchMcal spbyseifTeppication, hc ae h
fosgnrm of lb a bpoedrle lazonguage wose prmtiview operapiations isaate andvbindtogethesth

paTsothe gapplicat niron. enThistype lof specific ntgation lagaeiomplexiteg alowulngthe
specificatopmnt of lare, complfaex applcatonuls connethaed inoabtraytbe wayste. Thoeer tosuch
completenessmpakes MPL roelaortiv sel lowulevel and tedios wyto e prgram. cleviomn

Wcton area devel topln gapnca program devrtoa elopmeanntegrtools whvichalowten
aplcTiohesignratohpull tniogmentherthae modules-usinganceantirlysi grapiclt user interfange-

avoidngs Mof progur ammllbeidng.i Thed on-screen. rhepresentation of mbeodreesican bentr
insyteronneted e with chan els oke and grue jnohinerarcodclesbyses.an Thepplcationosrit
deigneroue wilo bhe abple catoomion anoutomto iewlyb the appictioetmeerllees

Thes graphical syenvionmnfwl allictownoh h integration oflgral excistingt moduilesn and
tedevelopment of thuabe inteftaces ofpnet modules thtuavlnt yto bee wrten.i Thestoolsedwill
geintegrated itemplate Mppicdafrthose modues. In thisal wibary the graphiablenvirponment

mdlsadthe graphical enirnmenrtr t will hae fault-tlefrac aon-rgalyssebil ito bit. Snlare

instroduem nth applicationsfo thsautomtcllsyte.ytm

403

EUWV~U
....M'!

iiiliiiiiiI~~~~i.....:.. iiii!:i::ii~ii~:!iii~i~ i

X. IX

Figure 5: Prototype Graphical Resource Scheduling Tool

Graphical Resource Management Tools

Along with the graphical software development tools, we are pursuing graphical resource
management tools. These are a non-programmer's interface into the advanced Maruti
scheduling technology. The Maruti allocator/scheduler works with the abstract concepts of
schedulable entities, available resources, and various types of constraints onl the placement
of entities and resources. In the Maruti operating system, the scheduling entities are EUs,
and the resources are CPUs, network, memory, and devices - but in fact any type of entity
or resource can be manipulated by the allocator/scheduler.

A graphical resource management tool will allow the specification of these entities,
resources, and constraints on screen in a way more oriented towards the general user. With
this tool users should be able to use Maruti scheduling technology to schedule classes,
busses, or projects, for example.

We have built a small prototype of the graphical resource manager. The prototype
displays the EU graph input to the scheduler as well as the calendar output of the scheduler.
The user can edit the EU graph and its constraints and reschedule with the click of a button.
The resulting resource calendar is redisplayed.

9. Availability

We aFe pleased to announce the availability of the Mauti 3.1 Hard Real-Time Operating
System and Development Environment.

With Maruti 3.1, we are entering a new phase of our project We have an operating
system suitable for field use by a wider range of users, and we are embarking on the -

integration of our time-based, hard real-time technology with industry standards and more
traditional event-based soft- and non-real-time systems. For this, we are greatly interested
in the feedback from users as to the direction of evolution of the system.

404]

For the Maruti 3.1 project, we will be pursuing the integration of a POSIX interface
for soft and non-real-time applications, the use of Ada for Maruti programming, support
for asynchronous events and soft/non-real time schedulers within the time-based
framework, and heterogeneous Maruti networks.

For this user-oriented phase of the project we will be making regular releases of our
software available to allow interested parties to track and influence our development. To
begin this phase we are making our current base hard real-time operating system and its
development environment available. This is an initial test release.

"Maruti 3.1 will be made available to interested parties on request, via Internet ftp.
Please send electronic mail to maruti-dist@cs.umd.edu for details. More information about
the Maruti Project, as well as papers and documentation, are available via the World Wide
Web at

http://www.cs.umd.edu/projects/maruti/I

9.1. Runtime System

The Maruti 3.1 embeddable hard real-time runtime system for distributed and single-node
systems includes the following features:

"* The core Maruti runtime system is small - 16 KB code for the single node core, 30 KB
code for the distributed core.

"* The core provides a calendar-based scheduler, threads, distributed message passing
using Time Division Multiplexed Access (TDMA) over the network, and tight time
synchronization between network nodes.

"* Also included in the runtime system is a graphics library suitable for system monitoring
displays as well as simulations.

"* Maruti runs on PC-AT compatible computers using the Intel i386 (with i387
coprocessor), i486DX, or Pentium processors. Distributed operation currently requires
a 3Com 3c507 ethernet card. The graphics library supports standard VGA and Tseng-
Labs ET-4000-based Super-VGA. Support for other SVGA chipsets is forthcoming
soon.

9.2. Development Environment

Maruti 3.1 includes a complete development environment for distributed embedded hard
real-time applications. The development environment runs on NetBSD Unix and includes
the following:
* d The Maruti/Virtual debugging environment - simulates the Maruti runtime system

within the development environment. The system clock in this environment tracks
virtual time, which can be sped up, slowed down in relation to the actual time, or
single-stepped or stopped. This allows temporal debugging of the application. Within
Maruti/Virtual traces of the application scheduling and network traffic can be monitored
in the debugging session.

405

"* The ANSI-C based Maruti Programming Language (MPIJC). MPL adds modules,
message passing primitives, shared memory, periodic functions, message-invoked
functions, and exclusion regions to ANSI C. MPL is processed by a version of the
GNU C compiler which has been modified to recognize the new MPL features, and to
output information about the resources used by the MPL program.

"* The Maruti Configuration Language (MCL). MCL allows the system designer to
specify the placement, timing constraints, and interconnections of all the modules in an
application. MCL is a powerful interpreted C-like language, allowing complex,
hierarchical configuration specifications, including replication of components and
installation-site specific sizing of the application. The MCL processor analyses the
application graph for completeness, and type-checks all connections. ii

" The Maruti Allocator/Scheduler. The Maruti allocation and schedulingtool analyses the
information generated by the MPL compiler and the MCL integrator to find an
allocation and scheduling of the tasks of a distributed application across the nodes of a
Maruti network. All relative and global timing, exclusion, and precedence constraints
are taken into account in finding a schedule, as are the network speed and scheduling
parameters.

" The Maruti Timing Trace Analyzer. The Timing Analyzer calculates worst-case
computation times from timing files output by the runtime system. Computation times
are calculated for each scheduling unit in the application, and these times can be fed
back into the Allocator/Scheduler for more precise scheduling analysis.

"* The Maruti Runtime Binder (mbind). One of the features of Maruti is the late binding
of an application to a particular runtime system. The same application binaries can be
combined with different system libraries to build a binary customized for a particular
application in a particular setting. Only those portions of the system library needed for
that binding are included. Mbind manages this final step.

* The Maruti Application Builder (mbuild). Mbuild automates the process of building an
application by generating for the programmer a customizable makefile that manages the
complete process of compiling, configuring, scheduling, and binding an application.

4I0

406

DISTRIBUTION LIST

AUL/LSE
Bldg 1405 - 600 Chennault Circle
Maxwell AFB, AL 36112-6424 1 cy

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 2 cys

AFSAA/SAI
1580 Air Force Pentagon
Washington, DC 20330-1580 1 cy

PL/SUL
Kirtland AFB, NM 87117-5776 2 cys

PL/HO
Kirtland AFB, NM 87117-5776 1 cy

Official Record Copy
PL/VTS/Capt Jim Russell 2 cys
Kirtland AFB, NM 87117-5776

PL/VT 1 cy
Dr Hogge
Kirtland AFB, NM 87117-5776

407/408

DEPARTMENT OF THE AIR FORCE
PHILLIPS LABORATORY (AFMC)

30 Jul 97

MEMORANDUM FOR DTIC/OCP

FROM: Phillips Laboratory/CA
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776

SUBJECT: Public Releasable Abstracts

1. The following technical report abstracts have been cleared by Public Affairs for
unlimited distribution:

PL-TR-96-1126, Pt 1 ADB222369 PL 97-0685 (clearance number)
PL-TR-96-1126, Pt 2 ADB222192 PL 97-0685

2. Any questions should be referred to Jan Mosher at DSN 246-1328.

JANET E. MOSHER
Writer/Editor

cc:
PL/TL/DTIC (M Putnam)

