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INTRODUCTION

1. Brief Description of the Training Program_and Its Objectives

The continued objective of the program is to establish at the University of Texas Health Science
Center at San Antonio an in-depth training program in the Molecular Genetics of Breast Cancer.
The most important goal of the program is to train highly qualified pre-doctoral students in the
genetic, cellular, and molecular basis of Breast Cancer. It is our hope that with the background
in Breast Cancer Biology that these students have obtained, they will provide the momentum
and scientific expertise for significant discoveries in this field in the future. The training program
is conducted within the Molecular Medicine Ph.D. Program by a select group of faculty whose
research projects are relevant to breast cancer. An additional goal of the program is to promote
synergistic interactions between the various laboratories engaged in breast cancer research. A
major event to promote these interactions was the Port Aransas Research Conference where
students [including 18 in-coming students] and breast cancer researchers plus others involved
in basic research gathered to discuss their research programs. The agenda for this meeting is
included in this report. Another important event is the Annual Breast Cancer Symposium held in
San Antonio. All students supported by the program were required to attend. Finally, an
outstanding Molecular Medicine Minisymposium Series was sponsored by the University of
Texas Institute of Biotechnology. Three of these series, “Molecular Genetics of Cancer”, “Signal
Transduction and Cell Cycle” and “DNA Replication, DNA Repair and Genetic Recombination”
dealt directly with issues related to cancer. The programs for these minisymposia are attached.

One of the major strengths of the program is the high quality of the Program faculty, and the
interactive nature of the Breast Cancer research community in San Antonio. The program
faculty are organized into four subprograms, which encompass scientists and physicians
studying different aspects of breast cancer and cancer therapy, as well as fundamental
mechanisms of cell growth, differentiation and molecular genetics. These faculty groupings are
listed here, detailed descriptions of individual research programs were included in the original
application.

A Breast Cancer Sub-Program

C. Kent Osborne, M.D.
John Chirgwin, Ph.D.
Suzanne Fuqua, Ph.D.
E. Lee, Ph.D.

W.-H. Lee, Ph.D.

Z. Dave Sharp

B. Growth Factor Sub-Program

Douglas Yee, M.D.
Gregory Mundy, M.D.
Robert J. Kiebe, Ph.D.
Betty Sue Masters, Ph.D.

C. Drug Development Sub-Program

Daniel Von Hoff, M.D.




Lee, Wen-Hwa, Ph.D.

D. Molecular Genetics Sub-Program

Robin Leach, Ph.D.
Peter O'Connell, Ph.D.
Alan E. Tomkinson, Ph.D.
*Robert J. Christy, Ph.D.

* New Member of the Program Faculty

Each of these faculty members maintains an active research program. A listing of their research
support is found below.

In this progress report, the relationship between the Breast Cancer Training Program and the
Molecular Medicine Graduate Ph.D. Program is reviewed, and additional or updated information
is provided regarding:

Research Support for Program Faculty
Listing of Supported Trainees
Project Summaries of upper level trainees
Changes to the Program Faculty:
Additions:
Robert J. Christy, Ph.D.
Biographical Sketch, Research Support, Project Summary

Removals:
Barbara Bowman, Ph.D.
Edward Seto, Ph.D.
Course Changes:
Appendix: Reprints of Trainee Publications

2. Relationship between the Breast Cancer Training Program and the Molecular Medicine
Graduate Ph.D. Program :

The Breast Cancer Training Program was implemented within the context of the Molecular
Medicine Graduate Ph.D. Program. The Molecular Medicine Ph.D. Program is a recently
established interdisciplinary Ph.D. training program in the Graduate School of Biomedical
Sciences at the UTHSCSA. For the academic year 1995-96, there was a total of 26
students enrolled in the Molecular Medicine Ph.D. Program -- 24 Ph.D. and 2 M.S. Of those
25 students, only six are supported by the Training Program in the Molecular Basis of Breast
Cancer.

The Breast Cancer Training program takes advantage of the internationally recognized
breast cancer research program existent in the institution for many years, and offers a
unique opportunity for students interested in starting careers in breast cancer research. The
participating scientists in this breast cancer program represent diverse departments
including the Divisions of Medical Oncology, Hematology and Endocrinology in the
Department of Medicine, and the Departments of Cellular and Structural Biology, Pathology
and Biochemistry. In addition, the new University of Texas Institute of Biotechnology and
the San Antonio Cancer Institute [SACI], an NIH-designated Cancer Center, represent
outstanding resources for training opportunities in clinical and basic science research. The
national and international reputation of the participating faculty serve to attract a large
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number of excellent applicants to the breast cancer research track in the Molecular Medicine
program. The continuation of a Breast Cancer Specialized Program of Research Excellent
(SPORE) grant to the institution documents the quality of breast cancer research available
to trainees. ‘

The rationale for administering the breast cancer training program in the Molecular Medicine
Ph.D. program is based on several important criteria: [1] The Molecular Medicine curriculum
is specifically designed to provide basic science training while integrating fundamental
principles of molecular biology with modern medicine. A Molecular Medicine Core course
provides students with the mechanisms underlying human disease and provides intensive
review of specific diseases [including breast cancer] that may serve as models for how
human diseases can be studied at the molecular genetic level. [2] The Molecular Medicine
program requires the participation of both clinical and basic scientists in the training process.
The inclusion of MDs on all student advisory committees insures that every graduate has a
clear perspective on the clinical relevance of the basic research in their program, that in
most instances, will serve as a guide for the project. [3] The Molecular Medicine program is
an interdepartmental, interdisciplinary program that offers flexibility to students in terms of
research laboratories, advisors and committee members. This arrangement offers a real
potential for synergism in breast cancer research not possible in traditional department-
bound programs. In summary, our program offers a near perfect environment for Ph.D.
training in breast cancer and has attracted many well-qualified applicants.

3. Research Support for Program Faculty

An essential component of maintaining a successful and aggressive training program in
Breast Cancer Research is the continued research funding of the individual Program Faculty
laboratories. Current funding for each member of the Program faculty is detailed in Table 1.
As can be readily seen from the table, the faculty have been extremely successful in
obtaining research funding, including over $14,880,628 in direct costs for the 1995-1996
fiscal year. (See Research Support Table, Page 14)

4. Listing of Supported Trainees

Trainees receiving support from the Training Program in the Molecular Basis of Breast Cancer
Research are selected from among entering first year students in the Molecular Medicine Ph.D.
Graduate Program. In subsequent years of their training, they may be maintained on the
Training Program, or transferred to other funding sources, depending on the nature of their
research interests, and the availability of grant support. The following trainees were supported
on the Breast Cancer Training Program

1995-1996
Upper Level Students

Linda DeGraffenried
Jennifer Gooch
David Levin

*Shang Li

Zachary Mackey
Ernesto Salcedo

* New to the program this year, see report below.
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Record of Previous Year’s Trainees:

Jim Fitzgerald Graduated from the program with an M.S. degree.

Christa Hargraves  Left the program for academic reasons.

Zachary Mackey Continues in the program as an upper level student [see report
below].

Harold Pestana Left the program for academic reasons.

Yuewei Qian Graduated from the from the program with a Ph.D. Postdoc in

James Maller’s laboratory at the Howard Hughes Medical Institute
at The University of Colorado School of Medicine. Dr. Qian’s
research involves understanding the cell cycle and cell
proliferation. This is a problem that is relevant to all types of
cancer, including those of the breast.

James Wang Continues in the Molecular Medicine Ph.D. program, currently
funded by advisor's grant. Although no longer in the Training
program, his work on the mechanism of viral latency is important
in some cancers. James presented his work at the Port Aransas
Research Conference on Breast Cancer.

Linda deGraffenried Continues in the program as an upper level student [see report

below].

Jennifer Gooch Continues in the program as an upper level student [see report
below].

David Levin Continues in the program as an upper level student [see report
below].

Ernesto Salcedo Continues in the program as an upper level student [see report

below]. As of this report date [10/22/96] however, Ernestor was
removed from the training grant since he elected to pursue work in
a non-program facutly’s laboratory [Dr. Steve Britt]. He was
replaced with another highly qualfied student to be reported in the
next cycle.

The 1995-1996 academic year marks the third full year of operation for the Molecular Medicine
Ph.D. Program, and the second for the Training Program in the Molecular Basis of Breast
Cancer Research. The availability of highly qualified applicants to the Molecular Medicine
Program has proven to be excellent. Over 150 applications were received for admission to the
Fall 1995 entering class. Eight students began classes in August of 1995. The total number of
students at the start of the Fall semester, 1995 the Molecular Medicine Ph.D. Program at all
levels was 26, which includes 12 women, and 3 minorities (1 black, 2 Hispanic students). All
three minority students were supported by the Training Program in the Molecular Basis of
Breast Cancer Research.

5. Project Summaries of Upper Level Trainees

Linda DeGraffenried Mentor -- Dr. Suzanne Fuqua

Tamoxifen is an effective therapy for estrogen receptor (ER)-positive breast cancer patients,
however almost all women will eventually become resistant and fail this hormonal therapy.
Clinical data suggests that in some patients, tamoxifen might actually stimulate tumor
proliferation. To understand one potential mechanism for the stimulatory effects of tamoxifen,
we have studied regulation of the rat prolactin promoter because tamoxifen is known to increase
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prolactin levels in rat pituitary cell lines. The rat prolactin promoter contains four pit-1
transcription factor binding sites which are important in its regulation. In addition, there is a
nonconsensus estrogen response element in the proximal region of the promoter which may
play a role in the hormonal regulation of this gene. We have analyzed the hormonal regulation
of the rat prolactin promoter using transient transactivation assays in human breast cancer cells.
In the absence of pit-1 expression, the rat prolactin promoter was induced by tamoxifen ten-fold
in ER-positive MCF-7 cells, but not ER-negative MDA-MB-231 cells. Estrogen did not induce
this promoter in the absence of pit-1. In the presence of pit-1, the rat prolactin promoter was
induced by estrogen, but not tamoxifen in MCF-7 cells. We are currently examining whether
tamoxifen stimulation of the rat prolactin is working through a classical estrogen response
pathway, or a novel mechanism such as a putative AP-1 site buried within the four pit-1 binding
sites. We hypothesize that the rat prolactin promoter may serve as a model for cell and type-
specific tamoxifen agonist effects in human breast cancer cells.

This project is directly relevant to breast cancer. Elucidating the basis for tamoxifen resistant
could lead to ways to augment the use of this important therapeutic agent and save the lives of
thousands of afflicted women.

Jennifer Gooch Mentor -- Dr. Douglas Yee

Dr. Yee's laboratory is interested in the growth regulation of breast cancer cells by insulin-like
growth factors (IGFs). Data from several laboratories had suggested that interleukin-4 (IL-4)
and IGFs share common signaling pathways. Since it was known that IL-4 could directly inhibit
breast cancer cell proliferation, Jennifer began examining the potential overlap of growth
stimulatory and growth inhibitory signaling pathways in breast cancer cells.

She first confirmed that 1L-4 was inhibitory for breast cancer cells. Furthermore, she showed
that IL-4 treatment of several breast cancer cell lines resulted in apoptosis as measured by the
TUNEL assay. Using Northern analysis, she was able to show that expression of IL-4 receptor
was ubiquitous in human breast cancer cells. Treatment of cells with IL-4, IGF-I, or insulin all
resulted in phosphorylation of insulin-receptor substrate-1 (IRS-1), however, generation of
signals distal to this (MAP kinase) were not clearly propagated by IL-4. Thus, differences in IL-
4's growth inhibitory effects and IGF-I's growth stimulatory effects may be due to differences in
the activation of signaling pathways distal to IRS-1. She is currently studying the dose response
of breast cancer cells to IL-4, is beginning neutralization experiments, and has created a FLAG
epitope tagged IL-4 receptor to transfect into breast cancer cells. The goal of her current work
is to characterize the 1L-4 signaling pathway in breast cancer cells that leads to apoptosis. As a
corollary to this plan, she hopes to overexpress the IL-4 receptor in these cells to sensitize them
to programmed cell death.

This project is relevant to breast cancer since intracellular signalling pathways are almost
certainly involved in the growth stimulation at some stage of mammary cell tumor development
or progression. The IGF-I and IL-4-IRS-1 pathway is an excellent candidate for such a pathway.

David Levin Mentor -- Dr. Alan Tomkinson

DNA joining events are required to maintain the integrity of the genome. Three human genes
encoding DNA ligases have been identified. In this project we are intending to identify the
cellular functions involving the product of the LIG1 gene. Previous studies have implicated DNA
ligase | in DNA replication and some pathways of DNA repair. During DNA replication, DNA
ligase | presumably functions to join Okazaki fragments. However, under physiological salt
conditions, DNA ligase | does not interact with DNA. It is our working hypothesis that DNA
ligase | involvement in different DNA metabolic pathways is mediated by specific protein-protein
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interactions which serve to recruit DNA ligase | to the DNA substrate. To detect proteins that
bind to DNA ligase | we have fractionated a HelLa nuclear extract by DNA ligase | affinity
chromatography. PCNA was specifically retained by the DNA ligase | matrix. To confirm that
DNA ligase | and PCNA interact directly, we have found that in vitro translated and purified
recombinant PCNA bind to the DNA ligase | matrix. In similar experiments, we have shown that
DNA ligase | interacts with a GST (glutathione S transferase)-PCNA fusion protein but not with
GST. Using in vitro translated deleted versions of DNA ligase |, we have determined that the
amino terminal 120 residues of this polypeptide are required for the interaction with PCNA. A
manuscript describing these studies is being prepared for publication.

This project is relevant to breast cancer since problems with DNA replication and repair will
undoubtedly be involved in the development of all tumors at some stage in their progression.

Publications:

Mackey, Z.B., Ramos, W., Levin, D.S., Walter, C.A., McCarrey, J.R. and Tomkinson, A.E. An
alternative splicing event, which occurs in mouse pachytene spermatocytes, generates a form of
DNA ligase lll with distinct biochemical properties that may function in meiotic recombination.
Molec. Cell. Biol. Accepted subject to revision.

Shang Li Mentor -- Dr. Wen-Hwa Lee

Mutations of the BRCA1 gene predisposes women to the development of breast cancer. The
BRCA1 gene product [BRCA1] is a nuclear phosphoprotein that is mislocated to the cytoplasm
of breast cancer cells. To understand the basis of its cellular partitioning and function, Shang'’s
project is to identify BRCA1-interacting proteins, confirm their in vivo interactions and to
elucidate their relevance to the development of breast cancer. First, site-directed mutagenesis
identified the functional nuclear localization sequence of BRCA1. Second, Shang used the
yeast two-hybrid assay to identify BRCA1-interacting proteins. From a human B-lymphocyte
cDNA library, Shang identified four clones [hBRAPs] that encode polypeptides capable of
interacting with BRCA1. When compared to the currently available GenBank, he found that one
is novel, one has homology to an uncharacterized zinc-finger domain-containing protein, and
two bear sequence homology to previously cloned cDNAs. Interestingly, the sequence of
hBRAP21 is identical to that of the nuclear localization signal receptor h\SRP1¢, also known as
importin-o. or karyopherin-c.. Shang is currently conducting in-depth analysis of the remaining
clones, some of which appear to be nuclear transcription factors.

This project is directly relevant to breast cancer since it involves the study of a protein whose
malfunction or mislocation leads to tumor development in the mammary gland.

Publications:

1. Chen, C. -F., S. Li, Y. Chen, P. -L. Chen, Z. D. Sharp, and W. -H. Lee. 1996. The nuclear
localization sequences of the BRCA1 protein interact with the importin-o. subunit of the nuclear
transport signal receptor. J. Biol. Chem. In Press. Note: The three authors in bold contributed
equally to this work.

2. Liu, C. Y., A. Flesken-Nikitin, S. Li; Y. Y. Zeng, and W. H. Lee. 1996. Inactivation of the

mouse Brcal gene leads to failure in the morphogenesis of the egg cylinder in early
postimplantation development. Genes Dev. 10:1835-1843. -

10
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Ernesto Salcedo Mentor -- Dr. Barbara Bowman

This project in Dr. Bowman's laboratory was a part of the investigation of Alzheimer's disease
using a transgenic mouse model. Alzheimer’s is a progressive neurological disorder primarily
affecting geriatric populations. The progression of this disease is irreversible. The approach
was genetic using the amyloid precursor protein [APP] on chromosome 21. Mutations in this
gene are associated with early onset of the disease. Apoliprotein E [ApoE] is another gene
implicated in Alzheimer’s. Specifically, the ApoE4 isoform is correlated with late onset of the
disease. The project was to use a transgenic mice model to test the hypothesis that the
interaction between ApoE4 and APP670/671 mutant will produce the Alzheimer’s disease [AD]
phenotype. The transgenic mice used in the project expressed human ApoE and human APP in
a murine knock-out background. My specific project was to conduct a behavioral assay known
as the Morris Swim Test which is a test of memory. Although some positive results were
obtained [i.e. behavior indicating memory impairment in test compared to control mice], the
result were inconclusive due to small number [8] mice tested.

Zachary Mackey Mentor -- Alan Tomkinson

DNA joining events are required to maintain the integrity of the genome. Three human genes
encoding DNA ligases have been identified. In this project we are intending to identify the
cellular functions involving the product of the LIG3 gene. Mammalian cell lines with reduced
DNA ligase Il activity exhibit spontaneous genetic instability and increased sensitivity to DNA
damaging agents. We have cloned human and mouse ¢DNAs encoding DNA ligase lll. In both
mouse and humans, we have identified two forms of DNA ligase lll cDNA that differ at their 3'
ends and encode polypeptides with different C-termini. At the site where the cDNA sequences
diverge, the nucleotide sequence resembles consensus splice donor/acceptor sequences. We
have confirmed that these cDNAs represent alternatively spliced products from the same gene
by cloning and analysis of the 3' end of the mouse LIG3 gene.

Analysis of DNA ligase Il expression by northern blotting demonstrated that this gene is highly
expressed in the testes. Using RT-PCR, we have examined the expression of the two forms of
DNA ligase Ill cDNA in mouse tissues and cells. One form of DNA ligase Il mRNA, DNA ligase
lll-a, is ubiquitously expressed. In contrast, expression of DNA ligase 1ll-b mRNA is restricted to
the testis. During spermatogenesis, DNA ligase |ll-b mRNA expression occurs during the latter
stages of meiotic prophase. This restricted expression pattern suggests that DNA ligase lll-b
mRNA may have a specific role in the completion of meiotic recombination. In support of this
idea we have shown that DNA ligase lll-a interacts with the DNA strand break repair protein
Xrce1 whereas DNA ligase IllI-b does not. We suggest that the DNA ligase llI-a/Xrcc1 complex
functions in DNA repair in both somatic and germ cells whereas DNA ligase 1ll-b functions in
meiotic recombination. A manuscript describing these studies has been submitted to Molecular
and Cellular Biology.

This project is relevant to breast cancer since genomic instability is likely to be involved at any
of the several stages of breast cancer progression leading to malignancy. Methods to intervene
and stabilize the genome could prevent progression and spread of the disease.

Publications:

Wang, Y.-C.J., Burkhart, W.A., Mackey, Z.B., Moyer, M.B., Ramos, W., Husain, |., Chen, J.,

Besterman, J.M. and Tomkinson, A.E. Mammalian DNA ligase Il is highly homologous with
Vaccinia DNA ligase. Journal of Biological Chemistry 269, 31923-31928.(1994).

11
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Husain, |., Tomkinson, A.E., Burkhart, W.A., Moyer, M .B., Ramos, W., Mackey, Z.B.,
Besterman, J.M. and Chen, J. Purification and characterization of DNA ligase 1l from bovine
testes. Journal of Biological Chemistry 270, 9683-9690 (1995).

Chen, J., Tomkinson, A.E., Ramos, W., Mackey, Z.B., Danehower, S., Schultz, R.A,,
Besterman, J.M. and Husain, |. Mammalian DNA ligase lll: Molecular cloning, chromosomal
localization and involvement in meiotic recombination during spermatogenesis. Molec. Cell. Biol.
15, 5412-5422 (1995).

Mackey, Z.B., Ramos, W., Levin, D.S., Walter, C.A., McCarrey, J.R. and Tomkinson, A.E. An
altrenative splicing event, which occurs in mouse pachytene spermatocytes, generates a form of
DNA ligase lll with distinct biochemical properties that may function in meiotic recombination.
Molec. Cell. Biol. Accepted subject to revision.

6. Changes to the Program Faculty:

Additions: Robert J. Christy, Ph.D. to the Molecular Genetics Subprogram
Project Summary, Biographical Sketch, Research Support

Robert J. Christy, M.D.
Assistant Professor
Ph.D., The Johns Hopkins University

The primary research interest in my laboratory is the investigation of the genetic and metabolic
regulation of gene expression. These studies utilize both in vitro and in vivo models to analyze
gene expression in both adipose and liver. Using an in vitro culture system preadipocyte cells
will differentiate into adipocytes in response to a specific hormonal stimuli. This terminal
differentiation reflects the process of adipose tissue formation in vivo [including breast] and is
mediated through increased rates of transcription of adipose-specific genes including fatty acid
synthetase. We have found common DNA sequences in these lipogenic promoters that are
important for activation during the determination and differentiation processes. The
identification of the of the protein/DNA interactions involved in mediating this adipose-specific
response is also underway. Other studies in the laboratory are investigating the effects diets
and hormones on the regulation of lipogenic gene expression in liver and adipose tissue.

These studies are applicable to breast cancer since a major tissue-type in the breast is adipose.
In addition, fatty acid synthetase is a prognostic molecule in tumors from breast cancer patients
with markedly worse prognosis.
Removals from the faculty:
The faculty were saddened to loose one of our most distinguished members, Dr.
Barbara Bowman, who passed away during this year. After many years of courageous
battles, Dr. Bowman succumbed to breast cancer.

Dr. Edward Seto left the institution to assume a position at another university.

7. Course Changes: None this year.

12
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CONCLUSIONS: The Breast Cancer Training Program has made excellent progress toward
attracting and retaining excellently qualified students in breast cancer research. The students
are receiving a high level of training in the modern research methods and theory. Combined
with the basic instruction they receive in the Molecular Medicine Ph.D. Program, they will
graduate as highly skilled researchers who will be very competitive for post doctoral positions in
the premiere breast cancer laboratories in the world.

13




OIUOIUY UBS--IOOUR))
1SBOI{ UT YOIBISAY [BUONB[SURI],

16611 €6/62/60-26/0£/60 Y0-¢818SVOTOdI HIN

Td “Qu10gsQ Uy D
1oawdo]eAd( I1eour)
1SBaIg Ul $ouar) J0ssauddng Jowny,
G 109l01g ‘1o0ue)) 1searg ut THOJS
005°0T L6/1€/L0-96/10/80 PO-€8I8CVIOIONL HIN/ION
Td ‘ouI0qsQ U3y D
CO-E€818EVD0LdT
JsiownJ, 1searg
dojaaa 20y WRYT-1VIYE od
199f01d [EIuadoraAd(] - IouR)
000°011 L6/T1E/LO-96/10/80 18BaIg Ul YOIBosay [euone[suei], ION/HIN
UIN) BWOISB[qOUNAY
oy Aq worssaxddng 1aoue)
765691 86/0¢/70-S6/10/S0 IVEO-81E8SVIOIQYIT IDON/HIN
QUID) BUWIOISB[qOUndY
oy} JO SWISIUBYDIIA JeINIION
861°LTT 86/87/T0-€6/10/€0 C1-8CLCOAHTOYS TAN/HIN
U19101d BUWOISB[qQOUnIAY
£q pare[n3ay uIdl0Ig yieaq
19D [9AON ® JO UOHBZLIIOBIBYD)

197°8L L6/0€/90-96/10/L0 66T o188y 099BGO], 10 [IOUN0) Moddng aanoy
_
SLSOD LOHIIA aorgdd ATLLL ANV AIDNADV JHIININ
AVHA INTHIND LOAr0dd JHIINAN ONIAALINAAIL ONIANNA ALTINOVA
ONLLVAIDLLYVd

LIO0ddNS YIHLO

14




96L°8TT

COL V18T
000°6¢€

00€%9

SHSo81

[10°1¢1

081901

OvTIL

99T IIY'1

Idoue)) 1searq Jjo

o@\om\: -96/10/71 "M 10J $1uagy 1senuo)) orroadg-1981e],

T0/8T/T0-L6/10/€0
96/1¢/21-v6/10/10

86/0¢/¥0-€6/10/S0

L6/TE/80-C6/50/60

L6/8T/T0-C6/8¢/L0

L6/8T/T0-T6/8T/L0

L6/8T/T0-T6/8T/ L0

86/1¢/L0-¥6/10/80

192[01q wei3o1g ‘uoissai3o1d pue
UuoUNJOAH IdDUR)) 1581 JO SINIRIA
L1-S610EVIT0dE

QOURISISOY USJIXOWR [, JO SWSTUBYIIA
A3ojorewray/A30100UQ)

[EJIPJA] OLWDPBIY Ul WeiZold Sururer],
60-1er0VO TELS
A3o1o1Rtua/A30]00UQ) Ul

JuRID) JUTUTRL], ISTUIDS UBIOISAYJ
€0-€TLIOVOTINT

I20UuR)) isearg urja3ie],

JUSWIIBALY, [BIIU0J ® SB WAISAS- D]
YL ‘9 109f01g ‘yoreasay onnaderayy,
909f01q wei3o1g A30[00UQ) [BIIPIN
91-S610evVOT10d

I20UR)

1sea1g JO sisauagoyled ) ur eydpe
-0 ‘¢ 109lo1g ‘yoreasay onnadeioyy,
109fo1g weidorg A30[00uUQ) [BIIPIA
91-S610eVOI10d

Iooue)) Isealg

ur sa3e1§ AIBUOUN[OAT JO SIIBA

‘¢ 103f01 ‘yoreasay onnaderayy,
4109fo1g weadorg A30[00UQ) [BOIPIA
91-S610€VIOI10d

SIopeYT weIiold

-9JMINSU] J3duR)) OLUOIUY UBS

YO-VLIYEVDO 0edS

HIN

IDN/HIN

udwWoy ‘0 uesng

ION/HIN

HIN

HIN

HIN

HIN

HIN

j10ddng Suipua g

15




991°¢8

196°€8

€ecotl

L9 LY

129494

000°0L

165799
SIS
00S°€8y
1€ 1Y

90S'8L

L6/¥1/01-S6/10/10

L6/Y1/60-16/S1/01

L6/8T/T0-T6/8T/L0

00/1€/L0-56/0¢/60

CLIV-[-v6-LIANVA
SIUSNEJ IS0UR)) 1SBAI UI SOURISISNY

UQJIXOWR], JO SWSTUBYIIA MIN
I0URY) 1SBAIY

[eotury) ur 101dad9y QuoId)sagoid
pUB UZ0ISH JO SIUBLIBA JR[NIJ[ON
‘7 199fo1q ‘yoreasay ounadedy],
9039l01g weidord A30[0ouQ) [RIIPAN
91-6610¢VIIOd

0URISISIY

3ni(q pue SUI0Ig JO0yuS 1oy

7 102014 ‘190uB)) IsBAIg Ul THYOIS
Y0-€8185VD0SdS

QUID) (IDS) 1 IseINIBSIJ VOD-[A0181S

L6/T1€/80-96/10/60

86/0¢/¥0-€6/10/S0

10/0£/90-96/10/L0
10/0€/90-96/10/L0
20/1€/€0-L6/10/%0

100/6T/20-L6/10/€0
86/1€/€0-¥6/10/¥0

L6/6T/70-€6/10/€0

U1 JO uonR[N3Y [BUOWLIOH puk ARSI

10961 14dr
usuItIwo)) [[3)) asodipy urnsug

Y0-09€9vAA6TIS

UOTIAIIAG JO WISTUBYIIA
:urey)) VIIX 1010 uonengeo)
109
104

Sunagre], [BWOSOSAT JO SISeg IBINOJ[ON

premy LSy

1STIUSIOG IA2IB)) JOIBISAY SIBIOOSSY
Sunoge],

[BWOSAT JO sISeg TRINOJOIA

pIeMYy LN

danvda
OWAVSQ]
anvda

IDN/HIN

ION/HIN Hoddn
M

Har

HIN joddng 2410y
sly)|

Auy "§'n
HIN
HIN

OINVA Joddng uipuag
OINVA

OINVA uoddng aayoy

16




60SvC
L099¢

00002

000°8S1

176°66C

rSO'Eel

6€1°061

800°C8

e109)1aduwy siseusforawry

I0J $3UAN) 9BPIPUE)) JO UOLIR[OS]

86/1€/S0-96/10/90 10-8¥8114AE0d
uoIssaidxy quar) oryroadg

-158]qQ0915() JO uonemIay

L6/0S/90-16/10/L0 90-68907dV6Td
§ AWOSOWOoIY))

U0 dOySHIOA\ [BUOIBUISIU] PIYL

L6/1€/S0-96/10/90 £0-06800DHECTY
7 109(o1g qurin

10901 wrIfold ‘¢ QWIOSOWOIY))

uewingy jo Surddepy uoneinieg

LO/TE/SO-T6/01/90 S0-0LY00OHIOdT

Id0ue)) 1searg ur saseursjordofeiopy
Jo uorssaxdxyg panpayosuny
stsouagoydiojy

Y100], pue Su0g Ul SJUdAY [eDIU]
L6/0€/90-88/10/L0 LOvP1804A10Y

00/82/T0-L6/10/01

Jjudwdopaaag

IoueR)) 1SeAIY [BOWUID) UL YT

JO uoIS$aIdXISAQ) PUB SIURLIE A IB[NOJ[OIN
LI-S610EVOI0d €

J30uRy) 1searg

[euoniRsURL], 0] We1S01d Jururel],
10/0£/90-96/10/60 10-T600LVD TEL
IDUBD) ISBAIG UBLINE] UT QDURISISIY

3n1(y ur SUIA0Ig YO0yS 1B

JO JudwaAToAUT oY) Apmi§ 01 dIysmor[e

20/82/20-L6/10/£0

JAIN/HIN

YOHDN/HIN

AOHDIN/HIN

YDOHON/HIN Joddng aanoy

IINIAVSN joddng Suipuag

HIN oddng aanoy
prees

ION/HIN poddng Suipua g

HIN

IDINIVSN

17




LTET19T

000°ZS

r1€°9¢1

SOL €91

SSY' Syl

GSE'6L

000°0¢S

T6TEe

6Sc 611

000°0%

0Sd Qwoyd01L)) £q

uonB[AXOIPAH-()Z PUR -] UIpUR[3BISOI]

L6/1€/S0¥6/10/90 C1-96CIEINDI0Y
3SBYIUAS 9pIX() JLIIN pue

ISBIONPAY (SHd AWOIYI01L))

-HdAVN ‘sawkzug Sururejuo))

-NI Pue -qQvd 2y ut sdiysuoneroy

66/1€/50-96/10/90 uonoung-aIndnng 761 10V
1IBOH pue IdAIT]

ur LodsurI ], UONOI[H [BWOSOIIA

L6/1€/€0-88/10/%0 0S00ETHLEA

QUAN) BWOISB[qOUNY
Ay} JO SIAPNIG I0J S[OPOIAl ISNOIN

L6/OE/11-€6/10/T1 £0-6920¢dH
pue[D Arewwiely 9y) ut ¢cd pue

qy Jo uonoung uoissaxddng rowny,

66/0¢/v0-76/10/L0 60-6¥96rVI6Cd1

BUIODIBSOQ]S() PUB ISBISI(] 1958

00/0€/90-L6/10/L0 10§ QuaD) uonisodsipaid © Jo UOUE[OS]
swoIpukg-bg 2yl

66/0€/90-L6/10/L0 103 [SPOIN SSNOJA] © SPIBMO, SIOUBAPY
JQUOULIOH YIMOI0)

‘[eoriIay)) Poolg Yyl JO uondNpoid ayl

L6/0€/60-96/10/0T 1T PIATOAU] SUSH) MBN © JO UONBIYNUP]
J5BISI(] S 195k

TO/1E/€0-L6/10/70 ur 188100180 Y1 Jo A30101q0yreq
puqAyg

omsog 14 cm ocogom LHBO.HO ﬁcm

L6/1€/80-96/10/60 UORUI[AAIN udam1ag drysuone[ay

HIN

uonepuno YoM 'V H3qoY

HIN

HIN

IDON/HIN

SOV

AHDIN/HIN

1SNI], UOSLLIOIA

SINVIN/HIN

pBikliily)

uoddng aanoy

S'S'd sanse|

uoddng 24110y

]|

joddng Suipua g

18




000%90°C

CoLLET

088°9¢1

0€9°Sy

0L1°061

9€5°CS

Tre6tl

L81°€TT

000°0€1

S6/1¢/T1-S6/10/10

L6/1€/€0-€6/10/70

L6/1/€0-€6/10/70

L6/1€/€0-€6/10/70

L6/0£/90-96/10/L0

66/1¢£/50-S6/10/90

66/1¢/50-56/10/90

86/0¢/11-€6/10/C1

00/1€/€0-96/10/%0

VS§03150
2I10)) A103RI0QR]

‘uonen3ay SI pue 1S8[0031SO YL
6756 dVIOd

opndad [9AON ® JO uonezualovIey)
pue uonednuIpy 1 109fo1g
‘uone[n3ay Si Pue ISB[0091SQ) Y.L
6256£dV10d

QI0)) SANRISIUIUPY

-UOTIB[NSIY SI PUB ISB[O0ANSO) Y L,
6CS6£dVIOd

uondiosoy suog pue

wASAS 23eydoIdBIA-21A00UOA] QYL
6v18TUVLLY

210D SATRNSIUILPY

UOA[N[S

QY] UO SIOWN], JO S99}
Ce00rvoI10d

UoI9S

Ay} UO SIOWN], JO S109JJF

ce00rvo10d
I21UD)) YOIBasIY [BOIUI[)) [RISUAD)

9re10dd

aseyIuLS 9pIX JMIIN
ul AILIB[OPOIA [RUOHIOUN,{/[BINIONNS
61VCSIND

VS0a150

HIN

HIN

HIN

HIN

HIN

HIN

HIN

HIN

Joddng aanoy

19




000°¢€

S0l

$C6'101

0119

€eyIg

18%°91C

0007291

910°9T¢

979°19¢

130UR)) Isearg

L6/TE/LO-96/10/80 UBWUNL] UT UII01J LY 943 JO 9[01dy],
WSS [010U0)) Areurg auroAoena],

© Aq sadonojewog Arelmiig ut

HO snouddoxy Jo uoissaidxg pajjonuo)
96/1€/21-96/10/10  3uls() [9POIA ASNOJA ® Jo Juswdorans(

7 109lo1g

193{01q weigolg £30[00u() IB[NOS[ON

20/8T/T0-L6/10/€0 10-S610EVO10dS
sy

OlUOIUY URS ‘9100) A30[01g IL[NOJ[OIN

L6/TE/LO-96/10/80 COFPLITYS-D0EdT
seworn jo

ASojoruapidg onauan) pue Ie[no3oN

10/1€/21-96/10/10 10-197CEVIO10dT
SuBOLIQW Y

UBDIXAIA Ul saudn) Aiqrdaosng

86/67/60-£6/0£/60 CO-C8YLYIIAT0Y
 109(01 ‘omuOlUY UBS--I130UR))

1SBAIE Ul YOILISIY [BUOLIB[SURBL],

66/1€/80-S6/10/60 70-€8185VD05dT
2100 AZojo1g IB[NOJOIN "B 910D

L6/T€/S0-T6/10/90 €0-0L¥O0DOHIOd!
¢ 109fo1g

¢ QWOSOWION])) JOJ SISYIBIA

S.LS Jo Burddey DV A "¢ 199f01g
L6/T€/S0-26/10/90 S0-0LP00DHIOAIT

ION

I3 uonedNpPH pue
4oreasdy Suidy uoddng aanoy

[DN/HIN poddng Suipua g

ION/HIN

IDN/HIN

IDN/HIN

IDN/HIN

YDHIN/HIN

ADHON/HIN

20




9vT98¢
000°008
LOY'99Y
000°009
000°0S
6£S°LYST

8TTYYT'1

000°0¥C
161°611

000°08

000°ST

YLITS

6LS LL

I90UR)) JO UOHOI(J Al Ul AJIATIOY

86/8T7/60-96/0¢/60  SSRISWO[I], ¥ YSB, SAPMS IB[NOI[ON
IouE)) I1searq Joj Aderayg,

Sumag uonerdsueL], 9Y) UL ASEIAWO[D ],

Jo 2oueiroduwy oy, ‘Aderay], ouauan) pue

10/0€/90-96/10/L0 TeIn([o) uone[dsueL], MOLIEJA PUE poo[g
Ioue)) 1sea1g 10y AdeIay],

00/1€/50-96/10/90 paresre] -] aserowosiodo], YN
L6/0€/60-26/10/01 uonesyI[dury uen ut SABIPAULIANU]
09LL9VD 61011

SIUAT Y

00/0€/90-S6/10/L0  2ATIORIAU] ISBISWO[], PUL WO,
C0-€6869VO 10011

S1uddy

86/8T/T0-S6/10/L0 I20UBDHUY JO STBLLY, [eSTUIT) | 9Seyd

QBISIAQIQ)) SQOAWOIBYIORS

L6/1E/T1-L6/10/10 ut rredoy] UOISIOXH 9PLOIINN
JBISIAQIY)) SIVAWOIRYDILS
LO/TE/TT-LO6/10/10 ur 1redoy UOISIOXH 9PNO[ONN

stsauagolewradg Juumng

L6/0€/90-96/10/L0 ~ UODEBUIQUIOITY SUOIIA JO uona[dwo)
VNQ pue oFewe VN 2ALEPIXO

JO JUSWIDATOAU] Y] SUIWRXH 0] [SPOIA

96/1€/T1-96/10/10 [eUwIuY JIUSSSuLL], B JO UOHONISUOD)
) sa10Arenyg

ur Jreday] UOTSTOXH 9PUOJONN VNJ

96/1£/T1-¥6/10/10 O8LLH
$3se31T VNG

o1joAIRy Ny JO sUonounj B[

86/1¢/L0-€6/10/80 €0-1STLYIND6TH

ION

SHd HIN
OWHINVSN
HOAN

ION

ION

A33100¢§ JodUR)) UBDILIQWY

HIN
SOWII(T JO YOIBIA

I91ua)) uoneonpy
pue yoIeasay Suidy

yoIeasay
020BqO], 10] [IOUNOD) Y],

poddng Suipua g

21

oddng aanoy

(LA $JJOH UOA |

1toddng Suipua g




980191

LTOEST

889°0C1

€eso9ll

110°1¢1

005 v¥1

00Sv9

JUSWIIBAL], PUB SISOUSRBI(T J90UBR))

1sBaIg Ul WAISAS-40T oYL, ‘10¥
JUAWIBL], pue SISOu3eI(]

I20UB)) 1SBAIY Ul WASAS- D] YL

‘g 1093f01d wieI3o1g ‘uotssaIZold

puEB UOUN[OAT] JOURY) 1SBAIY JO SIBA
LI-6610EVD 10dS

Jadue)) 1searg

ut Aderay, 2uan) yI1-A SH JO 1udwaduryuy
10/0¢/11-96/10/T1 10-179CLVO 10d
. I20uL)) Isvalg

[eotur) ut 101dooay Ju0191$9301g

pue ua301sH JO SIUBLIBA IR[NIJON

‘7 100l01g ‘yoreasay ounaderayy,

103lo1q wei3o1id £30100uUQ) [BIIPIN

L6/8T/T0-T6/8T/LO 91-6610£VOIOd
I0uB)) 1seAIg ut jadie],

JUUIBAL], [BTIUDIOJ B SB WASAS-ID]

3y L, ‘9 109l014 ‘yoreasay ounaderdyy,

493lo1g weidoid £30[0ouQ) [BIIPIN

L6/8C/C0-T6/8T/LO 91-C610EVOI10d
I30UR)) 1SBAIE [BUOLIB[SURL],

U1 spIemy 1uawdo[aAd(] 19218)

999fo1g-qng “190ur)) 1581 Ul YOS

00/1¢/L0-S6/0€/60 $0-€818SVOOSd
Iddue)) I1searg

U1 19318, JUQWIRALY, B SB WAISAG-IOI YL,
L6/1€/80-T6/10/60 v0-0L910VD v0

T0/1€/€0-L6/10/70

T0/8T/70-L6/10/€0

HIN

HIN

HIN

HIN

HIN

HIN

ION/HIN

oddng Sumpua g

1oddng aayoy

22




1

‘Molecular Medicine Mini Symposium Series

Center for Molecular Medicine / Institute of Biotechnology
University of Texas Health Science Center at San Antonio

Signal Transduction and Cell Cycle
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Dr. Tony Hunter The Salk Institute 9:30 a.m. - 10:30 a.m.

Keynote Presentation
"Cell Cycle Regulation by Protein Phosphorylation "

* Break . 10:30 a.m. - 11:00 a.m.

* Dr. Yue Xiong The University of North Carolina, Chapel Hill ~ 11:00 a.m. - 12:00 noon
"CDK Inhibitors: Their Function in Cell Cycle Control, Tumor Growth Suppression and

Cell Differentiation”

* Lunch Break ' 12:00 noon - 1:00 p.m.

* Dr. Ted Weinert The University of Arizona 1:00 p.m. - 2:00 p.m.
"Yeast Cell Cycle Checkpoints and Lesion Processing Model"

* Break 2:00 p.m. - 2:30 p.m.
* Dr. Paul Russell The Scripps Research Institute 2:30 p.m. - 3:30 p.m.
"Stressing the Cell Cycle: MAP Kinase Pathway Links G2/M Control with Cellular
Stress Signals "
* Reception 3:30 p.m. - 4:30 p.m.

Nkkokokckkokkhkkkkkkkkokkokkkkkkskokkskkokkkskokkkskokokksksk sk sk sk skk sk ksk sk ks kskkk ok ks sk sk sk sk sk sk sk ok ok

Date: Friday, December 1, 1995
Organizer: Eva Lee, Ph.D.
Place: Conference Room 3.002 at the
Institute of Biotechnology
Texas Research Park
15355 Lambda Drive
For information telephone Karen Steger at 210/567-7201
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Molecular Medlcme Mml Symposxum Serles

Center for Molecular \dedlcmeflnstntute of Blotechnology
Umversnty of Texas Health Science Center at San Antomo

DNA Repllcatlon DNA Repalr and Genetlc Recombmatmn’_;f |

'e_********#****?*********#******##****t***************ﬁ*****&#**********#*******

Dr Stephen C WeSt Irnpcnal Canccr Research Fund England ©9:30 am. -10:30 am.

Dr. Thomas A
‘ “DNA chhcatxon deehty, Mlsmatch Repalr and Genome Stabllny

' Luﬁ'cthreaki- S

Break

: Recepnon o

' “Protcm-dlrected Molecular Interactlons in Genetic Rccombmatxon

- v,'.»f"_l,'OI:_.30 am. - 1100 am.

Kiinkel * NIEHS, Research Triangle Park, NC.© 11:00 am - 12:00am

 1200pm.-130pm.

3 "Dr. Phlllp C. Hanawalt Stanford Umvcrsny, Stanford cA 130pm -2:30 pm. |
3 “Mechamsms and Conscquenccs of Transcnpnon Coupled DNA Repan' o RN sl

230 pm - 300pm.

Dl‘ Errol C. Frledberg Southwcstern Medical Centcr Dallas TX . 3:.00 p.m.~,.;_4:0(l p.m.
" “Human’ Heredltary Dlseases W]th Defecnve NER: New Answers and s D e -
‘ Ncw Quesnons" R L

| ?4-00pm -sioopm

-l************************************#*****************************************

Thursday, February 8 1996
_Organizer: Alan Tomkmson o ', o
Place “Conference Room 3.002 at the -
o Instxtute of Biotechnology
~Texas Research Park
115355 Lambda Drive -

o For mformatlon telephone Karen Steger at 210/567 7201




Molecular Medicine Mini Symposium Series

Center for Molecular Medicine/Institute of Biotechnology
University of Texas Health Science Center at San Antonio

Molecular Genetics of Cancer
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9:00 - 9:10a.m.  Welcoming Remarks
Dr. Wen-Hwa Lee, Professor and Director, Institute of Biotechnology

9:10-10:10 a.m.  “Chromosomes, Genes, and Human Cancer”
Dr. Peter C. Nowell, Univ. of Pennsylvania School of Medicine

10:10-10:30 a.m.  Break

10:30-11:30 a.m.  “The Regulation of p53 Function”
Dr. Gigi Lozano, MD Anderson Cancer Center, Houston, TX

11:30 - 1:00 p.m. Lunch

1:00 - 2:00 p.m.  “Molecular Mechanisms of Human Papillomavirus - Associated Neoplasias”
Dr. Louise T. Chow, University of Alabama, Birmingham, AL

2:00 - 230 p.m.  Break

2:30 - 3:30 p.m.  “Ras Oncogenes and Signal Transduction Pathways”
Dr. Geoffrey Cooper, Dana-Farber Cancer Institute, Boston, MA

3:30 - 4:30 p.m.  Reception

33 5 5 S 38 S 2 S35 2 5 5 35 3 5 33 36 33 3 3 38 3 36 5 35 3 5 240 5 4 5 3 S 3 5 3 0 3 S 33 S 3 S - 35 O 3 S 26 338 3 3 3 3 338 b S5 S 3 b 36 3 3 S o34 S5 53 324 3 5 S SO 9 3 o S S0 o S oF ok

Friday, April 5, 1996
Organizer: Ed Seto




1996 PORT ARANSAS RESEARCH CONFERENCE
AGENDA

7:00 p.m. Opening Remarks, Wen-Hwa Lee, Ph.D.
Introduction of New Graduate Students

7:15 p.m. - 10:00 p.m. Poster Session/Social Mixer

POSTER PRESENTATIONS

Gang Chen, Ph.D. (Presented by Eva Lee, Ph.D.)
“Characterization of the Protein Product of ATM Gene that is Critical in Cell
Cycle Checkpoints and DNA Recombination”

Phang-Lang Chen, Ph.D.
“Retinoblastoma Protein Positively Regulates Terminal Adipocyte
Differentiation through Interaction with C/EBPS”

Kathryn Fischbach, Ph.D.
“Search for a Metastisis Gene on Chromosome 14”

Wayne Hao
“Phosphoinositides as Regulators of Clathrin Assembly”

Adrian Lee, Ph.D.
“In Vitro and In Vivo Inducible Gene Expression in Human Breast Cancer

Cells”

Pierre Lemieux, Ph.D.
“Overexpression of the Small Heat Shock Protein Hsp27 Increases Invasive

Properties of Breast Cancer Cells”

Jackie Lin
“A Multiple Step Tumorigenesis in Mouse”




Zachary Mackey
“Mammalian DNA Ligases”

Irena Melnikova
“Functional Domains of Helix-Loop-Helix Id3 Protein”

Alexander Nikiten, M.D.,Ph.D./Daniel J. Riley, M.D.
“Adenovirus-mediated Retinoblastoma Gene Therapy Suppressess
Spontaneous Pituitary Melanotroph Tumore in Rb*" Mice”

Steve Townson, Ph.D.
“Honeybee Opsins”

James Wang
“Characterization of Proteins Binding to the ZII Element in the Epstein-Barr
Virus BZLF1 Promoter: Transactivation by ATF1”
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Inactivation of the mouse Brcal gene
leads to tailure in the morphogenesis
of the egg cylinder in early
postimplantation development

Chia-Yang Liu, Andrea Flesken-Nikitin, Shang Li, Yingying Zeng, and Wen-Hwa Lee'

Center for Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio,
San Antonio, Texas 78245 USA

BRCAL1 is proposed to be a tumor suppressor gene. To explore the biological function of BRCA1, a partial
deletion (amino acids 300-361) of mouse Brcal exon 11 was introduced into the genome of embryonic stem
(ES) cells by homologous recombination. Mice carrying one mutated allele of Brcal appear normal and are
fertile up to 10 months of age without any sign of illness. However, no viable progeny homozygous for the
Brcal mutant allele were obtained. Detailed analysis of large numbers of embryos at different stages of
development indicated that the homozygous mutant concepti are severely retarded in growth as early as
embryonic day 4.5 (E4.5) and are resorbed completely by E8.5. Although the homozygotes at E5.5-E6.5 are
able to synthesize DNA and display distinguishable embryonic and extraembryonic structures, they fail to
differentiate and form egg cylinders. Consequently, they were unable to form primitive streaks and undergo
gastrulation. Consistent with these in vivo results, blastocysts homozygous for mutated Brcal alleles are at a
considerable disadvantage when grown in vitro. These observations suggest that Brcal has an important role

in the early development of mouse embryos.

[Key Words: Brcal gene; gene targeting; mouse embryogenesis|
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Hereditary breast cancer is characterized as an early-on-
set, bilateral disease and is associated with other tumors
of ovarian, endometrial, and prostate origins (Tulinius et
al. 1992; Anderson and Badzioch 1993; Sellers et al.
1994). The heterogeneity in breast cancer suggests that
the manifestation of multiple genetic factors intertwines
with environmental factors, such as hormones and diet,
that modify expression of the phenotype. At the molec-
ular level, breast tumor development is thought to result
from mutations of several growth regulatory genes. The
BRCA1 gene is mutated in the germ line of a subset of
families with inherited breast cancer, and loss of the re-
maining wild-type allele is often found in tumor tissues
(Hall et al. 1990; Smith et al. 1992; Miki et al. 1994).
This recessive nature of BRCAT fits with the properties
of human tumor suppressor genes {Riley et al. 1994).
BRCA1 mutations are associated with 45% of familial
breast cancer, which accounts for ~10% of the total
number of these neoplasms. However, they are rarely
linked with sporadic cases {Futreal et al. 1994). There-
fore, the role of BRCAT in the pathogenesis of 95% of
breast cancer is unclear. Interestingly, the BRCAT gene

!Corresponding author.

product, which is normally a nuclear protein, is aber-
rantly mislocated in the cytoplasm of most breast tumor
cell lines (Chen et al. 1995). Although the molecular
mechanism for the failure of nuclear transport is not
known, these findings suggest that BRCAl may be in-
volved in many breast cancers, sporadic as well as famil-
ial.

BRCA1 is a large gene spread over ~100 kb of the
genome. It consists of 24 exons and encodes a nuclear
phosphoprotein of 1863 amino acids with a molecular
weight of ~220 kD (Chen et al. 1995, 1996). BRCA1 is a
novel protein with an amino-terminal ring finger motif
similar to those found in other proteins that interact
with DNA, RNA, or proteins (Miki et al. 1994]. The
mouse BRCAT homolog, Brcal, was characterized re-
cently. The predicted Brcal gene product shares ~58%
amino-acid identity with the human protein, and the
mRNA expression patterns in mice and humans are also
quite similar. Interestingly, Brcal mRNA expression in
mouse mammary gland involution parallels its differen-
tiation, suggesting an important regulatory role for Brcal
in tissue proliferation and differentiation (Lane et al.
1995; Marquis et al. 1995].

To understand the physiological function of Brcal and
study its role in breast and ovarian carcinogenesis, we
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established mutant Brcal{+ /- ) mouse lines using gene
targeting in embryonic stem (ES) cells. Mice lacking one
wild-type allele of the Brcal appear normal and are fer-
tile until 10 months of age. However, Brcal{—/—) mu-
tants die during early embryogenesis. Histological exam-
inations of early concepti and genotyping after fixation
by microdissection—polymerase chain reaction (MD-—
PCR) demonstrated that Brcal{—/—) mutant embryos
are growth-retarded as early as embryonic day (E4.5).
They form embryonic and extraembryonic tissues but
develop into severely disorganized masses incapable of
forming egg cylinders at E5.5-E6.5. The embryos are re-
sorbed completely by E8.5. These results reveal an im-
portant role for the Brcal gene in early mouse develop-
ment.

Results
Targeted mutation of the mouse BRCA1 homolog

For genetic ablation of mouse Brcal, exon 11 was chosen
as the target because its counterpart in the human
BRCAL1 is the largest coding exon (3425 bp) and is fre-
quently mutated in families with histories of breast and
ovarian cancer. Mouse Brcal was obtained by screening
a 129/Sv-derived genomic library with PCR-amplified
DNA from exon 11 of the human BRCAI.

The targeting vector was constructed by deleting a
184-bp EcoRI fragment corresponding to mouse Brcal
amino acids 300-361 (Fig. 1A) and replacing it with a
pgkneopA cassette in either the sense (s) or antisense (o)
orientation. These two constructs were then subcloned
into the p2TK vector to produce two final targeting vec-
tors designated as Brcal-ko(s) and Brcal-ko(o], respec-
tively (Fig. 1B). Both vectors were individually trans-
fected into ES cells, and 384 colonies doubly resistant to
G418 and FIAU were isolated. DNA from these colonies

Figure 1. Strategy for the generation of a
targeted mutation in the mouse Brcal
gene. (A] Restriction map of the mouse A
Brcal fragment, encompassing exon 11 and
flanking DNA. An 8.0-kb Hind[II-BamHI o

S Rl RIH
L 1 11

was analyzed by Southern blotting to identify clones
containing a disruption of the Brcal gene resulting from
a targeted homologous recombination event. These were
identified by the appearance of a novel HindIIl fragment
of the predicted size using a fragment of Brcal genomic
DNA lying 3’ external to the targeting vector as a hy-
bridization probe {Figs. 1C and 2A]. The use of Brcal-
ko(s) and Brcal-kolo) vectors resulted in a total of 6 and
13 homologous recombinant clones, respectively. Brcal—
ko(o) #3 and Brcal—ko(s) #291 were analyzed further by
Southern blot analysis using different probes to confirm
the targeted gene disruption (Fig. 2B).

Production of Brcal heterozygote
mutants by germ-line transmission

ES cells from clone Brcal-ko(o) #3 and Brcal-ko(s) #291
were injected independently into C57BL/6] blastocysts,
which were then implanted into the uteri of pseudopreg-
nant CBA female foster mice. We generated 5 germ-line
chimeras from a total of 16 male chimeras, all derived
from clone Brcal-ko(o) #3. Of the 120 offspring from
male chimera/female C57BL/6] crosses, 53% were het-
erozygous {Brcal +/—} and 47% homozygous wild type
(Brcal+/+), as shown by PCR analysis of toe DNA sam-
ples. The heterozygous mice were further confirmed by
Southern blot analysis of tail DNA samples {data not
shown). Heterozygous animals appear normal, healthy,
and are fertile for at least 10 months after birth.

Absence of wild-type Brcal alleles leads to embryonic
lethality

To investigate the in vivo effect of the homozygous mu-
tations, Brcal(+ / —) mice were interbred. The genotypes
of offspring were determined at 1 week of age by PCR

B 1kb
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fragment was used to create the replace- B 4
ment targeting vector. (B) Restriction map
of the targeting constructs Brcal-ko(s] and
Brcal-ko(o). A 184-bp EcoRI fragment from
the 5’ end of exon 11 was deleted and re-
placed with a pgkneopA cassette in the
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Figure 2. Targeted disruption of the Brcal gene in mouse ES
cells. (A} Initial screen of the targeted Brcal clones by Southern
blotting analysis. The HindIll 4.6- or 3.0-kb restriction fragment
indicated the expected recombinant allele by Brcal—ko(s} or
Brcal—ko{o)} vectors, respectively. (B) Confirmation of the tar-
geted disruption. DNA samples from parental E14.1 cells and
two candidate recombinant clones [Brcal-ko(o) 3 and Brcal-
ko(s} 291] were digested with HindIll or Sall-BamHI and probed
with either of the flanking probes or the neo probe. An addi-
tional fragment of the expected size was found in each of the
recombinant clones.

analysis of toe DNA samples. Of the 97 animals tested,
63% were heterozygous and 37% were wild type. No

Targeted mutation of the murine Brcal

mice homozygous for the mutation were detected, indi-
cating that the Brcal(—/—) mutants died in utero (Table
1). To determine the time of death, pregnant females
from Brcal{+/—) intercrosses were sacrificed, and the
fetuses at different gestation times from E8.5 to E12.5
were examined. Of the 81 decidua tested, 58 (72%) con-
tained morphologically normal fetuses, of which 39
(48%) were heterozygous, 19 {24%) were wild type, and
none were homozygous. The remaining 23 (28%) de-
cidua were much smaller and contained completely re-
sorbed embryos (Table 1; Fig. 3],0), indicating that the
Brcal{—/—) mutant concepti die before E8.5.

Developmental deficiency in Brcal(—/—) mutant
embryos appears shortly after postimplantation

To precisely pinpoint the differences between wild-type
and Brcal{— /- ) mutant embryos, we next examined the
histology of embryos between implantation and gastru-
lation. Intact decidual swellings of litters from Brcal(+/
—)intercrosses obtained between E4.5 and E7.5 (Table 1)
were fixed, sectioned, and stained with hematoxylin/
eosin. Following implantation (E4.5-E5.5), abnormali-
ties that distinguished normal concepti from Brcal{—/
—) concepti could be readily observed. Both wild-type
{Fig. 3A,B} and heterozygous embryos (data not shown)
show normal growth and elongation of the egg cylinder,
which contains both embryonic and extraembryonic ec-
toderm and distinct proamniotic cavities. In striking
contrast, Brcal{—/—) embryos are at least 50% smaller
than the wild type and fail to form egg cylinders (Fig.
3F,G,K,L), although they do display embryonic and ex-
traembryonic tissues at this stage (Fig. 3G,L). By E6.5,
wild-type embryos are almost ready for gastrulation,
with the egg cylinders nearly filling the yolk sac cavities.
Elongated proamniotic and distinct exocoelomic cavities
are also well developed (Fig. 3C). By comparison,
Brcal{—/—) embryos show increasing cellular disorga-
nization and start to degenerate (Fig. 3H,M). By the time
wild-type embryos undergo gastrulation (E7.5) and the
mesoderm develops (Fig. 3D), the Brcal(—/—) embryos
are significantly developmentally retarded and there is
no sign of mesoderm differentiation (Fig. 31, NJ. Of the 26
decidua examined at E8.5, 8 (30% ) contained no embryo,
indicating complete resorption (Table 1; Fig. 3],0].

Table 1. Genotype analysis of the progeny from Brcal{+/—) heterozygous intercrosses

Genotype

Age (DNA source) Litter Number +/+ +/= -/= Resorbed
10 days (toes) 19 97 36 61 0

E9.5-12.5 [yolk sac] 7 55 11 29 0 15
E8.5 (yolk sac) 1 9 3 5 0 1
E8.5 (paraffin sections) 2 17 5 5 0 7
E7.5 {paraffin sections) 3 23 6 14 3

E6.5 (paraffin sections) 5 37 10 20 7

E5.5 (paraffin sections) 3 21 10 6 5

E4.5 (paraffin sections) 1 7 3 2 2

E3.5 (outgrowth) 6 37 10 19 8
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Brcail(+/+)

Figure 3. Histological sections of wild-
type and Brcal{—/—) mutant embryos
grown in utero. The uteri of Brcal(+/~)
females were dissected between 4.5 and 8.5
days after intercross matings, and 4-pm sec-
tions were prepared as described in Materi-
als and methods. All uterine decidua were
sectioned transversely according to the no-
menclature of Smith {1985), and the me-
sometrial to anti-mesometrial axis is left to
right. (A-E) Wild-type embryos; (F-O]
Brcal(—/—)embryos; (A, F,K} E4.5 egg cyl-
inders; {B,G,L) E5.5 egg cylinders; (C,H,M)
E6.5 embryos; (D,I,N) E7.5 embryos; (E,],O)
E8.5 embryos. Note the appearance of the
proamniotic cavity and the clearly differen-
tiated embryonic and extraembryonic ecto-
derm in a wild-type E4.5 egg cylinder {4), an
elongated egg cylinder ready for gastrula-
tion in E6.5 embryo {C), and a gastrulating
embryo with primitive streak and meso-
derm differentiation in an E7.5 embryo (D).
Abbreviations: (eee} Extra-embryonic ecto-
derm; (pac) proamniotic cavity; (al] allan-
tois; (am) amnion; (ch) chorion; {ec] exo-
coelomic cavity; {ee) embryonic ectoderm;
{em) embryo mass; (hf) head fold; {ht) heart;
(ne) neuroepithelium; (pe] parietal endo-
derm; (ve) viceral endoderm. {Insets in F
and K] enlarged twofold. Bar, 100 pm.

The morphologically abnormal phenotype is inferred
to be the consequence of the homozygous mutant geno-
type. To confirm that the smaller malformed embryos do
result from the loss of the wild-type Brcal gene, sec-
tioned embryonic tissues are collected by microdissec-
tion and subjected to PCR genotyping analysis. PCR
analysis of E4.5 littermates representative of Brcal het-
erozygote matings shows that the developmentally im-
paired embryos are homozygous for the mutated Brcal
allele (Fig. 4A, right, and B). These observations demon-
strate that Brcal|—/—) embryos have growth and mor-
phogenetic defects before the onset of gastrulation and
die before E8.5. To test whether the Brcal(—/—} em-
bryos between E5.5 and E6.5 remain alive, we injected
5-bromo-2’-deoxyuridine (BrdU] (100 pg/gram body
weight) intraperitoneally into heterozygous pregnant fe-
males 1 hr before sacrifice. The embryos were fixed, sec-
tioned, and subjected to immunostaining with anti-BrdU
antibody. The Brcal(~/-) embryos were found to in-
corporate BrdU, indicating that the mutant embryos syn-
thesize DNA (Fig. 5C,D). These results suggest that the
cells are still alive, although the embryos are underde-
veloped. When we compared the percentage of BrdU-la-
beled cells of three genotypes (+/+, +/~,and —/—) at
E5.5-E6.5 {Fig. 5E), the wild-type and heterozygote em-
bryos had ~82%—-85% of their nuclei labeled, whereas
the homozygous mutant embryos had only 61%~63%.
On the other hand, when we compared apoptotic index
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obtained by TUNEL [terminal deoxynucleotide trans-
ferase TdT)-mediated dUTP-biotin nick end labeling] as-
says of wild-type and mutant embryos, no significant
difference was found {data not shown). These results in-
dicate that the overall growth and morphogenetic defect
in the Brcal{—/—) mutant embryos are, at least in part,
attributable to a decrease in the proliferation capability,
not an increase in apoptosis of embryonic cells.

Brcal({—/—) blastocysts have a growth disadvantage
in culture

Blastocyst outgrowth in an in vitro culture offers an al-
ternative method to study early postimplantational de-
velopment. Blastocysts (E3.5) from intercrosses between
Brcal{+ /~) mice were isolated by uterine flushing, and
photographed individually before and after in vitro cul-
ture. All 37 blastocysts examined were indistinguishable
{Fig. 6A,C,E,H), indicating that embryos homozygous for
the targeted mutation of Brcal were morphologically
normal before implantation. However, a disadvantage in
the outgrowth of homozygous embryos was noted after 5
days in culture. Whereas cultured blastocysts of each
genotype (+/+, +/—, and —/—) gave rise to adherent
sheets of trophoblastic giant cells, the Brcal{—/ —) blas-
tocysts showed impaired outgrowth of the inner cell
mass (Fig. 6F,G,L]). These results are consistent with the
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Figure 4. MD-PCR genotype analysis of littermate E4.5 em-
bryos from a Brcal heterozygote intercross. (A} Representative
images before (top) and after (bottom) microdissection. Arrow-
heads point to the area from which the embryo’s cells had been
dissected out for DNA isolation and PCR analysis. {B) Design of
primers for detection of exon 11 in the wild-type Brcal gene
(solid arrow), and those for the pgkneopA cassette (open arrow)
integrated into mouse genome by homologous recombination.
PCR products amplified from the DNA of microdissected em-
bryonic samples were resolved on a 4% NuSieve/SeaKem (3:1)
agarose gel in TAE buffer. Abbreviations: {pgk) phosphoglycer-
ate kinase I promoter; {neo) gene for neomycin resistance; (pA)
polyadenylation sequence of the bovine growth hormone gene.

in vivo observations of growth retardation in homozy-
gous embryos as described above.

Discussion

In humans, mutations of the BRCA1 gene are strongly
implicated in familial breast, ovarian, and perhaps other
types of cancer. One of the purposes in generating Brcal
mutant mice was to establish an in vivo model system to
study the genetic and/or environmental factors respon-
sible for the pathogenesis of these cancers. In concert
with Knudson’s “two-hit” theory of carcinogenesis
(Knudson 1971), germ-line mutation of one allele of the
BRCAT1 gene followed by loss of the other allele in so-
matic cells is currently a favored explanation for familial
breast and ovarian tumorigenesis. If human BRCAT and
mouse Brcal are functionally equivalent, Brcal{+/—)
mice should produce breast, ovarian, and/or other type
of cancers. Consistent with the results published previ-

Targeted mutation of the murine Brcal

ously {Gowen et al. 1996), neither virgin nor naturally
mated female Brcal{+/—) mice, up to 10 months of age,
showed any tumors or illness. However, we cannot rule
out at this time the possibility of a predisposition for
tumorigenesis in older animals.

The finding of one woman homozygous for the BRCA1
mutation (Boyd et al. 1995] led to the notion that BRCA1
is dispensable for human development and to the expec-
tation that Brcal( -/ —) mutant mice would be viable. In
contrast, the published and the current results demon-
strated that the Brcal gene has a crucial role during em-
bryonic development in mice, indicating either that an
absence of BRCA1 has different consequences in hu-
mans and mice or that the different mutations generated
in this large protein—in mice experimentally and in hu-
mans naturally—have dissected separate functions im-
portant for development and tumorigenesis.

Brcal{~/—) blastocysts appear to be normal. They
hatch, invade the uterine epithelium, and attach to the
basement membrane that separates the uterine stroma
and epithelium. In our experiments, the Brcal{—/—)
mutant phenotype is not apparent until after completion

E
8 e~
S 9
100 g? ]
-~ T E FE
& Ia I e
80 o
el [T e
g £
o 60
8
2
‘_‘40
T
2
T 20
]
0
E5.5 E6.5

Figure 5. Epiblast cells proliferation is retarded in Brcal{—/—)
mutant embryos. In vivo BrdU incorporation was described in
Materials and methods. {A-D) Transverse sections of uterine
decidua were immunostained with an anti-BrdU monoclonal
antibody. {A,B) Wild-type embryos; {C,D) Brcal{—/ -} embryos;
(A,C) E5.5 egg cylinders; {B,D) E6.5 egg cylinders. Arrows point
to BrdU-labeled cells (dark brown). Unlabeled nuclei appear
blue as a result of counterstaining with hematoxylin. (E] Histo-
gram summary of the percentage of BrdU-labeled cells of differ-
ent genotypes. (Solid bar) Brcal(+/+); (shaded bar) Brcal{+/
—; (open bar)Brcal(—/—). Numbers in parenthesis indicate the
number of embryos analyzed. Two-tailed P value (homozygote
mutant vs. wild-type/heterozygote} is <0.0001. Bar, 50 pm.
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Brca1(+/+) Brga1(-/-)

Figure 6. Outgrowths of wild-type and Brcal(—/-) blasto-
cysts in vitro. Wild-type blastocysts [4,C) and Brcal(—/ — ) blas-
tocysts {E,H) appear to be morphologically normal (arrows point
to inner cell mass). Representative example of wild-type (B,D)
and Brcal(—/ —) (F,I) blastocysts cultured for 5 days in vitro. G
and J are higher magnifications of F and I, respectively. Abbre-
viations: (en) endoderm; (icm) inner cell mass; (tg) trophoblast
giant cells. Bar, 10 pm.

of these steps in implantation. After implantation (E4.5),
but before gastrulation (E7.5), the inner cell mass of wild-
type embryos undergoes rapid proliferation that extends
into the blastocoel cavity to form a structure known as
the egg cylinder {Fig. 3A—C). The egg cylinder is initially
a double-layered structure that encloses a narrow lumen
termed the proamniotic cavity. The two layers consist of
an inner layer of ectoderm and an outer layer of endo-
derm cells (Kaufman 1992). In Brcal{—/—) mutant em-
bryos, the embryonic and extraembryonic tissues are
present but are severely retarded in growth. Although
the cells remain alive, the embryos are incapable of pro-
ceeding toward gastrulation (Fig. 3F-1 K—NJ. By E8.5, the
Brcal(—/—) concepti are resorbed completely. Because
maternal RNAs are typically degraded {Sawicki et al.
1981) and at least some embryonic de novo gene expres-
sion is required (Johnson 1981} after implantation, it is
not clear whether maternal Brecal can maintain the cell
viability until E7.5. Consistent with in vivo observa-
tions, the in vitro blastocyst outgrowth experiments also
showed a disadvantage in the growth of the Brcal{—/ -
inner cell mass (Fig. 6, suggesting that the Brcal is im-
portant for cell growth at this early embryonic stage.
The phenotype of Brcal{—/—)embryos described here
is similar to those of other mutant mice. The murine
evxl|—/—) mutant leads to embryonic malformations
after implantation but before gastrulation (Spyropoulos
and Capecchi 1994). Unlike Brcal{—/-) mutants,
evxl(—/—) mutants failed to differentiate into distinct
embryonic and extraembryonic tissues. Cells in evx1{—/
—) embryos do not establish proper communication be-
tween embryonic and extraembryonic tissues, which is
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critical for their further differentiation. The fgfr-1{—/—)
mouse mutant is also similar in terms of the timing of
embryonic demise. Unlike Brcal{—/—) mutants, how-
ever, fgfr-1{—/—] concepti do form egg cylinders, un-
dergo gastrulation, and generate mesoderm. In this in-
stance, embryonic lethality may be caused by the aber-
rant mesodermal patterning (Deng et al. 1994,
Yamaguchi et al. 1994). The embryos of the fug? {failure
to undergo gastrulation) mouse mutant seem to be the
closest to the Brcal(—/—) homozygotes with regard to
timing and the high degree of disorganization within the
embryo. Homozygous fugl mutant embryos also arrest
growth at the egg cylinder stage (E6.0) and are mostly
resorbed by E8.5 {DeGregori et al. 1994). Little is known
about the genes required for the differentiation of prim-
itive ectoderm and endoderm, the formation of the
proamniotic cavity, or the organization of the ectoderm
into an organized epithelium. The genetic evidence from
our results demonstrated that like fugl, Brcal may be
required for the organized development of the embryo at
the egg cylinder stage, or for subsequent gastrulation.
Whether Brcal interacts with fugl or other cellular fac-
tors in the control of early morphogenesis is unknown.

The developmental stage of embryonic death of the
Brcal(—/—) mutant in our experiments was different
from that published by Gowen et al. {1996). In their re-
port, mice lacking a functional Brcal gene exhibited
neural tube defects at E9.5. These neural defects were
proposed to be the major cause of embryonic lethality
between E10 and E13, which is later than what we ob-
served here. To confirm that the mutant phenotype was
concurrent with loss of the wild-type Brcal gene, we
genotyped all sectioned decidua by MD-PCR and ob-
tained a complete correlation between the mutant geno-
type and the phenotype. Although the discrepancy be-
tween these two observations remains to be resolved, the
phenotypic variation of the two Brcal mutations is prob-
ably not attributable to different genetic backgrounds be-
cause both mutations were analyzed on the hybrid 129/
C57BL backgrounds.

Interestingly, the phenotypes of three MRF4 homozy-
gous mutants varied from perinatal death to viable with
only minor abnormalities (Braun and Arnold 1995;
Patapoutian et al. 1995; Zhang et al. 1995). One potential
explanation for these phenotypic variations is that the
regulation of a neighboring gene, named Myf5, was in-
terfered with by two of the constructs but not by the
other (Olson et al. 1996). In our targeting construct, a
184-bp EcoRI fragment within the 5’ end of exon 11 was
deleted and replaced with the pgkneopA cassette. In
their construct, Gowen et al. (1996} deleted a 1.7-kb
Xhol-Kpnl genomic fragment that contains 0.1 kb of in-
tron 10 in addition to 1.6 kb of exon 11. Although we do
not know whether either of the insertion/deletion ma-
nipulations of Brcal affects the expression of other genes
surrounding exon 11 of Brcal, removal of a splicing ac-
ceptor site in the latter construct may generate different
splicing variants of Brcal. Nevertheless, the evidence
together strongly supports the notion that Brcal is
needed for mouse early embryonic development.




Recently, we isolated two Brcal-interacting proteins
that are structurally similar to transcription factors. One
is a LIM-type homeo box-containing protein and the
other is a zinc-finger motif-containing protein (S. Li and
W.-H. Lee, unpubl.]. Both classes of proteins are known
to participate in the control of development. Qur hy-
pothesis is that Brcal, at least in the mouse, somehow
participates in regulating the spatial-temporal organiza-
tion of the developing embryo through interactions with
these, and perhaps other, developmental control pro-
teins. This exciting possibility is currently under inves-
tigation.

Materials and methods
Construction of targeting vectors

The mouse Brcal gene was isolated by screening a ADASH
mouse genomic library derived from the 129/Sv mouse strain
(provided by Dr. Tom Doectschman, University of Cincinnati,
OH), using a 3.5-kb fragment of human BRCAI exon 11 as a
probe. Positive clones were subcloned into the pBluescript SK
vector (Stratagene). Restriction mapping and DNA sequencing
of the intron 10-exon 11 junction yielded the restriction map
shown in Figure 1A. To generate a targeting vector, an 8.0-kb
HindIll-BamHI fragment of the mouse Brcal gene containing
exon 11 was subcloned into the pBluescript SK vector (Strata-
gene), yielding the plasmid pHB-8. The HindlIll site was then
opened and changed to BamHI by ligation with a BamHI linker.
A 184-bp EcoRI fragment, corresponding to amino acid residues
300-361, was deleted and replaced with a pgkneopA cassette
(Soriano et al. 1991) in both the sense and antisense orientation
[designated as Brcal-neofs) and Brcal-neolo), respectively].
These two constructs were then subcloned into the p2TK vector
(Lee et al. 1992] to produce two final targeting vectors desig-
nated as Brcal-ko(s] and Brcal-ko{o}, respectively.

Electroporation and selection of ES cells

E14.1 ES {Handyside et al. 1989) cells derived from mouse strain
129/0la were maintained on a monolayer of mitomycin C-in-
activated, neomycin-resistant, fibroblast feeder cells, as de-
scribed previously (Robertson 1987). Thirty micrograms of Sall-
linearized targeting vector was electroporated into a suspension
of trypsinized cells (7x10°) in Dulbecco’s modified Eagle me-
dium (DMEM) (GIBCO/BRL) using a Bio-Rad gene pulser (250
wE, 800 V). Cells were then incubated at room temperature for
5 min, plated, and allowed to recover for 24 hr before selection
in medium containing G418 (250 pg/ml) and FIAU {1 pm). Cells
were fed daily, and after 8 days the resulting double-resistant ES
clones were individually picked and transferred onto 24-well
plates with feeders. On the following day, each clone was
trypsinized and divided in half. One half was frozen [ —80°C),
whereas the other half was plated into a 12-well plate without
feeder cells and used to prepare DNA.

Analysis of targeted ES cell clones

The analysis of DNA from ES cell clones was described previ-
ously (Laird et al. 1991). In brief, cells in a 12-well plate were
washed with PBS, lysed in 0.5 ml of lysis buffer containing 50
mM Tris-HCI (pH 7.5}, 100 mm NaCl, 10 mm EDTA, 0.5% SDS,
and 0.1 mg/ml of proteinase K, and transferred into a 1.5-ml
Eppendorf tube. After 5 hr of incubation at 55°C with shaking,
an equal volume of isopropanol was added, and DNA was al-
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lowed to precipitate by gentle inversion of the tube several
times. The supernatant was discarded, and the DNA was
washed with 70% ethanol, air-dried, and resuspended in dis-
tilled water. DNA (15 pg) was digested in 30 pl of a restriction
enzyme mixture (1x restriction buffer, 100 mg/ml of bovine
serum albumin (BSA), 50 png/ml of RNaseA, and 15 units of
HindIll) overnight at 37°C. Electrophoresis and Southern blot-
ting of the digested DNA was performed as described previously
(Sambrook et al. 1989). A 3*P-labeled 1.1-kb BamHI fragment,
which lies 3’ of the genomic sequence in the targeting vector,
identified bands of 10.0 and 3.0 kb, or 10.0 and 4.6 kb, corre-
sponding to germ-line wild-type Brcal and homologous recom-
binant bands. Targeted clones were recovered from the 24-well
plates and expanded in 6-well plates. DNA from these clones
was then digested with BamHI and Sall and probed with a 5’
flanking probe. In addition, a neo probe was used to confirm that
only homologous recombination had occurred in targeted
clones rather than a random integration event.

Generation of mice carrying the disrupted Breal allele

Two different targeted ES clones, Brcal—ko(o) 3 and Brcal—ko(s)
291, were used to generate chimeric mice according to proce-
dures described previously (Bradley 1987}. C57BL/6] blastocysts
injected with 10-12 ES cells were implanted into pseudopreg-
nant F, (CBAXC57BL/6) foster mothers (The Jackson Labora-
tory, Bar Harbor, ME|]. Chimeric mice, identified by agouti coat
color, were mated with C57BL/6] mice. Offspring with agouti
coat color were tested for the presence of the targeted locus by
PCR and Southern blotting analysis. Heterozygotes were inter-
bred, and PCR analysis was used to distinguish between off-
spring with zero, one, or two copies of the mutant gene.

DNA isolation, PCR genotyping, and histology of embryos
from Brcal +/ — intercrosses

F, mice heterozygous for the Brcal mutant allele were mated,
and toes were cut from the F, progeny for genotyping analysis.
For timed pregnancies, the day on which a vaginal plug was
detected was considered to be E0.5. At desired time points, the
embryos were dissected from maternal decidua for further anal-
ysis. For embryos older than E8.5, the visceral yolk sac was
collected and subjected to genotype determination by PCR.
DNA from toes, yolk sacs, and blastocysts was prepared and
analyzed by PCR as follows. Tissues were lysed at 55°C in 40 pl
of lysis buffer [10 mm Tris-HCI (pH 8.3}, 50 mm KCl, 2.5 mm
MgCl,, 0.1 mg/ml of gelatin, 0.45% NP-40, 0.45% Tween 20,
and 60 pg/ml of proteinase K| for 1 hr. Samples were then boiled
for 10 min and cooled on ice. Seven microliters of proteinase
K-digested cell lysate was mixed with 18 pl of PCR cocktail
solution containing 50 mm KCl, 1.5 mm MgCl,, 10 mm Tris-HCl
(pH 8.3), 0.001% gelatin, 200 M each of the four dNTPs, 0.4 pm
of each primer, and 0.5 unit of recombinant Taq polymerase
(AmpliTaq; Perkin-Elmer). The mixture was then overlaid with
20 pl of light mineral oil. PCR was performed for 35 cycles using
a pTC-100 thermal controller (M] Research, Inc.) using the fol-
lowing reaction conditions: Denaturing temperature of 94°C for
30 sec; annealing temperature of 65°C for 1 min; and elongation
temperature of 72°C for 1 min. The resulting PCR products were
resolved on 4% NuSieve/SeaKem (3:1; FMC) composite gel in
TAE buffer at 80 V for 30 min and visualized with UV light after
staining with ethidium bromide. For the targeted allele, a 236-
bp product was generated using a sense oligonucleotide, 5'-
TGATATTGCTGAAGAGCTTGGCGGC-3' and an antisense
oligonucleotide, 5-TGGGAGTGGCACCTTCCAGGGTCAA-
3’, within the pgkneopA cassette. To detect the wild-type allele,
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a 150-bp product was generated using a sense oligonucleotide,
5-AACAGCCTGGCATAGCAGTGAGCCA-3’, and antisense
oligonucleotide, 5-TTGCGGGTGAGTCCACTTCTCTCTA-
3' within exon 11 of Brcal. For embryos between E4.5 and E7.5,
entire uteri were fixed in 4% paraformaldehyde overnight at
4°C. Uterine horns were excised and dehydrated through a
graded ethanol series, cleared in chloroform, and then infil-
trated and embedded in Paraplast X-tra (Polysciences). Sections
(4 wm) were collected on Superfrost/Plus microscope slides
(Fisher Scientific), stained with Mayer’s hematoxylin/eosin,
and mounted in Canada Balsam (Fisher Scientific). Images were
recorded using a C5810 Color Camera (Hamamatsu) and
cropped using a Macintosh Power PC and Adobe Photoshop
Software. The slides with sections were demounted in xylene
followed by soaking in 100% ethanol and air-dried. Embryonic
tissues were microdissected and collected into glass capillaries
(~50 pm diam.} mounted on a micromanipulator (Leitz), under
400-fold magnification, and transferred into a 0.5-ml Eppendorf
tube containing 7 pl of lysis buffer under 20 pl of light mineral
oil. Cells were lysed at 55°C for 1 hr. The proteinase K was then
inactivated by incubation at 95°C for 10 min, and the mixture
was then cooled on ice. The PCR cocktail solution {18 wl) was
then added into the tube and mixed with the DNA sample by
centrifugation at 12,000 rpm for 1 min. PCR was performed for
50 cycles.

In vitro blastocyst culture

Blastocyst cultures followed those described previously (Hsu
1979), with some modifications. Briefly, blastocysts were iso-
lated from females at E3.5 and cultured for 5 days on tissue
culture plates in DMEM plus 20% fetal bovine serum, supple-
mented with BSA (4 mg/ml}, glutamine, antibiotics, and 2-mer-
captoethanol (0.1 mM). Blastocyst outgrowths were inspected
daily and photographed to monitor their development. Finally,
they were lysed and genotyped by PCR.

Detection of BrdU incorporation by immunohistochemistry

At the desired time points, BrdU {100 pg/gram body weight)
(Sigma) was injected intraperitoneally into pregnant females.
One hour later, the entire uterus was dissected and fixed in 4%
paraformaldehyde overnight at 4°C. The individual decidua
were embedded, sectioned, and subjected to further analysis.
Immunohistochemical detection of BrdU incorporation was
performed as described previously (Lee et al. 1994). The percent-
age of cells incorporating BrdU in each embryo was determined
by counting >50 cells in representative histological sections.
Statistical comparisons were performed by two-tailed ANOVA
using In Stat software (Graph Pad, San Diego, CA)
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Summary

The BRCAI gene product is a nuclear phosphoprotein that is aberrantly localized in
the cytoplasm of most breast cancer cells. In an attempt to elucidate the potential
mechanism for the nuclear transport of BRCA1 protein, three regions of highly charged,
basic residues, SBKRKRRP’ 08, SSPKKNRLRRKS®” and ®'KKKKYN®* were identified as
potential nuclear localization signals [NLS]. These three regions were subsequently
mutated to *“KLP*®, "KLS®, and *'KLN®® respectively. Wild-type and mutated
proteins were tagged with the flag-epitope, expressed in human DUI145 cells and
detected with the M2 monoclonal antibody. In DU145 cells, the KLP mutant completely
fails to localize in nuclei, whereas the KLS mutant is mostly cytoplasmic with occasional
nuclear localization. The KLN protein is always located in nuclei. Consistently,
hSRP1a (importin-¢t), a component of the NLS receptor complex, was identified in a
yeast two-hybrid screen using BRCALI as the bait. The specificity of the intefaction
between BRCAI and importin-o0 was further demonstrated by showing that the
SBKRKRRP™® and ““PKKNRLRRKS®" regions, but not 65 'KKKKYN®S are critical for
this interaction. To determine if the cytoplasmic mislocation of endogenous BRCAI in
breast cancer cells is due to a deficiency of the cells, wild-type BRCAI protein tagged
with the flag-epitope was ectopically expressed in six breast cancer cell lines. The

analysis demonstrated that, in all six, this protein localized in the cytoplasm of these
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cells. In contrast, expression of the construct in four non-breast cancer cell lines
resulted in nuclear localization. These data support the possibility that the mislocation
of the BRCALI protein in breast cancer cells may be due to a defect in the cellular

machinery involved in the NLS-receptor-mediated pathway of nuclear import.
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Introduction

BRCA1, located on chromosome 17q21, was cloned and shown to be responsible for
about 50% of familial breast and ovarian cancers (1). The protein encoded by this gene
contains a zinc finger motif and an acidic block of residues (1). These features suggest
that BRCA1 may function as a transcription factor, although there is no experimental
evidence so far to support this sﬁpposition. Similarly, the precise biological function of
BRCALI protein remains unclear. There are several lines of circumstantial evidence,
however, suggesting that BRCA1 may have a role in cellular growth and differentiation.
First, BRCA1 mRNA is highly expressed in tissues where cells are rapidly proliferating
and differentiating (2,3). Second, homozygous deletion of the BRCAI gene in mice
causes lethality in early embryogenesis due to the retardation of cell growth and
malformation of the embryo (4-6). Third, the expression of both BRCA1 mRNA and
protein is increased following cell cycle progression. Moreover, phosphorylation of the
BRCAL protein by cyclin-dependent kinases is also positively regulated during the cell

cycle (7).

As a tumor suppressor gene, it is unusual that mutations in BRCA! are clearly linked
to inherited breast and ovarian cancers, but are rarely found in sporadic tumors (1,8,9).

This result has raised questions concerning the authenticity of the BRCAI gene as a
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breast tumor suppressor (10). However, inactivation of tumor suppressor proteins can
be independent of their genetic mutations. For example, wild-type p53 protein has also
been found mislocated in the cytoplasm of breast cancer cells, while mutant p53 remains
in the nucleus (11). These studies suggested the existence of multiple pathways for the
inactivation of p53 function in breast cancer cells. It is therefore possible that BRCAl
may be functionally inactivated by its mislocation from the nuclear to cytoplasmic

compartment in sporadic breast cancer cells.

Nuclear transport is a complicated process involving multiple factors. Being a large
molecule, it is likely that the BRCA1 protein is actively translocated from the cytoplasm
to the nucleus by the NLS-receptor-mediated-transport system [Reviewed in (12,13)].
The direct import of karyophilic proteins through the nuclear pore complex requires
energy (14,15) and an NLS located in the transport substrate (16,17) to which a cytosolic
receptor complex, importin-ot and importin-f, binds (18,19). A GTP-binding protein,
RAN, mediates the energy-dependent translocation of the substrate-receptor complex
through the nuclear pore complex (20). After translocation, importin-f dissociates from
the complex in the vicinity of the inner aspect of the nuclear envelope while importin-o
accompanies the substrate to its sites of function (21). Any defect in this

transportation system could lead to a failure in the translocation of BRCAI to the
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nucleus. However, it is very unlikely that the cells could survive a major deficit in

nuclear transport.

In contradiction to the findings of ourselves (22,23) and others (24), it has been
reported that BRCALI is a secreted protein (25). Since the subcellular location of
proteins is a fundamental aspect of their function, it is important to solidify the data
regarding the location of BRCA1 in normal and cancer cells. In an attempt to address
these questions, we initiated experiments to investigate the nuclear transport of the
BRCAL protein by ascertaining the identity of its functional NLS motifs, by identifying
proteins with which it interacts, and by extending the investigation of its subcellular
distribution in breast cancer cells. Our results indicate that there are two functional
nuclear localizatidn sequences in the BRCAl protein that interact with hSRP1o
[importin-0. or karyopherin-o (18,26,27)]. Furthermore, ectopically expressed wild-type
BRCAL protein is located in nuclei of normal and non-breast tumor cell lines, but is

detected in the cytoplasm of all breast cancer cell lines tested.
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Experimental Procedures

Cell culture and DNA _transfections. Human cell lines DU145 [prostate cancer], T24
[bladder cancer], T47D, ZR75, MB231, MB468, MDA330, MCF7 [breast cancer], HBL100
[normal breast epithelial cells immortilized with SV40 ] and CV1 [monkey kidney cell line]
were grown at 37°C in a humidified 10% CO,-containing atmosphere in Dulbecco’s
modified Eagle’s medium [DMEM, Gibco] supplemented with 10% heat inactivated fetal
calf serum [Flow Laboratories] on plastic surfaces. Each 10 cm dish of cells grown to
60% confluency was transfected with 10 pg of plasmid DNA wusing the calcium
phosphate method (28). The calcium phosphate precipitate was left in the culture
medium for six to eight hours. At that time the medium was drained and the cells were

refed with fresh medium.

NLS Mutagenesis. To introduce mutations into the three putative nuclear
localization sequences of BRCAI, a PCR-based strategy was used. Briefly, the
following external and internal primers with HindlIII restriction sites [underlined, below]
were used to create in-frame deletions of each NLS sequence, replacing the deletion
with a single leucine residue. The external primers used for all of the NLS mutations
were 5’-GATTTGAACACCACTGAGAAGCGTGCA [733 to 759 of BRCA1 ¢cDNA] and

5’-CTTTAAGGACCCAGAGTGGGCAGAGAA [2679 to 2653]. For the KLP mutation the
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following internal primers were used. 1A: 5°-
CCTTTTAAGCTTTAATTTATTTGTGAGGGGACGCTC [1506 to 1483] and 1B 5’-
CCTTAAAGCTTCCTACATCAGGCCTTCATCCTGA [1522 to 1544). For the KLS
mutation  the  following internal primers were  used. 2A 5-
CCTCCCAAGCTTAGGTGCTTTTGAATTGTGGATATTT [1818-1794] and 2B 5’-
CCTCCCAAGCTTTCTTCTACCAGGCATATTCATGCGC [1843 to 1867]. The KIN
mutation was generated with the following internal primers. 3A 5-
CCTCCCAAGCTTTATCTCTTCACTGCTAGAACAACT [1950 to 1927] and 3B 5°-
CCTCCCAAGCTTAACCAAATGCCAGTCAGGCACAGC [1966 to 1989]. Plasmid BSK-
BRCA1a that contains a full-length BRCA1 cDNA (7) was used as the template for PCR
amplifications using each pair of internal and external primers. The resulting DNA
fragments were gel purified and cut with 4f/Il and HindIIl for the N-terminal cDNA
fragments, and with Kpnl and HindIII for the C-terminal cDNA fragments. The Af/II and
HindIIl restriction sites are within the BRCA1l DNA sequence downstream and
upstream of each 5’ and 3’ external primers, respectively. The N- and C-terminal
fragments were then used to replace the Aflll/Kpnl fragment in pBSK-BRCAla.
Ligation of the HindllI site at each of the NLS sites generated in-frame deletions, with
the addition of a CTT codon for leucine. The AﬂII/KpnI fragments from pBSK-BRCAI-

KLP, KLS, and KLN were then used to replace a similar fragment in the expression
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vector pCEP-flag-BRCA1 (23) to generate pCEP-flag-BRCAlk.p, pCEP-flag-BRCAly s

and pCEP-flag-BRCA 1.

Transient Expression and Immunostaining. Cells were transfected with pCEP-flag-
BRCAIlgp, pCEP-flag-BRCAly s or pCEP-flag-BRCAlyy for expression of the flag-
tagged NLS mutated proteins and pCEP-flag-BRCAL for flag-tagged wild-type BRCAL.
Thirty hours after transfection, the cells were fixed and indirectly immunostained with
the anti-flag M2 mAb [Kodak, Rochester, N.Y.] using previously described procedures
(29). The microscopic images were acquired using a Hammamatsu Color Chilled 3CCD
camera attached to a Zeiss Axiophot fluorescence microscope. The image files were

digitally processed for presentation using Adobe Photoshop.

Western Blots. Thirty hours after transfection, the cells were lysed with 250 lysis
buffer (7) and denatured by boiling in sample buffer for five minutes. After SDS/PAGE,
ﬂag-tagged BRCALI protein was detected in Western blots using the anti-flag M2 mAb

and endogenous BRCA1 was detected with the monoclonal antibody 6B4 (23).

Identification of an activation domain within BRCAI. The identification of an
activation domain in BRCAI was done by a yeast one-hybrid assay in S. cerevisiae

strain Y153, which contains a lacZ reporter under the control of a promoter with GAL4-
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binding sites in the upstream activating sequence of GAL1 [UASg] (30). The BRCAI
deletion constructs in Figure 2 were obtained by translationally fusing the DNA-
binding domain of GAL4 (31,32) in pAS (30) to cDNA fragments obtained from pBSK-
BRCAla (7) using convenient restrictions sites.  [-galactosidase activity was
determined by colony color and quantitated using chlorophenyl-red-b-D-

galactopyranoside [CPRG] in assays as previously described (30).

Yeast two-hybrid screen. A cDNA library prepared from human B lymphocytes was
screened as previously described (30). The protein from pAS-BRCA3.5 [Figure 2]
served as the “bait” which consisted of amino acids 1 to 1142 of BRCA1 fused to the

GAL4 DNA-binding domain (31,32) in plasmid pAS (30).

Interactions between the NLS of BRCAI and importin-o. Yeast strain Y153 was co-
transfected with pAS-BRCA3.5, pAS-KLP, pAS-KLS or pAS-KLN and pACT-
importing,g.sx [Figure 3A] and assayed for -galactosidase activity as described (30).
For importin-o. expression, a cDNA encoding amino acids 220 to 529 was fused to the
activation domain of GAL4 (31,32) in pACT (30). pAS-KLP, pAS-KLS and pAS-KLN
were constructed by fusing BRCAl; 14 cDNAs from pBSK-BRCA1-KLP, KLS, and
KLN to the DNA-binding domain of GAL4 in pAS (30). B-galactosidase activity was

assayed as described above.

10
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Results

Determination of a nuclear Localization Sequence in BRCAI. To initiate the study
of BRCAL1 nuclear transport, we began with the identification of its NLS motif[s]. By
analysis of the amino acid sequence, three possible nuclear localization sequences with
highly charged, basic residues were found in BRCA1, 503-KRKRRP-508, 606-
PKKNRLRRKS-615 and 651-KKKKYN-656 [Figure 1A]. To determine if these
sequences are functional in nuclear localization, PCR-based mutagenesis [See Methods]
was performed that generated in-frame deletions, and replacement with a single leucine
residue at each of the sites [Figure 1A]. The wild-type and mutated BRCAI proteins
were tagged by fusion with the flag epitope in a pCEP based plasmid. The expression of
these tagged proteins in human DU145 cells was done by transient transfection, and the
proteins were detected by immunoblotting with either anti-BRCA1 mAb 6B4 [Figure 1B,
lanes 1-5] or anti-flag M2 mAbD [Figure 1B-lanes 6-10]. As shown in Figure 1-B, anti-flag
M2 mAb detected only ectopically expressed flag-tagged BRCAI1, which co-migrates
with endogenous BRCAI as a 220 kDa protein [lanes 1-5] in each population of
transfected cells [lanes 7-10] but not in untransfected cells [lane 6]. This result
indicated that all the plasmid constructs transfected into DU145 cells were capable of

expressing flag-tagged BRCA1 proteins, which were either wild-type or mutated.

11
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The subcellular localization of wild-type and each of the mutated proteins was
determined by immunostaining with the anti-flag M2 mAb. Consistent with its previous
localization (22), wild-type flag-tagged BRCA1 protein is located in the nucleus [Figure
1C-a and b]. The 651-KI.N-656 mutant [Figure 1C-g and h] is also nuclear, indicating
that the residues 651-KKKKYN-656 are not important for nuclear transport of the flag-
BRCAIlgy protein. In contrast, the 503-KLP-508 and 607-KLS-615 mutations both
resulted in cytoplasmic localization of flag-BRCAlyp and flag-BRCAlys proteins
[Figure 1C-c and d, -e and f, respectively], indicating that both of these stretches of
basic residues are critical for nuclear import. It was noted that flag-BRCAlg;s, when
overexpressed, can, in some instances, localize in the nucleus. This is illustrated in
Figure 1C, panels e and f, where two highly expressing cells are adjacent to each other,
one shows cytoplasmic staining and the other nuclear [arrow heads]. However, flag-

tagged BRCA I p was never observed in the nucleus.

Identification of BRCAI-Interacting Proteins. Nuclear transport of BRCA1 clearly
requires interactions with other cellular proteins. We elected to use the yeast two-
hybrid method to identify and clone genes encoding BRCA 1-interacting proteins. Since
BRCAI1 has been proposed to be a transcription factor (1) it may therefore have
transactivation activity. The presence of such activity would confound a two-hybrid

assay. To functionally identify potential transactivation domains in BRCAI1, various

12
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domains of BRCA1 protein were fused in-frame with the DNA-binding domain of GALA
[Figure 2] in plasmid pAS (30). If these fusion proteins contain an activation domain,
they will activate the GAIA4 UASg-responsive [-galactosidase reporter (30) after
transfection into the Y153 strain. Through this analysis we defined a strong activation
domain located between amino acids 1142 to 1646, Figure 2. This activation domain was
deleted in BRCA3.5 [Figure 2] which only contains amino acid 1 to 1142 of BRCAI.
BRCA3.5 was then fused to the GAL4 DNA-binding domain of pAS vector as the bait
for screening BRCA 1-interacting proteins as previously described (30). Four different
clones were isolated and sequenced. When compared to currently available GenBank,
we found that one is novel, one has homology to an uncharacterized zinc-finger
domain-containing protein, and two bear sequence homology to previously cloned
cDNAs [Table 1]. Interestingly, the sequence of hBRAP21 is identical to that of the
nuclear localization signal receptor hSRP1lo (26), also known as importin-ou (18) or

karyopherin-o. (27).

Interaction of importin-a with BRCAI. To investigate the potential interaction of
BRCA1 with importin-o. and to further confirm the functional NLS of BRCAI, we tested
the specificity of the interaction of BRCAIl and importin-ot using the yeast two-hybrid
method. To do this, either wild-type BRCA3.5 from amino acid 1 to 1142, or the same

region containing the mutated NLS sequences [KLP, KLS and KLN, See Figure 1A] was

13
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translationally fused to the DNA-binding domain of GAL4 in the pAS expression vector
[Figure 3A]. In addition, the region of importin-o. from amino acid 220 to 529, which is
known to interact with BRCA3.5, was fused to the activation domain of GALA in pACT
[Figure 3A](30). The various BRCAL1 proteins were co-expressed with the importin-o. in
the Y153 cells. A strong interaction between importin-o¢ with BRCA3.5 or the KLN
mutant was observed by the generation of blue colonies and an increase in [-
galactosidase activity about 100 fold over that of the negative control, untransfected
Y153 cells [Figure 3-B]. These results are consistent with the observation that flag-
BRCAIx is localized in nuclei [Figure 1C, panels g and h]. However, the KLP mutant
failed to interact with importin-o. and resulted in white colonies and no increase of f-
galactosidase activity over background, Figure 3-B. Interestingly, a ten-fold increase in
B-galactosidase activity over background was observed with the KLS mutant [Figure 3-
B]. As noted earlier, this increase in activity is consistent with the immunostaining data
for the BRCAI1 protein containing this mutation, which showed occasional nuclear

localization when overexpressed [Figure 1C, panels e and f].

Cytoplasmic Localization of Ectopically Expressed BRCAI in Breast Cancer Cells.
Previously, we transfected an expression plasmid containing flag-tagged BRCA1 into
two breast cancer cell lines, T47D and MB468, and one immortalized non-breast

epithelial cell line, HBL100. The flag-tagged BRCA1 protein was found in the cytoplasm
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of the T47D and MB468 cells and the nucleus of HBL100 cells by immunostaining with
anti-flag M2 monoclonal antibody. To confirm this observation and to verify the
expression of full-length flag-tagged BRCA1 protein, we repeated this experiment using
four non-breast cancer and six breast cancer cell lines listed in Table 2. As shown in
Figure 4 [summarized in Table 2], nuclear localization of flag-BRCA1 is observed in
normal monkey kidney cells CV1, [Figure 4-a-b] and in DU145, T24, and HBL100 cells
[Table 2]. In contrast, cytoplasmic localization of this protein is seen in ZR75 and
MB231 [Figure 4, panels c, d and e, f, respectively], and in MB468, MDA330 and MCF7
breast tumor cells [Table 2]. These data suggest an altered transport or retention system

for the BRCA1 protein in breast cancer cells.
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Discussion

BRCAL is a nuclear protein. The identification of two regions of charged, basic
amino acids between 503 to 508, and 606 to 615 that are both crucial for efficient nuclear
transport of the BRCAI protein further supports this notion. The distance between
these two motifs is much greater than the ten amino acids separating the bipartite sites
of nucleoplasmin (33). The structure and function of the NLSs in BRCAL is similar to
other nuclear proteins in which two NLSs are more widely spaced such as those in the
polyoma large T antigen (34), influenza A virus NS1 protein ‘(35) and adenovirus DNA-
binding protein (36). While we cannot rule out the possibility that other sequences are
also required for translocation of BRCA1 from the cytoplasm to the nucleus, the NLS at
503-508 is essential for this process. This observation was supported by results
showing that mutation of the NLS at 503-508 in BRCA1 completely abolished its
interactions with importin-a. The NLS at 606-615 in BRCA1 is less critical because
mutation of this NLS did not completely diminish the nuclear import of BRCA1. Our
results that BRCAL1 is a nuclear protein with a functional NLS are at odds with the report
indicating that the protein is membrane-bound, and secreted (25). Such a discrepancy is
puzzling but may be explained by cross-reactivity of the peptide antisera to the EGF

receptor (37).

16




M6-5160
(Revised)

Using mouse polyclonal antibodies specific for the BRCA1 protein we have
consistently found BRCAL1 to be a 220 kDa nuclear protein that is aberrantly located in
the cytoplasm of advanced breast cancer cells (22,23). However, Scully, et al., (24)
reported that the 220 kDa BRCAL1 protein remains in the nucleus of some breast cancer
cell lines. Although the precise reason for this discrepancy is unclear, one cannot
exclude the possibility of less specific antibodies, potential immunostaining artifacts, or
both. By ectopically expressing epitope-tagged BRCA1 protein and using the specific
anti-flag M2 monoclonal antibody we have circumvented the difficulties in obtaining
highly-specific antibédies against BRCA1. Through this completely different approach,
wild-type flag-tagged BRCA1 expressed in breast cancer cells remains in the cytoplasm.
This result further suggests that its mislocation in breast cancer cells is not due to
mutations of BRCA1 itself. Rather the aberrant localization seems to be the result of
alterations in the cells, perhaps at the level of nuclear transport of BRCAL.

In this regard, the demonstration here that BRCAI1 interacts with the importin-o
subunit of the nuclear transport receptor complex could be an important clue. However,
if there is a problem with the importin-¢. subunit or the importin-substrate complex, why
is it manifested in breast epithelial cells? Does this indicate an unsuspected specificity
of importin-o for BRCA1? And, does the defect in the function of BRCAL reside in the
cytoplasm or nucleus? Once translocation across the nuclear pore complex occurs,

importin-o. is reported to accompany the transport substrate to its areas of nuclear
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function (21). If there is a problem with BRCA1 dissociating from importin-ot in the
nucleus, perhaps BRCALI protein is immediately exported from the nucleus, resulting in
the appearance of cytoplasmic localization. Co-localization experiments similar to those
in Gorlich, et al., (21) using normal and breast cancer cells might address this possibility.

An alternative possibility is that, in breast cancer cells, there is a problem in the
regulation of the nuclear transport of BRCA1. The known mechanisms for regulating
nuclear translocation [Reviewed in (12,13)] are: [a] phosphorylation/dephosphorylation,
e.g., c-rel and v-jun and cell-cycle regulated proteins such as cyclin B/Cdk complex and
Pendulin; [b] cytoplasmic retention by masking of the NLSs as seen in dorsal, NFkB,
the glucocorticoid receptor and the periodicity protein; or [c] more general regulation at
the level of the nuclear pore complex. Perturbations in the gene products in any of
these regulatory systems could potentially result in cytoplasmic localization of BRCA1
in breast epithelial cells. The possibility that some of the other BRCAIl-interacting
proteins identified in the two-hybrid screen could have this kind of role in breast cancer
cells is being investigated.

Whatever the pathogenic alteration in breast cancer cells is, it is not, at this time,
obvious whether the mislocation of BRCAI is the cause of or the result of the tumor
phenotype. Interestingly, there are other reports of mislocation to the cytoplasm of a
nuclear tumor suppressor protein in breast and other types of cancer cells. Of 27 breast

cancer cases examined, 37% demonstrated cytoplasmic staining for p53, which by
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sequencing was- revealed to be wild-type (11). In another study, wild-type p53 was
found located in the cytoplasm of human cervical carcinoma cell lines with integrated
human papillomavirus-18 or 16 (38). Both of these studies suggest that the tumor
suppressor function of normal p53 can, in some cases, be inactivated by cytoplasmic
mislocation (11,38). These data are similar to our observations for BRCAI and seem to
suggest a global alteration of subcellular compartmentation in breast cancer cells. If
this is the case, then BRCAI and p53 along with, perhaps, other nuclear regulatory
proteins may be retained in the cytoplasm of these cells, the composite effect of which

may contribute to their tumorigenesis.
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FIGURE LEGENDS

Figure 1. Nuclear localization sequence in BRCAI. A. Schematic of the epitope [flag]
-tagged BRCAL protein showing the approximate location and sequence of the three
putative NLS sequence motifs. Also shown are the sequence and coordinates of the
mutations that were introduced into the BRCA1 protein by PCR mutagenesis [described
in Materials and Methods]. B. Expression of full-length epitope-tagged wild-type and
mutated BRCALI proteins. BRCAI proteins were detected in immunoblots developed
with the anti-BRCA1 6B4 mAb [Lanes 1-5] or the anti-flag M2 mAb [Lanes 6-10]. The
arrow shows the position of the 220 kDa endogenous and exogenous BRCAI proteins.
C. DUI14S5 cells transfected with pCEP-flag-BRCAL [a, b], pCEP-flag-BRCAIlg;p [c, d]
pCEP-flag-BRCAlys [e, f] and pCEP-flag-BRCAlxn [g, h], were processed for
immunostaining with the anti-flag M2 mAb [panels b, d, fand h]. Panels a, ¢, e and g
show DAPI staining of the same cells to indicate the location of the nucleus. As shown
in panel £, high expression of the flag-tagged BRCAlkg protéin can, in a small number
of cases, result in nuclear staining of the DU145 cells [arrow heads]. The microscopic

images were acquired as described in Material and Methods.

Figure 2. Identification of transactivation domain of the BRCAI protein. The top

diagram illustrates the BRCAI protein and indicates the position of the zinc finger,
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putative NLSs and the acidic domain. Also shown are the truncated BRCA1 cDNAs
[indicéted by coordinates on each line] translationally fused to the DNA-binding
domain of GALA4 (31,32) [hatched open boxes] in the pAS plasmid (30). Each plasmid
[indicated to the left of each construct] was expressed in the Y153 strain of yeast (30).

Shown are the colony colors and B-galactosidase activities which were measured as

described in Materials and Methods.

Figure 3. Importin-o interactions with wild-type and mutant BRCAI with nuclear
localization sequence deletions. A. Diagrams of the constructs used in the yeast two-
hybrid assays. pAS-BRCA3.5 was described previously [Figure 2]. pAS-KLP, KLS,
and KLN are shown with the coordinates for each of the mutations in BRCA1 which

was fused to the DNA-binding domain [DBD] of GAL4 in pAS (30). Also illustrated is
pACT-importin containing the 229 to 529 amino acid region of importin-o. [stippled
rectangle] fused to the transactivation domain of GALA4, TAD (31,32) [solid hatched
box]. B. Results of the assays including colony colors and levels of B-galactosidase

activity. Y153 denotes the negative control cells that were not transfected.

Figure 4. BRCAI is located in the cytoplasm of breast cancer cells. Immunostaining
[panels b, d and f] of the flag-tagged BRCA1 protein in normal monkey kidney cells,

CV1, [panels a and b], breast cancer cell lines ZR75 [panels ¢ and d] and MB231 [panels
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e and f] cells are illustrated. DAPI staining is shown in panels a, ¢ and e to indicate

nuclei of the cells.
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Abstract

Three mammalian genes encoding DNA ligases have been identified. However, the
roles of each of these enzymes in mammalian DNA metabolism has not been established. In this
study we show that two forms of mammalian DNA ligase III, o and B, are produced by a
conserved tissue-specific alternative splicing mechanism involving exons encoding the C-
termini of the polypeptides. DNA ligase III-o. cDNA, which encodes a 103 kDa polypeptide, is
expressed in all tissues and cells whereas DNA ligase III-B cDNA, which encodes a 96 kDa
polypeptide, is only expressed in the testis. During male germ cell differentiation, elevated
expression of DNA ligase III-B mRNA is restricted, beginning only in the latter stages of
meiotic prophase and ending in the round spermatid stage. In 96 kDa DNA ligase III-B, the C-
terminal 77 amino acids of DNA ligase III-a are replaced by a different 17-18 amino acid
sequence. As reported previously, the 103 kDa DNA ligase III-a interacts with the DNA
strand-break repair protein encoded by the human XRCC! gene. In contrast, the 96 kDa DNA
ligase ITI-B does not interact with XRCC1 indicating that DNA ligase III-f may play a role in
cellular functions distinct from the DNA repair pathways involving the DNA ligase III-
o-XRCC1 complex. The distinct biochemical properties of DNA ligase III-f, in combination
with the tissue and cell-type specific expression of DNA ligase III-f mRNA, suggest that this
form of DNA ligase III is specifically involved in the completion of homologous recombination

events that occur during meiotic prophase.




Introduction

The joining of DNA single-strand breaks is an essential step in the completion of
lagging strand DNA synthesis and DNA excision repair pathways. Additionally, exchanges
between homologous DNA duplexes, which are completed by the cleavage of Holliday
junctions, require DNA joining events to generate intact recombinant molecules.

Three human genes encoding DNA ligases have been identified (3, 9, 42). Genetic and
biochemical studies on the product of the LIG1 gene indicate that this enzyme functions to join
Okazaki fragments during DNA replication (3, 4, 28, 34, 39, 43). The sensitivity of the DNA
ligase I-mutant cell line 46BR to DNA damage by alkylating agents and the abnormal repair of
uracil-containing DNA substrates by 46BR cell-free extracts implicate DNA I ligase in DNA
base excision repair (4, 18, 22, 28, 35). The recent characterization of an interaction between
DNA polymerase B, which is essential for base excision repair of alkylation damage in
mammalian cells (33), and DNA ligase I within a multiprotein complex that catalyzes the repair
of a uracil-containing DNA substrate provides evidence at the molecular level that DNA ligase I
is involved in DNA base excision repair (27).

The LIG3 and LIG4 genes encode polypeptides that have similar electrophoretic
mobilities in denaturing polyacrylamide gels (42). These gene products with molecular masses
of about 100 kDa can be distinguished by the ability of DNA ligase III to form a stable complex
with the product of the human XRCC1 gene (7, 8, 42). Human XRCC1 was cloned by its
ability to complement the hypersensitivity of the Chinese hamster ovary cell line, EM9, to DNA
alkylating agents (36, 37). Because the EM9 cell line is defective in the joining of DNA single-
strand breaks and contains reduced levels of DNA ligase III activity, it appears that DNA ligase
III functions in the repair of DNA single-strand breaks that arise either by the direct action of a
DNA damaging agent, such as ionizing radiation, or as a consequence of DNA repair enzymes
cxcising lesions (7, 8, 23, 36, 37). At the present time, there is very little known about the
cellular role of DNA ligase IV.

Analysis of the steady state levels of DNA ligases I and III mRNAs in different human

tissues and cells revealed that both of these genes are highly expressed in the testis. In
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developing mouse testis, the high levels of DNA ligase I expression correlate with the
contribution of proliferating spermatogonia to the testis and suggest that, as in proliferating
somatic cells, DNA ligase I functions in DNA replication (9). In contrast, the high levels of
DNA ligase III expression correlate with the appearance and accumulation of cells undergoing
meiotic recombination. This association between DNA ligase Il expression and meiotic cells is
supported by the specific labeling of primary spermatocytes in mouse testis sections by in situ
hybridization with a DNA ligase III antisense probe (9). Furthermore, expression of the
XRCCI1 gene, whose product interacts with DNA ligase III (7, 8, 42), is also elevated in both
pachytene spermatocytes and round spermatids (40, 41).

It is possible that DNA ligase III is specifically involved in the completion of meiotic
recombination events. Alternatively, or in addition, DNA ligase III may repair DNA single-
strand breaks which are introduced as a consequence of either changes in chromatin structure or
DNA damage that occur during the latter stages of germ cell development. In this report, we
demonstrate that a testis-specific alternative splicing mechanism results in the synthesis of a
DNA ligase III polypeptide with distinct biochemical properties. We suggest that one form of
DNA ligase III functions in a complex with XRCCI1 to repair DNA single-strand breaks in all
tissues and cells, whereas the testis-specific form is involved in the completion of meiotic

recombination events in male germ cells.

Materials and Methods

Cloning of human and mouse DNA ligase IIl cDNAs- Human DNA ligase III cDNAs have
been isolated from Hela and testis cDNA libraries (9, 42). These cDNAs have different 3' ends
and encode different-sized polypeptides with distinct C-termini (Fig. 1). Within the identical
regions of the HeLa and testis DNA ligase IIl cDNAs, there is an internal EcoRI site at
nucleotides 2452-2457 in the testis cDNA (9). The nucleotide sequences of the HeLa and testis
cDNAs diverge 435 nucleotides 3' of the EcoR I site. Using the 600 bp sequence at the 3' end
of the testis CDNA as a probe (EcoRI-Xbal fragment) (9), a 1.1 kb cDNA fragment was

isolated from a human liver cDNA library (Stratagene). The DNA sequences of both strands of
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this cDNA fragment were determined and found to be identical to the 3' end of the HeL.a DNA
ligase III cDNA (42). A cDNA that encodes the same 922 amino acid polypeptide as the HeLa
DNA ligase III cDNA was constructed by replacing the 3' 600 bp EcoRI-Xbal fragment of the
testis DNA ligase IIl cDNA with the 1.1 kb EcoRI fragment from the liver cDNA library. This
form of DNA ligase III has been designated DNA ligase ITI-ct.

Mouse DNA ligase III cDNAs have been isolated from a mouse testis cDNA library
(Clontech) using human DNA ligase III cDNA as a probe (9). A full-length cDNA (3080 bp),
which contains an internal EcoRI site at the same position as the one in the human DNA ligase
III cDNAs, encodes a polypeptide that is similar in size (868 residues, calculated molecular
weight of 96,000) to and homologous with the polypeptide encoded by human testis DNA
ligase IIT cDNA (9). This form of DNA ligase III has been designated DNA ligase III-B. The
mouse DNA ligase III-p cDNA sequence has been deposited in the GenBank (accession no.
U66057).

Using oligonucleotides GATGAGACGCTGTGCCAAA  and
GGAAGACAGCAAACCTAGTC that correspond to nucleotides 2863-2881 and the complement
of nucleotides 3134-3016 of human DNA ligase III-a cDNA, respectively (Fig. 1A) and the
1.1 kb EcoRI fragment from the human liver cDNA library as a template, a 251 bp fragment
was amplified by the polymerase chain reaction (PCR) (31). The PCR mixture (100 pl)
contained 10 mM Tris-HCI (pH 8.3), 1.5 mM Mg(flz, 50 mM KCl, 0.2 mM of each of the
dNTPs, 1 uM of each of the oligonucleotides, 10 ng cDNA template and 2.5 units of Taq DNA
polymerase (Boehringer Mannheim). PCR amplification was carried out by 30 cycles of 94°C
for 1.5 min, 56°C for 2 min and 72°C for 2 min. Using the 251 bp DNA fragment as a probe, a
1.3 kb cDNA was isolated from the mouse testis cDNA library. The DNA sequence at one end
of this cDNA is identical to that 3' of the EcoRlI site in the mouse DNA ligase HI-f cDNA
described above for 438 nucleotides but then the sequences diverge. The nucleotide and
predicted amino acid sequences %;fter the point of divergence are homologous with the 3' end
and predicted amino acid sequence of human DNA ligase III-a cDNA (Fig. 1A) (42)). A mouse

DNA ligase III-a cDNA (3832 bp), which was constructed by replacing the 3' 600 bp of
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sequence from the EcoRI site with the 1.3 kb fragment, encodes a polypeptide consisting of
927 amino acids that has a calculated molecular weight of 103,000. The mouse DNA ligase III-
o DNA sequence has been deposited in the GenBank (accession no. U66058).

DNA sequencing and sequence analysis- Double-strand DNA sequencing was carried out by the
dideoxy chain termination method with Sequenase and synthetic sequencing primers. The DNA
sequences of both strands were determined with primers at intervals of about 150 bases. DNA
sequences were aligned using Seqman and translated using Editseq (DNAStar). Nucleotide and
amino acid sequence homologies were aligned with Align (DNAStar).

Cloning and analysis of mouse DNA ligase III gene- A 0.9 kb Pstl fragment (nucleotides 1448-
2333) from mouse DNA ligase IIl cDNA was used as a probe to screen a mouse 129/J genomic
library (Stratagene). After gel purification, the 0.9 kb fragment was labeled (108 cpm/pg) with
[a32P]dCTP (Amersham) using the Prime-It II Random Primer Labeling Kit (Stratagene)
according to the manufacturer's protocol. A total of 3 x 106 phage plaques were transferred to
nitrocellulose filters and immobilized by UV-cross-linking prior to hybridization with the
denatured probe (10 cpm/ml) in a solution containing 5X Denhardts solution, 6X SSC, 100 ug
/ml salmon sperm DNA and 0.25% SDS for 16 h at 68°C (32). After hybridization, the filters
were washed for 15 min once at room temperature and twice at 68°C in 1X SSC and 0.5%
SDS. Additional rounds of screening were carried out to isolate a homogeneous phage
population.

DNA was isolated from the single phage that hybridized to the 0.9 kb cDNA probe. This
phage contained an 18 kb genomic fragment that was further analyzed by restriction enzyme
mapping and Southern blotting (32) with probes from different regions of the DNA ligase III
cDNA. The genomic fragment was found to contain exons encoding the C-terminal half of
DNA ligase IIL

Probes specific for the different 3' ends of mouse DNA ligase III cDNA were generated
by the PCR. Using oligonucleotides ACTGTTGGATGTCTTCACTGGG and

AAAGACAAAGCTAGCACCCGGA that correspond to nucleotides 2914-2935 and the

complement of nucleotides 3349-3326 of the 3832 bp mouse DNA ligase III-a0 ¢cDNA,
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respectively (Fig. 1B) and the 3832 bp mouse DNA ligase III-a cDNA as a template, a 425 bp
fragment was amplified by the PCR. The PCR conditions were as described above except the
annealing step was carried out at 62°C. Using oligonucleotides
CAGCCGGCAAAGAGGAAGGA and TTTTTGCTGCACCCCACCGC that correspond to
nucleotides 2923-2942 and the complement of nucleotides 3073-3052 of the 3080 bp mouse
DNA ligase III-B cDNA, respectively (Fig. 1B) and the 3080 bp mouse DNA ligase II-f
cDNA as a template, a 150 bp fragment was amplified by the polymerase chain reaction (PCR).
The PCR mixture (100 pl) contained 10 mM Tris-HCI (pH 8.9), 5 mM MgSOy4, 25 mM KCl, 5
mM (NH4)2S804, 0.2 mM of each of the dNTPs, 0.2 mM of each of the oligonucleotides, 40 ng
cDNA template and 2.5 units of Pwo DNA polymerase (Boehringer Mannheim). PCR
amplification was carried out by 30 cycles of 94°C for 1.5 min, 64°C for 2 min and 75°C for 2

min.

‘Enrichment of specific spermatogenic cell types- A standard StaPut gradient separation was

employed to obtain enriched populations of late pachytene spermatocytes, round spermatids and
residual bodies from the testes of adult male mice (29). Enriched populations of Sertoli cells and
spermatogonia (types A and B) were isolated from testes of 8-day old mice while enriched
populations of pre-leptotene, leptotene plus zygotene and early pachytene spermatocytes were
isolated from 17- to 18-day old mice using a modified StaPut gradient system (5). Germ cell
preparations from adult male mice were >90% homogeneous while preparations from younger
animals were >85% homogeneous as determined by phase-contrast microscopy.

RNA Isolation- Poly (A*) RNA was isolated from the testes of 5-, 8-, 15-, 25- and >60-day
old mice and from purified germ cell populations as described previously (40). Total RNA was
isolated from mouse tissues and purified germ cell populations by cesium chloride
centrifugation after lysis in guanidinium isothiocyanate (12). RNA was quantitated by

measuring absorbance at 260 nm.

Northern blot analysis- Poly (A+) RNA (2.0 ug) was electrophoresed through a 1.2% agarose-
formaldehyde gel, transferred to a nitrocellulose membrane and then immobilized on the

membrane by UV cross-linking. The mcmt;;ane was incubated in prehybridization buffer (50%




formamide 4x SSC, 50 mM sodium phosphate, pH 7.0, 100 pg/ml denatured salmon sperm
DNA) for 2 h at 420C prior to the addition of the denatured DNA probe (1 x 109 cpm/ug) that
had been labeled with [32P]dCTP (Amersham) using the Prime-It I Random Primer Labeling

Kit (Stratagene) according to the manufacturer's protocol. After further incubation at 42°C for 6
h, the membrane was washed once with 2x SSC-0.1% SDS for 10 min at room temperature
and twice with the same buffer at 60°C for 15 min. The membrane was then exposed to x-ray
film at -80°C. Hybridizing bands were quantitated by scanning of the x-ray film with a laser
densitometer (Molecular Dynamics). Differences in sample loading were normalized by probing
membranes with f§-actin cDNA after the previous hybridization signals had been stripped from

the membrane by incubation in 0.5% SDS at 90°C.
Reverse transcription-PCR- Reverse transcription reactions (100 pl) contained 50 mM Tris-HCl

(pH 8.5), 8 mM MgCl,, 30 mM KCl, 1 mM dithiothreitol, 40 units RNAsin (Promega), 2 pM
random nonamers, 1 mM of each of the dNTPs, 20 units AMV reverse transcriptase
(Boehringer Mannheim) and either total RNA (2 pg) or poly (A+) RNA (0.2 pg). After
incubation at 42°C for 45 min, reaétions were terminated by heating at 94°C for 2 min. Aliquots
(2 pul) that correspond to 40 ng of total RNA or 0.4 ng of poly (A*) RNA were used as
templates for amplification by the PCR. Amplifications by the PCR of sequences unique to the
o and P species of mouse DNA ligase III cDNA were performed as described above except 5
UCi of [a32P]dCTP was included in the reaction mixture. Amplifications from the same
templates were carried out for 30 cycles of 94°C for 1.5 min, 60°C for 2 min and 72°C for 2
min using primers specific for mouse f-actin (Stratagene). After separation by electrophoresis
through a 6% polyacrylamide gel, labeled PCR products in the dried gel were detected by
autoradiography and quantitated by phosphorimage analysis (Molecular Dynamics).

The 30 cycles of amplification employed in the above experiments was determined to be
within the log-linear range of amplification by quantitating PCR products as a function of the
number of cycles of amplification. The RNA samples were free of detectable genomic DNA

since the PCR amplifications using the B-actin primers, which reside in different exons, only




amplified a 514 bp product expected from the cDNA. Water blanks were also subjected to RT-
PCR to test for target contamination in the assay reagents.

Expression of DNA ligase H fusion proteins- Human DNA ligase III cDNAs encoding the o
and P forms of DNA ligase III were subcloned in-frame into pGSTag (30) to generate plasmids
encoding glutathione-S-transferase (GST)-DNA ligase III fusion proteins. In addition, a
truncated version of human DNA ligase III cDNA that encodes residues 1-700 was also
subcloned in-frame into the same vector. After transformation into E. coli TG1, transformants
were grown in TB media with 0.1 mg/ml ampicillin at 37°C. When the O.D.gg of the culture
reached 0.6, IPTG was added to a final concentration of 1 mM and incubation was continued
for 5 h at room temperature. Cells (1 liter) were harvested by centrifugation and resuspended in
10 ml of 50 mM HEPES-KOH (pH 8.0), 0.5 M NaCl, 1 mM EDTA, 10% glycerol, 1 mM
phenyl methylsulfonyl fluoride, 1 mM benzamidine. After lysis by sonication, the cleared lysate
was incubated for 1 h at 4°C with 1 ml of glutathione sepharose 4B beads (Pharmacia Biotech)
that had previously been washed with phosphate-buffered saline (PBS). The beads were poured
into a column and washed with 10 ml of 50 mM HEPES-KOH (pH 8.0), 0.75 M NaCl, 1 mM
EDTA, 1 mM dithiothreitol (buffer A). Bound proteins were eluted sequentially with 5 ml of
buffer A containing 1 mM, 5 mM and 10 mM glutathione. The protein content of fractions (300
pl) was analyzed by Coomassie blue staining after denaturing gel electrophoresis (20).
Fractions containing ATP-dependent DNA ligases were detected by the formation of labeled
enzyme-adenylate intermediates when incubated with [32P]JATP (38). The GST-DNA ligase
IIT fusion proteins, which were eluted by the 5 mM glutathione buffer, were aliquoted, flash-
frozen in liquid nitrogen and stored at -80°C.

Preparation of DNA ligase Ill affinity resins- E. coli DHSa cells harboring plasmids that direct
the expression of GST-DNA ligase III fusion proteins were grown in LB media with 0.1 mg/ml
ampicillin as described above. Cells (500 ml culture) were harvested and resuspended in 5 ml of
50 mM Tris-HCI (pH 7.5), 250 mM NaCl, 5 mM EDTA, 0.1% nonidet P-40, 0.4 pg/ml
aprotinin, 0.5 pg/ml chymostatin and leupeptin, 0.7 mg/ml pepstatin, 1 mM phenyl

methylsulfonyl fluoride and 1 mM benzamidine (Buffer B) and lysed by sonication. After
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clarification of the lysate by centrifugation, soluble proteins were mixed gently at 4°C for 1h
with 100 ul of glutathione sepharose 4B beads (Pharmacia Biotech) that had previously been
washed twice with PBS and once with 20 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1 mM
EDTA, 0.5% nonidet P-40, 0.5% dried milk. The beads were washed three times with buffer B
and then stored on ice as a 50% slurry in buffer B. Aliquots (20 pl) from the different beads
were incubated in SDS-sample buffer at 70°C for 10 min. After separation by denaturing gel
electrophoresis, polypeptides were detected by staining with Coomassie blue. For each affinity
bead, the major bound polypeptide corresponded to the expected size of the GST-DNA ligase
III fusion proteins. A similar quantity of each of the GST-DNA ligase III fusion proteins was
bound to the same volume of glutathione sepharose 4B beads.

Interaction between in vitro translated XRCC1 and DNA ligase Il affinity resins- An EcoRI
fragment containing XRCCI cDNA was subcloned from pcD2EX (7) into pBluescript KS
(Stratagene). After the orientation of the EcoRI fragment had been determined by DNA
sequencing, XRCC1 was transcribed by T7 RNA polymerase and in vitro translated in the
presence of [35S] methionine using the Promega TNT system according to the manufacturer's
protocol. Labeled XRCC1 was partially purified from the coupled in vitro transcription and
translation reaction (50 pl) by ammonium sulfate precipitation (2) and resuspended in 50 pl of
50 mM Tris (pH 7.5), 0.1 M NaCl, 5 mM EDTA, 0.1 % nonidet P-40 (Buffer C). The DNA
ligase III beads (30 pl) were washed three times with 20 mM Tris-HCI (pH 7.5), 0.1 M NaCl,
10 % bovine serum albumin and then resuspended in 70 pl of buffer C prior to the addition of
labeled XRCCI1 protein (15 pl). After gentle mixing for 30 min at room temperature, the beads
were washed five times with 1 ml of buffer A. SDS-sample buffer (30 pl) was added and
samples were incubated at 70°C for 10 min to remove non-covalently attached proteins from the
beads. After denaturing gel electrophoresis, the gel was soaked in Amplify (Amersham plc) as
recommended by the manufacturer and then dried down. Labeled polypeptides were detected by
fluorography and quantitated by scanning of the x-ray film with a laser densitometer (Molecular

Dynamics).
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Purification of recombinant XRCC1 protein- Recombinant XRCC1 protein with a poly
(histidine) sequence at the C-terminus was purified from E. coli as described by Caldecott et al
(8).

Far Western blotting analysis- GST-DNA ligase III fusion proteins were separated by
denaturing gel electrophoresis and transferred to a nitrocellulose membrane. Polypeptides were
renatured on the membrane as described (24). Recombinant XRCC1 protein was labeled and
then incubated with the nitrocellulose membrane as described by Wei et al (42).

DNA ligase Il antibodies- Mice were initially immunized with GST-DNA ligase III fusion
protein (human DNA ligase ITI-f) bound to glutathione sepharose beads at two week intervals.
Antiserum was collected 10 days after immunization. At later times, the mice were immunized
with recombinant his-tagged mouse DNA ligase III (residues 44 to 868 of DNA ligase III-B)
that had been purified by metal chelating affinity chromatography. The rabbit polyclonal
antiserum specific for mammalian DNA ligase I has been described previously (21, 38).
Immunofluorescence- Mouse NIH 3T3 fibroblasts and HeL.a S3 cells were grown in D-MEM
(GibcoBRL) supplemented with 10% fetal calf serum, 100 units/ml penicillin and 100 pg/ml
streptomycin on 12 mm coverglass slips. Late pachytene spermatocytes purified from adult
mouse testis were attached to poly-L-lysine coated glass slides. Attached cells were rinsed twice
with PBS and then fixed for 3 minutes in ice cold methanol. After permeabilization by
immersion in a solution of 0.25% Triton X-100 in PBS for 3 min at room temperature, cells
were washed twice with PBS containing 0.5% BSA and then incubated with pre-immune or
immune sera diluted in PBS containing 0.5% BSA at 37°C for 30 min in a humidified chamber.
After being washed three times with PBS containing 0.5% BSA, the cells incubated for a
further 30 min with the appropriate secondary antibodies linked either to rhodamine or
fluorescein (Kirkegaard & Perry) that had been diluted 1:100 in PBS containing 0.5% BSA.
Cells were then washed once with 0.5% BSA in PBS and twice with PBS. HeLLa and NIH 3T3
cells were immersed in 4,6 diamino-2-phenolindole propidium iodide (DAPI, 1 mg/ml) for 1
min and then rinsed twice for 2 min in H,O. Finally, coverslips were mounted to glass slides

with permaFluore and examined on a Zeiss fluorescent microscope (magnification x1250).
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Digital photographs were obtained with a Hamamatsu Photonics camera. Images were

superimposed using Photoshop for Power Maclntosh software.

Results

Two forms of mammalian DNA ligase IIl cDNA- Human cDNAs encoding DNA ligase III have
recently been reported by two different groups (9, 42). The nucleotide sequences of these
cDNAs are identical except for the 3' ends. This divergence of nucleotide sequence results in
the production of polypeptides that differ both in size and in amino acid sequence at their C-
termini (Fig. 1). The cDNA isolated from the Hel.a cDNA library, which encodes a polypeptide
with a calculated molecular weight of 103,000, has been designated DNA ligase III-a. The
cDNA isolated from the testis cDNA library, which encodes a polypeptide with a calculated
molecular weight of 96,000, has been designated DNA ligase III-B. At the amino acid sequence
level, the C-terminal 77 amino acid residues of DNA ligase III-o are replaced by an unrelated
17 amino acid sequence in DNA ligase III-B (Fig. 1). The differences in nucleotide sequence
between these cDNAs may be the result of either a cloning artifact or alternative splicing. In
support of the latter idea, the nucleotide sequences of the cDNAs at the site of sequence
divergence resemble consensus splice donor/acceptor sequences (Fig. 1) and two species of
DNA ligase III mRNA with estimated molecular masses of 3.4 and 3.6 kb have been observed
).

If there are two alternatively spliced DNA ligase III mRNA species that encode
polypeptides with distinct cellular functions, then one would expect this splicing event to be
conserved in other mammals. In agreement with this hypothesis, we have isolated two species
of DNA ligase III cDNA from a mouse testis CDNA library whose sequences diverge at the
same place as, and exhibit homology with, the different 3' ends of human DNA ligase III
c¢DNAs (Fig. 1). Human and mouse DNA ligase III-o. cDNAs encode polypeptides consisting
of 922 and 927 residues, respectively. These polypeptides exhibit about 90% amino acid
identity overall and 86% within the 77 amino acid C-terminal region (Fig. 1A). Human and

mouse DNA ligase III-B cDNAs encode polypeptides consisting of 862 and 868 residues,
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respectively. These polypeptides also share about 90% amino acid identity overall but the
degree of identity is only 60% within the different C-terminal region of 17-18 amino acids (Fig.
1B).

Genomic structure at the 3’ end of the mouse DNA ligase IIl gene- To confirm that exons
encoding the different C-termini of DNA ligase ITI-c and - reside in the same region of the
genome, we have cloned and analyzed an 18 kb fragment of mouse genomic DNA that contains
the 3' end of the DNA ligase III gene. As expected, probes specific for the different 3' ends of
the DNA ligase III cDNAs hybridize to distinct regions that have been localized to a 4.2 kb
genomic fragment (Fig. 2A, 2B and 2C). The order and arrangement of exons and introns at the
3" end of the DNA ligase Il gene shown in Figure 2D was determined by restriction enzyme
mapping, Southern blotting (Fig. 2A, 2B and 2C) and DNA sequencing (Fig. 2E). The a and
species of DNA ligase III mRNA are produced by two different splices between the last
common exon and two alternative terminal exons (Fig. 2D). The nucleotide sequences at the
intron/exon junctions (Fig. 2E) exhibit homology with consensus splice donor and acceptor
sequences (26).

Expression of DNA ligase Il mRNAs in different mouse tissues- The steady state levels of
DNA ligase II mRNAs in a variety of mouse tissues were examined by northern blotting. DNA
ligase IIl mRNAs with estimated molecular masses of 3.4 and 3.6 kb were detected in the testis
(Fig. 3A). Expression of DNA ligase III was detectable in all the other tissues after longer
exposures (data not shown), indicating that, as in humans (9), DNA ligase III is ubiquitously
expressed at a low level except in the testes where the steady state levels of DNA ligase III are at
least 10-fold higher than in other tissues and cells.

We have used a more sensitive technique, reverse transcription (RT)-PCR, to
investigate the expression of the alternatively spliced forms of DNA ligase III mRNA in
different mouse tissues (Fig. 3B). In agreement with the northern blotting results, the highest
levels of both forms of DNA ligase IIl mRNA were detected in the testis. The steady state level
of DNA ligase ITI-o. mRNA varies greatly in somatic tissues, ranging from 6% (spleen) to 55%

(kidney) of the level in the testis. In contrast, the DNA ligase III-B mRNA is expressed at a
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very low level in all the somatic tissues (<10%) compared with the level in the testis. The steady
state levels of DNA ligase III-a and -B mRNAs in the ovary were similar to those in the liver.
These RT-PCR studies in conjunction with the results from northern blotting experiments
indicate that the 3.6 kb DNA ligase III-o mRNA is the predominant species in somatic tissues
and cells. In the testis, both species of DNA ligase IIl mRNA are expressed at significantly
higher levels than in somatic tissues with the 3.4 kb DNA ligase III-B being the predominant
species in this tissue. Based on these observations, we conclude that DNA ligase III-f mRNA
is generated by a testis-specific alternative splicing event. |
DNA ligase Il expression in the developing testis and in purified germ cells- In a previous
study we have shown by northern blotting that expression of DNA ligase III correlates with the
appearance and accumulation of meiotic cells in the developing mouse testis (9). Using RT-
PCR, we have examined the expression patterns of the alternatively spliced forms of DNA
ligase IIl mRNA during testis development (Fig. 4A). Expression of DNA ligase III-oo mRNA
was detectable in the testes of 5-day old animals and increased with age reaching a level in the
testis of 25-day old animals that was about 3-fold higher than in the 5-day old animals.
Although the highest steady state levels of DNA ligase III-B mRNA were also detected in the
testis of 25-day old animals, expression of this mRNA species in the testis of the younger
animals was barely detectable (<5% of the steady state levels in the testis of the 25-day old
animal).

In the testis of a 25-day old mouse, the steady state level of 3.4 kb DNA ligase III-8
mRNA is about 2-fold higher than the steady state level of 3.6 kb DNA ligase III-« mRNA
(Fig. 4B). At this age, pachytene spermatocytes constitute about 30% of the cells in the
seminiferous tubules (5). If, as suggested, the steady state levels of DNA ligase IIl mRNAs are
significantly higher in this cell type compared with other cell types present in the testis then poly
(A*) RNA from pachytene spermatocytes should have a relatively higher level of DNA ligase
III mRNA when compared with the same amount of poly (A+) RNA from whole testis of 25-
day old animals. In agreement with this hypothesis, we found that the steady state level of DNA

ligase ITI- mRNA is about 3-fold higher in late pachytene spermatocytes compared with whole
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testes from a 25-day old animal. In contrast, DNA ligase III-a mRNA was present at similar
levels in late pachytene spermatocytes and whole testis from a 25-day old animal (Fig. 4B).

Expressidn of the alternatively spliced forms of DNA ligase III mRNA has been
examined by RT-PCR in purified testis germ cell populations representing different stages of
spermatogenesis prior to spermiogenesis and in a purified somatic cell type, Sertoli cells,
present in testis. Elevated expression of DNA ligase III-ao mRNA in germ cells relative to the
level in Sertoli cells was initially detected in pre-leptotene spermatocytes. The steady state levels
continued to increase during meiotic prophase, reaching a peak in late pachytene spermatocytes.
After the two meiotic divisions, the level of expression in round spermatids was similar to that
observed in early pachytene spermatocytes (Fig. 4C and 4D). In contrast, elevated expression
of DNA ligase III-B mRNA relative to the level in Sertoli cells was not detected until early
pachytene. The steady state levels reached a peak in late pachytene spermatocytes and declined
about 20% in round spermatids (Fig. 4C and 4D).
Interaction of DNA ligase III-a and DNA ligase III-B polypeptides with XRCCI- We have
demonstrated that an alternative splicing event, which appears to be restricted to male germ cells
from the latter stages of meiotic prophase to round spermatids, produces a form of DNA ligase
IIT, DNA ligase ITI-B, that has a different C-terminus than the 103 kDa DNA ligase III-o which
is present in both somatic and germ cells. The two forms of DNA ligase III have been
expressed as GST-fusion proteins in E. coli. After affinity purification, both DNA ligase III-o
and DNA ligase III-B fusion proteins formed the labeled enzyme-adenylate intermediate and
there was no significant difference between the two forms in their ability to perform this
reaction (Fig. 5A). This is consistent with the previous observations demonstrating that both the
o and B forms of DNA ligase I1I are active as DNA joining enzymes (9, 42).

Although there are no apparent differences in the catalytic properties of the a and
forms of DNA ligase IlI, it is possible that the C-termini of these polypeptides are recognized
by different proteins and it is these interacting proteins which determine the cellular function of

the DNA ligase III isoforms. Since DNA ligase III has been shown to interact with XRCCl1 (7,
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8, 42), we have compared the binding of the a and B forms of DNA ligase III to XRCC1 by
two different methods. In Figure 5B, equal amounts of GST-DNA ligase III-a and GST-DNA
ligase III-B fusion proteins were separated by denaturing gel electrophoresis and transferred to a
nitrocellulose membrane. After renaturation on the membrane, the GST-DNA ligase III fusion
proteins were incubated with labeled XRCC1 protein. Consistent with previous studies (8, 42),
' XRCCI formed a complex with the 103 kDa form of DNA ligase III-a. In contrast the amount
of complex formed with DNA ligase ITI-B was reduced by greater than 10-fold.

To confirm the results obtained by far western blotting, in vitro translated XRCC1
protein was incubated with the GST-DNA ligase HI fusion proteins bound. to glutathione beads.
Once again there was a significant difference in the interaction between XRCC1 and the
different forms of DNA ligase III (Fig. 5C). Approximately 5-fold more XRCC1 bound to the
glutathione beads with DNA ligase III-a as the ligand compared to glutathione beads with the
same amount of DNA ligase III-P as the ligand. In similar experiments with either a GST-DNA
ligase III fusion containing the amino terminal 700 residues of DNA ligase Il (common to both
DNA ligase III-a and DNA ligase III-B) or in the absence of a protein ligand, no binding of
XRCC1 to the glutathione beads was detected (data not shown). These results demonstrate that
interaction between DNA ligase III and XRCCl1 requires the C-terminus of DNA ligase III and
that the C-terminus of DNA ligase III-o binds to XRCC1 with significantly higher affinity than
the C-terminus of DNA ligase III-B.

Intracellular distribution of DNA ligases I and Il in mitotic and meiotic cells- We have
examined the subcellular distribution of DNA ligases I and III in an unsynchronized, dividing
population of a human cells by indirect immunofluorescence. In agreement with previous
studies (21, 43), a punctate Staining pattern was observed in the nuclei of cells in the DNA
synthesis phase of the cell cycle with the DNA ligase I antiserum and when the nuclear
membrane was absent during mitosis, DNA ligase I was dispersed throughout the cell (Fig. 6A)
(21). In contrast, intense staining of the highly condensed chromatin present from metaphase to

telophase was observed in both the human cells and mouse NIH 3T3 fibroblasts with the DNA
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ligase III antiserum (Fig. 6A and 6B). No detectable staining of condensed chromatin was
observed in similar experiments with pre-immune serum and DNA ligase III antiserum that had
been pre-incubated with purified DNA ligase Il (data not shown). In interphase cells, DNA
ligase III was present throughout the nucleus except for the nucleolus and, in some of these
cells, thin thread-like structures that may correspond to condensing chromosomes were stained
by the DNA ligase III antiserum (Fig. 6A and 6B).

The subcellular distribution of DNA ligase III was examined in late pachytene
spermatocytes purified from mouse testis. The highly condensed chromatin, which has been
incorporated into synaptonemal complexes in these cells, was intensely stained by the DNA
ligase III antiserum. (Fig. 6C). In similar experiments with DNA ligase I antiserum, the
staining was dispersed throughout the nucleus of these cells. Thus, DNA ligase III associates

with condensed chromatin in both mitotic and meiotic cells.

Discussion

Several examples of differences in gene expression between somatic and germs cells
have been described, including different transcription initiation sites (14), differences in the
length of the poly(A) tract (11, 16), alternative splicing (13) and the existence of homologous
genes, one of which is expressed only in somatic cells while the other is only expressed in germ
" cells (17, 25). In this report we have characterized a testis-specific alternative splicing
mechanism that generates a 96 kDa DNA ligase III polypeptide, DNA ligase I]I-B,.with a
different carboxy terminus and molecular mass than the ubiquitously expressed DNA ligase III-
o mRNA,which encodes 103 kDa DNA ligase III-a.. The conservation of this splicing
mechanism in mammals suggests that it is biologically significant, possibly producing DNA
joining enzymes that are required for distinct cellular functions.

DNA ligase III has been implicated in the repair of DNA damage introduced by
alkylating agents and ionizing radiation by virtue of it's association with the human DNA repair
protein XRCC1 (7, 8, 36, 37, 42). This suggests that DNA ligase III may be involved in DNA

base excision repair and in the repair of DNA single-strand breaks. We have found that XRCC1
17




interacts with 103 kDa DNA ligase III-a but has little affinity for 96 kDa DNA ligase III-p.
This result demonstrates that the C-terminal 77 residues of DNA ligase III-a are required for the
high affinity interaction with XRCC1. The high degree of amino acid identity shared between
human and mouse DNA ligase III-a in this region presumably reflects the functional
significance of the interaction with XRCC1 and provides a plausible explanation for the
observed interaction between human XRCC1 and chinese hamster DNA ligase III (7).
However, the inability of DNA ligase III-B to interact with XRCC1 suggests that this form of
DNA ligase III participates in a cellular function(s) distinct from those involving the 103 kDa
DNA ligase I1I-a-XRCC1 complex.

In an attempt to gain insight into the biological function of DNA ligase III-B, the
expression of DNA ligase III-B mRNA has been examined as a function of male germ cell
differentiation and compared with the expression of DNA ligase III-ao mRNA. Since late
pachytene spermatocytes and round spermatids were the only cell types with high steady state
levels of DNA ligase ITI-B mRNA, the alternative splicing mechanism appears to be turned on
during the latter stages of meiotic prophase. Although there are other possibilities, the specific
regulation of this splicing event strongly suggests that DNA ligase ITI-B is involved in the
completion of meiotic recombination events at the end of the pachytene stage or during the
diplotene stage of meiotic prophase prior to the first meiotic cell division.

Although the highest steady state levels of DNA ligase III-oe mRNA are also present in
late pachytene spermatocytes, increased levels of this species of mRNA occur earlier in meiotic

prophase. This expression pattern is essentially the same as that observed for the XRCC1 gene

(40, 41), whose product interacts with DNA ligase III-a in somatic cells (7, 8, 42). This
apparent co-ordinate regulation suggests that the 103 kDa DNA ligase III-o- XRCC1 complex is
also present in male germ cells and presumably functions in the same DNA repair pathways in
these cells as it does in somatic cells. DNA repair, as measured by unscheduled DNA synthesis,
occurs in round spermatids (19). Furthermore, these cells contain high levels of the DNA base

excision repair enzyme, DNA polymerase B (1). Thus it appears that the capacity to carry out at
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least some forms of DNA repair is retained and may be even enhanced in meiotic and early post-
meiotic germ cell types.

DNA ligase III associates with condensed chromatin in both mitotic and meiotic cells.
Although it is possible that this association occurs solely to ensure the equal distribution of
DNA ligase III to the daughter cells, we suggest that DNA ligase III also binds to chromatin in
interphase cells and that this interaction is necessary for DNA ligase III to join DNA single-
strand breaks in DNA repair and meiotic recombination pathways. The predicted amino acid
sequence of DNA ligase III contains a region near the amino terminus that is homologous to a
DNA-binding zinc finger that has been characterized in poly(ADP) ribose polymerase (10). This
putative zinc finger of DNA ligase III may be involved in the interaction with chromatin.
Alternatively, the interaction of DNA ligase IIT with chromatin may be mediated by protein-
protein interactions. Based on the uniform staining of metaphase chromosomes in mitotic cells
by the DNA ligase III antiserum, it seems likely DNA ligase III-a will bind to condensed
chromatin in meiotic cells and thus, will be distributed along the entire length of the
synaptonemal complexes that occur in the latter stages of meiotic prophase. If DNA ligase ITI-B
is specifically involved in the completion of meiotic recombination events, it may be localized at
discrete sites along the synaptonemal complex as has been observed for the eukaryotic
recombination protein, RADS1 (6, 15).

In summary we have shown that an alternative splicing mechanism, which is uniquely
activated in male meiotic cells, produces DNA ligase ITI- that can be distinguished from DNA
ligase HI-a by it's inability to interact with the DNA repair protein, XRCC1. We suggest that
DNA ligase III-B plays a specific role in the completion of the numerous homologous
recombination events which occur during meiotic prophase. In contrast the mRNA encoding
DNA ligase ITI-a is expressed in both somatic and germ cells, suggesting that the DNA ligase
III-a-XRCC1 complex functions in DNA repair in all cell types. The development of

immunological reagents that distinguish between the a and B forms of DNA ligase III will
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facilitate further investigations into the cellular functions involving DNA ligase III in somatic

and germ cells.
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Figure Legends

Figure 1. Alignment of the carboxy terminal amino acid sequences encoded by
the different 3' nucleotide sequences of mammalian DNA ligase III cDNAs

Human DNA ligase III ¢cDNA sequences that differ at their 3' end have been reported
previously (9, 42). Nucleotide and amino acid residues are numbered on the left. A. Alignment
of the carboxy terminal sequences of the 922 and 927 amino acid polypeptides encoded by
human and mouse DNA ligase III-a cDNAs, respectively. B. Alignment of the carboxy
terminal sequences of the 862 and 868 amino acid polypeptides encoded by human and mouse
DNA ligase ITII-B cDNAs, respectively. The nucleotide residues at the site where the cDNA
sequences of mammalian DNA ligase III diverge are underlined. Consensus splice donor and

acceptor sequences are shown.

Figure 2. Structural organization and restriction map at the 3' end of the mouse
LIG3 gene

A genomic fragment containing the 3' end of the mouse LIG3 gene was isolated as described in
Materials and Methods. A 4.2 kb BamH I fragment of genomic DNA was subcloned into
pBluescript KS and the resultant plasmid digested with Apa I, EcoR V, Kpn I and Pst1as
indicated. A 1.3 kb cDNA fragment corresponding to the 3' end of mouse DNA ligase HI-a
c¢DNA was subcloned into pBluescript KS and the resultant plasmid was digested with EcoR L
A. Ethidium bromide stained agarose gel. After transfer of the DNA fragments to nitrocellulose
membranes, the membranes were hybridized with probes specific for the different 3' ends of
mouse DNA ligase Il cDNA. B. 425 bp probe specific for mouse DNA ligase ITI-a. cDNA. C.
150 bp probe specific for mouse DNA ligase III- cDNA. D. Restriction map of the 4.2 kb
genomic fragment. The position of the last common exon shared by the o and P versions of
mouse DNA ligase III ¢cDNA is indicated by the boxed region, C. The boxed region, B,
corresponds to the unique coding sequence at the 3' end of DNA ligase III-B cDNA and the

boxed region, o, corresponds to the unique coding sequence at the 3' end of DNA ligase HI-a
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cDNA. The splicing events that generate the two species of DNA ligase III cDNA are indicated.

E. Nucleotide sequences at the intron/exon junctions of exons C, B and a.

Figure 3. Tissue and cell distribution of mouse DNA ligase III mRNAs.

A. A northern blot containing ~2 g of poly (A)* RNAs from various mouse tissues Northern
blotting was sequentially hybridized with a 0.9-kb mouse DNA ligase III cDNA fragment
(nucleotides 1448-2333) and a 2 kb human B-actin cDNA fragment. B. Expression of the o
and B forms of mouse DNA ligase III cDNA in various mouse tissues was examined by RT-
PCR. Reverse transcription reactions and PCR amplifications were performed with total RNA
as described in Materials and Methods. PCR products were separated by polyacrylamide gel
electrophoresis and detected by autoradiography. The 425 bp PCR product amplified by the
primers specific for DNA ligase II-o. cDNA, the 150 bp PCR product amplified by the primers
specific for DNA ligase III-f cDNA and the 514 bp PCR product amplified by primers specific

for mouse B-actin are indicated.

Figure 4. Steady state levels of DNA ligase III mRNAs during mouse testis
development and in germ cell populations purified from mouse testis.

A. Expression of the o and B forms of mouse DNA ligase III cDNA in the testis of 5-, 15-, 25-
and 83-day old mice. RT-PCR was performed with poly (A)* RNA samples isolated from the
testes of different aged mice as described in Materials and Methods. PCR products were
separated by polyacrylamide gel electrophoresis and detected by autoradiography. The 425 bp
PCR product amplified by the primers specific for DNA ligase III-a cDNA, the 150 bp PCR
product amplified by the primers specific for DNA ligase III-B cDNA and the 514 bp PCR
product amplified by primers specific for mouse B-actin are indicated. B. Poly (A)* RNA
samples from the testis of a 25-day old mice and from late paéhytene spermatocytes were
electrophoresed through a 1.2% agarose-formaldehyde gel and then transferred to a
nitrocellulose membrane as described in Materials and Methods. The membrane was

sequentially hybridized with a 0.9-kb mouse DNA ligase IIl cDNA fragment (nucleotides 1448-
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2333) and a 2 kb human B-actin cDNA fragment. C. RT-PCR was performed with total RNA
samples isolated from different testis cell types as described in Materials and Methods. PCR
products were separated by polyacrylamide gel electrophoresis and detected by
autoradiography. The 425 bp PCR product amplified by the primers specific for DNA ligase
III-a cDNA, the 150 bp PCR product amplified by the primers specific for DNA ligase II-B
c¢DNA and the 514 bp PCR product amplified by primers specific for mouse B-actin are
indicated. D. Graphic representation of the data shown in panel C. After quantitation of the
PCR products by phosphorimage analysis, the values obtained for each of the DNA ligase III
c¢DNA products were divided by the value obtained for the B-actin cDNA product. Since the
highest expression ratios for both the o and B forms of DNA ligase T cDNA were obtained in
late pachytene spermatocytes, the expression ratios in the other cell types are expressed as a
percentage of the ratio in late pachytene spermatocytes. Shaded bar, DNA ligase IIl-c; filled
bar, DNA ligase ITI-B.

Figure 5. Interaction of DNA ligase III-o. and DNA ligase III-8 with XRCCL.

A. GST-DNA ligase II fusion proteins (10 ng) were adenylylated as described in M_aterials and
Methods. After separation by denaturing gel electrophoresis, labeled polypeptides in the dried
gel were detected by autoradiography. Lanes containing the adenylvlated GST-DNA ligase III
fusion proteins, wilich have an estimated molecular mass of 125 kDa, are indicated by o and B.
B. GST-DNA ligase III fusion proteins (100 ng) were separated by denaturing gel
electrophoresis and transferred to nitrocellulose membranes. After renaturation, membrane-
bound polypeptides were incubated with 32P-labeled XRCCI1 as described in Materials and
Methods. Labeled complexes were detected by autoradiography. Lanes labeled a and B contain
GST-DNA ligase III-a and GST-DNA ligase III-B proteins, respectively. C. GST-DNA ligase
III fusion proteins bound to glutathione sepharose beads were incubated with labeled, in vitro
translated XRCC1 as described in Materials and Methods. Labeled polypeptides that bound to

the beads were detected by fluorography after separation by denaturing gel electrophoresis.
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Lanes labeled o and B correspond to experiments with GST-DNA ligase III-o beads and GST-
DNA ligase III-B beads, respectively. Lane X contains in vitro translated XRCC1. The

positions of 14C-labeled molecular mass standards (Amersham plc) are shown on the left.

Figure 6. Intracellular localization of DNA ligases I and III in human and
mouse somatic cells and in mouse pachytene spermatocytes by indirect
immunofluorescence.

After fixation, cells were incubated with a rabbit polyclonal antiserum specific for DNA ligase I
(LIG1, 1:1000 dilution) and a mouse polyclonal antiserum specific for DNA ligase Il (LIG III,
1:1000 dilution) as described in Materials and Methods. Staining with DNA ligase I antibody
(LIGI) was detected by indirect immunofluorescence using a rhodamine-conjugated secondary
antibody (red fluorescence). Staining with DNA ligase III antibody (LIG IIT) was detected by
indirect immunofluorescence using a fluorescein-conjugated secondary antibody (green
fluorescence). A. HeLa S3 cells. DAPI staining detected by direct fluorescence. The same
microscopic field analyzed by indirect immunofluoresnce with the indicated antibody. B.
Mouse NIH 3T3 fibroblasts. DAPI staining detected by direct fluorescence. The same
microscopic field analyzed by indirect immunofluorescence with the indicated antibody. C.
Mouse pachytene spermatocytes. In the first panel, cells visualized by phase contrast
microscopy. The same microscopic field analyzed by indirect immunofluorescence with the

indicated antibody.
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Mammalian cells contain three biochemically distinct
DNA ligases. In this report we describe the purification
of DNA ligase IT to homogeneity from bovine liver nuclei.
This enzyme interacts with ATP to form an enzyme-AMP
complex, in which the AMP moiety is covalently linked
to a lysine residue. An adenylylated peptide from DNA
ligase II contains the sequence, Lys-Tyr-Asp-Gly-Glu-
Arg, which is homologous to the active site motif con-
served in ATP-dependent DNA ligases. The sequences
adjacent to this motif in DNA ligase IT are different from
the comparable sequences in DNA ligase I, demonstrat-
ing that these enzymes are encoded by separate genes.
The amino acid sequences of 15 DNA ligase II peptides
exhibit striking homology (65% overall identity) with
vaccinia DNA ligase. These peptides are also homolo-
gous (31% overall identity) with the catalytic domain of
mammalian DNA ligase I, indicating that the genes en-
coding DNA ligases I and II probably evolved from a
common ancestral gene. Since vaccinia DNA ligase is not
required for DNA replication but influences the ability
of the virus to survive DNA damage, the homology be-
tween this enzyme and DNA ligase II suggests that DNA
ligase II may be involved in DNA repair.

DNA joining is an essential step in the replication, repair,
and recombination of the mammalian genome. This function
appears to be fulfilled by three biochemically distinct DNA
ligases (1), although whether these enzymes are encoded by
separate genes remains controversial. At the present time, only
the gene encoding DNA ligase I has been cloned and sequenced
(2, 3). The predicted amino acid sequence of the catalytic do-
main of this enzyme exhibits approximately 50% identity with
the DNA ligases encoded by the CDC9 gene of Saccharomyces
cerevisiae and the CdcI7* gene of Schizosaccharomyces pombe
and about 30% identity with the DNA ligase encoded by vac-
cinia virus (2, 4-6). Genetic and biochemical studies on mam-
malian DNA ligase I, Cdc9 DNA ligase and Cdc17 DNA ligase
have demonstrated that these functionally homologous en-
zymes are required for the joining of Okazaki fragments during
DNA replication and are also involved in DNA repair (2, 7-10).
Inactivation of the vaccinia DNA ligase gene has no significant

* These studies were supported by a United States Public Health
Service Grant GM7251 (to A. E. T.) from the Department of Health and
Human Services. The costs of publication of this article were defrayed
in part by the payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 U.S.C. Section
1734 solely to indicate this fact.

|| To whom correspondence should be addressed: Institute of Biotech-
nology, University of Texas Health Science Center, 15355 Lambda Dr.,
San Antonio, TX 78245, Tel.: 210-677-6327; Fax: 210-677-6324.

effect on the replication and recombination of this cytoplasmic
virus but the mutated virus is less virulent and more sensitive
to DNA damage (11, 12).

Considerably less is known about the cellular functions of
DNA ligases II and II1. DNA ligase II was initially described as
a labile, minor activity in calf thymus extracts (13). This 70-
kDa polypeptide has a different substrate specificity than DNA
ligase I, in particular the ability to join oligo(dT) molecules
hybridized to a poly(rA)! template (14), and is not recognized by
a polyclonal antiserum raised against homogeneous DNA li-
gase I (15, 16). Unlike DNA ligase I, which is required for DNA
replication, DNA ligase Il appears to be present at similar
levels in proliferating and non-dividing tissues. In a normal
mammalian liver, DNA ligase II is the predominant activity,
contributing about 80% of the total cellular DNA joining activ-
ity (17, 18). Increases in the level of DNA ligase II activity have
been observed following DNA damage, suggesting that this
enzyme may be involved in DNA repair (19, 20).

A second minor DNA ligase activity, which is also active on
the oligo(dT) poly(rA) substrate, has been partially purified
from calf thymus extracts (1). Based on differences in chro-
matographic, physical, and catalytic properties, this activity
was designated DNA ligase III (1). Recently, the 100-kDa DNA
ligase III has been identified as a component of a 500-kDa
recombination complex purified from calf thymus glands (21)
and as a component of a complex that contains the product of
the human XRCCI gene, which appears to be involved in the
repair of DNA single-strand breaks (22).

In this report we describe the purification of DNA ligase II to
apparent physical homogeneity from bovine liver. The amino
acid sequence of several DNA ligase II peptides, including a
peptide that contains the active site lysine residue, has been
determined. Although the sequence of the adenylylated DNA
ligase II peptide contains the DNA ligase active site motif,
Lys-Tyr/Ala-Asp-Gly-Xaa-Arg, that was originally identified in
bovine DNA ligase I (23), the sequence adjacent to this motif is
clearly different from the corresponding region of bovine DNA
ligase I. A comparison of DNA ligase IT peptide sequences with
other eukaryotic DNA ligases demonstrated that this enzyme is
more highly related to the DNA ligase encoded by vaccinia DNA
ligase than to mammalian DNA ligase I and other replicative
DNA ligases.

MATERIALS AND METHODS

Preparation of DNA Ligase Substrates—Oligonucleotide (dT),; and
polynucleotides (dA), (rA), and (dT) were purchased from Pharmacia

! The abbreviations used are: poly(rA), polyadenylic acid; FPLC, fast
protein liquid chromatagraphy; HPLC, high pressure liquid chromatog-
raphy; PLP, pyridoxal 5'-phosphate.
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Biotech Inc. Labeled homopolymer DNA substrates and a substrate
comprising of an end-labeled 16-mer, an 18-mer, and a complementary
34-mer, which form a duplex structure containing a single, internal
nick, were prepared as described previously (24).

DNA Ligase Assays—Phosphodiester bond formation was assayed as
described previously (24). One unit of DNA ligase activity catalyzes the
conversion of 1 nmol of terminal phosphate residues to a phosphatase-
resistant form in 15 min at 16 °C.

Analysis of Ligation Products—Aliquots (10 ul) from DNA ligase
assays were added to 10 pl of formamide dye and heated for 2 min at
80 °C. Samples (2.5 ul) were then loaded onto a denaturing 10% poly-
acrylamide gel. After electrophoresis, the gels were dried, and oligonu-
cleotides were visualized by autoradiography.

Formation of DNA Ligase-Adenylate Complex—Adenylylation reac-
tions were carried out as described previously (25). The reactions were
incubated at room temperature for 15 min and stopped by the addition
of SDS sample buffer. After heating at 90 °C for 10 min, proteins were
separated by SDS-polyacrylamide gel electrophoresis (26). Gels were
fixed for 10 min in 10% acetic acid, dried, and exposed to x-ray film.

Purification of Bovine DNA Ligase II—Bovine livers were obtained
from newly slaughtered cows at the local abattoir. The tissues were
packed in ice and used for subcellular fractionation within 3 h. Nuclei
were isolated from a liver (~5 kg) as described previously (15, 27) and
stored as pellets at —80 °C. Nuclei (corresponding to 2.5 kg of tissue)
were resuspended in 50 mum Tris-HC] (pH 7.5), 1 mm EDTA, 10 mum
2-mercaptoethanol, 10% glycerol, 0.3 m NaCl, 1 mm phenylmethylsulfo-
ny! fluoride, 1 mm benzamidine, 0.4 ng/ml aprotinin, 0.5 pg/ml chymo-
statin, 0.5 ng/ml leupeptin, and 0.7 ng/ml pepstatin (buffer A) and lysed
by Dounce homogenization. After 1 h on ice, the suspension was cen-
trifuged at 40,000 rpm for 90 min in a Sorvall T-647.5 rotor. The nuclear
extract (660 ml, 3.5 g) was fractionated by ammonium sulfate precipi-
tation (15). The 45-70% ammonium sulfate precipitate was resus-
pended in 50 mum Tris-HCI (pH 7.5), 1 mm EDTA, 50 mM NaCl, 10 mum
2-mercaptoethanol, 10% glycerol containing the same protease inhibi-
tors as buffer A (buffer B) and dialyzed against buffer B. After removal
of insoluble debris by centrifugation, the dialysate (2.18 g, 300 ml) was
applied to a 200-ml phosphocellulose column. Bound proteins were
eluted from the column with a 2-liter linear gradient from 50 mm to 0.75
M NaCl in buffer B. Fractions were assayed for DNA joining and forma-
tion of the enzyme-AMP complex. Two peaks of DNA ligase activity were
detected in assays with the oligo(dT)-poly(dA) substrate. A minor peak,
which eluted at 0.15 m NaCl, contained the 125-kDa DNA ligase I. The
major peak, which eluted at about 0.4 M NaCl, contained the 70-kDa
DNA ligase II. Ligation of the oligo(dT)-poly(rA) substrate was detected
only in assays with fractions from the major peak. Fractions from this
peak were pooled (200 ml, 40 mg) and adjusted to 1 mm potassium
phosphate (pH 7.5) prior to loading onto a 10-ml hydroxylapatite col-
umn that had been pre-equilibrated with 50 mm Tris-HC1 (pH 7.5), 1 mm
EDTA, 10 mm 2-mercaptoethanol, 0.5 m NaCl, 10% glycerol, 1 mm po-
tassium phosphate (pH 7.5). Proteins were eluted stepwise from the
column with 50, 150, and 400 mm potassium phosphate (pH 7.5) buffers
containing 10 mm 2-mercaptoethanol and 10% glycerol. DNA ligase IT
activity was detected in the 400 mum potassium phosphate eluate (22 ml,
14 mg). After dialysis against 25 mm Hepes-NaOH (pH 7.6), 1 mm EDTA,
100 mm NaCl, 10% glycerol, 0.5 mum dithiothreitol, 0.2% Tween 20, 1 mm
phenylmethylsulfonyl fluoride, and 1 muM benzamidine (buffer C), the
sample was applied to a 3-ml double-stranded DNA cellulose column.
Bound proteins were eluted stepwise with 0.2 and 0.5 m NaCl in buffer
C. DNA ligase II, which was present in the 0.5 m NaCl eluate (4 ml, 0.6
mg), was loaded onto a 1.6 x 60-cm Superdex 200 column (Pharmacia).
After elution with buffer C containing 0.5 M NaCl, DNA ligase II con-
taining fractions (12 ml, 0.15 mg) were dialyzed against buffer C and
loaded onto an FPLC Mono Q HR5/5 column. DNA ligase IT activity,
which was detected in the pass-through fractions (14 ml, 0.1 mg), was
loaded onto an_ FPLC Mono S HR5/5 column. Bound proteins were
eluted with a 20-ml linear gradient from 100 to 500 mm NaCl in buffer
C without Tween 20. DNA ligase II fractions (1 ml, 20 ng), which eluted
at 250 mm NaCl, were aliquoted and stored at —80 °C.

Purification of Recombinant Human DNA Ligase I—Human DNA
ligase I ¢cDNA was subcloned into a baculovirus expression vector,
pVL1392 (PharMingen). The details of the purification of recombinant
human DNA ligase I from baculoviral infected insect cells will be de-
scribed elsewhere. In assays with the oligo(dT)-poly(dA) substrate, ho-
mogeneous 125-kDa DNA ligase I had a specific activity of 2.5 units/mg.

Inhibition of DNA Ligase II-Adenylate Formation by Pyridoxal 5'-
Phosphate—PLP (Sigma) was dissolved in 25 mm Hepes-NaOH (pH 7.6)
to 10 mm immediately prior to use. Bovine DNA ligase IT (40 ng, 0.6
pmol) was incubated in reaction mixtures (10 ul) containing 25 mwm

Mammalian DNA Ligase I1

Hepes-NaOH (pH 7.6), 10 mm MgCl,, 50 mm NaCl, 0.1 mum dithiothreitol,
and 0, 50, 100, or 200 um PLP at 30 °C. After 5 min, 5 pl of 25 mm
Hepes-NaOH (pH 7.6) containing 2 uCi of [¢*PJATP (3000 Ci/mmol)
were added, and incubation was continued for 15 s. The reactions were
stopped by freezing in liquid nitrogen. It was not necessary to convert
the Schiff’s base formed between PLP and lysine to a covalent bond with
sodium borohydride because of the short incubation for the adenylyla-
tion reaction. After separation by denaturing gel electrophoresis as
described above, enzyme-adenylate complexes were detected by auto-
radiography and quantitated by phosphorimage analysis (Molecular
Dynamics).

Immunoblotting—Proteins were separated by denaturing polyacryl-
amide gel electrophoresis (26) and transferred to nitrocellulose. After
incubation with either antiserum raised against homogeneous bovine
DNA ligase I (25) or antiserum raised against the conserved COOH-
terminal peptide of eukaryotic DNA ligases (25), antigen-antibody com-
plexes were detected by enhanced chemiluminescence (Amersham
Corp.).

Proteolytic Digestion and Amino Acid Sequencing of Bovine DNA
Ligase II Peptides—DNA ligase II (20 pg) was applied to a hydrophobic
sequencing column (Hewlett-Packard) according to the manufacturers
instructions. After in situ digestion with endoproteinase Lys-C (Wako),
peptides were separated by reverse phase HPLC using a Spheri 5 ODS
(Brownlee) column (28). The amino acid sequences of peptides
were determined by automated Edman degradations performed on
the ABI477A protein sequencer with the 120A phenylthiohydantoin
analyzer.

Isolation of an Adenylylated Peptide from Bovine DNA Ligase II—
DNA ligase II (20 ng, 290 pmol) was incubated with 50 mu Tris-HCI (pH
7.5), 10 mm MgCl,, 1 mwm dithiothreitol, 4 umM ATP, and 100 nCi of
[2,5",8-*HIATP for 15 min at 25 °C. The reaction was terminated by the
addition of EDTA (pH 8.0) to a final concentration of 10 mwm. Protein was
digested as described above, and the resultant peptides were separated
by reverse phase HPLC on a Ci/RP300 (Brownlee) column as described
previously (23). The adenylylated peptide was detected by monitoring
absorbency at 214, 260, and 280 nm and by liquid scintillation counting.
Peptides were sequenced as described above.

RESULTS

Purification of Bovine DNA Ligase II—DNA ligase II was
purified from bovine liver nuclei by measuring formation of the
labeled 70-kDa enzyme-adenylate intermediate and joining of
the oligo(dT)-poly(rA) substrate as described under “Materials
and Methods.” We chose to purify DNA ligase II from bovine
liver since this tissue contains significantly higher levels of
DNA ligase II activity compared with the thymus (15). Further-
more, during subcellular fractionation under isotonic condi-
tions, DNA ligase II remains firmly associated with nuclei,
whereas the majority of DNA ligase I leaks out of the nuclei and
is found in the cytoplasmic/soluble fraction (15, 18). After the
preparation of a nuclear extract, residual traces of DNA ligase
I were removed by phosphocellulose chromatography. In con-
trast to experiments with rat liver (29), we were unable to
detect 100-kDa DNA ligase III in either the cytoplasmic/soluble
or nuclear fractions from bovine liver.

During the latter stages of the purification, DNA ligase IT
exhibited a tendency to precipitate. To improve the yield of
DNA ligase II protein, a non-ionic detergent, Tween 20 (0.2%),
was included in the buffers. In the last step of the purification,
a single polypeptide of 70-kDa co-eluted with a similar sized
polypeptide that formed a labeled enzyme-AMP complex (Fig.
1, A and B). We obtained approximately 20 pg of the 70-kDa
polypeptide, which appeared to be greater than 90% homoge-
neous (Fig. 14), from 2.5 kg of bovine liver.

In assays with the homopolymer substrates, DNA ligase II
had a specific activity of 4 units/mg when assayed with the
oligo(dT)-poly(rA) substrate compared with 2 units/mg when
assayed with the oligo(dT)-poly(dA) substrate (data not shown).
These values are similar to that obtained for homogeneous
bovine DNA ligase I assayed with the oligo(dT)-poly(dA) sub-
strate (2.5 units/mg) (24) but are significantly higher than the
specific activity of apparently homogeneous DNA ligase II
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Fic. 1. Purification of bovine DNA ligase II by FPLC Mono S
chromatography. Fractions containing DNA ligase IT activity follow-
ing FPLC Mono Q chromatography were applied to an FPLC Mono S
column and gradient eluted as described under “Materials and Meth-
ods.” Fractions containing protein, measured by absorbance at 280 nm,
were analyzed. A, after aliquots (10 pul) of the indicated fractions were
electrophoresed through a 10% denaturing polyacrylamide gel, proteins
were stained with Coomassie Blue. The positions of size markers, my-
osin, 200 kDa; B-galactosidase, 116 kDa; phosphorylase b, 97 kDa; bo-
vine serum albumin, 69 kDa; and ovalbumin, 46 kDa (Bio-Rad), are
indicated on the left. B, aliquots (2 nl) of the indicated fractions were
assayed for enzyme-AMP formation as described under “Materials and
Methods.” After separation through a 10% denaturing polyacrylamide
gel, labeled polypeptides were detected by autoradiography. The posi-
tions of *C-labeled size markers, myosin, 200 kDa; phosphorylase b, 97
kD; bovine serum albumin, 69 kDa; and ovalbumin, 46 kDa (Amersham
Corp.), are indicated on the left.

(0.001 unit/mg) isolated from calf thymus glands (1).

Although the three mammalian DNA ligases can be distin-
guished in vitro by their reactivity with the various homopoly-
mer substrates, it is not apparent that these differences in
substrate specificity are physiologically relevant. We have con-
structed a DNA substrate by hybridization of three appropriate
oligonucleotides that contains a single defined nick with adja-
cent 5'-phosphate and 3'-hydroxyl termini within a linear du-
plex DNA molecule (24) assuming that this more closely re-
sembles the in vivo substrate for DNA ligases. In assays with
such a substrate, bovine DNA ligase II catalyzes phosphodi-
ester bond formation, joining the end-labeled 16-mer to the
adjacent 18-mer when these oligonucleotides are hybridized to
a complementary 34-mer (data not shown).

Bovine DNA Ligase II Cross-reacts with the Antiserum
Raised against the Conserved COOH-terminal Peptide
Sequence Present in Mammalian DNA Ligase I, Yeast DNA
Ligases, and Vaccinia DNA Ligase—During purification, pro-

A

97—

68—

46—

Fic. 2. Bovine DNA ligase II cross-reacts with the antiserum
raised against the conserved epitope present in several eukary-
otic DNA ligases but not with an antiserum raised against bo-
vine DNA ligase I. Homogeneous human DNA ligase I and bovine
DNA ligase II were electrophoresed through two identical 10% dena-
turing polyacrylamide gels and then transferred to nitrocellulose mem-
branes. A, nitrocellulose membrane incubated with antiserum raised
against homogeneous bovine DNA ligase 1. B, nitrocellulose membrane
incubated with antiserum raised against a peptide common to several
eukaryotic DNA ligases. Lane 1, 50 ng of recombinant human DNA
ligase I and lane 2, 200 ng of bovine DNA ligase II. Immune complexes
were detected by enhanced chemiluminescence. The positions of size
markers phosphorylase b, 97 kDa; bovine serum albumin, 68 kDa; and
ovalbumin, 46 kDa (Amersham Corp.) are indicated on the left.

teolytic cleavage of mammalian DNA ligase I by endogenous
proteases can produce catalytically active fragments (25). To
demonstrate that the 70-kDa polypeptide was not an active
proteolytic fragment of DNA ligase I, we performed immuno-
blotting experiments with a polyclonal antiserum raised
against homogeneous bovine DNA ligase I (25). As expected
this antiserum recognized purified recombinant human DNA
ligase I (Fig. 2A) and partially purified bovine DNA ligase I
(data not shown) but not bovine DNA ligase II (Fig. 24).
Mammalian DNA ligase I, vaccinia DNA ligase, Cdc9 DNA
ligase, and Cdc17 DNA ligase all contain a conserved 16-amino
acid sequence close to their COOH termini (2, 6). In contrast to
a previous report (1), we find that the antiserum raised against
this conserved COOH-terminal peptide sequence (25) cross-
reacts with bovine DNA ligase II (Fig. 2B). Since the specific
activity of this DNA ligase II preparation is 3000-fold higher
than that of apparently homogeneous DNA ligase II from calf
thymus (1), it appears likely that DNA ligase II was a minor
component of the calf thymus preparation and was not present
in sufficient quantity for detection by immunoblotting.
Inhibition of DNA Ligase II-Adenylate Formation by Pyri-
doxal Phosphate—In the first step of the ligation reaction, DNA
ligase reacts with either ATP (bacteriophage, viral, and eukary-
otic enzymes) or NAD* (bacterial enzymes) to form a covalent
enzyme-adenylate intermediate. For Escherichia coli DNA li-
gase, bacteriophage T4 DNA ligase (30), and mammalian DNA
ligase I (23), it has been demonstrated that the AMP residue is
linked to a lysine residue via a phosphoramidite bond. Adenyl-
ylated DNA ligase II is sensitive to treatment with acidic hy-
droxylamine (data not shown), which cleaves phosphoramidite
bonds (30). Since internal histidine residues also possess amino
groups that can potentially form phosphoramidite bonds, we
cannot conclude that the AMP group is linked via a lysine
residue. To provide further evidence for the direct involvement
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3 4

46—

Fic. 3. Inhibition of enzyme-adenylate formation by pyridoxal
phosphate. DNA ligase II (40 ng) incubated with; lane 1, no addition,
lane 2, 50 pm PLP; lane 3, 100 umM PLP and lane 4, 200 um PLP as
described under “Materials and Methods.” After 5 min, 2 pCi of
[a*2P]ATP was added, and the incubation was continued for 15 s. After
separation by SDS-PAGE, labeled enzyme-adenylate complexes were
detected by autoradiography. The positions of 1*C-labeled size markers,
phosphorylase b, 97 kDa; bovine serum albumin, 69 kDa; and ovalbu-
min, 46 kDa (Amersham Corp.) are indicated on the left.

of a lysine residue in the adenylylation reaction of mammalian
DNA ligase II, the enzyme was incubated with pyridoxal phos-
phate, which specifically interacts with reactive, nucleophilic
lysine residues (23, 31), prior to the addition of labeled ATP.
Formation of DNA ligase II-adenylate was inhibited 75% by 50
M PLP, 84% by 100 pm PLP, and 94% by 200 um PLP (Fig. 3).
A similar degree of inhibition by PLP was observed with mam-
malian DNA ligase I (23).

Isolation and Amino Acid Sequence of a DNA Ligase I Active
Site Peptide—To identify the active site lysine residue of DNA
ligase II, homogeneous bovine DNA ligase II (290 pmol) was
adenylylated with [*HJATP and then digested with a protease,
endoproteinase Lys-C, that specifically cleaves the peptide
bond on the COOH-terminal side of lysine residues. Adenylyl-
ated lysine residues are not recognized as a substrate by lysine-
specific proteases (23, 32). The resultant peptides were sepa-
rated by reverse phase HPLC as described under “Materials
and Methods.” The majority of the radioactivity, corresponding
to about 60 pmol of AMP, eluted from the column in a single
fraction, which was coincident with a major peak of absorbance
at 260 nm and a smaller peak of absorbance at 280 nm (data
not shown). The A, /A,q, ratio of this peak was 1.5, which is
consistent with the presence of adenylyl residues.

Amino acid sequence analysis of this fraction revealed the
presence of a single major peptide with the sequence Cys-Pro-
Asn-Gly-Met-Phe-Ser-Glu-Ile-Lys-Tyr-Asp-Gly-Glu-Arg-Val-
GIn-Val-His. The predicted, internal lysine residue was de-
tected at position 10 of this 19 amino acid sequence. Since we
were unable to detect a signal in the 20th and subsequent
cycles of Edman degradation, we do not know whether the
peptide terminated with a lysine at position 20 or continued.
Edman degradation chemistry involves highly acidic conditions
that preclude identification of a lysine-AMP residue. However,
the presence of an internal protease-resistant lysine residue
implies that this residue was the site of adenylylation. Inhibi-
tion of cleavage by lysine-specific proteases at lysine-AMP resi-
dues has been observed for the adenylylated forms of yeast
tRNA ligase (32) and bovine DNA ligase I (23). Since the amino
acid sequences of 19 Lys-C peptides from a similar quantity of
non-adenylylated DNA ligase II digested under identical con-
ditions did not contain internal lysine residues (see later), the
lysine residue detected in the 10th Edman degradation cycle is
unlikely to be a consequence of incomplete digestion. The yield

*
Human DNA ligase I 556 KRFEEAAFTCEYKYDGQRAQIHALEGGEVK 585
+ ot + o+ o+
CPNGMFSEIKYDGERVQVH
E
218 FKKFPSGMFAEVKYDGERVQVHKNNNEFAF 248

Bovine DNA ligase II
Vacc. DNA ligase

Fic. 4. Alignment of active site sequences from mammalian
DNA ligase I and vaccinia DNA ligase with the active site region
of bovine DNA ligase II. Alignment of the adenylylated DNA ligase II
peptide with the apparently related sequences in the human DNA li-
gase I gene (2) and the vaccinia virus DNA ligase gene (6) is shown.
Amino acids are numbered from the amino-termini of the full-length
polypeptides. An adenylylated tryptic peptide isolated from bovine DNA
ligase I had the amino acid sequence, FEEAAFT-EYKYDGQR, which
corresponds exactly with residues 558-573 of translated human DNA
ligase I ¢DNA (23). The 6-amino acid active site motif that is conserved
in all DNA ligases is indicated in boldface. The asterisk indicates the
postulated or known site of adenylylation. Amino acids conserved be-
tween the DNA ligases are marked with a cross.

of the phenylthichydantoin-derived amino acids during Edman
degradation indicated that the fraction contained about 70
pmol of peptide, consistent with a 1:1 ratio of AMP and peptide
molecules. Furthermore, the A,g/A,,, ratio of 1.5 is close to the
predicted value for a peptide containing one tyrosine and one
AMP residue.

The lysine residue in the DNA ligase IT active site peptide
was part of a 6-amino acid sequence which is homologous to the
active site motif, Lys-Tyr/Ala-Asp-Gly-Xaa-Arg, found in all
ATP-dependent DNA ligases (23) (Fig. 4). A comparison of the
19-amino acid adenylylated Lys-C peptide from bovine DNA
ligase II with the corresponding sequence encoded by human
DNA ligase I ¢cDNA (2, 23) revealed clear differences between
these enzymes in the regions flanking the active site motif (Fig.
4). The alterations in amino acid sequence (two changes in 4
residues) in the region COOH-terminal to the active site motif
could be explained as minor changes in functionally homolo-
gous gene products from different species. Since the amino acid
sequence of an adenylylated tryptic peptide from bovine DNA
ligase I corresponds exactly to residues 558-573 encoded by
human DNA ligase I cDNA, the changes in amino acid sequence
within this region (eight differences in a 9-amino acid se-
quence) unequivocally demonstrate that DNA ligase IT is not a
proteolytic fragment of DNA ligase I and provide compelling
evidence that these enzymes are encoded by distinct genes.

The active site region of DNA ligase II is most closely related
to the active site region of the DNA ligase encoded by vaccinia
virus, with 15 identical residues out of 19 (Fig. 4). During the
sequencing of this peptide, we did not detect the COOH-termi-
nal lysine residue anticipated from a Lys-C digestion. Progres-
sive reduction in signal toward the COOH-terminal residue of
a peptide is a common feature of amino acid sequencing. The
homology between the DNA ligase II active site peptide and the
active site region of vaccinia DNA ligase suggests that the
lysine residues in the vaccinia DNA ligase sequence that flank
the DNA ligase II peptide may be conserved in bovine DNA
ligase II (Fig. 4).

The Catalytic Domain of Mammalian DNA Ligase Il Is More
Closely Related to Vaccinia DNA Ligase than to Mammalian
DNA Ligase I—A surprising feature of the adenylylated DNA
ligase II peptide was the high degree of homology with the
active site region of vaccinia DNA ligase. To investigate the
extent of the relationship between mammalian DNA ligase II
and vaccinia DNA ligase, we obtained more amino acid se-
quence information from bovine DNA ligase II.

Attempts to determine the NH,-terminal amino acid se-
quence of the 70-kDa polypeptide were unsuccessful. Since we
were able to obtain amino acid sequences from the same prep-
aration of DNA ligase II after proteolytic digestion (see below),
we concluded that, as is the case with the majority of soluble

proteins in mammalian cell extracts (33), the NH, terminus of
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Lig I KYDGQRAQIHALEGGEVKIFSRNQEDNTGKYPDIISRIPKIKLPSVTSFILDT
o+ + +++ + o+ 4+ o+t
Lig II KYDGERVQVH KGDHFSYFSRSLK KDFIPIAFPGGHSMILDS
bttt + o+t 4+ + 4+ +
Vace KYDGERVQVHK NNNEFAFFSRNMKPVLSEKVDYLKEYIPKAFKKATSIVLDS
Lig I EAVAWDREKK QIQPFQVLTTRKRKEVDASEIQVQVCLYAFDLIYLNGESLVR
+ + ++ o+
Lig II EVLL AAFQDANVCLEVFDCIYFNDVSLMDRPL-E
+ + + kbbbt b4 + 4+ +
Vace EIVLVDEHNVPLPFGSLGIHKKKEYKNSNMCLFVFDCLYFDGEDMTDIPLYE
Lig I EPLSRRRQLLRENFVETEGEFVFATSLDTKDIEQIAEFLEQSVKDSCEGLMVK
o+ +
Lig II LLEDNMVEIPNAIMFSEMK
+ 4 bbb
Vace RRSFLKDVMVEIPNRIVFSELTNISNESQLTDVLDDALTRKLEGLVLK
Lig I TLDVDATYEIAKRSENWLKLKKDYLD G VGDTLDLVVIGAYLGRGKRAGRYG
4+ B T I o s T i
Lig II GTYEPGK RHWLEK DYLNEGAMADTADLVVLGAF YGQGSKGGMMS
L o 2 i N S N 4
Vace DIN GVYEPGK RRWLKIKRDYLNEGSMADSADLVVLGAYYGKGAKGGIMA
Lig I GFLLASYDEDSEELQAICKLGTGFSDEELEEHHQSLKALVLPSPRPYVRIDGA
o+ o+ + o+ o+ o+ +
Lig II IFLMGCYDPSSQRKWCTVTKCAGGHDDATLARLQG-LDMVE IPNWLK
B A R e a s I = TR T S ++ 4
Vace VFLMGCYDDESGKWKTVTKCSG HDDNTLRVLQDQLTMVKINKDPKKIPEWL
Lig I VIPDHWLOPSAVWAVKCADLSLSP IYPAARGLVDSDKGISLRFPRF IRVREDK
+ o+ o+ 4+t
Lig II IYYPDFIVPDPEK AAVW-ITGA-FS SEAHTADGISIRFPR-T-I
++ b+ bt + o+ o+ +++ FHbbbdet o+
Vacc VVNKIYIPDFVVEDPKQSQIWEISGAEFTSSKSHTANGISIRFPRFTRIREDK
Lig I QPEQATTSAQVACLYRKQSQIONQQGEDSGSDPEDTY
Lig II
Vacc TWKESTHLNDLVNLTKS

Fic. 5. Amino acid sequence homology between bovine DNA
ligase Il peptide sequences and the catalytic domains of human
DNA ligase I and vaccinia DNA ligase. The predicted amino acid
sequences from the putative active site Iysine residues to the C termini
of human DNA ligase I (568-919) and vaccinia DNA ligase (231-552)
have been aligned. Amino acids are numbered from the amino termini
of the full-length polypeptides. Gaps have been introduced for maxi-
mum alignment. The alignment of bovine DNA ligase II peptides with
apparently related sequences in human DNA ligase I and vaccinia DNA
ligase is shown. A hyphen indicates a position within a peptide where it
was not possible to unambiguously assign an amino acid. Amino acids
conserved between the DNA ligases are marked with a cross.

the 70-kDa polypeptide was blocked to Edman degradation.
After digestion of DNA ligase IT with endopeptidase Lys-C and
separation of the resultant peptides by reverse phase HPLC,
amino acid sequences were obtained from 19 different peptides,
in addition to the active site peptide described previously. A
comparison of these sequences with the 63-kDa vaccinia DNA
ligase (Fig. 5) revealed that 14 of the peptide sequences were
homologous with this enzyme (6). The peptides were aligned
within the region from the active site to the COOH terminus.
The degree of identity ranged from 38 to 86% and generally
increased toward the COOH terminus. The DNA ligase genes of
two other poxviruses, variola and Shope fibroma virus, have
also been sequenced (34, 35). The predicted amino acid se-
quences of vaccinia and variola DNA ligases exhibit 98% iden-
tity whereas they share only 45% identity with the Shope fi-
broma DNA ligase. The DNA ligase II peptides are more highly
related to vaccinia and variola DNA ligases (65% overall iden-
tity) than Shope fibroma DNA ligase (57% overall identity).
One of the DNA ligase II peptides, Ser-Glu-Ala-His-Thr-Ala-
Asp-Gly-Ile-Ser-Ile-Arg-Phe-Pro-Arg-Xaa-Thr-Xaa-Ile, is
partly homologous with the conserved peptide sequence pres-
ent in eukaryotic and vaccinia DNA ligases (2, 6). Presumably
this peptide forms part of the DNA ligase II epitope that was
recognized by the antiserum raised against the conserved pep-
tide sequence in the immunoblotting experiment (Fig. 2). The
other hovine DNA ligase II peptides also share homology with
the catalytic domain of human DNA ligase I (Fig. 5). Within
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this region, however, DNA ligase II is more similar to vaccinia
DNA ligase, exhibiting 65% identity compared to 31% with
human DNA ligase 1. Thus, the catalytic domain of mammalian
DNA ligase I is more closely related to the DNA ligases encoded
by the S. cerevisiae CDC9 gene and the S. pombe Cdc17* gene
(2) than to mammalian DNA ligase II.

DISCUSSION

Despite immunological and biochemical evidence indicating
that mammalian DNA ligases I and IT are encoded by separate
genes (1, 14-16), this hypothesis has remained controversial
(36, 37). In this study, we have determined the amino acid
sequence of an adenylylated peptide isolated from homogene-
ous bovine DNA ligase II. This peptide, Cys-Pro-Asn-Gly-Met-
Phe-Ser-Glu-Ile-Lys-Tyr-Asp-Gly-Glu-Arg-Val-Gln-Val-His,
contains a sequence that is homologous with the active site
motif Lys-Tyr/Ala-Asp-Gly-Xaa-Arg found in ATP-dependent
DNA ligases, including mammalian DNA ligase I (23). The
clear, unambiguous differences between DNA ligase I and DNA
ligase IT in the region adjacent to the active site motif provides
compelling evidence that these enzymes are encoded by sepa-
rate genes.

We believe that the lysine residue at position 10 within the
DNA ligase II peptide sequence is the site of adenylylation for
the following reasons; (i) the enzyme-adenylate complex was
sensitive to acidic hydroxylamine, indicating the presence of a
phosphoramidite bond (30); (ii) enzyme-adenylate formation
was inhibited by PLP, a reagent specific for nucleophilic lysine
residues (23, 31); (iii) the AMP and peptide moieties were pres-
ent in a 1:1 molar ratio; (iv) the amino acid sequence of the
Lys-C adenylylated peptide contains an internal Lys-C-resist-
ant lysine residue that forms part of an active site motif found
in all ATP-dependent DNA ligases. The essential role of the
lysine residue within the active site motif of human DNA ligase
I and vaccinia DNA ligase has been verified by site specific
mutagenesis (38, 39). A reactive lysine residue in a shortened
version of the motif, Lys-Xaa-Asp-Gly, has also been identified
as the active site of RNA ligases (32, 40) and of GTP-dependent
mRNA capping enzymes (39, 41, 42).

The DNA ligase IT active site peptide exhibits most homology
(15 identical residues out of 19) with the active site region of
vaccinia DNA ligase. The homologous sequence in vaccinia
DNA ligase is flanked by lysine residues. If we assume that
these residues are situated in the same positions within bovine
DNA ligase II, the predicted peptides generated by trypsin,
Lys-C and V8 protease are consistent with the peptide mapping
data obtained by Roberts et al. (43). A comparison of the amino
acid sequences of another 19 Lys-C DNA ligase IT peptides with
vaccinia DNA ligase revealed that 14 of these peptides were
homologous with the region from the active site to the COOH
terminus of this enzyme. The overall degree of identity between
the homologous DNA ligase II peptides and the putative cata-
lytic domain of vaccinia DNA ligase was 65%, significantly
higher than the 31% identity observed in a similar comparison
with the catalytic domain of human DNA ligase I. From this
analysis, it is apparent that DNA ligase II is more closely re-
lated to vaccinia DNA ligase whereas the replicative DNA 1li-
gases, mammalian DNA ligase I, S. cerevisice CDC9 and S.
pombe Cdel7*, are more closely related to each other (2) than to
DNA ligase II.

Based on similarities in substrate specificity and the genera-
tion of similar adenylylated peptides, it has been suggested
that DNA ligase II and IIT may be generated from a common
precursor polypeptide by differential processing or from the
same gene by alternative splicing (43, 44). Since DNA ligase 1I
is homologous with other eukaryotic DNA ligases, it is probable
that this enzyme has the same domain structure as all other
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ATP-dependent DNA ligases, consisting of a catalytic COOH-
terminal domain and a unique NH,-terminal domain (23, 25).
Therefore, DNA ligase II would have to be generated from the
100-kDa DNA ligase III by removal of an amino-terminal frag-
ment. However, the NH, terminus of the 70-kDa DNA ligase II
polypeptide was blocked to Edman degradation, implying that
it retains the N-acetylated amino-terminal residue of the pri-
mary translation product (33). Furthermore, a polyclonal anti-
body raised against the 68-kDa bovine DNA ligase II did not
recognize higher molecular weight polypeptides (45) and a pro-
teolytic fragment similar in size to DNA ligase II was not gen-
erated by proteolytic cleavage of DNA ligase III (1). Thus, it
appears that DNA ligases II and III are not derived from a
common polypeptide but may be generated by alternative splic-
ing or encoded by separate genes.

The high degree of identity between the catalytic domains of
mammalian DNA ligase II and vaccinia DNA ligase, and the
similar sizes of these enzymes (6, 11, 12) suggests that this
cytoplasmic virus recruited the host DNA ligase II gene. We
have not been able to unambiguously align the remaining five
DNA ligase II peptide sequences with homologous regions of
vaccinia DNA ligase. This absence of homology, in particular
with the amino-terminal region of vaccinia DNA ligase, may
reflect either the lack of selective pressure on a region of the
protein that is not required for catalytic function or, alterna-
tively, selective pressure to evolve a DNA ligase that specifi-
cally interacts with vaccinia proteins. A similar lack of homol-
ogy has been observed in a comparison of the amino-terminal
regions of mammalian DNA ligase I, S. cerevisiae Cdc9 and S.
pombe Cdcl7 DNA ligase (2).

Vaccinia DNA ligase, which has been detected in discrete
cytoplasmic factories where viral DNA synthesis occurs, is not
essential for virus DNA replication (11, 12). It is possible that,
in the absence of DNA ligase, vaccinia can replicate by a mech-
anism that does not require joining of Okazaki fragments. Al-
ternatively, one of the host DNA ligases may be able to substi-
tute for the viral enzyme. Expression of the vaccinia DNA
ligase gene can rescue the conditional lethal phenotype of a S.
cerevisiae cdc9 DNA ligase mutant (12). This type of comple-
mentation does not necessarily implicate this enzyme in DNA
replication but, more likely, reflects the uncoupling of replica-
tion fork progression from Okazaki fragment joining with the
subsequent joining of strand breaks in the lagging strand by
any available DNA ligase. The mutant vaccinia virus lacking
the DNA ligase gene was more sensitive to treatment with DNA
damaging agents than the wild type virus, implying that the
viral enzyme may be involved in DNA repair (12). A similar
cellular function has been predicted for DNA ligase II (19, 20).

In summary, amino acid sequence analysis of mammalian
DNA ligase II demonstrates that this enzyme is encoded by a
gene distinct from the one encoding DNA ligase I (2, 3). How-
ever, the homology between the catalytic domains of DNA li-
gases I and IT indicates that the genes encoding these enzymes
probably evolved from a common eukaryotic ancestral gene.
Mammalian DNA ligase II is more highly related to vaccinia
DNA ligase, suggesting that the recruitment of this host gene
by vaccinia occurred much more recently than the divergence of
the genes encoding DNA ligase I and DNA ligase II. Based on
the phenotypic properties of vaccinia DNA ligase mutants (11,
12) and previous biochemical studies on DNA ligase II (19, 20),
it is our working hypothesis that DNA ligase II functions in
certain housekeeping DNA repair pathways. The availability of

Mammalian DNA Ligase I

partial amino acid sequence from mammalian DNA ligase II
should facilitate the isolation of the gene encoding this enzyme
and further investigation of it’s relationship with DNA ligase
III and it’s function(s) in DNA metabolism.
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Mammalian cell nuclei contain three biochemically
distinet DNA ligases. In the present study we have found
high levels of DNA ligase I and DNA ligase III activity in
bovine testes and have purified DNA ligase III to near
homogeneity. The high level of DNA ligase III suggests a
role for this enzyme in meiotic recombination. In assays
measuring the fidelity of DNA joining, we detected no
significant differences between DNA ligases II and III,
whereas DNA ligase I was clearly a more faithful enzyme
and was particularly sensitive to 3’ mismatches. Amino
acid sequences of peptides derived from DNA ligase III
demonstrated that this enzyme, like DNA ligase II, is
highly homologous with vaccinia DNA ligase. The ab-
sence of unambiguous differences between homologous
peptides from DNA ligases Il and III (10 pairs of pep-
tides, 136 identical amino acids) indicates that these
enzymes are either derived from a common precursor
polypeptide or are encoded from the same gene by alter-
native splicing. Based on similarities in amino acid se-
quence and biochemical properties, we suggest that
DNA ligases II and ITI, Drosophila DNA ligase II, and the
DNA ligases encoded by the pox viruses constitute a
distinet family of DNA ligases that perform specific roles
in DNA repair and genetic recombination.

DNA joining is required to link together Okazaki fragments
during lagging strand DNA synthesis and to seal DNA strand
breaks produced either by the direct action of a damaging agent
or by DNA repair enzymes removing DNA lesions. In addition,
DNA ligation is necessary to complete exchange events be-
tween homologous duplex DNA molecules. Prokaryotes contain
a single species of DNA ligase that presumably functions in
each of the above DNA metabolic pathways (1). In contrast,
three biochemically distinct DNA ligases have been identified
in extracts from mammalian cells (2).

In in vitro assays DNA ligase I appears to be the enzyme that
joins Okazaki fragments during DNA replication (3-5). The
abnormal pattern of DNA replication intermediates detected in
experiments with the human cell line 46BR and its derivatives,
which contain mutated DNA ligase I alleles, are consistent
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with an in vivo defect in Okazaki fragment joining (6-9). Fur-
thermore, the sensitivity of these cell lines to DNA damaging
agents suggests that DNA ligase I may also be involved in
certain DNA repair pathways (6, 10-12).

The high levels of DNA ligase I activity in the thymus of
young animals facilitated the purification of this enzyme to
homogeneity from calf thymus glands (13, 14). Two minor DNA
ligase activities, designated as DNA ligase IT and DNA ligase
111, have also been identified in calf thymus extracts (2, 15, 16).
The 70-kDa DNA ligase II, which is the major DNA joining
activity in the normal liver (17), is not recognized by a poly-
clonal antiserum specific for DNA ligase I (2, 15, 18, 19). Recent
amino acid sequencing studies with homogeneous bovine DNA
ligase II confirmed that this enzyme is not a proteolytic frag-
ment of DNA ligase I and revealed that the enzyme is highly
homologous with the DNA ligase encoded by vaccinia virus
(18). It has been reported that the level of DNA ligase II
activity is induced by DNA damage, suggesting that it may
play a role in DNA repair (20, 21).

The 100-kDa DNA ligase III is also not recognized by the
DNA ligase I-specific antiserum (2). However, the relationship
between DNA ligase IT and DNA ligase III is less clearly de-
fined. Based on differences in the physical, catalytic, and chro-
matographic properties of these enzymes, it was concluded that
they are probably encoded by separate genes (2). In contrast, a
recent comparison of DNA ligase adenylation sites by peptide
mapping demonstrated significant similarities between the ac-
tive sites of these enzymes, suggesting that they may be related
by alternative splicing (22). The association of DNA ligase III
with a calf thymus recombination complex (23) and with a
human DNA repair protein, XRCC1 (24), is consistent with this
enzyme joining DNA strand breaks to complete recombination
and repair events.

In this report we describe the purification of DNA ligase IIT
to near homogeneity from bovine testes. Amino acid sequencing
studies have revealed a high degree of homology between DNA
ligase IIT and vaccinia DNA ligase. Furthermore, many of the
DNA ligase III peptides were identical with peptides isolated
from bovine DNA ligase II. The absence of unambiguous dif-
ferences between homologous DNA ligase II and III peptides
indicates that these enzymes are either derived from a common
precursor polypeptide or are encoded from the same gene by
alternative splicing.

MATERIALS AND METHODS

Purification of Recombinant Human DNA Ligase I—Human DNA
ligase I ¢cDNA was subcloned into a baculovirus expression vector,
pVL1392 (PharMingen). The details of the purification of recombinant
human DNA ligase I from baculoviral-infected insect cells will be de-
scribed elsewhere. In assays with the oligo(dT)/poly(dA) substrate, ho-
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mogeneous 125-kDa DNA ligase I had a specific activity of 2.5 units/mg.

Partial Purification of DNA Ligase I and DNA Ligase III from Whole
Cell Extracts of Bovine Testes—Testes from newly slaughtered bulls
were kept on ice and processed within 3 h. A cell-free extract was
prepared from 250 g of bovine testes by homogenization and then
fractionated by phosphocellulose chromatography, ammonium sulfate
precipitation, and gel filtration as described by Tomkinson et al. (2).
Protein concentrations were measured by the method of Bradford (25).
Fractions eluting from the gel filtration column were assayed for DNA
joining activity with both the oligo(dT)/poly(dA) and oligo(dT)/poly(rA)
substrates and for enzyme-adenylate formation. Fractions containing
both DNA ligase I and DNA ligase III activity (2, 8) were pooled and
fractionated by hydroxylapatite chromatography (26). Consistent with
previous results, the majority of DNA ligase I activity was eluted by 150
mM potassium phosphate. DNA ligase I was further purified by native
DNA cellulose chromatography and FPLC* Mono Q chromatography as
described (14) and was approximately 30% homogeneous.

DNA ligase III activity, which was eluted by 400 mM potassium
phosphate, was dialyzed against 50 mm Tris-HCl (pH 7.5), 50 mM NaCl,
1 mm EDTA, 0.5 mMm DTT, 10% glycerol (buffer A) and applied to a
native DNA cellulose column. Bound proteins were eluted stepwise
with 0.2 and 0.5 M NaCl in buffer A. Active fractions, which eluted with
0.5 M NaCl, were dialyzed against buffer A and then applied to an FPLC
Mono Q 5/5 column. Bound proteins were eluted with a 20-ml linear
gradient from 0.05-0.75 M NaCl in buffer A. DNA ligase III activity
eluted at 250 mum NaCl. A 100-kDa polypeptide detected by Coomassie
Blue staining after SDS-polyacrylamide gel electrophoresis co-eluted
with DNA ligase activity. Assuming that this polypeptide was respon-
sible for the labeled 100-kDa enzyme-adenylate, this preparation of
DNA ligase III was approximately 30% homogeneous.

For amino acid sequencing studies, the peak fractions of DNA ligase
III from the FPLC Mono Q column (2 ml, 25 ug) were pooled and
concentrated by ultrafiltration using a Centricon-10 apparatus (Ami-
con) that had been pretreated with 2% Triton X-100. Polypeptides (400
nl) were separated by electrophoresis through a preparative 10% SDS-
polyacrylamide gel and then transferred to a polyvinylidene membrane
(Bio-Rad). After staining with Ponceau S, the strip of membrane con-
taining the 100-kDa DNA ligase III was excised and washed with
distilled H,0. After digestion in situ with trypsin, the resultant peptides
were separated by reverse phase HPLC (27).

Purification of DNA Ligase III from Testis Nuclei—Three testes (0.75
kg) were sliced into 1-inch cubes, resuspended in 1 liter of buffer B (50
mM Tris-HCI (pH 7.5), 0.25 M sucrose, 2 mmM MgCl,, 10 mM B-mercap-
toethanol, 0.8 mM phenylmethylsulfony! fluoride, 0.2 mm Pefabloc
(Boehringer Mannheim), 2 pug/ml aprotinin, 1 ug/ml leupeptin, 1 pg/ml
pepstatin A, 3.5 ug/ml TPCK, 25 pg/ml TLCK, and 1 mM benzamidine)
and homogenized in a Waring blender. The homogenate was filtered
through cheesecloth with buffer B added periodically to maintain a
volume of about 1.5 liters. Nuclei were collected by centrifugation at
2500 X g for 30 min and washed three times with buffer B.

The crude nuclei (40 g) were resuspended in 50 mM Tris-HCl (pH 7.5),
1 mm EDTA, 750 mM NaCl, 10% glycerol, 10 mM S-mercaptoethanol, 1
mM Pefabloc, 2 ug/ml aprotinin, 1 pg/ml leupeptin, 1 ug/ml pepstatin A,
5 pg/ml chymostatin, 3.5 ug/ml TPCK, 25 ug/ml TLCK, and 1 mM
benzamidine (buffer C) and then lysed by Dounce homogenization.
After the addition of 40% polyethylene glycol 8000 to a final concentra-
tion of 5%, the suspension was stirred for 15 min and then centrifuged
at 10,000 rpm for 10 min in a GSA rotor (Sorvall). The clarified nuclear
extract (160 ml, 247 mg) was adjusted to 1 mM potassium phosphate
and then loaded onto a 35-ml hydroxylapatite column that had been
equilibrated with buffer C containing 1 mM potassium phosphate. Pro-
teins were eluted stepwise with 50, 150, and 400 mM potassium phos-
phate (pH 7.5) buffers containing 1.0 mm DTT and protease inhibitors
as described in buffer C. DNA ligase III activity, which was eluted in the
400 mM fraction (30 ml, 90 mg), was diluted 1 in 4 with 67 mm NaCl,
1.33 mm EGTA, and 1.33 mM DTT and loaded onto a 6.5-ml P11
phosphocellulose column that had been equilibrated with buffer D (50
mM Tris-HCl (pH 7.5), 50 mMm NaCl, 1 mm EDTA, 1 mm EGTA, 10%
glycerol, 1 mm DTT, and protease inhibitors as described in buffer C).
Bound proteins were eluted stepwise with 100, 250, and 450 mm NaCl
sequentially in buffer D. DNA ligase III activity was detected in the 450
mM eluate (12 ml, 22 mg). The samples were then diluted 1 in 6 with

1 The abbreviations used are: FPLC, fast protein liquid chromatog-
raphy; DTT, dithiothreitol; HPLC, high pressure liquid chromatogra-
phy; TLCK, N*-p-tosyl-L-lysine chloromethyl ketone; TPCK, N-tosyl-L-
phenylalanine chloromethyl ketone.
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buffer D without NaCl to adjust the NaCl to 75 mm and loaded onto a
5-ml native DNA-cellulose column equilibrated with buffer D. Bound
proteins were eluted stepwise with buffer D containing 200 mm and 500
mum NaCl. DNA ligase III activity (9 ml, 5 mg), which was eluted in the
500 mM NaCl buffer, was loaded onto an AcA34 gel filtration column
(2.6 X 98 cm) that had been equilibrated with buffer D containing 1 M
NaCl. Active fractions were pooled, dialyzed against buffer D, and then
loaded onto an FPLC Mono Q HR 5/5 column. Bound proteins were
eluted with a 20 ml of linear gradient from 50 to 750 mM NaCl in buffer
D. DNA ligase III (0.7 ml, 35 pg), which eluted at about 250 mm NaCl,
was stored in aliquots at —80 °C. Under these storage conditions, the
enzyme was stable for at least 6 months.

Preparation of Substrates for DNA Joining Assays—Polynucleotides
dA, rA, and dT were purchased from Pharmacia Biotech Inc. Oligo(dT)s,
was synthesized on an Applied Biosystems model 392 DNA/RNA syn-
thesizer. Labeled homopolymer substrates were prepared as described
previously (28). Labeled polynucleotide substrates containing a single,
defined nick were prepared by annealing three complementary oligo-
nucleotides as described previously (28).

DNA Ligase Assays—Phosphodiester bond formation was assayed as
described previously (28). One unit of DNA ligase activity catalyzes the
conversion of 1 nmol of terminal phosphate residues to a phosphatase-
resistant form in 15 min at 20 °C.

Analysis of Ligation Products—Aliquots (10 ul) from DNA ligase
assays were added to 10 ul of formamide dye and heated for 2 min at
90 °C. Samples (2.5 ul) were then loaded onto a denaturing 10% poly-
acrylamide gel. After electrophoresis, the gels were dried and oligonucleo-
tides were visualized by autoradiography. Formation of ligated products
was quantitated by phosphorimage analysis (Molecular Dynamics).

Formation of DNA Ligase-Adenylate—The adenylation reactions (12
ul) were routinely carried out in a reaction mixture containing 60 mm
Tris-HCI (pH 7.5), 10 mm MgCl,, 5 mm DTT, 50 ug/ml bovine serum
albumin, 0.5-8.0 uCi [a-32P] ATP (3000 Ci/mmol, Amersham Corp.) and
the enzyme fraction (29). After incubation at room temperature for 15
min, reactions were stopped by the addition of an equal volume of 2 X
SDS sample buffer. Samples were heated at 90 °C for 5 min and
polypeptides were separated by electrophoresis through an 8% SDS-
polyacrylamide gel (30). Gels were fixed in 10% acetic acid and dried.
Adenylylated polypeptides were detected by autoradiography.

Immunoblotting—Proteins were separated by denaturing polyacryl-
amide gel electrophoresis (30) and transferred to nitrocellulose mem-
branes. After incubation with either antiserum raised against homoge-
neous bovine DNA ligase I (14) or antiserum raised against the
conserved COOH-terminal peptide of eukaryotic DNA ligases (14), an-
tigen-antibody complexes were detected by enhanced chemilumines-
cence (Amersham).

Proteolytic Digestion and Amino Acid Sequencing of Bovine DNA
Ligase Il Peptides—Peptide sequences were obtained from both the
partially purified and the near homogeneous preparations of DNA
ligase III. DNA ligase III peptides from the partially purified prepara-
tion were isolated as described above. Near homogeneous DNA ligase
III (10-15 ug) was applied to a hydrophobic sequencing column
(Hewlett-Packard) according to the manufacturer’s instructions. After
in situ digestion with endoproteinase Lys-C (Wako), peptides were
separated by reverse phase HPLC using a Spheri 5§ ODS (Brownlee)
column (27). The amino acid sequences of peptides were determined by
automated Edman degradations performed on the ABI477A protein
sequencer with the 120A phenylthiohydantoin analyzer.

RESULTS

Partial Purification of DNA Ligase I and DNA Ligase II1
from Whole Cell Extracts of Bovine Testes—Three biochemi-
cally distinct DNA ligase activities have been identified in
whole cell extracts from calf thymus glands (2). Since the high
levels of DNA ligase I activity in this tissue hinders the puri-
fication of DNA ligases II and III, we have examined the rela-
tive levels of the DNA ligases in other bovine tissues. Recently,
we have described the purification of DNA ligase II to homo-
geneity from liver nuclei (18). We did not detect DNA ligase III
in significant quantities in liver extracts, and, therefore, we
investigated the levels of DNA ligase III in testes. In order to
compare the relative levels of DNA ligase III in the thymus and
testes, we employed the same fractionation procedure used to
purify DNA ligase III from calf thymus glands (2). After sepa-
ration by gel filtration, a major peak of high molecular weight
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DNA joining activity containing both DNA ligase I and DNA
ligase III was detected in assays with both the oligo(dT)
poly(dA) and oligo(dT)poly(rA) substrates. Since DNA ligase I
is not active with the oligo(dT)/poly(rA) substrate (2), the join-
ing activity measured with this substrate reflects DNA ligase
IIT activity. The specific activity of DNA ligase III was 4-5-fold
higher in fractions from the testes compared with similar frac-
tions from calf thymus glands (2), demonstrating that the tes-
tes contain significantly higher levels of DNA ligase III.

To determine the relative contribution of DNA ligase I and
DNA ligase IIT to the high molecular weight DNA joining
activity, the pooled fractions from the gel filtration column
were fractionated by hydroxylapatite chromatography. Con-
sistent with previous observations (14, 26), the majority of
DNA ligase 1 was eluted with 150 mm potassium phosphate,
whereas DNA ligase III was eluted with 400 mM potassium
phosphate. The 400 mm eluate contained approximately 2-fold
more DNA joining activity, measured with the oligo(dT)/poly(dA)
substrate, than the 150 mm eluate. Thus, it appears that DNA
ligase III is a major DNA joining activity in the testes.

Purification of DNA Ligase III from Testis Nuclei—Although
DNA ligase I is a nuclear enzyme (31), this enzyme rapidly
leaks out of nuclei during subcellular fractionation and is
mainly found in the cytoplasmic/soluble fraction (19). In con-

F1c. 1. Analysis of purified bovine DNA ligase III by SDS-
polyacrylamide gel electrophoresis. Polypeptides were separated
by electrophoresis through an 8% SDS-polyacrylamide gel. Lane 1, the
peak fraction of DNA ligase III (400 ng) from testis nuclei after FPLC
Mono S chromatography. Proteins were detected by staining with
Coomassie Brilliant Blue; lane 2, 50 ng of the same fraction was assayed
for enzyme-adenylate formation as described under “Materials and
Methods.” The positions of size markers, 97-kDa phosphorylase b, 66-
kDa bovine serum albumin, and 45-kDa ovalbumin (Bio-Rad) are indi-
cated on the left.
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trast, DNA ligase II remains firmly associated with nuclei
isolated under isotonic conditions (18, 19, 32). The majority of
DNA ligase III activity also remains associated with similarly
prepared nuclei from bovine testes. In assays measuring en-
zyme-adenylate formation, the major labeled product in testis
nuclear extracts corresponds to the 100-kDa DNA ligase III,
with the 125-kDa DNA ligase I contributing about 5% and the
70-kDa DNA ligase II less than 1% (data not shown). Similarly
prepared nuclear extracts from bovine liver also contain low
levels of DNA ligase I, but in this tissue, the 70-kDa DNA ligase
IT is the predominant enzyme (18).

DNA ligase III was purified to greater than 90% homogene-
ity from testis nuclear extracts by monitoring formation of the
100 kDa enzyme-adenylate intermediate and joining of the
oligo(dT)/poly(dA) substrate. After the final FPLC Mono Q col-
umn, a single major band with an apparent molecular mass of
100 kDa co-eluted with DNA joining activity. Analysis of the
protein content of the peak fraction by Coomassie Blue staining
after SDS-polyacrylamide gel electrophoresis detected a minor
polypeptide with an apparent molecular mass of 87 kDa in
addition to the major band at 100 kDa (Fig. 1, lane I). In assays
measuring enzyme-adenylate formation, labeled products of
100 and 87 kDa were generated in the same relative amounts
as the polypeptides stained with Coomassie Blue (Fig. 1, lane
2). This 87-kDa polypeptide is probably the active proteolytic
fragment of DNA ligase III described previously (2). Approxi-
mately 35 ug of the 100 kDa form of DNA ligase III were
obtained from 750 g of bovine testes.

In DNA joining assays, the most highly purified fractions
had a specific activity of 2 units/mg with the oligo(dT)poly(dA)
substrate and 0.2 unit/mg with the oligo(dT)/poly(rA) sub-
strate. The value measured with the DNA/DNA substrate is
similar to that obtained for homogeneous bovine DNA ligase I
(2.5 units/mg) (14), recombinant human DNA ligase I (2.5
units/mg), and bovine DNA ligase II (2 units/mg) (18).

Bovine DNA Ligase III Is Recognized by the Antiserum
Raised against the COOH-terminal Peptide Sequence Con-
served in Eukaryotic DNA Ligases—To confirm that the puta-
tive DNA ligase III polypeptides were not derived from 125 kDa
DNA ligase I by proteolysis, we performed immunoblotting
experiments with the antiserum raised against homogeneous
bovine DNA ligase I. As reported previously (2), this antiserum
does not cross-react with partially purified DNA ligase III (Fig.
2A). However, both the 100- and 87-kDa DNA ligase III

B C
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Fic. 2. Bovine DNA ligase III cross-reacts with the antiserum raised against the conserved epitope present in all eukaryotic DNA
ligases but not with an antiserum raised against bovine DNA ligase 1. Polypeptides were separated by electrophoresis through an 8%
SDS-polyacrylamide gel and then transferred to nitrocellulose membranes. A, lane 1, partially purified DNA ligase I from testis whole cell extracts,
100 ng of 125-kDa polypeptide; lane 2, homogeneous DNA ligase II from bovine liver, 100 ng (18); lane 3, partially purified DNA ligase III from
testis whole cell extracts, 50 ng of 100-kDa polypeptide. The membrane was incubated with antiserum raised against homogeneous DNA ligase
1(14). B, proteins in lanes 46 are identical to those in lanes 1-3 except that the membrane was incubated with antiserum raised against a peptide
common to all eukaryotic DNA ligases (14). C, lane 7, the peak fraction of DNA ligase III from testis nuclei after FPLC Mono S chromatography
(400 ng). The membrane was incubated with the same antiserum as in B. Immune complexes were detected by enhanced chemiluminescence. The
positions of the three DNA ligases are indicated. The 87-kDa band is probably an active proteolytic fragment of DNA ligase III (2).
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Fic. 3. Reactivity of DNA ligases I
and ITI with DNA substrates contain-
ing a single nick with 3’ mismatches
opposite pyrimidines. The substrates
were prepared and assays performed
as described under “Materials and
Methods.” The DNA sequence and struc-
ture of the substrate containing a single
internal nick with correctly base paired
termini is shown on the top of A. Similar
versions of this substrate with the indi-
cated mismatch at the 3’ terminus of the
nick were constructed. In all cases, the top
right oligonucleotide (16-mer) was labeled
on the 5’ end. 3 ng of substrates was used
in each reaction. A, joining activity of
DNA ligase I with the indicated sub-
strate. Lane 1, no addition; lane 2, 28
fmol; lane 3, 90 fmol; lane 4, 267 fmol;
lane 5, 800 fmol of DNA ligase I added.
Enzyme concentrations in lanes 6-10 and
11-15 are the same as in lanes 1-5. B,
joining activity of DNA ligase III with
indicated substrate. Lane 1, no addition;

34 mer =

16mer = i

5 3'5! 3t
C-A-A-G-C-7-T-G-C-A-7-G-C-C~T-G-C-A G-G-T-C-G-A-C-T-C-T-A-G-A-G-G-A
G-T-7-C-G-A-A-C-G-T-A-C-G-G-A-C-G-T-C-C-A-G-C-T-G-A-G-A-T-C-T-C-C-T
3' 5!
A. Ligase I
Control 3C/T 3G/T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B. Ligase III
Control 3C/T 3G/T

lane 2, 7 fmol; lane 3, 21 fmol; lane 4, 60
fmol; lane 5, 180 fmol of DNA ligase III.
Enzyme concentrations in lanes 6—10 and
11-15 are the same as in lanes 1-5. After
electrophoresis through a 10% denaturing
polyacrylamide gel, labeled oligonucleo-
tides were detected by autoradiography
and quantitated by phosphorimage analy-
sis. Although the two DNA ligases have
similar specific activities in assays with
the oligo(dT)/poly(dA) substrate, DNA li-
gase III is about 4-fold more active with
the control oligonucleotide substrate.

34 mer =

16mer = |

polypeptides are recognized by the antiserum raised against a
conserved COOH-terminal peptide sequence (Fig. 2, B and C)
that was originally identified in a comparison of Saccharomy-
ces cerevisiae Cdc9 DNA ligase, Schizosaccharomyces pombe
Cdc17 DNA ligase and vaccinia DNA ligase (33). Subsequently,
homologous peptide sequences have been found in mammalian
DNA ligase I (14, 34) and DNA ligase II (18). The conservation
of this peptide sequence in all eukaryotic DNA ligases presum-
ably indicates that it plays an important but as yet undefined
role in the catalytic function of these enzymes.

Reactivity of DNA Ligases I, II, and III with Polynucleotide
Substrates Containing a Single Defined Nick—The three mam-
malian DNA ligases can be distinguished by their reactivity
with different homopolymer substrates (2), but these differ-
ences in substrate specificity may not be physiologically signif-
icant. Consequently, we have examined the reactivity of the
three mammalian DNA ligases with DNA molecules containing
a single, defined nick that more closely resembles the in vivo
substrate. Consistent with previous studies on S. cerevisiae
Cdc9 DNA ligase (28), the efficiency of DNA joining by the
mammalian DNA ligases was not significantly affected by 5'-
mismatched termini (data not shown). Using DNA substrates

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

with 3’-mismatched termini opposite a pyrimidine, DNA ligase
III was not significantly inhibited by a 3’C/T mismatch, but a
3'G/T mismatch reduced the amount of ligated product by
about 5-fold (Fig. 3B). DNA ligase I, however, was more se-
verely inhibited by the same mismatches, producing 5-10-fold
less ligated product than DNA ligase III (Fig. 34).

Since the 3’'G/T mismatch was more inhibitory than the
3'C/T mismatch, the inhibition may be due to steric effects
rather than the absence of correct base pairing. Therefore, we
have examined the effects of 3’-mismatched termini opposite
purines. DNA joining by DNA ligase I was inhibited more than
50-fold (Fig. 4A4). DNA ligase III was also markedly inhibited by
a 3'A/G-mismatched terminus (Fig. 4B, lanes 7-10), but in
contrast with DNA ligase I, the 3'T/G mismatch only reduced
DNA joining by 2-fold (lanes 12-15). The results of assays with
DNA ligase II were similar to those shown for DNA ligase III
(data not shown). Thus, the inhibition of DNA joining appears
to be mediated by steric hindrance, in particular by the 3'-
terminal residue. However, DNA ligases II and III are much
more tolerant of inappropriate 3’ termini than DNA ligase I.

Mammalian DNA Ligase III Is Closely Related to DNA
Ligase II and Vaccinia DNA Ligase—A recent peptide mapping

e A Ak e
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3!
Fic. 4. Reactivity of DNA ligases I
and IIT with DNA substrates contain-
ing 3’ mismatches opposite purines.
38 mer

The substrates were prepared and assays
performed as described under “Materials
and Methods.” The DNA sequence and
structure of the substrate containing a
single internal nick with correctly base-
paired termini is shown on the top of A.
Similar versions of this substrate with the
indicated mismatch at the 3’ terminus of
the nick were constructed. In all cases,
the top right oligonucleotide (20-mer) was
labeled on the 5’ end. 3 ng of substrates
was used in each reaction. A, joining ac-
tivity of DNA ligase I with the indicated
substrate. Lane 1, no addition; lane 2, 28
fmol; lane 3, 90 fmol; lane 4, 267 fmol;
lane 5, 800 fmol of DNA ligase I added.
Enzyme concentrations in lanes 6-10 and
11-15 are the same as in lanes 1-5. B,
joining activity of DNA ligase III with
indicated substrate. Lane 1, no addition;

20 mer =

5!
A. Ligasel
3A/G

Control 3'T/G

[

1 2 3 4 5 6 7 8

o

90 1B 14 1S
B. Ligase III
3A/G

Control 3'T/G

lane 2, 7 fmol; lane 3, 21 fmol; lane 4, 60 r
fmol; lane 5, 180 fmol of DNA ligase III.
Enzyme concentrations in lanes 6~10 and
11-15 are the same as in lanes 1-5. After
separation by denaturing gel electro-
phoresis, the production of a labeled 38-
mer by ligation of a 5’ 3?P-labeled 20-mer
to an 18-mer was detected by autoradiog-
raphy and quantitated by phosphorimage
analysis.

38 mer =

study of labeled DNA ligase-adenylate intermediates concluded
that the active site regions of DNA ligases II and III are highly
related (22). In an attempt to determine whether these en-
zymes are derived from the same gene or encoded by separate,
homologous genes, we have obtained amino acid sequences
from two different preparations of bovine DNA ligase III. After
proteolytic digestion and separation of the resultant peptides
by reverse phase HPLC, the amino acid sequences of 18 differ-
ent peptides have been determined. Several peptides isolated
from the two different preparations of bovine testis DNA ligase
III were identical even though each preparation was purified
and cleaved differently (Lys-C digestion of the near-homoge-
nous DNA ligase III from testis nuclei and tryptic digestion of
the gel-purified 100-kDa DNA ligase III from testis whole cell
extract). A comparison of the 18 peptides with the predicted
amino acid sequences of eukaryotic DNA ligases revealed that
DNA ligase III exhibits striking homology with vaccinia DNA
ligase. Out of the 18 sequences, 13 could be aligned with ho-
mologous sequences in vaccinia DNA ligase (Fig. 5). The degree
of identity ranged from 30 to 86% with an overall average of
60% for the 177 residues aligned. Several of the DNA ligase III
peptides could also be aligned with the catalytic domain of
human DNA ligase I, exhibiting about 30% overall identity
(data not shown).

sone

9 10 11 12 13 14 15
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As shown previously (18), peptides derived from homogene-
ous bovine DNA ligase II also exhibited a similar high degree of
identity with vaccinia DNA ligase (Fig. 5). A comparison of
DNA ligase IT and DNA ligase III peptides that are homologous
with vaccinia DNA ligase identified 10 peptides (136 amino
acids) with identical sequences (Fig. 5). These peptide se-
quences encompass almost the entire predicted open reading
frame of the vaccinia DNA ligase gene which encodes a 63-kDa
polypeptide (33). Analysis of DNA ligase II and DNA ligase III
peptides that were not homologous with vaccinia DNA ligase
identified another peptide sequence, Glu-Leu-Tyr-Gln-Leu-
Ser-Lys, that was common to both polypeptides, indicating that
the homology between DNA ligases II and III extends beyond
the bounds of vaccinia DNA ligase.

In the absence of unambiguous changes in amino acid se-
quence between DNA ligases II and III, it appears that these
enzymes are derived from the same gene. We have not detected
conversion of 100-kDa DNA ligase III into a 70-kDa active
fragment during purification, arguing against nonspecific pro-
teolysis by endogenous proteases. Furthermore, there is no
evidence for a liver-specific processing mechanism, since incu-
bation of near homogeneous DNA ligase III with liver nuclear
extracts also failed to generate an active 70-kDa fragment
(data not shown).
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Fic. 5. Alignment of the peptide sequences from DNA ligases IT and ITI with vaccinia DNA ligase. The peptide sequences from bovine
DNA ligase IT have been reported previously (18) except for the peptide TQIIQDFLQK. These sequences and peptide sequences from bovine DNA
ligase IIT have been aligned with the predicted amino acid sequence of vaccinia DNA ligase (1-552) (33). A single gap has been introduced for
maximum alignment. A hyphen indicates a position within a peptide where it was not possible to assign an amino acid. The 6-residue DNA ligase
active site motif (29) is indicated in boldface. The sequence of the DNA ligase II peptide, CAGGHDDATLARLQELDMVK (18), has been modified
after reexamination of the amino acid sequencing data and comparison with the homologous DNA ligase III peptide. The COOH-terminal residue
of each peptide is underlined. In the absence of unambiguous changes in sequence between homologous peptides from DNA ligase II and III, only
amino acids conserved between the peptides and vaccinia DNA ligase are marked with a cross.

Irrespective of the exact relationship between DNA ligases I1
and III, it appears that there are two distinct families of eu-
karyotic DNA ligases, which probably evolved from a common
ancestral gene (Fig. 6). One family consists of mammalian DNA
ligase I, Drosophila DNA ligase I (35), S. cerevisiae Cdc9 DNA
ligase (36), and S. pombe Cdc17 DNA ligase (37). The primary
function of these enzymes is to join Okazaki fragments during
DNA replication. The second family consists of mammalian
DNA ligases II (18) and III, Drosophila DNA ligase II (38), and
the DNA ligases encoded by vaccinia and other pox viruses (33,
39, 40). These enzymes are probably involved in DNA repair
and/or genetic recombination pathways.

DISCUSSION

DNA ligase III has been purified to >90% homogeneity from
bovine testis nuclei. We have concluded that the major 100-kDa
polypeptide detected by Coomassie Blue staining in the most
highly purified fractions is DNA ligase III for the following
reasons: (i) the 100-kDa polypeptide cross-reacts with an anti-
serum raised against a peptide sequence found in all eukary-
otic DNA ligases; (ii) the amino acid sequences of peptides
derived from the 100-kDa polypeptide exhibit striking homol-
ogy with the coding sequences of other eukaryotic DNA ligases;
(iii) in the presence of labeled ATP, a 100-kDa labeled enzyme-
adenylate complex is formed; (iv) in DNA joining assays, the
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A. DNA ligase I family

FiG. 6. Two families of ATP-depend-
ent DNA ligases in eukaryotes and
eukaryotic viruses defined by simi-
larities in amino acid sequence
and/or biochemical properties. The
molecular mass of the DNA ligases, meas-
ured by denaturing gel electrophoresis
are shown on the right. The areas filled in
with vertical lines indicate regions of the
enzymes that have been demonstrated to
be dispensable for catalytic activity. The
known or predicted positions of the active
site motif containing the reactive lysine
residue (18, 29) and of the conserved pep-
tide sequence (14, 33) are indicated by
arrows. The areas filled in with diagonal
lines represent regions that share 50% or
higher amino acid identity. A, mamma-
lian DNA ligase I (14, 29, 34), Drosophila
DNA ligase I (35), S. pombe Cdcl7 DNA
ligase (37), and S. cerevisiae Cdc9 DNA
ligase (28, 36). B, mammalian DNA ligase
1T (18, 22), mammalian DNA ligase III (2,
22), Drosophila DNA ligase II (38), and
vaccinia DNA ligase (33).

Sch. pombe Cdc17 *

S. cerevisiae Cdc9

Drosophila DNA ligase Il

Vaccinia DNA ligase

specific activity of DNA ligase III is similar to that of homoge-
neous DNA ligases I and II.

High levels of both DNA ligase I and DNA ligase IIT activity
were present in whole cell extracts from testes. During sper-
matogenesis, diploid germ cells replicate their genome to gen-
erate a cell with a DNA content of 4 N prior to the two meiotic
divisions. Mouse germ cells undergoing premeiotic DNA syn-
thesis contain high levels of DNA ligase I activity (32), indicat-
ing that DNA replication in germ cells is carried out by the
same enzymes that function in somatic cells (5, 17). We suggest
that the elevated levels of DNA ligase III reflect the involve-
ment of this enzyme in meiosis. A potential role for DNA ligase
ITT during meiosis would be to complete the large number of
homologous recombination events that precede the first meiotic
cell division.

In the life cycle of the yeast S. cerevisiae, sporulation is
functionally equivalent to gametogenesis in mammals. After
transfer to sporulation media, expression of the CDC9 DNA
ligase gene, whose product is functionally homologous to mam-
malian DNA ligase I (28, 34), is induced prior to the premeiotic
S phase (41). After DNA replication, the cells proceed through
the first meiotic division with mature recombinants arising at
the end or just after pachytene (42). Genes in the RADS52
epistasis group were initially isolated, because mutations con-
fer sensitivity to ionizing radiation (43). Further analysis of
these mutants has demonstrated that they are defective in
meiosis (44) in addition to DNA strand break repair. The high
levels of DNA ligase III in the testes, the association of DNA
ligase IIT with the product of the human strand break repair
gene XRCC1 (24), which is also expressed at high levels in
testes (45), and the decreased levels of DNA ligase III in a xrccl
mutant cell line EM9, which is defective in DNA strand break
repair (24, 46), are consistent with DNA ligase IIT also being
involved in both meiotic recombination and DNA strand break
repair.

The three mammalian DNA ligases were distinguished by
their reactivity with different homopolymer substrates (2). We

Mammalian DNA ligase |

Drosophila DNA ligase |

Mammalian DNA Ligase Il

Mammalian DNA Ligase lit

Conserved
Active site peptide Molecular Mass

Y Y

B. DNA ligase Il/lll family

[T [ W 125 kDa
I | | I 83 kDa
[ WA 86 kDa
T Wrrrrz 87 kDa

I \NNNNNNNAN ) 70 kDa

(T NNNNNNNNNR N 100 kDa

[T | | 1 90 kDa
B \NNNNNN\N § 63 kDa

have investigated the ability of these enzymes to seal nicks
with mismatched termini. The substrate specificities of DNA
ligases II and III were similar, whereas the substrate specific-
ity of recombinant human DNA ligase I was identical with that
of Cdc9 DNA ligase (28). Thus, the family of functionally ho-
mologous replicative DNA ligases appear to be much more
sensitive to inhibition by 3’ mismatches than the family of
DNA ligases that includes DNA ligases II and III and the
poxvirus DNA ligases. This may indicate that a stringent en-
zyme is required to join Okazaki fragments during DNA repli-
cation. In contrast, the ability to join nicks with 3’-mismatched
termini may be tolerated or preferred in certain DNA repair
and recombination pathways.

The differences in amino acid sequence of adenylylated pep-
tides from DNA ligase I and DNA ligase II confirmed that these
enzymes are encoded by different genes (18). The isolation of
identical peptides from apparently homogenous preparations of
DNA ligases II and III indicates that these enzymes are en-
coded either by the same gene or by two highly homologous
genes. Based on the alignment with vaccinia DNA ligase, the
DNA ligase II peptides are distributed over a region of 55 kDa.
If we assume that the 70-kDa DNA ligase II consists of 640
amino acids then the 136 amino acids that are identical with
DNA ligase III represent 21% of DNA ligase II. Although we
cannot exclude the possibility that there are differences in
other regions of these polypeptides, the absence of significant
differences in amino acid sequence between homologous pep-
tides suggests that these enzymes are probably derived from
the same gene. This conclusion is consistent with a recent
study which demonstrated that the catalytic domains of DNA
ligases IT and III are highly related (22).

We do not believe that DNA ligases II is an active proteolytic
fragment of DNA ligase IIT that is generated by proteolysis
during purification for the following reasons: (i) the 70-kDa
DNA ligase II polypeptide was blocked to Edman degradation,
indicating that it possessed the modified amino-terminal resi-
due of the primary translation product (18); (ii) conversion of
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DNA ligase III to an active fragment similar in size to DNA
ligase II has not been observed following incubation of DNA
ligase III either with liver nuclear extracts or proteases (2, 22);
(iii) DNA ligase II and DNA ligase III are present at different
levels in different mammalian tissues (2, 18); (iv) the mutant
Chinese hamster ovary cell line, EM9 has reduced levels of
DNA ligase III activity but normal levels of DNA ligase II
activity (24, 46, 47).

Based on similarities in amino acid sequence and/or polynu-
cleotide substrate specificity, the DNA ligases of eukaryotes
and eukaryotic viruses can be grouped into two families. This
grouping also appears to reflect cellular function. Within the
first family, mammalian DNA ligase I, S. cerevisiae Cdc9 DNA
ligase and S. pombe Cdc17 DNA ligase have all been shown to
be required for DNA replication. The cellular functions of the
second family, which consists of mammalian DNA ligases II
and III, Drosophila DNA ligase II, and the poxvirus DNA
ligases, have been less clearly defined. Vaccinia virus DNA
ligase is not required for viral replication, does not affect viral
recombination, but influences the sensitivity of the virus to
DNA damage (48, 49). This suggests that vaccinia DNA ligase
functions in DNA repair. A similar role has been proposed for
DNA ligase II (20, 21). The high levels of DNA ligase III in the
testes, its association with a thymus recombination complex
(23), and its interaction with a DNA strand break repair pro-
tein (24, 46) implicate this enzyme in both DNA repair and
genetic recombination. We suggest that the DNA ligases in this
second family have evolved to fulfill specific functions in path-
ways of DNA repair and genetic recombination.

In summary, we have purified DNA ligase III to near phys-
ical homogeneity from bovine testes. The high level of DNA
ligase III in this tissue suggests a role for this enzyme in germ
cell development, specifically during meiosis. Amino acid se-
quencing studies demonstrate that DNA ligase III is highly
homologous with vaccinia DNA ligase and appears to be iden-
tical with DNA ligase II. The availability of amino acid se-
quence information from DNA ligase II (18) and DNA ligase ITI
should facilitate the cloning of the gene(s) coding for the two
enzymes. This in turn will permit further investigation of their
relationship and their respective roles in mammalian DNA
metabolism.

Acknowledgment—We thank Dr. Inder Patel for the construction of
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Three biochemically distinct DNA ligase activities have been identified in mammalian cell extracts. We have
recently purified DNA ligase IT and DNA ligase III to near homogeneity from bovine liver and testis tissue,
respectively. Amino acid sequencing studies indicated that these enzymes are encoded by the same gene. In the
present study, human and murine cDNA clones encoding DNA ligase III were isolated with probes based on
the peptide sequences. The human DNA ligase III ¢cDNA encodes a polypeptide of 862 amino acids, whose
sequence is more closely related to those of the DNA ligases encoded by poxviruses than to replicative DNA
ligases, such as human DNA ligase I. In vitro transcription and translation of the cDNA produced a catalyt-
ically active DNA ligase similar in size and substrate specificity to the purified bovine enzyme. The DNA ligase
III gene was localized to human chromosome 17, which eliminated this gene as a candidate for the cancer-
prone disease Bloom syndrome that is associated with DNA joining abnormalities. DNA ligase III is ubiqui-
tously expressed at low levels, except in the testes, in which the steady-state levels of DNA ligase III mRNA are
at least 10-fold higher than those detected in other tissues and cells. Since DNA ligase I mRNA is also present
at high levels in the testes, we examined the expression of the DNA ligase genes during spermatogenesis. DNA
ligase I mRNA expression correlated with the contribution of proliferating spermatogonia cells to the testes,
in agreement with the previously defined role of this enzyme in DNA replication. In contrast, elevated levels of
DNA ligase III mRNA were observed in primary spermatocytes undergoing recombination prior to the first
meiotic division. Therefore, we suggest that DNA ligase III seals DNA strand breaks that arise during the

process of meiotic recombination in germ cells and as a consequence of DNA damage in somatic cells.

The pleiotropic effects of mutations in the DNA ligase gene
of prokaryotes include conditional lethality, sensitivity to DNA
damage, and hyperrecombination (29). At the nonpermissive
temperature, DNA ligase mutants are unable to join Okazaki
fragments and consequently cannot complete DNA replica-
tion. The sensitivity to DNA damage arises from the impaired
ability to seal DNA strand breaks generated either directly by
the DNA damaging agent or by DNA repair enzymes excising
lesions. In contrast to prokaryotes, multicellular eukaryotes
contain more than one species of DNA ligase (50, 54, 55). One
of these enzymes, DNA ligase I, is required for DNA replica-
tion (4, 49, 58) and also appears to be involved in DNA repair
(38). The biochemically distinct DNA ligases 11 and III have
been less extensively studied. The levels of DNA ligase IT
activity, the major DNA joining enzyme in the liver (49, 60),
are increased following treatment with DNA-damaging agents,
suggesting a role for this enzyme in DNA repair (11, 14). DNA
ligase III has been identified as a component of a calf thymus
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recombination complex (24) and has been found associated
with a human DNA strand break repair protein, Xrccl (8),
suggesting roles for this enzyme in genetic recombination and
DNA repair.

Recently, we purified 70-kDa DNA ligase II and 100-kDa
DNA ligase III to near homogeneity from bovine liver tissue
and bovine testis tissue, respectively. Amino acid sequencing
studies revealed that these polypeptides share extensive re-
gions of identity, indicating that they are probably encoded by
the same gene (23, 60). A comparison of the peptide sequences
from DNA ligases II and III with the predicted amino acid
sequences of other DNA ligases revealed that these enzymes
are more highly related to the DNA ligases encoded by cyto-
plasmic poxviruses, in particular vaccinia virus DNA ligase,
than to mammalian DNA ligase I and other replicative DNA
ligases (23, 60). Interestingly, deletion of the poxvirus DNA
ligase does not affect viral DNA replication or recombination
but renders the mutant virus more sensitive to DNA damage
(12, 27).

Defects in DNA joining have been described for cell lines
derived from patients with the hereditary cancer-prone disease
Bloom syndrome (BLM) (30, 41) and also for the cell line
46BR and its derivatives that were established from a patient
with severe combined immunodeficiency (20, 31, 38). The
symptoms of this patient appear to be caused by mutations in
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the DNA ligase I gene (5). In contrast, the absence of DNA
ligase I mutations in representative BLM cell lines and the
localization of the DNA ligase I and BLM genes to different
chromosomes have eliminated this gene as a candidate for
BLM (4, 5, 32, 36). The previously observed alterations in
high-molecular-weight DNA ligase activity, partially purified
from BLM cell extracts (10, 61, 62), may be caused either by
mutations in the DNA ligase III gene or by mutations in a gene
whose product interacts with and regulates DNA ligase I or
DNA ligase III activity.

Since meiosis is a unique developmental process in the life
cycle of sexually reproducing eukaryotes, a different repertoire
of DNA metabolic enzymes, such as a DNA ligase, may be
required to perform the meiosis-specific DNA transactions. A
characteristic feature of meiosis is the high frequency of ho-
mologous recombination that leads to the production of ge-
netically reassorted haploid gametes. These recombination
events, which permit the correct segregation of homologous
chromosomes in the first meiotic division, appear to occur
within the synaptonemal complex (18, 35, 52) and presumably
are completed by DNA synthesis and DNA ligation prior to
the first meiotic division (51).

In this report, we describe the molecular cloning of human
and murine DNA ligase III cDNAs. The human gene, which is
present on human chromosome 17, appears to be ubiquitously
expressed. Consistent with previous biochemical studies (23),
the highest steady-state levels of DNA ligase III mRNA are
found in the testes. During spermatogenesis, DNA ligase I is
highly expressed in spermatogonia whereas the highest levels
of DNA ligase III expression occur in primary spermatocytes.
These observations are consistent with DNA ligase I function-
ing in premeiotic DNA replication and with DNA ligase III
completing meiotic recombination events.

MATERIALS AND METHODS

Materials and general methods. Standard molecular biology techniques were
performed as described elsewhere (44). Human liver 5’-rapid amplification of
cDNA ends (RACE)-ready cDNA, human testis Agt10 5'-stretch plus and ADR2
5’-stretch cDNA libraries, mouse testis Agt10 5'-stretch cDNA library, Agt10 and
pDR2 PCR primers, human and mouse multiple tissue Northern (RNA) blots,
and adult testis poly(A)™ RNA were purchased from Clontech. Restriction
enzymes were purchased from New England BioLabs. [a-?P]dCTP and
[a-*2P]ATP were purchased from Amersham. The plasmid vectors pBluescript IT
SK* and pGEM3Z were from Stratagene and Promega, respectively. Unless
otherwise indicated, the vector used for all of the cloning was pBluescript IT SK*.
Plasmid DNA was routinely isolated by using Mini and Maxi Wizard plasmid
preparation kits (Promega). Transformation was performed with library-effi-
ciency Escherichia coli DH5aF’ competent cells from GIBCO BRL. DNA se-
quencing primers were synthesized on an Applied Biosystems model 392 DNA/
RNA synthesizer. Degenerated oligonucleotides were synthesized and purified
by Operon Technologies, Inc., and Genesys Inc. Paraffin-embedded sections of
mouse testes were obtained from Novagen. All chemicals were of molecular
biology grade.

Peptide sequences from bovine DNA ligases II and III. The amino acid se-
quences of 16 DNA ligase II peptides and 13 DNA ligase III peptides have been
reported previously (23, 60). An additional four DNA ligase II and five DNA
ligase III peptides have been obtained and are listed in the legend to Fig. 1.

Isolation of DNA ligase IIl-specific probe by degenerate PCR. Degenerate
oligonucleotides were designed on the basis of bovine DNA ligase III peptides
sequences (23) which were aligned on the vaccinia virus DNA ligase sequence.
The following amino acid regions were selected: primer 1, TI Q E V D E F [sense
strand; ACIAT(T/A/C)CA(A/G)GA(A/G)GTIGA(T/CYGA(A/G)TT]; primer 2,
KGDHFSYF [antisense strand; AA(A/G)TAI(C/G)(T/A)A/G)AA(A/G)TG(A/
G)TCICC(T/C)TT]; primer 3, NEGAMAD [sense strand; AA(T/C)GA(A/G)
GG(G/AT/C)GC(G/ATIC)ATGGC(G/A/T/C)GA); and primer 4, QKWCTVT
[antisense strand; GT(G/A/T/C)AC(G/A/T/IC)GT(G/A)CACCA(T/C)TT(T/C)
TG]. Standard PCRs (43) were carried out. A typical reaction mixture (50 )
contained 10 mM Tris-HCI (pH 9.0), 50 mM KCl, 0.1% Triton X-100, 2.5 mM
MgCl,, 0.2 mM deoxynucleoside triphosphates (ANTPs), 107 X phage, and 0.2
mM of each primer (primers 1 and 2). After incubations at 94°C for 5 min and
at 52°C for 5 min, 2.5 U of Tag polymerase (Promega) was added to initiate the
reaction. After incubation at 72°C for 1.5 min, PCR amplification was carried out
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by 30 cycles of 94°C for 0.5 min, 52°C for 2 min, and 72°C for 1.5 min after which
there was a 5-min incubation at 70°C. The anticipated 460-bp fragment (based on
the homology between the peptides and vaccinia virus DNA sequence) was
subcloned and sequenced. The deduced amino acid sequence of the 460-bp
fragment was 50% identical with vaccinia virus DNA ligase and 100% identical
with the DNA ligase III peptide, VLDALDPNAYEAFK (23), and the DNA
ligase II active-site peptide, CPNGMFSEIKYDGERVQVH (60).

An oligo(dT)-primed first-strand ¢cDNA was prepared from HeLa poly(A)™*
RNA by using the Reverse Transcription system (Promega). The HeLa cDNA
was amplified by PCR with primers 3 and 4 under the conditions described
above. The anticipated 150-bp fragment was subcloned into Smal-digested
pGEMB3Z. The deduced amino acid sequence of the 150-bp fragment was iden-
tical to those of the bovine peptides except for one conservative change (60).

Cloning of human DNA ligase III ¢cDNA. The 460-bp fragment was used as a
probe to screen a human testis cDNA library. A total of 5 X 10° plaques (2.5 X
10* per plate) was transferred to MagnaGraph nylon transfer membranes (Mi-
cron Separations Inc.) and hybridized with the labeled 460-bp probe (10° to 10'°
cpm/p.g of DNA) according to the manufacturer’s protocol. The filters were then
washed sequentially in 3X SSC (1x SSCis 8.77 g of NaCl plus 4.41 g of sodium
citrate per liter [pH 7.0])-0.5% sodium dodecyl sulfate (SDS) at room temper-
ature (RT) for 20 min twice, in 1X SSC-0.5% SDS at 40°C for 20 min twice, and
in 1X SSC-0.5% SDS at 50°C for 30 min. Additional rounds of screening were
carried out to isolate a homogeneous phage population. The size of the cDNA
insert was initially determined by PCR with primers flanking the EcoRI cloning
site of Agt10. After preparation of DNA from homogeneous phage populations,
the cDNA inserts were excised by digestion with EcoRI and analyzed by agarose
gel electrophoresis. These cDNAs were also screened for hybridization with the
150-bp PCR probe by Southern blotting. The cDNA inserts that hybridized with
both PCR probes were subcloned into pBluescript I SK*. The largest clone (2.9
kb) contained an internal EcoRI site. Both EcoRI fragments were cloned into
M13mp19 vector in two orientations for sequencing analyses.

Analysis of the 5’ and 3’ ends of human DNA ligase III ¢cDNA by RACE and
genomic PCRs. During sequencing of several cDNA clones, we noted a differ-
ence in the number of A residues starting at nucleotide 552 (Fig. 1). Independent
c¢DNA clones contained either 8, 9, or 17 A residues at this position but no
differences in the flanking sequences. The open reading frame (ORF) in se-
quences containing 8 or 17 A residues encodes an amino acid sequence that is
identical to the bovine peptide IEDLTELE immediately after this A track.
5-RACE PCR (16) was performed by using a human liver 5'-RACE-ready
c¢DNA. Two nested antisense primers complementary to the regions 702 to 677
and 669 to 647 were made, and the PCR was carried out as suggested by the
manufacturer. A single major 600-bp fragment was amplified. This fragment was
subcloned into the vector, and the sequences of six independent clones were
determined. The sequences of all six clones were essentially identical to the
sequence shown in Fig. 1 (nucleotides 55 to 646), except for heterogeneity at the
A tract. The number of A residues varied from 6 to 19.

We considered the possibility that the A tract heterogeneity was an artifact
introduced by reverse transcriptase. Therefore, we amplified the corresponding
sequence from human genomic DNA by PCR with an oligonucleotide corre-
sponding to nucleotides 484 to 510 and an oligonucleotide complementary to
nucleotides 582 to 562 of the cDNA sequence (Fig. 1). The expected PCR
product of 99 bp was isolated after gel electrophoresis and subcloned into
pBluescript SK™. A run of eight A residues was found in the DNA sequences of
three independent clones, indicating that this is the correct sequence.

The ORF encoded by the largest cDNA isolated from the human testis library
did not contain a stop codon. Therefore, we amplified the 3’ end of this cDNA
from an oligo(dT)-primed human testis ADR2 cDNA library by PCR with Pfu
DNA polymerase (Stratagene). After an initial PCR with pDR2 3'-AMP se-
quencing primer and a primer corresponding to nucleotides 2417 to 2442 (Fig. 1),
an aliquot of the reaction mixture was reamplified with pDR2 3'-AMP sequenc-
ing primer and a primer corresponding to nucleotides 2444 to 2469 (Fig. 1). After
separation by agarose gel electrophoresis, the major amplified product of 600 bp
was cloned and four individual clones were sequenced. Within this sequence,
which extended the original cDNA by 200 nucleotides, there was an in-frame
stop codon terminating the DNA ligase IIT ORF 89 nucleotides from the poly(A)
tail (Fig. 1). A full-length DNA ligase III cDNA (LIG3) was constructed from
the large EcoRI fragment containing the 8-residue A sequence and the 600-bp
EcoRI-Xbal 3'-RACE PCR product.

Cloning of mouse DNA ligase Il ¢cDNA. A 1.96-kb fragment of human DNA
ligase III cDNA (nucleotides 490 to 2452) was used as a probe to screen a mouse
testis cDNA library (Agt10 mouse testis 5'-stretch cDNA library) essentially as
described above. A full-length and several partial cDNA clones that exhibit 80 to
90% sequence homology with the human DNA ligase III ¢cDNA have been
identified. Murine DNA ligase III cDNA fragments corresponding to nucleotides
296 to 960, 2034 to 2452, and 1430 to 2452 of human DNA ligase III ¢cDNA (Fig.
1) have been employed in further studies.

DNA sequencing and sequence analysis. Single- and double-strand DNA se-
quencing were carried out by the dideoxy chain termination method (45) with
Sequenase (U.S. Biochemical) and synthetic sequencing primers. The DNA
sequences of both strands were determined with primers at intervals of about 150
bases. Sequence translations and peptide alignments were performed with In-
telliGenetics. Data base (NCBI-GenBank) searches were performed at the Na-
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tional Center for Biotechnology with the basic local alignment search tool
(BLAST) network service (1). Protein sequence homologies were aligned with
DNAStar MegAlign by the CLUSTAL method (22). Multiple alignment param-
eters were a gap penalty of 10 and a gap length of 10. Pairwise alignment
parameters were a ktuple of 1, a gap penalty of 3, a window of 5, and diagnols
saved of 5. A phylogenetic tree was also constructed with the same program (42).

In vitro translation of human DNA ligase III cDNA: reactivity of in vitro-
translated DNA ligase II). The full-length DNA ligase III clone (LIG3) and two
3’ deletions were subcloned into pBluescript SK™ under the control of the T7
promoter. Coupled in vitro transcription and translation (Promega) reactions
(50-p] mixtures) were carried out with 0.5 to 2 pg of plasmid DNA, 40 pCi of
[**S]methionine, and T7 RNA polymerase at 30°C for 90 min according to the
manufacturer’s protocol. For detecting enzyme activity, the in vitro translation
reaction was performed in the absence of [**S]methionine. After partial purifi-
cation by (NH,),SO, precipitation (3}, in vitro-translated products were resus-
pended to the original volume in a buffer containing 50 mM Tris-HCI (pH 7.5),
80 mM NaCl, 1 mM dithiothreitol, 1 mM EDTA, 2 wg of aprotinin per ml, 2 pg
of chymostatin per ml, 1 pg of leupeptin per ml, 1 g of pepstatin A per ml, 2
mM Pefabloc, 20 ug of TLCK (Na-p-tosyl-L-lysine chloromethyl ketone) per ml,
10 pg of TPCK (tolylsulfonyl phenylalanyl chloromethyl ketone) per mi, and 100
pg of trypsin inhibitor per ml. This resuspension was then spin dialyzed through
a 1-ml Sephadex G-25 column equilibrated in the same buffer. Aliquots (0.5 to
1.5 pl) were incubated with 7.5 wCi of [a->*P]ATP (~3,000 Ci/mmol) in a volume
of 25 pl for 15 min as described previously (55).

To demonstrate that the labeled polypeptide-adenylate complexes were inter-
mediates in the DNA ligation reaction, these complexes were further incubated
with 20 nmol of sodium PP;, 0.5 pg of oligo(pdT)-poly(dA), and 0.5 pg of
oligo(pdT)-poly(rA) for 2 h at 20°C (55). The reactions were terminated by the
addition of SDS loading buffer. Samples were electrophoresed through an
SDS-8% polyacrylamide gel. The gel was washed in water for 30 to 60 min, dried,
and exposed to X-ray films.

Southern hybridization. The somatic cell hybrid panel (BIOS Laboratory,
Inc.) was used to map the DNA ligase III gene to a specific human chromosome.
Nylon filters containing PstI-digested genomic DNAs (8 pug) from each of the
somatic cell hybrids and representative mouse, human, and Chinese hamster
ovary cell lines were hybridized with a labeled fragment of DNA ligase III cDNA
(nucleotides 1 to 809). The hybridization was carried out overnight at 65°C in 0.5
M sodium phosphate (pH 7.2)-7% SDS-1 mM EDTA-100 p.g of sheared de-
natured salmon sperm DNA per ml. The filters were washed in 0.2X SSC-0.2%
SDS twice at RT for 10 min each and twice at 65°C for 3 to 5 min each and were
exposed to X-ray films.

PCR mapping. The National Institute of General Medical Sciences (NIGMS)
Human-Rodent Somatic Cell Hybrid Mapping Panel 2 consists of mouse-human
or hamster-human hybrids, each of which bears a single human chromosome,
with the exception of the chromosome 1 and chromosome 20 hybrids, which have
also retained chromosomes X and 4, respectively. Genomic DNA (200 ng) from
the panel, from a human tumor cell line (HT1080), and from mouse cell lines
with and without human chromosome 17 (32) were amplified by PCR with 1 pM
each primer (forward primer, nucleotides 1214 to 1236; backward primer, nucle-
otides 1412 to 1392), 250 uM dNTPs, 0.01% gelatin, 1.5 mM MgCl,, 1X PCR
buffer (Perkin-Elmer), and 2.5 U of Tag polymerase in a 100-pl volume. Reac-
tions were initially denatured for 2 min at 94°C and then subjected to 35 cycles
of 30 s at 94°C, 30 s at 60°C, and 30 s at 72°C. Instead of the 198-bp fragment
predicted from the cDNA sequence, the primers amplified an 850-bp fragment
from human genomic DNA, indicating the presence of an intron.

Northern (RNA) hybridization. Poly(A)* RNA was prepared from the testes
of 5-, 8, 15-, and 25-day-old mice (C57BL/6J from Jackson Laboratories).
Briefly, the testes were homogenized in 0.2 M NaCl-0.2 M Tris-HCI (pH 7.5)-1.5
mM MgCl,-2% SDS-200 mg of proteinase K per ml. Subsequently, poly(A)*
RNA was purified according to the method described by Badley et al. (2).
Approximately 2 ug of each poly(A)* RNA sample was electrophoresed through
a 1.2% agarose-formaldehyde gel, transferred to a nitrocellulose membrane, and
then immobilized on the membrane by UV cross-linking.

The membrane was incubated in prehybridization buffer (50% formamide, 4x
SSC, 50 mM sodium phosphate [pH 7.0], 100 pg of salmon sperm DNA per ml,
1% SDS) for 2 h at 42°C prior to the addition of the DNA probe (2 X 10°
cpm/pug) that had been labeled with [a-*?P]dCTP by using the rediprime random
primer labeling kit (Amersham). After further incubation at 42°C for 12 h, the
membrane was washed once with 2X SSC-0.1% SDS for 10 min at room tem-
perature and twice with the same buffer at 60°C for 15 min. The membrane was
then exposed to X-ray film at —80°C. The hybridization of probes to commercial
human and mouse multiple tissue Northern blots and the subsequent washing of
the membranes were performed under the conditions recommended by the
manufacturer. Labeled probes were stripped from the membranes by incubation
in sterile water containing 0.5% SDS at 90°C. Poly(A)* RNA loading differences
were normalized by probing membranes with GAPDH or B-actin cDNA.

Riboprobe synthesis. Digoxigenin-labeled riboprobe was prepared and quan-
titated as described in the Genius System User’s Guide (Boehringer Mannheim).
Mouse DNA ligase IIT ¢cDNA fragments were cloned into the EcoRI site of
pBluescript IT SK*. Sense and antisense transcripts were generated by using T3
and T7 RNA polymerases. To allow diffusion of the probe into the tissue, the size
of the riboprobe was reduced to approximately 150 bases by alkaline hydrolysis.
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In situ localization of DNA ligase III expression in sections of mouse testes.
After being washed twice with xylene for 10 min, twice with absolute ethanol for
5 min, and once with phosphate-buffered saline (PBS) for 2 min at RT, the
mouse testis sections were permeabilized by incubating the slides for 15 min in
0.3% Triton X-100 in PBS. The sections were washed with PBS and then acety-
lated by incubation for 10 min in 0.1 M triethanolamine hydrochloride (pH 8)
containing 0.25% acetic anhydride. The slides were washed with RNase-free
water and allowed to dry. The riboprobe was dissolved in 1 to 5 pl of RNase-free
water, heated at 60°C for 5 min, and then added to 50 w1 of hybridization mixture
(50% formamide, 6X SSPE [0.9 M NaCl, 60 mM sodium dihydrogen phosphate,
6 mM EDTA; pH 7.4], 5X Denhardt’s solution, 0.5% SDS, and 100 wg of freshly
denatured salmon sperm DNA per ml) prior to application to the sections. The
slides were incubated with the riboprobe-hybridization mixture overnight at 42°C
in a humidified chamber. After hybridization, the slides were washed twice with
prewarmed 1X SSPE-0.1% SDS at 42°C for 10 min and with buffer A (100 mM
Tris-HCI [pH 7.5], 150 mM NacCl) for 5 min at RT. After being blocked with 2%
sheep serum and 0.3% Triton X-100 in buffer A for 1 h at 37°C, the slides were
incubated with alkaline phosphatase-tagged antidigoxigenin (Boehringer Mann-
heim; diluted 1:100 in buffer A containing 1% sheep serum and 0.15% Triton
X-100) for 1.5 h at 37°C. The slides were washed three times for 5 min each with
buffer A and with 100 mM Tris-HCI (pH 9)-150 mM NaCl-50 mM MgCl,.
Antigen-antibody complexes were visualized by using an acid fuchsin substrate
development kit (Dako, Inc.). Finally, the slides were counterstained with he-
matoxylin (Fisher Scientific) and analyzed under a microscope. The different cell
types within the seminiferous tubules were identified on the basis of their posi-
tions within the tubule, their morphological characteristics (in particular cell size
and chromatin structure), and the distribution of cell types within a particular
tubule (6).

RESULTS

Isolation of human DNA ligase III ¢cDNA. To specifically
amplify cDNA fragments encoding DNA ligase III by the PCR,
we designed two sets of degenerate oligonucleotide primers
based on peptide sequences obtained from bovine DNA ligase
III. DNA fragments of the anticipated size, 150 and 460 bp,
were specifically amplified from human cDNAs. The predicted
amino acid sequences encoded by these fragments were >95%
identical with peptides from bovine DNA ligase IIT (23) and
about 50% identical with homologous regions of vaccinia virus
DNA ligase (48). By using the 460-bp fragment as a probe, 22
independent clones with insert sizes ranging from 0.8 to 2.9 kb
were isolated from a human testis cDNA library.

The longest cDNA molecule (2,843 bp) did not contain a
polyadenylation signal (39) or poly(A) tail, indicating that this
is not a full-length ¢cDNA. Furthermore, we have cloned a
murine DNA ligase III cDNA with a poly(A) tail that is 200 bp
longer than the human DNA ligase III ¢cDNA at the 3’ end
(data not shown). The 3’ end of human DNA ligase III cDNA
was amplified from a human testis cDNA library by RACE
PCR. This amplified fragment extended the original sequence
by 200 nucleotides to yield a full-length cDNA (LIG3) of 3,029
nucleotides (Fig. 1) with an ORF terminating at the same
position as the one within the murine cDNA (data not shown).
The longest ORF within the full-length human cDNA encodes
a 949-amino-acid polypeptide that has a calculated molecular
weight of 106,012. The 90-bp sequence preceding the first
potential initiation codon (nucleotides 91 to 93) contains two
in-frame stop codons. Since the nucleotide sequence around
the next in-frame methionine (nucleotides 352 to 354) more
closely resembles the Kozak consensus sequence for transla-
tion initiation (28), this residue was chosen as the initiation
codon of a 862-amino-acid polypeptide (Fig. 1) with a calcu-
lated molecular weight of 95,797 that is in good agreement
with the estimated molecular mass of DNA ligase III.

Alignment of peptides from bovine DNA ligase II and DNA
ligase III within the ORF of the human DNA ligase III cDNA.
Sequences homologous with the 20 peptides from bovine DNA
ligase II and 16 of 18 peptides from bovine DNA ligase III (23,
60) have been identified within the ORF of the human DNA
ligase III ¢cDNA (Fig. 1). The degree of identity between the
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GAATTCCGGCAACCGTCG 18

TGGGCTGCCCGCGGCCTGTARTGAGCAAGTTCCGAGGCCTACGGTGAGCGCCGGAGCCGGAGAGGCAGCTATATGTCTTTGGCTTTCAAGATCTTCTTTCCACAAACCCTC 129
CGTGCACTCAGCCGAAAAGAACTGTGCCTATTCCGAAAACATCACTGGCGTGATGTARGACAATTCAGCCAGTGGTCAGAARACAGATCTGCTTCATGGACATCCCCTCTTC 240
CTGAGAAGAAAGCCTGTTCTATCATTCCAGGGAAGCCATCTAAGATCACGTGCCACCTACCTTGTTTTCTTGCCAGGGTTGCATGTGGGACTCTGCAGTGGCCCCTGTGAG 351

ATG GCT GAG CAA CGG TTC TGT GTG GAC TAT GCC AAG CGT GGC ACA GCT GGC TGC AAA AAA TGC AAG GAA AAG ATT GTG AAG GGC 435

M A E Q F [+ v D Y A K R G T A G C K K ¢ K E K I v K G 28

GTA TGC CGA ATT GGC AAA GTIG GTG CCC AAT CCC TTC TCA GAG TCT GGG GGT GAT ATG AARA GAG TGG TAC CAC ATT AAA TGC ATG 519

v o) R I G K v v P N P P E S G G D M K E W Y H I K C M 56

TTT GAG AAA CTA GAG CGG GCC CGG GCC ACC ACA AAA AAA ATC GAG GAC CTC ACA GAG CTG GAA GGC TGG GAA GAG CTG GAA GAT 603

F E K E R A R A T T K K I _E_D L. T E L E G W E E L E D 84

I11

" AAT GAG ARG GAA CAG ATA ACC CAG CAC ATT GCA GAT CTG TCT TCT AAG GCA GCA GGT ACA CCA AAG AAG AAA GCT GTT GTC CAG 687
N E K E Q I T [+] H 1 A D L S s K A A G T P K K K A v v Q 112

GCT AAG TTG ACA ACC ACT GGC CAG GTG ACT TCT CCA GTG AAA GGC GCC TCA TTT GTC ACC AGT ACC AAT CCC CGG AAA TTT TCT 771

A K L T T T G Q v T 5 P v K G A s F v T 5 T N P R K F s 140

-~ GGC TTT TCA GCC AAG CCC ARC AAC TCT GGG GAA GCC CCC TCG AGC CCC ACC CCT AAG AGA AGT CTG TCT TCA AGC AARA TGT BGAC 855
’ G S A K P N N s G E A P 5 5 P T P K R S L S S K C D 168

1T
CCC AGG CAT AAG GAC TGT CTG CTA CGG GAG TTT CGA ARG TTA TGC GCC ATG GTG GCC GAT AAT CCT AGC TAC AAC ACG AAG ACC 939
P R H K D c L L R E F R K L C A M v A D N 4 5 Y N T K T 196

CAG ATC ATC CAG GAC TTC CTT CGG AAA GGC TCA GCA GGA GAT GGT TTC CAC GGT GAT GTG TAC CTA ACA GTG AAG CTG CTG CTG 1023
o] I 1 [o] D R G l H D v L

bal L K S v\ G D G X T v K L L L 224

II/III IX1
CCA GGA GTC ATT AAG ACT GTT TAC AAC TTG AAC GAT AAG CAG ATT GTG AAG CTT TTC AGT CGC ATT TTT AAC TGC AAC CCA GAT 1107
13 G Vv I K I y Y N L N D K. Q I v K L F s R I F N [o} N P D 252

GAT ATG GCA CGG GAC CTA GAG CAG GGT GAC GTG TCA GAG ACA ATC AGA GTC TTC TTT GAG CAG AGC AAG TCT TTC CCC CCA GCT 1191
D M A R D L E Q G D v E T I R v E F E Q S K S F P P A 280

GCC AAG AGC CTC CTT ACC ATC CAG GAA GTG GAT GAG TTC CTT CTG CGG CTG TCC AAG CTC ACC AAG GAG GAT GAG CAG CAA CAG 1275
A s L L T I Q E D F L L R L s K L T K E D E Q Q Q 308

I
GCC CTA CAG GAC ATT GCC TCC AGG TGT ACA GCC AAT GAC CTT AAAR TGC ATC ATC AGG TTG ATC AAA CAT GAT CTG AAG ATG AAC 1359
s R C T A N D L K C I I R L I K H D L K M N 336

TCA GGT GCA ABA CAT GTG TTA GAC GCC CTT GAC CCC AAT GCC TAT GAA GCC TTC AAA GCC TCG CGC AAC CTG CAG GAT GTG GTG 1443
s H ¥ L D A L D P N A Y E A E K A s R N L Q D v 364

GAG CGG GTC CTT CAC AAC GCG CAG GAG GTG GAG AAG GAG CCG GGC CAG AGA CGA GCT CTG AGC GTC CAG GCC TCG CTG ATG ACA 1527
R V H N A Q E V E K E__F G Q. R..R A L S v O A L I 392

II
CCT GTG CAG CCC ATG TTG GCG GAG GCC TGC AAG TCC GTT GAG TAT GCA ATG AAG AAA TGT CCC AAT GGC ATG TTC TCT GAG ATC 1611
2E_V 9 P M L A E A C K s VvV E Y A M K K (ol P N G M S I 420

II
AAG TAC GAT GGA GAG CGA GTC CAG GTG CAT AAG AAT GGA GAC CAC TTC AGC TAC TTC AGC CGC AGT CTC AAG CCC GTC CTT CCT 1695

E_Y D ¢ E R V. 0 v __H K N G D i E S X F ] R S L X B .5 P 448
II/III

CAC AAG GTG GCC CAC TTT AAG GAC TAC ATT CCC CAG GCT TTT CCT GGG GGC CAC AGC ATG ATC TTG GAT TCT GAA GTG CTT CTG 1779

H K v A H F K D Y I B [o] A bl P G G H S I L D E A'S L L 476
IT1/II1

ATT GAC AAC AAG ACA GGC AMAA CCA CTG CCC TTT GGG ACT CTG GGA GTA CAC ARG ARA GCA GCC TTC CAG GAT GCT AAT GTC TGC 1863

1 D N K T G K P L P F G T L G v H K K A A E. Q D A N v C 504

ir
CTG TTT GTT TTT GAT TGT ATC TAC TTT AAT GAT GTC AGC TTG ATG GAC AGA CCT CTG TGT GAG CGG CGG AAG TTT CTT CAT GAC 1947
L E A"z D C I X E N D A'A S M P L C E R R K E L H 2 532

AAC ATG GTT GAA ATT CCA AAC CGG ATC ATG TTC TCA GAR ATG AAG CGA GTC ACA AAA GCT TTG GAC TTG GCT GAC ATG ATA ACC 2031
N_M _V E I P N R 1 M F 3 T K A L D L A D M I T 560
II/I1I
CGG GTG ATC CAG GAG GGA TTG GAG GGG CTG GTG CTG AAG GAT GTG AAG GGT ACA TAT GAG CCT GGG AAG CGG CAC TGG CTG AAA 2115
I E G D v T bl R

R v Q L E G L v L K K G X B G K H H L K 588
II II/IIT
GTG AAG AAA GAC TAT TTG AAC GAG GGG GCC ATG GCC GAC ACA GCT GAC CTG GTG GTC CTT GGA GCC TTC TAT GGG CAR GGG AGC 2199
Y X K D Y L N E. G A M A D T A D L v Y L G A E b G Q [e] S 616
TI/1IT
AAA GGC GGC ATG ATG TCA ATC TTC CTC ATG GGC TGC TAC GAC CCT GGC AGC CAG AAG TGG TGC ACA GTC ACC AAG TGT GCA GGA 2283
XK 6 G M _M S 1 F L M _G Lol bd D B G 3 0 K _H C TV T K _C A G 644
1T II/II1
GGC CAT GAT GAT GCC ACG CTT GCC CGC CTG CAG AAT GAA CTA GAC ATG GTG AAG ATC AGC AAG GAC CCC AGC AAA ATA CCC AGC 2367
G H, D D A T L A R L Q N E L D M. A X I s K D P s K E. S 672
II/III i1
TGG TTG ARG GTC AAC AAG ATC TAC TAT CCT GAC TTC ATC GTC CCA GAC CCA AAG AAA GCT GCC GTG TGG GAG ATC ACA GGG GCT 2451
ol L K v N K L X X )3 R E 1 Y B D b K K A. A ' W E I I G A 700
II/III II/I11
GAA TTC TCC ARA TCG GAG GCT CAT ACA GCT GAC GGG ATC TCC ATC CGA TTC CCT CGC TGC ACC CGA ATC CGA GAT GAT AAG GAC 2535
E bal S K 5 E._ A H T A D G I 1 I R F P R ¢ I R I R D D K D 728
II
TGG AAAR TCT GCC ACT AAC CTT CCC CAA CTC AAG GAA CTG TAC CAG TTG TCC AAG GAG AAG GCA GAC TTC ACT GTA GTG GCT GGA 2619
¥ W K s A T N L P Q L K E I b Q L S K E K _A D E T VvV Vv A G 156
II/1I1 II
GAT GAG GGG AGC TCC ACT ACA GGG GGT AGC AGT GAA GAG AAT AAG GGT CCC TCA GGG TCT GCT GTG TCC CGC AAG GCC CCC AGC 2703
D E_ G 8 S T T G G s s E E N K G P s G s A v s R K A )3 5 784

“

AAG CCC TCA GCC AGT ACC AAG AAA GCA GAA GGG AAG CTG AGT AAC TCC AAC AGC AAA GAT GGC AAC ATG CAG ACT GCA AAG CCT 2787
'S K 3 s A s T K K A E G K L s N s s K D G N M Q T A K P 812

TCC GCT ATG AAG GTG GGG GAG AAG CTG GCC ACA AAG TCT TCT CCA GTG AAA GTA GGG GAG AAG CGG AAA GCT GCT GAT GAG ACG 2871
5 M K v G E K L A T K S s P v K v G E K R A A D E T 840

CTG TGC CAA ACA AAG AGG CGG CCA GCC AGT GAG CAG AGA GGA AGA ACT GTG CCA GCA GGC AGG AGA TAG AACAGCCCGGCCTAGCCAG 2959
L [ Q T K R R P A s E Q G R T v P A G R R * 862

GAGAGBRCTGCAGGGACTCACTCAGCTGCTGGCCCCAAGT CAAAATTTACATTARAGGGAARAGCCCAGTCAAAAAAAAARAARAA 3044

FIG. 1. Nucleotide sequence of human DNA ligase III cDNA. The predicted amino acid sequence is presented below the nucleotide sequence. Nucleotide and
amino acid residues are numbered on the right. Regions homologous to the peptides from bovine DNA ligases II (indicated by II) and III (indicated by III) are
underlined. Most of these peptides (16 of DNA ligase IT and 13 of DNA ligase III) have been reported previously (23, 60). Four additional bovine DNA ligase 11
peptides homologous to regions in the human DNA ligase III ORF (TSLSSSK. [160 to 166], EPGOQRRALSVQASLMTP [377 to 393], ELYQLSK [740 to 746],
EHAAFAITAGDEGSS [747 to 761]) and three additional bovine DNA ligase 1II peptides (IEDLTELE [70 to 77], SSAGDGFHGDVYLTVK [206 to 221], and
ELYQLSK [740 to 746]) are also shown. Two bovine DNA ligase III peptides, SHLVAPCK and YEVAFDGDLYV, could not be definitively aligned within the human
DNA ligase III ORF. The putative active site of DNA ligase I and the conserved peptide present in eukaryotic DNA ligases are shown in boldface (4, 48, 57, 60).
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FIG. 2. In vitro translation of human DNA ligase III cDNA; reactivity of in
vitro-translated DNA ligase III. (A) In vitro transcription and translation of
full-length human DNA ligase III cDNA were performed as described in Mate-
rials and Methods. Lanes: 1, **S-labeled in vitro-translated polypeptides (2.5 ul);
2, polypeptides translated in vitro in the absence of labeled methionine purified
by ammonium sulfate precipitation and adenylated by incubation with [a->?P]JATP
for 15 min at RT. Labeled polypeptides were separated by SDS-polyacrylamide
gel electrophoresis and detected by autoradiography. The positions of '“C-
labeled molecular mass standards (Amersham) are indicated. (B) In vitro tran-
scription and translation of human DNA ligase III cDNA with a 3’ deletion that
removes the C-terminal 31 amino acids carried out in the absence of labeled
methionine. After purification by ammonium sulfate precipitation, the reaction
products were incubated with [«-*P]ATP for 15 min at RT and then incubated
for 2 h at 20°C with no addition (lane 1), 20 nmol of sodium PP; (lane 2), 0.5 ng
of oligo(dT)-poly(dA) (lane 3), and 0.5 pg of oligo(dT)-poly(rA) (lane 4).

bovine peptides and the predicted amino acid sequence of
human DNA ligase III is greater than 90%. The human DNA
ligase IIT cDNA encodes a sequence identical to the 16-amino-
acid adenylylated peptide isolated from bovine DNA ligase 11
(60), indicating that Lys-421 is the active-site residue of DNA
ligase III, and a sequence (residues 712 to 727) homologous
with the conserved C-terminal peptide sequence present in
eukaryotic DNA ligases (4, 48, 60).

On the basis of the alignment with human DNA ligase I1I,
the bovine DNA ligase II peptides encompass about 66 kDa
(Fig. 1). The 70-kDa DNA ligase II does not appear to be
derived from DNA ligase III cDNA by initiating translation at
an internal methionine, since there is no appropriately posi-
tioned methionine residue. In agreement with this prediction,
incubation of polypeptides produced by in vitro translation of
human DNA ligase 11T ¢cDNA with [«-**P]ATP did not pro-
duce a labeled 70-kDa polypeptide (Fig. 2A, lane 2). Thus, it
appears probable that DNA ligases II and III are encoded by
the same gene and are generated either by specific processing
of a common polypeptide or by alternative splicing.

Human DNA ligase III cDNA encodes a catalytically active
DNA ligase. Coupled in vitro transcription and translation of
full-length human DNA ligase III cDNA (LIG3) in the pres-
ence of [>>S]methionine produced a major labeled band with a
molecular mass of 97 kDa and a minor labeled band with a
molecular mass of 106 kDa (Fig. 2A, lane 1). Similar reactions
were performed in the absence of labeled methionine, and the
translated products were assayed for DNA ligase activity. A
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polypeptide corresponding in size to the major translated
product formed a labeled enzyme-adenylate complex (Fig. 24,
lane 2). After much longer exposure, a labeled 106-kDa en-
zyme-adenylate complex was also detected (data not shown).
The 97- and 106-kDa polypeptides probably result from trans-
lation initiations at the methionine indicated in Fig. 1 and the
first in-frame methionine (nucleotides 91 to 93 [Fig. 1]), re-
spectively. The efficiency of translation and the reactivity of the
97-kDa polypeptide plus its similarity in size to purified DNA
ligase III support the assignment of translation initiation
shown in Fig. 1.

In vitro-translated DNA ligase III polypeptides lacking the
C-terminal 31 amino acids did form labeled enzyme-adenylate
complexes in similar assays (Fig. 2B, lane 1), whereas deletion
of the C-terminal 160 amino acids inactivated the enzyme
(data not shown). The labeled polypeptide-adenylate com-
plexes were demonstrated to be authentic reaction intermedi-
ates by their reactivities with the polynucleotide substrates
oligo(dT)-poly(dA) and oligo(dT)-poly(rA) (Fig. 2B, lanes 3
and 4). Similar results were obtained with 97-kDa DNA ligase
III encoded by the full-length cDNA (data not shown). This
utilization of oligo(dT)-poly(rA) as a substrate distinguishes
DNA ligase III from DNA ligase I (55). Thus, the size and
biochemical properties of the polypeptide encoded by human
DNA ligase III cDNA are similar to those reported for purified
bovine DNA ligase III (23, 55).

Homology of DNA ligase III with other DNA ligases of
eukaryotes and eukaryotic viruses. As expected from the pep-
tide sequencing data (23), DNA ligase III is highly related to
the DNA ligase encoded by vaccinia virus (48). This homology,
about 50% identity, extends over the entire translated se-
quence of vaccinia virus DNA ligase (Fig. 3). In contrast, the
overall degree of identity shared between human DNA ligases
I and III is only 17%. However, the putative catalytic domains
of these enzymes exhibit about 30% identity, suggesting that
the genes encoding DNA ligases I and III have evolved from a
common ancestral gene. A comparison of DNA ligases en-
coded by eukaryotes and eukaryotic viruses indicates that there
are two major families of DNA ligases (data not shown). The
amino acid sequence homology appears to reflect conservation
of function, since the majority of DNA ligases within the DNA
ligase I family are known to be required for DNA replication.
The other family of DNA ligases, which includes DNA ligase
III and the DNA ligases encoded by the poxviruses, may have
evolved to perform specific functions in eukaryotic DNA repair
and/or genetic recombination.

The human DNA ligase III gene is located on chromosome
17. The chromosomal location of the DNA ligase III gene has
been mapped by three different methods. An 810-bp fragment
of DNA ligase III ¢cDNA was used to probe genomic DNA
from a BIOS somatic cell hybrid panel by Southern blotting. In
the representative lanes shown in Fig. 4A, we demonstrate that
although the human DNA ligase III probe cross-hybridizes
with the hamster genomic DNA (Fig. 4A, lane 3), human
DNA-specific bands were detected in somatic cell hybrids con-
taining human chromosome 17 (Fig. 4A, lane 2) but not in
somatic cell hybrids containing human chromosome 15 (Fig.
4A, lane 1), which contains the location of the BLM gene (32).
Compilation of the data from the entire somatic cell hybrid
panel (data not shown) demonstrated 100% concordance be-
tween the presence of human DNA-specific signals and human
chromosome 17 and greater than 15% discordance for all
other chromosomes.

Localization of the DNA ligase III gene to human chromo-
some 17 was independently confirmed by PCR analysis of
rodent-human monochromosomal hybrids, including the

.
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FIG. 3. Alignment of human DNA ligase (hum lig) I, human DNA ligase I1I, and vaccinia virus DNA ligase (vaccinia lig) protein sequences. The amino acid
sequences of human DNA ligase I (4), vaccinia virus DNA ligase (48), and human DNA ligase IIT were aligned by using the DNAStar MegAlign program. Identical
amino acids are indicated by shaded boxes. Gaps which have been introduced to maximize the alignment are indicated by dashes.

NIGMS Human-Rodent Somatic Cell Hybrid Mapping Panel
2. Primers specific to the 5’ region of the DNA ligase III cDNA
produced an amplification product of approximately 850 bp
with total human genomic DNA as the template (Fig. 4B).
Amplification products were substantially smaller when mouse
or hamster genomic DNA was used (Fig. 4B). The human
DNA-specific product was amplified only in reactions with
genomic DNAs from the mouse-human hybrid (A17), retain-
ing only human chromosome 17 (32), and the somatic cell
hybrid from the NIGMS panel containing only human chro-
mosome 17 (Fig. 4B). Lastly, fluorescence in situ hybridization
has been used to confirm the chromosome 17 localization of
the DNA ligase III gene with the cDNA as a probe (data not
shown).

DNA ligase III is highly expressed in testes. Expression of
DNA ligase II1 in a variety of different human tissues and cells
has been examined by Northern blotting with a 400-bp DNA
ligase III ¢cDNA fragment (nucleotides 2453 to 2843) as a
probe. The probe hybridized to an mRNA species of about 3.6
kb in all tissues and cells examined except in testes, in which a
doublet of 3.6- and 3.4-kb species was clearly visible with
shorter exposures (see Fig. 5 and 7). Similar heterogeneity of
mRNA transcripts in testes has been reported for cytochrome
¢r (19) and lactate dehydrogenase (17) and appears to be due
to different lengths of the poly(A) tail. The steady-state level of
DNA ligase III mRNA in the liver was similar to that observed

for the spleen. No transcripts of a different size that may
encode DNA ligase II were detected (data not shown). The
steady-state levels of DNA ligase III mRNA were significantly
higher in testes than in any other tissue examined (Fig. 5).
Quantitative analysis by scanning densitometry showed that
the mRNA level in testes is at least 10-fold higher than those
in other tissues and cells. Similar results were observed with a
5’ probe (nucleotides 1 to 538) (data not shown). For compar-
ative purposes, we examined the expression of the replicative
enzyme, DNA ligase I, in the same human tissues and cells.
Testes also contain high steady-state levels of the 3.2-kb DNA
ligase I mRNA. However, the highest levels of DNA ligase I
mRNA were present in the thymus (Fig. 5).

Localization of DNA ligase III expression within mouse tes-
tes by in situ hybridization. Elevated levels of DNA ligase 111
mRNA (see above) and enzyme activity have been detected in
mammalian testes (23), suggesting a role for this enzyme in
spermatogenesis. To examine DNA ligase III expression in
specific cell types within seminiferous tubules of adult mouse
testes, we have isolated the murine cDNA homolog of DNA
ligase ITI which exhibits about 85% homology at the nucleotide
level with human DNA ligase III. The expression pattern of
murine DNA ligase III mRNA was essentially the same as that
observed for human DNA ligase III (Fig. 5) (data not shown).
A murine DNA ligase III cDNA fragment, corresponding to
nucleotides 296 to 960 of human DNA ligase III cDNA (Fig.
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FIG. 4. Chromosomal localization of the DNA ligase III gene. (A) Southern analysis of PstI-digested genomic DNAs (8 ug) from human, hamster, and hybrid
somatic cells (BIOS Laboratory, Inc.) with an 810-bp EcoRI-Xhol DNA ligase III cDNA fragment as described in Materials and Methods. Only a selected panel of
the hybridization results is shown. Lanes: 1, hamster cell line containing human chromosomes 4, 5, 7, 13, 15, 19, 21, and Y; 2, hamster cell line containing human
chromosomes 8, 17, and 18; 3 and 4, hamster and human cell lines containing genomic DNA, respectively. The presence (+) or absence (—) of human chromosome

17 is indicated for each hybrid. The positions of size markers are shown on the
111 from monochromosomal somatic cell hybrids. Hum/HT 1080, human tumor

left. (B) PCR amplification of a specific fragment of human (hum) DNA ligase (lig)
cell line; Mou/A9, mouse cell line; Mou/A9 ptus Hum 17, mouse cell line containing

human chromosome 17; Hum, human parental DNA; Mou, mouse parental DNA; Ham, Chinese hamster parental DNA (parental DNA supplied with NIGMS Human
Rodent Somatic Cell Hybrid Mapping Panel 2). 1 to 9, 10 to 22, X, and Y, individual human-rodent cell hybrids containing chromosomes 1 to 22 and X and Y,
respectively. The 850-bp DNA ligase III fragment amplified from human genomic DNA and from somatic cell hybrids containing human chromosome 17 is indicated.

The positions of molecular mass standards in base pairs are shown on the left.

1), was used to examine DNA ligase III expression in mouse
testis sections by in situ hybridization. No hybridization was
detected in experiments with the sense probe (Fig. 6A). In
contrast, we observed significant hybridization in a small, dis-
crete number of cells with the antisense probe (Fig. 6B). In
similar experiments with antisense and sense probes from a
420-bp fragment of murine DNA ligase 1II cDNA correspond-
ing to nucleotides 2034 to 2452 of human DNA ligase III
cDNA, the same cell population hybridized with the antisense
probe. On the basis of their morphological characteristics and
their position within the seminiferous tubule, these cells were
identified as primary spermatocytes. Thus, the high levels of
DNA ligase III expression appears to be restricted to the stage
of germ cell development when meiotic recombination occurs.

Expression of DNA ligases in developing mouse testes. Pre-
viously, we have shown that DNA ligases I and III are relatively
highly expressed in adult testes compared with most other
tissues and cells (Fig. 5). Since the temporal appearance of
different cell types within testes and the cellular composition of
testes at different days from birth to sexual maturity are well-
documented (6), we have examined the steady-state mRNA
levels of DNA ligases I and III in mouse testes as a function of
age (Fig. 7). The highest levels of DNA ligase I expression
were detected in the youngest animals (5 and 8 days old), with
expression levels gradually declining with increasing age (Fig.
7a). This expression pattern correlates with the relative con-
tribution of spermatogonia cells to the testes, ranging from 16
to 27% in the 5- and 8-day-old animals to 1% in adult animals
(6). The high levels of DNA ligase I mRNA in the proliferating
spermatogonia are consistent with the previously defined role
of DNA ligase 1 in DNA replication (4, 5, 49, 58).
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FIG. 5. Tissue and cell distribution of DNA ligase I and DNA ligase III
mRNAs. A Northern blot containing ~2 pg of poly(A)* RNAs from various
human tissues and cells was sequentially hybridized with a 400-bp human DNA
ligase III ¢cDNA fragment (nucleotides 2453 to 2843), a 1.4-kb DNA. ligase 1
c¢DNA fragment (nucleotides 106 to 1544 [4]), and a 1.4-kb human GAPDH
c¢DNA fragment as described in Materials and Methods.
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FIG. 6. Expression of DNA ligase ITI mRNA within the seminiferous tubules of mouse testes. In situ hybridization experiments were performed with mouse DNA
ligase cDNA fragments as described in Materials and Methods. (A) Sense probe generated from the mouse cDNA fragment corresponding to nucleotides 296 to 960
of human DNA ligase III ¢cDNA (Fig. 1); (B) antisense probe generated from the same fragment. The lumen of the seminiferous tubule is at the bottom of the
photograph. Positively staining cells (pink color) are indicated by arrows. The scale is indicated by the bar (1 wm).

In contrast, DNA ligase III is expressed at low levels in the
testes of mice that are as much as 15 days old. The highest
levels of DNA ligase III steady-state mRNA were detected in
the testes from 25-day-old mice, with about twofold lower
levels in adult testes (Fig. 7b). In mice, primary pachytene
spermatocytes first appear at approximately day 14 and con-
stitute about 15% of the cells in the testes. Since it takes
approximately 6 days to complete pachytene, cells representing
the latter part of pachytene will not appear until approximately
day 18 (6). At day 18, the relative contribution of pachytene
spermatocytes to the testes reaches a peak of 36% and then
gradually falls to 15% in adults. After day 18, the contribution
of secondary spermatocytes to the testes remains constant at
1%, whereas round spermatids and condensing spermatids are
present at significantly higher levels in adult testes. Thus, the
expression of DNA ligase III mRNA correlates with the rela-
tive contribution of cells in the latter part of pachytene to the
testes. This conclusion is compatible with the expression pat-
tern observed by in situ hybridization (Fig. 6). The high levels
of DNA ligase III expression in cells that are undergoing mei-
otic recombination suggest that this enzyme is required to seal
DNA strand breaks that arise during recombination prior to
meiotic division L.

DISCUSSION

We have described the cloning of a human cDNA that con-

tains the complete ORF of DNA ligase III on the basis of the

following observations: (i) 16 of the 18 peptide sequences ob-
tained from purified bovine DNA ligase III (23) have been
aligned within the amino acid sequence encoded by the cDNA
(Fig. 1); (ii) in vitro transcription and translation of this cDNA
produces a catalytically active DNA ligase that is similar in size
and substrate specificity to bovine DNA ligase 111 (23, 55) (Fig.
2); and (iii) the predicted amino acid sequence of human DNA
ligase III contains sequences that are highly homologous with
the active-site motif (57, 60) and with a conserved C-terminal
peptide sequence (4) that has been found in all ATP-depen-
dent eukaryotic DNA ligases.

DNA ligases II and III were originally identified as minor
activities in extracts from calf thymus glands (50, 55). Subse-
quent studies demonstrated that DNA ligase II is the major

— DNA ligase |

FIG. 7. Steady-state levels of DNA ligase I and DNA ligase III mRNAs in
developing mouse testes. Duplicate poly(A)™ samples (2 ug) from the testes of
5-day-old (lane 1), 8-day-old (lane 2), 15-day-old (lane 3), 25-day-old (lane 4),
and 60-day-old (adult) (lane 5) mice were electrophoresed through 1.2% agar-
ose-formaldehyde gel and then transferred to a nitrocellulose membrane as
described in Materials and Methods. Prior to hybridization, the membrane was
cut into two equivalent pieces. (a) The membrane sequentially hybridized with a
murine DNA ligase I cDNA fragment (nucleotides 1734 to 2961 [46]) and a 2-kb
human B-actin cDNA fragment; (b) the membrane sequentially hybridized with
a murine DNA ligase ITI cDNA fragment (corresponding to nucleotides 1430 to
2452 of human DNA ligase III ¢cDNA) and a 2-kb human B-actin cDNA. frag-
ment.
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DNA joining activity in liver nuclei (60), whereas DNA ligase
11T is the major DNA joining activity in testis nuclei, with only
trace amounts of DNA ligase II detected (23). Amino acid
sequencing of peptides from bovine DNA ligases II and III
indicated that these enzymes may be encoded by the same gene
(23, 60). In agreement with this hypothesis, we have been able
to align all of the DNA ligase II and the majority of the DNA
ligase III peptides within the ORF of human DNA ligase IIL.
In addition, we have not detected any highly homologous but
distinct DNA sequences in 16 independent cDNA clones that
hybridized with the PCR probes. In Northern blotting experi-
ments, a single 3.6-kb RNA species was detected at a low level
in all tissues (including the liver) except for testis tissue (Fig.
5). In testes, significantly higher levels of the 3.6-kb mRNA and
also a 3.4-kb mRNA were observed. Thus, the expression pat-
terns of mRNAs that hybridized with DNA ligase III probes do
not indicate that DNA ligases II and III are generated by
alternative splicing.

An alternative possibility is that DNA ligase II is derived
from DNA ligase III by the action of endogenous proteases
during protein purification. However, we have not observed
the appearance of a catalytically active 70-kDa polypeptide in
partially purified fractions of DNA ligase III. Furthermore, the
addition of proteases to DNA ligase III fractions also failed to
produce an active fragment similar in size to DNA ligase II (40,
55). The amino terminus of the 70-kDa DNA ligase II was
blocked to Edman degradation (60), suggesting that the ami-
no-terminal residue is modified, as is the case with the primary
translation product of most soluble proteins (7). It seems un-
likely that DNA ligase 11 is created from DNA ligase III by a
C-terminal deletion, since this would remove an essential por-
tion of the catalytic domain. Thus, these polypeptides may be
related by a specific proteolytic processing pathway that in-
volves modification of the amino-terminal residue and/or pro-
tein splicing (13).

A comparison of human DNA ligase III with ATP-depen-
dent DNA ligases encoded by eukaryotes and eukaryotic vi-
ruses suggests that DNA ligase III has the same domain struc-
ture as these enzymes, consisting of a catalytic C-terminal
domain and a nonessential amino-terminal domain that may
be the site of posttranslational modifications and protein-pro-
tein interactions (4, 37, 57). Analysis of the evolutionary rela-
tionship between these enzymes suggests that there are two
families of eukaryotic DNA ligases. There is considerable ge-
netic and biochemical evidence demonstrating that members
of the DNA ligase I family are required for DNA replication
(4, 26, 33, 34, 49, 58). Within the other family, DNA ligase III
is most highly related to the DNA ligase encoded by vaccinia
virus, the prototypic poxvirus. Since the only effect on viral
DNA metabolism of deleting the DNA ligase gene is to in-
crease the sensitivity of the mutant virus to treatment with
DNA-damaging agents, it appears that the viral enzyme func-
tions in DNA repair (12, 27). DNA ligase III is also involved in
DNA repair (8) and recombination in somatic cells (24). The
studies reported here indicate that DNA ligase III may play a
specific role during meiotic recombination. Therefore, this sec-
ond family of DNA ligases appears to function in specific DNA
repair and genetic recombination pathways.

The phenotypes of cell lines established from patients with
the hereditary cancer-prone disease BLM are consistent with a
defect in DNA joining (30, 41). Furthermore, it has been
reported that BLM cell extracts contain altered high-molecu-
lar-weight DNA ligase activity (10, 61, 62). The absence of
mutations in the BLM DNA ligase I (5, 36) and the localization
of the DNA ligase I gene to chromosome 19 (4) and the BLM
gene to chromosome 15 (32) eliminated DNA ligase I as a
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candidate gene for BLM. The association of DNA ligase III
with the product of the human DNA repair gene XRCCI (8)
made DNA ligase III an attractive candidate for BLM, since
the hallmark cytogenetic feature of both BLM cell lines and
the mutant xrecl cell line EM9 is a spontaneously elevated
frequency of sister chromatid exchange (9, 15). Although the
BLM and XRCC1I genes are located on different chromosomes
(32, 47), mutations in either gene would be expected to pro-
duce similar phenotypes if the gene products function in the
same pathway. The localization of the DNA ligase III gene to
chromosome 17 (Fig. 4) eliminates this gene as a candidate for
BLM and is consistent with the presence of wild-type levels of
DNA ligase III activity in BLM cells (56). Therefore, the ab-
normal DNA ligation associated with BLM may be caused by
mutations in a gene that functions in the same pathway as
DNA ligase III and Xrccl proteins or that regulates DNA
ligase activity.

The steady-state mRNA levels of both DNA ligase I and
DNA ligase I correlate with measurements of enzyme activity
in different tissues. For DNA ligase I, the highest levels of
enzyme activity (50) and mRNA are found in the thymus, with
relatively high levels of DNA ligase I mRNA also detected in
the testes (Fig. 5). In addition to being required for DNA
replication, DNA ligase I may perform a specific function in
the immune system, since the patient with inherited DNA
ligase I mutations presented with severe combined immuno-
deficiency (5). During the development of haploid gametes,
diploid germ cells undergo a cycle of DNA replication without
cell division. In the yeast Saccharomyces cerevisiae, expression
of the CDC9 gene, which is functionally homologous to mam-
malian DNA ligase I, is induced during premeiotic DNA syn-
thesis and then rapidly declines (25). During mammalian sper-
matogenesis, the highest levels of DNA ligase I mRNA are
found in the proliferating spermatogonia. This is consistent
with the previous observation that DNA ligase I activity is
significantly higher in prepubertal spermatogonia than in mei-
otic spermatocytes and later cell types (21). Therefore, DNA
ligase I appears to fulfill the same function, i.e., joining Oka-
zaki fragments, during premeiotic DNA synthesis that it does
during mitotic DNA replication (58).

In the case of DNA ligase III, the hlghest levels of mRNA
(Fig. 5) and enzyme activity (23) are found in the testes. This
elevated expression has been localized to primary spermato-
cytes by in situ hybridization (Fig. 6). To confirm this obser-
vation, DNA ligase III expression was also examined in the
developing testes. These studies indicated that the elevated
levels of DNA ligase III mRNA occur in the latter part of
pachytene prior to meiotic division I. A similar expression
pattern has been observed for the DNA repair gene XRCC1
(59), whose product interacts with DNA ligase III (8). During
pachytene, homologous chromosomes align within the synap-
tonemal complex and genetic exchanges take place (18, 35, 52,
53). Thus, the temporal expression of DNA ligase III during
germ cell development suggests that this enzyme functions
together with Xrccl to seal breaks in DNA that have arisen as
a consequence of meiotic recombination events. In somatic
cells, DNA ligase III presumably functions as a DNA repair
enzyme, sealing single-strand breaks generated as a conse-
quence of DNA damage. The availability of DNA ligase III
¢DNA should facilitate investigation of the mechanisms of
eukaryotic DNA repair and genetic recombination, in partic-
ular meiotic recombination.
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DEPARTMENT OF THE ARMY

US ARMY MEDICAL RESEARCH AND MATERIEL COMMAND
504 SCOTT STREET
FORT DETRICK, MARYLAND 21702-5012

REPLY TO
ATTENTION OF:

MCMR-RMI-S (70-1y) k1 JUN w0

MEMORANDUM FOR Administrator, Defense Technical Information
Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir,
VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has
reexamined the need for the limitation assigned to technical
reports. Request the limited distribution statement for reports
on the enclosed list be changed to "Approved for public release;
distribution unlimited." These reports should be released to the
National Technical Information Service.

2. Point of contact for this request is Ms. Judy Pawlus at
DSN 343-7322 or by e-mail at judy.pawlus@d@t.amedd.army.mil.

FOR THE COMMANDER:
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Reports to be changed to "Approved for public release;
distribution unlimited"

Grant Number

DAMD17-94-J-4147
DAMD17-93-C-3098
DAMD17-94-J-4203
DAMD17-94-J-4245
DAMD17-94-J-4245
DAMD17-94-J-4191
DAMD17-94-J-4191
DAMD17-94-J-4191
DAMD17-94-J-4191
DAMD17-94-J-4271
DAMD17-94-J-4271
DAMD17-94-J-4271
DAMD17-94-J-4271
DAMD17-94-J-4251
DAMD17-94-J-4251
DAMD17-94-J-4251
DAMD17-94-J-4251
DAMD17-94-J-4499
DAMD17-94-J-4499
DAMD17-94-J-4499
DAMD17-94-J-4499
DAMD17-94-J-4437
DAMD17-94-J-4437
DAMD17-54-J-4437
DAMD17-54-J-4437
DAMD17-96-1-6092
DAMD17-96-1-6092
DAMD17-96-1-6092
DAMD17-96-1-6092
DAMD17-95-C-5078
DAMD17-85-C-5078
DAMD17-95-C-5078
DAMD17-95-C-5078
DAMD17-95-C-5078
DAMD17-94-J-4433
DAMD17-94-J-4433
DAMD17-94-J-4433
DAMD17-94-J-4413
DAMD17-94-J-4413

Accession Document Number

ADB221256
ADB231640
ADB221482
ADB215584
ADB233368
ADB255074
ADB248915
ADB235877
ADB222463
ADB219183
ADB233330
ADB246547
ADB258564
ADB225344
ADB2344395
ADB248851
ADB255028
ADB221883
ADB233105
ADB247447
ADB258779
ADB258772
ADB249591
ADB233377
ADB221789
ADB2317958
ADB239339
ADB253632
ADB261420
ADB232058
ADB232057
ADB242387
ADB253038
ADB261561
ADB221274
ADB236087
ADB2544995
ADB232293
ADB2403500

1 OF 3

Eac |



