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Introduction

Nature of the Problem

While it is hoped that molecular detection and intervention will one day provide a
more effective treatment modality, currently, in the words of the Report to the U.S. Army
Medical Research and Development Command on the Strategies for Managing the
Breast Cancer Research Program, "no dominant etiology for breast cancer has
emerged.. .[this] would lessen the prospects for any quick and easy prevention
strategies .... mammography is the method of choice for screening women to detect
breast cancer ... mammography has proven to be the most effective means of reducing
breast cancer morbidity and mortality."

The primary theoretical limitations of mammography are the system resolution,
which determines the minimum size of the detectable malignancy, and the need to
expose the patient to ionizing radiation. Using innovative new technology to improve
system resolution and reduce required dose will increase the effectiveness of this
proven screening modality, with a direct and immediate impact on mortality. In addition,
this direct digital system can avail itself of the advantages of digital processing,
including improved image contrast and resolution at reduced radiation dose.1 In
practice, mammographic imaging is often limited by quality assurance issues, which
can also be favorably addressed by digital processing.

Purpose

The overall objective of this proposal is to develop a mammographic system with
extremely high scatter rejection and dynamic range, good resolution and low patient
dose. This will be accomplished by developing a direct x-ray detector interfaced with a
capillary x-ray optic in an appropriately designed mammographic system.

Kumakhov capillary x-ray optics, invented in the mid-eighties, provide an
innovative new way to control x-ray beams. Such optics will provide extremely efficient
scatter rejection, while allowing beam demagnification and shaping to match with the
newly developing high efficiency direct x-ray detectors. These detectors owe their high
efficiency and resolution to the direct detection of x-ray photons without requiring
phosphors for the conversion to visible light. An integrated system of optics and
detectors will be developed in a highly collaborative effort involving recognized leaders
in the fields of capillary optics, x-ray detectors, digital radiology, and mammography.
Testing will be performed on each of the elements independently, and as an integrated
unit in a mammographic system.
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Background
Benefits of Digital Mammography

Conventional film/screen mammography suffers from limited dynamic range and
film granularity which can reduce the sensitivity of detection of microcalcifications.
Digital detection can provide high dynamic range, which in addition to improving
contrast, greatly increases the tolerance of the final image to under- or over-exposure.
Digital images can be enhanced and are amenable to computer aided diagnosis.
Spectral information can be included if it is available. Finally, digital images can be
quickly transported for skilled consultation.

Capillary Optics
Kumakhov capillary optics are bundles of hollow glass capillary tubes with inner

diameters as small as a few microns. X rays incident on the interior of the glass tubes
at small angles can be guided down the tubes by total external reflection. The
capillaries guide x rays in a manner analogous to the way fiber optics guide light.
Arrays of curved tapered capillaries can be used to focus, collimate and filter x-ray
radiation. Such arrays can be manufactured by stringing hollow glass
polycapillaries through metal grids, or manufactured without grids as a monolithic optic.

The critical angle for total external reflection of x rays by glass polycapillaries is
(0C = (OP

(0

where (op is the plasma frequency of the glass, about 30 eV, and (w is the photon
frequency. The critical angle is 1.5 milliradians at 20 keV. The x rays can be
transmitted in a curved tube so long as the tube is small enough and bent gently
enough that the angles of incidence are kept less than the critical angle. For a given
radius of curvature, this requires increasingly small diameter tubes as the x-ray energy
is raised. In order to avoid the mechanical limitations of such small tube sizes,
polycapillary fibers are employed with channel sizes (typically 1-30 [1m) much smaller
than the outer diameter (300-1000 jim).

The use of Kumakhov capillary optics in place of more conventional scatter
reduction grids in a mammographic system has significant potential to provide improved
resolution, increased contrast enhancement, and reduced dose in mammographic
imaging. The optics can also be used to mate the radiographic image with a digital
detector by appropriate choice of demagnification and separation to discrete chips. In
addition, a pre-patient optic could be employed to increase the available intensity in a
fan beam relative to simple slot collimation.

Digital X-Ray Detection
In almost all radiological systems, detection of x rays is performed by the use of

a "phosphor" screen which converts absorbed x rays into visible light photons. The
visible light is then recorded on an analog medium, such as film, or detected by a digital
detector. The phosphor screen is used because most detectors, including film, are not
particularly sensitive to x rays. The use of a screen-film combination reduces radiation
requirement compared to direct exposure film by a factor of 50-100.7 This increase in
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sensitivity occurs at the expense of resolution. The modulation transfer function of a
good film-screen combination drops to less than 0.1 at a frequency of 15 lp/mm. 7 The
choice of screen thickness is a trade-off between detected quantum efficiency, which
improves with increasing thickness, and resolution, which is degraded by light blur in a
thick screen.8

Efficient direct x-ray detection virtually eliminates the tradeoff between spatial
resolution and sensitivity because of the elimination of the phosphor screen. Direct x-
ray detectors can provide resolution of 20 lp/mm or better with nearly 100% Detector
Quantum Efficiency (DQE).

An especially promising direct x-ray detector is the cadmium zinc telluride (CZT)
semiconductor detector recently developed by Digirad, formerly Aurora Technologies.
The DQE of a .5 mm thick CZT detector is essentially unity at 20 keV, while the
resolution is to first order independent of thickness. CZT detectors are similar in many
respects to cadmium telluride (CdTe) detectors which have been available
commercially for many years. The replacement of a fraction of the Cd with Zn causes a
wider bandgap and results in a resistivity increase of two orders of magnitude. This
high resistivity is an important factor because it reduces leakage current, a significant
source of performance degrading noise. Leakage current noise generally limits the use
of CdTe detectors by requiring longer integration times and larger pixel sizes.
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Body: Methods and Results
To provide a framework for assessing the results of the first two years of the

project, the original statement of work for the full four year project is reproduced here.

Proposed Statement of Work

I. Development of Capillary Optic Mammographic System: Months 1-36
I.A. Single Capillary Measurements: Months 1-6
I.B. Simulation of Design Strategies: Months 6-18
I.C. Assembly and Testing of Prototype Optic: Months 18-24
I.D. Design of Final Mammographic Optics and Detector Unit: Months 20-28
I.E. Assembly and Testing of Final Optic: Months 28-36

II. Development of Digital Detector: Months 1-24
II.A. Fabricate CZT Linear Detector Arrays: Months 1-24
lI.B. Develop Interconnect Methodology (Wire Bonding): Months 2-8
II.C. Assemble and Test Proof of Principle Detector/Multiplexer Hybrid : Months

2-12
ll.D. Assemble Additional Hybrid Arrays: Months 12-24

II1. Mammographic Measurements: Months 18-48
III.A. Measurement of Prototype System: Months 18-36
III.A.1 Design and Fabrication of Test System: Months 18-24
III.A.2. Measure Primary Transmission in a Mammographic Geometry:

Months 24-30
III.A.3 Measure Transmission of Scattered Radiation: Months 24-30
III.A.4. Spectral Measurements: Months 24-30
III.A.5. Investigate Artifacts due to Capillary Structure: Months 30-36
III.A. 6. Measure Contrast Improvement and Resolution: Months 30-36
III.B. Measurement of Final Optics/Detector System: Months 28-48
III.B.I. Design and Fabrication of Measurement System: Months 28-36
III.B.2. Measure Primary Transmission in a Mammographic Geometry:

Months 36-42
III.B.3. Measure Transmission of Scattered Radiation: Months 36-42
III.B.4. Spectral Measurements: Months 36-42
III.B.5. Investigate Artifacts due to Capillary Structure: Months 42-48
III.B.6. Measure Contrast Improvement and Resolution: Months 42-48

III.B. 7. Evaluate Image Quality Using RMI Breast Phantom: Months 42-48
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Progress to Date

Task I.A. Single Capillary Measurements
Capillary held by motion switch

lead box an aluminum plate controller box

lead shield MCA linear pream
x-ray source with Ge

200um pinhole detector

Figure 1. Experimental setup. Figure 2. Electronic system

Type Description Outer Diameter, Channel Size, Area Length,
mm 4m mm

A Borosilicate 0.5 12 65% 105
B Lead glass 0.5 12 52% 95
C Borosilicate 0.75 22 50% 136
D Borosilicate 4 12 55% 130
E Borosilicate 0.3 4-5 55% 105

Table 1. Description of polycapillary fibers
Task I.A. is complete. The experimental arrangement for single capillary

measurements is shown in figures 1 and 2. An optical rail affixed to an optical table
carries an x-ray source, fiber platform, and x-ray detector. Each can be positioned
independently in three dimensions. A collimator is placed before the fiber and any
remaining x-ray leakage around the fiber is eliminated with metal powder or filings.

The measured fibers are described
* exp, Fiber A sim, Fiber A in Table 1. The results of
A exp, Fiber B transmission studies as a function of

70* exp, Fiber C ------ sim, Fiber
* U + exp, FiberD sim, Fiber photon energy are shown in Figure

60- " exp, Fiber E ....- sim, Fiber E 3.' 10 All of the fibers except the
50 . .. V.. -4.. lead glass have transmissions at 20

V, keV nearly equal to their fractional
40- .open area (the fraction of the crossS..... • " + ' 4

30. A . section of the capillary which is open
2 . A E space, the rest being glass walls).

20,AA •-. This transmission corresponds to the

10. primary transmission expected for a
• A A linear capillary optic employed as an0 ___r

0 20 40 60 80 antiscatter grid.
Photon energy (KeV) Measurements to determine

3 the capacity of the glass optic to
Figure 3. Measured transmission versus energy for asr catte raditon wr
polycapillary fibers listed in Table 1. absorb scatter radiation were

performed by increasing the angle to
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* Fiber#1 exp the source, relative to the fiber axis, to an angle
Fiber#1 cal mc

.- Fiber#3 cal much greater than the critical angle for the total
"• 25.T Fiber#3 cal external reflection. (Total external reflection

S carries the primary photons down the channel.)c 0.15

S0.1 Results of these "high angle transmission"
',- measurements are shown I in Figure 4. This

0 transmission corresponds to scatter
0 20 40 60 80 transmission for the capillary optics used as an

source position(mm) antiscatter grid, and is less than 1% at 20 keV.
The solid line is a theoretical calculation, which

Figure 4. High angle transmission through agrees quite well with the data.

capillary walls as a function ofphoton It has been elected to perform

energy. Fiber#].'l=lO5mm measurements of divergence and of the

Fiber#3..l=136mm transmission of bent fibers on "pre-prototype"
systems which more closely resemble

prototype mammographic optics than do individual single fibers. These measurements
are described under Task III.A. below.

Task I.B. Simulation of Design Strategies
This task is nearing completion. To evaluate the experimental performance of

capillaries, and design capillary optics, it is necessary to be able to predict theoretical
behavior for complex geometries. A modeling program for single fibers based on a
Monte Carlo simulation of simple geometrical optics has been developed. The
computational speed is greatly enhanced by a reduction to two dimensions by
projecting the trajectory onto the local fiber cross-section."l Reflectivities are computed
from standard tables.' Significant recent progress has been made in understanding
the effect of capillary profile error, waviness and roughness on the transmission

* eDp da n exp data

5sire pfeid cqillay sim, perfect capillary
1.2- ..... sirm r h rvthrtl•, z=0.5 rm sim, with roughness, z=1 nm

sirm vith rc s, z=1 rm - - sim, with roughness, z=2 nm

1.0

0.8-

co 0.6

Q41- 0.4-

0.2.Nor.l zed counts

0.0

Source position(mm)

Sooe positir(nmn)

Figure 6. Simulated source scan curves ofFiber 3 at Figure 5. Simulated source scan curves at 68 keV of

10 ke V compared with experimental data. Fiber 3 with different roughness corrections
compared with the experimental data.
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spectra. 13 This is extremely important
in providing feedback to the
manufacturing process.

A "In Figure 5, simulations with or
4"- + without roughness corrections are

•-ntk Fbr compared with the experimental data.
- ,- R=110n "\. \ In these measurements the source is

1..÷.•R10( \A scanned transverse to the fiber axis.
-Rm ",+ The simulation with a roughness
•:8m -. height of 0.5 nm fits the experimental

data quite well. It is definitely over-
corrected when the roughness is 1.0

) 40 60 80 nm. The same simulations are also
carried out at 68 keV, where the width

Fhtonegy(V) of the curve is narrower than that at 10

Figure 7. Transmission spectra of Fiber 3 simulated keV because of the smaller critical
with different bending curvature alone and compared angle. Photons also experience fewer
with experimental data bounces on average. As shown in

Figure 6, simulations with
roughnesses as large as 1.0 and 2.0 nm still could not fit the data. Knowing that 1.0 or
2.0 nm roughness is definitely too large at 10 keV, we can determine that the
roughness correction by itself is not sufficient at high energy to reproduce source scan
measurements. Other effects need to be considered. These are bending and
waviness.

A slight bending of the capillary can dramatically reduce the transmission of high
energy photons because of the small critical angle. A comparison between
experimental data and simulations with
different bending is shown in Figure 7.

The figure shows that the simulations 0
with bending alone do not fit the 45- ,
experimental data well, which indicates A-,

that bending is not the only factor which • . A

causes the high energy transmission to . 40
drop. However, from Figure 7, we can
see that the range of the bending • 35 .n-Exp, Fiber C
radius must be larger than 1 00m to give e *... • siM AO rrauM nTad
the observed transmission at the 30 A- siM AO r--2rnTad

highest energy(80KeV).
251 ..

R-don energy(KeV

Figure 8. Simulations of transmission spectra with
waviness only compared with the experimental data.
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Capillary surface
oscillations with wavelengths 50
shorter than the capillary length
and longer than the wavelength 45
of the roughness are called
waviness. The detailed shape of • 40
waviness is unknown. Its average "
effect can be considered as a " 35
random tilt of the glass wall, so , exp data, Fiber C
that the grazing angle of the 30 siml, R=125m, AD max =0. 35nTad
photon is changed by a random ... s R=110m z~ma =0.25mrad
amount, 80, after every bounce. 25 _ sim3, R=170 m-r, f max =0.45rmrad

80 is a random number between

-AOmax and AG max if 0 _> AG max- 208 1
The maximum random tilt angle 20

AG max is an adjustable parameter Photon energy(KeY)
which depends on the wavinessof the capillary. To keep 0' Figure 9. Simulated transmission spectra with differentpositive, 60pistaken To bep a bending and waviness compared with the experimental data inromitive, nur btween -obe an search for the best fitting of Fiber C.random number between -0 and

--AO max when 0 < AO max . Since a photon with an incident angle smaller thanj AO max max has a
larger chance to experience an angle increase than an angle decrease, this is
physically reasonable. In Figure 8, simulations with waviness corrections with A~max
set at 1 mrad and 2 mrad, which is comparable to the critical angle, are compared with
the experimental data. This figure shows that simulations with waviness alone do not fit
the experimental data. This is because the waviness correction changes the reflected
angle, not the profile. In fact the capillary is still considered to be straight, so those
photons which have few reflections will not be significantly effected by waviness.

Finally the waviness and bending are combined by increasing the bending
radius R, roughly determined in Figure 7, and adding a waviness parameter, A~max.
Several trials are shown in Figure 9. Sim2 has too much bending and not enough
waviness; sim3 has too much waviness and not enough bending; siml is the best fit.
Roughness is also included in those simulations. The source scan simulation with the
three fixed parameters are plotted along with the experimental data in Figure 9 for four
more photon energies. They all fit fairly well.
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12 e,23KEV 1.2  * 4jK,12 eqgKd/12 a A similar
-nev-sirrOe sn0 --VimM KeV -si m8KWV procedure was used

1.0 1.0 1.0 1.0 to determine the
I * simulation

Q8 G8 Q8 parameters for the
* 1remaining fibers.

a G6 06 06 The results are
shown in Figure 3.

Examining
Figure 3 again, the

02 channel
021 02 Q2 transmission for

fiber A shows a
-2 0 2 -2 0 2 -2 0 2 - 0 rapid drop for

&urpgWrmj) aJrBFp rrnm apoqacn(rm) izrmpo~marr) energies above 30
keV. This capillary

Figure 10. Simulated source scan curves compared with experimental data at is thin (500 ýtm in
four different photon energies. Parameters are. R = 125 m, Aemax= 0.35 diameter) and
mrad, roughness height=0.5 nm. flexible, and

therefore difficult to
keep straight in the measurement apparatus. Any slight bending is more significant at
high energies, where the critical angles are smaller. Transmission for fiber C and fiber
D are nearly flat up to 60 keV. As noted in table 1, these two capillaries have larger
outer diameters, so are more rigid and easier to keep straight. Even though these two
fibers have lower fractional open area than fiber A, their transmissions exceeds that of
fiber A at energies above 30 keV. The simulation also requires smaller waviness and
bending correction for these two capillaries. Fiber E is thinner than type A, but its
transmission is flat to 40 keV. The reason for this is that this fiber has small channel
size which reduces the sensitivity to waviness and other profile errors. But the small
channel size also results in more reflections being needed for a photon to traverse the
fiber and may also have introduced other defects such as closed channels. This is why
the transmission is only 40% under 40 keV although the open area is around 55%.

The high transmissions and the simulation results show that the quality of the
capillaries is quite good. The surface roughness is between 0.5 to 0.8 nm, and bending
curvature is above 110 meters for fibers C and D.

To simulate the more complex geometries of complete lenses, an extensive
modeling program describing the propagation of x-rays along capillaries was developed
by X-Ray Optical Systems, Inc. This provides essential information on the transmission
efficiency and divergence of capillary optics. Some delay in the commencement of this
task was created by the necessity of assuring the confidentiality of the proprietary code
while providing access to student researchers. Access has been provided, and
simulations of a collimating lens have been completed. It is essential to verify the
simulation by comparison with measured data before the results of the design analysis
of task L.D can be trusted. Analysis and comparison of the simulation to actual lens
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THIS PAGE CONTAINS PROPRIETARY OR UNPUBLISHED DATA
measurements is

Phantom reported in task

IC.
Task I.C.
Assembly

Film and

Testing
X-ray of
Source Collimating Prototype

Lens Straight Anti- Optic

Scatter Optic Some

Figure 1L. Set-up for Anti-scatter measurements. difficulties have
arisen in the

production of
high quality prototypes of large diameter. The combination of measurement and
simulation described in task 1 B has been beneficial in analyzing the manufacturing
process. Small scale magnifying optics have been produced and tested, and additional
small magnifying optics and demagnifying optics are expected to be available this
quarter.

Because of the technological difficulties in producing curved monolithic optics,
the fastest route to a large scale antiscatter system for contrast measurements is a
straight optic. The low angular acceptance of the capillary channels requires that such
an optic be used with a collimated beam as shown in Figure 11. A collimating lens and
straight fiber bundle of 3 cm diameter have been obtained. A similar lens is pictured in
Figure 13. The collimating lens was designed for 8 keV, but has a transmission of 14%
at 20 keV. In addition to aligned transmission measurements, the variation in
transmission as a function of
entrance angle is important for _- e150
estimating the scatter rejection -z15O

properties of other full optics. This 1.0o
variation was measured by first 08.

aligning the source with the lens andthen moving the source in the plane ° 0. 6

0.2 -

0.0 - ....I

-1.5 -1'.0 -6.5 d.0 0'.5 1!0 1'.5

Xaxis, rmm

Figure 12. Transmission of a multifiber collimating lens as
the source is moved transverse to the lens axis. Circles are

Figure 13. Multifiber collimating lens. measured data, and boxes simulation results.
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1.4- transverse to the capillary axis. The

E transmission efficiency decreases when
E 1.2- the x-ray source is moved off-axis because

the angle between the x ray and the
o1.0-

reflection surface of the capillary
0, o.8- increases. Because the reflectivity

"o decreases sharply with angle this
0.6 produces greater loss at each reflection. In

addition x rays traveling through the
135 140 145 150 15' capillary at a larger angle undergo more

Source Distance, mm reflections. A comparison of measured

Figure 15. Width of scan of transverse source and simulated data, with good agreement,
Figureis shown in Figure 12. Variation in the

direction, as afunction of source distance, for idthof t n as arfntion of the
collimating lens, measured at 20 keV. width of the scan as a function of the lens

to source distance is the most reliable
method of determining both the focal distance of the lens, and the depth of field. The
measured variation is plotted in Figure 15. The depth of field can also be seen in
Figure 14, which shows the measured and simulated transmission as a function of
source to lens distance. The depth of field is about 11 mm.

Measurements of the exit divergence of the collimating optic have been
performed at 8 keV and at 20 keV. Exit divergence is important if a capillary optic is to
be used as a collector fore slit before the patient. In this case, the spatial resolution will
depend on the angular spread ofx-rays at the exit end of the capillaries. Large angular

divergence is equivalent to
a large focal spot size in a

X sim conventional system. The
1 exp: full width of the divergence

X •measured at 20 keV is

0.8- x 2.56mrad, slightly greater
8 * than the critical angle for

SQ6- total external reflection.
U X

0.4- Task I.D. Design of
.N Final

0.2- Mammographic

x Optics and
Q0 X Detector Unit

1.1To overcome the
manufacturing difficulty

inherent in producing large
diameter monolithic optics,

Figure 14. Variation in measured (box) and simulated (x) the design decision has
transmission as the source is moved towards the lens along the fiber been made to concentrate
axis. on small scale prototypes
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which might be assembled into a large

0.7 Relative efficiency optic using a technique similar to that

used to produce multifiber lenses.
06 Task II.A. Fabricate CZT Linear

0.6• Detector Arrays

0.5 Digirad, Inc. (formerly Aurora
0o.5- Technologies) was somewhat delayed

0 •by the late start date of their
> 0subcontract with the University at

S0.4 U Albany due to contract formalities.
S• • However, four 1 cm long CZT arrays

0.3 - UN with 50 [t-m pixels have been

manufactured.
12 "14 16 18 '20 2 Task lI.B. Develop Interconnect

Energy(KeV) Methodology
The interconnect options were
researched and the decision was

Figure 16. Detector quantum efficiency of CZT detector reached to employ indium bump
with thick aluminum windows, technology to bond the detector to a

sapphire or quartz interconnect board,
which is then bonded to the readout chips. This approach eliminates the need to
wirebond to the detector, and also reduces the pixel size and consequently the leakage
current. The first prototype has demonstrated some mechanical instability. It is
believed this is fixable with epoxy, which will be attempted after the first round of

electronic testing is
complete.

.3000 Task II.C.
--2500 Assemble and

--2000 Test Proof of
--1000 Principle

02500-3000 Detector/Multiplexer
--500 •12000-250 0

-0o 01500-2000
:-500 ,,000o15oo A CdZnTe array
-1000 EJ50o-1o00 has been produced and

1 0-500 bonded to the readout
-2000 electronics for testing.
-2500 Electronics for display

-3000 readout have been
.- N "' C, designed, built and

tested and were
recently delivered to

Figure 17. Scan of single pixel detector. Gray scale corresponds to the University of
measured sensitivity. x andy units are microns. Albany. In addition, a
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single pixel element has been supplied to the University at Albany for characterization
and determination of DQE. The DQE was measured in comparison with a high purity
Ge detector (assumed to have DQE of unity in this energy regime). The result is shown
in Figure 16 for the single pixel, which was fitted with a thick aluminum window. When
the transmission of the window is taken into account, the DQE of the pixel is
approximately one at 20 keV. The detector uniformity was measured by scanning a
300 j#m pixel across the face and recording the scanned intensity. The result for the
first single pixel detector is shown in Figure 17. A band of contact material obscured
the face of the pixel. When this was removed, the detector scan was square and

Scanning Geometry

aft
fore pantomcollimation

source

optic

detector-

Figure 19. Small optic scanning geometry for contrast and imaging measurements.

uniform.
Task III.A. Measurement of Prototype System

Contrast enhancement measurements have been performed with a small scale

0 0 Measured Contrast vs Hole Depth

0o12

U,

oho~

S0.008.002 .004

S41"HolegDepthe(cm)

Figure 18. Contrast enhancement meas ured for a small scanned capillary optics using a phantom
consisting of a Lucite block with drilled holes.
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Figure 22. Image of contrast phantom Figure 21. Image of contrast phantom produced
produced with conventional grid. with capillary optic.

1o0 Modulation Transfer Function (2 mm diameter) optic as part of an
N vs Spatial Frequency on-going collaboration with the Univ.

of Wisconsin.4 The geometry for

0.80 - the scan is shown in Figure 19, and
Imaging Method the resulting contrast enhancement

-- Mag =1.0

- StationaryOptic compared to the no optic and
0.60 - - Scanned Optic conventional grid cases are shown in

OptimalMagnification Figure 18. Improvements have

0.40 - *.. been made in the scanning system to
reduce image artifacts. Scan lines
which were visible in previous

0.20 -- ' images are not apparent in Figure
'K'... *.21. The optic was also used to

"00 "->measure the resolution enhancement
0.00 -_____-....__21.__The__optic___was__also___used__to

i , due to magnification. A plot of the
0.00 2.00 4.00 6.00 8.00 10.00

Spatial Frequency (Ip/mm) measured MTF is shown in. At the

Figure 20. Modulation Transfer Frequency measurement 0.1 MTF level, the resolution
with and without the optic. improved from 4.5 Ip/mm2 without the

optic to 8.9 Ip/mm2 with the optic.

Conclusions
Measurements have been performed of transmission and absorbence of single

capillaries. Preliminary measurements have been performed of pre-prototype optics.
These measurements indicate that capillary x-ray optics should be suitable for
enhancing contrast and performing beam shaping for matching with digital detectors.
Simulation work on a collimating optic has shown good agreement with data and is
progressing, which has allowed some design decisions for a suitable optic to be made.
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A prototype linear detector array has been constructed, along with readout electronics.
A single pixel detector has been characterized.
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