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1 Goals and Scope of Project

The following description of the goals of this project, and upon which all of the research en-
deavors herein are based, is verbatim from the 1995 Army SBIR Solicitation (Topic A95-095):

OBJECTIVE: To develop computer algorithm(s), capable of accepting data from physiological sen-
sors already under development, which will operate in small, hand-held personal computers such as the
Soldier Individual Computer, 21 Century Land Warrior (adapted for medical applications).

DESCRIPTION: This decision algorithm must be capable of accepting multiple inputs, (such as
tissue pH, tissue Og, tissue blood flow, cardiac output, heart rate, ambient temperature, and body
temperature), and provide output in 15 seconds or less. Output would be a combination of “likely
survival” and “approximate survival time,” which could each be digitally displayed, but must be dis-
played as RED, AMBER, GREEN (RED=death imminent; physiological and physical parameters 20%
of “normal;" AMBER=serious to extraordinary deviation from normal physiology — death likely in 30-60
minutes; physiological and physical parameters 50% of "normal;" GREEN=survival likely; physiological
and physical parameters within 80-100% of “normal.”)

PHASE I: Develop realistic algorithms based on scientific literature values, previous models and vali-
dated assumptions, including descriptions above.

PHASE II: Validate algorithm with experimental data; refine algorithm, compile algorithm and neces-
sary supporting software, drivers, etc. for incorporation on microprocessor chip. Phase || model must be
capable of updating data from previous readings, in order to determine whether intervening treatment
was effective, or whether spontaneous course of casualty is changing.

The SBIR Phase I research project that we have carried out is concerned, at the highest level,
with the problem of trauma management, whose main goal is to minimize loss of life from traumatic
injuries sustained by human beings, e.g., combat soldiers. The most paramount issues in critical
care medicine, in both civilian and military contexts, pertain fundamentally to a key two-stage
process, namely: (1) obtaining knowledge about the physiological condition of the injured patient
(e.g., injury severity assessment and survival likelihood prediction); and (2) making intelligent use
of that information for pragmatic decisional purposes (e.g., triage).

To both of these challenging tasks, Barron Associates, Inc. (BAI) offers distinguished acumen
and specialized expertise in mathematical methodologies and software tools, most notably polyno-
mial neural network (PNN) synthesis algorithms. The present Final Technical Report focuses on
the application of PNNs and other phenomenological modeling methods for optimal use of pre-
hospital medical data. We explore the distinctive strengths and capabilities of neural network
models derived from empirical databases of historical trauma cases. Estimation and classification
models for injury severity assessment and survival outcome prediction are developed and compared
to conventional scoring systems for both pre-hospital and ez post trauma evaluation. The main
goal of our research efforts, pursuant to the stated goals of the solicitation request, is to assess
the benefits that PNN methods can bring to the field of trauma management and their ability to
achieve superior performance over conventional scoring systems and other modeling tools such as
conventional logistic regression.
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2 The Trauma Care Environment

2.1 Definition of Trauma .

Trauma encompasses a wide variety of injury types and causative mechanisms (e.g., blunt head
concussion from fall or automobile accident, drowning or ingestion of poison, penetrating bullet or
knife wounds, burns, etc.), all of which do harm in at least one of two ways: (1) bodily tissue is
anatomically ruptured or otherwise damaged by destructive energy from the external environment;
and (2) normal physiological function is disrupted or endangered. Depending on its exact nature,
a traumatic event results in a complex state of physiological disturbance, the severity of which
may range from mild to immediately life-threatening. Medical intervention is often necessary to
make the difference between life and death. Trauma, which accounts for most instances of what
is commonly deemed “unnatural” death, is the third leading cause of death in the United States,
behind cancer and cardiovascular disease, with automobile accidents alone taking several hundred
thousand lives per year [43]. In the first four decades of life, trauma is the leading cause of death
and accounts for the majority of pediatric deaths.

2.2 Civilian Trauma Management

To initiate discussion of trauma management, it is useful and illuminating to discuss its practice
in the civilian world, even though the main interests of the solicitation topic are military-oriented.
It is, after all, in the civilian realm that trauma management is practiced on a routine, ongoing
basis. Standards of care are high, and support infrastructure (e.g., large emergency departments in
urban hospitals, well-maintained fleets of evacuation ambulances and helicopters, first-rate teams
of experienced paramedics regularly on call) is highly developed and well-financed in most parts of
the country. Moreover, almost all of the existing body of research in trauma management to date,
such as the North American Major Trauma Outcome Study (MTOS) [19], has been exclusively in
the civilian realm. The preponderance of injuries encountered in such studies are blunt tfauma
to the head, spine, or thorax resulting from automobile collisions. Most of the trauma evaluation
methodologies, or scoring systems, emerging from such research were designed primarily for quality-
of-care control and comparison by providing benchmarks for trauma management practices utilized
by different hospitals.

Trauma management involves several key elements and themes: the injured patient, emergency
medical technicians (EMTs), medical techniques and protocols for diagnosing the patient, treatment
options, evacuation modalities, communication, and hospital facilities. Following any traumatic
event, whose occurrence is always unexpected and random, pre-hospital trauma rescue involves
arrival of EMTs at the scene of injury, administration of first-aid treatment, evacuation from the
scene of injury, and triaging the patient to an appropriate hospital facility. There is enormous
variation in how this sequence of operations is implemented in local communities, which differ
demographically, topographically, and in the infrastructure capacity and quality of services they
can provide.

To prevent loss of life, all of these steps must be performed skillfully within the well-recognized
“golden hour” [74] after the traumatic event. The guiding objective of the EMT team throughout
the rescue process is to take action deemed necessary to preserve the life of the patient at hand and
to triage that individual to the nearest hospital facility best equipped to deliver the needed intensity
of care. The philosophy is conservative in that the penalty of undertriage (losing a patient who
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“could have been” saved) is immeasurably greater than that of overtriage (sending a noncritical
patient to a hospital facility intended for only the most serious cases). Even though the excess
capacity that major hospitals must carry to cover such cases may justifiably be regarded as a small
price for saving lives, the burdens shouldered by emergency departments throughout the country in
both rural and urban areas, and the concomitant jeopardy to other patients due to delays, should
not be underestimated. Often, the onus of high arrival rates is excessive, straining precious critical
care resources beyond the utilization levels at which they can operate most efficiently and effec-
tively. The causes of such overload [65] are primarily sociological, e.g., escalating homicide rates,
mounting congestion and long commutes on roads, growing demand for around-the-clock availabil-
ity of medical care, tendencies of busy or off-duty private physicians to refer patients to emergency
departments, and health insurance policies that require initial emergency room supervision for
coverage of ensuing long-term rehabilitation costs. Even though these issues per se are not part
of trauma management (they merely make treatment resources effectively more scarce than they
would otherwise be), it is nevertheless true that better pre-hospital triage, i.e., referral decisions by
EMTs, would help reduce emergency department overload significantly. Accurate identification of
pre-hospital patients not in need of critical care facilities, while keeping undertriage rates acceptably
low, beckons a role for diagnostic procedures and forecasting tools for use by pre-hospital EMTs in
the field. Emergency room triage nurses may also find such tools to be valuable and helpful. Use
of such information-processing algorithms for diagnostic, prognostic, and decisional purposes could
help minimize loss of life.

2.3 Military Trauma Management

Trauma management in the military realm is profoundly different from that in the civilian
world in several major respects. First, the lethality of the environment is incomparably greater.
Depending on the nature of the fighting, as many as 80% of combat injuries may be fatal, with
most deaths occurring before any medical assistance at all can arrive. 40% of fatally wounded
soldiers die within 15-20 minutes, and 70% die within one hour. Injuries encountered in combat
are typically extremely severe; more than 90% stem from bullet or shrapnel penetration. Blast and
thermochemical injuries account for most other casualty incidents. Among penetrating injuries, the
great majority are wounds to the skull, heart, or great vessels. Tissue destruction is especially severe
for high-velocity wounds in which the impinging shell is designed to explode or tumble, thereby
dispersing large amounts of bulk tissue and creating large exit wounds. These types of injuries are
often gravely underestimated by such conventional indicators as the Abbreviated Injury Scale (AIS)
and Injury Severity Score (ISS), which are used primarily for post-surgical evaluation of civilian
incidents. Massive exsanguination, sepsis, and arrest of central nervous function pose threats to
life so grave that the golden hour paradigm ceases to be relevant. The urgency of most military
trauma cases is better summarized as the “brass ten minutes” [12].

The lethality of the ground combat environment is often so great that rescue personnel risk
their own lives in attempting to reach wound victims. Rescue should be attempted, therefore, only
if it stands to make a difference between life and death for the wounded and the rescuer has a
good chance of reaching him and escaping unscathed. It is hard to imagine any such comparably
extreme conditions in civilian life apart from riots or violent demonstrations. Attempting to access
accident victims is usually itself safe, with exceptions such as extricating victims from damaged
buildings or frigid water, and is seldom a matter of deliberation at all.
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To make matters more grim, treatment resources during war are almost always in scant supply
and are often primitive by civilian standards. It also requires considerably more time, risk, and
effort to transport a wound victim to the equivalent of a full-service hospital during war than it
does in typical peacetime scenarios. In the military setting, battalion aid stations or similar sites
are often the first destinations to which wounded soldiers are transported. Among those who do
reach the hospital alive, however, a large majority survive [12]. The unsafe and chaotic nature
of the battle environment sometimes makes adherence to established treatment and evacuation
protocols prohibitively difficult. Battalion groups often have little choice but to rely on makeshift
teams of rescue personnel who are no match for civilian EMTs in medical expertise or knowledge.
Many such rescue workers do not even have the first-aid training to infer such basic indicators
as respiratory status, heart rate, and level of consciousness. For this reason, there is a niche for
decisional algorithms that would instruct such personnel as they tend to a patient. Many acute
battlefield injuries, such as tension pneumothorax (see Appendix B), often remain undiagnosed
until it is too late, but treatment as crude as piercing the chest could save the victim’s life.

In conjunction with specialized biomedical instrumentation to automate diagnostic procedures,
computer-driven algorithms would be immensely helpful in the information processing aspects of
pre-hospital triage, i.e., in diagnosing the patient and making the best use of that information. In
both realms, there is thus a compelling demand for advanced information processing capability in
the field. Whereas the added value in the civilian realm would be primarily in risk stratification of
incoming patients to a hospital, the role in the military would primarily be for triage prioritization.
Both realms could, however, benefit from the application of standardized medical protocols (e.g.,
a “doctor-in-a-box”) to guide treatment.

3 Algorithms for Information Processing and Decision Support

The purpose of on-line algorithms is to obtain information, as opposed to merely a collection of
facts, on the spot. In pre-hospital trauma care, as in an enormous number of other applications, it
is incumbent upon the analyst (in this case, the EMT or physician) to contend with a sizable body
of data and transform it into pragmatically useful and relevant information, upon which critical
decisions rely. Factual data, as they are acquired, very often impinge on the human mind as
being superficially disparate and bewildering. Often, salient data are self-conflicting and, to make
matters worse, may not even be accurate due to limitations and biases in data acquisition processes
(including human intuition). The psychocognitive difficulty of the human analyst’s grappling with
a daunting array of facts is compounded all the more under the duress in which pre-hospital trauma
rescue must be performed.

The problem of distilling a concise and manageable kernel of information, directly useful for
decisional purposes, from raw data is known as information processing. Several very general ap-
proaches exist, the least sophisticated (and arguably the most commonly used in the real world
of human affairs) is seat-of-the-pants intuition and instinct. It relies in large part on “common
sense” and anecdotal knowledge on the part of the practitioner. Although the efficacy of sheer
intuition should not be dismissed out of hand, it is certainly fair to ask whether more systematic,
less subjective inference and decisional methods can improve trauma management. Conventional
trauma management protocols jointly employ two approaches that are a step above raw intuition in
sophistication: (1) EMT judgment; and (2) rote scoring systems. The former is based on extensive
clinical experience in the field and academic medical training. Although it is often very effective,




Contract No. DAMDI17-96-C-6022 Barron Associates, Inc.

sometimes impressively so, it requires an allocable supply of professionally trained emergency work-
ers who, in practice, are often not available. In both civilian and military settings, the scarcity
problem would be alleviated greatly if it were feasible for less experienced .personnel to undertake
the responsibilities of pre-hospital trauma treatment, evacuation, and referral.

3.1 Strengths of Algorithmic Approaches

A large number of rote scoring systems have been introduced by various researchers, a repre-
sentative sampling of which are described in detail in Appendix A. These systems appeal to a basic
common set of physiological, neurological, anatomic, and cause-of-injury criteria to evaluate the
medical condition of a trauma victim and the immediacy of required hospital care. These protocols
are typically formulated as formal checklist or flow-chart procedures, boiled down to essentially an
index-card minimum of steps that an emergency field worker, with just a smattering of training
and modicum of practice, should be able to memorize and perform routinely. Many experienced,
well-trained EMTs often consult such rule-of-thumb procedures in their own evaluations of patients.
Because the steps must be performed mentally without cue cards, the rules must be kept extremely
simple, containing five or fewer steps. As arithmetical computations must be kept to an absolute
minimum, the data variables (e.g., SBP, RR) are almost always coded, i.e., converted into small
numbers: 0,1,2,...,6. Although some quantitative information is discarded by this process, the
utility (and ingenuity) of coding should not be underestimated, since the range that a given coded
value covers may coincide with a certain qualitative physiological state, knowledge of which could
have direct bearing on treatment and triage decisions. Stated alternatively, there may be fairly
sharp boundaries separating normal from abnormal physiology that shrewd placement of coding
cutoffs might manage to capture. It is in part this fundamental notion, in fact, that justifies a key
role for classification methods in trauma management.

Nevertheless, both EMT judgment and scoring systems are highly fallible predictors of injury
severity. A problem common to many scoring systems, for instance, is that they fail to achieve simul-
taneously high sensitivity (identification of patients requiring intensive trauma care) and specificity
(identification of patients not requiring intensive trauma care). In the interests of conservatism, one
generally opts for the former at the expense of the latter; in other words, tolerating some overtriage
to keep undertriage minimal. The underlying difficulty appears to be not so much an information
processing problem, i.e., what is done with data once it is acquired, but rather, inherent limitations
in the data set itself. In other words, the problem is one of observability: the data fields (GCS, SBP,
RR, HR, B/P, and AGE) common to most of the conventional scoring systems seldom capture the
true nature of physiological and neurological disturbance sustained by the trauma patient to the
degree necessary for truly effective trauma management. For this reason, even the most sophisti-
cated and well-honed quantitative algorithms synthesized using extensive, high-quality databases
are inherently limited in the prediction performance achievable. Nonetheless, it is still necessary
and worthwhile to explore algorithmic approaches to trauma management for at least the following
reasons:

e They can potentially provide improvement over conventional methods, which are deliberately
minimal in the complexity of the steps they employ.

e Computerized decisional support instrumentation will be needed to provide directions and
assistance to inexperienced personnel performing emergency trauma treatment during war.

e Algorithms, which, by definition, are unambiguous procedures, are invaluable from a qual-
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ity control and database construction perspective in that they reduce reliance on subjective
judgment and help standardize definitions and conventions among various institutions and
researchers. -

e Algorithms are inherently faster and more consistent than human thought processes.

e As biomedical technology capable of acquiring comprehensive, high-quality, physiological data
(e.g., blood gas profiles, hemodynamics) at the scene of injury becomes available, algorithmic
methods will be necessary to draw meaningful conclusions from such data.

e As trauma simulation capabilities increase, algorithmic methods will still be necessary to draw
meaningful conclusions from such simulations.

3.2 Inference and Prediction

There are two general distinctions in algorithmic applications that are noteworthy in the present
context, the first of which is between inference and prediction. Both seek to produce useful informa-
tion on the spot from a jumbled collection of data. However, the former attempts to extract factual
information about the past or present, whereas the latter, by contrast, seeks to predict what might
happen in the future. A tool to infer ISS (Appendix A.1), for instance, based on physiological data
and anatomical evidence acquirable at the scene of injury, is an example of an inference algorithm.
It discerns, philosophically speaking, the objective reality of an event that has already taken place.
Inference algorithms are intended to serve as “virtual sensors,” i.e., substitutes for tangible instru-
mentation capable of measuring the quantity of interest directly. ISS, in this case, is meant to
describe the severity of an injury that has already occurred. Present biomedical technology does
not permit the EMT to “see” the injuries inside the patient that contribute to the constituent AIS
scores, but a virtual sensor would perform that function indirectly by utilizing physically observ-
able indicators that correlate (linearly or nonlinearly) with ISS. However, to the extent that these
correlations are uncertain or that information about the past or present is incomplete, the inference
process is stochastic.

By contrast, prediction algorithms are concerned with events that have not yet occurred. For
example, a quantitative method to determine the survival chances of a critically injured patient,
assuming administration of a particular conditional treatment regimen, is an example of a predic-
tion algorithm. Stated in alternative language, inference algorithms perform diagnostic functions,
whereas prediction algorithms perform prognostic functions. The latter require special considera-
tion because they require not only (complete or incomplete) knowledge of the present state of the
system, but also explicit assumptions about what will happen in the future. For example, predict-
ing how long a critical patient is likely to survive is a prognosis problem extremely pertinent to
battlefield triage. Survival time projections are contingency predictions with respect to a repertoire
of alternative treatment policies that could be followed.

3.3 Estimation, Classification, and Decisional Algorithms

The second major distinction in information-processing algorithm applications is between es-
timation and classification, the output types of which are fundamentally different mathematical
entities. Estimators generate output information in the form of a numerical quantity, usually a
real number, that can assume a continuum of possible values. An algorithm that forecasts, say, the
approximate survival time of a critical wound victim is an example of an estimation algorithm for
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prediction, since time is a continuous variable. The simplest and best-known mathematical pro-
cedure for constructing phenomenological estimation models from empirical data is least-squares
regression. -

By contrast, classifiers generate discrete categorical outputs. In classification problems, one
seeks to sort individual cases, or ezemplars, into one of two or more classes based on certain ob-
servable attributes they exhibit. Sorting trauma victims into color-coded triage groups, based on
such readily observable attributes as GCS and RR, is a prime example. Numerous other illustra-
tions arise in epidemiology, such as predicting the odds of breast cancer or coronary heart disease
based on medical risk factors and demographical profiles for various individuals. In such applica-
tions, the outputs represent probabilities of membership in various non-numerical categories (e.g.,
POSITIVE/NEGATIVE, TRUE/FALSE, LIFE/DEATH, RED/AMBER/GREEN, etc.). The out-
puts, in other words, are merely labels, which may be unordered (known as nominal-level class sets)
or ordered (ordinal class sets). In nominal-level cases, the categories have no implied rank ordering
or relationship to one another (e.g., an anatomical inference classifier that identifies internally hem-
orrhaging organs and produces outputs LIVER, LUNG, or SPLEEN). In both nominal and ordinal
cases, the space of output classes is non-metric in that no well-defined measure of distance between
any two classes is recognized. For example, in the RED/AMBER/GREEN problem, which we treat
in detail later on, REDs are defined as pre-hospital fatalities, GREENs as those highly likely to
survive, and AMBERSs as those critical cases in which survival is uncertain. It makes sense to say
that AMBER lies between RED and GREEN, but it is not admissible to recast it as an estimation
problem, with RED = 3, AMBER = 2, and GREEN = 1. This would fallaciously imply that
AMBER lies exactly halfway between RED and GREEN, whereas the labels describe broadbrush
categories that have certain probability distributions over attribute space and may overlap (see
Appendix C.1).

This type of subtlety makes classification fundamentally different from estimation. The mathe-
matical methods for fitting classification models to empirical data, moreover, are markedly different
from those for constructing estimation models. Whereas least-squares regression is the basic method
for deriving estimation models, the analogous technique for deriving classification models is logistic
regression, the mechanics of which are presented in Appendix C.3. The outputs of classification
models are probabilities that a given exemplar belongs to each possible class, such that the mem-
bership probabilities summed over all classes in the output space sum to unity. An example is a
classifier output of 5% probability of GREEN, 65% probability of AMBER, and 30% probability
of RED for a particular patient. Determining the optimal course of action in the face of such
probabilities (e.g., treating the patient as if he were an AMBER) are the objectives of decisional
algorithms, which directly utilize classifier outputs. In general, the subsequent decision must be
a function of the classifier probabilities. The general theory of decisional algorithms is covered in
Appendix D.

4 Mathematical Foundations of Polynomial Neural Networks

In both estimation and classification modeling, the most common approach is to express the
output variable, y, assumed here to be a scalar, as an explicit function of the column vector of input
variables, X, viz., y = f(X). The inputs are quantities that are known or can be measured readily,

whereas the output is either inaccessible to direct measurement or represents a future outcome. This
is the basic conceptual approach of regression and polynomial neural network (PNN) modeling. In
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the former, the strategy is to assume a generic functional form for f(X), with certain parametric
degrees of freedom (i.e., coefficients), and then to deduce values of each parameter in such a way
that the model best emulates the “big picture” portrayed by a comprehensive database of historical
cases exemplifying the actual relationship between y and X.

PNN methods are geared to precisely the same types of estimation and classification modeling
problems to which regression methods have traditionally been applied. They espouse the same
basic paradigm of relating outputs and inputs by way of an explicit function, viz., y = f (X).
PNNs, however, offer a far more powerful and practical modeling methodology in that they largely
overcome the greatest drawbacks in conventional regression approaches, as exemplified in Appendix
G:

e Nonlinear regression requires that the model structure, i.e., construction of the synthetic input
vector, z, be stipulated a priori. In practical modeling problems, however, the “appropriate”
structure is almost never known beforehand. The variety of potential model structures is so
vast that a systematic trial-and-error search of alternative structures, i.e., stepwise regression,
quickly proves prohibitively lengthy in many real-world scenarios involving large numbers of
raw input variables.

e Such limitations usually restrict the analyst to simple functional forms, i.e., low-order poly-
nomials, as candidate model structures, even though they may not necessarily describe the
phenomenon accurately or to a sufficient degree of precision.

e Numerical determination of coefficient values in both least-squares and logistic regression re-
quires inversion of a P X P matrix, where P is the size of the synthetic input vector. This is
a computationally intensive and cumbersome operation. More seriously, P grows so rapidly
as ever more complex polynomial structures are considered that it may even exceed the size
of the training database, in which case the least-squares system of algebraic equations is un-
derconstrained, rather than overconstrained. In other words, proper testing of such complex
models requires additional training data.

e Comparison of alternative regression model structures requires cross-validation analysis, as
demonstrated in Appendix G with random partitions of the database. Such tests must be per-
formed repetitively to obtain good statistical assessments of model robustness. This, however,
only exacerbates the computational difficulties, since it requires many more matrix inversions
and work with even smaller training databases.

4.1 Group Method of Data Handling

The first brilliant stroke of insight into how such limitations could be overcome was from cy-
berneticist Alexei Ivakhnenko, whose group method of data handling (GMDH) methodology is the
at the heart of PNN algorithms. GMDH is the key intellectual innovation that overcomes most of
the major drawbacks of regression methods and makes PNNs fundamentally different and superior.
The principal virtues of GMDH, in brief, are that it: (1) abandons any preconceived bias toward
a particular model structure; (2) relieves the analyst from the burden of having to stipulate any
such structures; (3) enables higher-order polynomials, and thus more general functional forms, to
be considered; and (4) divides the mathematical labor of constructing such complex models over
many nodes and layers.

The basic strategy of GMDH is as follows. First, quadratic polynomials are constructed from
pairs of raw input variables. This is done for all such input pair combinations, and coefficients of the
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quadratic forms are computed by regressing them against y. The estimates of y produced by those
quadratic polynomials form the first generation, or layer, of synthetic variables (called nodes). A
cross-validation test determines which combinations are most useful and which are least useful; the
least useful ones are discarded, or carved away. After the first layer has been constructed, a second
layer of synthetic variables is formed by regressing quadratic forms in pairs of synthetic variables
in the first layer against y. The process is repeated until the best synthetic variable in some layer
gives a sufficiently accurate estimation of y. Note that the resulting Ivakhnenko polynomial, T (X)),
which expresses y in terms of the original inputs, X, is of order 2f+1 in which H is the number of
hidden layers between the raw inputs and y.

Fig. 1 illustrates the generic architecture of a multilayer GMDH structure. The particular
structure shown consists of four inputs, two hidden layers, and a single output from each node.
This structure closely resembles feedforward multilayer perceptron (MLP) and other neural network

Figure 1: Generic Architecture of GMDH Structure

modeling structures. GMDH is the preeminent example of such a connectionist approach to multi-
variate data modeling. In the MLP, perceptrons, or nodes, correspond to Ivakhnenko’s hidden-layer
variables in that they each perform a relatively simple task, namely computing a quadratic function
from just two inputs.

4.2 GNOSIS

GNOSIS (Generalized Networks for Optimal Synthesis of Information Systems) is a software
package developed in house by BAI for synthesizing feedforward and recurrent neural networks. It
was used in deriving all of the performance results presented herein. For estimation and classifica-
tion problems, it incorporates the basic GMDH paradigm of model construction through hidden lay-
ers [44, 45], but with many important refinements over GMDH. These include post-transformation
of nodal outputs, global optimization of coefficients in the Ivakhnenko polynomial, and relaxation
of the rules for feeding estimates forward to the succeeding layer (e.g., combination of three or
more inputs, usage of original inputs beyond the first layer, cubic nodal polynomials). GNOSIS
can further refine layers by creating additional nodes in them whose inputs are not only outputs
from the previous layer but also outputs from nodes within the current layer that have already
been generated. This technique, known as projection pursuit [28], strengthens substantially the
performance of the resulting PNN models. GNOSIS, moreover, harnesses the flexibility of polyno-
mial basis functions to model arbitrary functions [31, 32]. The series expansion (and thus the nodal
element) is sufficiently general to implement a variety of basis functions in addition to polynomials,
including splines, wavelets, exponentials, and trigonometric functions.

O
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GNOSIS obviates the need for cross-validation required by GMDH by appealing to the predicted
squared error (PSE) criterion developed by Barron [2] for evaluating model structures. PSE is
defined as - .

PSE =FSE + W (1)
in which FSE is the fitted squared error (i.e., the cumulative squared estimation error), K is the
number of degrees of freedom in the model (coefficients or nodes), N is the number of exemplars
in the training database, and ¢ is a parameter whose appropriate value can be ascertained from
statistical arguments, such as the Akaike Information Criterion (AIC). The second term on the
right-hand side of Eq. 1 is a complezity penalty that describes the uncertainty in the coefficient
values. From inspection of the full database, PSE appeals to the AIC to weigh the tradeoff be-
tween model performance (i.e., FSE) and complexity penalty. The model structure with least PSE
generally corresponds to that which would be discovered via the much more arduous process of
cross-validation.

With its accumulated arsenal of techniques, GNOSIS has a long history of successful industrial
applications and is akin to many single-layer composition-of-functions techniques that are becoming
increasingly popular among statisticians, such as multivariate adaptive regression splines (MARS)
3, 29].

GNOSIS is the outgrowth of earlier BAI software products (e.g., ASPN-IIc for estimation,
CLASS for classification) and represents the accumulation of four decades of accumulated experience
in the application of PNN methods in the commercial and industrial realms, both at BAI and its
forerunner, Adaptronics, Inc.

GNOSIS overcomes the major weaknesses of regression and classical GMDH modeling and thus
offers valuable benefits to the user. Most importantly, it judges the appropriate level of model
complexity through internal criteria, while the user need only stipulate the output variables and
potential input variables (some may be carved away entirely if they prove irrelevant). GNOSIS
automatically infers the best network structure, node types, and coefficients from the data. The
model is grown, through hidden layers, from the simplest possible form to a level of just-sufficient
complexity, in view of functional relationships in the data and the quantity of data. This is
preferable to postulating a priori model structures, which tend to have excessive degrees of freedom,
and overfit on training data. Finding the best structural form is important to establish parsimonious
models and to ensure thereby that the model performs well to new data not encountered during
training. GNOSIS offers distinctive advantages in speed, degree of analyst involvement, and model
accuracy that may be summarized as follows:

e GNOSIS offers a fast synthesis algorithm by spreading the mathematical labor over many
nodes. It builds models on an element-by-element basis using nodal building blocks that are
quadratic or cubic polynomials with no more than three inputs. In fact, the nodal basis
functions can assume nonpolynomial forms such as wavelets, splines, or exponentials (in which
case the “polynomial” in PNN is a misnomer). Construction of the model in this way reduces
the likelihood of premature cessation of the optimization process.

e The internal PSE criterion governs the carving process and determines when to curtail network
growth. This information-theoretic criterion reduces greatly the need for cross-validation, thus
enhancing synthesis speed and, in principle, allows the entire database to be used for training.
Need for analyst involvement is greatly reduced.

10
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e The model structure search process incorporated by GNOSIS is extremely efficient and effective.
It optimizes the structure of each layer before proceeding to create subsequent layers. This
has the advantages that: (1) model performance upon completion of.each layer is examined
before moving on to a more complex structure; and (2) the more complex candidate structures
accruing to an extra layer do not have to be generated from scratch. Only a few parameters
are fitted at any given step in the process. In stepwise regression, every candidate structure
must be refitted from scratch unless certain coefficient values are “frozen” in certain steps.
This severely limits the space of potential models that are traversed during the regression and
risks selection of models that may, in fact, not be very good at all.

e GNOGSIS utilizes projection pursuit and outputs prior to the previous layer at any step as can-
didate nodal inputs. In this way, complex interrelationships can be discovered using relatively
simple functions, and superior models generally emerge.

e GNOSIS uses a Gauss-Newton technique regularized using the Levenberg-Marquardt algorithm
to learn the coefficients of arbitrary linear and nonlinear models that optimize network perfor-
mance with respect to arbitrary cost functions. Thus, estimation and classification networks
can both be synthesized using the same tool.

5 Analysis of Historical UVA Pre-Hospital Data

The present section marks the beginning of our discussion and analysis of trauma registry data
to which we obtained access in Phase 1.

5.1 University of Virginia Hospital Trauma Data

As the core of BAI’s Phase I research efforts, we demonstrate herein a rigorous process for
deriving and testing mortality prediction models. PNN models were synthesized using GNOSIS for
both estimation (minimum squared error) and classification (minimum logistic error) objectives.
For purposes of testing algorithmic methods on such data, we acquired access to the internal
trauma registry of the University of Virginia Hospital, covering the 30-month period from January
1, 1994 to June 30, 1996. This database, as provided to BAI by Dr. George Lindbeck, included the
(uncoded) standard criteria of AGE, SEX, B/P, EY, VB, MT, RR, SBP, ISS (with AIS breakdown),
and survival outcome. The database contained a total of 4,436 patients received by the Emergency
Department at the Hospital. Confidential data fields were removed by the Hospital for purposes
of this study. Among the records, several hundred were incomplete and were therefore discarded.
We also excluded babies (< 2 years of age); this left a total of 3,628 complete patient exemplars
as the definitive body of empirical data we proceeded to analyze. From here on, we shall refer to
this data set as the UVA database.

5.2 Distributions within the UVA Database

As the first step in inspecting the UVA database (after the preparatory steps above), we ex-
amined histogram plots of the distributions for the various fields. As a dichotomous variable, the

! gender distribution was 1,338 females (36.9%) and 2,290 males (63.1%). Among all patients, 407

’ had penetrating injuries (11.2%) and 3,183 had sustained blunt trauma (88.8%). 3,486 patients
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survived (96.1%) and 142 died (3.9%). All of the other variables, which were nondichotomous,
assumed a wide range of values, histogram plots for which are provided in Fig. 2.
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Figure 2: Univariate Distributions for the UVA Database

The age distribution is comprehensive and demographically representative, with a preponder-
ance of patients in the teens, twenties, and thirties. The distribution is slightly bimodal in that it
flattens in the elderly group. Intuitively, this pattern makes sense, with large numbers of young
adult trauma cases due to automotive and athletic accidents and a disproportionate number of
elderly cases due to falls, hip fractures, and the like.

The Injury Severity Score (ISS) distribution appears unimodal and Poisson-like, with a very
large concentration of mildly and moderately injured patients with scores between 5 and 10. Al-
though not shown, the highest ISS was 66, which is not far below the maximum possible score
of 75. Respiratory rate (RR) and systolic blood pressure (SBP) are unimodal and, to a crude
approximation, normally distributed, with means and standard deviations of 19.71 + 5.66 breaths
per minute and 131.30 £ 26.69 millimeters of mercury (mm Hg) respectively. The chief anomalies
in the RR and SBP distributions are an appreciable skewness in RR and distinct groups of patients
in which blood pressure or respiration had completely vanished; large majorities of patients in both
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of these group died.

The neurological variables EY, VB, and MT require special consideration because their distri-
butions are extremely skewed, with a large majority of patients (3,204 total, or 88.3%) having a
total Glasgow Coma Scale of GCS = 15. Since GCS = 15 implies EY = 4, VB = 5, and MT = 6
for each patient in this group, it follows that EY, VB, and MT are also strongly skewed. The set
of other patients was divided approximately evenly between slight impairment (GCS = 14), total
unconsciousness (GCS = 3), and the intermediate zone (4 < GCS < 13). The numbers of incidents
respectively in these groups were 147 (4.1%), 132 (3.6%), and 145 (4.0%). Uneven distributions
such as this must be recognized in fitting models to the database and may sometimes present
difficulties, such as in attempting to test such fitted models on a population with a much larger
percentage of low GCS scores. For GCS, this point is particularly important because it appears to
be the single most effective indicator of both injury severity and survival chances.

5.3 Univariate Analyses

Having examined the distributions of variables in the database, we look next for patterns of
correlation between the independent input variables, namely SEX, AGE, B/P, EY, VB, MT, RR,
and SBP, and the dependent output variables, namely ISS and survival outcome. ISS is treated
as an output variable because even though it reflects anatomical damage incurred at the time of
injury, the extent of damage that it reflects cannot be ascertained on the spot, at least not with
current biomedical technology. To the contrary, ISS can only be ascertained retrospectively based
on the findings of emergency department surgeons. Survival outcome is treated as a dependent
variable for much more obvious reasons.

Table 1 provides the mortality (percentage of patients in a given subset who died) and the mean
ISS for groups of patients such that the tabulated input variable lies in the indicated range. Results
are partitioned into bins and provided for each of the six input variables. The first row in the SEX
table, for instance, indicates that 2.91% of the 1,338 female patients in the database died and that
the average ISS in that group was 8.66. Such univariate analyses serve the purpose of identifying
patterns in the database. Such patterns may, in certain cases, reflect causal connections between
variables; in other cases, they may reflect merely indirect or coincidental correlations that have no
underlying significance. A modicum of caution, therefore, must be exercised in the interpretation
of the tabulated statistics.

13
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Table 1: Univariate Analysis of Input Variables

SEX RR
Range | Mortality | ISS Range Mortality | ISS
F 0.0291 | 8.66 RR=0 0.8750 | 25.06
M 0.0450 | 8.84 0<RR <10 0.4000 | 27.20
10<RR <15 0.0206 | 7.75
B/P 15<RR <20 0.0172 | 6.88
B 0.0373 | 8.93 20<RR <« 25 0.0491 | 9.75
P 0.0541 | 7.56 25 <RR < 30 0.0729 | 12.64
RR > 30 0.0788 | 15.18

AGE
<10 0.0097 | 6.35

10 — 19 0.0330 | 8.80 SBP
20 —29 0.0441 | 9.02 SBP =0 1.0000 | 25.44
30 — 39 0.0238 | 8.74 0 < SBP < &80 0.2821 | 20.51
40 — 49 0.0219 | 8.58 80 < SBP < 90 0.3226 | 21.06
50 — 59 0.0327 | 8.09 90 < SBP < 100 0.0792 | 11.70
60 — 69 0.0488 | 9.18 100 < SBP < 110 0.0351 | 9.96
70 - 179 0.0695 | 9.68 110 < SBP < 120 0.0221 | 8.11
> 80 0.0906 | 9.79 120 < SBP < 130 0.0147 | 7.21
130 < SBP < 140 0.0190 | 8.01
GCS 140 < SBP < 150 0.0220 | 8.22
15 0.0091 | 7.22 150 < SBP < 160 0.0291 | 9.25
14 0.0544 | 12.59 160 < SBP < 170 0.0469 | 9.03
4 -13 0.2045 | 22.29 170 < SBP < 180 0.0476 | 10.01
3 0.5379 | 26.84 SBP > 180 0.0625 | 10.26

From the numbers in Table 1, the following comments may be made:

e Mortality and ISS with respect to AGE both exhibit a common pattern of bimodality. Young
children had significantly better outcomes than adults. Mortality and ISS both rise in the
twenties, decline in middle age, and peak in the elderly age groups. The bimodality is even
more pronounced among the group of patients who died, as shown in Fig. 3.
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Figure 3: Age Distribution among Nonsurvivors

This is chiefly an epidemiological phenomenon in that people in their twenties and the elderly
suffer disproportionate incidence rates of trauma; it does not imply that other things equal,
individuals in these groups are more likely to die from injuries than, for example, people in
their forties or fifties.

That males exhibit a mortality rate more than 50% greater than females similarly does not
imply that men are more vulnerable to trauma than women. Rather, it reflects the significant
difference in the age distributions of the sexes, with the women (mean age 45.7) generally being
older than the men (mean age 35.4), and thus, the different causes of injury one would expect
to find in the young and elderly groups.

The results for B/P, surprisingly, are mixed. Whereas patients with penetrating wounds had
greater chance of dying than blunt trauma victims, their mean ISS was lower. The significance
of B/P, from this initial impression, is thus inconclusive.

GCS correlates very strongly with both mortality and ISS. As neurological function falls, mor-
tality and ISS both rise sharply. Among the inputs, the Glasgow components are collectively
the strongest indicators of outcome, and are therefore indispensible input variables in all can-
didate model structures.

RR also exhibits a strong relationship with both mortality and ISS. Hypoventilatory patients
(RR < 10), whose impairment of neurological function causes respiratory rate to fall, and those
with airway blockage, are clearly in greater danger than those with normal breathing. Apnea,
or complete cessation of breathing, correlates with grave injuries and is almost always fatal, as
the table shows. There is also a significant tendency for outcomes to become less favorable at
high RR levels (RR > 25). These may correspond to hypovolemic cases, in which respiratory
and heart rates both increase. At intermediate, normal values of RR, mortality and ISS are
both below average and are relatively flat.

Much the same can be said about SBP, sharp departures from the normal range of which
correlate with both higher mortality and ISS. As with RR, below-normal deviations tend to
be much more serious than above-normal anomalies. Outcomes are especially bleak when SBP
falls below 90, which is propitiously chosen as a cutoff by many conventional trauma scores,
such as RTS and TTR. As with RR, the outcome is almost always (with the UVA data, not
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even “almost”) fatal when the value falls all the way to zero.

e Some clinical indicators may have to be modified in order to compare demographically distinct
groups. For example, there is a direct correlation between AGE and SBP; blood pressure
generally increases with age. The relationship, based on linear regression of the UVA data, is
SBP = 118.5 + 0.339 x AGE, as shown in Fig. 4. It may therefore be of some help to use an
age-adjusted SBP, for example, instead of the raw data in the models. PNN synthesis, however,
accomplishes this automatically.

180

170+

Mean SBP

AGE

Figure 4: SBP vs. AGE (Error Bar = 1 Standard Deviation)

Equally importantly, the two outcomes, mortality and ISS, themselves are mutually correlated.
The average ISS for survivors was 8.08 £ 7.16, whereas that for death cases was 25.80 + 12.82.
Despite the broad variances, the survivor and nonsurvivor classes are significantly different and
distinguishable in ISS levels. The mortality as a function of ISS is tabulated in Table 2.

Table 2: Mortality vs. ISS

Range Mortality
ISS < 10 0.0085
10 < ISS < 20 0.0318
20 <ISS < 30 0.2206
30 <ISS < 40 0.3485
40 < ISS < 50 0.3913
ISS > 50 0.7692

Clearly, mortality increases directly and very rapidly with ISS. This indicates that if ISS could
be determined in the field, either directly through superior biomedical instrumentation or indi-
rectly through use of an inference algorithm, one might have a very powerful indicator of survival
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Table 3: Survival Outcome Classification Models

Degree of Discrimination ; Area under .
Ages | Nodal Polynomials Power ROC Curve | —2A¢ | —2A | A/Ag D
1 0.887 0.939 1198.7 | 602.2 | 0.502 | 0.0001
all 2 0.891 0.948 1198.7 | 555.4 | 0.403 | 0.0001
3 0.908 0.958 1198.7 | 461.5 | 0.385 | 0.0002
1 0.918 0.947 720.6 | 282.9 | 0.393 | 0.0146
<55 2 0.944 0.972 720.6 | 247.2 | 0.343 | 0.0089
3 0.955 0.964 720.6 | 195.0 | 0.271 | 0.0253
1 0.806 0.872 455.4 | 297.3 | 0.653 | 0.0072
>55 2 0.823 0.886 455.4 | 260.8 | 0.573 | 0.3129
3 0.847 0.934 455.4 | 191.4 | 0.420 | 0.2103

prospects. In the following subsection, we pursue development of such algorithmic capabilities.

5.4 PNN Classification Models for Survival Outcome

As the first modeling effort, we constructed classifiers (nonlinear logistic regression models) to
learn survival outcome as a function of seven inputs (AGE, B/P, EY, VB, MT, RR, and SBP)
using GNOSIS. PNN models were trained on: (1) the full database of 3,628 exemplars; (2) on the
subset of patients under age 55 years (2,699 exemplars); and (3) on patients of age 55 or older
(929 exemplars). This was done to segregate the two dissimilar age groups in the nonsurvivor
group. Age 55 was chosen as the dividing line between the two age groups because it adequately
separates the two groups in Fig. 3 and also matches the cutoff that TRISS (Appendix A.15) uses
in coding the AGE variable. This facilitates subsequent analysis of TRISS performance on the
UVA data. For each of the three age-group sets, GNOSIS models with nodal polynomials of first,
second, and third degree were synthesized. Salient performance statistics are tabulated in Table 3.
The output of the GNOSIS classifiers are the probability, Py, that the patient will die. By varying
the threshold placement, £, vis-a-vis that probability, i.e., such that 0 < £ < 1, a receiver-operating
characteristic (ROC) curve (Appendix D.2) is obtained. The ROC curve for a given classification
model shows the specificity-sensitivity characteristics that can be achieved with various threshold
settings for decisional algorithms. A key summary index for the discrimination capability implied
by the curve is that level of specificity at which equal sensitivity can be obtained. We shall refer
to this common value of specificity and sensitivity as the discrimination power of a dichotomous
decisional algorithm. The first row in Table 3, for instance, indicates that a GNOSIS classifier
model with linear nodal polynomials, trained and evaluated on the full database encompassing all
age groups, can achieve simultaneous specificity and sensitivity of 88.7%. The area under the curve,
which varies from 0.5 for complete indistinction (i.e., a 45° line) to 1 for perfect discrimination, also
provides a good, but somewhat less reliable, indicator of ROC curve quality. Unlike discrimination
power, which focuses on just one threshold setting, the area statistic describes the ROC curve in
toto. Fig. 5 illustrates a ROC curve plot for the third-degree GNOSIS classification model (all ages)
in Table 3. We shall refer to this model, which represents our main result for pre-hospital triage
algorithms, as Model 1.
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Figure 5: ROC Curve for Model I

The results in Table 3 provide summary statistics of how well GNOSIS predicts outcome for
the UVA data. The younger age group evidently lends itself to much easier mortality prediction
than does the older age group, with discrimination powers of 95.5% and 84.7% respectively. The
results also indicate that performance can be improved by use of higher-degree nodal polynomials
in the GNOSIS synthesis. The 91% discrimination power among both age groups combined is
comparable to the best specificity-sensitivity results reported in the literature for any conventional
scoring system, such as TTR (8].

Table 3 provides some additional classification performance statistics. The log-likelihood, A,
provides an indicator of classification model performance. For a logistic regression or PNN classi-
fication model, the log-likelihood is defined as

N C
A=d "> (mi=c) Inm, (2a)
i=1 e=1

in which 7; . is the probability, according to the model, that the i’th observation belongs to class c.
This figure of merit should be compared to the baseline log-likelihood, Ag, obtained by using the a

priori probabilities, c., in place of m; ¢, viz.

N C c
Aozzz:(yi:c) lnac=NZac In a, (2b)
i=1 c=1 c=1

It follows from the rightmost expression in Eq. 2b that Ag is a measure of the entropy of the class
distribution in the training database. The ratio A/Ag provides a measure of the extent to which
the classification model “explains” the tendency of various exemplars to belong to different classes.
It is analogous to the R? statistic in least-squares regression and PNN counterparts for estimation
modeling, wherein A is analogous to the sum of the squared estimation errors, 3; (v; — 9:)%, and
Ao is analogous to the sum of the squared deviations from the mean, 3°; (y; — )2. A small A/Aq
ratio indicates superior classification, which accrues to both intrinsic separability of the classes and
the degree to which the classification model effectively exploits the input variables provided to it.
Finally, the quantity p tabulated in the right-hand column is the Hosmer-Lemeshow [70] prob-
ability statistic for goodness-of-fit, which indicates the extent to which the class membership prob-
abilities (in dichotomous problems) account accurately for the actual outcomes encountered in the
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Table 4: Cross-Validation of Model 1

Degree of Discrimination Power under | Discrimination Power under
Nodal Polynomials Self-Validation Cross-Validation
1 0.887 0.892+0.006
2 0.891 0.898+0.007
3 0.908 0.882+0.014

training database, especially in “gray” regions where the probabilities are close to neither zero nor
unity. It partitions the data into bins (customarily ten) based on the model-generated probabilities
(usually via logistic regression) and compares the observed distribution of exemplars over the bins
with the expected numbers of exemplars falling into each bin, or group. In the case of ten groups,
for example, the bins are deciles of model-computed probability between 0 and 1. For each group,
the expected number of death incidents is N;7;, in which Nj; is the number of exemplars in the
1’th group and 7; is the mean predicted probability of death for exemplars in that group. The
expected number of deaths is compared to the observed number, O;, of deaths in the i’th group.
The Hosmer-Lemeshow goodness-of-fit statistic is then computed as:

2, (05 — Nymy)?

XnL ; Nifi(l - fi) (3)
in which g is the number of groups. The goodness-of-fit statistic is compared to a x2-distribution
with g — 2 degrees of freedom, and a null-hypothesis probability, p, that the null model (ry = a4, in
which oy is the percentage of actually deaths in the training database) describes the data as well
as the proposed model. A small p value indicates better explanatory power than a large value. p
is not computed if no more than two groups can feasibly be created. The statistic for Model I is
extremely good this respect.

5.5 Validation of PNIN Classification Models

As in stepwise regression, model validation customarily entails cross-validation using repetitive
random partitions of the database. To double-check the Model I results via cross-validation, we
performed 30 random 90%-10% training-evaluation partitionings of the UVA database and tabu-
lated the mean and standard error thereof. This was done for the first-, second-, and third-degree
models on all ages. The results are tabulated in Table 4. The discrimination power statistics in
Table 3 were for self-validation, in which the model was trained on the entire database and then
evaluated on that same data. Although this practice is widely recognized as an anathema, for
reasons explained in the discussion of stepwise regression in Appendix G, self-validation is actually
not unreasonable in the context of GNOSIS modeling since, as indicated previously, the PSE cri-
terion automatically prevents overfitting. Thus, one expects models synthesized using GNOSIS to
perform equally well on test data sets having exemplar distributions similar to those of the training
data set, assuming that good training database construction techniques are follows (see, e.g., [5]).
Under such practices, the PNN models are “interpolating” rather than “extrapolating.”

That this is, in fact, the case is demonstrated in Table 4, in which the self- and cross-validation
results are compared. The means of the cross-validation distributions are nearly equal to the
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discrimination powers obtained from self-validation. The results for the first-, second-, and third-
degree models indicate that the self-validated results are statistically within the margin of error of
the cross-validated results. The cross-validated mean discrimination powers for the first two nodal
polynomial types actually exceed their self-validated counterparts. i

Moreover, the uncertainty in the cross-validated means, as represented by the standard devi-
ations make use of these figures somewhat unreliable for comparing different classification models
unless many random partition cuts are done. The self-validated performance statistics, however,
are stable and serve as good benchmarks for comparing model performance. Even if, for example,
the self-validated result does tend to overstate the performance results that would be found from
exhaustive cross-validation, that overstatement will at least be consistent. The self-validated re-
sults, owing to PSE, furnish an efficient means of summarily comparing the performance results of
different models.

5.6 Classification Performance of Conventional Scores on UVA Data

We next assess the classification performance of several conventional pre-hospital scores as a
baseline. For this purpose, we selected a certain subset of the scores (namely TTR, KRC, TS,
T-RTS, CRAMS, and RSM) documented in Appendix A. Others could not be computed since they
involve mechanistic (such as in MOI) or physiological criteria (heart rate in PHI and RTT) that
were not provided in the UVA database records. Even among some of the scores that were selected,
however, there are certain criteria (e.g., respiratory effort, tenderness of abdomen) that cannot be
deduced automatically from inspection of the UVA data. Only T-RTS and RSM could readily be
computed, but for the other four, it was necessary to make certain reasonable assumptions as to
filling in fields that could not be ascertained readily. The following such assumptions were made in
computing the scores:

o TTR
B/P=1 and (AIS; > 1 or AIS3 > 1) for “penetrating cranial, neck, or thoracic injury”
e KRC
Eye opening criterion interpreted as EY < 3
SBP < 90 used for abnormal capillary refill
B/P=1 and (AIS; > 1 or AIS3 > 1) for same anatomical criterion as in TTR
e TS
Respiratory effort assumed normal if 10 < RR < 24, shallow/retractive otherwise
Capillary refill = 2 if SBP > 90, 1if 0 < SBP < 90, 0 if SBP =0
e CRAMS
Capillary refill disregarded in circulation criterion
Respiratory effort normal if 10 < RR < 24, none if RR = 0, shallow/retractive otherwise
Abdomen = 2 if AIS; + AIS4 =0, 1if AIS; + AISy =1, ( otherwise
Motor = 2if MT =6,1if2< MT <5 0if MT =1
Speech =2if VB=5,1if3<VB<40if1<VB<L2

Tables 5, 6, and 7 give the specificity and sensitivity as functions of threshold placement for each
of the six selected conventional scores, when tested on the UVA data. Since these scoring systems do
not involve class membership probabilities, the log-likelihood and the Hosmer-Lemeshow statistics
are not applicable. The scores themselves serve as thresholds, e.g., a TTR score of 1 indicates a
decisional output, not a probability.
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It is evident from the results in Tables 5-7 that none of the six conventional scores that we com-
puted perform satisfactorily on the UVA data. They all fail to achieve good specificity-sensitivity
characteristics on the full database and perform extremely poorly on the older age group. Sensitiv-
ities are especially bad. The only “good” results, with specificity and sensitivity both above 90%,
are achieved by TTR, TS, T-RTS, and CRAMS in the younger age group, but all of these under-
perform the 95.5% discrimination power accruing to the GNOSIS classification model described
above.

Table 5: Performance of TTR (left) and KRC (right)

Ages | Specificity | Sensitivity Ages | Specificity | Sensitivity

all 0.9509 0.7113 all 0.9730 0.4085
< 55 0.9416 0.9000 < 55 0.9683 0.5000
> 55 0.9792 0.4677 > 55 0.9873 0.2093

Table 6: Performance of TS (left) and T-RTS (right)

Ages | Triage Rule | Specificity | Sensitivity Ages | Triage Rule | Specificity | Sensitivity
TS <15 0.8551 0.8239 T-RIS <11 0.9068 0.7958

all TS<14 0.8649 0.8099 all | T-RTS<10 0.9610 0.7394
TS <13 0.9495 0.7465 T-RTS <9 0.9727 0.6549

TS <15 0.8450 0.9375 T-RTS <11 0.8961 0.9375

<55 TS<14 0.8557 0.9375 <55 | T-RTS <10 0.9546 0.9125
TS <13 0.9420 0.9125 T-RTS <9 0.9679 0.8500

TS <15 0.8858 0.6774 T-RTS <11 0.9389 0.6129

>551 TS<14 0.8927 0.6452 >55 | T-RTS < 10 0.9804 0.5161
TS <13 0.9723 0.5323 T-RTS <9 0.9873 0.4032

Table 7: Performance of CRAMS (left) and RSM (right)

Ages | Triage Rule | Specificity | Sensitivity Ages | Triage Rule | Specificity | Sensitivity
CRAMS <9 0.6506 0.9083 RSM <11 0.8617 0.8169

all | CRAMS <38 0.7493 0.8451 all | RSM <10 0.9504 0.7113
CRAMS <7 0.9091 0.8028 RSM <9 0.9713 0.6549
CRAMS <9 0.6518 0.9750 RSM <11 0.8519 0.9375

<55 | CRAMS <8 0.7430 0.9625 <55 | RSM <10 0.9427 0.8875
CRAMS <7 0.9000 0.9500 RSM <9 0.9668 0.8500
CRAMS <9 0.6471 0.8226 RSM <11 0.8916 0.6613

>55 | CRAMS <8 0.7682 0.6935 >55 | RSM <10 0.9735 0.4839
CRAMS <7 0.9366 0.6129 RSM <9 0.9850 0.4032
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5.7 Comparison of RTS Coefficients derived from UVA Database to Champion-
Sacco Values

Beyond the conventional scores just evaluated, we also explored PNN methods vis-a-vis two well-
established algorithms, namely TRISS and ASCOT, for retrospective determination of attributes
distinguishing patients who generally survive and those who tend not to survive. TRISS computes
a probability of survival for a given patient based on a logistic formula in RTS, ISS, and age
(AGE, = 1 if the patient is age 55 or older, zero otherwise). Since ISS cannot be ascertained before
hospitalization, TRISS cannot be employed, as such, in the pre-hospital environment. However, it
suggests that it might be possible to develop an on-line TRISS-like algorithm to predict survival
outcome in terms of an estimated ISS value and the standard pre-hospital inputs. As the first step
in developing such an algorithm, however, we must first treat the RTS component, which is a linear
combination of coded values of SBP, RR, and GCS. The coefficients in the established definition
of RTS, however, are based on a logistic regression that Champion and Sacco [20] performed on
the American MTOS database. To construct a TRISS-like model for pre-hospital use, it therefore
makes sense to obtain new RTS coefficients by performing the same logistic regression on the UVA
data, in which a linear polynomial of the form

8% -z =0y + bgcs x GCS, + Osgp X SBP, + Opr x RR, (32)
is sought, in which
1
Ps = m (3b)

is the probability of survival. The resulting coefficients and the corresponding Champion-Sacco val-
ues are tabulated in Table 8 The computed coefficients are in fair agreement with the corresponding

Table 8: MTOS- and UVA-derived RTS Coefficient Values

MTOS | UVA Values | UVA Values | UVA Values

Values (all ages) (< 55) (> 55)
-3.5718 —5.0095 —3.7883 —11.4422
0.9368 1.0587 1.3104 1.1301
Ossp 0.7326 0.9667 0.9207 1.0843
Orr 0.2908 0.3311 0.1174 1.4989

Term
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i
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!

}

Champion-Sacco values, except for the constant and RR terms in the older group. Statistics for the
resulting ROC curves are given in Table 9. The two rows in each age group give the performance
results on the UVA data with the Champion-Sacco and UVA-derived RTS coefficients in the sur-
vival outcome model. The results indicate that the UVA-fitted coefficients do not yield significantly
better performance than the Champion-Sacco values. As was the case above, the models perform
better on the AGE < 55 group but worse on the AGE > 55 group than on the general population.
Although RTS appears to perform very well on the younger age group, it performs extremely poorly
on the older group and fails to match any of the corresponding discrimination power benchmarks
achieved by the GNOSIS model. The results are consonant with the findings in the previous section
for the T-RTS triage rules. Where the Hosmer-Lemeshow p value is not given, SAS was not able
to form the needed data bins based on the model-generated probabilities.
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Table 9: ROC Curve Statistics for RTS Classifiers

Coeflicient | Discrimination | Area Under
Ages Set Power ROC Curve | —2A¢ | —2A | A/Aq P
MTOS 0.8162 0.877 1198.7 | 712.4 | 0.594 | 0.0376
all UVA 0.8162 0.877 1198.7 | 687.6 | 0.574 | 0.0375
MTOS 0.9368 0.954 720.6 | 329.9 | 0.458 | 0.1098
< 55 UVA 0.9371 0.954 720.6 | 299.0 | 0.415 | 0.1301
MTOS 0.7081 0.788 455.4 | 365.1 | 0.802 -
> 55 UVA 0.7081 0.787 455.4 | 315.1 | 0.692 -

5.8 PNN Estimation Models for ISS

As the second step in constructing TRISS-like algorithms for pre-hospital use, we used GNOSIS
to construct estimation models of ISS as a function of the clinical inputs AGE, BP, EY, VB, MT,
RR, and SBP. This is the exact same set of inputs used in the GNOSIS classification model. It
is noteworthy that, unlike in any of the conventional scores, this set utilizes the three Glasgow
subcomponents separately and does not use any coded values for the variables (except for B/P)
that are naturally described by a continuum scale. Comparison of the layer-by-layer progress of
the PNN synthesis process with the results for least-squares regression highlights the performance
edge accruing to the exploitation of flexible functional forms and the ability of GNOSIS to discover
appropriate model structures.

The ISS estimation results for the separate age groups are shown in Table 10. It is somewhat

Table 10: GNOSIS ISS Estimation in Age-Segregated Groups

3rd-degree Nodal Polynomials 4th-degree Nodal Polynomials

Layer | AGE < 55 | AGE > 55 Layer | AGE < 55 | AGE > 55
1 6.323 5.784 1 6.227 5.611
2 6.230 5.566 2 6.099 5.424
3 6.183 5.465 3 6.034 5.299
4 6.172 5.422 4 6.015 5.206

surprising, in view of the preceding results for survival prediction, that it is easier to infer ISS in
the older age group. The RMS estimation error for ISS in the older group is smaller despite the
tendency of that group to have slightly higher ISS scores. This may conceivably reflect that a
greater diversity of injury types and severities within the younger age group.

5.9 ISS as a Decisional Threshold

As was observed in the preliminary inspection of the UVA database, ISS correlates strongly
with survival outcome. Among hospitalized patients, ISS also correlates strongly with operational
definitions of major trauma in terms of postoperative findings (AIS and ICD-9 scores) and the
intensity of care required or attempted. In retrospective analyses, a summary definition of major
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trauma as ISS > 16 is often interpreted as those patients who “should have been” identified (in
the field or in hospital) as critical. The direct usage of ISS as a decisional threshold in this
manner suggests the possibility of a GNOSIS-generated ISS estimate serving as a pre-hospital
algorithm. The performance results, using projection-pursuit estimation models with 4th-degree
nodal polynomials, are given in Table 11. Performance results with the actual and PNN-estimated

Table 11: ISS-based Decision Rules

Actual ISS Estimated ISS
Area under | Discrimination | Threshold Area under | Discrimination | Threshold
Ages | ROC Curve Power Value ROC Carve Power Value
all 0.882 0.8209 13.36 0.882 0.8209 13.36
< 55 0.947 0.8927 17.58 0.940 0.9125 12.98
> 55 0.784 0.7198 9.78 0.783 0.7549 7.73

values of ISS are compared. In discrimination power, the models with estimated ISS perform
marginally better. It appears that ISS alone is not as effective an outcome predictor as the clinical
inputs are collectively. The threshold values at which equal specificity and sensitivity are achieved
are also provided. In the younger age group, the thresholds are in good agreement with the value
of 16 in the one definition of major trauma, but are somewhat lower in the older age group.

5.10 TRISS-like Models

Having derived our own models for RTS and ISS, we next proceed to incorporate them into
the logistic regression framework of TRISS. It will be of interest to determine whether the TRISS
formulation can improve upon the performance of the GNOSIS classifier developed above, in which
the clinical inputs were mapped directly into survival outcome. It is interesting to note that if ISS
is interpreted as a hidden node, TRISS takes a PNN tact in that it utilizes the output of that node
to enhance the model output.

In computing TRISS probabilities for survival outcome, we examined three different RTS and
ISS combinations, namely:

e RTS with Champion-Sacco coefficients and actual ISS values
o RTS with coeflicients fitted using UVA data and actual ISS values
o RTS with coefficients fitted using UVA data and PNN-estimated ISS values.

The RTS coefficients fitted using UVA data (Table 8) were with respect to the two age groups.
Logistic regressions of RTS and ISS against survival outcome were performed separately for the two
age groups and also separately for blunt and penetrating injury cases, for a total of twelve models
(three RTS/ISS computation methods times two age groups times two categories for B/P). Since
the coded AGE values were uniform in each of the twelve sets upon which logistic regression models
were derived, the AGE term was subsumed into the constant term. For the upper AGE group with
blunt trauma, for instance, the constant term is taken as §§° = —1.2470 — 1.9052 x 1 = —3.1522.
The sizes of the latter four B/P and AGE categories are provided in Table 12.

In each of the twelve cases, the coefficients obtained from logistic regression on the UVA data
are compared to the Champion-Sacco (denoted by the superscript ‘CS’) TRISS coefficient values in
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AGE<55 [ AGE>55 || Total | -
B 2,329 802 || 3,221
P 370 37 | 407
[Total [ 2,699 | 929 [ 3,628 |

Table 13. ISS denotes PNN-estimated ISS values, while unadorned ISS denotes actual values. The
coefficient values determined using the UVA data are in fair agreement with the Champion-Sacco
values only in the RTS®®/ISS models for blunt trauma (i.e., the top two rows). Correspondence in
the penetrating injury groups is much fainter, and the resemblance to the Champion-Sacco values
disappears altogether in the RTSYY*/ISS models, where the signs of the coefficients are no longer
even the same.

Table 13: TRISS Coefficients

B/P | Ages | RTS/ISS Values 65° 0% 0% 6gv4 A RS
< 55 RTS<®/1SS —1.2470 | 0.9544 | —0.0768 | —0.2822 0.9032 | —0.0972
0 > 55 RTS5/1ISS —3.1522 | 0.9544 | —0.0768 || —3.3209 0.9405 | —0.0690
< 55 RTS“®/ISS —0.6024 | 1.1430 | —0.1516 || —19.4863 | 11.7949 | —1.4319
1 > 55 RTS5/ISS —3.2700 | 1.1430 | —0.1516 || —7.5218 1.5021 | —0.1536
< 55 RTS"YA/ISS —1.2470 | 0.9544 | —0.0768 0.4805 0.6726 | —0.0957
0 > 55 RTSYYA/ISS —3.1522 | 0.9544 | —0.0768 || —7.1667 0.7565 | —0.0638
< 85 RTSYYA/ISS —0.6024 | 1.1430 | —0.1516 || —7.4335 6.6280 | —1.0702
1 > 55 RTS"V4/1ISS —3.2700 | 1.1430 | —0.1516 -9.9043 0.9561 | —0.1434
< 55 RTSYVA/ISS —1.2470 | 0.9544 | —0.0768 0.0973 | —0.0866 0.6731
0 > 55 RTSYV4/ISS —3.1522 | 0.9544 | —0.0768 || —11.0636 0 0.9749
< 55 RTSYVA/ISS —0.6024 | 1.1430 | —0.1516 || —3.0759 | —0.1354 1.2728
1 > 55 RTS"VA/ISS —3.2700 | 1.1430 | —0.1516 || —11.5036 | —0.1139 1.0771

ROC curve, log-likelihood, and goodness-of-fit statistics are provided in Table 14. In computing
output probabilities, Champion-Sacco coefficients were used in the RTS®®/ISS models, whereas
coefficients fitted based on the UVA data were used in the RTSUVA/ISS and RTSUV*/ISS models.
The numbers show that if actual values of ISS are used retrospectively, classification performances in
all four B/P and AGE categories are virtually indifferent to whether Champion-Sacco or UVA-fitted
coefficients are used. In both cases, discrimination power is excellent in the younger age group for
both blunt and penetrating injuries. Discrimination power in the older group is poorer. The same
is true in the RTSY*/ 1SS models, although the discrimination power in all four subgroups drops
slightly. As a pre-hospital tool, it is evident that this TRISS-like algorithm performs remarkably
well in the younger group. The older group notwithstanding, the model performance is competitive
with the 95.5% benchmark of the GNOSIS classifier.
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Table 14: TRISS Model Performance Statistics

RTS/ISS | Discrimination | Area Under
B/P | Ages Values Power ROC Curve | =2A¢ | —=2A | A/Ag P
< 55 | RTS®®/ISS 0.9337 0.981 586.3 | 233.6 | 0.398 | 0.6440
0 > 55 | RTS®%/ISS 0.7713 0.831 418.4 | 289.5 | 0.692 | 0.0558
< 55 | RTS®®/ISS 0.9944 1.000 131.8 | 22.3 | 0.169 -
1 > 55 | RTS</ISS 0.8333 0.909 32.8 | 12.1 | 0.369 | 0.9144
< 55 | RTSUY4/ISS 0.9375 0.981 586.3 | 231.6 | 0.395 | 0.6367
0 | >55| RTSYVA/ISS 0.7686 0.829 418.4 | 286.8 | 0.685 | 0.0913
< 55 | RTSYY4/ISS 0.9972 1.000 131.8 5.4 | 0.040 -
1 > 55 | RTSYVA/ISS 0.8333 0.909 32.8 | 10.0| 0.305 | 0.7612
< 55 | RTSY4/ISS 0.9224 0.981 586.3 | 255.4 | 0.436 | 0.6367
0 > 55 | RTSYY/ISS 0.6963 0.776 418.4 | 300.1 { 0.717 -
< 55 | RTSYY4/ISS 0.9915 0.997 131.8 | 18.6 | 0.141 | 0.9860
1 > 55 | RTSUYV/ISS 0.8333 0.954 32.8 | 11.4 ] 0.347 | 0.1640

5.11 Generalization of TRISS via PNN Models

The TRISS models in the previous section were all logistic regression models of RTS and ISS
against survival outcome. With classification PNNs, however, we can abandon the restrictive as-
sumptions of conventional logistic regression, i.e., the linear algebraic form of the logit polynomials,
and synthesize a more flexible and accurate model of survival probability as a function of the clinical
inputs (as used in the previous GNOSIS classifier) and ISS (actual or estimated). Table 15 displays
the results of GNOSIS models with 2nd-degree nodal polynomials that give survival probability as
functions of AGE, B/P, EY, VB, MT, RR, and SBP.

Table 15: Generalized TRISS Model Performance Statistics

1SS Discrimination | Area Under

Values | Ages Power ROC Curve | —2A0 | —2A | A/Ao D
all 0.8935 0.946 1198.7 | 499.8 | 0.417 | 0.0001
< 55 0.9565 0.975 720.6 | 186.3 | 0.258 | 0.0001
Actual | > 55 0.8226 0.901 455.4 | 248.4 | 0.545 | 0.0425
all 0.8911 0.952 1198.7 | 527.4 | 0.440 | 0.0001
< 55 0.9500 0.973 720.58 | 219.0 | 0.304 | 0.0040
Estimated | > 55 0.8213 0.887 455.4 | 259.80 | 0.570 | 0.2437

From the results in Table 15, one observes that the performance of the models with actual ISS
values are marginally better than that of the models incorporating estimated ISS values. Moreover,
the performance with the estimated ISS values are virtually identical to those of the earlier GNOSIS
classifier models with 2nd-degree nodal polynomials. Henceforth, we shall refer to the model for
all ages using actual ISS values as Model II. Whereas Model I is our main result for pre-hospital
use, Model II represents our penultimate result for ez post evaluation of hospitalized patients.
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In the young age group, there is a slight gain in discrimination power (95.0% vs. 94.4%), but the
impression overall suggests that use of estimated ISS as, in effect, a hidden layer does not contribute
significantly to classification performance. However, the slight edge in both age groups and in the
full database implies that use of ISS in pre-hospital algorithms would offer an incremental gain
were it possible to infer ISS directly.

5.12 Utilization of AIS Scores

As the final set of analyses for survival prediction with the UVA data, we broke down the final
remnant of artifice in the conventional scores, namely the manner in which ISS is a composition of
AIS scores that measure the severity of injury in specific body regions. That ISS is the sum of the
squares of the three highest AIS scores seems, on face value, arbitrary and ad hoc. PNN synthesis
methods naturally beckon the freedom to do as they see fit with the six AIS scores, rather than
have them summarized and prefiltered a priori via the ISS convention.

An alternative scoring system takes an almost identical approach to TRISS in modeling survival
probability, except that it uses AIS scores rather than ISS. Like TRISS, ASCOT models survival
outcome as a logistic regression model in standard physiological and anatomical criteria, as de-
scribed in Appendix A. Instead of ISS alone, it examines three regions, the variables for which are
denoted as A, B, and C. Based on the description in the literature and presented in Appendix A,
we interpreted A to correspond to AIS region 1, B to AIS region 3, and C to the other four AIS
regions. With these assumptions, we performed logistic regressions on the UVA data and compared
the resulting coefficient values with those cited in the literature. Results are given in Table 16.
Clearly, numerical agreement between the official, MTOS-based ASCOT coefficient values and the
values that we obtained by fitting on UVA data is not good at all; about all that can be said is
that the signs agree. Classification performance statistics are given in Table 17. The discrimina-

Table 16: ASCOT Coeflicients

Blunt Penetrating

MTOS UVA MTOS UVA

Values | Values | Values Values
B —1.1570 | —2.9785 | —1.1350 | —10.5482
Occs 0.7705 0.9322 1.0626 3.6849
Ossp 0.6583 0.9633 0.3638 0.6255
Orr 0.2810 0.3311 0.3332 1.9187
N —0.3002 | —1.2886 | —0.3702 | —2.4271
Os —0.1961 | —0.4047 } —0.2053 5.5846
B¢ —0.2086 | —0.4679 | —0.3188 | —8.8582
Bace | —0.6355 | —2.0591 | —0.8365 | —10.6732

tion power is very good for penetrating injuries, but mediocre for blunt cases. This suggests that
superior classification results in penetrating injury cases can be obtained through incorporation of
more refined anatomical data. We attempted to obtain better definition of anatomical injury by
appealing to the six AIS codes and comparing results with singular use of ISS. We first constructed
a survival predictor by training GNOSIS on the six AIS scores, the results of which are given in
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Table 17: ASCOT Model Performance Statistics

Discrimination | Area Under 1
B/P | Coefficients Power ROC Curve | —2Ag | —2A | A/A P
MTOS 0.8524 0.9402 1025.1 | 713.5 | 0.696 | 0.0006
0 UVA 0.8482 0.9400 1025.1 | 552.5 | 0.540 | 0.0343
MTOS 0.9570 0.9939 171.2 | 68.3 | 0.399 | 0.0006
1 UVA 0.9632 0.9966 171.2 | 214} 0.125 | 0.0855

Table 18, where a classification PNN with 2nd-degree nodal polynomials was used. The discrimi-

Table 18: AIS-based Survival Predictor

Discrimination | Area Under
Power ROC Curve | —2Aq —2A | A/Ao P
0.8361 0.900 | 1198.7 | 623.47 | 0.520 | 0.0005

nation power of 83.6% represents a slight improvement over the 82.1% obtained with ISS alone as
a threshold classifier.

We next synthesized estimation models for each of the AIS scores, with standard clinical inputs
AGE, B/P, EY, VB, MT, RR, and SBP, as before. Third-degree nodal polynomials were used.
RMS estimation errors are compared to the standard deviation of the AIS distributions in the
database. Results are given in Table 19. These results are poor in that the RMS estimation

Table 19: AIS Estimation Models

RMS Estimation Error | Standard Deviation
AIS, 1.0587 1.4022
AIS, 0.5107 0.5203
AIS; 0.9630 1.0670
AlS, 0.8228 0.8687
AlSy 1.1770 1.2372
AlSg 0.7749 0.8346

errors are only marginally less than the intrinsic standard deviations of the AIS distributions in the
database. The individual AIS values cannot readily be inferred from examination of the clinical
indicators. This makes sense heuristically since the standard clinical indicators pertain to overall
medical condition and seldom necessarily reflect specific regions of the body. To examine the use of
the AIS scores, rather then ISS, we trained classifier models on the standard clinical inputs and the
six AIS scores, once with actual values and again with estimated values. Results are given in Table
20. The numbers demonstrate an improvement in discrimination power for the full database over
the GNOSIS classifier that used only the clinical inputs (92.3% vs. 90.8%). Since the estimated AIS
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Table 20: Survival Predictor based on Clinical Inputs and AIS Scores

Discrimination | Area Under -
Model Power ROC Curve | —=2A¢ | —2A | A/Ag D
Actual AIS Scores 0.9225 0.975 1198.7 | 356.09 | 0.297 | 0.0001
Estimated AIS Scores 0.9036 0.906 1198.7 | 465.23 | 0.388 { 0.0001

values do not represent any such improvement, however, it follows that this tool cannot presently
serve as a pre-hospital triage algorithm. It does demonstrate, however, that greater knowledge of
anatomical injury would definitely improve the quality of pre-hospital decisions.

The results in Table 20 constitute our ultimate model for ez post use (Model III), which was
synthesized with training on the seven clinical inputs and the six actual AIS scores, for a total of
thirteen inputs. This differs from Model II in that the AIS components are treated individually,
rather than funneled through ISS. Performance of Model III over the three age groups is given in
Table 21. The results in Table 21 demonstrate considerably better performance than both Models

Table 21: Generalized ASCOT Performance

Discrimination | Area Under
Ages Power ROC Curve | —2A¢ | —2A | A/Ap p
all 0.9225 0.9698 1198.7 { 356.0 | 0.297 | 0.0001
< 55 0.9847 0.9979 720.6 { 96.3 | 0.134 -
> 55 0.8746 0.9868 455.4 | 290.8 | 0.639 -

I and II. Tt therefore represents substantial improvement over the state-of-the-art standards (i.e.,
TRISS and ASCOT) for ex post evaluation of survival outcomes among groups of patients with
common injury attributes and assessing the quality of care received. We have thus demonstrated
the superiority of the PNN models over existing scoring systems for both pre-hospital and ez post
evaluation of hospitalized patients.

5.13 Trichotomous Classification Analysis of UVA Data

As the final set of analyses on the UVA data, we sought to perform a trichotomous classification
of the UVA database exemplars into RED, AMBER, and GREEN categories, as explicitly envisioned
in the original solicitation (see Section 1. For this objective, we presented GNOSIS with a training
database comprised of all seven standard clinical inputs and three class outputs, which we defined
as follows:

o RED constitutes all nonsurvivors
o AMBER constitutes all survivors with actual ISS > 16
e GREEN constitutes all survivors with actual ISS < 16

The survivor category is thus partitioned into those having and those not having sustained major
trauma in the one conventionally-defined sense. Such a refinement facilitates focus on those living
patients in need of critical care services and should help identify distinguishing attributes common
to such cases.
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We trained a GNOSIS classification PNN with 2nd-degree nodal polynomials on the full UVA
database. The outputs of the resulting PNN are a triplet of class membership probabilities (mggp,
TaMBER, Toreen) that sum to unity. To use these probabilities to construct decisional algorithms,
however, is much more complicated in the trichotomous than in the dichotomous case. Whereas
the decision rule in the latter is simply a matter of whether the value of the one output probability
degree of freedom exceeds a threshold, the decisional output in the trichotomous case is a function of
two probability degrees of freedom. Fig. 6 illustrates the nature of such a decision rule in graphical
form. The space of the two probability degrees of freedom (say mrep and wgreen) is a triangular

Pereen

GREEN

AMBER

Prep
Figure 6: Decisional Surface for Trichotomous Classification

region, since their sum is constrained to be less than unity. With mrgp and wgreen On the horizontal
and vertical axes respectively, decisional outputs are obtained by partitioning the triangular region
in a suitable fashion, such as shown.

Although there are infinitely many ways of constructing such a decisional partition, it is still
possible to construct a three-dimensional ROC surface, in which the diagonal elements of the
classification performance matrix, II, are the plot axes. For a given decisional partition scheme
for the triangular region in Fig. 6, certain values for Il g, II4 4, and Il ¢ will be obtained. At
that point in Ilg z-IIx a-Ilg ¢ space, the following question may be posed unambiguously: Is it
possible to find a different partition of the triangular region such that one or more of the diagonal
IT elements can be increased without reducing the others? The manifold of realizable points at
which the answer is “no” constitutes a three-dimensional ROC surface.

Since the construction of such ROC surfaces would be prohibitively time-consuming, we took
a more modest approach to assessing the performance characteristics of potential decision rules
for the trichotomous problem. As the first step, we created a threshold to segregate AMBERSs
from non-AMBERSs; this resulted in a pair of specificity/sensitivity characteristics as a function
of that threshold. Among the group of putative non-AMBERs at each such threshold level, we
then measured the discrimination power (found using a second threshold) between the REDs and
GREENSs. Results are given in Table 22. The specificities and sensitivities for the AMBER /non-
AMBER decision are shown in the middle two columns. The discrimination power, A, between
REDs and GREENSs achievable at the given £,yprr setting is tabulated in the fourth column.
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Table 22: Classification Performance for Trichotomous Problem

§AMBER Hnot A, not A HA,A A -

0.05 0.1737 0.9504 || 0.9781
0.10 0.6702 0.7087 || 0.9268
0.15 0.8467 0.5702 || 0.9054
0.20 0.9094 0.4711 || 0.8954
0.25 0.9335 0.4194 || 0.8877
0.30 0.9504 0.3740 || 0.8310
0.35 0.9602 0.3285 || 0.9162
0.40 0.9660 0.2934 | 0.9133
0.45 0.9749 0.2665 || 0.9089
0.50 0.9809 0.2355 || 0.9063
0.55 0.9870 0.1963 |f 0.9009
0.60 0.9911 0.1529 | 0.8961
0.65 0.9940 0.1281 | 0.8924
0.70 0.9965 0.1074 || 0.9130
0.75 0.9975 0.0909 || 0.9118
0.80 0.9994 0.0537 || 0.9086
0.85 1.0000 0.0310 || 0.9069
0.90 1.0000 0.0083 || 0.9064
0.95 1.0000 0.0000 || 0.9062
1.00 1.0000 0.0000 f 0.9062

Between the AMBERs and non-AMBERS, discrimination power of only 69% is obtained at a éxvper
setting just above 0.10. At that setting, the discrimination power between REDs and GREENs
in the non-AMBER group is 92.7%. This suggests that detecting AMBERSs, who lie in the gray
region between life and death, is considerably more difficult than distinguishing survivors from
nonsurvivors.

Results for the other two alternatives are given in Table 23. The results for these alternative
decision methods are no better. For RED as the first decision, discrimination power of about 89%
is achieved at a threshold below 0.05. The discrimination power between AMBER and GREEN at
that level is about 70%; not good. For GREEN as the first decision, discrimination power of about
71% is achieved at a threshold between 0.85 and 0.90. The discrimination power between AMBER
and RED at that level is about 89%. There is thus a tradeoff in the discrimination powers after the
two decisions, but AMBER as the first decision seems to be the most effective type of decisional
partition. Additional medical data on patients would be required to improve identification of the
AMBER group.

6 Algorithm Refinement with North Carolina Data

For the Phase I project, we acquired two additional databases for further studies, namely the
North Carolina state Trauma Registry and an ICU database. These data sets, both provided to BAI
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Table 23: Classification Performance for Trichotomous Problem

£RED Hnot R, not R HR,R A fGREEN Hnot G, not G HG,G A

0.05 0.9188 0.8592 || 0.7005 0.05 0.1470 0.9997 || 0.8286
0.10 0.9555 0.7958 || 0.6610 0.10 0.2284 0.9977 || 0.7910
0.15 0.9676 0.7606 || 0.6782 0.15 0.3115 0.9950 || 0.7679
0.20 0.9722 0.7324 || 0.6882 0.20 0.3435 0.9937 | 0.7500
0.25 0.9785 0.6972 || 0.6989 0.25 0.3546 0.9930 || 0.7660
0.30 0.9831 0.6197 {| 0.7143 0.30 0.3674 0.9923 | 0.7651
0.35 0.9862 0.5775 || 0.7228 0.35 0.3738 0.9917 || 0.7532
0.40 0.9905 0.5493 || 0.7000 0.40 0.3754 0.9910 || 0.7580
0.45 0.9925 0.5070 §| 0.7068 0.45 0.3898 0.9893 || 0.7706
0.50 0.9943 0.4648 || 0.7122 0.50 0.4042 0.9843 | 0.7668
0.55 0.9957 0.3944 || 0.7199 0.55 0.4217 0.9797 || 0.7650
0.60 0.9968 0.3803 || 0.7219 0.60 0.4489 0.9747 || 0.7837
0.65 0.9980 0.3451 || 0.7263 0.65 0.4760 0.9680 || 0.7885
0.70 0.9989 0.3169 || 0.7296 0.70 0.5144 0.95%4 || 0.8135
0.75 0.9989 0.2958 || 0.7310 0.75 0.5447 0.9367 || 0.8220
0.80 0.9991 0.2676 i 0.7333 0.80 0.5863 0.9044 || 0.8396
0.85 0.9994 0.2465 || 0.7351 0.85 0.6645 0.8334 || 0.8608
0.90 0.9997 0.2394 || 0.7360 0.90 0.7764 0.6402 || 0.8863
0.95 1.0000 0.1197 || 0.7438 0.95 0.9617 0.1436 || 0.8922

by Dr. Robert Rutledge of the University of North Carolina at Chapel Hill, shall herein be referred
to as NCTR and NCICU respectively. The former contained pre-hospital and ER data in all of the
standard UVA data fields (AGE, B/P, EY, VB, MT, RR, SBP, ISS, and survival outcome) plus
three additional fields: heart rate (HR), body temperature (T), and the hematocrit ratio (HCT).
The NCICU database provided acute physiological data and most of the standard clinical fields
for hospitalized patients on a day-by-day basis; this provided an opportunity to explore time-series
modeling methods to enhance the inference and prediction methods explored and developed thus
far. The NCTR data served three different purposes: (1) transdatabase comparison of models
derived using the UVA database; and (2) assessing model performance improvements accruing to
the three additional data fields; and (3) assessing approaches to deal with missing input data fields.

6.1 Overview of NCTR Data

The NCTR database provided all of the standard clinical inputs that were available in the UVA
data, along with ISS and survival outcome. It also provided heart rate (in beats per minute), body
temperature (in °F), and the hematocrit. The NCTR database contained 4,125 complete patient
records, with babies (< 2 years old) and extremely old people (> 95 years old) excluded. Among
the NCTR patients, 472 (11.4%) had penetrating injuries and 146 (3.5%) died, distributions very
similar to those in the UVA data. Univariate histogram distributions with respect to each of the

input variables, including the three new ones, are shown in Fig. 7. Summary statistics are provided
in Table 24.
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Figure 7: Univariate Distributions for the NCTR. Database
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Table 24: NCTR Univariate Distribution Statistics

Field | Mean 4 Std. Dev.
T 98.04 =+ 1.40 ’
RR | 2026 + 6.61
HR | 89.46 + 19.83
SBP | 140.74 + 28.43
HCT| 039 + 0.6
ISS 1010 + 721

6.2 Transdatabase Comparison Tests

The availability of two completely independent trauma databases, constructed and adminis-
tered by two separate institutions in different states, provided a valuable opportunity to test the
classification performance of the UVA-derived models on the NCTR database, and vice versa. Such
comparisons are important because they furnish stringent tests of the true generality of the models.

As the first set of comparison tests, we trained separate GNOSIS classification models for
survival outcome on the two databases, UVA and NCTR. The resulting UVA-derived and NCTR-
derived models were then self- and cross-validated (i.e., evaluating the UVA-derived model on the
NCTR data, and vice versa). ROC curves were obtained, the salient performance characteristics
of which are given in Table 25. The results indicate poorer evaluation performance on NCTR data

Table 25: Self-Validated and Cross-Validated Classification Performance

Training | Evaluation | Discrimination | Area Under
Database | Database Power ROC Curve ¢ —2A0 | —2A | A/Ap
UVA UVA 0.8907 0.9517 0.0335 | 1198.7 | 555.4 | 0.463
UVA NCTR 0.7628 0.8175 0.0256 | 1262.4 | 1067.2 | 0.845
NCTR UVA 0.8629 0.9375 0.0326 | 1198.7 | 676.3 | 0.564
NCTR NCTR 0.7863 0.8743 0.0327 | 1262.4 | 850.2 | 0.436

than on the UVA data. The NCTR database, for unknown reasons, is inherently more difficult to
model than the UVA database. The classification performance on a particular database, however,
is relatively insensitive to which model is used. For instance, the discrimination power of the
NCTR-derived model evaluated on the UVA data trails that of the UVA-derived model evaluated
introspectively (i.e., with self-validation) by only three percentage points. Moreover, the threshold
placements at which specificity and sensitivity coincide are almost identical (£ ~ 0.033) in three
out of the four cases.

These findings indicate reasonably good transportability of data in that reasonably consis-
tent specificity-sensitivity characteristics, with fixed thresholds, can be obtained even with models
trained on entirely different databases. This bodes well for the prospects of developing practical al-
gorithms for use in the pre-hospital environment. Decisional performance is much more dependent
on the nature of the evaluation database, or the idiosyncracies of the trauma care environment,
than on the particular patient population from which the models were derived.

As a second set of transdatabase comparison tests, we analyzed the reliability of the classification
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algorithms on the two databases; results are given in Table 26. The first row in the upper table

Table 26: Reliability Results for UVA and NCTR Databases

Evaluation on UVA Data

Actual Prediction of Prediction of
Outcome | UVA-Derived Model | NCTR-Derived Model | Incidents
LIVE LIVE LIVE 2,954
LIVE LIVE DIE 144
LIVE DIE LIVE 84
LIVE DIE DIE 304
DIE LIVE LIVE 12
DIE LIVE DIE 3
DIE DIE LIVE 7
DIE DIE DIE 120

Evaluation on NCTR Data

Actual Prediction of Prediction of
Outcome | UVA-Derived Model | NCTR-Derived Model | Incidents
LIVE LIVE LIVE 3,010
LIVE LIVE DIE 228
LIVE DIE LIVE 133
LIVE DIE DIE 608
DIE LIVE LIVE 27
DIE LIVE DIE 18
DIE DIE LIVE 5
DIE DIE DIE 96

indicates that in the UVA database, there are 2,954 surviving patients who were identified correctly
by both the UVA-derived and NCTR-derived models as surviving. The decisional outputs in Table
26 were based on a threshold setting of £ = 0.033 in both models.

For evaluation on the UVA data, the specificity-sensitivity was 88.9%-89.4% for the model de-
rived using the UVA data and 87.1%-86.6% for the model derived using the NCTR data. The
corresponding results for evaluation on the NCTR data were 81.4%-69.2% and 79.0%-78.1%, re-
spectively. The reliability statistics, however, are the rates at which decisional outputs are correct.
For a given decisional model and evaluation database, the reliability indicators R,, and R, are
respectively the percentages of negative and positive decisions that are correct. For evaluation on
the UVA data, the model derived using the UVA data has reliability indicator scores of

2,954 + 144 ) _ 7+120
=S osiridas1og 3 099 and Ry =T %0

R, =0247 (4

which indicate that a negative decision by the model derived using the UVA data is correct in 99.5%
of cases, whereas a positive decision is correct in only 24.7% of cases. The corresponding statistics
for the model derived based on the NCTR data but evaluated on the UVA data are R,, = 99.4%
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and R,, = 21.5%. The decisional outputs of the two models agree in 93.4% of all cases. The
very low R, figures, although obviously disconcerting from the EMT point of view, are, in fact,
necessary to achieve desired target values of sensitivity and specificity. To obtain good R, , and
R, , results simultaneously would require radically different threshold settiflgs that would result in
extremely poor II,, or II, ,. To improve both specificity-sensitivity and reliability characteristics
simultaneously would require more refined medical knowledge capable of distinguishing survivor
and nonsurvivor attributes more accurately.

Results for evaluation on the NCTR database are even worse, with R, , values of 12.0% for
models derived using both the UVA and NCTR databases. One way to improve these results is
to merge the decisional outputs of the two models, such that a positive finding is declared if and
only if both models declare positive findings. The statistics then improve slightly to R, , = 28.3%
for evaluation on the UVA data and R,, = 13.6% for evaluation on the NCTR data, without
appreciable diminution of specificity-sensitivity characteristics.

6.3 Inclusion of T, HR, and HCT Inputs

The second major purpose of analyzing the NCTR data was to assess improvements in model
performance accruing to the additional input fields (T, HR, and HCT) that were available in the
NCTR database but not the UVA database. Univariate correlation with ISS and survival outcome
are tabulated in Table 27. All three have “normal” ranges in which the ISS values are generally

Table 27: Univariate Analysis of HR, T, and HCT Distributions in NCTR Database

T mean ISS P mean ISS HCT | mean ISS

< 92 20.73 < 50 15.16 < 0.3 13.37

92-94 19.32 50-75 9.79 0.3-0.35 11.08
94-96 13.26 75-100 9.29 0.35-0.4 10.01
96-98 10.07 100-125 10.88 0.4-0.45 9.50
98-100 9.37 125-150 15.16 0.45-0.5 9.10
102 12.44 > 150 17.77 >05 11.09

below average. Above- and below-normal deviations are both associated with above-average ISS
values. This pattern, in the RR and SBP fields, was similarly observed in the UVA data.
GNQOSIS was trained on the NCTR database to examine the performance improvements accru-
ing to the new inputs. ISS estimation models with second-degree polynomial nodal elements in all
ten inputs (AGE, B/P, SBP, RR, T, HR, HCT, EY, VB, and MT) were synthesized and compared
with and without inclusion of T and HCT. The RMS estimation errors, upon completion of each
layer (with projection pursuit), are provided in Table 28. A slight, but noticeable, improvement
is achieved by inclusion of T and HCT in the estimation model for ISS. The loss of such an input
value (e.g., due to a certain biomedical instrument not being available or operative) does result
in significant diminution of estimation or classification performance. Use of higher-order nodal
polynomials, as with the UVA data, improves performance substantially, as illustrated in Table
29. It is noteworthy that the best-case RMS estimation error matches closely that for the UVA
data, even though the two databases are completely independent, but have similar distributions of
patients. In both cases, GNOSIS produced models that outperformed conventional regression by a
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Table 28: GNOSIS Performance Improvements with T and HCT

Synthesized | T and HCT | T excluded | T and HCT
Layers excluded | HCT included | included
1 6.299 6.281 6.278
2 6.288 6.247 6.225
3 6.280 6.236 6.212
4 6.275 6.225 6.189

Table 29: GNOSIS Performance Improvements with Higher-Order Polynomials

Synthesized Nodal Polynomial Degree
Layers 2nd-order | 3rd-order | 4th-order
1 6.278 6.178 6.112
2 6.225 6.095 5.996
3 6.212 6.052 5.940
4 6.189 6.023 5.914

wide margin.

6.4 Inclusion and Exclusion of Clinical Inputs

The final analysis performed on the NCTR data was to assess approaches for dealing with
missing input data fields. Using the NCTR data, we serially omitted one of the ten inputs and
trained a neural network classifier using the other nine. This was done for each input variable, and
the resulting ten models were evaluated. The results this way were compared to using the ten-
input classifier model and inserting the average value for that variable, as computed by averaging
over the entire NCTR database. In the case of the age field, certain “reasonable guesses” were
made about the ease of guessing a person’s age, e.g., assuming that the age of a person older
than 70 can generally be estimated to within twenty years. Table 30 displays the results of the two
approaches, with the discrimination power and A statistics provided for comparison. The similarity
of the results indicates that average values can generally be used when an input value is not readily
available. Another approach to the missing data field problem demonstrated recently [76] exploits
the correlation in the input data to “synthesize” missing inputs based on the data input fields that
are available. Belief networks (Appendix E) furnish a potentially more elegant approach.

6.5 Time-Series Analysis and Dynamic Models

In many estimation problems, the underlying physical relationship between the input and output
variables is fundamentally dynamical in character. In continuous time, the physical model of such
systems is described by a set of differential equations, rather than by a static functional relationship.
In discretized time, there are at least three distinct types of dynamical estimation models that are
of great practical importance in numerous signal processing applications:

9, = f@eoZe-1:Te-2--) (5a)
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Table 30: Model Performance with Omitted Variables

Average Value of Omitted
Neural Network Trained Variable Used in
Omitted | without Omitted Variable Ten-Input Model
Variable | Discrimination Discrimination
Power A Power A

AGE 0.7465 868.6 0.7786 792.5
B/P 0.8005 795.6 0.7968 807.3
T 0.7943 795.5 0.7863 805.0
RR 0.7979 793.2 0.7858 8274
P 0.7856 810.8 0.7861 825.9
SBP 0.7911 796.9 0.7988 815.3
EY 0.7976 789.0 0.7554 946.5
VB 0.8089 785.6 0.7808 929.1
MT 0.8050 795.5 0.6975 1135.2
HCT 0.7946 802.0 0.7945 813.2

Qk = f(Zk) Th-1,Tp—2s - - - Y Y9 ) (5b)

-@-k = f(z-kvgk—hgk—%"';Qk—lagk_gv"') (5¢)

In Egs. 5, z is a P x 1 input vector and y is a @ X 1 output vector. In the first equation, the
estimated output value at time & is a function of the present and past values of z. If f is a linear
function, Eq. 5a is known as a finite impulse response (FIR) model. This is the approach that is
taken below in the analysis of the NCICU data for constructing a dynamical model for survival
outcome.

In Egs. 5b and 5¢, the output estimate, G depends on past output values as well as the input
variables. In Eq. 5b, actual past outputs are used; this is known as an equation-error model. If
f is a linear function, it reduces to an IIR (infinite impulse response) or ARMAX (autoregressive
moving-average with exogenous input) model. In Eq. 5c, however, estimated past output values are
used; this is an output-error model.

Recurrent neural networks (RNNs) are a means of fitting such models to time-series training
data. GNOSIS can synthesize recurrent neural networks as well as the purely static PNNs that we
have described throughout the present report. The resulting network models produce time-varying
output signals. Recent [49] and prior [80] work by BAI has shown that RNNs can emulate real linear
and nonlinear dynamical systems with high accuracy and computational efficiency. The necessary
size of the training database depends on the structural validity of the surmised recurrent model.
If the “correct” model structure is surmised, the model parameter values can be identified using a
single time-series simulation of the system. For this reason, a priori knowledge about the dynamics
of the underlying system, i.e., the set of differential equations governing it, can be tremendously
advantageous.

Nodes in RNNs have internal shift registers that effect time delays and signal feedback. GNOSIS
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globally optimizes the parameters in RNNs containing multiple layers of nodes with these types of
feedback connections. Static PNNs, by contrast, have no such internal feedbacks or time delays in
the nodes and are often called feedforward neural networks for this reason. In many applications,
recurrent neural networks are actually much simpler than feedforward networks in architectural
complexity and number of degrees of freedom. This reduces probability of overfit and increases
network accuracy and robustness.

To allow the injury severity models to be updated based on the arrival of serial data updates,
we sought ways in which time-series, or dynamical, models could be demonstrated. The outputs
of such a model reflect information about past as well as present values of the input variables.
One possibility for demonstrating such models was suggested by the North Carolina ICU (NCICU)
database, in which acute physiological data, including most of the inputs we have already men-
tioned, were provided on a daily basis. This database, also obtained from the University of North
Carolina at Chapel Hill, provided various physiological data from hospitalized patients in an in-
tensive care unit setting. GCS, RR, SBP, and survival outcome were among the various fields
provided, but ISS was not provided. The univariate distributions within the NCICU database are
similar to those in UVA and NCTR, with histogram plots for RR and SBP (measured on the first
day of ICU care) illustrated in Fig. 8. With respect to the principal fields examined in the UVA
database, the NCICU database provided complete records for 2,152 patients.
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Figure 8: Univariate Distributions for RR and SBP in NCICU
Database

GCS, as in the UVA database, was very skewed, with 1,723 out of 2,152 patients, or 80.1%,
having GCS = 15. The remainder were fairly evenly divided among lower scores, with a slight
preponderance at GCS=3. Among all patients, only 74 (3.4%) died.

For this effort, we sought to predict survival outcome through adaptive least squares and finite-
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impulse response (FIR) models in estimated ISS. In an FIR model, one is provided with a sequence
of inputs and an outputs; the output value at any given time is simply a linear combination of
input values from the present and recent past. Using the NCICU data, we constructed a simple
FIR model, in which the input variable was the estimated ISS on a given day (obtained using the
ISS estimator synthesized using the UVA database without B/P) and the output was a revised, or
updated, survival outcome projection. The outcome was predicted on the second day of ICU stay
(1,176 of the 2,152 patients, or 54.6%, were in the ICU for at least two days) as a linear function
of estimated ISS on day one and estimated ISS on day two. The FIR model

1
fo = 15 (62)
L = —6.2615+0.0442 x ISS; + 0.1652 x 1SS, (6b)

was obtained using static linear regression, in which the delayed values of ISS were provided to the
regressor as if they were independent static variables. Discrimination power of 83% can be obtained
this way, which is significantly better than that which was achieved (79%) using static models on
the NCICU data. Further investigation of this promising area is needed in Phase II.

7 Conclusions of Phase I Work

We summarize Phase I accomplishments as follows:

e We have developed two neural network mortality prediction models (Models I and III) that
can be used for pre-hospital triage and ez post evaluation of hospitalized patients respectively.
Model I outperforms all of the conventional, rule-of-thumb triage scoring systems; Model III
outperforms both TRISS and ASCOT.

e We have demonstrated the ability of neural networks to differentiate among traditional color-
coded triage categories such as RED, AMBER, and GREEN and extended the analytic methods
for classification and decisional algorithms to problems involving three or more classes.

o We have demonstrated that average values for missing input values can be used in the neural
network models while achieving results not significantly different from those obtained with use
of models trained without the missing variable.

e We have introduced and demonstrated one approach that was effective for time-series analysis
and updating of model outputs.

Based on the success of the results outlined above, it is clear that much more can be achieved
with a thorough investigation of processing algorithms (both static and dynamic model types) and
more extensive (quantity), varied (military vs. civilian), and thorough (time-series) data sets. All
of these will issues will be explored in detail in the Phase II effort, the proposal for which has been
submitted.
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A Conventional Scoring Systems

A.1 Injury Severity Score

The Injury Severity Score (ISS) provides a summary index of the overall severity of injury in
terms of the Abbreviated Injury Scale (AIS) scores specific to six anatomical regions:

1

Tt W DN

6

Head/Neck

Face

Chest

Abdomen/Pelvic Contents
Extremities/Pelvic Girdle
Skin

The severity of injury in each region is coded as follows:

U Wy~ O

6

ISS is defined as the sum of the squares of the three highest AIS scores, provided that all are ‘5’ or
less. The highest ISS is therefore 52 + 52 + 5% = 75. If any one of the AIS scores is ‘6’, an ISS of

75 is assigned automatically.

A.2 Glasgow Coma Scale

The Glasgow Coma Scale (GCS) provides a summary assessment of neurological condition.
Points for eye, verbal, and motor response are summed to obtain the total GCS score:

Eye Opening

Speech

Motor

None
Minor
Moderate

Serious, but not life-threatening
Life-threatening, but survival probable

Survival uncertain
Survival chances very dim

None

In response to pain

In response to voice
Spontaneous and voluntary

None
Incomprehensible
Inappropriate words
Confused

Oriented and alert

None

Extension under pain

Flexion under pain

Withdrawal from pain
Purposeful movement under pain
Voluntarily obeys commands
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Total GCS

A.3 Original Champion Trauma Score (TS)

RR

Respiratory Effort

SBP

Capillary return

GCS

Total TS

> 36
25 — 35
10—-24
1-9
None

Normal
Shallow or retractive

> 90t
70 — 89
50 — 69
1—49
0

Normal
Delayed
None

14-15
11-13
8 ~10
5-17
3—4

A.4 Baxt Trauma Triage Rule (TTR)

Barron Associates, Inc.

3-15

N O =N W O = O = N

(el

N W Ot

1-16

The Baxt TTR score is defined as 1 if any of the following criteria are met, 0 otherwise:

e SBP < 85 mm Hg
e Glasgow Motor Score < 5

e Penetrating cranial, neck, or thoracic injury

A.5 CRAMS

Circulation Normal capillary refill and SBP > 100 2

*RR measured breaths per minute

YSBP measured in millimeters of mercury
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Delayed capillary refill and 85 < SBP < 100
No capillary refill and SBP < 85

Respiration Normal
Labored or shallow
None
Abdomen Abdomen and thorax nontender

Abdomen or thorax tender
Abdomen rigid or chest flail

Motor Normal
Response to pain only
No response or decerebrate

Speech Normal
Confused
None or garbled

CRAMS score

A.6 Pre-Hospital Index (PHI)

SBP > 100
86 — 100
75 — 85
<75

Pulse > 120%
51 —119
< 50

Respirations Normal
Labored or shallow
< 10/min or needs intubation

Consciousness Normal
Confused or combatitive

None

Penetrating abdominal ~ Yes
or thoracic injury No

PHI score

Pulse (synonymous with heart rate) measured in beats per minute
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A.7 Revised Trauma Index (RTT)

Injured region Limbs or skin
Back

Chest
Head, abdomen, or multiple injuries

Sy Ot W =

—

Type of wound Minor open wound
Single blunt impact or second-degree burn
Major open wound, stab wound, third-degree
burn
Gunshot wound or multiple blunt impacts 6

ot W

SBP and Pulse SBP > 100 and pulse < 100
SBP80 — 100 and pulsel00 — 140
SBP < 80 and pulse > 140
no pulse

D Ut W

RR 10—24
25— 35
> 35 0r <10
apnea

A O W =

Consciousness Drowsy, disoriented, or confused 1
responsive to voice 3
responsive to pain only 5
unresponsive 6

RTT score 4-30

A.8 RR/Pulse/Motor Score (RPM)

RR same as in TS 1-6

Pulse > 120
61 — 120
41 - 60
1-40
None

S =N W

Motor Obeys command
Responsive to pain
Withdrawal from pain
Flexion or extension under pain
None

O =N W
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RSM score 0-12

A.9 RR/SBP/Motor Score (RSM) -

RR same as in TS 0—-4
SBP same as in TS 0—-4
Motor same as in RPM 0—-4
RSM score 0-—12
A.10 RR/SBP/GCS Score (RSG)
RR 10 —-29 0
else 1
SBP >90 0
else 1
GCS 14 -15 0
else 1
RSG score 0-—-3

A.11 Mechanism of Injury (MOI)

MOI =1 if any of the following criteria are met, 0 otherwise:
e Extrication time from vehicle
e Vehicle occupant forcefully thrown
e Pedestrian thrown by impact with motor vehicle
o Fall of greater than 15 feet

e Penetrating wound (excluding extremities)
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A.12 Gestalt Impression of Severity as Estimated by Paramedic (SEV)

The SEV score ranges from 1 to 3, based on the following impressions:
. 1 = Not serious
. 2 = Potentially life-threatening
e 3 = Critically life-threatening

A.13 Kane’s Revised Checklist (KRC)

KRC = 1 if any of the following criteria are met, 0 otherwise:
. No spontaneous, voluntary eye
opening
° Abnormal capillary refill
) Penetrating cranial, neck, or tho-
racic injury

A.14 Revised Trauma Score (RTS and T-RTS)

RR > 30
10 - 29
6—9
1-5
None

O = N W

SBP > 90
76 — 89
50— 175
1-49
0

O =D I

GCS 13-15
9-12
6—38
4-5

O = b W

T-RTS Score 0-—-12

The Revised Trauma Score for triage (T-RTS) is the sum of the three coded values of GCS, RR,
and SBP. Using MTOS data, Champion [39] performed a logistic regression to relate probability of
survival, P, to these coded variables. Their curve fit yielded

1

B=1vet

in which L = —3.5718 + 0.9368 x GCS. + 0.7326 x SBP, + 0.2908 x RR.. The subscript denotes
coded values. The Revised Trauma Score (RTS) is defined as the logit polynomial, L, less the
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constant term, viz.,

RTS = 0.9368 x GCS, + 0.7326 x SBP. + 0.2908 X RR,

A.15 Trauma and Injury Severity Score (TRISS)

TRISS computes a probability of survival, Ps via the logistic formula

1

S 14e L

in which L = co+c¢) x RTS+co xISS+c3 x AGE, where AGE, = 1if > 55 years, AGE, = 0 otherwise.

On MTOS data, different sets of coefficients were fitted separately for blunt and penetrating injuries:
Blunt Penetrating

Py

co —1.2470 —0.6024
cl 0.9544 1.1430
c2 —0.0768 -0.1516
3 —1.9052 —2.6676

Note that since TRISS incorporates ISS, it cannot be used as a pre-hospital triage tool. Instead, it
is normally used for ez post quality-of-care evaluation.

A.16 Severity Characterization of Trauma (ASCOT)

As in TRISS, probability of survival is computed from a logistic formula, with coefficients fitted to

MTOS data, viz., )

ST 1teL
in which
L=cy+c; xGCS.+¢cyxSBP,+c3s xRR.+ ¢4 XxA+cs xB+cg x C+e7 x AGE

The coding convention is the same as in TRISS. The variables A, B, and C refer to the severities
of anatomical injuries in specific regions:

A Cranial or spinal cord injury of severity in AIS range 3 -5

B Thoracic or frontal neck injury in AIS range 3—5

C Any other injury in AIS range 3 — 5
A, B, or C is equal to 1 if the corresponding criterion is met, 0 otherwise. As in TRISS, ASCOT
uses separate sets of coefficients for blunt and penetrating cases:
Blunt Penetrating

co -1.1570 —1.1350
c1 0.7705 1.0626
c2 0.6583 0.3638
c3 0.2810 0.3332
c4 —0.3002 -0.3702
Cs —0.1961 —0.2053
Cg -0.2086 —0.3188
cr —0.6355 —0.8365
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A.17 Proposed Triage Rules

The following decisional rules have been proposed in the literature [39] as tools for pre-hospital
triage. Reported sensitivity and specificity performances are as follows:

Send to Trauma Center if: Sensitivity (%) Specificity (%)
TS <14 63 88
TS <12 46 97
MOI=1 54 93
TS<120r GCS <10 or MOI =1 78 63
SEV =3 51 96
CRAMS £ 8 39 89
PHI > 4 73 75
RSM <10 59 92
RPM <10 61 88
KRC=1 85 65
T-RTS <11 59 82
T-RTS <10 49 92
T-RTS <9 39 96
RTI > 15 95 87
TITR =1 92 92
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B Trauma Physiology Examples

In this appendix, we discuss a few representative examples [6] of the physiological implications
of trauma. As a primary illustration, let us consider the consequences and manifestations of hy-
povolemsa, i.e., significant loss of blood volume due to exsanguination (bleeding). Physiological
responses at both the macro- and micro-circulatory levels take place. The sympathetic nervous
system intervenes to induce vasoconstriction of the arterioles and to reduce the storage c pacitance
of the veins. Sympathetic stimulation of cardiac muscle increases the heart rate, respiratory rate,
and myocardial contractility to offset the diminution of stroke volume and systolic blood pressure.
Blood flow is allocated preferentially to those vital organs, namely the heart, lungs, and brain,
least tolerant of oxygen debt. At the microvascular level, constriction of the arterioles diminishes
the hemostatic pressure within the capillaries, perturbing the osmotic equilibrium and inducing
movement of water from the interstitial spaces into the vessels. This effect is manifested by dilu-
tion of the hematocrit (volumetric fraction of blood comprising red cells) and the serum proteins.
In this way, the body is able to establish a state of compensated shock against moderate (10-15%)
losses of blood volume. Through frequent fluid intake and endogeneous release of aldosterone and
antidiuretic hormone (which modulate the fluid-removal function of the kidneys), the patient is
able to hold out for a relatively long period, without intensive medical attention, until a compatible
blood donation can be found to restore normal volume.

If exsanguination persists, however, the compensation mechanisms are eventually overridden.
Patients in such states of progressive shock exhibit elevated levels of catecholamines and kinins
(vasoactive agents that increase capillary permeability and reduce venous capacitance to facilitate
release of blood stored in the veins). At the cellular level, tissues eventually become ischemic,
i.e., unable to receive the supply of nutrients necessary for normal metabolism. The cells resort
to anaerobic metabolism, which results in diminished ATP (adenosine triphosphate) production,
hypercarbia, and lactic acidosis. The most ominous consequence is that the ATP deficit deprives
the cells of their ability to remove sodium, creating an osmotic gradient that favors fluid movement
into the cells from the vessels. This counteracts the intravascular fluid movement established in the
compensated state and has the effect of exacerbating the hypovolemia. Patients in this condition
have usually reached an unsalvageable state of irreversible shock.

Hypovolemia thus illustrates the complicated and dynamically rich character of the response of
the body to trauma. Interpreted as dynamical system behavior, the physiological defense activity
is highly nonlinear with respect to severity of blood loss. For example, the compensated state
may be regarded as a metastable dynamical state that can be maintained with little medical
intervention (i.e., fluid intake and direct pressure to prevent further bleeding). There is a critical
severity of hypovolemia, however, which becomes fatal (namely where the ionic pump mechanisms
fail). Cardiogenic failure, where the myocardium can no longer supply adequate cardiac output,
and renal failure, where the kidneys themselves become ischemic, pose additional potential threats
to life in hypovolemic cases. The analysis also demonstrates how various biological indicators
(tachycardia, tachypnea, reduced pulse pressure, lactic acidosis, depressed arterial PO, elevated
venous PCOg3, low hematocrit, high catecholamine levels) can furnish telltale signs of the abnormal
physiological condition characterizing the patient.

Note that all of these outputs are rather difficult to measure and may require invasive procedures.
Just looking to see whether the patient has bled through an open wound provides little help in
the numerous cases where patients have sustained blunt, but nonetheless life-threatening, trauma.
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Two examples in point are hematomas, or large internal blood balloons, stemming respectively
from blunt head and thoracic injuries. Pulmonary hematomas can have at least two deadly effects,
namely tension pneumothoraz, in which inspired air accumulates in the chest cavity but cannot
escape, and cardiac tamponade, in which the hematoma mass presses against the heart, constricting
diastolic filling and forcing heart rate to rise. In tension pneumothorax, a performation in lung
tissue causes inspired air to become trapped in a pocket just outside the lung. The accumulation of
air within the pocket, which increases with each breath, constricts the effective volume of the lung
and results in death within minutes unless the pocket is punctured from without to release the air.
Both conditions require astute perception to be recognized and fast reaction to avert death.

In closed-head trauma, a different host of pathophysiological effects arises. Cerebral hemorrhag-
ing raises intracranial pressure (ICP), which impairs venous outflow, blocks egress of cervospinal
fluid, and causes cerebral perfusion pressure (CPP, defined as systemic arterial pressure less ICP)
to fall. Equally importantly, mental consciousness diminishes, and the patient tends to fall into a
hypoventilatory state known as syncope. Hypoxia, hypercarbia, and metabolic acidosis gradually
set in. As a compensatory phenomenon somewhat analogous to compensated hypovolemic shock,
the Cushing mechanism attempts to maintain CPP by raising systemic arterial pressure (averaged
over both systole and diastole). If this mechanism is overwhelmed, however, cerebral blood flow is
impaired, and ischemic neuronal cells perish rapidly. For head injuries, therefore, many of the same
indicators useful in the cases of hypovolemia and and pulmonary hematomas (e.g., SBP, DBP, RR,
P, CO, PaOg, PaCOs, tissue pH) provide pertinent information, along with several others specific
to head injury (i.e., ICP, CPP, and level of consciousness, as measured by EY, VB, and MT).
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C Theory of Classification Models
C.1 Class Membership Probabilities -

As a first-principles starting point for introducing the mathematical theory of classification,
let us consider a simple case in which there exist two classes (POSITIVE and NEGATIVE) and
a single independent attribute variable, z, which is real-valued and continuous. Let us assume
that the probability densities describing the distributions of the two classes with respect to z are
Gaussian, viz.,

P(z) = o '(2r) /% exp [—(m - ,un)2/202:| (7a)
() = o7 @m) 7 exp [~(z - y)?/20%]. (7b)

Eq. 7a states that for a randomly selected observation belonging to the NEGATIVE class, the
probability that its attribute value lies between z and z + Az is approximately P,(z) Az if Az
is sufficiently small. The NEGATIVE and POSITIVE probability densities are both Gaussian
centered at u, and p, respectively. For reasons that will soon become apparent, the variances
for the two are assumed to be the same. The distributions are illustrated generically in Fig. 9,
from which overlap is apparent (u, =0, p, = 3, 0 = 1). The ease with which the classes can be
distinguished depends on the separation of the peak centers, |u, — .|, relative to the variance, 2.

NEG POS

P(x)

Figure 9: Class Probability Distributions in Attribute Space

The objective of classification is to determine the class membership probabilities of an arbitrary
exemplar, given that its attribute assumes value z. These probabilities may be obtained by way of
Bayes’ formula (see Appendix C.2 below), viz.,

Wn(x) = a,F(z) [anpn(x) + apPp(x)]_l (83‘)
7Tp(x) = apPp(x) {anpn(x) + apPp(x)]—l . (Sb)

7.() is the probability that an arbitrary exemplar of attribute value z belongs to the NEGATIVE
class. m,(z) = 1 — m,(z) is the probability that that same exemplar belongs to the POSITIVE
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class. o, and o, are a priori probabilities (e, + o, = 1), i.e., the probabilities of an any arbitrary
exemplar belonging to the respective classes. For example, o, = 0.5 and o, = 0.5 means that
NEGATIVEs and POSITIVEs are equally prevalent in the general population of interest (e.g., for
epidemiological studies).

Substituting Egs. 7 into Eqgs. 8 yields:

m(z) = €2 [14e"e (92)

@ = [+ (90

in which g = [l z]”, and § = [61 6:]" = [In(o, /o) — (42 — p2)/20%  (pp — pa)/0?]". The
class membership probabilities in Egs. 9 are logistic, or sigmoidal, functional forms in z. Assuming,
for concreteness, that p, > p., it follows from the logistic forms that 7, — 1, 7, — 0 as £ — —oco
and m, — 0, m, — 1 as z — oo. Thus, the POSITIVE class is dominant for z > 0 and the
NEGATIVE class is dominant for z < 0. Were the variances in Eqgs. 7 unequal for the two classes,
the class membership probabilities would not assume logistic forms and no such regions of attribute
space in which a given class dominates could be established.

From a training database, in which attribute values and actual class membership are provided
for each exemplar, the coefficients, §, can be computed either from first-principles analysis (i.e., by
determining the probability densities, fitting Gaussian distributions to them, and using the above
formula for @ in terms of the peak centers and variances) or via logistic regression, which is the
analogue of least-squares regression for classification problems. For a general classification problem
involving C' > 2 classes, the class membership probabilities are logistic forms, wviz.,

_oT. ¢ _grg]7t
WC(Q) =€ bz [Zc’:l € Qc _j! (10)
with § o = 0 to guarantee uniqueness of the fitted coefficients. Arguments of logistic functions, such
as 07 in Eq. 10, are called logits. Having obtained fitted coefficients for the training database, the
polynomial functions 8 -z for c = 1,...,C — 1 segregate the classes in attribute space and entirely
determine the membership probabilities. Surfaces of constant 8] - z serve as natural dividing
boundaries that partition the attribute space into regions in which the classes assume various
degrees of relative dominance. In the general case, for instance, Class 1 is dominant in regions
where 8] -z <« 07 - z,...,0% z.

C.2 Bayes’ Theorem

Let us suppose that we are analyzing a population of patients, such as in the example above,
whose observable medical condition is characterized by a single attribute variable, z, which is
continuous and readily measurable. For an arbitrary patient belonging to class ¢ (among C >
2 possible classes), the probability that the attribute lies between z and = + Az (where Az is
sufficiently small) is equal to P.(z) Az. = may denote a variable such as respiratory rate, whereas
¢ might denote a triage category.

The expression P.(z) Az is a conditional probability, namely the probability that the attribute
lies between z and x + Az given that the patient belongs to class c. In classical probability theory,
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the conditional probability is defined as

P(membership in class ¢ and attribute lies between z-and x + Az)

P (z) Az =
o(z) Az P(membership in class c)

(11)

To compute the probability expressions in the numerator and denominator in Eq. 11, one must
envision a large database of patients representing the general population of interest. The ensemble
of patients must represent, comprehensively and accurately, the statistical distributions of attributes
and class memberships one would expect to encounter in practice, e.g., in modeling the demand
distribution in a queueing problem. The denominator, in this analogy, denotes the fraction of
patients out of the entire trauma population (e.g., encountered by a given hospital in a particular
year) who happen to belong to class ¢, regardless of z. This involves treating the database as a long
table and counting the percentage of patients in class ¢. In the language of Bayesian probability
and belief networks, this is an a priori probability, c..

Given z, it will generally be the case that there exist several classes to which the patient could
conceivably belong. In Fig. 9, for instance, a value of z = 2 could belong to either the POSITIVE
or the NEGATIVE class, since the respective probability distributions overlap. Whereas it may
be possible to compute P,(z) from ez post epidemiological studies or by other means, the quantity
of practical interest in critical care applications is the probability, m.(z), that a patient belongs to
class c given that his/her attribute lies sufficiently close to z. This is also a conditional probability,
but with the circumstances transposed. It is computed as

rolz) = P({membership in class ¢ and attribute lies between z and = + Az) (12)
e\ = P(attribute lies between z and z + Ax) '

The numerator in Eq. 12 is the same as that in Eq. 11 and is thus equal to a.FP.(z)Az. The
denominator is equal to the probability, with respect to the entire population, that the attribute
lies between r and z + Az, regardless of class membership. This quantity may be computed by
summing the expression in the numerator of Eq. 12 over all classes, viz.,

9
P(attribute lies between z and =z + Az) = Z oy Py(z) Az . (13)
=1
Eq. 12 then becomes
acP.(2)
To(z) = =L 14
e(a) Yo aoFPy(z) 19

in which Az’s in the numerator and denominator cancel. The expression in Eq. 14 is known as
Bayes’ formula [25], which provides a readymade mechanism for inverting conditional probabilities.

C.3 Logistic Regression

To illustrate the mechanics of logistic regression by reference to a generic example, let us suppose
that we have a training database of N training exemplars of the form {z;,y:}, in which z; isa P x1
set of (synthetic) input variables for the i’th exemplar and y; denotes its actual class membership.
Whereas the inputs are observable on line, as in least-squares estimation, class membership can be
directly ascertained on line. We wish to develop a model for inferring or predicting the probability,
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me(2;), that the i’th observation belongs to class ¢, in which there exist C' > 2 classes, all of which
must be represented in the training database.

Logistic regression postulates class membership probability functions of the logistic forms in
Eq. 10, with - = 0. The objective is to find coefficients, g, such that the resulting membership
probabilities accurately reflect the character of the training exemplars in toto. Eq. 10 indicates
how to compute the membership probabilities for an arbitrary exemplar given z and regression
coefficients @ for each class. To fit coefficients to the training database, logistic regression appeals
to a mazimum likelihood principle, in which the negative of the total log-likelihood function of the
form

N
ABy,...,80) = Zi:l (yi = ¢) In me(z;; 81, -.-,8¢0-1) (15)

is minimized globally in coefficient space. In Eq. 15, the exponent (y; = ¢) is equal to unity (zero)
if the statement that the i’th observation actually belongs to the class c is true (false). Since each
observation belongs to exactly one class, all but one term in Eq. 15 is equal to unity.

To minimize A, its gradient with respect to each 8 vector must vanish, viz.,

c

(VA)(e;p) = OM/B0cp = szil Tip {Zc/=1 [(yi=¢) —mie] } =0 (16)

foreachp € {1,..., P} and c € {1,...,C —1}. That A be a local minimum, not just an extremum,
requires that the Hessian tensor be positive definite. The Hessian components compute to

N
(DA)(c,p),(c’,p’) = 82A/8ec,p89c’,p’ = Zi:l ZipTip ﬂ'i,c’(‘sc,c’ - 7Ti,c) (17)

in which 6. = 1if ¢ = ¢/, 0 otherwise. In coeflicient space, VA and OA are respectively a column
vector and square matrix, both of dimensionality P(C — 1).

Eq. 16 is a set of transcendental equations that can be solved only by iterative numerical
methods such as Newton-Raphson, in which one solves approximately for the point at which the
gradient vanishes by appealing to a first-order Taylor series expansion, viz.,

(VA)lg,,, = (VA)lg, + A8 - (BA)y, (18)

18,41

Af = 0,4, — 8; is the difference between the j’th and (4 + 1)’th iterative approximations. From
Eq. 18, it follows that the gradient in the (j + 1)’th approximation will be much closer to zero than
in the 7’th if Af is such that the right-hand side nearly vanishes. This can be accomplished by
choosing Ag such that

Ag = —(TA) g, - (VA)lg, (19)

in which the dot denotes matrix multiplication. In the Newton-Raphson method, one starts with
8y = 0 as the zeroth approximation and uses Eq. 19 to obtain successively more accurate approx-
imations of the set of 8 values that yield the optimal maximum-likelihood fit. Eqgs. 16 and 17 are
used to compute the gradient and Hessian at each step.

Convergence is rapid and reliable except in cases involving small training databases where it is
possible to completely segregate two or more classes by way of a hyperplane along which 87 - z is
constant. If in the simple two-class case in Fig. 9, for example, a small training database were such
that every single exemplar with z < 2 happened to be NEGATIVE and every exemplar with z > 2
happened to be POSITIVE, the coefficient 8, would diverge to infinity. The resulting membership
probabilities are still valid, but the logistic regression requires a build-in criterion to break out of
the infinite Newton-Raphson loop.
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D Decisional Algorithms and ROC Curves

D.1 Decisional Algorithms and Classifier Probabilities -

Decisional algorithms are coupled intimately with classifiers in that they utilize computed class
membership probabilities as the basis for pragmatic decision-making and subsequent action. A
decisional algorithm issues a command for the user to take action based on the working hypothesis
that the exemplar in question (i.e., the patient) belongs to that one class that it selects, or declares.
For example, if an accident victim has been determined, from a diagnostic classification algorithm,
to have a 70% chance of having sustained life-threatening major trauma, but a 30% chance of
having only minor injuries, a decisional algorithm would issue the command to treat and evacuate
the individual as if he/she actually were a major trauma case. At least for the short run, all eggs
are placed in the major trauma basket; efforts would be made to transport the individual to a
Level I trauma center. Note, however, that the decision is risky to the extent that it must be based
on what the underlying medical condition suspected to be as long as the classes are fundamentally
difficult to distinguish.

To formulate a decisional rule, one must specify thresholds on either the logit polynomials,
67 - z, in the logistic formulae (Eq. 10) or directly on attribute space. For a particular decisional
algorithm tested on a given evaluation database, the efficacy of the algorithm, in conjunction with
any accompanying classification or estimation algorithms, is summarized by way of the C x C

confusion matriz, viz.,
K K
K= n,n n,p (1)
K’P,n HP:P

in which k. denotes the number of actual class ¢ exemplars assigned to class c. Whereas the
diagonal elements tally correct decisions, the off-diagonal elements correspond to Type I and Type
II errors. The decisional algorithm must be formulated carefully and deliberatively in such a way
that the prevalence of Type I and Type II errors are jointly held down to tolerable levels. This is
important because penalties for misclassifying cases are typically very severe and must be addressed
explicitly. In medicine, this is a matter of life and death; the goal of triage itself is to reduce the
prevalence of one type of classification error (overtriage) without increasing appreciably that of the
opposite type of misclassification (undertriage). Astute placement of thresholds is necessary.

D.2 Classification Performance and ROC Curves

Since the confusion matrix elements, in general, scale proportionally with the size of the test
database, the efficacy of the decisional algorithm is best revealed by way of two key sets of ratios,
the first of which are the elements of the C' x C classification performance matrix, II, whose generic
component II. » denotes the percentage of (actual) class ¢’ observations assigned to class ¢ by the

decisional algorithm, viz.
Ke,c!

=" 2
2o ke @)
The denominator is the sum of the elements in the ¢’th column of k. It follows that each column of

II sums to unity. The classification error rates, i.e., off-diagonal components of II, depend on the
choice of thresholds as well as the inherent overlap of the probability densities (as in Fig. 9).

1-J:cc’
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Yo '

NEGATIVE POSITIVE

P(x)

Figure 10: Probability Distributions for Two-Class Univariate
Case with Threshold at z =0

To illustrate how thresholds are established and classification errors quantified, let us return to
the simple univariate two-class problem. Let ¢ be a threshold such that the decisional algorithm
declares a patient to be NEGATIVE (i.e., not in need of critical care services) if z < £, and POSI-
TIVE otherwise. Computation of the components of II requires integration under the probability
distribution functions. For example, II, , is the definite integral of P,(z) from —co to &, i.e., the
shaded region in Fig. 10. The matrix computes to

HZ(n,,,n nn,p>=< Nl = p)/fo] — NIE=p)/o] ) 3

. IL, l—N[(f—/J,n)/O’] l_N[(é."/J’p)/U]
in which 1
N(z) = ord e~ /2 gy (4)

is the definite integral of the normalized unit-variance Gaussian. To obtain good classification (large
diagonal and small off-diagonal matrix elements), it is clearly necessary to place the threshold
between the two peaks. Classification results are customarily presented using receiver operating
characteristic (ROC) curves, in which the sensitivity, II, , is plotted against the specificity, II, ,.
Sensitivity and specificity respectively are the fractions of actual POSITIVEs and NEGATIVEs
correctly identified as such; for this reason, they are extremely important for ez post quality control
and evaluation of algorithm performance.

Fig. 11 illustrates a family of nominal ROC curves, which differ in the ratio of Ay = p, — p,
to 0. In the plot, nine curves are shown with Au/o ranging from 0 to 2.0 in steps of 0.25. For
cases in which Ap/o is large, the ROC curve is tightly wedged into the upper left-hand corner
of the plot square. The two classes are easily distinguishable, and it is possible to achieve high
sensitivity and specificity simultaneously. The opposite extreme is the 45° line from the lower
left to the upper right, in which case the peak centers coincide and the classes are completely
indistinguishable. Different points along a single ROC curve reflect the classification performance
accruing to various threshold placements. The upper right-hand corner corresponds to £ = —oo,
in which case all observations are declared POSITIVE. At this conservative end of the threshold
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spectrum, high sensitivity at the expense of low specificity results in overtriage. The lower left-
hand corner corresponds to = oo, which is the undertriage extreme. The midpoints of the curves,
lying on the downsloping 45° line from the upper left to the lower right, correspond to thresholds
placed exactly halfway between the peak centers; the ROC curves are all symmetric about this
diagonal. ROC curves illustrate that sensitivity and specificity are desirable ends that can not
both be satisfied perfectly. The closest one can come to satiety (perfect sensitivity and specificity)
is limited fundamentally by the inherent variances in the probability distributions of the two classes.
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Figure 11: Mathematical Family of ROC Curves

To conform to the convention of drawing ROC curves that go from the lower left- to the
upper right-hand corner, the horizontal axis features (1 — specificity) rather than specificity per
se. The quantity plotted on the horizontal axis then shows the fraction of (actual) NEGATIVEs
misidentified as POSITIVEs.

D.3 Threshold Placement

Designing decisional algorithms is not as simple as merely selecting the class with the greatest
membership probability. As an example, let us return to the two-class univariate problem, but
such that the NEGATIVE and POSITIVE populations are highly asymmetric, with o, = 97% and
a, = 3%. These distributions are typical of many trauma registries, including the two that we
analyzed in the present report.

Assuming, hypothetically, that maintaining equal specificity and sensitivity is a desired trauma
management objective, the threshold, £, should always be set equal to %(,up — i) The specificity
and sensitivity values in Eq. 4 are independent of a, and «,. From Eq. 9, it follows that the
required probability threshold is equal to

1

T ire (52)
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in which

Le =014 6:¢ = In(on/ ) - (5b)

is logit value at the threshold point. It follows readily that P; = 0.03. In other words, any patient
with a nonsurvival probability above 3% should be declared a major trauma case and treated as
such. The threshold placement closely matches the prevalence of major trauma among the general
population that was used for fitting the underlying classification model. For this reason, special
care must be taken to ensure that the trauma populations on which algorithms are trained closely
resemble the populations to which they will later be applied.

D.4 Reliability

A much more serious difficulty of working with asymmetric populations for training and testing
algorithms is the poor reliability that results. Reliability indicators are a second set of ratios that
follow from the confusion matrix, &, in which

Ke,e!

e, =
' Zc” Keyet

is the percentage of exemplars assigned to class ¢ that actually belong to class ¢’. The denominator
is computed by summing over rows, rather than columns, of k. The elements of the reliability
matrix are related to those of the classification performance matrix through Bayes’ formula, viz.

(7)

R (6)

Qe Te el

! ==
Zc” Qe e ot

R

The rows of R sum to unity. Fig. 12 illustrates a family of nominal reliability curves for the
same set of Au/o values as in Fig. 11. The curves are for the case of @, = 0.03. The true
NEGATIVE rate, R,,, is plotted on the horizontal axis, with the true POSITIVE rate, R, ,, on
the vertical axis. Evidently, R,, and R,, are always greater than 0.97 and 0.03, regardless of
the threshold placement. The latter quantity, R, ., tends to be quite poor when the population
is highly asymmetric. For example, if I, , = IT, , = 0.95, the true NEGATIVE and POSITIVE
rates are 99.8% and 63.0% respectively. For discrimination powers of II,, = II,, = 0.90 and
I, =II,, = 0.85, the true POSITIVE rate falls to 21.8% and 14.9%. This phenomenon is in
agreement with what was observed in the UVA and NCTR trauma data.
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Figure 12: Reliability Curves for a, = 0.03

It is, of course, possible to improve the reliability statistics by changing the threshold placement,
but this upsets the specificity and sensitivity characteristics. Moving the threshold in Fig. 10
to the right increases R,, but reduces the sensitivity, resulting in undertriage. Where exactly
the threshold should be properly placed, for a given level of discrimination capability between
the classes, is one of the most challenging problems of trauma management. On the one hand,
hospitals, insurance organizations, and public health officials, who are concerned primarily with ez
post evaluations of critical care, are interested chiefly in sensitivity and specificity characteristics,
i.e., II. By contrast, EMTs in the field are concerned chiefly with whether pre-hospital decisions in
individual cases are correct. They are interested mainly in the reliability statistics. If, for example,
a hospital wishes to achieve performance criteria of 92% specificity and sensitivity, its EMTs would
have to declare survival predictions that are actually erroneous three times out of four to avoid
undertriage. Reconciling such conflicting objectives is incumbent on the medical community, but
could possibly be resolved by analytic means through the systems-theoretic trauma management
approach described in Appendix F.
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E Belief Networks
E.1 Case Study g

The most lucid way to illustrate belief network concepts is to work through a specific problem,
such as the following case study introduced by Judea Pearl [63].
Consider a state of affairs defined by six circumstances:

p1 = It is cloudy outdoors

p2 = It is raining

p3 = Your rain sensor tells you that it is raining outside
ps = Plans for a baseball game proceed

ps = Your son gets sunburned

pe = Your son goes off to visit his aunt.

Each circumstance is a proposition that is either true or false in the classical logic sense. However,
you, the observer, cloistered inside your windowless office on a Saturday afternoon, lack complete
factual information about the full state of affairs. By appealing to belief network formalism,
however, you can obtain circumstantial evidence about the probability of your being able to attend
the baseball game, even though you have no hard factual evidence about whether it will be raining
outside.

The basic strategy is to construct a lookup table with one row for each possible state of affairs;
in this case there would be 2% = 64 rows. The first major step is to determine a priori probabilities
for each possible state of affairs. This requires identifying cause-and-effect relationships among
the various circumstances; in this case, everything depends, directly or indirectly, on weather it is
cloudy outdoors. In the absence of any factual or circumstantial evidence about the whether, let
us suppose that you can only conclude, from historical experience, that the probability that it is
raining outside is 10%. From this, one would obtain the first of several filter factors, the product
of which will give the a priori probabilities for the complete lookup table, viz.,

fi=09-(p1) +0.1-(p1) 1)

in which P17 denotes the statement that p; is false. Eq. 1 means that not knowing anything about
how the presence of clouds affects any of the other circumstances, a state of affairs without clouds
is nine times more likely than one with clouds. However, clouds determine whether it might be
raining: if it is cloudy, there is, other things equal, a 60% chance that it will be raining outside,
whereas it cannot possibly be raining on a cloudless day. This piece of general cause-and-effect
knowledge generates a second filter factor, viz.,

fa=(@1)[1-(P2) +0- (p2)] + (p1) - [0.4- (F2) + 0.6 - (p2)] (2)

Eq. 2 rules out entirely the state of affairs in which it is raining (ps) and cloudless (1), since such
is at variance with the certainty relationship that no clouds implies no rain.

Suppose that inside your windowless office, you have an unreliable rain alarm that has a 80%
chance of sounding on a rainy day and a 4% chance of sounding on a fair day. This prompts a third
filter factor:

f3 = (P2) - [0.96 - (73) + 0.04 - (p3)] + (p2) - [0.20 - (53) + 0.80 - (p3)] (3)
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If it is raining, there is a 95% chance that the game will be canceled, but if it is not raining, it is a
certainty that the game will be held:

fa=(p2)-[0- (pz) +1- (po)] + (p2) - [0.95 - (Pa) +0.05 - (pa)] (4)

If it is cloudless, there is a 70% that your son will get sunburned, and a 10% that he will get
sunburned on a cloudy day:

fs = (p1) - [0.30 - (P5) + 0.70 - (ps)] + (p1) - [0.90 - (p5) + 0.10 - (ps)] (5)

Finally, if your son is burned, he always runs off to his aunt for her to tend to him, but otherwise,
there is only a 2% chance that he would have reason to see her:

fo = (p5) - [0.98 - (Pg) + 0.02 - (pe)] + (ps) - [0- (P6) + 1 (s)] (6)

Having covered all of the causal relationships among the six circumstances, the a priori probabilities
may be computed directly, viz.,

P(p1,p2,p3,04,05,06) = fifafsfafsfo (7

This is a column of 64 numbers that sum to unity; once all of the causal relationships and filter
factors have been accounted for, the resulting a priori probabilities are automatically normalized.
The numbers in this example may be computed easily using almost any commercial spreadsheet
package by following the steps described above. Of the 64, only 24 state-of-affairs scenarios have
nonzero probabilities; the rest contradict certainty relationships. The scenario with the highest
probability is that it is a cloudless, rainless day, your alarm does not sound, the game will proceed,
your son gets burned, and he goes to his aunt. The a priori for this particular state of affairs is
computed as:

P=(fi=09) (fo=1) (f3=096)-(fa=1)-(fs =0.7) - (f6 = 1) = 0.6048 (8)

In the absence of any partial evidence about the state of affairs on the particular day in question,
this would be the most credible story. The a priori probabilities furnish classical conditional prob-
abilities matching those probabilities that were invoked in the causal relationships. For example,
the probability that it is raining given that it is cloudy is defined in the strict classical sense via
combinatorics, viz.,

P(p; and po)

The numerator is the sum of all a priori probabilities for which ps is true; the denominator sums
over only those states for which p; and p, are both true. The result is 60%, which coincides with
the probability used in the second filter factor. It is important to realize that only the a priori
probabilities can be used in Eq. 9. Once you hear the alarm, it is not true that the credibility of
rain-and-clouds divided by the credibility of rain is 60%.

The lookup table of a priori probabilities, once generated, furnishes a straightforward means of
modifying the probabilities, or belief weights, of various combinations of circumstances as partial
evidence is acquired. For example, suppose that your alarm does go off, and you wonder what
this portends about the chances of your being able to attend the baseball game. In the absence

P(p2lp1) =
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of any knowledge of the circumstances on the particular day, the lookup table would indicate that
the game has a 94.3% chance of being held. Once you hear the alarm ring, however, you learn
something peculiar to the state of affairs on the present day. Only those states for which p3 is true
can survive vis-a-vis the new evidence; all others have to be screened out. Of the 24 states with
nonzero a priori probabilities, 12 are automatically eliminated in light of the new evidence. The a
priori probabilities of the surviving 12 sum to 0.0856. The credibility now ascribed to any one of
those surviving scenarios is the a priori probability divided by 0.0856; this way, the credibilities sum
to unity. It is by virtue of this renormalization process that circumstantial evidence can make some
scenarios more credible than they previously were. For example, the scenario of clouds, rain, alarm,
no game, no burn, no visit, which had an a priori credibility of 4.02%, now receives a credibility of
47.0%. It appears far more likely (53.3%) that the game will be canceled.

The screening and renormalization process would continue in this fashion as additional evidence
is acquired. If, for example, your son telephones you to inform you of his intention to visit his aunt,
without disclosing anything about the weather or his skin condition, the credibility of your being
able to attend the game rebounds to 82.8%, since this would provide strong circumstantial evidence
that your alarm had sounded falsely.

Belief networks can be applied to both classification, as in the case study just presented, and
estimation. The only difference is that estimators perform reaveraging instead of renormalization.
For example, suppose that the medical state of affairs for a trauma patient has been whittled down
to one of four possible scenarios, the ISS scores corresponding to which are 10,12, 14, and 16. The
estimated ISS score would therefore be (10 -+ 12 + 14 + 16)/4 = 13. If new evidence is acquired
that contradicts the first two scenarios, the ISS belief would be revised to (14 + 16)/2 = 15.

E.2 Belief Networks vs. Regression/PNN Methods

Regression and PNN methods for estimation and classification relate inputs and outputs by
way of explicit functions, i.e., y = f(X). Belief networks, by contrast, take the radically different
approach of obtaining output estimates and probabilities from lookup tables. To appreciate the
basic difference in the regression/PNN and belief network approaches, it is perhaps best to think of
the two conceptually in the following manner. Regression and PNN methods attempt to fit a single
function across the entirety of the input variable space, i.e., a continuous, real-valued function in
the case of estimators and such functions as logits in the case of classifiers. The validation process,
governed by PSE or cross-validation, generally forces these functional forms to be parsimonious to
avoid overfit. Prevention of overfit mandates that the fitted functions, even high-degree Ivakhnenko
polynomials, not have excessive curvature. As a result, fitted models tend to be “stiff,” a linear
regression, in the most rudimentary case, forcing a perfectly straight line through a set of data
points.

A major disadvantage of regression/PNN is that these methods attempt to summarize the en-
tirety of training data presented to them. Their one-function-fits-all paradigm tends to make it
difficult for them to adapt to local peculiarities in certain regions of input space. Alternatively
interpreted, the fitted functions cannot have locally rough or sharp features. However, whereas
regression models are irrevocably handicap with respect to such objections, PNNs do have some
flexibility to accommodate local adaptation: (1) they admit more general (and therefore higher
curvature) functions than regression models; (2) locally trained PNN models can be “spliced” to-
gether in a mathematically clean fashion; and (3) the PNN method can readily use nonpolynomial
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basis functions instead. One particular genre of admissible basis functions has been formulated
chiefly to address this type of dilemma. In signal processing applications, wavelets have been intro-
duced as special basis functions that have translational and dilatational degrees of freedom. This
enables them to zoom in on localized “blips,” e.g., seismographic murmurs, musical notes, speech
sounds, optical images, electrocardiogram anomalies. Because of this flexibility, wavelets are able
to overcome the well-known limitations of Fourier transform methods arising from the uncertainty
principle. There is, in a vague sense, a “stiffness” in the Fourier basis functions analogous to that
of the polynomial functions used in regression.

An alternative, somewhat less elegant, method for addressing the local adaptation problem is
simply to chop the input space up into a collection of boxes or cells. A crude, but clever, example
would be to treat all trauma patients with GCS = 15 and normal RR as one cell and others with
GCS = 14, normal RR as another, completely independent cell. The estimated ISS for any patient
in a given cell would be the mean ISS historically observed for all past patients having belonged to
that cell. This is exactly the belief network approach, in which each “cell” is a row of the lookup
table. In this way, belief networks, which treat each scenario cell individually and independent
of all others, decouple the various regions of input space and overcome the one-function-fits-all
drawbacks of regression models. Although causal considerations may have been used to compute
a priori probabilities, the point is that such steps are not necessary to compute them; the a priori
probabilities in the Appendix E case study could just as well have been chosen randomly, filled
in by hand, and normalized. Conversely, if one obtained a complete table of a priori probabilities
empirically, it would be possible, through inspection of the numbers, to deduce the nature of the
causal relationships among the circumstances. This, however, is a complicated algorithmic process
outside the present scope.

Belief networks also provide a natural framework for graceful degradation of models, wherein
certain input data fields are omitted. In, for example, a belief network to estimate ISS from GCS
and RR, one would construct a lookup table of length equal to the number of GCS bins times the
number of RR bins. If GCS and RR are both available, the ISS would be looked up directly. But
if, say, RR were not available, the best one could do to infer ISS would be to average ISS over all
rows whose GCS matches the known value. In a regression strategy, by contrast, one would have to
do something cruder, such as develop a separate GCS-only backup model from scratch or assume
an average value for GCS obtained from the training database.

The advantages of regression methods over belief networks is primarily one of synthesis speed
and ease of modeling. Furthermore, unlike belief networks, regression models correctly recognize
that there generally should be some smoothness and continuity in the outputs generated by neigh-
boring cells. Whereas the screening and renormalization/reaveraging processes for belief networks
tend to be arduous and cumbersome, computing a polynomial function is a snap. On the other
hand, the difficult and lengthy validation process for regression models is avoided entirely in belief
networks by virtue of the single-cell paradigm.
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F Systems-Theoretic Approach to Trauma Management

Having described in Section 2 the environments in which trauma care takes place, we now
elaborate further the conceptual scope of trauma management. To help make a case for how
triage algorithms will fit into the big picture, we present a general systems-theoretic framework
for interpreting trauma management in its entirety as an integrated process in which algorithmic
software-driven tools would play a powerful and decisive role. Consideration of the intricate and
profound aspects of the larger problem, we believe, is ultimately necessary to overcome the most
difficult impasses in developing effective and accurate algorithms for injury severity and outcome
prediction.

F.1 Multidisciplinary Nature of Trauma Management

The problem of trauma management, at the highest level, is multidisciplinary. On the one hand,
its focus is the human body. Every trauma care decision, both in the field and in the hospital,
depends on how the patient’s bodily condition is expected to evolve in the near future, assuming
the application of certain treatment. Prediction of physiological outcomes, chiefly life and death,
is the most fundamental challenge at the heart of trauma management. It is also by far the most
difficult and involved part of the puzzle. The human body is a highly complex system of anatomical
structures, cells, and biochemical processes all tightly interacting in a purposeful, coherent, and
well-regulated fashion. Determining how it responds to a specific type of traumatic disturbance is
clearly a problem of human physiology [35] and closely related disciplines in the biological sciences.

Another major component of trauma management, namely the design and development of
biomedical instrumentation to acquire medical data from patients, also has roots in the biological
sciences. Virtually every remaining aspect of the problem, on the other hand, draws on disciplines
in the quantitative sciences, e.g., queueing theory, modeling, biostatistics, pattern classification, and
decisional theory. These fields belong to the more general domains of applied mathematics, systems
engineering, and management science. Collectively, all of these diverse tools must be harnessed in
a concerted effort to make the most of what limited biological data on patients can feasibly be
acquired.

The biological and mathematical aspects of the general trauma management problem can be
decoupled in the following sense. Suppose that the physiology of the human body and trauma
(Appendix B) were so completely understood that the fate of a patient having sustained a given
precisely-defined type of injury could be ascertained deterministically. Imagine a computer sim-
ulation of the complete physiological condition of the patient as a dynamical trajectory through
time. In the language of dynamical systems and control theory, the body, in the absence of medical
treatment, would be regarded as an autonomous dynamical system, or plant, and medical inter-
vention would be modeled as a set of exogenous control inputs, or forces, applied to the system.
Observable outputs would correspond to various clinical indicators, such as blood pressures and
respiratory status, that EMTs could readily obtain either by direct perception or with biomedical
instruments. The entire biological component of the problem could then be captured fully by an
integrated software suite that would: (1) generate a distribution of injury incidence patterns (i.e.,
initial conditions) appropriately characterizing a particular civilian or military environment; (2)
simulate the evolution of the patient’s medical condition through time in full detail; (3) contin-
uously accept medical treatment input and respond thereto; and (4) continuously supply output
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data. With such a hypothetical blackbox simulation tool, the quantitative science methodologies,
as mentioned above, furnish the full arsenal of tools and scientific resources needed to solve the
trauma management problem. In other words, they can be applied to prodiice a protocol of trauma
care policies such that if EMTs undertake certain prescribed treatment actions in response to a
stream of output data for a given patient, loss of life and limb will be minimized. Since scarcity of
treatment resources, as well as purely medical criteria, must be considered, the overall measure of
trauma management effectiveness would be minimizing aggregate losses.

Even with such a fantastic (at least by contemporary standards) blackbox simulator, the
quantitative-science part of the trauma problem remains formidable and involved. Suppose, for
example, that given any injury case, it were possible to determine immediately and with complete
accuracy the type and intensity of emergency medical care required to save the patient. Given
that trauma care resources are scarce and finite lead times (e.g., evacuation transit, cross-matching
of blood types) antecede actual arrival of some life-saving services, determining which patients to
attempt to save and where to send them is a queueing problem, which, in its own right, is far
from trivial. Moreover, the medical conditions of patients deteriorate as they “wait” in the queue.
Queueing simulations would be needed to optimize the triage and patient selection rules. To com-
plicate matters, appropriate treatment and, thus, the necessary bundle of life-saving resources are
not known a priori. The EMT and critical care hospital surgeon have wide choices of treatment
options, some of which might prove counterproductive. The consequences of each alternative would
have to be explored. Even if the EMT or physician had complete knowledge of the physiological
processes inside a patient’s body, it would be a doubly complicated problem to optimize the treat-
ment and queueing rules simultaneously. To make matters worse yet, the totality of sensors that
the EMT could expect to have, given current technology, could not come anywhere close to pro-
viding an exhaustive window of knowledge as to what is happening inside the patient’s body. Very
much to the contrary, short lists of salient features such as systolic blood pressure (SBP), Glasgow
Coma, Scale (GCS), and respiratory rate (RR) provide only a woefully sparse and often inconclu-
sive glimpse into underlying physiological processes. Such data can only provide a portrait of the
patient’s condition so sketchy that potential outcomes must be treated probabilistically, with great
overlap of the attributes of surviving and nonsurviving patients. The highly stochastic nature of
the problem, due to the limitations on what aspects of the physiological processes can be observed,
greatly complicates the formulation of treatment and queueing rules.

Nevertheless, the problem is still, in principle, amenable to solution. The decoupling approach
is intriguing in that it promises a full-blown solution to the entire trauma management prob-
lem. Moreover, all of the biological elements could be contained in the blackbox simulator. The
quantitative-science part of the problem, as just discussed, could be solved using resources no more
than pencil-and-paper analysis, computing power (with extremely high speeds and storage), and
knowledge of the trauma environment for purposes of building realistic parameters and assumptions
into the simulations.

F.2 Integration of Simulation Methods into Trauma Management

To devise useful quantitative tools to drive trauma treatment, it is clearly necessary to have
some means of testing their performance. Simulation, in principle, is a powerful methodology well
suited for applications such as this, in which it is desirable to trace the state trajectory of a complex
dynamical system such as the human body. The blackbox simulator that we have envisioned, for
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instance, would be able to account for all of the various physiological effects in response to any given
injury. The ability to perform such simulations, once they reach a certain level of sophistication, will
undoubtedly play an invaluable role in helping solve the entire trauma management problem. Most
significantly, it would breach the most vexing impediment that all efforts to date have encountered,
namely the dearth of original trauma data. Clearly, it is not possible to go out and obtain empirical
data at will; exemplars can only be obtained with hindsight from actual trauma cases that were
unfortunate enough to have occurred.

There is thus an extremely compelling demand for software methods to simulate trauma in
virtual human subjects. Such an approach would have at least four remarkable advantages: (1)
they could accurately account for most of the understood physiological aspects of response to
trauma in humans; (2) simulation runs could be performed in arbitrarily copious numbers; (3)
individual simulations could be rerun to explore the consequences of different medical intervention
alternatives at various times; and (4) they are nondestructive and do not require experimental
tests. Moreover, they completely isolate the biological aspects of the trauma management problem.
For these reasons, this type of simulation capability, once the state of knowledge and software
technology to realize it becomes available, will make the trauma management a far more tractable
problem than it is today.

Trauma simulation could be utilized in developing models and protocols for trauma manage-
ment. We now clarify the meaning of trauma management and highlight the types of decisions
that need to be made during the process. In doing so, we focus on the pre-hospital triage elements
of trauma management, i.e., those decisions about the qualitative degree of care required by a
patient, based on: (1) the limited biological information about his/her condition revealed through
clinical indicators; and (2) consideration of treatment resource scarcity. As our own contribution
of expertise, we have shown how to develop, interpret, and validate algorithms to drive triage,
i.e., mathematically clear-cut procedures to dictate decisions, based on all of the various biological
output indicators (which would be supplied as inputs to the algorithms).

From a systems-theoretic perspective, trauma management may be viewed as a set of sequen-
tial processes, from the traumatic event itself to discharge from a trauma center, meaning any
institution dedicated to providing emergency care to critical patients. Trauma centers may include
highly specialized critical care units in hospitals, general-purpose emergency rooms, or makeshift
treatment centers (during war or in impoverished societies). In any such institutional setting, an
incoming patient stands to receive at least a semi-professional level of medical care that could
make a difference between life and death. Abstractly, the trauma center may be viewed as a set
of parallel servers catering to a queue of incoming patients. A server, in this view, is a bundle
of reusable resource fixtures (e.g., beds, teams of medical personnel) that a patient may require
during his stay in the trauma center. To simplify the modeling effort, various assumptions may be
made (e.g., that all nonreusable resources, such as blood for transfusions, are infinitely abundant,
that a patient is under the undivided medical attention of a single server until discharged from the
center, and that all servers are equivalent and capable of performing any technologically possible
medical procedure that may be appropriate). As soon as a server becomes vacant, it immediately
accepts a patient (provided that at least one exists) from the queue. In receiving a new patient, the
server would consult a selection algorithm to identify that patient in the queue in most critical need
of immediate attention, based on pre-hospital information about the patients’ conditions. Based
on such information, the blackbox simulator could reveal what would happen to each patient in
the queue assuming either immediate attention or further wait. It could also indicate under what

71




', Contract No. DAMD17-96-C-6022 Barron Associates, Inc.

circumstances it becomes safe and appropriate to discharge a patient.

Trauma centers, as integral units in the larger trauma management system, could thus optimize
their own operating policies by utilizing selection algorithms in receiving patients for treatment.
The detailed modeling of the trauma center, of course, could be modified to reflect more realistically
how such institutions actually operate. For example, the servers may not all be equivalent in terms
of the quality of care they can provide, and different institutions (e.g., Level I and Level II hospitals)
may generally be expected to have differing grades of servers. Based solely on the demand patterns
(i.e., mean arrival rates and distributions of injury types encountered), any given trauma center
could perform simulations to determine optimal selection rules and treatment procedures for its
own internal use. Such queueing concepts, it should be pointed out, are of great practical interest
today insofar as medical information on pre-hospital patient status, forwarded by EMTs en route
to hospital, enables hospital emergency departments to prepare for such imminent arrivals and to
begin appropriate treatment immediately. Pertinent physiological data, such as those mentioned
in the solicitation and in Appendix B, enable hospital physicians to construct risk stratification
profiles of incoming patients and manage institutional resources more effectively in response to
demand patterns.

The trauma center end of the problem having been thus solved, pre-hospital EMTs could de-
termine the probability of a given patient under their care being treated successfully by any one of
several alternative trauma center destinations. Given knowledge of the patient’s medical condition,
the pre-hospital EMT has a number of evacuation modality and destination options. For a given
evacuation modality (e.g., land ambulance, aeromedical transport), there will be a certain transit
time that can usually be predicted quite reliably. Upon arrival of the patient at a given trauma
center, the EMT may anticipate a certain probability distribution describing the waiting period
that patient would face, based on the actual demand or the demand pattern that the hospital usu-
ally experiences, and its selection rule policies. The triage decision (choice of evacuation modality
and destination) reflects both the severity of the patient’s medical condition and consideration of
delay times. Triage algorithms, as part of a fully integrated solution to the trauma management
problem, would have to be able to assume such decisional burdens to aid pre-hospital EMTs. Sep-
arate treatment directive algorithms would determine the most appropriate short-term treatment
procedure, based solely on medical information about the patient’s condition.

F.3 Future Role of Trauma Simulation

The discussion and exposition in the preceding sections have sought to portray the true com-
plexity of the scientific challenges at hand and a vision of the larger trauma management problem
into which triage algorithms, we believe, properly fit. We have presented the dimensions of the
larger problem and the intricate nature of decisions that need to be made both in the field and in
the hospital.

The biological part of the trauma management problem is by far the most difficult. Simulating
the detailed physiological response of the body to a certain type of traumatic injury is presently
not practical. In the future, it is certainly conceivable that such capability will be realized at
the level of detail, simulation speed, and sophistication that would be needed for the purposes we
have described. We believe that it will be the ultimate key to a truly momentous breakthrough
in trauma management, and that once realized, will enable the entire problem to be tackled in
principle. A vast amount of research in the area of physiological modeling has already been done
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(cf., the ARPA biomedical project called “MediSim: Simulated Medical Corpsmen and Casualties
for Medical Forces Planning and Training” being performed in conjunction with the Medical College
of Pennsylvania, Sandia National Laboratory, and the Naval Postgraduate School), and much could
be accomplished by using neural networks to provide blackbox models where analytic subsystem
models are not presently available. However, we do not discuss physiological modeling further in
either the present Phase I Final Technical Report or in our Phase II proposal.

The present state of technology forces reliance on historical data from actual trauma incidents.
Such databases, however, have inherent drawbacks that must be acknowledged upfront. They
seldom contain patient records in the large numbers needed to perform truly conclusive statistical
analyses. The difficulty in acquiring access to civilian trauma registries for studies such as this
reflects, in part, concerns by the owners of such databases that inter-hospital comparisons may be
“unfair.” Opportunities to collect military trauma data, in particular, are extremely rare; the only
noteworthy example of such a body of data of which we are aware is the Wound Data and Munitions
Effectiveness in Vietnam (WDMEV) database [9]. Despite severe limitations such as these, much
useful analysis can be done on trauma registry data, primarily because algorithms can, and must,
play a key role in both the very nonideal world of today and the much-closer-to-ideal world (in
which simulation capability is readily available) of tomorrow. For this reason, demonstrating how to
harness algorithms, even on contemporary data, is by no means a moot exercise. Understanding the
limitations of conventional trauma registry data, however, is essential for sound statistical analysis
and knowing where problems and weaknesses lie.
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G Conventional Nonlinear Regression Approach

G.1 Modeling Using Nonlinear Stepwise Regression -

In conventional nonlinear regression approaches to estimation problems, f is usually taken to
have an algebraic polynomial functional form, viz.,

yrj=0"z (10)
in which z is a synthetic column vector containing monomial product combinations of the raw
inputs, X, and @ is the corresponding set of multiplicative coeflicients (model parameters). For
example,

z=[1 GCS? GCSRR]”

is a set of synthetic inputs constructed from the raw input set X = [GCS RR]. Note that the
inner product expression 87 -z in this way represents a general polynomial function. The analogous
procedure for logistic regression is to generalize the logit polynomials (Appendix C.3) in the same
way via synthetic inputs.

In this appendix, we illustrate the steps typically required for structure learning without use of
an ontogenic neural network synthesis tool such as GNOSIS, for purposes of training and validating
regression models; the trauma data from the University of Virginia are used in this example. The
purpose here is merely to illustrate the key steps of conventional nonlinear stepwise regression and
to contrast the approach with neural network synthesis algorithms, which automatically achieve
these basic objectives while yielding superior models. We herein illustrate, by example, all of the
key steps involved in constructing and validating regression models to provide values of the output
(ISS) as an explicit function of the inputs. :

For a given polynomial model structure, the coefficient values are computed readily via the
least-squares algorithm. Choice of model structure, however, is an open question left entirely to
the discretion of the analyst. We start with only a vague notion that ISS may somehow be related
functionally to the five key input variables provided in the database (AGE, B/P, GCS, RR, SBP).
A systematic search of candidate structures is needed. One basic stepwise regression strategy is to
start with a large quadratic polynomial and remove, or carve away, unnecessary terms one-by-one.
Once an optimally lean quadratic model is found, the process is repeated starting with cubic and
higher degree polynomials.

For illustration purposes, we start with a model containing a constant term, B/P as a linear
term, plus a complete quadratic polynomial in GCS, RR, and SBP. Let us denote this structure
as 1-b-g-r-s-g2-gr-gs-r®-rs-s2, in which the lowercase letters are abbreviated mnemonics for the
input variable and ‘1’ denotes the constant term. This is a very liberal, unparsimonious structure
which probably overfits the data. To test it, we use not the entire set of exemplars for training
but only part of it (e.g., 70%). The remainder of the dataset (e.g., 30%) is reserved for evaluation
of estimation errors. The purpose of partitioning the database this way is to account for the fact
that no training database, no matter how extensive, can include unforeseen cases that have not
yet been encountered. A real pre-hospital triage algorithm, for instance, would contend in the field
with individual cases that obviously were not included in the original training database per se.
This hardship can be addressed by training on a truncated database and evaluating performance
with exemplars on which the model was not trained. When the entire database is sparce small,
the partition cut must be very shallow to avoid making the training databases too small. The
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procedure commonly followed in such cases, known as jackknifing, withholds just one exemplar for
evaluation and trains on all others. The procedure is repeated for all exemplars in the database.
For a given model structure, a distribution of values for each coefficient slot is obtained.

The procedure for large databases is essentially the same, except that significantly deeper cuts
can generally be made. The process is repeated with different random cuts (all of the same depth);
100 such repeats is often reasonable. In each cut, the resulting model coefficient values are com-
puted; these vary depending on which exemplars are randomly assigned to training database. The
estimation errors are then calculated for each exemplar in the complementary evaluation database.
Over the evaluation database as a whole, this furnishes a distribution of estimation errors having
a mean and standard deviation. Whereas the mean of the estimation-error distribution is typi-
cally close to zero, the standard deviation is often appreciable. This standard deviation statistic,
averaged over the 100 random cuts, is generally a stable quantity that serves conveniently as a
benchmark index for the performance of a proposed model structure. For 1-b-g-r-s-g%-gr-gs-r2-rs-
52, this figure of merit was approximately 6.58. This means that with this model structure, one can
expect to be in error by roughly this amount in field estimates of ISS. There may be three ways to
obtain better results:

e Focus on ezxemplar quality. The field measurements themselves provided in the database may
be uncertain or inaccurate.

e Focus on database comprehensiveness. The database may be too small or sparse to capture
representative manifestations of trauma. Alternatively interpreted, the graph of a function
cannot be resolved or recognized with too few plotted points.

e Develop new biomedical instrumentation to obtain additional data fields that may improve
medical assessment of the patient.

o Try different candidate model structures.

either add or drop terms; both are double-edged swords. Dropping terms may throw away valuable
information that the existing model has captured already. Adding terms runs the risk of overfit.
Modeling data using a high-order polynomial may work nicely over a limited region, for instance,
but would result in poor performance if applied to unseen data far removed from that region, since
the high-order terms diverge rapidly.

Because of the danger of overfit and the extra computational burden thereby introduced, it is
generally preferable to drop rather than add them; in other words, to work down toward a more
parsimonious structure. This requires a method of identifying those terms that contribute least
to the existing model and can therefore be omitted most prudently. One way to do this is to
examine the distribution of coefficient values for each term over repeated cuts. The means and
standard deviations, for a particular 100-cut trial, are tabulated in Table 36. The relevance of
each variable may be assessed summarily by computing its coefficient of variation, or the ratio of
the standard deviation to the mean. The constant term, for example, has a COV of 0.09, which
indicates that the value of this coefficient reliably lies between 21 and 26 most of the time. The
s term, by contrast, has a COV of 3.9, which indicates that the value of this coefficient is highly
erratic and unpredictable, assuming wildly varying positive and negative values in different cuts.
The significance of the rs term is highly ambiguous and unclear; it is therefore reasonable to drop
it. The overall leanness of the model may be judged by the COVs of its coefficients, and a leanness
figure of merit may be formally defined as the maximum of the set of COVs. A lower leanness score
indicates a leaner model than a high leanness score.
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Table 36: Model Coefficients for Unparsimonious Model

1 23.7+22
b ~1.4140.24
g 1.63 + 0.4
r 0.306 = 0.109
s | —0.0767 + 0.0208
¢® | —0.196+0.024

gr | 0.0078 + 0.0075
gs | 0.0015 £ 0.0011
r2 | —0.0028 £ 0.0014
rs | 0.0002 £ 0.0006
s2 | 0.0002 + 0.0001

Structure learning proceeds by discarding the term with the highest COV until a model structure
representing the best compromise between performance and leanness is found. Results are tabulated
in Table 37. The performance index, evidently, is extremely difficult to drive down; the table shows

Table 37: Performance and Leanness Indices for Alternative Model Structures

Structure Performance | Leanness
1-b-g-1-5-g*-gr-gs-r-rs-s* 6.5787 3.91
1-b-g-r-5-g2-gr-gs-r2-s? 6.5926 1.01
1-b-g-r-s-g>-gs- r2 s? 6.5904 1.13
1-b-g-r-s-g2-gs -5 6.5421 0.81
1-b-g-r-5-g°-5> 6.5081 0.23
1-b-7-5-g*-5> 6.5596 0.33
1-b-r-5-g* 6.5888 0.50

only a 1% gain. The leanness score, on the other hand, is reduced substantially: down by a factor
of 17 from 3.91, for the most liberal structure, to 0.23 for 1-b-g-r-s-g?-s2. This model also has the
best performance index and would therefore be the most appropriate structure to exploit. The
coefficients for this structure are tabulated in Table 38. The means and standard deviations of the
coefficients are similar to those in the more liberal structure first surmised. The unnecessary terms,
however, have been carved away.

G.2 Advantages of GNOSIS over Regression

We next discuss the key steps involved in applying GNOSIS to dramatize the tremendous labor-
saving advantages over least-squares and logistic regression that it offers to the analyst.

In synthesizing estimation models from a training database, GNOSIS uses default settings of
three inputs per node, nodal outputs that are cubic polynomial functions of the nodal inputs,
and a maximum of four layers. Layers are synthesized sequentially. The least valuable nodes
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Table 38: Model Coefficients for Reduced Model

23+1.7
~1.43+£0.24
1.91 + 0.42
0.249 = 0.024
—0.0695 = 0.0166
—0.193 + 0.022
104 x (2.30 = 0.58)

w3 o

n Q
[CIINY]

are automatically carved away. Once the nodes in a given layer have been synthesized, GNOSIS
can further refine the layer by creating additional nodes whose inputs are not only outputs from
the previous layer but also outputs from the just-generated nodes within the current layer. This

technique, known as projection pursuit, substantially enhances the performance of the resulting
PNN model.

Table 39: GNOSIS Performance with and without Projection Pursuit

Layer RMS Estimation Error RMS Estimation Error
number | without projection pursuit | with projection pursuit

1 6.401 6.322
2 6.325 6.246
3 6.285 6.200
4 6.265 6.190

Table 39 displays the root-mean-square (RMS) estimation error from GNOSIS-synthesized mod-
els (with default settings) obtained after successive layers have been completed. The numbers show
that each additional layer furnishes a more accurate model than the previous layer. For example,
a four-layer model without projection pursuit provides a RMS estimation error of 6.265, which is
appreciably better than 6.401 for a single-layer model (which is just a cubic regression). The gains
in estimation error reduction, however, diminish as the number of layers increases. After a certain
number of layers, no further modeling improvement is realized.

Improvement over the results in Table 39 can be achieved by using non-default settings. For
example, the number of nodal inputs could be increased from the default setting of three to four, in
which case the projection-pursuit RMS estimation errors in the first and second layers are reduced
to 6.224 and 6.103 respectively. This represents a significant gain in accuracy without overfit.
However, the number of input permutations is so much larger than in the three-input default that
the synthesis process takes considerably longer. A much faster and even more effective way to
reduce error is to admit fourth- or fifth-degree nodal polynomials. The resulting performance gains
are displayed in Table 40.
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Table 40: GNOSIS Performance with High-Order Nodal Polynomials

Layer | RMS Estimation Error | RMS Estimation Error | RMS Estimation Error
number 3rd-degree nodes 4th-degree nodes 5th-degree nodes
1 6.322 6.227 6.162
2 6.246 6.042 6.969
3 6.200 5.984 5.892
4 6.190 5.965 5.848

All of the models in Table 40 use projection pursuit. Clearly, performance greatly improves with
higher-degree nodal polynomials. Utilization of such polynomials is not as costly in synthesis time
as is allowing additional nodal inputs; it merely means that the least-squares fitting of coefficients at
each node involves more degrees of freedom. However, the synthesis times for fifth-order polynomials
are sufficiently inconvenient that we chose to rely on fourth-degree models as the basis for definitive
results documented in this report.

The best result, an RMS estimation error of 5.848 for fifth-order polynomial nodes and four
layers, represents a 12% reduction in the RMS estimation errors for least-squares regression models.
A lengthy and convoluted search and structure comparison process using a conventional regression
approach was unable to bring the RMS estimation error below 6.47. All of the effort to cascade down
to the “best” structure thus led to a low-order polynomial that, in comparison to the PNN results,
is very poor indeed. Moreover, the much better scores accruing to the PNN models were obtained
with significantly less computational effort, in terms of both machine computations and burdens
imposed on the analyst. All that the GNOSIS user need do, essentially, is stipulate the degree of
the nodal polynomials and watch the error statistic diminish as successive layers are generated.
In regression modeling, by contrast, the analyst literally needs to catalogue many conceivable
model structure and test them (with cross-validation) one-by-one. The process is prohibitively
arduous, whether done via heuristic inspection (as demonstrated in the preceding discussion) or
via automated stepwise regression algorithms. Owing to AIC and PSE, however, the analyst does
not even have to perform time-consuming cross-validations and, in principle, is free to work with
the entire training database for each test with a given choice of settings.
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