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INTRODUCTION

Nature of the problem

Breast cancer is a leading cause of death in women, causing an estimated 44,000 deaths per year

(1). Mammography is the most effective method for the early detection of breast cancer (2-5) and it has

been shown that periodic screening of asymptomatic women does reduce mortality (6-11). Various

medical organizations have recommended the use of mammographic screening for the early detection of

breast cancer (3). Thus, mammography is becoming one of the largest volume x-ray procedures

routinely interpreted by radiologists.

It has been reported that between 30 to 50% of breast carcinomas detected mammographically

demonstrate clusters of microcalcifications (12-14), although about 80% of breast carcinomas reveal

microcalcifications upon microscopic examination (15-18). In addition, studies indicate that 26% of

nonpalpable cancers present mammographically as a mass while 18% present both with a mass and

microcalcifications (19). Although mammography is currently the best method for the detection of

breast cancer, between 10-30% of women who have breast cancer and undergo mammography have

negative mammograms (20-24). In approximately two-thirds of these false-negative mammograms, the

radiologist failed to detect the cancer that was evident retrospectively (23-26). Low conspicuity of the

lesion, eye fatigue and inattentiveness are possible causes for these misses. We believe that the

effectiveness (early detection) and efficiency (rapid diagnosis) of screening procedures could be

increased substantially by use of a computer system that successfully aids the radiologist by indicating

locations of suspicious abnormalities in mammograms.

Many breast cancers are detected and referred for surgical biopsy on the basis of a radiographically

detected mass lesion or cluster of microcalcifications. Although general rules for the differentiation

between benign and malignant breast lesions exist (20,27), considerable misclassification of lesions

occurs with the current methods. On average, only 10-30% of masses referred for surgical breast

biopsy are actually malignant (20,28). Surgical biopsy is an invasive technique that is an expensive and

traumatic experience for the patient and leaves physical scars that may hinder later diagnoses (to the
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extent of requiring repeat biopsies for a radiographic tumor-simulating scar). A computerized method

capable of detecting and analyzing the characteristics of benign and malignant masses, in an objective

manner, should aid radiologists by reducing the numbers of false-positive diagnoses of malignancies,

thereby decreasing patient morbidity as well as the number of surgical biopsies performed and their

associated complications.

The development of computer methods to assist radiologists is a timely project in the sense that

digital radiography is on the threshold of widespread clinical use. The arrival of digital radiographic

systems allows for the acquisition of image data in a format accessible to computerized schemes. The

potential significance of this research project lies in the fact that if the detectability of cancers can be

increased by employing a computer to aid the radiologist's diagnosis, then the treatment of patients with

cancer can be initiated earlier and their chance of survival improved.

The systematic and gradual introduction of computer-assisted interpretation to radiologists that is

presented in this proposal is very important in that it allows for a mode of presentation with minimum

modification to the current reading habits of radiologists and does not require a "digital" department in

which reading must be done from a CRT screen. These two issues are of concern since (1) some

radiologists are not comfortable with computer-based methods and (2) primary diagnosis from a CRT

display is still controversial. However, the introduction of computer vision to radiologists presented in

this proposal is not affected by either concern. In addition, when filmless image acquisition and/or

digital (PACS) radiology departments are commonplace in the future, the computer-vision module can

be immediately interfaced to electronic, filmless imaging and reading areas.

Background of previous work

In the 1960's and 70's, several investigators attempted to analyze mammographic abnormalities

with computers. Winsberg et al. (29), in an early study, examined areas of increased density in

contralateral breasts. They felt that their results demonstrated the feasibility for future computer

interpretation of mammograms. Spiesberger (30) developed various feature-extraction techniques and a

two-view verification method involving medio-lateral oblique and cranio-caudal views to detect
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microcalcifications. Kimme et al. (31) developed a computerized method for the detection of suspicious

abnormalities in mammograms based on the statistical measures of textural features. They tested their

algorithm on 7 patient cases. A similar approach using texture analysis and bilateral comparison was

also employed by Hand et al (32) and SemmIlow (33) in the computerized localization of suspicious

abnormal areas of breasts. Their results yielded a 66% true-positive rate with approximately 26 false

suspicious areas per image. With regard to classification methods, Ackerman et al. (34), using digital

xeroradiographs, devised four measures of malignancy: calcification, spiculation, roughness and shape,

to perform classification on specific areas selected by human observers. The authors viewed their

research as only a small step toward the automated reading of xeroradiographs and appeared to

discontinue prematurely their computer vision work. The same group (35) did, however, attempt to

improve diagnosis by using 36 radiographic properties which were evaluated semi-quantitatively by a

radiologist for input to a computer decision tree. Wee et al. (36) and Fox et al. (37) performed

preliminary studies on the classification of microcalcifications. These previous studies demonstrated the

potential capability of using a computer in the detection of mammographic abnormalities. Their results,

however, yielded a large number of false-positives and were based on small data sets.

Computer-aided diagnosis, in general, has attracted little attention during the last decade, perhaps

due to the inconvenience involved in obtaining a radiograph in digital format. Recent work, though,

shows a promising future. Magnin et al. (38) and Caldwell (39) used texture analysis to evaluate the

breast's parenchymal pattern as an indicator of cancer risk. These preliminary studies raised many

unanswered questions regarding topics ranging from the digital recording process to the type of

numerical risk coefficient employed. Thus, further studies using texture analysis are indicated. The

work by Fain and Olson (40,41) on the computer analysis of mammograms is encouraging; however,

their method has only been tested on 20 mammographic regions of interest (each roughly half a

mammogram). Davies and Dance (42) have reported on their automatic method for the detection of

clustered calcifications using local gray-level thresholding and also a clustering rule. Their results

yielded a true-positive rate of 96%; however, no indications of the subtlety and size of the calcifications

were given. Astley et al. (43), Grimaud et al. (44) and Jin et al. (45) recently reported on their methods
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for the detection of breast lesions. Karssemeijer (46) has described a stochastic method based on

Bayesian decision theory that appears promising. Lai et al. (47) and Brzakovic et al. (48) are also

developing techniques for the detection of mass lesions. The actual performance level and difficulty of

the databases, however, are unknown. Gale et al. (49) and Getty et al. (50) are both developing

computer-based classifiers, which take as input diagnostically-relevant features obtained from

radiologists' readings of breast images. Getty et al. found that with the aid of the classifier, community

radiologists performed as well as unaided expert mammographers in making benign-malignant

decisions. Swett et al. (51,52) are developing an expert system to provide visual and cognitive

feedback to the radiologist using a critiquing approach combined with an expert system. The system

has been demonstrated, though not tested.

We in the Kurt Rossmann Laboratories for Radiologic Image Research at The University of

Chicago have vast experience in developing various computer-aided diagnosis (CAD) methods in

mammography, chest radiography, and angiography (53-66). We believe that our CAD methods in

digital mammography, which include the computerized detection of microcalcifications and masses,

have achieved levels of sensitivity and specificity that warrant testing in a clinical environment.

Our detection scheme for clustered microcalcifications includes a preprocessing step referred to as

a difference-image approach (53,54). Basically, the original digital mammogram is spatially filtered

twice: once to enhance the signal-to-noise ratios of the microcalcifications and a second time to

suppress them. The difference between the two resulting processed images yields an image (a

difference image) in which the variations in background density are largely removed.

Microcalcifications are then segmented from the difference image using global gray-level thresholding

and local thresholding techniques. The segmented image is next subjected to feature-extraction

techniques in order to remove signals that likely arise from structures other than microcalcifications.

An area filter (56), based on mathematical morphology, is used to eliminate small features. Next,

each region of interest that contains remaining features is subjected to low-frequency background

correction and is characterized by the first moment of its power spectrum, defined as the weighted

average of radial spatial frequency over the two-dimensional power spectrum (55). A clustering filter
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(57) is next used so that only clusters that contain more than a preselected number of signals within a

region of preselected size are retained by the computer. The computerized scheme, using 78

mammograms (39 normal and 39 abnormals) in which most clusters were quite subtle, the scheme

yielded a sensitivity of 85% with approximately 2.5 false-positive detections per image (58).

The computerized scheme for detection of clustered microcalcifications (55) developed at The

University of Chicago has been tested as an aid to radiologic diagnosis. Using a database of 60

clinical mammograms, half of which contained subtle clusters of microcalcifications, a human

observer study was conducted in order to examine the effect of the computer-vision aid on

radiologists' performance in a situation that simulated rapid interpretation of screening mammograms.

The computer scheme attained an 87% true-positive detection rate with an average of four false-

positive clusters per image. The effect of the number of false-positive detections on radiologist

performance was also examined by simulating a computer performance level of 87% sensitivity with

one false-positive detection per image. Radiologist detection performance was evaluated using ROC

(receiver operating characteristic) methodology (68). It was found from the ROC analysis that there

was a statistically significant improvement in the radiologists' accuracy when they were given the

computer-generated diagnostic information (at either false-positive level), compared with their

accuracy obtained without the computer output.

Our scheme for the detection of mammographic masses is based on deviations from the

architectural symmetry of normal right and left breasts, with asymmetries indicating potential masses

(60,6 1). The input to the computerized scheme, for a given patient, are the four conventional

mammograms obtained in a routine screening examination: the right cranio-caudal (CC) view, the left

CC view, the right medio-lateral-oblique (MLO) view, and the left MLO view. After automatic

registration of corresponding left and right breast images, a nonlinear subtraction technique is

employed in which gray-level thresholding is performed on the individual mammograms prior to

subtraction. Ten images thresholded with different cutoff gray levels are obtained from the right

breast image, and ten are obtained from the left breast image. Next, subtraction of the corresponding

right and left breast images is performed to generate ten bilateral-subtraction images. Run-length
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analysis is then used to link the data in the various subtracted images. This linking process

accumulates the information from a set of 10 subtraction images into two images that contain locations

of suspected masses for the left and right breasts. Next, feature-extraction techniques, which include

morphological filtering and analysis of size, shape and distance from border, are used to reduce the

number of false-positive detections. Currently, using 150 pairs of clinical mammograms (from 75

cases), the approach achieves a true-positive detection rate of approximately 85% with 3 to 4 false-

positive detections per image (62).

We have also investigated the application of artificial neural networks to the detection and

classification of mammographic lesions. We used an artificial neural network (ANN) to extract

microcalcification image data from digital mammograms (59). The ANN, which was supplied with

the power spectra of remaining suspected regions (from the CAD scheme) as input, distinguished

actual clustered microcalcifications from false-positive regions and was able to eliminate many of the

false positives. Also, we are applying ANNs to the decision-making task in mammography (63).

Three-layer, feed-forward neural networks with a back-propagation algorithm were trained for the

interpretation of mammograms based on features extracted from mammograms by experienced

radiologists. The database for input to the ANN consisted of features extracted from 133 textbook

cases and 60 clinical cases. Performance of the ANN was evaluated by ROC analysis. In tests, using

43 initial image features (related to masses, microcalcifications and secondary abnormalities) that were

later reduced to 14 features, the performance of the neural network was found to be higher than the

average performance of attending and resident radiologists in classifying benign and malignant

lesions. At an optimal threshold for the ANN output value, the ANN achieved a classification

sensitivity of 100% for malignant cases with a false-positive rate of only 41%, whereas the average

radiologist yielded a sensitivity of only 89% with a false-positive rate for classification of 60%.

We are also developing computer-aided methods for the interpretation of digital chest

radiographs, such as in the detection of pulmonary nodules, interstitial infiltrates, pneumothorax and

cardiomegaly (67,69-75). The computer-vision scheme for the detection of lung nodules is based on

a difference-image approach, which (like the one described above for detection of clustered
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microcalcifications) is novel in that it attempts to remove the structured anatomic background before

applying feature-extraction techniques. After the difference between the signal-enhanced image and

the signal-suppressed image is obtained, gray-level thresholding and feature-extraction techniques

(involving the size, contrast and shape of the detected features) are performed by the computer to

identify the locations of possible nodules. More recently, false-positive detections have been reduced

by adding nonlinear filters to the difference-image step and additional feature-extraction techniques

based on detailed analyses of the false positives.

The research team in the Rossmann Lab also has considerable experience in evaluation of factors

affecting image quality and diagnostic accuracy in digital radiography. We have investigated basic

imaging properties including the characteristic system response, spatial resolution properties and noise

properties of various types of digital radiographic imaging systems (76-86). The effects of various

physical parameters, such as detector system, sampling aperture, pixel size, number of quantization

levels, exposure level and display aperture, were examined at various stages of the digital imaging chain

(87-91). Knowledge gained in this research will be useful in understanding the effect of spatial

resolution and noise on the performance of computer-assisted interpretation.

In developing methods for computer-assisted interpretations, it is crucial to employ appropriate

means for evaluation. We have carried out various observer performance studies in comparing the

detection capability of new techniques both with regard to simulated and clinical images. 18-alternative

forced-choice observer studies were employed to examine the effect of pixel size on the threshold

contrast of simple objects digitally superimposed on uniform background noise (92-94) and the effect of

structured background on the detectability of simulated stenotic lesions (95). In an observer study with

radiologists using clinical images, ROC analysis was employed in order to examine the effects of

different display modalities (film and CRT) on diagnostic accuracy in digital chest radiography (96).

Similar studies were performed to investigate the effect of data compression ratios on detectability (97),

the comparison of computed radiography with conventional screen/film imaging (98), and the utility of

computer-assisted interpretation in mammography (55) and chest (71). In addition, we have used ROC

and FROC analyses to evaluate the performance level of the computerized schemes and the artificial
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neural networks (99). This broad experience will provide the basis for developing similar methodology

to evaluate the computer-vision modules for mammography proposed in this application.

Purpose of the present work

The main hypothesis to be tested is that given a dedicated computer-vision module for the

computer-assisted interpretation of mammograms, the diagnostic accuracy for mammographic

interpretation will be improved, yielding earlier detection of breast cancer (i.e., a reduction in the

number of missed lesions) and a reduction in the number of benign cases sent to biopsy.

Computer-aided diagnosis (CAD) can be defined as a diagnosis made by a radiologist who takes

into consideration the results of a computerized analysis of radiographic images and uses them as a

"second opinion" in detecting lesions and in making diagnostic decisions. The final diagnosis would

be made by the radiologist. Although mammography is currently the best method for the detection of

breast cancer, between 10-30% of women who have breast cancer and undergo mammography have

negative mammograms (20-24). It has been suggested that double reading (by two radiologists) may

increase sensitivity (100-102). Thus, one aim of CAD is to increase the efficiency and effectiveness

of screening procedures by using a computer system, as a "second opinion or second reading," to aid

the radiologist by indicating locations of suspicious abnormalities in mammograms.

If a suspicious region is detected by a radiologist, he or she must then visually extract various

radiographic characteristics. Using these features, the radiologist then decides if the abnormality is

likely to be malignant or benign, and what course of action should be recommended (i.e., return to

screening, return for follow-up or send for biopsy). Many patients are referred for surgical biopsy on

the basis of a radiographically detected mass lesion or cluster of microcalcifications. On average, only

10-20% of masses referred for surgical breast biopsy are actually malignant (20,28). Thus, another

aim of CAD is to extract and analyze the characteristics of benign and malignant lesions in an objective

manner in order to aid the radiologist by reducing the numbers of false-positive diagnoses of

malignancies, thereby decreasing patient morbidity as well as the number of surgical biopsies

performed and their associated complications,
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Methods of approach

The objective of the proposed research is to develop a dedicated computer-vision module for use in

mammography in order to increase the diagnostic decision accuracy of radiologists and to aid in

mammographic screening programs. The computer-aided diagnostic module will incorporate various

novel computer-vision and artificial intelligence schemes already under development in the Rossmann

Laboratories at the University of Chicago.

The specific objectives of the research to be addressed are:

(1) Further development of advanced computerized schemes for the detection and classification of

masses and microcalcifications in digital mammograms. This part of the research involves quantitative

analysis of the radiographic characteristics of masses and microcalcifications, and the decision-making

processes used by radiologists in making a decision with respect to the likelihood of malignancy and in

choosing the appropriate course of action.

(a) Further development of an advanced computerized detection scheme for masses that uses

bilateral-subtraction techniques, gray-level thresholding, and analysis of various image features.

(b) Further development of an advanced computerized detection scheme for microcalcifications

that uses linear and nonlinear spatial filters, spectral content analysis and various morphological filters

for size, contrast and cluster analyses.

(c) Further development of advanced computerized classification schemes for masses and

microcalcifications that use computer-vision techniques and artificial-intelligence techniques to calculate

a probability of malignancy.

(2) Development of a dedicated module with man-machine interfaces appropriate for the effective and

efficient use of the CAD schemes. Final diagnostic decisions will remain with the radiologists.

(a) Optimization of the CAD software.

(b) Examination of various methods of presenting the computer's results to the radiologist.

(c) Development of a prototype intelligent modular workstation using a high-speed (fast CPU &

large-capacity memory) computer and a high-resolution, filmless CRT display.
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(3) Evaluation of the efficacy and efficiency of the dedicated computer-vision module for

mammography using a large clinical database. This part will use both film and filmless media for image

acquisition and display.

BODY: Experimental methods and results to date

(1) Development of the computerized schemes for the detection and classification of

masses and microcalcifications in digital mammograms.

Experimental methods

The computerized schemes for detection and classification are at various levels of development.

These schemes will be used as aids by radiologists in the interpretation of mammograms. For the

development and testing of these algorithms, we will collect 500 mammographic cases from the

Department of Radiology.

(a) Development of the computerized detection scheme for masses.

The computer-vision scheme is based on deviations from the architectural symmetry of normal

right and left breasts, with asymmetries indicating potential masses (60-62). Thus, we will continue

investigating subtraction techniques as a means to increase the conspicuity of masses in mammograms.

These techniques will be combined with analysis of individual mammograms. The input to the

computerized scheme, for a given patient, are the four conventional breast images obtained in a routine

screening examination: the right CC view, the left CC view, the right MLO view, and the left MLO

view. Mammograms will be digitized using a laser scanner digitizer (2K by 2K matrix). In the initial

detection stage, the digital image can be reduced to a 512 by 512 matrix (with an effective pixel size of

0.4 mm) due to the large size of masses relative to the pixel size. An automated alignment technique,

which we have developed, will be used to align corresponding left and right breast images and also
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images of the same breast obtained over some time period. The automated alignment of two

corresponding breast images will be performed in three stages: image segmentation, image feature

selection and image registration. During image segmentation, the breast area will be isolated from the

exterior region using a technique which combines multiple gray-level thresholding and morphological

filtering. With image-feature selection, landmarks on each breast image will be determined. These

landmarks are the breast border and the nipple position. Since the image features around the nipple

often include a thicker skin line and greater subcutaneous parenchymal opacity, a band signature method

will be employed to identify the nipple position along the breast border. During image registration,

translation and rotation of one of the breast images relative to the other will be determined using a

partial-border matching technique.

Once the two images are aligned relative to each other, the detection of possible asymmetries

between the border-matched right and left breast images is achieved by correlation of the two

mammograms, using a bilateral-subtraction technique. We are investigating linear and nonlinear

subtraction methods. With linear subtraction, the two breast images are subtracted (using a left-minus-

right convention) and then gray-level thresholding is performed in order to segment the image into

possible locations of suspect masses. With the nonlinear technique, gray-level thresholding is

performed prior to subtraction. This initial thresholding eliminates some normal anatomic background

from further analysis. A selected number of images thresholded with different cutoff gray levels is

obtained from the right breast image, and a corresponding number is obtained from the left breast

image. Subtraction of ten sets of corresponding right and left breast images, each thresholded at ten

different levels, is performed to generate ten bilateral-subtraction images (containing information on

suspicious masses in the two original mammograms). A linking process then accumulates the

information into two images, called runlength images, where the value of each pixel in each image

indicates how often the corresponding location in the set of 10 subtraction images has gray levels above

or below a particular cutoff gray value. These images are next thresholded to yield the suspicious areas

and submitted for feature extraction.
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Feature-extraction techniques will be performed on both the runlength images and the original

mammograms to reduce the number of false-positive detections. Initially, a morphological closing

operation followed by a opening operation will be used to eliminate isolated pixels and merge small

neighboring features. Next a size test will be used to eliminate features that are smaller than a

predetermined cutoff size. A border test will be used to eliminate artifact features arising from any

border misalignment that occurred during digitization and registration. On the original images,

suspected regions will be subjected to region-growing techniques and then examined with respect to

size, shape and contrast, in order to eliminate features of elongated shape and diffuse connective tissue.

In addition to comparing the right and left breast images of a given view obtained at a given time,

comparisons will be made between images of the same breast obtained at the same projection but at

different times in order to note changes in the breast. This follows the methodology employed by

mammographers -when interpreting a case with previous examinations available. Similar subtraction

techniques and feature-extraction methods will be employed. Use of histogram specification methods

(103), however, may be necessary in order to match the gray-level distributions of the two images (that

were obtained at different times) when there exists a large variation in the exposure techniques

employed.

Results to date

Currently, the scheme employs two pairs of conventional screen-film mammograms (the right

and left MLO views and CC views), which are digitized. After the right and left breast images in each

pair are aligned, a nonlinear bilateral-subtraction technique is employed that involves linking multiple

subtracted images to locate initial candidate masses. Various features are then extracted and merged

using an artificial neural network in order to reduce false-positive detections resulting from the

bilateral subtraction.

The features extracted from each suspected mass lesion include geometric measures, gradient-

based measures and intensity-based measures. The geometric measures are lesion size, lesion

circularity, margin irregularity, and lesion compactness. The gradient-based measures are the average
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gradient (based on a 3 by 3 Sobel operator) and its standard deviation calculated within the specified

region of interest. The intensity-based measures are local contrast, average gray value, standard

deviation of the gray values within the lesion, and the ratio of the average to the standard deviation.

The features were normalized between 0 and 1 and input to the a back-propagation, feed-forward

neural network. The ANN's structure consisted of 10 input units, one hidden layer with 7 hidden

units and one output unit. In this task, the output unit ranged from 0 to 1, where 1 corresponded to

the suspected lesion being an actual mass (i.e., a true-positive detection) and 0 corresponded to the

suspected lesion being a false-positive detection (and thus, allowed to be eliminated as a suspect

lesion-candidate). Based on the performances of the ANN as a function of iteration, in terms of self-

consistency and round robin analyses, the optimal number of training iterations was determined.

ROC (receiver operating characteristic) analysis was applied to evaluate the output of the ANN in

terms of its ability to distinguish between actual mass lesions and false-positive detections. The

output values from the ANN for actual masses and for false-positive detections were used in the ROC

analysis as the decision variable. Basically, the ROC curve represents the true-positive fraction and

the false-positive fraction at various thresholds of the ANN output. ROC analysis was used as an

index of performance in determining the "optimal" number of input features, the "optimal" number of

hidden units, and the "optimal" number of training iterations of the ANN.

In the self-consistency analysis, the ANN achieved an Az of 1.0 and in the round-robin analysis,

the ANN achieved an Az of 0.92 in distinguishing actual masses (true positives) from false-positive

detections. In an evaluation study using the 154 pairs of clinical mammograms (90 pairs with masses

and 64 pairs without), the detection scheme yielded a sensitivity of 95% at an average of 2.5 false-

positive detections per image. This was a substantial improvement from the previous year's

performance of 85% sensitivity and 4 false-positive detections per image.

We have even further reduced the number of false positives per image by expanding the types of

gradient-based measures, and using them in addition to the features discussed above. In the feature

extraction stage, the potential lesion was extracted from the parenchymal background using region

growing techniques yielding the margin of the suspect mass. The gradient-based measures were
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calculated by first processing the region with a 3 by 3 Sobel filter yielding the maximum gradient and

the angle of this gradient relative to the radial direction and a fixed (x-axis) at each pixel location.

Cumulated gradient-weighted histograms were calculated for the maximum gradients across the

various angles. From each histogram, various measures were calculated including full-width at half-

maximum, average values, minima, heights, and standard deviations, which gave information such as

the amount of spiculation and shape.

A three-level, feed-forward neural network, which utilizes a generalized delta rule in the training,

was employed in this study. Fifteen features were chosen from 91 initial features by analyzing the

differences in the average and standard deviations of true positives (i.e., actual lesions) and false-

positive detections. In addition, receiver operating characteristic (ROC) analysis was used to evaluate

the individual performance of each feature in the task of distinguishing true positives from false-

positive detections. The fifteen features included the three geometric measures and the three intensity-

based measures, as well as nine of the gradient-based measures.

The parameters of the ANN, such as the number of hidden units, the learning rate, and the

necessary number of training iterations, were determined empirically by evaluating the performance of

the ANN as a function of each of the parameters. Area under the ROC curve was used to indicate

performance. Both self consistency and round robin testing was employed (111).

Analysis of the ANN in distinguishing true positives (actual masses) from false positive

detections yielded an Az of 0.99 and an Az of 0.97 in the consistency and robin round tests,

respectively. This yielded a sensitivity of 90% at less than two false positives per image for the

overall mass detection scheme using a database of 110 pairs of digital mammograms containing a total

of 102 masses (54 malignant and 48 benign) (112).

Also, a new method for segmentation of the breast region in a mammogram was developed (113).

The algorithm identifies unexposed and direct exposure image regions and generates a border

surrounding the valid breast region, which can then be used as input for further image analysis and

input to the CAD schemes. The program was tested on 740 digitized mammograms with the

segmentation results being evaluated by two experts on mammograms and two medical physicists. In 97%
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of the mammograms, the segmentation results were rated acceptable for use in computer-aided

diagnosis schemes. Segmentation problems encountered in the remaining 22 images (3%) were most

often due to digitization artifacts or poor mammographic technique. The developed algorithm is a

valuable component of an "intelligent" workstation for computer-aided diagnosis.

Further feature selection was performed using genetic algorithms. A genetic algorithm is an

optimization or search method loosely based on natural selection and the survival of the fittest. We used

genetic algorithms since we have 91 features to describe true-positive and false-positives detections and

we want to choose a subset of 10-15 features for input to a useful neural network (114). In the

genetic algorithm, each string (having chances for mutation, deletion, etc.) represented a set of input

features to the ANN. The fitness of each string was defined as the performance of the ANN with that set

of input features (using the area under the ROC curve as the performance index) in the task of

distinguishing between true-positive and false-positive detections. From FROC analysis, we found that

use of the genetic algorithm to select the "optimal" features resulted in the false-positive rate to decrease

from 2.6 to 1.5 per image while retaining the sensitivity level of 90%.

We are developing a method based on the Hough spectrum as an effective way to detect

spiculated lesions and architectural distortions in digitized mammograms (115). In the Hough

spectrum geometric texture analysis technique, the mammogram is analyzed ROI by ROI. Each ROI

is transformed into its Hough spectrum and then thresholding is performed with its threshold level

based on the statistical properties of the spectrum. ROIs with strong signals of spiculation are then

screened out as regions of potential lesions. In a preliminary study, 32 images containing spiculated

lesions/architectural distortions (biopsy confirmed) were analyzed using information extracted from

the Hough spectrum. Our preliminary studies, using only the Hough spectrum based technique

without further feature analyses to reduce false positives, yielded sensitivities of 81% for spiculated

masses and 67% for architectural distortions at false positives rates of 0.97 and 2.2 per image,

respectively. The results are promising and we expect the false positive rate to decrease upon the

incorporation of feature analysis into the overall detection scheme, as we have seen with our other

detection methods.
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We are also developing another single-image method for detection of small invasive breast

cancers (116). Localized density peaks on mammograms are identified using a specially designed

gradient filter. Lesion contours are generated by matching a deformable template onto a second

derivative edge map. In a preliminary study (without further feature analyses to reduce false

positives) using 45 non-palpable invasive breast cancers, all with a size less than 1 cm (median size of

7 mm), 82% of the cancers were detected with an average false-positive rate of 2.8 per image. We

expect both the sensitivity and specificity to increase with improved feature analyses.

(b) Development of the computerized detection scheme for microcalcifications.

Microcalcifications are a primary indicator of cancer and are often visible in the mammogram before

a palpable tumor can be detected. Initially, clinical screen/film mammograms will be digitized using the

laser scanner and analyzed in the 2048 by 2048 matrix format in order to retain the high spatial-

frequency content of the microcalcifications. First, the original mammograms will be processed to

enhance and suppress the signal of the microcalcifications, followed by calculation of a difference

image. Both linear and nonlinear filters will be investigated for enhancement and suppression.

Previous use of both linear and nonlinear filters in detecting lung nodules in digital chest images has

shown that while both types of filters tended to detect nodules, locations of false positives differed.

Thus, a combination of the results from each processing technique has the potential to yield high

sensitivity and reduce the number of false-positive detections. Examples of filters for signal

enhancement include a linear "matched" filter that matches the profile of a typical microcalcification and

a morphological open filter (to enlarge the appearance of microcalcifications). Morphological filtering

(104) is basically a nonlinear filtering method that calculates the logical AND (erosion function) or OR

(dilation function) of pixels within a kernel of some given size and shape. When extended to gray-scale

images, the logical AND and OR operations can be replaced by minimum and maximum operations. By

appropriately choosing the size and shape of the kernels, as well as the sequences of the AND and the

OR, the filters can eliminate groups of pixels of limited size or merge neighboring pixels. Examples of
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filters for signal suppression include ring-shaped filters that yield either the average or median value of

the surrounding normal anatomic background (54).

The difference image will then be subjected to various feature-extraction techniques to reduce

further the number of false-positive detections. These techniques will test for size, contrast and spectral

content of neighboring features. New methods for analyzing these features will involve the use of

morphological filters. For example, we have found that the use of asymmetric morphological filters to

eliminate features less than 3 pixels in size are more effective and efficient than use of a point-by-point

analysis that involves counting the number of pixels in each remaining feature and comparing it to a size

cutoff. In addition, the presence of clustering of the microcalcifications will be examined since singular

microcalcifications are usually not cancerous. The morphological kernel for the clustering test will

correspond to the size of a typical cluster (approximately 6 mm in diameter).

Results to date

The microcalcification detection scheme consists of three steps. First, the image is filtered so that

the signal-to-noise ratio of microcalcifications is increased by suppression of the normal background

structure of the breast. Second, potential microcalcifications are extracted from the filtered image with

a series of three different techniques: a global thresholding based on the grey-level histogram of the

full filtered image, an erosion operator for eliminating very small signals, and a local adaptive grey-

level thresholding. Third, some false-positive signals are eliminated by means of a texture analysis

technique, and a nonlinear clustering algorithm is then used for grouping the remaining signals.

In our computer detection scheme it is neccesary to group or cluster microcalcifications, since

clustered microcalcifications are more clinically significant than are isolated microcalcifications. In the

past we used a "growing" technique in which signals (possible microcalcifications) were clustered by

grouping those that were within some predefined distance from the center of the growing cluster. In

this research, we introduced a new technique for grouping signals, which consists of two steps (117).

First, signals that may be several pixels in area are reduced to single pixels by means of a recursive

transformation. Second, the number of signals (non-zero pixels) within a small region, typically
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3.2x3.2 mm, are counted. Only if three or more signals are present within such a region are they

preserved in the output image. In this way, isolated signals are eliminated. Furthermore, this method

can eliminate falsely detected clusters, which were identified by our previous detection scheme, based

on the spatial distribution of signals within the cluster. The differences in performance of our CAD

scheme for detecting clustered microcalcifications using the old and new clustering techniques was

measured using 78 mammograms, containing 41 clusters. The new clustering technique improved

our detection scheme by reducing the false-positive detection rate while maintaining a sensitivity of

approximately 85%.

We also applied artificial neural networks to the differentiation of actual "true" clusters of

microcalcifications from normal parenchymal patterns and from false positive detections as reported by

a computerized scheme. The differentiation was carried out in both the spatial and spatial frequency

domains (59). In the spatial domain, the performance of the neural networks was evaluated

quantitatively by means of ROC analysis. We found that the networks could distinguish clustered

microcalcifications from normal nonclustered areas in the frequency domain, and that they could

eliminate approximately 50% of false-positive clusters of microcalcifications while preserving 95% of

the positive clusters.

The number of false-positive detections was even further reduced when a shift-invariant artificial

neural network (SIANN) was used to analyze the remaining suspected locations (118). The SLANN is

a multilayer back-propagation neural network with local, shift-invariant interconnections. The advantage

of the SIANN is that the result of the network is not dependent on the locations of the clustered

microcalcifications in the input layer. The performance of the SIANN was evaluated by means of a

jack-knife method and ROC analysis using a database of 168 regions as reported by the CAD scheme.

Approximately 55% of the false positives were eliminated without loss of any of the true-positive

detections. This technique led to a performance of 85% sensitivity with less than 0.6 false-positive

detections per image. In this study, we also examined the effect of the network structure on the

performance of the SIANN.
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Modifications were made to improve the performance of the SIANN (119). First, the

preprocessing was removed because the result of background-rend correction is affected by the size of

ROIs. Second, image-feature analysis was employed to the output of the SIANN in an effort to

eliminate more of the false detections. In order to train the SIANN to detect microcalcifications and also

to extract image features of microcalcifications, zero-mean-weight constraint and training-free-zone

techniques were developed. A cross-validation training method was also applied to avoid the over-

training problem. The performance of the SIANN was evaluated by means of ROC analysis using a

database of 39 mammograms for training and 50 different mammograms for testing. The analysis

yielded an average area under the ROC curve (Az) of 0.90 for the testing set. Approximately 62% of

false-positive clusters detected by the rule-based scheme were eliminated without any loss of the true-

positives clusters by using the improved SIANN with image feature analysis techniques.

(c) Development of computerized classification schemes.

Various feature-extraction techniques and artificial intelligence schemes will be investigated in order

to distinguish malignant masses and/or microcalcifications from benign masses and/or

microcalcifications. The database for this investigation will be obtained from the conventional four

screening breast images, as well as special views such as spot compression.

In our previous work, we compiled a list of features that radiologists use in distinguishing between

malignant and benign masses. These features include: margin spiculation (number of spiculations,

length of spiculation, and difference between spicules and local linear features), shape (linear to

spherical, geometrical to diffuse, and existence of satellite lesions), size (mean diameter), margin

characteristics (complete to inseparable from surround, well-defined to indistinct, and presence of halo

sign), and pattern of interior (uniformity, presence of well-defined lucencies, and opacity relative to

size). The analysis of spiculation will be based on a novel computer-vision method involving the

Fourier analysis of the fluctuations around the margin of the mass in question (60). The computer-

extracted margin used in the analysis for spiculation also contains information related to the number and

length of spiculations. Also, prior to the analysis of spiculation, the mass is extracted from the normal
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anatomic background of the breast parenchyma. Currently, region-growing techniques are employed

for this extraction. Once extracted, the shape and size of the mass can be easily calculated. The size

will be defined as the effective diameter of a circle that has the same area as the extracted mass. The

shape will be expressed by a degree of circularity, which will be defined as the ratio of the area of the

mass within the equivalent circle to the total area of the mass. Masses with ill-defined margins are more

likely to be malignant than those with relatively well-defined margins. Thus, a margin gradient test will

be developed to measure the sharpness of the margin. This sharpness will be defined as the degree of

density change across the margin and will be measured perpendicular to the margin at all points along

the margin. The pattern of the interior will be quantitatively determined from the spectral content of the

interior.

Features related to the classification of microcalcifications include: the shape of the individual

microcalcifications (rounded to irregular, linear, and branched), uniformity of microcalcifications within

a cluster (uniformity in size, shape, and density), distribution of the microcalcifications (diffuseness

and shape of cluster) and presence of macrocalcifications. The size and shape of the individual

microcalcifications will be determined by the computer using an effective diameter and a circularity

measure, respectively, as described earlier. Uniformity within a cluster will be assessed by calculating

the spread of values for a particular characteristic such as size. Once a cluster has been defined, its

diffuseness will be given by the number of microcalcifications per unit area and its shape will be defined

using a circularity measure.

These various computer-determined quantitative measures describing the mass or cluster of

microcalcifications in question will be input to an artificial neural network that will merge the features

into a probability of malignancy for use by radiologists. As mentioned in the Background section, our

work with a neural network in merging human-reported mammographic features into a

malignant/benign decision has been extremely promising. The input data (corresponding to the

computer-extracted features of the masses and microcalcifications) will be represented by numbers

ranging from 0 to 1 and will be supplied to the input units of the neural network. The output data from

the neural network is then provided from output units through two successive nonlinear calculations in
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the hidden and output layers. The calculation at each unit in a layer includes a weighted summation of

all entry numbers, an addition of a certain offset number, and a conversion into a number ranging from

0 to 1 using a sigmoid-shape function such as a logistic function. Two different basic processes are

involved in a neural network; namely, a training process and a testing process. The neural network will

be trained by a back-propagation algorithm (105) using input data (i.e., computer-reported features) and

the desired corresponding output data (i.e., biopsy or follow-up proven truth of the malignant or benign

status of the mass or microcalcifications in question), for a variety of cases. Once trained, the neural

network will accept computer-reported features of the mass or microcalcifications in question and output

a value from 0 to 1 where 0 is definitely benign and 1 is definitely malignant. Based on the distribution

of these values for various known cases, we will be able to determine what course of action (e.g.,

biopsy, follow-up or return to normal screening) should be recommended to the radiologist.

Results to date

Classification of masses

Our earlier work showed that a back-propagation, feed-forward artificial neural network could

merge human-extracted features of mammographic lesions into a likelihood of malignancy at a similar

level of that of an expert mammographer. In the study presented here, however, ANN is used to

merge computer-extracted features of mass lesions into a likelihood of malignancy.

The method takes as input the center location of a mass lesion in question. Next, the lesion is

segmented from the breast parenchyma (background) using an automatic region growing technique

and various features of the lesion are extracted. The automatic lesion segmentation involves the

analysis of the size of the grown region as a function of the gray-level interval used for the region

growing. Many of the extracted features are determined from a cumulative edge-gradient-orientation

histogram analysis modified for orientation relative to a radial angle (120). Input to an ANN consists

of four features from the gradient analysis along with the average gray value within the grown lesion.

The gradient measures include the FWHM (full width at half max) of the cumulative edge-gradient-

orientation histogram calculated from pixels within the lesion and its neighboring surround, and from
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just pixels along the lesion margin (see reprint in the appendix). These measures correspond to the

presence of spiculation, which is a sign of malignancy in the visual interpretation of mammographic

masses. The ANN's structure consisted of 5 input units, one hidden layer with 4 hidden units and

one output unit. In this task, the output unit ranged from 0 to 1, where 1 corresponded to the lesion

being malignant and 0 corresponded to the lesion being benign. Use of ROC analysis with self-

consistency testing and round-robin testing was employed as discussed in the previous section. We

found that using a combination of the measurements from the four neigborhoods is superior in the

classification of mammographic mass lesions.

We have also incorporated additional features of masses into the computerized classification

scheme (121). The classification method was evaluated using a pathologically-confirmed database of

95 masses (57 malignant and 38 benign), of which all but one had been sent to biospy. The

mammograms in the database had been digitized to a pixel size of 0.1 mm. Various features related to

the margin, shape and density of each were extracted automatically from the neighborhoods of the

computer-identified mass regions. Selected features were merged into an estimated probability of

malignancy using three different automatic classifiers. The performance of the three classifiers in

distinguishing between benign and malignant masses were evaluted by ROC analysis and compared

with those of an experienced mammographer and five general radiologists. The computerized

classification scheme yielded an Az value of 0.94, similar to that of an experienced mammographer

(Az=0.90) and substantially higher that the average performance of the general radiologists

(Az=0.8 1). With the database we have, the computer scheme achieved a positive predictive value of

83% at 100% sensitivity, which was 12.1% higher than that of the experienced mammographer and

21.5% higher than that of the average performance of the general radiologists at a p-value < 0.001.

We found that use of a rule based on spiculation prior to use of ANN (i.e., a hybrid system) was

superior to use of just an ANN in merging the various features. The reason for this was that

spiculation is a dominant rule used by both the computer and radiologists in distinguishing between

malignant and benign masses. Thus, when one has a limited database, it appears beneficial to first
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use well-known rules prior to ANN training. The computerized classification scheme is expected to be

useful in helping radiologists distinguish between benign and malignant masses.

Results to date

Classification of microcalcifications

The analysis of microcalcifications can be difficult to perform consistently for human observers

leading to the poor positive predictive value. We have been investigating methods to identify

computer-extracted quantitative features of microcalcifications and their clusters that can be used to

classify malignant and benign clustered microcalcifications, and, to. examine if a computer can make

accurate differential diagnoses based on computer-extracted features. In this study, features of the

microcalcifications and their clusters were automatically extracted from digitized conventional

mammograms.

The microcalcifications were segmented using the following method, which is described in detail

elsewhere. A third-degree polynomial was fitted to the pixel-value distribution in a ROI (region of

interest) of the digitized mammogram in both horizontal and vertical directions to reduce the

background structure of the breast parenchyma. The microcalcification was then delineated by region

growing. The effective thickness of the microcalcification (physical dimension along x-ray projection

line) was estimated from signal contrast (mean pixel value above background) of the isolated

microcalcification. This Was done by first converting signal contrast in terms of optical density to

contrast in terms of exposure using knowledge of the H&D curve of the screen-film system, and

secondly converting contrast in terms of exposure to physical dimension using the exponential

attenuation law assuming a "standard" model of the breast and the microcalcification. The standard

model assumes (i) a 4-cm compressed breast composed of 50% adipose and 50% glandular tissues;

(ii) a microcalcification composed of calcium hydroxyapatite with physical density of 3.06 g/mm3 ;

and (iii) a 20-keV monochromatic x-ray beam. Two contrast corrections were applied for better
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accuracy: compensation for blurring caused by the screen-film system and the digitization process,

and compensation for x-ray scatter.

The usefulness of the features were evaluated using the distributions of the benign and malignant

populations. Features capable of showing separation between benign clusters from the malignant

population were chosen for the automated classification. Extracted features were based on the size,

shape, contrast, and uniformity of individual microcalcifications; and the size and shape of

microcalcification clusters. An artificial neural network was used to classify benign versus malignant

clusters of microcalcifications using 8 computer-extracted features. The database consisted of 100

images, digitized at 100-mm pixel size and 10-bit grey-scale resolution, from 53 patients biopsied for

suspicion of breast cancer based on clustered microcalcifications. The neural network correctly

identified 69% of the benign patients, all of whom had biopsies, and 100% of the malignant patients.

An observer study was performed which indicated that for the cases used, the performance of the

computer method was statistically higher than that of five radiologists (122). Comparison between

ROC curves (computer and radiologists) was done using a new partial area index. In clinical practice,

operating ranges with low sensitivity are unacceptable, and the portion of the ROC curve at high

sensitivity above a preselected threshold is most important. Thus, in the comparison the portion of the

area under each ROC curve above a sensitivity of 0.90 was calculated. A partial area of

0.082 was calculated for the computerized method, whereas a partial area of 0.042 was calculated for

the five radiologists. Results of the Student t test for paired data showed this difference to be

statistically significant (p = 0.03). This computerized classification technique is expected to be helpful

to radiologists in reducing the number of false-positive biopsy findings.
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(2) Development of a dedicated CAD module for use by radiologists.

Experimental methods

The various computer-vision and artificial intelligence schemes will be incorporated into a dedicated

computer system (module) equipped with a high-speed computer and a digital image interface. The

digital image interface will initially be to a film digitizer in order to test the CAD schemes using the large

database of clinical mammograms available in our Radiology Department. Later, mammographic

images will be obtained using the CR system or the CCD-based digital biopsy unit. The intelligent

modular workstation will need to have sufficient computer power (CPU and large capacity memory)

and display capabilities to allow for "real-time" computation and viewing of the computer-vision results.

Thus, we plan to upgrade our current computer hardware and optimize our software to achieve high-

speed and efficient computation of CAD results. Our target is to reduce the CPU time required for CAD

computations from the current level of about 5 minutes per image to a few seconds. Also, appropriate

man-machine interfaces will be needed for effective and efficient computer-assisted interpretations.

This part of the research will involve the examination of various methods of presenting the computer-

determined results to the radiologists. Important parameters include (a) the shape and size of the

markers of the computer output that could represent the severity or confidence level (probability) of the

lesion, (b) the optimal operating point of the CAD schemes (high sensitivity with an acceptable number

of false positives), (c) the timing and duration of displaying the computer output, (d) the selection of the

minimum number of inputs required for radiologists and (e) the user-friendliness of instructions and

input entries.

The development of the prototype modular system will be achieved in stages. In Phase 1, the

introduction of the computer-vision aid to the radiologists will be implemented with minimum change in

the current radiologist method of operating. This will allow for a gradual introduction in order to

minimize any resistance to change. Thus, only computer-reported detection results will be presented to

the radiologist, leaving all of the interpretation to the radiologist. Basically, the computer will serve as a

"second opinion" indicating suspicious areas without critique as to their degree of malignancy. Original



ITinal Report DAMD 17-93-J-3021 30

films will be digitized (2048 by 2048 digitization matrix) and analyzed, with the computer output then

printed on either film or thermal paper. Radiologists will perform their normal reading using the

original image and the computer results. It is believed that this introduction of CAD to radiologists will

cause minimum modification to their normal reading patterns, thus allowing for a smooth and effective

transition. During Phase 2, results from the classification schemes also will be included, using the

methodology described for Phase 1. However, in this second phase the computer will serve as a

"second opinion" for both the location and the interpretation of breast lesions.

During the first two phases, we will investigate the best markers for use by radiologists, who may

prefer arrows or circles (icon-type symbols). It should be noted that the implementation of computer

vision in mammographic screening using the methods described above is not limited to fully digital

(PACS) departments but can be incorporated in a general film-based radiology department or in a

mobile, filmless mammography unit (i.e., a limited PACS environment).

Once the use of computer vision is shown to be useful, beneficial and efficient, we will incorporate

high-resolution, state-of-the-art monitors into the dedicated computer system (Phase 3). The

"intelligent" module will be interfaced to our department's RIS (radiology information system) to link

the demographic and medical history information with the CAD output. In order for the radiologist to

examine the entire breast image, the display monitor will need to have 2K by 2K capability. In

mammography, each breast image usually can be digitized adequately into a 2K by 1K image. Thus, in

order to view all four breast images (left and right CC views and left and right MLO views), two high-

resolution 2K by 2K monitors are needed. However, in the practice of radiology, films (images) from

previous examinations play an important role in the current exam due to the need for comparison in

order to detect subtle changes. Thus, the display requirements are four 2K by 2K monitors (in a 2 by 2

arrangement), allowing the top two monitors to be used for sequencing through previous exams of the

patient in question. In this phase, the radiologists will do their reading of the mammographic cases

from the high-resolution monitors. Due to the dynamic nature of the display, the computer-reported

results can be presented in a toggle format where the radiologist can press a button to either show or

remove the computer-reported results. In addition, the computerized schemes can be configured to



.Final Report DAMD 17-93-J-3021 31

allow for the radiologist to control the tradeoff between the sensitivity and specificity of the computer

output, because more true-positive detections always can be achieved at the cost of a larger number of

false-positive findings, and vice versa. This tradeoff would be adjusted by the radiologist, depending

on the nature of the case material and personal preference. For example, a radiologist might choose a

computer output with high sensitivity for examining high-risk patients, whereas a lower sensitivity and

correspondingly lower false-positive rate might be preferred for patients at low risk for cancer. It

should be noted, however, that increasing the number of interactive choices available to the radiologist

will lengthen the reading time per case. Therefore, we will investigate optimization of the module's

human interface by studying the relationship between achievable diagnostic accuracy and required

reading time.

Results to date

The computerized image analysis software has been integrated into a user friendly interface based

on UNIX, XWINDOWS and Motif and operated on an IBM RISC 6000 Series 570 computer

workstation. The prototype (hardware & software) was demonstrated at the 1994 annual meeting of the

Radiological Society of North America (RSNA) and was well received by the many radiologists in

attendance. Currently, arrows (red for masses and yellow for clustered microcalcifications) are used to

indicate the computer-detected location of lesions. The input to the system can be either a film that is

digitized and then analysed automatically or a computer file containing a digital image,. The prototype

system is interfaced to a Konica laser film digitizer which enables digitization of the mammograms to

approximately 2K by 2K matrices. Video output of the IBM monitor is connected to a low-resolution

thermal printer (approximately 1K by 1K) for hardcopy reporting of the CAD results.

Our prototype workstation was placed in the clinical mammography reading area of the Department

of Radiology. Since Nov. 8, 1994, we have analyzed over 5000 screening cases. Results are

discussed in the next section.
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(3) Evaluation procedure using large clinical databases

Experimental methods

As described in the previous section, the computer-vision methods for mammography will be

developed in phases. Plans include testing the computer-vision system at the end of each phase in order

to demonstrate the effect of the various modes of presentation on the accuracy, efficiency and

acceptability of the mammographic aid. The system will be evaluated using clinical mammograms

obtained from both a low-risk population and a high-risk population. The low-risk population will be

obtained from The University of Chicago mammography screening program. The high-risk population

will be drawn from examinations referred to our Department of Radiology, since The University of

Chicago serves as a tertiary medical center. Initially, performance studies will be done using a database

of preselected mammographic cases that have a distribution of subtle cases of normal, benign and

malignant areas of either masses or microcalcifications. Later studies will be performed using a more

representative database of consecutive mammographic cases obtained from four weeks worth of

screening. "Truth" concerning the presence and malignancy of masses and microcalcifications will be

established with the aid of expert mammographers, follow-up reports and surgical biopsy reports.

Normal cases will be selected from patients who have had normal follow-up exams. Performance

studies will be done using cases involving the four conventional mammograms (left and right CC

views, and left and right MLO views), since these are the usual images obtained in screening.

At the detection stage of the computer-vision system, performance will be examined by calculating

the fraction of lesions detected (true-positive rate) and the number of falsely-reported areas per case. At

the classification stage of the computer-vision system, performance will be examined by calculating the

fraction of malignant cases correctly classified (true-positive classification rate) and the number of

benign cases that are reported by the computer as being malignant (false-positive classification rate).

The clinical database for these performance evaluations will contain 180 cases (60 normal, 30 with

benign masses, 30 with malignant masses, 30 with benign microcalcifications, and 30 with malignant

microcalcifications).
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Observer studies will be performed to examine the usefulness of the computer-assisted

interpretation process in enhancing radiologists' performance levels, as compared to the unaided

performance by radiologists. During phases 1 and 2, the database cases will be printed with the

computer-vision results on each film. These database cases will then be used in observer performance

studies. Stratified sampling (106) will be used in choosing subtle cases in order to avoid problems

associated with either "too easy" or "too difficult" cases (107). Twelve attending radiologists and

senior residents will act as observers. Then, for the 180 cases in the database, three "reading methods"

will be tested; (a) the original cases without the computer-vision aid, (b) the cases with the detection-

results reported (phase 1 computer locations of suspicious areas) and (c) the cases with both the

detection and classification results reported (phase 2 computer locations with probability of

malignancy). Each observer will be asked to perform two tasks: (1) locate and rate suspicious areas as

to the presence of an abnormality (rating scale of 0 to 100) and (2) indicate an overall level of certainty

as to the presence of cancer using a 5-point rating scale where 1=definitely benign and 5=definitely

malignant. This five-point scale is the same as that being recommended by the American College of

Radiology for routine use by clinical mammographers. The dual-task observer study will allow for

evaluation of the utility of both the computer-vision detection and classification results. (In addition,

questionnaires will be given to each observer in order to obtain subjective information with regard to the

efficiency and acceptability of the computer-vision mammography system.) In the analysis of the

observer study results, maximum likelihood estimation (108) will be used to fit a binormal ROC

(receiver operating characteristics) curve to each observer's confidence-rating data from each diagnostic

method. The index Az, which represents the area under a binormal ROC curve, will be calculated for

each fitted curve. To represent the average performance of the observers for each diagnostic method,

the composite ROC curves will be calculated by averaging the slope and intercept parameters of the

individual observer-specific ROC curves. The statistical significance of apparent differences between

pairs of diagnostic methods will then be analyzed by applying a "two-tailed" t-test for paired data to the

observer-specific Az index values.



Final Report DAMD 17-93-J-3021 34

Free-response ROC (FROC) analysis (109) and FROC-AFROC analysis (110) will be used in

analyzing the data pertaining to localization of the abnormality. The ordinates of both FROC curves and

AFROC curves are the fraction of lesions (masses or microcalcifications) that are correctly localized by

the observer. However, the abscissa of an FROC curve is the average number of false positives per

image, whereas the abscissa of an AFROC curve is the probability of obtaining a false-positive image

(i.e., an image containing one or more false-positive responses).

After phase 3, another observer study will be performed in which four weeks' worth of

mammographic cases will collected and interpreted by six radiologists with and without the computer-

vision results of location and classification. Although this database lacks the control over the subtlety of

the cases that the earlier mentioned study has, it represents a more typical clinical situation. Half of the

radiologists will read the first two weeks of cases without aid and the second two weeks of cases with

the mammographic aid; and the other half of the radiologists will read the first two weeks of cases with

the aid and the second two weeks of cases without the aid. Rating methods and analyses will be the

same as mentioned above.

Results to date

FROC analysis and ROC analysishave beenused extensively for the intermediate testing results of

the various detection and classification methods. Constant collection of the database is ongoing.

Investigators have developed a case reporting sheet for organizing the new cases on a Macintosh

computer using FileMakerPro software. The various databases being collected include pathologically-

proven mass and clustered microcalcification cases. In addition, a "missed lesion" database is being

digitized in order to test the detection methods in the upcoming grant period. This database includes

lesions that were seen in retrospect, i.e., after the cancer was detected at a later date. This database

will demonstrate the ability of the detection schemes to increase the sensitivity of detection in a

screening program. In a preliminary study (presented at the RSNA 94) in which 26 "missed lesion"

cases were analyzed, the computerized detection schemes achieved a sensitivity of 50%. (Note that
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these "missed lesion" cases can be thought of yielding a sensitivity of 0% when they had been read by

the radiologists).

We have been tabulating the performance of the clinical intelligent mammography workstation.

In this prospective study, the results of the computer output have been quite promising (123). Since

the study is prospective, we do not know all "truth" yet, although we are currently following the

workups and biopsy results. Approximately 70% of the cases deemed suspicious by the study

radiologist have been detected by the computer. In two cases, a cluster of microcalcifications was

located by the computer but not by the radiologists. A large number of screening cases need to be

analyzed by the workstation prior to assessment of its performance and contribution in the

mammographic interpretation process, since with screening mammography, only 5 to 10 cancers are

found for every 1000 patients.

We are currently collecting follow-up data on the patients with abnormal mammograms. Follow

up has been performed on the first 1149 screening cases (124). These screenees resulted in 154

abnormal interpretations and in the detection of six cancers. The sensitivity of the computer schemes

to detect cancer was 83.3% with a false positive rate of 0.91 false clusters and 1.4 false masses per

image. Many of the false clusters are due to calcified vascular structures and many of the false masses

are due to nodular-like structures. We found that the study radiologist can easily learn to recognize

typical false positives and disregard them in her assessment of the presence of a lesion.

Since April of 1995. the intelligent workstation has been used routinely by the attending

mammographers in the clinical reading area of the Department of Radiology. Over 5,000 screening

cases have been analyzed by the computer. The radiologists perform their initial interpretation of the

mammographic case and then look at the computer results that are printed on thermal paper. The

radiologists rate the case from -2 to +2. with +2 meaning the computer output was quite useful. The

weekly average rating given to the cases (over both normal and abnormal mammograms) so far ranges

from 0.11 to -0.73. Note that for normal mammograms, the highest rating that can be given is zero,

and that most of the cases read are normal (for a screening population). For normal mammograms, -1

or -2 are given for too many false positive detections. For abnormal cases, -1 or -2 are given if the
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computer fails to point to a location deemed suspicious by the attending radiologist -- whether it is

malignant or not. We are currently, analyzing the rating separately for normal and abnormal cases:

however it is important to accumulate a sufficient number of cases due to the low incidence of abnormal

mammograms in a screening population.

CONCLUSIONS

Substantial improvements in the performances of the computer-aided diagnosis methods for the

detection of masses and clustered microcalcifications have been achieved during the past funding period.

For the detection of masses, the sensitivity remained constant, while the false-positive rate per image

reduced to less than 2 per image. For the detection of clustered microcalcifications, the false-positive rate

was reduced from 2 per image to approximately 0.7 per image, without loss in sensitivity. Constant

collection of the database is ongoing. Investigators have developed a case reporting sheet for organizing

the new cases on a Macintosh computer using FileMakerPro software. The various databases being

collected include pathologically-proven mass and clustered microcalcification cases. Databases for both

mammograms containing mass lesions and mammograms containing microcalcifications have both

increased in size and some have been digitized on more than one digitizer in order to observe the effect of

digitization on detection performance. In addition, a "missed lesion" database is being digitized in order

to test the detection methods in the upcoming grant period. This database includes lesions that were seen

in retrospect, i.e., after the cancer was detected at a later date. This database will demonstrate the ability

of the detection schemes to increase the sensitivity of detection in a screening program. In a preliminary

study (presented at the RSNA 94) in which 26 "missed lesion" cases were analyzed, the computerized

detection schemes achieved a sensitivity of 50%. (Note that these "missed lesion" cases can be thought of

yielding a sensitivity of 0% when they had been read by the radiologists).

With regard to the classification of mammographic lesions as an aid in distinguishing between

malignant and benign cases, the initial performances for both masses and microcalcifications has been

quite promising. In the classsification of masses, an Az (area under the ROC curve) of 0.90 was

obtained from the ROC analysis of the output from the neural network, which was used to merge the
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extracted features of the lesions. In the classification of clustered microcalcifications a neural network

correctly identified 69% of the benign patients, all of whom had biopsies, and 100% of the malignant

patients. We conclude that a computer is capable of distinguishing benign from malignant clustered

microcalcifications even at 100-mm pixel size.

The computerized image analysis software has been integrated into a user friendly interface based on

UNIX, XWINDOWS and Motif and operated on an IBM RISC 6000 Series 570 computer workstation.

The prototype (hardware & software) was demonstrated at the 1994 annual meeting of the Radiological

Society of North America (RSNA) and was well received by the many radiologists in attendance. The

input to the system can be either a film that is digitized and then analysed automatically or a computer file

containing a digital image. The prototype system has been used in the clinical reading area since

November, 1994, with the attending radiologists using it routinely since April, 1995.

We are very optimistic about the continuing success of our research. We will continue to improve

the detection and classification performance of our algorithms. The mammographers in the clinical

reading area of the department are pleased with the prototype. Weekly meetings are held between the

basic science and clinical researchers in order to ensure a smooth integration of the workstation in the

clinical arena. The results with the clinical prototype are promising.
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Spiculation is a primary sign of malignancy for masses detected by mammography. In this study,
we developed a technique that analyzes patterns and quantifies the degree of spiculation present.
Our current approach involves (1) automatic lesion extraction using region growing and (2) feature
extraction using radial edge-gradient analysis. Two spiculation measures are obtained from an
analysis of radial edge gradients. These measures are evaluated in four different neighborhoods
about the extracted mammographic mass. The performance of each of the two measures of spicu-
lation was tested on a database of 95 mammographic masses using ROC analysis that evaluates
their individual ability to determine the likelihood of malignancy of a mass. The dependence of the
performance of these measures on the choice of neighborhood was analyzed. We have found that it
is only necessary to accurately extract an approximate outline of a mass lesion for the purposes of
this analysis since the choice of a neighborhood that accommodates the thin spicules at the margin
allows for the assessment of margin spiculation with the radial edge-gradient analysis technique.
The two measures performed at their highest level when the surrounding periphery of the extracted
region is used for feature extraction, yielding A, values of 0.83 and 0.85, respectively, for the
determination of malignancy. These are similar to that achieved when a radiologist's ratings of
spiculation (A,=0.85) are used alone. The maximum value of one of the two spiculation measures
(FWHM) from the four neighborhoods yielded an A, of 0.88 in the classification of mammographic
mass lesions.

Key words: spiculation, digital mammogram, radial edge-gradient analysis, ROC analysis,
computer-aided diagnosis, computer vision

I. INTRODUCTION used the analysis of edge orientation histograms to detect
stellate lesions. Kilday et al."1 segmented lesions with a

X-ray mammography has been proven to be the most effec- simple thresholding technique and used linear discriminant
tive method for the detection of early breast cancer. How- analysis to merge several shape-related features to distin-
ever, mammographic findings of benign and malignant guish between fibroadenomas, cysts, and carcinomas. Other
masses often overlap.' At many centers, only 10%-20% of investigators have used only a single computer-extracted fea-
detected masses removed by surgical breast biopsy are ture related to either margin, shape, or density as an indicator
malignant.2,3 A computer scheme capable of providing objec- of malignancy. Burdett et al. 12 applied a fractal analysis to
tive information may aid radiologists in their classification of quantify the degree of surface roughness as a single indicator
masses, thus preventing unnecessary biopsies. Computer aids of malignancy. Claridge et al. 13 analyzed a small set of ma-
have already been shown to improve the detection perfor- lignant lesions by measuring the lesion edge blurriness. In
mance of radiologists.4' 5  addition, many investigators 14-18 have taken advantage of

The shape, margin, and density of a mass are used by the ability of radiologists to extract mammographic features,
radiologists to characterize masses."' 6'7 The margin character- which are subsequently merged by rule-based, discriminant
istics of a mass observed mammographically are very impor- analysis or neural networks into a final determination of the
tant indicators of its benign or malignant status. The margin likelihood of malignancy.
of a mass can be categorized as circumscribed, lobulated, Previously we developed a classification method that in-
obscured, indistinct, or spiculated with a spiculated margin volved the extraction of lesions using a manual region-
being the strongest sign for malignancy."16'7  growing technique and the extraction of two features con-

Various investigations 8-13 have attempted to classify taining margin information. These were merged by an
breast lesions or to detect spiculated masses based on artificial neural network to quantify the degree of
computer-extracted features characterizing either the margin, spiculation.19 The database in that study contained 28 benign
shape, or density of a mass. Ackerman et aL8 extracted four and 25 malignant masses. The result showed that the mam-
features of malignancy, calcification, spiculation, roughness, mographic features extracted and merged in this way yielded
and shape, from lesions identified by radiologists on xerora- measures of spiculation comparable to those obtained by an
diographs and then merged the four features to classify those expert mammographer.
lesions. Brzakovic et al.9 classified detected abnormalities In this study, we developed a new spiculation-sensitive
into nontumor, benign tumor, and malignant tumor using pattern-recognition technique, "radial edge-gradient analy-
measures of size, shape, and intensity change. Kegelmeyer1° sis." Prior to the feature extraction, we employed an auto-
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FIG. 2. 512X512 ROIs centered about (a) an original malignant mass and (b) a benign mass. The processed images of the (c) malignant and (d) benign masses

after background trend correction and histogram equalization. Diagrams of size and circularity of the 'rown region as functions of gray-level interval

,contrast) with the automatically determined transition point indicated for the (e) malignant and (f) benign masses. The computer-extracted margins overlayed

tn the (g) malignant and (h) benign masses.
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Direction of the the radial direction or the "radial angle." Note that 0 is not

maximum gradient Radial direction the angle the maximum gradient makes with the x direction.
at point pl Analysis relative to the x axis yields information only on

whether a lesion is circular or not,5"24 i.e., it can only be used

to distinguish circular patterns from linear patterns, not cir-

cular patterns from spiculated patterns. Rather, our analysis

was developed in order to distinguish spiculated masses from

mcircular or oval masses with smooth margins, since spicula-

tion is an important indicator of malignancy.
In each neighborhood, the maximum gradients having the

same radial angle are summed for each radial angle, resulting
0 is the angle that the direction in a cumulated edge-radient distribution relative to the ra-
of the maximum gradient makes i- d

Y with the radial direction dial angle. The cumulated edge-gradient distribution is then
normalized by the average maximum gradient of the particu-
lar neighborhood, enabling comparison of cumrulated edge-

FIG. 4. Illustration defining the radial angle 0 as the angle between the Zar np
direction of the maximum gradient and its radial direction which is the gradient distributions between various lesions. Normaliza-

direction pointing from the center of mass to the point p I, and the radial tion is performed such that the area under the normalized
gradient as the projection of the maximum gradient along the radial direc- distribution curve is one. Representative analyses were per-
tion. formed on a smooth, round benign mass and a spiculated,

round malignant mass which are shown in Figs. 5(a) and

The radial direction for point p I is the direction pointing 5(b), respectively. Figures 5(c) and 5(d) show the corre-

from the geometric center of the grown mass to p L. The sponding normalized cumulated edge-gradient distributions

angle 0 between the direction of the maximum gradient at relative to the radial angle obtained using neighborhood (B)

the pixel pl and its radial direction is the angle relative to (margin). It should be noted that the benign mass yields a

(a) (b)
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Fto. 5. (a) A mammographic circular, smooth mass and (c) its corresponding normalized cumulated edge-gradient distribution. (b) A mammographic

spiculated mass and (d) its corresponding normalized cunmulated edge-gradient distribution.
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(a)
(d)

(b)
i (ej

FIG. 6. Simulated smooth masses with long-to-short axis ratios of (a) 1:1,
(b) 10:6, and (c) 10:5, and simulated spiculated masses (d) slightly spicu-

lated and (e) highly spiculated with long-to-short axis ratios of 1:1 and
1:0.9, respectively.

lated masses and smooth masses having a long-to-short ratio FWHM measure, 75% of the malignant masses can be cor-
oreater than 1.7. However, to prevent misclassifying spicu- rectly identified with only 4 out of 38 benign masses being
lated masses as nonspiculated masses by overcorrecting the misclassified (Fig. 8).
FWHM measures, the FWHM measure is made only for the ROC analysis27- 29 was undertaken to evaluate the abilities
masses having a long-to-short axis ratio larger than 1.8. For of each of the two spiculation measures determined for the

the same reason, a single value correction of 36' on the four neighborhoods in distinguishing between benign and
FWHM measure for the masses having a long-to-short axis malignant masses. The area under the ROC curve (As) was

ratio larger than 1.8 is used rather than a correction factor for calculated as an index for the performance of each feature as
each individual mass based on its shape. shown in Table II. Figures 9(a)-9(c) show the individual

performance of the two spiculation measures for each neigh-
IV. RESULTS borhood type. The performances of the uncorrected FWHM

Figure 8 shows the relationship between the corrected and normalized radial gradient measures in classifying the 95

FWHM and the normalized radial gradient measures within masses for each neighborhood are similar as shown in Figs.
the rectangular segment [neighborhood (C)] for the 95 9(a) and 9(b). It is apparent that the choice of neighborhoods
masses. It is apparent that most of the malignant masses have will affect the performance level also as illustrated in Figs.
large values of FWHM and small values of normalized radial 9(a) and 9(b). The effect of the four neighborhoods on the
gradient. For example, by setting a threshold at 160' for the two spiculation measures shows the same trend for each

Medical Physics, Vol. 22, No. 10, October 1995
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TABLEII., A, values of the two spiculation features extracted in the four 1.0
" neighborhoods (95 mammographic masses). Normalized radial gradient

Neighborhoods

(A) (B) (C) (D) 0 Srd
Margin Grown Encompassing Surrounding periphery (D)

M easures reg ion region periphery ., "(An =0.80)
4) 

region (C)

Normalized 0.70 0.75 0.80 0.80 Z 0.5 (A,.0.80)
radial gradient 

0fw Margin (B)

Uncorrected 0.70 0.75 0.80 0.83
FWMGrown region (A)"y(A,=0.70)

Corrected 0.73 0.77 0.83 0.85,I
FWHM 

0'0.5 
1.0

(a) False-Positive Fraction

computer-based spiculation measure (FWHM) achieves 1.0higher A- values (A.=0.88) than that based on the spicula-

tion ratings from an human observer. Of course, with the use
of additional mass-related features such as opacity or shape,
the performances of both the computer-based measures and
human assessment would be expected to improve. t5 .. - \ periphery(D)

l . " " E n c o m p a s s in g4) 0 .5 " . " re g io n (C )

V . D IS C U S S IO N 2 > (Ao=s.8O)o ,0 [ , Margin (B)

In order to maximize the extraction of the margin spicu- 4. , (A)=0.T))
lation information from a mass, four different neighborhoods
about the grown region were introduced for feature extrac- " ' Grown region (A)

tion. As described earlier, neighborhoods (A) and (B) rely (A.=0.70)

entirely on the grown region, whereas neighborhoods (C)
and (D) introduce regions surrounding the grown mass in 0. . 0.5 1.0

order to include thin, short spicules radiating from the mar- (b) False-Positive Fraction
gin of a mass, which could not be delineated by the gray-
level region.growing technique. The size of the region intro- 1.0

accommodate thin, short spicules. Since the four neighbor-
hoods are determined from the grown region, the accuracy of
the lesion segmentation prior to feature extraction is impor- C.2 Surroundin
tant in the success of subsequent feature analysis. However, '., periphery (a)

• 
(A ý= 0 .8 5 )

the regions introduced in neighborhoods (C) and (D) m ake i . - " Encompa ssing
region (C)

the subsequent analysis less dependent on the grown region. . • o , (A ==083)

Results show that spiculation analysis within neighbor- Margin (B)
hoods (C) and (D) yield higher A, values than that within (. (AL=O.77)

neighborhoods (A) and (B). This demonstrates the usefulness Gorgn(
Grown 

region 
(A)

of introducing a zone around the extracted lesion to accom- (Aý=0.73)
modate potential margin spiculation. The A, values of the
two spiculation measures obtained from margin (B) and sur-
rounding periphery (D), which exclude most of the interiors 0.0 0.5 1.0
of the grown (A) and encompassing (C) regions, are higher (C) False-Positive Fraction
than the A, values obtained from the grown (A) and encom-
passing (C) regions themselves, respectively. This demon- FtG. 9. ROC curves for (a) the normalized radial gradient measures, (b) the
strates that mainly using the margin information increases FWHM measures, and (c) the corrected FWHM measures on a database of

95 mammographic masses for the four neighborhoods showing the perfor-
the "signal-to-noise" ratio, and thus optimizes the radial mance in classifying malignant and benign masses.

edge-gradient analysis technique in the extraction of the mar-
gYin spiculation.

Thus, with the radial edge-gradient analysis technique, we [neighborhoods (C) and (D)] around a grown mass, it is not
found that a lesion can be extracted devoid of its spicules and necessary to require that the grown region include fine spi-
still be accurately analyzed for spiculation if the proper cules.
neighborhood is chosen. That is, by studying the periphery In the application of radial edge-gradient analysis in clas-

Medical Physics, Vol. 22, No. 10, October 1995
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rules for determining truth. ANNs "learn" from examples that are presented repeatedly. Neural networks
have found popularity in many fields due to their inherent ability to make decisions and draw conclusions
when the data presented is complex, noisy, or incomplete. In recent years neural networks have found
increased popularity in the field of medical imaging where pattern recognition or classification is
important.15- 8 For this study we utilized neural networks to classify (lesion vs. false-positive) the
regions of interest based on the features that were extracted from these regions. Figure 1 illustrates the
complete process of the mass detection scheme.

2. DATABASE

Artificial neural networks are trained pattern recognition devices, and thus the databases that are
used to train and test the ANN are vital in interpreting the performance. If, for example, the computerized
method is trained only on lesions that are "easy" to detect, then the method will likely not do well on the
more difficult to detect masses. Our database consists of 110 pairs of digital mammograms with 102
masses (54 malignant and 48 benign). In addition, 302 false-positive regions were selected for neural
network training. All of the masses in the database were rated subjectively for detection subtlety by
experienced radiologists using a five-category scale. 14 Figure 2 shows the distribution of this rating. As
the graph shows, a substantial number of the masses in our database were designated by radiologists as
"difficult" lesions to detect.

3. FEATURE EXTRACTION

The first step in the feature extraction process is the extraction of the potential lesion by region
growing. 19 This process yields a computer-delineated margin around the potential lesion referred to as the
grown mass. This grown mass is then used in extracting the features.

A total of 91 features are calculated. Space does not permit discussion of all features, so this paper
will focus on only those features eventually selected for input into the ANN. These selected features can
be separated into three types: geometric measures, intensity-based measures and gradient-based measures.

3.1. Geometric Measures

Geometric measures pertain to the shape of the lesion. The circularity, effective diameter, and
irregularity were the three geometric features used for input to the ANN. Figure 3 gives the definitions of
these three features.

3.2. Intensity-based Measures

Intensity-based measures are related to the gray-level values (and thus related to the density of the
tissue) within the grown mass. These features include measures of the gray-level difference between the
grown mass and its local background, the average of the gray-level values within the grown mass, and the
average gray level within a smoothed margin of the grown mass.

3.3. Gradient-based Measures

The gradient-based measures are calculated for four neighborhoods about the potential lesion.
These neighborhoods are (1) the margin of the grown mass, (2) the grown region (inside the grown
mass), (3) the periphery (outside the grown mass but within the ROI), and (4) the ROI (rectangle
encompassing the mass).20 For gradient-based measures, each of the four regions are processed with a
3x3 Sobel filter to calculate the gradient at each individual pixel. At each location the maximum gradient
and the angle of this gradient relative to the radial direction and a fixed axis are calculated. Gradient-
weighted histograms are then determined using both the radial angle and the angle with respect to the fixed
axis. Measures such as full-width half-maximums (FWHMs), average values, minima, heights and
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difference between the output of the ANN and the desired output.21 Training was performed with an
output value of 0.9 representing a true-positive and a value of 0.1 representing a false-positive.

The neural network was tested using both consistency and round robin testing. Consistency
testing involves training the ANN on the entire database and then testing it on the same database (see
Figure 6A). This will give a measure of how well the network "learned" its training set. In round robin
testing, the ANN is trained on all but one of the training set ROIs, which is used for testing. This process
is repeated so that each case in the training set is used once as a testing case (see Figure 6B). Since the
round-robin tests employ data that the ANN has not been trained on, these trials provide an approximation
of the general performance of the ANN.

Receiver operating characteristic (ROC) analysis 22,23 was employed to evaluate the performance
of the ANN in distinguishing true lesions from false-positives. The LABROC4 program developed by
Metz et al.24 was used to fit the data output from the neural networks. The area, Az, under the ROC
curve represents the performance of the ANN. Free-response operating characteristic (FROC) curves,
obtained by plotting the sensitivity (lesions detected divided by the actual number of lesions) versus the
number of false positives per image, were also used.

The input features were chosen by determining those features that exhibited the greatest one-
dimensional separation, but other variables of the neural network were determined empirically during the
training process. The number of hidden units in the hidden layer is an important parameter because it is a
measure of how complex a separation the ANN can make. The network requires enough hidden units to
make the separation between true and false data; however, if a large number of hidden units are arbitrarily
added, the ANN will begin to "learn" the training set too well, which decreases round robin performance
due to loss of generality. In order to determine the optimal number of hidden units, we investigated the
performance of the ANN as a function of the numbers of hidden units and chose the number of hidden
units that maximized the round robin performance. We performed similar tests with other parameters of
the ANN, such as the learning rate, to optimize the structure of the artificial neural network.

5. RESULTS AND DISCUSSION

Figure 7 shows ROC curves illustrating the consistency and round robin performance levels of our
previous and current mass detection scheme at the feature analysis stage. As these plots indicate, there is a
substantial increase in the round robin Az using the enhanced feature extraction. Thus, the new features
and the ANN structure have increased the general performance of the computerized scheme.

The sensitivity for detection of the malignant lesions was 100% at 15 false positives per image at
the bilateral subtraction stage and 89% at 2 false positives per image after the ANN stage (using the round
robin results). We can conclude from this information that the gradient-based features, which were
initially thought to be useful only in the classification (malignant versus benign) of masses, 20 are also
useful features to employ in the detection of mammographic lesions and the elimination of false positives.

We are presently performing additional research using rule-based studies and optimization of the
input features to further improve the performance of the mass detection program.
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Malignant and Benign Clustered
Microcalcifications: Automated Feature
Analysis and Classification'

PURPOSE: To develop a method for LTHOUGHi mammography is highly tered microcalcifications that qualita-
differentiating malignant from be- A sensitive (70%-90%) in the early tively correlate to those seen by a ra-
nign clustered microcalcifications in detection of breast cancer, its efficacy diologist, and produced an estimate
which image features are both ex- is limited by the poor positive predic- of the likelihood of malignancy on the
tracted and analyzed by a computer. tive value (15%-30%) obtained by hu- basis of these automatically extracted

MATERIALS AND METHODS: One man observers (1-3). Since calcifications features. The purpose of our study

hundred mammograms from 53 pa- are commonly seen on mammograms was to develop a computer-aided di-

tients who had undergone biopsy for (3), detection of breast cancer prompted agnostic technique to improve radi-

suspicious clustered microcalcifica- by clustered microcalcifications relies on ologists' performance in differentiat-

tions were analyzed by a computer. accurate differential analysis (4). How- ing malignant from benign clustered

Eight computer-extracted features of ever, analysis of microcalcifications is microcalcifications (14).

clustered microcalcifications were often difficult; this prevents radiolo-

merged by an artificial neural net- gists from obtaining a high positive MATERIALS AND METHODS
work. Human input was limited to biopsy yield on the basis of mammog-

initial identification of the microcal- raphy (1). Database

cifications. Several articles describe computer- One hundred digitized standard-view

RESULTS: Computer analysis al- ized methods that potentially assist screen-film mammographic images from
lowed identification of 100% of the radiologists to more accurately differ- 53 patients that showed clustered micro-
patidentswithfbreasticatoncr ad 8% t entiate breast cancer from benign calcifications were analyzed. These imagespatients with breast cancer and 82% breast disease (5-7). However, image were initially selected to study a com-
of the patients with benign condi- features were manually extracted in puter-aided detection scheme. The origi-
tions. The accuracy of computer these studies and the computer was nal selection criteria were that the clusters
analysis was statistically signifi- used only for decision making. The of microcalcifications were difficult to de-
cantly better-than that of five radiolo- reliance on humans to extract subjec- tect and that biopsy had been performed
gists (P = .03). tive impressions of many image fea- (15). Nineteen patients had unilateral

CONCLUSION: Quantitative features tures effectively renders these tech- breast cancer and 34 had benign breast

can be extracted and analyzed by a niques impractical for routine clinical disease. Of the 19 malignancies, three
were classified as ductal carcinoma in situ

computer to distinguish malignant use. Other investigators have used and 16 as infiltrating ductal carcinoma.
from benign clustered microcalcifica- computer-extracted features to clas- The 34 benign lesions were classified as
tions. This technique may help radi- sify malignant and benign clustered fibrocystic changes or disease (FCD) (n
ologists reduce the number of false- microcalcifications (8-11). In all but 14), sclerosing adenosis (n = 5), FCD and
positive biopsy findings, one of these studies, the features tended papillomatosis (n - 4), FCD and fibroad-

to express mathematical forms with no enoma (n = 2), papillomatosis (n = 2), fi-
direct correlation to the features identi- brosis (n = 2), adenosis (n = 2), fibroad-

Index terms: Breast neoplasms, calcification, fled by a radiologist (1,4,12,13). Further- enoma (n = 2), and FCD and sclerosing
00.30, 00.811, 00.812 • Breast neoplasms, diag- more, these features often did not allow adenosis (n = 1). Two patients had mul-
nosis, 00.31, 00.32 - Computers, diagnostic successful classification of clustered mi- tiple groups of clustered microcalcifica-
aid * Computers, neural network tions on one or both sides, with one be-

crocalcifications. nign lesion found at biopsy in each case.
We developed a computerized The remaining clusters from these two

Radiology 1996; 198:671-678 method to extract features of clus- patients were classified as benign, since
biopsy was performed for the cluster that
appeared most likely to be malignant. The
100 images from these 53 patients showed

1 From the Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, 107 cases (40 malignant, 67 benign) of clus-

MC2026, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637 (Y.J., R.M.N., D.E.W., tered microcalcifications (some of the 55
C.E.M., M.L.G., R.A.S., C.J.V., K.D.); and the Department of Radiology, La Grange Memorial Hospi- clusters were shown more than once in
tal, La Grange, Ill (C.J.V.). From the 1994 RSNA scientific assembly. Received March 10, 1995; revision different views). Mammograms were digi-
requested May 1; final revision received September 22; accepted October 2. Supported by grants tized to a 0.1-mm pixel and 10-bit gray
RO1 CA 60187, RO1 CA 24806, RO1 CA 48985, and TS2 CA09649 from the National Cancer Institute; scale with a laser drum scanner.
the Whitaker Foundation; grant DAMD 92153010 from the U.S. Army; and grant FRA 390 from the
American Cancer Society. Address reprint requests to Y.J.

The contents of this article are solely the responsibility of the authors and do not necessarily rep-
resent the official views of the supporting organizations. Abbreviations: FCD = fibrocystic changes or

RSNA, 1996 disease, ROC = receiver operating characteristic.
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Figure 2. Diagrams of the distributions of malignant and benign clustered microcalcifications in the database for eight arbitrarily paired fea-
tures. (a) Cluster circularity versus cluster area. (b) Number of microcalcifications in a cluster versus mean effective microcalcification volume in
a cluster. (c) Relative standard deviation of effective microcalcification thickness in a cluster versus relative standard deviation of effective mi-
crocalcification volume in a cluster. (d) Mean microcalcification area in a cluster versus second highest irregularity value of microcalcifications
in a cluster.

benign disease only if all clusters on all mal parameters (a and b) of the five indi- in a cluster. All eight features could be
views were classified as benign. vidual ROC curves (21). used to distinguish some benign clus-

ters from malignant clusters. How-

Observer Study ever, the combined effectiveness of
RESULTS the eight features in separating be-

Five radiologists-three who specialize nign from malignant clusters was dif-
in mammography and two radiology fel- Selected Image Features ficult to visualize graphically, partly
lows with some mammographic experi- Figure 2 shows the distributions of because the benign clusters identified
ence-participated in the observer study. the eight features for all microcalcifi- with one pair of features were not
Each observer was presented with one cation clusters in the database. In gen- necessarily the benign clusters identi-
mammogram at a time and asked to esti-
mate the likelihood of malignancy (on a eral, considerable overlap between fled with other features. The com-
scale of 0-100) on the basis of the clustered the malignant and benign clusters bined usefulness of the eight features
microcalcifications. The order of presenta- was observed. However, in each scat- could be realized with an artificial
tion of the 100 images was randomized, ter plot there were some benign or neural network.
except that mammograms from any one malignant clusters that did not over-
patient were carefully separated by other lap with the others. For example, in
mammograms. The ratings assigned to Figure 2b there is a group of benign Performance of Artificial Neural
individual views were treated as indepen- clusters that is closer to the lower left Network
dent, and the highest rating among each corner of the graph than all malignant A consistency test for the neural
patient's images was assigned to that pa- clusters. Therefore, these benign clus- network with use of an identical set
tient. ROC curves were generated for each
observer for classification of breast cancer ters can be separated from malignant of data for both training and testing
or benign breast disease. An additional clusters on the basis of the number of yielded a perfect ROC curve with an
ROC curve was generated for the five ob- microcalcifications and the mean ef- A, of 1.0. Therefore, 100% of both ma-
servers as a group by averaging the binor- fective volume of microcalcifications lignant and benign clusters were cor-
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Figures 4, 5. (4) Diagram of the ROC curve for the neural network in the classification of malignant and benign microcalcification clusters.
The A, value for the fitted curve is 0.83. (5) Diagram of the ROC curve for the neural network in the classification of breast cancer versus benign
breast disease. The A, value for the fitted curve is 0.92.

1.0 cision must be made by the radiolo-

_N gist whether to recall the patient for
09 . additional examinations, with that

decision based only on standard
views. Another important point is

Computer (A,=0.92) that although radiologists have be-
come accustomed to making decisions
about whether calcifications are be-
nign (not suspicious) or malignant

Radiologists (A,=0.89) (findings suggest the need for a bi-S 0.5 _
05 -opsy) based on magnification views,

it would be very helpful to have a
method that allows accurate predic-
tion of malignant potential without
obtaining additional special views,
since these entail an additional ap-
pointment, expense, and anxiety for
the patient and technical difficulties
associated with high-quality magnifi-

0.0 . cation imaging. Although radiologists
0.0 0.5 E0 may need magnification views to

make these critical decisions, it is evi-
6. m fahe ROCives forahctom(pu d dent from our study that the com-

Figure 6. Diagram of the ROC curves for the computerized puter does not need these views as
method and for the combined results of five radiologists reviewing much as a radiologist. This is a sub-
the mammograms retrospectively for classification of breast cancer
versus benign breast disease, The areas under the ROC curve stantial advantage for computer-
above a sensitivity of 0.90 are 0.082 for the computerized method aided diagnosis. If computer-aided
and 0.042 for the five radiologists. Results of the Student t test for diagnosis were used at the diagnostic
the difference in these areas yielded a two-tailed P value of .03. work-up stage, even though the avail-

ability of additional views might im-
prove the diagnostic performance of

screening setting. It is possible that that this use may eventually be practi- the radiologists, it is likely that this
computer-aided diagnosis might re- cal. However, our study primarily would also improve the performance
duce unnecessary callbacks in this demonstrates the efficacy of com- of the computer. This possibility is
setting by accurate identification of puter-extracted features to enable ac- being analyzed in another study.
findings that are almost certainly be- curate mammographic diagnoses The success of our method is due in
nign. Use of the higher estimate of made by the computer on the basis of part to the choice of features of the
malignancy is clearly the conservative standard-view mammograms. This in microcalcifications and their clusters,
(safer) approach. Our data indicate itself is a valuable finding, since a de- which we believe provide good quan-
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. 3 tions (26). The neural network had
eight input units, a single hidden
layer, and one output unit. The input
units corresponded to the eight se-
lected features of individual microcal-
cifications and their clusters. The nu-
merical value of each feature was
normalized to the range between 0
and 1 according to the maximum
value of the feature in the data set.
The optimal number of hidden units
was determined empirically. The out-
put of the neural network repre-
sented the likelihood of malignancy
(0 = benign, 1 = malignant; however,
0.1 and 0.9 were used in training for
faster convergence of the neural net-

2 work). m
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Automated Segmentation of
Digitized Mammograms

Ulrich Bick, MD, Maryellen L. Giger, PhD, Robert A. Schmidt, MD,
Robert M. Nishikawa, PhD, Dulcy E. Wolverton, MD, Kunio Doi, PhD

Rationale and Objectives. Fast and reliable segilentation of digital
miam(lmogramns into breast andl nollrea/st rcuions is aln inmportant prerecquti-
site for further itnage analysis. We are developing a segmentation algorithmn
that is fully automated and can operate independent of type of digitizing
system, image orientation, and image projection.

Methods. The algorithmn identifies uLnexpo)sedC and direct-exposure
image regions and generates a border surrounlding the valid brecast rcgior.
which can then I)e used as input for further image an.alysis. The program
xx as tested on 740 digitized ni'mamnogramns; the segncmntation results were
evxluatcd byV two expert mammnographers aIndl two) medical physicists.

Results. In 97% of the mammlograns, the segmnentation results were
rated as acceptable for use in computer-aided diagnostic schemes. Segmen-

tation problems encountered in the renaining 22 inrrtges (2.9%) were most
often ca used by cligitization artifacts or p mammographic tech nirJue.

Conclusion. The developed algorithm can serve as a component of an
"intelligent" -xorkstation for computer-aicded diagtnosis in mammlography.

Key Words. Computer-aided diatgnosis; digital mammnography; imatge
segmenrtation: image processingg; digitization.

T he advent of digital projection radiography, either as a direct digital

modality (e.g., computed racliography) or ais filmn digitization, has

opened a variety of new opporttinities including digital imrage processing

digital image storage and] transfer, and computCe-ideCd image analysis 11]. For
any type of automlatic im, age analysis n it is necessary to first identiy t region

From the Kurt Rossmann Laboratories for Radio-
logic Image Research, Department of Radiology, of interest (]Ol: c.(g., [the Ib)rast region in t it.mtiimm n)gr'). In mnany prexvios

the University of Chicago, Chicago, IL. studlies of comptiter-aicled diagnosis (CAD) in m-1anmmography, analysis xvats
Address reprint requests to U. Bick, MD, who is now 1,'sel on lnanutally selected ROIs [2-61. Setmmloxv et al. [71 described a
at the Department of Radiology, University of MOn-
ster, Albert-Schweitzer-Str. 33, 48129 Mdnster, im1ethOCd that aritomatically cletects the breast skin line in xerOIn IlntOtm '.timr s
Germany. with the Use of edge detection. IIowever, becaiise of the different image
Received March 29, 1994, and accepted for publi-
cation after revision September 15, 1994. characteristics of xerominarilllo•I•.ims, this mnetho(l is n-lot lirectly applicbl]e to

screen-filti maulmogranms. As part of otir CAl) scheme in namiogrlaphy, ,we
acad Radiol 1995;2:1-9 
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© 1994, Association of University Radiologists prCVioUsly developed a me(thod for iChentifying the breast region in inamino)-
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TABLE 2: Outline and Performance of Segmentation Algorithm (2) directly exposed ilimge region; or (3) potential object

Algorithm Step CPU Time (sec)a (in this case, the hreast) pixel (Fig. Ili-])). The local

range oprCato)r used in our algorithlm wats based on a 7
Noise filter 0.3 pixcl-widc ring of t6 pixels. From this neighlorhood, the
Calculation of local gray-value range 0.7 l r
Modified global histogram analysis 0.1 1oCal maximum and minimttm pixel values wa.erc ealco-
Classification of image pixels 0.1 kited, A modified, "selective" histooratn [16] \v-ts con-
Region growing 0.3 struLctd including only pixels w\ ith a small local lage
Morphologic filtering 0.2-0.4
Determination of object contour 0.7-1.0 (eCatl netxitflrtm trinjis local minimuml-1), as shown in

Total performance time 2.4-2.9 Fi gtltre 2. For a pixel to be classified as a Idircct-exposure
pixel, the following criteria had to he fulfilled: A direct

CPU =central processing unit. exlOStir' pe't] exists in the milodified olobal histouralný
aCpU time on an IBM 570 for 128 x 160 subsampled matrix excluding Pg

image data input and output, the pixel aloe is close to this direct exposure pcak:; and

4ýT

A B C

SE F

FIGURE 1. Segmentation of digital mammograms. A, Original digital mammogram. B, Local gray-value range (local maximum minus local minimum) image. C, Range
image with intermediate density pixels inside the breast already identified as object pixels by the modified global histogram analysis shown as dark gray. D, Image
after initial pixel classification based on local gray-value range and modified global histogram analysis. Black = direct exposure, gray = potential object pixels, and
white = unexposed image region. Note that there is a transition zone of gray potential object pixels along the edge between the direct-exposure and unexposed image
region. E, Computer-generated breast border. Arrowheads mark the connection points from the internal object border (between object and direct-exposure region)
to the external object border (between object and unexposed image region). F, Computer-generated breast border superimposed on the original image.
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In the final step, a closed, 8-point connected border trm B, and 269 images with the newer laser scanner svs-

defining the breast region wais generated (Fig. iF). tem C (for a description of the digitizers, see Table 1). The

Because, in most cases, a transition zone of intermediate program was run on all 740 images with a fixed default
density object pixels is found along the edge between parameter setting. The computer-generated breast border

direct-exposure and unexposed image regions, the bor- was superimposed on the original limage and displayed

der generation algorithm has to identify certain connec- on ia coputer monitor. The segmentation results were

tion" points, where the object border is allowed to subjectively rated by two expert mammographers ainrd twr)

connect from the internal object border (between object meledica/l physicists and were categorized as follows: (1)

and direct-exposure region) to the external object bor- optimal--deviations of the computer-generated border
der (between object and unexposed region). Potential from the "true" breast border of less than the sampling dis-

connection points are identified as points thalt fulfill the tance of 2 mm; (2) minor localized deviations; (3) readily

following two criteria: (1) a short connected path of visible deviations-however, resLilts still accepltble for
object pixels exists between the connection point along CAD purposes (e.g., no1 breast palrenchy1nitl tissue

the internal object border and the outside unexposed excluded); (4) substantial deviations--ho•ever, overIll

region and (2) the internal object border forms a con- scgm-enLttion is still correct (mnay influence results of CAD
cave angle at the connection point, which is smaller schemes): and (5) complete failure of segmlentation (likely

than a certain threshold. If more than one isolated to influence CAD) results). Examples of minor (category 2)
object region exists in an image (additional 'objects" and acceptable (category 3) deviations are shown in Fig-

may represent, for example, letters or the identification Ure 4. During the evaluation, the observers were able to

label), the breast region can be identified easily as the choose between different default window settings as well
largest region of connected object pixels. The generated ats manually adjust the window in order to better assess

breast border is then expanded by linear interpolttion the performance of the segmentation. A chi-square test

to the original image maitrix an111d smoothed using a run- W\\Is used for statistical analysis of the results.

ning average of the border coordinates. Figure IF show\ s

the final computer-generated breast border superim- RESULTS

posed on the original iamogram.n ResuIlts, shown in Figure 5, indicate that in more than

97% of the cases, the segmentation results were rated
Evaluation as acceptable for CAD purposes (category 1, 2, or 3).

The testing database consisted of 740 roLItilne clinical No significant differences in rating (p = .12) were found

screen-film mammograms, including 373 mediolateral between mamnniographelrs and physicists (Fig. 531). In

oblique and 367 craniocaudai views. One hundred 22 images (2.9%), the segmentation results were con-

t\ventv-one images were digitized with the optical drum sidered unsatisfactory (rated as category 4 or 5 b; at
scanner system A, 350 images with the laser scanner svs- least two observers). The most comnmon causes of seg-

S.. . . .. : ..... ....... .. .

A B
FIGURE 4. Evaluation of segmentation results. A
and B, Examples of minor localized deviations from - - .
the "true" breast border (category 2). Cand D, Devia- M'
tions considered acceptable for computer-aided di-
agnostic purposes (category 3). All images are
displayed in two different window settings with a
"normal" wide window (left side) and a second nar-
row window (right side) showing the dark peripheral
breast portion. Note that minor deviations along the
skin line can be assessed only on the narrow win-
dow image,

C 0
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dynamic range extending above 3 optical density units, 2-3 sec (Table 2)R it is fast enough to be implemented in

created two typical artifacts that often interfered with the a real-time system. The program does not require any
segmentation. In almost all images, a band of pixels with a user interaction, and the only prior information neces-

higher signal intensity., up to 200 pixels (2 cm) in width, sary for operation is the imlage pixel size, w,\hich is usti-

was found along the posterior edge of the direct-exposure ally included in the imnage file header after digital image

area (Fig. 7). In some instances, this artifact was so severe acquisition. In our study of 740 rouLtine clinical m1amlnmn1o-

that it completely masked the adjacent breast border. This grams from different sources, 97% of the segmentation

problem was overcome by allowing the final border gen- results were rated is acceptable for CAD purposes.

eration step to connect through such a transition zone \When analyzing these results, one inList remember that

of intermediate pixels with a certain maximumn width, tbe dCscribed defatult program paraameters (filter and

as described earlier (Fid. 7F). The second artifact was a range operator kernel size, segmentation image matrix),

region of lower sig(nal intensity pixels in tbe direct- which were held constant throtughout the testing, are a
exposure area, which was found only in scanning lines compromise between speed and aCCuracy.

that included tbe relatively dark identification label (Fig. 3). Culrrent man-ilonlgraphic screen-film systems with
This led to misclassification of pixels with a large local background optical dcensitics approaching 4 118, 191 pose

gray-value range along the edge of this darker direct- a considerable challenge for film digitization systems.

exposure region. However, in most instances, these mis- Only recently have newv laser scanners Ileen developed
classified pixels could be eliminated by the mnorphologic for inledical imaging that are capable of digitizing film

filtering step (Fig. 3). Such artifacts were not fotind ill the with optical densities of 3 or more [20]. In older systems,

older system B laser scanner or in the system A optical the c•ark peripheral parts of the breast and the skin line
drumn scanner. In both of these latter digitizers, however, are oftenl lost or indistinct lecause of the small dynamic

the small dynamic range often led to poor definition or tailge and a significant increase in digitizer noise in dark

comllplete loss of the skin line. image areas [21-24]. Amlong the digitizer systems used in

O(lo StLICy, only the ncsver system C laser scanner latdI a

DISCUSSION dynainic range including optical densities of more than 3

To be integrated into an automtated, real-time radio- (Table I ). However, this was coupled with typical arti-

graphic CAD system, a segmentation algorithmll 111(ist he facts in dark itllage areas, which frequently interfered

fully automated, fast, reliable, and independent o(f the with the seg-iletntation-l process (Figs. 3 201c1 7). These

specific imaging condcition (e.g., itlaging system, type (f" problems may he overcomle \ith new\ illlprovecd digitizer
image object, inllage orientation, and expo(sure Co(Idi- systemis [201 or by direct digital llallllol(graplhy [25, 261.

tions). Our proposed algoritblln-a combination of a OuLr algorithln rceates atn initial raw segmentation of the

nmodified global histogram analysis, a gray-value range image ndcl is designed to operate in conjunction witlh an

operator, and region growing-has been shown to fulfill auto(iatic evaluation of the segmenttation results and an
these conditions. With a central processing tinit time of optional local COIntOIut optimlizatioln as slhowN7 in Figure 8.

FIGURE 7. Typical example of a system
C digitizer artifact. Digitized mammogram
displayed in normal (A) and narrow direct-
exposure (B) window setting. Note band
of pixels with increased density along the
posterior edge of the direct-exposure area.
C-F, Enlarged region of interest: en-
larged original (C), border generated with
default parameter setting but without be-
ing allowed to connect through artifact
area (D), increaced gray- value range
threshold (E), and after use of the con-
necting algorithm (F). Because of the
higher edge strength of the artifact, an in-
crease of the gray-value range threshold
led to loss of the skin line (E) before the
artifact area was eliminated.
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