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ABSTRACT

A finite difference time domain (FDTD) technique for the analysis of ultrawideband
(UWB) antennas with rotational symmetry has been developed. The theory is
intended to treat various types of biconical antennas, and a mode matching analysis
of spherically-capped bicones has been performed to verify the correct
implementation of the FDTD calculation. In addition, experimental results have been
obtained which are compared to the theoretical results. The FDTD software can be
used for the design of high-power, directive UWB antennas with low sidelobe leakage
for high-power UWB radar and electronic countermeasures applications.
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A Finite Difference Time Domain Calculation for
Rotationally Symmetric Ultrawideband Antennas

EXECUTIVE SUMMARY

A finite difference time domain (FDTD) technique has been developed for analysing
rotationally symmetric ultrawideband (UWB) antennas of arbitrary cross section.
This includes conventional biconical antennas. The restriction to rotationally
symmetric antennas means that a 2 dimensional calculation is possible, reducing the
required computational effort for realistic antennas to within practical limits.

For high power UWB applications such as impulse radar and disruption of electronic
systems, compact, directive antennas with high breakdown voltages are required.
The FDTD approach allows both the antenna and its feed to be accurately modelled.
The technique can also be used to predict the characteristics of narrowband antennas
for more conventional applications.

The correct implementation of the theory is verified by the analysis of a 9 mm conical
D-dot sensor used for transient electromagnetics research at DSTO. Measured results
are presented which agree well with the predictions of the FDTD analysis. In
addition, a mode matching technique capable of analysing conventional biconical
antennas is used to check the FDTD calculation. For the conical D-dot sensor, the
agreement between the FDTD and mode matching techniques is excellent.
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1. Introduction

High-power ultrawideband (UWB) systems are under consideration for applications
in radar and electronic countermeasures [1-4]. Modern electronic systems commonly
used for military purposes are increasingly vulnerable to high-power emissions such
as UWB radiation due to the increasing use of large scale integrated circuits and other
solid state components.

High-power UWB radiation is generated using a suitable broadband antenna excited
by a voltage transient. The essential component of the generator used to provide the
electrical transient is a high-power switch capable of producing subnanosecond
output pulse risetimes. Photoconductive solid state switches [1, 3, 5, 6] or spark gap
devices [1, 7, 8] are suitable for this purpose. While high-power UWB generators are
both available and affordable, one of the most critical hardware items for a practical
UWB system is the antenna. There are several important requirements for a useable
antenna:

(i) High breakdown voltage (> 100 kV) in order to radiate sufficiently
large voltage transients to detect (for radar) or disrupt (for countermeasures) targets
at useful ranges. This apparently ambitious requirement is mitigated somewhat
since the voltage peaks across the antenna for approximately a nanosecond or less,
and so the pulse breakdown voltage is up to an order of magnitude higher than the
DC breakdown voltage.

(ii) High directivity in order to maximise the power incident on the target,
while avoiding irradiation of nearby friendly or neutral targets. The directivity is
ultimately limited by the maximum permissible size of the antenna aperture as
dictated by host platform constraints.

(iii) Low sidelobes in order to minimise the possibility of damage to or
disruption of the host platform. While hardening of the host platform is possible, the
cost and effort required is minimised by the use of a low-sidelobe antenna. This goal
is the most difficult to achieve since the antenna must cover a very large bandwidth
(typically greater than 25% of the centre frequency), while being non-dispersive (no
distortion of pulse shape).

Since fully three-dimensional electromagnetic field calculations require a substantial
computational effort, effectively two-dimensional rotationally symmetric antennas
such as the bicone were chosen for detailed study. All of the previously mentioned
aspects of high power UWB antenna design can be investigated using a
straightforward finite difference time domain (FDTD) algorithm requiring a modest
computational effort. This report describes the development of this FDTD technique,
together with initial results relating to the analysis of small spherically-capped conical
monopole D-dot sensors. These results include a comparison of results obtained

1
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from the FDTD analysis and an analytic mode matching technique for these sensors.
Experimental results are included to show that the FDTD technique successfully
predicts the correct dependence of the sensor output voltage on the angle of incidence
of the applied field. A detailed derivation of the analytic technique is presented in
Appendix A.1.

2. The Finite Difference Time Domain (FDTD)
Method

2.1 Introduction

There are currently two categories of time domain numerical techniques commonly
used for analysing UWB antennas. The first type are the integral equation methods
such as the electric field integral equation (EFIE) method developed by Rao [9, 10].
Conducting surfaces are modelled by planar triangular or rectangular patches, and
the method of moments is applied in the time domain to calculate the current
densities over these surfaces. The second type consists of the finite difference time
domain (FDTD) method first proposed by Yee [11]. This technique is used to
determine the fields in a volume surrounded by a surface on which a boundary
condition is imposed. Maxwell's equations are discretised spatially and temporally,
and the fields in the volume are solved on a time-marching finite difference mesh.
The FDTD method has the advantages of simplicity and generality over integral
equation methods, although at the expense of a larger computational effort, since the
electromagnetic field in a three-dimensional volume is being calculated as opposed to
the current density over two-dimensional surfaces. The memory requirement is
alleviated by considering only two dimensional azimuthally symmetric antenna
structures.

2.2 The Yee Algorithm

2.2.1 Mesh Equations

Since the antennas are rotationally symmetric, the analysis can be reduced to a two-
dimensional problem by adopting cylindrical coordinates [12-14]. Since the excitation
for the rotationally-symmetric antenna is a TEM mode, only TM modes will be
excited. In cylindrical geometry, these modes have field components Er, Ez, and HO
only. Maxwell's time dependent curl equations relating these quantities are

aEr aEz (1)
az - ar - -J*tO

aoz - Er (2)

2
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1 D(rH _) E , (3Z
r Dr at (3)

where e is the permittivity at the field point, and gto is the permeability.

The field quantities are discretised in the spatial and time coordinates for
representation on a finite difference mesh. For spatial increments Ar, and Az, and time
increment At, the notation for field quantity Q at the point (ri, zj) at time tn is

Q(i,j) = Q(ri, zj, tn)

= Q(iAr, jAz, nAt)

I I

rEn (i,j+ l /2)

En (i-1/2,j) +] En (i+1l/2,j) Az

I Hnc~l/(iJ)

z!I
rEn(i,j_l /2)

I I

Figure 2.1: Interleaved electric and magnetic fields for FDTD grid cell.

To implement the Yee algorithm, the electric and magnetic field components are
evaluated at interleaved spatial grid points and time steps [111, as shown in
Figure 2.1. The derivatives in Equations 1-3 are replaced by the second-order
accurate centred difference approximations, so that Maxwell's equations become

n+1/2 n-11 At n n At. A
H 0 (i, j) =HO /(i, j) + ij• [Ez(i+l/2,j) - Ez(i-1/2,j)] - ji• [Er(i~j+l/2)

rEr(iy-1/2)] (4)

E-n+1------------E n At - n+1/2 (ij..) --- -n+1/2
r r(ij+l/2) - -Iz 0iM (5)

I 3
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n+1 n At n+1/2 . - n+1/2

Ez (i+1/2,j) = Er(i+1/2,j) + [r-+ 1H¢ (i+1,j)-[riH¢ (ij)] (6)
ri+l/2FAr

n+1/2 n+. n+.
The field points H, (i, j), Er (i0j+1/2), and E (zi+1/2,j) are assigned to the grid

cell (ij) centred at (ri,zj )

For convergence, the mesh increments Ar, Az, and At must satisfy the
Courant-Friedrichs-Lewy condition

2 2 2 2

cAt Ar Az/ (Ar + Az)

where c = 1/ q to is the velocity of light.

2.2.2 Boundary Conditions

2.2.2.1 Edge Boundary Conditions

Practical considerations require that the mesh must be finite in its spatial dimensions
as shown in Figure 2.2. From Equations 4-6, it is apparent that to simulate an
unbounded space, a boundary condition is required at the edges of the mesh to
specify the tangential component of the electric field. At r = 0 (i = 0), symmetry
about the axis requires that

aEz

ir 0

Therefore

En(12j n .
E=(1/2,j) Ez(-1/2,j)

and so

n+1/2 n-1/2 At [ n
H (0, j) = HO (0, j)- i [Er(Oj+l/2)- Er(Oj-1/2)] (7)

n

Hence Ez(1/2,j) is not required explicitly. Including the tangential electric field at the
other three sides of the mesh is not so straightforward, and must be determined using
absorbing boundary conditions in order to simulate an unbounded medium.
Merewether [14] used the radiation condition for the electric field at a sufficiently
large distance, R, from the centre of the antenna,

4
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Spherical wavefront
/ Mesh boundary

1 + + +

1=1 9 + + +

Er I

i I I I Ij =o + o &z + +

SI I I I

I i=I i=+1/2

r=0
Assumed centre of antenna

Figure 2.2: Truncated mesh in cylindrical geometry

E= f(t-R/c)
R

where f is some causal function, ie., f(x) = 0 for x < 0. This corresponds to an
assumption that at a reasonable distance from the antenna the fields can be
represented in terms of an outward travelling spherical wavefront. Consider Er just
beyond the upper axial limit of the mesh (j = J, z = zmax)

n+l n+1
R(i,J+1/2) Er (i,J+1/2) = fr(t - R(iJ+1/2)/c)

n
fr(t - R(i,J-1/2)/c + Ate)

where

5
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0 = 1 - R(i,J+I) - R(i,J) ;0 < 1c At

and

S2 2
R(i,j) = r0 +(zj-Zo)

with z0 the axial position of the geometric centre of the antenna.

Similarly, the field just inside the upper mesh boundary (U = J, z = Zmax) is given by

R, ) n
R(iJ1/2) Er(i,J-1/2) = fr(t - R(i,J-1/2)/c)

n+1
Therefore, it is possible to obtain Er (i,J+1/2) using parabolic interpolation between

the elements of the time sequence of Er (iJ-1/2) as follows

n+1 R(i,J+1/2) n- /
Er (i,J+1/2) 2R(i,J-1/2)[0(01) Er (i,J1/2)

_ n n+1+ 2(102) Er(i,J-1/2) + 0(0+1) Er (i,Jl-1/2)] (8)

n+1
Similarly, Er (i,-1/2) at the lower axial limit of the mesh (j 0) is

n+1 R(i,-1/2) n-i1 n
Er (i,1/2) = 2R(i,1/2) [0(0-1) Er (i,1/2) + 2(102) Er(i,1/2)

n+1
+ 0(0+1) Er (i,1/2)] (9)

n+1
Ez (1+1/2,j) at the radial limit of the mesh (i = I) is calculated in a similar fashion

starting from

n+l n+1

R(I+1/2,j) Ez (I+1/2,J) = fz(t - R(I+1/2,j)/c)

n
= fz(t - R(I+1/2,j)/c + AtO)

where

0= 1- R(I+1/2,j)- R(I-1/2,j) ;0 < 1
cAt
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Similarly

R(-/2 U n
R(I-1/2,j) Ez(I-1/2,j) = fz(t - R(I-1/2,j)/c)

n+1
Therefore, it is possible to calculate Ez (I+1/2,j) at the side of the mesh using

n+1 R(I-1/2 j) n-
Ez (I+1/2,') 2 R(I+1/2,j) [0(0-1) Ez (1-1/2,j) + 2(1-02) Ez(I-1/2j)

n+1
+ 0(0+1) Ez (1-1/2,j)] (10)

Equations 7-10 are sufficient to determine the required tangential electric fields on the
mesh boundary, provided that R is sufficiently large that the fields at the mesh
boundary can be represented by spherical waves propagating outward from the
centre of the antenna. Since R must be finite with a finite mesh size, Equations 7-10
constitute approximately absorbing boundary conditions.

2.2.2.2 Antenna Feed

Power is fed into the antenna through a coaxial line extending directly downward
from the antenna feed point. The line dimensions are such that it can only support a
TEM mode, which means that an exact absorbing boundary condition can be
constructed inside the line. The impedance of the line is

1 50 -<in(b/a)Z-line- 27c

and is usually chosen to be 50 Q. The TEM mode electric field in the line can be

written as

Er = h(t+z/c) + g(t-z/c) EO = Ez = 0

where g(t - z/ c) represents the TEM wave travelling toward the antenna feed, and
h(t + z/ c) represents the TEM wave reflected from the feed due to imperfect matching
of the line to the antenna. This mismatch will also generate higher-order evanescent
modes, so the coaxial line is extended a sufficient distance from the antenna feed
point such that these evanescent modes have decayed to a negligible level before the
boundary condition is imposed. A distance of 3(b-a) is ample for this purpose [12].
If the feed line is terminated with a match at j = iterm corresponding to z = Zterm, the
electric field inside the line is given by

n+1
Er (i,jterm-1/ 2 ) = h(tn+l) + g(tn+1 )

7



DSTO-RR-0019

= h(tn + Az/c - Ate) + g(tn - Az/c - Ate)

So that

n+1
Er (ijterm-1/2) - g(tn - Az/c - Ate) = h(tn + Az/c - Ate)

n+1
= • (i,jterm-1/

2 )

where

0 -Aze = 1--
cAt

and ý(z,t) represents the reflected TEM wave. Proceeding in the same fashion as for
the absorbing boundary conditions at the extremities of the mesh, the reflected field at
the termination is

n+l 1 n-in (i,jterm-1/2) = [0(0-1) n (i,jterm+1/2) + 2(1-02) n (i,jterm+l/2)

+ 0(,+1) n+1+r (iJterm+1/2)] (11)

n+1
To calculate • (ij), the incident field in the feed line is subtracted from the total

field. The incident field in the coaxial line is given by

inc Vinc(t)
Er (W = ln(b/a)r

where Vinc(t) is the user specified voltage applied to the antenna feed. A Gaussian
pulse is commonly used, with

Vinc(t) = V0 ex-t2]

where tp = 0.4246 tw, where tw is the FWHM pulse width.

Since only the TEM mode is supported in the feed, (11) constitutes an exactly
absorbing boundary condition. The reflected voltage on the feed transmission line is
calculated by averaging

Vrefl(t) = (i, jterm-1/ 2 ) ln(b/a) r

8
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over the radius of the line. The reflected voltage constitutes part of the output from
the program. It is especially useful for identifying the nature of reflections from
various parts of the antenna and for calculating antenna efficiency for a given
excitation. The efficiency for a time domain antenna is the ratio of the transmitted to
the excitation energy [15], and is calculated from

JV inc(t)2 dt - JVrefl(t)2 dt

JVinc(t)2 dt

2.2.2.3 Conducting Surface Boundary Conditions

The implementation of conducting surface boundary conditions using the Yee
formalism is particularly straightforward. The surface is approximated by a
"staircase" as shown in Figure 2.3. Grid cells are filled if their centres lie within the
conductor. Er is set to zero at horizontal interfaces between filled and unfilled cells,
and E, is set to zero at vertical interfaces.

Fr ý O\ 0O 0 - -W-

•,,,, ,,••,,•,.,,•,•,,, + + + +I I I I

-II I I I

FLA'•,I•• '',:• P + 0 + 0 + 0 + Q + oSIIII I

FU + 0 , + o +
F I

Conductor boundary Conductor boundary

Figure 2.3: Staircased conducting boundaries

9
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Although simple, this technique is known to introduce errors arising from the
staircasing approximation when applied to surfaces which do not coincide with grid
cell boundaries [16]. These errors are significant near regions of high field
concentration such as antenna feed points. To more accurately model the arbitrarily
shaped conducting boundaries of the antenna, the contour path formalism [17]
described in Section 2.3 was adopted.

2.3 The Contour Path (CP) Approach

2.3.1 Mesh Equations

The contour path (CP) algorithm described by Jurgens et al., [17] is based on
Faraday's and Ampere's laws rather than Maxwell's equations

f E.dl- -a gtJioH.dS (12)

f H.d1 a t fJEE.dS (13)

where the contour C encloses the surface S. The contours used for Equations 12 and
13 intersect each other's enclosed surface in a manner resembling the links of a chain,
as shown in Figure 2.4.

Equations 12 and 13 are implemented by defining the electric and magnetic field
values at interleaved grids in the r-z plane as discussed in Section 2.2. As for the Yee
method, a centred finite difference approximation is used for the time derivatives. To

evaluate the surface integral in Equation 12, assume that H is constant over a grid

patch and equal to the value at the centre of the patch as shown in Figure 2.4. In

addition, Er and Ez are assumed to have no variation along the individual sides of the

patch. For the cell centred at (ri, zj)

Zj+l/2

- ffoH(ri, zj).dS = - {fHt(i, j) dr dz
ri-1/ 2

zj-11/2

go n+1/2 n-112
At (HO (i, j) - HO (i, j)) A cell

10
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where Acell is the area of the grid cell in the r-z plane. From Figure 2.4, the contour
integral is calculated using

c Edl = E,(i+1/2,j) 'right - Ez(i-1/2,j) lleft

+ Er(ij-1/2) 110w -r(i,j+1/2) lup

where Iright and lleft are lengths of the left and right sides of the cell, and low and lp
are the lengths of the upper and lower sides of the cell. Therefore

Hn+1/2 (i, j) Hn-1/2 (i j) + At (En(i+1/2,j) right - En(i-1/2,j) lleft
H~ ~ ~ (gj ~ (ij .o Acel1  rig 'lf

nE(i,j-1/2) low -E(ij+1/2) lup) (14)

Ampere loo s H (ij+I)
-----------------------

• • • lEr(i'J~+l/2), E.z(i+1/2"J)

I Er (i~j-1/2)

Faraday loop

Figure 2.4: Ampere and Faraday contour geometry for Contour Path technique

For a simple rectangular grid cell, Acell = ArAz, 'up = 'low = Ar, and lleft = Iright = Az.
Equation 14 then reduces to Equation 4 as derived from the Yee approach.

n

Since there is azimuthal symmetry, Er(ij+1/2) is found from Equation 13 by

integrating over and around the Ampere loop shown in Figure 2.4. Note that only HO
contributes to the line integral since the contributions from the segment connecting the
two loops cancel each other. It follows that

11
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zj+1

t a J Er(iIj+1/2) (rido)dz

zj

E0 n+1 . n
- At (Er ,j+1/2) Er(ij+l/2) 2rri

diel diel
(Sr(i,j+l) 4up + Er(ij) llow)

diel diel

where !p and 1low are the distances from a possible dielectric interface to points

(ri, zj+j) and (ri,zj), respectively, and Cr(i, j) is the relative dielectric constant at mesh
point (ri,zj). Note that only a horizontal dielectric interface is allowed at points

(ri, Zj+ 1/ 2) where Er is calculated. The contour integral from Equation 8 is

n+1/2 n+1/2

CH.dl = - 2nri (H (ij+l) - HO (ij))

Therefore

n+1/2 n+1/2

n+1 n At H0 (ij+1) - H0 (ij)
Er (i,j+1/2)= Er(ij+1/2) - O (i,j+l) diel diel (15)

Er 4yl + Cr(ij) ,low

diel diel
For the simple case of uniform dielectric constant and llow+ lup = Az, Equation 15

reduces to Equation 5 as for the Yee formalism.

Ez(i,j+1/2) was calculated in a similar fashion. The surface integral is

ri+l
27c

_ffJ J E.dS -Ez(i+1/2,j) (ridO)dr
at at s " a

ri

E 0 (Ezn+ l(i+l2,j)- En (i+l2,j) 21r

12
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diel diel

(Er(i+lj) ri+light+ ri Er(ij) lleft)

diel diel

where ýighit and Ileft are the lengths from the dielectric interface to points (ri+l, zj) and

(ri,zj), respectively. Note that only a vertical dielectric interface is allowed at points

(ri+1/2, zj) where Ez is calculated. The corresponding contour integral is

n+1/2 n+1/2

CH.dl = 27r(ri+i H0 (i+1j) - ri H0 (ij))

Therefore

n+1/2 n+1/2

n+1 n. . At ri+1 HO (i+lj) - ri H, (ij)
Ez (i+1/2,j) = EZ+l/2J) - E0die! diel (16)

Er(i+lj) ri+14ight+ Er ri (ij) 'left

diel diel
For the simple case of uniform dielectric constant and ýight+ 'left = Ar, Equation 16

reduces to Equation 6 from the Yee formalism.

It is clear that for simple rectangular grid cells, the mesh equations derived using the
contour path approach are exactly the same as those derived using the Yee method.
However, it is near conducting boundaries that the contour path method is most
useful. If one of the sides of the cell coincides with the conducting surface, then the
tangential component of the electric field along that side disappears. It does not
matter that the cell is no longer rectangular as the shape of the cell is not
fundamentally constrained in the contour path approach as it is in the Yee formalism.
A thorough discussion of cell deformation near conducting surfaces is presented in
the next section.

2.3.2 Boundary Conditions

The boundary conditions at the extremities of the mesh which were derived for the
Yee formalism are equally valid for the contour path method, so this section will deal
exclusively with boundary conditions near conductors. For the grid cells adjacent to
conducting surfaces, the Faraday contours used for the integration in Equation 12 are
deformed so as to conform to the surface of the conductor. Ampere contours are not

deformed, and Er and Ez values which require using Ampere contours which cross

media boundaries are not used. For this reason, only the calculation of HO values is

affected by the presence of a conductor. The calculation of Er and Ez values is

essentially identical to the Yee method.

13
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2.3.2.1 Horizontal Cell Deformation

For the case where a conducting boundary lies to the left of a grid cell, and the slope
of the conductor is greater than Az/Ar with respect to the horizontal as shown in

Figure 2.5, then H is calculated from

n+1/2 n-1/2 At
H• (i, j) = H• /(i, J) + A_

0 [•to A cell

n n .. n
(Ez(i+1/2,j) lright + Er(i,-1/2) Ilow - Er(ij+1/2) lup)

If the centre of the cell immediately above located at (ri, zj+i) is inside the conductor,
n ,

then the Ampere contour used to calculate Er(ij+1/2) is discarded and the nearest

neighbour value on the right is used, so that
n+1/2 n-1/2

HA (i, j) HO (i, j)

At n n n
+ 90 Acell (Ez(i+l/2"J) iright + Er(ij-1/2) llow - Er(i+lj+1/2) lp)

Similarly, if the centre of the cell immediately below located at (ri, zj-1 ) is inside the
conductor, then

n+1/2 n-1/2
He (i, j) = H (i, j)

+ At (En(i+ E2(i+1,fr/+) nlow. n

o Acell zright + Erj-12) low (ij+1/ 2) lup)

If the conducting surface is to the right of the cell, the treatment is similar except that

the electric field on the right side of the cell is set to zero. Nearest neighbour values on
n n

the left are used to interpolate Er(ij+1/2) and Er(ij-1/2) where Ampere contours are
not available. For this instance

Hn+1/2 Hn-11

0 (i,j) = H (i,j)

At n n n
+ -o Acell (E(i-1/2,J) 'left + Er(i,j-1/2) llow - Er(ij+1/2) l1P)

14
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Interpolated E point - - r - -0 - -,
I I

Conductor boundary + 0 + o
I I
I I

Horizontally 0 Er
deformed cells

+ 9 + E,
Interpolated Epoint r - + HO/II 4)

I I

+ o+ +
I I I
I I

Figure 2.5 Horizontal cell deformation near conducting surface

2.3.2.1 Vertical Cell Deformation

If the slope of the conducting boundary is less than Az/Ar relative to the horizontal, it
would become possible for the vertical cell sides to be truncated, complicating the
situation. In addition, inaccuracy could be introduced if the electric field values are
held constant over unnecessarily long upper and lower cell sides. For these reasons, it
is better to deform the grid cells vertically in this instance. For the case where a
conducting boundary lies just above a grid cell as shown in Figure 2.6, then HO is
calculated from

n+1/2 n-1/2
H 0 (i, j) = HO (i, j)

,At n n nAt A (Ez(i+1/2,j) Iright - Ez(i-1/2,j) left + Er(iJ-1/2) flow)
+ o A cellrgh ~ IJlf ~ik/ o)

If the centre of the cell immediately to the right at (ri+1, zj) is inside the conductor,
n

then the Ampere contour used to calculate Ez(i+1/2,j) is discarded and the nearest

neighbour value from below is used, so that

n+1/2 n-1/2
HO (i, j) = HO (i, j)

At n. n ).
+.to Acetl (Ez(i+1/2'J-1) lright - En(i-1/2,j) lleft + Er,(iJ-1/ 2 ) llow)

15
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Similarly, if the centre of the cell immediately to the left at (ri_1, zj) is inside the
conductor, then

n+1/2 n-1/2
H• (i, j) = H0 (i, j)

At n n n

+ -'0 acell (Ez(i+1/2,j) Iright - Ez(i-1/2,j-1) lleft + Er(i+lj-1/ 2 ) llow)

If the conducting surface is below the grid cell the treatment is similar, except that the

electric field on the bottom of the cell is set to zero. Nearest neighbour values from
n n

above are used to interpolate Ez(i+1/2,j) and Ez(i-1/2,j) where Ampere contours are

not available. For this situation

n+1/2 n-1/2
H /2(i, j) = HO (i, j)

At n n n
+ go Acell (Ez(i+1/2,j) Iright - Ez(i+1/2,j) Ileft - Er(ij+1/2) 1lp)

Conductor boundary

Interpolated E point

Vertically
deformed cells

Interpolated E point 000

0 +I I 0 Er

+ +o + H

+ I
___ l *- -- •- -

Figure 2.6: Vertical cell deformation near conducting surface
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2.5 Far Field Calculation

The technique developed in [18] was used to calculate the electric field in the far zone
from the fields close to the object which are determined using the FDTD method.
From [19], the radiation vectors N and L over a closed surface S' with local surface
normal n are defined in the frequency domain to be

N )
N(k) = n x H(R', k) exp(-jkR'.R) dS'

A A
L(k) -- - fnx E(R', k) exp(-jkR'.R) dS'

where k = 2nf/c, R is the vector from the centre of the antenna to the far-field point
and R' is the vector to the point on the surface S' enclosing the antenna. Using
spherical coordinates with the origin located at the centre of the antenna, the only
electric field components which do not decrease faster than 1/R are

= exp(-jkR) L
E0(k) = ýO HO(k) = -" 2e R (•0N0 + L

2A ax(-dR
EO(k) = - ýo H0(k) = j exp(-jkR)( N + L

E~~(k) 2R ( 0N+L)

where • is the impedance of free space. Following [181, define

• exp(-jkR)
W(k) = 2)LR N

U~) exp(-jkR)L
U(k)-j 2R L

Taking the inverse Fourier transform of W and U leads to

-4rRc 1 t' x H(R', t') dS'

u(t) - 4- 1cat'

17
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where t' = t - I R - R'I/c is the retarded time. The time-domain electric field in the far

zone is calculated from

Ee(R, t) = - (ýow 0 + ud•

4;rRc -O at [A x H(R', t')]0 + a, [I x E(R', t')]0 dS' (17)

E (R, t) = -ow + u0

47rRc L- to , [n x H(R', t)]0 - at[, x E(R', t)]oI dS' (18)

Equations 17 and 18 can be combined and expressed as

E(R, t) - O
41rRc

A 1 f Xt,[ E dSj

f ax H(R', t')] dS' + R x E(R', t)]

- 4,-R[ Rx R x [ x H(R',t')] dS'

1 r 1

t- R X n x E(R', t')] dS'] (19)
S,

Equation 19 is identical to Equation 7 presented in [12]. For convenience, a
cylindrical surface was used to enclose the antenna. The side of the cylinder extended
from the ground plane at j = jgp up to j = jtop. The radius of the cylinder was rside.
There are contributions to the surface integral in Equation 17 and 18 from both the
side and top of the cylindrical surface. Converting from cylindrical to cartesian
coordinates, for the side of the surface

18
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Sx H (R ', t) = H O(R', t') and n x E(R ', t') = -Ez(R ',t')4A

= Ez(R', t) [sin X' - cos y' 9]
and from the top of the surface

nx H(R', t') = -HO(R', t') and n x E(R', t') - Ez(R', t')

= HO(R', t') [-cos ¢' :-sin ' Y]

= Er(R', t') [- siny' +cos ' ]

At the far zone point where 4 is set arbitrarily to zero since 0, then X, Y, and .
A A A

can be expressed in terms of R, 0, and ' at the far zone point (R, 0, 0) as follows

A A

A Az = Rcosi -OsinO

So at the side of the cylindrical surface
A A

AH(RI, t') = H#(R', t') [cos O R -sin 0 0]

and hence
A A_

RxRxlxH(R',t') = H(R', t') sinG 0

Also
A A

E(R', t') = E =(R',t') [sin sin ' R + cos0sin4' 0-cos'4

which leads to
A A A

nxxE(R', t') = Ez(R', t') [cos 0s 0+ cosRsn 0 sin 0 ]

19
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The contribution to the far zone electric field from the side of the cylindrical surface is

side R A A [
E (R, t) -4,'R [ Rxx [ x H(R', t)] dS'

side

Rx ,[ x E(R', t')] dS]

side

27r
(I ZtOp

ktrside a ,^

- 41rR [ sin 0 fat H(rside, Z', t') dz' do 0

4) Zgp
0

21r
Ztop

I- J f Ez(R', V) dz' [cos 0' 0 + cos 0 sin 0' 0] do' ]
J Zgp

0

27rr' Ztop
korside a0 z )

- 41rR [sin faH¢(rside, z', V) dz' do 0

Zgp
0

21r
Ztop

A
-ý-{ E{Z(R', t') dz' cos 0' do'] 0 (20)

0

since Ez(R', V) is an even function of 0', as can be seen from

t' t-IRR-R'l

C

20
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I2
(R sin 0 - rside cos 01)2 + rside sin2 0 + (R cos -)2

C

rside sin 0 cos 0' + z' cos 0
t-R/c-c

in the far field region.

When evaluating Equation 18 the 1/R dependence is suppressed. To calculate

side
E (R, t), HO(rside, z', t') and Ez(R', t') are required for times t = nAt. Since E and H

side
on the surface are only calculated at times 0, At, 2At ...... then E (R, t) cannot be

I

evaluated for any given t. Let tjmn be defined as

rside sin 0 cos (Pm+ zj cos 0
tjmn = n At - c

where the R/c time delay has been ignored. Consider the first integral

27r
"Ztop

IH(Rt) = -,HO(rside, z', V) dz' do'
J Zgp

0

Using sum approximations for the 0 and z integrals leads to

IH(Rtk) = AAAz -i-1Hi

m= 0 j= jgp

where the time tk is defined using

k = int (tjmn/At)

tk = k At

Therefore, the field at a given point on the side on the cylindrical surface
z = zj, = 'rm, at time t = n At contributes to the far field at a given R in the kth
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retarded time 'bin" corresponding to time tk. The integral is evaluated by summing
the contributions over all times from all points on the surface for each tk bin. All of
the required integrals were evaluated in this fashion.

At the top of the cylindrical surface

A A A

nx H(R, tP) H -H(R', t') [sin 0 o~R + cos 0 cos ~'0 +sn'

and hence

A A A A

R XR X nx H(R', t') =HO(R', V) [cos 0 cos 0' 0 + sino' fl

Also

A0A A A
n xE(R't'P) =Er(R',tV) [sin 0sin' R- cos 0sin 0' 0+ cos 0' 0]

which leads to

A A A

R Xn x E(R', t) = Er(R', P') [cos 0' 0 + cos 0sin 0' 0]

The contribution to the far zone electric field from the top of the cylindrical surface is
therefore

top [o RX X- [A~HR,']S
E (R, t) 4 = t HRt) S

top

top

41rR
27rrrside

r' at H,(r'r, Ztop, V') dr' [co 0 cos ] do

0

22
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0

2;r
rside

47R[o Ifr' atHO(r',, ztop., 0' dr' Cos 0' doP 84irR 0

0

27r
"rside

r1 IEr121
+ atJ r' Er(R', t') dr' cos 0' do' 8] (21)

0

since Er(R', t') is an even function of o', as can be seen from

t' t I RR-R'l
C

= (R sin 0 - r' cos 0')2 + r' 2 sin2 0' + (R cos 0 - Ztop) 2

C

r' sin 0 Cos 0' + Ztop Cos 0
=- t-R/c-

As for Equation 20, when evaluating Equation 21 the 1/R dependence is suppressed.

Let timn be defined as

risin 0 cos Om+ Ztop cos 0

timn = n At - c

where the R/c time delay has been ignored. Consider the first integral
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rside

I(Rt) r a, H0(r',, Ztop, t') dr' cos 0' do')
0

Using sum approximations for the 0 and z integrals leads to

21r iside

I(Rtk) = AO Ar Y, cos (mAO) ri H¢(i, jtop, ti1nn)
m=0 i= 0

where the time tk is defined using

k = int (titn/At)

tk = kAt

Note that for antennas mounted on an infinite ground plane, the fields from the
antenna image below the ground plane must be included in the surface integration to
simulate the effect of the ground plane.

From the expressions derived in this section, the electric field in the far field region at
an angle 0 from the antenna at a given time can be calculated from the FDTD field
quantities at previous times on a cylindrical surface surrounding the antenna. The far
field calculation is central to obtaining predictions of the transmit and receive
responses of the antenna.

2.6 Energy Calculation

To calculate the efficiency of the antenna for a specified excitation voltage, it is
necessary to integrate the power radiated from the antenna, and compare it to the
integrated input power. By checking the energy reflected from the antenna back
through the feed, conservation of energy can be used to test the validity of the
calculation. Following [15], the net power transmitted by the antenna, Etrans, is given
by

00

2 2
Vin - VreflEtrans = coxdt

fZcoax
0

where Vin is the applied voltage at the feed, Vrefl is the voltage reflected from the
antenna back through the feed, and Zcoax is the impedance of the coaxial feed line.
The efficiency of the antenna can be calculated from
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f 22Vin - Vrefl d

Zcoax

00
T 2of dt

Z coax
0

The power radiated through the same cylindrical surface used for the far field
calculation was determined using

rside

Pra(t) op 27ir Er(r,z,t) HO(rz,t) dr
0

over the top of the cylindrical surface from r = 0 to r = rside, and

s ide Ztop

rad (t) f 2icr Ez(rz,t) HO(rz,t) dz
Zgp

over the side of the surface from the ground plane at z = Zgp to z = Ztop. The electric
fields Er and Ez were linearly interpolated using the values at the edge of the grid cells
to find their values at the centre of the cells where Ho was evaluated. A linear time
interpolation was also needed because the Ho values are calculated at time points
(n+1/2)At, as opposed to nAt for Er and Ez. The total energy radiated by the antenna,
Erad, is therefore

00

Stop side

Erad = of Prad(t) + Prad (t) dt

For a lossless antenna, Erad should equal Etrans. The ratio Erad/Etrans was calculated
to assess the validity of the FDTD calculation, with 1 being the nominal result
provided a sufficiently long time span is utilised.

2.7 Coarse Outer Mesh

In order for the absorbing boundary conditions to be effective, the mesh limits were
required to be some distance from the antenna. Since the fields away from the
antenna are well behaved, a coarser mesh spacing can be used to substantially reduce
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the required computational overhead, as in [12]. A coarse mesh using cells of size
NcAr x NcAz were used, as opposed to Ar x A, for the fine mesh cells. A value of
Nc = 3 was generally chosen. The interface between the fine and coarse meshes is
specified by the user through iinner and jinner. The alignment of the meshes is shown
in Figure 2.7. Note that the upper edges of the lowest cell in both the fine and coarse
grids was aligned with z = 0.

To calculate Er(i, jinner) for the fine mesh along the top of the cylindrical interface,
HO(i/Nc, jinner/Nc + 1) from the coarse mesh and HO(i, jinner - (Nc-1)/2) from the fine
mesh were first used for values of i which were multiples of Nc. The remainder of the
fine mesh Er values were obtained from these values using linear interpolation. A
similar procedure was followed for Ez along the side of the cylindrical interface at
i = iinner - (Nc - 1)/2 - 1 for the fine mesh. The same time steps were used for the fine
and coarse meshes. Stability for the coarse mesh follows automatically if it exists for
the fine mesh.

icorse = innr arse =iax
I Nc Nc

+ + (? + 9m+
N,

9 9 + 9 + P + .

I I I I l N
I I I I I

ifinelinnr + + I I

t 9 + +Q9+ P+P + 9 + 0 imrse inwer
I o t 4 I I I N

+ + 9 + + + + 0

I i-I-I I I

f Irw 0 I- -6+ & A I I

J ?=J & + + 6 + + II

o. L.. 4... &.+..-e.J I1

S;9+ + .6 + 0 + h +] + • 0 •reJne
I- f- o- 9- 4- • •r" - I I -% N4

++ ' ++ + 6+ II

&j L9-{- -0 N-4

0 I I

I- Lp e L --e-.-- -A e
•ne ~~+ +J 6..rs 0

I- p-I o i - t I - L -- -- -Q - -- - I J- - - - -
jfine= lvc 1.6 + • +,

I i.c -arse 0 0ne
I I I

Figure 2.7: Fine/coarse mesh interface detail
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2.8 Summary

In this section, the techniques used for the rotationally symmetric FDTD calculation
were discussed. While based on the simple Yee algorithm, the contour path technique
was used to accommodate arbitrarily shaped boundaries without resorting to the
staircase approximation. While this approach was adopted in a limited sense by
Maloney and Smith [211, this is the first time to the authors' knowledge that this
technique has been applied generally in cylindrical geometry.

A simple absorbing boundary condition was used to terminate the outer limits of the
mesh. The electric field in the far field region was calculated by integrating the
retarded fields over a cylindrical surface enclosing the antenna. The efficiency of the
antenna could be found and conservation of energy verified by integrating the
radiated power over the same cylindrical surface used for the far field calculation. To
reduce the computational effort required to calculate the fields sufficiently far from
the antenna for the absorbing boundary conditions to be valid, a coarse mesh was
used to surround the inner fine mesh covering the antenna.

This FDTD calculation was implemented in the program fdtd-cyl. In the next
section, results obtained from this analysis for spherically capped conical monopoles
are compared with results from an analytic treatment. Theoretical predictions for
both conical and cylindrical monopoles are compared to experimental data.

3. Conical Monopole D-dot Sensor Analysis

3.1 Introduction

A small conical monopole antenna on a ground plane which is used as a D-dot sensor
for transient electromagnetics research was analysed, with parameters a = 0.625 mm,
b = 2.1 mm for the coaxial feed, h = 9 mm, h' = 0, and a = 470. The dielectric
constant in the coax was calculated so that the impedance of the feed line was 50 Q,
as required. This meant that only the physical dimensions of the feed line, a, and b,
needed to be determined. The angle a corresponds to a 50 2 characteristic impedance
for the monopole. These sensors were initially described by Parkes and Smith [22].

The geometry used for the conical monopole is shown in Figure 3.1. An optional
hemispherical cap can be added to the top surface of the cone. The cap was
modelled using the simple staircasing technique. This was found to be sufficiently
accurate since the cap was sufficiently far from the feed region. The contour path
technique was used to model the feed and the conical section of the antenna. Mesh
cell dimensions were Ar = Az = 0.31 mm for the fine mesh, with iinner = 200,

jinner = 300, and imax = jmrax = 600. The number of fine mesh cells per coarse mesh
cell, Nc, was set to 3.

27



DSTO-RR-0019

Initially, a Gaussian excitation voltage was used as follows

Vinc(t) = ex-1 2jr2

with up related to the FWHM pulse width though tw = 2.355 tp.

Fh

h' '

Figure 3.1: Conical monopole geometry

In Appendix A.1, the derivation of a frequency domain mode matching treatment
[25-27] is presented. This previously developed technique was used to provide
independent verification of the FDTD method. In addition, the calibration of the
conical D-dot sensor relies upon various simplifying assumptions discussed in detail
in Appendix A.1. These assumptions are used to derive simple results from the full
analytic theory which relate the incident electric field to the measured output voltage
on the sensor provided the sensor is small compared to the smallest significant
wavelength of the incident field.

3.2 Reflected Voltage

From Equation A.17 in Appendix A.1, the input impedance of an ideal electrically
small conical monopole can be approximated by a capacitance CA, where

28



DSTO-RR-0019

h(47cZc + 3 ý0 cos 200)
CA 4 2

with ýO the impedance of free space, and Zc the characteristic impedance of the
monopole.

The frequency domain input impedance for the monpole, ZAQ), was calculated from
both the full analytic treatment and the capacitance of an ideal monopole. The time
domain reflected voltage, Vrefl(t), from the antenna back down the feed line was
found for a given incident voltage Vinc(t) using

+00V~lt)VnW ca -ZWexpj2icft) df
f Zcoax +ZAVrefl(t) = JVinc(f) Zoa + ZADex(jfrt)d

-00

where

+C00

Vincj f Vinc (t) exp(-j27cft) dt
-00

The reflected voltage from the full and ideal analytic calculations are compared with
the prediction from the FDTD method in Figures 3.2, 3.3, and 3.4 for values of
tp = 250, 100, and 50 ps, respectively. For all three values of rp, the agreement
between the FDTD and full analytic results is excellent. This in turn implies that the
mode matching calculation correctly models the input impedance of the small conical
monopole.

The agreement between the ideal results and the other two methods becomes
progressively worse as the pulse width decreases, as expected, since the antenna
impedance diverges from a simple capacitance. Since these D-dot sensors are
required to work with pulse widths as low as 100 ps (tp = 42.46 ps), this discrepancy
in the ideal reflected voltage cannot be disregarded when calculating the response of
the sensor.

29



DSTO-RR-0019

FDTD

0.75 Full Analytic

.......... Ideal

- 0.5

0.25

-0.25,
0 200 400 600

Time (ps)

Figure 3.2: Reflected voltage from ideal, full analytic, and FDTD calculations for rp = 50 ps
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Figure 3.3: Reflected voltage from ideal, full analytic, and FDTD calculations for 1p = 100 ps
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Figure 3.4: Reflected voltage from ideal, full analytic, and FDTD calculations for rp = 250 ps

3.3 Transmit Response

In the frequency domain, the transmission transfer function of an antenna is given by

To EradwfT~ad)t)

• .of he(j)
j cr ZA(f)+Zg

where Vg(I) is the open circuit source voltage, Erad(I) is the radiated far field, ZA(J) is
the antenna impedance, Zg is the 50 92 source impedance, and he(J) is the effective
height of the antenna. The open circuit voltage Vg is twice the input voltage on the
coaxial line feeding the antenna if the source, feed line, and antenna characteristic
impedance are matched. The parameters ZA(I), and he( could be calculated for the
conical monopole using Equations A.14, A.15, and A.18 from Appendix A.1. Simple
approximations are available for ZA(U), and he(f) in the ideal case of an electrically
small monopole.

As discussed in A.6, the time domain radiated electric field Erad(t) on the ground
plane (0 = 900) in the far field region can be calculated for the full analytic and ideal
cases. These results were compared to the predictions from the FDTD analysis for
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Tp = 50, 100, and 250 ps in Figures 3.5, 3.6, and 3.7, respectively. The excitation
voltage was a 1 V Gaussian pulse. The 1/R dependence has been suppressed, where
R is the distance to the far field point. To first order, the simple ideal time domain
field for each p calculated using the further assumption discussed in Section A.6
that the monopole impedance ZA >> Zcoax. This approximation leads to the simple
expression

3 0h2cos 00 d2 V (gt)
Erad(t) - 4r7Zcrc2  dt 2

for the first order time domain radiated field.

From Figures 3.5-3.7, it is clear that good agreement exists between the predictions
for the far field derived from the FDTD and analytic techniques. The variation of the
electric field E0 in the far field region predicted by both methods is

Ee(O) = E0(0) sin 0

as expected for a small monopole. The ideal analytic calculation using small
monopole approximations for the antenna impedance and effective height works
satisfactorily, but begins to break down at shorter pulse widths as the small
monopole approximations break down.

0.5

0-I

I U

i I

u• FDTD

S-0.5 -O .............. Full Analytic

---------- IdealI,

S - - First Order

-1 i I i

0 200 400 600

Time (ps)

Figure 3.5: FDTD, full and ideal analytic, and first order far field comparison for rp = 50 ps
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Figure 3.6: FDTD, full and ideal analytic, and first order far field comparison
for"p =100 ps
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Figure 3.7: FDTD, full and ideal analytic, and first order far field comparison
forz"p = 250 ps

33



DSTO-RR-0019

3.4 Receive Response

The receive voltage on the D-dot sensor can be calculated from the transmit response
using reciprocity, since the frequency domain receive transfer function SO) for an
antenna can be expressed as

SU) -
E inco)

he(f)
ZAf) + ZL

where VL is the receive voltage on the antenna, ZA is the antenna impedance, and ZL
is the 50 Q load impedance. For ZL = Zg from section 3.3, TQ) and SW) are related by

so) = cr T(J

Therefore, the probe voltage VL for an incident field Einc can be calculated for a
receive antenna by considering the same antenna in a transmit mode. The radiated
field Erad can be calculated from a source voltage Vg which is related to Einc for the
receive antenna by

Vo dEinc
Vg(t) 2ircr dt

Under these circumstances, the receive voltage VL will be equal to the calculated Erad
for the transmit antenna.

For receive monopoles which are small compared to the smallest significant
wavelength in the incident field, the voltage developed across the output of the
antenna, VL is related to the incident field Einc to first order by

3h 2cos 00 dEinc(t)
2c dt

if the angle of arrival of the incident field is 900, ie. parallel to the ground plane. This
equation and the underlying assumptions required to derive it are described in detail
in Appendix A.1. For a 9 mm conical monopole, the constant factor is 0.2764 ps/m,
asin [22].

Because of the reciprocity relationship, the behaviour of the receive responses follows
that of the transmit responses, as shown in Figures 3.8, 3.9, and 3.10 for the specified
values of zp. The incident field is a vertically polarised Gaussian pulse with a peak
amplitude of 1 V/m.
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As for the transmit response, the agreement between the full analytic and FDTD
predictions is very good. The ideal analytic calculation using small monopole
approximations for the antenna impedance and effective height becomes somewhat
inaccurate for shorter pulses, as the small monopole approximations breakdown. For
• = 50 ps, the first order result shows the worst agreement with the alternative
techniques. The breakdown of the first order response relates to the fact that the
approximation ZA >> Zcoax is no longer true for the higher frequency components of
the shorter incident pulse. Since the approximation ZA >> Zcoax is fundamental in
determining the simple D-dot sensor calibration factor used in [22], this can lead to a
significant calibration error for shorter pulses. Note that the apparently good
agreement between the FDTD and first order analytic techniques at tp = 100 ps is
merely fortuitous, since the first order response is obtained from the ideal analytic
response with further approximation.

0.004 _____ FDT
FDTD

.................. Full Analytic

0.002 - ] .......... Ideal

-------- First Order

S-0.002

I !

0;

-0.002-

-0.004-,
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Figure 3.8: FDTD, full and ideal analytic, and first order receive voltage for Trp 50 ps
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Figure 3.9: FDTD, full and ideal analytic, and first order receive voltage for rp = 100 ps
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Figure 3.10: FDTD, full and ideal analytic, and first order receive voltage for p = 250 ps
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3.5 Comparison of FDTD D-dot Response with Experiment

An experiment was performed to verify the accuracy of the FDTD predictions for the
9mm conical monopole D-dot sensor receive response. A D-dot sensor was mounted
on a ground plane 31 cm from a cylindrical monopole with a radius of 6.25 mm and
a length of 40 cm. The field at the D-dot site was calculated using the FDTD
technique. This field was then used to calculate the output voltage from the 9 mm
conical D-dot sensor. The predicted D-dot response was therefore dependent on the
accurate FDTD modelling of both the cylindrical monopole and the conical sensor.

A Kentech HIIMP 1 pulse generator was used to drive the cylindrical monopole with a
3.5 kV, 2 ns pulse with a 100 ps risetime. A Barth 142-NMFP-26 attenuator was
used to reduce the Kentech output pulse by 26 dB. The D-dot sensor output voltage
and the Kentech output pulse were measured using a Tektronix TDS 820 6 GHz
sampling oscilloscope. Data acquisition was performed using a 486 PC with a GPIB
interface and LabWindows CVI software.

The measured and predicted conical D-dot sensor output voltages are shown in
Figure 3.11. Note that some high frequency components of the applied voltage pulse
have been attenuated in the measured data. Note that the FDTD calculation did not
include lossy dielectrics or conductors. The agreement between the FDTD results and
the measured data is satisfactory, especially since two antennas have been modelled
in the process of this comparison.

0.2
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0
S-0.2

0
• -0.4 ed__
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-0.6 1
0 200 400 600
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Figure 3.11: Measured and predicted conical D-dot sensor output voltage
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The electric field from the cylindrical monopole as calculated by the FDTD technique
is shown with the reconstructed electric field from the conical D-dot output voltage.
The first order analytic expression in Appendix A.6 derived from the mode matching
analysis is used

t
2c VL(t) dt'

3ýoa2cos 0 0

t

= 3.620 x 10-12 f VL(t') dt'
0

In Figure 3.12, note that the reconstructed electric field underestimated the calculated
field. This is consistent with the discrepancy in Figure 3.11. In addition, Figure 3.8
suggests that for faster pulses, the first order analytic approximation will lead to an
underestimate of the measured field. Nevertheless, the agreement is considered
sufficiently good for practical purposes.

300-
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S200-
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Figure 3.12: Reconstructed and predicted incident field
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4. Conclusions

A finite difference time domain (FDTD) technique has been developed to analyse
rotationally symmetric antennas such as biconical antennas of arbitrary cross section.
The standard Yee formalism was implemented, with a cell deformation technique
used to accurately model the feed region. This was necessary to accurately predict
the high frequency response of the antenna. A coarse grid surrounding an inner fine
grid was used to reduce computational effort for outer regions away from the
antenna. Although the FDTD technique calculates only the antenna transmit
response directly, the receive response is readily calculated using reciprocity.

A 9 mm conical monopole D-dot sensor on an infinite ground plane was analysed
using both the FDTD technique and an analytic technique based on mode matching.
The agreement between the two methods was excellent, with the predicted 9 mm
conical D-dot sensor response verified by experimental results. The accuracy of
approximate techniques based on the analytic mode matching approach was
investigated, with some discrepancies with the FDTD technique noted for shorter
pulses. Now that its accuracy has been verified by the FDTD method, the full mode
matching analysis will be used to more accurately reconstruct incident electric fields
from 9 mm conical D-dot measurements for shorter pulses.

Future work will be directed toward interfacing the routine fdtd-cyl to CAD software
for more convenient design and analysis of rotationally symmetric antennas with
arbitrary cross section.
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Appendix A

Spherically Capped Conical Monopole Analysis

The frequency domain response of a spherically capped conical monopole antenna on
an infinite ground plane as shown in Figure A.1 can be calculated analytically. The
response of a biconical antenna with the same dimensions can be determined trivially
from the monopole analysis. The fields within the spherical boundary of the antenna
are matched to the fields outside the antenna, which is expressed in terms of spherical
eigenmodes. This allows the reflection coefficient for the dominant TEM mode at the
aperture to be calculated, which in turn yields the antenna driving point impedance
and the far field radiation pattern. Because of the requirement for a spherical
boundary for field matching, this analysis is restricted to conical monopole antennas
with spherical caps. An assumption is made that there is no reflection from the
transition between the coax and the antenna feed point.

spherical cap

conical antenna

infinite plane

Figure A. 1: Conical monopole geometry
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A.1 Spherical Eigenmodes

The spherical eigenmodes inside and outside the antenna can be determined from the
electric Hertzian potential, since only TM modes are excited. The electric and
magnetic fields are written in terms of the Hertzian potential Fie as

H = j06 V X H-e and E = W02[tLOFie + V(V.l-He)

Since Hr = 0 for TM modes, Fle has only a radial component, so that

FHe = HIr Ur = (rW)ur

where iy is a solution of the scalar Helmholtz equation

V2W + k2 W(r,8) = 0 where k2 = o02ioc [23].

Therefore

r2 r r r2 sin + k2 WJ(r,O) = 0

This equation is separable, so using xV(r,0) = R(r) *(0) results in two equations

r d 2R dR

dr2 + 2r-r + (kOr 2 _ p2) R(r) = 0 (A.1)

d cos 0 d
dO2 + sin O dO + p20(O) = 0 (A.2)

where p is the constant of separation. Substituting for x = cos 0 in (2) yields

d2• 2di•
(1-x 2) dx 2 x- dxx + v(v+l) *(x) = 0 (A.3)

where v(v+l) = p2 .

The solutions to Equation A.3 are the Legendre functions of the first and second
kinds, Pv(cos 0) and Qv(cos 0). These functions are [24]

|rF-v v~; ; 2) 1 v V3 7
2) F( -, 1 +yi•x2)/

Pv(x) = F-, vl1 1 -2x 2' 2 ]

422 v+1(
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Qv(x) =

+1 v + )vi 1 v 1 lvr iv v 3
cs+(vcs(2 ) F(-V, •+ - ; x2) f(i+2) cos(y) F(--- 1 + - - x2)

2F )+-) 2' 2 ' 2 2 2 2' 2' 2'
i F(I+, 1

where the hypergeometric function is
o0

F(c) Y r(a + n)r(b + n) xn
F(a, b; c; x) - f(a)r(b) F(c + n) n!

The solutions to Equation A.1 are the spherical Bessel functions jv(kr) and yv(kr),
where

jr(z) = Fz Jv+l/2(z)

yv(z) = EZ Y+1/2(Z)

jv(Z) and yv(z) can be combined into spherical Hankel functions of the first and
second kind to represent waves travelling inward and outward, respectively, relative
to the origin.

(1)

hN (z) = jV(z) + j yv(z) inward travelling wave

(2)
hN2 (z) = jr(z) - j yv(z) outward travelling wave

Since the field outside the spherical boundary of the conical monopole must be finite
at e = 0 and ic, v can only take integer values, n. The external field can also only
consist of outgoing spherical waves, the scalar function Nvout is given by

00

nW01t j_ A hA2)(kr) Pn(cOs 0)•Vout = X= j• PAno

n40
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So

00

A7 (2)
ir = rAnb 2)(kr) Pn(cos 0)

where An are arbitrary and the 1/joa factor has been included for the sake of

consistency with the derivation in [25].

a
Since 0, and the TM mode magnetic field has only a 0 component

1 a-IrH=Hcpu¢ = -jo7aroUc

r An )(rO
00

An h2)(kr) - Pn(cos 0)
n=0

00

~ (2)
An AN (kr) sin 0Pn(cos 0)

n=0

The electric field outside the conical monopole is readily determined from the
magnetic field using

1
E = . VxH

Consider

Er jkrsin0 - aO (0 sinO)

Since

d ( V dPn(cOs 0)
dO sin0 dO

d 2Pn(cOs 0) dPn(cOs 0)
= sbi dO2  +cos 0 dO
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-sin 0 cos 0 Pn(cOs 8) + sin3 8 Pn(cos 0) - sin 8 cos 0 Pn(cOs 8)

2 sin 0 cos 8 Pn(cOs 8) + sin3 8 Pn(cOs 8)

Er can be calculated from

Er = sine

00

� (2)
An hý (kr) (2 sin 0 cos 0 Pn(cOs 8) - sin3 0 Pn(cOs 8))

n=0

NF h0 N2) (kr)

-J -A kA n(n+l) sin 0 Pn(cOs 8)
n=0

since

(1-x2) Pn(x) - 2xPn(x) + n(n+l) Pn(x) = 0

Similarly Ee can be determined from

E - jkr Edr (rH,)

with

d (2) (2) (~2 (k)
d (rhN (kr)) = hN (kr) + krhn2(kr)

(2) (2)
= krhN21(kr)-nhN (kr)

Therefore

E0 = j'\/£ A•-rni

=0 An sn__ ' (2 n 2

= EA sinO Pn(cos 8) (h(2 1(kr) - n•- h)(kr))

n=O
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Since the field inside the spherical boundary of the conical monopole is not required to
be finite at 0 = 0 and 7n, and consists of both ingoing and outgoing spherical waves,
the scalar function Vin is given by

00

WI~in =N k + Bv h(kr)) (Pv(cos 0) + (x Qv(cos 0))VFi = 0 (AOF 2)kr)+B
V=0

Although the mode spectrum is discrete, note that v is not restricted to integer values.

The coefficients AV refer to modes propagating outward from the origin, while the Bv

coefficients relate to modes reflected from the aperture and travelling inward towards
the origin. Using the scalar function Vin and proceeding as for the fields outside the
spherical boundary of the conical monopole yields the fields inside the interface as
follows

S(2) (1) d d
= - (kr) + Bv N (kr)) (dPv(cos 0) + oxv d v(cos 0))

V 0

Er =-jA 0

[ F,
00 (2)(1

h N (kr) hý (kr)
(AV kr + BDv kr ) v(v+l) sin 0 (Pv(cos 0) + (XvQv(cos 0))

V0

Fe -j y

S (2) v (2) (1) v (1)
(Av(h~l(kr) - - N~ (icr)) + Bv(hN 1(kr) - -j N (kr)))

v-O

d d
(dPv(cos 0) + cv d0--0Qv(cos 0))

Values of v corresponding to TM mode solutions are determined from the boundary

condition on the side of the conical conductors, Er = 0 at 0 = 00 and 0 = 7 - 00.

Therefore

v(v+l) sin 0 (Pv(cos 00) + OCvQv(cos 00)) = 0 (A.4)

and
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v(v+1) (PV(-cos 00) + avQv(-cos 00)) = 0 (A.5)

with symmetry requiring

v(v+l) (PV(0) + a(Qv(0)) = 0 (A.6)

These conditions are trivially satisfied for the lowest order TM mode, the TEM mode
dP0

(v = 0). There is no contribution to the fields from the P0 (cos 0) term since d-- = 0.

Therefore the TEM fields inside the conical monopole are

TEM (2) (1) d
HO (A0 h02(kr) + B0 hN (kr)) doQO(cos 0)

kr sin 0 A0 (exp(-jkr) - p exp(jkr)) (A.7)

TEM jG 0 (2) (1) d

0 = _ J (AE h-1 (kr) + Boh 1)(kr)) d0jQ0(cos 0)

d 0 J s A exp(-jkr) + p exp(jkr) (A.8)

where the a0 factor has been absorbed into A0 and BO, p = Bo/A 0 is the reflection

coefficient, and the following expressions have been used

1 InF1 + cos 0]
Qo(cos 0) = 1 i Cos 0

d Qco ) 1
dO QcsO)-sin 0

)(kr) j _ j (kr) = - kr exp(jkr)

(2) j k(2) =1hN (kr) Ij h(kr) = r exp(-jkr)

The evaluation of higher order TM modes will require the calculation of the mode
number n. This is performed by solving the boundary condition Equations A.4, A.5,
and A.6.
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A.2 Aperture Field Matching

In practical conical monopole antennas, all modes inside the antenna except for the
TEM mode are cutoff. Since this mode cannot exist outside the antenna, power is
radiated by higher order TM modes which are excited by the TEM wave at the
aperture. The scattering coefficients which determine the amplitudes of the TM
eigenmodes outside the antenna can be determined by matching the transverse
component of the electric field, Eo at the aperture (r = a). Inside the antenna the
approximation made by Pappas and King [25, 26] is used which ignores the
contribution from all higher order evanescent modes inside the spherical interface.
This approximation will be a fundamental limit to the accuracy of this technique
unless higher order modes are included. The electric field inside the antenna is
therefore given by

O -fioexp(-jka) + p exp(jka)
Ee = - J A0 N/L ka sin over the aperture (00 <0< i-O 0)

=0 over spherical cap

where p is the reflection coefficient which accounts for TEM mode reflection at the
aperture discontinuity. The field outside the antenna is

0oEO AF -J - :• A,,(hý~k) aah (ka))d
(ka) - hý (ka)) dPm(cos 0)

n=0

Equating the fields inside and outside the aperture leads to

0o
ka Ai 0 (exp(-jka) + p exp(jka)) = (h ) m (2) d0

= AninhmA(ka) - ah (ka))dPf..(cos 0)
rn = 0

dFollowing the method of Papas and King [25, 26], multiplying both sides by sin 0 dO

Pn(cOs 0) and integrating over the spherical interface from 0 = 0 to ir yields

TC-0o

Ao (exp(-jka) + p exp(jka)) (do Pn(cos 0)) dO = 2 Ao Pn(cOs 00) (exp(-jka)

00
+ p exp(jka))
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00R

(2) Mn (2) d d
ka Am(hmil(ka) - a- hý (ka)) sin 0 T--Pn(cos 0- Pm(c0s 0) d0

m-0 
0

= 2 ka An n(n+l) 2)_(ka) - - hý2)(ka))

2n+1 ka

where the following orthogonality relation has been used [27]

[ d d 2n(n+l)
sinO •Pn(cOs 0) Pm(cOs 9) dO = 2n+1 mn

Because of the antenna symmetry, only odd n need be considered. Therefore the
spherical eigenmode amplitudes in the region outside the interface are given by

An = A0 exp(-jka) + p exp(jka) 2n+1 n O) 1 (A.9)ka n(n+1) Pn(cos h0)h(ka)- n h•2)(ka)

Using the substitution for An in Equation A.9, the electric field outside the antenna

can be related to the reflection coefficient p and the amplitude of the outward

travelling TEM mode in the antenna A0 by

Ee = _jJA0  gexp(-jka) + p exp(jka)
ka

00 (2) n(2
nVdd 2n+1 h�2)(kr)- N2(kr) d

n(n+l) (2) n (2) Pn(cos O0)d-Pn(cOs 0) (A.10)
n odd h- 1(ka) - - N 1 (ka)

where the summation is over odd n only. In the far field region where kr -4 o, the
term

(2) j exp(-jkr)
hN2-l (kr) -- N•2 (kr) --4 Le

iI4K)kr kr

From Equation A.10, the electric field in the far field region is therefore

""o --oexp(-jkr) exp(-jka) + p exp(jka)
Eo = -J A0  -- kr ka

49



DSTO-RR-0019

00

n 2n+1 jn d
n(n+l) (2) n (2) Pn(cOs O0)--Pn(cOs ) (A.11)

n odd hý-j(ka) - k- hý (ka)

The electric field can be expressed in terms of the current I0 through the centre
conductor at the feed point. Consider a circular patch of radius rc on the ground
plane which encloses the centre conductor of the monopole. Ampere's law states that

H.dl =0 + a j4 E.dS
C atfS

For the circular patch

27c rc 27c

rcH-I,pdo = I0+• f r E0dodr

Because the monopole is azimuthally symmetric

1"c

27cH1-r = Io+F(aat) of 2nF r Eedr

Substituting for HII and E0 from Equation A.7 and A.8 leads to

P A0 (exp(-jkrc) - p expokrc)) = I+ A0 exp(-jkrc)- p exp(Jkrc)- (1-p)]k k II

At the feed point where rc --- 0, the second term on the right tends to 0, so that the
amplitude of the outward TEM electric field in the monopole is related to the applied
current by

k1s
A0 - l

j27t(1-p)

By substituting for A0 in Equation A.11, the electric field in the far field region can be
expressed in terms of the feed current Io and the TEM mode reflection coefficient p as

""E- Is exp(-jkr) exp(-jka) + p exp(jka)FE = - * 0 2n(l-p) r ka
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00

n 2n+1 jn ( P(COS 00 )d P(COS 0) (A.12)

n odd N1)9 (ka) - -hN (ka)

This is identical to Equation 8 in [27]. According to Harrison and Williams [27], the
effective height of the conical monopole is defined as

EeOf
khe (I) = (j0/2i) (exp(-jkr)/r) IO() (A.13)

where ýO = F-L/S is the impedance of free space.

Using

(2) - in-1 exp(-ikr)
hN(kr) -- kr

as kr -- co, the magnetic field in the far field region is therefore

I0 exp(-jkr) exp(-jka) + p exp(jka)
- - 2ir(1-p) r ka

X 2n+1 jn dn(n+l) h(2.k)_ na h(2)(a Pn(cOs O°)d-Pn(cOs 0)
n odd flfl1)I~(ka) - - N 2 (ka) e)P(o

Ee

Provided the TEM mode reflection coefficient p can be determined, the fields outside
the antenna can be calculated. To calculate p, the tangential component of the
magnetic field, HO, is matched over the aperture

cc

= A (2) d
ka sin e (exp(-jka) - p expok) An N h(ka) - Pn(cos 0)

n=0

Multiplying both sides by sin 0 d- Q°(cos 0) and integrating over the spherical

interface from 0 = 00 to 2T-00 leads to
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7n-0 0

ka (exp(-jka) - p expska)) F dO = - 2 (exp(-jka) - p exp(jka)) In cot

ka (ef-a si 0 d ka(2
00

00 71-0 0

exp(-jka) + p exp(jka) I 2n+1 f d
ka n(n+l- Pn(cos e0) •n(ka)f (j-Pn(cOs 0)) dO

n0 00

n=0

where

(2)
h• (ka)

C,, ~ (2) n (2)
hý2•(ka) - - h• (ka)

Therefore
00

J, yO 2n+1
(exp(-jka) - p exp(jka)) = - (exp(-jka) + p exp(jka)) 21rZc 0 n(n+l) [Pn(cos 00)]2

Cn(ka)

where Zc is the characteristic TEM mode impedance of an infinitely long conical
monopole given by

In cot j

Consider

exp(-j2ka) - p - - y (exp(-j2ka) + p)

so that
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p = exp(-j 2ka)

N.____ (2n+1)
1 Z+ n 2 od n(n+1) [Pn(cos(0°))] 2 ýn(ka)

= exp(-j 2ka) N (A.14)
-. 0 o a(2n+1)

1 - n2odd n(n+1) [Pn(cos(00))] 2 Wn(ka)

where the summation is over n = 1, 3, 5 ...... N.

Now that the TEM mode reflection coefficient has been determined, the fields outside
the conical monopole can be calculated using the modal coefficients An. This result
has been presented in [25-27]. The impedance of the finite bicone antenna is therefore

ZAWf Zc P (A.15)

A.3 Power Conservation

Conservation of power across the spherical interface separating the regions inside and
outside the spherical boundary was used to assess the influence of neglecting higher
order modes within the antenna. Inside the antenna, the TEM electric and magnetic
fields can be used to calculate the power crossing the interface, Pr, at r = a using

n/2

P = i Ta2 f Re{Ee(a,0) HO(a,0)*} sin 0 dO

00

2 i/ 2
41 -2 (1 - p2 + Refp expo2ka) - p* exp(-j2ka)}) s1- de

00

2
( )(1 - p2 + Re{p exp(j2ka) - p* exp(-j2ka)}) In cot ()

2
10 Zc 1 - p2 + Reip exp(j2ka) - p* exp(-j2ka)}

2 (1-p)2
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Note that if there is no reflection from the interface, then all of the applied power is
radiated. The applied power is given by

2
papp _ Io Zc

2

Using Equation A.12, the power crossing a hemispherical boundary surrounding the
antenna at r -- oo is given by

7c/ 2
out

Pr = cr2 f Re{Eo(rO) HO(r,0)*} sin 0 dO

2I0 t0
40t(1 - p)2 (1 + p2 + Re{p exp(j2ka) + p* exp(-j2ka)})

N N

X •d2m+l)(2n+1) -jn+m Pm(cos(0o)) Pn(cOs(Ool))

m odd n odd m(m+)n(n+) [ka h 2 (ka) - n h 2)(ka)] [ka h•l(ka) - m hm (ka)]

rr/ 2

sin 0 n Cos 0)d Pm(cos 0) dO
sin OPn~ dO

Since

s d d 0) A 2n(n+l)
d)O Pr(cos 2n+1 mn

the radiated power in the far field region is given by

2out 10 t0
PF 41(1 -)2 (1 + p2 + Re{p exp(j2ka) + p* exp(-j2ka)})

N

n1odd 2n+1 (--1)n+l/ [Pn (cos(O0))]2

dn(n+1) [ka hN2_(ka) - n hn2)(ka)]
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Power conservation across the spherical interface separating the inner and outer
regions of the monopole was verified to a high degree of accuracy in the frequency
domain up to at least ka = 100 using N = 59 for the summation terms.

A.4 Small Conical Monopole Approximation

For electrically short monopoles with ka << 1, a number of simplifying
approximations can be used to calculate the input impedance. Consider the
summation term from Equation A.14

N

S= I (n+l) [Pn(cos(00))]2 nka))
21cZc n odd n(n+1)[

For small ka

(2)ha(ka)

ýfl (2) n (ka)
nh2 1(ka) - a h- ) (ka)

ka
n

Hence

N

S.oka X (2n+1)
- 2irZ- n odd n2(n+1) [Pn(cos(O0))] 2

For 00 = 470 corresponding to a characteristic impedance of 50 0, then the dominant
term will correspond to n = 1. The next highest contribution will be from the n = 3
term which is only 1.5 % of the n = 1 term. Therefore S can be approximated by

.3•oka
S - J4--k cos2 (0°)

The reflection coefficient p is given byE 1 - j,3 ka cos2(eo)

p = exp(-j 2ka) Ijrkco-
41r+ L ka cos 2(O )5
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1k 4-- ka cos(eo0)1 -jka -. __"

1 14+ci ka cos2 (00)

ka
1 -'47rZ (3ý0 cos 2(00) + 4jrZc)

ka (A.16)
1 + F4Z (3ý0 cos 2(00) + 4rZc)

47cZc 1
jka 3ý0 cos 2 (00) + 4EZZc-1

47rZc 1
jka 3ý0 cos 2 (00) + 41Zc+1

ZA--- 1
zc
ZA

and so the antenna impedance ZA corresponds to a capacitance CA

1
ZA(ka) - j 21r]CA

where

CA = a(41tZc + 3 ý0 cos 2 (00)) (A.17)
2

47ccZc

From Equation A.12 and A.13, the effective length he0t is given by

exp(-jka) + p exp(jka) y_2n+1 in-1
khe(J) ka (-p) n od +1 . -(

kn(n+l) hod_(ka)_ - -h,2)(ka)

d
(cos OO)d-OPn(cOs 0) (A.18)

where the summation is over n = 1, 3, 5 ...... N. For electrically short monopoles
(ka << 1), then only the n = 1 term need be considered in the summation, as for the
antenna impedance. Using the approximation
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()1 h(2)(a

2 )(ka) - -hai (ka)3

k- (ka)3

the effective height for short conical monopoles can be calculated from
khe() 3 exp(-jka) + p exp(jka) (ka)3 cos e0 sin e

2 ka (l-p)

Using the approximation

exp(-jka) + p exp(jka) 1 - jka + p (1 + jka)
1-p 1-p

1 - jka

together with the approximation for p in (16) leads to

exp(-jka) + p exp(jka) 11- a-j ka
J4--j c (3ý0 cos 2 e0 + 47cZc)

47cZc

jka (3ý0 cos 2 00 + 4nZc)

which yields the effective height

61rkaZccos 00 sin 0
khe(I) = 4irZc + 3ý0 cos 200 (A.19)

A.5 Transfer Functions

Following the standard definition in [27] the transmission transfer function is defined
as

To =E00t

where E is the electric field in the far field of the monopole and V0 is the driving
voltage. VO is related to Io in (12) by
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1 = 
V0

ZA + ZL

where ZA is the antenna impedance and ZL is the impedance of the feed line. Using
Equation A.18, To) is given by

• •0f heot)
TO) = j c ZAO) + ZL exp(-j2rcfr/c) (A.20)

= Too) exp(-j2nfr/c)

Too) is clearly related to To) with the phase delay due to the distance between the
antenna and the far field point removed.

The reception transfer function SW) is defined in a similar fashion as

VLO)
S0) - ~~f

hef) ZL) (A.21)
ZAO) + ZL

where VL is the load voltage across the antenna and Einc is the incident field. The
effective height can be calculated from Equation A.18 and the antenna impedance
from Equation A.15 as a function of frequency.

For small monopoles with ka << 1 which are matched so that Zc = ZL, the
approximate expressions for effective height Equation A.19 and antenna impedance
Equation A.17 can be used in Equation A.20 and Equation A.21 to yield

Too) = (j2,rt)2 3ý°a 2 cos 00 sin 0 (A.22)47rZcrc2

and

3a 2 cos 00sin 0SOJ) = j2irf 2c (A.23)

if the assumption ZA >> ZL is made. This will be the most limiting assumption for
the case of a 50 Q monopole connected to a 50 Q line.

The real and imaginary components of the transmission transfer function To for a
50 K2 monopole with 00 = 46.980 are plotted against ka in Figure A.2. The 1/r term in
Equation A.20 has been suppressed. This plot is in agreement with Figure 13 from
[27]. Figure A.3 shows the real and imaginary components of the reception transfer
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function So for 50 Q conical monopoles. The agreement with Figure 16 of [27] is
very good.

0.5 -A

0

%* m. "

- Real
- ------ Imaginary

-0.5 1
0.1 1 10 100 1000

Ja
ka

Figure A.2: Transmission transfer function of matched conical monopole

500

250 -

0- *S,.

-250 
a
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-500 ------ Imaginary
-500"

-750 -
0.1 1 10 100 1000

ka

Figure A.3: Reception transfer function per unit antenna length for matched conical
monopole
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A.6 Time Domain Response

For transmit antennas, the time domain far field can be calculated from the applied
voltage and the transmission transfer function using

+00

ee(t + r/c) = f VOW) To(j) exp(j2rift) df
-00

The frequency domain applied voltage is calculated from a time domain applied
voltage using the Fourier transform

+00

VJOW f vO(t) exp(-j2rrft) dt
-00

For a Gaussian excitation pulse with a maximum of I V, the applied voltage vo(t) is
given by

vo(t) = exp(-t 2/2"t 2)

where T = 0.4246 tw, with tw the FWHM for the pulse. The applied voltage in the
frequency domain is

VOW = ý2 T exp(-2n2ir 2j 2)

For small monopoles, Equation A.22 can be used to relate the excitation voltage to
the transmitted field in the time domain as

3ý0a 2 cos 00 d2vo(t)e(t + r/c) = 41rZcrc2  dt 2

The radiated electric field for a number of antennas with different altw, values is
shown in Figure A.4 for a Gaussian excitation pulse. As for Figure A.2, the 1/r term
in the transmission transfer function has been suppressed. For large antennas as in
Figure A.4 with a/tw = 6.62, the radiated pulse is a faithful reproduction of the
excitation pulse. For short antennas as for a/tw = 0.0883, the radiated pulse is close
to a double derivative of the excitation pulse. This is the result expected from the
small monopole analysis. The results presented in Figure A.4 closely match those of
Figure 5 in [27].

60



DSTO-RR-0019

0.75

0.5 -
a/tw=0.0883m/ns

0.25- ,1 a/tw= 0.442 m/ns

----- a/tw= 2.2-1 m/ns

0 ---- altw= 6.62 m/ns

* - b-. j

-0.25 -

-0.5 -05-I I I

0 2.5 5 7.5 10 12.5

t/tw

Figure A.4: Radiated field from 50 - conical monopole for various a/t.

The time domain load voltage in reception can be calculated from the incident field

using the reception transfer function as follows

+00

VL(t) J Einc() S(f) exp(j2irft) df
-C0

The incident electric field is calculated in a completely analogous way to the
excitation voltage for transmission.

For small monopoles, Equation A.23 can be used to relate the incident field to the
load voltage developed across the antenna in the time domain as

3a 2cos 00 deinc(t)vL(t) = 2c d
2c dt

The load voltage across conical monopoles for a negative Gaussian incident field with
a peak of -1 V/m are shown in Figure A.5. Figure A.5 shows the response of a large
monopole with a/ tw = 6.62 to be approximately the integral of the incident field. For
a small monopole, the response is proportional to the derivative of the incident field,
as for a/ tw = 0.0883. This is expected from the small monopole analysis. The results
shown in Figure A.5 are in close agreement with those presented in Figure 10 of [27].
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Figure A.5: Voltage across 50 D2 conical monopole receive antenna for various a/t.

A.7 Summary

The results presented in this appendix show conclusively that the analytic theory of
[25-27] has been successfully reproduced, and that the approximations are identified.
The most serious approximation is the inclusion of only the TEM mode within the
antenna, with higher order evanescent modes neglected completely inside the antenna.
Of secondary importance, it is assumed that there are no reflections from the feed.
This approximation is significant when calculating the high frequency response of the
antenna, since the feed geometry is the limiting factor. This is particularly important
for the analysis of high power antennas where the feed is generally made as large as
possible without degrading the high frequency response of the antenna beyond an
acceptable limit.

The simple expressions for the antenna impedance and effective height of small
monopoles with ka << 1 presented in [27] were derived. These simple
approximations have been used to calibrate small antennas such as D-dot sensors. If
the further approximation that the antenna impedance is much larger than the load
impedance, then simple time domain expressions relating the incident field and load
voltage for reception and the excitation voltage and radiated field for transmission
could be derived. This last approximation is the most limiting in terms of the
minimum pulse widths that can be accurately modelled using these approximate
time domain formulae.
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