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ABSTRACT

A detailed study is presented of the acoustic radiation

pressure exerted by plane comDressional waves in non-viscous

liquids and gases upon a plane obstacle. The present report is

largely a further development and extension of a very comprehensive

and penetrating treatment of acoustic radiation pressure by LO

Brillouin. The theory of plane waves in liquids is extended to

the case of finite amplitudes. From this more general point of

view the effects at small amplitudes are derived and discussed in

detail. Formulas are given for normal and oblique incidence of

the acoustic beam for small amplitudes, valid for any reflection

coefficient of the receiving plane. The radiation pressure at

finite amplitudes upon a perfect absorbcr is calculated..

Special consideration is devoted to the actual physical

processes involved; the meaning of the so-called Rayleigh pressure

and Langevin pressure is discussed. For gases the radiation

pressure as well as the aayleigh pressure in progressive and standing

waves are computed.

The report concludes irith an assembly of the chief

equations.
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a = space coordinate

C constant of integration

c phase velocity of light or sound

Cp = specific heat at constant pressure

= time-average value of the density of total energy for a

harnonic wave traveling in one direction ( z = o 2 o2/02)

time-average of the density of acouttic kinetic energy

Epo time-average of the density of acoustic potential energy

E = electric field strength

- frequency

= magnetic field strength

width of surface receiving acoustic radiation (Fig, 12)

J = intensity (pewer per unit area) of acoustic radiation per
square centimeter

J (i) = Bessel function of order I and argument i

k = =o /c

= ength of surface receiving acoustic radiation (Fig. 12)

m mass

Prad' P = radiation pressure or its component in the positive
x-direction

Pc = hydrostatic pressure

D = excess pressure due to compressional wave motion

Pt = P0 + p = total pressure

S = shearing stress due to radiation pressure at oblique incidence

T = stress tensor, also absolute temperature

Tik = conponen'Cs of stress tensor

T = 1/f = periodP

t = tine coordinate

u ,u u = particle velocities in the x-,y-,z-directionsXy lz
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u = particle velocity in a plane conpressional wave along
the x-Jirection (u = U

x~y~z space coordinates

x'9y' space coordinates of a system rotated through an angle
(Fig. 5)

V = unit volume; A V = small change in V

Vo  = undisturbed unit volume

= compressibility of liquid (cm2 per unit force)

= amplitude reflection coefficient ( 1)

= c /c - ratio of specific heats at constant pressure 'c )
and constant volume cv)

= (r= + + ZZ

= -plitude transmission coefficient ( 1)

= dielectric permittivity

C ik = components of strain tensor (see Eq. (2.7))

= viscosity coefficient

0 = phase an-gle of reflected wave

= angle between the normal to a receiving plane and the
direction x of the wave propagation

= wavelength

I.. = magnetic permeability

P = density; = undisturbed density

0- = entropy

+ = Wt + hx

, ' 7, = particle displacements in the x-)y-lz-directions

= 2iff = angrlar frequency

11ote

One bar over a symbol denotes the time-average value of the
quantity concerned9 as 7 two bars the average value in time and
and space, as p.

A star * indicates that the quantity concerned refers to a
moving particle or voltume element (Lagrangian coordinates), as p*.
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1. Radiation Pressure in Electrodrnarics

The concept of radiation presu'e originated in electro-

dynamics. If re consider a plane surface emitting a plane

electromagnetic wrave (Fig. 1)

Fig. 1

Plane electromagnetic wave emitted
by a plane surface

in the positive %-directiong a reacting force is exerted upon the

emitting plane duo to the transport of nonentimz by the electro-

magnetic field in the direction of wave propagation. Imagine a

cylinder with a cross-section of 1 c 2 perpendicular to the x-axis.

A wave front leaving the enitting surface at any time t reaches

a cross-section of this cylinder at the distance c one second later,

where c is the velocity of the wave. Assuming, for simplicity,

an electr'omagnetic wave of a rather high frequency, so great a

number of wavelengths nay fill the distance a that re can speak of

a rean total electromagnetic energy averaged over the length c of

our cylinder. Dividing this mean total energy by c we obtain the

mean energy-density T1, that is, the mean energy per cm3 of the

electromagnetic wave. If the emission is steady, E is independent

of time.



2.

The whole energy filling the cylinder of length c, and

therefore leaving the emitting surface each second, is Ec. Accord-

ing to the equivalence of mass and energy this corresponds to a mass

transport in the positive x-direction. Let the whole mass filling

the cylinder of length c be m = c,(o denoting the electromagnetic

"mass-density" per cm3 . Then we have

c2 =•)C 2  Ec

and

- -- (1.1)

The equivalent miechanical momentum emitted each second from each

cm2 of the radiating surface is m-c = (ec).c =Pc 2 = E. Accord-

ing to Lewton's Law a reaction-force is exerted on each square

centimeter of the radiating surface, which equals the momentum

mc = E contributed per second to the emitted wave. This reacting

force Px per cm2 in the negative x-direction is numerically equal

to the so-called electromagnetic radiation pressure Prad:

Px = mc = Prad = B (1.2)

Prad equals the mean electromagnetic density averaged over

a wavelength in space:

,,a + 2 
32

"a 2 2

where X c/f wavelength; c is the penrlittivity; W, is the

permeability; E, 11 are the electric and magmetic field vectors

of the plane wave.
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If the enitting sua.face were free to move, this radiation-

force would cause a notion of the surface in the direction opposite

to that of the enitted radiation, in such a way that the mass-

center of the whole system (eniting mass + mass-equivalent of

radiated energy) remained fixed in space.

Dow re consider the case in which the emitted radiation

strikes a plane totally absorbing surface perpendicular to the x-

axis. Such a surface is usually called a surface of a black body.

The electromagnetic nomentum which one cm2 of the black surface

absorbs each second ar.iounts lilkewise to mc =,c 2 
- o This gain

in mcmentun per second corresponds to a radiation force on each

cm2 of the receiving area in the positive x--direction. So we say

that the electronag netic radiation exerts a radiation pressure upon

each square centimeter of the absorbing surface, which equals

the mean energy density E of the electromagnetic wave.

If the surface perpendicular to the direction of motion

of the electromagnetic wave is not black, but totally reflecting,

the momentum of the wave changes its sign at the reflector from

+ me to -me. So the total change in momentum per second and per

cm2 of the wave anounts to 2mc = 2 Pc 2 = 2E. Therefore the radia-

tion pressure Prad on'a perfectly reflecting surface is equal to

2E. if the receiving surface partially absorbs and partially re-

flects, the radiation pressure has a value between E and 2Eq

depending on the coefficient of the reflection of the surface,

which expresses the ratio of the reflected to the incident wave

energy.

2. The Concett of Pressure in Fluids

In view of our later treatment of acoustic radiation



pressure, we first consider the meaning of the word "pressure t .

In the physics of deformable bodies (solids, liquids, gases)

the word pressure is exemplified by the hydrodynamic pressure in

a fluid. The pressure is a scalar p (x~yz) which may change

from point to point in space. If we consider a volume-element

of arbitrary shape inside a fluid, the hydrodynamic pressure p

exerts the save force in all directions if the volume is so small

that the change in pressure with respect to x~y,z can be neg-

lected (Fig. 2),

P7 PP

Fig. 2

Hydrostatic pressure p in fluids

Or, if we imagine a small surface element in the fluid, the pressure

p on it is the seine for each orientation in space and always normal

to the surface.

Instead of using the word pressure we can also say that

there is a stress T acting on any small element of area perpendic-

ular to the eleinent and of the same value for every orientation in

space of the eleent. We write

T-p (1.4)

since usually the pressure is called positive if a volume element

is compressed, while a stress is called positive when tensile

(Fig. 3).
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Fig. 3

Directions of positive pressure p
and positive uniform stress T

At this point it is desirable to consider the general ex-

pression for a stress-tensor. This expression will then be

specialized for the case of a fluid. Any stress, whether due to

mechanical forces or to an electromagnetic field, is a tensor hav-

ing in general nine components. It is represented by

Txx T xy xz

Ti = Tyx  T w (1.5)

T T
Zx zy zz

The T (T 99 T , T ) represent the normal forces perpendicular
ii )0CC ZZ

to surface elements in the yz-, xz-, and xy-planes, whereas the

shearing forces T. C(Txy ... ) act parallel to these surface

elements. in fluids under mechanical action, disregarding viscous

forces, only the T.i exist and the stress tensor reduces to

T = 0 0

0 o (1.6)

0 0 Tzz

Furthermore, as we have stated, the force on a surface element in a

fluid is independent of its orientation in space, so that
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T =T =T =T; or
:xo yy zz

kT 0 0 -10T 0 oj i-p 0 i

Tiq = 0 T 01= 0 -p 0 (1.7)

o 0 T 0 0 -p0

According to the rules of tensor calculus the quantity

= T + T zz (1.8)

is invariant; that isq it has the same value for any set of rec-

tangular coordinates at the sane point. In our case T.,= T7

Tzz - p, and the quantity I - 3p, or

-i(1.9)

The hydrostatic mean pressure p, which is of course independent of

the system of coordinates chosen, can therefore in general be

defined by

Pyy +TTz) (1.10)

3. The Tonsorial Character of Electrodynamic Radiation

Pressure

In considering electrodynamic radiation pressure, we found

that the force P due to a wave propagated in the x-direction isx

also directed in the x-direction. No force is acting in any

direction perpendicular to the x-axis. So the radiation pressure

is not a "pressure" in the sense in which we use this notion in

hydrodynamics. Indeed, if we change the direction of our re-

ceiving surface in such a way that its outer normal makes an
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angle i9 vith the positive x-axis (Fig. 4),

Fig. 4

Oblique incidence

the radiation force perpendicular to a perfectly reflecting surface

is knowm to be

Px' (1.11)

It is by no means independent of the orientation of the surface with

respect to the incident wave. This means that, strictly, one

should speak of the radiation tensor, which at nornal incidence has

only one component, Txx = - P As only energy-densities are in-

volved in p = the expression for T is independent of the polar-

ization of the plane electromagnetic wave:

n-Px 0 0

T 0 0 0 (1.12)

0 0 0

According to the rules for the transformation of a tensor T to a

new set of axes, whose x, y-coordinates are rotated through an

angle 4 about the z-axis ig. 5), he tenser
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Fic. 5

Coordinate syvstem x', yt, z at oblique incidence

T xx 0 0

T 0 T0

zz

transforms into

T .cos 2 4 + Tyy sin2kTxy ,  0

T' = Tty, Txx sin2& 2 + T cos2 g 0 (1.13)
yy

00 T
zz

with Ttyt I (Ty- T,,) sin 2 .

As wre have stated above, we find that the mean pressure

T7n. + Tyy + Tzz z = Txtx, + Tytyt + Tztz,

3 3

remains unchanged; in liquids Txx = TT = Tzz = T = - p, and using

Eq. (1.13) we find

-p 0 0

T'liq = 0 -p 0 = Tli q

0 0 -p
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But according to EJ,. (1.13), the radiation tensor (1.12) transforms

thus:

xa 2
Px

T~a - sin 2i - sin2  0 (1.14)

0 0 0

We have discussed the difference between the concept of

a hydrodynanic pressure, which is the szae in all directions, and

the physical properties of the electrodynaric radiation pressure,

in some detail, because it rill turn out that also in the case of

acoustic radiation pressure the tensorial character of this quan-

tity must be taken into account.

The electromagnetic radiation pressure is proportional

to the mean total ener,.r density and therefore to the square of

the amplitudes of the electric and magnetic field-strengths

(Eq. 1.3). This holds for all field-strengths, whether small or

large. As to the acoustic radiation pressure, we shall see that

a similar law is valid only for sufficiently small amplitudes of

vibration.

4o Radiation Pressure in Acoustics

Rayleigh was the first to apply the concept of radiation

pressure to mechanical waves in gases.13  He established relations

for the average value in time of the pressure produced by'an infinite

plane wave in fluids and shoued that this mean pressure is pro-

portional to the mean energy density of the wave motion. The

factor of proportionality was found by him not to be one in general,

as in the case of electromaietic waves, but dependent on the



TO

special law connecting the pressure p and the density p in the fluid

under consideration. The physical quantity called by Rayleigh

the "pressure of vibrations", is, however, not identical with what

is measured usually as "radiation pressure". The "radiation

pressure" of a compressional wave striking a perfect absorber equals

exactly twice the mean kinetic energy density of the wave notion,

as we shall see. For small sanlitudes this ex-pression becomes

identical with the mean total energy density and we obtain in this

case the sane relation as in the electromagnetic case,

The physical picture of radiation pressure is less simple

in acoustics than in electrodynamics, where we have to do with the

linear" set of !axell's equations and with transverse waves. In

the latter case the radiation pressure is determined by the electric

and magnetic field-strengths and the formula for the radiation

pressure is valid for all field intensities.

On the other hand, the equations describing the motion of

acoustic waves are in general not linear. To avoid mathematical

difficulties, the equations are usually "linearized" by using

developments of the non-linear expressions in Taylor series and re-

taining only first-order terms. The characteristic quantity of

these developnents is the particle-displacement. The results of

this "linearized" theory are therefore first approximations which

can be expected to be valid only for small displacements. Radiation

pressure, however, is connected with energy-densities, which are

quadratic terms, containing the squares of displacements or veloci-

ties. Any theory dealing with radiation pressure must therefore

retain at least all second order terms to avoid erroneous results.

Even if this is done, the results are still only valid for small
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amplitudes, if Taylor expansions are used. Simple relations between

radiation pressure and mean total energy density (as for instance

Prad = are found only for small amplitudes of displacement.

Relations of this kind do not express a basic law, as they do in

electrodynamics, wrhere they are independent of the amplitudes of

the fields.

For the special case of a liquid we shall show that for

large amplitudes no simple relation between radiation pressure and

mean total energy density exists. Only in the second-order approx-

imation of the general formula do we find proportionality between

these quantities.

Each mass particle in a simple-harmonic acoustic compres-

sional wave makes sinusoidal movements around the point it would

occupy if there were no wave notion. The customary, and mathematic-

ally the most convenient, way to describe the wave propagation

makes use of this displacement of any particle from its original

location. All other physical quantities, as velocities or pressures,

are related to the moving particles. The equation of motion that

relates always to the same moving particle is usually called the

I'Lagrangian equation of motion", or the "equation of notion in

Lagrangian coordinates".

The other way of dealing with these problems uses an equa-

tion of motion that relates to fixed coordinates in space, called

"the equation of motion in Eulerian coordinates". Here we are not

following the motion of a certain particle, but are observing what

happens at a fixed point.

A careful distinction must be made between velocities,

densities, pressures, and other quantities related to the instantaneous
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position of a novin, rarticle, and the some quantities when related

to a fixed point in space. In dealing with the mean radiation

pressure upon a reflector, for instance, we shall assume the

average position of the reflector to be stationary in space. But

we may also spea]; of the mean pressure observ-ed at a surface which

is moving togcther" vith the particles of a plane wave

An acoustic copressional harmionic wave causes two impor-

tant effects: 1) it changces the mean hydrostatic pressure at all

points affected Uj7 the wave. 2) It causes additional nean stresses

in the medium due to the time average of the periodic flow of

mechanical moentum of the copressional wave.

If a plane acoustic wave of infinite width traverses a

medium and strihes a perfect absorber, the mean pressure inside

the wave region undergoes some diminution due to the wave notion.

But if the acoustic beami is surrounded by undisturbed regions of the

medium, as is ordinarily the case, the mean pressure beconmes equalized

throughout the entire fluid. In this case the effect 1) entioned

above does not cause a directed force upon obstacles placed in the

path of the wrave. The basic physical cause of the acoustic radia-

tion pressure, or better radiation tensor, is in this case the time

average of the periodic flow of mechanical momentum in the region

affected by the beam. (See Part II, Sec. 12).

In a non-viscous fluid affected by plane acoustic waves,

there is no net flow of matter due to the wave propagation. (The

unidirectional "hydrodynomic flow" caused by acoustic waves is an

additional physical effect due to the viscosity of the fluid and is

not to be ta::en into consideration here; see also Part II, Sec. 10).

Considering a section of unit area of a plane compressional
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wave (Fig. 6) wh.ich we imagine as fixed in space,

u~at)u(a+d.a~t)

Fig. 6

Particle movement through
control-areas fixed in space

the average value in tine of the mass flow is

1 t + Tp

=F T(at). u (a,t) dt

Tp i/f is the periodp (a,t) the mass density at any moment t at

the fixed coordinate x = a of the cross-section under consideration,

ad u (a,t) the instantaneous velocity of the particles crossing the

section a at the tine t. At different tines different narticles.

are crossing the section a, so that u and refer only to the particles

that cross at the time t. For a periodic wave motion in a medium

that was originally at rest (T*= 0), pu vanishes at ohiall oplitudes.

ilext we consider the flow (or flux) of momentum through

the section a. Arguing in the same way as in the preceding case

of the electromagnetic flow of momentum, the momentum mu crossing

unit area at x = a in one second is mu = (/u) o u = PU2 . Thisr
quantity is obviously always positive. This means that the plane

wave carries periodically momentum - whose average value in time

does not vanish - through fixed sections perpendicular to the direc-

tion of wave propagation.
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The quantity mu (pU) • u yU 2 can be interpreted in

another way, leading to the concept of the "flux of momentum".

fu is the density of mechanical momentum and u is the velocity with

which the quantity 1u crosses a section. Thus we can say that the

"flux of nomontum-censity" per second through a section of unit area

equals fu • u = u2?, just as we speak of a "flux of mass-density",

" u per second over a unit area.

For snall amplitudes the time average of the kinetic

energy-density 1/2 u2 is equal to the time average of the poten-

tial energy. In this case 1/2 "S is equal to J/2 (Z = mean total

energy density). The average value in time of the "flux of momentum

density" Vu2 is therefore equivalent to the mean total energy

density E.

Considering a volume element between two unit cross sections

at a and a + da (F. 6), a flux of momentum (at) * u2 (a,t) enters

the section a and a flux p(a + da,t) - u2 (a + da,t) leaves the

section (a + da) at the same time. The mean value - (P u 2 ) . da3a

in time is obviously the gain in momentum of the volume element

between a and a + da per second, According to Newton's Law, this

gain in momentum per second is equivalent to a force exerted upon

the volume element. The volume element reacts with a force

+ u2  da to preserve equilibrium.oa

We can compare this picture with the volume element under

the action of a stress Txx in the x-direction (Fig. 7).
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Sda

a a+da

Fig. 7

Yolune element under stress
in the x-direction

The force exerted upon the volume element is knon . to be + xa da.

The mean flux of monentum 2 can therefore be considered with re-

gard to its mechanical action as equivalent to a mean stress

-=-au acting on any cross section affected by a compressional

wave. The effective mean stress component T., in the fluid due to

the plane wave is therefore

- 2
Txmceff. =T- u2 (+

p is the mean pressure and n u the nean flux of momentum density

at a fixed section.

lie have atteizoted to present a simple physical picture for

the case of a plane wave that is in accord ith a strict theoretical

treatment of the motion of mechanical waves. In the general case

of a three-diensional notions with velocities UX9 uyg uzq it can

be shown that the resultant stress tensor in a medium in Eulerian

coordinates becomes (see ref. 5. pp. 241: and 290):
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Tx U2 ,- P Uxuy Tx ~uxuz

TT u Ty -C u' 2  T - u 1.5xy (Kyy y yz y

TxZ k "WZ Tyz - PUyuz 2 U 2

The components of the flux of momentum in general are (eri) Uk

and are physically equivalent to the components of a stress-tenso2.

The hydrostatic pressure of the fluid in absence of wave motion is

denoted by p0, while p represents the change in po due to the wave

motion (excess pressure) 0  The total effective pressure is

Pt = p<o + P. For a plane wave in a fluid without absorption, u =UxS

Tx T f =Tzz = - ptE Eq. (1.15) reduces, in time average, to

00
0 -Pt 0 (1.16)

0 0 Ft

It is the term (p + pUx2 ) that turns out to be responsible for the

radiation pressure exerted by a plane aceustic wave. According to

Eq. (1.16), this quantity obviously has the character of a stress.

Considering a material surface element perpendicular to

the direction of wave propagation x, and the adjacent volume

element of a fluid (Fig. 8)2 the surface-element must ex-ert a stress
D

2
+ (, U- ... '0

Pt

Fig. 8

Forces exerted upon a volume element
adjacent to a device D for measuring
radiation pressure.



17

- (t+ -2) upon the right side of the volume element in order

to maintain equilibrium. The surface therefore undergoes a

pressure pt + u 2 in the x-direction on its left side. The

static pressure behind the surface is denoted by po. The result-

ing mean pressure exerted on the surface is therefore,

Prad m Pt Po + 2= + P U 2 (1.17)

This is the general formula for the radiation pressure of a plane

wave upon a plane material surface perpendicular to the direction

of wave propagation. If the wave region communicates (for ex-

ample by a small hole in the absorbing surface) with the medium

behind the surface, Pt = po at a perfect absorber and Prad

For small amplitudes, u = E, and therefore, F-rad (1.18)

For a perfectly reflecting surface the physical pic-

ture is more complicated, as we shall show later in the exact

treatment; here pt at the surface differs from po and turns out

to be po + 2E for small amplitudes, therefore Prad = 2, for such

a surface perpendicular to the wave propagation.

Thus finally, we have arrived at the same relations

as we found to hold in electrodynamics, but the physical back-

ground is nore conplicated in the case of mechanical waves.

Other cases will be treated matLematically in this report. Our

purpose here is to give a preliminary idea of the general causes

leading to an acoustic radiation pressure, for some special and

simple cases.
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PART II

PLAIdE CULT-ESSI0HA.L 1AVES ADI RADIATION PRESSURE II LIQUIDS

1. General Considerations - Comoressibility

As a whole, this report deals mainly with the radiation

pressure of plane acoustic waves in liquids. There are two special

reasons for this.

First, because this case is of practical importance. Al-

though a plane wave cannot strictly be realized experimentally,

still if the width of the acoustic beam is large in comparison with

the wavelength, the concept of a plane wave gives us a good approxima-

tion, especially in the case of the high frequencies used in ultra-

sonic waves.

Second, because in the acoustics of liquids we are able

to make use of the concept of constant compressibility. This

concept introduces a simple analytical relation between the

hydrodynamic pressure p and the relative change in volume V/Vo

of a volume element having the original volume Vo, on which a

pressure /\ p is exerted. The compressibility P is by definition:

S L\ " . -1(2.1)Vo p

For small changes in volume and pressure, we have the isothermal

compressibility,

Pisoth _VnvI
isotho= V0  P .T (2.2.)

and for the adiabatic compressibility

Padiab. =  V (2.3)
V0 P
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the subscripts T and e denoting constant temperature and entropy.

For acoustic waves one uses normally the value Padiab.'

though the process of compression and rarefaction of the liquid

is certainly not strictly adiabatic, owing to the unavoidable

dissipation of heat. Still the exact value of P will not be

very much affected even if the process is not strictly adiabatic.

This fact can be seen from the formula giving the difference

between Padiab. and isoth. .

Padiab, Pisoth. = - P, c p (2.4

Numerically it turns out that this difference is rather small

for liquids foiiiing drops. It amounts to only a few percent

under normal con CLiiLo-s of temperature and pressure. Thus for

water, the value Padiab. = 46(10-6) cm2 /kg force at t = 200C is

ordinarily used for compressional waves.

Over a lare range of pressure the comprssibility is

not constant. At t = 200C, for instance, Pisoth. has the follow-

ing mean values between p = 1 and p = 1 + p

p = 0 100 500 1000 2000 kg/cm2

10-6 -° . _ 46 46 43 40 35

The excess pressure in a plane compressional wrave is a

function of the intensity J of the wave. Its maximum value is

given by

we= (25)

where c is '-,Le velocity of sound.
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For water, at the very high intensity of J = TOO watt/cm2 '

p amounts approxL-iately to 17 atm. Thus over the range usually

encountered, the compressibility can be regarded as practically

constant. This fact greatly simplifies the mathematical treatment

of acoustic waves in liquids, and enables us also to extend the

discussion to finite amplitudes in liquids.

2. Strains and Stresses in Viscous Liquids for Plane

Comnressional Waves

The general relations between stresses and strains in a

viscous medium having a cocfficient of viscosity and a

comprssibility f are:

TX~X =...+ (2 r- r- cz

T (2 cy -, z -x) (2.6)

2S+(2 -c )

X 2- ., vz YZ Z , x = 2 V7"zx

where

C a+ c-, + r.

=-y =Z2 C (2.7)
ay z

-x = 7.ay etc.x 2 y :jX

= displacuz.ents in the x, y , z directions

A dot denotes the partial time-derivative. For example,

X a t x t Xxrt
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For the sake of generality we include here viscous forces,

though later on we shall neglect viscosity. The concept of plane

waves means that at all points of any plane perpendicular to the

direction x of the wave-propagation the state of motion is the

sa-.e and therefore - 0 also the displacement = .- 0.

Introducing these assumptions in Eq. (2.6) we find:

2

2 2- - p x'3 7 9xat

T~j 5 x~t(2.8)

zz ~x 3 -~xa

T- = Tyz = Tzx = 0,

The oressure p is defined by:

'T v c + Tyy + Tzz+ ~y+~ _(2.9)

p -- 3 _- P (29

The quantity Txx + Tyy + Tzz is known to be an invariant of the

tensor TV: and independent of the orientation of the axes of the

coordinate system. This is the reason for the definitiorx

(2.9), which is also in agreement with our earlier definition

of compressibility in Eq. (2.1), because, as is well known, the

quantity A = +xx + zz is identical with the relative

change in volume L V/V0 of a volume element Vo . In the case

of a plane wave one finds from Eqs. (2.9) and (2.3)%

P= (2.10)
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The terms containing ) cancel out, as we expect, because p in

(2.10) gives the mean pressure in a volume element due to the

wave motion, iwlhich is independent of viscous forces and the

sane in all directions. In a plane wave a volume element is,

it is true, stretched and cor.pressed only in the direction x

of the wave propagation, because the displacements have only one

component . But according to Eqs. (2.1) and (2.10) this causes

a hydrodynaic pressure p, which is a scalar and therefore in-

dependent of direction. The relation (2.10) is e-act b- defini-

tion for media with constant compressibility; no higher order

terms in need be considered.

3. Thie Eulerian Equations of M4otion for Plane

Couorossional Waves in Viscous Liquids

For treating the radiation pressure in a plane copressional

wave we must know the stresses in the medium. As the radiation

pressure acts on the surfaces of bodies inserted in the medium,

whose mean position in space can be regarded as fixed, we desire

to know the stresses in a coordinate system referrig to points

fixed in space. The hydrodynamic equations applying to this

case are the so-called "Euleriant equations. All physical quan-

tities, as the particle velocity u or the pressure p, are regarded

as functions of the coordinates x, y, z, of an axial system fixed

in space, and of the time t. For a plane conpressional wave with

the only conponent of displacement in the x-direction, the

Eulerian equation of notion in the direction x of wave-propagation

is known to be

Du TX (2.11)
,o "x
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where f is the mass-density, Du/Dt the total derivative with re-

spect to t of the velocity u in the x-direction of a volume-element

having the density P. For the plane uave here considered,

u u (x,t) is a fLunction of x and t alone; for simplicity we use

u instead of ux. 2q. (2.11) follows im ediately from consideration

of the acceleration which a voluie-element undergoes under the

action of the force -- in the x-direction, No accelerating

forces exist in the y cnd z directions, because

- 0 and Tik = 0 for i k

From (2. 11 ) ire have

+ c + =  = (2.12)

The conservation of ass of a volume element limited by

surfaces fixe. in space (uhich ie will call "control-surfaces") re-

quires in the one-dimensional case of a plane wave

+ 0 (2.13)

the well-knoin "equation of continuity".

Cobining :2qs. (2.12) and (2.13) by adding u 4 to

(2.12), and using from (2.13), one obtains another knotm form

of Euler's equation:

L(2.14)
+ x + " = 0

J

This is the ain equation upon which we base our further considera-

tion of the stresses in a plane wave. As has been stated, the
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quantities u, and T are fuactions of x and t, where x is a

coordinate fixed in space.

We now consider a volume elemen't 11xiil ted by two planes at

x and x + dx and Uith unit area perpendicu lar to the x-axis° u

and T are taken ith respect to the fixed rlanes x and x + dx

respectiel. Mien particles ove with velocity u across these

planes, u (x~t) belongs to differen. particles at different instants;

that is , always to the particular particle w hich just crosses the

statiurarr plane x (or x + dx) at the time t. is the density of

the -l.,iume element betWeen the "control-surfaces? of unit area at

x and x + dx.

We can interpret the trmis on the left side of Eq. (2.14)

as three forces acting on the volume element between the control-

surfaces, whose sum equals zero according to d'Alembert's prin-

ciple.

Th.. first term U) gives the change in mechanical mo-

mentum Cu at x with respect to the time t. This can be inter-

preted as equivalent to a force of inertia exerted by the volume--

element, as is usually done in mechanics.

The tera - means the mechanical force acting on the

voljme element. According to Eq. (2.8) it is given by

'x - aip , , t (2.15)

The third te-rm ' (c 2 ) is due to the gain in momentum in
Cx

unit time which the volt'ue element undergoes, if a greater amount of

momentum p u enters the area at x tn leaves the area at x + dx

per second. Paraphrasing L. Brillouin's terminology we call the
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quantity Cu 2 uthe flux of mechanical momentum densityI ("-lux de

quantite' de mouvenent"; see ref. 59 pp. 241 and 290). It plays a

dominant part in dealing with radiation pressure*

The incoming flux of momentum in unit time at x is obviously

(f'u),; the outgoing flux at x + dx in the same time is (Cu.)xc.dx.

The difference ( u.u)d - O.u)x is given by

- ou2
4 OR dx

This quantity is a contribution to the momentum of the element in just

as true a sense as the term (pu 2)* dx and can be regarded there-

fore in the same way as a force acting on the element.

It is obviously convenient to add this force due to the flux

of momentum Cu 2 at x to the stress-tensor T.. So we write (2.14)

thus:

_1u - (Txx eu 2 ) =0 (2.16)

The flux of momentum ja u' is equivalent to an additional

stress-component, acting on each volume element of a medium, the

particles of .uhielfare in motion. This stress reduces to a particu-

larly simple term in the case of plane waves. For the general case

of a movement of particles in different directions with velocities

uX9 y 7, uz in the x, y and z-directionsg the stress-tensor T is to

be completed in the way we have already mentioned in (1 .15).

The complete dynamic stress-tensor in Eulerian coordinates

for a plane wave is given by
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T -x U2  T o

T TX T 0 (2.17)

0 0T
zZ

with the values T as g-iven in Eq. (2.8).
ik

Disreardin: viscous forces, we find by introducing the

pressure p due to the wave motion9 according to Eq. (2.10), and

adding the static pressure po to p:

I- t + 0 u 2 ) 0 0

T 0 t 0 (2.18)

0 0 - t

as already given in (1.16).

Eq. (2.17) or (2,18) will answer all questions concerning

the radiation pressure, because it gives the stress-components in a

plane compressional wave. Te see that the medium undergoes a non-

isotroDic state of tension due to the unidirectional flux of momentum

in the -- direction,

Lie seek the solution of Eq. (2.16) for the case of pure

sinusoidal waves, in order to insert the values of pt and Cu2 in

Eq. (2,18).

The Eulerian equation (2.16) or (2.12) in fixed coordinates
S( u2 )

is nonlinear9 because of terms like u or like x

This difficulty, ilich conplicates the solution, can - at least in

liquids - be avoided by using another set of aquations of notion,

which are usually called the 1"Larrangian equations of motion"t. These

equations relate not to points fixed in space, but rather to the mov-

ing particles. It is much easier to find the correct solution by

means of the Lagrangian equations; for this reason they are usually
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employed to find the solution for plane compressional waves. Never-

theless, for expressing the radiation pressure exerted on obstacles

whose mean position in space can be regarded as fixed, these solutions

must be transfo-med from the system related to moving particles into

the Eulerian coordinate system,, This can easily be done, as will

be seen.

One i-aportcnt point, which must not be overlooked, is the

circumstance. t.oat the average values in tie of both ters p and

pu 2 in fixed coordinates are second-order ters, The radiation

pressure is, as has been seen,. proportional to the energy-density,

and is therefore a second-order ouantity; this explains also its

relatively snall numerical values in comparison with first--order

pressures, even at the small amplitudes ordinarily used. Mh-ereas

the first-order pressure has maximal values up to some kilograms per

cm2 , the acoustic radiation pressure only reaches values of the order

of grams or dynes of force per cm2.

In azsfon?.ing p and Pu 2 from the Lagrangian into the

Eulerian systen all second-order terms must be carefully taken into

account, Restriction to first-order solutions leads to erroneous

results. Instances might be cited in certain papers dealing irith

radiation pressure.

In the case of a liquid the use of the Lagrangian equations

gives us an exact sclution for finite amplitudes, which can be trans-

formed into the Eulerian coordinate system. In the case of gases,

or the other hcand, even the Lagrangian equation becomes nonlinear

and we must develop the Lagrangian solution in series at least up to

the second-order terms in order to find the radiation pressure for

small amplitudes.
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4. The Lagrangian Equation of 11otion for Plane

Compressional Waves in Viscous Liquids

Let be the displacement of a particle with respect to

its original undisturbed position x. If there is a wave motion,

particles move back and forth through x, so that = (xt).

The true particle coordinate in space at any time t is therefore

x + (xt). The equation of motion for the displacements can

easily be established and is found to be 9 9 12

0 .- ) (2.19)

t 2

This equation is absolutely exact, with nothing neg-

lected. The constant Co is the original undisturbed density in

absence of wave motion. T* (xt) is the stress at the location

of the movin' Darticle, that is, at x + (xt). We use the

notation T* for stresses associated wi~th movin_ volume elements

for distinction froai T~X in Lulerian coordinates related to points

fixed in space. The particle velocity at the instantaneous loca-

tion x + (xt) is denoted similarly by u*(x,t) =at"

The relation between the quantities Txx9 u9 and e in

Eulerian fined coordinates and the same quantities Txo u*i, and.e

in Lagrangian coordinates is obviously (see also ref. 16) :

T* (xt) T (x + ,t)

u" (xt) = u (x + ,t) (2.20)

*(Xg,) f (X + qt)
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or, by substituting x - for x,

T* (x- ,t) T (x~t)

u* (7- ,t) u (xt) (2.21)

e -( C (-,t)

Eq. (2.20) or (2.21) allows us to find T, u, and P, for example,

if we know the solution for T*, u*, * in Lagrangian coordinates.

For the special case of liquids with constant compressi-

bility P the relation between T* and is given by Eq. (2.8), and

from (2.19) we have the well-knoim equation of motion for viscous

liquids:

o p o2  3 _4 (2.22)P x 3 dx2 t

This equation is linear and cman therefore be solved easily

and exactly, whereas the corresponding equation for the sane case

in Eulerian coordinates is nonlinear, as already mentioned. For

gases the connection between T* or p* and the displacement inxx

general is nonlinear. In this case, the solution of (2,12) can

only be enqressed in the form of a series.

5. The Exact Solution for Plane Compressional aves

in lion-viscous Liquids

Since we shall consider radiation pressure here without

regarding the influence of viscous absorption, we neglect the last

term on the right side of Eq. (2.22). The solution for plane

waves in liquids follows at once fro-n this equation. For pure

sinusoidal motion of a particle about its original location the

solution is Imown to be
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(Xt) =n(cot kx)+,Sin (t + kx + (2.23)

with k = - = 2 U ; O = 2Irf;

c =o k

This solution corresponds to the assumption, cornonly made with re-

spect to the boundary conditions, that the wave motion is generated

by a piston-like source oving harmonically with angular frequency

co around its average position. The source may be located at any

x or at infinity. From (2.23) we derive the following quantities:

Cos os

u*h (%qt) L'~ 00 inCWOSkx (2.24)
at I Y si (Wt )+ysi(ut + k + 9) (

-p*(x,t) = T* +sin (w o - kx) + Y-sin(Wt + icx + G)'1(2.25)

The density P* follows from

e * oVo (2.26)

V0 is the original volume of a volume element, V* the volume of a

displaced volume element. According to Eqa. (2.1) and (2.10),

v*=v 0  0 v° 0 vpt

or V* V (1 + -2.27)

From (2.26) we derive the density at the coordinate of the

moving particle:

A*(xrt) -- _+ _ _0 (2.28)

1+

The solution given by Eqs. (2.23, 2.24, 2.25) are

strictly exact, so long as the assumption of a constant compressi-

bility can be regarded as valid.
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However, there is one important restriction which limits

these solutions to a definite range of amplitudes to. The dif-

ferential equation (2.22) implies the supposition that (x,t) and

the derivatives u* = Q I/St and -p* = V/ x are u functions

of x and t. At a coordinate x + I in space, for instance, only

one kind of particle with displacement (x 1 ) and velocity u* (x )

at a certain time tis assumed to exist in the derivation which

leads to Eq. (2.22). At the moment when a particle A. originally

located at a position xA behind another particle B originally at xB9

undergoes such a large displacement A that it reaches or passes

the particle B at xB + t(x B), we would find two different particles

with, in general, two different velocities u* (x) or u* (x B) at

the same point xA + (xA) x XB + T(xB) in space at the same time.

The condition to be imposed upon our solution (2.23) for for

preventing tho overtaking of one particle by another is found to be

This can be understood imediately from the expression for t* in

Eq. (2.28). If to different particles originally located at

different coordinates xA and xB came into contact, the original

volume between the planes x and x would be compressed to zero,
A B

and the density * ould become infinite. This would happen,

as may be seen from Eq. (2.28)9 if the denominator vanished or if

/ x = -1. Only so long as the condition above is valid, does

remain finite; from this fact, together with Eq. (2.23) we find

sito 
-Cn 

(so t + k 
-+-cs" i+ O x ) i>- 1

0o +i 
i
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and hence the condition limiting the maximal amplitude 0 of any

displacement is
o !<  o or 1 (2.29)

For all amplitudes smaller than that indicated by

(2.29), the solution (2,23) is exact and unique. In media with

constant compressibility, compressional sinusoidal waves as re-

presented by Eq. (2.23) are propagated without distortion. This

fact has in principle already been stated by Rayleigh,13 though he

did not deal specifically with real liquids, but made only a

theoretical statement. The condition (2.29) is more a theoretical

than a practical limitation for the amplitudes o as amplitudes in

the neighbourhood of k~o = 1 would require enormous energies that

could not be realized experimentally. (See Sec. 8 b)

By neans of the transformation formulas (2.21) we are

able now to find the exact solution for plane compressional waves

in liquids in _ulerian coordinates. Ue need only replace x in

Eq. (2.23) etc. by x - (xt). Choosing the sine solution for

in (2.23), we obtain from (2.24) and (2.25)

u(xt) ' - t + k +

and

p (xrt) -cot - x + k o (in(wt - x) + sin(co t + 9 + kx

o L

+ X/Cos + G+9+-kx +k sin(ct kx) (2.31)

}sin (ct + 9+kx))j
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These expressions (2.30) and (2.31) are exact solutions

of the nonlinear Eulerian differential equation of motion (2.14),

for amplitudes 0 < /2w according to (2.29) and for the special

case of pure sinusoidal waves traveling to the right and left

given by the Lagrangian solution (2.23) for the displacement .

This statement can be verified by inserting Eq. (2.30) and the

appropriate expression for in the differential equation (2.14).

(See Part II, Sec. 9 for a general proof).

The independent variables x and t enter this solution

throughout in the combination cot + kx. Thus the solution in

Eulerian coordinates also represents systems of waves traveling with

the phase-velocity c = o/k to the right and left, But the resul-

tant wave motion is not given by simple superposition, such as holds

with the Lagrangian coordinates. Physically this means that

u(xt) and p(xpt) in Eulerian coordinates are not represented in

our case by superposition of pure sinusoidal traveling waves; the

wave form is distorted and this fact is responsible for the

existance of higher order terms in 0, whose average values in

time do not vanish,

6. De-elopment in Series up to the Second Order of

the Exact Solution in Eulerian Coordinates

For snall amplitudes we develop the solutions (2.30)
0

and (2.31) in Taylor series, retaining second-order terms in (0.

For u(x,t) we get from (2.30), writingT = cot T k x:

+~~ Ycos TnS\sl +- -' i + sin 1..+
L + 0
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or,

U C& cos_ -ko (s in + Y sin(-C+ + ) )sin
L

+ycos~t~+9) +y 0 (sin 7.+ y~sin(r 9))

s sin(Z+ + 9) (2.32)

As we shall be chiefly interested in averarce time values

of u wad p, ire coiapute the mean value u of u by

cot I + WT

u(xgt) u-, u(xt) dt- u(xwt) d0t

t cot

or, t + 2T
1 (12u~xt) T - u(xwt) dwt (.33)

t

From (2.32) and (2.33) wre find

U 2 (1 + cos (2 kx + 9) ) + 2 cos(2 kx 9) )

or -

2 22U1 (2.34)

The result (2.34) shows that u(xt) does not depend

upon x even if there is a reflected wave, the latter being

characterized by the reflection coefficient In Lagrangian

coordinates The tine average u* of the velocity u* equals zero.

In the saane Way as in deriving u, we find fron Eq.

(2.31) for the averaje tirie value of p,

2 2

p + 2 (1+2 'cos(2 kx + 9) + ) (235)2P
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The nean pressure p in Eulerian coordinates evidently

varies sinusoidally with x when reflected waves are present.

Another mean value that we shall need is the tine-average

value of the quantity fu 2 in Eulerian coordinates. If we trans-

form into e and develop p in powers of w we obtain

= eo (1+ + a 2%2 +,..)

The development of u may be written

u b= ° + b 2o2 + ., = o(b + b + .,.) (2.36)

as seen fron. (2.32). So we fi.d

Cu 2 =Po (1 + a1% + ao 2) 9 (b 1 + b2 2 o2 + .o

or, disregarding terns of high r than the second order,

eu 2 = ('o b2 2 + ..= fu 2  :(2.37)

Therefore we do not need the Qevelopment of in powers of o , as

only the undisturbed density Po enters (2.37). This relation

shows also that the value of the kinetic energy density at small

an-litudes is the s=n-e in both Eulerian and Lagrangian coordinates,

We have fron Eqs. (2.36)9 (2.37) and (2.32),

eu2 = eo0 o 2  
b = bo 2 _ (C cos _ +co cos(Z+ )2

or

Comp aring p and eU 2 in (2.35) and (2.38), we find

fu 2 . *This relation holds in liquids at small amplitudes, but



36

not in gases. (See Part III, Sec. 4).

It is conformable to our purpose to introduce the

mean total encz 'g density E in (2.35) and (2.38). For a pure

sinusoidal plane compressional wave traveling to infinity in

one direction, we get the mean kinetic energy density -P4-

directly from (2.38), if wre put 0. Therefore for small

amplitudes

2 2_ Pol -"

Ekin = 4 kin (2.39)

The identity of kin in Eulerian coordinates at small amplitudes

mptd
withE'kin = in Lagrangian coordinates has already been

seen in Eq. (2.37).

The pootential energy density due to the elastic

compression of the medium is given by dEpot = - p , dV, that is

the work done upon unit volume Vo = I under the action of a

pressure p. Fron Eq. (2.1) we find, with V0 = 1, dV =- dp

and therefore dEpot = pdp. By integration we have

pot 2 P

Inserting p* from (2.10) ire obtain

Edpot 3 x

Since , according to Eq. (2.23), is a function of the

argument cot + kx alone,

So we have, rerembering that 2 1/R
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repot = P Fou*2  (2.40)

The difference between and E*pot in Lagrangian coordinates

is therefore E*1in - *ot (o -u 2/2 in liquids. It
kin- pot (

vanishes at small amplitudes, that is in the second--order approxi-

mation.

At small amplitudes the average time value for the

potential energ;r density in pure sinusoidal waves is given

therefore by the same expression as for the mean kinetic energy

density in (2.39):

2 -- -E* (2.41)
pot 4 kin

The total mean energy density of a plane unidirectional wave at

small amplitudes is

- - F°° - (.

a Ekin + EPot - ' 2(2.42)

For small amplitudes there is therefore no distinction between

E and E.

Introducing Eq. (2.42) in (2.38) and (2.35) and re-

membering that k2/p cz2/pc 2 2,cO2  we find

p= E (1 + 2 cos(2 kx + G) + '2) (2.43)

S=2 + E (1 + 2 cos(2 kx + ) + 2) (2.44)

1Lk !have now- derived the expressions in Eulerian coordinates needed

to establish the stress tensor,
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7. Stress-tensor and Radiation Pressure for Small

Auolitudes in Liquids

By inserting Eqs. (2.43) and (2.44) in (2.18), we obtain

the time average of the stress tensor T in a liquid traversed by

plane compressional waves with small amplitudes (k%o<<$i)9 dis-

regarding viscous absorption. As the liquid is under an additional

hydrostatic pressure p 0 ,e must add this pressure to the hydro-

dynamic pressure p in (2.43) due to the wve motion alone. So

we have for the nean stress tensor T

j-p0  +2 +0'+''

o (Po [1 2 cos(2;x+) 2. 0

0 o -(p+- 2ycos(2kx + o' +y
(2.45)

Oring to the fact that the two quantities p in

(2.43) and eu 2 in (2./+4) are numerically equal but of opposite

signs, the sum p + eu2 equals zero. Thus Txx in (2.45) is equal

to the static pressure po and is not changed by the wave motion.

T-e existence of a conz: crlo:al irave evidentl-7 c r2ges only t;he

cornxonents T-,, and -zz -Deruoendicul:c2 to the direc::.oz of iwave-

propagation. Iron Eq. (2.43) it is seen that the presence of a

compressional wave in a lic~uid diminishes the mean static oressure

po by the oiunt E (1 + 2 cos(2kx + G) + 2), In the direc-

tion x of wave propagation this diminution is exactly compensated

by the stress fu 2 due to the flux of romentum in the same direction.

Now let us inser', an infinite plane material surface

perpendicular to x. The corpressional wave traveling to the

right undergoes reflection at this surface, characterized by the
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coefficient y of the reflected amplitude and the phase angle 9

of the reflected wave. For computing the force acting upon

the reflector, we assuime that behind the reflector is the saame

liquid under the static pressure pc" The resultant force per

square centimeter acting upon the reflector, which is the radia-

tion pressure9 equals the difference between the pressures on

the left and riLht sides of the reflector. (Fig. 9)

reflected-,--- 
y

incident_- P I'

Wa~e -0 x

Fig. 9

L Plane reflector undergoing E pressure peon the
front side and a pressure po on the rear

The pressure exerted at the boundary between the reflector and 
the

irradiated mediu is given by

Y n = T., cos(nx) + Txy cos(ny) + T., cos(n,z) (2.46)

Xn denotes the component of pressure in the x-direction

and n the direction of the iner normal to the surface. In our

case (Fig. 9) only cos(nx) = - 1 is different from zero, further-

more Tx = M 0 according to (2.4,5). There remains only a

pressure Xn - T= = Po perpendicular to the reflector on its

left side. As the saie pressure p0 exists at the right side of

the reflector, Lo resultant force is exerted upon the reflecting

surface. A plane conressional wave extending to infinity in

all directions perpendicular to the wave orooagation in a liquid
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would exert no radiation pressure upon any plane infinite reflector

perpendicular to the direction of the wave ropagation.

This case of a plane wave extending to infinity is merely

theoretical, as it can hardly, even approximately, be realized

experimentally. The acoustic beam always has a finite cross-

section and is usually surrounded b a part of the same liquid which

is not affected by the wave motion. The mean pressure in the sur-

rounding liquid is p ; the pressure inside the beam is changed by

the wave motion to p + p. As p is negative according to Eq. (2.43),

the mean pressure inside the beam is lower than in the surrounding

medium.

The mean pressure tends to be equalized over the whole

liquid. This means that the surrounding liquid, where the pressure

Po is assumed to be maintained constant, compresses the beam-region

until the mean pressure in the beam is the same as that around it.

This effect leads to a radiation pressure upon a finite material

obstacle placed in the way of the acoustic beam.

The simplest case, and that which has received most

attention in the literature, is the radiation pressure upon a per-

fectly absorbing surface. There no reflected wave exists and

V= 0. The theoretical concept often used to represent a per-

fect absorber regards the absorbing wall as free to move in a

direction normal to its plane and following the miovement of the

particles immediately adjacent to the wall. The pressure observed

at the wall is identical then with the pressure p* associated with
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the moving particles, which we knew to be purely sinuseidal from

Eq. (2.25), whether the beam is finite or infinitely extended.

The mean work done by p* per second and square centimeter at the

wall equals the average value in time

T T

Ti , T) P* t = TSPU' d
p 0  p 0  p 0

which by use of Eqs. (2.24) and (2.25) with 0, and from

(2.42), is easily computed to be equal to E • c. Such a moving

wall would absorb indeed all the energy reaching it, and there

would be no reflection. The mean force 1 foP p* dt exerted
p 0

upon such a moving wall would be zero, as p* is purely sinusoidal.

The freely moving and absorbing wall would be indeed a perfect

absorber, but it represents more a theoretical fiction than a

feasible experimental device.

In measuring radiation pressure we do not fellow the

movement of the particles of the surface struck by the acoustic

beam. All particles on the surface move periodically around

their original positions, so that the center of mass of the sur-

face, when averaged over a whole period, can be regarded as fixed

in space. Usually the surface subjected to radiation pressure

is also connected to a measuring device of considerable inertia,

unaffected by the rapid motion of the particles in the wave.

This is the reason why we introduce the Eulerian system of coordi-

nates fixed in snace for computing the time-average of the

radiation pressure related to a device which is assumed to be

fixed in space rather than to follow the motion of particles.

(See also Sec. 12).
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As in optics, the most practicable approach to a perfect

absorber is the "hohlraun" or radiation trap. An acoustic hohlraum

consists of a cavity with acoustically insulating walls, filled with

an absorbing medim, and provided with a small aperture through

which the acoustic beam is admitted. Such a device, in the form

of a cylindrical tube closed at one end, has been used for measuring

acoustic intensities in water.* For freouencies in the megacycle

range the absorption of energy is practically complete in a tube

that is not excessively long. The plane of the aperture therefore

serves as a totally absorbing surface.

1e nowr consider first the radiation pressure exerted upon

a perfectly absorbing surface, and then the somewhat more complicated

case of a reflecting surface.

a. Radiation pressure upon a perfectly absorbing surface,

disrergarding viscosity.**

Fro Eq. (2.45) we find, for 0 0, the average-time value

of T:

-p0  0 0

T = 0 -(po-E) 0 (2.47)

0 0 -(Pc-E)

As has already been pointed out, the mean pressure in the

acoustic beam is lowered by the wave motion by an amount equal to

the mean energy density E.-* If the bea of infinite cross-section

* Contract I16 01R-262, Tash Order 1: Report 11o. 1, Dec. 20, 1947,

p. 36; Report i1o. 3, Feb. 21, 1949, pp. 8-11.

- See also ref. 5, pp. 302-304

*** An instructive physical outline of this effect is given in a
paper by Hertz and 1ende 8 . (See also ref. 1')
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does not communicate with the region of the liquid unaffected by

the wave motion, the radiation pressure upon an infinite wall,

one side of whicl is struck by the wave and whose other side is

adjacent to the undisturbed liquid, is zero because both sides

of the wall are subject to the same force po per square centimeter

in the x-direction.

The chanre in the time-average value of the density 10

due to the wave notion is found from 2o. (2.28). For small

amplitudes, regarding p* as a small quantity, we have =

Co (ii + pp* + .2p*2 + .. ). After transformation into Eulerian

coordinates, we obtain the mean change in density at small

amplitudes

Ls e =- eopP (+p 2  (2.48a)

As the pressure inside the beam is lowered to po - E, p equals -B.

pp2 is found imriediately from Eqs. (2.31) and (2.42) to be + E

for 0 and small amplitudes. Therefore we obtain from (2.48a)

/ ,--C= 0, which means that the wave motion n the infinitely ex-

tended beam does not change the mean density in the second-order

approximation, though it lowers the mean pressure by the amount B.

If the bear. is of finite cross-section and surrounded

by liquid with hydrostatic pressure pe, the pressure inside the

beam being p. - E, the liquid in the beam undergoes a compression,

until the mean pressure inside reaches the same value p0 as in the

surrounding region. The change in density / due to this

compression is found from 1/f = - V = A p or

- = co-p - (2.4b)
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Thus the wave motion causes a slight increase in densty /f

inside a beam of finite width, though the pressure becomes the

same in the beam as in the surrounding undisturbed medium with

the unchanged density*

This fact can perhaps best be understood by the follow-

ing reasoning: The acoustic wave motion changes the pressure by

a second-order term (-E)w hereas the change in density is small

of higher order. The co.ression of the beam of finite width by

the surrounding medium changes both pressure and density by second

order terms (E and E/c2 respectively). In the resulting pressure

the two changes cancel each other to zero so that the final pressure

becomes po again; in the final density however the sum of the two

changes results in the second order term ' =/c 2 .

The resultant stress tensor becomes now (see also

ref. 5, p. 302)

K(p0 + 0 0

T = -pO 0 (2.49)

0 0 -Po

According to (2.46) a resultant force E per square centimeter is now

exerted upon a fixed, perfectly absorbing wall. The radiation

pressure upon such a surface therefore equals the mean energy

density, as long as the amplitude is small:

(=ad) = (2.50)

* See also the paper by G. Richter15 , who, following a different
path, arrives at the same result concerning the mean density
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The radiation pressure in this case is due to the mean periodic

flux of mechanical momentum due to the wave motion, which intro-

duces the term - = E in xx. It is independent of the direc-

tion of propagation of the wave (as is expected because it is a

tensor-component and not a vector); this means that rad has the

same direction, whether an incident bean strikes the absorber or

a reflected bean leaves it. The radiation pressure is not caused

by the increase in density _ inside the beam, due to compres-

sion of the surrounding liquid, as has often been asserted,

In the plane wave of infinite width, not in communication

with undisturbed regions of the liquid, the term Txx, responsible

for the radiation pressure, was, according to (2.18), found to be

P0  E + u2 . The two termis -E and u2 = + E cancel exactly,

which means that the diminution in mean pressure is just compen-

sated by the flux of momentum. In the x-direction no additional

stress acting on a volume element of the liquid would be found,

if this were all that happened. By virtue of the interaction

with the surrounding liquid the mean pressure po - E is brought

up to the value po of the undisturbed liquid. The term Txx =

Po- E + eu 2 is changed into po + u 2 . Now an additional stress

u2 acts throughout the beam in the x-direction and leads to a

radiation pressure E = u- upon a perfectly absorbing wall per-

pendicular to the direction x of wave propagation.

b. PRadiation pressure at a reflecting surface,

disrepardin viscosity

In the case of a reflected wave the mean pressure over

the beam is given by Eq. (2.43) as Po - E(1 + 2 X cos(2kx + Q) + 2)o
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It varies sinusoidally along the x-axis. If the beam were in-

finite, no radiation pressure would result on an infinite sur-

face, as has already been pointed out. The change in the mean

pressure is exactly coupensated at any x by the flux of momentum

given by Eq. (2.44). The resultant stress T-, equals po as in

the case where 0.

If the beam is of finite section traversing a liquid

with hydrostatic pressure po the surrounding liquid still has the

tendency to raise the pressure inside the beam to po But a

uniform pressure pt= p0 along the beam is not compatible with the

differential equation (2.14) of our problem, except for the special

case in which Y = 0 (Sec. 7a). This can also be seen from the

solution for p in Eq. (2.43). inen a reflected wave exists,

Ptnecessarily varies periodically in space along the x-axis. it

is reasonable to conclude therefore that by action of the surround-

ing medium, the avera~e value in space of the total pressure

Pt = p + P is brought to p0; inside the beaxi Pt varies periodically

along the x-axis around the new value po.

At points remote from the beam~ the pressure in the un-

disturbed medium is assmed to be homogeneous and equal to po"

Within an "tedge-region" of the beam a transition takes place from

the periodically varying pressure p t which is postulated to exist
t

in the beam, to the homogeneous static pressure p0 in the surround-

ing medium. In this transient zone a more complicated (rotational)

motion of particles will occur. A closer theoretical investigation

of this effect is beyond our scope- but we may reason that the

actual transient zone will be small if the wavelength inside the

beam is a small fraction of the width and length of the beam.
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Our conclusion that the space-average in pt inside the

beam will become identical with the static pressure p0 outside the

bean (strictly at y = z = c ), Can be based on the following

theoretical consideration: Taking the time average of the differen-

tial equation (2.14), and assuming a periodic solution in time,

we get

_ (p + 2)= (p + U2) = o

or
p + 9 u

2  Constant (2.51;)

This constant is obviously independent of t and x. But at snall

amplitudes it is also independent of the mplitude of the wave

motion, or of the quantity k o, since the sum (p + u 2 )is independent

of k o as seen by adding Equations (2.43) and (2.44)*. In the case

of a plane wave of infinite width we find the constant to be zero.

For a finite bean vithin an undisturbed medium, however, the constant

becomes E (1 + y 2 ). Indeed, if we assume that the amplitude is

gradually decreased, that is k 0--O or u--)O, the total pressure

1t averaged in ti.e and soace along the x-axis must tend towards pc0

the static pressure in the surrounding medium. Therefore for u - 0

I- + 
- 1 +

-

or or , F ,a + Aq

~ dx ~ 0L 0

* See also Part II, Sec, 9.
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From Eq. (2.43) we find that we have to add the constant \1 + 2

to p in order to male its mean value in space vanish. (Any addi-

tive constant in p is compatible wiith the solution of Eq. (2.14)).

Thus under the action of the surrounding medium the pressure p

becomes

= - (1+ 2 Xcos(2kx + o) + . 2) + (1 +, 2

or [=~ 2Bycos (2kc+ Gd

The Constant = p + C u 2 now reaches the value E ( + )2), as seen

from Eq. (2.4)9 in agreement with our statement above.

Since the constant is independent of the amplitude o

the foregoing conclusion holds not only for u- 0o but for any (small)
1 +

value of u. The mean total pressure Pt dx is therefore

equal to po; that is the mean value of in space is zero, in the

case under consideration.

The resultant stress-tensor is obtained therefore from

Eq. (2.45) by increasing the mean pressure in space by the amount

E (1 +,2)

= (Po- 2 Y E cos(2cx + o)) o
0 0 -(P5 2. cos(2kx + (3))

(2.52)

The stress tensor, averaged in time and space, becomes

-PO 0 (2.53)

0 0 -PO
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This leads, using the same considerations as above, to a radiation

pressure upon a reflecting surface, whose reflection coefficient

is Y, of the amount

rad= (t+ ) (2.54)

For a perfectly reflecting surface ( T= $) we have the well known

result

ra (2.55)

In the general case of a reflecting surface characterized

by the amplitude reflection coefficient and the phase angle 0

of the reflected wave, the radiation pressure is independent of

this angle 9. Here te only energy densities are involved, as

2 E represents the mean energy density of the reflected wave

component. The resulting equation (2.54) can therefore be described

by saying that the radiation pressure is composed of two parts:

One part is due to the incident wave with the energy density E,

which we may assume to be perfectly absorbed by the sturface. This

leads to a terce Prad 1 = E. The other part is due to a reflected

wave with the energy density 2E which we may imagine as re-

emitted by the surface; this auses a pressure -rad 2= 2  .

The whole pressure Td = (T + y2 ) E may therefore be regarded

as if the surface struck by the plane wave absorbed its energy per-

fectly and reenitted the asount 2 E (see ref. 5, p. 294).

This statement gives of course not a description of what actually

happens. A physical explanation of the actual process at the
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reflector is offered in Sec. 12 below.

c. Radiation Dressure at oblicue incidence,,-

If the plane wave strikes a wall inclined at an angle

with respect to the direction x of the wave propagation (Fig. 4,

Page 7) the radiation pressure upon this wall is found by trans-

forming the fixed coordinate system x y z into the system xt y' z

(Fig. 5, Page 8) whose x'y' axes are rotated through the angle

Applying the transformation formula (1 .13) for the tensor T, we

get the new tensor coi.ponents in the x' y' z system. From (1 .13)

and (2.49) we find for a finite bean traversing a liquid with

static pressure P0 and striking a perfectly absorbing surface:

22 -1Esn ' (p0 + Es in 2  ) 0 (2.56)

0 0 Po

Fig. 10 shows the stresses exerted upon a volume element

oriented according to the new axes x t y' TO

p0 +Esin \0 \+ Cos2

. z' . ' "¢ '~
P- 2o\ (7\ E

+Esina

p Cop PO + Esin

Fig. 10

Components of stress due to radiation at
a volume element inclined at an angle "Q



If we imagine a material surface inserted in the way of the beam

at an tanleZto be adjacent to the volume element in Fig. 10 and

parallel to the r'-axis, it undergoes a pressure p + E cos 2 S in

the direction of its normal x', since it has to exert the sae

pressure upon the y' z surface of the volume element. The radia-

tion pressure nomial to the perfectly absorbing surface is there-

2 Z9
fore given by E, cos 2  . If we assiume a reflectir- surface, we

have to add the radiation pressure exerted by the reflected wave

regarded as emitted in the direction shown in Fig. 11.

Y/ 'I •' /

/ X-

Incident ! ' -

Wave A X

A ./

/

reflected Uave

Fig. 'l

Direction of propagation of the reflected wave
for oblique incidence

As can easily be seen, wre have only to change Zin Eq. (2.56) into

- to get the stress components related to the reflected wave.

The pressure exerted by the reflected wave normal to the reflecting

surface is therefore 2 cos 2  . The total radiation pressure

normal to the reflecting surface amounts to

rad) = (I + 2) Cos 2  (2,57)
JX1
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As Eq. (2.56) shows, the wave exerts also a shearing force upon

the reflector, if the latter is inclined at an angle P ; it

amounts to sin 2 Z and therefore has its maxinum at = 450 .
2

Owing to the reversal in the sign of ZQ for the

reflected wave, the shearing force due to this wave is

2 E sin 2 Z The resultant shearing force per square centi-

meter connected with the normal radiation pressure in (2.57) is

therefore

(1 - ) sin - (2.57a)
rad/,

It vanishes for a perfect reflector ( i) or for .= 0.

It may be noted that the reflection coefficient y is

a complicated function of the angle of incidence 2), because a

compressional wave striking the wall at the angle 2 induces in

general conpressional and rotational waves inside the reflector.
1 0

Our object here is limited to the Inowledge of the average value in

time of the resultant second order forces acting upon the reflector

and due to radiation pressure; the reflector is assumed to be

characterized by the amplitude reflection coefficient (z ), and

to absorb all the energy not reflected, so that no radiation leaves

the rear of the reflector. In the special case of a perfect re-
flector 1T and (by definition) is independent of 2.

In the case ihere some of the energy is transmitted

through the reflector, we can assime that the reflector radiates

this part from its rear face. The reactional force is proportional

to the energy pacsing through the reflector, and of opPosite sign

to the forces of both the incident and the reflected wave at the

front side. If re call & the amplitude transmission-coefficient
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of the wave leaving the rear of the surface, the resulting radia-

tion pressure is obviously given by

+rad = (1+ 2. 2) (2.58)

for a wave at normal incidence. For oblique obstacles the corres-

ponding forces can be found in the same way.

As an example of the action of the radiation pressure

upon oblique surfaces, we conpute the force exerted upon the device

shovm in Fig. 129 which is used frequently for neasuring radiation

pressure.

1xt

%/

!g 90o _

Fig. 1 2

Nodmal (D ) and shearing (S) forces at a

wedge undergoing radiation pressure

The wlidth of the vane in Fig. 12 is ), the dimension perpendicular

to the plane of the paper is 1k, the reflection coefficient Y

The whole force nominal to one side of the vane is IT (1 + y2 )

cos 2 &Q, the shearing force is S =,-Ok (i -1y 2 ) E sin 2 zo (We

neglect the diffraction effect induced by the edges of the vane and

effects due to the hydrodynamic flow). As we are interested in
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the resultant force in the direction x of wave propagation, we

find (Fig.. 12):

P= 2 S cos(90 - ) 2 I cos = 2(S sin IT cos Q)

24 1 2) s sin 2 jsin 2, + (1 + 2 E CosZY Cs 29~

2,, 4PFE Cos ZQ (I +y cos 212

Introducing the angle a -- 2(900 7)r.2 - 2 included!

between the two sides of the vane, and calling attention to the

fact that is a. function of a by writing (a) instead of

we have:

= (a) cos a) (2.59)

a = 1800 corresponds to a plane surface normal to the x-axis and

from (2. 58) ie find as expected, Px:= J (1 + y 2 ). The force

at the vane tends toward zero with decreasing a.

It might be interesting to note that for a = 900

Px becomes independent of (/2) and equals (x) 9 o = .

For e value of Va 90 0 -vane undergoes the sane force (P ) as

a perfect absorber presenting an area 1/J ( normal to the incident

wave, Since the reflected wave propagates in this case in the

direction normal to the x-axis, it carries no mean flux of momentum

along the x-direction. This explains the independence of (Tx)9 o

from the reflection coefficient (Tr/2).

. -!adiation Pressure on a Perfect Absorber

at Finite Anplitudes

All previous considerations are valid only for small

amplitudes, where k 4<1, because we used a developrient in series of
0
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the exact solution for u and p, retaining terms up to the second

order only. But since we have the exact solutions for liquids

in Eqs. (2.30) and (2.31), we are able to deal also with finite

amplitudes. Ile limit our consideration of finite amplitudes here

to the case of a wave traveling in one direction only, terminating

at a perfect absorber. This example will show clearly enough

the difference between the physical characteristics of small and

finite aiplitudes.

For computing the tensor components in Eq. (2.18) we

need the mean pressure p and the mean flux of momentum CU2o

Using the solutions (2.30) and (2.31) for u and p with =09

and the density Pfro (2.28), we find

- cos (t kx + k~o sln(ot kx) )dt
Jo

U2 1 P C , o2Cos 2 (wt .- kx + k~n sin(cot kx) ) t
Tp J ko cos (Cot l ox + k~o sin(wt kx) )

P0

Introducing w2co k2/P and the new variable cot - kx Z% we have

p - 2. cos( + k sin -:)d (2.60)
(2vw

2r 2 2,T0

U2=k2 o2  C ooa + 'Co s in 2)
2 1 1 Cos + o Kin sin d (2.611)

The integral in (2.60) is found to be represented by the Bessel-

function of index 1, -J1 (k%). So we have

J1 (k~o) (2.62)

p 1
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For small values of ko (k0 <l) the function J1 is given by

k~o

1 2 1:6 + "

Taking the first term, we get for small amplitudes from (2.62)

-k 2 2 2 2
Pp= k 2 2 2

according to Eq. (2.42). For larger amplitudes the mean excess

pressure p deviates from -E, since p is represented by (2.62).

We find:

k o = 0.05 0.1 0.3 0.5 0,7 0.8 0.9 (1.0)
0.-(A)

-4p = 0.001 0.00 0.044 0.1211 0.230 0.295 0.365 (0.440)

As k% approaches 1, the values given here for - Po are only of

theoretical interest since the concept of constant compressibility

loses its meaning at such high compressions as are encountered at

larger values of k .
The expression (2.611) for Ou 2 = 2 n cannot be

represented by known functions in a closed simple form, as is

the case with p.

The integral

1 cos2(Z+ k sin )

F o o i - ko cos(Z+ k o sinZ) d.

has been evaluated numerically for different values of the para-

meter k~O.* The result is as follows:

* The writer is grateful to Dr. S. P. Frankel of this institution

for suggesting a quick and simple method for evaluating the
Integral in Eq. (2.63).
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k~o = 0.05 0.1 0.3 0.5 0.7 0.8 0.9 11.0 (B

F(k~o ) = 0.500 0.5025 0.524 0.571 0.685 0.786 11.057 £,'

For small values of k~o the integral F(k o) equals 1/2 and

u2 -= k2 0 2/2p = E according to Eq. (2.61). For increasing values

of ko the value of Cu 2 undergoes a deviation from the energy

density E. Ie obtain for . =u2  (k~o) 2 " F(k~o):

k = 0.05 0.1 0.3 0.5 0.7 0.c 0.9 (10) (C

p. u2 =0.O0, 0.005 0.047 0.143 0.336 0.503 0.856 (QS)

The quantity p + u changes thus with increasing amplitudes:

k= 0.05 0.1 0.3 0.5 0.7 0.8 0.9 (1.0)
- (DI

-(P+ u2)= 0.000 0.000 0.003 0.021 0.106 0.208 0.491 (bo)

For smaller values of ko the following series developments may

be used:

2 + 24+13 (1 - 76T, (k ) 8+ $* (.6a

2 6 0 3072 0o ""

The development of Pp follows L-mediately from (2.62) and the

well-knon series development of the Bessel-function J (x). The

development of P eu 2 was obtained by developing the integrant in

(2.61) in powers of k% cos (z+ k 0 sin-t), converting the powers

of the cosines into cosines of multiples of the argumentg then

integrating tem by term by using the relation

(1/2r) 5 cos n(-C+ k% sin Z) dV' = (-1T)nJn(nk~o),
0

and finally developing the Lessel-fiunctions Jn(nk o) in powers

of nk o. The physical conclusions to be dram from these re-

sults are as follows:
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a) Infinitely extended plane compressional waves,

not ¢omuni~~~n~Lg with undisturbed regions

For small amplitudes, as table (D) shows us again, the

two terms p and fu 2 cancel each other, because both quantities

equal the mean energy-density _ E or + E. At increasing ampli-

tudes the sum (p + eu2) which according to (2.18) is responsible

for the radiation pressure in this case, is positive. At higher

amplitudes, therefore. even in the case of an infinitely extended

plane wave in a non-absorbing medium, a radiation pressure exists,

though its value is negligible if the amplitudes are not extremely

high. In the limit, at which k o-> 1, this radiation pressure

would theoretically tend towards infinity. This can be understood

physically by the fact that for kEo = 1 the density becomes

infinite once in each cycle, leading to infinite values of the

double mean kinetic energy-density eu 2 . But at such great ampli-

tudes the concept of a constant compressibility will surely not

hold. Therefore these statements concerning extremely large

amplitudes (k%- 1) are only of theoretical interest.

b) Finite plane beam surrounded by or comunicating

with undisturbed regions and incident on a perfect

absorber

In this case, as stated above, only the term u 2 is

responsible for the radiation pressure, as the change in pressure

p will be equalized by the hydrostatic pressure po outside the

finite beam. For small amplitudes, as may be seen from Eq. (2.61)

and the foregoing table (0), and as is known from previous considera-

tions, fu 2  E. That is, as a first approximation, the radiation

pressure equals the mean total energy density E. At higher ampli-
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tudes this is no longer true.

The general statement, correct for any amplitude, in

this case is as folloist

The radiation pressure exerted by a compressional plane

wave which is surrounded by or in communication writh* a medium

not affected by the wave motion and in contact with the rear of

a totally absorbing surface, equals 2 Ein when Ekin is the mean

kinetic energy-density of the plane wave in Eulerian coordinates.

This is correct for any amplitude, since u2 = 2 Ekin by

definition. With this in mind, the formula already given in

Eq. (1.17) can be regarded as generally correct.

As to mean energy densities at finite amplitudes, one

must bear in hind that E and Ein and also Epot and are
Pot Pki Epo ar

not the same in Eulerian as in Lagrangian coordinates. This

disparity disappears at small amplitudes, that is, in the second

order of approximation. The acoustic intensity is given by

J = p*u*, using our previous consideration concerning a perfect

absorber (page 41). The mean intensity at any amplitude is

therefore given by

* Such a communication can be regarded as realized for instance
by a small hole in the absorbing surface, on the front of which
is the iicident beam, while the rear face is in contact with
an undisturbed region of static pressure p . As G. Richter 1 5

has already correctly remarked, the hole sfould be visualized
as opaque to acoustic radiation but as allowing the equalization
of average pressurc between the two regions, as might be e@ffected
by having a small totally absorbing piston free to move in the
hole.
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Pp' * dt 2 ~ os(Wt -kzc) dct
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using Eqs. (2.24), (2.25), (2.40) and c21p3 1. The amplitudes

belonging to a mean intensity J are therefore always given by

k
0 c

If we assume radiation in water at 200 0, with ko = 1

(a purely hypothetical value), the intensity J is found to be

= 1./59(105 on k, 1.62(109) 9.81 wat
2P 2- 46(10-0) sec.cm2  100 cm2

or J 1.59(108)  ,attaa2

This expression shows how far we always are experimentally frpm

"finite" amplitudes, because even an intensity of 100 watt cm-2

is to be regarded as very high in water. The value of k ° for

an intensity J = 100 watt cm- 2 is found to be 7.93(10"/).

For all practical purposes in liquids the amplitude as.

well as the quntity k o can be regarded as small. The radiation

pressure is therefore described for all cases which are experi-

mentally feasible by the considerations in Section 7, where we

dealt with small amplitudes.

Nevertheless the theoretical results for finite ampli-

tudes are not without interest, since they show that the relation

Prad = mean total energy density E cannot be regarded as a "basic"

physical law as it is considered to be in electrodynamics. For
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mechanical wave motions a law of this kind holds only at small

amplitudes, whereas in general at all aiplitudes, the radiation

pressure is linked with the expression for the mean density of

kinetic energy in Eulerian coordinates.

As E = E1 i + ot, the difference E - 2kin = Dpot

1/2, ( u2 -u 2 ) in agreement with Eq. (2.40). In

liquids this difference turns out to be small of the sixth order

in (ko). In order to show this, one uses the series development

of P U2 as given by Eq. (2.62); p cu2 is found wirth the aid ofk-

(2.30) to be renresented by 1/2 (ko)2  + j (2k) laking

use of the knoim series development of J2 (x) =x
2/2- x4/24 + ....,

we, obtain indeed 2 ( C- k,) - (ko) 6/64,+ """* that isq

only terms of the sixth order and higher are involved.

9. Note on an Integral of the Eulerian Equation of Iotion

and the Flow of Ilass for Infinitely Extended Plane

Waves in Liauids

For liquids rith constant compressibility we found that

the solutions of the Lagrangian equation (2.22) and consequently

those of the Eulerian equation (2.14) were functions of the argu-

ment (cot + kx) only. Using the fact that therefore

/ = c " /ax, Eq. (2.14) can be integrated with respect to

x or t and we obtain

+ C -* + r2+ p = G (2.64+)

G is independent of x ad t, but not necessarily of the amplitude

of the wave motion. We can prove, hoever, that C has the value

zero. This proof, which we ,rill now give, verifies at the same

time the fact, already used in Part II, Sec. 5, that any function
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f(wt, F x), which was found to satisfy the Lagrangian equation

(2.22), leads to an exact solution of the corresponding Eulerian

equation (2.14), when the transformations of the quantities

u*, 0 p* into the corresponding Eulerian quantities u, p

are properly made.

Let a/8t = u* u* (ct T kx) be the general solution

in the Lagrangian system.* From Eqs. (2.1O)and (2.28) we obtain

* -c- -  - =  o u* (2. 6 5a)

Po+ F (2.65b

Transforming p*_ C and u* into p, and u by replacing the variable

x in u* by (x - 0) and inserting p mid (, as found in Eqs. (2.6 ,b),

into Eq. (2.64), we have

2-o u C + oc u=G
c. + + C

or C =0

Thus, Eq. (2.64) provides us with the general relation, valid in

liquids at any time t and at any x:

p + cu 2 = c . u (2.66j

Averaging (2.66) in time, the mean mass flow carried by the wave

• u*(Ot + kX) stands for u(ot - kx) + u' (ot + kx), where u
are arbitrary functions of the argumens (ozt : 1). 1,2
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motion through a fixed unit cross-section turns out to be

= - (p +  U) (2.66a)
-c

The plus or minus sign corresponds to waves traveling to the right

or left. The value of (p + ,) at finite amplitudes has been

given in Table (D), p. 57. From Ecjs. (2.60) and (2.61) we obtain

in the case of sinusoidal wave motion:

I ~ko 2r Cos ( ++ o s )
(P + 2) = 0  + d (2.67)

24 o 1 k o cos (2 + '~ sin
0 + 0o +

The series development of the integral in powers of (k o), is

found by adding Elqs. (2. 6 2a) and (2. 6 1a) on page 57:

- .1.1 +_5 T7 o
u + - ( + + (j (k6 + ( (iz) .6 ) (2.68)-e 0 + 7o28 (1: o '

Eq. (2.68) brings once mor-e to evidence the result formerly ob-

tained, that for small amplitudes, that is disregarding terms of

higher than second power, the sum p + eu 2 cancels out. It

confirms also the conclusion made concerning the "Constant" in

Section 7b, nanely that this constant is independent of (k 0) to

the second order of approxrnation.

The series development of the change in average density

due to the wave motion A - follows likewise ir-nediately

from ( 2 .68). Eq. (2:65b) shows that - = +  *u*/c.

Transforming this into Eulerian coordinates and taking the time

average we obtain

/ fe + __-/°=,P (T (k o)4 + 12 k 0 + .. ) (2.68a)
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As stated on page 44 the change in mean density -eA vanishes

to the second-order approxLmation; it is of the fourth order

in (k~o) and positive, whereas the corresponding change in pres-

sure p - E is of the second order CnCL neg±bi.

The average flow of mass eu vamishes to the second

order of approximation, as stated in various papers (see for

instance reference 16). This does not mean, however, that it is

strictly zero as is seen from Eq. (2.68)*. In liquids, the

values of k% that can be attained experimentally are very small,

and the quantity Fu amounts numerically to an extremely small

value. It may be noted that the existence of a 1 net flow of iass"

does not necessaril: inply an actual transport of matter, that is,

a mean particle displacement. Indeed, in a pure sinusoidal

wave-motion everj particle is found at exactly the same place as

before after a full period. The average values in time of or

u* are zero in this case. Nevertheless, owing to the fact that

is not a constant, but + o e2 + 0 2

denoting higher-order tens in , varying sinusoidally in time)

the time--average of the "flux of mass-density", given by ( "u),

may have a value different from zero.

The quantity f u is independent of x. To prove this,

we tsike the tine-average of the Eulerian equation (2.14) and find

for a wave motion periodic in time,

(p + eu2) (p+ u2) = o-e-

The only exception where pu equals zero strictly, is the case
of a standing wave.
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or, according to Eq. (2.66a), cu/) x 0. Consequently

uis ino x and a functin z the wave ari.plitude
e isindependentoL

(k o ) only.

T'Us we have in liquids at any amplitude for an in-

f'r.ly extended plane wave

witu 2  P c+ • oc f( 0) (2.69)

with

f(k 0 o)/ + 1' (k1 o )6 + 4567 (kro 8 + ...
0 128 T8432

10. Radiation Pressure and Viscous Absorption

The Eulerian differential equation (2.14) includes

the case of plane compressional waves in viscous fluids. But in

the case of viscous absorption an additional term, associated with

the coefficient of viscosity ,4, enters the differential equation

both in the Eulerian form Eq. (2.14) and the Lagrangian form Eq,

(2.22). D'Alerbert's general solution f(cot T kx) is then no

longer a solution of Eq. (2.22), as is ell known, and we cannot

make use of the relation C/ t = c .B/ x, The conclusions

based on this relation in the foregoing section 9 therefore do not

hold for viscous liquids. Still, taking them-erage value in time

of Eq. (2.14), as we did at the end of section 9, we find also in

the case of viscous liquids (or gases) that (p + pu 2 )/,x = 0

for a wave rotion periodic in time and therefore p + e u constant.

As the amplitude of a uidirectional plane wave decreases steadily

along its direction or propagation through a viscous medium, the

values of u and p steadily approach zero. Thus the value of the

constant is necessarily zero and p and eu 2 cancel each other in

the saxe way as they do in absence of viscosity. The radiation
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pressure p + . u2 due to a beam of infinite width (and of any

amplitude) is therefore zero at a perfect absorber in the case

of a viscous liquid (or fluid). The same conclusion holds for

a reflected plane wave leaving an absorber.

For a beam of finite width the problem becomes more

involved, owing to the interaction of the beam with undisturbed

regions. For non-viscous liquids, the time-average pressure p

is constant along the beam, orv even when periodic in space,

still its averagze value along the beam is constant. This fact

has enabled us to deal with this interaction in a relatively

simple manner.

On the other hand in viscous liquids, the value of p

in the beam changes exponentially along the beam, and the inter-

action with the undisturbed region outside the beam involves

rotational motion of the fluid. The problem of radiation pres-

sure becomes closely linked with that of the hydrodynamic flow.

A very complete treatrient of the forces due to second order

effects in viscous media is given in the fundamental paper by

Eckart. 6

11. Rawleih Pressure and Lanpevin Pressure in

Liquids

In papers dealing with acoustic radiation pressure

special expressions have recently been introduced in the litera-

ture to denote the special circumstances under which radiation

pressure may be observed. It is our purpose to clarify the

physical meaning of these usages. According to our previous

considerations we can distinguish four different cases of

uressures; they are connected on the one hand with the coordinate



67

system used (Eulerian or Lagrangian), and on the other hand with

the kind of interaction of the acoustic beam with an =ndisturbed

medium, that is, wihether the beam is regarded as of infinite

width and not communicating with an undisturbed part of the medium,

or of f'inite cross section and surrounded by the undisturbed

mediu. Ile may clarify these cases as follows:

1. (L. - i.): Lagrangian coordinates and infinite plane wave.

2. (L. - c.)- La[rangian coordinates and wave region communicating

with undisturbed medium.

3. (E. - i,): Lulerian coordinates and infinite plane wave.

4. (E. - c.): Eulerian coordinates and wave region communicating

with undisturbed medium.

We will deal with h.ese cases successively (always assuming noumial

incidence)"

1. (L. - i.) At any point on a surface following the

notion of a particle in a liquid, the pressure p* varies purely

sinusoidally (Eq. (2.25) Its time average value is therefore

zero: p* = 0. An observer moving together with a particle would

register a mean pressure equal to zero. The mean pressure pt

in the mediLum for? a stationar observer would be found to be

lowered to po - E (1 + 12) at small amplitudes in an infinitely

extended beam, where p is the pressure in absence of wave motion.

For larger aplitudes the decrease in mean pressure follows from

Eq. (2.62).

2. (L. - c.) The mean pressure p* for a moving observer

is zero, just as in 1. (L. - i.). For a stationary observer the

mean pressure pt = po, since the lowering of po by the wave notion

is now counter-balanced by the action of the medium of static
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pressure po which surrounds the beam region.

3. (E. - i.) The mean pressure pt at fixed coordinates

is lowered, as already mentioned under 1o (L. - i.), by the

amount - E (1 + y2) at small amplitudes. If its value was p0

in absence of wave motion, then for an infinitely extended plane

wave, not communicating with any undisturbed medium, the value is

Po - E (1 + 1,2). The radiation pressure rad' which we have been

led to identify with (p + u2 ) in Eulerian coordinates, becomes

zero for small amplitudes. For larger amplitudes numerical values

of the radiation pressure can be found from Table (D) on page 57

or from Eq. (2.69).

4. (E. - c.) If the acoustic beam communicates with a

medium not affected by the wave motion, the mean pressure Pt

becomes equalized to the value of the static pressure po of the

undisturbed medium. This raises the mean density - in the beam

by A ' E/ 2 (1 + y. ) at small amplitudes, as follows from

Eq. (2.48b). The radiation pressure Prad = E (1 + y2) for
small amplitudee.

The notation "Rayleigh pressure" (Pa j ) as usedRaylegh

in the literature 8,1,5, means the average excess-pressure, due

to the wave motion, which would be noticed by an observer moving

with a particle. It is therefore identical with the quantity

p* in our notation:

P ayleih - Po P* (2.70)

For liquids with constant compressibility, p* and consequently

the "Rayleigh-pressure" is zero at all amplitudes. For media

that have a more complicated relation p*(e)) bUtween pressure



69

and density - as in -ases for instanca -p* and therefore the

Rayleigh-pressure is different from zero. (See Part III, Sec. 3 and 5)

The e:xpression "Langevin pressure" (P Langein) is used,

following Hertz and liende , for the difference between the pressure

p* observed at a moving particle or plane mad the mean pressure p

at fixed coordinates:

PLanevin = PRayleigh - (2.71)

For a plane compressional wrave traveling in one direction in a

liquid, we found at small amplitudes p* = 0 and p = - E, therefore

PLangevin = p - p k 0 <<lj (2.72)

This result turns out to be independent of the nature of the

medium, that is, independent of the special function p( ) connec-

ting pressure and density. This fact has already been stated in

891
various papers An exact and simple proof is as follows:

ot - _2

For small amplitudes we have according to Ea. (2.21)

p(x) = p*(x - ) p*(x) - P + ..

Therefore, at small amplitudes

P*(x) p)o ( ) (2.73)

11oT we can write

dt2 t 't
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and taking the average time-value and regarding as a function

periodic in time,

2
a ) (C)

Thus we have from Eq. (2.73)

p(x) - p(x) = + o (.) 2 kouz - 2in(x) (2.74)

For a unidirectional wave motion, 1eu* 2 equals E and we have
Langevin = - p = E. On the other hand, Eq. (2.74) is per-

fectly general, holding whether or not a reflected wave is present;

but in this case 9 u.2 varies from point to point and we must take

the average value in space of Eq. (2.74) if we wish to introduce

the mean total energy density E. Doing so, we get from (2.74)

%Langevin =  i - p = n (I+ 1] (2.75)

According to the proof leading to Eq. (2.75), this general result

is independent indeed of the special function p(P ).

In the literature dealing with radiation pressure it

is often the Langevin pressure that is identified with the radia-

tion pressure exerted upon a plane obstacle (see references 8 and

1). From the general result Eq. (2.75) it is concluded that the

radiation pressure at snall anplitudes equals the energy density

in any fluid medium.

Hertz and Ilende8 seera to have been the first to introduce

the expression "Langevin-pressure", as defined in (2.75). Never-

theless, Langevin hjziself does not seem to have had this quantity

- (or better p* - p) in mind in his proof concerning the con-
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nection between tradiation pressure and energy density as reported

in a paper by P. Biquard2 . According to Langevin's derivation,

as given there, one is led to the conclusion that he identifies

radiation pressure with pt* - Po*9 that is the difference between

the total pressures spoclid with moving particles, at two

a44-wrent regions of the medium, one affected by the acoustic

wave motion and the other unaffected. If in the latter region

the fluid is at rest (as it nay be, for instance, behind an

opaque reflector), 7 becomes identical with the static pressure
0

PO (see also the recent note by P. J. lWestervelt17). In our

opinion some conclusions in Biquard's report of Langevin's deriva-

tion are open to criticism; moreover we cannot accept the quantity

pt* - p0 as representing the true radiation pressure, Whichsoever

of these quantities may be called "Langevin-pressure", none of

them agrees with the actual radiation pressure given by (p + u2).

To diminish the confusion already widely spread, we recommend

that the term "Langevin radiation pressure" be discarded altogether.

Acoustic radiation pressure should properly be identified

with the expression p + fu 2 in Eulerian coordinates. This quan-

tity is the one actually measured; it is in fact the resultant

force per unit area due to the wave motion. The two components

p and tu 2 act together; the contribution of each depends on the

characteristics of the reflector (that is, on '). The final sum,

at small amplitudes, is always E (1 + y2). (See Sec. 12)

it happens that the value of P , as given byL angevin

Eq. (2.75), which is associated with an infinitely extended plane

wave, equals numerically the actual radiation pressure for a beam

of finite width; its identification with the radiation pressure
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however is evidently misleading as to the physical concept of

this quantity.

12, 11hat is Ileasured as "Radiation Pressure" Experi-

mentall?

The radiation pressure that we measure experimentally

is physically not identical with a "pressure" in the hydrodynamic

sense, Though of the same dimensions it is a different physical

quantity and is expressed by pt - po + e for a plane compres-

sional wave at normal incidence. The quantity pu 2 can be

interpreted as the average flux of mechanical momentum fu

through a unit area fixed in space.

Let us consider a device D for measuring the radiation

pressure, It may contain a reflecting plane surface struck by

an incident acoustic beam of finite cross-section. This tre-

ceiving" plane is to be regarded as moving together with the

immediately adjacent particles of the medium. This moverment,

the amplitude of which depends on the reflector, is purely sinusoidal

and the average position of the receiving surface is identical

with its position at rest.

As this receiving surface is a part of the whole de-

vice D, it is connected mechanically in some way irith D. The

whole device D may be regarded as having a large mechanical

inertia compared with the inertia of the receiving surface; its

center of mass can therefore be treated as practically immovable

in space, even when the receiving surface is moving periodically.

For simplicity re assume that no acoustic energy leaves from

its rear side ; all the non-reflected part of the incident

energy is assumed to be absorbed within D.
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a. Ile consider first the case of a perfectly absorbing

device D. The acoustic beam of finite cross-section is Lnbedded

in the undisturbed surrounding medium which also encloses the

device D. Therefore the mean pressure is the same throughout

the medium, including the whole surface of D. The same pressure

Po = Pt acts both at the front and rear of D, so that no resulting

force due to a hydrostatic pressure is exerted upon D in this case.

Now let us visualize an imaginary surface S, enclos-

ing exactly the device D but stationary in space (Fig. 13).

S

DI

Beam," a

Po Po

'S

Fig. 13

Schematic diagram of a device D for measuring
acoustic radiation pressure; 0 = center of mass,
S = surface fixed in space enclosing the whole
device D; a = receiving surface struck by the
acoustic beam and mechanically connected with D;
po = hydrostatic pressure

All over the receiving part a of D particles are crossing the

corresponding part of S according to their periodic movement in-

side the acoustic beam. The whole force exerted upon the device

D, and therefore acting at the center of mass C, equals the gain

in momentum of D per second, or the "flux of momentum" through a

per second, This latter quantity, 4s we found, is given by

u2 for unit area (a = 1). In the small time dt a mass uadt
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crosses the unit section of a with the velocity u; the whole

transport of momentum through the section is consequently

u2 u = Iu2 d. In unit time the flux of momentum amounts,

consequently, to cu 2 . It may be noticed that both the

particles entering D at a, and also the particles leaving D at

a somewhat later time contribute to the force exerted upon D

in the same sense of direction, the departing particles exerting

a reactional force on D. According to our assum.aption that no

radiation leaves the rear of D, no force is exerted at this side

upon D. The whole mean force per unit area of D, struck by the

compressional wave, therefore equals the time-average value u 2 ,

calculated for a cross-section fixed in space. This leads us

back to the result of our former considerations, that the radiation

pressure at a perfect absorber is given by the expression u 2

in Eulerian coordinates. This double mean kinetic energy density

u2 equals at small amplitudes the mean total energy density E;

it deviates from E with increasing amplitude. The amplitudes

that can be experinentally generated in liquids are always "small"

amplitudes; therefore the statement: radiation lressure = mean

energy densit- holds always for this case in liquids. For other

media, as gases, it is also correct for small exaplitudes, as shom

in Part III, Sec. 2.

b. 1'oi let us consider the case in which the device D

is not a perfect absorber, but reflects partially or totally the

incident wave and absorbs all that is not reflected. Here the

incident and the reflected waves interfere and cause a periodic

variation in excess-pressure p as well as in Fu 2 along the axis

of the bean (see Eqs. (2.43) and (2.44), and Sec. II, 7b). In a
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bean of infinite width q not in communication with the undisturbed

part of the medium at the rear of D. these two quantities p and

u , acting together at the surface of D, are of opposite sign

and cancel each other to zero at small amplitudes. But since

experimentally the beam is always of finite width and nor-mally

surrounded by the undisturbed medium, the mea pressure t inside

the beam is raised, as we saw in Sec. I I, 7b, up to the static

pressure p0  Superposed upon this mean pressure p0 is the

periodic variation p in space; it azmounts to pt - p0 and is

different from p0 in general at D. The average negative value

of Pt - P0 (wrhich in the infinitely extended beam neutralized the

quantity fu at D) is now, in the case of the finite beam, in-

creased by the amount E (1 + V) to bring its value up to p;

pt - p no longer neutralizes the action of the flux of momentum

U~2

Let us i rwite again the expressions for pt and fu 2

in a plane rave to see what happens:

pt= p + Pc = - E (1 + 2 Ycos(2kx + ) + 2 ) +pc (2.43)

eu2 =+ E (1 + 2 cos (21= + ) + 2) (2.44)

In the case of a perfect absorber D, 0 and there is no varia-

tion of Pt and Fu 2 ith x. The pressure Pt = pc - L is raised

to p in the bean and all the force on D is caused by the quantity

u2 in the way we pointed out above under a. If we consider

on the other hand the case of a perfect and rigid reflector D9

there is no movement of: particles at the surface of D; thus if the

origin x = 0 is tacen at the mean position of the surface of D,
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both u and vanish at x = 0. This bounda-y condition requires

that y= 1 and G = wr as is seen from Eq. (2.24); from Eq. (2.44)

above we find eu 2 = 0 and pt = p at x = 0. The first tern,

Pu 2 is zero, because there is no motion at x 0; the second

term pt = p because p varies purely sinusoidally in time at x 0

around the average value p0  But there is now the additional

effect of the surrounding medium, which raises the average value

in space of Pt to p as illustrated in Fig. 14.

IDf

E(l + . I

t= P0 + 1

(a)

Pt =Po+ j ;D
+ 2)Po

(b)

Fig. 14

Tine-average excess pressure p(x) along the x-axis in u.
liquid, when the acoustic beam striking the device D
undergoes perfect reflection at D '(Y= 1). (a)Beam of
infinite width and not in communication with undisturbed
regions of liquid. The average value in space of tislower than Po by the amiount f (1 + y2) 2'.-The value of

at x = 0 is zero. (b)Beam surrounded by or in coimunica-
tion with undisturbed regions of liquid. The average value
in space 6f tis raised by E (1 + ) 22 and therefore
equal to p0. . The value of at x = 0 is now (1 + 2) 2
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The amount by which Pt is raised, to bring its average

value in sace to p 0  is + E (1 + 2 ). as we found already in Sec.

II, 7b. At the front of D appears now a mean. pressure (pt)

Po+ (I + y 2 ), or, with = 1 for a perfect reflector, (pt) D=

P0 + 2 E. At the rear of D, the pressure is p. Consequently

the force exbrted per unit area of the receiving part of D equals

2 E, as expected. In the case of a perfect and rigid reflector

the radiation pressure measured experimentally is due therefore

to a mean excess pressure at the receiving plane rather than to

the quantity Cu 2 p which is zero.

c. In the general case, where the incident energr is

partially absorbed and partially reflected, the force exerted upon

D is due to both effects; the quantity (u 2 and the mean hydro-

static excess pressure Pt - P.o Their sum always amounts to

E (1 + 2), but the amount contributed by each component depends

on the reflection coefficient y and the phase angle 0 of the

reflected wave. From Eqs. (2.43) and (2.44) above we find the

following values for P = p + E (1 +S12) and tu 2 at D, where

x =0:

Px0= 2 'E cos 9 + PO (2.76)

+ 2 ' cos G+ (1 + Y

or (U 2  + 02 _ sin2 (2.77)

For the two special cases first considered above, we find here

again the previous results: At a perfect absorber with 0
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- 2 -

we get P Po and fu_O = E, the whole force beinu due to

flux of momentum ?u 2  . At a perfect rigid reflector with

y 1 I and G = 7T we obtain P= + 2 and 0ur= =

the whole force being due to the mean excess pressure P x O  The

foregoing equations give the contributions of P XO and

u2 0 to the resultant force P + E (t + per uit area of

the receiver for all values of and G.

Thus, in the general case, where a reflected wave exists,

one has strictly to recognize these two different effects acting

simultaneously at a surface struck by a compressional wave.

What is measured experimentally as radiation pressure is

the sum of the flux of momentum and the excess pressure at the

receiving area, hich amounts always to E (I + 1 2 ). The two terms

of the sum depend on the reflection coefficient and the phase

angle 9 of the reflected wave; but their sum is independent of 9

and simply equals the sum of the incident energy density E and

the energyj density f2 E of the reflected wave. This justifies,

so far as numerical results are concerned, the frequently adopted

point of view, which regards the incident wave energy as perfectly

absorbed by the receiver, leading to a contribution E, and then

partially or totally reemitted by the receiver, leading to an ad-

ditional force 2 E. This concept gives the right numerical value

for the radiation pressure; it does not provide however the physical

background for the forces really acting at the receiver. (See also

p. 49)

In the case where the acoustic radiation traverses a

plane reflector separating two different media 1 and 2, some of the

%I 
I i i | I
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energy being transmitted into medium 2 behind the reflector9

the resultant radiation pressure acting upon the reflector at

normal incidence is obviously given by

=rdm Ptl -Pt + C u f z (2.78)

If the media 1 and 2 are under the same hydrostatic pressure p0c

then ptl - Pt2 - P1 - P2. For small amplitudes and a beem of

finite width, we can write p1 + F1 ul = E (1 + 2); assuming

that no reflected wave exists in medium 2, we may introduce

the amplitude transmission coefficient d by E22 = u 2 = E E1

and obtain

Srad =  (1 + _ 2 2) (2.79)

as already stated on page 53. If the reflector does not absorb
(____ r 1 j 2  S2 627111(1 an-d

any enerpy, . (1 - , cl or 2 a

we obtain from (2.79)

7 F1 cl 21.raE 1(-- +\l 1 (2.80
c2  c 2) (2j

This shows that the direction-of the radiation pressure can also

reverse its sign if 2 cl -c 2  and c 1 c 1. resultant<n cc2* oreutn
U 1 + 2  d

radiation pressure would be found if X 2 cl -c 2  If the= + c.

two media are substantially the same, c1 = c2, and from Eq. (2.80)

we have

Prad 2 2 E (2.811)

* See, for example, the experiments of Hertz and Mende
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PART III

RADIATION PhESSU? . IN GASES

1. The La, angian Wave Equation for Gases, NeIelectin

Absorption

The Lagrangian wave equation, which is linear in the case

of liquids due to the assumption of constant compressibility, be-

comes non-linear for gases, as the adiabatic relation between total

pressure p and density has the well-knoun form Pt*VV  = constant,

or

Fvti Ye (3.1)VL*J
where is the ratio of the specific heats. (This notation is

c

chosen in order to avoid confusion with the coefficient of reflec-

tion 'K). Inserting; Eq. (3.1) in the Lagralgian wave equation

(2.19), considering T* = - p* and Eq. (2.28) we get, disregarding

viscous absorption

12- (3.2)
t 2  (1 0+ + + C

with = Poce o

This equation cannot be solved exactly by knoim functions

in a closed form. So one usually is content to treat only the

came of small m-iplitudes, using the Taylor development of the term

+

(1 + L) and retainling first order terms. In dealing

with average thie-values, hoever, one must in general be careful

not to omit second order terms. The flux of momentu eu 2 9 as
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we have learned, involves no second order terms of Eq. (3.2)

at small amplitudes according to our considerations leading to

Eq. (2.37). On the other hand, the correct calculation of the

"Rayleigh" pressure p* requires the solution of (3.2) up to second

order terms.

2. The Radiation Pressure uoon a Perfect Absorber

in Gases at Small Ar.litudes due to a Beam of

Finite 11idth

Developing the right side of Eq. (3.2) in a Taylor

series and retaining only second order terms, one finds:

- c~2 2 (1 + Cq - <33
1)2 2 (3-3)-bt2 = b]x2  - -Zx -

Airy has given the solution of Eq. (3,3) for small amplitudes

M < (ko1) in the form of a series in powers of k o for a pure

sinusoidal excitation assumed to be located at the origin, where

x = 0; retaining second order teims, it is known to have the

following form for a wave traveling in the positive x-direction

(see ref. 9, p. 100);

= o sin (wt-I=-) + ... c. ( ° 2D + cos 2 (at-kx (3.4)

For comlputing the radiation pressure of a beoxm of

finite width upon a perfect absorber, we have from Part iI, 7a,

Trad = Cu 2  (3.5)

Only the first-order term in Eq. (3.4) is needed for computing

-ad at small amplitudes. To this approxination u2 becomes

identical with ou*2 and ire find easily from Eq. (3.4)
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P 2 Lk (3.6)rad =  2

At small amplitudes in gases the mean kinetic energy density

equals the nean potential energy density.* Therefore

2 Ekn = 2 Eot = E = mean total energy density. Thus we

obtain at sall amplitudes in gases the sane result that we

found in liquids:

Ptad = E (3.7)

The radiation oreszure ucon a rerfect absorber in prases for an

acoustic benx of finite width ecuals the eneri-r densit-7 for snall

mpitudes. For larger arplitudes we have to use Eq. (3.5).

The solution for fini-.e aplitudes in gases is rather conplicated,

as it requires a solution of the non-linear differential equa-

tion (3.2), w-hich ccn only be given by a series development. 7

Its consideration is beyond the scope of the present paper.

3. The :Iayleir~h -Pressure in Gases for Progressive

Uaves and Small Amplitudes

For computing the mean value p* which would be observed
t

at a moving particle, wre start from Eq. (3.1) and obtain by

replacing (,p- l ) YC according to Eq. (2.28)

P*=P (1: - ) -+ ' (3.8)
t o

Developing this relation in a Taylor series, and retaining terms

up to the second order, ire have

x (-V C +....) (3.9)

* See for instance ref. 12, p. 223
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Using the solution Eq. (304) for in the abbreviated form

= (k) + QJ( + ....

we get

aDx X: + ) (3010)

From Eq. (3.10) it is evident that we need the solution for

up to the second order terns, which involves the teo. in ,

ifwe iwish to compute p* correctly. It is the term x

which wras omitted by Rayleigh.

Inserting and which are given immediately by

Eq. (3.4)0, into Eq. (3.10), and taking the time-average value for

p*, we get

t

P pI1 + (k%) . . . -- (3.11)

whence

YC(C + Y) 2(ko) + P0  (3.12)

Introducing p Po, k = a/c, and the mean total energy

density -7 u 02olo/2, we obtain for the Rayleigh pressure*
kidn 0~o

in a progressive wave

P A - P -- E (3o13)

ayleigh t o 4

This formula differs from Rayleights well-known result (T E c /2.

* This is in ocordance with results obtained also by P. .

Westervelt1 6 and J. S. Mendousse11; both authors however did
not proceed to the final expression for -- , as given in

Eq. (3.13) here. t 0



The reason is clearly seen from Eq. (3.11), in which the term

- Yc(I + Yc)/8 is due to tie fact that the second-order term in

Eq. (3.4) is taken into account. Thus Rayleighls foirula must

be multiplied by the factor 1/2, to be correct in the case of

progressive waves° The remark may be added that the formula

(3.13) holds only at not too large distances x from the pure

sinusoidal source of excitation. The second term of the solution

(3.4) contains the factor x. This corresponds to the knowm fact

that a pure sinusoidal wave in gases is distorted with increasing

distance from the source, the wave energy being transferred more

and more from the original frequency into higher harmonics. Only

in the innediate neighborhood of x = 0 is it permissible to define

energy density by the expression we used for E and therefore to

attribute a reasonable physical meaning to the relation (3.13) as

well as to the result in Eq. (3.7) for the radiation pressure.

4. The iean Pressure p in Gases for Progressive Waves

and Small Amplitudes

Under the sane limitations just mentioned, we can give

the expression for the mean pressure Pt in Eulerian coordinates

in a gas traversed by a plane infinitely extended compressional

wave. From the generally valid Eq. (2.75) we have in a progres-

sive wave p = p* - E. Introducing Eq. (3.13) and adding the

hydrostatic pressure pc0 we find*

1pt = Po +  4+ -

or

Pt (3.14)

* See also P. J. Westervelt, ref. 16, Eq. (29)
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Thus, in gases, the tems p and (o u 2 do not cancel each other in

the tensor coponent T pt + Cu as they do in a liuid with

constant comressibility. In gases ue have in the absence of a

reflected wave

- = Pt + e u PO + - E (3.15)

5. The Radiation Pressure at a Perfect Absorber in

Gases for a Plcne Infinitely ad.tended Wave at Small

Amlitudes

For an infinitely extended plane wave the radiation

pressure is given by P : = + PU 2 , which at small amplitudes

equals p + E. Since for a progressive wave p = p* - E according

to Ea, (2.75), we find in this case

--- 1-1 +f (3.16)
Prad = p* = PRayleigh 4

The rleih ressurein the corrected form for oro-

gressive waves) becoes therefore identical with the true radiation

fressure in a iea.-L of infinite width, which is not in comaunication

with a gas region unaffected by the wave motion.

It would be very difficult to realize this case by

experiment, even approxinately we usually have to deal with a beam

of finite cross section and in comunication with an undisturbed

gas region. But in the latter case the mean pressure pt in Eq.

(3.14) is raised to p and the measured radiation pressure becomes

identical with Cu 2 = E, as shown in Eq. (3.7).

6. 11ean Density in Progressive WSaves in Gases at

Small kAmlitudes

A brief treatment of this subject is given, especially
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to point out the difference between liquids and gases.

The time average value of the change in density e
can be derived from Eq. (2.28). At small mmplitudw we have

= I+ ---)-1 =1- +-x (-L)2 +. (3.17)

The solution for E up to second order terms is given by 3.4).

Inserting this solution in (3,17) and retaining all second order

terms loads to the expression for the density * in Lagrangian

coordinates. The change in density = -o in Eulerian

coordinates is found by substituting x - for ,c, according to

Eq. (2.21). Doing so, developing the result in powers of kro

retaining second order termis, and finally averaging in time, we

find

1 + C(1)
-A'-fo =  1,+ (kr o)2 (3.18)

fo Co (V) 2

The mean density in an infinitely extended plane progressive wave

in gases is lowered by the amount given in (3.18), that is by a

term as low as the second order in k O . In liquids of constant

compressibility, on the other hand, we found that the change in

average density vanished in the second order approxination, as

it is only of foiurth order in k1o. (See Eq. (2.68a), p. 63).

The mean pressure p, in a progressive wave is lowered

by the wave notion by the amount given in Eq. (3.14). In a bean

of finite width surrounded by an undisturbed medium of hydrostatic

pressure pc the beam undergoes a slight compression until the

pressure inside the bean equals p , as pointed out already in

the case of a licuid medium (Part II, Sec. 7a). The increase in

density inside the bean due to this compression is given by
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po+~p1/y0Zo ;o po 1A "'"
whnc, o"

whence, according to Eq. (3.14), we find

Eo -o0( s o (3.19)

The resultant change in density in a bean of finite width n a

progressive wave in a gas at snall amplitudes is therefore given

by means of Eqs. (3.18) and (3.19) as

A-~ o - -V + 1 - -  - c .o_,_ Yc 2~ .o
0 (3.20)

~total 2 +2 2 0

7. RaCdation Pressure in Gases at a Perfect Reflector

due to a Finite Beam at 6mall Amolitudes

The boundary condition at a perfect md rigid plane

reflector is by definition 0 or u* = u = 0. The corresponding

first-order solution of the wave equation (3.2) or (3.3), which we

denote by , ) and u*h ( 1 ) respectively, is

(1) = (sin(wt - kx) - sin(cot + kx) )

or &( ) = 2 sin kx cos ct + 7) (3.21)
0

and u*(1) ==2l sin kx sin ot (3.22)6t 0

the well-known e::pressions for a standing wave; it fulfills the

boundary condition u = 0 at any time, the reflector being, for ex-

ample, at x = 0. Fron (3.22) we obtain the mean kinetic energy

density, averaged in time and spaceby

2 E,- - 2 o2 (323)
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This expression is correct up to the second order of approxfzaa-

tion as already stated on Page 35.

If re apply the method mentioned by L. Brillouin and

outlined on Page 49 of this report for computing the radiation

pressure upon a reflector, ie have to add the radiation pressure

2 *. regarded as reemitted by a reflector of ampli-

tude reflection coefficient X. to the radiation pressure 2

found in Eq. (3.6) as due to an incident and perfectly absorbed

plane wave. The sum results in

.rad = ( + 2) . 2 (324)

and for the rerfect reflector with y 1 we obtain

Prad = o = 2 Ecin = 2 E (3.25)

where E denotes the mean total energy density of each of the two

progressive wrave components leading to Eq. (3.21), in conformity

with the usage in this report, according to Eq. (2.42).

The problem of a perfect and rigid reflector was also

treated by F. Dopp 3 . It may contribute to one's confidence in

the result expressed by Eq. (3.25), if' we trace also Bopp's

reasoning for this case, especially as it can be done very briefly.

Averaging in time the generally valid Eulerian equation (2.14),

we have for a wave motion periodic in tie (p + eu2)/x = 0,

and integrating withn respect to x, we find

.= (3.26)
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At the perfect reflector u = 0; thus the constant C equals the

mean excess pressure p at the reflector, which is just identical

with the radiation pressure Prad in our case. (See Part

II, Sec. 12b). On the other hand we obtain by averaging

Eq. (3.22) in sace

p + Cu=C =p + 2 Ek1 ,l (3.27)

For the beam of finite width under action of the static pressure po

of the surrounding medium it is reasonable to assume, in agreement

with Bopp, that p 0 (See also Part II, Sec. 7b), in other words

that the average value in tie and space of the total pressure pt

inside the bean equals the static pressure p0 outside the beam.

Uith p = 0 we get from (3.27) C = (rad) = 2 Ekin9 inmagree-

ment with Eq. (3.25). (See also Page 92?Eq. (3.41))

8. The Radiation Pressure in Gases at a Perfect

Reflector Caused bv an Infinitel xtended Plane

Yave at Smail Amlitudes

The solution of this problem encounters some difficulties,

as it turns out that the complete solution for a standing wave in

gases cannot be achieved without taking into account the

dissioation of ener , which actually is of course always present.

Nevertheless it is possible to compute the radiation pressure for

this case without proceeding to the complete solution, as will

now be shoirn.*

The radiation pressure at the perfect reflector becomes

identical with

(rad) I (P - Po = P* )
0  (3.28)

* See also Uiestervelt's paper, ref. 16, Sec. Vi.
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since all these pressures are the saxie at the immovable surface

of the reflector. The time average value of p* is given by
t

Eq. (3.10):

oL c j~x 2 "'r2
S0I(3.29)

From the first order solution in (3.21) we find easily

0 and = + cos 2 kx (3.30)

To find the te=1 /Zx, which is related to the
-2 -

second order temi (2) of = (i) + (2) , we need the solution

of the differential equation (3.3), which in this case, introducing

the first order solution (1) into the last term on the right side,

becomes

e2  2 c2 (1 +m') k3 o2 sin 2 kx cos 2 ot (3.31)3t2  x

A solution compatible with the boundary condition

= 0 at x = 0 at any t, is found to have the form1
6

+ (2) + f(t) (k 0)
2 sin 2 1: (3.32)

inserting (3.32) into (3.31) with (1) given by (3.21), we obtain

for the tii.ie-dependent function f(t) the differential equation

+ 4 C 2f = (1 + )c (1 + cos 2cwt) (3.33)

dt2

This is the differential equation of a resonant system driven by

an impressed force of exactly the resonance frequency ". As

there is no dissipation term involved on the left side of (3.33),

the final amplitude becomes infinite, as is well knowm. This
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fact can easily be understood: Due to the non-linear relation

between prescure and density in gases, the fundamental angrular

frequency o, which excites the standing rave, sets up higher

harmonics of angular frequencies 2Wc, 3co, ... in the system. The

amplitudes of all the harmonics are limited actually by the

unavoidable dissipation of energy in the resonating system, which

hovever is not taken into account in the differential equation

(3.31). A solution leading; to finite amplitudes can only be

achieved if dissipation or absorption of energy is properly taken

into consideration.

In our problem, however, we are only interested in p*,

which involves ti.e-avera._e values of (2): Fortunately the

time-average values of all those purely sinusoidal higher haImionics

vanish; the only teimi of f(t) in the differential equation (3.33)

that is of importance for us here is the constant term (1 + Yc) WC

on the right siCde of (3.33), which leads to a time-independent term

f (1 + Yc) _ 1+ Yc (3.34)

4o 4k

Uith the aid of (3.32) we have therefore

(2) = (k o)2 (x) (k )2 1 +c sin 2 1= (3.35)
4k

and hence 2 cos 2 kx (3-36)x 2

From Eqs. (3.30), (3.36) and (3.29) we obtain

t lt-cPo)2 (1 + cos 2 kx- cos 2 kx)

or 7W =o 2(0 +c) (3.37)-- 62
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Taking account of (3.23) and (3.28), we have finally

-r a )  -7)xO 1+ Zc )  n (1+ Yc )  (3.318)
(F rad) (p 0 kin.3~

It is interesting to note that the "Rayleigh pressure"

p*, as observed at a moving particle, becomes independent of x

in a standing wave.

From (3.37) ire are able to derive the time-average value

of the excess pressure p in Eulerian coordinates; with the aid of

Eqs. (2,74) and (3.18) we find

- - -- 1+
p = p* - 2 Ei(X) = -o702 

2 ( c- 1 + cos 2 kx)

or p E (y - 1 + 2 cos 2 kx) (3.39)

The average value in time ,nd space of p is therefore

P =%('c 1) Ekin (340)

The mean change in pressure due to the wave motion is positive in

gases, since )(c 71 If the bean is surrounded by an undisturbed

medium with hydrostatic pressure po it tends to expand a little,

util the average total pressure ptequals the hydrostatic pressure

PO outside the beam. In the bean of finite width the pressure p

becomes therefore according to (3.39)

p 2E cos 2 kx (3.41)
kcin c

At the reflector, where x = 0, we have then (p),,, = 2 this

leads us bach, by a different route, to the result found in (3.25)

for the radiation pressure in a beam of finite width.
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9. Dote Concerning .v1 ghlei',Is Orir innl Formula

on the "Pressure of Vibrations"

Rayleigh's original formula 1 +Yc (energy density) 13

-2

is found in many books and publications as the formula for radia-

tion pressure in gases0  Nevertheless it does not express the

radiation pressure as usually measured in a beam of finite width,

but is rather associated with the mean excess pressure p* = P* -p
t 0

observed at a rmovjn particle, which may properly be called the

"Rayleigh pressure". On the other hand wie found in Sec. 3 and $

above the following results for the radiation pressure in an in-

finitely extended plane wave in gases at small amplitudes:

1 _C0 2
(0 AC(3.13)rad)( 4 42

Z.2 o2
S= ~ (1 )~ =+ ( + o) 2-- (3.38)

One must be careful as to the meaning of energy density;

throughout this report E denotes the mean energy density of a

_rogressive wave. In the formula (3.13) T becomes identical with

the actual total energy density for a progressive waveo In the

formula (3.38) the actual total energy density equals 2 E because

the energy density of the reflected wave adds to the energy density

of the wave incident on the perfect reflector. If we introduce

the concept of the total enerzv density Etotal, the two formulas

may be written in the form

(Prad) = 4 Etotal (3.13)

(1rad) = 2 Etotal (3.38)
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This shows that .?ayleigh's -Couula in its original forn applies

indeed to the radiation pressure on a perfect and rigid reflector

in a gas exerted by an infinitely extended plane v-ave, which does

not commuicate with a medium under a constant hydrostatic

pressure p0 if the total mean energy density Etotal means the

whole energy density Eki + E = 2 E in the standing wave.

For a progressive wave falling upon a perfect absorber, however,

the correct value is half as lar,, if by "total mean energy density",

one understands the total energy density E. + p += i+ tEtotal -klin pot = -Ein pot

of the progressive wrave.

ASSZ:DLY OF CHIU EQUATIONS FOR LIQUIDS AD GASES*

A. General Exressions Valid at Large or Small Amlitudes

in Liguids and Gases (Disrer.arding Viscosity)

Ilhen a plane acoustic wave of finite or infinite width in

a medium (1) falls noirally on a plane slab of any material or thick-

ness, separating medium (1) from some other medimi (2), the resultant

time-average pressure upon the slab is gi ven by

2 = - +  - (2.78)

Medium (2) may be bounded by still another medium which causes a

reflected wave.

If the twro media (1) mnd (2) are both under the same

hydrostatic pressure p 0 whlen undisturbed, Eq. (2.78).reduces to

* For Symbols see pages ii and iii
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rd p 1) + 2 U 2 (2.78a)

=li +22

which now represents radiation pressure alone.

B. Dbo 2eflected Wlave Present in 1-!edium (2)

1. If no reflected wave is present in mediuLm (2), but

the slab still transi:its and absorbs, t e have for a bean of fLiD

width at snall aplitudes and surrounded by undisturbed regions (1)

and (2),

ra (1 + 2 2 (2.79)

2. If no enerai-Ls asor~bed within the slab, the fore-

going foxmula for a bean of finite width at snall amplitudes can

be reduced to

C. QOacue Slab, 1To Wave iiotion Present in Medi-i

1. 12 the slab absorbs allnerMr that _ reflected,

so that no wave notion is transmitted into medi-um (2), the radiation

pressure exerted by a beax of finite width at small pplitudes in

liquaids and gases is given by

Srad = (1 + y) l (rqs. (2.50), (2.54), (2.55),
(3.7), (3.24), (3.25))

2. Under the soae circumstances, but if the acoustic

plane wave is regarded as infinitely extended and not comitunicating

with undisturbed regions, wre have for

a. LLuid (with constant compressibility)

P rad = 0 (Pages 33, 36, 45)

b. Gases (for adiabatic processes)

1a 4 a progressive wave (3.13)
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= (I + ) in a standing wave (3.38)
rad 1

The symbol Z stands for the tine average of the energy density

of a purely oro-reqsive acoustic wave of mg-ilar frequency o and

maximal amplitude 0 in a medium of undisturbed density Co as
0I

given by
=  2 - (2.42)
12 c

where J denotes the intensity of the progressive wave.

D. I-ea Excess Pressure Due to a Plane Infinitely

Extended Acoustic Wave at Small Amlitudes

The hydrostatic pressure p in the undisturbed medium

is changed by the acoustic vave notion into p + p, where p is
0

called the excess pressure.

1. Liquids (with constant compressibility)

p E (1 + 2 ycos(2 kx + @) + 2) (2.43)

p=- E (1 + Y2)

2. Gases (for adiabatic processes)

p = - - in the progressive wave 0 O) (3.14)

p \( +~(~ - 2* cos 2 I=.). in "he standing
wave (y: -) (3.9)

p : E ((C - 1) in the standing wave (3.40)

Ackncwed r

The writer wishes to acknowledge the benefits received

from many discussions with Dr. Cady and from a conversation with

Dr. P. J. Westervelt,



97

LITEPiTUIRE

1. R. T. Bayer, ier. J. Phys. 18, 25 (1950)

2. P. Biquard, Revue d'Acoustique 1, 93 (1932)

3. F. Bopp, Ann. Phys. 389 495 (1940)

4. P. VT. Lridgnan, Amer. Acad. Arts Sci. 489 309 (1912)

5. L. Brillouin, ItLes tenseurs en me'chanique et en easticite"
(Ijew York 19/+6)

6. C. Eckart, Phys. Rev. 73, 68 (1940)

7. E. Fubini Ghiron9 Alta Frequenza _ 530 (1935)

8. G. Hertz and H. iiende, Zeits. f. Physik 11A 354 (1939)

. ... LarIb, "Theory of Sound" (1910)

10. F. Le-ii and II- S. D]. Ilathi Helv. Phys. Acta 11, 408 (1938)

11. J. S. ilendousse, Proc. A-o Acad, Arts Sci. 78 148 (1950), Eq.38

12. P. 1. lorse, 'ibration and Soand" (1943)

13. Lord Rayleihq On the Pressure of Vibrations, Phil. flag. 3,
338 (1902) or "Collected Papers" Vol. 5, 41;
On the Eonentum and Pressure of Gaseous Vibra-
tions and On the Connection iith the Virial
Theorem, Phil. 11ag. 10, 364 (1905) or
,'Collected Papers" Vol. 5, 262

14. Lord Rayleigh, "Collected Papers" Vol. 5, 265, and "Theory of
Sound" (London 1926) 32-33

15. G. Richter, Zeits. f. Physik 115, 97 (19/+0)

16. P. J. ester:elt9 J. Acoust. Soc. Am. 22, 319 (1950)

17. P. J. eservelt, J. Acoust. Soc. Aa. 23, 312 (1951)
(footnote p. 314)



98

TECI TIcL rEj011TS DISTMIDUTION LIST

CALIF01rIA IUSTITUTE OF TECHIDOLOGY
CO T1CT Nonr- 220 (02)

A. Government Distribution

The ilational ililitary Establishment

Director,
Research and Development Board
Pentagon Building
1Tashington 25, D. C. (2 copies)

Department of the Davy

Chief of i!aval Research

Office of iaval 2esearch
lfashington 25, D. C.
Attn: Physics Branch (2 copies)

01!R: Branch Offices

Comimanding Officer
U. S. Davy Office of Ilaval rPesearch

ranch Office

495 Sumer Street
Boston 10, 1Iass. (I copy)

Con-manding Officer
U. S. Ilavy Office of 11aval Research
Branch Office
3/+6 Broadway
lew York 13, i. Y. (1 copy)

Comiandin. Officer
U. S. iiavj Office of haval Research
Dranch Off ice
Aerican Fore Building
844 i. Rush Street
Chicago 11, Illinois (1 copy)

CoTmanding Officer
U. S. Da r Office of Dlaval Research
Branch Office

O1 Donahue Street
San Fancisco 24, California (1 copy)

Comm-andilng Officer
U. S. la-v Office of iUaval Research
Branch Office
1030 E. Green Street
Pasadena 1, California (1 copy)



99

Office of the Assistant Naval Attache for Research
1lavy 100
Fleet Post Office
Ifeir York, Il e-v York (2 copies)

Director,
U. S. lavy Underwater Sound reference Laboratory
Office of Ilaval 24esearch
P.O. Dox 3629
Orlando, Florida (1 copy)

Director,
hlaval Research Laboratory
Anacostia Station
Ulashin-ton 20, D. C.
Attn: Sound Division (1 copy)

Director,
Ilaval ?kesearch Laboratory
Uashington 20, D. C.
Attn: Technical Information Officer (9 copies)

Director,
U. 0. ilavy Electronics Laboratory
San Diego 52, California (1 copy)

U. S. faval Academy
Ilaval Postgraduate School
Physics Department
Annapolis, liaryland
Attn: Prof. L. E. Kinsler (1 copy)

Director,
Iarine Physical Laborato-!
University of California
San Diego 52, California (1 copy)

Director,
U. S. Davy Underwater Sound Laboratory
Fort Trtmbull
hew London, Connecticut (1 copy)

Director,
David Taylor 1".odel Basin
Carderocd, 1laryland
Attn: Sound Section (1 copy)

Director,
Ordnance Research Laboratory
Penn. State College
State College, Pennsylvania (1 copy)



100

Chief of the Bureau of Ships
Iary De-o rtment
Uashington 25, D. C.
Attn: Code 330 (1 copy)

85 (1 copy)
665 e (T copy)

faval INedical Research Institute
Haval 1:edical Center
Bethesda 14, I aryland
Attn: Lt. Cdr. D. Goldman iflC (1 copy)

Director,
Ilaval Ordnance Laboratory
MJhite Oac, Silver Spring 19, 1aryland
Attn: Sound Division (1 copy)

Department of the Air Forces

Corm rending Officer
Air Force Cambridge Research Laboratories
230 Albany Street
Ccxabridge 39, iiassachusetts
Attn: Geophysical Research Library (1 copy)

National research Council

iational Academy of Science
Conmittee on Undersea Warfare
2101 Constitution Avenue
Washington 25, D. C.
Attn: Dr. John S. Coleman (1 copy)

Director,
National Bureau of Standards
Division of lechanics
Washington 25, D. C.
Attn: Dr. R. i'. Coolc (1 copy)

Los Aleaos Scientific Laboratory
P.O. Box 1663
Los Alamos, Hlew I iexico
Attn: 3.r. Gilbert L. Campbell, Project Librarian (1 copy)

U. S. Atomic Energy Corzaission
Library Section, Technical info. Branch, ORE
P. 0. Box E
Oak Ridge, Tennessee
Attn: Dr. 1. A. Warheit (3 copies)

B. Non-Government Distribution

Director,
Laboratory of Acoustic War Research
Penn. State College
State College, Pennsylvania (1 copy)



101

Mass. Institute of Technology
Acoustics Laboratory
Cambridge 39, iass.
Attn: Prof. R. I. D.olt (I copy)

Harvard University
Cruft Laboratory
Departnent of Engineering Science and Applied Physics
Caxibridge, ilass,
Attn; Prof. P. V. Hunt (1 copy)

Catholic University of America
Washington 17, D. C.

Attn: Prof. F. K. Ierzfeld (1 copy)

Broom University
Department of Applied Physics
Providence 12, rdhode Island
Attn: Prof. R. B. Lindsay (1 copy)

University of Southern California
Los Anrgeles, California
Attn: Prof. R. E. Vollrath (I copy)

University of California Radiation Laboratory
Infoarmation Division
Room 128, Building 50
Berkeley, California
Attn: Dr. -R. K'. aakerling (1 copy)

University of California
Department of Physics
Los Angeles, California
Attn: Dr. R. U. Leonard (1 copy)

Princeton University
Department of Electrical Engineering
Princeton, Dlew Jersey
Attn: Dr. U. C. Johnson (I copy)

Case Institute of Technology
Departmlent of Physics
University Circle
Cleveland 6, Ohio
Attn: Dr, R. S.'Sh.biYland (T copy)

Wester-n 2eserve University
Department of Chemistry
Cleveland, Ohio
Attn% Dr. F. Hovorha (1 copy)

Utah University
Salt Lahe City 1, Utah
Attn: Dr. Elsey (1 copy)


