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ABSTRACT

A detailed study is presented of the acoustic radiation
pressure exerted by plane compressional waves in non-viscous
liquids and gases upon a plane obstacles The present report is
largely a further development and extension of a very comprehensive
and penetrating treatment of acoustic radiation pressure by Le
Brillouin. The theory of plane waves in liquids is extended to
the case of finite amplitudess From this more general point of
view the effects at small amplitudes are derived and discussed in
detail. Formulas are given for normal and oblique incidence of
the acoustic bean for small amplitudes, valid for any reflection
coefficient of the receiving plane. The radiation pressure at
finite amplitudes upon a perfect absorb:r is calculated..

Special consideration is devoted to the actual physical
processes involved; the meaning of the so-called Rayleigh pressure
and Langevin pressure is discussed. For gases the radiation
pressure as well as the Rayleigh pressure in progressive and standing
waves are conputed.

The report concludes with an ascenmbly of the chiel

equations.
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SYMBOLS ii

space coordinate

constant of integration

phase velocity of light or sound
specific heat at constant pressure

time-average value of the density of Ifotal energy for a

harnonic wave traveling in one direction (E ==Fbaﬁzozyé)
time-average of the density of acoudtic kinetic energy
time-average of the density of acoustic potential energy
electric field strength

frequency

magnetic field strength

width of surface receiving acoustic radiation (Fige. 12)

intensity (pewer per unit area) of acoustic radiation per
square centineter

Bessel function of order 1 and argument x
2r/3. = wle
length of surface receiving acoustic radiation (Fige 12)

mass

= radiation pressure or its component in the positive

x-direction
hydrostatic pressure
excess pressure due to compressional wave motion
p, T p = total pressure
shearing stress due to radigtion pressure at obligue incidence
stress tensor, also absolute temperature
corponents of stress tensor
1/£ = period
tine coordinate

= particle velocities in the x-,y~-,z-directions




e
fte
{te

1}

article velocity in a plane compressional wave along

j8)
the x~direction (u = ux)

X,¥sZ2 = space coordinctes

x',y!' = space coordinates of a system rotated through an anglezQ
(Fig. 5)
v = unit volume; A\ V = small change in V
Vo = undisturbed unit voliume
B = compressibility of liquid (em® per unit force)
— K 9 A K X IR o ‘.‘.
Y{ = amplitude reflection coeflicient (}{ = 1)
Z/ = cp/cz,V = ratio of specific heats at constant pressure fcp)
¢ and constant voluue c.) :

= (e * €y + sz)

.. . R . . &
anplitude transnission coefficient (df = 1)

N D

I
H

dielectric permittivity

components of strain tensor {see Ege (2.7))

[yl
i

= wviscosity ceceificient

phase angle of reflected wave

1t

angle between the normal to a receiving plane and the
direction x of the wave propagation

®» °3
i

AN = yavelength
L = magnetic permeability
§3 = densitys EB = undisturbed dersity
o~ = entropy
?Ei = wt + kx
E,??, = particle displacenents in the x-;y-,z-directions
w = 2rf = angular frequency
Liote

One bar over a symbol denotes the time-average value of the
quantity concerned, as P, two bars the average value in time and
and space, as pP.

A star % indicates that the quantity concerned refers to a
moving particle or volume element (Lagrangian coordinates), as p.




PART I

TIE _CCUCEPT OF RADIATION PRESSURL

1. Radiation Pressure in Ilectirodynanics
The concept of razdiation pressure originated in electro-
dynamicse If we consider a plane surface enitting a plane

electromagnetic wave (Fige 1)

Fige 1

Plare electromaghetic wave emitted
by a plane surface

in the positive x~direction, a reacting force is exerted wpon the
enitting plane duc to the transport of momentum by the electro-
magnetic field in the direction of wave propacation, Imagine a

cylinder with a cross-section of 1 cm2 perpendicular to the x-axis.,

A vave front leaving the enitting surface at any time t reaches

a cross-section of this cylinder at the distance ¢ one second later,
vhere ¢ is the velocity of the wave. Assuming, for simplicity,

an electronagnetic vave of a rather high frequeney, so great o
nunber of wvavelengtis nmay £ill the distonce ¢ that we can speak of
a pean total elecironagnetic enerpy averaged over the length c of
our cylinder, Dividing this nean total energy by c we obtain the

3

mean energy-density kL, that is, the mean energy per cm” of the

electromasnetic waves If the emission is steady, E is independent

of tine,




The whole energy filling the cylinder of length ¢, and
therefore leaving the emitting surface each second, is Eece iccord-
ing to the equivalence of mnass and energy this corresponds to a mass
transport in the positive x-direction. Let the whole mass filling
the cylinder of length ¢ be m ==(Dc,(c>denoting thie electromagnetic

"mass~density" per 3. Then we have

ne

and

=.E
© 2 (1.1)

The equivalent nechanical momentum emitted each second from each
em? of the radiating surface is mec = ((Dc)'c =f9c2 =E. Accord-
ing to Newton's Law 2 reaction-force is exerted on each square
centimeter of the radiating surface, which equals the monentum

me = L contributed per second to the emitted wave, This reacting
force P, per n? in the negative x~direction is mumerically equal

to the so-called electromagnetic radiation pressure P4

Py =mc = Prag = B (1.2)

P..q equals the mean glectromagnetic density averaged over

a wavelength in space:

(e & +uid)ax (1.3)
2 2

=1
-

&=

—

Prad

Qo

a

where A = ¢/f = vavelength; £ is the permittivity; & is the

I

..3,
perneabilitys Egnﬁlare the electric and magnetic field vectors

of the plane wave.




If the enitting surface vere free to move, this radiation-
force would cause o motion of the surface in the direction opposite
to that of the enitted radiation, in such a way that the mass-
center of the vhole systen (eniting mass + mass-equivalent of
radiated energy) rencined fixed in space.

llow ve consider the case in vhich the emitted radiation
strikes a plane totally absorbing surface perpendicular to the x-
axis. Such a surfece is usually called a surface of a black body.
The electromarnetic monentun vhich one en® of the black surface
absorbs each second anounts likewise te me =fyc2 = T. This gain
in mcmentum per second corresponds to a radiation force on each
em® of the recelving area in the positive x-direction. So we say
that the electromasnetic radiation exerts a radiation pressure upon
each square centimeter of the absorbing surface, which equals
the mean eneryy density L of the electromagnetic wave.

If the surface perpendicular to the direction of motion
of the electromagnetic wave is not black, but totally reflecting,
the momeqtum of the wvave changes its sign at the reflector fronm
+ me to - me.  So the total change in monentum per second and per
em? of the wave arounts to Z2me = 2f302 = 2E. Therefore the radia-
tion pressure Pn,gq ona perfectly reflecting surface is equal to
2E. If the receiving surface partially absorbs and partially re-~
flects, the radiation pressure has a value between E and 259
depending on the coefficient of the reflection of the surface,
which expresses the ratio of the reflected to the incident wave
energy.

2+ The Concept of Pressure in Fluids

In viev of our later treatment of acoustic radiation
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pressure, we first consider the meaning of the word “pressure',

In the physics of deformable bodies (solids, liquids, gases)

the word pressure is exemplified by the hydrodynamic pressure in
a fluide The pressure is a scalar p (x,y,z) vhich may change
from point to point in space. If we consider a volume-elenent

of arbitrary shape inside a fluid, the hydrodynamic pressure P

exerts the sane force in all directions if the volume is so snall
that the change in pressure uith respect to x,¥,2 can be neg-

lected (Fig, 2).

\P
" p TN
/0P
1% p /" P
Pig. 2

Hydrostatic pressure p in {luids
Or, if we imagine a small surface element in the fluid, the pressure
p on it is the same for each eorientation in space and always normal
to the surface.
Instead of using the word pressure we can also say that
there is a gtress T acting on any small elenent of area perpendic-
ular to the elenent and of the same value for every orientation in

space of the elenent. We write

T=- b (104)
since usually the pressure is called positive if a volume element

is compressed, while a stress is called positive when tensile

(Fige 3)e




Pige 3
Directions of positive pressure p
and positive uniform stress T
At this point it is desirable to consider the general ex-
pression for a stress-tensor, This expression will then be
specialized for the cage of a fluide Any stress, whether due to
mechanical forces or to an electromagnetic field, is a tensor hav-

ing in general nine components. It is represented by

L .

Tix =i Tyx iyy Tyz (1.5)
BT T T
|

The T,, (T ,, T r,

T ) represent the normal forces perpendicular
11 XX Yy 22z . .

to surface elcments in the yz-, xz-, and xy-planes, whereas the

shearing forces T ) act parallel to these surface

ik (Txy’ sz’ eee

elements, In fluids under mechanical action, disregarding viscous

forces, only the Tii exist and the stress tensor reduces to

.. 0 0
Tagh© Ty © (1.6)
o © T,

Furthermore, as we have stated, the force on a surface element in a

fluid is independent of its orientation in space, so that
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Tyiq = l' 0 T © '-—-; 0 -p 0 (1.7)
1 !
o o tfl 1o o -pll

Accordin’ to the rules of tensor calculus the quantity

Io= T hT T (1.8)

is invariants that is, it has the same value for any set of rec-

L

[

tangular coordinates at the sane point. In our case T, =T,

TZZ = - p, and the quantity I = - 3p, or

I
“PE o (1.9)

The hydrostatic mean pressure p, which is of course independent of
the system of coordinates chosen, can therefore in general be
defined by

e+ Tyt Tpg) (1.10)

3¢ The Tensorial Character of Electrodynanic Radiation

Prescure
In considering electrodynamic radiation pressure, we found
that the force P due to a vave propagated in the x-direction is
also directed in the x-direction. Io force is acting in any
direction perpendicular to the x-axis. So the radiation pressure
is not a "pressure" in the sense in wvhich we use this notion in
hydrodynanmics, Indeed, if wve change the direction of our re-

ceiving surface in such a way that its outer normal makes an
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anglezQ with the positive x~axis (Fig. 4),

\ A
4 .
LN oy
L [l
’,-";. e .‘\‘ }:
- / Yoo N\
Fige 4

Cblique incidence

the radiation force perpendicular to a perfectly reflecting surface
is knowm to be

Pt = 2T cosof (1.11)

b.4

It is by rno neans independent of the orientation of the surface with
respect to the incicdent wave. Thig nmeans that, strictly, one
should speak of the radiation tensor, which at normal incidence has
only one component, TXX = - Px' Ls only energy-densities are inj
volved in p = ﬁ, the expression for T is independent of the polar-

ization of the nlane clectronmagnetic wave:

*é- P, O O
7=l 0 0 0 (1.12)
i 0o o0 o

According to the rules for the transformation of a tensor T to a
new set of axes, ulose x, y-coordinates are rotated through an

angle 2 about the z-axis Fife 5), “he tensor
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TXX 0 0
T = 0 TW 0
0 0 T
! 22
transforms into
2 m . 2.
T Cos A + T, Sin A Tx'y' 0
T = Txuyc Ty sin?2f + Tyy cost 2 0 (1.13)
0 0 T
%%

. 1 ’ .
with T:c'y' = E (J.yy - Txx) sin 2 zp.

As we have stated above, we find that the mean pressure

T}g{ - Tyy 4+ TZZ e TX'X‘ + Ty'y‘ + TZ'Z'

P 3 3
remains unchanged; in liquids Ty = Tyy = Tpy = T = - p, and using
Ege (1413) ve find
s o o |

Tl = - =
tlig ¢ » O T1iq

o o =

H




But according to L. (1.13), the radiation tensor (1.12) transforms

thus:
’ .
-P cos? 7 55 sin 224 0
P - ,
T'aa= | 2= sin2zf By sinel 0 (1214)
0 0 o

tle have discussed the difference between the concept of
a hydrodynanic pressure, uhich is the same in all directions, and
the physical properties of the electrodynanic radiastion pressure,
in some detail, because it will turn out that also in the case of
acoustic radiation pressure the tensorial character of this quan-
tity must be taken into account.

The electromagnetic radiation pressure is proportional
to the mean total energy density and therefore to the square of
the amplitudes of the electric and magnetic field-strengths
(Eqe 143)e This Lolds for all field-strengths, whé%her small or
large. As to the acoustic radiation pressure, we shall see that
a similar law is valid only for sufficiently small amplitudes of
vibration.

e DRadiation Pressure in Acoustics

Rayleigh was the Tirst to apply the concept of radiation
pressure to mechanical waves in gases.13 He established relations
for the average value in time of the pressure produced by an infinite
plane wave in fluids and shoved that this mean pressure is pro-
portional to the nean energy density of the wave motion. The
factor of proportionality was found by him not to be one in general,

as in the case of electromagnetic waves, but dependent on the
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special law connecting the pressure p and the density F)in the fluid
under consideration. The plysical quantity called by Rayleigh

the "pressure of vibrations", is, however, not identical with vhat
is measured usually as "radiation pressure%. The "radiation
pressure" of a compressional wave striking a perfect absorber equals
exactly twice the nean kinetic energy density of the vave motion,

as we shall seec, For gmall amplitudes this expression becomes

identical with the mean total energy density and we obtain in this
case the same relation as in the electromagnetic case.

The physical picture of radiation pressure is less simple
in acoustics than in electrodynamics, where we have to do with the
linear set of llaxwell's ecuations and with transverse waves. In
the latter case the radiation pressure is determined by the electric
and maghetic field-strengths and the formula for the radiation
pressure is valid for all field intensities,

On the other hand, the equations describing the motion of
acoustic waves are in general not linear, To avoid nmathenatical
difficulties, the equations are usually "linearized" by using
developments of tlie non-linear expressions in Taylor series and re-
taining only Tirst-order terms. The characteristic quantity of
these developnents ig the particle-displacenent, The results of
this "linearized" theory are therefore first approximations which
can be expected to be valid only for small displacements. Radiation
pressure, hovever, is connected with energy-densities, uhich are
quadratic terms, containing the squares of displacements or veloci-
tiese Any theory dealing with radiation pressure nust therefore
retain at least all second order terms to avoid erroneous resulis.

Even if this is done, the results are still only valid for small
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amplitudes, if Taylor expansions are used. Simple relations between
radiation pressure and mean total energy density {as for instance
frad = E) are found only for small amplitudes of displacement.
Relations of this kind do not express a basic law, as they do in
electrodynamics, vhere they are independent of the amplitudes of

the fields.

For the special case of a liquid we shall show that for
large amplitudes no simple relation between radiation pressure ahd‘
mean total energy density exists, Only in the second-order approx-
imation of the general formuwla do we find proportionality between
these quantities.

Each mass particle in a simple-~harmonic acoustic compres-

sional wave makes sinusoidal movements around the point it would

r occupy if there were no wave motion. The customary, and mathematic-
ally the most convenient, way to describe the wave propagation

makes use of this displacement of any particle from its original
location. All other physical gquantities, as velocities or pressures,

are related to the noving particles, The equation of motion that

relates always to the game moving particle is usually called the
"Lagrangian equation of motion", or the "equation of notion in
Lagranglan coordinates™.

The other wvay of dealing with these problems uses an equa-
tion of motion that relates to fixed coordinates in space, called
"the equation of motion in Eulerian coordinates". Here we are not
follouing the motion of a certain particle, but are observing what
happens at a fixed point.

A careful distinction must be made betueen velocities,

densities, pressures, and other quantities related to the instantaneous

<~




12

position of a_noving narticle, and the sane quantities when related

to a fixed point in spaces In dealing with the mean radiation
pressure upon a reflector, for instance, we shall assume the
average position of the reflector to be stationary in spaces But
we nay also speak of the mean pressure observed at a surface which
is noving togetiner with ithe particles of a plane waves

4n ccoustic coupressional harmonic wave causes two impor-
tant effects: 1) It changes the nean hydrostatic pressure at all
points alfected vy tlie uvave, 2) It causes additional nean stresses
in the mediun dve to the tine average of the periodic fiow of
nechanical monentu: of the compressional wave.

If a plane acoustic vave of infinite width traverses a
nedium and strikes a perfect absorber, the mean pressure inside
the wave rezion undergoes sone dininution due to the wave motion.
But if the acoustic bean is surrounded by undisturbed regions of the
nedium, as is ordinarily the case, the mean pressure becomes equalized
throughout the entire fluid. In this case the effect 1) mentioned
above does not cause a directed force upon obstacles placed in the
path of the wvave. The basic physical cause of the acousiic radia-
tion pressure, or belter radiation tensor, is in this case the time
average of the periodic {low of mechanical nomentum in the region
affected by the beam. (See Part II, Sec. 12).

In a non-viscous fluid affected by plane acoustic waves,
there is no net flou of matter due to the wave propagation. (The
unidirectional "W:ydrodynanic flow" caused by acoustic waves is an
additional physical efiect due to the viscosity of the fluid and is
not to be talen into consideration here; see also Part II, Sec. 10).

Considering a section of wnit area of a plane compressional
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Fige 6) vaich ve inagine as fixed in space,

|

— il
w7, w=aCa

Fig. 6

Perticle noverient through
control-areas fixed in space

the average value in tine of the mags floy is

£+ 7

fj(a,t)' u {a,t) dt
P¥g

3~

Tp = 1/f is the period,fp(a,t) the mass density at any moment t at

the fixed coordiiate x = a of the cross-section under consideration,
and u (a,t) the instantaneous velocity of the particles crossing the
section a at the tine ts At different tines different particles

are crossing the section a, so that u andforefer only to the particles
that cross at the time t. For a periodic wave motion in a medium

that was originally at rest (u¥= Q), /au vanishes ot sinell amplitudes.

Ilext we consider the flow (or flux) of pmomentum through
the section a, Arguing in the same way as in the preceding case
of the electronagnetic flow of momentum, the momentum ru crossing
uit area at x = a in one second is mu = (fju) e u = fjhg. This
quantity is obviously aluays positive. This means that the plane
wave carries periodically monentum -~ whose average value in time

does not vanish - through fixed sections perpendicular to the direc-

tion of wave propagation.
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The quantity mu = (F}u) s u =F u? can be interpreted in
another way, leading to the concept of the "flux of momentum'".

F)u is the density of mechanical momentum and u is the velocity with

which the quantity f)u crosses a section. Thus we can say that the
"flux of momentum-density! per second through a section of unit area
equals (Ou o U = fo u2, just as we speak of a "flux of mass-density",
(O * u per second over a unit area.

For snall amplitudes the time average of the kinetic
energy-density 1/2 F_JZ is equal to the time average of the poten-
tial energy. In this case 1/2 _ﬁu-qz is equal to E/2 (E = mean total
energy density)e The average value in time of the "flux of momentum
density" /1;1;2 is therciore equivalent to the mean total energy
density E.

Considering a volune elenent betueen two unit cross sections
at a and a * da (Fig. 6), a flux of momentum (O(a,t) . uz(a.,t) enters

the section a and =z flux /o(a + da,t) e u? (a + da,‘b) leaves the

section {(a + da) at the sane time. The nean value - -‘Q—S-E-B—)

in time is obviously the gain in momentum of the volume element
between a and a + da per second. According to Newton's Law, this
gain in momentum per second is equivalent to a force exerted upon

the volume element.e The volume element reacts with a force

P .
+ 2. au da to preserve equilibrium,

Qi

e can compare this picture with the volume element under

the action of a stress T, in the x-direction (Fig. 7).
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Fige 7

Velunme elenent under stress
in the x~direction

AT

. & Txx
The force exerted upon the velume element is known to be + -:;5—" da.

The mean flux of nonentum fauz can therefore be considered with re-

gard to its mechanical action as equivalent to a mean stress

3
- -

Txx = -(Bu , acting on any cross section affected by a compressional

wave., The effective mean stress component Txx in the fluid due to

o n——

the plane wave is therefore

T =T 2. (T4 -2
Tmc eff.'"Txx'\ﬁu "‘(P"‘{a,,»u-)

5 is the mean pressure and.E;Ez the mean flux of momentum density
\
at a {ized section,

e have attenpted to present a simpie physical picture for
the case of a plane wave that is in accord with a strict theoretical
treatment of the motion of mechanical waves. In the general case
of a three-dimensional motion, with velocities Uy, Uys Ugs it can

be shown that the resultant stress tensor in a medium in Eulerian

coordinates becones (see ref. 5, pp. 241 and 290):




Tyx - (Ouxz Txy - Fuxuy
-l - | . 2

lxy .- Fuxu.v. lyy - (9%

Ty ~ £l Tyg - {Ouyuz

i

lyz

xz

e uXuZ

(o uu,

16

(1.15)

2
M
Lug Puz

The components of the flux of momentum in general are (Pv.i) o

and are physically equivalent to the components of a stress-tensor,.

The hydrostatic pressure of the fluid in absence of wave motion is

denoted by p,, while p represents the change in p, due to the wave

p
T

notion (excess pressuiz),
t = pg + Pe

xx = Tyy = Ipz =

|- (§t+ P )

T = 0

0

The total effective presgure is

0 0
- p't (¢]
G - p_b

|
|
|

For a plane wave in a fiuid without absorption, u = U

= - pt3 Eq. (1.15) reduces, in time average, to

(1.16)

It is the tern (5 t pu XZ) that turns out to be responsible for the
Y

radiation pressure exerted by a plane acoustic wave.

According to

Eq. (1.16), this quantity obviously has the character of a stress.

Considering a naterial surface element perpendicular te

the direction of vave propagation x, and the adjacent volume

element of a fluid (Fig. 8), the surface-element must exert a stress

D
¥t |

|
Cald ‘ -

Fig. 8

Torces exerted upon a volume element
adjacent to a device D for measuring
radiation pressure.




- (Et + f’uxz) upon the right side of the volume element in order

to maintain equilibrium. The surface therefore undergoes a
pressure 5; + (suz in the x-direction on its left side. The
static pressure behind the surface is denoted by Pye The result-

ing mean pressure exerted on the surface is therefore,

py - Py + pu =Dt Iou2 (1.17)
{

Prad X

This is the general formula for the radiation pressure of a plane
wave upon a plane material surface perpendicular to the direction
of wave propagation. If the wave region communicates (for ex-

ample by a small hole in the absorbing surface) with the medium

5

3 n o= nhaor D = <
behind the surface, Py = P, at a perfect absorber and Prad fiux .

. z__— ) _-—
For small amplitudes, fDux = E, and therefore, P, _, = E. (1.18)

Tor a perfectly reflecting surface the physical pic-
ture is more complicated, as we shall show later in the exact
treatment; here Et at the surface differs from Pg and turns out
to be p, + 2E for small amplitudes, therefore §¥ad = 2F for such
a surface perpendicular to the vave propagation.

Thus finally, we have arrived at the saﬁe relations
as we found to hold in electrodynamics, but the physical back-
ground is rore complicated in the case of mechanical waves,
Other cases will be treated mathematically in this report. Our
purpose here is to give a prelininary idea of the general causes

leading to an acoustic radiation pressure, for some special and

simple cases.
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PART II

PLANE COIIPALSSICH.L UAVES AND RADTATION PRESSURE IN LIQUIDS

1. General Considerations - Compressibility

As a vhole, this report deals mainly with the radiation
pressure of plane acoustic waves in liquids. There are two special
reasons for tiis.

First, because this case is of practical importance. Al-
though a plane wave cannot stricily be realized experimentally,
still if the width of the acoustic bean is large in comparison irith
the wavelength, the concept of a plane wave gives us a good approxima-
tion, especially in the case of the high frequencies used in ultra-
sonic waves.

Second, because in the acoustics of liguids we are able
to make use of the concept of constant compressibility. This
concept inﬁroduces‘a simple analytical relation between the
hydrodynamic pressure p and the relative change in volume [5 V/Vo
of a volume elenent having the original volume V,, on vhich a

pressure /\ p is exerted. The compressibility § is by definitions

_ AT,

P (2.1)
Vo AN
For small changes in volume and pressure, we have the isothermal
compressibility,
f = e éa—-\l—
“isoth. Vo ‘ap 7 (2.2)

and for the adiabatic compressibility

padiab. = '%— ("-Yh) (2.3)
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the subscripts T and ¢ denoting constant temperature and entrony.
For acoustic waves one uses normally the value Badiab.’
though the process of compression and rarefaction of the liquid
is certainly not strictly adisbatic, owing to the unavoidable
dissipation of heat. Still the exact value of £ will not be
very much affected even if the process is not strictly adiabatic,
This fact can be seen from the formula giving the difference
b,

bt 1L . . a4
etween padlab. an Flsotn.

-1
ﬁadiab. - Pisoth, = ﬁ;

!{V?@I\ K AR
‘\apj cp (5.1-‘ A

¥
i
——

Numerically it turns out that this difference is rather small
for liquids forming drops. It amounts to only a few percent
under normal conditions of temberature and pressure. Thus for
vater, the value f.q:.p = 46(10° %) om 2/xg force at t = 20°C is
ordinarily used for compressional waves.

Over a large range of pressure the comprzssibility is
not constant.s At t = 20°C, for instance, Pisotn, has the follow-

ing mean values between p =1 and p = 1 + Zél D

100 500 1000 2000 kg/c:m2

A p= 0
6 1 (g¥y -
100w (Z2) = 46 46 43 40 35

o &¢F T

The excess pressure in a plane compressional wave is a
function of the intensity J of the wave. Its maxinum valuve is
given by

where ¢ is the velocity of sound.
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For water, at the very high intensity of J = 100 watt/cmz,
p amounts approxinately to 17 atm. Thus over the range usually
encountered, the compressibility can be regorded as practically
constant,  This fact greatly simplifies the mathematical treatment
of acoustic waves in liquids, and enables us also to extend the
discussion to finite amplitudes in liquids.

2. Strains and Stresses in Viscous Liquids for Plane

Compressional Haves

The general relotions between stresses and strains in a
viscous medium having a coeliicient of viscosity ¥ and a
b o

compressibility £ are:

Y A
T = n—E— + 3 ¥7 (2 £y - £y - £, )

JAN

i o _____+

Tyy 5 4 (2 €y < By - By ) (2.6)

wimn

N

2 P .
igg = -“E— + 3 V} (2 €, " Ex " &y )
Txy = 2175}{3,, Tyq = Zyl Eyzo T, = 2\7 €ox

where

E
i:?f

8:2_5_ E.p =

P2 o (2.7)

D Q)
e

N

Q>
N

1 - s
e = (L& .

4 +
xy 2 3y “,x)°ec°

Q

29;7 s & = displeocenents in the x, ¥, z directions

A dot denotes the partial time-derivative. For example,

' -2
* 2 _ = -
Enggfk—-é% %% gxdt




For the salte of generality we include here viscous forces,

though later on we shall neglect viscosity. The concept of plane
waves means that at all points of any plane perpendicular to the

direction = of the wave-propagation the state of motion is the

Li_ o
same and therefore = = - = he dis G = =
oy 3z 0, also the displacernient p? ¢ = 0,

Introducing these assumptions in Iq. (2.6) we find:

T = % %”’é“?a%‘g}gt
Yy < % ;;‘éy?a%ig% (2.8)
o= L fié - §Ty:12§é_
22 P d=x 3 /0xJt
Ty = Typ = Tgp =0.

he nrescure p 1s deiined bys

TXX + Tyv + Tgg - Jéé_
B

—p:

-p= 3 = (2.9)
The quentity Tyx + Tyy * Tzz is knoun to be an inveriant of the
tensor Tj. and independent of the orientation of the axes of the
coordinate system. This is the reason for the definition
(2.9), which is also in agreenent with our earlier definition
of compressibility in LEq. (2.1), because, as is well knowm, the
quantity /\ = €xx t &gy + €5 is identical with the relative
change in volume /\ V/Vo of a volume element Vg In the case
of a plane wave one finds from Lgs. (2.9) and (2.8):

%—g | (2.10)

el Col
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The terms containing Y, cancel out; as we expect, because p in
(2.10) gives the mean pressure in a volume element due to the

wave motion, vhich is independent of viscous forces and the

sarme in all directions, In a plane wave a volume element is,

it is true, stretched and compressed only in the direction x

of the wave propagation, because the displacements have only one
component &. But according to Egs. (2.1) and (2.10) this causes
a hydrodynamic pressure p, which is a scalar and therefore in- ’
dependent of direction. The relation (2.10) is exact 7 delini-
tion for media with constant compressibility; no higher order
terms in £ need be considered.

3. Tae Iulerian Liguations of liotion for Plane

Compressional Uaves in Viscous Liguids

For treating the radiation pressure in a plane corpressional
wave we must know the stresses in the medium. As the radiation
pressure acts on the surfaces of bedies inserted in the medium,
whose mean position in space can be regarded as fixad, we desire
to know the stresses in a coordinate system referring to points
fixed in space. The hydrodynamic equations applying te this
case are the so-called "Dulerian" equations. All physical quan-
tities, as the particle velocity u or the pressure p, are regarded
as functions of the coordinates x, y, 2z, of an axial systenm fixed
in spacé9 and of the time t. For a plane compressiornal wave with
the only component of displacement ¢ in the x-direction, the
Eulerian equation of rotion in the direction x of wave-propagation

is known to be

QL’I':“_’ Sm————— L ]
© bt (2.11)
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vhere f>is the nass-censity, Du/Dt the total derivative with re-
spect to t of the velocity u in the x-direction of a volume-element
having the density P « Tor the plane wave here considered,

=u (x,t) is o function of x and t alone; for simplicity wve use

-

1 instezd of Ueo  SC (2.11) follows immediately from consideration

of the acceleration vhich a volume-element undergoes under the

~ m

- u 'L . - » -
action of the force ~:§§§ in the x~direction. UNo accelerabting

s <X

~4

forees exist in the ¥ ond z directions, because

. \

55 © 75; =0 and T4 =0 for i # &
Fron (2.11) we have
~ ~ 3 (9 T
du gu ds ou ZX
T = + = ; 2.12
f)(ot &% d ) € Fu ax (2.12)
T The conservation of nass of a volume element limited by

surfaces fixe? in space (vhich we will call Ycontrol-surfaces") re-

quires in the cne-dimensional case of a plane wave

o, 2lpu) _ | (2.13)

ot ox

the well-knowm "equation of continuity'.
Corbining Egs. (2.12) and (2.13) by adding u §§. to
(2.12), and using -;Lg fron (2.13), one obtains another knowm fornm

of Euler's equation:

Slen) , Slevd) ST _ ]
St * Sx ox 0
Yy (2a14)

. 2 p 2 D ?
ot olen) | o(eu) =R = 9
ot Sx X

It

wih

This is the main equation upon which we base our further considera-

tion of the stresces in a plane wave. As has been stated, the




quantities 539 u, and T__ are functions of x and t, where x is a
coordinate fixed in spaces

We now consider a volume eiemsnt limited by two planes at
x ard x + dx and ith unit area perpendicular to the x-szxis, {3, u
and Txy are talen vith respect to the fixed rlernes x and x + dx
respectively, Uhen narticles move with velocity u across these
r planes, u (x,t) belongs to different particles at different instants;
that is, alvays to the particuler particle vhich just crosses the
stativvacy plane x {or x 4 dx) at the time t. (3 is the density of
the v.itne elenent between the_"control—surfaces“ of unit area at
x and x *+ dx,

Ue can interpret the terms on the left side of Eq. (2.14)
as three forces acting on the volume element between the control~

surfaces, whose sun equals zero according to d'Alembert's prin-

y ciple.

A

-
s s < u) . . .
The first term -—éf%~) gives the change in mechanical mo-
< -
mentun (}u at x with respect to the time t. This can be inter-
nreted as equivalent to a force of inertia exerted by the volume-

element, as is usually done in mechanics,
DT
The tern -—=—=

i

means the mechanical force acting on the

volume element. According to Eq. (2.8) it is given by

-

35

+
D~
M0

. e ulY s , o .
The third temm £4&£ii_J is due to the gain in momentum in
o X

unit time which the volvme element undergoes, if a greater amount of

monentum ﬁgu enters the area at x thon leaves the area at x + dx
1

per second. Paraphrasing L. Brillouin's terminology we call the
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quantity Fuz Tthe flux of mechanical momentum density" ("Flux de

quantite’ dé mouvenent™; see refs 5, pps 241 and 290)s It plays a
dominant part in dealing with radiation pressure,

The incoming flux of momentum in unit time at x is obviously
(%u u) 3 the outgoing flux at x + dx in the same time is (?u' sobdct

The difference ( Fu'u)xi'dx (f:u-u) is given by

This quantity is a contributicn- to the momentum of the element in just

as true a sense as the term -QL?—E—) o dx and can be regarded there-
at
fore in the same way as a force acting on the element,
It is obviously convenient to add this force due to the flux

of momentum ©Ou? at x to the stress-tensor Tywe So we write (2.714)
plo's

thus:
o LU 3 u = (2.1 6
2t ox P )

The flux of momentum {‘0 u? is equivalent "co an additional
stress-component, acting on each volume element of a medium, the B
particles of yhich are in motion. This stress reduces to @ particu-
larly simple term in the case of plane waves. Tor the general case
of a movement of particles in different directions 1.{:Lth velocities

u_, U, u, in the x, y and z-directions, the stress-tensor T is to

x? Ty Tz
be completed in the way we have already mentioned in (1.15).
The complete dynamic stress-tensor in Eulerian coordinates

for a plane wave is given by
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2 » '
TXX (>u Txy 0
T= T
Ty Ty 0 (2.,17)
0 0
; zZz
with the values Tik as given in Eqe (2.8). B
Disreparding viscous forces, we find by introducing the
pressure p due to the vave mobtion, according to Eq. (2.10), and
adding the static pressure Py to p:
|- ytovd 0 0
v -
T = ’ 0 -p, 0 l (2.18)
o v
| 0 o -
i Py |

as already given in (1.16),

Eqe (2.17) or (2,18) will answer all questions concerning
the radiation pressure, because it gives the stress-components in a
plane compressional vaves ‘le see that the medium undergoes a non-

isotronic state of tension due to the unidirectional flux of momentum

in the x~directiona

e seek the solution of Eg. (2.16) for the case of pure
sinusoidal waves, in ordef to insert the values of Py and (>u2 in
Eq. (2.18).

The Eulerian equation (2.16) or (2.12) in fixed coordinates

2
is ponlinear, because of terms like u Fy or like S

This difficulty, uhich corplicates the solution, can - at least in
liquids ~ be avoided by using ancther set of ecquations of motion,
vhich are usually called the "Legrangian equations of motion".  These
equations relate not to points fixed in space, but rather to the mov-
ing particles. It is much easier to find the correct solution by

means of the Lagranpian equationsy for this reason they are usually
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employed to find the solution for plane cqmpressional Haves. Hever-
theless, for expfessing the radiation pressure exerted on obstacles
whose mean position in space can be regarded as Tixed, these solutions
must be transformed from the system related to moving particles into
the Eulerian coordinate system. This can easily be done, as will
be seen,

One inportont point, vhich nmust not be overlooked, is the

circunstance. thot the averagse values in tine of both terms p and

f>u2 in fixed coordinates are gecond-order tsrms. The radiation
pressure is, as has been seen, proportional to the energy-density,

and is therefore a second-order guantitys this explains also its

relatively snall nunerical values in conparison w1t1 first-order
pressures; even at the small amplitudes ordirnarily used. ihereas
the first-order nressure has maxinmal values up to some kilograns per
cmz9 the acougtic radiation pressure only reaches values of the order
of grams or dymss of force per cnle

Ir transforming p and ‘ou2 fron the Lagrangian into the
Eulerian systen all second-order terms nust be carefully taken into
account, Restriction to first-order solutions leads to erroneous
results. Instaonces night be cited in certain papers dealing with
radiation pressures

In the case of a liquid the use of the Lagrangian equations
gives us an exact sclution for finite amplitudes, vhich can be trans-
formed into the Eulerian coordinate systen. In the case of gases,
on the cther haond, even the Lagrangian equation becomes nonlinear
and we must develop the Lagrangian solution in series at least up to

the second-order terms in order to find the radiation pressure for

small amplitudes.
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4o The Lagrangian Equation of liotion for Plane

Conpressional Waves in Viscous Liquids

Let € be the displacement of a particle with respect to

its original undisturbed position x. If there is a wave motion,

particles move back and forth through x, so that £ =& (x,t).
The true particle coordinate in space at any time t is therefore
x + T (x,t). The equation of motion for the displacements & can

easily be established and is found to be99 12

D O T#
Fo = E‘(Xg‘b) = XX (2°19>

This equation is absolutely exact, with nothing neg-

lected. The constant f% is the original undisturbed density in

absence of wave motion. T#* (x,t) is the stress at the location

of the moving particle, that is, at x + T (x,t). Ve use the

notation T¥, for stresses assoclated with moving volune elements
for distinction from Txx in Dulerian coordinates related to point;
fixed in space. The particle velocity at the instantaneous loca-
tion x + £ (x,t) is denoted similarly by u¥*(x,t) = %%% .

The relation between the quantities Txx” W,

and (9 in
Eulerian fixed coordinates and the same quantities Tix’ u¥, and fp*

in Lagrangian coordinates is obviously (see also ref. 16) :

2% (x,t) = T (x + E,t)

]

ut (x,t) = u {x + L,t) (2.20)

(?* (Xst) E (X + Est)




or, by substituting x - § for x,

9

T (e - E,) = T (5,0)
u* (x - E,t) =u (x,t) (2.21)

s
"w

(= =~ &) =(0 (x,%)

Eqe (2.20) or (2.21) allows us to find T, u, and Fu for example,
if we know the solution for T%, u¥, /3* in Lagrangian coordinates.

For the special case of liquids with constant compressi-
bility p the relation between T% and ¥ is given by Eq. (2.8), and
from (2,19) we have the well-known equation of motion for viscous
liquids:

(30_5__2_{ = lﬁ + éky]_a.?_g.——
212 B Sx° 3 ' %23t

This equation is linear and can therefore be solved easily
and exactly, whereas the corresponding equation for the same case
in Bulerian coordinntes is nonlinear, as already mentioned. For
gases the connectlon betueen T;X or p¥* ﬁnd_the displacenent in
general is nonlinear. In this case, the solution of (2,?9) can

only be expressed in the form of a series.

5. The Exact Solution for Plane Compressional laves

in lion~-viscous Liguids

3ince we shall consider radiation pressure here vithoub
regarding the influence of viscous abserption, we neglect the last
term on the right side of Lge (2.22).  The solution for plane
waves in liquids Tollows at once from this equation. For pure

sinusoidal motion of a particle about its original location the

solution is knowm to be

(2.22)
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= goif‘;’; (Wb - ) + Y 50 (b + kx + e)\i (2.23)

- 2T - -
=2 = =8 o= om
1 _ w
k

{ B fo

This solution corresponds to the assumption, commonly made with re-

spect to the boundary conditions, that the wave motion is generated
by a piston-like source moving harmonically with angular frequency
w around its average position. he source may be located at any

x or at infinity. Trom (2.23) we derive the following quantities:

: + ¢
Cu* (x,t) = 28 - aﬂ g

(wt ~ kx) + Y Sin {wt + kx + e)l (2.24)

ob o+
' kg cos ©Co8 1
-p(x,t) = T* = : %}% = "'era-s:m (b - ) + Yy (b + e + Q)f(?'“%)

The density (:)* follows from
(o*v* = Po¥o (2.26)
Vo is the original volume of a volume element, V¥* the volume of a
displaced volune element, According to Eqa. (2.1) and (2.10),
VE=V 4 DT =T - ﬁVoAp:é
or v =V (1+ -3-5-) {2.27)
» 0 ox

From (2.26) we derive the density (3* at the coordinate of the

moving particles

6ﬁ(x,t) = 1 4-‘3§(X ) (2.28)

The solution given by Egse (2.23, 2424, 2.25) are
strictly exact, so long as the assumption of a constant compressi-

bility can be regarded as wvalid.

-]
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Hovrever, tlere is one important restriction which limits
these solutions to a definite range of amplitudes Eo. _The dif-
ferential equation (2.22) implies the supposition that & (x,t) and
the derivatives u¥* = J¥/ 3t and -fp* = AL/ 3% are unique functions
of x and t« At a coordinate x, + § in space, for instance, only

1

one kind of particle with displacement £ (x1) and velocity u¥ (x1)

at a certain tine t:is assumed to exist in the derivation vhich
leads to Ege. (2.22). At the moment when a particle A, originally
located at a position % behind anot@er particle B originally at X
undergoes such a large @isplacemenﬁ QA that it reaches or passes
the particle B at X + E(XB), we would find two different particles
with, in general, two different velocities u¥ (gA) or uk* (XB) at
the sane point x, + Z(XA) = % + E(xB) in space at the same time.

A
The condition to be imposed upon our solution (2.23) for & for

preventing the overtaking of one particle by another is found to be
28 5
ox

This can be understood immediately fron the expression for f:* in
Eqe (2.28). If tuo different particles originally located at

different coordinates X, and x5 cane into contact, the original.

volume between the planes Xy and XB would be compressed to zero,

and the density (9* would become infinite. This would happen,
as may be seen {ron Eqe. (2.28), if the denominator vanished or if
AL/ dx = 1. Only so long as the condition above is valid, does

P* remain finitey from this fact, together with Eq. (2.23) we find

o ™

Y i -cos ' cos - %
ot - KE Jt +gin (Wb -~ Ix) + Y -sin (ot + k + e) { >-1

Jdx

Lo

¥




and hence the condition limiting the maximal amplitude Eo of any

displacement is
o -
1< 1 or

O

i

|1 - &
o|<k T ar (2.29)

p=

FYor all amplitudes smaller than that indicated by
(2.29), the solution (2,23) is exact and unique. In media with
constant compressibility, compressional sinusoidal waves as re-
presented by Eq. (R2.23) are propagated without distortion. This
fact has in principle already been stated by Rayleigh,13 though he
did not deal specifically with real liquids, but made only a
theoretical statement. The condition (2.29) is more a theoretical
than a practical limitétion for the amplitudes {o’ as amplitudes in
the neighbourlood of kEo = 1 would require enormous energies that
could not be realized experimentally. (See Sec. & b)

By neans of the transformation formulas (2.21) we are
able now to find the exact solution for plane compressional waves
in liquids in fulerian coordinates. 1e need only replace x in

Eqe (Re23) etce by x - E(x,t). Choosing the sine solution for &

in (2.23), we obtain from (2.24) and (2.25)

u (x,%) =03§0 (zcos {(o‘c -k (x E) +X cos | oot +0 +k (x-E) ,j%
= wgoﬁ)tco [t - + X {\s:m(wb - 1) +ysinfot + +0+ kx%
+ \(cos[(nt +6 +kx - kf (sm(mt - lx) (2.30)
+Ysin(ot + 6 + kx))});
and

K - - -
p (x,t) = "'59' gcos tw’c - lzx + kEo (sin(wt - kx) + Ysin(wt +0 + kx))}

-y cos{wt + 6+ dx - kE &sm(co‘b - kx) (2.31)

- . + ]’s1nﬁwt +6 +»ka)J'}
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These expressions (2.30) and (2.31) are exact solutions
of the nonlinear Eulerian differential equation of motion (2.14),
for amplitudes ZO<L7k/2w according to (2.29) and for the special
case of pure sinusoidal waves traveling to the right and left
given by the Lagrangian solution (2,23) for the displacement E.

This statement con be verified by inserting Eq. (2.30) and the
appropriate expression for f)in the differential equation (2.14).
(See Part II, Sec., 9 for a general proof).

The independent variables x and t enter this solution
throughout in the combination wt * kx. Thus the solution in -
Eulerian coordinates also represents systems of waves traveling with
the phase-velocity ¢ = w/k to the right and left. But the resul-
tant wave motion is not given by simple superposition, such as holds
with the Lagrangian coordinates.  Physically this means that
u(x,t) and p(x,t) in Eulerian coordinates are not represented in
our case by superposition of pure sinusoidal traveling waves; the
wave form is distorted and this fact is responsikle for the
existance of higher order terms in Eo’ whose average values in
time do not vanish,

6o Developnent in Series up to the Second Order of

the Ixact Solution in Eulerian Coordinates
For gnall amplitudes Eo we develop the solutions (2.30)
and (2.31) in Taylor series, retaining second-order terms in ZO.
For u(x,t) we get from (2.30), writingizsv = wt F kx:

- 4

f / WM
t ::f - —7.; . (,-\, + H
cos§0_+.lgp‘\si111 u_+?{sm\(,+ G)/,rl.'

(o]
- - 1r / = ~ = ";’ }
+ Ycos -’L{'+ 9 - kg ( sin t_ + {sm( e+ e))‘e
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or,
{ Y 4 "
u = 0350 iCOS‘D~ - }c_{o (sin VZ“'_ + X sin( T4 + 9)) "_ sin 't'_
+ycos(t’+ +8) + Xk{(}(sin ﬁ_ + )}sin(’{i; 9))

. sin(f+ +8) % (2.32)

»;

As we shall be chiefly interested in average time values

of u and p, we compute the mean value u of u by

b, + T wt, + ol
- 1 1 b 1 1
u(x,t) = 7\ u(x,t) dt = = u(x,wt) dwt
L } Wl
D J P
t,l oot,l
ory, ,.t1 + 2
- 1\
u(x,t) = 77 ) ulx,wt) dot (R.33)
b

From (2.32) and (2.33) we find

i\cv 2 L 2 , "
7= _?“120 (1 + Xcos(g kx +8) ) +°—°-k-¥;—°— (\(“L cos(2 kx + @) )
or wkz 2 .
q=- (1 —EZ) (2.34)
2

The result (2.34) shows that u(x,t) does not depend
upon x even if there is a reflected wave, the latter being
characterized vy the relflection coefficient X o In Lagrangian
coordinates the tine averajze u¥ of the velocity u¥* equals zero,

In the sane way as in deriving u, we find fron Eq.
(2.31) for the avera~e %tine value of p,

2 2
k
S0
2

E = - (1 +2 XCOS(Z kx + @) +X2) (2.35)
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The nean pressure 5 in Fulerian coordinates evidently
veries sinusoidally withi x when reflected waves are present.
Another mean value that we shall need is the time-average
value of the quantity §>u2 in Bulerian coordinates. If we trans-
Torm ()* into (3 and develop {3 in povers qf Eo, we obtain
{?:: f% (1 + a1EO * aZEOZ Teee)

The developnent of u may be written
- . )
=D + t ese = + Db t oese 036
w=bE +bE £ (b, + DL+ o) (2.36)
as seen fron (2.32). So ve fiad
2 _ 2 2.2
= + + . + Db :
U= (M af, el s (B ¥ BEITE o
or, disregarding terns of higher than the second order,
2 — 1»\2 l: 2 - L .-'.2 .
u~ = Q + 6ecea — Hy® '20 7
f; fg 1 "o fD H (2.37)

Therefore we do not need the Jevelopment of f)in pouvers of EO, as
only the undisturbed density {DO enters (2.37). This relation
shows also that the value of ﬁhe kinetic energy density at small
amplitudes is the sane in both Eulerian and Lagrangian coordinates.

We have from Eqs. {2.36), (2.37) and (2.32),

f’ug €0§02 * b12 = {00502 * weos Totw ?fcos( Ti+6) )2

or

e Y

Pu

N
]

2,2 |
(3-@92—&‘ (1+2 X cos(2 kx + 8) + \{2) = f)%u*z (2.38)

Comparing p and f)uz in (2.35) and (2.38), we find S =

fx3u2. This relation holds in liquids at small amplitudes, but




not in gases. (See Part III, Sece 4).
It is conformable to our purpose to introduce the
mean total encvey density E in (2.35) and (2.38). For a pure

sinusoidal plane compressional wave traveling to infinity in

2
one direction, we get the mean kinelic energy density %zg—
directly from (2.33), if we put X!= O. Therefore for smell

amplitudes

I
g
&

(2.39)

ol
l.J
=
I~
4
=

The identity of Iy in Lulerian coordinates at small amplitudes

kin

— e
with E*kin = 4251— in Lagrangian coordinates has already been
seen in Eq. (R.37).
The potential energy density due to the elastic

compression of the medium is given by dE = -p * dV, that is

pot

the work done upon unit volume V, = 1i under the action of a

=

pressure p. Iron Bge (2.1) we find, with V, =1, dV = - § dp

and <therefore dEpot = [ pdps. By integration we have

N
Ewpot = -2-5 p%\

Inserting p* {ron (2.10) we obtain

¥ =

pot
Since &, according to Eqe (R.23), is a function of the

argunent ot + kx alone,

S§ - :_ k ‘E
ox w

11

G4Q‘
o+

|
+i
ol—
Q7
ct
-+
e ]

So we have, remembering that cR
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AP A | 2
B¥oot, = % R T 32 f}ou’- (2:.40)

The difference betveen E.%1

I O i grangi rdinat
cin and B pot in Lagrangian coordinates

is therefore By, = D¥ 4 = ( (c* .-(oo) w2/2 in liquids. It

kin
vanishes at small amplitudes, that is in the second-order approxi-
mation,

At sncll amplitudes the average time value for the
potential enersy density in pure sinusoidal waves is given
therefore by the sane expression as for the mean kinetic energy
density in (2¢39):

2 Pofo”

-«'-2(- = w 8 = -'3’:
e e B ot

P

The total mean energy density of a plane unidirectional wave at

small amplitudes is

2
- = - w* Bk -
L% = L% . s - __ﬁg_.?_ =T (2.42)

kin +

For small amplitudes there is therefore no distinction between
E* and E.
Introducing Eqe (2.42) in (2.38) and (2.35) and re-

menbering that 1c2/{3 = (02'/[302 = Powz, we find

p

i

-E(1+2 X’cos(z kx + 9) + \6’2) (2:43)

f}u?‘ + L (1+ 2)' cos(2 kx + Q) + \g2) (2.44,)

Il

W have now derived the expressions in Eulerian coordinates needed .

to establish the stress tensor.




7. Stress-tensor snd Radiation Pressure for 3mall

Amplitudes in Liguids

By inserting Eqs. (2.43) and (2.44) in (2.18), we obtain
the time average of the stress tensor T in a liquid traversed by
plene compressional waves with small amplitudes (k{o<:<ﬂ), dis-
regarding viscous absorption, As the liquid is under an additional
hydrostatic pressure Pyo Ve nust add this pressure to the hydro-

dynamic pressure p in (2.43) due to the wave motion alone., So

we heve for the nean stress tencor T
Po .. 0 - 0 gl
TS| 0 -(pg- E[1+2 Y cos (2lax + 6) ﬂle) 0 ‘ !}
0 0 - (po- ED + 2 Xcos(.?kx + 8) +r21) i’

(2.45)
Owing to the fact %that the two quantities p in

(2.43) and (3u in (2.44) are numerically equal but of opposite

vttt

signs, the sum 5 +-Pu2 equals zero., Thus T, in (2.45) is equal

to the static pressure p, and is not changed by the wave motion.

he existence of a comp . caosional vave evidentl;s cli-nges only The

3

corzonents T.., and 7, perpendiculer to the dirvection of vave-
o

]
& i

propagation. Fron Lge (2.43) it is seen that the presence of a

compressional wave in a liquid diminishes the mean static nressure
Py by the amownt E (1 +2 }{cos(212 +6) +‘g 2). In the direc-

tion x of vave propagation this diminution is exactly compensated

by the stress f)uz due to the flux of nomentum in the same direction.
Now let us inseri . an infinite plane material surface
perpendicular to xe The compressional wave traveling to the

right undergoes reflection at this surface, characterized by the
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coefficient k/ of the reflected amplitude and the phase angle ©
of the reflected vave. For computing the force acting upon
the reflector, e assune that behind the reflector is the same
liquid under the static pressure pj. The resultant force per
square centinmeter acting upon the reflector, which is the radia-
tion pressure, equals the difference between the pressures on

the left and riht sides of the reflector. (Fige 9)

reflecteds—- - - dxy
. — il e i
ineident P | 3
wave 1 y o ‘
] i X
‘ ,
2 “
v
—m V] -
A
Peg * Py
Pige 9

Plane reflector undergoing a pressure pgon the
front side and a pressure p, on the rear

The pressure exerted at the boundary between the reflector and the

irradiated nedium is given by

X, = Ty cos{n,x) + Txy cos(n,y) + Tyy cos(n,s) (Re46)

X, Genotes the component of pressure in the x-direction

and n the direction of the imner normal to the surface, In our

-

-

case (Fig. 9) only cos{n,x) = - 1 is different from zero, further-

more Txy =T, = 0 according to (2.45)s There renains only a

pressure X, = -~ Ty = Pg perpendicular to the reflector on its
left side. As the sane pressure p, exists at the right side of

-~

the reflector, no resultant force is exerted upon the reflecting

- surface. A plane corpressional vave extending to infinity in

all directions perpendicular to the wave provaration in a liquid
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would exert no radiation pressure upon any plane infinite reflector

pervendicular to the direction of the wave propagation.

This case of a plane wave extending to infinity is merely

heoretical, as it can hardly, even approximately, be realized
experimentally, The acoustic beam always has a finite cross-
section and is usually surrounded by a part of the same liouid which
is not affected by the wave moticne. The mean pressure in ﬁhe sur-
rounding liquid is P the pressure inside the beam is changed by

the wave motion to P, + 5. As 5 is negative according to Eq. (2.43),
the mean pressure inside the beam is lower than in the surrounding
mediume

The mean pressure tends to be equalized over the whole
liquide This means that the surrounding liquid, vhere the pressure
Py 18 assumed to be maintained constant, compresses the beam-region
until the nmean pressure in the beam is the same as thal around it.
This effect leads to a radiation pressure upon a finite material
obstacle placed in the way of the acoustic beam.

The sinplest case, and that vhich has received most
attention in the literature, is the radiation pressure upon a per-
fectly absorbing surface. There no reflected wave exists and
if-= C. The thecretical concept often used to represent a per-
fect absorber regards the absorbing wall as free to move in a
direction normal to its plarne and following the movement of the
particles irmediately adjacent to the wall, The pressure observed

at the wall is identical then with the pressure p¥* associated with




the meving particles, vhich we knew to be purely sinuseidal fren
(2.25), whether the beam is finite or infinitely extended.
The mean work done by p* per second and square centimeter at the

wall equals the average value in time

T Tp - Tp
1 1 £ 1
Y Y P I (W
Po Po P%

vhich by use of Egs. (2.24) and {(2.25) with }{=:O, and from
(2.42), is easily computed to be equal to E * c. Such a moving

wall would absorb indeed all the energy reaching it, and there

would be no reflections The mean force %p J:p p¥ dt exerted
upon such a moving wall would be zero, as p¥ is purely sinusoidal.
The freely moving and absorbing wall would be indeed a perfect
absorber, but it represents mere a theeretical fiction than =z
feasible experimental devices

In nmeasuring radiation pressure we do net fellew the
mevement of the particles of the surface struck by the aceustic
beams All particles on the surface move periodically around
their original positions, so that the center of mass of the sur-
face, when averaged over a whole period, can be regarded as fixed
in space. Usually the surface subjected to radiation pressure
is also connected to a measuring device of considerable inertia,
unaffected by the rapid motion of the particles in the wave.
This is ‘the reason vhy we introduce the Eulgrian system of coordi-

nates fixed in space for computing the time-average of the

radiation pressure related to a device wvhich is assumed to be
fixed in space rather than to follow the motion of particles.

(See also Sec. 12).

4T




As in optice,

absorber is the "hohlraum" or radiation trap.

the most practicable approach to a perfect

An acoustic hohlraum

consists of a cavity with acoustically insulating walls, filled with

an absorbing medium, and provided with a small aperture through

which the acoustic beam

is admitted.s Such a device, in the form

of a cylindrical tube closed at one end, has been used for measuring

acoustic intensities in
range the absorption of

that is not excessively

water,®* For frequencies in the megacycle
energy is practically complete in a tube

longs

The plane of the aperture therelore
serves as a totally absorbing surface.

Ve nou consider first the radiation pressure exerted upon
a perfectly absorbing surface, and then the somevhat more complicated
case of a reflecting surface.

a. tadiation pressure upon a perfectly absorbing surface,

disrerarding viscosity.®%

Fron Eqe (2.45) we find, for ‘X'= 0, the average-time value
of Te
“Po 0 0
T = 0 - -
It o 0 -(p,-E)

As has already been pointed out, the mean pressure in the
acoustic beam is lowered by the wave motion by an smount equal to

the mean energy density E.¥*%  If the beam of infinite cross-section

% Contract 116 OUR~262, Tasl Order 1: Report lo. 1, Dece 20, 1947,
pe 363 Report lo. 3, Febs 21, 1949, pp. 8-11.

ty
#% See also ref. 5, pps 302-304

®Ek An instructive physical outline of this effect is given in g
paper by Hertz and Mended, (See also ref. ¥T)

(2.47)




does not communicate with the region of the liquid unaffected by

the wave motion, the radiation pressure upon an infinite wall,

one side of uhich is struck by the wave and vhose other side is
adjacent to the undisturbed liquid, is zero because both sides

of the wall are subject to the same force p, ber square centimete‘r
in the x-direction,

The change in the time-average value of the density {o*
due to the wave nmobion is found from Za. (2.28), For small
amplitudes, regarding p¥* as a small quantity, we have (3* =
Po (1 + pp* + pp*R + ...)e  After transformation into Eulerian
coor'ol:'ma.tes.9 e obtain the mean change in density at small

amplitudes

~~
m—————
-

L Ap=B-f = pf B HE?) (2.482)

As the pressure inside the beam is lowered to p, - E, 5 equals -E.
555 is found irmediately from Egs. (2.31) and (2.42) to be + E
for X’—: 0 and small amplitudes, Therefore we obtain from (2.4851)
Z—?0= 0, which means that the wave motion in the infinitely ex~
tended beam does not change the mean density in the second-order
approximation, though it lowers the mean pressure by the amount Ee

If the bean is of finite cross-sectien and surrounded
by ligquid with hydrostatic pressure pgs the pressure inside the
beam being pg - E, the liquid in the beam undergoes a compression,

until the mean pressure inside reaches the same value p, as in the

surrounding region. The change in density A\ (3' due to this

compression is found from j_\€‘/(oo =- AV, =p Apor

1 =

Ap @oﬁZ5=

2 (ZOASb)
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Thus the wave motion causes a slight increase in density é}{ﬂ
inside a bean of finite width, though the pressure becomes the
same in the bean azs in the surrounding undisturbed medium with
the unchangzed density® f%.

This fact can perhaps best be understood by‘the follou-
ing reasoning: The aqoustic wave motion changes the pressure by
a second-order term (-E), vhereas the change in denegity is small
of higher orders The corpression of the beam of finite width by
the surrounding medium changes both pressure and density by second
order terms (E and E/c2 respectively). In the resulting pressure
the two changes cancel each other to zero so that the final pressure
becomes py again; in the final density however the sum of the two
changes results in the second order term /\ p' = E/c?,

The resultant stress tensor becomes now (see also

I'ef. 59 Pe 302)

~(p, + E) 0 0
5 X.___ G:: 0 =Po . 0 (2-49)
0 0 “Pg

According to (2.46) a resultant force E per square centimeter is now
exerted upon a fixed, perfectly absorbing wall. The radiation
pressure upon such a suriace therefore equals the mean energy

density, as long as the amplitude is small:

=

(Ppga) = (2.50)

y=0

* See also the paper by G. Richter15, vho, following a different
path, arrives at the same result concerning the mean density e.
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The radiation pressure in this case is due to the mean periodic
flux of mechanical momentum due to the wave motion, which intro-
duces the term (Oud = E in T,.e It is independent of the direc-

tion of propagation of the wave (as is expected because it is a

rad has the

tensor-component and not a vector); this means that
same direction, whether an incident beanm strikes the absorber or
a reflected bean leaves ite The radiation pressure is not caused

N

by the increase in density A\ P’ inside the beam, due to compres-
L3 e 1. . ) 2 8$1
sion of the surrounding liquid, as has ofien been asserted.

In the plane wave of infinite width, not in communication

with undisturbed regions of the liquid, the term Tyys responsible

for the radiation pressure, vas, according to (2.18), found to be

by - E + euz. The two terms -E and f)uz = + E cancel exactly,
which means that the diminution in mean pressure is just compen-
sated by the flux of nmomentum. In the x-direction no additional
stress acting on a volume elenment of the liquid would be found,
if this were all that happeneds By virtue of thg interaction
with the surrounding liquid the mean pressure Py - T is brought

up ﬁp the value p, of the undisturbed liquide The term Ty, =

Po - E+ {c)u2 is changed into p  + fiu'?‘. Now an additional stress

Esuz acts throughout the beam in the x~direction and leads to a

R upon a perfectly absorbing wall per-

radiation pressure E = f)u
pendicular to the direction x of wave propagation.

be Radiation pregsure at a reflecting surface,

disregarding viscosity

In the case of a reflected wave the mean pressure over

- 2
the beam is given by Eqs (2.43) as p, - E(1 + 2 }gcos(ka + 0) *‘X Yo
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It varies sinusoidally along the x-axis. If the beam were in-
finite, no radiation pressure would result on an infinite sur-
face, as hag already been pointed out. The change in the mean
pressure is exactly compensated at any x by the flux of momentum
given by Eqe {2.44). The resultant stress T, equals p, as in
the case where 'K’= O.

If fhe beann is of finite section traversing a liquid
with hydrostatic pressure Po the surrounding liquid still has the
tendency to raise the pressure inside the beam to pye But a
uniform pressure §£= Pq along tie bean is not compatible with the
differential equation (2.14) of our problem, except for the special
case in vhich 'Z’= 0 (Sece 72). This can also be seen fron the
solution for p in Ege (2+43)s Uhen a reflected wave exists,
Etnecessarily varies periodically in space along the x-~axise It -
is reasonable to conclude therefore that by action of the surround-

ing medium the averare value in space of the total pressure

Et = 5 + Po.is brought to po; inside the bean Et varies periodically
along the x-axis around the new value Pge

At points remote from the beam the pressure in the un-
disturbed medium is assumed to be homogeneous and equal to Pye
Within an "edge-region™ of the beam a transition takes place from
the periodically varying pressure 5;, vhich is postulated to exist
in the beam, to the honogeneous static pressure P in the surround-
ing medium, In this transient zone a more complicated (rotational)
motion of particles will occur. A closer theoretical investigation
of this effect is beyond our scopey but we may reason that the

actual transient zone will be small if the wavelength inside the

beam is a small fraction of the width and length of the beams
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Our conclusion that the space-average in 5% inside the
beam will become identical with the static pressure p, outside the
beam (strictly at y = z =« ), can be based on the following
theoretical consideration: Taking the time average of the differen-
tial equation (2.14), and assuming a periodic solution in time,

ve get

-%(p+€u2) %(5’% (cuz)zO

or - _.._.?:
p + u
¢

H

Constant (2.5%)

This constant is obviously independent of t and x. But at small

amplitudes it is also independent of the amplitude Eo of the wave

moti?n, or of the quantity k{o, since the sum (5 + (bug}is independent
of k{o as seen by adding Equations (2¢43) and {2.44)%*. In the case
of a plane wave of infinite width we find. the constant to be zero.
For a finite bean within an undisturbed medium, however, the constant
becomes E (1 + }{2). Indeed,-if we assume that the amplitude is
gradually decreased, that is kEo*ﬁ'O or u->0, the total pressure

Py, averaged in tine and space along the x-axis must tend towards Pys

the static pressure in the surrounding medium. Therefore for u—= 0

a + A a+ A

= 1 S - 1. S ~
= = w = + ol
P, = X A p, dx P, TR ) p dx 3P,
or L r ’\a+)‘. 7
?‘1‘ —-i L T ax | = 0
Phso 1x o, P J -
L u—>0

% See also Part II, Secs 9.




From Eq. (2.43) we find that we have to add the constant E (1 + Xz)
to 5 in order to malke its mean value in space vanish. {(Any addi-
tive constant in p is compatible with the solution of Eqe (2.14)).

Thus under the action of the surrounding medium the pressure p

beconmes

p=-L {1 +2\({cos(2kx+9)+)52) +E (1 +)/2)
or (-_ o CT

p = - 2% veos(2kx + G)'

The Constant = 5 + (3u2 nov reaches the value E (1 +-X2), as seen
from Eq. (2.44), in agreement with our statement above.

Since the constant is independent of the amplitude £,
the foregoing conclusion holds not only for u- 0, but‘for any (emall)

. a + X
value of u. The mean total pressure = S ﬁt dx is therefore

a
equal to Py’ that is the mean value of P in space is zero, in the
case under consideration.
The resultant stress-tensor is obtained therefore from

Ego (2.45) by increasing thé mean pressure in space by the amount

E (1 +X2) :

i gt B4y 0 0
E=' 0 -(po— 2\( E cos(2kx + 0)) 0
X . .
| 0 0 -(p5 2XE cos(2kx + 8))

(2452)

The stress tensor, averaged in time and space, becones

o A—(po + E(1 +§2)) 0 o |
E - 0 _po | 0 { (2»53)
IR
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This leads, using the same considerations as above, to g radiation
pressure upon a reflecting surface, whose reflection coefficient

is }(, of the amount

_ _ = a
Prad E (1 + X ) (2.54)

For a perfectly reflecting surface (}{='ﬂ) we have the well known

(e

result

=2E (2.55)
1

c'»{‘_%ﬁ-/

In the general case of a reflecting surface characte;ized
by the amplitude reflection coefficient *X and the phase angle O
of the reflected wave, the radiation pressufe is independent of
this angle ©. Here too only energy densities are involved; as
K’z E represents the mean energy density of the reflected wave
component. The resulting equation (2¢54) can therefore be described
by saying that the radiation pressure is composed of two parts:
One part is due to the incident wave with the energy density ﬁ,
which we may assume to be perfectly absorbed by the surface., This
leads to a tern P = E. The other part is due to a refleqﬁed

rad 1

wave with the energy density ?{2 E, vhich ve may imagine as re-

emitted by the surfacey this €auses a pressure Frad o = \XZ'E.

The whole pressure .151‘ = (1 + X 2) E may therefore be regarded

ad
as if the surface struck by the plane wave absorbed its energy per-
fectly and reenitted the amount ‘X’z E (see ref. 55 pe 29)e

This statement gives of course not a description of what actually

happens. A physical explanation of the actual process at the
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reflector is offered in Sec. 12 below.

ce Radiation pressure at oblicue incidence

If the plane wave strikes a wall inclined at an angle
QQ'with respect to the direction x of the wave propagation (Fig.‘4w
Page 7) the radiation pressure upon this wall is found by trans-
forming the fixed coordinate system x y z into the system x' y!' z
(Fige 5, Page 8) whose x'y'! ames are rotated through the angle zﬂ.
Applying the transformation formula (1.13) for the tensor T, we
get the new tensor components in the x! y! z systeme From (1.13)

and (2.49) we find for a finite beam traversing a liquid with

static pressure P, end striking a perfectly absorbing surface:

. _ .: ‘ (
-(pO + b cosZZQ) ) % sin 2 aQ 0 ?
Tt = % sin 2 28 -(p, *+ E sin® ZR) 0 ‘ (2056)
z |
| 0 Q poi

Fig. 10 shows the stresses exerted upon a volume element

oriented according to the new axes x!' y! z
+ B coszé%

L N\ o
X3/4;?(7_ \\ ~ X

Components of stress due to radiation at
a volume element inelined at an angle‘dg
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£ we imagine a naterial surface inserted in the way of the beam
at an angle:ﬁgto Le adjacent to the volume element in Fig, 10 and
parallel to the y'-axis, it undergoes a pressure P, +E coszzﬁ in
the direction of its normal x', since it has to exert the same
pressure upon the y' z surface of the volume element. The radia-
tion pressure normal to the perfectly absorbing surface is there-
fore given by E 0082‘22 If we assume a reflecting surface, we
have to add the radiation pressure exerted by the reflected wave

regarded as enitted in the direction shown in Fig. 11,

K y!
\

Incident

Vare

ifs

Reflected Vave
Fig. 1
Direction of rropagation of the reflected wave
for oblique ircicdence
As can easily be seen, we have only to change Zj?in Eg. (2.56) into
- 29 to get tlie stress components related to the reflected wave.
The pressure exerted by the reflected wave normal to the reflecting
2= 2.0
surface is therefore Y “ I cos Zy . The total radiation pressure

normal to the reflecting surface amounts to

(F.d =0+y?Ecsel (2.57)
X!
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As Eq. (2.56) chovws, the wave exerts also a ghearing force upon

the reflector, if the latter is inclined at an angle 29 3y it
ELQ . . A = 50

amounts to 5 sin 2 2¥ and therefore has its maxinum at = L5°,
Owing o the reversal in the sign of 20 for the

reflected wave, the shearing force dve to this wave is

-}{ 3 sin 2 o - The resultant shearing force per square centi-

meter connected with the normal radiation pressure in (2,57) is

therefor
5N -y Eemzal
'S t = x - - i Z 2 20
\brad/ ' (1 X ) 5 sin 2 (2.57a)
¥

It vanishes for a perfect reflector (a/= 1) or for ZQ = 0,

It may be noted that the reflection coefficient»}{ is
a complicated function of the angle of incidence ‘LQ, because a
compressional wave striking thie wall at the angle ZQ induces in
general compressional and rotational waves inside‘the reflector.
Our object here is limited to the kgowledge of the average value in
time of the resultant second order forces acting upon the reflector
and due to radiation pressurey the reflector is assumed to be
characterized by the amplitude reflecticn coefficientr\(( ZQ)g and

&
to absorb all the energy not reflected, so that no radiation leaves
the rear of the reflector. In the special case of a perfect re-
ﬂ%mr%=ﬁwm(demﬁmmish%mMmtﬁZﬂ.

’In the case wvhere sone of the erergy is transmitted
through the reflector, we can assume that the reflector radiates
this part from its rear face. The reactional force is proportional
to the energy pacsing through the reflector, and of opposite sign
to the forces of both the incident and the reflected wave at the

front sides If ue call 4" the amplitude transmission-coefficient
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of the wave leaving the rear of the surface, the resulting radia-

tion pressure is obviously given by

53

Prag = (14Y *-dAE (2458)

for a wave at normal incidences For oblique obstacles the corres-
ponding forces can be found in the same way.

As an example of the achtion of the radiation pressure
upon oblique surfaces, we compute the force exerted upon the device
shown in TFige 12, which is used frequently for measuring radiation

pressure.

Fig. 12

Normal (i) and sheering (S) forces at a
wedge undergoing radiation pressure

The width of the vane in Fig, 12 is /Q, the dimension perpendicular

to the plane of the paper is j)/, the reflection coefficient V.

7 -
The whole force normal to cne side of the vane is I ==/U‘L (1 +X2) E

cos® Z,Q, the shearing force is S =/€,£L (1 - XZ) % gin 2 50. (We
neglect the diffraction effect induced by the edges of the vane and

effects due to the hydrodynanic flow). As we are interested in
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the resultant force in the direction x of wave propagation, we

find (Fige. 12):

28 cos(oo zP)+2N cos zzQ-—zfs sinzfd + 1 cosLQ)
2,?}(1 -j ) .J:LnZZQsm zQ-F (1 +K2‘ E coszaqcoszpj
=2/Q4¢E cose;Q(T+Y cos 2LQ)

Py

i

it

Introducing the angle a = 2{90° - &Q ) =1 -2 Zgincludedi
between the two sides of the vane, and calling attention to the

fact that Y is @ function of a by writing 5 (a) instead of K R

we have:
Q/M;E * sin 5 S (1 - H?'('ot)“ e cos ;:L) (2.59)

= 180° corresponids to a plane surface normal to the x-axis and
from (2.58) we find as expected, fx = Z/{//ngE. 1+ })/2). The force
at the vane tends toward zero with decreasing d.
It might be interesting to note that for ;1 = ¢Q0°

Ex becomes independent of Y ("r/2) and equals (P )900 = L/? Xj\ﬁ.

For every value of X s & 90°-vane undergoes the same force (“FX) s
a perfect absorkter presenting an area V? /UZ& normal to the incident
wave, Since the reflected wave propagates in this case in the
direciion nqmal to the x-axis, it carries no mean flux of momentum
along the x-direction, This explains the independence of (P ) %’ 900

from the reflection coefficient X (m/2),

8. Radiation Pressure on a Perfect Absorber

at Finite Anplitudes

A11 previous considerations are valid only for small

-

anplitudes, where kE0<< 1, because we used a develonment in series of
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the exact solution for u and p, retaining terms up to the second
order only. But since we have the exact solutions for liquids

in Egs. (2.30) and (2¢31), we are able to deal also with finite
amplitudes. We limit our consideration of finite amplitudes- here
to the case of a wave traveling in one direction only, terminating
at a perfect absorber., This exanple will show clearly enough

the difference between the physical characteristics of small and
finite amplitudes.

For computing the tensor components in Eq. (2.18) we

need the mean pressure 5 and the mean flux of momentum Fuz,

Using the solutions (2.30) and (2.31) for u and p with )/'-: 0,

and the density(o fron (2.28), we find

-_1
PET )

T r : - o
P k&g .
S B oos (wt - kx + kg sin(wt - kx) ) dt

(o]

Sp (6 0 E R cosP(wt ~ kx + XE,, sin(wt - kx) )
]
1 - k&, cos {(wb - kx + kf, sin{wt - kx) )

——

2

" T

F3

dat

Introducing w? loo = 1«:2/5 and the new variable wt - kx = 77, we have

p= Ko o cos (Z + ki sin ) d¥ (2.60)
B 2r A o
) ' o }
— 2y 2 P
k“Z 1 ¢ ki in &
Fuz _ o , 1| cos (T + kB, sin T ) ar (2.61)
8 RT Vo 1 - X cos (7 + kg sin 77)

The integral in (2,60) is found to be represented Ly the Bessel-

function of index 1, --J1 (kEo). So we have

p=-—=1J (k) (2.62)
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For small values of k& (kE6s§1) the function Jy is given by

, X - k{ (k£o>3
9 (xE.) = —59 =g t e

Taking the first term, we get for small amplitudes from (2,62)

“ 2f2 2 )
- kg kg fu /.t =
Bp = e R = 2 = e R

according to Eqs (2.42). For larger amplitudes the mean excess

pressurs 5 deviates from .-E, since p is represented by (2.62).

We finds
kXE. = 0,05 0,1 0.3 0Co5 0,7 0.8 0.9 (1,0)
—fp = 0.001 C,005 0,044 0.12% 04,230 0.295 04365 (0.440)
As kEO approaches 1, the values given here for - Bpo are only of
theoretical interest since the concept of constant compressibility
loses its meaning at such high compressions as are encountered at
larger values of k&,.
The expression (2.61) for fDuz =2 Ekin cannot be
represented by known funciions in a closed simple form, as is
the case with 5.
The integral
CZIT cos%(Z“-’r k&, sin T°) .
(2.63)

) 1 N
POE) =2 ) T, cos(z+ K, simne ) 4¢

has been evaluated numerically for different values of the para-

meter kEO.* The result is as follows:

* The writer is grateful to Dr. S. Pe Frankel of this institution
for suggesting a quick and simple method for evaluating the
integral in Eq. (2.63).
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kE,

F(KE,)

Il

0,05 Ot 03 0.5 0.7 0.8 0.9 1.0
(B

H

0e500 045025 04524 0.571 0,685 0,786 M.057 ©OO

For small values of kE  the integral F(kE,) equals 1/2 and

(Ouz = k2202/2f3 = E according to Eq. (2.61). For increasing values

of kg o the value of t)uﬁ2 undergoes a deviation from the energy

3

density ﬁ. e obtain for {e 'FuZ = (kzo)z' F(k’c:o): |
kE = 0,05 Q.1 0.3 065 0.7 0.8 0.9 (10)

(c

ﬁ-{)uz =0,001 0.005 0.047 0.143 0.336 0,503 0,856 (o)

The quantity 5 + ﬁ)u’z changes thus with increasing amplitudes:
kE = 0,05 0.1 0.3 0.5 0.7 0.8 0.9 (1.0

= 0,000 0,000 0.003 0.021 0,106 0,208 0,491 (%)

For smaller values of k{o the following series developments may

be used:

-

5 =102 + TE)F < )8 + e e (262

- 6 , 8
'0’(’“2 =4 j;_(kzo)z + %(kzo)4 + %-Z-(kgo) + 576%(1:50) t eees (2,612

The development of Pp follous immediately from (2.62) and the

well-known series development of the Bessel-function J, (x)e The

developnent of § (Ju'?' vas obtained _by developing the integrant in
(2.61) in povers of kg cos (7 + kEo sin ), converting the powers
of the cosines into cosinss of multiples of the argument, then
integrating term by term by using the relation

(1/2m) jj”cos n{ 7+ k’g;o sinT) 4T = (-Tl)an(nkEo),

and finally developing the Dessel-functions Jn(nkio) in povers
of nkEo. The physical conclusions to be drawm from these re-

sults are as follovs:
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a) Infinitely extended plane compressional waves,

not communidating with undisturbed regions

For small amplittides, as table (D) shows us egain, the
two terms E and Fi 'cancel each other, because both quantities
equal the mean energy-density - Eor+E At increasing ampli-
tudes fhe sun (p + -(371-2-), vhich according to (2.18) is responsible ’
for the radiation pressure in this case, is positive., At higher

gnplitudes, therefore, even in the case of an infinitely extended

plane wave in a non-asbsorbing medium, a radiation pressure exists,

though its value is negligible if the amplitudes are not extremely
highs In the limit, at vhich k€°-> 1, this radiation pressure
would theoretically tend towards infinity. This can be understood
physically by the faect that for kEO = 1 the density becones

infinite once in each cycle, leading to infinite values of the

double mean kinetic energy-density Fuz. But at such great ampli-
tudes the concept of a constant compressibility will surely not
hold. Therefore these statements concerning extremely large

amplitudes (kE 1) are only of theoretical interest.

b) Finite plane beam surrounded by or communicating

with undisturbed regions and incident on a perfect

absorber

e

In this case, as stated above, only the term Quz is
responsibie for the radiation pressure, as the change in pressure

-p- will be equalized by the hydrostatic pressure p, outside the

finite beam, For small amplitudes, as may be seen from Eq. (2.61) )

and the foregoing table (G), and as is known from previous considera-

tions, _(3112 = E, That is, as a first spproximation, the radiation

pressure equals the mean total energy density E. At higher ampli-




tudes this is no longer true,

The general statement, correct for any amplitude, in
this case is as follous:

The radiation pressure exerted'by a compressional plane
wave which is surrounded by or in communication with¥* a mediunm

not affected by the wave motion and in contact with the rear of

a totally absorbing surface, equals 2 Ekin when ﬁkin is the mean

kinetic energy-density of the plane wave in Eulerian coordinates.,

This is correct for any amplitude, since f>u2 =2 Ekin by
definition. With this in mind; the formula already given in
Eg. (1.17) can be regarded as generally correct,

As to mean energy densities at finite amplitudes, one

‘n mind E E Tt Tt
must bear in nind that Epot and Ekin and also Efot and Eﬁin’ are
not the same in Lulerian as in Lagrangian coordinstes. This
disparity disappears at small amplitudes, that is, in the second
order of approximation. The acoustic intensity is given by

J = p¥ut, using our previous consideration concerning a perfect
p $ I

absorber (page 41). The mean intensity at any amplitude is

therefore given by

¥ Such a communication can be regarded as realized for instance
by a small hole in the absorbing surface, on the front of which
is the incident beam, while the rear face is in contact with

an undisturbed region of static pressure p » 4As G. Richter!?
has already correctly remarked, the hole sfould be visualized

a8 opaque to acoustic radiation but as allowing the equalization
of average pressurc between the two regions, as might be @ffected

Eylhaving a small totally absorbing piston free to move in the
OLCe
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R 2 2
- ~P . e
T = 71' \[ pru¥ dt = éo ¢ 5 Q cos?(wt - kx) dut
P*b ‘%
_ kz~ 2 —_— _
or J=oc e O = c o 11*2 = 2 ¢ E®
2B \ 0 rot

using Egqse (2e24), (2.25), (2.40) and °2ﬁpb = 1, The amplitudes

belonging to a mean intensity J are therefore always given by

If we assume radiation in water at 20° C, with kEo = 1

(a purely hypothetical wvalue), the intensity J is found to be

:]-' = 9__ - 1.[‘,’9(10‘5}“— QI kf: o 1.62(109) . 9081 W'attr

28 7 2446{(107°) secom?® 100 cm?
or T = 1.59(10%) =
: am

This expression shows how far we alvays are experimentally from
"finite" amplitudes, because even an intensity of 100 watt cm'z
is to be regarded as very high in water." The value of kEo for
an intensity J = 100 vatt cn™2 is found to be 7.93(1074).

For all practical purposes in liquids the améiitudef;s“;A
well as the quaﬁtity REO can be regarded QS small. The radiation
pressure is therefore described for all cases which are experi-
mentally feasible by the considerations in Section 7, vhere we
dealt with small amplitudes,

Nevertheless the theoretical results for finite ampli-

tudes are not without interest, since they show that the relation
Prad
physical law as it is considered to be in electrodynamics. For

= mean total energy density E cannot be regarded as a "basic!
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mechanical wave motions a law of this kind holds only at small
amplitudes, vhereas in general at all anplitudes, the radiation
pressure is linked with the expression for the mean density of

kinetic energy in Dulerian coordinates.

As B = hein Epot’ the difference E = 2E, 4, = Epot -
Ek =1/2 (ﬂb

- liquids this difference turns out to be small of the sixth order

il

ml

- 5}u2) in agreement with Eq. (2.40)s In

in (kE ). In order to shou this, one uses the series development

_—-_. ———

of €n1 as given by Eq. (2.62); Q Eouz is found uitb the aid of
(2.30) to be represented by 1/2 (k& )ZL T+ J (ZkE )]  Haking
use of the knowm series development of Jz(x) =fx2/2 - x4/24 + enves
ve. obtain indeed B (& - QEkin) == (KE,) /64 + evou, that iég

only terms of the sixth order and higher are involved.

9« MNote on en Integral of the Eulerian Eguation of Motion

and the Flovw of }Mass for Infinitely Extended Plane

Waves in Liguids

For liduids with constant compressibility we found that
the solutions of the Lagrangian equation (2.22) and consequently’
those of the Eulerian equation (2.14) were functions of the argu-
ment (wt + kx) only. Using the fact that therefore
dfet =F c" 9/ax, Eqe (2414) can be integrated with respect to
x or t and we obtain

$c'€u+€u‘2+p=0} (2.64)

C is independent of x and t, but not necessarily of the amplitude
of the wave motion., Ve can prove, hovever, that C has the value
zero, This proof, vhich we will now give, verifies at the same

time the fact, already used in Part II, Sece 5, that any function
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fwt F x), vhich was found to satisfy the Lagrangian equation
(24 <~) leads to an exact solution of the corresponding Eulerian
equation (2.14), vwhen the transformations of the quantities
¥k, P*, p* into the corresponding Bulerian quantities u, P, P
are properly made.
Let 3%/ a3t = uw* = u*(ut F kx) be the general solution

in the Lagrangian system.® TFrom Egs. (2.10) and (2.28) we obtain

%;l‘”

1
p* = - E -a—-x = B"‘ =+ .Foc + Uk (2.65a)

e
= ._._.E.Q_._ - ._....,_9..7. (2.65b)

e
YA gy
1 3% c

Transforming p¥#, f)* and u* into p, s and u by replacing the variable
x in u* by (x — &) and inserting p and f}, as found in Egs. (2.65g,b),

into Eqe (2.64), we have

2
o U £ U
Fce f_oﬁ+ ‘Ou i?Ocu=G
T = =
1 c 1*c
or C =0

Thus, Eqe (R.64) provides us with the general relation, valid in

liquids at any time t and at any x:

p + 'z,‘rllz

= % covou (2.66;

Averaging (2,66) in time, the mean mass flow carried by the wave

3'1

% u¥(wt F kx) stands for u*(oot - kx) + ™ (wt + kx), where u Uy o
are arbitrary functions of the argumen%s (wt F kz).
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motion through a fixed unit cross-section turns out to be
— 1 _ —
ou=1+-= (p+ ous) (2.66a)
T
The plus or minus sign corresponds to waves traveling to the right
\ —
or left. The value of (p + fyuz) at finite amplitudes has been
given in Table (D), p. 57 TFrom Egs. (2.50) and (2.61) we ob%ain
in the case of sinuscidael wave motions
~ 217- =
1T — k& ( cos (T, X kE sin 7)
p (p +fu’a) = = \, = ° a dT (2.67)
P 1%k ( 1 ‘
o F kE cos \Zé + XE 31n’2£)

The series developrment of the integral in powers of (k{o), is

found by adding Los. (2.62a) and (Z,éﬂa) on page 57:

;_—————— 17
®+ =1 po c (& )r + 35 (2, ) (26

o]
s
le] PA

(2.68) brings once nore to evidence the result formerly ob-
tained, that for small amplitudes, that is disregarding terms of
higher than gecond power, the sim 5 + E;EE cancels out. It
confirms also the conclusion made concerning the "Constant" in
Section 7b, namely that this constant is independent of (k{o) to
the second order of approximation.

The series development of the change in average density
due to the wave notion ZS:%==§ - Fb follous likewise immediately
from (2.68), Eq. (2565b) shows that G* - g =4 E*u*/c.
Transforming this into Eulerian coordinabes and taking the time
average we obtain

— =/ 5

Zi"}\g +pw/e = @, (5 ()4 + 128 (k{ )6 +eed) (2.682)




L g

As stated on page 44 the change in mean density ZSWE vanishes

to thg second-order approximations it is of the fourth order

in (kio) and positive, whereas the corresponding change in pres-
sure 5 = — E is of the second order and Yegabivos:

The average flow of mass ETE vanishes to the second
order of approximation, as stated in various papers ﬁsee for
instance reference 16)s This does not mean, however, that it is
gtrictly zero as is seen from Eq. (2.68)%, In liquids, the
values of kEo that can be attained experimentally are vefy small,
and the quantity E;G amounts numerically to an extremely small

valuee It may be noted that the existence of a 'net flow of mass®

does not necessarilvy imply an actual transport of matter, that is,

a mean particle displacement. Indeed, in a pure sinusoicdal
wave-motion every particle is found at exactly the same place as
before after a full period. The average values in time of & or
u% are zZero in this case. Hevertheless, owing to the fact that
P is not a copstant, but er eo + 61 + {>2 + eeey (?19 Pz oos
denoting higher-order terms in Q, vgrying sinusoidally in time)
the time-average of the "flux of mass-density", given by TETTET,
may have a value different from zero.

The qu;ntity %;E is independent of x. To prove this,
we take the time-average of the Rulerian equation (2.14) and find

for a wave motion periodic in time,

= 2y = 2 (v 2y =
BX(p+ Pu) (p + Eu 0

# The only exception, where 611 equals zero strictly, is the case
of a standing vave.
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or, according to Eq. (2.66a), a@/ax = 0, Consequently

— N A ~ i it
pu is independent of x and a functior v the wave amplitude

(kg ) only.
Faus we have in liquids at any amplitude for an iIn-

Fipteely extended plane wave

5 + ﬁ;u'?' =+ c -f—;;“ = 6002 . f(k{o) (2.69)
with -
5 4, 6 4567 8
k (3 + oene
f(kz ) == ( E ) T2 E Y a5 o)

10, Radiation Pressure and Viscous Absorption

The Fulerian differential equation (2.14) includes
the case of plane compréssional waves in viscous fluids. But in
the case of viscous absorption an additional term, associated with
the coefficient of viscosity s enters the differential equation
both in the Eulerian form Eqe (2.14) and the Lagrangian form Eqa
(2.22), Dlilembert's general solution f(wt F kx) is then no
longer a solution of Eq. (2.22), as is well known, and we cannot
malke use of the relation 3/dt =F ¢ «©/Jx. The conclusions
based on this relation in the foregoing section 9 therefore do not
hold for yiscous liquidé. Still, taking theaverage value in time
of Eq. (2:14), as we did at the end of section 9, we find alsc in
the case of viscous liquids (or gases) that O (5 + —é-l?)/ax =0
for a wave motion periodic in time and therefore ; + E)—u—z = constant,
As the amplitude of a unidirectional plane wave decreases steadily

along its direction of propagation through a viscous medium, the

values of u and 5 steadily approach zero. Thus the value of the

constant is necessarily zero and p and Euz cancel each other in

the same way as they do in absence of viscositye The radiation




pressure ; + %;EE due to a beam of infinite width (and of any
amplitude) is therefore zero at a perfect absorber in the case
of a viscous liquid (or fluid). The same conclusion holds for
a reflected plane wave leaving an absorber.

For a bean of finite width the problem becomes more

k!

involved, ouwing to the interaction of the begm with undisturbed
regions. TIor non-viscous liquids, the time-average pressure 5
is constant along the beam, or, even when periodic in space,
still its average value along the beam is constant. This fact
has enabled us to deal with this interaction in a relatively
simple manner,

On the other hand in viscous liquids, the value of 5
in the beam changes exponentially along the beam, and the inter-
action with the undisturbed region outside the beam involves
rotational motion of the fluide The problem of radiation pres-
sure becomes closely linked with that of the hydrodynamic flow.
A very complete treatnent of the forces due to second order
effects in viscous nedia is given in the fundamental paper by
Eckart.6

11« Ravleigh Pressure and Langevin Pressure in

Liguids
In papers dealing with acoustic radiation pressure
special expressions have recently been introduced in the litera-
ture to denote the special circumstances under which radiation
pressure may be observed. It is our purpose to clarify the
physical meaning of these usages. According to our previous
considerations ve cen distinguish four different cases of

pressures; they are comnected on the one hand with the coordinate

66
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system used (Eulerian or Lagrangian), and on the other hand with

the kind of interaction of the acoustic beam with an undisturbed
medium, that is, vhether the beam is regarded as of infinite

width and not cémmunicatiag with an undisturbed part of the medium,
or of finite cross section and surrounded by the undisturbed
medium, e may clarify these cases as follows:

Te (Lo - i.): Lagrangian coordinates and infinite plane wave.

2: (Le = c.): Lagrangian coordinates and wave region communicating
with undisturbed medivm.
3. (Be - i.): Dulerian coordinates and infinite plane wave.

I

Lo (Bo ¢.): Lulerian coordinates and wave region cormunicating
vith undisturbed medium.
We will deal vith these cases successively (always assuming noimal
incidence):

1o (Le - is) At any vpoint on a surface following the
motion of a particle in a liquid, the pressure p%* varies purely
sinusoidally (Ige (2.25) )« Its time average value is therefore
ZeTros 55 = 0, An observer noving together with a particle would
register a mean pressure equal to zeroc. The nean pressure ;t
in the nmedium for a stationary observer would be found to be
lovered to p, ~ E {1+ Xz) at small amplitudes in an infinitely
extended beari, iliere P, is the pressure in absence of wave mobtion,
For larger anplitudes the decrease in mean pressure follows from
Ege (2.62).

2. (L. - c.) The mean pressure p* for a moving observer
is zero, just.as in 1o (Le =~ 1a)e For a stationary observer the
Iean pressure ;t= Pos since the lowering of P, by the wave notion

is now counter-balanced by the action of the medium of static

4
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pressure p, which §urrounds the beam region.

3. (E. - i.) The mean pressure Et at fixed coordinates
is lowered, as already mentioned wunder 1., (L. - i.), by the
anount - E,(1 +-X2) at small amplitudes. If its value vas Pg
in absence of wave motion, then for an infinitely extended plane
wave, not communicating with any undisturbed medium, the value is
Po -E (1 + X’z), The radiation pressure Erad’ vhich ve have been
led to identify with (; + E;Ez) in Bulerian coordinates, becomes
zero for small amplitudes, For larger amplitudes numerical values
of the radiation pressure can bhe found from Table (D) on page 57
or from Eq. {2.69).

Lo (Be - ¢.) If the acoustic beam cormunicates with a
medium not affected by the wave motion, the mean pressure §t
becomes equalized to the valve of the static pressure py of the

undisturbed medivm, This reises the mean density f,in the beam

by 25265 =E/c? (1 + \,2) at small amplitudes, as follows from
Eqe (R.48b). The radiation pressure grad =% (1 4 Y2) for
small amplitudes.. »

The notation "Rayleigh pressure"i(ﬁRayleigh)g as used
in the literature 8, T, 15, means the average excess-pressure, due
to the wave motion, which would be noticed by an observer moving

with a particle. It is therefore identical with the quantity

p¥* in our nolation:

- —— ——

p¥ ~ p, = p* (2.70)

P =
Rayleigh t

For liquids with constant compressibility, 55 and consequently
the "Rayleigh-pressure" is zero at all amplitudes. For media

that have a more complicated relation p*(e) bztween pressure
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and density - as in gases for instance - p* and therefore the

Rayleigh-pressure is different from zero. (See Part III, Sec. 3 and 5)

The expression "Langevin pressure" ( Langevin) is used,

following Hertz and Mendeg, for the difference between the pressure
p* observed at a moving particle or plane and the mean pressure p

at fixed coordinates:

— -

P .=
Langevin

v eme

= PRayleigh =P (2.71)

|
"d

For a plane conpressional wave itraveling in one direction in a

liquid, we found at small amplitudes 5; =0 and 5 = - E, therefore

— ———r ome

= DR - = T 7 ’
PLangevin = P¥ " P = E [kzo <] (2.72)

This result turns out to be independent of the nature of the

medium, that is, independent of the special function p(f)) connec-~
ting pressure and density, This fact has already been stated in

. 8 . .
various papers ’1. An exact and simple proof is as follous:

2R 2
EDEtz ox

For smell ampli‘udes we have according %o Eg. (2021)

p() = prx = §) = p*(x) - £ S % .o

Therefore, at small amplitudes

- 3 T8N 2r
PG -56) = €2 = -p, € 2D (2.73)

Now we can write

V2 S
Qs
Y%
D .

i
(a¥)
oo




and taking the average time-value and regarding & as a function

periodic in time,

€ 2%) - - (25

Thus we have from Eq. (2.73)

_ 2 -
PO - Fe) =+ g, (59 = et =Fy,@ (2w

—
-
i)

and we have

For a unidirectional wave motion, (3u¥2 equiils

PLongovin = P* =P =E.  On the other hand, Iq. (2.74) is per-

fectly general, holding whether or not a reflected wave is present;

but in this case (Ju*Z varies from point to point and we must take
the average value in space of Eqe (2.74) if we wish to introduce

the mean total energy density E. Doing so, we get from (2.74)

P =% =% (1 + Yz) [klio4<‘ﬁ (2.75)

fo R |

%l

Langevin kin
According to the proof leading to Eq. (R¢75), this general result
is independent indeed of the special function p(f>)°

In the literature dealing with radiation pressure it
is often the Langevin pressure that is identified with the radia-
tion pressure exerted upon a plane obstacle (see references 8 and
1)e From the general result Eq. (2.75) it is concluded that the
radiation pressurc at small amplitudes equals the energy density
in any fluid medium.

Hertz and Mende8 seen to have been the first to introduce
the expression "Langevin-pressure", as defined in (2.75)e Never-

theless, Langevin himself does not seem to have had this quantity

':‘!."j
sy

p% — p (or better p* — p) in nmind in his proof concerning the con-
b b P P
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nection between wradiation ?ressure and energy density as reported
in a paper by P. Biquardz. According to Langevin's derivation,
as given there, one is led to the conclusion that he identifies
radiation pressure with 5;; - Ezg, that is the difference between
the total pressures asseciated with moving particles, at two

A+ ecorant regions of the medium, one affected by the acoustic

wave motion and the other unaffected, If in the latter region
the fluid is at rest (as it noy be, for instance, behird an

opaque ref*ector),'ﬁgﬁ becomes identical with the static pressure
P, (see also the recent note by P. J. Hestervelt17). In our
opinion some cenclusions in Biquard's report of Langevin's derivsa-~
tion are open to criticismy moreover we cannot accept the quantity
§;¥ ~ P, as representing the true radiation pressure. lhichsoever

of these quantities may be called "Langevin-pressure", none of

then agrees with the actual radiation pressure given by (5 + §>u2).

To diminish the confusion already widely spread, we recommend

that the term "Langevin radiation pressure" be discarded altogether.
Lcoustic radiation pressure should properly be identified

with the expression 5 + E;Ez in Fulerian coordinatess This quan-

tity is the one actually measured; it is in fact the resultant

force per unit area due to the wave motion. The two compeonents

5 and E}uz act together; the contribution of each depends on the
characteristics of the reflector (that is, on }(). The final sum,
at small anplitudes, is alweys E (1 + ){2). (See Sece 12)

- 1 N . 31 1 .’.‘— 3

It happens that the value of PLangevin9 as given by
Eq. (2.75), vhich is associated with an infinitely extended plane

wave, equals numerically the actual radiation pressure for a beam

of finite width; its identification with the radiation pressure
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however is evidently misleading as to the physical concept of
this quantity,

12, lhat_is lleasured as "Radiation Pressure' Experi-

mentally?
The radiation ﬁressure that we measure experimentally
is physically not identical with a "pressure! in the hydrodynamic
sense, Though of the same dimensions it is a different physicgl

quantity and is expressed by 5; -p, t 6)u2 for a plane compres-

sional wave at noimal incidences The quantity ;}uz can be

\
interpreted as the average flux of mechanical momentum f)u
through a unit area fixed in space.

Let us consider a device D for measuring the radiation
pressurc, It may contain a reflecting plane surface struck by
an incident acoustic beam of finite cross-section. This "re-
ceiving" plane is to be regarded as moving together with the
immediately adjacent particles of the medium. This movement,
the amplitude of which depends on the reflector, is purely sinusoidal
and the averase position of the receiving surface is identical
with its position at rest.

As this receiving surface is a part of the whole de-
vice D, it is comnected mechanically in some way with Ds  The
vhole devicé D nay be regarded as having a large mechanical
inertia compared with the inertia of the receiving surfacej its
center of mass can therefore be treated as practically immovable
in space, even vhen the receiving surface is moving periodically.
For simplicity we assume that no acoustic energy leaves from
its rear side 3 all the non-reflected nart of the incident

energy is assuned to e absorbed within D.
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a. Ve congider first the case of a perfectly absorbing

device D, The acougtic bean of finite cross-section is imbedded
in the undisturbed surrounding medium which also encloses the
device D.  Therefore the mean pressure is the same throughout
the medium, including the whole surface of D. The same pressure

P, = Py acts both at the front and rear of Dy, so that no resulting

ct

force due to a hydrostatic pressure is exerted upon D in this case.
Jow let us visuelize an imaginary surface S, enclos-

ing exactly the device D but stationary in space (Fige 13).

.S
___..._.__B_,
. ' 'Beam, ,la .
t o '-'7 t C
—3 G
po po
-3 .
v R S
Fig. 13

Schematic diagram of a device D for measuring

acoustic radiation pressurey C = center of mass,

S = surface fixed in space enclosing the whole

device D; a = receiving surface struck by the

acoustic beam and mechanically connected with Dj

Py, = hydrostatic pressure
A1l over the receiving part a of D particles are crossing the
corresponding part of S according to their periodic movement in-
side the acoustic beam. The whole force exerted upon the device
D, and therefore acting at the center of mass 0, equals the gain

in momentum of D per second, or the "flux of nomentum" through s

per second, This latter quentity, gs we found, is given by

§}u2 for unit area (a =1)s In the.small time dt a mass e'u-dt
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crosses the unit section of a with the velocity uj the vhole
transport of momentum through the section is consequently
fouﬁdt~5 u = fjuzndt. In unit time the flux of momentum amounts,
consequently, to E;EE. It may be noticed that both the
particles entering D at a, and also the particles leaving D at

a somewhat later time contribute to the force exerted upon D

in the scme sense of direction, the departing particles exerting

a reactional force on D, Accerding to our assumption that no
radiation leaves the rear of D, no force is exerted at this side
upon De  The vhole mean force per unit area of D, struck by the

compressional wave, therefore equals the time-average value @'uz,

calculated for a cross-section fixed in space. Thic leads us

back to the result of our former considerations, that the radiation

pressure at a perfect absorber is given by the expression E,uz
in Eulerian coordinates. This double mean kinetic energy density
Fyuz equals at small amplitudes the mean total energy density Ej

it deviates from E with increasing amplitude. The amplitudes

that can be experimentally generated in liquids are always "small®

amplitudes; therefore the statement: radiation pressure = mean

nergy density holds alvays for this case in liquidse For other

media, as gases, it is also correct for small amplitudes,; as shown
in Part III, Sec. 2.

b. Iow let us consider the case in which the device D
is not a perfect absorber, but reflects partially or totally the
incident wave and absorbs all that is not refliected. Here the
incident and the reflected waves interfere and cause a periodic
variation in excess-pressure 5 as well s in E;EZ along the axis

of the bean (see Egs. (2.43) and (Re44), end Sece II, 7b)s In a




75

beam of infinite width, not in communication with the undisturbed
part of the medium at the rear of D, these two quantities 5 and
(s'uz, acting together at the surface of D, are of opposite sign
and cancel each other to zero at small amplitucdes. 3ut since
experimentally the beam is always of finilte width and normally
surrounded by the undisturbed medium, the mean pressure §£ inside
the beam is raised, as we saw in Sece II, 7b, up to the static
pressure p . Superposed upon this mean pressure P, is the
periodic variation 5 in spacej it anounts to Et ~ p, and is
different from Py in general at De The average negative value

of pt - P, (which in the infinitely extended beam neutralized the

quantity'43u2 at D) is now, in the case of the finite beam, in-
creased by the cnount B (1 +‘X2) to bring its value up to p_;
Et - P, no longer neutralizes the action of the flux of momentum

Let us write again the expressions for and u2
g t

in a plane wave to see vhat happenss

D, = D+ Dy = - E(1+2 Ycos(?,kx-f- o) + }!2) +p,  (243)

Il

+E (1+2 X cos (2lx + é) + XZ) (2444,

™

In the case cf a perfect absorber D, }/= 0 and there is no varia-

e

tion of py and t)uﬁ'with %e The pressure Py = P, ~ E is raised

to p0 in the beam and all the force on D is caused by the quantity

fzuz in the way we pointed out above under @. If we consider

on the other hand the case of a perfect and rigid reflector D,
there is no movement of particles at .the surface of Dy thus if the

origin x = 0 is taken at the mean position of the surface of D,

—
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both u and € vanish at x = 0.  This boundary condition requires

that Y:1 and 8 = 7, as is seen fron Eq. (2.24); from Eq. (2.44)

above we find (ou2 = 0 and Et =P, at x = 0o The first tem

Puz is zero, because there is no motion at x = 03 the secoad
tern pt = p because p vaﬁles purely sinusoidelly in time at x =0
around the average value p o* But there is now the additional

effect of the surrounding medium, which raises the average value

in space of P, to po as illustrated in Fig. 14.

?

!D
2E(1 + 7{2) |
1

?po ’I'U “g I!“ i‘/ /,r ‘\ (.”;: T ‘-:} X
— 4 1
B+ y 2 N i
-i \l ~\.‘> "‘ %
Py P tP
(a)

Py = Pt P ‘D
7 *\\ 7 ,,‘L B
-' ‘\\..}
(b)
Fig. 14

Time-average excess pressure p(x) glong the x-axis in &
liquid, vhen %the acoustic beam striking the device D
undergoes perfect reflection at D '(Xr-*- 1)e (a)Bean of
infinite uidth and not in communicabtion with undisturbed
regions of liquid. The zverage value in SQEC@ of p.blS

lover than pg by the amount E (1 + 3/2) . The value of *~
P at x = 0 is zero. (b)Beam surrounded by or in communica-
tion with undisturbed regions of liguid. The average value
in space of P, is raised by E (1 + y<) = 2 and_therefore
equal to p_».. The value of P at x=0 is now E (1 +Y")




77

The amount by which 5 % is raised, to bring its average
value in space to P> is * E (1 +X2), as we found already in Sec.
IT, 7b. At the front of D appears now a mean pressure (pt)D =
Pyt E (1 + \{2)9 or, with \‘( = 1 for a perfect reflector, (pt>D =
Po T 2 B« At the rear of D, the pressure is pge Consequently
the force exérted per unit area of the receiving part of D equals
2 E, as expecteds In the case of a perfect and rigid reflector.

the radiation pressure measured experinentally is due therefore

0 a mean excess pressure at the receiving plane rather than to

the quantity (;uz, which is zero.
¢s In the gereral case, where the incident energr is

partially absorbed and partially reflected, the force exerted upon

D is due to both effectsy the quantity (:vuz and the mean hycro-
static excess pressure 5 £~ Poe Their sum always amounts to
E(1+ \5’2), but the amount contributed by each compopgnt depends
on the reflection coefficient X and the phase angle © of the
reflected waves From Egs. (2.43) and (2.44) above we find the
following values for P =p + L (1 +\62) and -{;’-@ at D, vhere

x = 03

Porg = =2 X’E cos © + pg (2.76)

1
+

(.‘)ui.__o 2 B"E cos 6+ E (1 +X2)'

—————

or (f) U.}zc:o

i
=l

(1 +\dl)2 - &Y Esin® 3 (2.77)

For the tuwo special cases first considered above, we find here

again the previous results: At a perfect absorber with Y =0
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we get §%=O = p, and €u§;o = E, the vhole force beink due to
flux of momqptunl Pui#o. At a perfect rigid reflector with

Y =1and 6 =7 ve obtain By =p, + 25 and pu =0,

the whole force being dve to the mean excess pressure P o+ The

foregoing equations give the contributions of §%;O and
e1g§=0 to the resultant force p  + E (j?+‘%2) per unit area of
the receiver for all valuves of }( and Se

Thus, in the general case, uhere a reflected wave exists9
one has strictly to recognize these tuo different effects acting.
simultaneously at a surface struck by a compressional wave.

hat is necsured experimentally as radiation pressure is
the sum of the flux of momentum and the excess pressure at the
recelving area, wiich amounts zlwsys to E (1 +'X2)° The two terms
of the_sum depend on the reflection coefficient }( and the phasg
angle © of the reflected wavey; but their sum is independent of @
and simply equals the sum of the incident energy density E and
the ernerzy density X’z E of the reflected wave. This justifies,
so far as numerical-%esults are concerned, the frequently adopted
point of view, vhich regards the incident wave energy as perfectly
absorbed by the receiver, leading to a contribution E, end then )
partially or totally reemitted by the receiver, leadinz to an ad-
ditional force E’Z E. This concept gives the right numerical value
for the radiation pressure; it does not provide however the physical
background for the forces really acting at the receiver. (See also
Pe li-9)

In the case vhere the acoustic radiation traverses a

plane reflector separating two different media 1 and 2, some of the

- —g
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energy being transmitted into medium 2 behind the reflector,
the resultant radiation pressure acting upon the reflector at

normel incidence is obviously given Ly

»

— L m— - — 2.
If the media 1 and 2 are under the same hydrostatic pressure Pyo
then 5:; - E.EE = E)-‘l— - 1_3;. For small amplitudes and a beam of
PN s a4 7 O g _——‘z — = 2 . Po) ing
finite width, wve can write pq + E1u1 E, (1 + X )3 assuming
that no reflected vave exists in medium 2, we may introduce

the emplitude transmission coefficient d by EZ = (C‘zug = Cg 2E-1

and obtain

.lgrad = E1 (1 + Xz - J 2) (2.79)

as already stated on page 53. If the reflector does rot absorb

.2 = 2 = 2 _ % P
any energy, (1-—)5' )01E1=O czE.] or cg =3’£(1~X ) and

we obtain fron (2.79)

-
b

g =8 | (-2 v (1 +ah]
rad 1 co \d |

c
2
This shows thatl the direction of the radiation pressure can also

(2.80)

2 c c
: sy 4 ~ . 2 & Yo res t
reverse its sign if \h/ < o= and c1~7c:2 lo resultan

1t e
. s . . 2_9 "¢
radiation pressure would be found if \K = 51—-:;:-55 N If the

two media are substantially the same, ¢, = ¢y, and from Eq. (2.80)

we have

il

_ 2 =
rad = 2 X E (2.871)

* See, for example, ‘the experiments of Hertz and Mendes.
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PART ITII

RADIATICN PRESSURE IN GASES

1. The Lagrangian Vave Zaquation for Gases, leglecting

Absorption
The Lagrangian wave equation, which is linear in the case
of liguids due to the assurmption of constant compressibility, be-
comes non-linear for gases, as the adiasbatic relation between total
pressure pi and density’je* has the well-known form pt°Vch = constant,

or

Ye

—

(3.1)

—
msaentes T ] e

p.v. [vo .‘z YC P st

V| o

o
L

where \{; is the ratio of the specific heats. (This notaiion is
chosen in order to avoid confusion with the coefficient of reflec-
tion ?{). Inserting Eqe (3.1} in the Lagrangian wave equation
(2.19), considering T == p¥ and Iq. (2.,28) we get, disregarding

viscous absorption

2% _ 22% . 1 302
B'tz ° ax'z (1 +g_€)1 +YC ( )
oX

with o = Pq \(c/ ' P o °

This equebion cannot be solved exactly by knoun functions
in a closed form. So one usually is content to treat only the

cage of small amplitudes, using the Taylor development of the tern

and retaining first order terms. In dealing

(1 + E)f(1 ¥
ax :

vith average time-values, hovever, one must in general be careful

not to omit second order terms. The flux of momentum f)uz, as




we have learned, involves no second order terms of Eq. (3.2)

at small amplitudes according to our considerations leading to

Eq. {2.37)s On the other hand, the correct calculetion of the
"Rayleigh pressure p’ requires the solution of (3.2) up to second
order terms,

2. The Radiagtion Pressure upon o Perfect Absorber

in Gases at Small Amplitudes due to a Beam of

Finite l/idth

Developing the right side of Eg. (3.2) in a Taylor

series and retaining only second order terms, cne finds:

2 2 ~y 32
R R O o2

Airy hes given the solution of Eqe (3.3) for small amplitudes

Z (c{<<~1) in the form of a series in powers of kEO for a pure
sinusoidal excitation assumed to be located at the origin, where
x = 03 retaining second order terms, it is known to have the
following form for a wave traveling in the positive x-direction
(see vef. 9, pe 180):

o Yc)x

£ = Eo sin th T") + -

()% 1+ cos 2 (wtelon)] (ol

For computing the radiation pressure of a beam of

finite vidth upon a perfect absorber, we have from Part II, 7a,

- . T .
Prag 611 (3+5)
Only the first-order term in Eq. (3.4) is needed for computing
Frad at snall amplitudess To this approxination f>u2 becomes
%2

identical wvith f%fr- and ve find easily from Lge (3¢4)
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2 2 ‘
- ) °F -
P ——-—e—"——-—"—-::zﬁ (3.6)

rad 2 kin

Ab small amplitudes in gases the mean kinetic energy density
equals the mean potential energy density.® Therefore

p . o= 4 pesd - va *’ 301
2 Bpspy =2 Epot E = mean total energy density. Thus we
obtain at small amplitudes in gases the same result that we

found in liquidss

Pg=E (3.7)

The radiation nrescure unon a nerfect absorber in gases for an

acousiic bean of Ffinite vidth ecuals the eneryy density for snall

zmplitudes. Tor larger anplitudes ve have to use Eqe (3.5

The solution for finite anplitudes in pases is rather complicated,
as it requires a solution of the non-linear differential equa-
tion (3.2), uhich ccn only be given by a series development.,

Its consideratvion is beyond the scope of the present paper.

3. The lavleirn Pressure in Gases for Progressive

Vaves and Small Amplitudes

Tor corputing the nean value p% which would be observed
at a moving particle, we start from Bge. (3.1) and obtain by

replacing (F*/ Fo)xc according to L. (2.28)
\

pt=p (T4 %) "Yc (3.8)

3
t
Developing this relation in a Taylor series, and retaining terms

up to the second order, ve have

p} = p (1 "Y‘éx Xe (Tﬂ(c

|2
5: i oat.) (3.9)
x]

9
2

#* See for instance ref. 12, p. 223

—
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Using the solution Ege (3.4) for £ in the abbreviated form
. ) . . o ’, )
E - /£,1 (kzo) + /2)/2 (1\.{0) + seo0
we get
- / R 2 VT
r h (1 +¥e) (3N Do |
% = 1 - 'k B 1 + 1 2 BC &4 C )\J 1 ;._ ._2 /
S Yo () ST+ () ~ = Y., =2/
(3.10)

Fron Zqe (3410) it is evident that we need the solution for 3
i
up to the second order terms, uhich involves the tem in /&/2, 9
2
if we wish to compute p:c correctly. It i1s the term " a'{;’ / ox
vhich was onitted by Rayleigls
Inseruing ’PH and /ﬁz vhich are given immediately by
(3e4), into Eqe (3410), and talking the time-average value for

pjé, we get
pr=p |1+ (ké 2( Xelt o] Xolle X ’\ Z (2.11)
t of \ y , 3 /o
vhence ]
T{; = \(‘3(1' o) (kz )+ p (2.1R2)

Introducing (}o = Kp /'02, k = afce, and the mean total energy
density E=2 E’ri E)Orz/Zg we obtain for the Rayleigh pressure*

in a progressive wvave

~ D ¢

Preyieish E (3.13)

This formula differs from Rayleigh's well-known result (1, + Xc) E/2.

# This is in gccordance with resulis obtained also by P. J.
Hestervelt1® and J. S. llendousse 1° both authors however did

not procced to the final express:mn for 5;; -p. as given in
Eqe (3+13) heres t °
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The reason is clearly seen from Eqe (3.71), in vhich the term
= Y (1 +¥.)/8 is due to the fact that the second-order term in

Ege (3e4) is taken into account. Thus Rayleigh's formula must

be multiplied by the factor 1/2. to be correct in the case of

progressive waves. The remark may be added that the formula

(3¢13) holds only at not too large distances x from the pure
sinusoidal source of excitation. The second term of the solution
(344) contains the factor x.» This corresponds to the known fact
that a pure sinusoidal wave in gases is distorted with increasing
distance from the source, the wave energy being transferred more
and more from the original frequency into higher harmonics. Only
in the immediate neighborhood of x = 0 is it permissible to define
energy density by the expression we used for E and therefore to
attribute a reasonable physical meaning to the relation (3.13) as
well as to the result in Eqe (3.7) for the radiation pressure,

Lo The lican Pressure p in Gases for Progressive Vaves

and Small Amplitudes

Under the same limitations just mentioned, we can give
the expression for the mean pressure 5% in Eulerian coordinates
in a gas traversed by a plane infinitely extended compressional
Wave, From the generally valid Eq. (2¢75) we have in a progres-
sive wave p = p¥ - E. Introducing Eqe (3.13) and adding the

hydrostatic pressure D, s Ve find*

14y,

— - +

=1
I
Bt

or

it

(3.14)

% See also P, J. Uestervelt, ref. 16, Eq. (29)




Thus, in gases, the terms p and(()u2 do_not_cancel each other in

the tensor component Exx = Py + E;EE, as they do in a liquid with
constant compressibility, In gases we have in the absence of a
reflected wave

-~ 5 1+Ye ~

T =P tPui=p,+ 7 L (3.15)

5« The Radiation Pregsure at a Perfect Absorber in

Gases for a Flcpe Infinitely Frtended Ueve afh Small

Amplitudes

For an infinitely extended plane wave the radiation

pressure is glven by Prad =p+ f)uz, which at small amplitudes

equals p + B« Since for a progressive wave p = p¥ - E according
t0 Eqe (2.75), we fird in this case

—_ 1 +Y%

Praga = P* = Ppovieion = T 2

E (3.12)

%

The Ravieich pressure {in the corrected form for pro-

gressive waves) becones thersfore identical with the true radistion

pressure in a bean of infinite widbh, which is not in communication

with a gas region unaffected by the wave motion,

It would be very difficult to reslize this case by
experiment, even approximately; we usually have to deal with a bean
ol finite cross section and in communication with an undisturbed
gas region. But inmthe latter case the mean pressure §t in Eqge

(3,14) is raised to p and the measured radiation pressure becones
o

identical with €7u2 = B, as shown in Eqe (3.7).

6. lieon Density in Progressive Waves in Gases at

Small Anplitudes

L brief treatment of this subject is given, especially
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to point out the difference between liquids and gases.
The time average value of the change in density ¢2>€
can be derived from Eqe (2.28). At small amplitudes we have
2Ey~1 > Y%
=1+ T =128 + (287 + ... (3617)
Po X DX X

The solution for £ up to second order terns is given by (3.4).
Inserting this solution in {3.17) and retaining all second order
terms leads to the expression for the density F*’in Lagrangian
coordinates. The change in density A€v= E - Po in Bulerian
coordinates is found by substituting x - & for x, according to
Ege {2.21). Doing so, developing the result in powers of kio,
retaining second order terms, and finally averaging in time, we
find
£p - @ofo . 1P )2 (3.18)
o Fo 8 : ©

The mean density in an infinitely extended plane progressive wvave
in gases is lowered by the amount given in (3.18), that is by a
term as low as the second order in k{o. In liguids of constant
conpressibility, on the other hand, we found that the change in
average density vanished in the second order approximation, as
it is only of fourth order in i . (See Eqe {2.682), p. 63).

The nean pressure §¢ in a progressive wave is lowered

¥l

by the wave riotion by the anount given in Bge (3.14)s In a bean
of finite width surrounded by an undisturbed medium of hydrostatic
pressure p the bean undergoes a slizht compression until the
pressure inside the bean equals Py a8 pointed out already in
the case of a licuid medium (Part II, Sec. 7a)s The increase in

density Zﬁ;e' inside the bean due to this compression is given by

——
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A—-—-—E—l = -—E——-—E—— o o (Pmo+A\p)1/Yc~1 =
gé ) fb Po

LN 2

=l

vhence, according to Eq. (3.14), we find

~ o _ 3-Y, E - |
fof CE A_Y 60 Y (kE ) (3.19)

The resultant change in density in a beam of finite width in a
progressive wave 1n a gas at small amplitudes is therefore given

by means of Egs. (3.18) and (3.19) as

1=-Ye
4

- ;ol=Xe I
Taptap =T 2

E@ g )P (3.20)

total

7. Radiation Pressure in Gases at a Perfect Reflector

due to a Finite Beam at bmall Amplitudes

The boundary condition at a perfect and rigid plane
reflector is by definition & = 0 or u*% = u = 0, The corresponding
first-order solution of the wave equation (3.2) or (3.3), which we

denote by E<1) and u%(1) respectively, is

5(1) = Eo (sin(wt = kx) - sin{wt + kx) )
or 2(1) = 2{0 gin kx cosf{wt + ) (3.21)
and ue (1) —-%§% Zm{ gin kx sin wh (3.22)

the well-knowm ermmregssions for a standing wavey it fulfills the
boundary condition u = O at any time, the reflector being, for ex-
ample, at x = O, Fron {3.22) we obtain the mean kinetic energy
density, a¥eraged in time and space,by

28, = Qo W

% =

= e’ z (3.23)




This expression is correct up to the second order of approxima-
tion as already stated on Page 35,

If ve apply the nethod nentioned by L. Brillouin and
outlined on Page 49 of this report for computing the radiation

pressure upon a reflector, we have to add the radiation pressure

2r 2 -
o
\gz * jigz o s regerded as reemitted by a reflector of ampli-

Pﬂwggoz
tude reflection coelficient ?{, to the radiation pressure POl

found in Eq. (3.6) as due to an incident and perfectly absorbed

piane wvave., The sum results in

< 2

and for the perfect rellector with ‘X’= 1 we abtain

_ 2.2 .=

Eradx,z 1

where E CGenotes the nmean total energy density of each of the two

progressive vave components leading to Eq. (3.21), in confornity
with the usage in this report, according to Eqe (2.42).

The problem of a perfect and rigid reflector was also
treated by I DOppB. It ney contribute to one's confidence in
the result expressed by Lge (3.25), if we trace also Bopp's
reasoning for this case, especially as it can be done very briefly.
Averaging in time the generally valid Evderian squation (2;14),
we have for a vave notion periodic in time ?3(5 + z§£2)/bx =0,

and integrating uith respect to x, we find

g8

' 2- 2
Prag = (1 +‘X2) . 'fkfifél' (3.24)

=2F (3.25)

5-{- PU_Z = (3-26)
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At the perfect reflector u = O3 thus the constant C equals the

mean excess pressure p at the reflector, which is just identical

with the radiation pressure (Prad)af in our case. (3See Part
= 1

II, Secs 12b). On the other hand we obtain by averaging

Eqe {3.22) in space

+ =0 = .}-3- + 2 TD‘[;ill (3027)

2]

il |}

For the bean of finite width under action of the statvic pressure Py
of the surrounding medium it is reasonable to assume, in agreerent
with Bopp, that ; = 0 (See also Part II, Sec. 7b), in other words
that the average value in time and space of the total pressure Py
inside the bean equals the static pressure P, outside the beam, )

With p = 0 we get from (3.27) ¢ = (B,,4) = 2 By, in agree-

Y= 1

ment with Eqe (3.25)s (See also Page 92,Eq. (3.41))

8. The Radiation Pressure in Gases at a Perfect

Reflector Caused by an Infinitely Ixtended Plane

Uave at Snall Amplitudes

The solution of this problem encounters some difficulties,
as 1t turns out that the complete solution Tor a standing wave in
gases cannot be achieved without taking into account the

dissivation of energy, which actually is of course aluays present,

Nevertheless it is possible to compubte the radiation pressure for
this case without proceeding to tie complete solution9 as will
noy be shovm,.*

Thé radiation pressure at the perfect reflector becomes

identical with

By, = ¢

- pO = p% = E)FO (3.28)

2

# See also lestervelt's paper, ref. 16, Sec. VI.




since all these pressures are the same at the immovable surface
of the reflector. The time average value of pi is given by

Eqe (3:10):

~ A 2 11 +\(C 2%1 ?wfzzl
+ “pO X 5 (lz ) ) -
i ox 3
i 7 7(3.29)
From the first order solution Z( 1) in (3.21) ve find easily
£y Db~
( 1y=0 ana ( 1\ =1 + cos 2 kx (3.30)
ox ox

1
To Lind the tern E/Pg /ax9 vhich is related to the

second order term E(Z) of E = 2(1 + *\2) we need the solution
of the differential equution (343), vhich in this case, introducing

the first order solution Z(1) into the last term on the righ’ side,

becones
2 o 3%
EZ—% = ¢ il—% +2cf (1 +”Z ) kBE 2 gin 2 kx cos® wt (3.31)
at Dx
A solution compatible vith the boundary condition
16

£=0atx=0at any t;, is found to have the form
£=2( 42 =20 4 g(x) « (L) sin 2 kx (3.32)

Inserting (3.32) in%to (3.31) with 2(1) ziven by (3.21), we obtain

for the time-dependent function f£(t) the differential equation
&%t ., =
&2 4 Lt = (1 +?{ ) we (1 + cos 2 wt) (3.33)
at? c

This is the differential equation of a resonant system driven by

an impressed force of exactly the resonance frequency . As

there is no dissipation term involved or the left side of (3.33),

the final amplitude becomes infinite, as is well known. This
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fact can easily be understood: Due to the non-linear relation
between prescure and density in gases, the fundamental angular
frequency w, vhich excites the standing wave, sets up higher
harmonics of angulsr frequencies 2w, 30, ess in the systems The
amplitudes of all the harmonics are limited actually by the
unavoidable dissipation of erergy in the resonating system, which
however is not talen into account in the differential equation
(3.31)s A solution leading to finite amplitudes can only be
achieved if diasipation or absorption of energy is properly taken
into consideration.

In our provlem, Lowever, we are only interested in pig

,
vhich involves tine-average values of E\g)s Fortunately the

N

time-averzge values of all those nurely sinusoidal higher harmonics

vanishy the only term of £(t) in the differential equation (3.33)

that is of importance for us here is the constant term (1 + Yc) we

on the right side of (3.33), which leads to a time-independent term

Lo T4k

itk the aid of (3.32) we have therefore

gkz) = (kgo)2 A(x) = (KE)? 1_:!:..}_/9 sin 2 kx
2 0 Lk
4
B/zl 1+ Y
2 = \60 cos 2 kx

snd hence
ox

From Egs. (3.30), (3.3€) and (3.29) we obtain

) ;
B - P, = Po \-ULC<12 * Yol (kEO)2 (1 + cos 2 kx — cos 2 kx)

2r 2
or = fE (1))

(334)

(3.35)

(336)

(3.37)




Taking account of (3.23) and (3.28), we have finally

@rad)xz . (p*) g = (1 +}fc) iy = (1 F Xc (3.38)

It is interesting to note that the "Rayleigh pressure"
EE, as observed at a moving particle, becones independent of x
in a standing uvave.

Fron (3.37) we are zble to derive the time-average value
of the excess pressure 5 in Fulerian coordinatesy with tlie aid of
Egs. (2:74) and (3.18) we Tind

1+¥%
p¥ = 2 Eklr(x) = faawz 2 (——é ~ 1 + cos 2 kx)

e’
H

or P=IL, (§(§ ~ 1+ 2 cos 2 kx) (3.39)

ok
The average valuc in time and space of » is therefore

(3+40)

S
i
o
;><
I
—
e
t=d

kin

The mean chenje in pressure due to the wave motion is positive in

gases, since 3{%‘71. I the beam is surrounded by an undisturbed
nediuwm with hydrostatic pressure Pyo it tends to expand a little,

—

until the average total pressure ptequals the hydrostatic pressure

Py oulside the bean. In the bean of finite width the pressure 5

becones thereforc according to (3.39)
p=2L . cos 2k« (3441)

At the reflector, vhere x = O, we have then (p, =2 E1 3 this
leads us back, by a different route, to the resu;t found in (3.25)

for the radiation pressure in a beam of finite width.
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9. lote Concerning Ravleigh's Originsl Formule

on the "Pressure of Vibrations®

Rayleigh's original formula l—gjié (energy density)13
is found in many books and publications as the formula for radia-
tion pressure in gases. Nevertheless it does not express the
radiation pressure as usually meagured in a beam of finite width,

but is rather associated with the mean excess pressure p¥ = 53 -p
+ o

observed at a moving particle, which may properly be called the
"Rayleigh pressure, On the other hand we found in Secs 3 and &
above the following results for the radiation pressure in an in-

finitely extended plane vave in gases at small amplitudes:

(P

1 Y e s 1Yo powEer
I‘Eld)>(= 0 A E= 4 = > (3013)
%]

it

_ 2. 2
(1 *”Xc) E= (1 +‘Xc) i3§9§§9~ (3438)

\

)
¥

One nust be careful as to the meaning of energy densitys

P
( rad
throughout this report E denotes the mean energy density of a

progressive wave. In the formula (3.13) E becomes identical with

the actual total energy density for a progressive vaves In the
et E, “

formula (3.38) thc actual total energy density equals 2 E because

the energy density of the reflected wave adds to the enersgy density
of the wave incident on the perfect reflector, If we initroduce

the concept of the tobtal enersv density b s the two formulas

total

may be vritten in the form

1Y

0 4

31

(3413)

(Prad) -~ “total

~

-t
+
1

(3.38)

e}
2]

(Erad) =

Y=1

total

n




%,

This shows that Rayleigh's forrwmla in its original form applies
indeed to the radiction pressure on a perfect and rigid reflector
in a gas exerted by an infinitely extended plane wave, vhich does

not communicate vith a medium under a constant hydrostatic

fl

3]

pressure p, if the total mean energy density By 4qy Teons the

=2 E, in the standing wave.
iK£

vhole energy density Ekin + E in

pot

For a progressive vave falling upon a perfect absorber, however,

the correct value is half as larpe, if by "total mean energy density",

= = I - -~e
v et g th +al ers ity B, . + E =T . + B
Etotal’ one understends the toval energy density ein Epot Bysm Boot

of the progressive wave.

ASSH LY OF CIHIEF EQUATIONS FOR LIQUIDS AND GASIS®

Ae General Expressions Valid at Large or Small Amplitudes

in Liguids and Gaseg (Disrercrding Viscosity)

lhen a plane acoustic wave of finite or infinite yidth in
a medium (1) falls norrally on a plane slab of any material or thick-
negs, separating medium (1) from sone other mediun (2), the resultant

time-average precsure upon the slab is given by

P o= - 2 <

[¥]
Medium (2) may Le bounded by still another medium which causes a
reflected wave.

If the tuo media (1) and (2) are both under the same

hydrostatic pressure p, vhien undisturbed, Ege (2478) reduces to

¥ For Symbols see pages ii and iii
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P =p=p + pui_ pu 2 2.78%a
rad  *17 P2 61 1 Pos ( )

vhich now represents radiation pressure alone.

B. lo Reflected Uave Present in ledium (2)

1. If no reflected wave is present in medium (2), but
the slab still transpits and -absorbs, ire have for a beam of finite

width at snall. amplitudes and surrounded by undisturbed regions (1)

and (2),
5 - 2 LRy S
P - + - j L 2-7
LAY ?f ) L, (2.79)

2+ If no enersy is absorbed within the slab, the fore-

going formula for a bean of finite width at small amplitudes can

be reduced to

3 - €1 2 Civl ‘
Prad = [k1 - Eg,'+ \{ (1 + EE) E1 (2.80)

Ce Ovaaue Slab, No Uave liotion Present in Medium (2)

1. IZ the slab absorbs all enersy that is not reflected,

so that no wave rotion is transmitted into medium (2), the radiation

pressure exerted by a bean of finite yidth at small amplitucdes in

liquids and gases is given by

Poo=(1+ YR E, (Egse (2450), (254)s (2.55),
rad \(Q 1 (3.7),,(3.24)99(3-25))

2. Under the same circumstonces, bub if the acoustic
9

plane wave is recarded as infinitely extended and not communicating

with undisturbed rezions, wve have for
2. Liguids (with constant corpressibility)

Erad =0 {Pages 33, 36, 45)

be Gases (for adiabatic processes)

o _1+é"‘- 2
Pg = A:K; I, in e progressive vave (3.13)

—
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Prad = (1 +”X;) E1 in a standing wave (3.33)

The symbol E stands for the time average of the ensrgy density

of a purely progressive acoustic wave of angular frequency w and

maxinal amplitude Eo in a medium of undisturbed density (3 g 88
o

given by -
- GRE 2
I, = —5-9--259- = 2 (2.42)

wvhere J denotes the intensity of the progressive wave.

De llean Ixcess Pressure Due to a Plane Infinitelv

Lxtended Acoustic lave at Small Amplitudes

The hydrostatic pressure po in the undisturbed medium
is chanrged by ithe acoustic vave motion into p + p, vhere p is
o
called the excess pressure,

1. Liguids (with constant compressibility)

it

-% (1+2 %/005(2 kx + 9) + K2> (2.43)

1l

el | Bel |

~E (14 \(2)

2« Gases (for adiabatic processes)

-
—
p__m-m—o_—

in the progressive wave CX'= 0) (3.14)

p=E (Y. =1+2 cos 2 k) in %he stonding
\{; ' wave (\/ﬁ 1) (3.39)
p=%E (?{; - 1) in the standing vave (3.40)
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