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1.0 INTRODUCTION

Various important applications involve the processing of

time-tagged streams of data collected over multiple spatially-

distributed channels. Such applications arise in the military

area as well as in the commercial sector. Military applications

include radar, sonar, sensor fusion, communications, and seismic

event detection for monitoring of nuclear test ban treaty

compliance. Non-military applications include non-destructive

evaluation, earthquake activity detection, medical technology, and

flood forecasting and control in hydrologic systems. The data can

be collected either simultaneously over all channels, or with a

time delay between channels. However, in most cases the data

exhibits both temporal and spatial correlations. This

characteristic offers an opportunity for joint processing of the

spatial and temporal domains using techniques that can handle such

conditions.

In model-based multichannel detection the objective is to

determine the presence (or absence) of a desired signal component

in the sensed data. This is carried out by identifying the

parameters of an analytic model fit to the observed phenomenology.

In this program the model class used to fit the data is a subset

of the class of linear systems, and the techniques used to

implement the parameter identification are based on processing

estimates of the third-order statistics of the multichannel data.

The terminology "higher-order statistics" (HOS) generally

denotes all statistics of order higher than two (Brillinger and

Rosenblatt, 1967; Mendel, 1991); this usage is adopted in this

report. Higher-order statistics are of relevance for data which

does not satisfy a Gaussian distribution since, in general,

statistics of all orders are required to describe distributions
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other than the Gaussian (recall that the Gaussian distribution is

described completely by first- and second-order statistics).

Cumulants are a special type of statistic with important practical

implications due to the fact that cumulants of orders third and

higher are identically zero for stationary Gaussian-distributed

random processes (for Gaussian-distributed processes, the first-

order cumulant is the mean value, and the second-order cumulant is

the covariance sequence). Third-order cumulants are of practical

interest because their estimation requires significantly less

computations than the estimation of cumulants of orders four and

higher. Besides, in many cases it is sufficient to process only

third-order cumulants in order to determine non-Gaussianity of the

data, and to allow effective estimation of model parameters.

As indicated above, model-based multichannel detection

methodology and techniques using higher-order statistics have

applicability in several areas. However, this report is focused

on surveillance radar systems in general, and airborne

surveillance radar systems in particular, because it is the

application of most interest to the Surveillance Technology

Division at Rome Laboratory (RL). Also, by carrying out analyses

and simulations in the context of a specific application it is

possible to reach a better understanding of the utility and

applicability of the algorithms and methodologies.

The fundamental precondition for the applicability of HOS for

model-based radar detection is the non-Gaussian nature of the

received radar return, since HOS vanish in the case of Gaussian-

distributed processes and therefore are useless for model

parameter estimation. An important outcome of Phase I is the

identification of several surveillance radar operational scenarios

wherein target and/or clutter exhibit non-Gaussian statistics.

One such scenario is the surveillance of large ocean areas at low
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grazing angles to detect long-range cruise missiles flying at low

altitudes over the ocean. Other important scenarios are listed in

Section 2.1.4.

Utilization of higher-order cumulants in the context of

surveillance radar systems is motivated also by the fact that

receiver noise and interference sources are usually Gaussian-

distributed and statistically-independent from the non-Gaussian

clutter and target return, and corrupt the radar signal in an

additive manner. Under these conditions the higher-order

cumulants of the signal at each channel output are the cumulants

of the target and clutter only. That is, noise and interference

effects are eliminated from parameter identification algorithms

based on higher-order cumulants. In practice, the effects of

Gaussian-distributed noise and/or interference sources are

mitigated, rather than eliminated completely, because the sequence

used to estimate the cumulants is of finite duration.

The model-based multichannel detection methodology for radar

arrays can be summarized as follows. Target detection is

accomplished by evaluating the output of two multichannel linear

time-invariant (LTI) filters, with one filter matched to the

condition of clutter and noise only, and the other filter matched

to the condition of target embedded in clutter and noise. Each

filter is a time series model fitted to observed phenomenology.

Filter design can be carried out either off-line or on-line in an

adaptive manner. Multichannel filter parameters are estimated

using algorithms based on third-order cumulants, where the

cumulants of the multichannel data are estimated jointly over the

spatial and temporal domains. Such algorithms are well suited for

the condition of a desired non-Gaussian target signal embedded in

additive non-Gaussian clutter and additive Gaussian noise.
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Other detection methodologies are suitable for applications

where non-Gaussian signals arise. Of particular interest is the

methodology developed by Rangaswamy, Weiner, and Michels (1993).

Their approach addresses innovations-based multichannel detection

for radar surveillance scenarios in which the spatial behaviour of

the return signal over a large number of radar resolution (range-

azimuth) cells is described by a non-Gaussian distribution, but

the temporal behaviour of the return signal at each individual

resolution cell is Gaussian. The spatial return signal in these

scenarios belongs to the class of random processes known as

spherically invariant random processes (SIRPs) . Spatial SIRPs

arise in non-homogeneous clutter scenarios where the temporal

behaviour of the return signal from each individual radar

resolution cell is Gaussian-distributed, but the average return

power fluctuates randomly from cell to cell. Thus, in an SIRP

clutter model the conditional probability density function (PDF)

at each individual resolution cell is Gaussian.

The SIRP-based detection methodology of Rangaswamy, Weiner,

and Michels (1993) is an optimal formulation for the case of a

known, constant target embedded in SIRP-type clutter. This

methodology, however, cannot be applied in scenarios where the

temporal behaviour of the return signal from each radar resolution

cell is described by a non-Gaussian distribution. For the same

reason, SIRPs cannot be used to model the temporal non-Gaussian

behaviour of a target in a resolution cell.

The HOS-based detection methodology developed in Phase I can

be applied to non-Gaussian temporal as well as spatial clutter

scenarios. Additionally, the HOS-based methodology applies in

cases where the target behaves according to a non-Gaussian

distribution. It follows that the methodology developed in Phase

I has broader applicability than the SIRP-based methodology. But
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the SIRP-based methodology is optimal for the known, constant

target case. Each approach has its merits, and both deserve

continued consideration and development.

1.1 Notation

The notation conventions established herein complement the

List of Mathematical Symbols. All variables and functions are in

Helvetica, Chicago, Symbol, or Zapf Chancery fonts. Vector

variables are denoted by underscored lower-case letters (x) ,

including Greek letters (a) . Matrices are denoted by upper-case

letters (A), including Greek letters (Q). Some scalars are denoted

also by upper-case letters (for example, J denotes the number of

channels in a surveillance radar array). Upper-case script

letters (S) denote sets or linear spaces. The letter j is used to

denote the imaginary unit, and is used also as an integer index;

the intended usage is clear from the context.

1.2 Report Overview

An introduction to the model-based multichannel detection

problem is presented in Section 2.0. This section also presents a

discussion of surveillance radar problems with emphasis on non-

Gaussian operational scenarios (Section 2.1). Time series models,

third-order cumulants, and the associated definitions are

discussed in Sections 2.2 and 2.3, respectively. The SSC model-

based multichannel detection methodology is described in Section

3.0, including an important pre-processing option which allows

utilization of third-order cumulants in cases where the PDF of the

radar return is symmetric or Gaussian (Section 3.3). HOS-based

multichannel time series parameter identification algorithms are

discussed in Section 4.0. Some of these algorithms have been

modified and/or extended by SSC to handle multichannel complex-
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valued sequences. Section 5.0 discusses results from simulation-

based analyses carried out in Phase I to investigate key concepts

and issues. This includes results which establish the detection

methodology potential for discrimination between target-present

and target-absent hypotheses. A summary of the key technical

issues identified in Phase I is presented in Section 6.0. The

main conclusions and recommendations borne out of this study are

discussed also in Section 6.0.
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2.0 PROBLEM DEFINITION

Within the confines of airborne surveillance radar

applications, multichannel formulations arise naturally in various

distinct configurations. In a pre-detection radar fusion

configuration involving two or more radar systems irradiating the

same physical area, each channel is the output of an individual

radar with a particular set of operational parameters. The

radiated frequency and/or any other operational parameters (such

as polarization) may be different from radar to radar (channel to

channel). In a radar array configuration each channel is the

output of an individual antenna element, or the output of an

individual subarray (a subarray is a collection of antenna

elements). The methodologies presented herein can be applied to

these two configurations as well as to others. Notwithstanding,

the radar array configuration is selected as the baseline for

discussions.

For the radar applications of interest herein, radar target

detection can be posed as a hypothesis testing problem involving

the following two hypotheses:

H0 : Desired target signal is absent

Hj: Desired target signal is present

where H0 is the null hypothesis, and H, is the alternative

hypothesis. The radar detection processor must select between

these two hypotheses. Selection of H, when H1 is true is a correct

detection, and a common measure of radar detection performance is

the probability of detection. Two types of detection errors can

occur: (1) selection of H1 when H0 is true, which results in a

false alarm, and (2) selection of H0 when H, is true, which results

7



in a missed detection. Each of these two errors has an associated

probability measure: probability of false alarm for a type 1

error, and probability of miss for a type 2 error.

Model-based multichannel detection techniques of the type

pursued herein are based on the premise that the received radar

time sequence (after demodulation to baseband and temporal

sampling) can be represented accurately for each hypothesis as the

output of an analytic model defined by a unique set of model

parameters. It is assumed also that the two parameteric

representations (one corresponding to each hypothesis) are

sufficiently distinct to allow selection of the correct hypothesis

by evaluation of measures that are sensitive to those differences.

Linear time-invariant (LTI) models are adopted in this program

because such models allow significant modeling freedom while

presenting manageable analytical and computational burdens. An

important class of LTI models is the so-called time series model

class, which includes moving-average (MA), auto-regressive (AR),

and auto-regressive moving-average (ARMA) models; this is the

model class adopted in this program. The model output is

corrupted by additive Gaussian-distributed noise, which is assumed

to be uncorrelated in time (white).

In the philosophy summarized above, a time series model is a

representation model for the spatial or temporal statistics of the

received radar signal; that is, a model which fits experimental

and/or simulated statistical data. In contrast, a physical model

is the result of a theoretical formulation of the physical

phenomenology. Of course, physical models also fit real data.

Haykin, Currie, and Kesler (1982), and Metford and Haykin (1985)

have demonstrated that time series models provide an excellent fit

to surveillance radar data. Their results motivate, in part, the

research in this program.
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A particular measure that has produced robust analytical and

experimental results in the model-based detection context is the

log-likelihood ratio (LLR) test. This test is the outcome of

solving the hypothesis testing problem using the Neyman-Pearson

criterion. The Neyman-Pearson criterion maximizes the probability

of detection for a given level of probability of false alarm. The

LLR test in the context of model-based detection is calculated

using the innovations sequence at the output of each of two LTI

filters, one for each hypothesis (of course, only the filter

output corresponding to the true hypothesis is a true innovations

sequence). Metford and others (Metford et al., 1982; Metford

(1984); Metford and Haykin, 1985) have formulated the discrete-

time version of the LLR detection test using model-based

innovations, and labeled the methodology as the innovations based

detection algorithm (IBDA).

In many surveillance scenarios the received radar time series

includes at least one component (either target or clutter)

described by a non-Gaussian distribution, and corrupted with

additive Gaussian-distributed receiver and/or interference noise.

An important feature which distinguishes the Gaussian distribution

from others is the fact that the Gaussian distribution is defined

completely in terms of its first- and second-order statistics.

Thus, statistics of order third and higher assume an important

role when non-Gaussian distributions are involved. The cumulants

of a distribution is a set of statistics of particular interest

because higher-order cumulants are zero for the Gaussian

distribution, but non-zero for non-Gaussian distributions except

that odd-ordered cumulants are zero for distributions with

symmetry about the mean value (see, for example, Mendel [1991]).
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The above discussion suggests that parameter identification

techniques based on cumulants can be used for model-based

multichannel detection in non-Gaussian scenarios. In the approach

pursued herein the parameters of a LTI time series model (MA, AR,

or ARMA) are identified using techniques based on processing

estimates of third-order cumulants. The effects of additive

Gaussian noise are mitigated since the third-order cumulants of a

Gaussian-distributed process are zero. Third-order cumulants are

preferred because their estimation from data requires fewer

computations than the estimation of cumulants of order four and

higher. Parameter identification algorithms are developed based

on the work of Giannakis, Inouye, and Mendel (1989) and Raghuveer

(1986), modified and extended appropriately to handle the case of

complex-valued data. An optimal LLR detection rule for the

outputs of the LTI filters associated with each hypothesis

requires knowledge of the multivariate PDF under each of the

hypotheses. In most non-Gaussian cases this information is

unavailable. However, Metford (1984) has demonstrated that the

LLR detection rule for the Gaussian case is a suboptimal,

approximate detection rule for the non-Gaussian case. This

approximation was adopted for the work reported herein.

Strictly speaking, the utility of third-order cumulants is

restricted to cases where the PDF of the radar return (quadrature

components) is asymmetric about the mean value. However, it

appears that the cases where the PDF is symmetric can be addressed

by first applying a zero-memory nonlinear transformation to the

data. Such an approach has been proposed recently by Zheng,

McLaughlin, and Mulgrew (1993), with the logarithm function as the

zero-memory nonlinear transformation. Their approach is discussed

in Section 3.3. Results from simulation-based analyses carried

out in Phase I indicate the logarithm is indeed useful for

introducing asymmetry in the data PDF (see Section 5.1). This
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issue has practical (as well as theoretical) significance because

in many radar systems the logarithm function is used to reduce the

dynamic range of the radar return.

2.1 Airborne Surveillance Radar

Consider a coherent radar array with J spatial channels (each

channel is the output of either an individual array element or a

sub-array composed of multiple array elements), as indicated in

Figure 2-1. The radar is coherent because both in-phase and out-

of-phase quadrature components are generated in each channel. In

a surveillance scenario involving a down-looking radar onboard an

aircraft (see, for example, Jaffer et al., [1991], or Rangaswamy

et al., [1993]), the J-element, discrete-time, baseband,

stationary, complex-valued, finite-duration, vector sequence {Xk(n) l

n = 0, 1, . . . N-1} in Figure 2-1 is the return from the kth radar

resolution (range-azimuth) cell received at the J channels for the

duration of the coherent processing interval (CPI).

T Xlk(t)
Channel 1 DEMODULATION

* "AND
TEMPORAL

XJk(t) SAMPLING
Channel J I______I__

Xk(n) : complex-valued, J-dimensional vector of the return from
the kth range gate corresponding to the nth pulse

Figure 2-1. Multichannel signal in a coherent surveillance radar

array.
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In the context of a hypothesis testing formulation applied to

the kth resolution cell, the null hypothesis corresponds to the

case of target absent; the alternative hypothesis corresponds to

the case of target present. Under the null hypothesis, the

baseband vector process {Xk(n)} contains clutter, interference, and

noise. Under the alternative hypothesis, {Xk(n)1 also contains

target information. This can be summarized as

(2-la) HO: Xk(n) = + Wk(n) 0 ! n • N-1

(2-1b) Hj: Xk(n) = Sk(n) + Ck(n) + Wk(n) 0 • n • N-1

where {ck(n)I denotes the clutter process, {Wk(n)} denotes the

combination of all noise (receiver noise, etc.) and interference

processes, and {sk(n)} denotes the desired target signal process.

Table 2-1 lists the conditions assumed on the vector process {xk(n)}.

Notice that selection of the initial time as n=0 in Equations (2-

1) implies no loss of generality since the process is assumed to

be stationary (in practice it suffices that the process be

stationary at least for the duration of the CPI).

In a typical surveillance application over a large number of

resolution cells, the data from each radar resolution cell is

processed and a decision is made as to the presence or absence of

a target. Various resolution cells can be processed in parallel

or sequentially, depending on the design parameters of the radar

system. Consider the data {Xk(n)} from one CPI for a specific

resolution cell to which the detection criterion is being applied.

This data set is referred to as the primary data. Returns from G

cells in the neighborhood of the kth cell are described by the same

probability distribution as the kth cell, but it is assumed that a

target is not present in those cells. It is further assumed that

the data in those cells is statistically independent of the data

12



in the kth cell. The data from these G range cells is referred to

as the secondary data, and is used to set the detection threshold

for the kth resolution cell. As the detection process continues,

the current primary data becomes part of the secondary data

corresponding to a different resolution cell.

BASEBAND VECTOR SEQUENCE ASSUMPTIONS UNDER BOTH HYPOTHESES

* Zero Mean
* Stationary
e Ergodic

e Nyquist Sampling Criterion Is Satisfied

* Noise Process Is Gaussian-Distributed and White

* Target Process Is Non-Gaussian
* Clutter Process Is Non-Gaussian
* Target, Noise, and Clutter Processes Are Independent
* Can Be Modeled as Output of a LTI System

Table 2-1. Baseband vector sequence assumptions under both

hypotheses.

From this point on, the subscript k on the baseband vector

sequence (this subscript denotes the resolution cell) will be

deleted to simplify notation. This is appropriate also because,

as discussed above, the data from each resolution cell assumes the

status of primary data sometime during the process.

In most of the radar technical literature the terminology

"Gaussian-distributed signal" denotes a coherent radar return with

Gaussian-distributed quadrature components, Rayleigh-distributed

envelope, and exponentially-distributed power (or radar cross-

section, RCS). Correspondingly, "non-Gaussian signal" refers to a

radar return with either non-Rayleigh envelope or non-exponential

13



power. This terminology, although common, can be misleading in

the context of algorithms and methodologies based on third-order

cumulants because the shape of the distribution of the quadrature

components is a key issue when third-order cumulants are involved

(as well as all odd-ordered cumulants of higher orders) . To

illustrate this point consider the case of a signal consisting of

a constant-frequency sinusoid (representing a constant-velocity

moving target) in additive Gaussian white noise. In this case the

combined signal (target plus noise) envelope is described by the

Rice distribution, the phase is not uniformly-distributed, and the

envelope and phase are statistically-dependent (Thomas, 1969).

This case is referred to in the literature as non-Gaussian, but

such a statement is misleading because the quadrature components

are jointly Gaussian-distributed and independent of each other,

and the marginal distribution of each is Gaussian with non-zero

mean. Estimation of the higher-order cumulants of the quadrature

components is carried out after subtracting the mean, which

results in zero-mean Gaussian-distributed quadrature components.

Thus, for a Rice-distributed envelope all higher-order cumulants

of the quadrature components are zero (after mean removal).

2.1.1 Alternative Probabilistic Descriptions

A complete probabilistic model for radar data consists of the

multivariate PDF of the received radar time sequence for the full

CPI, {x(n) I n = 0, 1,..., N}. The multivariate PDF model inherently

includes the temporal and spatial statistical information

(moments, etc.) required to estimate the parameters of a time

series model to represent the data. A multivariate PDF model is

required also under each of the two hypotheses in order to

determine the optimal LLR detection rule. Unfortunately, a

temporal multivariate PDF model is available only for a limited

number of scenarios and conditions that result in Gaussian-
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distributed return signals. In most cases involving non-Gaussian-

distributed return signals the available information is a

univariate PDF model for either the envelope or the power of each

scalar element of {x(n)} at each discrete instant of time. Some of

the available univariate PDF models are physical models, whereas

others are representation models.

Multivariate as well as univariate PDF descriptions can be

represented in either one of two ways: as a function of complex-

valued quantities, or as a function of real-valued quantities.

Issues associated with the two representations are considered in

this section, with emphasis on those issues that have an impact on

model-based multichannel detection for non-Gaussian cases.

Let the complex-valued baseband process {x(n)} be defined in

terms of its real and imaginary components as

(2-2) x(n) = x1(n)+jQ(n)

where the subscripts I and 0 denote in-phase and out-of-phase,

respectively. The real-valued vector sequences {Xl(n)} and {JX(n)} are

the quadrature components of {x(n)1. Since the process {X(n)} is

zero-mean, both of these vectors are zero-mean also. The auto-

covariance and cross-covariance sequences of these two components

are defined as

(2-3) Rll(m) = E[xL(n) (T

(2-4) RQQ(m) = E [ XQ(n) xT(n-m)]

(2-5) R1Q(m) = E[ x(n)xT(n-m)]

(2-6) RQI(m) = E[XQ(n)xT(n-m)]
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Auto-covariances RII(m) and RQQ(m) are both symmetric and (at least)

positive semi-definite. Cross-covariances RiQ(m) and RQI(m) do not

exhibit any particular structure, but it is obvious from Equations

(2-5) and (2-6) that

(2-7) R1Q(m) = RT,(m)

The covariance sequence of the process {X(n)} is defined as

(2-8a) Rxx(m) = E[x(n)xH(n-m)]

(2-8b) Rxx(m) = Ri,(m) + RQQ(m) +j R0 1(m)-j RIQ(m)

Matrix Rxx(m) is Hermitian and (at least) positive semi-definite.

Also, the following relationship is true

(2-9) Rxx(-m) = RH(M) VM

This covariance sequence constitutes the second-order statistics

for the process {x(n)}. Since the process has mean zero, the matrix

elements of the covariance sequence are the second-order cumulants

of the process.

Now define three JN-dimensional vectors by concatenating all

the J-dimensional vectors in the complete CPI as follows:

XI(o)

(2-10) xI(O;N-1) =

x,(N-1)1
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xQ(O)

XQ(1)
(2-11) XQ(O;N-1) =

_x (N-1I)

F (O)
(2-12) x(O;N-1) = x 1(O;N-1) + jXQ(O;N-1) = (

x(N-1)

The vectors in Equations (2-10)-(2-12) contain all the data for a

specific resolution cell for one CPI. Define also a 2JN-

dimensional, real-valued vector as

(2-13) r(O;N-1) = I(;N-)

L Q(O;N-1)

Since the process {2_(n)} is zero-mean, all of the vectors in

Equations (2-10)-(2-13) are zero-mean. Vector x(O;N-1) contains the

same information as vector r(O;N-1); however, it turns out that the

probabilistic description of the baseband process based on the

complex-valued representation of the information is more

restrictive.

First it is convenient to introduce additional definitions.

The covariance matrix of the JN-dimensional vector x(O;N-1), is

defined as

R xx(0) nxx(-1) .. R xx(1 -N)

(2-14) N,N - E[x(O;N '1)xH(O;N1)] Rxx(1) Rxx(O) ". Rxx(2-N)

Rxx(N-1) Rxx(N-2) .. Rxx(0)
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Matrix RN,N is Hermitian and block Hermitian, and it exhibits block

Toeplitz structure (the (i,j)th block element of a block Toeplitz

matrix is a function of i-j) . The block elements of RN,N are

matrix elements of the covariance sequence {Rxx(m)}. Also relevant

is the covariance matrix of r(O;N-1), which is defined as

(2-15a) RNN = E[(O;N-1)rT(O;N-1)]

RII(O) ... R,1(1-N) RIQ(O) ... RIQ(1-N)

R1i(N-1) ... RII(O) RIQ(N-1) ... RIO(O)
RQI(O) ... RQI(1-N) RQQ(O) ... RQQ(1-N)

RQI(N-1) ... RQI(0) RQQ(N-1) ... RQQ(0)

Matrix RNN is symmetric and block symmetric; however, in general

it does not exhibit block Toeplitz structure. The block elements
of RN,N are the real and imaginary matrix components of the

covariance sequence, Equation (2-8b).

Having established the relevant notation and correlation

matrix definitions, the concept of circular symmetry can be

defined. A complex-valued vector process {x(n)} with covariance

sequence defined as in Equation (2-8) is circularly symmetric if

the following conditions are satisfied (Goodman, 1984; Papoulis,

1984):

(2-16) E[x,(n)]= E[_(n)] = 0 V n

(2-17a) R,1(m) = RQQ(m) V m
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(2-17b) RIQ(m) = - R01(m) V m

Condition (2-16) requires the radar return to have mean zero,

which is satisfied by assumption (see Table 2-1); Conditions (2-

17) place structural constraints on the covariance sequence of

{x(n)}. Notice that circular symmetry involves only first- and

second-order statistics. Thus, most results available in the

literature on circular symmetry involve the Gaussian distribution

(recall that the Gaussian distribution is defined completely by

first- and second-order statistics). One example of such results

is the following: if a Gaussian-distributed baseband sequence {x(n)}
is circularly symmetric, then its associated bandpass process {x(t)}

(see Figure 2-1) is a stationary process (Papoulis, 1984) . The

converse statement is also true. An equivalent result for non-

Gaussian processes is unavailable; it seems that such a result may

not be possible for non-Gaussian processes because of the role

played by higher-order statistics in such processes.

The probabilistic description of the complex-valued vector

process {x(n)} can be represented using either one of two analytic

forms. In the first form the multivariate PDF is expressed in

terms of the JN-dimensional complex-valued vector x(O;N-1), with

corresponding complex-valued moments. Alternatively, in the

second form the multivariate PDF is expressed in terms of the 2JN-

dimensional real-valued vector r(O;N-1), with corresponding real-

valued moments. It is well known that when {x(n)} is Gaussian-

distributed, the two PDF representations are equivalent if the

process {x(n)} is circularly symmetric (see, for example, Goodman

[1963]). The above comments and conclusions are valid also for

univariate PDF models for each element of the random vector x(n) at

each time instant n.
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Circular symmetry is not satisfied in many cases, even when

the quadrature components are Gaussian-distributed. As an example

consider a process represented by the Rice envelope PDF model.

The quadrature components corresponding to a Rice envelope process

are Gaussian-distributed, but the mean is non-zero. Since the

process fails Condition (2-16), it is not circularly symmetric.

Consequently, this process cannot be represented with a PDF model

based on the complex-valued formulation. Similar behaviour can

occur for non-Gaussian processes. Furthermore, even if a non-

Gaussian process is circularly symmetric, there may not be a valid

complex-valued PDF model. In summary, the multivariate PDF

representation based on the real-valued vector r(O;N-1) and its

moments is more general than the representation based on the

complex-valued vector x(O;N-1) and its moments (Williams and

Johnson, 1993; Michels, 1991). This fact is significant because

optimal LLR detection algorithms are developed based on the

multivariate PDF model for the sequence.

Based on the discussion presented in this section, it is

reasonable to adopt the real-valued probabilistic representation

in the formulation of model parameter identification algorithms

and detection methodologies for scenarios involving non-Gaussian

radar returns. Nevertheless, the methodology and equations were

developed in Phase I using the complex-valued probabilistic

representation because the form of the resulting equations and

diagrams are applicable to both cases (in general, a complex-

formulation equation reduces to its real-valued counterpart by

setting the imaginary components to zero and replacing the

Hermitian operator with the transpose operator). Additionally,

the notation for the complex-valued case is more compact than for

the real-valued case (compare, for example, Equation (2-14) with

Equation (2-15)).
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2.1.2 Non-Gaussian Clutter Scenarios and Probabilistic Models

Airborne surveillance radars generally search for moving

targets over large areas of ground surface consisting of land, or

water (sea, lake, etc.), or both (coastal regions, etc.). Thus,

the received radar signal contains land and/or water clutter, and

the probabilistic description of these two clutter types is of

relevance. The methodology developed in this program is best

suited for cases where the return signal is non-Gaussian (unless a

transformation is applied to the data first); thus, identification

of radar scenarios and/or conditions which result in non-Gaussian

clutter is a fundamental issue.

As mentioned in Section 2.1.1, the multivariate PDF of the

received radar time sequence for one full CPI is a complete

probabilistic model for radar data. However, in most cases of

non-Gaussian clutter the available PDF model is a univariate PDF

model for either the envelope or the power (equivalently, radar

cross-section) at the output of each individual channel and at

each discrete instant of time. The univariate PDF is complemented

by temporal correlation information. During Phase I of this

program a literature review was carried out to identify the

various non-Gaussian clutter univariate PDF models and the

conditions and/or scenarios where such non-Gaussian clutter

arises. A summary of the most common univariate PDF models is

presented in Table 2-2. The last column in Table 2-2 describes

the clutter type and the conditions under which the PDF model is

valid. Several relevant references are provided also in the last

column. Most of the references given in this column are texts

which discuss clutter issues in detail and provide extensive lists

of references for the original experimental and/or analytical work

on which the results summarized herein are based.
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UNIVARIATE MODEL VARIATION CLUTTER TYPE
PDF MODEL PARAMETER TYPE DESCRIPTION

Rice Terrain with large, fixed scatterers (such as
(Non-central Envelope Temporal man-made structures) and a large number

gamma) (RCS) of small, moving scatterers (Nathanson,
1991; Simkins, 1981).

Sea clutter at microwave frequencies
K-distribution Envelope Spatial (Jakeman and Pusey, 1976; Nathanson,

1991).
K-distribution Envelope Spatial Polarimetric scattering from certain types of

terrain (Raghavan, 1991).
Sea clutter at S-band and C-band radar

Gamma RCS Spatial frequencies; used in RADC model
_Simkins, 1991).
Sea clutter for high-resolution radar (short-

Log-normal RCS Temporal; Spatial duration pulses and narrow beamwidth),
low grazing angles (< 5 deg), and high sea
states (Nathanson, 1991; Skolnik, 1980).
Various types of terrain clutter at low

Log-normal RCS Spatial grazing angles (< 3 deg); also non-
homogeneous (composite) terrain (Currie,
1989; Nathanson, 1991; Skolnik, 1980).
Rain clutter with millimeter wave radar at

Log-normal Envelope Temporal rain rates in the 1 mm/hr to 60 mm/hr range
(Skolnik, 1980).
Sea clutter for high-resolution radar (short-

Weibull Envelope Temporal; Spatial duration pulses and narrow beamwidth),
low grazing angles ( < 5 deg), and high sea
states (Nathanson, 1991; Skolnik, 1980).

Various types of terrain clutter at low
Weibull Envelope Spatial grazing angles (< 3 deg), also non-

homogeneous (composite) terrain (Currie,
1989; Nathanson, 1991; Skolnik, 1980:).
Weather clutter under stormy conditions at

Weibull Envelope Spatial L-band (1.3 GHz) over Tokyo, Japan
_Sekine et al., 1979).

Table 2-2. Non-Gaussian clutter fluctuation PDF models.

The univariate PDF models in Table 2-2 provide only part of

the information required for the development of optimal detection

methodologies and analyses. Minimum additional model information

required for suboptimal techniques is a description of the

temporal correlation structure. The most commonly adopted
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temporal correlation models are those which bound temporal

correlation behaviour as defined by Marcum and Swerling (1960):

(a) pulse-to-pulse fluctuation, and (b) scan-to-scan (or pulse

train-to-pulse train) fluctuation. In multichannel systems

spatial correlation models are required also. Analogous to the

temporal case, the two models that bound spatial fluctuation

behaviour are: (a) channel-to-channel independence, and (b)

channel-to-channel full correlation. Multichannel systems offer

more degrees of freedom, with the associated performance

improvement potential and increased analytical complexity.

A clutter PDF model represents either a temporal or a spatial

variation for the model parameter (envelope or RCS), as indicated

in Table 2-2. A temporal PDF model describes the instantaneous

fluctuations of the envelope (or power) of the baseband radar

signal {x(n)} at each individual resolution cell. A spatial PDF

model describes cell-to-cell fluctuations of the mean envelope or

mean power (equivalently, RCS) over a large area covering many

resolution cells, and these fluctuations behave according to the

listed distribution, except in the case of the K-distribution.

The cell-to-cell fluctuations in the K-distribution model behave

according to the (un-normalized) chi distribution. In the model

referred to in the table, the K-distribution describes the joint

fluctuation behaviour of the radar return from all the resolution

cells over a CPI (this is discussed in more detail below). Thus,

if the same naming convention were to be used in all cases, the

correct name for this model would be "chi". However, the K-

distribution name for the model is entrenched.

In most spatial model cases the instantaneous envelope

fluctuations in each individual radar resolution cell are

Rayleigh-distributed, and the instantaneous power fluctuations are

exponentially-distributed. This is the Gaussian case. Thus, most
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spatial PDF models represent non-homogeneous clutter with

Gaussian-distributed behaviour at each individual resolution cell.

The spatial vs. temporal distinction is important in the context

of higher-order cumulants since all higher-order cumulants are

zero for Gaussian-distributed clutter returns. An HOS-based

detection formulation can be defined for each case (spatial;

temporal), as discussed in Section 3.2.

With exception of the Rice envelope model, each of the PDF

models listed in Table 2-2 is incomplete in the sense that

information is unavailable in the literature which is essential to

determine the unqualified feasibility of time series model

parameter estimation using third-order cumulants of the quadrature

components ("unqualified" implies without the pre-processing step

introduced in Section 3.3). Specifically, the following

information is unavailable for each of the listed PDF models

(except Rice envelope):

(a) joint distribution of the envelope and phase,

(b) marginal distribution of the phase,

(c) joint distribution of the quadrature components, and

(d) marginal distribution of the quadrature components.

Of these four items, the key model information (in the context of

third-order cumulants of the quadrature components) is the

marginal distribution of the quadrature components. Given the

marginal PDF, the asymmetry of the distribution about the mean

value can be determined. An effective measure of univariate PDF

asymmetry is the coefficient of skewness, rS' which is defined as

(2-18) ý'

where 93 is the third moment about the mean and cy is the standard

deviation of the PDF model (Hastings and Peacock, 1974). For a
symmetric distribution, t3 =0; a highly asymmetric PDF has a large
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coefficient of skewness. Variants of the definition in Equation

(2-18) have been introduced in the literature for specific

objectives. Maffett (1989) uses a modified coefficient of

skewness, where the modification consists of replacing y3 in the

denominator by the product R(72 , with R the mean of the process.

Often it is assumed that the clutter return phase

corresponding to the temporal distributions in Table 2-2 is

uniformly-distributed and independent of the envelope (or RCS).

Sometimes these two assumptions are made to simplify the

generation of simulated data. Other times they are introduced in

order to simplify analyses. However, the validity of these two

assumptions has not been justified via experimental and/or

analytical means. In fact, the Rice envelope is an example of the

opposite: in the Rician envelope model the phase and the envelope

are dependent, and the phase marginal PDF is not uniform (Thomas,

1969). The quadrature components of the Rice envelope model are

independent and Gaussian-distributed, though. The validity (or

lack thereof) of the two assumptions on phase (uniformly-

distributed and independence of phase and envelope) for any of the

non-Gaussian cases in Table 2-2 (except Rice envelope) has

significant implications in the context of third-order cumulants.

This is so because it can be shown that if the phase is uniformly-

distributed and independent of the envelope (or RCS), then the

marginal PDF of each of the two quadrature components is symmetric

about the mean. Furthermore, it is reasonable to conjecture that

the marginal PDF of each of the quadrature components is symmetric

about the mean if the phase is independent of the envelope (or

RCS) and the phase distribution is symmetric about its mean (but

not necessarily uniform). In summary, it is important to keep in

mind the potential impact of any assumption made with respect to

the distribution of the phase and/or the dependence (or lack

thereof) between the phase and envelope processes.
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For the temporal distributions in Table 2-2 there are several

open questions of relevance to the approach pursued in this Phase

I. Two of those questions are:

(1) Is the phase distribution always symmetric about

the mean, irrespective of the corresponding

envelope PDF?

(2) Is the marginal PDF of the quadrature components

symmetric about the mean irrespective of the

envelope PDF?

These questions are difficult to answer. One reason is the fact

that the temporal PDF models in Table 2-2 are models of

representation, except for the Rice envelope model. Nevertheless,

it is relevant to pursue the answers to these and other related

questions because the unqualified feasibility of using third-order

cumulants in a model-based detection algorithm is determined by

such issues.

The discussion thus far has centered on the temporal PDF

models in Table 2-2 due to the fact that cumulant-based techniques

are better suited to such cases. It is appropriate to consider

the cases involving spatial fluctuations of the clutter

parameters. Non-Gaussian spatial fluctuations arise as a result

of non-homogeneities of the ground (land or water) clutter over an

area which covers a large number of radar resolution (range-

azimuth) cells. Clutter temporal fluctuations in each resolution

cell are Gaussian-distributed, but the average RCS fluctuates from

cell to cell in a random manner. This condition is modeled using

a compound distribution to describe the overall clutter return

covering a large number of resolution cells, in contrast to a

local neighborhood of resolution cells (Lewinski, 1983; Nathanson,

1991). A compound distribution model for the clutter envelope is

a PDF model of the form
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(2-19) p(a) = fp(aI r) p(r) dr

0

where p(a) is the overall spatial clutter envelope PDF, p(alr) is the

clutter envelope PDF at each individual resolution cell, and p(r) is

the PDF of the cell-to-cell mean envelope fluctuations. The sea

clutter envelope model listed in the second row of Table 2-2 is an

example of a spatial variation model generated from a compound

distribution. The overall clutter envelope is K-distributed, the

conditional PDF is Rayleigh, and the cell-to-cell mean envelope

fluctuations behave according to the (un-normalized) chi

distribution (Watts, 1987).

The K-distributed PDF model discussed above is a physical

model. Such a scenario can be modeled effectively using SIRPs,

for which a wealth of results is available (see, for example,

Rangaswamy [1992] and the references therein). In particular, for

a K-distributed SIRP the marginal PDF of each of the quadrature

components is the so-called generalized Laplace PDF, which is

symmetric about the mean. The spatial multivariate K-distribution

PDF model is well defined for complex-valued as well as real-

valued formulations.

In summary, key aspects of the probabilistic description (the

marginal PDF of the quadrature components, in particular) of the

non-Gaussian clutter types listed in Table 2-2 are unavailable,

and may remain so for a long time. Nevertheless, it can be stated

that detection techniques based on higher-order cumulants can be

applied to the multichannel detection problem for the following

two reasons. First, even-ordered cumulants are non-zero for all

non-Gaussian PDFs, whether symmetric or asymmetric. This implies
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that the methodology developed in Phase I can be applied using

fourth-order cumulants. Second, the SSC detection methodology can

be applied in the cases where the quadrature components are

symmetrically-distributed by introducing a pre-processing step, as

discussed in Section 3.3. In essence, symmetrically-distributed

clutter is transformed by a zero-memory nonlinearity to induce

asymmetry in the PDF of the quadrature components, while

introducing tolerable distortion to the temporal correlation

function (or, equivalently, the frequency-domain spectrum). The

pre-processing step considered in Section 3.3 is the logarithmic

function, which is applied to the clutter process prior to

processing. The degree of distortion depends on the dynamic range

and the frequency content of the quadrature components, as well as

on the operating region in the logarithm function. After the

transformation the clutter process is characterized by a different

univariate PDF with a larger-valued coefficient of skewness (see

Section 5.1).

2.1.3 Non-Gaussian Target Probabilistic Models

In a typical surveillance scenario the target's physical

dimensions are small in relation to the radar footprint; thus, in

general the target is illuminated completely by the radar beam and

is present in the return from only one resolution cell. This is

in contrast with the clutter, which has a large spatial extent

that covers many resolution cells. As a result, the target RCS

fluctuations in a surveillance scenario of the type considered

herein arise only in the temporal sense.

During Phase I SSC searched the literature for non-Gaussian

target models. This activity led to the realization that the

radar return from many surveillance targets is characterized by

non-Gaussian statistics. As in the case of clutter, the most
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common probabilistic models for targets are in the form of a

univariate PDF which characterizes the instantaneous RCS

fluctuations, and a temporal correlation function. Table 2-3

lists several univariate PDF models for the temporal RCS

fluctuations and the target types which can be represented by each

PDF model. This table has been adapted from the text by Nathanson

(1991) , and enhanced by SSC with the entry for the beta

distribution. Notice that aircraft, missiles, and similar targets

are listed, which indicates that most of the airborne targets of

interest exhibit non-Gaussian statistical features.

TEMPORAL RCSFLUCTUOATO PF TARGET TYPE DESCRIPTIONFLUCTUATION PDF

Targets composed of one large reflector and many small reflectors
Non-central gamma (the sum of the RCS of all the small reflectors can be different than the

(Rice envelope) RCS of the large reflector).

Beta Complex targets such as aircraft and missiles; postulated as a physical
model as well as a representation model (Maffett, 1989).

Log-normal ITargets with large mean-to-median ratios (> 1.44); this includes
battleships, missiles, satellites, and aircraft (at near broadside).

Targets composed of one large reflector and many small reflectorsChi-squared of degree 4 (the sum of the RCS of all the small reflectors is equal to the RCS of
(Swerling cases 3 and 4) the large reflector). In general, the Rice PDF is a better model.

Short-term (or reduced-aspect viewing) statistics of several types of
Chi-squared of degree 2m aircraft. The degree is an inverse function of the level of the

(for m > 2) fluctuations about the mean RCS. Equivalent to gamma distribution
for non-integer values of m.

Weinstock This model is included in the chi-squared PDF of degree 2m for 0.3 <
m < 2.0.

Table 2-3. Non-Gaussian target temporal RCS fluctuation PDF

models.

Other non-Gaussian target models have been developed for

parameters different than the RCS. For example, Novak, Sechtin,

and Cardullo (1989) have demonstrated that the polarimetric return

fluctuations from complex ground targets such as tanks and trucks

can be modeled accurately and effectively using the K-
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distribution. Their approach is analogous to the modeling of

spatial variation using the compound distribution model as

summarized in Section 2.1.2, with target aspect angle variability

playing the role of spatial ocean surface variability.

The issues and open questions identified in Section 2.1.2 are

just as relevant to radar return from targets. In particular, the

PDF models for targets are deficient in the same manner as for

clutter:

- multivariate quadrature component PDF for each of the

non-Gaussian models (except Rice envelope);

- phase model information (joint PDF with envelope;

marginal phase distribution; symmetry of marginal phase

PDF);

- univariate marginal PDF of the quadrature components.

In the same manner, candidate resolution approaches identified for

clutter are relevant also for targets. This includes the use of a

zero-memory nonlinear transformation to skew the marginal PDF of

the quadrature components.

2.1.4 Surveillance Radar Scenarios With Non-Gaussian Signals

Based on the clutter and target PDF models presented in

Sections 2.1.2 and 2.1.3, several military and non-military

surveillance scenarios and/or detection problems for radar arrays

can be identified wherein at least one non-Gaussian component is

part of the radar return. A variety of generic scenarios and

detection problems wherein non-Gaussian components arise are

presented in Table 2-4 for military applications, and in Table 2-5

for non-military applications. The first two scenarios in Table

2-4 cover the type of detection problems that arise in programs

such as the Space-Time Processing Program at RL.
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RADAR ARRAY SURVEILLANCE TARGETS OF INTEREST

PLATFORM COVERAGE

High-altitude aircraft Ocean • Missiles (cruise)

, Aircraft (bombers, fighters)

High-altitude aircraft Ground • Aircraft (bombers, fighters)
* Missiles (cruise)

Large ships Airborne threats - Missiles (cruise, short-range)
• Aircraft (bombers, fighters)

Aircraft Ground • Land vehicles (tanks, trucks, etc.)

* Aircraft (fighters, helicopters)

Table 2-4. Candidate military surveillance radar problems

involving non-Gaussian clutter and/or targets.

RADAR ARRAY FUNCTION TARGETS OF INTEREST

PLATFORM

Ground-based Air traffic control Aircraft, including helicopters

system

Ground-based Weather radar Weather phenomenology

system

Table 2-5. Candidate non-military surveillance radar problems

involving non-Gaussian clutter and/or targets.

The radar return {x(n)} for each of the radar surveillance

scenarios summarized in Tables 2-4 and 2-5 can be represented by

at least one of the first three cases listed next (presented here

assuming the alternative hypothesis is true):

(2-20a) x(n): NGS + NGC + GWN
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(2-20b) x(n): NGS + GC + GWN

(2-20c) x(n): GS + NGC + GWN

(2-20d) x(n): GS + GC + GWN

where GS and NGS denote Gaussian and non-Gaussian target signal,

respectively; GC and NGC denote Gaussian and non-Gaussian

clutter, respectively; and GWN denotes Gaussian white noise. The

methodologies discussed in this report address Case (2-20a). It

appears that Cases (2-20b) and (2-20c) may be handled via

modifications and/or extensions to the approach defined herein.

This will be investigated in Phase II. HOS-based identification

and detection methods are inappropriate for Case (2-20d), because

all three components are Gaussian-distributed. Use of the log

transformation may allow the handling of Case (2-20d) also.

2.2 Time Series Models

The time series model class is adopted in this program to

represent the target and clutter components in the radar return,

{X(n)}. Specifically, it is presummed herein that Cases (2-20a)-(2-

20c) can be expressed in the form

(2-21) X(n) = y(n) + w(n)

where the process {y(n)} is the output of a time series system that

represents the target and/or clutter components, depending upon

which hypothesis is valid. For the data in one CPI,

(2-22a) H0 : y(n) = c(n) 0•! n • N-1

(2-22b) HI: y(n) = s(n) + c(n) 0•! n•! N-1
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MA, AR, and ARMA models are adopted herein to generate the process

{y(n)}, with emphasis on MA and AR models because their use leads to

simpler algorithms with reduced analytical and computational

complexity. Haykin and co-workers have shown that these models

provide accurate representation of single-channel radar signals,

specially clutter return (Haykin, Currie, and Kesler [1982];

Metford and Haykin [1985]). Michels (1991) has demonstrated the

value of model-based multichannel detection using AR models and

second-order statistics for Gaussian conditions, Case (2-20d).

Moving-Average Process. A J-dimensional, zero-mean, stationary,

complex-valued sequence {y(n)} is referred to as a moving-average

vector process of order M, and is denoted as MA(M), if it

satisfies a vector recursion of the form

M
(2-23) y(n) = , B'u(n-k)

k=O

where M is a non-negative integer, and {BkIk=0,1, ... M} are JxJ,

time-invariant, complex-valued matrices. Equation (2-23) is a

linear system, with {u(n)} as the input, {y(n)} as the output, and {Bk}

as the system parameters. In the context of this program the

output sequence is non-Gaussian; however, an MA(M) process can be

Gaussian-distributed.

Auto-Regressive Process. A J-dimensional, zero-mean, stationary,

complex-valued sequence {y(n)} is referred to as an auto-regressive

vector porocess of order L, and is denoted 'as AR(L), if it satisfies

a vector recursion of the form

L
(2-24) y(n) =- A~y(n-k) + u(n)

k=1
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where L is a non-negative integer, and {AkIk = 1,2,... LQ are JxJ,

time-invariant, complex-valued matrices. Equation (2-24) is a

linear system, with {u(n)1 as the input, {y(n)} as the output, and {AkI

as the system parameters. The output sequence is non-Gaussian.

Auto-Regressive Movinp-Averaqe Process. A J-dimensional, zero-

mean, stationary, complex-valued sequence {y(n)} is referred to as

an auto-regressive moving-average vector process of order (LM),

and is denoted as ARMA(L,M), if it satisfies a vector recursion of

the form

L M
(2-25) y(n) = - Ary(n-k) + I B H(n-k)

k=1 k=O

here L and M are non-negative integers with LŽ!M, and {Aklk=1,2,..

. , LI and {Bk I k = 0, , . . . , M} are JxJ, time-invariant, complex-valued

matrices. Equation (2-25) is a linear system, with {u(n)} as the

input, {y(n)} as the output, and {Ak}, {Bk} as the system parameters.

The output sequence is non-Gaussian.

Characteristics and Properties of Time Series Models. The

material presented in the remainder of this subsection applies to

all three time series models; distinctions specific to individual

models are noted. The input process {U(n)} is a J-dimensional,

zero-mean, stationary, complex-valued, non-Gaussian, white noise

sequence with finite cumulants at least up to sixth-order (this

last assumption is required in Section 4.1). The second-order

statistics of the input noise are established as (for all n

because the sequence is stationary),

(2-26a) Ru(O) = u= E[u(n)uH(n)]
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(2-26b) Ruu(m) = E[u(n)_uH(n-m)] = [0] m # 0

uj(n)uH(n-m)

(2-26c) Ruu(m) = E[u(n)OuH(n-m)] u2(n)uH(nm) 0 M 0

_uj(n)uH(n-m)

here Zu is a JxJ Hermitian matrix. The symbol 0 denotes the

Kronecker matrix product (see, for example, Pease [1965]), which

is defined implicitly in Equation (2-26c) Kronecker product

notation simplifies analytical expressions in many cases, such as

those involving third-order cumulants. Since the mean of the

input sequence is zero, Equations (2-26) define the covariance

sequence of the input process, and matrix Zu is the covariance of

u (n). The matrix elements of the covariance sequence are the

second-order cumulants of the process (Mendel, 1991). Equations

(2-26) can be combined into one equation of the form,

(2-27) Ruu(m) = E[u(n)®uH(n-m)] = u 6(m) V m

where 5(m) is the one-dimensional (l-D) discrete impulse function,

(2-28) 6(m) =
0 M# 0

The third-order statistics of the input noise sequence are given

as (for all n since {u(n)} is stationary)

(2-29a) Cu;k(o,0) = -k = E[u(n)uH(n)uk*(n)1 k = 1, 2,..., J

(2-29b) Cu;k(ml,m 2) = E[u(n)uH(n-ml)Uk*(n-m 2)] = [0] M1, m2 • 0

k= 1,2,...,3
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where {Fk I k = 1, 2, ... ,J} are JxJ, time-invariant, complex-valued

matrices. Using the two-dimensional (2-D) discrete impulse

function (which attains unity value only at the origin of the 2-D

plane), these two sets of equations can be combined into one set

of equations of the form

(2-30) Cu;k(ml,m2) = E[g(n)uH(n-ml)Uk*(n-m 2)] = rk 5(m 1 ,m 2) V M1 , m 2

k= 1,2, ... , ,J

Finally, the set of Equations (2-30) can be compacted into a

single equation using Kronecker product notation; this results in

(2-31a) Cu(ml,m 2) = E[.u*(n-m 2)0u(n)®uH(n-mj)j V M1, M2

(2-31b) Cu(m 1 ,m 2) = 6(m 1 ,m2) V M1 , m2

Since the input sequence is zero-mean, Equations (2-31) constitute

the third-order cumulants of the input process, and matrices {Pk}

are the non-zero third-order cumulants of the input process

(Mendel, 1991).

In general, the complex-valued cumulants do not have a

special structure. However, when the input noise is spatially-
independent the covariance and the third-order cumulants {rk} become

diagonal matrices. The covariance of a spatially-independent

noise vector u(n) is
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a2  0 ... 0

(2-32) Zu = diag[oi2] 0 a2  0

0 0 ... Ca2

with T2 representing the variance of the ith element of u(n). The

kth cumulant matrix of a spatially-independent noise vector u(n) is

diagonal also, with only one non-zero element located at the kth

diagonal position:

kth column

0...0 0 0...0

0...0 0 0...0
(2-33a) k= 0 ... 0 Yk 0 ... 0  <-- kth row

0 ... 0 0 0 ... 0

0...0 0 0...0

(2-33b) E[ui(n)uj*(n)uk*(n)] = Yk 5ijk

here the complex-valued scalar 7k denotes the third-order cumulant

of Uk(n), and 6ijk denotes the Kronecker delta, which is defined as

1: 1 i=j=k

(2-34)

0 otherwise

Thus, the third-order statistics of a J-dimensional, zero-mean,

complex-valued, spatially-independent, non-Gaussian, white noise
sequence are the complex-valued scalars {kI k = 1, 2,.. J}.
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For the models in Equations (2-23)-(2-25) the input noise and

the output sequence are both non-Gaussian. However, it is

important to note that in general the PDF of the output belongs to

a different family than the PDF family of the input. In all three

models the input process is transformed into the output process,

and these transformations alter the PDF. Furthermore, the output

process tends to become Gaussian for rather general conditions

dictated by the central limit theorem (Thomas [1969] discusses

one of the various versions of the theorem). Consider, for

example, the MA model as in Equation (2-23). For an MA(M) system,

the output process tends to be Gaussian-distributed for large

values of the system model order, M, and/or large values of the

dimension of the input noise vector, J. If a sufficiently large

number of elements of the parameter matrices have non-negligible

magnitude, then Gaussianity may be approximated at smaller values

for M and/or J. Analogous comments apply to the AR and ARMA

models.

The fact that (for the three time series models) the linear

operations on the input sequence transform the PDF of the input

sequence creates significant difficulties in the generation of

simulated data for algorithm performance evaluation (Section 5.1).

This fact also has significant implications in the formulation of

real-time multichannel detection architectures.

An important construct associated with the time series

systems (2-23)-(2-25) is the system transfer function. For a time

series the system transfer function is determined using the Z-

transform (Oppenheim and Schafer, 1975). The discrete-time system

transfer functions for the systems (2-23)-(2-25) are given as,

(2-35) TMA(Z) = B(z)
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(2-36) TAR(Z) = A 1(z)

(2-37) TARMA(Z) = A-1(z) B(z)

where A(z) and B(z) are the following matrix polynomials in Z,

L
(2-38a) A(z) = Az-k

k=0

(2-38b) A0 = Ij

M

(2-39) B(z) = z-'k
k=0

Definition (2-38b) follows trivially from Equations (2--24)-(2-25).
The determinants of the two polynomial matrices, A(z) and B(z), are

defined as

(2-40) a(z) = IA(z)l

(2-41) P(z) = IB(z)I

The properties of these scalar polynomials determine, in part, the
behaviour of the time series. The matrix pair {A(z), B(z)} is

referred to as a matrix polynomial representation for the system
(including the MA and AR cases, where A(z) = Ij and B(z) = Ij,

respectively). The pair {A(z), B(z)} is referred to also as a matrix

fraction description (MFD) for the system.

The conditions satisfied by the time series models are listed

in Table 2-6. With respect to Table 2-6, Assumptions (a), (b),
and (d) insure that each of the scalar polynomials a(z) and P(z) is
of maximum possible order: o(z) is of order JL, and P(z) is of order
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JM. A time series system (MA, AR, or ARMA) for which Assumptions

(c) and/or (e) are satisfied is referred to as a minimum phase

system, and is said to have a minimum phase transfer function (all

the finite multivariable system poles and zeros of a minimum phase

system are inside the unit circle). A minimum phase system (MA,

AR, or ARMA) and its inverse system are both asymptotically stable

(Oppenheim and Schafer, 1975). In model-based detection using

innovations the identified model must be minimum phase in order

for the whitening filter (model inverse) to be well behaved (the

output of an unstable system grows unbounded). Assumption (f)

insures that the ARMA system is irreducible; that is, there are no

pole-zero cancelations in the transfer function TARMA(Z)

(Rosenbrock, 1970). A system which admits pole-zero cancelations

can be represented as an irreducible system of lower model order.

ASSUMPTIONS FOR THE TIME SERIES MODELS

MA and ARMA

(a) Bo Has Full Rank

(bW BM Has Full Rank

(c) Zeros of f3(z) Are Inside the Unit Circle

AR and ARHA

Md) AL Has Full Rank

(e) Zeros of c(z) Are Inside the Unit Circle

ARMA

Mf) {A(z), B(z)} is relatively prime from the left

Table 2-6. Assumptions for the time series models.
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2.3 Third-Order Cumulants

The cumulants of the output of a time series model possess

several general properties of interest, and satisfy constraints

due to the structure imposed by the system model. Those

constraints are the basis for cumulant-based model parameter

identification algorithms.

2.3.1 Definitions, Properties, and Other Issues

The third-order cumulants of a J-dimensional, zero-mean,

stationary, complex-valued, discrete-time process {X(n)} are the

following complex-valued matrices:

(2-42a) Cx;k(mlm 2 ) = E[x(n)xH(n-ml)Xk*(n-m 2 )] V M1 , m2
k=l1, 2,..., J

(2-42b) Cx(ml,m 2) = E[x*(n-m 2 )®x(n)0xH(n-m1)] V M 1, m2

here Xk(n) is the kth element of x(n), matrix Cx;k(ml,m 2) is JxJ, and

matrix Cx(ml,m 2) is j 2xj. The second expression is the compact form

of the definition using Kronecker matrix product notation (the J

cumulants for a fixed lag pair are concatenated into a J 2 xJ

matrix). This definition has been introduced already in Section

2.2 for two special cases (a white noise vector sequence, and a

spatially-independent white noise vector sequence). The cumulants

{Cx(m 1 ,m2)} can be interpreted as a 2-D matrix sequence, analogous

to the 1-D covariance matrix sequence. A I-D slice of {Cx(m 1 ,m2)}
is a subset of the third-order cumulants defined by a set of lag

pairs constrained to satisfy a fixed linear relation between the

lag indices. For example, one possible "vertical slice" is

defined by m, =0 and m2 ={...-I,O,I,...}; a possible "diagonal slice"

is defined by m1 =m 2 and m2 ={(..-1,O, 1,...).
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The (ij)th element of the kth cumulant matrix Cx;k(ml,m 2 ) is a

complex-valued scalar denoted as

(2-43) Cx;ijk(ml,m2) = E[xi(n)xj*(n-ml)xk*(n-m 2)]

Lower-case notation is used for the cumulant in this equation to

emphasize that it is a scalar. In contrast to second-order

cumulants (covariances) for complex-valued vector processes, the

third-order cumulants defined in Equation (2-42) do not satisfy

symmetry conditions. However, third-order cumulants for scalar

and/or real-valued processes do satisfy symmetry conditions, as

discussed thoroughly in the literature (real-valued scalar:

Raghuveer and Nikias [1985]; complex-valued scalar: Jouny and

Moses [1992]; real-valued vector: Raghuveer [1986]). For example,

based on definition (2-43) it is easy to verify that for a

complex-valued scalar sequence {h(n)},

(2-44) ch(m 2 ,ml) = ch(ml,m 2)

Other equivalences can be established for complex-valued scalar

sequences. A greater number of equivalences can be established

for real-valued sequences (vector and scalar).

Alternative definitions for third-order cumulants are

possible in the complex-valued vector case, with the number and

placement of conjugate operators as the major factors which

determine the definitions. Each valid definition can lead to a

different set of cumulant constraints as a result of the structure

imposed by the time series models. SSC is unaware of open

literature work involving cumulants for complex-valued vector

processes, and the approach and results presented herein address

only a subset of all possible issues that can be identified. The
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complex-valued scalar case, however, has been considered by Jouny

and Moses (1992) and by Jelonnek and Kammeyer (1992).

Jouny and Moses (1992) have shown that the third-order

cumulants must be defined appropriately in the context of AR

models for a process defined as the sum of harmonically-related

complex sinusoids with uniformly-distributed phase and quadratic

phase coupling (three frequencies are harmonically-related when

the highest frequency is the sum of the other two; three

harmonically-related frequencies have quadratic phase coupling

when the phase associated with the highest frequency is equal to

the sum of the phases associated with each of the other two

frequencies). As indicated by Raghuveer and Nikias (1985), phase-

coupled harmonically-related complex sinusoids have non-zero

third-order cumulants, whereas the third-order cumulants are zero

if the phase coupling is zero. Jouny and Moses (1992) demonstrate

that for such processes some of the alternative definitions for

third-order cumulants lead to incorrect AR parameter estimates, in

the sense that the scalar AR model transfer function does not

generate the true bispectrum, which is known to be the sum of

pairs of impulse functions (the bispectrum of a scalar discrete-

time process is the 2-D Fourier transform of the third-order

cumulants).

The Jouny-Moses third-order cumulants for a complex-valued

scalar process {h(n)} are defined as

(2-45) Ch(ml,m 2) = E[{h*(n)h(n-ml)h(n-m 2)} + {h(n)h*(n-ml)h(n-m 2)}

+ {h(n)h(n-mj)h*(n-m 2 )1] V M1, m2

A different font element is used in this definition to emphasize

the fact that Ch(ml,m 2) is not equal to ch(ml,m 2). Notice that

cumulant Ch(ml,m 2) is defined as the sum of three terms, and that
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each of the individual terms can be used by itself to establish

another alternative definition for complex-valued scalar third-

order cumulants. The extension of the Jouny-Moses definition to

the vector case is obvious. However, the vector version of

Equation (2-45) leads to intractable expressions in the derivation

of recursions for the cumulants of the output of a time series

model as a function of the cumulants of the input. Furthermore,

satisfactory model parameter estimation results have been obtained

to date for non-sinusoidal time series processes using Definition

(2-42). This indicates that the problems observed by Jouny and

Moses (1992) may be restricted to sums of pairs of coupled

complex-valued sinusoids with uniformly-distributed phase (the

bandwidth of a complex sinusoid is infinitesimally narrow).

Therefore, the cumulant definition in Equation (2-42) is adopted

for this program (a deviation is indulged upon in Section 2.3.2

for the sake of notational simplicity in a special context).

Cumulants posses several properties which motivate the

approach of this Phase I program. Mendel (1991) presents an

extensive list of properties of cumulants, with their associated

proofs. He also points out that cumulants can be treated as an

operator, much like the expectation operator. The properties most

relevant to the work herein are listed in Table 2-7.

It is appropriate to consider the implications of these

properties to radar surveillance problems. Properties (A)-(C) in

Table 2-7 provide the major justification for the application of

higher-order cumulants to the surveillance radar problem in

scenarios with non-Gaussian clutter and/or targets. Based on

these properties and on the formulation established in the

preceding sections, it follows that the third-order cumulants of

the process {x(n)} are equal to the cumulants of the process which

represents the non-Gaussian clutter and/or target,
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(2-46) Cx(ml,m 2) = Cy(ml,m 2) + Cw(ml,m 2) = Cy(ml,m 2)

This equation states that the Gaussian-distributed noise is

eliminated from formulations and computations based on third-order

cumulants. Elimination of the Gaussian-distributed noise effects

is only approximated in practice because the presence of Gaussian

noise generates inaccuracies in the estimates of the cumulants,

and in the subsequent estimates of model parameters. Furthermore,

even if the true cumulants are utilized to generate the filter

parameters, noise residuals are present in the filter output.

SELECTED PROPERTIES OF HIGHER-ORDER CUMULRNTS

(A) Cumulants of a sum of independent random variates

equal the sum of the cumulants of the individual

variates.

(B) Cumulants of a set of random variates of which at

least two variates are pairwise independent are

equal to zero.

(C) Cumulants of a Gaussian-distributed scalar random

sequence are equal to zero.

(D) Odd-ordered cumulants of a scalar random sequence

distributed according to a symmetric PDF are equal

to zero.

(E) Cumulants of a set of scalar random variates are

invariant to permutations in the order of the

arguments.

Table 2-7. Selected properties of higher-order cumulants.
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Properties (C) and (D) have been referred to in the preceding

sections. These properties restrict the utilization of cumulants

to cases involving non-Gaussian clutter and/or targets distributed

according to asymmetric PDFs. Lastly, Property (E) is the basis

for the equivalence in Equation (2-44). This property is useful

also in the generation of cumulant recursions, as indicated next

in Section 2.3.2.

2.3.2 Third-Order Cumulant Relations for Time Series Systems

Third-order cumulants of the output sequence of time series

systems satisfy algebraic expressions which involve the input

sequence parameters and the model parameters in a manner analogous

to the relations satisfied by output covariances (second-order

cumulants). Those relations are developed in this section for MA,

AR, and ARMA systems. The material presented in this section

extends the multichannel work of Giannakis, Inouye, and Mendel

(1989) and Raghuveer (1986) to the complex-valued case, with the

appropriate modifications to account for the specific cumulant

definition adopted in this program, Equation (2-42).

MA System. Consider the MA(M) process relation, Equation (2-23),

and let m;k and bij;k denote the jth column and the (i,j)th element of

matrix Bk, respectively. That is,

b11;k b12;k .J;k

(2 4 ) B21;k b22;k .. 2J;k
(2-47) Bk = [bl;k 1 2 ;k " " " bJ;k] =

bJl;k bJ2 ;k bJJ;k

It follows from Equations (2-23) and (2-47) that the jth element of

vector y(n) can be expressed as
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M M J
(2-48) yj(n) = 0 u(n-s) = E bi;sUi(n-s)

s=O -j;s- = i=1

Given these definitions, the jth third-order cumulant sequence of

{y(n)} is obtained as

(2-49) Cy;j(nmj - E{, Bu(n-k)}{ uH(n-m'-r)Br • bii;sUi(nm 2 s)

I k r=0 s=0 i=1II

In this equation the order of the expectation and finite

summations can be interchanged. Carrying out this interchange and

re-ordering terms results in the expression

(2-50) CyjMM2 B H E H *( ]
y~ ) M M M JBkELu(nk)u(n-ml-r)ui (nm 2 _s) Brbij;s

k=O r=O s=O i=1

The expected value inside the summations is recognized as the

third-order cumulants of the input noise. Thus, substitution of

Equation (2-30) into Equation (2-50) leads to

M M M J

(2-51a) Cy;j(mm2) = Bk Fi6(m+r-k,m2+s-k) Brbij;s
k=O r=O s=O i=1

O_<m 1 , m 2 •M

(2-51b) Cy;j(ml,m 2) = [0] m1 >M; m2 >M

Notice that Equation (2-51a) is defined for a limited range of

values of the two lags, m, and in2 , and that the cumulants are zero

for all lag value pairs where at least one of the two lags is

greater than the model order, M. This is a result of the temporal

independence (whiteness) of the input sequence and of the finite

order of the MA process (finite summation limit).
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The remaining steps in the derivation apply only to the non-

zero cumulants, Equation (2-51a). The 2-D discrete delta function

in Equation (2-51a) assumes the value of unity only when both of

its arguments are equal to zero simultaneously. This implies that

in the summation over r all the terms are eliminated except the

term corresponding to r = k-mj; similarly, in the summation over S

all the terms are eliminated except the term corresponding to s = k

-M 2 . Thus, Equation (2-51) reduces to

M J
(2-52a) Cy;j(ml,m 2 ) = L I Bk F1i Bk- m, b ij;k- rn 0_<m 1, m 2 •< M

k=m i=1

(2-52b) Cy;j(m1,m2) = I B H Fibij;k~rjBk~mi 0_mlm 2 • M
k=m i=1

(2-52c) m = max(m1 , m 2)

Notice that the lower limit in the summation for k is now

determined according to Equation (2-52c). This reflects the fact

that the MA model parameter matrices, {Brl, are defined only for

indices in the range 0 _< r•_< M, with r = k -m, and I = 1, 2. The

expressions in Equations (2-52a) and (2-52b) are equivalent;

however, the second expression is preferred because it collects

all the terms of the summation for i. Notice that each of the

terms in the i summation is a matrix; it is convenient to represent

this sum of matrices as the following matrix

J

(2-53) Bj(k-m2 ) = E ibij;k-r m2 •<M; 0_<k<m; 1 jJ
i=1

The letter "B" is selected to represent the summation in this

definition in order to maintain association with the MA model
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parameters {bij;k}; a different font type is selected to emphasize

that matrices {Bj(k-m 2)1 are distinct from the MA model matrices {Bk}.

Substituting Definition (2-53) into Equation (2-52b) leads to

the desired final expression,

M
(2-54a) Cy;j(ml,m2) = j Bk Bj(k-m 2 ) Bk-mi 0ým1 , m2 M; 1 Mj;J

k=m

(2-54b) m = max(m1 , m 2 )

(2-54c) Cy;j(ml,m 2) = [0] m1 >M; m2 >M; 1 j•J

Notice that Equations (2-51b) and (2-52c) are repeated as

Equations (2-54c) and (2-54b), respectively, to emphasize the link

that exists among these expressions.

Equation (2-54a) relates the model matrix parameters {Bk} and

the matrix cumulants of the input noise process {Fk} to the matrix

cumulants of the MA(M) model output {Cy;j(mlm 2)} in a nonlinear

manner. This equation is similar to the result derived by

Giannakis, Inouye, and Mendel (1989) for the real-valued

multichannel case, and is the basis for the MA model parameter

identification algorithm presented in Section 4.2. Equation (2-

54c) provides a guideline for MA model order selection in the

algorithm.

AR System: Standard Cumulant Formulation. Consider the AR(L)
process relation, Equation (2-24), and let qj;k and aij;k denote the

jth column and the (i,j)th element of matrix Ak, respectively. That

is,
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al1;k a 12 ;k alJ;k

a21 ;k a22;k ... a2J;k

(2-55) Ak - [#-l;k a2;k • • J;k] --

aJl1;k aj2k ... ajJ;k

As in the MA case, the definition introduced in Equation (2-55)

can be used to express the jth element of the AR vector y(n) as

L L J
(2-56) yj(n) = - y a~sy(n-s) + uj(n) = - _ a iY(n-s) + uj(n)

s=1 
s=1 i=1

Substitution of Equation (2-24) for y(n-ml) into the jth third-order

cumulant definition, Equation (2-42a), results in the following

expression,

(2-57) Cy;j(ml,m 2) = E (n) - I ya(n-mj-k) Ak yj(n-m 2 )
[Y k=1

+ Efy(n) uH(n-ml) yj(n-m 2)]

The order of the expectation and finite summation on the first

term on the right-hand-side of this equation can be interchanged.

Also, the second term on the right-hand-side can be expanded by

substitution of Equation (2-24). These manipulations lead to the

expression

L

(2-58) Cy;j(mi,m 2) : - E[y(n)yH(nmlk)y(n-m 2)] Ak
k=1

+ E[{ - Aky(n-k) _uH(n-ml) gj(n-m2)
k=1lY

+ E[u(n) uH(n-mj) yj*(n-m 2)]
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The expectation inside the summation on the first term on the

right-hand-side of this equation is the jth third-order cumulant at

lags (m 1 +k,m 2 ), and the order of the expectation and finite

summation can be interchanged on the second term. Also, Equation
(2-56) can be substituted for yj(n-m 2 ) on the third term. These

operations result in

L
(2-59) Cy;j(ml,m 2) = " E Cy;j(ml+k,m 2) Ak

k=1

LE Ak E[ y(n-k) uH(n-mj) y* (n-m2)]

k=1

"+ E u(n) uH(n-mi) - I I aij;syi (n-m 2 -s)
I s=l i=1

"+ E u(n) uH(n-m) uj(n-M2)]

The order of the expectation and finite summations can be

interchanged on the third term on the right-hand-side of this

equation. Also, the last term is recognized as the jth third-order

cumulant of the input noise sequence. Carrying out these

manipulations leads to (after re-ordering the terms)

L

(2-60) Cy;j(ml,m 2) = " E Cy;j(ml+k,m 2) Ak + 1, 8(m 1 ,m 2)
k=1

- E[ y(n-k) uH(n-m,) yjn-m2)]

k=1

L J
I I E[14(n) uH(n-ml) yi (n-m 2-s)] aij;s 1 • j<_ J
s=1 i=1
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Equation (2-60) is a general expression which is valid for all

values of the lags m, and M2 . Further substitutions of the AR

expression into Equation (2-60) do not lead to a simpler form.

However, an alternative approach results in a simplified relation,

as indicated next.

The number of terms on the right-hand-side of Equation (2-60)

can be reduced by selecting a subset of all possible lag values

such that Property (B) in Table 2-7 applies. Specifically, for

lags m1 =M2 =0 the last two terms in the right-hand-side are equal

to zero, and for lags in the range 0< ml< m 2 the last three terms

in the right-hand-side are equal to zero. That is,

L
(2-61a) Cy;j(0,0) = - C Cy;j(k,O) Ak + F. 1 j J

k=1

L

(2-61b) Cy;j(ml,m2) = - I Cy;j(ml+k,m 2) Ak 0< m1 <iM2 ; 1 •j•J
k=1

These equations can be written in a form which emphasizes their

recursive structure and is related to covariance formulations. In

order to do so it is convenient to first define a JLxJ block column

matrix R as

A

(2-62)

ALi

Now it is possible to write Equations (2-61a) in the form of a

single block equation as
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(2-63) Cy(0,0) + [Cy(1,0) Cy(2,O) ... Cy(L,O)IR = Cu(0,0)

where the definitions in Equations (2-31) and (2-42b) have been

used. The block row matrix which pre-multiplies R in Equation (2-

63) is dimensioned j 2xJL. Consider now Equations (2-61b) for a 1-D

slice defined by mI=0 and m2 ={1,2,...,s}, with SŽ>L. For this I-D

slice Equations (2-61b) can be expressed in expanded form as

-Cy(1,1) Cy(2,1) -. Cy(L, 1) [A, Cy(0,1)

(2 6 )Cy(1,2) Cy(2,2) ... Cy(L,2) A2 cy(0,2)

(Cy(1,S) Cy(2,S) ... Cy(L,S) _ALI _Cy(O,S)

Now define a j 2xJL block row matrix Cy:I,L, a j 2 SxJL block matrix

Cy:S,L, and a J2SxJ block column matrix Cy:s,1 as

(2-65) Cy:1,L = [Cy(1,0) Cy(2,O) ... Cy(L,O)

SCy(1, 1) Cy(2, 1) ... Cy(L, 1)

Cy(1,2) Cy( 2 ,2 ) ... Cy(L,2)(2-66) Cy:S,L =

Cy(1,S) Cy(2, S) ... Cy(L,S)_

Cy(O, 1)
Cy(0,2)

(2-67) Cy:S,1 =

_CY(O,S)_

Combining the definitions in Equations (2-62)-(2-67), it follows

that
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(2-68) Cy:S,L = -Cy:S,1

(2-69) Cu(O,O) = Cy(OO) + Cy:lLA

Equation (2-68) is referred to as the third-order cumulant normal

equation, and the j 2SxJL matrix Cy:S,L is the normal matrix. This

normal matrix does not have a particular structure.

Equation (2-68) is used to identify the AR matrix parameters

(Section 4.3). Given the AR(L) matrix coefficients, Equation (2-

68) is used to generate an estimate of the input noise third-order

cumulants. AR model recursions of this type are discussed by

Mendel (1991) and others for the real-valued scalar case.

The form of Equations (2-68) and (2-69) results from the

approach adopted for the derivation, and from the specific 1-D

slice selected to constrain the lag values. Different choices

(for the approach and/or the 1-D slice) result in different

expressions with distinct analytical and numerical properties. An

option of interest leads to a normal matrix with block Toeplitz

structure, as summarized next.

Recursive equations with a structure different from that of

Equations (2-61) can be generated by changing the steps in the

derivation presented above. Specifically, consider the third-

order cumulant definition, Equation (2-42a), and substitute the AR

system expression for y(n), instead of for y(n-ml) as in Equation (2-

57). After a few manipulations similar to those carried above,

the following expressions are obtained:

k(2-70a) Cy;j(OO) = - E Ak Cy;j(-k,-k) + F 1 • j•SJ

k=1
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L
(2-70b) Cy;j(ml,m2) = " Ak Cy;j(mlk,m 2-k) M 1, m2 > 0; 1 •<j < J

k=1

These equations are analogous to Equations (2-61), but exhibit a

different structure (it is important to note that in Equation (2-

70b) it suffices that either m, >0 or m2 >0) . As before, the J

Equations (2-70a) can be combined into a single expression. Also,

for Equations (2-70b) select the diagonal 1-D slice defined by m, =

M 2 = {1, 2, . . . , Lk, and combine all J equations into a single

expression. Finally, define the following three block matrices:

Cy(-1 ,-1) Cy;l(-1,-i) .. Cy;j(- 1 ,-1)

0y(-2,-2) 0y;1(-2,-2) ... Cy;j(-2,-2)

(2-71) Cy:L,1 "-

Cy(-L,-L) Cy;i(-L,-L) ... Cy;j(-L,-L)_

Cy(OO) Cy(1, 1) ... Cy(L-1,L-1)

Cy(-1,-1) Cy(OO) ... Cy(L-2,L-2)(2-72) Cy:L,L =

Cy(-L+I,-L+I) Cy(-L+2,-L+2) ... Cy(O,O)

(2-73) Cy:l,L = [Cy(1,1) Cy(2,2) ... Cy(L,L)]

Cy:L,l is a JLxJ2 block column matrix, Cy:L,L is a JLxj 2L block matrix,

and Cy:IL is a jxj 2 L block row matrix. Given these definitions,

Equations (2-70) are expressed compactly as

H H

(2-74) Cy:L,LF = -Cy:,L

(2-75) Cu(OO) = [ FI F2  . . ] = Cy(OO) + RH Cy:L,1

55



where R is as defined in Equation (2-62). The Hermitian operator

is used in Equation (2-74) so that this equation can be compared

directly with Equation (2-68). Notice that matrix Cy:LL is block

Toeplitz and block square. Also notice that the arrangement of

the matrix elements as a block row in Cy(m,m) and in Cu(0,0) differs

from the definition used heretofore (block column arrangement).

This notational deviation is introduced to obtain compact block

matrices in Equations (2-74) and (2-75), instead of sparse,

higher-dimensioned matrices. The fact that an alternative

notation is preferable when a different derivation approach is

pursued provides another indication of the richness of options

available when HOS for vector processes are involved.

Equations (2-74) and (2-75) contain equivalent information as

Equations (2-68) and (2-69) with S=L. However, it is likely that

each of these two pairs of equations will lead to different

results in the practical solution of modeling, identification, and

related problems. An extended version of Equation (2-74) is

obtained by using S > L index pairs (ml,m 2 ) in the diagonal 1-D

slice. The resulting matrix corresponding to Equation (2-72) has

block Toeplitz structure, but is not block square.

AR System: Racrhuveer Cumulant Formulation. Raghuveer (1986) has

proposed an AR model recursion based on a subset of the full set

of third-order cumulants for the real-valued multichannel case.

SSC extended Raghuveer's formulation to the complex-valued

multichannel case. Raghuveer's formulation requires fewer

computations than the normal equations approach (since fewer

scalar cumulants are estimated), and the matrix generated by the

recursion, although not a normal matrix, has Toeplitz structure.
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Raghuveer's formulation is based on a "reduced" cumulant

matrix. Given the AR(L) system output sequence {y(n)}, define a JxJ

matrix Y(n) as

-y, (n) 0 ... 0

(2-76) Y(n) = diag[yi(n)] = 0 Y2 (n) ... 0

0 0 ... yj (n)

Let Cy(m) denote a JxJ matrix of third-order cumulants defined as

(2-77) Cy(m) = E[y(n)yH(n-m)Y*(n-m)] V m

The elements of this matrix are a subset of the third-order

cumulants of the process {y(n)}. Thus, matrix Cy(m) is not equal to

the third-order cumulants, Cy(ml,m 2 ), as defined in Equation (2-42);

in fact, matrix Cy(mI,m 2 ) has J elements (third-order scalar

moments) whereas matrix Cy(m) has only j2 elements. Furthermore,

matrix Cy(m) is different than matrix Cy(ml,m 2) restricted to the 1-

D slice defined by m,=0 and m2 =m.

For an AR(L) process {y(n)}, cumulant matrix Cy(m) restricted to

lag values in the set 1•<m<L results in

(2-78) Cy(m) = E - Ak y(n-k) YH(n-m) Y*(n-m)
I k=1

+ E[u(n) yH(n-m) Y*(n-m)] 1 _< m •< L

In this equation the order of expectation and finite summation can

be interchanged on the first term to the right of the equal sign.

Also, for the selected range of lags the second term on the right-
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hand-side is equal to zero (past outputs are independent of future

inputs). Thus, Equations (2-78) reduce to

LH

(2-79) Cy(m) = - H Ak E[y(n-k)yH(n-m) Y(n-m)] 1 <m•L
k=1

Since the AR process is stationary, each of the three factors

inside the expectation operator can be shifted forward in time by k

integer steps; the result is recognized as Cy(m-k). Equations (2-

79) become

(2-80) Cy(m) = - H Ak Cy(m-k) 1 _mL
k=1

In expanded form, Equations (2-80)' are expressed as

Cy(0) Cy(1) ... Cy(L-1)-

(2-81) [ Cy(1) Cy( 2 ).. Cy(L) ] = -RH Cy(-1) Cy(O) ... Cy(L-2)

Cy(-L+I) Cy(-L+2) ... Cy(0)

where R is the JLxJ block matrix defined in Equation (2-62). Now

define a JLxJL block matrix Cy:LL and a JxJL block row matrix Cy:,L

as (bold type is used to emphasize that these matrices are

distinct from their counterparts in Equations (2-68) and (2-69),

Cy(O) Cy(1) ... Cy(L-1)-

Cy(-1) Cy(O) ... Cy(L-2)(2-82) Cy:L,L=

Cy(-L+I) Cy(-L+2) ... Cy(O)

(2-83) Cy:lL = [ Cy( 1 ) Cy( 2 ) ... Cy(L) 3
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By applying the definitions in Equations (2-62) and (2-82)-(2-83),

the following compact expression is obtained for Equation (2-81),

(2-84) Cy:L,LF = - :I,L

The Hermitian operator has been applied in Equation (2-84) so that

this expression can be compared directly with Equations (2-68) and
(2-74). The JLxJL block matrix Cy:L,L has block Toeplitz structure.

ARMA System: Standard Cumulant Formulation. Consider the output

process, {y(n)}, of an ARMA(L,M) system, Equation (2-25), and the

third-order cumulant definition in Equation (2-42). Substitution

of the ARMA definition for y(n) into Equation (2-42a) results in

(2-85) Cy;j(m 1,m2) = E - AH y(n-k) YH(n-ml) Yl(n-m 2)
I k=1

+ E[{BsBu(n-s) yH(n-ml) yj(n-m2]

The order of the expectation and finite summation operations can

be interchanged in each of the two terms on the right-hand-side of

this equation. This leads to

(2-86) Cy;j(m 1 ,m2) = - H Ak E[y(n-k) yH(n-ml) y(n-m2)]

k=

+ B• E[u(n-s) Y y(nm)j (n-m2)]
s=O

Since both the input and output processes are stationary, the

factors inside the first expectation operator can be shifted

forward in time by k integer steps, and the factors inside the
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second expectation operator can be shifted forward in time by s

integer steps. Thus, Equations (2-86) become

LH
(2-87) CH = I A E[y(n) yH(n-m +k) y.(n-m2 +k)]

k=1

+ HB EE[u(n) yH(n'ml+s) y*(n-m2 +s)]
S=O

The expected value factors in the first summation are recognized
as Cy;j(ml-k,m 2-k). Similarly, it is recognized that the expected

value factors in the second summation are equal to zero for mI >M

and m 2 > 0 (or equivalently, for mI > 0 and m2 > M). Therefore, a

subset of Equations (2-87) is obtained as

L
(2-88) Cy;j(ml,m2) = " Ar Cy;j(m -k,m2 -k) m M; m2 >0; 1 •j•J

k=1

The structure of this equation is identical to that of Equation
(2-70b). However, the range of applicable values for m, is less

in Equation (2-88) than in Equation (2-70b). Proceeding as in the

discussion following Equation (2-70b), the final result of

Equation (2-75) is valid for this case also, with the provision
for the different range of values for M 1 . Namely,

H = H
(2-89) Cy:L,L R -y:,L m1 > M; m2 > 0

Block matrices Cy:L,L and Cy:1,L have structure analogous to the

structure defined in Equations (2-72) and (2-73). As an example,
for a 1-D slice defined by m1 = m 2 ={L+1,L+2,...,2L}, matrices Cy:L,L

and Cy:1,L are given as
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Cy(L,L) Cy(L+I,L+I) ... Cy(2L-1,2L-1)

Cy(L-1,L-1) Cy(L,L) ... Cy(2L-2,2L-2)(2-90) E y: L, L

Cy(1, 1) Cy(2,2) ... Cy(L, L)

(2-91) Cy:I,L = [Cy(L+1,L+I) Cy(L+2,L+2) ... Cy(2L,2L)]

For the selected 1-D slice, the conditions on m1 and m 2 expressed

in Equation (2-89) are satisfied because LŽM. Notice that matrix

Cy:L,L is block Toeplitz. The real-valued scalar ARMA case has been

discussed by Mendel (1991) and others.

ARMA System: Raahuveer Cumulant Formulation. Consider the third-

order cumulant definition in Equation (2-77), applied to an

ARMA(L,M) process {y(n)}, Equation (2-25). Substitution of the ARMA

definition into Equation (2-77) restricted to lag values in the

range m> Ž results in

(2-92) Cy(m) = E - Ak H(n-k) YH(n-m) Y*(n-m)

MH H1
+ EL{ Bs u(n-s) yH(n-m) Y*(n-m) M j! 1

Following the approach established earlier, it is possible to show

that Equations (2-92) reduce to the following

(2-93) CY(m) = AL M-k) + B E[u(n) yH(n-m+s) Y*(n-m+s)] m Ž1
k=1 s=O
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Notice that the second summation is equal to zero for lag values

in the range m>M (since past outputs are independent of future

inputs). Therefore, an important subset of Equations (2-93) is

(2-94) Cy(m) = - L AH Cy(m-k) m>M
k=1

This equation is identical to Equation (2-80) , except that the

range of applicable lag values for m in Equation (2-80) is m> 1,

instead of m > M. Proceeding as in the discussion following

Equation (2-80), the final result of Equation (2-84) is valid for

this case also, with the different range of values for m. Namely,
cH _H

(2-95) Cy:L,L = - y:I,L m>M

Block matrices Cy:LL and Cy:l,L have structure analogous to the

structure defined in Equations (2-82) and (2-83) . For the case

where the range of lag values is m = {L+1, L+2,...,2L}, matrices Cy:L,L

and Cy:1,L are given as

Cy(L) Cy(L+l1) ... Cy(2L-1)

(2-96) C Cy(L-1) Cy(L) ... Cy(2L-2)(2-96) y:L,L

LCy(1 ) Cy(2) ... Cy(L)

(2-97) Cy:I,L = [ Cy(L+l) Cy(L+2) ... Cy(2L)]

Notice that the constraint on m stated in Equation (3-47) is

satisfied because LŽ>M. Also, matrix CyLL is block Toeplitz.

These results extend Raghuveer's formulation to complex-valued

multichannel ARMA systems.
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3.0 DETECTION METHODOLOGY

The detection case considered in this report is Case (2-20a),

wherein the baseband sequence {x(n)} is composed of a spatially-

unresolved non-Gaussian target embedded in additive non-Gaussian

clutter and additive Gaussian noise. Several issues associated

with Case (2-20a) are addressed in this section, and possible

detection options are presented.

Define the set of vectors {X(n-1),x(n-2),...,} as the past of the

sequence {x(n)}, and denote as X(n) the vector space covering all

possible linear combinations of the elements of the past of {x(n)}.

The minimum variance estimate (MVE) of x(n) is the conditional

expectation E[X(n)IX(n)I. Determination of the MVE and of the LLR

detector requires availability of the multivariate PDF, and in the

case of a non-Gaussian sequence the MVE and the LLR detector may

be nonlinear functions of the data. As mentioned in Sections

2.1.2 and 2.1.3, the multivariate PDF is unavailable in most non-

Gaussian cases; also, nonlinear functions can be difficult to

implement. Thus, suboptimal linear approximations to the MVE and

to the LLR detector were adopted in Phase I.

Let R(nln-1;Hi) for i= 0,1, denote a linear estimate of x(n) based

on X'(n) and conditioned on hypothesis Hi being true. The linear

estimates referred to are as defined in Section 3.5 using model

parameters estimated as described in Section 4.0. Now define a

conditional pseudo-innovations sequence, {E(nIHi)} for i=0,1, as

(3-1) E(nIHi) = x(n) -(ntn-1;Hj) i= 0, 1

The conditional pseudo-innovations is a zero-mean sequence because

both the baseband process and its linear estimate are zero-mean.

This sequence is not a true innovations sequence because the
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estimate &(nn-1;Hi) as determined in Section 3.5 is not the MVE, and

because the noise sequence {w(n)} is non-zero (if w(n)=Q for all n,

then the estimate generated as in Section 3.5 is a linear MVE).

For these same reasons a detector which uses the pseudo-

innovations (3-1) is not the LLR detector. In place of the true,

but unavailable, LLR detector for the non-Gaussian case, the

approximate, suboptimal detector proposed by Metford (1984) can be

used. The pseudo-innovations of Equation (3-1) is used in such a

configuration, as discussed in Section 3.4. In a minor abuse of
notation, E(nlH0) and E(nlHI) are used herein to denote the output of

the null hypothesis filter and the alternative hypothesis filter,

respectively. At each resolution cell only the output of one of

the two filters is a valid pseudo-innovations.

3.1 Detector Architecture Configurations

Two basic configurations can be defined for detection

architectures: (a) adaptive on-line, and (b) off-line. The

adaptive on-line configuration is illustrated in Figure 3-1. In

this configuration the parameters of the two filters (one filter

corresponding to each hypothesis) and covariance matrices required

for detection rule calculations are determined in real-time by

processing the multichannel baseband sequence for at least one

CPI. Filter order may be estimated on-line also to provide

complete adaptability. Order determination is, however, a

difficult task. Alternatively, the orders of the two filters may

be pre-stored in the radar processor memory. The order of the

alternative hypothesis filter is always higher than the order of

the null hypothesis filter because the radar return contains more

information (the target component) when the alternative hypothesis

is true. An on-line configuration provides the most adaptability,

but presents a large computational burden even if filter order is

pre-stored as a function of scenario conditions.
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Higher-order cumulants can be used to adapt other aspects of

the radar processor. As an example, estimates of higher-order

cumulants can be used to assess the extent of deviation of the

radar return from a Gaussian-distributed sequence. Such knowledge

can be used to select the detection rule most appropriate for the

identified conditions.

Pseudo-
Innovations

NULL Sequence
SHYPOTHESIS

FILTER {E(n I Ho)}

{x(nODEL _Dl PARAMETER RULETETO DETCISION
ESTIMATIONRUEEISO

Figure 3-1. Multichannel detector configuration with on-line

adaptive filter parameter identification.

The second configuration is illustrated in Figure 3-2. The

major differences between the two configurations involve the

central block in each of the two diagrams. In this configuration

each filter is designed off-line using simulated and/or true radar
data, and the resulting filter designs are implemented in the

radar processor. Multiple filter pairs may be designed off-line,

with each filter pair tuned to a distinct set of operational
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conditions. This provides a partial degree of adaptability. The

multichannel baseband sequence is used to estimate covariance

matrices required for detection rule calculations, and to select

the filter pair which best matches the scenario conditions if more

than one filter pair is pre-stored in the radar processor memory.

Careful off-line design of the filters can lead to acceptable

performance.

Pseudo-
Innovations

NULL Sequence
N HYPOTHESIS

FILTER {_(n I Ho)}I
{FILTER DETECTION DETECTION

SELECTION RULE DECISION

Pseudo- Threshold
Innovations

ALTERNATIVE Sequence
S~HYPOTHESIS

FILTER {nH1)

Figure 3-2. Multichannel detector off-line architecture

configuration (off-line filter design).

3.2 Detection Domain

As discussed in Section 2.1.2, a non-Gaussian temporal

clutter PDF model represents the conditions wherein the

instantaneous fluctuations of the clutter signal at each

individual resolution cell behave according to a non-Gaussian

distribution. In turn, a non-Gaussian spatial clutter PDF model
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represents conditions wherein the clutter is non-homogeneous over

a large physical area which includes many resolution cells, but

the instantaneous temporal fluctuations in each individual

resolution cell behave according to a Gaussian distribution. A

cumulant-based detection architecture can be designed for each of

these two conditions.

Consider first a scenario wherein the non-Gaussian temporal

clutter PDF model is valid, and the filter parameters are

estimated on-line. In such a scenario, at each individual

resolution cell the third-order cumulants of the multichannel

baseband sequence are non-zero and can be estimated for each CPI

using time averages (recall from Table 2-1 that {x(n)} is ergodic).

In turn, the estimated cumulants are used in the identification

algorithms to estimate the model parameters of a whitening filter

tuned to the particular resolution cell. The procedure is

repeated for each resolution cell, and it is likely that the

estimated filter varies from cell to cell. The domain in which

this procedure is carried out is a local domain; more

specifically, it is a single-cell domain. A detection

architecture defined for a single resolution cell is referred to

herein as a single-cell detection architecture.

In an off-line architecture configuration the whitening

filter design is done off-line. In this case the non-Gaussian

characteristic of the radar return in individual cells is taken

into account in the estimation of third-order cumulants and in the

design of the filters for use at each individual resolution cell.

Consider now a scenario in which the non-Gaussian spatial

clutter PDF model is applicable. In this case all higher-order

cumulants determined at individual cells over a CPI are zero.

However, since the clutter process is non-Gaussian for the total
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region, the ensemble of radar returns for all resolution cells

over a CPI represents a non-Gaussian process. An ensemble

estimate (as oppossed to a time-average estimate) of third-order

cumulants can be obtained, and the estimated cumulants can be used

to identify the parameters of a whitening filter which is tuned to

all resolution cells in the region. This procedure has a global

domain, and a detection architecture defined for a whole region

with a large number of resolution cells is referred to herein as a

global detection architecture.

A global detection architecture can be configured either as

an adaptive on-line or an off-line architecture. In a global

detection architecture a single filter pair is used for a large

number of resolution cells. This is a simple architecture with

significantly reduced computational requirements in relation to

the requirements of a single-cell detection architecure, specially

for an off-line configuration. The detection architecture

proposed by Rangaswamy, Weiner, and Michels (1993) for SIRPs is a

global detection architecture. It is different, however, from the

cumulant-based global detection architecture introduced herein.

3.3 Pre-Processing Option

As stated in Sections 2.1.2 and 2.1.3, it is unknown whether

the marginal PDF of the quadrature components is symmetric or

asymmetric about the mean because the marginal PDFs are

unavailable for the non-Gaussian temporal clutter and target PDF

models in Tables 2-2 and 2-3. Since the degree of asymmetry of

the marginal PDFs is an open question, it is appropriate to define

candidate options to handle each of the two possibilities. If the

marginal PDF is asymmetric, then the third-order cumulants are

non-zero and the cumulant-based procedures defined in this report

can be applied directly. On the other hand, if the marginal PDF

68



is symmetric, then the third-order cumulants are zero. This case

can be handled via two different approaches, as discussed next.

One approach is to formulate the procedures in this report

using fourth-order (or higher-order) cumulants instead of third-

order cumulants. This approach is feasible because many non-

Gaussian symmetric PDFs often have fourth-order cumulants with

large magnitude. However, in the multichannel case estimation of

fourth-order cumulants requires significantly more computations

than estimation of third-order cumulants. Furthermore, parameter

identification algorithms based on fourth-order cumulants are

computationally more intensive than equivalent algorithms based on

third-order cumulants.

The second approach is motivated by the fact that the

marginal PDF of the quadrature components can be altered (skewed)

significantly, while the temporal correlation sequence is affected

to a tolerable degree, by the application of some zero-memory

nonlinear transformations to each of the two real-valued

quadrature components prior to any cumulant-based processing. One

such nonlinear transformation is the logarithm function, as

indicated by Zheng, McLaughlin, and Mulgrew (1993). The logarithm

of {x(n)} is computed as a pre-processing step preceding the block

diagrams in Figures 3-1 and 3-2. That is, the following

operations are carried out on the multichannel baseband sequence,

(3-2a) I(n)= IOgb[b1 (n) +a]

(3-2b) _Z(n) = IOg[XQ(n) + Q]

(3-2c) # = E[L(n) +jZ_(n)]

(3-2d) Z(n) = zi(n)+jZQ(n)-g
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where b denotes the logarithm base, g is the complex-valued mean

of the sequence Zl(n)+j (n), and a, and A are real-valued vectors

determined as

(3-3a) A, = fmin{x1(n)}1 + ci

(3-3b) a. = Imin{.x(n)}I + ci

(3-3c) C Ž 1

with C a real-valued scalar, and i is a J-dimensional vector with

all elements equal to unity. The function of the vectors a, and aQ

is to bias the sequence {X(n)} so that the argument of the logarithm

function in Equations (3-2a) and (3-2b) is greater than or equal

to unity for all n (recall that the sequence {x(n)} has zero mean).

In a hardware implementation the sample mean of Zl(n)+jz(n) is used

in place of the unavailable true mean. Notice that sequence {z(n)}

has zero mean, as required for cumulant estimation. If this pre-

processing option is used, the transformed sequence {z(n)} replaces

{x(n)} in the detection procedure. However, in order to avoid

confusion {x(n)} will continue to denote the multichannel baseband

sequence in the remainder of this report.

The use of the logarithmic transformation has several

features of interest. The log transformation is instantaneous

(zero-memory) , and can be implemented as a table look-up in a

digital processor. In some radar systems the logarithm is an

inherent function in the analog portion of the receiver, applied

to the radar return signal in order to reduce its dynamic range

(see, for example, Nathanson [1991]). The effect of the

logarithmic transformation on simulated data is examined in

Section 5.0. The results discussed therein indicate that the log
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transformation can be used effectively for data generation as well

as a pre-processor in the cases where the PDF of the quadrature

components is symmetric about the mean.

3.4 Detection Rule

Metford (1984) (see also Metford, Haykin, and Taylor [1982])

has demonstrated that the LLR detection rule for the Gaussian

case, Case (2-20d), can be used in an approximate sense as the

detection rule for the case of detecting a non-Gaussian sequence

embedded in additive Gaussian noise. Furthermore, acceptable

results can be obtained for the cases where the true innovations

sequence is unavailable (or equivalently, where only a suboptimal

estimate of the non-Gaussian sequence is available) . These

conditions are similar to the conditions for Case (2-20a) , as

described in Sections 2.0-4.0 of this report. Additionally, SSC

has noticed in simulation-based analyses that the pseudo-

innovations generated using the whitening filters for time series

models tend to be Gaussian-distributed as the model order and/or

the number of channels increases. This is a manifestation of the

central limit theorem: a linear combination of a large number of

non-Gaussian random variates tends to be Gaussian-distributed. It

is likely that the pseudo-innovations tend to be Gaussian-

distributed also when there is some model mismatch (the true

system differs from the model adopted for the filter design). A

degree of model mismatch is present when real radar data is

concerned because the time series models are inherently models of

representation. For these reasons the Gaussian LLR is adopted in

this program as an approximate, suboptimal detection rule for non-

Gaussian sequences.

The innovations-based multichannel LLR detection rule for the

complex-valued Gaussian case has been derived by Michels (1991).
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Also, Rangaswamy, Weiner, and Michels (1993) have demonstrated

recently that the methodology can be extended to include non-

Gaussian SIRPs (recall that the SIRP model is appropriate for the

spatial non-Gaussian clutter conditions as described in Section

2.1.2). Based on the above discussion, Michels' multichannel LLR

detection methodology is adopted in this program, with the

conditional pseudo-innovations used in place of the conditional

innovations. For brevity, only the final LLR expression is

presented here.

Consider the conditional pseudo-innovations in Equations (3-

1), and let Q(Hi) denote the covariance matrix of the pseudo-

innovations,

(3-4) Q(H1) = E[E(nIHi)LH(nlHi)] i = 0, 1

This is a true covariance matrix because the pseudo-innovations

sequence is zero-mean. Now let E(H0 ,HI) denote the multichannel

likelihood ratio for Case (2-20d), the Gaussian case. Then, the

complex-valued multichannel LLR as defined by Michels (1991) is

(-))= N-{ " + H(fnlHo) f21 (Ho) E(nlHo)

- H(nlHl ) fi.l(H1 ) &(nH1H

As indicated in Figures 3-1 and 3-2, the LLR is compared to a

threshold, T, which is calculated adaptively to maintain a

constant false alarm rate (CFAR),

(3-6) In[O)(Ho,H 1)] = T select H

< T select Ho
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A candidate CFAR approach with demonstrated good performance

consists of calculating the median of a set of the LLR values from

a number of adjacent range cells (at the same azimuth) on both

sides of the cell in question, and then scaling the calculated

median value by a pre-determined constant to provide the desired

false alarm rate (Metford and Haykin, 1985).

Alternative expressions for the LLR can be generated based on

factorization of the pseudo-innovations covariance matrix and

spatial whitening of the pseudo-innovations sequence. Applicable

covariance factorization methods include Cholesky factorization,

LDU decomposition, and singular value decomposition (SVD); all

three lead to simplified LLR expressions. The first two

techniques have been described by Michels (1991), and the SVD

technique is described by Roman and Davis (1993).

3.5 Digital Realizations For Whitening Filters

The cumulant-based model parameter identification algorithms

presented in Section 4.0 generate the parameters of a time series

model for the multichannel baseband sequence, {x(n)}. Given the

matrix parameters for a time series model, the whitening filter

which generates the pseudo-innovations is obtained as the inverse

system of the time series model. Specifically, the whitening

filter for a MA(M) system is an AR(M) filter; the whitening filter

for an AR(L) system is a MA(L) filter; and the whitening filter for

an ARMA(L,M) system is an ARMA(L,L) filter.

A time series whitening filter can be implemented with

various distinct digital realizations, such as tapped delay line

(or direct form), parallel, and cascade. These three types of

digital realizations are minimal (or canonical) because their

implementation requires the minimum number of delay operations.
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The tapped delay line realization is of particular interest

because it can be generated by inspection of the time series

system expressions. In general, cascade and parallel digital

filter realizations offer the best numerical performance

(minimization of parameter quantization effects), but require

knowledge of the system poles and/or zeros (Oppenheim and Schafer,

1975). The system poles and zeros are the roots of the

polynomials x(z) and P(z), respectively, as defined in Equations (2-

40) and (2-41). Time series systems which satisfy the assumptions

in Table 2-6 have JL poles and/or JM zeros. Computation of the

polynomials c(z) and 3(z) and their roots imposes a large

computational load and is difficult to implement on-line. It is

feasible, however, in the off-line case.

In the remainder of this section the conditional notation is

dropped from the argument set of the pseudo-innovations,

estimates, and other variates for notational simplicity. The

figures and equations presented are applicable for both hypotheses

with the stipulation that the system model order is larger for the

alternative hypothesis (the target forces additional modeling

degrees-of-freedom).

3.5.1 Moving Average System Whitening Filter

A tapped delay line realization for the whitening filter of a

MA(M) system is presented in Figure 3-3. In this figure, as well

as in the next two figures, each of the blocks labeled "DELAY"

represents a J-dimensional column of scalar delay operators because

the input to each block is a J-dimensional vector. This is a

minimal realization, with a total of JM delays. The linear

estimate and the pseudo-innovations for this case are
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M
(3-7) R(nIn-1) - • BH(n-k)

k=1

M
(3-8) E(n) = x(n)-•(nln-1) = -- BH"(n-k) + x(n)

k=1

From Equation (3-8), the whitening filter is an AR(M) system with

X(n) as the input, F_(n) as the output, and {Bk} as the AR matrix

parameters. The MA system zeros are the poles of the whitening

filter; the whitening filter does not have any finite-value zeros.

x(n) + E(n)

5i(nin-1) 
DELAY

B•' HE(n -2)

+

DELAY

Figure 3-3. Tapped delay line realization for whitening filter

corresponding to a MA(M) system.
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3.5.2 Auto-Regressive System Whitening Filter

A tapped delay line minimal realization (JL delays) for the

whitening filter of an AR(L) system is presented in Figure 3-4.

The linear estimate and the pseudo-innovations for this case are

L

(3-9) _(nIn-1) = - & AH(n-k)
k=1

L L

(3-10a) E(n) = x(n)- _(nln-1) = x(n) + I AHx(n-k) = • A'kx(n-k)
k=1 k=O

(3-10b) Ao = Ij

Thus, the whitening filter is a MA(L) system with x(n) as the input,

_(n) as the output, and {Ak} as the MA matrix parameters. The AR

system poles are the zeros of the whitening filter; all the

whitening filter poles assume the value zero.

3.5.3 Auto-Regressive Moving-Average System Whitening Filter

A tapped delay line minimal realization for the whitening

filter of an ARMA(L,M) system is presented in Figure 3-5. This

realization has a total number of JL delays. The linear estimate

and the pseudo-innovations for this case are

L M
(3-11) •(nln-1) =- A"x(n-k) + I BS(n-k)

k=1 k=1

L L

(3-12a) F(n) = x(n) - (nIn-1) = - B(n-k) + I' A H&-k)
k=1 k=O
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(3-12b) Ao = Ij

(3-12c) Bk = [0] k = M+1, L

From Equation (3-12), the whitening filter is an ARMA(L,L) system

with x(n) as the input, _(n) as the output, {Ak} as the MA parameters,

and {Bk} as the AR parameters. The ARMA system zeros are the poles

of the whitening filter, and the ARMA system poles are the zeros

of the whitening filter. When L > M, the extra poles in the

whitening filter assume the value zero.

xfn) +L)••(n)

LDELAYI ý(nln-1)

&-2)

x(nn-L)_-_A_ +

Figure 3-4. Tapped delay line realization for whitening filter

corresponding to an AR(L) system.
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4.0 IDENTIFICATION ALGORITHMS

Identification of the model parameter matrices, {Ak} and/or

{Bkl, for the whitening filters is carried out based on the third-

order cumulant relations for time series systems presented in

Section 2.3.2. The MA and AR identification algorithms presented

herein can be categorized as linear algebra algorithms because in

these methods the key step in the estimation of the unknown matrix

parameters is the solution of a system of equations which are

linear in a set of parameters. In comparison with optimization

algorithms (which require the iterative solution to a nonlinear

system of equations), linear algebra algorithms are simpler to

implement in software and/or hardware, and do not involve

convergence issues directly. Optimization algorithms do provide

more accurate results at an increased computational cost. Thus,

linear algebra algorithms are better candidates for on-line

implementation, and optimization algorithms are better candidates

for off-line analyses and design. The identification algorithms

summarized herein require the third-order cumulants of the

multichannel baseband sequence; since the true cumulants are

unavailable, an estimate is obtained and used in the algorithms.

Stability of the identified model and the associated

whitening filter is an issue of relevance to all known

identification algorithms based on higher-order cumulants.

Specifically, none of the identification algorithms based on

higher-order cumulants can guarantee that the estimated parameters

correspond to a stable system. This is due, in part, to the fact

that third-order cumulants contain phase information (unlike the

covariance sequence), which allows the use of third-order

cumulants to identify minimum-phase as well as non-minimum phase

models (recall that if a system is minimum-phase, then it is

stable, and its whitening filter is stable also). Analyses
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carried out to date by SSC indicate that all the algorithms

considered in Phase I can identify non-minimum phase models even

when a stable system is used to generate the data. However, this

occurs only in a limited number of cases. SSC has observed also

that MA algorithms are more prone to generate unstable system

estimates than AR algorithms. Further analyses are required

during Phase II in order to establish MA, AR, and ARMA algorithm

performance with respect to stability.

In the context of multichannel detection for radar

surveillance, model stability is an issue only for adaptive on-

line detector configurations. Two possible approaches to address

this potential problem for on-line configurations have been

identified. The first approach is to average several estimates of

model parameters obtained over a homogeneous region. The second

approach is to extend the detection rule formulation to handle

non-causal whitening filters, and to assign the unstable poles

and/or zeros to the non-causal component of the filter. Stability

is not an issue if causality is not a requirement. Since in an

airborne radar processor the received data can be stored at least

for one CPI, it is possible to consider a non-causal processing

approach.

4.1 Third-Order Cumulants Estimation

Each of the two detector architectures mentioned in Section

3.2 requires a different cumulant estimator. The first estimator

is a time average estimator for a single-cell domain detector

formulation and is defined as

N-i
(4-la) C(MlM 2) - 1 ~x(n) xH(n-ml) xj(n-m2) j 1,2 .2.. J

N- m n=m
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N-I

(4-i1b) 6x(MM 2 ) - 1 x*(n-m 2) ® x(n) ®xH(n-ml)(4-b) x~m'm2 -N -m n=m

(4-ic) m = max(m 1 , M2)

In this estimator the time average is taken over one CPI. If

appropriate, it is possible to include data for more than one CPI.

Estimator (4-1) provides an unbiased estimate of the multichannel

baseband sequence third-order cumulants since the temporal process

is assumed to be ergodic and zero mean (Table 2-1). The estimate

(4-1) converges in probability to the true third-order cumulants

because {x(n)} is assumed to be exponentially stable, and the model

input noise process {u(n)} is assumed to be stationary with finite

cumulants at least up to sixth-order. The condition of finite

cumulants at least up to sixth-order guarantees that the first six

cumulants of the input noise process are absolutely summable,

which is the actual requirement for convergence in probability

(see Mendel [1991] and the references therein).

The second estimator is an ensemble estimator for a global

domain detector formulation and is defined as

(4-2a) K 1 n) x(n-ml) X*(nm2) j= 1, 2, J

(4-2b) Cxjm m2 -* -k..

(4-2b) Cx(ml,m 2) = K (n'2) 0 k(n)0® (n'ml)
Kke

The subscript k denotes the radar resolution cell (as in Section

2.1 and Figure 2-1), K denotes the set of selected ensemble

resolution cells, and K denotes the number of resolution cells

included in K. The number K must be large in order to insure that

the global non-Gaussian features are represented well. If the
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selected resolution cells are independent, then a smaller number

of cells suffices. The time n is fixed at an instant in the CPI

for each resolution cell in the ensemble. The ensemble mean must

be estimated and, if non-zero, subtracted from the ensemble

samples prior to estimation of the cumulants. Estimator (4-2) is

an unbiased estimator of the true third-order cumulants; also, the

estimate converges in probability to the true third-order

cumulants for the same reasons as Estimator (4-1).

The following approximations are adopted implicitly in all

equations and discussions where cumulants appear and the true

cumulants are unavailable,

(4-3a) Cx;j(ml,m2) = Cx;j(mI,m 2) j= 1,2, ... ,

(4-3b) Cx(ml,m2) = Cx(ml,m2)

That is, the appropriate estimate (either (4-1) or (4-2)) is used

in place of the unknown true third-order cumulants.

4.2 MA Parameter Identification

The MA parameter identification algorithm presented herein is

a modification of the algorithm proposed by Giannakis, Inouye, and

Mendel (1989). The modifications made by SSC include extension of

the algorithm to the complex-valued case, and simpler expressions

for the identification equations. In this report, this algorithm

is referred to as the one-slice MA algorithm.

One-Slice MA Algorithm. The one-slice identification algorithm

for MA systems is based on two key decisions involving the third-

order cumulant relations for MA systems, Equations (2-54). First,

a specific 1-D slice of Equations (2-54a) is selected so that the

82



summation on the right-hand-side has only one non-zero term. The
selected 1-D slice is defined by 0•m1 UM and m2 =M. For the lag

pairs in this slice the summation on the right-hand-side of

Equations (2-54a) includes only one non-zero term. Second, matrix

BM is taken to be equal to the J-dimensional identity matrix.

This does not imply a loss of generality because matrix BM has

full rank (Table 2-6), and because the basis in which the noise

input {u(n)} is identified is irrelevant with respect to detection

performance (recall also that the MA model is a representation

model).

Consider the third-order cumulant relations for MA systems
derived in Section 2.3.2, and let m 2 = M in Equations (2-54a).

Also, concatenate Equations (2-54a) for j= 1,2,...,J, to obtain

(4-4) Cx(m 1 ,M) = 0 B ®B] B(O) BMm 0•ml•M

where Cx(m 1 ,M) and B(0) are J 2xJ matrices defined as

Cx;I(mi ,M)

Cx;2 (ml ,M)

(4-5) Cx(m 1 ,M) = 0•! m1 M

Cx;j(m1 ,M)

B1(0)

(4-6) B(0) = B2(0)

Bj(O)

Now let m, =0 in Equation (4-4), and use the fact that BM has full

rank to obtain
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(4-7) ,IJ0BH]B(0) = Cx(O,M)g B1

This expression is substituted into Equation (4-4) to eliminate

matrix B(0), which results in

(4-8) Cx(ml,M) = Cx(0,M) BM BMm 0_ _M

Since the basis adopted to represent the input noise sequence {u(n)}

is arbitrary with respect to detection performance, matrix BM can

be assumed to be an identity matrix. Given this assumption and

Equation (4-8), the MA matrix parameters are obtained as

(4-9a) BM = Ij

(4-9b) BMam, = Cx (0,M) Cx(ml,M) 0 < m1 _• M

where the dagger (t) denotes the pseudoinverse operator.

To identify the third-order cumulants of the input noise the

MA matrix parameters are estimated first according to Equation (4-

9). Next, let m1 =M and m2 =0 in Equations (2-54a) to obtain

(4-10) Cx;j(MO) = Bj(M) Bo j= 1, 2,..., J

with Equation (4-9a) taken into account. From Definition (2-53),

J
(4-11) Bj (M) 1- • Fbij;u j 1, 2,..., J

i=1

Since bij;M is the (i,j)th element of BM, it follows from Equation (4-

9a) that
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(4-12) bij;M = 5ij

Consequently, Equation (4-11) reduces to

(4-13) Bj(M) = ]F j =1,2 ..2 , J

And Equations (4-10) become

(4-14) Cx;j(M,O) = FBo j=1,2 ..2 ,J

Matrix Bo is determined using Equation (4-9b) for mI= M, and is a

full rank matrix (Table 2-6). Therefore, the parameters {Fj} are

identified according to the expression

(4-15) j = Cx;j(M,O) B1 = Cx;j(M,O)[Cý(O,M)Cx(MM)]1 j = 1,2, ... , J

These cumulants are not required for the detection rule.

Computation of the pseudoinverse in Equation (4-9b) and of the

inverse in Equation (4-15) can be carried out via the SVD.

An alternative multichannel MA identification algorithm has

been proposed by Tong, Inouye, and Liu (1992). Their algorithm

converges in a finite number of steps, but is significantly more

complicated than the one-slice algorithm presented above. The

Tong-Inouye-Liu algorithm should be considered in Phase II,

including evaluation of its capability to generate correct

parameter estimates for minimum-phase systems.

Model Order Determination. Model order for an MA(M) system can be

determined based on Equation (2-54c). Assume that the true model
order is less than a given upper bound, denoted as MT. Then

compute as many 1-D slices as possible of the third-order
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cumulants Cx(ml,m 2). At least two 1-D slices should be computed.

Two convenient 1-D slices are the horizontal and vertical slices,

defined as {0!m 1 <MT, m2 =0} and {m1 =0, 0 m 2•MT}, respectively.

In theory, the cumulants for lag pairs with either m1 > M or M2> M

are zero, but in practice all cumulants are likely to be non-zero.

However, if good estimates of the cumulants Cx(ml,m 2) are available,

then a discontinuity in the magnitude of the elements of the

estimated cumulant matrices can be expected at lag pairs with

either m, = M+1 or m 2 = M+1. The next step in the procedure is to

apply the principle of a matrix norm to each of the estimated

cumulant matrices (a matrix norm is useful in assessing relative

magnitude between square matrices [Faddeeva, 1959]). The set of

computed norms is a 2-D function of m, and M2 . This 2-D function

is examined to determine the points of discontinuities, which

provide an estimate of model order. A candidate matrix norm,

referred to herein as matrix norm A, is defined for a JxJ matrix C

with elements {ci}, as

(4-16) 1C1A = max icI]

Since the cumulant matrices are rectangular (J 2xJ), matrix norm A

cannot be applied directly. However, matrix norm A can be applied

to a JxJ matrix computed as

_H

(4-17) C CX(m 1 ,m2 ) Cx(ml,m 2)

Other matrix norms are available (such as the Euclidean matrix

norm [Faddeeva, 1959]), but matrix norm A is attractive because

squaring operations are not involved (by Equation (4-17), the

elements of the cumulants are squared already).
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4.3 AR Parameter Identification

The AR parameter identification algorithms summarized herein

are discussed by Mendel (1991) for the real-valued scalar case,

and Raghuveer (1986) for the real-valued multichannel case. The

algorithms are based on the recursive relations for cumulants

derived by SSC for the complex-valued multichannel case and

presented in Section 2.3.2. Two distinct, but similar, algorithms

are summarized. The first algorithm is based on the standard

cumulant formulation, and the second algorithm is based on the

Raghuveer cumulant formulation.

AR Model Identification Using the Standard Cumulant Formulation.

Consider the third-order cumulant recursions presented as

Equations (2-68) and (2-69), and recall that SŽ[L+1. Equation

(2-68) can be viewed as a collection of J linear systems of

equations (corresponding to the J columns of R), with each system

consisting of JSxJL equations in JL unknowns (the total number of

scalar unknowns is j2 L) . Thus, Equation (2-68) is an over-

determined system if the rank of the J 2SxJL matrix Cx:SL is equal

to JL. Matrix Cx:SL has full rank in most cases if S ŽL+ 1 (see

Mendel [1991] and the references therein) , as selected herein.

The linear system of Equations (2-68) is solved via the

pseudoinverse operator to result in

t
(4-18) R - Xx:S,L x:S,1

Using the matrix parameters obtained via Equation (4-18), the

input noise third-order cumulants are estimated using Equation (2-

69) directly, repeated here as

(4-19) Cu(O,O) = Cx(O,O) + Cx:l,LR

87



(recall that Cu(O,O) is a block column matrix with Fj as the jth

block element) . The pseudoinverse in Equation (4-18) can be

implemented using the SVD or another robust technique.

The SVD can be used also to determine model order. As in the

case of the MA system, assume that an upper bound for the true

model order is known, and denote this upper bound as LT. Let {sili=

1,2,...,LT} denote the singular values of matrix Cx:SL, arranged in

decreasing order of magnitude (as usual). In ideal circumstances,

only the first JL singular values are non-zero, but in practical

cases all singular values are likely to be non-zero. Given good

estimates of the cumulants, a significant discontinuity in the

magnitude of the singular values can be expected after SL. Thus,

the SVD-based model order estimate is the number of significant

non-zero singular values.

Equations (2-74) and (2-75) can be used instead to obtain the

AR model matrix parameters and to determine the model order

following the same approach outlined above. However, the normal

matrix in Equation (2-74) is block Toeplitz, and a wider set of

alternative algorithms can be used to solve for the matrix

parameters (Marple, 1987). These two alternative systems of

equations (Equations (2-68) and (2-69) vs. Equations (2-74) and

(2-75)) can provide distinct results from numerical and algebraic

viewpoints. This issue should be evaluated during Phase II.

AR Model Identification Using the Raghuveer Cumulant Formulation.

Consider now Equation (2-84), Raghuveer's linear system of

equations for the AR(L) model parameters {Ak}. As in the preceding

case, Equation (2-84) can be viewed as a collection of J linear

systems of equations (corresponding to the J columns of R). In

this case, however, each system consists of JLxJL equations in JL
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unknowns, and the JLxJL matrix Cx:L,L has full rank and block

Toeplitz structure. The linear system of Equations (2-84) can be

solved using any applicable Toeplitz equation solver algorithm

(for example, Michels [1991]; Marple [1987]) . Alternatively,

Equation (2-84) can be solved via the pseudoinverse operator

implemented using the SVD. The SVD approach is preferred in cases

where model order is unknown because the model order determination

procedure outlined for the AR Standard Cumulant Formulation (which

is based on the SVD) can be applied in this case also.

4.4 ARMA Parameter Identification

One approach to multichannel ARMA parameter estimation is the
residual time series method. In this approximate method the AR

model order and matrix parameters are identified first, and the

whitening filter corresponding to the AR model is applied to the

multichannel baseband sequence. In theory, the whitening filter

output (or residual) is an MA sequence. The residual sequence is

processed further to estimate the MA model order and matrix

parameters. And the whitening filter corresponding to the MA

model is applied to the residual output of the first whitening

filter. Also in theory, the residual of the second whitening

filter is a white sequence. AR model order and matrix parameter

estimation is accomplished as described in Section 4.3, except

that Equations (2-89) and (2-95) are used instead of Equations (2-

68) and (2-84), respectively. MA model order and matrix parameter

estimation is accomplished as described in Section 4.2.

The residual time series method involves a simple concept.

However, it requires significant computations since two distinct

identification problems are solved in sequence. SSC has simulated

the residual time series method, and has carried out various

simulation-based analyses. In most cases this method does not
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produce good results. Specifically, SSC has observed that the AR

portion of the procedure generates good matrix parameter

estimates, while the MA portion generates poor estimates (Section

5.0). This agrees with the observed performance of the one-slice

MA algorithm applied to MA-generated sequences.

SSC has considered also the higher-order AR approximation

method, which has been used most recently by Michels (1991) for

complex-valued vector sequences. It consists of fitting a higher-

order AR model to an ARMA sequence. Preliminary simulation

results suggest that the higher-order AR approximation method

generates better estimates than the residual time series method

(see Section 5.1).

Swami, Giannakis, and Mendel (1989) have proposed the

multichannel M-slice algorithm for ARMA matrix parameter

identification. This algorithm generates an estimate of the

matrix parameters using linear algebra, without generating a

residual sequence. The algorithm generates a segment of the

impulse response sequence as an intermediate result.

For an ARMA process as defined in Equation (2-25), the

impulse response matrix sequence {G(n)} is defined as

(4-20) y(n) = , G(n-k)u(k)= • G(k).u(n-k)
k=-- k=-o

These impulse response parameters are related to the MA matrix

parameters according to

kH=H
(4-21) Br As G(k-s) k 1,2,..., M

S=O
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where B0 =Ij and A0 =I1 (recall that L Ž M, and that B0 has full

rank). It follows that G(O)=Ij.

The multichannel M-slice algorithm proceeds in two steps.
First the AR(L) matrix parameters, {Ak}, and the first M+1 impulse

response matrices, {G(n) In = 0, 1, . . . , M), are estimated using a

generalized form of Equation (2-89). In this first step M I-D

slices of the output cumulants are used, thus giving rise to the

algorithm's name. Next the MA matrix parameters are obtained using

Equation (4-21). This algorithm will be evaluated in Phase II.
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5.0 SIMULATION-BASED ANALYSES

In Phase I SSC generated software routines to carry out

selected analyses and validate important aspects of the HOS-based

multichannel detection methodology formulated in the program. The

software was programmed in an Apple II MacIntosh processor using

FORTRAN 77. Several routines, including SVD and other matrix

operations for complex-valued matrices, were adapted from the

LINPACK software package (Dongarra et al., 1979). The software

was generated to carry out the analyses listed next.

(A) Non-Gaussian sequence generation

(B) Identification algorithm analyses

1. One-slice MA identification algorithm

2. Raghuveer AR identification algorithm

3. Residual time series ARMA identification method

(C) Pseudo-innovations sequence analyses

Results and conclusions derived from the analyses are summarized

herein.

5.1 Non-Gaussian Sequence Generation

Two methods were considered for generating colored (spatial

and temporal) non-Gaussian vector sequences. The first method is

referred to herein as the nonlinear-linear method. In this method

a Gaussian white noise (GWN) vector sequence (zero spatial and

temporal correlation) is generated and then a zero-memory

nonlinearity is applied to each element of the GWN vector sequence

to obtain a non-Gaussian white noise (NGWN) vector sequence. Then

the NGWN vector sequence is colored, in space and time, by

filtering with a time series model. The result is a non-Gaussian

colored process (NGCP). This method produces a time series with

known true correlation (spectrum) and true third-order cumulants,

but the true PDF of the sequence is unknown. The linear filtering
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process correlates the sequence and alters the PDF in a manner

such that the univariate PDF of each element of the NGCP is more

symmetric, in general, than the univariate PDF of the NGWN.

Furthermore, the univariate PDF of each element of the NGCP tends

to become Gaussian as the filter order increases. This method is

useful for identification algorithm evaluation when used with low-

order shaping filters. As the filter order increases, longer-

duration sequences are required in order to have reliable

estimates of the third-order cumulants to use as inputs to the

parameter identification algorithms. This is due to the fact that

third-order cumulants of approximately symmetric (or approximately

Gaussian) PDFs have small magnitudes.

The second method is referred to as the linear-nonlinear

method. In this method a GWN vector sequence is generated and

then colored, in space and time, by filtering with a time series

model to obtain a Gaussian colored process (GCP) . Then a zero-

memory nonlinearity is applied to each element of the GCP vector

to obtain a NGCP. This method produces a time series with a known

true univariate PDF, but the true correlation (spectrum) and the

true third-order cumulants of the sequence are unknown. The zero-

memory nonlinearity distorts the spatial and temporal statistics

(of all orders) of the sequence. As a result, the "true" linear

model that represents the signal is unknown. This method is

useful for evaluation of cumulant estimation techniques. The

method is useful also for whitening filter performance evaluation,

specially for short-duration sequences because the sequence can be

generated to have large third-order moments that are estimated

more accurately. Also, some zero-memory nonlinear transformations

induce tolerable distortion in the univariate second-order

statistics (correlation sequence) of the vector process. This is

important for detection-related analyses because the detection

rule used in this program is based on second-order statistics.
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The logarithm is a zero-memory nonlinear transformation with

the feature mentioned above. Figure 5-1 presents the power

spectrum of a scalar sequence generated by filtering a GWN

sequence with an AR(2). The skewness coefficient for the GCP at

the filter output is 0.015, indicating a Gaussian process. Figure

5-2 presents the power spectrum of the sequence after application

of the logarithm operator. A comparison of the two spectra

indicates that the power distribution varies little over the

frequency range (these figures represent single-realization

spectra); also, Figure 5-2 shows that the log operator did not

introduce high-frequency components. The skewness coefficient of

the NGCP with spectrum as shown in Figure 5-2 is -1.039,

indicating its non-Gaussian character.

Other results obtained by SSC support the utility of the log

transformation in the context of HOS. In a relevant set of

analyses, a NGWN sequence was used to drive a two-channel

ARMA(3,2) model, and GWN was added to the ARMA system output

(after decay of initial transients). Raghuveer's AR algorithm was

used to identify the matrix parameters of AR(8), AR(10),

and AR(18) models. An associated inverse filter was defined for

each of the identified AR models, and the data was processed with

each inverse filter. None of the inverse filters generated a

white sequence. This is due to symmetry in the PDF of the

ARMA(3,2) output induced by the ARMA transformation itself. As a

separate procedure, the log transformation described in Section

3.3 was applied to the noisy ARMA(3,2) sequence, and Raghuveer's

AR algorithm was applied to the transformed sequence to identify

the parameters of an AR(6) model. The inverse filter associated

with the AR(6) model was used to process the transformed data, and

generated a white residual sequence. Further details on the

analyses and representative results are presented next.
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power spectrum of channel 1 of AR process
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Figure 5-1. Power spectrum of Gaussian AR(2) process.

power spectrum of log of channel 1 AR process
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Figure 5-2. Power spectrum of log of Gaussian AR(2) process.
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Figure 5-3 presents the procedure followed in the logarithm

pre-processing option simulation-based analyses. The NGWN process

used as input to the Data Generation step is a zero-mean vector

(two-channel) sequence of independent variables sampled from a

one-degree-of-freedom chi-squared distribution (the sample mean is

estimated and removed from the chi-squared sequence). This

sequence has a theoretical skewness coefficient of 21.5 2.83.

The sample skewness coefficient values for the realization

selected for presentation herein are 2.75 and 3.01 for channels 1

and 2, respectively. A 2,048-point segment is selected from the

steady-state output {y(n)J of the ARMA(3,2) system (the true system

parameters are defined below). Analysis runs were made also with

1,024 data points, and the results are similar to those presented

herein. The sample skewness coefficient values for the {y(n)}

realization selected for presentation herein are -0.024 and 0.03

for channels 1 and 2, respectively. These values indicate the

loss of asymmetry induced by the linear system. A 2,048-point

zero-mean GWN vector sequence is added to the steady-state

ARMA(3,2) output. The noise variance in each channel is selected

to result in 0 dB SNR.

Model Identification is carried out via the higher-order AR

approximation method using Raghuveer's AR algorithm. Furthermore,

this step is carried out with and without the logarithm pre-

processing option, as indicated in Figure 5-3. The results

presented herein correspond to the case where a two-channel AR(18)

model is selected for the case where pre-processing is not used.

In general, an AR(18) model is more than sufficient to represent

adequately and ARMA(3,2) system. The logarithm function modifies

the distribution that describes the transformed data. The sample

skewness coefficient values for the transformed data segment for

the realization selected for presentation herein are -2.05 and

-1.86 for channels 1 and 2, respectively. These values are close
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to the values that describe the input data. A two-channel AR(6)

model is selected for the case with logarithm pre-processing.

Residual Generation is accomplished in both cases using the

corresponding inverse filter. Both inverse filters are two-

channel MA systems (see Section 3.5.2).

The true ARMA(3,2) parameters are (with A0 =1 2 and B0 =1 2 ):

H rO.410 -0.2001 H [ 0.22 0.241 H =O015 0.107
A1 LO120 0.405 L-0.65 0.34 3  0.10 -0. 2 0H 1i_.40 0 H [0-.49 o

Bi 1 40 -1.401 B2 0 0.49

This system has six poles (number of poles number of channels x

AR order) and six finite multivariable system zeros (Rosenbrock,

1970). The system poles are located at: (0.289, -0.436, -0.552 ± j 0.778,

0.218 ± j 0.549}, and the system zeros are located at: {0.7, 0.7, 0.7, 0.7,

0.0, 0.0}. This system is minimum phase since all the poles and

zeros are inside the unit circle. Thus, the true inverse system

(whitening filter) is stable also.

Residual auto-correlation sequences for a single realization

of the channel 1 output for each of the two cases are presented in

Figures 5-4 and 5-5. Channel 2 residual auto-correlations are

similar. In each figure the complete 4,096-point auto-correlation

sequence is shown. The central segment of the auto-correlation is

shown also in order to highlight the correlation detail. Notice

that the residual is colored for the case without pre-processing

(Figure 5-4), and white for the case with logarithm pre-processing

(Figure 5-5). These figures are representative of all the

realizations generated in the analysis.

97



DATA GENERATION

NGWN ARMA(3,2) {gn)}

GWN

MODEL IDENTIFICATION

NO PRE-PROCESSING:

RAGHUVEER AR MODEL
{x(n)} IDENTIFICATION PARAMETERSALGORITHM, PRMTS

LOGARITHM PRE-PROCESSING:

{Ifn)}RAGHUVEER AR MODEL

{x_(n)} LOG Po. IDENTIFICATION P PARAMETERS
ALGORITHM

RESIDUAL GENERATION
(BOTH CASES)

SWHITENING

{x(n)} { FILTER I {_4n)}

Figure 5-3. Set-up for logarithmic pre-processing option

simulation-based analyses.

98



Auto-correlation of channel 1 residual of ARMA(3,2) process
filtered with whitening filter for AR(1 8) model (SNR = 0 dB)
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(a) Complete auto-correlation sequence for Channel 1 residual.

Auto-correlation of channel 1 residual of ARMA(3,2) process
filtered with whitening filter for AR(18) model (SNR = 0 dB)
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(b) Central segment of auto-correlation sequence for channel 1

residual.

Figure 5-4. Auto-correlation of residual for AR(18) model

(without pre-processing) of ARMA(3,2) plus GWN data.
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Auto-correlation of channel 1 residual of log of ARMA(3,2) process
filtered with whitening filter for AR(6) model (SNR = 0 dB)
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(a) Complete auto-correlation sequence for Channel 1 residual.

Auto-correlation of channel 1 residual of log of ARMA(3,2) process
filtered with whitening filter for AR(6) model (SNR = 0 dB)
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(b) Central segment of auto-correlation sequence for channel 1

residual.

Figure 5-5. Auto-correlation of residual for AR(6) model (with

log pre-processing) of ARMA(3,2) plus GWN data.
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5.2 Identification AlQorithms Analyses

Software-based analyses were carried out to validate

analytical derivations and to determine algorithm performance.

The results presented herein are representative of all the results

obtained in Phase I. The additive noise, {w(n)}, is zero for

Examples 5-1 through 5-5.

5.2.1 One-Slice MA Identification Algorithm

In most of the test cases considered the MA algorithm

performed poorly in an absolute sense, as well as in comparison

with the AR algorithm. The MA algorithm generates non-minimum-

phase zeros more often than the AR algorithm, even when the true

zeros are minimum-phase. This performance is evidenced in the

examples presented next for a MA(2) model (the results can be

compared directly with the results from the AR examples presented

in Section 5.2.2).

Two different methods are used to obtain the matrix parameter

estimates in the examples. In the first method (Method I), the MA

parameter estimates are obtained using a single realization of 104

time samples. In the second method (Method II), ten realizations

of 103 time samples each are processed to obtain ten sets of

estimated MA parameters; the average of the ten sets of parameters

is calculated and presented herein. Notice that the total number

of samples used is the same in both methods.

With respect to whitening filter performance, the locations

of the zeros of the transfer function of the identified MA model

determine the system dynamics. In these examples, the values

listed as "zeros" are the roots of the polynomial 3(z), as defined
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in Equation (2-41). Also, the normalized error in the estimate of
the ith zero, denoted as 8zi, is defined as

(5-1) 86z Izi- i _

Izil

where zi denotes the true ith zero and zi denotes its estimate. This

error is converted to a percent error by multiplication by 100%.

Example 5-1. The true MA(2) parameters are (with B0 =1 2 ):

B = H 10 0 ]
1 { 0 1.00 zeros: {0.5, 0.5, 0.5, 0.5}

2 = 0 0.25]

Method I Estimates (single realization):

B•= -0.9991 0.0078 1
0.0073 -1.0383 zeros: {0.388, 0.435, 0.577, 0.637)

B H 0.2425 -0.0071 1
2 -0.0080 0.2561

The errors in the location of the four real-valued zeros in the

order listed above are: 22.4%, 13.0%, 15.4%, and 27.4%.

Method II Estimates (average of ten realizations):

B [ -09968 0.0111
-0.0007 -0.8993 zeros: {0.445 ±j 0. 154, 0.503 ± j 0.232}

B H 0.3036 0.0094 1
2 -0.0062 0.2239
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The error in the location of the zeros is 32.7% for the first

complex conjugate pair, and 46.4% for the second complex conjugate

pair. Some of the zeros of the matrix parameters estimated for

the individual realizations have a larger error; the maximum error

is 91.8% for the complex conjugate pair estimated at 0.48 ± j

0.46. These large errors are evident in Figure 5-6, a scatter

plot of the forty zeros estimated in the ten realizations. All

estimated sets of zeros are plotted in a single set of axes since

all the true zeros are at the same location, Z = 0.5. Error

statistics for the estimated zeros are presented in Tables 5-1 and

5-2. All estimated zeros are inside the unit circle, as evidenced

in Figure 5-6.

ZERO LOCATIONS (MA(2) SYSTEM)
0.61

Unit circle Legend:
0 True zeros:

0.4 Estimated zeros: o
o 00

0 0

0.2

E 0 0

-0.20
0 0

0 00

-0.4

-0 .6 1 1 ,
0 0.2 0.4 0.6 0.8 1 1.2

real

Figure 5-6. Scatter plot for the zeros of all ten realizations in

Example 5-1 (Method II).
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Example 5-2. The true MA(2) parameters are (with B0 ='1 2 ):

B _ H -18 0
1 -1.81 zeros: {0.9, 0.9, 0.9, 0.9)

B H 0.81 0.1B2 0 0.81

Method I Estimates (single realization):

B FH -1.8100 0.0222
-0.0035 -1.8237 zeros: {0.856, 0.909 ±j 0.145, 0.969)

BH[ 0.8313 -0.0052 1
2 -0.0108 0.8457

The error in the locations of the zeros is 4.9% for the first

real-valued zero, 16.1% for the complex conjugate pair, and 7.7%

for the second real-valued zero.

Method II Estimates (average of ten realizations):

=_ F -17070 -0.0047 1
0.0243 -1.6572 zeros: {0.826 ± j 0.260, 0.856 ± j 0.3041

[H 0.8209 -0.0003B2 =-0.0148 0.7542

The error in the locations of the zeros is 30.0% for the first

complex conjugate pair, and 34.1% for the second complex conjugate

pair. The zeros of several of the matrix parameters estimated for

the individual realizations have a larger error, and eleven (out

of forty) zeros are non-minimum-phase. This is evidenced in

Figure 5-7, which is a scatter plot of the forty zeros estimated

in the ten realizations. The largest error is 56.7%, and

corresponds to a non-minimum-phase zero at 1.41. Figure 5-7 is in
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the same scale as Figure 5-6. Notice that the dispersion of zeros

is about the same in both figures.

ZERO LOCATIONS (MA(2) SYSTEM)

0.6

Unit circle

0.4

0.2

So0

E 0

-0.2
000

Legend:
-0.4 True zeros: /

Estimated zeros: o

-0.6 1
0 0.5 1 1.5

real

Figure 5-7. Scatter plot for the zeros of all ten realizations in

Example 5-2 (Method II).

Exammle 5-3. The true MA(2) parameters are (with B0 =1 2 ):

1 0 -2.2 zeros: {1.1, 1.1, 1.1, 1.1}

B [1.21 0B2 0 1.211

Notice that this MA system is non-minimum phase (HOS-based methods

can identify non-minimum phase systems, whereas covariance-based

methods cannot). As mentioned earlier, non-minimum phase systems
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result in unstable innovations filters. This example is presented

to demonstrate the identification capabilities of HOS-based

methods in a more general context.

Method I Estimates (single realization):

H! -2.2411 0.0297j
-0.0119 -2.2144 zeros: {1.027, 1.110±j0.173, 1.21}

BH= 1.2535 -0.0089
2 0.0215 1.2493

The error in the locations of the zeros is 6.6% for the first

real-valued zero, 15.8% for the complex conjugate pair, and 10.0%

for the second real-valued zero. All estimated zeros are non-

minimum phase.

Method II Estimates (average of ten realizations):

H -2.0595 -0.0213
0.0409 -2.0469 zeros: {1.006 ± j 0.316, 1.047 ± j 0.356}

H 1.1852 0.0079
2 -0.0244 1.1480

The error in the location of the zeros is 30.0% for the first

complex conjugate pair, and 32.7% for the second complex conjugate

pair. The zeros of various parameter estimates for the individual

realizations have a larger error; the largest error is 67.1%, and

corresponds to a real-valued zero at 1.84. This is evidenced in

Figure 5-8, which is a scatter plot of the forty zeros estimated

in the ten realizations. Note that out of the forty estimated

zeros, eleven are estimated incorrectly to be inside the unit

circle.
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ZERO LOCATIONS (MA(2) SYSTEM)
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Figure 5-8. Scatter plot for the zeros of all ten realizations in

Example 5-3 (Method II).

Comments. The statistics for the zeros of the parameter estimates

of the ten realizations in Method II for the three examples are

listed in Table 5-1. These results indicate that "slow" zeros

(close to the unit circle) are estimated more accurately than

"fast" zeros. This feature is common to all identification

algorithms (Roman and Davis, 1993). Figures 5-6 through 5-8

suggest that the magnitude of the estimated zeros is biased

towards a magnification error.

Table 5-2 lists the errors in the zeros of the parameters

estimated via Methods I and II for the three MA(2) examples. In

all three examples the single realization method generated better

zero estimates than the averaging method. This observation admits

the following explanation. In the single realization method all
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the averaging takes place in the estimation of the cumulants,

prior to processing with the parameter identification algorithm.

In the averaging method part of the averaging takes place after

processing with the parameter identification algorithm. The

identification algorithm propagates the input errors, and the

post-processing averaging is less effective. Thus, for the MA

algorithm, it is preferable to use more accurate cumulant

estimates than to use post-algorithm averaging.

TRUE MINIMUM MAXIMUM ERROR ERROR ERROR
ZERO ERROR ERROR MEAN STD. DEV. MEDIAN

(REPEATED! M% M M%/ / %//

EX. 5-1 0.5 4.7 91.8 46.9 21.9 48.3

EX. 5-2 0.9 3.4 56.7 24.0 11.9 23.5

EX. 5-3 1.1 9.3 67.1 23.5 11.6 19.7

Table 5-1. Error statistics for the zeros of all ten realizations

in the three MA examples (Method II).

ERRORS USING METHOD I ERRORS USING METHOD II
(%) (%)

EXAMPLE 5-1 22.4, 13.0, 15.4, 27.4 32.7, 32.7, 46.4, 46.4

EXAMPLE 5-2 4.9, 16.1, 16.1, 7.7 30.0, 30.0, 34.1, 34.1

EXAMPLE 5-3 6.6, 15.8, 15.8, 10.0 30.0, 30.0, 32.7, 32.7

Table 5-2. Zero estimate errors for the three MA(2) examples

using both methods.
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5.2.2 Raghuveer AR Identification Algorithm

The AR algorithm generates non-minimum-phase poles less often

than the MA algorithm (the values referred to as "poles" are the

roots of the polynomial o(z), as defined in Equation (2-40)). This

is evidenced in Examples 5-4 and 5-5 for an AR(2) model with true

poles located at the same values as the zeros in Examples 5-1 and

5-2, respectively. In order to allow direct comparisons, the true

AR(2) parameters are selected equal to the true MA(2) parameters

in the respective examples. Also, the normalized error in the

estimate of the ith pole, denoted as 8pi, is defined analogous to

5z; in Equation (5-1).

Example 5-4. The true AR(2) parameters are the same as the true

MA(2) parameters of Example 5-1; that is, A2 =B 2 , AI1=B1 , and A0

=12. Also, the true poles are located at {0.5, 0.5, 0.5, 0.51.

Method I Estimates (single realization):

A -1.0065 0.0060 1
0.0026 -1.0029 poles: (0.501 ± j 0.048, 0.504 ± j 0.066}

AH [ 0.2586 -0.0001 1
2 -0.0023 0.2528

The error in the first complex conjugate pole pair is 9.6%, and

the error in the second complex conjugate pole pair is 13.1%.

Method II Estimates (average of ten realizations):

SH -09108 -0.00481
-0.0051 -0.9147 poles: {0.454 ±j 0.164, 0.459 ±j 0.145}

A H 0.2313 -0.00231
0'.0005 0.2332
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The error in the first complex conjugate pole pair is 34.1%, and

the error in the second complex conjugate pole pair is 30.1%.

These errors are slightly larger than the mean error for all

forty matrix parameters estimated for the individual

realizations, which is 21.7% for the complex conjugate pole pair

estimated at 0.49 ± j 0.53 (see Table 5-3). From Table 5-3, the

maximum error is 44.8%, and corresponds to the pole estimated at

0.28. A scatter plot of the forty poles estimated for the ten

realizations is presented in Figure 5-9. Notice that the

dispersion in Figure 5-9 is significantly less than the

dispersion in Figure 5-6. Notice also that the complex-valued

pole estimates appear along a circle of magnitude 0.5.

POLE LOCATIONS (AR(2) SYSTEM)
0.6

Unit circle Legend:
True poles:

0.4 Estimated poles: x

0.2

E

-0.2-

-0.4

-0.6
0 0.2 0.4 0.6 0.8 1 1.2

real

Figure 5-9. Scatter plot for the poles of all ten realizations

in Example 5-4 (Method II).
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Example 5-5. The true AR(2) parameters are the same as the true

MA (2) parameters of Example 5-2; that is, A2 = B2 , A, = B1 , and A0

= 12. Also, the true poles are located at {0.9, 0.9, 0.9, 0.9}.

Method I Estimates (single realization):

[ -1.7975 0.0070 10.0121 -1.8044 poles: {0.870, 0.921, 0.906 ± j 0.038}

S0.8075 -0.007 1
2 -0.0119 0.8151

The two real-valued poles have an error of 3.3% and 2.3%,

respectively, and the error in the complex conjugate pole pair

is 4.3%.

Method II Estimates (average of ten realizations):

A H .6350 -0.0248 1
0.0099 -1.6432 poles: {0.813 ± j 0.269, 0.826 ± j 0.253}

H [ 0.7355 0.0242 1
2 -0.0108 0.7439

The error in the first complex conjugate pole pair is 31.4%, and

the error in the second complex conjugate pole pair is 29.3%.

Figure 5-10 is a scatter plot of the forty poles estimated for the

ten realizations. The poles of the estimated individual matrix

parameters have smaller error than the poles of the averaged

matrix parameters given above. In fact, the maximum error is

13.5% for the pole estimated at 0.78 (see Table 5-3). This is

possibly due to the fact that the poles are a nonlinear function

of the averaged matrix parameters. From Figure 5-10, the poles of

all ten sets of estimated matrix parameters are minimum-phase.
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And the dispersion in Figure 5-10 is much less than in Figures 5-7

(MA case) and 5-9. Additionally, in this example the dispersion

does not exhibit a pattern.

POLE LOCATIONS (AR(2) SYSTEM)

0.6

Unit circle
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0.2

o xx-• 0 x
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Legend:-0.4 True poles:

Estimated poles: x

-0.6 1
0 0.5 1 1.5

real

Figure 5-10. Scatter plot for the poles of all ten realizations

in Example 5-5 (Method II).

Comments. The statistics for the poles of the parameter estimates

of the ten realizations in Method II for Examples 5-4 and 5-5 are

listed in Table 5-3. These results also indicate that "slow"

poles (close to the unit circle) are estimated more accurately

than "fast" poles, as is the case for the zeros. The magnitude

error bias observed in the MA cases is present also in these AR

cases using Raghuveer's algorithm, but to a significantly lesser

degree.
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Table 5-4 lists the errors in the poles of the parameters

estimated via Methods I and II for the two AR(2) examples. In

both examples the single realization method generated better pole

estimates than the averaging method, which admits the same

explanation as in the MA case. Thus, for the AR algorithm it is

preferable also to use more accurate cumulant estimates than to

use post-algorithm averaging.

TRUE MINIMUM MAXIMUM ERROR ERROR ERROR
POLE ERROR ERROR MEAN STD. DEV. MEDIAN

,(REPEATED) iML (%) M%/ M%) M%)

EX. 5-4 0.5 10.8 44.8 21.7 7.7 22.5

EX. 5-5 0.9 2.2 13.5 7.1 2.6 6.7

Table 5-3. Error statistics for the poles of all ten realizations

in the two AR examples (Method II).

ERRORS USING METHOD I ERRORS USING METHOD II
(%) (%)

EXAMPLE 5-4 9.6, 9.6, 13.1, 13.1 34.1, 34.1, 30.1, 30.1

EXAMPLE 5-5 3.3, 2.3, 4.3, 4.3 31.4, 31.4, 29.3, 29.3

Table 5-4. Pole estimate errors for the two AR(2) examples using

both methods.

Direct comparison of Figures 5-6 and 5-7 with Figures 5-9 and

5-10, and of Tables 5-1 and 5-2 with Tables 5-3 and 5-4 indicates

that the AR algorithm generates much better estimates than the MA

algorithm considering all relevant performance measures.
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Effect of Additive Gaussian White Noise on AR Estimates. The

effect of additive Gaussian noise is considered in Example 5-6.

The example is for a specific set of conditions using Raghuveer's

AR algorithm, but the results are representative of parameter

identification performance in noise for AR and MA algorithms.

The normalized error defined via Equation (5-1) is useful in

the determination of dynamic system response effects. An

alternative error definition is required to assess parameter

estimation performance. A useful error measure is defined asH
follows. Let Ci~k denote the ith column of Ak, and let 8i;k denote

its estimate obtained using Raghuveer's AR algorithm. The

normalized average column error, denoted as 8C, is defined as

(5-2) 8C I= 1! i;k " -i;kl
i=1 k=- I gi;kI

This error is converted to a percent error by multiplication by

100%. In the example, 8c is computed for each realization as a

function of noise level.

Exampole 5-6. The signal is a two-channel AR(2) process with

(four) repeated poles at 0.5 and zero coupling between channels,

as in Example 5-4. Gaussian white noise is added to the AR(2)

process. Sequence duration is 5x10 4 time samples for each

realization. Raghuveer's AR parameter estimation algorithm is

used to identify the AR matrix parameters. The normalized average

column percent error is plotted in Figure 5-11. Notice that for

SNR > 7 dB the identification error is close to its noise-free

value (the error is less than 1% off the noise-free asymptote)

This is a consequence of the insensitivity of third-order

cumulants to additive Gaussian noise. The error increases

dramatically for SNR < 7 dB. The SNR value at which the plot
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starts to deviate from the noise-free asymptote is a function of

sequence duration also.

Normalized rms error for AR coefficient estimates

7-

0 S6-

S5-

a) 4-

, 3-

N

0

0 ' I I I I !I I I I

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

Figure 5-11. Normalized average column error for AR matrix

parameters as a function of SNR (additive Gaussian noise).

5.2.3 Residual Time Series ARMA Identification Method

The residual time series ARMA identification method did not

produce good results in most of the cases considered in Phase I.

Simulation-based analyses indicate that the AR algorithm generates

good matrix parameter estimates, while the MA algorithm generates

poor estimates. As evidenced in Section 5.2.1, the MA algorithm

generates non-minimum-phase estimates in many cases, even in the

identification of the parameters of a true minimum-phase MA

process. In the residual method the situation is complicated

further by the fact that the MA algorithm has to deal with

limited-duration residuals (from the AR inverse filter) that are

not a true MA process (unless the identified AR parameters are the

true parameters).
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An alternative approach is to fit a higher-order AR model to

the APMA sequence. This approach has been considered by Michels

(1991) for Case (2-20d), the multichannel Gaussian case.

Preliminary results obtained by SSC suggest that such an approach

is preferable over the residual method in the non-Gaussian case

(see, for example, the results in Section 5.1).

5.3 Pseudo-Innovations Sequence Analyses

The capability of the HOS-based detection methodology to

discriminate between the two hypotheses was established in Phase

I. Simulation analyses were carried out for non-Gaussian colored

sequences in additive white noise generated using the linear-

nonlinear method, with the log function as the zero-memory

nonlinearity. GWN was added to the GCP prior to applying the log

to the sequence. The results show that the output of the H0 filter

is white when the null hypothesis is true, {x(n)=c(n)+w(n)}, and the

output of the H0 filter is colored when the alternative hypothesis

is true, {x(n) =s(n) +c(n) +w(n)}. Similarly, the output of the H,

filter is white when the alternative hypothesis is true, {x(n)=s(n)+

c(n)+w(n)}, and the output of the H, filter is colored when the null

hypothesis is true, {x(n)=c(n)+w(n)}. Given these observations, an

appropriate detection rule (such as the approximate rule

considered in Section 3.4) can discriminate between the two

hypotheses based on the differences in the auto-correlation of the

pseudo-innovations. A representative sample of this type of

result is provided in Example 5-7. Detailed analyses will be

carried out in Phase II to quantify detection performance.

Example 5-7. Both clutter and signal were generated using the

linear-nonlinear method. Specifically, the clutter is a two-

channel AR(2) process driven by GWN, and the signal is also a two-
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channel AR(2) process driven by GWN. The true AR(2) matrix

parameters for clutter and signal are (these are the real part of

the complex-valued model parameters in [Roman and Davis, 1993]):

CLUTTER SIGNAL

AH -1 .0430 0.0 1A H [1.6290 0.01
1 0.0 -1.0430 1 0.0 1.6290

AH -0.4900 0.0 1 H 0.8099 0.0
2 { 0.0 0.49001 2 = 0.0 0.80991

GWN was added to the AR sequences to generate null and alternative

hypotheses data, as appropriate, at an SNR level of 0 dB. The

addition of GWN converts the sequence into an ARMA sequence. A

sequence duration of 1,024 time samples (after initial transients

decay) was selected. The Gaussian-distributed data (including the

additive noise) was transformed using the logarithm transformation

as described in Section 3.3. This completes the data generation

step according to the linear-nonlinear method (Section 5.1). An

alternative procedure is to add the GWN after the log is applied

to the AR data. This should result in better performance.

Raghuveer's AR identification algorithm was used to generate

AR matrix parameter estimates for a sixth-order AR model for the

null hypothesis case (clutter + noise). Figure 5-12 presents the

auto-correlation function of the pseudo-innovations s(nIH0 ), the

residual at the output of the sixth-order H0 filter driven with H0

data. The residual is uncorrelated, as expected. Figure 5-13

presents the auto-correlation function of the residual at the

output of the sixth-order H0 filter driven with H, data. As

expected, the residual in Figure 5-13 is correlated over several

lags. This difference is the mechanism by which discrimination

between the two hypotheses takes place.
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Auto-correlation of channel 1 residual for case of null hypothesis data
filtered with null hypothesis filter (6th-order, SNR=OdB)
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Figure 5-12. Central segment of pseudo-innovations auto-
correlation (H0 data filtered with H0 filter) for Example 5-7.

Auto-correlation of channel 1 residual for case of alternative hypothesis data
filtered with null hypothesis filter (6th-order, SNR=OdB)
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Figure 5-13. Central segment of pseudo-innovations auto-

correlation (H1 data filtered with H0 filter) for Example 5-7.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

In this program the feasibility of using higher-order

cumulants for radar target detection was established in a general

context, as well as in the specific context of surveillance radar

applications. With respect to surveillance radar, SSC identified

several operational scenarios where non-Gaussian targets are

present in a non-Gaussian clutter environment. Additionally, at

least two different candidate problems of interest to RL were

identified: radar arrays and pre-detection radar fusion. Emphasis

was placed in surveillance radar arrays, which include the

space/time processing application. In this context, a new

methodology for model-based multichannel detection was formulated

using third-order cumulants to identify the model parameters for

models in the time series class. This methodology builds on the

work of Metford (1984) and of Michels (1991) by the significant

inclusion of higher-order statistics.

The SSC methodology can be applied for single-cell detection,

which corresponds to the cases wherein the temporal statistics of

the radar return are non-Gaussian. The methodology can be applied

also for global detection, wherein the spatial statistics of the

radar return are non-Gaussian. In these applications the use of

third-order cumulants to identify model parameters provides

immunity to additive Gaussian noise and interference sources

because all higher-order cumulants are zero for Gaussian-

distributed processes.

Simulation-based analyses were carried out to validate key

aspects of the methodology, and to establish the feasibility of an

HOS-based approach to model-based multichannel detection. Results

obtained to date suggest the capability to discriminate between

target-present and target-absent hypotheses using the suboptimal

119



and approximate detection rule proposed by Metford (1984) for non-

Gaussian signals.

In Phase I several key technical issues were addressed, and

candidate resolution approaches were identified. Those issues are

discussed in this report, and are summarized in Table 6-1. Most

of those issues will be addressed further during Phase II.

Several technical tasks have been identified also for further

research and development in Phase II. These tasks are summarized

next.

Processor Requirements Definition. Determination of the potential

of the SSC methodology for radar system applications requires the

establishment of requirements for the radar problems of interest

at RL. This includes space/time processing in a surveillance

radar array system, and fusion of data from multiple distinct

radar systems. Similarly, requirements must be identified for

non-defense applications of interest.

Additional Analyses and Detailed Algorithm Formulation. The

analyses listed below are required in order to generate a detailed

algorithm definition and to assess the SSC methodology in the

context of the applications requirements. These analyses support

the technical issues listed in Table 6-1.

• Alternative matrix parameter identification algorithms (such

as the multichannel M-slice algorithm for ARMA parameter

estimation) will be analyzed to select the one which best

satisfies the trade-offs associated with performance and

other relevant criteria.
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CANDIDATE RESOLUTION
ISSUE COMMENTS APPROACHES

Possible Not an issue in the cases (if any) A. Apply zero-memory nonlinear

symmetry of where the marginal PDF of the transformation to the quadrature

marginal PDF of quadrature components is components.

the quadrature asymmetric. (The marginal PDF is B. Use formulation based on fourth-order

components. unknown for most non-Gaussian cumulants.

quadrature components.)

Non-minimum - Major issue only for MA models. A. Average estimates over several

phase model ° Impact on ARMA models needs to resolution cells.

parameter be assessed further. B. Use AR (or possibly ARMA) models only.

estimates. C. Use non-causal formulation.

Complex-valued Restrictions are enhanced for non- A. Use PDF representation based on

probabilistic Gaussian sequences. concatenated real-valued vectors.

representation is

restrictive.

Detection rule for Sub-optimal approximations may A. Use Metford's approximate detection

non-Gaussian provide satisfactory performance. rule for non-Gaussian sequences.

sequences. B. Use non-parametric detection rule.

Generation of temporal A. Apply zero-memory nonlinear

multichannel processes with transformation to the quadrature

Non-Gaussian specified multivariate PDF is an components.

multichannel data unsolved problem. B. Use SIRP-based data generation for

generation for - Linear filtering of a non-Gaussian global domain detection problems.

performance process induces Gaussianity or C. Investigate alternative techniques such

evaluation, symmetry in the PDF. This as extension of the Liu and Munson

increases the size of the data base (1982) approach to vector processes.

required to obtain satisfactory

cumulant estimates.

Table 6-1. List of key technical issues and candidate resolution

approaches.
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• Giannakis and Delopoulos (1990) have demonstrated that the

covariance sequence can be estimated from the third-order

cumulants. Thus, it is possible to define an identification

approach which combines the insensitivity to additive

Gaussian noise offered by third-order cumulants with the

robustness of covariance-based model identification methods

for parametric models (Michels, 1991; Romdn and Davis, 1993).

This combined approach will be investigated, with emphasis on

the accuracy of the HOS-based covariance sequence estimate.

* Model order selection criteria for on-line and off-line

decisions will be evaluated and the preferred criterion will

be adopted. Criteria to be evaluated include approaches

based on the singular values of higher-order normal matrices

for AR and ARMA models, and approaches based on matrix norms

applied to third-order cumulants for MA models.

* The performance of the Metford (1984) detection rule for non-

Gaussian signals needs to be established. Alternative

detection rules will be identified and considered as

appropriate. One option is to use non-parametric detection

methods with the pseudo-innovations sequence (Table 6-1)

Another option is frequency-domain detection of moving

targets using the bispectrum (the Fourier transform of the

third-order cumulant sequence).

• Identification and detection performance will be compared

with that of other methods. This includes covariance-based

methods using time series as well as state space models.

* Key implementation parameters will be established for the

selected application(s). This includes the minimum required
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channel output sequence duration, and the order of the two

whitening filters.

Real-Time Processor Architecture Desicrn. A real-time architecture

should be developed for the methodology formulated in Phase I,

including identification of candidate hardware. Such an

architecture should meet the requirements identified early in

Phase II for the radar and non-defense applications. The very

large scale integration (VLSI) systolic architecture developed by

Liu and Jen (1992) for the IBDA of Metford and Haykin (1985)

provides a point of departure since the methodology of Phase I is

related to the IBDA.

The major computational task of the methodology formulated in

Phase I is estimation of the third-order cumulants. Fortunately,

the estimators for cumulants exhibit a highly parallel structure.

Stellakis and Manolakos (1993) have developed a two-stage VLSI

architecture to estimate the third-order cumulants of a real-

valued scalar sequence which may be extended to the multichannel

case (their architecture is applicable also to the estimation of

fourth-order cumulants). In Phase II SSC will pursue extension of

the Stellakis-Manolakos architecture to the multichannel case, and

explore alternative architectures.

123



REFERENCES

B. D. 0. Anderson and J. B. Moore

(1979) Oltimal Filtering, Prentice-Hall, Inc., Englewood

Cliffs, NJ.

D. R. Brillinger and M. Rosenblatt

(1967) "Computation and Interpretation of kth-Order Spectra,"

in Spectral Analysis of Time Series, B. Harris (editor),

J. Wiley & Sons, Inc., New York, NY, pp. 189-232.

N. C. Currie (editor)

(1989) Radar Reflectivity Measurement: Techniques And

Applications, Artech House, Norwood, MA.

J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart

(1979) LINPACK User's Guide, Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA.

V. N. Faddeeva

(1959) Computational Methods of Linear Algebra, Dover

Publications, Inc., New York, NY.

G. B. Giannakis, Y. Inouye, and J. M. Mendel

(1989) "Cumulant based identification of multichannel moving-

average models," IEEE Transactions on Automatic Control,

Vol. 34, No. 7 (July), pp. 783-787.

J. W. Goodman

(1984) Statistical Optics, J. Wiley & Sons, Inc., New York, NY.

124



N. R. Goodman

(1963) "Statistical analysis based on a certain multivariate

complex Gaussian distribution (an introduction)," Annals

of Mathematical Statistics, Vol. 34 (March), pp. 152-

177.

N. A. J. Hastings and J. B. Peacock

(1974) Statistical Distributions - A Handbook for Students and

Practitioners, J. Wiley & Sons, Inc., New York, NY.

S. Haykin, B. W. Currie, and S. B. Kesler

(1982) "Maximum entropy spectral analysis of radar clutter,"

Proceedinqs of the IEEE, Vol. 70, No. 9 (September), pp.

953-962.

A. G. Jaffer, M. H. Baker, W. P. Ballance, and J. R. Staub

(1991) Adaptive Space-Time Processing Techniques for Airborne

Radars, RL Technical Report No. RL-TR-91-162, Rome

Laboratory, Griffiss AFB, NY.

E. Jakeman and P. N. Pusey

(1976) "A model for non-Rayleigh sea echo," IEEE Transactions

on Antennas and Propagation, Vol. AP-24, No. 6

(November), pp. 806-814.

B. Jelonnek and K.-D. Kammeyer

(1992) "Improved methods for the blind system identification

using higher order statistics," IEEE Transactions on

Signal Processing, Vol. 40, No. 12 (December), pp. 2947-

2960.

125



I. I. Jouny and R. L. Moses

(1992) "The bispectrum of complex signals: definitions and

properties," IEEE Transactions on Signal Processing,

Vol. 40, No. 11 (November), pp. 2833-2836.

D. J. Lewinski

(1983) "Non-stationary probabilistic target and clutter

scattering models," IEEE Transactions on Antennas and

Propagation, Vol. AP-31, No. 3 (May), pp. 490-498.

C. -M. Liu and C. -W. Jen

(1992) "A parallel adaptive algorithm for moving target

detection and its VLSI array realization," IEEE

Transactions on Signal Processing, Vol. 40, No. 11

(November), pp. 2841-2848.

B. Liu and D. C. Munson, Jr.

(1982) "Generation of a random sequence having a jointly

specified marginal distribution and autocovariance,"

IEEE Transactions on Acoustics, Speech, and Signal

Processing, Vol. ASSP-30, No. 6 (December), pp. 973-983.

A. L. Maffett

(1989) Topics for a Statistical Description of Radar Cross

Section, J. Wiley & Sons, Inc., New York, NY.

J. I. Marcum and P. Swerling

(1960) "Studies of target detection by pulsed radar," IRE

Transactions on Information Theory, Vol. IT-6, No. 2

(April), pp. 59-267.

126



S. L. Marple, Jr.

(1987) Digital S-pectral Analysis With AIplications, Prentice-

Hall, Inc., Englewood Cliffs, NJ.

J. M. Mendel

(1991) "Tutorial on higher-order statistics (spectra) in signal

processing and system theory: theoretical results and

some applications, " Proceedings of the IEEE, Vol. 79,

No. 3 (March), pp. 278-305.

P. A. S. Metford

(1984) An Innovations Approach to Discrete-Time Detection

Theory With AIpplication to Radar, Ph. D. dissertation,

Electrical Engineering Department, McMaster University,

Hamilton, Ontario, Canada.

P. A. S. Metford and S. Haykin

(1985) "Experimental analysis of an innovations-based detection

algorithm for surveillance radar," IEE Proceedings, Vol.

132, Pt. F, No. 1 (February), pp. 18-26.

P. A. S. Metford, S. Haykin, and D. P. Taylor

(1982) "An innovations approach to discrete-time detection

theory," IEEE Transactions on Information Theory, Vol.

IT-28, No. 2 (March), pp. 376-380.

J. H. Michels

(1991) Multichannel Detection Using the Discrete-Time Model-

Based Innovations Approach, RL Technical Report No. RL-

TR-91-269, Rome Laboratory, Griffiss AFB, NY.

127



F. E. Nathanson

(1991) Radar Design Principles (second edition), McGraw-Hill,

Inc., New York, NY.

L. M. Novak, M. B. Sechtin, and M. J. Cardullo

(1989) "Studies of target detection algorithms that use

polarimetric radar data," IEEE Transactions on Aerospace

and Electronic Systems, Vol. 25, No. 2 (March), pp. 150-

165.

A. V. Oppenheim and R. W. Schafer

(1975) Digital Signal Processing, Prentice-Hall, Inc.,

Englewood Cliffs, NJ.

A. Papoulis

(1984) Probability, Random Processes, and Stochastic Variables

(second edition), McGraw-Hill, Inc., New York, NY.

M. C. Pease

(1965) Methods of Matrix Algebra, Academic Press, Inc., New

York, NY.

R. S. Raghavan

(1991) "A method for estimating parameters of K-distributed

clutter," IEEE Transactions on Aerospace and Electronic

Systems, Vol. 27, No. 2 (March), pp. 238-246.

M. R. Raghuveer

(1986) "Multichannel bispectrum estimation," Proceedings of the

Third Annual ASSP Workshop on Spectrum Estimation and

Modeling, Boston, MA, pp. 21-24.

128



M. R. Raghuveer and C. L. Nikias

(1985) "Bispectrum estimation: a parametric approach," IEEE

Transactions on Acoustics, SDeech, and Signal

Processing, Vol. ASSP-33, No. 5 (October), pp. 1213-

1230.

M. Rangaswamy

(1992) Spherically Invariant Random Processes for Radar Clutter

Modeling, Simulation, and Distribution Identification,

Ph. D. dissertation, Electrical Engineering Department,

Syracuse University, Syracuse, NY.

M. Rangaswamy, P. Chakravarthi, D. Weiner, L. Cai, H. Wang, and A.

Ozturk

(1993) Signal Detection in Correlated Gaussian and Non-Gaussian

Radar Clutter, RL Technical Report No. RL-TR-93-79, Rome

Laboratory, Griffiss AFB, NY.

M. Rangaswamy, D. Weiner, and J. H. Michels

(1993) "Multichannel detection for correlated non-Gaussian

random processes based on innovations," presented at the

SPIE International Symposium on Optical Engineering and

Photonics in Aerospace and Remote Sensing (Conference

1955), April 12-16, Orlando, FL.

J. R. Romdn and D. W. Davis

(1993) State-Space Models for Multichannel Detection, RL

Technical Report No. RL-TR-93-146, Rome Laboratory,

Griffiss AFB, NY.

H. H. Rosenbrock

(1970) State-space and Multivariable Theory, J. Wiley & Sons,

Inc., New York, NY.

129



M. Sekine, T. Musha, Y. Tomita, T. Hagisawa, T. Irabu, and E.

Kiuchi

(1979) "On Weibull-distributed weather clutter, " IEEE

Transactions on Aerospace and Electronic Systems, Vol.

AES-15, No. 6 (November), pp. 824-828.

W. L. Simkins

(1981) RADC Clutter Model, RADC Report (November), Rome

Laboratory, Griffiss AFB, NY.

M. L. Skolnik

(1980) Introduction to Radar Systems (second edition), McGraw-

Hill, Inc., New York, NY.

H. M. Stellakis and E. S. Manolakos

(1993) "An architecture for the estimation of higher order

cumulants, " Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing

(ICASSP), April 27-30, Minneapolis, MN, Vol. IV, pp.

220-223.

A. Swami, G. B. Giannakis, and J. M. Mendel

(1989) "A unified approach to modeling multichannel ARMA

processes, " Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing

(ICASSP), Glasgow, Scotland, United Kingdom, pp. 2182-

2185.

J. B. Thomas

(1969) An Introduction to Statistical Communication Theory, J.

Wiley & Sons, Inc., New York, NY.

130



L. Tong, Y. Inouye, and R. Liu

(1992) "A finite-step global convergence algorithm for the

parameter estimation of multichannel MA processes," IEEE

Transactions on Signal Processing, Vol. 40, No. 10

(October), pp. 2547-2558.

S. Watts

(1987) "Radar detection prediction in K-distributed sea clutter

and thermal noise," IEEE Transactions on Aerospace and

Electronic Systems, Vol. AES-23, No. 1 (January), pp.

40-45.

D. B. Williams and D. H. Johnson

(1993) "Robust estimation of structured covariance matrices,"

IEEE Transactions on Signal Processing, Vol. 41, No. 9

(September), pp. 2891-2906.

F.-C. Zheng, S. McLaughlin, and B. Mulgrew

(1993) "Blind equalization of nonminimum phase channels: Higher

order cumulant based algorithm," IEEE Transactions on

Signal Processing, Vol. 41, No. 2 (February), pp. 681-

691.

ýU.S. GOVERNMENT PRINTING OFFICE 1995-610-126-5014I

131



Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name: (Optional)

Organization POC: (Optional)

Address:

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating__

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."



3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the re2port. Comments on both technical content and reporting
format are desired.



MISSION

OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technoiogy, Electromagnetic Technology,
Photonics and Reliability Sciences.



86/15/2824 13:58 3153381991 PUBLIC AFFAIRS PAGE 81

DEPARTMENT OF THE AIR FORCE
AIR FORCE RESEARCH LABORATORY (AFMC)

15 Jun 04

MEMORANDUM FOR DTIC-OCQ
ATTN: Larry Downing
Ft. Belvoir, VA 22060-6218

FROM: AFRL/IFOIP

SUBJECT: Distribution Statement Change

1. The following documents (previously limited by SBIR data rights) have been
reviewed and have been approved for Public Release; Distribution Unlimited:

ADB226867, "Multichannel System Identification and Detection Using Output Data
Techniques", RL-TR-97-5, Vol 1.

ADB 176689, "Multichannel System Identification and Detection Using Output Data
Techniques", RL-TR-93-141.

ADB198116, "Multichannel Detection Using Higher Order Statistics", RL-TR-95-11.

ADB232680, "Two-Dimensional Processing for Radar Systems", RL-TR-97-127.

ADB276328, "Two-Dimensional Processing for Radar Systems", AFRL-SN-RS-TR-200 1-
244.

2. Please contact the undersigned should you have any questions regarding this
memorandum. Thank you very much for your time and attention to this matter.

J4A

Information Directorate
315-330-7094/DSN 587-7094


