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ABSTRACT

This note presents an approximate solution to the equations of motion

written with linear-tangent thrust attitude control. The usefulness of

this solution is evaluated by comparison with accurate numerical integra-

tion. This comparison shows that the solution gives accuracies sufficient

for preliminary calculations for satellite boost vehid'ies and has a four-

to-one speed advantage over numerical integration of the same accuracy

level.

INTRODUCTION

In order to perform preliminary design calculations for satellite-

(\q boosting systems, a reasonably accurate estimate of the propellant re-

quirements is necessary. Unfortunately, obtaining such an estimate

usually requires the aid of trajectory calculations. When trajectory

data are obtained by numerical integration of the nonlinear equations of

motion, the computation time often seems excessive for preliminary cal-

\\Kkkj culations. This note, therefore, presents a closed-form, approximate

0solution for the equations of motion which is about four times faster

N than stepwise numerical integration of equal accuracy.

Since the approximate solution presented (details given in the

Iappendix) has been developed for use with satellite-boosting systems,

it therefore utilizes an approximate form of the thrust-attitude schedule
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that maximizes the mass in orbit. This schedule, as has been shown by

Fried (1) and other authors (e.g., (2), (3)), is

tan * = a r bt

This relation, usually referred to as the "linear-tangent" schedule,

compares well with results obtained by numerical integration of the

exact Euler-Lagrange differential equations.

Theoretically, the linear-tangent schedule should be followed through

all phases of flight. However, the large angles of attack that can occur

with this schedule preclude its use at low altitudes. Consequently, the

first stage of powered flight, where aerodynamic forces are concentrated,

must follow some other thrust-attitude schedule, ordinarily a zero-lift

schedule. It is therefore reasonable to neglect aerodynamic forces, for

mathematical simplicity, during linear-tangent flight.

The vehicle burnout conditions for orbital missions are usually

fixed (e.g., a circular orbit at a given altitude). For this case, it

would be convenient if the closed form solution would allow an inverse-

type calculation for the required trajectory parameters (e.g., a, b, and

tf) from the known end conditions. This is not possible with the solu-

tion presented, and further simplifications do not appear profitable.

For example, a somewhat simpler solution given in (3), which has about

1/10 the accuracy of the present solution, also fails to allow an inverse

computation. Consequently, the trajectory parameters must be solved for

iteratively.

ACCURACY

Usually, selection of a burnout altitude, velocity, and attitude is

necessary to specify an orbital mission. Therefore, at least that many
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vehicle and/or trajectory parameters must be variable to allow an iter-

ative solution. One convenient set of variables is a, b, and rn with

given first-stage burnout conditions.

Table I shows the resulting value.3 of *0; b, and r3 for a typical

three-stage vehicle and a 150-nautIcal-mile-orbit mission. Also shown

are the results for the same case as computed by accurate numerical

integration. The errors shown in table I have been found acceptable for

many preliminary design problems.

As will be seen in the appendix, certain assumptions will be required

which allow the error to increase with the burning time of any stage. As

an example of the errors that can be caused by these assumptions, Fig. 1

shows the error in top-stage weight ratio for three-stage satellite-

boosting systems as a function of the total burning time of the upper two

stages. The scatter in the points shown is due to other differences in

the vehicles chosen, but the essential feature to be noted is that the

error increases rapidly after t = 400 seconds. This corresponds to

about 200 seconds per stage, which does not seem an unreasonable limita-

tion for typical stages. Accesion For
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APPENDIX

Neglecting drag and using tan * = a - bt, the equations of motion

written for the coordinate system of Fig. 2 are

+ Px/R 3 =-- (a - bt) 2 + 1 = f

I(1.
Y + P/R3 = gcF(a -bt) f

W.,,(a - bt) 2 + 1

Assuming that the magnitude of R does not vary during one stage of

powered flight, equations (1) becomes

(2)
+ /R3=fy

where R0  is the radius at the beginning of powered flight of the stage

under consideration.

Using the method of variation of parameters, equations (2) can be

solved in the form

Yf (Y0 + A) cos wtf + (yjw + B) sin Otf

sin (3)
Xf- (x0 + D) cos atf + (xj + E) sin atf

where

'tf.

A - fy sin wt dt B = fy coscot dt

(4)

D = fx sin wt dt E = fx cos ct dt
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and

Unfortunately there is no apparent way to integrate equations (4)

without some additional assumption. Considering the magnitude of cu,

it can be seen that it will never exceed - = 1.2398xiO-3. Con-

sequently, if t < 200 seconds, which is a typical burning time for one

stage, a t will always be less than 120. For such small angles, it is

reasonable to assume

sin (ut w :t
(5)

cos cot 1.0

Using equations (5), equations (4) can be integrated to give

A = Vj(TG - tF sin * + H/b)

B = Vj(F sin * - G)/o

D = Vj(TF cos , + G/b)

E = V (F cos *)/co

where
F = l+cs(f - ) cos_

( r L+ cos( o ) cos

G=ln (nsin *f + 1  cos l01

ksin 0+1 cos

H = (cos *f - cos *0 )/cos *o cos *f

Using the fact that the method of variation of parameters assumes

A cos Wt + B sin a t = D cos wt + E sin cut = 0

the velocity components can be written as

Yf = -M(yo + A) sin wtf + w(yOlw + B) cos (Dtf

xf = -W(x 0 + D) sin wtf + (x*/co + E) cos (ftf
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NOMENCLATURE

a = tan *0

b = d(tan *)/dt, 1/sec

F = thrust, lb

gc = 32.174 ft/sec
2

I = specific impulse, sec

R = radius from center of Earth = x2 +y2, ft

r = weight ratio = WJ1Wf

t = time measured from ignition of ith stage, sec

Vj = gcIj, ft/sec

W = weight = W0 - Wlb

x = distance along x-axis of Fig. 2, ft

y = distance along y-axis of Fig. 2, ft

= gravitational constant = 1.4077X1016 cu ft/sec2

= angle between thrust vector and x-axis, deg

Subscripts:

e = evaluated at surface of Earth

f = conditions at burnout of ith stage

n = nth stage

0 = conditions at t = 0

Superscripts:

(') = d/dt

(-) = conditions at t = Wo/W
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FIGURE LEGENDS

Fig. 1. - Variation of third-stage weight-ratio error with total, upper-
stage burning time for satellite-boosting vehicles. Orbit altitude,
150 nautical miles.

Fig. 2. - Earth-centered, nonrotating (inertial) coordinate system.
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TABLE I. - ERROR IN FLIGHT PARAMETERS FCIR

A THREE-STAGE SATELLITE-BOOSTING

VEHICLE. ORBIT ALTITUDE,

150 NAUTICAL MILES

Numerical Approximate solution
integration

Error % Error

r3  2.3261208 -0.0459212 1.97

*0 48.7140 +0.5600 1.30

b 0.00323681 +0.00004885 1.51
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