PTO-EA # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE No. 1200 TENTATIVE TABLES FOR THE PROPERTIES , OF THE UPPER ATMOSPHERE By Calvin N. Warfield for the NACA Special Subcommittee on the Upper Atmosphere Langley Memorial Aeronautical Laboratory Langley Field, Va. Washington January, 1947 1 NACA LIBRARY LANGLEY MINLIONAL ABRONAUTICAL LABORATORY Langley Field, Va # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE NO. 1200 #### TENTATIVE TABLES FOR THE PROPERTIES OF THE UPPER ATMOSPHERE By Calvin N. Warfield for the NACA Special Subcommittee on the Upper Atmosphere #### SUMMARY As a result of recent developments in aeronautics and ordnance, a need has arisen for tables of properties of the atmosphere at altitudes in excess of those covered by the existing standard tables (NACA Report No. 218). In order to satisfy this need, the National Adviscry Committee for Aeronautics has adopted three temperature-height relationships and one composition-height relationship, and tables based upon them have been prepared for pertinent properties of the upper atmosphere (that is, from 20 to 120 kilometers in metric units, and from 65,000 to 393,700 feet in British units). In the absence of direct data, such as might be obtained by soundings with high-altitude rockets, the values adopted are based upon existing information obtained by indirect measurements of certain quantities. As a consequence, the tables are only tentative. Two sets of tables based upon the adopted tentative standard specifications for the upper atmosphere are presented. One set of two tables is based upon the same arbitrary constant value for the acceleration of gravity as was used in the preparation of the existing standard tables for the lower levels (NACA Report No. 218). This set of tables for the upper levels of the atmosphere therefore constitutes a consistent extension of the existing standard tables. The other set of two tables takes into consideration the decrease in the acceleration of gravity with increasing altitude and therefore is more precise than the first set. Consequently, this set is presented only to satisfy the need for greater accuracy that may exist in some fields of research. Each table is divided into separate parts for both day and night conditions at altitudes above 80 kilometers. The necessity for separate tables for day and night values is occasioned by the | | | | 4, | |--|--|------|------------| | | | | w - | 8 | _ | | | | | | | | | | | | | | | no
A | | | | | | | | |
 | | In April 1946 this Panel was superseded by the Special Subcommittee on the Upper Atmosphere which was also appointed by the NACA. The membership of this Special Subcommittee is as follows: Dr. Harry Wexler, U. S. Weather Bureau, Chairman Col. D. N. Yates, Chief, Air Weather Service Col. Paul H. Dane, A. C., TSEAC, AAF Air Materiel Command Capt. H. T. Orville, USN, Office of Chief of Naval Operations, Navy Department Capt. Walter S. Diehl, USN, Bureau of Aeronautics, Navy Department ^.-Dr. Calvin N. Warfield, Langley Memorial Aeronautical Laboratory Dr. E. H. Krause, Naval Research Laboratory Dr. W. G. Brombacher, National Bureau of Standards Dr. L. V. Berkner, Carnegie Institution of Washington Dr. B. Gutenberg, California Institute of Technology Dr. Fred L. Whipple, Harvard Observatory, Harvard University Dr. O. R. Wulf, Gates and Crellin Laboratories, California Institute of Technology. Mr. Jerome Teplitz, NACA, Secretary. This Subcommittee has considered the information available concerning temperature and composition in the upper atmosphere. On the basis of existing data obtained by balloons at altitudes up to about 32 kilometers (references 6 and 7), of indirect measurements obtained at greater heights such as those discussed in references 8 to 14, and of unpublished data resulting from similar indirect measurements, recommendations concerning temperature-height and composition-height relationships were made by the Subcommittee on June 24, 1946. The recommendations regarding temperature-height relationships cover three arbitrary sets of temperature: (1) tentative standard temperatures, (2) probable minimum temperatures, and (3) probable maximum temperatures. Also, recommendation was made that at this time no tables be prepared for altitudes in excess of 120 kilometers because of the uncertainty regarding the validity of the data in this region. At a meeting of the executive committee of the National Advisory Committee for Aeronautics held on August 15, 1946, the previously mentioned recommendations of the Subcommittee were adopted. As a result of the adoption of the recommendations of the Subcommittee, two sets of tables for the upper atmosphere, based upon the tentative standard temperatures, have been prepared at the Langley Laboratory of the NACA. The first set of tables provides a consistent extension of the present standard tables for the lower levels of the atmosphere (reference 1) because the same simplifying assumption of an arbitrary constant value for the acceleration of gravity is made in both cases. Because of this consistency with the present standard atmosphere tables, and in consideration of the fact that the present standard tables (reference 1) are widely used in evaluating performance characteristics of aircraft and for design purposes, it appears that this first set of tables may also be found useful in these same fields of aeronautical engineering. In addition, in order to be consistent with present practice in the use of the terms "pressure altitude" and "density altitude" (reference 15) it appears that it may be proper to use the term "tentative pressure altitude" to designate that altitude in this first set of tables which corresponds to a specified ambient-air pressure. Likewise, the term "tentative density altitude" can consistently be used with this set of tables in connection with ambient-air densities. The second set of tables is more precise than the first because it takes into consideration the decrease in the acceleration of gravity with increasing altitude. This set is intended primarily for use in connection with research on the properties of the upper atmosphere. Values of still greater computational precision than those listed in this second set may be obtained by means of "latitude correction factors" which have been computed and tabulated in another table. These two sets of tables for the upper atmosphere consist of two tables each, one in the metric system of units and the other in the British system of units. The altitude range covered is from 20 kilometers and 65,000 feet, respectively, to 120 kilometers and its British equivalent of about 393,700 feet. In addition to those quantities reported in references 1 to 5, there is included the mean free path of the air molecules. This quantity has been added because of its significance at high altitudes where the molecular mean free paths may be comparable to or larger than certain dimensions of the aircraft or missiles that may be flown there. Acknowledgement is gratefully given for the contributions made by Dr. R. G. Stone, of the AAF Weather Service, who supplied valuable data concerning maximum and minimum temperatures over the entire world to altitudes of 32 kilometers, and for the thorough technical review and excellent suggestions offered by Mr. L. P. Harrison of the U. S. Weather Bureau. # SYMBOLS | a | speed of sound | |--------------|--| | c | most probable molecular speed | | c | average molecular speed | | g | acceleration of gravity | | h | altitude | | K | volume gradient of oxygen dissociation $\left(\frac{\Delta v}{\Delta h}\right)$ | | L | temperature gradient $\left(\frac{\Delta\Gamma}{\Delta h}\right)$ | | M | molecular weight | | m | mass of a molecule | | N | number of molecules per unit volume | | p | pressure | | R | universal gas constant | | r | radius of the earth | | T | absolute temperature . | | t | temperature | | v | volume of molecular oxygen in an initial unit volume of normal air, at the same temperature and pressure | | w | specific weight (gp) | | γ | ratio of specific heats | 6 | λ | mean free path of molecules | | - | |---------|--|---|---------------------------| | μ | coefficient of viscosity | | - | | υ | kinematic viscosity (μ/ρ) | | | | ρ | density (mass per unit volume) | | | | σ | molecular diameter; also density ratio (ρ/ρ_0) | | | | ō | average molecular diameter | | | | The for | llowing subscripts are used to refer to the indicated condi- | | . | | 0 | sea level | | : 5월 | | 1 | lower level | | | | а | top of region of dissociation, where oxygen is all atomic | | * | | A | base of region with constant temperature and constant composition | | | | В | base of region with constant temperature gradient and constant composition | | —
ज
च्या | | С | base of ragion with constant temperature and constant volume gradient of dissociation | | : <u>=</u> | | D | base of region with constant temperature gradient and constant volume gradient of dissociation | | 4 | | g | acceleration of gravity variable | | ar i ti | | m | base of region of dissociation, where oxygen is all molecular | | - | | n | nitrogen molecules | | 1.2 <u>2</u> | | N | non-exygen (i. e., all constituents other than exygen) | | : | | ၁ | oxygen | - | - | | air | mixture of molecules in atmosphere | | . | | d | 1.4.4 | - | | # ADOPTED SPECIFICATIONS FOR THE UPPER ATMOSPHERE # Tentative Temperatures Three sets of tentative temperature-height relationships have been adopted. One set gives tentative standard temperatures and the other two list values of the probable
minimum and the probable maximum temperatures for the entire world. These three sets of temperatures which were originally recommended by the Subcommittee on the Upper Atmosphere are given by linear variations with altitude between the points specified in the following tabulation of temperatures. # TEMPERATURES | Altitude
(km) | Probable
minimum
(°K)
(a) | Tentative
standard
(°K) | Probable
maximum
(°K)
(a.) | |--|------------------------------------|--------------------------------------|-------------------------------------| | 0
10.76923
11 | 225 | _p 518
_p 588 | 320
-
25 6 | | 17
20
25
32
45
50
55
60
78
80 | 180 | _p 518 | 255 | | | 200 | 518 | 380 | | | | 350 | | | | | 350 | 380 | | | 170 | 540 | 300 | | 83
120 | 300 | 240
375 | 600 | aThe values of ambient air temperature listed in these two columns are not intended to represent extreme values for the entire world, and for all time, but rather values that bracket the temperatures over nearly all the earth most all the time. These values are standard, and have been used previously in references 1, 3, 4, and 5. These temperature-altitude relationships are also shown in figure 1. # Tentative Composition The tentative composition used in computing the tables was arrived at by taking into consideration the fact that, at altitudes below 80 kilometers in the day time and below 105 kilometers at night, the generally accepted variations in chemical composition are too small to affect appreciably the computed pressures and densities. However, it is believed that at levels above those just specified significant changes in composition result from the dissociation of oxygen molecules by solar radiation. It is furthermore known that the presence of water vapor in the atmosphere does not appreciably affect pressures and densities. As a result of such considerations, and in the interest of simplicity, the following tentative specifications for composition of the upper atmosphere were recommended by the Subcommittee and have been adopted for the purposes of computing the values in these tables: - (1) For day time, the dissociation of oxygen is such as to produce a linear volume gradient from all-molecular oxygen at 80 kilometers to all-atomic oxygen at 100 kilometers. Except for oxygen dissociation, the composition is the same as that at sea level. - (2) For night time, the dissociation of oxygen is such as to produce a linear volume gradient from all-molecular oxygen at 105 kilometers to all-atomic oxygen at 120 kilometers. Except for oxygen dissociation the composition is the same as that at sea level. - (3) At altitudes below the regions of oxygen dissociation the composition is the same as that at sea level. - (4) At altitudes above the regions in which both molecular and atomic oxygen exist, as stipulated in (1) and (2), and up to at least 120 kilometers, the composition is the same as that at sea level, except for oxygen which is in the atomic rather than in the molecular form. The variation with altitude of the specified molecular oxygen content of the atmospheres is graphically portrayed in figure 2. # PHYSICAL RELATIONSHIPS Basic Equations In addition to the specifications for temperature and composition already listed, certain other assumptions are made and serve as the basis for deriving the various equations used in computing the properties of the upper atmosphere. These additional assumptions are: - (a) The air is dry - (b) The air behaves as a perfect gas and hence obeys the general gas law which may be written $$\frac{\rho}{\rho_O} = \frac{p}{p_O} \frac{T_O}{T} \frac{M}{M_O} \tag{1}$$ (c) The air is at rest with respect to the earth and hence obeys the basic law for fluid statics $$dp = -g\rho \, dh$$ (2) By means of equations (1) and (2) and equations representing the adopted specifications for temperature and composition, relationships may be deduced between pressure and height. The equations representing the adopted specifications are $$T = T_1 + L(h - h_1)$$ where L is the temperature gradient $\Delta T/\Delta h$, and $$\frac{M}{M_0} = \frac{1}{1 - K(h - h_m)}$$ (4) where K is the volume gradient of oxygen dissociation $\Delta v/\Delta h$. The derivation of equation (4) is given in appendix A. In addition to the three assumptions just listed, it is necessary to make an assumption concerning the value of the acceleration of gravity. For the purpose of furnishing tables for the upper atmosphere that will be consistent with the present standard tables for the lower atmosphere (reference 1), it is necessary to make the same assumption concerning the acceleration of gravity as was used in preparing the standard tables. This assumption is (d) For the tables based on a constant value of g the acceleration of gravity at all altitudes is the standard sea-level value; that is. $$g = g_0$$ (5) 10 NACA TN No. 1200 For those instances in which closer conformity to actual conditions is required than is inherent in these tables it is necessary to make enother assumption concerning the value of the acceleration of gravity. This assumption is (e) For tables based on a variable value of g the acceleration of gravity varies inversely as the square of the distance from the center of the earth; that is, $$g = g_0 \left(\frac{r}{r+h}\right)^2 \tag{6}$$ # Pressure-Height Relationships By use of the foregoing basic equations and assumptions, other equations are derived which relate pressure to altitude. Two sets of equations are used, one set based on a constant value of g as specified in assumption (d), the other set based on the variation of g that is specified in assumption (e). The deductions for the first set are indicated in appendix B and for the second set in appendix C. The equations that are based on a constant value of g are as follows: For combination A (constant temperature and constant composition): $$\log_{e}\left(\frac{p}{p_{A}}\right) = c_{A}(h - h_{A}) \tag{7}$$ where $$C_{A} = -\frac{g_{O}\rho_{O}}{p_{O}} \frac{T_{O}}{T} \frac{M}{M_{O}}$$ (8) For combination B (constant temperature gradient and constant composition): $$\log\left(\frac{p}{p_{\rm B}}\right) = C_{\rm B} \log\left(\frac{T}{T_{\rm B}}\right) \tag{9}$$ where $$C_{B} = -\frac{\varepsilon_{O} \rho_{O} T_{O}}{p_{O} L} \frac{M}{M_{O}}$$ (10) For combination C (constant temperature and constant volume gradient of dissociation): $$\log\left(\frac{p}{p_{C}}\right) = C_{C} \log\left(\frac{M}{M_{C}}\right) \tag{11}$$ where $$C_{\rm C} = -\frac{g_0 \rho_0 T_0}{p_0 kT} \tag{12}$$ For combination D (constant temperature gradient and constant volume gradient of dissociation): $$\log\left(\frac{p}{p_D}\right) = C_D \log\left(\frac{T}{T_D} \frac{M}{M_D}\right) \tag{13}$$ where $$C_{D} = \frac{-g_{O}\rho_{O}T_{O}N_{D}}{p_{O}(IM_{O} + M_{D}T_{D}K)}$$ (14) The equations derived in appendix C, based on a variable value of g, are more complex than those listed in the foregoing and consequently they are not reproduced here. #### Speed of Sound The speed of sound at any altitude relative to that at sea level is computed by the equation $$\frac{a}{a_0} = \left(\frac{\gamma TM_0}{\gamma_0 T_0 M}\right)^{1/2} \tag{15}$$ where the ratio of the specific heats γ , as derived in appendix A, is $$\frac{\gamma}{\gamma_0} = 1 - \frac{128K(h - h_m)}{21M_0} \tag{16}$$ The variation with altitude of the ratio of specific heats γ for the specified atmosphere is shown in figure 3(a). # Coefficient of Viscosity Sutherland's equation for the variation of the coefficient of viscosity with temperature is used. It is $$\frac{\mu}{\mu_0} = \left(\frac{r}{r_0}\right)^{3/2} \left(\frac{r_0 + s}{r + s}\right) \tag{17}$$ in which, according to reference 16, when the T's are in OK, and when the T's are in oF absolute. A caution concerning the use of values obtained from equation (17) for the upper atmosphere is given in the section entitled "Discussion of Tables." #### Molecular Mean Free Path The ratio of the molecular mean free path at any altitude to the corresponding value at sea level is computed by $$\frac{\lambda}{\lambda_0} = \frac{p_0 Tg}{p T_0 g_0} \tag{18}$$ This equation is justified in appendix D. # BASIC CONSTANTS In the preceding section equations are given by means of which several properties of the upper atmosphere are computed. These computations involve numerical values of the several properties at sea level. Appendix E discusses the chosen sea-level values for NACA TN No. 1200 each of several properties of the atmosphere and they are listed in table I in both metric and British engineering systems of units. Values are listed for each of the three specified atmospheres and in some instances the quantity is expressed in more than one unit in either the metric or British system. The values listed in table I for the standard atmosphere at sea level are identical with those used in references 1 and 5 except in a few instances. The exceptions are noted and explained in appendix E. # DISCUSSION OF TABLES The appropriate equation (equation (7), (9), (11) or (13) for the constant value of g, or (C3), (C6), (C10) or (C13) for the variable values of g) is used to compute the ratio of the pressure p at any height to the pressure at the base of the region to which that particular equation applies. These pressure ratios for each of the regions are then used to compute the ratio of the pressure p to the pressure p_0 at sea level. These ratios p/p_0 are given in tables II to V. By use of the computed values of the pressure ratios p/p_0 and of the sea-level value of pressure p_0 as given in table I, the value of the pressure p is computed and then given in tables II to V. The pressures given in tables IV and V are also plotted against altitude in figure 3(b). The remaining quantities given in tables II to V are similarly computed by means of the appropriate equation and the
corresponding sea-level value given in table I. The values for these remaining quantities given in tables IV and \overline{v} are also shown plotted against altitude in figures 3(c) to 3(h). Attention is directed to the fact that all tables in this report are based on the engineering system (sometimes referred to as the gravitational system) in which the fundamental quantities are length, force, and time. The standard units for force used herein are, therefore, pounds for the British system and kilograms for the metric system. # Accuracy of Computed Tables II to V In tables II to V all quantities except the mean free paths of the molecules are tabulated to four significant figures, and the mean free paths of the molecules are tabulated to three significant figures. All computations for table II were carried through to six significant figures and consequently the values given in this table are believed to be exact. Most of the values for table IV were obtained from table II by use of suitable conversion factors evaluated by a graphical method described in appendix C. The errors resulting from the method, and therefore the errors in the values tabulated in table IV are believed not to exceed 0.01 of 1 percent. A method of graphical interpolation was applied to obtain from tables II and IV the values for use at the intermediate levels tabulated in tables III and V. The accuracy of this method is such as to introduce an error of not over one-twentieth of 1 percent in the values listed in tables III and V. Consequently, whenever a discrepancy exists between the metric and British values, the metric values should govern. Validity of Tabulated Values at the Higher Altitudes Pressure, density, specific weight, and mean free path of molecules .- As was previously mentioned, the computations for tables II and III are based on a constant value for the acceleration of gravity g so that the values listed would be consistent with those appearing in the present standard tables for the lower levels of the atmosphere (reference 1). The errors in the computed values of pressure, density, specific weight and mean free path inherent in the assumption of a constant value for the acceleration of gravity become progressively greater with increasing altitude, being about 30 percent at 120 kilometers. However, a variation of 30 percent in pressure at 120 kilometers corresponds to a variation of less than 4 percent in altitude at this level, and at lower levels the change in altitude corresponding to the error in pressure rapidly approaches zero. It is apparent therefore that in at least some applications the values in tables II and III will be adequate and therefore useful. Furthermore, they represent an extension of the present standard tables (reference 1). In order to satisfy the need that may exist for values that are not affected by the use of a constant value for the acceleration of gravity g, tables TV and V are presented. In these tables g is assumed to vary inversely as the square of the distance from the center of the earth. This assumption therefore takes into consideration the variation due to gravitational attraction, but it does not allow for the effect of centrifugal force. The centrifugal force due to the rotation of the earth is known to be only a small fraction of 1 percent of the gravitational force at an altitude of 120 kilometers, and consequently this omission does not result in a significant error. The standard value used for the acceleration of gravity at sea level (and at all altitudes for tables II and III) is 9.8065 meters per second per second. This value corresponds rather closely to the true acceleration of gravity at sea level at latitude 45°. (More specifically, it corresponds to the theoretical acceleration of gravity at sea level and at latitude 45° 24' according to the International formula. See reference 17.) If still greater accuracy than is inherent in tables IV and V is required at latitudes far displaced from latitude 45°, an estimate of the latitude effect upon pressure and density may be obtained by use of the equation $$\log \frac{p_{0}}{p_{0}} = \frac{g_{0}}{g_{0}} \log \frac{p}{p_{0}} \tag{19}$$ where $p_{\vec{q}}$ is the pressure at altitude h and at latitude \vec{q} , and $g_{0\vec{q}}$ is the acceleration of gravity at sea level and at latitude \vec{q} . A similar equation (replacing p's with ρ 's) applies to densities. By means of equation (19) it can be shown that a latitude correction factor (L.C.F.) defined by $$L.C.F. = \frac{p_{q}}{p} \tag{20}$$ can be computed by $$L.C.F. = \left(\frac{p}{p_0}\right)^{g_0} \tag{21}$$ If values of g_{0q} from reference 17 are used, the following values for the exponent $\left(g_{0q}-g_{0}\right)/g_{0}$ are obtained: | Latitude
(deg) | £0 ₀ / − £0 . | Letitude
(deg) | e ⁰ • e ⁰ | |-------------------|--|-------------------|---------------------------------| | 0 | -2.66758 × 10 ⁻³ -2.50922 -2.05 2 99 -1.35337 -0.49405 | 50 | 0.42175 x 10 ⁻³ | | 10 | | 60 | 1.28372 | | 20 | | 70 | 1.98732 | | 30 | | 80 | 2.44701 | | 40 | | 90 | 2.60670 | The foregoing exponents when applied to the values of pressure ratio p/p_0 tabulated in tables IV and V give the values of the latitude correction factor described by equations (20) and (21). For latitudes at increments of 10° and for altitudes at increments of 10 kilometers the latitude correction factors that are applicable to the pressures given in tables IV and V have been computed and are presented in table VI. By means of table VI it is therefore possible to obtain computed values of pressure which take into consideration the variation with latitude of the sea-level value of the acceleration of gravity g_0 . This computation may be made by use of equation (20) which may be written $p_d = (\text{L.C.F.})p$. Coefficient of viscosity and kinematic viscosity. The Sutherland formula (equation (17)) is strictly applicable only to a gas of constant composition and to pressures which are not too small, and consequently the tabulated values for the coefficient of viscosity and for the kinematic viscosity are obviously not entirely reliable at the higher altitudes. However, the lack of data on the viscosity of oxygen in the atomic form does not permit at this time an estimation of the correction that is needed to allow for the specified dissociation. Furthermore, because of the fact that the effective value of the viscosity of a gas at very low pressure flowing over a body depends on the size and shape of the body, it is not practical to give a correction that will be applicable to more than one specific size and shape of a body. The values for viscosity at the higher altitudes should therefore be used with caution. Speed of sound. The tabulated values for the speed of sound are believed to be correct for all altitudes covered by the tables. Caution should be exercised, however, in using the tabulated values for the upper altitudes in connection with Mach numbers because at high altitudes where the mean free paths of the air molecules are large in comparison with the dimensions of the body moving through them, the laws of fluid dynamics do not apply and the laws of particle dynamics must be used. When aerodynamic forces, for example, are computed for these conditions by use of the laws of particle dynamics the most probable speed of the air molecules is found to be the basic quantity rather than the speed of sound. As in the case of viscosity, the altitude range in which the most probable speed of the air molecules replaces the speed of sound as the basic quantity depends upon the size of the body under consideration. It is consequently not possible to specify a single level at which the molecular speed becomes significant in aerodynamics. For this reason values for the speed of sound are listed to 120 kilometers. In any case in which the most probable speed of the air molecules c is needed rather than the velocity of sound a it is possible to obtain the value of c from the value of a listed in the tables by use of the appropriate factor obtained from the following tabulation: | Altitude, h | | Ratio of the most probable molecular speed to the speed of sound, $\frac{c}{a} = \sqrt{\frac{2}{\gamma}}$ | | | |--|---|---|--|--| | (m) | (ft) | Day | Night | | | 80,000
85,000
90,000
95,000
100,000
110,000
115,000
120,000 | 262,467
278,871
295,275
311,679
328,083
344,487
360,892
377,296
393,700 | 1.195
1.189
1.183
1.176
1.170
1.170
1.170
1.170 | 1.195
1.195
1.195
1.195
1.195
1.187
1.187
1.179 | | #### CONCLUDING REMARKS The fact should be emphasized that the values given in the tables for the upper atmosphere are only tentative and as such may become obsolete after a sufficient number of reliable direct measurements of certain quantities have been made available. In the meantime these tentative tables should be useful not only in serving as a basis for comparing performance characteristics and estimating limiting values of performance, but also in securing the additional data needed for revising these tentative tables for the upper atmosphere. Langley Memorial Aeronautical Laboratory National Advisory Committee for Aeronautics Langley Field, Va., December 6, 1946 # APPENDIX A # VARIATION WITH ALTITUDE OF MOIECULAR WEIGHT # AND RATIO OF SPECIFIC HEATS Molecular Weight in the Region of Oxygen Dissociation Consider an initial unit volume of normal air composed only of molecular gases, consisting
of oxygen and other constituents. Let all the non-oxygen constituents be diatomic of average molecular weight $M_{\rm N}$, and let the molecular weight of oxygen in the molecular form be $M_{\rm m}$, and in the atomic form $M_{\rm R}$. Then $$M_{e} = \frac{1}{2}M_{m} \tag{A1}$$ Let the initial conditions be as follows: v_0 volume of all-molecular oxygen at height h_m $1 - v_0$ volume of non-oxygen components at height h_m M_{O} average molecular weight of the initial air mixture at height h_{m} Then $$M_{O} = v_{O}M_{m} + (1 - v_{O})M_{N}$$ (A2) At height h, between h_m and h_a (where h_m is height at base of region in which dissociation occurs, and h_a is height at top of the region, and where all the oxygen is in the atomic form) the volume of molecular oxygen v_m per unit initial volume of normal air is $$v_{m} = v_{O} \left(\frac{h_{A} - h}{h_{A} - h_{m}} \right) \tag{A3}$$ and the volume of atomic oxygen v_a per unit initial volume of normal air is $$v_{a} = 2v_{O}\left(\frac{h - h_{m}}{h_{a} - h_{m}}\right) \tag{A4}$$ Therefore, the average molecular weight M of the atmosphere at height h can be shown to be $$M = \frac{M_0}{1 - K(h - h_m)} \tag{A5}$$ where $$K = -\frac{v_0}{h_m - h_m} \tag{A6}$$ the volume gradient of molecular oxygen, $\Delta v/\Delta h$. Ratio of Specific Heats in the Region of Oxygen Dissociation The ratio of specific heats γ for distomic gases is taken to be 7/5 and for monatomic gases, 5/3. If the ratio of the specific heats γ for the atmosphere is assumed to be given by a weighted average, according to relative masses, of the values of γ for distomic and monatomic gases, it can be shown, by using equations (A1), (A2), (A3), and (A4) that for those regions of the atmosphere in which dissociation of expan occurs $$\gamma = \frac{7}{5} + \frac{4}{15} v_0 \left(\frac{M_m}{M_0}\right) \left(\frac{h - h_m}{h_a - h_m}\right) \tag{A7}$$ The standard value for γ_0 , for the atmosphere at sea level, is 7/5, and for M_m the standard value is 32. Therefore $$\frac{\gamma}{\gamma_0} = 1 - \frac{128K(h - h_m)}{216k_0} \tag{A8}$$ It is estimated that in the tentative standard atmosphere the variation of γ due to pressure and temperature effects is only about 0.6 of 1 percent. For this reason the effect of pressure and temperature upon γ is ignored in computing these tentative tables. #### APPENDIX B # VARIATION OF PRESSURE WITH ALTITUDE (ASSUMING THE # ACCELERATION OF GRAVITY IS A CONSTANT go) The equations relating atmospheric pressure to height for all altitude ranges in all three atmospheres (minimum, standard, and maximum temperatures) are only four in number. These four equations represent all possible combinations of the two types of temperature-height relationship and the two types of composition-height relationship. The deductions of the equations are based upon the familiar hydrostatic relation $$dp = -g_0 \rho dh$$ (B1) and upon the general gas equation $$\frac{\rho}{\rho_0} = \frac{p}{p_0} \frac{M}{M_0} \frac{T_0}{T} \tag{B2}$$ These two equations, when combined, give $$\frac{dp}{p} = -\frac{g_0 p_0 T_0 M dh}{p_0 T M_0}$$ (B3) The differential equation (B3) is then used for deriving algebraic equations for pressure as a function of altitude, for each of the four combinations of temperature-height and composition-height relationships previously discussed. The derivations are indicated in the following paragraphs and the resulting equations are used in the preparation of tables II and III. Combination A (constant temperature and constant composition).The type of atmosphere in which both the temperature and composition are constant may be represented algebraically by T = Constant and M = Constant F Equation (B3) when integrated between the limits of height $h_{\rm A}$ and height h then becomes. $$\log_{\theta}\left(\frac{p}{p_{A}}\right) = \frac{-g_{O}\rho_{O}^{T}O^{M}}{p_{O}^{T}M_{O}} (h - h_{A})$$ (B4) where h_{A} is the base of the region in which type A conditions prevail. Combination B (constant temperature gradient and constant composition). For the type of atmosphere having a constant temperature gradient and constant composition, let the temperature gradient be represented by $$L = Constant = \frac{\Delta T}{\Delta h}$$ (B5) and the temperature by $$T = T_B + L(h - h_B)$$ (B6) where T_B and h_B are the respective values at the base of the region to which combination B conditions prevail. Also M=Constant. Equation (B3) then becomes $$\frac{\mathrm{dp}}{\mathrm{p}} = \left(\frac{-\mathrm{g}_{\mathrm{O}}\rho_{\mathrm{O}}\mathrm{T}_{\mathrm{O}}\mathrm{M}}{\mathrm{p}_{\mathrm{O}}\mathrm{M}_{\mathrm{O}}}\right)\frac{\mathrm{dh}}{\mathrm{T}_{\mathrm{B}} + \mathrm{L}(\mathrm{h} - \mathrm{h}_{\mathrm{B}})} \tag{B7}$$ and when integrated between the limits of $h_{\mbox{\footnotesize{B}}}$ and h this equation becomes $$\log\left(\frac{p}{p_{\rm B}}\right) = -\frac{e_{\rm O}p_{\rm O}^{\rm T}{\rm O}^{\rm M}}{p_{\rm O}^{\rm IM}{\rm O}}\log\left(\frac{T}{T_{\rm B}}\right) \tag{B8}$$ Combination C (constant temperature and constant volume gradient of dissociation). In the type of atmosphere where both the temperature and volume gradient of dissociation are constant and an expression for M as a function of h is derived in appendix A, and it is found to be $$M = \frac{M_0}{1 - K(h - h_m)}$$ (B9) where K is the volume gradient of molecular oxygen defined by $$K = \frac{\Delta v}{\Delta h} = Constant$$ (S10) Using these relationships with equation (B3) gives $$\frac{\mathrm{dp}}{\mathrm{p}} = -\frac{\varepsilon_{\mathrm{O}} \rho_{\mathrm{O}} T_{\mathrm{O}} \ \mathrm{dh}}{\mathrm{p}_{\mathrm{O}} T \left[1 - \mathrm{K} (\mathrm{h} - \mathrm{h}_{\mathrm{m}}) \right]} \tag{B11}$$ Integrating equation (Bil) between the limits of $h_{\mathbb{C}}$ and k, where $h_{\mathbb{C}}$ is the height at the base of the region in which type C conditions prevail, gives $$\log\left(\frac{p}{p_{C}}\right) = \frac{g_{C}\rho_{O}T_{O}}{p_{O}TK}\log\left(\frac{M_{C}}{H}\right)$$ (B12) Combination D (constant temperature gradient and constant valuae gradient of dissociation). The type of atmosphere having both the temperature gradient and the volume gradient of dissociation constant is referred to as combination D. For this combination, the expression for molecular weight given in equation (E9) and an appropriate modification of equation (B6) give, for equation (B3), the following equation: $$\frac{\mathrm{dp}}{\mathrm{p}} = \frac{\mathrm{g_0} \mathrm{p_0} \mathrm{T_0} \ \mathrm{dh}}{\mathrm{p_0} \left[1 - \mathrm{K(h - h_m)} \right] \left[\mathrm{T_D + L(h - h_D)} \right]} \tag{213}$$ Integrating the variable part of the right-hand member, between the limits of $h_{\rm D}$ and h, gives $$\frac{1}{(1+Kh_m)L+(T_D-Lh_D)K}\log\frac{T_D+L(h-h_D)}{1-K(h-h_m)}\Bigg|_{h_D}^h$$ Therefore $$\log \left(\frac{p}{p_D}\right) = \frac{-g_O \rho_O T_O M_D}{p_O \left(M_O L + M_D K T_D\right)} \log \left(\frac{TM}{T_D M_D}\right)$$ (B14) #### APPENDIX C VARIATION OF PRESSURE WITH ALITITUDE (ASSUMING THE ACCELERATION OF GRAVITY VARIES INVERSELY AS THE SQUARE OF THE DISTANCE FROM THE CENTER OF THE EARTH) The equations relating pressure and altitude derived herein are based upon the general differential equation derived from equation (B2) of appendix B. from the hydrostatic relation $$dp = -go dh$$ (C1) and from the equation representing the inverse square variation of the acceleration of gravity $$g = g_0 \left(\frac{r}{r+h}\right)^2 \tag{C2}$$ This general differential equation is $$\frac{dp}{p} = \frac{-g_0 p_0 T_0 M r^2 dh}{p_0 T M_0 (r + h)^2}$$ (C3) As in appendix B four equations are deduced for use in each of the four possible combinations of specified temperature-altitude and composition-altitude relationships. The resulting algebraic equations are used in the preparation of tables IV and V. The deductions for each combination are indicated in the following paragraphs. Combination A (constant temperature and constant composition).—For combination A (constant temperature and constant pressure) the algebraic equation relating pressure and altitude is obtained by integrating equation (C3) between the limits of altitude $h_{\rm A}$ and h. The result is $$\log_{e} \left(\frac{p}{p_{A}}\right)_{g} = \frac{-g_{O}\rho_{O}T_{O}M}{p_{O}TM_{O}} \frac{r^{P}(h-h_{A})}{(r+h)(r+h_{A})}$$ (C4) (Note that in this equation and succeeding equations the subscript g is used to indicate values computed with the variation in the acceleration of gravity that is specified by equation (C2).) Combination B (constant temperature gradient and constant composition). For combination B (constant temperature gradient and constant composition) the differential equation is obtained by substituting in equation (C3) the value for T given by $$T = T_B + L(h - h_B)$$ (05) The differential equation is then $$\frac{dp}{p} = \frac{-g_0 p_0 T_0 M r^2 dh}{p_0 M_0 \left[T_B + L(h - h_B) \right] (r + h)^2}$$ (C6) The algebraic equation obtained by integrating equation (C6) between the appropriate limits is $$\log_{\theta}\left(\frac{p}{p_{B}}\right)_{g} = C_{B_{g}}\left[\frac{r(h - h_{B})}{(r + h)(r + h_{B})} + \frac{rL}{rL + h_{B}L - T_{B}}\log_{\theta}\frac{(r + h)T_{B}}{(r + h_{B})T}\right] (C7)$$ where $$c_{\rm Bg} = \frac{g_{\rm O} \rho_{\rm O} T_{\rm O} M}{p_{\rm O} M_{\rm O} \left[1 - \frac{1}{r} (T_{\rm B} - 1 h_{\rm B}) \right]}$$ (C8) Combination C (constant temperature and constant volume gradient of dissociation).— For combination C (constant temperature and constant volume gradient of dissociation) the differential equation is obtained by substituting in equation (C3) the value of M given by $$M = \frac{M_0}{1 - K(h - h_m)} \tag{C9}$$ The differential equation is then $$\frac{dp}{p} = \frac{-g_0 \rho_0 T_0 r^2 dh}{p_0 T \left[1 - K(h - h_m)\right] (r + h)^2}$$ (C10) The algebraic equation obtained by integrating equation (ClO) between appropriate limits is
$$\log_{e}\left(\frac{p}{p_{C}}\right) = C_{C_{g}}\left\{ \frac{K}{K + \frac{1 + Kh_{C}}{r}} \log_{e} \frac{M(r + h)}{M_{O}(r + h_{C})} - \frac{r(h_{C} - h)}{(r + h)(r + h_{C})} \right\}$$ (C11) where $$C_{C_g} = \frac{-g_0 \rho_0 T_0}{p_0 T \left(K + \frac{I + K h_C}{r}\right)}$$ (C12) Combination D (constant temperature gradient and constant volume gradient of dissociation).- For combination D (constant temperature gradient and constant volume gradient of dissociation) the differential equation is obtained by substituting in equation (C3) the values of T and M given by a slightly modified form of equation (C5) and by equation (C9), respectively. The resulting differential equation is then $$\frac{dp}{p} = \frac{-g_0 \rho_0 T_0 r^2 dh}{p_0 T_D + L(h - h_D) [1 - K(h - h_m)] (r + h)^2}$$ (C13) The algebraic equation obtained by integrating equation (Cl3) between appropriate limits is $$\log_{e}\left(\frac{p}{p_{D}}\right)_{g} = C_{Dg}\left[\frac{a(h - h_{D})}{(1 + xh)(1 + xh_{D})} + \frac{b}{x}\log_{e}\left(\frac{1 + xh}{1 + xh_{D}}\right) + \frac{c}{y}\log_{e}\left(\frac{1 + yh}{1 + yh_{D}}\right) + \frac{d}{z}\log_{e}\left(\frac{1 + zh}{1 + zh_{D}}\right)\right]$$ (C14) where $$C_{Dg} = \frac{-g_0 \rho_0 T_0}{p_0 (T_D - Lh_D) (1 + Kh_m)}$$ $$x = \frac{1}{r}$$ $$y = \frac{L}{(T_D - Lh_D)}$$ $$z = \frac{-K}{(1 + kh_m)}$$ $$a = \frac{x^2 (x^2 + yz - yx - zx)}{(z - x)^2 (y - x)^2}$$ $$\frac{b}{x} = \frac{x(2yz - xy - xz)}{(z - x)^2 (y - x)^2}$$ $$\frac{c}{y} = \frac{-y^2}{(z - x)^2 (z - y)}$$ $$\frac{d}{z} = \frac{z^2}{(z - x)^2 (z - y)}$$ (C15) Equations (C4), (C7), (C11), and (C14) were used to compute the pressure ratios at the transition levels only in the tentative standard atmosphere. By dividing these pressure ratios by the pressure ratios at the same transition levels obtained by use of the equations in appendix B based on a constant value for the acceleration of gravity, a conversion factor was obtained for each of the several transition altitudes. Since it was impractical to use these complex equations for directly computing the pressure ratios at all the levels recorded in tables IV and V, the values at these numerous intermediate levels were arrived at as follows: (1) For each altitude a value for the conversion factor was computed by algebraic summation from the equation $$\log_{\theta}\left(\frac{p_{g}}{p}\right) = \frac{\rho_{O}T_{O}}{p_{O}M_{O}} \sum_{O}^{h} (g_{O} - g)\frac{M}{T}\Delta h$$ (C16) where pg is the pressure based on the variable value of g, and p is the pressure based on a constant value for the acceleration of gravity. In equation (C16) the proper value of g, T, and of M was substituted for each region of the atmosphere, according to equation (C2), (C5), and (C9), respectively. - (2) The values of p_g/p so computed were plotted against altitude to define the shape of the curve relating pressure ratios to altitude. - (3) The accurate values for the pressure ratio computed by equations (C4), (C7), (C11), and (C14) and by equations (B4), (B8), (B12), and (B14) were also plotted and another curve was drawn through these points representing the accurately computed ratios and faired according to the curve drawn through the points obtained by use of equation (C16). - (4) The curve arrived at from step (3) was then used to obtain conversion factors for each of the altitudes recorded in tables IV and V. # APPENDIX D # MOLECULAR MEAN FREE PATHS Ratio of the Mean Free Paths of Molecules The conventional equation for the mean free path of the molecules λ of a gas (reference 18) is $$\lambda = \frac{1}{\pi \sqrt{2} \, \text{N}\sigma^2} \tag{D1}$$ Therefore the ratio of the mean free path at any altitude to the value at sea level is $$\frac{\lambda}{\lambda_0} = \frac{N}{N} \left(\frac{\sigma_0}{\sigma} \right)^2 \tag{D2}$$ But $$Nm = \rho \tag{D3}$$ and $$g\rho = \frac{pM}{1.T}$$ (D4) Therefore $$\frac{N_O}{N} = \frac{p_O}{p} \frac{T}{T_O} \frac{g}{g_O} \tag{D5}$$ and $$\frac{\lambda}{\lambda_{\rm O}} = \frac{p_{\rm O}}{p} \frac{T}{T_{\rm O}} \frac{g}{c_{\rm O}} \left(\frac{\sigma_{\rm O}}{\sigma}\right)^2 \tag{D6}$$ For all constituents of the atmosphere except oxygen in the region of dissociation, $$\sigma = \sigma_0$$ In the absence of available data on the diameter of atoms of oxygen relative to that of molecular oxygen, and in consideration of the fact that the small difference in these two diameters of oxygen has an even smaller effect upon the average diameter of all atmospheric constituents, and for reasons of simplicity it is herein assumed for oxygen also that $\sigma = \sigma_0$. For the purpose of computing these tables therefore equation (D6) is simplified to $$\frac{\lambda}{\lambda_{O}} = \frac{p_{O} \cdot \underline{T}}{p} \frac{g}{T_{O}} \frac{g}{g_{O}} \tag{D7}$$ Furthermore, in those computations that are based on a constant value for the acceleration of gravity $$g = g_0$$ whence equation (D7) is further simplified to $$\frac{\lambda}{\lambda_0} = \frac{p_0}{p} \frac{T}{T_0} \tag{D8}$$ Mean Free Paths of Molecules at Sea Level The values of the mean free path of the molecules at sea level given in table I are for nitrogen and oxygen molecules in a normal atmospheric mixture of nitrogen and oxygen. These mean free paths are designated λ_n and λ_o , respectively. A weighted average of the foregoing mean free paths, based upon the relative volumes of nitrogen and oxygen in air is also included and is designated λ_{air} . The mean free path of the nitrogen molecules in the atmosphere at sea level was computed by the following formula (p. 99 of reference 18): $$\lambda_{n} = \frac{1}{\pi \sqrt{2} N_{n} \sigma_{n}^{2} + \pi N_{o} \overline{\sigma}^{2} \frac{\sqrt{\overline{c}_{n}^{2} + \overline{c}_{o}^{2}}}{\overline{c}_{n}}}$$ where Nn number of nitrogen molecules per unit volume of air No number of oxygen molecules per unit volume of air on diameter of nitrogen molecules on diameter of oxygen molecules of average diameter of nitrogen and oxygen molecules cn average speed of nitrogen molecules to average speed of oxygen molecules Similarly, the mean free path of the oxygen molecules at sea level was computed by $$\lambda_{o} = \frac{1}{\pi \sqrt{2} N_{o} \sigma_{o}^{2} + \pi N_{n} \overline{\sigma}^{2} \sqrt{\overline{c_{n}^{2} + \overline{c_{o}^{2}}}}}$$ (D9) The values for the average speeds \overline{c}_n and \overline{c}_o were obtained from the formula $\overline{c} = \sqrt{\frac{2RT}{M}}$. The values for σ were taken from appendix III, column 4, of reference 18. Values of N_n and N_o , the number of molecules of nitrogen and oxygen, respectively, per unit volume were calculated from the Losenmidt number and the relative volume of the nitrogen and oxygen in air at sea level. # APPENDIX E # VALUES OF CERTAIN CONSTANTS Tentative Standard Atmosphere at Sea Level The standard sea-level values for various properties of the atmosphere have been listed in reference 1, and sea-level values for certain other properties are listed in reference 5. Most of these previously listed values are adopted for use in computing the tables herein, but a few changes have been made. The changes are as follows: Speed of sound - The values for the speed of sound have been altered slightly to avoid the discrepancy which existed between the values previously listed and the values computed by the conventional equation $$\mathbf{a}_{O} = \sqrt{\frac{\gamma_{O} p_{O}}{\rho_{O}}} \tag{E1}$$ The values for a_0 listed in table I are computed according to equation (E1) by using the appropriate values for γ_0 , p_0 , and p_0 that are also listed in table I. Density. The values for density in the British engineering system has been changed from 0.002378 to 0.0023779 slugs per cubic foot to avoid discrepancies resulting when computations are based either on the standardized value for specific weight, 1.2255 kilograms per cubic meter (reference 1), or on the derived value for density. Molecular mean free paths and molecular weight. In addition to the various quantities previously given in references 1 and 5, the present paper lists molecular mean free paths and the average molecular weight of normal sea-level air. Molecular mean free paths for the nitrogen molecules and oxygen molecules in the normal air mixture have been computed and a weighted average for air has been taken, as described in appendix D. The average molecular weight of normal sea-level air is taken as 28.966 in accordance with reference 19. Pressure. The value for pressure in the British engineering system has been changed from 407.1 or 407.2 inches of water at 15° C as used in reference 5 and reference 20, respectively, to 407.15 inches of water at 15° C. This value of 407.15 is the computed value corresponding to 760 millimeters of mercury based on the auxiliary constants and conversion factors listed in the last section of this appendix E. ## Table of Sea-Level Values The values for the various properties of the atmosphere at sea level corresponding to the adopted values for probable minimum and probable maximum temperatures are computed from the values corresponding to standard sea-level temperatures. All three sets of values used in both metric and British engineering systems of units are tabulated in table I. In some instances a quantity is listed in more than one unit, in either the metric or British system. # Auxiliary Constants and Conversion Factors In addition to the atmospheric properties at sea level given in table I certain other basic constants and conversion factors are used in computing tables II to V. They are # Auxiliary constants: | Density of mercury at 0°C, gm/cm ³ | | 13.5951 | |---|---|-----------| | Standard acceleration of gravity, go, cm/sec2 | • | 980.665 | | Density of water at -15° C, gm/ml | • | 0.9991286 | | Radius of the earth at 450 latitude and at sea level, | m | 6,367,623 | #
Conversion factors: #### REFERENCES - 1. Diehl, Walter S.: Standard Atmosphere Tables and Data. NACA Rep. No. 218, 1925. (Reprint 1940.) - 2. Gregg, Willis Ray: Standard Atmosphere. NACA Rep. No. 147, 1922. - 3. Brombacher, W. G.: Tables for Calibrating Altimeters and Computing Altitudes Based on the Standard Atmosphere. NACA Rep. No. 246, 1926. - 4. Brombacher, W. G.: Altitude-Fressure Tables Based on the United States Standard Atmosphere. NACA Rep. No. 538, 1935. - 5. Aiken, William S., Jr.: Standard Nomenclature for Airspeeds with Tables and Charts for Use in Calculation of Airspeed. NACA IN No. 1120, 1946. NACA Report NO. 237 - 6. Anon.: Meteorological Aspects of High-Altitude Flight. Rep. No. 847, Weather Div., Headquarters AAF, Dec. 1944. (Now distributed by Headquarters, Air Weather Service, Air Transport Command.) - 7. Ratner, Benjamin: Temperature Frequencies in the Upper Air. Weather Bur., U. S. Dept. Commerce, Jan. 1946. - 8. Martyn, D. F., and Pulley, O. O.: The Temperature and Constituents of the Upper Atmosphere. Proc. Roy. Soc. (Lordon), ser. A, vol. 154, no. 882, April 1, 1936, pp. 455-486. - 9. Pekeris, C. L.: Atmospheric Oscillations. Proc. Roy. Soc. (London), ser. A, vol. 158, no. 895, Feb. 3, 1937, pp. 650-671. - 10. Martyn, D. F.: The Upper Atmosphere. C General Discussion. Quarterly Jour. Roy. Meteorol. Soc., vol. 65, no. 281, 1939, pp. 328-330. - 11. Penndorf, R.: Die Temperatur der hohen Atmosphäre. Meteorol. Zeitschr., Bd. 58, Heft 1, Jan. 1941, pp. 1-10. (Translation in Eull. American Meteorol. Soc., vol. 27, no. 6, June 1946, pp. 331-342.) - 12. Whipple, Fred L.: Meteors and the Earth's Upper Atmosphere. Rev. Modern Phys., vol. 15, no. 4, Oct. 1943, pp. 246-264. - 13. Gutenberg, B.: Physical Properties of the Atmosphere Up to 100 Km. Jour. Meteorology, vol. 3, June 1946, pp. 27-30. - 14. Wulf, Oliver R., and Deming, Lola S.: On the Production of the Ionespheric Regions E and F and the Lower-Altitude Ionization Causing Radio Fade-Outs. Terr. Mag., vol. 43, no. 3, Sept. 1938, pp. 283-298. - 15. Anon.: Nomenclature for Aeronautics. NACA Rep. No. 474, 1941. - 16. Bircumshaw, L. L., and Stott, Vaughan H.: Viscosity of Gases. International Critical Tables, first ed., vol. V. McGraw-Hill Book Co., Inc., 1929, p. 1. - 17. Anon.: Theoretical Gravity at Sea Level for Each Minute of Latitude by the International Formula. U.S. Dept. of Commerce, Coast and Geodetic Survey, 1942. - 18. Loeb, Leonard B.: The Kinetic Theory of Gases. Second ed., McGraw-Hill Book Co., Inc., 1934. - 19. Wildt, Rupert: The Geochemistry of the Atmosphere and the Constitution of the Terrestrial Planets. Rev. Modern Phys., vol. 14, nos. 2-3, April-July 1942, p. 152. - 20. Beij, K. Hilding: Aircraft Speed Instruments. NACA Rep. No. 420, 1932. TABLE I .- PROPERTIES OF THE ATMOSPHERE AT SEA LEVEL | | | | Metric engi | neering system | | | British engine | pering system | | |---|---------------------------|-------------------------------------|---|---|---------------------------------|------------------------|---------------------------------------|----------------------------|---------------------------------------| | Quantity | Symbol . | Unit | At probable
minimum
temperature | At standard
temperature | At probable meximum temperature | Unit | At probable
minimum
temperature | At standard
temperature | At probable
maximum
temperature | | Temperature | t _o | °c | -48.0 | 0,15 | 47. 0 | op | -54.5 | 59.0 | 116,6 | | Absolute temperature | T _O | o <u>k</u> | 225.0 | 288.0 | 320.0 | °F abs. | 405.0 | 518.4 | 576.0 | | | | mma Hg at 0°0 | 760 | 760 | 760 | in,Hg at 32°F | 29.9212 | 29,9212 | 29.9212 | | Pressure | P _O | kg/m² | 10332.3 | 10332.3 | 20332.3 | in. water at 15°C | 407.15 | 407.35 | 407.15 | | | | qArres\cus_5 | 1.01325×10 ⁶ | 1.01325×106 | 1.01325<106 | 1b/ft ² | 2116.23 | 2116.23 | 2116.23 | | Specific weight | ¥o | dynes/cm3 | 1.5686
1.5383 | 1.2255 | 1.1030 | 16/ft ³ | 0.097928 | 0.076506 | 0.068855 | | Density | ρ ₀ <u>"α</u> | kg-вес ² /m ⁴ | 0.15995 | 0.124966 | 0,11247 | slugs/ft ³ | 0.0030437 | 0.0023779 | 0.0021401 | | Coefficient of viscosity | μ _ο | log-sec/m ² | 1,4852×10 ⁻⁶
14565×10 ⁻⁸ | 1.8187×10 ⁻⁶
17835×10 ⁻⁸ | 1.9751×10 ⁻⁶ } | lb-sec/ft ² | 3.0420x10 ⁻⁷ | 3.7250×10 ⁻⁷ | ፟፟፟፟፟፟፟፟፟፟፟፟፟፟ | | Kinematic viscosity | $v_0 = \frac{\mu_0}{P_0}$ | m ² /sec | 9.2848×10 ⁻⁶ | 14.553×10 ⁻⁶ | 17.561×10 ⁻⁶ | ft ² /sec | 0.99944x10 ⁻⁴ | 1.5665×10 ⁻⁴ | 1,8903×10 ⁻⁴ | | | 0 0 | IX/100 | 300.72 | 340.22 | 358,63 | ft/sec | 986.61 | 1116.22 | 1176.60 | | Speed of sound | a _o | km/hr | 1082.6 | 1224,8 | 1291, 1 | kmots | 672.69
58 4.1 6 | 761.06
660.90 | 802.23
696,65 | | Mean free path of
nitrogen molecules | λ _n |)
Da | 5.76×10 ⁻⁸ | 7.38×10 ⁻⁸ | 8.20×10 ⁻⁸ | ft | 0.1891x10 ⁻⁶ | 0.2421×10-6 | 0.2690×10 ⁻⁶ | | Mean free path of oxygen molecules | λ _o | = | 5.75×10 ⁻⁸ | 7.36×10 ⁻⁸ | 8.18×10 ⁻⁸ | ft | 0~1887×10 ⁻⁶ | 0.2415×10 ⁻⁶ | 0.2683x10 ⁻⁶ | | Mean free path of air molecules | λ _{air} | 200 | 5.76x10 ⁻⁸ | 7,37×10 ⁻⁸ | 8.19×10 ⁻⁸ | ft | 0,1890×10 ⁻⁶ | 0.2419×10 ⁻⁶ | 0.2688×10 ⁻⁶ | | Average molecular weight | W _O | | 28.966 | 28.966 | 28.966 | | 28.966 | 28.966 | 28.966 | | Ratio of specific heats | Ϋ́ο | | 1.4 | 1.4 | 1.4 | | 1.4 | 1.4 | 1.4 | | Relative volume of oxygen | ro |
 | 0.2095 | 0.2095 | 0.2095 | | 0.2095 | 0.2095 | 0.2095 | NATIONAL ADVISORY COMMITTER FOR ABRONAUTICS ## TABLES II AND III PROPERTIES OF THE UPPER ATMOSPHERE FOR TENTATIVE STANDARD TEMPERATURES BASED ON AN ARBITRARY CONSTANT VALUE OF GRAVITATIONAL FORCE The following set of two tables (tables II and III) constitutes a consistent extension of the standard tables for the lower atmosphere (NACA Rep. No. 218). Consequently, altitudes in this set of tables which correspond to specified ambient-air pressures may be referred to as "tentative pressure altitudes," and those which correspond to a specified ambient-air density may be referred to as "tentative density altitudes" (NACA Rep. No. 474). NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. TABLE 'II. PROPERTIES OF THE UPPER ATMOSPEZEE FOR TENTATIVE STANDARD TEMPERATURES BASED ON AN ARBITRARY | Altitude,
h
(m) | Absolute
tempera-
ture,
T
(OK) | Pressure, | Pressure
ratic,
p/p ₀ | Density, (kg_sec ²) | Density ratio, $\sigma = \frac{\rho}{\rho_0}$ | Specific
weight,
w = SP
(kg/m ³) | Ocefficient of viscesity, | Viscosity, V= \frac{\beta}{p} (\mathbb{m}^2/\sec) | Speed of sound, | Hean free path of molecules, \(\lambda\) (m) | |--|---
--|--|---
--|--|--|--|---|---| | | | | | (a) | For both day | and night | <u> </u> | | | <u> </u> | | 20,000
20,500
21,000
21,500
22,500
22,500
23,500
24,000
24,500 | 218.0
218.0
218.0
218.0
218.0
218.0
218.0
218.0 | 563.0
520.55
481.3
445.0
421.55
351.8
351.8
3278.1 | 5449/10 ⁻⁵
5038
4658
4307
3983
3405
3111
2698 | 8995×10 ⁻⁶
8318
7690
7710
5080
5622
5138
1806 | 71.98×10 ⁻⁵ 6656 61.54 5690 5261 4865 4498 4159 3556 | 8521×10-5
8157
7542
6973
6143
5962
5513
5997
4713
4358 | 1.446-10-6
1.446
1.446
1.446
1.446
1.446
1.446
1.446
1.446 | 0.01607x10 ⁻² 0.01738 0.01880 0.02033 0.02199 0.02378 0.02572 0.02782 0.03254 | 296.0
296.0
296.0
296.0
296.0
296.0
296.0
296.0 | 0.00102x10
0.00131
0.00130
0.00130
0.00140
0.00151
0.00164
0.00177
0.00192
0.00207 | | 25,000
25,500
26,500
26,500
27,500
27,500
28,500
29,500
29,500 | 20000000000000000000000000000000000000 | 257.8
237.8
219.9
203.3
188.0
173.7
148.6
137.4
127.4 | 2489
2301
2301
2308
1008
1819
1555
1438
1330
1230 | \$109
3800
3513
3248
3004
2777
2568
2375
2196
2030 | 3288
3040
2811
2599
2404
2222
2055
1900
1757
1625 | 4030
3745
3186
2946
2724
2518
2329
2153
1991 | 1.446
1.446
1.446
1.446
1.446
1.446
1.446 | 0.03518
0.03505
0.04115
0.04451
0.05206
0.05630
0.05630
0.05635
0.05685 | 296.0
296.0
296.0
296.0
296.0
296.0
296.0
296.0 | 0.00224
0.00282
0.00268
0.00268
0.00307
0.00352
0.00356
0.00366
0.00458 | | 30,000
30,500
31,000
31,500
32,000
32,500
33,000
34,000
34,500
35,000 | 200001-1007-1007-1007-1007-1007-1007-100 | ************************************** | 1051
972.1
898.9
898.9
759.0
712.1
660.8
613.7 | 1736
1605
1405
1405
1372
1249
1138
1039
946,3 | 1503
1389
1284
1187
1098
999.1
910.5
831.0
759.6
695.3
637.3 | 1702
1574
1455
1346
1224
1116
1018
930.9 | 1.446
1.446
1.446
1.446
1.467
1.487
1.508
1.528 | 0.07700
0.08330
0.09009
0.097*3
0.105*
0.1175
0.1307
0.1452
0.1510
0.1782 | 296.0
296.0
296.0
296.0
296.5
300.9
303.8
308.2
310.6 | 0.00490
0.00531
0.00521
0.00521
0.00571
0.00509
0.00509
0.00509
0.00509
0.00106 | | 35,000
35,500
36,000
36,500
37,500
38,000
38,000
39,000
39,500 | 247.7
247.7
251.7
258.0
258.0
258.0
269.3
269.3 | 5.70,700,74,75,7 8.01
5.70,700,74,75,7 8.01 |
514.00.00
514.00.00
514.00.00
514.00.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514.00
514. | 731.0
671.7
618.0
559.1
484.9
448.2
418.8 | 637.3
587.5
597.5
455.6
455.6
388.6
358.6
358.6
358.6 | 781.0
7716.9
658.7
656.1
555.3
555.5
436.7
436.7
349.4 | 1.588
1.608
1.627
1.647
1.685
1.785
1.724 | 0.1969
0.2172
0.2393
0.2633
0.2633
0.3173
0.3176
0.3803
0.41535
0.4535 | 312.9
315.3
317.0
319.0
324.5
326.8
329.0 | 0.0126
0.0137
0.0149
0.0162
0.0175
0.0190
0.0206
0.0222
0.0240 | | 41,500
41,500
42,500
42,500
43,500
43,500
44,500
44,500 | 276.7
284.0
284.0
285.7
295.7
296.7
306.7
306.7
309.7 | 02000000000000000000000000000000000000 | 273.0
257.6
242.4
228.4
215.3
203.8
203.8
203.8
203.8
203.8
203.8
152.0
153.4 | 356.3
330.7
330.7
307.3
266.0
247.8
221.1
215.7
201.3
176.2 | 228.7
212.8
198.3
184.9
172.6
161.2
150.7 | 349.4
324.3
321.3
260.8
243.0
226.6
211.5
197.5
184.7
172.8 | 1.778
1.779
1.799
1.817
1.835
1.857
1.890
1.906
1.926 | 0.1944
0.5383
0.5854
0.5359
0.6900
0.7480
0.8100
0.8763
0.9470
1.022 | 333.57
335.78
340.02
344.35
346.53
348.67
352.8 | 0.0300
0.0322
0.0346
0.0372
0.0399
0.0427
0.0427 | | 45,000
45,500
46,000
46,500
47,500
47,500
48,500
49,500
49,500 | 319.3
317.0
324.3
324.3
332.7
335.3
339.7
346.3
350.0 | ###################################### | 153.4
145.3
157.7
139.6
139.6
139.7
139.7
139.7
139.7
101.3
101.1
101.1
101.1
101.1
101.1
101.1 | 176.2
165.0
154.6
136.0
127.7
120.0
112.9
106.2
99.99
94.20 | 132.7
116.0
108.8
102.2
96.03
90.31 | 151.6
142.1
133.4
125.2
117.7
110.7
104.1
98.05 | 1.976
1.996
2.013
2.030
2.047
2.065
2.061 | 1.189
1.280
1.377
1.480
1.500
1.706
1.829
1.950 | 354.9
356.9
359.0
361.0
363.1
367.1
367.1
371.1
373.1 | 0.0523
0.0558
0.0556
0.0536
0.0677
0.0721
0.0767
0.0816
0.0867
0.0878 | | 50,000
50,500
51,500
51,500
51,500
53,500
53,500
53,500 | 350.0
350.0
350.0
350.0
350.0
350.0
350.0 | 9.465
9.014
8.555
7.786
7.786
7.786
6.161
5.810 | 87.68
87.93
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73
97.73 | 20000000000000000000000000000000000000 |
75.38
77.8.79
65.57
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.00
65.0 | 87.57
87.57
87.58
87.58
87.58
67.59
67.53
68.55
68.55
59.55 | 2.115
2.115
2.115
2.115
2.115
2.115
2.115
2.115
2.115 | 2.215
2.355
2.576
2.759
2.759
2.756
3.009
3.315
3.485 | 375.1.1
375.1.1
375.1.1
375.1.1
375.1.1
375.1.1 | 0.0978
0.103
0.308
0.113
0.119
0.125
0.131
0.144
0.152 | | 55,000
55,500
56,500
57,000
57,500
58,500
58,500
59,500 | 350.0
350.0
350.0
350.0
350.0
350.0
350.0 | 5370
5370
5370
5370
5335
535
535
535
535
535
535
535
535
5 | 505505505505505505505505505505505505505 | 57.82
55.07
52.95
47.57
45.30
45.30
41.09
39.14
37.27 | 41,07
41,97
39,97
36,25
34,53
32,88
31,32
29,82 | 56.70
54.00
51.43
51.43
46.65
44.43
40.30
38.36
36.55 | 2.115
2.115
2.115
2.115
2.115
2.115
2.115
2.115 | 3.655
3.841
3.843
4.235
4.456
4.502
4.502
5.148
5.675 | 375.1
375.1
375.1
375.1
375.1
375.1
375.1
375.1 | 0.159
0.167
0.176
0.184
0.194
0.203
0.213
0.224
0.235 | | 60,000
60,500
61,000
62,500
62,500
63,500
63,500
64,500 | 3543.08
3543.08
3543.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.77
3534.7 | 2000 M 100 | 34.87
32.87
32.87
32.87
32.87
32.87
32.87
33.87
33.87
33.87 |
35.50
35.75
36.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75
38.75 | 28.40
27.28
25.15
24.13
23.14
23.14
21.27
20.37
19.51 | 34.81
33.44
32.82
39.57
29.57
26.36
24.97
23.91 | 2.115
2.101
2.087
2.073
2.059
2.045
2.030
2.016
2.002
1.987 | 559
6.163
6.3597
6.8297
6.820
7.322
7.886
6.150 | 375.1
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5
377.5 | 0.259
0.270
0.261
0.293
0.305
0.315
0.317
0.347
0.362
0.378 | | 65,500
66,500
67,500
67,500
67,500
68,500
69,500 | 316.4
316.4
313.3
307.2
304.2
301.1
298.1 | 2.140
2.020
1.020
1.020
1.525
1.533
1.372
1.372 | 20.72
19.63
18.60
17.60
15.75
14.06
13.20 | 23.33
22.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13
20.13 | 18.68
17.87
17.09
16.34
15.51
14.91
14.24
13.59
12.95 |
22.89
21.90
20.95
20.03
19.14
18.28
17.65
15.88 | 1.973
1.958
1.958
1.958
1.869
1.869
1.869
1.889
1.889 | 8.452
8.767
9.000
9.444
9.807
10.19
10.59
11.44
11.51 | 356.5
354.5
354.5
354.5
347.9
347.9
344.3
342.5 | 0.395
0.412
0.431
0.451
0.472
0.518
0.512
0.569
0.596 | | 70,000
71,000
72,000
73,000
75,000
75,000
75,000
76,000
77,000
78,000
79,000
80,000 | 258.9
282.7
276.4
258.2
258.2
246.0
240.0
240.0 | 1.220
1.083
0.083
0.083
0.083
0.744
0.6714
0.5714
0.498
0.438
0.3754
0.3754 | 11.88
10.476
10.476
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.005
1.00 | 14.71
13.34
12.66
10.89
9.806
8.808
7.891
7.051
6.282
4.726 | 11.77
10.67
9.671
7.646
7.646
7.642
5.642
5.642
5.366
3.782 | 14,43
13,08
11,68
11,68
9,616
8,637
7,738
6,121
1,235
1,235 | 1.823
11.796
11.796
11.666
11.666
11.666
11.568
11.568 | 12,39
13,46
15,89
17,39
18,99
22,77
24,96
25,78
33,18 | 340.7
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
377.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
377.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
377.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5
337.5 | 0.626
0.691
0.763
0.939
1.017
1.317
1.49 | NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Table II.—Properties of the upper atmosphere for tentative standard temperatures based on an arbitrary constant value of gravitational force — metric engineering system — Coroluded | Altitude,
h
(m) | Absolute
tempera-
ture,
T | Pressure,
(kg/m²) | Pressure
ratio,
p/p ₀ | Denaity, (kg-sec ²) | Density ratio, p | Specific
veight,
w = SP
(kg/m ³) | Goefficient of viscoeity, (rg-sec) 2 (1) | Vineratio viscoelty, V= P (m ² /eec) (1) | Speed of eound, | Mean free path of molecules, A (m) | |--|---|--
--|---|--|---|---|--
--|---| | | · · · · · · · · · · · · · · · · · · · | | | (ъ) | For day on | J | | · — <u>_·</u> | | | | 80,000
81,000
82,000
83,000
84,000
85,000
86,000
87,000
88,000
89,000 | 240.0
240.0
240.6
247.2
250.9
258.9
258.9 | 0.3256
0.2826
0.2457
0.2139
0.1866
0.1435
0.1435
0.1118
0.09908 | 3151×10-8
2735
2378
2070
1806
1582
1389
1224
1082
959.0 | \$726cio-9
\$060
3\$93
3009
2561
2188
187\$
1612
1391
120\$ | 3782×10 ⁻⁸ 3248 2795 2408 2049 1751 1500 1290 1113 963.7 | \$635×10 ⁻⁸ 3981 3982 2951 2512 2145 1838 1581 1364 1181 | 1.568-c10 ⁻⁶ 1.568 1.568 1.568 1.568 1.568 1.607 1.627 1.646 1.666 1.685 | 0.3318
0.3863
0.4489
0.5211
0.6200
0.7348
0.8682
1.021
1.197
1.400 | 310.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
311.55
31 | 10 ⁻³ 255 255 255 255 255 255 255 255 255 25 | | 90,000
91,000
93,000
95,000
95,000
95,000
99,000 | 265.28
269.28
276.5.1
283.28
283.28
294.1
294.1
298.298 |
0.08810
0.07850
0.07016
0.06285
0.05643
0.05594
0.04584
0.03756 | 852.7
759.7
759.0
608.3
3491.6
443.7
401.5
363.1 | 1046
910.9
795.7
697.0
618.8
475.8
421.0
373.5
332.0 | 837.1
728.9
636.7
557.8
431.1
380.7
431.1
380.7
336.9 | 1026
893.2
780.3
660.1
528.4
412.3
366.3
325.6 | 1.704
1.723
1.742
1.760
1.779
1.816
1.834
1.852
1.870 | 1.629
1.892
2.526
2.526
2.907
3.836
3.8357
4.960
5.633 | 347.1
351.5
356.8
369.8
369.7
373.7
382.6
387.1 | 7.07.76
11.18
16.66
17.18
18.80
17.11 | | 100,000
101,000
102,000
103,000
104,000
105,000
106,000
107,000
108,000
109,000 | 302.0
305.7
305.3
312.6
320.3
327.2
331.2
331.2
333.9 | 0.03102
0.02827
0.02579
0.02355
0.02153
0.01970
0.01805
0.01519
0.01365 | 300.2
273.66
227.9
208.4
190.7
174.7
160.0
135.1 | 205.8
265.3
240.1
216.7
195.8
177.2
160.5
145.5
132.1
120.0 | 156.7
141.8
128.4
116.4
105.7
96.03 | 290.1
261.2
235.5
192.0
173.7
157.4
129.5
117.7 | 1.888
1.904
1.924
1.941
1.959
1.976
1.994
2.011
2.028
2.045 | 6.383
7.157
8.013
8.959
10.00
11.16
12.42
13.82
15.36
17.04 | 391.5
393.9
396.6
400.9
403.2
405.5
405.7
410.0
412.3 | 25.67
25.67
25.90
25.38
25.90
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23
27.23 | | 110,000
111,000
112,000
113,000
114,000
115,000
116,000
117,000
118,000
119,000 | 38.52.8
342.8
345.51.8
356.4
367.7
367.7
375.0 | 0.01283
0.01181
0.01088
0.01003
0.009255
0.008548
0.007308
0.007308
0.006765
0.006267 | 24.3.388
1119.588
119.588
17.7462
17.7462
17.7668 | 109.20
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
990.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.460
900.400
900.400 | 87 35
792 54
766 14
66 55
766 14
66 55
766 14
766 1 | 197 48 5.66 22 65 1.69 65 67 67 67 67 67 67 67 67 67 67 67 67 67 | 2.060
2.079
2.096
2.113
2.129
2.146
2.162
2.179
2.195
2.211
2.227 | 892
892
892
893
893
893
893
893
893
893
893
893
893 | \$14.5
\$16.7
\$18.9
\$23.5
\$25.5
\$27.8
\$34.1
\$36.3 | 69.8
76.8
84.0
92.1
101
110
121
132
144
157
171 | | | <u> </u> | | <u></u> | (0) | For night or | ıly | | | | | | 80,000
81,000
82,000
83,000
84,000
85,000
86,000
87,000
88,000
89,000 | 240.0
240.0
240.0
240.0
247.3
250.9
254.6
258.2
258.2 | 0.3256
0.2824
0.2850
0.2125
0.1845
0.1605
0.1399
0.1222
0.1070
0.09383 | 3151×10 ⁻⁸
2733
2371
2056
1785
1553
1354
1183
908.1 | \$726×10 ⁻⁹ \$0555 3084 2637 2261 1943 1673 1248 | 3782×10 ⁻⁸ 3280 32845 2467 2110 1809 1554 1335 1355 998.6 | \$635×10 ⁻⁸
\$020
\$486
3024
2586
2217
1905
1640
1\$15
1224 | 1.568×10 ⁻⁶ 1.568 1.568 1.568 1.568 1.568 1.588 1.607 1.627 1.645 1.685 | 0.3318
0.3825
0.4411
0.5085
0.6021
0.7110
0.8376
0.9834
1.154
1.350 | 310.6
310.6
310.6
310.6
317.9
315.5
319.9
324.4 | 1.95×10 ⁻³ 2.559 2.959 3.459 4.07 4.74 5.38 7.38 | | 90,000
91,000
92,000
93,000
94,000
95,000
96,000
98,000
99,000 | 265.5
269.2
272.8
276.5
283.8
287.1
291.7
298.4 | 0.08243
0.07254
0.06355
0.06367
0.04995
0.04925
0.03926
0.03489
0.03105
0.02767 | 797.8
708.1.9
516.6
188.3
180.0
1300.7
180.0
1300.8 | 1081
938.8
816.5
711.5
621.2
475.8
417.5
367.0
323.0 | 865.3
751.2
653.3
569.3
497.0
434.6
380.7
293.6
258.5 | 1060
920.6
800.6
697.7
532.7
466.6
409.4
359.9
316.8 | 1.704
1.723
1.742
1.760
1.779
1.816
1.816
1.854
1.852
1.870 | 1.576
1.835
2.1374
2.864
3.809
3.815
4.393
5.048
5.790 | 326.7
328.9
331.1
333.5
337.7
339.9
342.0
344.2
346.3 |
8.52
9.81
11.3
12.9
14.0
17.4
19.4
25.1
28.5 | | 100,000
101,000
102,000
103,000
104,000
105,000
106,000
107,000
108,000
109,000 | 302.0
305.7
305.7
303.0
316.6
320.3
327.6
331.2 | 0.02469
0.02207
0.01975
0.01588
0.01588
0.01284
0.01284
0.01048
0.009501 | 239.06
2191.1
191.35
153.0
124.2
1121.4
91.95 | 28%.8
251.5
222.4
197.0
174.7
155.1
136.2
119.8
105.8
93.60 | 227.9
201.2
178.0
157.6
139.8
124.1
109.0
95.89
84.62
74.90 | 279.3
246.6
218.1
193.1
171.3
152.1
133.5
117.5
103.7
91.79 | 1.888
1.906
1.924
1.942
1.959
1.976
1.976
2.0011
2.028
2.045 | 6.630
7.579
8.651
9.859
11.22
12.74
14.64
16.78
19.18 | 348.4
350.5
352.6
354.7
356.7
358.8
369.0
374.1
379.2 | 32.5.4.8.7.4.7.8.6.2.
5.5.5.6.4.8.7.4.7.8.6.2. | | 110,000
111,000
112,000
113,000
115,000
116,000
117,000
119,000
119,000 | 338.2.8
345.9.1.8
355.6.4.1
357.1.0 | 0.008636
0.007687
0.007183
0.006573
0.005036
0.005534
0.005091
0.004695
0.004336
0.004011
0.003718 | 83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83.15
83 | 83.06
735.93
58.93
52.84
52.66
74.47
334.47
334.35
334.35 | 66.47
59.13
47.16
42.16
42.94
31.94
31.13
30.78
27.82
25.18
22.85 | 81.46
72.463
57.49
57.49
41.83
37.79
41.83
33.086
80 | 2.062
2.079
2.096
2.113
2.129
2.146
2.162
2.179
2.195
2.221
2.227 | 24.83
38.14
31.85
35.65
35.69
56.14
70.27
78.01 | 384 . 3
389 . 4
394 . 6
399 . 8
404 . 9
410 . 3
425 . 8
425 . 8
431 . 0
436 . 3 | 104
115
127
141
155
170
187
205
224
245
267 | The values for viscosity listed in these columns are not applicable at the higher altitudes where the mean free paths of the nolecules are commarable to or longer than the dimensions of the body being considered. Furthermore, the values listed are based on the conventional Sutherland formula for normal air and, consequently, no allowance has been made for the effect of dissociated oxygen in the atmosphere at the higher levels. TABLE III. - PROPERTIES OF THE UPPER ATMOSPHERE FOR TENTATIVE STANDARD TEMPERATURES BASED OF AN ARBITRARY | Lititude,
k
(ft) | Absolute
tempera-
ture, | Pressure,
(lb/ft²) | Pressure
ratio,
p/p ₀ | Density,
(slugs/ft ³) | Density
Patio, | Specific weight, w = 50 (lb/ft) | Coefficient
of Viscosity, | Finematic
viscosity, | Speed of
sound,
(ft/sec) | Mean free
path of
molecules, | |--|--|---|--|--
---|--|---|--|---|---| | | (°7 aba.) | (10/10) | 770 | L | both car en | L | (15-sea/fs2) | (ft ² /sec) | (ft/sec) | (t,) | | 65,000 | 392.4
392.4 | 118.8
113.2 | 5612×10 ⁻⁵ | 1763×10 ⁻⁷ | 7414×10 ⁻⁵ | 5672×10
5407
5155
4914
4684 | 2.961×10 ⁻⁷
2.961
2.961
2.961
2.961 | 0.001680
0.001761
0.001848 | 971.1
971.1 | 0.00326×10 | | 65,000
66,000
67,000
68,000
69,000 | 392.4
392.4
392.4
392.4 | 118.8
113.2
107.9
102.9
98.09 | 5350
5360
4862
4635 | 1763×10 ⁻⁷
1681
1602
1527
1456 | 7418×10 ⁻⁵
7068
6738
6423
6123 | | 2.961
2.961 | 0.001848 | 91.1
91.1
91.1
91.1
91.1 | 0.00326<10
0.00342
0.00359
0.00377
0.00395 | | 70,000
71,000
72,000
73,000
74,000
75,000
76,000
77,000 | 392.4
392.4
392.4
392.4
392.4
392.4
392.4 | 53.52
55.101
55.015
57.015
67.83
69.83
69.83 | \$419
\$213
\$017
3830
3651
3163
3163
3163
3015
2875 | 1368
1324
1262
1203
1147
1094
1042 | 5838
5566
5307
5060
4823
4583
4179
4383
4179
3798 | 4466
4258
4060
3871 | 2,961
2,961
2,961
2,961
2,961
2,961
2,961 | 0.002133
0.002346
0.002461
0.002502
0.002710 | 91.1
91.1
91.1
91.1
91.1
91.1
91.1
91.1 | 0.00435
0.00456
0.00476 | | 74,000
75,000
76,000 | 392.4
392.4
392.4 | 77.26
73.67
70.22 | 3651
3481
3318
3163 | 1147
1094
1042
993-7 | 4823
4599
4383
4179 | 3650
3671
3690
3519
3353
3197
3047
2906 | 2.961
2.961
2.961 | 0.002502 | 971.1
971.1
971.1 | 0.00502
0.00527
0.00553
0.00580
0.00608 | | 80.000 | 392.4
392.4 | 63.80
60.84
58.01 | | 993.7
947.1
903.1
861.0 | 3983
3798
3621 | | 2.961
2.961
2.961 | 0.002965
0.003027
0.003279
0.003339 | 971.1
971.1 | 0,00037 | | 81,000 | 392.4
392.4 | 55.30
52.72
50.26 | 2491
2375
2364 | 820.9
782.6
746.2
711.2 | 3291
3291
3291 | 2518
2518
2401
2268 | 2.961
2.961
2.961 | 0.003607
0.003784
0.003968
0.004163 | 新 :1 | 0.00701
0.00735
0.00771
0.00848 | | 83,000
84,000
85,000
86,000
87,000 | 392.4
392.4
392.4
392.4
392.4
392.4
392.4 |
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00
55.00 | 2713
2451
2451
2255
2254
2159
2058
1871 | 801.0
782.5
716.2
676.2
676.6
577.8
577.8 | 3621
3452
3136
3031
3031
3051
3252
2573
2573
2573
2575 | 2770
2641
2518
2401
2268
2182
2060
1984
1891
1802 | 2.961
2.961
2.961
2.961
2.961
2.961
2.961
2.961 | 0.003439
0.003607
0.003784
0.003968
0.004163
0.004366
0.004579
0.004802
0.005037
0.005037 | 911.1
911.1
911.1
911.1
911.1
911.1
911.1
911.1 | 0.00933 | | 90,000
91,000
92,000 | 392.4
392.4 | 35.95 | 1783 | 533.8
508.9 | 2356
2245
2140 | | 2.961
2.961 | 0.005296 | 971.1
971.1
971.1 | 0.0103 | | 93,000
94,000
95,000 | 392.4
392.4
392.4
392.4
392.4
392.4
392.4 | 11.17
28.34 | 1699
1620
1545
1473
1404
1339
1277
1277 | 533.8
508.9
• 485.3
462.7
441.1
420.7 | 2245
2140
2041
1946
1855
1759
1687 | 1718
1637
1561
1489
1353
1291
1230
1172
1118 | 2.961
2.961
2.961 | 0.006399
0.006713
0.007038 | 911 | 0.0113
0.0119
0.0124
0.0130
0.0137 | | 92,000
93,000
95,000
95,000
97,000
98,000
99,000 | | 32.70
31.17
29.34
27.55
24.55
23.41 | 1106 | \$20.7
\$01.2
982.4
964.3
347.4 | 1608
1532
1461 | 1230
1172
1118 | 2.961
2.961
2.961
2.961
2.961
2.961
2.961
2.961 | 0.005818
0.005101
0.005101
0.005103
0.00713
0.007035
0.007743
0.008126
0.008523 | 971.1
971.1
971.1
971.1
971.1
971.1
971.1
971.1
971.1
971.1 | 0.0130
0.0137
0.0143
0.0150
0.0150 | | | 392.4
392.4
392.4
392.4
196.5
404.5
420.6
420.6
420.6
444.8 | 22 11 20 11 12 12 12 12 12 12 12 12 12 12 12 12 | 1054
958.6
871.3
831.1 | 351.0
301.0
273.7
261.1
246.4
219.6
196.6 | 1300 | 1065
988.6
880.6
880.0
792.6
707.1
532.6
567.1
500.5
158.7
113.8 | 2.961
2.961
2.961
2.961
2.961
2.967
3.039
3.090 | 0.003945
0.009937
0.01082
0.01134
0.01212
0.012573
0.01572
0.02073
0.02273 | 971.1
971.1
971.1
971.1
976.2
986.0
995.8
1005
1015
1025
1034 | 0.0174 | | 106,000
108,000
110,000 | 196.5 | 16.76
15.26
13.92 | 792.2
721.2
658.0 | 246.4
219.8
196.6 | 1151
1090
1036
204-2 | 792.6
707.1
632.6 | 2.967
3.039
3.090 | 0.01212
0.01363
0.01572 | 976.2
986.0
995.8 | 0.0280
0.0234
0.0262
0.0293 | | 100 000
102 000
104 000
104 967
106 000
118 000
112 000
114 000
116 000
118 000 | 425.7
436.7
444.8 | 11.65 | 792.2
792.2
793.0
658.0
550.6
505.0 | 142.6 | 741.2
665.9
599.5
540.9 | 509.5
13.8 | 3.290 | 0.02016
0.02273
0.02558 | 1015
1025
1034 | 0.0293
0.0326
0.0363
0.0404
0.0447 | | 120,000
122,000
124,000
126,000
126,000 | 452.8
460.9
468.9
476.9
485.0
493.0
501.1
507.2
517.2
525.2 | 9.026
8.315
7.689
6.556
6.571
5.631
5.631
5.632
4.522 | \$26.5
392.9
362.5
335.0
309.8
286.9
286.1
247.1
247.1 | 116.1
105.1
93.31
86.58 | 488.3
442.0
400.8
364.1
331.1
301.7
275.3
251.6
230.1
210.9 | 306.6 | 3.339
3.588
3.436
3.464 | 0.03676
0.03224
0.03605
0.04024
0.04485
0.04980
0.05337
0.06357
0.07505 | 1053 | 0.0395
0.0547
0.0604
0.0664 | | 126,000
130,000
132,000
134,000
136,000
138,000 | 485.0
493.0
501.1
509.1 | 6.556
6.071
5.631 | 309.8
286.9
266.1
247.1 | 256
701-46
557-46
557-46
557-46
557-46
557-46 | 331.1
301.7
275.3
251.6 | 253.3
230.6
210.6
192.5
176.0 | 5579
5579
56718
5776 | 0.04989
0.05538
0.06137 | 1002
1071
1000
1089
1097
1106
1115 | 0.0802
0.0879
0.0961
0.105 | | | 517.2
525.2 | 4.859
4.522 | 229.6
213.7 | 50.15
50.15 | 230.1
210.9
193.5 | 1 | 3.754 | 0.06795 | | 0.145 | | 140,000
142,000
144,000
146,000 | 533.3
541.3
549.4
557.4
557.4
561.6
589.6
597.6 | 3.930
3.670
3.426
3.208 | 199.1
195.7
1751.4
1651.6
151.6
131.9
131.7
117.1 | \$6.01
\$2.26
35.90
35.83
35.05
30.51
26.06
24.16 | 193.5
177.8
163.6
150.7
139.0
128.3
118.6
109.6 | 148.0
136.0
125.2
115.3
106.3
90.16
90.16
93.85
77.73 | 3.809
3.854
3.894
3.944
3.958
4.076
4.119
4.163
4.205 | 0.08279
6.09115
0.1002
0.1161
0.1207 | 1132
1149
1157
1166
1174
1182 | 0.125
0.136
0.146
0.161
0.174
0.204
0.204
0.221
0.236 | | 146,000
148,000
150,000
152,000
154,000
156,000 | 573.5
581.6
589.6
597.6 | 2.815
2.639
2.476
2.328 | 141.9
133.0
121.7
117.1 | 28.20
26.06
24.16 | 128.3
118.6
109.6
101.6 | 90.16
90.71
83.85
77.73 | .032
.076
.119 | 0.1322
0.1445
0.1581
0.1723
0.1678 | 1174
1182
1190
1199
1207 | 0.204
0.204
0.222
0.235 | | 160,000 | | | 103.5
97.31 | | 31123 | 72.03
66.88
62.13 | | 0.1878 | (| 1 | | | 629.8
630.0
630.0 | 2.061
1.941
1.938
1.829
1.723
1.624 | 91.72
91.60
86.42
81.43 | 20.79
19.30
17.95
10.92
16.93
15.93 | 75.38 | 66.88
62.175
57.66
54.40
51.27 | 332 | 0.2317
0.2317
0.2562
0.2719 | 1231
1231
1231 | 0.320
0.321
0.361 | | 166,000
168,000
170,000
172,000
174,000
176,000 | 631.7
639.8
639.0
630.0
630.0
630.0 | 1.624
1.530
1.441
1.358
1.260 | 103.55
97.72
91.750
86.82
86.82
87.73
88.11
88.11
88.11
88.11
88.11
88.11 | 15.01
13.33
12.56
11.83 |
81.10
81.10
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14
10.14 | \$27
\$15
\$5.87
\$0.88
\$0.88 | * 257
* 252
* 252 | 0.2043
0.2222
0.2417
0.2417
0.2562
0.2719
0.2666
0.3064
0.3459
0.3662 | 1215
1222
1230
1231
1231
1231
1231
1231
1231 | 0.277
0.320
0.321
0.361
0.361
0.363
0.407
0.436 | | 178,000
180,000
182,000 | | | 56.98
53.69 | 17.75 | 79.11 | 35.87
33.80 | h 200 | 0.3662 | | 0.486
0.516
0.518 | | 180,000
182,000
181,000
186,000
188,000
190,000
192,000 | 630.0
630.0
630.0
630.0
630.0 | 1.206
1.135
1.071
1.009
0.9506
0.8956
0.8442 | 56.98
53.69
50.59
47.67
44.32
39.89 | 10 51
9.899
9.329
8.789
7.802
7.802 | 65.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55 | 35.87
53.80
50.61
26.25
26.61 | 133
133
133
133
133
133
133
133
133
133 | 0.3885
0.1122
0.1376
0.4614
0.4929
0.5232
0.5552
0.5892 | 1231 | 0.516
0.518
0.581
0.617
0.695
0.695
0.737 | | 192,000
194,000
196,000
196,650
196,000 | 630.0
630.0
630.0
636.1 | 0.8442
0.7953
0.7491
0.7305
0.7060 | 39.89
37.50
35.40
34.52
33.36 | 7.802
7.352
6.927
6.756
6.568 |
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55 | 25.16
23.66
21.74
21.74 | 332
332
332 | 0.5892
0.6254
0.6412
0.6565 | 1231
1231
1231
1231
1227 | 0.737
0.782
0.830
0.852
0.876 | | | 619.4
612.7 | 0.6645 | 33.36
31.40
22.55 | 6.568
6.249
5.945 | 27.62
26.28
25.00 | | 1.312
1.277 | | | 0.920 | | 208,000
208,000
210,000 | 599.3
592.6
583.9 | 0.5528
0.5528
0.5189
0.4869 | 27.79
26.12
24.52
23.01 | 5.372
5.101 | 23.77
22.59
21.45
20.36 | 20.11
19.13
16.19
17.28
15.41
15.58 | 1.171
1.135
1.099 | 0.7764
0.8106
0.8367 | 1207
1200
1193
1107 | 1.07 | | 200,000
202,000
204,000
206,000
206,000
210,000
212,000
214,000
216,000
218,000 | 619.17
606.0
599.16
595.9
577.5
555.9 | 0.6645
0.6293
0.5881
0.5528
0.5139
0.4869
0.4567
0.4279
0.4006
0.3748 | 31.40
29.75
26.72
24.50
21.58
20.58
20.59
17.71 | 6.249
5.952
5.652
5.101
4.592
4.353
3.905 | 26.88
25.77
21.55
21.35
19.31
18.33
16.42 | 15.58
14.77
14.01
13.27
12.56 | 1,277
1,242
1,206
1,171
1,135
1,029
1,063
1,026
3,990
3,953 | 0.531
0.7132
0.7754
0.8106
0.8166
0.848
0.9217
0.9677 | 1220
1221
1207
1200
1103
1107
1180
1173
1166
1159 | 0.929
0.968
1.02
1.07
1.13
1.19
1.25
1.32
1.39 | | 220,000
229,000
224,000 | 552.4
539.0
532.3
538.9
518.1
598.7
492.0 | 0.3504
0.3272
0.3054
0.2652
0.2470
0.2296
0.2133
0.1979
0.1835 | 16.56
15.46
17.43
13.45
11.67
10.66
9.751
8.671 | 3.695
3.493
3.301
3.115
2.939
2.611
2.459
2.172 | 15.54
13.86
13.16
13.16
13.16
13.16
10.34
9.720
9.136 | 11.89
11.24
10.62
10.62
10.62
9.456
8.921
8.400 | 3.879
3.871
3.801
3.767
3.767
3.7689
3.652
3.573 | | 1152
1145
1138
1131
1124
1117
1109
1109 | 1.56
1.65 | | 220,000
224,000
224,000
226,000
236,000
237,000
234,000
236,000
236,000 | 55.6
518.9
512.1 | 0.2652
0.2470
0.2296 | 19.57 | 2.939 | 12.36
11.66
10.98 | 9.456
8.921
8.400 | 3.766
3.727
3.689 | 1.060
1.1164
1.201
1.261
1.344
1.415
1.495
1.643 | 1117 | 1.56
1.16
1.16
1.16
1.16
1.16
1.16
1.16 | | 236,000 | | 0.1979 | | 2.172 | 9.720 | 7.436
6.990 | 3.573 | | 1007 | | | 240,000
942,000
244,000
246,006
243,000 | 35815581400
45815581400
45815581400 | 0.1699
0.1572
0.1573
0.1533
0.1237
0.1048
0.09675
0.08829 | 8.029
7.426
6.865
6.865
5.844
5.982
4.548
4.189
4.189
4.172
3.825 | 1.939
1.913
1.793
1.679
1.771
1.468 | 8.576
8.045
7.562
7.562
6.175
5.378
5.006 | 6.561
6.1559
6.1559
6.1559
7.111
7.8850
7.111
7.8850
7.111 | 3.533
1.694
1.454
2.414
1.373
3.333
3.232
3.232
3.232 | 1.733
1.026
1.926
2.033
2.148
2.270
2.542
2.542
2.544
2.547
2.544 | 1080
1073
1065
1057
1050
1012 | 2.80 | | 250,000
250,000
251,000
251,000
255,905
256,000
258,000 | 151.8
145.1
138.1 | 0.1139
0.1048
0.09675 | 5.382
550
548 | 1.48
1.371
1.279
1.195
1.190 | 6.175
5.765
5.378 | 1111 | 3.33 | 2.270
2.401
2.542 | 1012
1014
1026
1019 | 1.90
20
3.50 | | | | 0.00033 | 1 | 1.091 | , | , | 1.212 | 1 | 1019 | 1 | | 250,000
262,000
262,157 | 12.0 | 6.071.22
6.06866
0.06669 | 3.50T
3.516
3.151 | 0.9176
•.8993 | 3.782
3.782 | 3.219
2.952
893 | 3.212
3.212
3.212 | 3.509
3.500
3.572 | 1016 | \$ 75 | NATIONAL ANTIONY TABLE II .--PROFERTIES OF THE UPPER ATMOSPHERE FOR TENTATIVE STANDARD TEMPERATURES BASED ON AN ARBITRARY CONSTANT VALUE OF GRAVITATIONAL FORCE -- BRITISH ENGINEERING SISTEM -- Ocntinued | Altitude,
b
(ft) | Absclute
tempera-
ture,
T
(°F abs.) | Pressure,
(lb/ft²) | Pressure
ratio,
p/p ₀ | Density,
p
(slugs/ft ³) | Density ratio, $\sigma = \frac{\rho}{\rho_0}$ | Specific weight, weight, gp (lb/ft3) | Goefficient of viscosity, (1b sec/ft ²) (1) | Kinematic
viscosity,
$\nu = \frac{\mu}{p}$
(ft ² /sec) | Speed of sound, | Mean free path of mcleoules, a (ft) | |--|---|--|---|---|--|--|---
---|--|---| | | | | | (1 |) For day on | J | | | | | | 262, \$67
264,000
266,000
268,000
270,000
272,000
272,309
274,000
276,000
278,000 | \$32.00
\$32.00
\$32.00
\$32.00
\$32.00
\$35.\$
\$35.\$
\$453.\$ | 0.06669
0.06241
0.05724
0.05257
0.04829
0.04831
0.04882
0.03760
0.03469 | 3.151×18-5
2.949
2.705
2.484
2.282
2.097
2.070
1.929
1.776
1.638 | 89.93×10-9
83.75
76.33
69.65
63.59
58.07
57.26
52.67
47.77
43.42 | 3.782×10 ⁻⁵ 3.522 3.210 2.929 2.674 2.442 2.408 2.215 2.009 1.826 | 2.893×10 ⁻⁶
2.695
2.456
2.241
2.046
1.868
1.842
1.695
1.537
1.397 | 3.212×10-7
3.212
3.212
3.212
3.212
3.212
3.212
3.232
3.232
3.232
3.232
3.232 | 3.572
3.835
4.608
4.612
5.531
5.610
6.136
6.818
7.559 | 1019
1022
1026
1030
1034
1038
1046
1054
1063 | 6.40×10 ⁻³ 6.84 7.45 8.83 9.61 9.74 10.55 | | 280,000
282,000
284,000
286,000
296,000
292,000
294,000
296,000
298,000 | 447.4
451.4
455.4
467.4
467.4
479.4
479.4 | 0.03200
0.02956
0.02736
0.02535
0.02351
0.02184
0.02029
0.01688
0.01759 | 1.512
1.397
1.293
1.198
1.111
1.032
0.9588
0.8920
0.8310
0.7746 | 39.45
35.97
32.89
27.32
25.91
21.02
21.30
17.74 | 1:659
1:510
1:377
1:257
1:149
1:052
0:9635
0:8837
0:8817
0:7460 | 1.269
1.155
1.053
0.9616
0.8791
0.8048
0.7371
0.6761
0.6210
0.5707 | 3.306
3.331
3.355
3.407
3.407
3.451
3.475
3.475
3.475
3.475 | 8.380
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250
9.250 | 1072
1081
1089
1098
1107
1116
1124
1133
1142
1151 | 13.8
15.1
17.5
19.5
21.9
21.9
21.9
21.9
29.1 | | 300,000
302,000
304,000
306,000
308,000
310,000
312,000
314,000
318,000 | 487.4
491.4
495.4
499.4
507.4
511.5
511.5
5123.5 | 0.01530
0.01428
0.01336
0.01250
0.01170
0.01098
0.01030
0.009671
0.009671
0.008550 | 0.7228
0.6750
0.6314
0.5908
0.5531
0.5185
0.4865
0.4570
0.4296
0.4040 | 16.32
15.03
13.87
12.80
11.82
10.94
10.13
9.386
8.705
8.082 | 0.6865
0.6322
0.5384
0.5384
0.4972
0.4959
0.4259
0.3947
0.3661
0.3399 | 0.5252
0.4837
0.4463
0.4119
0.3804
0.3519
0.3258
0.3020
0.2801
0.2600 | 9.546
9.569
9.5619
9.6689
9.6685
9.7731
9.7754 | 21.7559.559.259.351.56
21.759.559.259.351.56
21.759.559.351.56 | 1160
1169
1177
1186
1195
1204
1213
1222
1231 | 314.06.4
336.9.4.5.7
9.06.4
5.06.4.5.7
5.06.4.5
5.06.5
5.06.5 | | 320,000
322,000
324,000
328,000
328,083
330,000
332,000
334,000
335,000
338,000 | 521-555-55
531-553-55-55-55-55-55-55-55-55-55-55-55-55 | 0.008050
0.007585
0.007153
0.006784
0.006368
0.006353
0.006012
0.005086
0.005377
0.005087 | 0.3804
0.3584
0.3589
0.3187
0.3009
0.2841
0.2541
0.2541
0.2274 | 7.509
5.984
6.554
5.645
5.645
5.628
5.628
5.628
4.380
4.3114 | 0.3158
0.2937
0.2937
0.2546
0.2374
0.2357
0.2354
0.2088
0.1960
0.1842
0.1730 | 0.2416
0.2247
0.2092
0.1948
0.1816
0.1811
0.1701
0.1597
0.1500
0.1409
0.1324 | 3,777
31,822
31,844
31,867
31,887
31,891
31,933
31,957 | 34558 CATA S | 1248
1257
1266
1275
1284
1285
1289
1294
1298
1308 |
64.7
69.2
779.0
84.5
89.6
89.6
102
116 | | 340,000
342,000
344,000
348,000
350,000
352,000
354,000
356,000
358,000 | 567.5
571.5
575.5
575.5
583.5
583.5
591.5
5995.5
603.5 | 0.004556
0.004315
0.004091
0.003674
0.003485
0.00336
0.003136
0.002978
0.002829 | 0.2153
0.2039
0.1033
0.1831
0.1736
0.17562
0.1562
0.1482
0.1487
0.1337 | 3,866
33,636
33,424
33,6358
2,6358
2,537
2,258 | 0.1626
0.1529
0.1440
0.1354
0.1275
0.1202
0.1132
0.1067
0.1005 | 0.1244
0.1170
0.1136
0.1036
0.09755
0.09196
0.08660
0.08163
0.07697
0.07264 | 3.999
4.085
4.086
4.1291
4.172
4.193 | 103.4
1128.1.2
1124.8
1143.7
153.4
153.4
165.7 | 1312
1317
1322
1326
1331
1335
1340
1344
1349 | 123
131
139
148
157
167
177
188
199 | | 360,000
362,000
364,000
366,000
370,000
372,000
374,000
376,000
378,000 | 607.5
611.5
615.6
623.6
623.6
631.6
633.6
633.6 | 0.002690
0.002556
0.002429
0.002311
0.002199
0.002092
0.001992
0.001897
0.001806
0.001721 | 0.1271
0.1208
0.1148
0.1092
0.19887
0.09887
0.08952
0.089536
0.08536 | 2.132
2.013
1.901
1.796
1.698
1.606
1.519
1.437
1.350
1.288 | 0.08967
0.08466
0.07994
0.07554
0.077142
0.06753
0.06387
0.06387
0.05044
0.05720
0.05416 | 0.06860
0.06477
0.06116
0.05779
0.05464
0.05166
0.04886
0.04624
0.04376
0.04144 | 214
236
2257
2278
2278
2319
23361
2382
24402 | 197.7
210.4
223.2
253.2
268.9
285.7
303.2
341.8 | 1358
1362
1367
1371
1376
1380
1384
1389
1393 | 223
236
250
265
286
296
313
331
350
370 | | 380,000
382,000
384,000
386,000
386,000
390,000
392,000
393,700 | 647.6
651.6
655.6
659.6
667.6
671.0 | 0.001640
0.001564
0.001492
0.001493
0.001358
0.001296
0.001237
0.001190 | 0.07751
0.07390
0.07049
0.06724
0.06117
0.06126
0.05847
0.05624 | 1.220
1.156
1.096
1.039
0.9856
0.9352
0.8872
0.8491 | 0.05130
0.04861
0.04509
0.04369
0.04145
0.03933
0.03731
0.03571 | 0.03925
0.03719
0.03526
0.03343
0.03171
0.03009
0.02854
0.02732 | 4 423
4 464
4 484
4 504
4 525
4 545
4 562 | 362.5
384.3
407.3
431.6
457.9
512.3
537.3 | 1402
1406
1411
1415
1419
1423
1428
1431 | 390
\$11
\$3\$
\$58
\$83
509
536
560 | The values for viscosity listed in these columns are not applicable of the higher altitudes where the mean free paths of the molecules are comparable to or longer than the dimensions of the body being considered. Furthermore, the values listed are based on the conventional Sutherland formula for normal air and, consequently, no allowance has been made for the effect of dissociated oxygen in the stmosphere at the higher levels. TABLE III. — PROPERTIES OF THE UPPER ATMOSPHERE FOR TENTATIVE STANDARD TEMPERATURES BASED ON AN ARBITRARY CONSTANT VALUE OF GRAVITATIONAL FORCE — BRITISH ENGINEERING SYSTEM — Concluded | Altitude,
h
(ft) | Absolute
tempera-
ture,
T
(°F abs.) | Pressure,
p
(lb/ft ²) | Preseure
ratio,
p/P ₀ | Density, (slugs/ft3) | Deneity ratio, $\sigma = \frac{\rho}{\rho_0}$ | Specific
Weight,
W = g ^p
(lb/ft ³) | Coefficient of viscosity (1b-eec/ft ²) (1) | Kinematio
viecosity,
$v = \frac{\mu}{\bar{\rho}}$
(ft ² /seo) | Speed of sound, a (ft/sec) | Mean free
path of
molecules,
A
(ft) | |---|--|--|--|--|---|---|---|---|--|---| | - | | · · · · · · · · · · · · · · · · · · · | | (o) For | night only | | | | | | | 262, \$67
26\$,000
266,000
268,000
270,000
272,000
272,309
274,000
276,000
278,000 | 432.0
432.0
432.0
432.0
432.0
432.0
435.4
435.4 | 0.06669
0.06239
0.05720
0.05246
0.04810
0.04351
0.04044
0.03408 | 3.151×10-5
2.948
2.703
2.479
2.273
2.084
2.056
1.911
1.754
1.611 | 89.93×10 ⁻⁹ 84.13 77.14 70.74 64.87 59.67 54.10 49.20 44.80 | 3.782×10 ⁻⁵ 3.538 3.244 3.275 2.728 2.467 2.275 2.069 | 2.893×10 ⁻⁶ 2.707 2.482 2.276 2.087 1.913 1.887 1.741 1.583 1.441 | 3.212×10 ⁻⁷ 3.212 3.212 3.212 3.212 3.212 3.212 3.232 3.232 3.257 3.262 | 3.572
3.8164
4.541
4.551
5.475
5.475
6.620
7.326 | 1019
1019
1019
1019
1019
1019
1023
1028
1032 | 6.40×10 ⁻³ 6.81 7.46 8.13 8.87 9.67 9.80 10.6 11.7 | | 280,000
282,000
284,000
286,000
288,000
290,000
292,000
294,000
296,000 | 447.4
451.4
455.4
459.4
467.4
471.4
475.4
479.4
483.4 | 0.03134
0.02884
0.02656
0.02446
0.02256
0.02081
0.01921
0.01774
0.01640
0.01517 | 1.481
1.363
1.255
1.256
1.056
0.9832
0.9079
0.8384
0.7748 | 40.80
37.24
33.98
31.01
25.32
23.74
21.74
21.92
18.28 | 1.716
1.566
1.429
1.304
1.192
1.090
0.9984
0.9142
0.9378
0.7687 | 1.313
1.198
1.093
0.9976
0.9120
0.8339
0.7638
0.6994
0.5881 | 3.306
3.331
3.355
3.379
3.427
3.427
3.475
3.475
3.479
3.523 | 8.103
8.945
9.873
10.90
12.01
13.22
14.54
15.58
17.57 | 1037
1042
1045
1055
1060
1064
1069
1073 | 14.1
15.9
180.2
22.5
22.5
28.3
31.5 | | 300,000
302,000
304,000
306,000
310,000
312,000
314,000
316,000
318,000 | 487.4
491.4
495.4
499.4
507.4
511.5
515.5
523.5 | 0.01406
0.01302
0.01206
0.01119
0.01038
0.009642
0.008958
0.008327
0.007745 |
0.6643
0.6151
0.5699
0.5286
0.4556
0.4556
0.4233
0.3935
0.3660
0.3407 | 16.80
15.43
14.18
13.05
12.01
11.07
10.20
9.409
8.686
8.023 | 0.7659
0.76893
0.559637
0.559652
0.42957
0.42957
0.33537 | 0.5405
0.4562
0.4198
0.3865
0.3865
0.3282
0.3027
0.2795
0.2581 | 3.546
3.569
3.593
3.636
3.685
3.685
3.708
3.731 | 21.11
23.13
25.34
25.771
30.30
33.08
33.13
39.95
40.79 | 1082
1087
1091
1096
1104
1109
1113
1117 | 340.1
370.1
47.2
5861.2
56671.7 | | 320,000
322,000
324,000
326,000
328,000
332,000
332,000
334,000
336,000 | 527.5
531.5
535.5
539.5
547.5
551.5
555.5
559.5
559.5 | 0.006711
0.006253
0.005826
0.005837
0.005073
0.004736
0.004123
0.004133
0.003664 | 0.3171
0.2955
0.2753
0.2759
0.2397
0.2398
0.2090
0.1953
0.1826
0.1709 | 7.410
6.853
6.8871
6.8873
6.873
6.873
6.873
6.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.873
7.773
7.773
7.773
7.773
7.773
7.773
7.773
7.773
7.773
7.773
7.773
7.773
7.773
7.773
7.773
7.77 | 0.3116
0.2882
0.2665
0.2469
0.2469
0.2119
0.1965
0.1823
0.1692
0.1572 | 0.2384
0.2205
0.2039
0.1889
0.1749
0.1621
0.1503
0.1395
0.1294
0.1203 | 3.777
3.779
3.822
3.844
3.847
3.889
3.911
3.935
3.955
3.977 | 50.44
55.47
60.47
77.18
63.69
98.31
106.4 | 126
1134
1139
1147
1155
1166
1164 | 77.6
83.9
90.8
98.0
98.0
114
123
133
133
154 | | 340,000
342,000
344,000
344,487
346,000
350,000
350,000
351,000
354,000
356,000
358,000 | 567.5
571.5
575.5
576.5
579.5
583.5
587.5
591.5
595.5
595.5 | 0.003384
0.003166
0.002967
0.002920
0.002781
0.002453
0.002305
0.002169
0.002041
0.002924 | 0.1599
0.1496
0.1462
0.1380
0.1314
0.1159
0.1089
0.1025
0.09646
0.09090 | 3.474
3.227
3.027
3.0951
2.777
2.566
2.199
2.039
1.891
1.756 | 0.1461
0.1357
0.1263
0.1241
0.1168
0.1080
0.09992
0.09248
0.08575
0.07551
0.07383 | 0.1118
0.1038
0.09663
0.09494
0.08936
0.08263
0.07644
0.07075
0.06560
0.06583
0.05748 | 3.9991
4.043
4.048
4.065
4.086
4.109
4.129
4.151
4.172
4.172 | 115.1
124.6
137.2
146.4
159.1
172.9
187.8
203.6
238.8 | 1168
1176
1176
1185
1185
1205
1216
1216
1216 | 166
178
192
195
206
221
253
270
253
270
310 | | 360,000
362,000
364,000
366,000
370,000
372,000
374,000
376,000
376,000 | 607.5
611.5
615.5
619.6
623.6
627.6
631.6
635.6
639.6 | 0.001815
0.001714
0.001618
0.001531
0.001449
0.001373
0.001302
0.001235
0.001172
0.001113 | 0.08576
0.08098
0.07648
0.07235
0.06848
0.06451
0.05836
0.05537 | 1.632
1.519
1.414
1.319
1.231
1.149
1.075
1.006
0.9409
0.8817 | 0.06864
0.06388
0.05947
0.05546
0.05175
0.04834
0.04529
0.04529
0.03708 | 0.05251
0.04857
0.04550
0.04243
0.03959
0.03698
0.03458
0.03235
0.03237 | 4,214
4,237
4,237
4,237
4,238
4,319
4,340
4,382
4,402 | 258.2
278.9
301.1
314.2
375.9
403.7
433.5
465.7
499.3 | 1256
1267
1277
1287
1297
1308
1308
1328
1328
1339 | 331
353
376
400
425
451
478
539
571 | | 380,000
382,000
384,000
386,000
388,000
390,000
392,000
393,700 | 659.6
663.6
667.6 | 0.001058
0.001007
0.0009582
0.0009127
0.0008702
0.0008296
0.0007917
0.0007614 | 0.05000
0.04757
0.04528
0.04313
0.04112
0.03920
0.03741
0.03598 | 0.7288
0.6851
0.6444
0.6064 | 0.03477
0.03264
0.03065
0.02881
0.02710
0.02550
0.02402
0.02285 | 0.02660
0.02497
0.02345
0.02204
0.02073
0.01951
0.01838
0.01748 | 4.484
4.504
5.555
4.556
4.556 | 535.0
572.5
612.5
654.5
698.9
746.2
795.7
839.5 | 1359
1370
1381
1391
1401
1412
1422
1431 | 604
639
676
714
754
795
838
875 | The values for viscosity listed in these columns are not applicable at the higher altitudes where the mean free prims of the molecules are comparable to or longer than the dimensions of the body being considered. Furthermore, the values listed are based on the conventional Sutherland formula for normal air and, consequently, no allowance has been made for the effect of dissociated exygen in the atmosphere at the higher levels. ## TABLES IV AND V PROPERTIES OF THE UPPER ATMOSPHERE FOR TENTATIVE STANDARD TEMPERATURES BASED ON AN INVERSE SQUARE VARIATION OF GRAVITATIONAL FORCE The following set of two tables (tables IV and V) does not constitute a consistent extension of the standard tables for the lower atmosphere (NACA Rep. No. 218) but takes into account the inverse square law of gravitational attraction and, consequently, the values in these tables are more accurate than those in tables II and III. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. | | | | | | | | | ·-·- | | ., . | |
--|---|---|---|---|--|---|---
---|---|----------------|--| | 88888888888888888888888888888888888888 | දුල්ලිල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල | 288888888888
2288888888888888888888888 | 2888888888
2688888888888888888888888888 | 28888888888888888888888888888888888888 | ************************************** | 88888888888
ૡૡ૽ૡ૽ૡ૽૽ૺઌ૽૽ઌૺ
૾ૡૡ૽ૡ૽ૡ૽૽ઌ૽૽ઌૺઌ૽ઌ૽ૺ | 889888888
888888888
888888888 | ~
888888888888
88 8844886 | 8821288254 | | Altitude, | | 9955 % 38 99 99 99 99 99 99 99 99 99 99 99 99 99 | | 60000000000000000000000000000000000000 | 90000000000000000000000000000000000000 | 90000000000000000000000000000000000000 | | 0.000000000000000000000000000000000000 | 702227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
7027
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
7027
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
70227
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027
7027 | 000000000000000000000000000000000000000 | | | Absolute
tempera-
ture,
T | | 00000000000000000000000000000000000000 | 137949 9291252528
141-100 00000000000000000000000000000000 | 40000000000000000000000000000000000000 | 28 % % % % % % % % % % % % % % % % % % % | ###################################### | 8688484888
8688784888 | 26758427544
8624284 | 7138647588
1138874788 | - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Managa PPRONO
CONTROL PONO
GUNO ONI ONE ONE
NO ONI PUNO POR | | Fressure,
(kg/m²) | | 45000000000000000000000000000000000000 | 大学的 经基础的 经基础的 经现代证据 | 8855445588
88554455886 | නිස්සු නිස්සු නිස්තුර්
නිස්සු නිස්සු නිස්සු නිස් | 644 546 646 6 | 24 64 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 | ga or | 9797-29-998
9997-39-998
9997-39-95-95
9997-39-95-95-95-95-95-95-95-95-95-95-95-95-95 | | 11.75.05.15.15.15.15.15.15.15.15.15.15.15.15.15 | | Pressure Pre | | 500-7-00-850-55 50-550
50-55-7-7-00-850-55 50-550
50-55-7-7-00-850-55 50-550
50-55-7-7-00-850-55 50-550
50-55-7-7-00-850-55 50-550
50-55-7-7-00-850-55 50-550
50-55-7-7-00-850-55 50-55
50-55-7-7-00-850-55
50-55
50-55-7-7-00-850-55
50-55-7-7-00-850-55
50-55-7-7-00-850-55
50-55-7-7-00-850-55
50-55-7-7-00-850-55
50-55-7-7-00-85
50-55-7-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00-85
50-55-7-00 | 8895348858 0485488
88516458438438 | ************************************** | 84848443
8484848 | 61156757575
87.000000000000000000000000000000000000 | 48940404040
68858938848 | , , , , , , , , , , , , , , , , , , , | 833 KEK KEKE | 7888855567
7875685557 | \$2385385758
\$2385385758 | (a) For | Density, Density rate | | 142.95 8 42.962.2526
142.95 8 42.962.2526 | ************************************** | ************************************** | \$6558865844
384544568 | 255444564
24004466824 | 4852853638 | 8884554555
04-104-1-1-100 | 2923 FEEEE | \$5555555 <u>6</u> | 138
138
138
138
138
138
138
138
138
138 | er both day as | Density ratio, of = p | | रेट्टिय कर्षात्रकेत्रेय हर्टिय
रेट्टिय कर्षात्रकेत्रेय | 877877887888 4884887
8778778888888888888 | 34.658.658.688
34.658.6586888888888888888888888888888888 | 888848866888 | 90 000 000 000 00 F | ************************************** | นักเกิดจุดอาเลย
เลยเลยเลยเลย
เลยเลยเลยเลยเลยเลยเลยเลยเลยเลยเลยเลยเลยเ | 648585555
648585555
64858555 | 25627355755
256773555 | ###################################### | od náght | Specific
veight,
v = Sp
(kg/m²) | | 2222 222222 22222
22222 222222
22222 22222 | | | • | | | | | | 777777777
73333333333 | | Coefficient of viscosity, (27.800) (27.800) | | 223882502394 8229
30388464666 8885 | 1000000 100000000000000000000000000000 | SPECTOR SPECTOR | ###################################### | 222222222
42222222222 | 2001 1000
2001 1000
2000
2 | | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | 8,500,000,000,000
8,500,000,000,000
8,500,000,000,000
8,500,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000,000
8,500,000,000,000
8,500,000,000,000
8,500,000,000
8,500,000,000
8,500,000,000
8,500,000,000
8,500,000,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000
8,500,000 | 0.0159210
0.0159210
0.01721
0.02173
0.02349
0.02349
0.02347
0.02367 | | Finematio
viscosity,
$v = \frac{\pi}{2}$
(π^2/sec) | | THE CHARGE CHARGE CONTROL CONT | ###################################### | | | มมมายมายมายม
ชุมชีว์จัดที่ก็จัดน์น
ชัชชีว์ น่าน่าน่าน่า | มมมมมมมมมมมมม
มมาร์จ จำจำจำจำจำจำ
พักร์จ จำจำจำจำจำจำ | 00000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | %%%%%%%%%%%%
••••••••• | \$ | | Speed
of sound, | | 8237282328 AG4V | | 3585757545
3585757545 | | 20000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | | 0.000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 0.00101410 ³
0.001128
0.001128
0.001128
0.001138
0.001138
0.001138
0.001138 | | Hean free path of moleculas, (a) | NATIONAL ABVISORY COMMITTEE FOR AERONAUTICS Table IV. - Properties of the upper atmosphere for tentative standard temperatures based on an inverse square variation of gravitational porce - metric engineering system - concluded | Altitude, | Absolute
tempera-
ture,
T
(°K) | Pressure, (kg/m²) | Pressure
ratic,
p/p ₀ | Density, | Density ratio, $\sigma = \frac{\rho}{\rho_0}$ | Specific
Veight,
V = Sp
(kg/m3) | Ocefficient of viscosity, (kg-sec) (1) | Kinematic viscosity, $v = \frac{\mu}{p}$ (m^2/sec) (1) | Speed of sound, | Mean free path of molecules, \(\lambda\) (m) | |--|--|--|---|--|--|--|---|---|--|--| | | | L | | · (Þ |) For day on | L | 127 | | | | | 80,000
81,000
82,000
83,000
84,000
85,000
86,000
87,000
88,000
89,000 | 240.0
240.0
240.0
240.0
247.3
250.9
251.9 | 0.3675
0.3201
0.2793
0.2439
0.2136
0.1877
0.1653
0.1297
0.1253 | 3557%10 ⁻⁸ 3098 2703 2361 2067 1817 1600 1415 1255 1116 | 5334×10 ⁻⁹ 4598 3970 3432 2931 2513 2160 1864 1614 | 4268×10 ⁻⁸ 3680 3177 2744 2346 2011 1729 1492 1292 1122 | 5102×10 ⁸ +395 3795 3280 2800 2399 2062 1779 1540 1337 | 1.568-10 ⁻⁶ 1.568 1.568 1.568 1.568 1.568 1.607 1.627 1.646 1.686 | 0.2940
0.3411
0.3950
0.4588
0.5415
0.6394
0.7529
0.8827
1.031
1.202 | 310.6
312.5
314.5
314.5
325.6
325.6
333.3
342.7 | 1.68
11.99
2.54
2.99
2.99
2.99
2.99
3.99
5.84 | | 90,000
91,000
92,000
93,000
94,000
95,000
96,000
98,000
99,000 | 265.5
269.2
272.8
276.5
260.1
263.8
267.1
291.7
296.4 | 0.1029
0.09195
0.08244
0.07408
0.06666
0.06023
0.05455
0.04945
0.04093 | 995.6
890.0
797.9
717.0
645.7
527.8
478.6
435.0
396.1 | 1222
1067
935.1
921.56
921.56
565.8
565.8
546.9
398.5 | 977 - 5
853 - 8
748 - 3
657 - 0
511 - 3
451 - 9
357 - 6
318 | 1165
1017
891.0
782.8
689.2
608.5
538.8
478.0
425.1
378.9 | 1.704
1.723
1.742
1.760
1.779
1.816
1.834
1.852
1.870 | 1.395
1.004
1.004
2.159
2.054
2.055
1.094
4.094 | 347.1
351.59
351.59
360.8
369.2
378.6
378.6
389.1 | 6.64
7.52
8.50
9.59
10.8
12.1
13.5
16.8
18.7 | | 100,000
101,000
102,000
103,000
104,000
105,000
106,000
107,000
108,000
109,000 | 302.0
305.7
305.7
313.0
316.6
320.3
327.6
331.2
331.2 | 0.03734
0.03412
0.034122
0.02859
0.02621
0.02406
0.02210
0.02032
0.01870
0.01723 | 361.4
330.2
302.1
276.7
253.7
232.8
213.9
196.7
181.0
166.8 | 356.0
321.4
290.6
263.1
236.4
216.5
176.5
178.7
162.7
148.2 | 284.9
257.2
232.6
210.5
190.8
173.1
157.2
143.0
130.2 | 338.4
305.51
249.9
226.4
205.3
186.5
154.2
140.5 | 1.888
1.906
1.924
1.924
1.959
1.976
1.976
2.028
2.045 | 5.303
5.928
6.616
7.375
8.210
9.129
10.14
11.24
12.46
13.79 | 391.5
393.9
396.2
396.5
400.9
403.5
407.7
410.0 | 20.7
25.4
26.0
30.91
37.5
45.7 | | 110,000
111,000
112,000
113,000
114,000
115,000
116,000
118,000
119,000
120,000 | 338.5
342.6
345.5
355.1
356.1
367.7
375.0 | 0.01589
0.01465
0.01355
0.01252
0.01259
0.01259
0.009947
0.009227
0.005565
0.007958
0.007398 | 153.8
141.9
131.1
121.2
112.2
113.9
96.27
89.30
82.90
77.00
71.60 | 135.2
123.5
112.8
103.2
98.55
86.66
79.50
73.00
67.10
67.10 | 108.2
98.729
82.729
82.626
759.54
678.461
573.46
573.46
573.46
573.46 | 128.1
117.0
106.9
97.75
89.49
82.021
69.03
63.43
58.67 | 2.062
2.079
2.096
2.113
2.129
2.146
2.162
2.179
2.195
2.227 |
15.43.6
16.45.5.15.9
22.4.18.7
23.6.5
24.1.87
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.6.8
25.8
25.6.8
25.8
25.8
25.8
25.8
25.8
25.8
25.8
25 | 414.5
416.7
416.9
421.1
425.5
427.8
427.8
432.0
432.1
436.3 | 54.4
59.62
77.28
84.8
92.4
109
1199
1199 | | | · | | | (0 |) For night o | | | | | | | 80,000
81,000
82,000
83,000
84,000
85,000
86,000
87,000
88,000 | 240.0
240.0
240.0
247.3
250.9
251.5
250.2 | 0.3675
0.3198
0.2784
0.2424
0.212
0.1844
0.1613
0.1243
0.1094 | 3557×10 ⁻⁸ 3096 2695 2346 2044 1785 1562 1369 1203 1058 | 533*×10 ⁻⁹ 4641 4641 3518 3020 2588 2240 1936 1675 1455 | \$268×10 ⁻⁸ 3713 3233 2615 2416 2079 1793 1549 1341 1164 | 5102×10 ⁻⁸ 1139 3863 3361 2885 2481 2138 1847 1599 1387 | 1.568×10 ⁻⁶
1.568
1.568
1.568
1.568
1.607
1.645
1.666
1.685 | 0.2940
0.3377
0.3879
0.4458
0.5259
0.5189
0.7255
0.8499
0.9939 | 310.66
310.66
310.66
310.93
317.93
317.93
322.4 | 1.68×10 ⁻³ 1.93 2.25 2.55 2.97 3.45 4.63 5.34 6.31 | | 90,000
91,000
92,000
93,000
95,000
96,000
96,000
96,000
99,000 | 265.5
269.8
272.8
276.5
263.8
267.4
291.7
294.7 | 0.09640
0.08515
0.07533
0.06676
0.05926
0.05269
0.04183
0.03736
0.03341 | 933.0
824.1
729.1
546.1
573.5
509.9
454.0
464.6
361.6 | 1265
1101
961.8
841.1
737.0
646.7
568.5
500.6
441.5
390.0 | 1012
881.1
769.6
673.1
589.7
517.5
454.5
353.3
312.1 | 1206
1050
916.4
801.2
701.8
615.6
541.1
476.3
420.0
370.9 | 1.704
1.723
1.742
1.760
1.779
1.798
1.816
1.834
1.852
1.870 | 1.347
1.564
1.811
2.093
2.414
2.780
3.195
3.664
4.795 | 326.7
328.9
331.4
335.5
335.7
339.9
344.2
346.3 | 7.08
8.12
9.31
10.6
12.18
15.7
17.92
22.9 | | 100,000
101,000
102,000
103,000
104,000
105,000
106,000
107,000
108,000
109,000 | 302.0
305.7
309.3
313.0
316.6
320.3
324.0
327.6
331.2
334.9 | 0.02992
0.02683
0.02409
0.02166
0.01950
0.01758
0.01438
0.01438
0.01305
0.01187 | 289.5
259.7
233.2
209.7
188.8
170.2
153.7
139.1
126.3
114.9 | 345.0
305.8
271.3
241.1
274.5
191.2
168.4
148.7
131.7 | 276.1
244.7
217.1
192.9
171.6
153.0
134.8
119.0
105.4
93.57 | 328.0
290.6
257.8
229.0
203.7
181.5
159.8
141.0
124.8
110.8 | 1.888
1.906
1.924
1.942
1.959
1.976
1.994
2.011
2.028
2.045 | 5.472
6.233
7.090
8.052
9.130
10.34
11.52
15.41
17.49 | 348.4
350.5
352.6
354.7
358.8
363.9
363.9
374.1
379.2 | 25.9
29.2
327.6
41.6
52.3
52.3
54.1 | | 110,000
111,000
112,000
113,000
115,000
116,000
117,000
118,000
119,000
120,000 | 338.5
342.2
345.5
353.1
356.4
364.1
367.7
371.4
375.0 | 0.01082-
0.009890
0.009059
0.009059
0.007645
0.007642
0.006499
0.006567
0.005164
0.004800 | 104.8
95.72
85.47
80.47
74.00
62.90
58.18
49.98
46.45 | 104.1
92.901
74.559
66.933
54.44
49.263
40.50
36.86 | 83.30
74.330
56.655
59.668
43.56
39.547
35.41
39.56 | 98.63
87.98
78.70
70.56
63.40
951.55
42.18
38.28
34.82 | 2.062
2.079
2.096
2.113
2.129
2.145
2.162
2.162
2.195
2.211
2.227 | 19,88
22,38
23,78
31,78
33,78
33,78
33,78
33,78
49,18
49,18
54,2 | 384.3
389.4
394.6
394.8
404.9
410.1
410.6
425.8
431.0
436.3 | 79.9
68.4
97.5
107
118
129
141
154
168
183
199 | The values for viscosity listed in these columns are not applicable at the higher eltitudes where the mean free paths of the molecules are comparable to or longer than the dimensions of the body being considered. Furthermore, the values listed are based on the conventional Sutherland formula for normal air and, consequently, no allowance has been made for the effect of dissociated exygen in the atmosphere at the higher levels. Table Σ_{**} properties of the upper atmosphere for tempature standard temperatures based on ar inverse equary variation of gravitational porce — brivise englereries system | Altitude,
k
(ft) | Absolute
tempers-
ture, | Pressure,
(1b/ft²) | Pressure
ratio, | Density, | Density ratio, | Specific
weight,
w = EP
(lb/rt3) | Coefficient
of Viscosity, | Kinematic
viscosity, | Speed of sound, | Hean free
path of
molecules, | |---|--
---|---|---
--|--|---|--|--|--| | (ft) | (° sbs.) | (1b/ft ^c) | p/p ₀ | (=lugs/ft ³) | | | (1b-sec/ft ²) | (ft ² /seo) | (22,000) | (ft) | | | | r | | | both day and | | , | r | · · · · · · | | | 67,000
67,000
68,000
69,000 | 392.4
392.4
392.4
392.4 | 119.9
109.0
104.0
99.12 | 565 × 10 ⁻⁵
5402
5151
4913
4684 | 1779×16 ⁷
1697
1618
1543
1471 | 7483×10 ⁻⁵
7137
6805
6401
6188 | 5690×10 ⁻⁶
5136
5177
1931
1931
1705 | 2.961
2.961 | 0.001554
0.001745
0.001830
0.001919
0.002013 | 91:1
91:1
91:1
91:1 | 0.00321×10 ⁻³
0.00337
0.00353
0.00370
0.00388 | | 70,000
71,000
72,000
73,000
75,000
76,000
76,000 | 192.1
392.1
392.1
392.1
392.1
392.1
392.1
392.1 | 53
537
655.00
657
657
657
657
657
657
657 | \$467
\$661
\$663
\$675
\$655
\$1561
\$3056
\$915 | 1405
1339
1276
1217
1161
1167
1056
1007
960.0
915.7 | 5901
5529
5368
5119
4881
4656
4440
4234
4037
3851 | 1485
1277
1079
1089
1708
2037
3372
3372
3066 | 2.961
2.961
2.961
2.961
2.961
2.961
2.961
2.961 | 0.002110
0.002321
0.002321
0.002533
0.002550
0.002675
0.002604
0.002940 | 90.1
90.1
90.1
90.1
90.1
90.1
91.1
91.1 | 0.00407
0.00427
0.00448
0.00469
0.00516
0.00511
0.00567
0.00594
0.00623 | | 79,000
81,000
82,000
83,000
84,000
85,000
86,000
87,000
88,000
89,000 | 392.4 | 61.69
87.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.19.64
56.10
56.10
56.10
56.10
56.10
56.10
56.10
56.10
56.10
56.10
56.10
56.10
56.10 | 2915
2780
2520
2520
2520
2520
2520
2520
1995
1995
1993
1615 | 915-7
873-4
873-4
7794-2
757-6
722-6
689-1
657-3
627-8
570-2 | 3673
3502
3320
3186
3039
2868
2764
2637
2514 | 2924
2789
2539
2539
2418
2306
2199
2097
2007
1819 | 2,961
2,961
2,961
2,961
2,961
2,961
2,961
2,961
2,961
2,961 | 0.003234
0.003350
0.003556
0.003726
0.003908
0.004597
0.004597
0.004593
0.004722
0.004533 | 97.1
97.1
97.1
97.1
97.1
97.1
97.1 | 0.00623
0.00654
0.00656
0.00719
0.00753
0.00750
0.00868
0.00910
0.00954 | | 90,000
91,000
93,000
94,000
95,000
95,000
97,000 | 392.4
592.4
392.4
392.4
392.4
392.4 | 66 88 11 12 12 12 12 12 12 12 12 12 12 12 12 | 1730
1574
1574
1502
1432
1365
1305
1284
1186 | 570.2
543.6
515.4
494.4
471.8
480.7
480.7
590.5
3772.6 | 2398
2286
2380
2779
1984
1892
1803
1771
1642
1567
1493 | 1734
1653
1577
1504
1335
1367
1365
1245
1188 | 2.961
2.961
2.961
2.961
2.961
2.961
2.961
2.961 | 0.005193
0.005197
0.005712
0.005969
0.006276
0.006584
0.006907
0.007236
0.007583
0.007947
0.006341 | 91.1
91.1
91.1
91.1
91.1
91.1
91.1 | 0.0100
0.0105
0.0110
0.0115
0.0127
0.0137
0.0139
0.0146
0.0153 | | 99,000
102,000
102,000
104,967
106,000
108,000
118,000
118,000
118,000 | 592.4
392.4
392.4
392.4
392.4
392.4
392.4
392.4
392.4
392.4
392.4
392.4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 23.91
28.81
20.75
18.02
17.66
11.06
11.06
11.06
11.01 | 1190
1075
980.9
892.4
891.6
891.6
740.0
675.8
615.2
566.5
1476.2 | 335.6
336.2
336.2
350.4
257.5
225.5
221.9
162.6
143.5 | 1424
1296
1179
1105
1002
945.3
761.9
889.1
761.9
687.4
557.4 | 1131
10799
853-11
853-13
763-8
763-8
763-8
763-5 | 2,961
2,961
2,961
2,968
3,039
3,141
3,141 | 0.005015
0.0050
0.0107
0.01107
0.01348
0.01530
0.01530
0.01550 | 971.1
971.1
971.1
976.0
995.6
1005 | 0.0168
0.0195
0.0203
0.0213
0.0252
0.0252
0.0314
0.0314 | | 118,000
120,000
122,000
124,000
126,000
130,000
130,000
131,000
136,000
136,000 | 454.8
452.8
460.9
468.9
475.0
495.0
501.1
507.2
525.2 | 10 . 11
0 . 111
0 . 598
7 . 935
6 . 7294
5 . 7294
5 . 7294
5 . 7294
6 . 7294
7 . 7294 | 476.2
440.0
305.8
574.7
586.6
320.8
297.4
276.1
256.6
238.6
222.3 | 132.5
119.8
108.6
98.52
89.54
74.31
67.13
56.13
56.81 | 557.4
503.7
456.5
414.3
576.7
342.9
312.7
285.6
261.3
239.4 | \$21.7
361.0
345.2
361.8
259.2
259.2
215.8
197.4
165.7 | 200
200
200
200
200
200
200
200
200
200 | 0.02185
0.02787
0.03120
0.03188
0.0488
0.04332
0.04816
0.05336
0.05909
0.05337
0.07215 | 1054
1043
1052
1062
1071
1080
1089
1097
1106 | 0.0475
0.0524
0.0527
0.0534
0.06577
0.0636
0.0636
0.0914
0.0936
0.109 | | 140,000
142,000
144,000
146,000
146,000
150,000
152,000
154,000
156,000
158,000 | 505.7
575.4
575.4
577.6
587.6
5897.7
5605.7 | 4.704
4.387
4.097
3.583
3.583
3.583
2.948
2.766
2.766
2.766
2.766 | 222.3
207.3
197.5
180.9
169.2
156.4
130.7
130.7
122.5 | \$7.50
\$7.50
\$7.50
\$7.50
\$7.50
\$1.50
\$29.50
\$25.50
\$25.50
\$25.50 | 201.5
185.4
170.7
157.4
134.1
124.2
114.9
106.5
90.85 | 159.10
159.10
128.8
118.8
109.5
101.1
97.65
86.62
80.62
874.50 | 5.854
5.854
5.856
5.944
5.968
4.075
4.119
4.119 | 0.07950
0.08741
0.09606
0.1054
0.1354
0.1364
0.1508
0.1508 | 1132
1131
1137
1157
1166
1169
1199
1199 | 0.118
0.129
0.140
0.152
0.164
0.176
0.179
0.224 | | 150,000
162,000
164,000
164,042
166,000
170,000
172,000
174,000
176,000
176,000 | 629.0
629.0
629.0
629.0
629.0
629.0
629.0
629.0 | 2.302
2.167
2.045
2.045
1.527
1.818
1.527
1.527
1.527
1.527 | 108.8
108.8
95.56
95.56
95.56
95.56
95.56
95.56
95.57
95.57
95.57 |
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35
20.35 | 55.78
55.78
79.78
79.78
79.77
79.66
66.67
79.75
79.75 | 65 55 51 55 51 55 51 55 51 51 51 51 51 51 | 4 247
4 232
4 232
7 232
7
7 232
7 23 | 0.1944
0.2013
0.2034
0.2131
0.2131
0.2133
0.2031
0.3037
0.3037 | 122
122
122
123
123
123
123
123
123
123 | 0.259
0.275
0.300
0.303
0.337
0.357
0.779
0.401
0.451 | | 178,000
180,000
182,000
184,000
186,000
186,000
192,000
192,000
194,000
196,000
196,000 | 630.0
630.0
630.0
630.0
630.0
630.0
630.0
630.0
630.0 | 1.279
1.207
1.139
1.074
1.013
0.9555
0.9017
0.8503
0.8021 | 64.11
60.16
57.08
50.77
47.15
47.16
45.18
57.59
35.77 | 12.54
11.83
11.16
10.53
9.535
9.535
9.834
8.337
7.852
7.417
7.254
7.036 | 52 . [5
46.75
44.76
39.35
41.76
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.35
39.3 | 59.68
37.41
35.29
33.40
29.60
27.93
24.83
21.42
24.83
22.22 | 133
133
133
133
133
133
133
133
133
133 | 0.5425
0.3682
0.4114
0.4350
0.4525
0.4525
0.5510
0.5510
0.5888 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 0,451
0,476
0,507
0,537
0,569
0,639
0,639
0,718
0,718
0,760
0,760 | | 200,000
202,000
204,000
206,000
206,000
210,000
212,000
214,000
216,000
216,000 | 626.1
619.4
612.7
606.0
599.3
502.6
505.9
579.2
579.2
579.2
579.3 | 0.7563
0.7132
0.67132
0.6325
0.5953
0.55557
0.55557
0.4635
0.4667 |
15.74
11.75
11.75
12.13
12.13
12.13
12.13
12.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13
13.13 | 6.706
6.388
6.785
5.780
5.780
5.780
4.783 | 29.59
28.20
26.85
25.57
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13
23.13 | 22, 22
21, 17
20, 16
19, 17
18, 25
17, 35
16, 18
15, 65
14, 68
13, 35 | 4.312
4.277
4.242
4.206
4.173
4.009
4.003
4.003
4.003
3.990
3.995 | 0.6198
0.6641
0.6641
0.7210
0.7318
0.7843
0.8187
0.8546
0.8930
0.9330 | 1927
1220
1214
1207
1200
1193
1187
1180
1173
1166
1159 | 0.802
0.863
0.968
0.975
1.08
1.14
1.80
1.26 | | 220,000
222,000
224,000
226,000
230,000
231,000
231,000 | 559.1
552.4
543.7
532.3
523.9
512.4
505.7
492.0 | 0.3507
0.3562
0.3529
0.3109
0.2799
0.2792
0.2518
0.2178
0.2178 | 19.22
17.99
15.53
15.53
15.69
13.70
12.77
11.90
11.97
10.29 | * 01*
* 802
* 808
* 7. 403
* 7. 609
* 7. 403
* 7. 609
* 7. 403 | ###################################### | 13.35
12.65
11.98
10.71
10.71
9.531
9.531
8.492
8.004
7.524 | 3.916
3.879
5.884
3.706
3.707
5.651
3.651
3.651 | 0.9755
1.020
1.068
1.118
1.172
1.268
1.368
1.352
1.493 | 1152
1155
1158
1131
1124
1117
1109
1109
1109
1087 | 1.58 | | 210 000
212 000
214 000
216 000
250 000
252 000
254 000
255 000
255 000
255 000
258 000 | \$570,000
\$70,000
\$510,000
\$510,000
\$510,000
\$510,000
\$510,000 | 0.1876
0.1738
0.1509
0.1488
0.1375
0.1269
0.1077
0.09936
0.09091 | 8.863
8.211
7.605
7.0438
5.936
5.525
5.525
5.607
4.695
4.696 | 2.251
2.115
1.861
1.747
1.530
1.340
1.340
1.326 | 0.167
0.893
8.354
7.347
6.435
6.015
5.011
5.155 | 7.079
6.649
6.245
5.857
5.140
1.807
1.492
1.207
1.848 | 533
504
514
513
513
513
513
513
513
513
513
513
513 | 1.570
1.652
1.736
1.931
2.037
2.152
2.273
2.397
2.408
2.630 | 1080
1073
1065
1057
1050
1042
1034
1026
1019 | 50857621.55 X 1915.55 | | 258,000
260,000
262,000
262,467 | 432.0
432.0
432.0
432.0 | 0.09091
0.08353
0.07678
0.07527 | 3.947
3.626
3.557 | 1.126
1.035
1.015 | 4.736
4.354
4.268 | 3.535
3.249
3.165 | 3.212
3.212
3.212
3.212 | 2.852
3.102
5.165 | 1019
1019
1019 | 4.98
5.42
5.53 | MATIONAL ADVISORY CONSTITUTE FOR APROXAUTICS TABLE Y ... PROPERTIES OF THE UPPER ATMOSPHERE FOR TENTATIVE STANDARD TEMPERATURES BASED ON AN INVERSE SQUARE VARIATION OF GRAVITATIONAL FORCE — BRITISH ENGINEERING SYSTEM — Continued | Altitude,
h
(ft) | Absolute
tempera-
ture,
T | Pressure,
(1b/ft²) | Pressure
ratio,
p/p ₀ | Density,
p
(slugs/ft ³) | Density ratio, $\sigma = \frac{\rho}{\rho_0}$ | Specific weight, w = \$9 (lb/ft3) | Ocefficient of viscosity, (1b-sec/ft ²) (1) | Kinematic
viscosity,
y = #
(ft ² /sec) | Speed of sound, a. (ft/sec) | Mean free path of molecules, λ (ft) | |---|--|--|---
---|--|---|--|--|--|---| | | | | | (b) For | day only | | <u>-</u> | | | | | 262,467
264,000
266,000
268,000
272,000
272,000
272,000
276,000
276,000 | *32.00
*32.00
*32.00
*32.00
*32.00
*32.00
*32.00
*32.00
*32.00 | 0.07527
0.07056
0.06484
0.05968
0.05494
0.05060
0.04564
0.04664
0.04502
0.03972 | 3.557×10 ⁻⁵
3.557×10 ⁻⁵
3.334
3.820
2.590
2.361
2.361
2.033
1.877 | 101.5×10 ⁻⁹ 94.66 86.46 79.07 72.34 66.20 65.32 60.18 54.67 | #. 268 × 10 ⁻⁵ 3. 681 3. 636 3. 6325 3. 044 2. 747 2. 7532 2. 091 | 3.185×10 ⁶ 2.970 2.712 2.480 2.268 2.076 2.048 1.887 1.773 | 3.212×10 ⁷ 3.212 3.212 3.212 3.212 3.212 3.212 3.232 3.257 3.282 | 3.165
3.3915
3.062
4.440
4.852
4.917
5.958
6.601 | 1019
1022
1026
1030
1034
1038
1038
1046
1054 | 5.53×10 ⁻³ 5.50 6.97 7.57 8.32 8.32 8.62 10.7 | | 280,000
282,000
284,000
288,000
290,000
290,000
291,000
296,000
298,000 | 447.4
451.4
455.4
467.4
467.4
471.4
475.4
483.4 | 0.03678
0.03409
0.03160
0.02933
0.02726
0.02537
0.02362
0.0201
0.02055
0.01919 | 1.738
1.611
1.493
1.386
1.288
1.199
1.116
1.040
0.9710 | 45.35
41.850
81.650
81.650
81.455
82.577
82.577 | 1.907
1.742
1.590
1.455
1.332
1.222
1.121
1.030
0.9484
0.8734 | 1.421
1.297
1.184
1.083
0.9915
0.9095
0.8342
0.7663
0.7054
0.6495 | 3.306
3.331
3.379
3.407
3.451
3.451
3.459
3.522 | 7.290
8.042
8.873
9.765
11.79
12.94
14.19
15.96 | 1072
1089
1089
1198
1116
1116
1116
1116
1116
1116
11 | 11.7
13.9
156.3
17.2
19.7
19.7
20.4
24.2 | | 300,000
302,000
304,000
306,000
310,000
312,000
314,000
318,000 | 487.4
491.4
495.4
499.4
507.4
511.5
519.5
523.5 | 0.01794
0.01679
0.01573
0.01475
0.01383
0.01299
0.01221
0.01149
0.01082
0.01082 | 0.8479
0.7933
0.7435
0.6537
0.6537
0.5170
0.5772
0.5431
0.4819 | 19.15
17.67
16.33
15.10
13.97
12.95
12.13
11.13
10.640 | 0.8053
0.7430
0.63577
0.63577
0.5446
0.5500
0.43554
0.43554 | 0.5988
0.5524
0.5105
0.4720
0.4366
0.4046
0.3751
0.3482
0.3236
0.3009 | 3.5569
3.5693
3.66392
3.66858
3.7731
3.7754 | 18.52
20.50
22.50
25.50
26.28
30.68
30.68
30.68
30.68
30.68 | 1160
1168
1177
1186
1195
1204
1213
1222
1231 | 26.1
28.5
30.2
337.4
40.3
46.2
46.2 | | 320,000
322,000
322,000
328,000
328,000
338,000
338,000
338,000 | 527-55
5315-55
535-55
535-55
543-55
555-55
555-55
555-55
553-5 | 0.009620
0.009079
0.008579
0.008103
0.007648
0.007248
0.005867
0.006505
0.006167
0.005843 | 0.4546
0.4290
0.4054
0.3829
0.3614
0.3425
0.3074
0.2761 | 8.777
8.7800
8.7800
7.757
6.279
7.757
6.50
5.50
5.50
5.994 | 0.3775
0.3516
0.32516
0.32559
0.28549
0.28581
0.2522
0.2722
0.27322
0.27322 | 0.2802
0.2609
0.2434
0.2259
0.2118
0.1988
0.1871
0.1758
0.1654
0.1554 | 3.777
3.792
3.844
3.867
3.867
3.891
3.953
3.953
3.9577 | 42.07
45.44
45.08
56.08
56.08
65.73
74.64 | 1248
1257
1266
1275
1284
1285
1289
1294
1298
1303 | 55.187.9038782
55.25788.008788782 | | 344,000
344,000
344,000
350,000
350,000
3504,000
3558,000
3558,000 | 567.55
571.55
575.55
575.55
583.55
587.55
591.5
599.55
599.5 | 0.005540
0.005257
0.004992
0.004736
0.004499
0.004061
0.003860
0.003672
0.003494 | 0.2618
0.2484
0.2359
0.2358
0.2126
0.2126
0.1919
0.1824
0.1735
0.1651 | 4-7-01
7-1-25-1-55-1-1-55-1-1-55-1-1-55-1-1-55-1-1-55-1-1-55-1-1-55-1-1-55-1-1-55-1-1-55-1-1-55-1-1-55-1-1-55-1-1-55 | 0.1977
0.1863
0.1757
0.1555
0.1562
0.1474
0.1390
0.1313
0.1240 | 0.1464
0.1379
0.1301
0.1226
0.1126
0.1091
0.1029
0.09716
0.09173
0.08668 | 3.999
4.021
4.065
4.086
4.108
4.129
4.151
4.172
4.193 | 85.07
90.77
96.77
103.3
110.0
117.2
124.9
133.0
141.5 | 1312
1317
1322
1326
1331
1335
1340
1344
1349 | 97.9
104
110
117
124
131
139
147
156
165 | | 360,000
362,000
364,000
366,000
370,000
372,000
374,000
376,000
376,000 | 607.5
611.5
615.5
615.6
623.6
627.6
635.6
635.6
635.6 | 0.003329
0.003168
0.003016
0.00287*
0.002738
0.002489
0.00237*
0.002266
0.002163 | 0.1573
0.1497
0.1497
0.1358
0.1294
0.1234
0.1176
0.1122
0.1071
0.1022 | 2.115
2.004
1.898
1.707
1.618 | 0.1110
0.1049
0.09922
0.09395
0.08894
0.08428
0.07566
0.07566 | 0.08205
0.07758
0.07333
0.06542
0.06571
0.06225
0.05894
0.05586
0.05298 | 4.214
4.236
4.237
4.278
4.299
4.319
4.380
4.380
4.382
4.402 | 159.8
189.8
189.3
191.3
203.3
215.6
228.2
256.7
272.1 | 1358
1362
1367
1377
1376
1380
1384
1389
1393 |
174
184
195
206
217
229
245
269
263 | | 380,000
382,000
384,000
386,000
388,000
390,000
392,000
393,700 | 647.6
651.6
655.6
659.6
663.6
6671.6
675.0 | 0.00206#
0.001971
0.00188#
0.001800
0.001721
0.001646
0.001573
0.001515 | 0.09754
0.09316
0.08501
0.08505
0.08131
0.07776
0.07434
0.07160 | 1.384
1.314
1.249
1.187
1.128 | 0.06456
0.06128
0.05819
0.05527
0.05252
0.04992
0.04744
0.04546 | 0.04764
0.04522
0.04293
0.04076
0.03873
0.03681
0.03497
0.03350 | 1,423
1,443
1,461
1,481
1,501
1,525
1,545
1,562 | 288.1
304.9
304.5
334.5
360.6
381.2
402.0 | 1402
1406
1411
1415
1419
1423
1428
1431 | 299
3151
3349
386
404
424 | The values for viscosity listed in these columns are not applicable at the higher altitudes where the mean free paths of the molacules are comparable to or longer than the dimensions of the body being considered. Furthermore, the values listed are based on the conventional Sutherland formula for normal gir and, consequently, no allowance has been made for the effect of dissociated oxygen in the atmosphere at the higher levels. TABLE Y. PROPERTIES OF THE UPPER ATMOSPHERE FOR TENTATIVE STANDARD TEMPERATURES BASED ON AN INVERSE SQUARE VARIATION OF ORAVITATIONAL FORCE — BRITISH ENGINEERING SYSTEM — CONCLUDED | Altitude,
h
(ft) | Absolute
tempera-
ture,
T | Pressure,
(1b/ft ²) | Pressure
ratio,
p/p ₀ | Density,
P
(slugs/ft ³) | Density ratio, o PO | Specific weight, w = 50 (lb/ft3) | Ocefficient of viscosity μ (1b;seo/ft ²) (1) | Kinematio
viscosity,
$V = \frac{\mu}{p}$
(ft ² /seo)
(1) | Speed of sound, a (ft/sec) | Mean free path of molecules, \(\lambda\) (ft) | |--|---|--|--|---|---|--|---|---|--|---| | | | | | (o) Fo | r night only | | | | | • | | 262, 467
264,000
266,000
270,000
272,000
272,309
274,000
276,000
278,000 |
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
433.000
430.000
430.000
400
400
400
400
400
400
400
40 | 0.07527
0.07051
0.06480
0.05955
0.05473
0.05032
0.04955
0.04622
0.04252 | 3.557×10 ⁻⁵
3.332
3.062
3.814
3.586
3.346
3.184
3.009
1.849 | 101.5×10 ⁻⁹ 95.07 87.390 73.787 66.04 61.36 51.41 | \$.258×10 ⁻⁵ 3.998 3.57\$ 3.103 3.103 2.55\$ 2.600 2.370 2.152 | 3.185×10 ⁶ 2.983 2.7*1 2.519 2.314 2.128 2.099 1.938 1.766 1.611 | 3.21200°
3.212
3.212
3.212
3.212
3.212
3.212
3.212
3.232
3.282 | 3.165
3.777
3.003
3.532
4.752
5.5732
5.5734 | 1019
1019
1019
1019
1019
1019
1023
1028
1032 | 5.53×10 ⁻¹ 5.90 6.98 7.50 8.37 9.094 10.9 | | 280,000
282,000
284,000
286,000
290,000
292,000
294,000
296,000
298,000 | 447.4
451.4
455.4
467.1
467.1
479.4
479.4
479.4 | 0.03604
0.03320
0.03066
0.02832
0.02618
0.02423
0.02239
0.02072
0.01919
0.01780 | 1.703
1.569
1.449
1.338
1.237
1.145
1.058
0.9793
0.9069
0.8409 | \$2.551
\$2.551
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$35.50
\$3 | 1.973
1.802
1.649
1.510
1.38%
1.270
1.163
1.068
0.9806
0.9017 | 1.470
1.342
1.228
1.124
1.030
0.9452
0.8654
0.7949
0.794 | 9.306
9.3355
9.3379
9.34027
9.3451
9.3451
9.3451
9.3523 | 7.046
7.774
8.5551
9.401
10.34
11.35
12.48
13.68
15.00 | 1037
1046
1046
1055
1060
1069
1073 | 11.9
13.1
14.3
157.0
18.5
20.2
22.0
24.0
26.1 | | 300,000
302,000
304,000
306,000
310,000
312,000
316,000
316,000 | 487.4
491.4
495.4
495.4
507.5
511.5
5515.5
523.5 | 0.01653
0.01534
0.01534
0.01324
0.01231
0.01146
0.01067
0.009940
0.009945
0.008643 | 0.7810
0.7247
0.6729
0.6255
0.5818
0.5042
0.4697
0.4378
0.4084 | 19.75
18.18
16.74
15.44
14.25
13.15
12.23
10.39
9.616 | 0.8306
0.7645
0.76491
0.6492
0.5991
0.5531
0.5110
0.4724
0.4369
0.4044 | 0.6176
0.5683
0.5683
0.4824
0.4851
0.4109
0.3795
0.3598
0.3244
0.3002 | 5.46
5.569
5.569
5.5666685
7.775
7.775
7.775 | 17.95
19.46
21.46
23.42
27.51
30.33
33.91
39.04 | 1082
1087
1091
1096
1100
1104
1109
1113
1117 | 28 32 4
33 35 9 4 4 6 0 7 7 7 0 | | 320,000
322,000
324,000
326,000
326,000
332,000
332,000
334,000
338,000 | 55.55.55.55.55.55.55.55.55.55.55.55.55. | 0.008061
0.007527
0.007028
0.005771
0.006146
0.005750
0.005379
0.005039
0.005039
0.004721
0.004427 | 0.3809
0.3557
0.3321
0.3105
0.2904
0.2717
0.2542
0.2381
0.2092 | 8.2515
7.256
7.557
6.557
6.588
6.588
6.588
6.577 | 0.3744
0.3470
0.3215
0.2964
0.2770
0.2573
0.2389
0.2222
0.2067 | 0.2779
0.2575
0.2385
0.2213
0.2054
0.1908
0.1771
0.1647
0.1532
0.1426 | 3.777
3.7992
3.844
3.867
3.9911
3.935
3.9977 | \$2 \$2
\$6 0\$
\$9 99
5\$ 171
53 57
68 8
7\$ \$7
86 91 | 1126
1130
1134
1139
1147
1151
1155
1160
1164 | 62.7
67.6
73.0
78.6
91.1
98.1
1053 | | 340,000
342,000
344,000
344,487
346,000
350,000
352,000
354,000
356,000
358,000 | 557.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5 | 0.004152
0.003892
0.003652
0.003602
0.003231
0.003941
0.002863
0.002704
0.0027404 | 0.1962
0.1839
0.1727
0.1702
0.1623
0.1527
0.1437
0.1353
0.1276
0.1203 | \$.261
3.966
3.700
3.638
3.179
3.179
2.732
2.5358
2.194 | 0.1792
0.1668
0.1556
0.1530
0.1442
0.1337
0.1239
0.1149
0.1067
0.09916 | 0.1327
0.1235
0.1152
0.1154
0.1068
0.09896
0.09169
0.08502
0.07693
0.07334
0.06823 |
3.999
\$.021
\$.048
\$.086
\$.109
\$.1151
\$.172
\$.172 | 93.85
101.4
109.3
111.5
128.5
139.5
151.1
163.6
176.9 | 1168
1172
1176
1177
1185
1195
1205
1215
1226
1236 | 131
140
150
153
161
172
184
197
211
225
240 | | 360,000
362,000
364,000
366,000
370,000
372,000
374,000
376,000
378,000 | 607.55
611.56
615.56
627.66
6231.66
6339.6 | 0.002273
0.002150
0.002035
0.001928
0.001828
0.001649
0.001649
0.001567
0.001489
0.001417 | 0.1074
0.1016
0.09614
0.09611
0.08639
0.08639
0.07790
0.07405
0.07038
0.06698 | 2.044
1.906
1.778
1.553
1.453
1.361
1.276
1.197 | 0.08597
0.08015
0.07476
0.06984
0.06529
0.06111
0.05724
0.053366
0.05033 | 0.06356
0.05925
0.055261
0.04824
0.04514
0.04514
0.043962
0.03716
0.03485 | * 21 * 21 * 21 * 21 * 21 * 21 * 21 * 21 | 206.2
222.2
239.4
257.6
276.8
297.2
318.9
341.8
366.1 | 1256
1266
1277
1287
1397
1308
1318
1328
1339
1349 | 2551
268
3025
3345
3366
433 | | 380,000
382,000
384,000
386,000
388,000
390,000
392,000
393,700 | 647.6
651.6
655.6
659.6
667.6
671.6
675.0 | 0.001350
0.001286
0.001227
0.001170
0.00118
0.001068
0.001020
0.0009830 | 0.06379
0.06079
0.05797
0.05531
0.05282
0.05045
0.04823
0.04645 | 1.055
0.9915
0.9311
0.8784
0.8277
0.7804
0.7364
0.7015 | 0.04436
0.04170
0.03924
0.03694
0.03481
0.03282
0.03097
0.02950 | 0.03274
0.03077
0.02895
0.02725
0.02725
0.02567
0.02420
0.0282 | 4.448
4.448
4.456
4.555
4.448
4.555
4.44
4.44
4.44
4.44
4 | 419.2
448.0
478.4
510.5
544.5
579.8
617.4 | 1360
1370
1381
1391
1401
1412
1422
1431 | 457
488
5036
555
555
655
653 | The values for viscosity listed in these columns are not applicable at the higher situides where the mean free paths of the molecules are composable to or longer than the dimensions of the body being considered. Furthermore, the values listed are based on the conventional Sutherland formula for normal air and, consequently, no allowance has been made for the effect of dissociated oxygen in the atmosphere at the higher levels. TABLE VI .- LATITUDE CORRECTION FACTORS FOR VALUES OF FRESSURE IN TABLES IV AND V | | Latitude, deg | | | | | | | | | | | |--|---|--|--|--|--|--|--|---|---|--|---| | Altitude, b | | 0 | 10 | 20 | 30 | 1 0 | . 50 | 60 | 70 | 80 | 90 | | (kan) | (ft) | | | L | ļ | <u></u> | | L | L | <u> </u> | <u> </u> | | | | | | (a) | For both day | and night | | | | . | · | | 20
30
40
50
60
70
80 | 65,617
98,425
131,233
164,042
196,850
229,658
262,467 | 1.0078
1.0120
1.0158
1.0187
1.0213
1.0242
1.0278 | 1.0073
1.0112
1.0148
1.0176
1.0200
1.0227
1.0260 | 1.0060
1.0092
1.0121
1.0144
1.0164
1.0186
1.0212 | 1.0039
1.0060
1.0080
1.0094
1.0108
1.0122
1.0140 | 1.0014
1.0022
1.0029
1.0034
1.0039
1.0044
1.0051 | 0.9988
.9981
.9975
.9971
.9967
.9962
.9957 | 0.9963
.9943
.9925
.9911
.9899
.9886 | 0 .99 [‡] 3
.9912
.988 [‡]
.9863
.984 [‡]
.982 [‡] | 0.9929
.9892
.9858
.9832
.9808
.9783
.9752 | 0.9925
.9885
.9848
.9821
.9796
.9769 | | | • | | | | (b) For day | only . | • | | | | | | 80
90
100
110
120 | 262,467
295,275
328,083
360,892
393,700 | 1.0278
1.0312
1.0340
1.0364
1.0385 | 1.0260
1.0293
1.0319
1.0342
1.0361 | 1.0212
1.0239
1.0261
1.0279
1.0295 | 1.0140
1.0157
1.0171
1.0183
1.0193 | 1.0051
1.0057
1.0062
1.0066
1.0070 | 0.9957
.9952
.9947
.9944
.9940 | 0.9869
.9853
.9840
.9830
.9820 | 0.9798
9774
9754
9738
9723 | 0.9752
.9722
.9698
.9678
.9660 | 0.9736
.9704
.9679
.9657
.9638 | | | | | | | (c) For nigh | nt only | | | | | | | 80
90
100
110
120 | 262, 467
295, 275
328, 083
360, 892
393, 700 | 1.0278
1.0314
1.0346
1.0374
1.0397 | 1.0260
1.0295
1.0325
1.0352
1.0373 | 1.0212
1.0241
1.0265
1.0287
1.0304 | 1.0140
1.0158
1.0174
1.0168
1.0199 | 1.0051
1.0057
1.0063
1.0068
1.0072 | 0.9957
.9951
.9946
.9942
.9938 | 0.9869
.9852
.9838
.9825
.9815 | 0.9798
.9772
.9750
.9730
.9714 | 0,9752
.9721
.9693
.9669
.9649 | 0.9736
.9703
.9673
.9647
.9627 | . MATIONAL ADVISORY COMMITTEE FOR ARRONAUTIOS COMMITTEE FOR AERONAUTICS Figure 1.- Variation of ambient temperature with altitude. Figure 2.- Variation of composition of the tentative standard atmosphere with altitude. (The dissociation of oxygen is the only change in composition occurring in the tentative standard atmosphere.) Figure 3. Variation with altitude of the physical properties of the tentative standard atmosphere. Figure 3.- Continued. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. (d) Specific weight, w. (e) Coefficient of viscosity, μ_* Figure 3.- Continued. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. (f) Kinematic viscosity, v. (g) Speed of sound, a. (h) Mean free path of molecules, λ_{\bullet} Figure 3.- Concluded. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. | AUTHOR(S): Warfield, Caivin N. ORIG. AGENCY: National Advisory Committee for Aeronautics, Washington, D. C. PUBLISHED BY: (Same) | | | | | | (None) | | | |--|--|---|---|----------------------------------|---|--|--|--| | | | | | | | TN-1200 | | | | | | | | | | (Same) | | | | Jan '47 | Unclass. | U. S. | English | PAGES
56 | tabies, graphs | | | | | pres
atmo
grav
liste | ented. One se
sphere. The
lty with incre | et constitutes
other set tak
asing aititude
against aitl | a consistent e
es into conside
and, therefore | xtension
ration th
is more | ifications for the upper a
of the standard tables fo
ne decrease in the accele
precise than the first se
a adopted temperature-he | r the lower
ration of
ct. All quantities | | | | DISTRIBUTION | SPECIAL. | All requests | for copies mu | st be add | iressed to: Originating | Agency | | | | | per Air Rese | r 2 | SUBJ | ECT HEA | | pper air (62000); | | | ATL 12435 ATI SHEET NO.: R-30-3-11 Control Air Documents Office Wright-Patterson Air Force Base, Dayton, Ohio