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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO. 13^2 

A SIMPLIFIED METHOD OF ELASTIC-STABILITY 

ANALYSIS FOR THIN CYLINDRICAL SHELLS 

II - MODIFIED EQUILIBRIUM EQUATION 

By S. B. Batdorf 

SUMMARY 

A modified form of Donnell'e equation for the equilibrium of 
thin cylindrical shells is derived which is equivalent to Donnellts 
equation hut has certain advantages in physical interpretation and 
in ease of solution., particularly in the case of shells having 
clamped edges. The solution of this modified equation hy means of 
trigonometric series and its application to a number of problems 
concerned with the shear buckling stresses of cylindrical shells 
are discussed. The question of implicit boundary conditions also 
is considered. 

INTRODUCTION 

During a general theoretical investigation of the stability 
of curved sheet under load, a method of analysis was developed 
which appears to be simpler to apply than those in general use. 
The development of this method is presented in two parts, of which 
reference 1 is the first and the present paper the second. The 
specific problems solved by this new method are treated in detail in 
other papers.  (See, for example, references 2 to 7.) 

In reference 1. the stability of a stressed cylindrical shell 
was analyzed in terms of Donnell'e equation, a partial differential 
equation.for the radial displacement w, which takes into account 
the effects of the axial displacement u and the circumferential 
displacement v. Reference 1 shows the manner in which this equation 
can be used to obtain relatively easy solutions to a number of 
problems concerning the stability of cylindrical shells with simply 
supported edges. The results of the solution of this equation were 
shown to take on a simple form by the use of the parameter k 
(similar to the buckling—stress coefficients for flat plates) to 
represent the state of stress in the shell and the parameter Z 
to represent the dimensions of the shell, where Z is defined by 
the following equations: 
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For a cylinder of length L 

-i£ /i-n* 
rt 

and for a curved panel of width b 

2 = *! .h ..;a 
rt /W 

where 

r   radius of curvature 

t   thickness of shell 

and 

Poisson's ratio for material 

The accuracy of Donnell's equation was established "by comparisons 
of the results found "by its use with the results found by other 
methods and by experiment. 

In the simplest method that has been found for solving 
Donnellts equation, the radial displacement w is represented 
by a trigonometric series expansion. This method can be used to 
great advantage for cylinders or curved panels with simply supported 
edges but leads to incorrect results when applied uncritically 
to cylinders or panels with clamped edges. 

In the present paper an equation is derived which is equivalent 
to Donne11's equation but is adapted to solution for clamped as 
well as simply supported edges by means of trigonometric series. 
This modified equation retains the advantages of Donne11'8 equation 
in ease of solution and simplicity of results. The solution of the 
modified equation by means of the Galerkin method is explained, and 
the results obtained by this approach in a number of problems 
concerned with the shear buckling stresses of cylindrical shells 
are given in graphical form and discussed briefly. Boundary conditions 
implied by the method of solution of the modified equation are 
also discussed. 



NACA TB Mb. 13^2 

SYMBOLS 

a length of curved panel (longer dimension) 

h width of curved panel (shorter dimension) 

a-? 1* ^1$        deflection coefficients in trigonometric series 

ks        shear-stress- coefficient [ ••_   $    tor  cylinder; 
2 X 

T   -     for curved panel) 
Drt2 .' 

kx       direct-axial-stress coefficient (— — for cylinder; 
P \     VE*2 

for curved panel; 
I)«2 y 

0_. +T& y x  for cylinder; 

ovtb- ""' \ 
•• *   „•      for curved panelJ 
rutd / 

2 

Dir'*' 

p lateral pressure 

r radius of curvature of cylindrical shell 

t thickness of cylindrical shell 

u displacement in axial (x—} direction of point on shell 
median surface 

v displacement in circumferential (y—) direction of point 
on shell median surface 

w displacement in radial direction of point on shell 
median surface; positive outward 

x axial coordinate 

y        circumferential coordinate 

*,*,*?      inteSerS 
Et3 

plate flexural stiffness per unit length I — £- 



NACA TO No. 13^2 

E        Young's modulus of elasticity 

Airy's stress function for median-surface stresses produced 

by buckle deformation ( —^, stress in axial direction; 

—±-,  stress in circumferential direction; - r—r-, shear 
öx2   v a« V 
stress 

L        length of cylinder 

Q> Ql> Q2  mathematical operators 

E8        shear—stress ratio; ratio of shear stress present to 
critical shear stress when no other stress is acting 

Ex axial-compressive—stress ratio; ratio of direct axial 
stress present to critical compressive stress when 
no other stress is acting 

curvature parameter ( =- i/l — u2 for cylinder; 
\rt ' 

/l — u2 for curved panel or long curved strip) b_2 

rt 

\ half wave length of buckles; measured circumferentially 
in cylinders and axially in long curved strips 

H Polssonrs ratio for material 

ox applied axial stress, positive for compression 

Cy applied circumferential stress, positive for compression 

T applied shear stress 

Tc:r      critical shear stress 

,4 
V* operator   ((^ * 4f - K + *-£- + 4 V^ox2      öy!/        öx^        öx2öy2      öA 
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v8        operator (&$*)  * (jgr + ^f) 

V'k inverse operator defined by equations 

THEORY 

Derivation of Modified Equation 

The equation of equilibrium for a flat plate may "be written 

tfT1^ + tfas x % + 2T^%-+ cry 5%V p = 0     (1) 

where p is lateral pressure.  (This equation is equivalent to 
equation (197) of reference 8.) 

For a cylindrically curved plate having a radius of curvature r, 
the following pair of simultaneous equations of equilibrium may he 
written (as a generalization of equations (11) and (10) of reference 9); 

*»-?0-O (3) 

where F is Airy's stress function for the median—surface stresses 
produced "by the "buckle deformation (reference 10). Equation (2) 

differs from equation (1) only in the addition of the term  - 253L 
r Öde2 

which expresses the_effect of the curvature. Equation (3) shows 
that, unlike flat plates,, cylindrical shells experience stretching 
of the median surface when originally straight lines in the surface 
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are "bent slightly. Elimination of F "between equations (2) 
and (3) "by suitable differentiations and additions gives the 
following single equation in w for the equilibrium of cylindrical 
shells: 

Equation (k),  which was first derived by Donnell (reference 11), 
was treated in reference 1. 

An alternative method for obtaining a single equation in w 
for the equilibrium of a cylindrical shell is to solve equation (3) 
for F and substitute the result into equation (2). This procedure 
can readily be carried out in the following manner. Differentiation 
of equation (3) twice with respect to x gives 

ox2  r Ö? ^ 

The symbolic solution of equation (5) for r-~? ie 

0)0= 

Substitution of this result into equation (2) gives 

Equation (6) is simply equation (4) modified by multiplication by 
the operator v"~*. m the present paper, equations (4) and (6) 
are referred to as Donnell«s equation and the modified equation, 
respectively. 

Advantages of Modified Equation 

One of the quickest and most convenient methods' for obtaining 
solutions of flat-plate buckling problems to any desired degree of 
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approximation uses a Fourier series type of expansion for the deflection 
surfaoe w. Both Donnell's equation end the modified equation can 
"be solved "by this method in the case of "buckling problems involving 
curved plates having simply supported edges . 

As mentioned in the "Introduction," however, Donnell's equation 
is not well adapted to solution "by Fourier series of problems 
involving the stability of shells with clamped edges. The cause of 
the trouble appears to be that the calculation of some of the high- 
order derivatives found in Donnell 's equation sometimes leads to 
divergent trigonometric series when the edges are clamped. The 
modified equation, however, is applicable to clamped-edge problems 
as well as to problems involving simply supported edges because 
lower-order derivatives are involved. 

In addition to its advantages in the solution of problems 
involving shells with clamped edges, equation (6) has the additional 
advantage ttiat each term has a definite physical significance: 
The first term gives the restoring force per unit area of the deflected 
surface due to bending and twisting stiffnesses) the second term, 
gives the restoring force per unit area due to stretching stiffness; 
and the remaining terms give the deflecting forces per unit area 
due to applied loads. Because of these advantages, the modified 
equation was adopted for general use in references 2 to 7. 

Both Donnell's equation and the modified equation result in 
the same critical stresses for Bimply supported cylindrical shells, 
and the two methods require essentially equivalent mathematical 
processes. (See appendix.) The characteristics of solutions by 
means of Donnell's equation in the case of simply supported shells 
(reference 1) - namely, the theoretical cylinder parameters, the 
simplicity of calculations and results, and the implied boundary 
conditions on u and v - are characteristics, also, of solutions 
by means of the modified equation. The same characteristics, except 
for a change in the implied boundary conditions on u and v, also 
apply to solutions of clamped-edge shell problems by means of the 
modified equation. This change is discussed in the section entitled 
'Boundary Conditions." 

Solution of Modified Equation by Galerkin Method 

An approximate method of solving vibration and buckling problems 
closely paralleling that of Eitz was introduced in 1915 by Galerkin. 
(See, for example, references 12 and 13.) The main distinction between 
the Eitz and Galerkin methods is that the Eitz method begins with an 
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energy expression^ whereas the Galerkin method begins vith an 
equation of equilibrium. The Galerkin method is readily adaptable 
to the solution of equation (6) and is now desoribed briefly. 

Let the equation of equilibrium be written 

G(w) + p = 0 (7) 

where p is lateral pressure and. Q is some operator in x and y 
which for the purposes of this paper is taken to be linear. According 
to the Galerkin method, the equation may be solved by expanding 
the unknown function w in terms of a suitable set of functions 
fi(x)gj(y), each of which satisfies the boundary conditions but 
not in general the equation of equilibrium: 

w = JLi>_ aijfiWejCy) (8) 
i    "j" 

Substitution of this expression for    w    into equation  (7) gives 
the following equation: 

2_ aijQfritogjCy)]  + P = 0 (9) 
1  J " 

Because the functions fi(x)gj(y) were chosen to satisfy the 

boundary conditions rather than the equation of equilibrium, 
equation (9) cannot, in general, be satisfied Identically by any 
choice of the coefficients &ij. These coefficients can be chosen, 
however, to assure the vanishing of certain weighted averages of 
the left—hand side of equation (9). The weighting functions used 
in the Galerkin method are the original expansion functions, so 
that the following simultaneous equations for determining the 
coefficients ajj are obtained: 

^?_2_^mnlia±i  = ° (10) 
i  J 

(m=l,2,3, ...; n=l,2,3, ...) 
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where 

^nnij fm(x)sn(y) < Q[f i(x)8j(y)J + P f to dy    (11) 

The simultaneous set of linear algebraic equations in the unknown 
coefficients ey. j (equation (10)), obtained by using the original 

expansion functions as weighting functions, is ordinarily the same 
set which would be found by the Ritz method, if the same series 
expansion for w were used. A solution of any desired degree of 
accuracy may therefore be obtained by the Galerkin method. 

In applying the Galerkin method to equation (6) by use of 
Fourier series expansion for w, expressions of the type 

i  J 

.  inx . Any aiJ sin — sin V" 
j 

must be evaluated. The operator V  , the inverse of V , 
simply introduces into the denominator of each term of the series 
the expression that comes into the numerator if 7^ is applied. 
Thus, 

v-4ZZaiJeini?8i*jif: 

i       J 

\~V &iJ 

4- v [c©2 + <&3¥ 
sin £2£ em iSZ (12) 

This result may readily be verified by applying the operator V^ 
to each side of equation (12). 

In writing equation (12) the quantity V^f, as defined by 
the equation 

V^V"4f = f 
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was tacitly assumed to "be unique. The quantity actually is not , 
unique; any number of terms which vanish when operated upon by V ^ 
could "be added to the right-hand side of equation (12). The 
omission of such terms makes the present analysis parallel to the 
analysis using Donnell's equation (see reference 1) and implies 
certain "boundary conditions on u and v, which are discussed 
in a subsequent section entitled "Boundary Conditions.", 

Deflection Functions 

Simply supported edges.— For simply supported cylindrical 
shells, the following series expansions for w may he used to 
represent the buckle deformation to any desired degree of accuracy 
(in these functions, x    is the coordinate in the axial direction 
and y, the coordinate in the circumferential direction): 

(1) Rectangular curved plate (axial dimension a and 
circumferential dimension b) 

m~l n=l 

a^ sin BE* sin "fL (13) 

(2) Curved strip long in the axial direction (circumferential 
width b and axial wave length 2X) 

(a) Direct stresses only 

00 

w = sin 2£ \  am sin Z&Z 

m=l 

(b) Shear stress with or without addition of direct 
stress 

w = sin 2SL^ ^ Bin S£L + c08 sV bm sin 2&L    (15) 
m=1 m=l 
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(3) Complete cylinder (length L and circumferential wave 
length 2\) 

(a) Direct stresses only 
00 

y w = sin %£• )     am sin 
JBFI 

max 
L (16) 

(b) Shear stress with or without addition of direct 
stress 

w = sin 2f y ^ sin ^ + cos ^Zl^ mux 

^1 m: 
x /_ **sin lr    Ci7) 

m=l 

Clamped edges.— Probably the simplest method of treating 
cylindrical shells with clamped edges is to employ the "expansions 
in equations (13) to (IT) modified "by substituting functions of the 
type 

<pm(x) = sin 
mitx . äX 

COB 
(m — l)nx 

a cos (m + l)'itx (18) 

wherever functions of the type sin 2S2L appear, with a similar 

substitution for functions of y (all terms involving summation 
subscripts m and n are thus changed; terms involving X, 

such as  sin —,    remain unchanged). The functions cftn.(x) form 

a complete set so thatfinite expansions for w of the type suggested 
for shells with clamped edges as well as those for shell* with simply 
supported edges may be used to represent the buckle deformation 
to any desired degree of accuracy. 

Boundary Conditions 

Simply supported edges.— Appendix D of reference 1 shows that, 
if the buckling stress of a simply supported shell is found by means 
of the expansions for w given in the preceding section entitled 
"Deflection Function," the boundary or edge conditions implied for 
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the median-surface displacements u and v are zero displacement 
along each of the edges of a cylinder or curved panel and free 
displacement normal to each edge. (Although the proof given used 
equation (k),  the proof could equally well have "been based on 
equation (6).) 

The "boundary conditions for simple support may thus be written, 
at a curved edge (x = constant), 

v°£*'y*&°°  (19) 

and, at a straight edge (y = constant), 

v • p = u " £5 " ° (20) 

Clamped edpes.- By a method similar to that in appendix D 
of reference 1, solutions using the functions suggested in the 
preceding section for the treatment of clamped edges can be shown 
to correspond to the "boundary conditions - zero displacement normal 
to an edge and free displacement along an edge. 

The "boundary conditions for clamped edges therefore "become, 
at a curved edge (x = constant), 

ox. 0x2  - 

and, at a straight edge (y = constant), 

* - jr - T - fi - ° (22) 
dy by* - - .....  -. 

Discussion.- As mentioned in reference 1, the "boundary conditions 
implied for u and v in the case of simply supported edges are 
appropriate for cylinders or panels "bounded "by light "bulkheads or 
deep stiffeners, which are stiff in their own planes "but may "be 
readily warped.out of their planes. 
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The boundary -conditions on u and v appropriate for a 
clamped edge would seem to "be zero displacement normal to the edge 
and zero, rather than free, displacement along the edge. Comparison 
of critical stresses for shells vith clamped edges found "by the 
method in the present paper vith critical stresses found "by the 
method in references 9 and 1*1-, giving "boundary conditions u » v » 0, 
however, indicates that the imposition of the added requirement 
of zero displacement along the edge ordinarily has very little 
effect on the critical stresses. 

A less satisfactory method for solving problems concerning 
shells with clamped edges involves the use of functions of the type 

1 ain WZ  . _1  sin (n + 2?« m ÖJJ1 a  m + 2 SiX1   a 

instead of those described by equation (18). In this method, the 
functions used are those for simple support taken in such combinations 
that the edge slope is zero. Use of such functions leads to the 
same boundary conditions on u and v as were described for simply 
supported edges;  at the edge y = constant, for example, the boundary 
conditions become 

v«t*»u = ^| = o (23) 
oy     äse2 

The use of these functions to represent shells with clamped edges 
is not recommended, however, for the following reasons: The associated 
boundary conditions seem to be artificial and unlileely to be reproduced 
even approximately in actual construction; the method leads in some 
oases to solutions that differ considerably from the solution for 
ideal clamped-edge conditions in which u « v = 0; and the solutions 
obtained generally converge rather poorly. 

APPLICATIONS AND DISCUSSION 

Among the more difficult shell-stability problems to treat 
theoretically are those which involve shear stresses. In fact, 
until 19314-, when Donnell's paper on critical shear stress of a 
cylinder in torsion was published (reference 11), such problems 
were generally regarded as impracticable to solve. In order to 
illustrate the type of solution to be found by the method of analysis 
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just outlined and the effect of "boundary conditions on critical 
stresses, the results obtained for a number of shell stability 
problems involving shear stresses are reproduced and discussed 
briefly here. The problems treated are summarized in table I. 

Critical shear stress of long curved strip.- The critical 
shear stress for a long plate with transverse curvature is given 
by the equation 

Tcr = fcs^t 

where 3% is a dimensionleee coefficient, the value of which 
depends upon the dimensions of the strip, Poisson's ratio for 
the material, and the type of edge support. In figure 1 (fig- 1 
of reference 2) the shear-stress coefficient ks is given for 
plates with simply supported edges and with clamped edges. This 
solution for simply supported edges coincides with that given by 
Kromm (reference 15). 

As indicated in the previous section entitled 'boundary 
Conditions, " the solution corresponding to the boundary conditions 
of equation (23) (dashed curve of fig. 1) is poorly convergent and 
deviates appreciably from the results for completely fixed edges. 
Figure 1 shows this poor convergence in the limiting case of a flat 
plate, for which the critical stress is independent of boundary 
conditions on u and v. Even a tenth-order determinant led to 
a result that is 7 percent above the true solution*, whereas the 
result using a fourth-order determinant obtained with the deflection 
functions recommended for clamped edges is only 1 percent above. 

In figure 2 (fig. 2 of reference 2) the solutions given in 
figure 1 are compared with the results given by Leggett (reference 9) 
for simply supported and clamped edges with u = v = 0 at each 
edge. Throughout the range for which they are given, Leggett 'e 
results for clamped edges differ only slightly from those of the 
present paper. On the other hand, the previously mentioned 
discrepancy between the results for completely fixed edges 
(u = v = O) and those for the boundary conditions of equation (23) 
(dashed curve) may be inferred from this figure to be considerable 
for large values of Z. A minimum measure of this discrepancy is 
the distance between the clamped-edge curves for v = 0 and for 
u = 0 in figure 2, since Leggett's curve must always lie above the 
curve for v = 0. 

The reason for the marked increase in buckling stress of simply 
supported curved strips when the edges are restrained against 
circumferential displacement during buckling is discussed in reference 2. 
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Critical shear stress of cylinder in torsion..- The critical 
shear stress of a cylinder subjected to torsion is given "by the 
equation 

In figure 3 (fig- 1 of reference 3) the values of ks are given 
for cylinders with simply supported edges ("boundary conditions 
of equation (19)) and cylinders with clamped edges ("boundary 
conditions of equation (21)). At high values of Z,    the values 
of ks for thick cylinders are given "by special curves for various 

values of 5 y.1 - H2J as discussed in reference 1. At values 

of Z greater than about 100 only a small increase in "buckling 
stress is caused by clamping the edges. The results indicated 
in figure 3 are in very close agreement with Donnell's results for 
the same problem, except in the range 5 < Z < 500 whe?e the 
somewhat lower curves of the present paper represent a more accurate 
solution. 

Reference 1 showB that "boundary conditions imposed upon u 
and v at the curved edges of a panel or cylinder have an almost 
insignificant effect on the "buckling stresses, whereas conditions 
imposed on v at the straight edges may "be quite important. 
Comparison of figure 1, in which "boundary conditions on straight 
edges are considered, with figure 3,  in which conditions on curved 
edges are considered, indicates that a similar situation exists 
with respect to restraint against edge rotation. 

Critical shear stress of curved panel.- The values of ks 
giving the critical shear stresses of simply supported curved 
rectangular panels are given in figures k and 5 (figs. 1 and 2, 
respectively, of reference k). The corresponding "boundary conditions 
on u and v are zero displacement parallel to the edges and free 
warping normal to the edges. Figure h indicates that as the 
curvature parameter Z increases, the critical shear stresses of 
panels having a circumferential dimension greater than the 
axial dimension approach those for a cylinder. Figure 5 indicates 
that, as the curvature parameter Z increases, the critical shear 
stresses for panels having an axial dimension greater than the 
circumferential dimension deviate more and more from the critical 
shear stress for an infinitely long curved plate. Reference k 
shows that the reason for this deviation in figure 5 is that at 
high curvatures the "buckling stresses of these panels, as well as 
those of figure k,  approach those of the cylinder obtained "by 
extending the circumferential dimensions of the panels. 
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The effects of boundary conditions in the limiting cases of 
infinitely long curved stripö (fig* 1) and of complete cylinders 
(fig* 3) suggest that the curves of figure h are substantially 
independent of edge restraint at large vaJxes of Z "but that the 
curves of figure 5 would be considerably affocted by a change in 
edge restraint. 

Long curved strips under combined shear and direct axial stress. 
Reference 5 shows that the theoretical interaction curve fbr a 
long curved strip under combined shear stress and direct axial stress 
is approximately parabolic when the edges are either simply supported 
or clamped, regardless of the value of. Z. This parabola is given 
by the formula 

Ee
2 + Ex = 1 

where Ea and Rx are the shear-stress and compressive-stress 
ratios, respectively. 

At high values of Z  curved strips, like cylinders, buckle 
at compressive stresses considerably below the theoretical critical 
stresses. In order to take this condition into account, certain 
modifications in the theoretical results are proposed in reference 5 
for use in design. 

Cylinders under combined shear and direct axial stress.- 
The theoretically determined combinations of shear stress and direct 
axial stress which cause a cylinder with simply supported and 
clamped edges to buckle are shewn in figure 6 (fig. 1 of reference 6). 
Considerable variation in the shape of the interaction curves 
occurs for low values of Z. For high values of Z the interaction 
curves for either simply supported or clamped edges are similar to 
the curve for Z = 30. 

Because cylinders actually buckle at a small fraction of their 
theoretical critical compressive stress, the theoretical interaction 
curves of figure 6  cannot be expected to be in satisfactory agreement 
with experiment when a very appreciable amount of compression is 
present. For semlempirical curves and a check of available tost 
data, see reference 6. 
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CONCLUDING KEMABK5 

A previous investigation showed how Fourier series type 
solutions of Donnell's equation can he used to simplify greatly 
the stability analysis of thin cylindrical shells with simply 
supported edges. The present paper shows that the restriction to 
simply supported edgeB can he removed "by the introduction of a 
new equation which is equivalent to Donneil 's equation "but is better 
adapted to solution "by Fourier series. This modified equation can 
he solved for the buckling stresses of curved sheet having either 
simply supported or clamped edges by established methods essentially 
equivalent to those in use for flat sheet. This approach permits 
a Bimple and straightforward solution to be given for a number of 
problems previously considered rather formidable. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

langley Field, Va., March 20, 19^7 
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APPENDIX 

COMPARISON OF EESÜLTS OBTAINED BY USING DONNELL'S EQUATION 

AND THE MODIFIED EQUATION IN THE STABILITY ANALYSIS 

OF SIMPLY SUPPORTED CURVED PANELS 

Solution of Donnoll'e Equation 

Donnell's equation expressing the equilibrium of a curved 
panel under median-surface stresses can "be written in general form 
as • 

W V+r"2ä7 + ff*W   S      2T^£TV ^      o7 " ° (A1) 

where x is the axial coordinate and y the circumferential 
coordinate. Division of equation (Al) hy D and the introduction 
of the dimensionless stress coefficients kx, ky, and ks, and 
the curvature parameter Z results in the following equation: 

where 

and 

v       „ *>2t 

k    -a^ ky " VD 
, o  

*-^- n2 
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Equation. (A2)  can be represented by 

dl(w) =0 (A3) 

vhere    Q^   is defined as the operator 

V ^ ä?        V        öx*      2V       ox öy + V        Öy2 

The equation of equilibrium (equation (A3)) is solved by using 
the Qalerkin method as described in the section entitled 'theory." 
In applying this method the unknown deflection w is represented in 
terms of a set of functions (see equation (8)), each of which 
satisfies the boundary conditions but not in general the equation of 
equilibrium. A suitable set of functions of this type, which 
satisfies the boundary conditions for simple support, is 

CO 

V" 
W - / 

m=l n=l 
m 

where the origin is taken at a corner of the plate .x Substituting 
in equations (10) and (ll) 

fa(x) * sin 3S 

ebCar) = sin 3S 

and 

Q » Qi 

and performing the integration over the whole plate (limits x = 0, a ; 
y = 0, b) giveB the set of equations 
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^im (?+»s$)k + i^ 

*** (f+ n2 3? - Vs Jg $ (f • »2 $y 

3Sfcs a^ 
«2    T,3 

P=l cFT 
"M (a2  - p2)1^2  - aß) <A5) 

where m=l,2,3, • 
valueß for which 

,, n=l,2,3, and p and q take only those 
m ± p and nip are odd numbers. 

Equation (A5) represents an infinite set of homogeneous linear 
equations involving the unknown deflection coefficients a^ <. In 

order for the deflection coefficients to have values other than 
zero, that is, in order for the panel to buckle, the determinant of 
the coefficients of the unknown deflection coefficients a* « 

must vanish. This determinant can "be factored into two subdeterminants, 
one involving the unknown deflection coefficients a^j for which 

i * j is odd and the other involving those coefficients for which 
i * J is even. Buckling occurs, therefore, when either of the two 
suMetarmlnants vanishes. Only the "buckling criterion involving 
the even subdeterminant is treated here. This criterion is 
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m=l, n=l 

m»l, n=3 

m=2, n=2 

m=3, n=l 

m=3, n=3 

all a13 a22 »31 «133 

Mil 0 +9^^       ° 0 

%3 

\2 ,. •        n\2 

° -K^S)2-     «51 

+IHD2 » "33 

0 (A6) 

where 

-    A5*3 ('•*ö**ÄP-**c*-*£r 

'- V2 $ (f * »s $J 
Division of each coition of the determinant in equation (A6) 

"by the proper 

(• 
±2 + *2  a2 
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gives the simplified equation 

^2 /       -\2 /•-   n\2 

•nHy^H) -»HD' <<*si) a33(^J 
Nll 0 

9 
0 0 

0 N13- it 
5 

0 0 

9 5 
N22 

1). 

5 25 

0 0 It 
"5    " 

.  .     N31 0 

0 +• .36 
25 

N 33 (A7) 

where 

fl 'mn 32kaa^ 
m- + n^ g 

•—Til     .3 

+   — JPZ-nTa 
a2\2 >M m2 + *L> g) 

kxm2 
y      b2 

The vanishing of this determinant is the criterion for the symmetrical 
huclcling of the shell.    The same buckling criterion results from 
the use of the modified equation,  as is shown in the following 
section. 

Solution of Modified Equation 

The modified equation expressing the equilibrium of a curved 
panel under median-surface stresses in general form is 
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*+'• i ** |?E * «*> g* ** d2^ . - + ^2w  n 
3x dy  y öy2 

(A8) 

Division of equation (A8) "by D and simplification of the result 
gives the following equation: 

k   12Z2 „-it ökw ^ v «2 o^w ^ 0.  «2 Ö2W      fl2 ^ 

ä? + ^ ^ a? + 2 s ^ST*   ^ ^ P 

Equation (A9) can "be represented "by 

Q2OO » 0 (A10) 

where Qg is defined as the operator 

„k  12Z2 „_k ök «2 Ö2 
TT v  ^3 + kx ^2 ^ + 2kB -^ ^ öy 

Ä2 92 ilr £ö2_ 
^ h2 Öy2 

By use of the Galerkin method and "by use of the expression for w 
given in equation {Ah)',  the following set of equations analogous 
to equations (A5) are ohtained 

3-mn m.2 + n' 2 a?? 12z2mkak 

1   W   + Ak(m2 + n2 S§)2 

-    lC^H^     -    &yJ3.' 2 &: 

CO 00 2^ VV «2^ zL/_ + 22kß! ?°-K • 0 
P9. („,2  - p2)(n2  - q2) 

P»l a^1 (All) 

where    m«=l,2,3,   •••, n=l,2,3,   ••>, and   p    and    q    take only those 
values such that   m. ± p    and   n ± q    are odd numbers. 
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As In the case of the solution of Donnell's equation, the 
stability determinant representing equations (All) can Toe factored 
into an even and an odd subdeterminant.    The even one is 

^1 a13 *22 a31 a33 • • • 

m=l, n=l Hll 0 *H 0 0 

m=l, n=3 0 N13 
^ 

* ** 
0 0 

m=2, n=2 
*, 

k 
5 »12 

k 
~5 25 

m=3, n=>l 0 0 k 
"5 N31 0 

m=3, n=3 0 0 +.31 
25 

0 N33 

- 0 (A12) 

The stability determinant (equation (A12)) obtained from the 
modified equation is identical with the simplified stability 
determinant (equation (A7)) obtained by use of Donnell's equation. 
This identity holds for the odd as well as the even determinants. 

Although the stability determinants obtained by use of the two 
equations are identical and yield identical buckling loads, the 
determinant in equation (A7) consists of the coefficients of 

'u •^& 
whereas the determinant in equation (A12) 

consists of the coefficients of a±i'    Accordingly, although the 
buckling loads found by the two methods are the same, the buckle 
patterns are different. Of the two buckle patterns the one found 
by the use of the modified equation is believed to be correct. 
This conclusion has been verified for the limiting case of a 
flat plate (Z=0). 
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TABIB I.- IHEK3C OF ERflBTWC TOSATBT) 

Problem figure Seferenoe Edg» Condition 
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Simply supported (u-0, Tjfo) 
Clamped (ujfo, T-0) 
Clamped (u-0, Tjfo) 

(Leggstt) 

(Simply supported (u«0, Tjfo) 
\ Clamped Cajto, T-0) 
^Clamped (w«0, Tjfo) 

fSimply supported (w4) 
(.Clamped (u*r-0) 

Simply supported 
Clamped 

<Ü^ Simply supported 

o Simply supported 

+  f 

Hot 
shown. 

*  • 

Simply supported 
Clamped 
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n 

6(a) 

6(l>) 

Simply supported 
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Figure 1.-   Critical-shear-stress coefficients for a long curved strip. s 
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Figure 2.-   Comparison of Leggett's solutions with present solutions for 
critical-shear-stress coefficients of a long curved strip.   (Fig. 2 of 
reference 2.) 
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. Figure 3.-  Critical-shear-stress coefficients for cylinders in torsion. 
(Fig. 1 of reference 3.) 
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Figure 4,-   Critical-shear-stress coefficients for simply supported 
curved panels having circumferential dimension greater than axial 
dimension.   (Fig. 1 of reference 4.) 
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Figure 5.-  Critical-shear-stress coefficients of simply supported 
curved panels having axial dimension greater than circumferential 

o 
> 

•a 

£ 
W 

a 
/i-% i a J._ j   \        /i o   --* — --»- =äää  .4    \ dimension,   (uäsnea curve estimated.;   (rig. & Oi reiereBce *.) 



Fig. 6 NA'CA TN No.  1342 

20 

12 

8 

1   1 
 Tension    - . Compression 

N, 

V 

N V 

^ 
\ 

s\ 
\\ 

z=l 0\5 10 30 

\ 

(a) Simply supported edges. 

dU 
Tension 

•       i       • 
Compression 

  

16 

^ S 
12 

s 

c^ r K ̂
 V 

^ \   
• 

8 
^\ 

\   

^\ 4 

Z= 0 5 \o 
s 

N 30 

0 
c 

NAIIONM. ADVI50P 
DMMITTEE Ft» A£RONAl 

i        ! 

IY 
mcs 

\ 
3 -t % ( } i \ I 3 1 2 1 2 0 2 4 

(b) Clamped   edges. 
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stress coefficients for cylinders.   (Fig. 1 of reference 6.) 
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