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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

. TECENICAL NOTE NO. 1342

A SIMPLIFTED METHOD OF ELASTIC-STABILITY
ANALYSIS FOR THIN CYLINDRICAL SHFLLS
IT — MODIFIED ECUTLIBRIUM EQUATION

By 5. B. Batdorf
SUMMARY

A modified form of Donnelltls equation for the equilibrium of
thin cylindrical shells is derlved which is equivalent to Donnellls
equation but has certain adventages in physical interpretation and
in esse of solution, particularly in the case of shells having
clamped edges. The solution of this modified equation by means of
trigonometric series and its application to a number of problems
concerned with the shear buckling stresses of cyllindrical shells
are discussed. The question of implicit boundary conditlona slso
is considered.

INTRODUCTION

During a general theoretical investigation of the stability
of curved sheet under load, a method of analysis was developed
which appears to be simpler to apply than those in genseral use.
The dévelopment of this method is presented in two parts, of which
reference 1 is the first anil the present paper the second. The
specific problema solved by this new method are treasted in detaill iIn
other papers. (See, For example, references 2 to 7.)

In reference 1 the stability of a stressed cylindrical shell
was analyzed in terms of Donnell's equation, a partial differential
equation .for the radial displacement w, which takes into account
the effects of the axial displacement u and the circumferential
displacemsnt v. Reference 1l shows the manner in which this equation '
can be used to obtain relatively easy solutions to a number of
problems concerning the stability of cylindrical shells with simply
supported edges. The results of the solution of this equation were
shoun to take on a simple form by the use of the parameter k
(eimilar to the buckling—stress coefficientas for flat plates) to
represent the state of stress in the shell and the psrameter Z
to represent the dimensione of the shell, where Z is defined by
the followling equationa:
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For a cylinder of length L
= L.E_ 1 - 2
21—

end for a curved panel of width b

Z=§§- l-p.e
vhere
r radiuvs of curvature
t thickness of shell
and
1 Poisson's ratio for material

The accuracy of Domnellt's equation was established by comparisons
of the results found by 1ts use with the results found by other
methods and by experiment.

In the simplest method that has been found for solving
Donnellts equation, the radiel displacement w 1&g represented
by & trigonometric series expansion. This method can be used to
greet adventage for cylinders or curved panels with simply supported
edges but leads to incorrect results when applied uncritically
to cylinders or panels with clamped edges.

In the present paper an equation is derived which is equivalent
to Donnell's equation but is adapted to solution for clamped eas
well as simply supported edges by means of trigonometric series.
This modified equation retains the adventages of Donnell's equation
in sase of solution and simpliclty of results. The solution of the
modified equation by means of the Galerkin method is explained, and
the results obtained by this approach in a number of problems
concerned with the shesr buckling stresses of cylindricel shells
are given in graphical form and discussed briefly. Boundary conditions
implied by the method of solution of the modified equation are
also discussed.
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X

b4

SYMBQLS

length of curved panel (longer dimension)
width of curved panel (shorter dimension)
deflection coefficients in trigonometric series

2
phear-stress ceefficient C—g‘;l’é- for cylinder;

2
I—@; for curved paneb
Drn~=

G'x'th .
direct—axial -strees cosfflclent =~ for cylinder;
- Dr

2
gxtb” for curved panel\
D:r2 /

2
circumferential—stress coceificient (-0-1%- for cylind.er 3

c £b=
—1—2— for curved paneJ)
Dr

luteral pressure
radius of curvature of cylindrical shell
thickness of cylindrical shell

displacement in axial (x——) direction of point on shell
median surface

displacement in circumferential (y—)} direction of point
on shell median surface

displacement in rediel direction of polint on shell
median surface; positive outward

exial coordinate

circumferential coardinate

i, }, m,
i
n, D, q} ntegers

D

plate flexural stiffress per unit length >
2(1 - u°)
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Young!s modulus of elasticity

Alryts stress function for median-surface stresses produced
.

Ll

by buckle deformation %y%" gtress in exial d.irection;_

3°F -
S—E-’ stress in circumferential directiom; - a—;-a—;’ , shear
X

stres{)

length of cylinder
methematical operators

shear—stress ratio; ratio of shear gtress present to
oritical shesyr stress when no other stress is acting

axlal-compressive—stress ratio; ratio of direct axial

stress present to critical compressive stress when
no other stress is acting

2 R

curvature perameter (Lr—t. / 1 — u2 for cylinder;
2 .

%E 1~ p.2 for curved panel or lang curved stri:a

half wave length of buckles; measured clrcumferentially
in cylinders and axially in long curved strips

Poisson's ratio for material

applied axlal stress, positive for compression

applied circumferential stress, positive for compression
applied shear stress

critical shear stress

4
32N 3 b ot
operator C@ s+ ay"D = b + “ax2ay2 + E‘:yI‘“
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vo - operator G*‘(V“) 7))

vk inverse operator defined by equations

v-ll-(vhf) =V1"(V'h‘f) =

THEORY

Derivation of Modified Equation

The equation of equilibrium for a flat plate may be written

v , o 2w
DVL"H+1: dx2 8x3y+cay2+P o (1)

wvhere p 1s laterel pressure. (This equation is equivalent to
equation (197) of reference 8.)

For a cylindrically curved plete having a redius of curvature r,
the following pair of simultaneous equations of equilibrium may be
written (as & gemeralization of equations (11) and (10) of reference 9):

I dcw 3% 3%w £ O°F _
DVw+t(x—é-+2 ay-t-cry 2)+P+;-a;§—0 (2)
e — B 9w _
raxe ° (3)

where F 1is Alry's stress function for the median-surface stresses
produced by the buckle deformstion (reference 10). Equation (2)

differs from equation (1) only in the addition of the term % 12% ’
which expresses the_effect of the curvature. ZEquation (3) shows

that, unlike flat plates, cylindrical shells experience stretching
of the median surface when originally straight lines in the surface
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are bent slightly. Elimination of F Yetween equations (2)
end (3) by suiteble differentietions and additions gives the
following Bingle equation in w for the equilibrium of cylindrical

shells:
32w -
DVw+E31 +tV< ax2 +or Sy cyay>+vp 0 (%)

Equation (4), which was first derived by Donnell (reference 11},
was treated in reference 1.

An alternative method for obteining a single equation in w
for the equilibrium of a cylindrical shell is to solve equation (3)
for F and substitute the result into equation (2). This procedure
can readily be carried out in the following manner. Differentiation
of equation (3) twice with respect to x gives

L 32r _ B Qv
v x2 T Bx; (5)
3%
The symbolic solution of equation (5) for ] is

Substitution of this result into equation (2) gives

N .
T o Bb gk Ot v i 3w
D W+;-év 'é—x-E'i't axa + 2T axay yay2>+P‘o (6)

Equation (6) is simply equation (4) modified by multiplication by
the operator v=*. In the present paper, equations (4) and (6)
are referred 1o as Donnell'!s equation and the modified equetion,
reapsctively.

Advantages of Modified Equation

One of the quickest and most convenient methods for obtaining
solutions of flat-plate buckling problems to any desired degree of
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approximation uses a Fourler series type of expansion for the deflection
surface w. Both Domnell's equation and the modified equation can

be solved by this method in the case of dbuckling problems involving
curved plateshaving simply supported edges.

As mentioned in the "Imtroduction," however, Donnell's eguation
is not well adapted to solutlon by Fourier series of problems
involving the stability of shells with clamped edges. The cause of
the trouble appears to be that the calculation of soms of the high-
order derivetives found in Dounell's equation sometimes leads to
divergent trigonometric series when the edges are clamped. The
modified equation, however, is applicable to clamped-edge problems
as well as to problems involving simply supported edges because
lower-order derivatives are involved.

In addition to its advantages in the soluticn of problems
involving shells with clamped edges, equation (6) has the additional
advantage that each term has a definite physical significance:

The first term gives the restoring force per unit area of the deflected
surface due to bending and twisting stiffnesses; the second term

8lves the restoring force per unlt area due to stretching stiffness;
end the remeining terms give the deflecting forces per unit area

due to applied loads. Because of these advantages, the modified
equation was adopted for general use in references 2 to T.

Both Donnell's equation and the modified equation result in
the same critical stresses for simply supported cylindricel shells,
and the two methods require essentially egulvalent mathematical
processes. (See appendix.) The characteristics of solutions by
means of Donnell's equation in the case of simply supported shells
(reference 1) - namely, the theoretical cylinder parameters, the
simplicity of calculations and results, and the implied boundary
conditions on u and v - are characteristics, also, of solutions
by means of the modified equation. The same characteristics, except
for a change in the implied boundary conditions oo u and v, also
apply to solutions of clamped-edge shell problems by meens of the
modified equation. This change is discussed in the section entitled
"Boundary Conditions."

Solution of Modified Equation by Galerkin Method

An approximate method of solving vibration and buckling problems
closely parselleling that of Ritz was introduced in 1915 by Gelerkin.
(See, for example, references 12 and 13.) The main dlstinction betwsen
the Ritz and Gaelerkin methods is thet the Ritz method begins with an
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energy expression; whereas the Galerkin method begins with an
equation of equilibrium. The Galerkin method 1s readily adaptable
to the solution of equation (6) and is now desoribed briefly.

Let the equation of equilibrium be written

Q(w) +p =0 (7)

where p 18 lateral pressure snd @ 1s scme operator im x and y
which for the purposes of this paper is taken to be linear. According
to the Galerkin method, the equation may be solved by expanding
the unkncwn function w in terms of a sultable get of functions
fi(x)gy (¥), each of which satisfies the boundary conditions but

not in general the equation of equilibrium:

— i —— . —

W= %__}3_ 81571 (x)83(7) (8)

Substitution of this expression for W into equation (7) glves
the following equation:

Z 2 ang[:fi(x)s,j(y)] +p=0 (9)

Because the funstions fi(x)gd(y) were chosen to satisfy the

boundary conditions rather then the equation of equilibrium,
equation (9) cennot, in general, be satisfied identically by any
cholice of the coefficients aij. These coefficients can be chosen,
however, to assure the vanishing of certailn weighted averages of
the left-hand side of equation (9). The weighting functions used
in the Galerkin method are the coriginal expansion functions, so
that the following simultaneous equations for determining the
coefficients a3y are obtained:

"I\

ZaniJaiJ =0 | (x0) '
J

(m=1,2,3, +..; n=1,2,3,...)
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where

i i A
Buni g = [ j fu(x)en(y) Ql;f‘i(_x)sj(y)_[ + p}dx dy (11)

The simulteneouns set of linear algebralc equations in the unknown
coefficients ajy (eguation (10)), obtained by using the original

expansion functions as welghting functions, is ordinarily the same
set which would be found by the Ritz method, if the seme smeries
expansion for w were used. A solution of any desired degree of
accuracy may therefore be obtained by the Galerkin method.

In applying the Galerkin method to equation (6} by use of
Fourier series expansion for w, expressions of the type

“ ? ai,j sin --- sin -J—l

must be evaluated. The operator v"h, the inverse of V¥ }"',

simply introduces into the denominator of each term of the series
the expression that comes into the numerator if ¥ is applied.
Thus,

PSS ey o 15 B
i h) ‘

oin 152 (32

L Z [( 1)2ai 3( _,1)2}2 gin 1ZX

This result may readily be verified by applying the operator V}"'
to each side of equation (12).

In writing equation (12) the quantity V"l*f, as defined by
the equation

vho-dr <
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wvas btacltly assumed to be unique. The quantity actuwelly is not
unique; any number of terms which vanish when operated upon by Vl"
could be added to the right~iend side of equation (12). The
omission of such terms makes the present analysis parsellel to the
analysis using Donnell's equation (see reference 1) and implies
certain boundary conditions on u and v, which are discussed

in a subsequent section entitled "Boundary Conditions.",

Deflection Functions

Simply supported edges.— For simply supported cylindrical
ghells, thc following serles expsnsions for w may be used to
represent the buckle deformation to any desired degree of accuracy
(in these functions, x 1s the coordinate in the axisl direction
end y, the coordinate in the circumferentisl direction):

(1) Rectangular curved plate (axial dimension a and
circumferential dimension D)

o0 o3

\ :
= » . ey Dy
v L_ié_ia*msin- e e s
= n=

(2) Curved strip long in the axial direction (circumferential
width b and axial wave length 2)\)

(a) Direct stresses only

2

w = sin E%Z am sin“—l’-.gx (14)
m=1

(b) Shear stress with or without addition of direct

stress . -
[>-] o0
w = gin 1‘%2_ oy sin BEL + cog ZX E by sin L (15)
m=1 m=1
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(3) Complete cylinder (lemgth I and circumferential weve
length 2X)

(2) Direct stresses only

w = sin %{-Z gy sin n:;-.__g_ (16)
m=1

(b) Shear etress with or without eddition of direct
stress

[=<] -}

w=sinl/: amsinm—%—x—+cos£%/: bme;iz'xm--%tE (17

Ii—I m:l

Clamped edges.— Prcobebly the simplest method of treating

oylindricel shells with clemped edges is to employ the expansions
in equations (13) to (17) modified by substituting functions of the

type

P, (x) = sin 22X gin -’-;E = _32; cos Lni-%l'lix; - cos S&*;Eji’f_{] (18)

wherever functions of the type sin m_:_x appser, with & similar

substitution for functions of y (all terms involving summation
subscripts m and n eare thus changed; terms involving A,

such as gin remain unchenged)., The functions @n(x) form

x }
a complete et so thatfinlite expansions for w of the type suggested
for shells with clamped edges as well as those for shells with simply
supported edges may be used to represent the buckle deformation

to any desired degree of accuracy.

Boundary Conditions

Simply supported edges.— Appendix D of reference 1 shows that,

if the buckling stress of & simply supported shell is found by meesns

of the expensions for w given in the preceding section entitled
"Deflection Function," the boundary or edge conditions implied for
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the median-surface displacements w and v are zero displacement
along each of the edges of a cylinder or curved panel and free
displacement normal to sach edge. (Although the proof glven used
equation (U4), the proof could egually well have been based on
equation (6).)

The boundary conditions for simple support may thus be wriltten,
at a curved edge (x = constant),

w=?§_.=..v.z=_2-2y-§ =0 __ (19)

and, at a straight edge (y = constent),

P ¥F .
W=S;g=u=&g=0 (20)

Clamped edges.- By a method simlilar to that in appendix D
of refersnce 1, solutions using the functions suggested in the
precedling section for the treatment of clamped edges can be shown
to correspond to the boundary conditions - zero displacement normal
to en edgs and free dilsplacement along an edgs.

The boundary condlticms for clamped edges thersfore beccms,
at a curved edge (x = constant),

- S-C R
w o= 5;(,‘ =1 = axe = O B (J_l)
and, at a straight edge (y = constant),
v >F
= s~ = = s o Q 2z
Ve TV TR - - (e )_‘_

Discussicn.- As mentionsd in reference 1, the boundary conditions
implied for u and v 1in the casse of simply supported edges are
appropriate for cylinders or panels boundsd by light bulkheads or
deep stiffensrs, which are stiff in thelr own planes but may be
readily warped.out of their planss.
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The boundary conditions on u and v appropriate for a
clamped edge would seem to be zero displacement normal to the edge
and zero, rather than free, displacement along the sdge. Comparison
of critical stresses for shells with clamped edges found by the
method in the present paper with critical astresses found by the
mothod in references 9 and 1%, giving boundary conditions u = v = O,
however, indicates that the imposition of the added requirement
of zero displacement along the edgs ordinsrily has wvery little
effect on the critical stresses.

A less satisfactory method for solving problems concerning
shells with clamped edges involves the use of functions of the type

instead of those described by equation (18). In this method, the
functions used are those for simple support taken in such combinations
that ths edge slope is zero. TUse of such functions leads to the o
same bhoundsry conditions on u and v as wore described for simply
supported edges; at the edge y = constant, for example, the boundary
conditions becoms

- S s
W Sy u by 0 (23)

The use of these functions to represent shells with clamped edges

is not recommended, however, for the following reasons: The asgocisbed
boundary conditions seem to be artificial and unlikely to be reproduced
even approximetely in actusl construction; the method lseds in some
oases to solutions that differ considsrably from the solution for

ideal clemped.-edge conditions in which w = v = O; and the solutions
obtained generally converge rather poorly.

APPLICATIONS AND DISCUSSION

Among the more difficult shell-stability problems to treat
theoreticelly are those which involve shear siresses. In fact,
until 1934, when Donnell's paper on critical shear stress of a
cylinder in torsion was published (reference 11}, such problems
wore generelly regarded as impracticeble to solve. In order %o
illustrete the type of solution to be found by the method of anslysis
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Just outlined and the effect of boundary conditions on critical
stresses, the resultis obtained for a number of shell stebility
Problems involving shear stresses are reproduced and discussed
briefly here. The problems treated are sunmarized in teble I.

Critical shear stress of long curved strip.- The critical
shear stress for a long plate with itransverse curvature is given
by the equation

72D

Ter = ksﬁﬁ;

where kg 18 a dimensionless coefficient, the value of which
depends upon the dimensions of the strip, Poisson's ratio for
the material, and the type of edge support. In figuwre 1 (fig. 1
of reference 2) the ghear-stress coefficient kg is given for
plates with simply supported edges and with clamped edges. This
golution for simply supported edges coincides with that given by
Krom (reference 15).

As indicated in the previous section entitled 'Boundary
Conditions," the solution corresponding to the bpoundary conditions
of equation (23) (dashed curve of fig. 1) is poorly convergent eand
deviates appreciably from the results for completely fixed edges.
Figurs 1 shows this poor convergence in the limiting case of a flat
plate, for which the critical stress is independent of boundary
conditions on u and v. Even a tenth-order determinent led to
a result that is T percent above the true solutlion; whersas the
result using a fourth-order determinant obtained with the deflection
functions recommended for clamped edges 1s only 1 psrcent above.

In figure 2 (fig. 2 of reference 2) the solutions given in
figure 1 are compared with the results given by Leggett (reference 9)
for simply supported and clamped edges with u = v =0 at each
edge. Throughout the range for which they are given, Leggett's
results for clamped edges differ only slizhtly from those of the
present paper. On the other hand, the previously mentioned
discrepancy between the results for completely fixed edges
(w = v =0) and those for the boundary conditions of equation (23)
(dashed curve) may be inferred from this figure to be considerable
for large values of 2. A minimum measure of this discrepancy is
the distances between the clamped -edge curves for v =0 and for
u =0 1in figure 2, since Leggett's curve must alwayslie above the
curve for v = 0.

The reascon for the marked increase in buckling stress of simply
supported curved strips when the edges are restrained against
circumferential displacement during buckling is discussed in reference 2.

-
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Critical shear stress of oylinder in torsion.- The critical
shear stress of & cylinder subjected to torsion Is given by the
eguation

=D
Tor = ¥83.
1t

In figure 3 (fig. 1 of reference 3) the values of kg are given
for cylinders with simply supported edges (boundary conditions

of equation (19)) and cylinders with clamped edges (boumdary
conditions of equation (21))}. At high veluss of 2, ‘the values
of kg for thick cylinders are glven by speclal curves for various

values of %;/1 - 42, as aiscussed in veference 1. At values

of 2 greater than gbout 100 only a small increase in buckling
stress is caused by clamping the edges. The results indicated

in figure 3 are in very close agreement with Donnell's results for
the same problem, except in the range 5 < Z < 500 wheye the
somewhat lower curves of the present paper represent & more accurate
solution.

Reference 1 shows that boundary conditions imposed upon u
and v at the curved edges of a panel or cylinder have an almost
insignificant effect on the buckling stresses, whereas conditions
imposed on v at the straight edges may be gquite important.
Comparison of figure 1, in which boundary conditions on straight
edges are considered, with figuve 3, in which condltions on curved
edges are considered, indicates that e simllar situation exlsta
with respect to restraint against edge rotetlon. .

Critical shear stress of curved penel.- The values of kg
giving the critical shear stresses of simply supported curved
rectangular panels are glven in figures 4 and 5 (figs. 1 and 2,
respectively, of reference 4). The corresponding boundary conditionms
on u and v are zero displacement parallel to the edges and free
warping normal to the edges. Figure k indicates that as the
curvature parsmeter Z increases, the critical shear stresses of
panels having & circumferential dimension greater than the
axial dimension approech those for a cylinder. Figure 5 indlicates
that, as the curvature perameter Z increases, the critical shear
stresses for psnels having an axisl dimension greater than the
circumferential dimension deviate more and more from the critical
ghear stress for an infinitely long curved plate. Reference k4
shows that the reason for this deviation in figure 5 is that at
high curvatures the buckling stresses of these panels, as well &s
those of figure 4, approach those of the cylinder obtained by
extending the circumferential dimensions of the panels.
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The effects of boundary conditlons in the limitins cases of
infinitely long cwrved strips (fig. 1) end of complete cylinders
(f1ig. 3) suggest that the curves of figure 4 are substantilally
independent of edge restraint at large valves of Z but that the
curves of figure 5 would be comsiderebly affocted by a change in
edge restraint.

Long curved strips under combined shear and direct axial stress.
Reference 5 shows thatc the theoretical interaction curve ror a
long curved strip under combined shear stress and direct axial stress
1s approximately rparabolic vwhen the edges are either simply supporied
or clamped, regardless of the value of Z. This parabola is given
by the formula

Re® + Ry = 1

where Rg &and Ry are the shear-stress and compressive-stress
ratios, respectively.

At high values of Z  curved sirips, like cylinders, buckle
at coupresslve stresses considerably below the theoretical critical
stresses. In oxder to take this condition into account, certein
modifications in the theoretical results are proposed in reference 5
for use in desigm. '

Cylinders under comwbined shear and direct axisl siress.-
The theoretically determined combinations of shear stress and direct
axial stress which cavse a cylinder with simply supported end
clamped edges to buckle are shown in figure 6 (fig. 1 of reference 6).
Considerable variation in the shape of the interaction curves
occurs for low values of Z. For high values of Z the iInteraction
curves for elther simply supported or clamped edges are similer to
the curve for %2 = 30.

Because cylinders actually buckle at a small fraction of their
theoretical critical compressive stress, the theoretical interaction
curves of figure 6 cannot be expected to be in setisfactory agreement
with experiment when a very appreclable amount of compressican ia
present. TFor semlempirical curves and a check of available test
data, see reference 6. o -
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CONCL.UDING REMARKS

A previous investiigation showed how Fourler series type
solutions of Donnell's equation can be used to simplify greatly
the stabllity analysis of thin cylindricael shells with simply
supported edges. The present paper shows that the restriction to
simply supported edges can be removed by the introduction of a
nev equation which is equivalent to Donmell's equation but is better
adapted to solution by Fourier series. This modified equation can
be solved for the buckling stresses of curved sheet having elther
simply supported or clamped edges by established methods essentlally
equivalent to those in use for flat sheet. This approach permits
& simple and straightforward solution to be given for a number of
problems previously considered rather formidsble.

Langley Memorial Aeronautlical Laboratory
National Advisory Committee for Aeronautlcs
Langley Field, Va., March 20, 1947
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APPENDIX

COMPARISON OF RESULTS CBTAINED BY USING DONNELL'S EQUATION
AND THE MODIFIED EQUATION IN THE STABILITY ANALYSIS
OF SIMPLY SUPPORTED CURVED PANELS
Solution of Donnell's Equation
Domnell's equation expressing the equilibrium of a curved

panel under median-surface stresses can be written in gemeral form
as

8

L
DV'w + aw+ haaw+21*t‘7hazw A 2w=O (AL)

5 - Fort Y e

s i
l‘O!d‘

where x 18 the exiel coordinate and ¥y the cilrcumferential
coordinate. Division of equation (Al) by D and the imtrcduction
of the dimensionless stress coefficlents kyx, k,, and kg, and
the curvature parameter 2 results in the following equation:

L 2 2
1222 3w 1= b O ot ol v
\78W+—_gra—£n+kxb"§v BE-!-kae axay lx._be 82 O(AE)

where
b2t
= @
x = %z
b2t
kg =7
8 n=D
b2t
kKo = Oy
¥ yﬁE‘D
and. 'b2 5
4 = e 1o~
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Equation (A2) can be represented by
Ql(w) =0 (a3)

where Q3 1s defined &s the operator

8, 1pz2 3+ 2ok P w2 h R Rt R
\v +-:;E-5;E+kxbev Bx2+2ke'b2v a——-——xay-l-ky_b aye

The equation of equilibrium (equation (A3)) is solved by using
the Galerkin methcd as described in the section sntitled "Theory."
In epplying this method the unknown deflsction w 1s represented in
terms of & set of functions (ses equation (8)), each of which
satisfies the boundary conditions but not in genaral the equation of
equilibrium. A sultable set of Tunctions of this type, which
satlsfies the boundary conditions for simples support, is

<0 o0

: . -
W=/ ann sin m:_a_uc sin n_%x (Ak)
=1 n=1

where the origin is teken at a corner of the plate.  Substituting
in equations (10) and (11)

mRx
fu(x) = sin =5

gn(y) = sin 13%1

Q=Ql

and performing the integration over the whole plate (limits x =0, a;
¥ =0, b) gives the set of equations
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r w w ’_ 22. a r — 2t — - -
kg o3 (22 + o2 55) momg
2 13 Sr ks (0® - p2)(n? - ¢2) =© (43)
= q:

vhere wmw=<l,2,3, ..., n=1,2,3, .~., and p and gq take only those
values for which m+t p and n t p are odd numbers.

Eguation (A5) représents an infinite set of homogsneous linear
egquations involving the unknown deflection coefficients a4 In

order for the deflectlon coefficients to have values other than
zero, that is, in order for the panel to buckle, the determinant of
the cecefficlents of the unknown derlection coefficisnts By s

must vanish. This determinant can be factored into two subdeterminents,

one involving the unlmown deflection coefficients ay4 for which

i+ J 18 odd and the other involving those coefficients for which
i *J is even. Buckling occurs, thersfore, when either of the btwo
subdeterminants vanishes. Only the buckling criterion involving
the even subdeterminent is treated here. This criterion is
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. 211 213 a20 831
m=l, n=1| My 0 + Qm:g)e 0
: o
m=1, n=3 0 M3 -5 QH&_;)E) 0

ol a_%>2_1_+ a2\ 4 @2)2 3_6_( :.:.)2
m=2, n= +9(1+b2 51492 My 5@4-1)2 +3\949

b, a2\
Se) .

n=3, n=1 o 0

m=3, n=3 o ' 0 +38 Q#r-‘?“g)e o
25\ 12

whers

21

833

0 [}

0

0] . ==O(A6)

M3

23 [ hob
=2b o . _pal 1072mts, Gg 2 8.2)2
M = + e = + ===l o km_e + N =
32kga3 Qn e wol 12

w2 elf o, oa?
kyn'b261+nb2

Divislon of each column of the determinant in equation (AS)

by the proper

b - - 2
12
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glves the simplified eguation

all<l+{;§) 213 é.+9%—2-> 5'22(11“","'1;5) a.3l(9+b2) a33<9+9gé) “es

L
Nll 0 +9 o] 0 .
I
0 Ni3 —5 0 0 '
4 4 L 36
+= - N -= +
9 5 22 5 25
Iy
0 o] -s N 0 =0
5 31
36 . ;
(o] O 4= 0 N o A
o5 33 (A7)
where
23 s (=) }-I- )1" 2
®=he s gl 192 m’a
= em—n 2 2 &z - 2 . 28’

M + o B2
n‘bﬂ\ + xn baj

The vanishing of this determinant is the criterion for the symmetrical
buckling of the shell. The same buckling criterion results from

the use of the meodified equation, as is shown in the Ffollowing
section.

Solution of Modified Eguation

The modified equatlon expressing the equilibrium'of a cuyved
penel under median-surface stresses in general form ls
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b
:Dvl*w+ 'll'g-{+o'x'b32w+2'rt82w

5 53 + oyt By2 =0 (A8)

Division of equation (A8) tv D end simplification of the result
gives the following equatiun:

ok At 2 Fu 72 2w 2 % _
Vl*w + T’b g}l + ky _'b—g- a—x-é + 2kg == -t > ky 2 ay2 0 (a9)
Equation (AQ) can be represented by
QQ(W) =0 (A10)
where Q2 is defined as the operator
bo122 L RR L 2R RR
VIR Y St B2 e a ey TR o

By use of the Galerkin method. and by use of the expression for w
given in equation (Al), the following set of equations analogous
to equations (A5) are obtainsd

o\2 Iyl
a&mn <m2 + n2 q-_) + 122°m's =z _
xh’bh(m + 2 §~) :

- e - ko2 8o |, 32ksa3 nmpg
R e b

p=1 g=1 (A11)

where m=1,2,3, ..., n=1,2,3, ..., and p and q take only those
values such thet m + p and n t q are oid oumbers.
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into an even and an odd subdstsrminant.

m=l,

m=1,

mn=2,

n=3,

m=3,

NACA TN No. 1342

As in the case of the solution of Donnell's equation, the
gtabllity determinant represcnting equations (All) can be factored

n=1

n=3

n=g

n=1

n=3

a1

&13

&31

The even ocne ia

=0  (A12)

The stability determinant (equation (Al2)) obteined from the
modified equation is identical with the simplified stability
determinant (equation (A7)) obtained by use of Donnoll's equation.
This identity holds for the odd as well as the even determinants.

Although the atebility determinants obtained by use of the two
eguations are identical and yield ldentical huckling loads, the
determinant in equation (A7) consiste of the coefficients of

- 22 .
aij<i? + %é) , Wwhereaes the determinant in eguation (Al2)

conalsts of the coefficients of aij'

patterns are different.

flat plate

(2=0).

Accordingly, although the
buckling loads found by the two methods are the same, the buckle
Of the two buckle patterns the one found
by the use of the modified equation is believed to be correct.
This concluslion has been verlfied for the limiting cass of a
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TABIE I.- IRDEX OF PROELEMS TREATED

Problem ¥igure Reference Bige Condition
Simply supportsd (u=0, vy0)
1 2 Clamped (ud0, vwO)
Clamped (u=0, o)
Simply supported (u=0, vy0)
2 Clamped (ugo, v=0)
Clampsd (u=0, vyO)
2
9 Simply supportsd (umveO)
(Logaett) Clamped (umveO)
3 3 Simply supported
Clamped
v
h S
4@} L L Simply supported
\v
” L 5 )-8 Simply supported
——
]ml Kot 5 Simply supported
shown Clamped
4
% 6(e.) 6 Simply supported
N»S— 6(p) 6 Clemped
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Figure 1.- Critical-shear-stress coefficients for a long curved strip,
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{Fig. 1 01 reierence 2.)
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Figure 2.~ Comparison of Leggett’s solutions with present solutions for
critical-shear-stress coefficients of 2 long curved strip. (Fig. 2 of

reference 2,)
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(Fig. 1 of reference 3.)
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Fig. 6 NACA TN No. 1842
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stress coefficients for cylinders., (Fig. 1 of reference 6.)
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