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NATIONAL ADVISORY Com= FOR AERONAUTICS

TEICAL NOTE NO. 1347

CRITICAL COMBINATIONS OF SEUAR AND LONGITUDINAL DIRECT

STRESS FOR LONG PLATES WITH TRANSVSE CVATUJE

By S. B. Batdorf, Murry Schildcrout, and Manuel Stein

STRWY

A theoretical solution is presented for the buckling stresses
of long plates with transverse curvature loaded in shear and longi-
tudinal direct stress. The theoretical critical-stress combinations
for plates having either simply supported or clamped edges are given
in figures and tables and a comparison is made with a previous theo-
retical solution for simply supported plates.

In the compression range theoretical curves are unsuitable for
use in design because long plates with substantial curvature loaded
in axial compression buckle at stresses that are much less than the
theoretical values of critical stress. An investigation was there-
fore made to determine the modifications required to make the theo-
retical curves compatible with the available experimental data for
plates in axial ccmpression. Interaction curves based upon this
investigation are provisionally reccnmended for use in design. Both
theoretical and suggested design curves are essentially parabolas,
a circumstance which permits simple approximate interaction formulas
to be given.

fNTODUCTION

Theoretical solutions to a number of problems concerned with
the determination of the critical stresses which cause long curved
plates to buckle have been presented in various investigations. In
references 1 to 3 shear alone acting on both simply supported and
clamped plates is investigated; in references 4 and 5 direct axial
comression alone acting on both simply supported and clamped plates
is investigated; and in reference 6 the critical combinations of
shear and direct axial stress for simply supported plates only are
given.

The present paper deals with the determination of the combina-
tions of shear and direct axial stress which cause plates with either
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simply supported or clamped edges to buckle (appendix A). The
present solution as well as the solutions of references 1 to 6 is
based upon the small-deflection theory. As curved plates loaded in
axial ccmpression may buckle at a stress much less than the theo-
retical value, the theoretical interaction cures of reference 6 and
the present paper must be modified in the compression range for use
in design.

An investigation was therefore made of available experimental
data on tho critical stresses of long plates with transverse curva-
ture loaded in axial comprassion (appendix B), and approximate inter-
action curves incorporating these results were developed and. are
provisionally recommended for design purposes. The results of the
present analysis are given in the form of tables, interaction curves,
and formulas.

SYMBOLS

b width of plate

m, n, 3 integers

r radius of curvature of plate

t thickness of plate

u displacement of point on median surface of plate in axial
(x-) direction

v displacement of point on median surface of plate in circum-
ferential (y-) direction

w displacement of point on median surface of plate in radial
direction; positive outward

x axial coordinate of plate

y circumforential coordinate of plate

flexural stiffness of plate por nit lenth Et3 2)

2 Young's modulus of elasticity

Q mathematical operator defined in appendix A
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Z curvature parameter or

an' bn  coefficients of deflection function3

k shear-stress coefficient appearing in equition T =
b -t

kx  direct-axial-stress coefficient appearing in equa-

tion r =

b2t

Mn  diagonal element in stability determirant

(P theoretical shear-stress ratio (ratio of shear stress
present to theoretical critAcal shlear stress in absence
of other stresses)

e empirical direct-axial-stress ratio (ratio of direct
( XP axial stress present to empirical critical direct

axial stress in absence of other strosses)

t theoretical direct-axial-stress r3tio (ratio of dir3ct

x h aial stress present to theoretical direct axial stress
in absenice of other stresses)

Vm, Wm deflection functions defined in appendctx A

b Aoession For
, VTIS GRA& 01

DTIC TAR 1W
Usamemed 0

X half vave length of buckles in axial dArection; e

Poisson's ratio

direct axial stress in plate Dirn 1bst_
Yv.t112ill6y

shear stress in plate 3 A1s eer

%lt Q4I&
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V V +2
6 2 .Y2  4

v inverse of v defined by V-4(7 v  w

RrESULTS AVD DISCUSSION

Thooretical results.- The combinations of shear end axial stress
which cause long plates with transverse curvatiire to buckle may be
obtained from the equations

k, jt2D
T =-

b2 t

b 2 t

when the stress coefficients k. and C . are knovn. The theo-

retical combinations of atros coefficients for plates with simply
supported edges and clamped edres are given b , the interaction curves
of figures 1 and 2; respectively. In these figures, the dashed curves
for Z a 0 are flat-plate solutions obtained from reference 7.

In figures 1 and P interaction curves are presented for var-lous
values of the curvature parameter Z up to 30. The lnteraction
curves are very nearly parabolas passin3 through the points giving
the critical stress coefficionts for shoar alone and for axial stress
alone. These stress coefficients for aiy value of Z my be obtained
from the theoretical curves of figures 3 and 4, which incorporate
results derived in reference 3 and in appendix A of the present
paper. Additional calculations made for curved plates both with
simply supported and with clamped edges indicate that for all values
of Z up to at least 1000 the interaction curves continue to be
approximately parabolas (computed values Givei1 in t3ble I). These
results are confirmed for simply supported plates by the results
given in reference 6.

Rapirical results and &esig curves,.- Reference 8 shows that
curved plates in shear buckle at stresses close to the theoretical
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critical strassos. Plates of mod.3rate or hie~h curvature in axial
compression, howemverbuckle at stresses much less than the theo-
retical critical stresses. (See references 9 to 11.) The theo-
retical interaction curves are thex-efore serlo.w1j iionservatve
for plates of moderate or hiEh curvature when &pprecicrble compression
is present and are thus unsuitibl3 for use in the3 das-,gn of such
plates. This discrepancy between the actual and. the theoretical
compressive stresses is believed to be due to nonlincar ef.Cecto wii
are not accounted for in the smiall-deflection theory. The fru~ction
of the theoretical critical stress at which these effects assure
importance depends upon the Initial occentricities of the plate.

Because the ratio r/t is a rourji measure of the initial eccen-
tricities lik~ely to be p2-ceent in practical construct.on, the cvsilnble
experimental critical compressive etresses vere plotted in separs-te
groups accord~lne to the value of n/t of the pla '.-e and a separate
curve was faired throirh each .7oup. (See appendix B3.) The rosults
are summarized in fig~xre 5. The empirical curves have the came
general trend as the theoretical currves and at liC.j1 values of Z
approach trai3lit lines G~iven approximatelyf by the formula

ic. =(0.68 - o.ooo.r)z

for values of n/t between 500 and 1000. (See appenoix B.)

The true 'nteraction curve for a -];I~tea curved plaete mutct pass
throu*h the exponimental point foi- pure comprcesion, Which can be
obtained frua firure 5, end. ssc tlirou-,i the ezperimental point for
pure aheer,. which fall.s sli.ttl-; below the theoretical value iLndi-
cated in figure 3. Because the small-defliction theory C'ives fa~.rly
accurate results except in the presence of substentlal axial com-
pression (reference 12), the theoietical cur'ra muct be approxlmately7
correct ini the tension and part of the comresoion rno. The true
interaction cua-ve is therefore presumably sor.*v-hst like the dashed
curve in fitsure 6. The absence of experimantnl date does not permit
accurate plotting of this curvo; theref ore an approximate dcsi(n
curve consisting3 of two parts (as indicated ii, fir. 6) is auezestel.
One part, applyinG to the compreesoion range, in the parabola passin-
throu*., the points corresponding to tho experimiental critical com-
proshive stress a,-d tile theoretical critical .ohemr stress (obtained
from figs. 5 and. 3, respectively). The seconA. part, applying- to the
tension range, is the theoretical curve wich is essentially the
parabola paeinC; through tho points coni'esponding to the theoretical
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critical stress in pure ccmpression and puro shear (obta.ned from
figs. 4 and 3, respectively).

IrTR.CT1iO FOrMUAS

The theoretical Interaction curve for - lorv, pl.te vith trzes-
verse curvature loaded in shear and loniitudJnal dJrect stress is
very nearly a parabola passinG throuS , the theoretical pointe corre-
spondine to shecr alone and to axial comrescion alone. This parabola
nay be expressed in stress-ratio fons by the equation

(IR)th2 + Rx)th- 1

As lone pltea with trnnsverce curvature in exial compression
buckle 3t a stress consieerablj less than the thorotic~l critlcl
stress, the theoretical interaction curve ii unauitable for daci.n
purposes whenever a sub-tantiel amwunt of compression is presont.
In the absence of teat data on curved plates htcklin4 wider combined
shoar and c.zpresslon. an interaction clave ccmlosed of two parts is
provislonally reccomended for Oeoirn. This interaction curve is
described by the follcvwnG equ ,thons: For combined ohear crA com-
pression,

(Re) 2 .(r_), , 1
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W and for combined shear and tension,

Langley Mmorial Aeronsut~ca1 Laborotoiy
National Advisory Cc=Itteo f'or .Xronaut!C3

Ian2ley F!.eld, Ire., March 20, 19k~7
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AIT=1. A

TEO TICAL SOUYITION

Equation cf equlibrium.- The ccmbtnetions of shear 'end direct
axial stress vhich cause long curvad plates to buckle ray be obtatned
by solving the following equatlon of equillbriwu (reference 13):

DV 1 .2 7 -~ +_ (Al)ay3x

vhere x and y are the coordinates ind$.cated in the following
figtwe:

Division of equation (Al) by D gives

Ii 12Z2 -i4i 4v X 2 a~V (2A2)VV +-V ~~+ 21c-----+ k - 0 (A2
b42~Z) X 2x
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vhee the d imn Ionless parmetere Z, kt, and k are defined by

rtb
,..

ke Ttb2

kx axtb2
k x 2D---

Zquation (A2) can be represonted by

Qv = o (A3)

vhwe q is defimd by the operetor

= 7- 4 -2k4 - -

MethA of solution.- The equation of equilibrium my be solved
by =.in6 the Olerkin method as $ivan in reference 14. In the appli-
cation of this mthod, equation (A3) is solved by the use of a suitable
sale. expansion for v as follow:

v. a La.V. + bz (A)

In ezreeslon (A) the functions Vl, V2 , •V j , •WW . • Wj

iMivlduaUy satisfy the bondary conditions on v but need not satisfy



10 rzAA 7W k . 13 147

the equation of e.quilbrium. The ceff icients am  end bm are
then determined by the equations

L b f2X0o fo vn ex ey W o

(A5)

L b 2Xfo WQv dAy -

here n a i, 2, 3, * & J 3-

The boundary conditions coidered In the present paper are as

follow: for simpl supported edps, v u - * 0 and v Is

wuwestraned; and fir clamped ede, v a- O v * 0 aM u is

unreetzralnlled•

Solution for pl t. .s with siwTlJr ' ,uporte, e4fse.- The folloing
trilte eroos axprnfm, %hlo ic; L.ncrp4,.rnts a oct ef tu&cttin3 that
is ccmplete (subject to tho ltlmtst!on of periodicity wI.th ve
lenth 26 in the lo g'tu nl directlon), can be unod to repreesnt
exctly the dioplacament v of crve plate* vith Pimply oupportei

vasim an ein n o + co. Fb= sin (A6)
X > b b

In adAtlom to mtisfying the conditione on v at the edgos. expres-

slon (A6) allo mtiaflee the conaltions that the 1'-al &igplacem~nt u
ts equal to 0 and the circumferential dispIa eent v I' unreetrained
at the edgs (see reference 12). xpreoasion (A6) is equivalent to
expreselon (A) if



MACA TIY No. 13.7 fl

Vn . w sn si en
b

(A)

H coO sin
b

Substituticn of exprese.m (A6) and (A) into oquations (A5)
and I tet Mtiu over the limits indicated give

glU(2 2 2j -2-
g44 4. op• M.) •p -P - M2=

(A8)

•n kx)2 0 p n,.

g____ 21 0,2)? n2  m2

here m t n is odd and

p.-

n- 1, 2, 3, a •

*~ quatiae (A8) have a solution in which the coefficients an
and the coefficients bn aro not aUl zero only if the following
detwrlrant of the coefficients of an and b n vanishes:
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a, a. a3 a4  a5 a6  ... b, b2  b3  b4  b5  b6  ...

l 1 M 0 0 0 0 0 0 0 6
ice3 ) 35

n-2 0 1- 0 0 0 0 -.. 2 0 o 0 .
T 3 5 21

1 6 12 2
r3 0 0 jM 3  0 0 0 ... 0 - 0 0 0 3

i- 4 0 10 40 12 o O o ..
8 F5 9

n=e. 0 0 0 0 1 0 ... 0 1 20 9 0 L..
T.m1 9 9

n=6 0 0 0 0 01 6 0 0 30

.3 11

. . . ... . . .. . . . (A9)1 6- 12 030 0

n=2 0 0 0 0 0 6
3i3 3 3 11

n= 0 0 5 0 "0 ...3 0 0 0 0 0 0

3 1 3
n4 0 2 0 L 0 0 0 01 0 0 ...n3 0 5 21 3

30 6 2 o 0 o ... o o-o M 0 0 o.

15 7 9

n= 0 o 30 . 0 0 0 0
215 9 o "o

n16 6 0 2 0 L0 0 ... 0 0 0 0 0

35 3 11

fp t ft t ft f. ft t ft t ft t t ft ft

ft t ft t ft t ft ft ft t ft t f t ft
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where

8p- 4(n2 + P2) 2  ~

By a rearrangement of rows and colvnns, the infinite determinant can
be factored into the product of two mutually equivalent infinite subdeter-
minants. The resulting equation, which determines the critical stress
combinations, is

al b2  a3  b4  a5  b6  ... b, a2  b3  a4 b5  86  ...

-11 12. 0 0 06 0.n=l21 2 0 4 1 0 0 0 0 0 0 .e 15 o 35
n--2 0 -L 60 i ... 0 0 0 0 0 0o .

3 ks  5 21

n=3 0 - M3 12 0 0 0 0 0 0 0o.
5 ks3 T 3

n0- 4 121M4 20 0 ... 0 0 0 0 0 0 •.

15 7 k 9

10 0 -22 1 0
219 0

n=6 6 0 2 0 30 _M 0 0 0 0 0 0
35 3 11ks 6 .

. . .a o . o .

n=1l 0 0 0 0 0 0 see -M1  0 - 061 o o o ""k s 1 3 "15 "35"'

2 1 6 10
n=2 0 0 0 0 0 0 ...---- 0- 2 0 ...

n=3 0 0 0 0 0 0... 0 O 1  -2 0 -0
5 k.,3 T 3

21 9 20

6 2 30 1
n=6 o 0 0 0 0 0 ...- 0 -3 0 0 - '6

4 • •

AIO )
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The first approximation, obtained from the second-order deter-
minant (upper left-hand corner of either of the infinite eubdeter-
minants), is given by

ks 2 = _$41M2  (All)

The second approximation, obtained from the third-order deter-
minant, is given by

ks 2 1M2M3  (A2)
36 ~4

e-:l+ _M3

The third approximation, obtained from the fourth-order deter-
minant, is given by

ks. 82 _6 M M J122 M2+ ,.4 + M_'+4 + M+ MM = o (Al3)
5\75/ 5 i9. 2-5 1 9j~

Each of these equations shows that for a selected value of the
curvature parameter Z the critical combination of stresses which
will cause a long curved plate to buckle depends upon the wave
length. Since a structure buckles at the lowest stress at which
instability can occur, ks . is minimized with respect to the wave
lengh by substituting values of P into equations (All), (A12),
or (A13) 'or a chosen valua of kx  until the minimum value of k.

can be obtained from a plot of k. against P. Table 1 presents

the computed interaction data; the results are substantially the
same as the results of reference 6.

In order to determine the critical stress coefficiento for the
buckling of a long curved plate loaded in axial compression alone,
equation (A1O) is solved by setting k, equal to zero. In the
resultant equation all the off-diagonal term are equal to zero.
The solution to this equation, is

M1M2M3  Mn = 0 (AI4)

.. . . .. .. == == , .. == -, I II I I
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For the minimum value of the stress coefficient that satisfies equa-
tion (A14), the relationship

M o = 0 (Al5)

must be satisfied. The value of kx  given by equation (A15) is

=x (0~2 + 12+ 12Z202 (A16)

P2 +9(2+)2

Equation (A16) shows that the buckling stress is a function of
the wave length of the buckle and the minimum value of kx  is found

by minimizing k x  with respect to 3 in a manner similar to that

used to find the minimum value of k s  in equations (All) to (AI3).

Figure 4 gives the critical axal-compressive-stress coefficients
for long curved plates with simply supported edges; the results are
the same as the results presented in reference 4 for plates with
simply supported edges.

Solution for plates with clamped edges.- A procedure similar to

that used for plates with simply supported edges may be followed for
long curved plates with clamped edges. The deflection function used

is the following series:

V Sina. l .Ices (m- l)Y os (m l) icy
11Y si~a [co b b o

+ COB fix Zb m os ,-(m ) - cos (m +)y (A17)
0 b b I
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Each term of this series satisf4.es the conditions on w at the
edges and in addition the conditions that the axial displacement u
is unrestrained and the circumferential displacement v is equal
to 0 at the edges (see reference 13). In this case,

vn  sin , os (n .. coo (n .]

(A18)

F0 1X0 (n_ -)i Cos (n+

where n 1, 2, 3 . . .

After operations corresponding to those carried out for the
case of simply supported edges are performed, the following simul-
taneous equations result:
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and

+n + l2z? 0

The infinite determinamt formed by equations (A19) can be rearranged
so as to factor into the product of two mutually equivalent infinite sub-
determinants, as in the solution for long curved plates with simply sup-
ported edges. The critical stress cobinations are obtained by permitting
one of the subdeterminants to vanish. The resultant equation is

aI  b2  a3  bS 9  b6

n1 1 LiM+t,2 32 -1 64. 0 32
s 1 105 315

n=2 L2 ~-I.m 35-2 _jN 32 0
11 -1-05 ks 3 35

1 135 LI_1472 1-37

315 ks1155

64 11479- 1 Q4 r 41 6b 1 M.=
i5 k 315 k 693

nm 2-. I 41601/ 9440

32 1" - ..._
35k693 T~~

n.6 32 0 n376 -1 9144o 1

315 1155 T. 5

(A20)
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The first approximation to equation (A20), obtained from the
second-order determimnt (upper left-hand corner of equation (A20))),
is given by

ks 2 = (152 +M(A1
= 3 ( 2.) + M2)(M1 +13)(A )

The second approximation, obtained from the third-order deter-
minant, is given by

ks2 = .+ M3)F(2M+M2)(M2 + M4) - M22] (A22)

32 2 - 35 2+

The third approximation, obtained from the fourth-order deter-
minant, is given by

4-3 A7'[(352(5- l {3 (  3
s k \+ 1/ '

k [I( \i(35I _ ~ 2 1/ _ 72\

V[l/315/ \io05)J - i l + M3)

*+32 (~2(a4 + M)(M3 + M5) + (64)2 + 143)(M2 +M)

S( 2 + M4) (M43 + ' ) - (-)~2M(11+13

/6- 3 5 2 \MJ 6A) /74~147 M3 (2140 + 2

~15]\105J~3V 1 5 3

/4 /61(6I'14 14 [( 52\" + (6I4\(472)]

+ [10M+MO + X M(M 5 + MP3K - (A23)
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These equations are solved for values of Z between C a.d 30
in a manner similar to that used in the problem of the buckling of
curved plates with simply supported edges - that is, bj substituting
values of 3 into cquations (A21), (A22), or (A23) for each value
of Z and a given value of Icy until the minimum value of ks is
obtained from a plot of 0 against corresponding values of k.s • As

the value of Z increases, the higher Fourier components of the
buckle deformation increase in relative importance, and instead of
determinants in the upper left-hand corner determinants farther down
the principal diagonal are used. The computed interaction data are
presented in table 1.

In order to determine the critical stress coefficients for the
buckling of a long curved plate in axial compression, equation (A23)
is solved by setting ksa equal to zero. The solution then is

[0(M+M4)+ + [MI(M3 .+- +M3M] = 0 (A24)

Equation (A24) is solved in a manner similar to that used for
the problem of the buckling of a curved plate with simply supported
edges under axial compression - that is, by substituting values
of 1 into equation (A24) until the minimum value of kx is found
from a plot of k. against P. Figure 4 gives the critical axial-
compressive-stress coefficients for long curved plates with clamped
edrges, and these values are in substantial agreement with the results
presented in reference 5 for plates of low curvature with clamped
edges.
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APPr"DIX B

D RMNATION OF DMaRICAL CURVES FOR BUCIKLNG

CP LONG PLATES WITH TRANSVERSE CURVATURE

LOADED IN AXIAL COMPRESSION

Curved plates loaded in axial compression buckle at loads which
are much lower than those predicted by theory (see references 9
to ii). In order to determine the loads at which actual curved
plates would buckle an empirical investigation was carried out.

When plates have appreciable curvature, the critical ccmpres-
sive stresses are virtually independent of the ratio of the axial
length to the circumferential width of the plates, if this ratio is
greater than about 1. The test data obtained in various investi-
ations for the buckling of curved rectangular panels having a ratio
of axial length to circumferential width greater than 1 were plotted
in figures 7 and 8 by using the parameters of the small-deflection
theory. These figures choir that as the radius-thickness ratio of
the plates increases the buckling stresses decrease. A series of
curves depending upon the ratio of radius to thickness was there-
fore drawn through the average of the test points; these curves give
the compressive-buckling-stress coefficients for actual curved plates.

At high values of Z the curves approach a series of straight
lines which are parallel to the theoretical curve. These straight
lines are functions of r/t and may be approximated by the equa-
tion k. - CZ where C is a function of r/t expressed by the

equation C = 0.68 - 0.0005y. This expression for C, plotted in
t

figure 9, was obtained from experimental results given in figures 7
and 8. As Z decreases and approaches zero, the empirical curves
approach the value of 1c. a 4 which is the theoretical compressive-
stress coefficiont for the buckling of flat plates vith simply sup-
ported edgses loaded in longitudinal compression. (See curves for
simply supported plates in fig. 4.) The empirical curves of figures 7
and 8 may therefore be used to dotermine the compressive buckling
stresses of curved plates with simply supported odges.

In order to detormine the stresses that cause curved plates
with clampod edges to buckle, it is necessary to modify the curves
of figures 7 and 8. The longitudinal loads which cause bucklin6
are practically independent of edge restraint at large values of Z.
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(See fiCG. 4.) Flat plates vith c]',mped edCee loeded lonC.tudinally
vill also buckle at a otress which aTe.33 closely with the theo-
retically prodicted value (reference 15). The curves of fituree 7
and 8 are therefore modified for curved plates vdtli clamped edges
by fairing smooth transition curves between the theoretical values
at low values of the curvature parameter Z and the empirical
values established for the buckilng of curved platee at hi h valueo
of Z. The results are ahoum as dashed curves in fiure 5.

• • -- . lln nla a m a a a n m a m a da • m i m l l l I l l0
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T HEMLTICAL CCMJIDATIO1iS OF AF-3TraSS ID DMECr-A$XIAL-SRESS

COEFFICIEMTS A C .PO'DI, VALUES OF 032

Firut Second [ Third

Z k approxU1tion epproxmatiol i approximation

k k a o2ks

5.34 .60 .33 .6- - - -

1..76 .. 265 1.0 .265 1.0 --- -- -

10 - u 8.95 .P8 8.4. 8.up5 .33
-2 8.o0 0.30 7.63 .39 7.63 .4o
2 5.92 hl 5.67 .47 - - -.-.-
4 4.55 053 14.41] *57 ---

53.71 .60 ..64
6 2.65 .7 2.61 .75
7.03 .56 .91 .56 .o

30 -5 12.58 .1 8 11.-9 .12 11.92 .12
-2 11.73 .11 11-18 .12 ---- a-

5 9.58 .12 9.24 .12-
10 7.80 .12 7.60 .12
15 5.67 .61 5.58 .12
18 3.8 12 3.95 ----
21 .55 .12 .55 .12 . ...

100 -10 21.80 .03 20.61 o41 20.61 o04
20.7 .03 19.83.0 .3 ----

S 16.54 6 .03.16.0. .03
1.0 12.57 .03 12.35 .C.
50 10.13 903 10.04. .03
60 7.15 .03 7.11 .03
65 1.7 .03 1.85 .03 ...-.-619.5 . .3 ... o ...

NATIONAL ADVISORY
C0WlUE FOR AERONAUTrICS
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TABIL 1 - Continued

THECRETICAL COMBINATIONS OF S _A-STESS ANTD DMECT-AXIAL-STESS

COEFFICIENTS AND CORRESPONDING VAIUES OF 02 - Continued

First Second ThirdL
approx mation approximation approximation
ks 132 ks 2 ks 2

Curved plates with simply supported edges

300 -100 42.9 0.01 40.58 0.01 40.53 0.01
-50 33.8 .01 36.90 .01
0 34534 .01 32.95 .01 -

I00 24 .i0 .01 23-60 .01 ---

150 17.5 .01 17.3 .01 ..... .....
210 i.8 .01 .8 .01 1 .... ....

1000 -200 72.0 .03 68.65 .003 60.55 .003
0 62.6 .003 6o.16 .oo31 60.03 .003

200 52.0 .003 505 .003I 50.34 .003400 39.5 .003 38.7 .003...

6oo 22.6 .003 22.4 .003
700 3.6 .003 3.6 .003

Curved plates ith clamped odges

-5 12.78 1.03 12.11 1.2 11.91 1.23
0 9.59 1.41 9.34 1.5 .....
1 8.88 1.5o 8.66 1.6 .....
3 7.19 1.75 7.15 1.8
5 5.16 2.o0 5.15 2.1 ,
7 1.87 2.28 1.09 . 2.3 ...
7.09 0 2.30 .....

5 -6 14.23 1.10 13.14 1.26o 10. 46 1.56 10.00 1. 67 ...

2 8.94 1.80 8.69 1.8o
7.20 2.07 7.12 2.08

6 5.06 2.35 5.06 2.35 .....
7.5 2.73 2.53 2.47 2.60 ......
7.97 0 2.75 ----- -----

RATIONAL ADVISORY
COMITTEE FOR AERONAUTICS



NACA T N ITo. 1347 27

TABIE 1 - Concluded

TEOPJTICAL COMB 7ATIONS OF SIMAR-STMESS AlD DIRECT -AXIAL -STRESS

COLFF!CIINTS AID COTiMESPONDITG VALUES OF P2 - Concludted

I First SeconL Third
app2'oximation approximation I approximation

Zk I k 1II ks 0 2 ks 0 2 II ks pI 2

CwuveO. plates vitl clamped crdes

10 -7 17.13 1.30 14.84 1 1.o
0 12.69 1.92 11,49 .00 ..
1 11.06 o.05 10.93 2.13
5 5 2.50 8.7 !-2.6

7 6.62 3.00 6 .5 2 2.95
9 4.O0 3.34 3.98 3.36

10.14 0 3.75 ---- ---

30 -15 3.92 P.00 23.85 1.u5 23.22 i.80
3.32.65 18.10 2.75

5 23.86 4.20 16.21 3.-5
10 18.93 5.20 13.64 4.20-
15 13.32 6.50 10.51 5.50
13 9.50 7.4o 8.18 6.-o
21 4.85 8.6o 4.72 8.35
22.39 0 9.44

1000 250 105  •25 92.5 1 • 4
4oo f97.5 .22 78 .56 -----
500 90 .24 68.5  I .62 62.5 1.4

NATIONAL ADYVISOPY
CO 4TTEE FOR AtS0NAUWICS
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Fig. 4 NACA TN No. 134 7
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Figure 4.- Theoretical compressive-stress coefficients for long
plates with transverse curvature having either simply supported or
clamped edges.
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Figure 5.- Design and theoretical compressive -stress coefficients
for long plates with transverse curvature having either simply
supported or clamped edges.
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Figure 7.- Test points and design curves for plates having radius-
thickness ratios of 500 and 1000 compared with theoretical curve
for plates with simply supported edges loaded in axial compression.
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Figure 8.- Test points and design curve for plates having radius-
thickness ratio of 700 compared with theoretical curve for plates
with simply supported edges loaded in axial compression.
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