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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1312

. CALCULATION OF THE BENDING STRESSES IN
HELICOPTER ROTOR BLADES™

By P. de Guillenchmidt
INTRODUCTION

The problem of determining the static and dynamic stresses on the
blades of rotary-wing aircraft in forward flight has occupied the atten-
tion of many engineers of every country for a long time. Up to within
the last few years, however, no satisfactory solution has been found for
blades having a distribution of mass and rigidity varying along the span.
In France, Mr. Dorand had for many years (1932 with the Breguet-Dorand
gyroplane) used a graphical method which gave satisfactory results; how-
ever, it was too long and called for precise diagrams on account of the
graphic double derivations involved. More recently, American engineers

. have developed several methods which, while affording correct solutions

in the general case, also require a volume of calculation, which increases
at an appalling rate when the number of points examined on the blade are
to be increased or higher harmonics for the external forces acting on the
blade are to be introduced. Accordingly, it has been necessary to intro-
duce more approximate methods, and it is these methods which are usually
employed in design.

The purpose of the present report is to describe a comparatively
rapid method of calculation which gives a correct theoretical solution
of the problem in the most general case. This method is the result of
collaboration between the Bureau of Calculation of the Helicopter Division
of the National Societies of Airplane Construction for South Eastern and
for Central France, set up within the Committee of Rotating Wing Units
of the French Association of Aeronautical Engineers and Technicians,
(A.F.I.T.A.), on the instigation of Col. Garry, Chief of the Section of
Rotating Wing Units of the Technical Service Division of the Air Ministry.

The method is based on the analysis of the properties of a vibrating
beam, and its uniqueness lies in the simple solution of the differential
equation which governs the motions of the bent blade. It is applicable, O
whatever the limiting conditions may be (blades hinged, blades clamped, D
blades fitted with dampers, etc. . . .). It requires, strictly speaking,
the preliminary calculation of the natural frequencies and mode shapes of .. .___ .|

¥iCalcul en Flexion de Pales de Giravions." S.N.C.A.C. Report,
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2 NACA TM 1312

the blade in rotation. This calculation can be reduced, however, as will

be shown later, in a certain number_of cases, to the calculation of the -
natural frequency of the first model, which reduces the calculation

required to some extent.

For the explanation of the method, let us take the case of a hinged
blade in flapping motion and impose the usual restrictive asumptions,
which are:

(a) The twisting deflections of the blade are negligible.

(b) The blade is rigid in its plane, that is to say, the drag
deflections are negligible with respect to the deflections
normal to the plane of the blade,

(c) The deflections and the flapping angles are small, hence their
higher powers can be disregarded and we may assume

cos p~1 sin B~ tan B~ B

(d) The bending deflections of the blade do not influence the aero-
. dynamic forces acting on the blade. Included, however, is a

term for the aerodynamic damping due to the fact that the vibra-
tion of the blade produces, for each element, a change in the
relative velocity, and consequently ©f the angle of attack,?

SYMBOLS
R radius of rotor
r distance of blade element from axis of rotation
X abscissa, along axis OX of the rigid blade, of an element of

the elastically deflected blade, with the flapping axis as
origin (fig. 1)

3 abscissa along axis OX

Yy ordinate of a point of the elastically deflected blade along
an axis OY normal to axis OX

1The "mode 0" is that which corresponds, for a hinged blade, to a
vibration without bending, that is, to flapping B. The mode 1 for such
a blade is then that which corresponds to a vibration of one node.

2This damping term has, obviously, no significance when there is
separation of flow, because beyond angle of separation the normal 1ift
coefficient is practically independent of the angle of attack. -
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a distance of the flapping hinge from the axis of rotation of
’ the rotor
B flapping angle of the rigid blade
m' mass of the blade per unit length at a point under consideration
1 blade chord
E Young's modulus of the blade material
I moment of inertia of a normal section of the blade
w angular velocity of the blade
t time

V¥ = wt azimuth angle of the blade at time t

¥n phase difference of the azimuth angle due to damping

\' forward speed of hellicopter

v resultant velocity of the air on a section of the rigid blade
VN normal component of velocity v

Vip tangential component of velocity v

2] angle of attack of a blade section

) angle of the resultant velocity v with the normal plane

Ja' vy angle of velocity v with the resultant velocity on the

deflected blade (?LJ%?ifi)

a angle of the normal plane with the forward velocity
V) ratio of advance (V_co_s_&

wR
p air density

dc,/di1 lift-curve slope of the profile

g acceleration of gravity
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8 static moment with respect to the axis of rotation of the part

R .
of the blade located beyond the abscissa x (f n'(a + §)d9
x

[ coefficient of damping due to deflection of the blade. (See
text. )

N4 natural deflection function of order 1

vl,O natural frequency of the order i of the nonrotating blade

Vi,w natural frequency of the order 1 of the blade caused by

rotation with angular velocity

€1
auxiliary functions, dependent on time only
by
n order of a harmonic in Fourier series
na, nb subscripts of terms in cosine and sine of a Fourier series

THE EQUATION OF DEFLECTION OF THE BIADE

Let us consider the forces which act at S on a blade element of
span dx in the plane YOX. (See fig. 1.) These forces are:

dac
(1) The elementary 1ift3 dF = % 1 H-Z- <6VT2 - VNVT>dx

(2) A corrective term of the damping of the 1lift force due to the
flexural elastic deformation of the blade. This term is of
the form

-Ky ax

(3) The weight dp = m'g dx, the components of which along OX and
OY are, respectively

m'g sin B dx (negligible)

m'g cos B dx ~ m'g dx

:{I’his elementary 1ift already includes, according to the definition
of Vg, a term due to the aerodynamic damping of the flapping rigid blade.
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(4) The centrifugal force of rotation m'uPr dx, the components of
wvhich ailong OX and OY are, respectively
m'ef(a + x cos B)dx ~ m'afr dx
and
m'e(a + x sin B)dx =~ m'oPrf dx
(5) The force of inertia of flapping: -m'xp dx
(6) The force of inertia of deflection: -m'y dx
Strictly speaking, the following forces should also be included:
(7) The centrifugal force of flapping: m'xBf° dx

(8) The Coriolis force due to the simultaneous action of blade
deflection and flapping motion:

-2Bym' dx

however, we shall disregard them in relation to the centrifugal force of
rotation.

For the blade element d& to be in equilibrium, it is necessary to
add to these forces the unknown actions of the adjacent elements on the
element under consideration.

Calculation of Ky

. dacC
Ky=%lgi-3-v2up

Vr _ur + V.cos a siny

cos @ cos @

op = LS8 P (gee fig. 2.)
v

y cos2p

ur + V cos a sin ¥
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It becomes

d
K = % 1 agﬂ (ar + V cos a sin V)

Since the calculation can be made only when the coefficient of the
damping term due to the deflection is independent of time, the periodic
part in V sin ¥ will be disregarded. This reduces the problem to the
corresponding mean speed of the air with respect to the blade element.

Hence
ac
K=£81-"%2ur
2 ai

The differential equation of the blade then reads

2 2 R —
& (E1 5‘-—%)- wg_c_l__dif m'(a + £)dt |+ m'y + Ky
dx® \|  dx dxldx J

ar N P ] 2
— -m - - m'w r 1
g m'xp B (1)

The dots signify the derivatives with respect to time.

This equation of the partial derivatives must be completed by four
limiting conditions which define the integration constants, namely,

y=0 for x=0

2

o
e

=0 for x=0 and for x =R - a

EI

g;\)

2
2— E E—l =0 for x=R =23
dx dxe
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METHOD OF SOLUTION

The foregoing deflection equation is composed of a first member with
terms dependent on the deflection, and of a second member which is inde-
pendent of deflection. This second member comprises the aerodynamic
forces, the weight and the forces of inertia of rotation, and flapping
acting on the rigid blade. These forces are easily computed for each point
of the blade and for each one of its azimuth positions after the equation
of flapping B of the rigid blade has been solved. We shall waive their
calculation and identify the second member of the preceding equation by
the function F'4(x,t). We further put

R
JF m'(a + £)dt = s

X

s0 that the preceding equation reads

2 2
d op G- A R = R (- \ /A m'y + Ky = F'_(x,t) (2)
dx2 dx2 dx dx d

This is an equation of partial derivatives with second member,
representing the forced vibrations of the blade with damping.

To resolve it, we introduce the natural functions of the deflections
of the blade, that is, the vibrations obtained by solving the foregoing
equation of the partial derivatives above without second member.

Consider first, for simplicity, a state of forced vibrations with-
out damping arising from the deflections of the blade. (In other words,
the term Ky 1is disregarded.)

When we consider the moment, Mypjg, of the forces exerted on the

assumedly rigid blade, this moment is, at a point of the blade, a func-
tion of time only and can therefore be developed in series of periodic
functions of V¥ = at

Mrig = Mg + Mg cos ¥ + Mp sin y + Mpg cos 2 + Moy sin 2¢

+ M3a cos 3y + M3b sin 3¢y + . . .
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This moment is none other than the moment of the distributed outside
forces F'y appearing in the second member of the preceding equation,

Let us resolve these forces at each instant in series of distribu-
tions such that they each impart to the blade a deflection taking the
form of a natural mode of deflection of the corresponding order.

It can be shown that an arbitrary deflection of the blade may always
be resolved in series of natural functions by reason of the relations of
orthogonality existing between the natural functions of continuous beams,
whatever their limiting conditions. (Physically, it means that the dif-
ferent natural vibrations act independent of each other without mutual
interactions. )

The proposed resolution has the form
F'g = ggi"ng + g1m'ny + gou'no + . . . (3)

vhere g; 1s a function of time only and 73 is the natural function
of the deflection of the blade of the order 1.

The deflection of the order i of the blade affects then, at each
instant, the form of the function 74, that is, it will be given by

yi = hyny

where hy 1is a function of the time only. The total deflection is, by

virtue of the relations of orthogonality invoked above, obtained by
superposition of the various natural deflections of the blade vibrating
at the corresponding natural frequencies, with amplitudes and phase dif-
ferences defined by the function hj, which, itself, is obtained by

putting the expression y; = hyny in the equation of the partial
derivatives.

Hence, for a frequency of the order 1

2 a
ny & (1 ) - ngeP & (s L) + Hymtng - ggmtng (k)
3 2 1% ax dx
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Now it is known that an equation of the form

2 2
4° (pr &Y. R L s£11>+m'3;=o

dx2 dx2 dx dx

representing the natural vibrations of a freely vibrating blade and
involved in rotation with an angular velocity w permits an infinite
number of solutions of the form 17 sin vt, satisfying

42 2
~ (= d—tt>- u?% s(%l)=v2m'n
dXL

and the limiting conditions. Every solution n; is the natural func-
tion of order 1 corresponding to the natural frequency Vi o
J
Therefore, when mn3 is a natural function, it simultaneously
satisfies the equation (4) and the equation

a2 aBns\  2d [ dng\ 2
EI - — —= ) = v&; !
ax2 ax2 " HZ\C = i,d" Ny

where vi,w is the corresponding natural frequency of the blade actuated
with a speed of rotation .

Hence, after simplification

2 S
hivii,w*+ i = &;

Since the functions h and g; are periodic with respect to
i 1 b )
they can be developed in harmonic series

hj

hi,o + hi,a cos ¥ + hi b sin ¥ + hi,ga cos 2¥
+ hl,2b sin 2\11 + hi,3a cos 3\11 + hl,3b sin 3\'/ e o s

& = 8;,0 * 8i,a COS v o+ 8i,b sin ¥ + 8i,2a COS 2y

+ 81,21 sin 2V + 8i,3a CO8 v+ 81,30 sin 3V . . .
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The differential equation

i =00 ) ) > an - e i =00
d dni 24 (. ”%) ' _ '
h; EI - hyjo & (s —X) + hym'n; | = S g.m'n,
t 2( 2 dax \ dx o = ' 1

i=0 dx dx

therefore resolves itself by identification of the coefficients, and
limiting it to the third harmonic, it reduces to the system

2 -
hi oV'i,w = 81,0

hi,aé’zi,w - ‘”2> = 8i,a

hi,b<V21,w - “’2> = 81,1

h1,2a<"21,m - 1‘“’2> = 81,0m (5
hy oy V21,u> - ”‘*’2> = 8i,2b

hi,3a<?2i,w - 9w?> = 8i,3a

t
\Q
8r\)
A
I

hi,3b6/2i,a) €i,3b

Each function g; 1is well defined.

To determine it, simply multiply the two members of equation (3)
by ni and integrate over the blade.

Owing to the conditions of orthogonality

R
m'n,n, dx = O 1435
Jy =y




NACA ™ 1312 11

it leaves

hence

& = (6)

The bending moment exerted on the elastically deformable blade is
computed next.

The elastic deformation due to a single harmonic of the outside
forces, such as

i:oo
E [%i,nam'ni cos ny + gi,nbm'ni sin n{]
i=1

is, as shown previously,

1= j=o0
> vl X ra{n
Ji,n = i,n i
J J
i-1 b i3 b

On replacing the terms hj by their values obtained from equation (5),
the corresponding bending moment reads

) a
L= g; 2 cos ny
l,n{b d T]i
EI
> | (7

i=1 |V 1w~ 112(12 dX2 sin ny

M “ a
elast. n {#
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On making the exact calculation of the natural functions 74, it is
found that they vary veny little with w and that a natural function
of the order i, for w = 0, can be compared with the same natural
function for the normal speed .

M0 M,0 T N

This simplification is not exact, but the resulting error is small
(less than 3 percent for the first natural function in the case of the
blade cited in the example hereinafter), being of the same order as
those committed in the distribution of the magses and the flexural
stiffness of the blade.

In this case, the natural function 153 satisfies both

2 d2 . d .
4= (&1 "1>-a>2d— s L) _ 2 g
dx2 dx® dx dx @
and
2 a°y.,
9‘5 (EI 7211) = V8 on'ny
dx dx
Hence
2 R
d s
EI —2L = v2, _/f m'n. dx at
i,0 1
dx2 ? X *
deni .
On replacing EI — by its value in (7), the coefficient of the
dx

harmonic n of the elastic moment which, in fact, bends the flexible
blade, is given by the expression

Melast. n EE:: 2 &i,n [?P m'n; dx dt (8)
- 7ot
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The value g; is computed by (6) for the values of ¢ for which F'y
is given. The development of g; in Fourier series defines the

coefficient
a
8i,n b

The natural functions n; and the integralshz7\m'ni dx d€ can be

computed by a classical method such as the iteration method (Stodola),
or the Galerkin method.

There is no occasion to be preoccupied with normalizing the natural
functions. For the amplitude of 17;, any convenient scale is suitable;

the effect of the scale disappears later in the product

R
gid()P m'n; dx d¢
X

The calculation for w = 0 1is made while remembering the previous
statement that the deflection is practically unmodified by rotation.

If the iterative method is used for computing the natural functions
of the deflection, the natural frequencies of the blade not rotating and
of the blade rotating at angular velocity w can be computed by applying
Rayleigh's method to the obtained natural deflection. This method affords
rigorous solutions, converges rapidly, and avoids the solution of n equa-
tions with n unknowns to which the Galerkin method leads.

Note: The bending moments could also be computed by direct
application of equation (7). This method is predicated on the
exact knowledge of dzqi/dx2 which prohibits the use of the approxi-

mation M,0 = 14,0 because a slight error in a function can cause
a substantial error in its second derivative. The calculations of
the natural deflections are quite complicated. On the other hand,
the function y Dbeing defined by dots, it is not possible to derive
it directly to obtain d%y/dx=2.
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SIMPLIFICATION OF THE CALCULATIONS

Numerous calculations made on blades of various helicopters with
different plan forms and distributions of masses and different amounts
of rigidity have shown that, in certain cases - blades of moderately
conical shape, little twist, and lightly loaded at the tip - the natural
functions, other than the first, exert little influence on the maximum
bending moments exerted on the blade, and consequently on the maximum
alternating fatigue stresses to which the blade is subjected. This is
because the distributions of the outside forces (curves F'y = f(F) for

the various V) for such blades represent the behavior of the first
natural distribution (curve m'n = f(T)) in a satisfactory manner and
also because the natural functions of higher orders present all the
"loops" and "nodes" in continuously increasing number, matching poorly
the greater deflection which the maximum moments produce.

It is only in cases of small deflections that the "parasite remainder"
of the higher frequencies, arising from the fact that the distributions
of the outside forces never have a curve exactly identical with the first
natural distribution, can play a significant part.

When the blades have pronounced camber and twist and are lightly
loaded at the tips, the forces of inertia can become more important than
the aerodynamic forces at the blade tip in the entire sector of the swept
disk corresponding to the advancing blade. The distributions of the out-
side forces F'd = f(T¥) can assume, therefore, the curves approached by
the second natural distribution (curve m'qe) for an entire series of V,
and, in that case, the second and sometimes the third natural functions
must be taken into consideration in the calculation of the maximum
moments exerted at the blade.

Examination of the curves F'y = f(T) permits one to determine,
with a little practice, when resolution of the outside forces can be

limited to the first natural distribution and the deflection of the
blade to that corresponding to the first natural function.
In the latter case, the calculations are considerably simplified.

The distribution of the outside forces is reduced to

Flg = gn'ny
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The bending moment on the elastic blade becomes

o v2l 0 a R
M { = =2 g J&f m'y, dx dt (9)
last. 1
elast. n | V21 - 2P l,n'{b X 1

YY)

On comparing this bending moment with the moment of the outside
force distribution F'y exerted on the assumedly infinitely rigid blade,

we get
R R
Mrig =\Z7; F'd dx dt = 81&17; m'ql dx dg (10)

It is seen that the bending moment on the elastic blade is obtained
by multiplying the coefficients of the harmonics of the same order of
moment on the rigid blade by a factor

ve

Ay = 1,0 (11)

which is constant over the blade for a given harmonic.

It is no longer necessary to calculate the natural functions 1y
and the natural frequencies Vl,O and Vl,ar They can be readily and
closely approximated by the Rayleigh method applied to a curve repre-

senting approximately the deflection of the blade while still satisfying
the limiting conditions rigorously.

As regards the various harmonics to be kept for the moments on the
rigid blade, it seems that no advantages are gained by going beyond the
third, which is already relatively small.

The bending moment, at a point on the abscissa x, on the rigid
blade is then given by the expression

M = Mo + Ma cos ¥ + Mb sin V¥ + M2a cos 2V +

rig

Moy, sin 2¢ + M3a cos 3¢ + M3b sin 3y
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The effective moment bending the actual elastic blade at the same
point is obtained by the simple relation

V2 ve
1,0 1,0

5 MO’*T—‘_—(M;; cosw+Mb sin w)+

v 1,w v 1w

Melast, =

2
V71,0

o]
Ve b

(Mga cos 2§ + Mop sin 2\b> +

2
V71,0
2
V& - 9uf

(M3a cos 3V + M3b sin 3W)
CALCULATION INCLUDING AERODYNAMIC DAMPING DUE TO
DEFLECTION - GENERAL METHOD
In this case, the term Ky disregarded in equation (2) must be
included.

It has been shown that

dc
=P 2
K = 5 l @
dCz
The term % [ T r 1is homogeneous to a distributed mass,
Putting
_erdCZ
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gives

K = O(x)m'w

ac
where Q(x) is a dimensionless coefficient. Since, as a rule, % 3 EI£ r

is not proportional to the distributed mass m', the coefficient °(x)
is a function of x.
Having already permitted one approximation for K by including

only the corresponding mean speed on a blade element, another simplifica-
tion is effected by bringing only the mean value of o(x) along the

span of the blade into the first member of the equation of motion.

R
1r dC
R-a 0 2 'di
Accordingly, equation (2) reads
2 2 ) . .
a_ EId—Z _w2d__<sél +m'3r+d>m'wy=Ftd (12)
dx® dx® dx (x,7)

With the symbols already employed, we get

2 : y -
hiV i,(D + hi + how = 31'.

The foregoing system of equations (5) is therefore replaced by
another of the form

hy na(V2i,e - 12D+ hy yne0 = g1 no

} (13)
2 E%;% =
hi,nb(v i, = WY/ - hi,nanw2¢ = &i,nb
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whence

Putting

therefore

=
l

gi,na<v21,w - n2w2> - gi,nbnw2¢

(Vei o " neaﬁ)g + n2¢F¢2

gi,nb(:"zi,u) - n2w2> + gi,nanweo

(vei o n2w2>2 + ngquQ

hi,nb

N v nwg¢
an i.n =
? v2, . n2u?
i,w
nw?¢
—Sin\vin
2
Vt?a - nzaé> + n2wF®2
i}
va w” n2a?
i
2 —COSWin

NACA ™ 1312
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Consequently

8i,na €°8 ¥4 n - 8 mp 8in ¥y ,

i,na = (14a)
2
V(V2i:‘” - n2w2> + nluke?
8i,na 810 V4 n + &5 np €08 Vi p
hi,nb = 2 2 2 2 (l’-&b)

l/(vgi,w - n2u>2>2 + neu)l‘tb2

The calculation is then carried out in the same way as without
damping; the deflection due to a single harmonic n of the outside
forces being always

i:oo
¥n = E (hi,na"li cos n¥ + hy npny sin n‘V)

i=1

Replacing hj by its value gives

i=
i
Yn = E = Kgi,na cos Vi n -
i=1 '/(ve - n2w2> + nlafe?
i,w

gi,nb sin \yi’n>cos my + (gi,na sin Wi,n + 81,np CO8 \yi’n>sin an'

Hence, as before, the term of the harmonic n of the moment which, in
fact, bends the flexible blade

R
i=0c0 Vzi O[[ m'qi dx 4d¢
D

M =
2
i=1 M(Vei,u) - newz) + nzwl*cbz

elast. n Kgi,na €08 ¥y n ~

-

3i,nb sin Wi,n)cos ny + (gi,na sin ‘Vi,n + 3i,nb cos wi’n>sin nﬂ
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or also

- . R
. 1
1l=00 v i,OjL m T]i dx dE
Meiast. n = E %
Kz 2w2>2 2, k2
Ve, - n + ncw
l,(D

E%i’na cos(ny - Wi,n) +
i=1

-

&i,nb sin(ny - Wi,nz] (15)

with

naf o

2 2
Vi,m'n“’2

tan \lfi’n =

If, as previously, the distribution of the outside forces is limited
to the first distribution and the deflection of the blade to that corre-
sponding to the first natural function, the following rule results: The
effective bending moments acting on an elastic blade, with damping, are
obtained from the bending moments acting on the assumedly rigid blade,
each harmonic of which is modified as follows:

(1) Its amplitude is multiplied by a coefficient equal to

2
V7,0

Vtvzi,w - n2w?)2 + n2¢2wk

(2) There is a forward phase difference of ¥p» 8O that

tan W1=
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PRACTICAL PROCEDURE OF CALCULATION IN THE CASE OF THE GENERAL METHOD
(The Double Resolution of the Outside Forces Being Limited to the

Third Natural Distribution and to the Third Harmonic in V)

The first step is to determine the natural functions of the
blade 77, 7o, and 13 = f(r), as well as the corresponding natural

frequencies V1,00 V2,0s and V3,0 of the nonrotating blade and the
Vl,uv Ve,av and V3,w of the blade rotating at angular velocity w.

Next, it is necessary to evaluate the quantities
R R 5 R 5
JF m'qledx, Jf m'n,"dx, and \/P m'n3 dx
0 0 0

and then plot the curves

R R R
JCT m'y; dx d, Jér m'n, dx 4§, and J6f m'ng dx at
x x x

against T.

Then determine the outside forces on the rigid blade F'y = f(T)
for different V¥ (eight positions spaced 45° apart must be explored).

Next evaluate for each position

R R R
j; F' g0y dx, fo F'gn, dx, and j; F'gng dx

Thence one obtains

R R R
L Flgny ax o Flanp dx j; F!gng dx

J[B 5 R
m'n, “dx d[‘
0 1 0

for each position.
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Develop 8, 8y & in Fourier series (by the Runge method, for
example) and stop with the third harmonic of V:

whence
1,0 €1,a €1, ° ° * 81,3p
€2,0 €2,a €20 " " &2,3p
€3,0 B3, B3t B3 3p

Calculate the bending moments on the blade for different stations
x = K.R by the formula

with

Mi,x =j:/;R m'ni dx dgE.i,o + Ai,l COS(\]I - \Ui’l - cPi,l) +

A o cos(2\1f - Y0 - coi,g) + A5 3 COS(W - ¥i,3 - ‘Pi,32_J

where

2 2 2
v i,ové i,na * 871 np

Ai,n = 5 always positive
2
2 - 2
‘Kv 1,0 n2a)2> + nlp2uht
2
Ay o= 1,0
1,0 = 5 81,0
Vi
tan v nowP
an Vs =
i,n 2 2.2
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V2, - nuf
To determine quadrants of ¥, @: For V¥; p, 2 >0 and

cos Vi, n

for Qi,n’ gi,na/cos Qi,n > O.

PRACTICAL EXAMPLE

Hereinafter follows an application of this method to the calculation
of the bending maoments exerted on the blade of the helicopter N.C. 2001 in
forward flight, with u = 0.43.

The mechanical characteristics of the blade, which has a radius of
R = 6.85m, are given in figure 3. Figures 4 and 5 give the natural
functions 7 and the blade distributions m'n. Figure 6 gives the
natural frequencies of the nonrotating blade and of the blade rotating
at angular velocity w for the different modes of vibration. Figure T
gives the distribution of the aerodynamic forces, and figure 8 the dis-
tribution of the total outside forces F'd on the rigid blade for
several azimuth positions of the latter.

According to figure 8, the distributions of the outside forces for
the positions @ = 45°, 900, 1350, and 180° have clearly the shape of
the second natural distribution m'n,, which explains, as will be seen
in figures 9 to 12, the importance of the bending moments computed with
the second natural function included.

Figure 13 shows the bending moment distribution for several radii
plotted again V¥, and figure 14 the enveloping curve of the maximum
bending moments exerted on the blade. Figure 14 also shows the maximum
bending moment curve acting on the blade of the S.E, 3000 helicopter
(R = 6my, p = 0.41), whose mechanical characteristics are shown also in
figure 3. It is seen that for this blade, which presents an average
camber and is lightly loaded at the tip, the error made in the maximum
bending moment by limiting the distributions of the outside forces to
the first distribution does not exceed 6 percent, which justifies the
simplification of the calculation indicated previously.

For the blade of the NC.2001, the maximum bending moment is severely
subjected to the influence of the second distribution, but, by way of
compensation, it is practically clear of that of the third distribution
(except at the tip).

However, it should be noted that the latter assumes a significant
part in the evaluation of the negative maximum bending moment, expressed
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by Mpin (see figs. 10 and 13), and consequently in the appraisal of
the maximum alternating fatigue, defined by

£ _ Mpax = Mpin
mac T T

where W = é- is the resistant modulus of the particular section.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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Blade S.E.3000

'Blade N.7.2001
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Yigure 3.- Plan forms and distribution of mass and rigidity of the S.E.3000
and N.C.2001 helicopter rotor blades.
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Figure 4.- N.C.2001 blade - natural elastic deflection curves of the blade.
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Figure 6.- Natural frequencies of the N.C.2001 blade.
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Figure 7.~ N.C.2001 blade - distribution of aerodynamic forces F'A on

the rigid blade.
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Figure 8.- N.C.2001 blade - total forces F'q distributed over the rigid blade.
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Figure 9.- N.C.2001 blade - blade bending moments for ¥ = 0.
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Figure 10,- N.C.2001 blade - blade bending mornnts for ¥ = 90°.
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Figure 11.- N.C.2001 blade - blade bending moments for v = 180°.
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Figure 12.- N.C.2001 blade - blade bending moments for ¥ = 270°.
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Figure 14.- Maximum bending moments.
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