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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1312

CALCULATION OF THE BENDING STRESSES IN

HELICOPTER ROTOR BLADES*

By P. de Guillenchmidt

INTRODUCTION

The problem of determining the static and dynamic stresses on the
blades of rotary-wing aircraft in forward flight has occupied the atten-
tion of many engineers of every country for a long time. Up to within
the last few years, however, no satisfactory solution has been found for
blades having a distribution of mass and rigidity varying along the span.
In France, Mr. Dorand had for many years (1932 with the Breguet-Dorand
gyroplane) used a graphical method which gave satisfactory results; how-
ever, it was too long and called for precise diagrams on account of the
graphic double derivations involved. More recently, American engineers
have developed several methods which, while affording correct solutions
in the general case, also require a volume of calculation, which increases
at an appalling rate when the number of points examined on the blade are
to be increased or higher harmonics for the external forces acting on the
blade are to be introduced. Accordingly, it has been necessary to intro-
duce more approximate methods, and it is these methods which are usually
employed in design.

The purpose of the present report is to describe a comparatively
rapid method of calculation which gives a correct theoretical solution
of the problem in the most general case. This method is the result of
collaboration between the Bureau of Calculation of the Helicopter Division
of the National Societies of Airplane Construction for South Eastern and
for Central France, set up within the Committee of Rotating Wing Units
of the French Association of Aeronautical Engineers and Technicians,
(A.F.I.T.A.), on the instigation of Col. Garry, Chief of the Section of
Rotating Wing Units of the Technical Service Division of the Air Ministry.

The method is based on the analysis of the properties of a vibrating
beam, and its uniqueness lies in the simple solution of the differential
equation which governs the motions of the bent blade. It is applicable,
whatever the limiting conditions may be (blades hinged., blades clamped,
blades fitted with dampers, etc. . . ). It requires, strictly speaking,
the preliminary calculation of the natural frequencies and mode shapes of

*"Calcul en Flexion de Pales de Giravions." S.N.C.A.C. Report,

Document He3-O.03, December 23, 1948.
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2 NACA TM 1312

the blade in rotation. This calculation can be reduced, however, as will
be shown later, in a certain number of cases, to the calculation of the
natural frequency of the first mode1 , which reduces the calculation
required to some extent.

For the explanation of the method, let us take the case of a hinged
blade in flapping motion and impose the usual restrictive asumptions,
which are:

(a) The twisting deflections of the blade are negligible.

(b) The blade is rigid in its plane, that is to say, the drag
deflections are negligible with respect to the deflections
normal to the plane of the blade.

(c) The deflections and the flapping angles are small, hence their
higher powers can be disregarded and we may assume

Cos 0 - i sin 0 - tan 0 -

(d) The bending deflections of the blade do not influence the aero-
dynamic forces acting on the blade. Included, however, is a
term for the aerodynamic damping due to the fact that the vibra-
tion of the blade produces, for each element, a change in the
relative velocity, and consequently -f the angle of attack.

2

SYMBOLS

R radius of rotor

r distance of blade element from axis of rotation

x abscissa, along axis OX of the rigid blade, of an element of
the elastically deflected blade, with the flapping axis as
origin (fig. 1)

abscissa along axis OX

y ordinate of a point of the elastically deflected blade along
an axis OY normal to axis OX

1The "mode 0" is that which corresponds, for a hinged blade, to a
vibration without bending, that is, to flapping 1. The mode 1 for such
a blade is then that which corresponds to a vibration of one node.

2This damping term has, obviously, no significance when there is
separation of flow, because beyond angle of separation the normal lift
coefficient is practically independent of the angle of attack.
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a distance of the flapping hinge from the axis of rotation of
the rotor

flapping angle of the rigid blade

me mass of the blade per unit length at a point under consideration

I blade chord

E Young's modulus of the blade material

I moment of inertia of a normal section of the blade

a) angular velocity of the blade

t time

* = at azimuth angle of the blade at time t

*n phase difference of the azimuth angle due to damping

V forward speed of helicopter

v resultant velocity of the air on a section of the rigid blade

VN normal component of velocity v

VT tangential component of velocity v

e angle of attack of a blade section

(angle of the resultant velocity v with the normal plane

ATp angle of velocity v with the resultant velocity on the

deflected blade ( cos (P

a angle of the normal plane with the forward velocity

Sratio of advance V Cos a
cuR /

p air density

dCz/di lift-curve slope of the profile

g acceleration of gravity
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8 static moment with respect to the axis of rotation of the part

of the blade located beyond the abscissa x (fR m'(a + 9)d

0 coefficient of damping due to deflection of the blade. (See
text.)

T i natural deflection function of order i

Vl,0  natural frequency of the order i of the nonrotating blade

Vi,W natural frequency of the order i of the blade caused by
rotation with angular velocityw

gil
hij auxiliary functions, dependent on time only
hi J
n order of a harmonic in Fourier series

na, nb subscripts of terms in cosine and sine of a Fourier series

THE EQUATION OF DEFLECTION OF THE BLADE

Let us consider the forces which act at S on a blade element of
span dx in the plane YOX. (See fig. 1.) These forces are:

(1) The elementary lift3  dF= i dCZ (T2 - VNVT)dX

(2) A corrective term of the damping of the lift force due to the
flexural elastic deformation of the blade. This term is of
the form

-K dx

(3) The weight dp = m'g dx, the components of which along OX and
OY are, respectively

m'g sin 0 dx (negligible)

m'g cos 0 dx = m'g dx

3This elementary lift already includes, according to the definition
of VN, a term due to the aerodynamic damping of the flapping rigid blade.
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(4) The centrifugal force of rotation m'o2 r dix, the components of
which along OX and OY are, respectively

m'w2 (a + x cos P)dx t_ m'o 2 r dx

and

m'w2 (a + x sin P)dx t- m'w2rP dx

(5) The force of inertia of flapping: -m'xo dx

(6) The force of inertia of deflection: -m' dx

Strictly speaking, the following forces should also be included:

(7) The centrifugal force of flapping: m'x3 2 dx

(8) The Coriolis force due to the simultaneous action of blade
deflection and flapping motion:

-2 k~m' dx

however, we shall disregard them in relation to the centrifugal force of
rotation.

For the blade element dt to be in equilibrium, it is necessary to
add to these forces the unknown actions of the adjacent elements on the
element under consideration.

Calculation of Ky

= 2K di

VT ar + V. cos a sin

cos q) cosq

= y cos T (See fig. 2.)
V

y Cosq

ar + V cos a sin *
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It becomes

dCz

K = aP -1 + V cos a sin *)
2 di

Since the calculation can be made only when the coefficient of the
damping term due to the deflection is independent of time, the periodic
part in V sin * will be disregarded. This reduces the problem to the
corresponding mean speed of the air with respect to the blade element.

Hence

2 di

The differential equation of the blade then reads

d2  2d[y R1
!- _x/ .2 _df m'(a + )d + m'S + Kr

SF.mg -m'x "- m'wrP (1)
dx

The dots signify the derivatives with respect to time.

This equation of the partial derivatives must be completed by four
limiting conditions which define the integration constants, namely,

y = 0 for x = 0

EI d2y = 0  for x =0 and for x= R - a
dx

2

d (EI ) -0 for x=R-a
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METHOD OF SOLUTION

The foregoing deflection equation is composed of a first member with
terms dependent on the deflection, and of a second member which is inde-
pendent of deflection. This second member comprises the aerodynamic
forces, the weight and the forces of inertia of rotation, and flapping
acting on the rigid blade. These forces are easily computed for each point
of the blade and for each one of its azimuth positions after the equation
of flapping 0 of the rigid blade has been solved. We shall waive their
calculation and identify the second member of the preceding equation by
the function F'd(xt). We further put

m'(a + )d = s
x

so that the preceding equation reads

d2 (EId2y) - W2 L (s 2) + mty + K= Fd(x,t) (2)

This is an equation of partial derivatives with second member,
representing the forced vibrations of the blade with damping.

To resolve it, we introduce the natural functions of the deflections
of the blade, that is, the vibrations obtained by solving the foregoing
equation of the partial derivatives above without second member.

Consider first, for simplicity, a state of forced vibrations with-
out damping arising from the deflections of the blade. (In other words,
the term K is disregarded.)

When we consider the moment, Mrig, of the forces exerted on the

assumedly rigid blade, this moment is, at a point of the blade, a func-
tion of time only and can therefore be developed in series of periodic
functions of * = aft

Mrig = M0 + Ma cos * + Mb sin * + M2a cos 2 + Mb sin 24

+ M3a cos 34 + M3b sin 3* + •
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This moment is none other than the moment of the distributed outside
forces F'd appearing in the second member of the preceding equation.

Let us resolve these forces at each instant in series of distribu-
tions such that they each impart to the blade a deflection taking the
form of a natural mode of deflection of the corresponding order.

It can be shown that an arbitrary deflection of the blade may always
be resolved in series of natural functions by reason of the relations of
orthogonality existing between the natural functions of continuous beams,
whatever their limiting conditions. (Physically, it means that the dif-
ferent natural vibrations act independent of each other without mutual
interactions.)

The proposed resolution has the form

F'd = gom'no + glm'rl + g2m'n2 + • • • (3)

where gi is a function of time only and ni is the natural function
of the deflection of the blade of the order i.

The deflection of the order i of the blade affects then, at each
instant, the form of the function ni, that is, it will be given by

Yi = hili

where hi is a function of the time only. The total deflection is, by
virtue of the relations of orthogonality invoked above, obtained by
superposition of the various natural deflections of the blade vibrating
at the corresponding natural frequencies, with amplitudes and phase dif-
ferences defined by the function hi, which, itself, is obtained by
putting the expression yi = hini in the equation of the partial

derivatives.

Hence, for a frequency of the order i

hiw - + him'ni : gim'd. (4)
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Now it is known that an equation of the form

2) _ W2 (sd-y_. + m'y = 0

dx2 dx)+mY

representing the natural vibrations of a freely vibrating blade and
involved in rotation with an angular velocity w permits an infinite
number of solutions of the form j sin Vt, satisfying

d2(I --2 _ 2 d ( mda

ddx 2=x x

and the limiting conditions. Every solution ii is the natural func-
tion of order i corresponding to the natural frequency vi, .

Therefore, when ni is a natural function, it simultaneously
satisfies the equation (4) and the equation

d 2  Ed2 d = (i,n'Tli

where Vi., is the corresponding natural frequency of the blade actuated

with a speed of rotation wn.

Hence, after simplification

hiv2i,0  +'hi = gi

Since the functions hi and gi are periodic with respect to V,

they can be developed in harmonic series

hi = hio + hi,a cos * + hib sin * + hi,2a cos 2*

+ hi,2b sin 2* + hi,3a cos 3* + hi,3b sin 3* . . .

gi = gi,0 + gi,a cos V + gi, b sin * + gi, 2a cos 2

+ gi,2b sin 2* + gi,3a cos 34 + gi,3b sin 34 . . .
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The differential equation

4 (El dxi - ( i m+ in

therefore resolves itself by identification of the coefficients, and
limiting i~t to the third harmonic, it reduces to the system

h1 ,pov 2 1  -9W= gi .0

hila (V 2,w _ u)2) = ia

hi., b(v 2i9U - w2) =gilp

hi,.92a(V 2i 1 -41) =-i,2 (5)

hi2bvi,w - 2)2

hi ,3a(V2 i.9W - 9w2) = gi.3a

hi, 3b (V 2 iW - %a)2) = gi,3b

Each function gj is well defined.

To determine it, simply multiply the two members of equation (3)
by Tjj and integrate over the blade.

Owing to the conditions of orthogonality

R
0 I mT Tj dx= 0 i j
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it leaves

F'd i dx = gi m'Ii2dx
0 0

hence

RJoF'dr~i dx

gi F (6)
R

O IIm' i2dx

The bending moment exerted on the elastically deformable blade is
computed next.

The elastic deformation due to a single harmonic of the outside
forces, such as

i=oo

I [gi~nam'ni cos n'V + ginbm' i sin n*]
i=l

is, as shown previously,

i=00 i=00

Yi n a = IE-- hi,nb a71i

i~l i=l

On replacing the terms hi by their values obtained from equation (5),
the corresponding bending moment reads

" 2gi.'n b  d2 7i cos n1

Melast" n b  L2 i,n d--i-{cs n2] (7)

b V 1,)W si-n
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On making the exact calculation of the natural functions T j it is
found that they vary very little with w and that a natural function
of the order i, for w = 0, can be compared with the same natural
function for the normal speed w.

ri, - n i '0 1 i

This simplification is not exact, but the resulting error is small
(less than 3 percent for the first natural function in the case of the
blade cited in the example hereinafter), being of the same order as
those committed in the distribution of the masses and the flexural
stiffness of the blade.

In this case, the natural function ni satisfies both

d2  I d2* /2 dT i
- (E-Th ~ s 2.- 2 ml

dx2  dx2 / dx d, xi

and

d2 d2 T,
EI . = v21

dx dx2 / m' .

Hence

EI 1= V2,0 m' i dx d
dx: x

On replacing EIl by its value in (7), the coefficient of thedx2

harmonic n of the elastic moment which, in fact, bends the flexible
blade, is given by the expression

Melast. n ab = 200 2 n gi ,nf R mx dx d) (8)

b 2 2i?
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The value gi is computed by (6) for the values of I for which F'd

is given. The development of gi in Fourier series defines the
coefficient

gi,n 
f

The natural functions i and the integrals fm'l 1 i dx dt can be

computed by a classical method such as the iteration method (Stodola),
or the Galerkin method.

There is no occasion to be preoccupied with normalizing the natural
functions. For the amplitude of qij any convenient scale is suitable;

the effect of the scale disappears later in the product

gif Rm'rli dx dt
x

The calculation for w = 0 is made while remembering the previous
statement that the deflection is practically unmodified by rotation.

If the iterative method is used for computing the natural functions
of the deflection, the natural frequencies of the blade not rotating and
of the blade rotating at angular velocity w can be computed by applying
Rayleigh's method to the obtained natural deflection. This method affords
rigorous solutions, converges rapidly, and avoids the solution of n equa-
tions with n unknowns to which the Galerkin method leads.

Note: The bending moments could also be computed by direct
application of equation (7). This method is predicated on the
exact knowledge of d2i/dx2 which prohibits the use of the approxi-
mation 1i = i because a slight error in a function can cause

a substantial error in its second derivative. The calculations of
the natural deflections are quite complicated. On the other hand,
the function y being defined by dots, it is not possible to derive
it directly to obtain d2y/dx2 .



14 NACA TM 1312

SIMPLIFICATION OF THE CALCULATIONS

Numerous calculations made on blades of various helicopters with
different plan forms and distributions of masses and different amounts
of rigidity have shown that, in certain cases - blades of moderately
conical shape, little twist, and lightly loaded at the tip - the natural
functions, other than the first, exert little influence on the maximum
bending moments exerted on the blade, and consequently on the maximum
alternating fatigue stresses to which the blade is subjected. This is
because the distributions of the outside forces (curves F'd = f(y) for

the various *) for such blades represent the behavior of the first
natural distribution (curve m'r = f(T)) in a satisfactory manner and
also because the natural functions of higher orders present all the
"loops" and "nodes" in continuously increasing number, matching poorly
the greater deflection which the maximum moments produce.

It is only in cases of small deflections that the "parasite remainde9'
of the higher frequencies, arising from the fact that the distributions
of the outside forces never have a curve exactly identical with the first
natural distribution, can play a significant part.

When the blades have pronounced camber and twist and are lightly
loaded at the tips, the forces of inertia can become more important than
the aerodynamic forces at the blade tip in the entire sector of the swept
disk corresponding to the advancing blade. The distributions of the out-
side forces F'd = f(:) can assume, therefore, the curves approached by

the second natural distribution (curve m'r2) for an entire series of $,

and, in that case, the second and sometimes the third natural functions
must be taken into consideration in the calculation of the maximum
moments exerted at the blade.

Examination of the curves F'd = f(T) pernits one to determine,

with a little practice, when resolution of the outside forces can be
limited to the first natural distribution and the deflection of the
blade to that corresponding to the first natural function.

In the latter case, the calculations are considerably simplified.

The distribution of the outside forces is reduced to

F'd = glml
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The bending moment on the elastic blade becomes

Melast. n a V2 12 glbn m'ql dx d (9)

On comparing this bending moment with the moment of the outside
force distribution F'd exerted on the assumedly infinitely rigid blade,
we get

RR
Mrig = F' dx d = glf ml dx d (10)

x x

It is seen that the bending moment on the elastic blade is obtained
by multiplying the coefficients of the harmonics of the same order of
moment on the rigid blade by a factor

An = 1,0 (11)
V2  - n2a)2

i,cn

which is constant over the blade for a given harmonic.

It is no longer necessary to calculate the natural functions 11
and the natural frequencies V1, and VlY. They can be readily and

closely approximated by the Rayleigh method applied to a curve repre-
senting approximately the deflection of the blade while still satisfying
the limiting conditions rigorously.

As regards the various harmonics to be kept for the moments on the
rigid blade, it seems that no advantages are gained by going beyond the
third, which is already relatively small.

The bending moment, at a point on the abscissa x, on the rigid
blade is then given by the expression

Mrig = M0 + Ma cos * + Mb sin * + M2a cos 21 +

Mar sin 2* + M3a cos 3* + M3b sin 34
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The effective moment bending the actual elastic blade at the same
point is obtained by the simple relation

Melast. 2 2_ , (Macol J+bilI
V 0 +. Vlw 1)W )

2

2V 10 -(M2a cos 2*+ M2b sin 2*) +

V2 V 11 90(M 3a cos 3*, + M3 b sin 3w)
ly - _w

2

CALCULATION INCLUDING AERODYNAMIC DAMPING DUJE TO

DEFLECTION -GENERAL METHOD

In this case, the term Ky disregarded in equation (2) must be
included.

It has been shown that

2 di

The term 2. I r is homogeneous to a distributed mass.

Putting

OWx =- 2 ml di
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gives

K = O(x)m'w

where 0(x) is a dimensionless coefficient. Since, as a rule, 2 I . -- r

whr (X) 2 dir

is not proportional to the distributed mass m', the coefficient O(x)

is a function of x.

Having already permitted one approximation for K by including
only the corresponding mean speed on a blade element, another simplifica-
tion is effected by bringing only the mean value of O(x) along the

span of the blade into the first member of the equation of motion.

_ = 1 RErdCz dx
R-a 0 2 m' di

Accordingly, equation (2) reads

d2 I d2y 1 d *m' + d(xMr
d-('EI dy , (! s + + maj = F' (12)

With the symbols already employed, we get

hiv2 i, + hi + hOw = gi

The foregoing system of equations (5) is therefore replaced by
another of the form

hi,na(V2i, - n2a-)+ hi,nbn uQi = gi,na

(13)

hi,nb(V iPW - n w) - hi YnanuIO = g.n
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whence

h 1, na -gl ,na(v2i,w - n2aR) - gi , nbnac2

(V 2 1  - n2a-)F + n2W 2fz

hi nb gilnb(V21,U) - n2o-,2) + iYaio

i(n (2. -; n 2L2) 2 + n2c402

Putting

na2,
tan*i, =V 2 . -n

2ca

therefore

=sin 1n

2 A~?2 + n2wiiD2

V2 n2o2

V2 2L) 2 + n(4D
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Consequently

gi,na COS in -ginb sin n (14a)

V(v2i.1 - n22)2 + n24w2

hiRD gi Yna sin *i Jn + gi Jnb cos *i.,n(1bhi,nb = gi aSn +CB(llb)

V(v2ij - n2c2) 2 + n2wlD42

The calculation is then carried out in the same way as without
damping; the deflection due to a single harmonic n of the outside
forces being always

i= 00

Yn= (hi,inai cos n* + hi,nbni sin n*)
i=l

Replacing hi  by its value gives

Yn =  - l( i,na COS *1i.n

2 +n22 + n2a)4 2

ginb sin *i,n)cos n$r + (gi,na sin $i,n + ginb cos *in)sin n1*

Hence, as before, the term of the harmonic n of the moment which, in
fact, bends the flexible blade

Melast. n = 1 '{(V2tw-n3)+ n2 4 2 ina Cos * i,n -

gi,nb sin i,n)coS n* + (gi,na sin *i,n + gi,nb cos *i,n)sin n]
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or also

Melast. n = v21 90 1 1 R m'i11 dx na cos(n* - n) +

,=1,- n2)2 + n

gi)nb sin(n* - *inl (15)

with

nU $
tan ij n =

v2 . - n2 w2

If, as previously, the distribution of the outside forces is limited
to the first distribution and the deflection of the blade to that corre-
sponding to the first natural function, the following rule results: The
effective bending moments acting on an elastic blade, with damping, are
obtained from the bending moments acting on the assumedly rigid blade,
each harmonic of which is modified as follows:

(1) Its amplitude is multiplied by a coefficient equal to

V2 1,0O

I(V2, - n2) 2 2+ n2024

(2) There is a forward phase difference of *n' so that

n2

tan 

n 
=

V2low- n2w2
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PRACTICAL PROCEDURE OF CALCULATION IN THE CASE OF THE GENERAL METHOD

(The Double Resolution of the Outside Forces Being Limited to the

Third Natural Distribution and to the Third Harmonic in 4)

The first step is to determine the natural functions of the
blade T11, T 2 , and n3 = f(T), as well as the corresponding natural

frequencies vl,, v2,0j and V3,0  of the nonrotating blade and the

ViPa v2 ,, and v3 ,w of the blade rotating at angular velocity w.

Next, it is necessary to evaluate the quantities

f0 m'1 2dx, f m'l12 2dx, and R m'T32dx

0 0 0 T~d

and then plot the curves

R RE R
1  m' 11 dx dE, ff m'iT2 dx dt, and ff m'i 3 dx dt

against T.

Then determine the outside forces on the rigid blade F'd = f(f)
for different * (eight positions spaced 450 apart must be explored).

Next evaluate for each position

F'dI dx , F'd12 dx, and 1 F'dI3 dx

0f 0

Thence one obtains

I R R F ' ~ ~ d R

F'd I  dx 
g F'dI2 dx 1F 1 3  dx

g, 
' 

m'T 1
2dx f m'T 2

2 dx g 0 m' 3 2dx

for each position.
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Develop glV g2, g3  in Fourier series (by the Runge method, for

example) and stop with the third harmonic of ':

whence

glO gla g1.b * 81gl3b

g2,0 92,a g2,Pb * 9 2,3b

g3,0 g3,a g31b " " 3,3b

Calculate the bending moments on the blade for different stations
x = K.R by the formula

i=3Mx = MiJx

i=l

with

M 1,J =f< 'I i x d tE[io + Ai ,91 COS(* - *i I - 'Pi; 1)+

A1 ,2  cOs (2 * - ,.V 2  - Pi. 2 ) + Ai 3  cos(3* - *i,3  - i, ]

where

V2 i,0 i,na + g2i,nb
Ai.,n  , always positive

(V2i,W - n )2+ n2 24

= V2 iJO gi.o

t a n i Yn = v i , - n w

nb
tan cp , n = n 2
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V2 . _ n2w2
To determine quadrants of 4, p: For *i,n, > 0 and

COB ' i,n1

for cpi,n, gi,na/cOs Pi,n > 0.

PRACTICAL EXAMPLE

Hereinafter follows an application of this method to the calculation
of the bending moments exerted on the blade of the helicopter N.C. 2001 in
forward flight, with = 0.43.

The mechanical characteristics of the blade, which has a radius of
R = 6.85m, are given in figure 3. Figures 4 and 5 give the natural
functions n and the blade distributions m' . Figure 6 gives the
natural frequencies of the nonrotating blade and of the blade rotating
at angular velocity w for the different modes of vibration. Figure 7
gives the distribution of the aerodynamic forces, and figure 8 the dis-
tribution of the total outside forces F'd on the rigid blade for
several azimuth positions of the latter.

According to figure 8, the distributions of the outside forces for
the positions cp= 450, 900, 1350, and 1800 have clearly the shape of
the second natural distribution m'1 2 , which explains, as will be seen
in figures 9 to 12, the importance of the bending moments computed with
the second natural function included.

Figure 13 shows the bending moment distribution for several radii
plotted again *., and figure 14 the enveloping curve of the maximum
bending moments exerted on the blade. Figure 14 also shows the maximum
bending moment curve acting on the blade of the S.E. 3000 helicopter
(R = 6m, i = 0.41), whose mechanical characteristics are shown also in
figure 3. It is seen that for this blade, which presents an average
camber and is lightly loaded at the tip, the error made in the maximum
bending moment by limiting the distributions of the outside forces to
the first distribution does not exceed 6 percent, which justifies the
simplification of the calculation indicated previously.

For the blade of the NC.2001, the maximum bending moment is severely
subjected to the influence of the second distribution, but, by way of
compensation, it is practically clear of that of the third distribution
(except at the tip).

However, it should be noted that the latter assumes a significant
part in the evaluation of the negative maximum bending moment, expressed
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by Mmin (see figs. 10 and 13), and consequently in the appraisal of

the maximum alternating fatigue, defined by

Mmax - Mminfmax = 
2W2W

I
where W = is the resistant modulus of the particular section.

Translated by J. Vanier
National Advisory Committee
for Aeronautics
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Figure 3.- Plan forms and distribution of mass and rigidity of the S.E.3000
and N.C.2001 helicopter rotor blades.
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Figure 4. - N.C.2001 blade -natural elastic deflection curves of the blade.
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Figure 5.- N.C.2001 blade - natural distributions m'v 2 
I  d E

dx d 2

for v : 1.
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Figure 6.- Natural frequencies of the N.C.2001 blade.
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Figure 7. - N. C. 2001 blade - distribution of aerodynamic forces IF'A on

the rigid blade.
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Figure 8.- N.C.2001 blade - total forces F'd distributed over the rigid blade.
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Figure 9.- N.C.2001 blade - blade bending moments for = 0.
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Figure 10.- N.C.2001 blade - blade bending morxnts for = 900 .
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Figure 11.- N.C.2001 blade - blade bending moments for =1800.
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Figure 12.- N.C.2001 blade - blade bending moments for *=2700.
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First natural mode only
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F igure 14. - Maximum bending moments.
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