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STRESS~INTENSITY FACTOR EQUATIONS FOR CRACKS IN THREE-DIMENSIONAL
FINITE BODIES SUBJECTED TO TENSION AND BENDING LOADS

J. C. Newman, Jr.l and 1. S. leuz

SUMMARY

Stress-intensity factor equations are preseanted for an embedded ellipti-
cal crack, a semi-elliptical surface crack, a quarter-elliptical coraer crack,
a semi-elliptical surface crack along the bore of a circular hole, and a
quarter—elliptical corner crack at the edge of a circular hole in finite
plates. The plates were subjected to either remote tension or bending loads.
The stress—intensity factors used to develop these equations were obtained
from previous three-dimensional finite-element analyses of these crack con-
figurations. The equations give stress—intensity factors as a function of
parametric angle, crack depth, crack length, plate thickness, and, where
applicable, hole radius. The ratio of crack depth to plate thickness ranged
from 0 to 1, the ratio of crack depth to crack length ranged from 0.2 to 2,
and the ratio of hole radius to plate thickness ranged from 0.5 to 2. The
effects of plate width on stress-intensity variations along the nrack front
were also included, but were either based on solutions of similar configura-

tions or based on engineering estimates.

INTRODUCT-ON
[n atreraft structures, fatigue failures usually occur from the {nittiation

and propagation of cracks from notches or defects in the material that are

For
efither embedded, on the surface. ot at a corner. These cracks propagate with vy
elliptic or near-elliptic crack fronts. To predict crack-propagation life and 3 Ei
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fracture atrength, accurate stress-intensity factor solutions are needed for

these crack configurations. But, because of the complexities of such probleas,
exzct solutions are not available. Instead, investigators have had to use
approximate analytical methods, experimental methods, or engineering estimates
to obtain the stress-intensity factors.

Very few exact solutions for three-dimensional cracked bodies are
available in the literature. One of these, an elliptical crack in an infinite
solid subjected to uniform tension, was derived by Irwin [l] using an exact
stress analysis by Green and Sneddon [2]. Kassir and Sih [3], Shah and
Kobayashi [4), and Vljayakumar and Atluri [5] have obtained closed-form
solutions for an elliptical crick in an infinite solid subjected to non-
uniform loadings.

For finite bodies, all solutions have required approximate analytical
aethods. For a semi-circular surface crack in a gsem{-infinite solid and a
semi~elliptical surface crack in a plate of finite thickness, Saith, Eamery,
and Kobayashi [6], and Kobayashi [7], respectively, used the alternating
sethod to obtain stress-intensity factors along the crack front. Raju and
Newman [8,9] used the finite-element method; Heliot, Labbens, and Pellissier-
Tanon [10] used the bhoundary-integral equation method; and Nishioka and
Atluri [l1] used the finite-element alternating method to obtain the same
informatlon. For a quarter-eliiptic corner crack in a plate, Tracey [12] and
Pickard {13) used the finite-element method; Kobayashi and Enetanya [14] used
the alternating metiod. Shah [15) estimated the stress-intensity factors for
a surface crack emsnating from a clrcular hole. For a single corner crack
emanating from a circular hole in a plate, Saith and Kullgren {16] used a
finite-element-alternating method to obtain the stress-intensity factors.

Hechmer and Bloom [17] and Raju and Newman (18] used the finite-element aethod
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for two symmetric corner cracks emanating from a hole in a plate. Most of

these results were for limited ranges of parameters and were presented in the
form of curves or tables. For ease of computation, however, results expressed

in the form of equations are preferable.

The present paper presents equations for the stress-intensity factors for
a vide variety of three-dimensional crack configurations subjected to either
uniform remote tension or bending loads as a function of parametric angle,
crack depth, crack length, plate thickness, and hole radius (where
applicable); for example, see Figure 1. The equations for unifora remote
tension were obtained froa Reference 19. The tension equations, however, are
repeated here for completeness and because the correction factors for remote
bending are modifications of the tension equations. The crack configurations
considered, shown in Figure 2, include: an embedded elliptical crack, a seail-
elliptical surface crack, a quarter-eliliptical cormer crack, a semi-elliptical
surface crack at a circular hole, and a quarter—-elliptical corner crack at a
circular hole in finite-thickness plates. The equations were based on stress-
{ntensity factors obtained from three-dimensfonal finite-element analyses (8,
9, 18, and 19]) that cover a wide range of configuration parameters. In some
configurations, the range of the equation was extended by using stress-
intensity factor solutions for a through crack in a similar configuration. In
these equations, the ratio of crack depth to plate thickness (a/t) ranged from
0 to L, the ratlio of crnck depth to crack length (a/c) ranged from 0.2 to 2,
and the ratio of hole radius to plate thickness (r/t) ranged from 0.5 to 2.
The effects of plate width (b) on stress—intensity variations along the crack
front were also included, but were either based on solutions of similar con-

figurations or based on engineering estimates.
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NOMENCLATURE
depth of crack
vidth or half-width of cracked plate (see Pig. 2)
half-length of crack
boundary-correction factor for corner crack in a plate under teasion

boundary-correction factor for corner crack at a hole in & plate under
tension

boundary-correction factor for embedded crack in a plate under tension
boundary-correction factor on stress intensity for rewote tension
boundary-correction factor for surface crack in a plate under tension

boundary-correction factor for surface crack at a hole in a plate
under tension

finite-width correction factor

angular function derived fros embedded elliptical crack solution
curve fitting functions defined in text

bending multiplier for corner crack in a plate

bending multiplier for corner crack at a hole in a plate
bending multfplier on stress intensity for remote bending
bending multiplier for surface crack in a plate
half-length of cracked plate

stress—intensity factor (mode I)

applied bending moment

curve fitting functions defined in text (1 = 1, 2, or 3)
shape factor for elliptical crack

cadius of hole

temote bending stress on ocuter fiber, M/ve?

resote uniform tension stress

thickness or one-half plate thickness (see Fig. 2)

(®)




A function defined in text
v Poisson's ratis (v = 0.3)
¢ parametric angle of ellipse, deg

STRESS-INTENSITY EQUATIONS
The stress-intensity factor, K, st sny poiat along the crack froat in a

finite~thickness plate, such as that shown in Pigure 1, was taken to be

a
K= “‘:*“3’5’\,"6'; (le)
wvhere
2 4 .
ry= [ e @)+ @ e s, an
and
=8 + (8, - 8) stof ¢ (ic)

The function Q 1is the shape factor for an ellipse and is given by the square
of the complete elliptic integral of the second kind [2]). The boundary-
correction factor, !j. sccouats for the influence of various boundaries and
is a funztion of crack depth, crack length, hole radius (vhere aspplicable),
plate thickness, plate width, and the parametric angle of the ellipse. The
product H jrj i{s the corresponding bending correction. The subscript J
denotes the crack configuration: ] = ¢ 1s for s corner crack in s plate,

J= e 1s for an embedded crack in a plate, j= s {s for a surface crack in
s plate, J = sh 1s for a surface crack at a hole in s plate, and j = ch s
for a corner crack at a hole fn s plate. Punctions M), My, My, 1, Hy,
and p are defined for esch appropriate configuration and loading. The

series containing M; {is the boundary-correction factor at the maximus depth

poiant. The function f. is an angular function derived from the solution for




an elliptical crack in an infinite solid. This function accounts for most of
the angular variation {n stress—intensity factors. The function fy is a
finite-vidth correction facto:. Function g denotes a product of functions,
such as g£187---8y that are used to fine~tune the equations. PFunctions Hy
and H; are bending multipliers obtained from bending results st ¢ equal
zero and =/2, respectively. Pigure 3 shows the coordinate system used to
define the parasetric angle, ¢, for a/c less than and a/c greater than

unity.

Very useful empirical expressions for Q have been developed by Rawe

(see Ref. 9). The expresaions are

o 165 .

Q=14+ 10‘6‘(:) for : <1 (2a)
1.65

Q=1 v1.464(3) for 2> 1 (2v)

The ssxisum error in the stress—intensity factor caused by using these
spproximate equations for Q 4{s about 0.13 percent for all values of a/c.
(Rave's original equation was written in terws of a/2c).

In the following sections, the stress—intensity factor equations for
embedded elliptical cracks, semi-elliptical surface cracks, quarter—-elliptical
corner cracks, semi-elliptical surface cracks at a hole, and quarter—-
elliptical corner cracks at a hole in finite plates (see Fig. 2) subjected to
either remote tension or bending loads are presented. The particular func-
tions chosen were obtained from curve fitting to finite—element results (8, 9,
18, and 19] by usiag polynomials in terms of a/c, a/t, and angulstr func-
tions of ¢. For :racke emanating from holes, polynomial equations ia terme

of c/vr and ¢ wre also used. Typical results will be preseated for

(@)




ale = 0.2, 0.5, 1, and 2 with s/t varying from O to 1. Table 1 gives the
vange of applicadbilicy of ¢, a/t, a/c, t/t, snd (r + c)/b for the
proposed egquatioms.

Eabedded Elliptical Crack
The stress-intensity factor equsation fo.t an embedded elliptical crack {n
a finite plate, Pigurs 2(s), subjectad to tension was obtained by ficting
equation (1) to finite—element results in Reference 19. Tha results of
lrwin (1) were used to account for the limiting behavior as a/c approaches

zero or infinity. The equation is
- [ 3 ¢ & $
Kes [sqP(e 2 3 0 (&)
for 0 ¢a/c ¢ », ¢c/b<0.5 and -x < ¢ < x provided that s/t eatisfies:

a & a

4)

s a
?<l for 0.2 (?CO

The function P, accounts for the influence of crack shape (a/c), crack size

(s/t), finite width (c/b), and angular locatioa (¢), and was chosen ss

8 2 a s
e[ em@’ - n s e, )

The term in brackets gives the boundary-correction factors at ¢ = =/2 (where
s " (. = 1). The function !. vas taken from the exsct solution for an
esbedded elliptical crack in en infinite solid (1] and £, fs a finite-width

correction factor. The function g 1s a fine-tuning curve-fitting fumction.




Por a/e ¢ 1:

M el (6)

", - 0.03 (7)
0.11 + (%)

" - 0.29 ®
0.23 + (-:-)

4 1/2
@) (2.6-23)

e=t- 1+ 4(3)

|coe ol 9)

and
2 A
£, " [(g) cos? ¢+ stad J (10)

(Note that eq. (9) 1is slightly different, and is believed to be wmore sccurate,
than that given in Ref. 19.) The fioite-width correctioca, f, from

Raference 9 was

- (R ) - ab

for c/b € 0.5. (Note that for the embedded crack, t 1is defined as one-half
of the full plate thickaess.)

Por al/c > 1:

" ﬁ (2)




2 1/4
¢,- [(%) ota? ¢+ coe’ o] a3

The functtions My, My, g, ond f, are the same as equetions (7), (8), (9),
and (l1), respectively.

Figure § shows some typical boundary-correction factors for various crack
shapes (a/c = 0.2, 0.5, 1, end 2) with a/t equsl to O, 0.5, 0.75, and 1.
The correction factor, F,, is plotted against the parameter asgle, ¢. At
4= 0, the poiat on the crack front that is located at the ceater of the
plate, the tafluence of plate thickness is much less than et ¢ = w/2, the
point that is located closest to the plate surface. The results showm for
s/t = 0 are the exact solutions for sa elliptical crack in an fafinfte solid
[1}). Por s/t < 0.8, the results from the equation are within sbout 3 percent
of the finite~elemant results. (Herein, “percert” error is defined as the
difference between the equation and the finite-element results sorwslized by
the maximum value for that perticular case. This definicion is necassary
because, in soms cases, the strese-intensity fe:tor ranges from positiwe to
negative along the crack froat.) Por a/t > 0.8, the accuracy of equation (3)
has not been established. But its sse in that range appears to oe supported
by estimstes bessed on an embedded crack spprosching a through creck (see
Ref. 19).

Bending equstions were not developed for the eabedded elliptical crack.

Seni-Clliptical Surface Crack
The equstions for the stress-intensity factors for a sesi-ellipticel
sucface crack ia a finite plate, Pigure 2(b), sudjected to remote tension nd

bending loads were obtained f{rom Reference 9. The tension and bending




equatioas were previously fitted to finite~element results from Rwju end
dewman (8] for a/c values less than or equal to unity. Equations for
tension and dending loads for s/c greater than unity were developed
herein. The results of Gross and Sravley [20) for a single-edge crack
vere used to account for the limiting behavior as a/c aproaches zero.

The equation (s

Re(s, +ns,) ‘/-3 o o) (14)

for 0 ¢a/c €2, ¢/b<0.5, snd 0 < ¢ ¢ x, agatn, provided that a/t

satisfies equation (4). The function ¥, wvas chosen to be

'. - El‘ + "2(%)2 + "’(%)‘]' f. fv (15)

Por alc ¢ 1:

My ® 1.13 - 0.09(2) (16)
Ny = -0.54 + o-";—"—. an
. * -
[
) a2
H., e 0.9 - m L l‘(l - z) (18)
[
2 2
g§=1+10.1+035(3) l(1 - otn 0 19)

and €, (s given by equstion (10). The fiaite-width correction, £y, 19
again given by equation (11). Rquations (15) through (19) were taken from

Reference 9. (The large power in eq. (18) was needed to fit the behavior as

ale approeches 2ero.)
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The bending multiplier, HJ, in equation (1) has the fora
= - P
“3 “1 + (Hz Hl) sin® ¢ (20)

where Hy, Hy, and p are defined for each crack configuration considered.

For the surface crack (j = s),

- a a
p=02+24+0.6%2 (21)
3,8
B = 1-0.3 ﬁt -0.11 %(':') (22)
and
a a 2
Hy = 1+ 6y () + 65(3) (2%

In this equation for H,,

G, = -1.22-0.12 2 (24)

21

. 0.75 l lls
Gyp = 0.55 - 1.05(-;_:) + 0.47(3) (25)

Equations (21) chrough (25) were taken from Refereance 9.

For a/c > 1:

C [
M, = ,/;(1 +0.06 £) (26)
b
M, = 0.2(3) @n
e b
My = -o.u(:) (28)
11




2
g =1+ Em + 0.35(%)-;5;-,](1 - sin o)z (29)

and fo and f, are given by equations (13) and (11), respectively.

The bending multiplier for a/c > 1 1{s also given by equation (20) where

[ a
p 0.2 + a + 0.6 t v (30)
a a 2
Hl =1 + Gll t + 612(?) (31)
a a
“2 1+ 021 e + 022(?) (32)
[
cll -0.04 - 0.41 s (33)
c 0.75 c 1.5
Glz = 0.55 - 1.93(;) + 1.38(-8-) (34)
[
621 -2.11 + 0.77 Y (35)
and
c 0.75 c 1.5
sz = 0.55 - 0.72(:) + 0.14(:) (36)

Figures 5 and 6 show some typical boundary-correction factors for various
surface crack shapes (a/c = 0.2, 0.5, 1, and 2) with a/t equal to 0, 0.5,
and 1 for tension and bending, respectively. For all combinations of param-
eters investigated and a/t < 0.8, equation (14) was within %5 percent of the
finite-element results (0.2 < a/c < 2} and the single-edge crack solution
(a/c = 0). Por a/t > 0.8, the accuracy of equation (14) has n~ been
established. However, its use in that range appears to be suppcrted by

estimates based on a surface crack approaching a through crack.

12
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The use of negative stress-intensity factors in the case of bending are
applicable only wvhen there is sufficient tension to keep the crack surfaces
open; that {s, the total stress—intensity factor due to combined tension and

bending must be positive.

Quarter-Elliptical Corner Crack
The stress—intensity factor equations for a quarter-elliptical corner
crack in a fintte plate, Figure 2(c), subjected to tension and bending loads
were obtained by fi{tting equation (1) to the finite-element results in Refer-

ence 19 for tension and the results in Table 1 for bending. The equation is

K= (s, + Hcsb)ﬁrc(%. . 5 0 (37)

for 0.2 <afc <2, a/t <1, and 0 < ¢ < W2 for §< 0.5. The function

Fc was chosen as

2 4
a a
F, = |Egl + Hz(?) + H.,(-E)]gl g £, £, (38)

For a/e < 1:

M, = 1.08 - 0.03(%) (39)
1.06 .
M, = -0.44 + —2 (40)
2 0.3 +2
[
. RS
My = -0.5 + 0.25(2) + 14.8(1 - 2) (41)
a 2 3
g =1+ 0.08 + o.a(-t-) (1 - sin @) (42)
13




— ——

2
g, "1+ [0.00 + o.xs(%)J(t - cos 0° (43)

and f. is given by equation (1C). The fintite-width correctiom, t,s wvas

estimated herein by using the single-edge crack teasion solutiom given in
Reference 21 (divided by 1.12) and wvas

£, =1-0.20+9.07 - 19,007 + 27,10 (44)

vhere A\ e %J% (The width correction from Ref. 21 was divided by 1.12
because the froant-face correction was already included in <q. (38).)
Equation (44) is restricted te c/b < 0.5.

As a/t approaches unity, with a/c = 1 and ¢ = O, the stress-

intensity factor equation (eq. (37)) for tension reduces to

K= st/;:‘ e, (45)

Equattion (45) 1s within about 1 percent of the accepted solution [21] for
c/b < 0.6.

The bending multiplier, H., has the form given by equation (20).
Functions p, H,, H,, and G217 are given by equations (21)-(2s),

respectively, for a/c < 1. The function Gyy {s

a 0.7% o 1.9
022 = 0.66 - 1-05{?) + 0.67(?) (46)
For al/c > 1:
e -E (1.08 - 0.03 £) (47)
c 2
My = 0.375(5) (48)
14

/




2

C

My = -0.25(3) (49)
N c 2 3

g, =1+ [0.08+ 0.4(?) (1 - stn ¢) (50)
b
B 2

g, = 1+ [0.08 + 0.15(%) (1 - cos &° (s1)
b

and f° is given by equation (13). The finite-width correction is, again,
given by equacicn (44).

The bending-correction factor H. 1is, again, given by equation (20)
where p, H;, Hy, Gy, Gyp,» and Gyy are gliven by equations (30)-(35),
respectively. The function Gy, 1s given by

0.75 LS
= 0.64 = 0.72(%) +0.14(3) (52)

€22
Figures 7 and 8 show some typical boundary-correction factors for corner

cracks in plates for various crack shapes (a/c = 0.2, 0.5, 1, and 2) with

a/t varying from O to 1 for tension and bending, respectively. At a/t = 0,

the results for tension and bending are identical. As expected, for tension

the effects of a/t are much larger at lower values of a/c. Again, the use

of negative stress-intensity factors in this case of bending are applicavle

only when there is sufficient tension to keep the crack surfaces open (stiess-

intensity factor due to combined tensfon and bending must be positive).

Semi-Elliptical Surface Crack at Hole

Two symmetric surface cracks.-~ The stress—intensity factor equation for
two symmetric semi-elliptical surface cracks located along the bore of a hole
in a finite plate, Figure 2(d), subjected to tension was obtained by fitting

equation (l) to finite-element results {19]. The equation {is

15
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a a a r r ¢ :
K=Ss, ‘/a 3 Fne oo ¢) OF POOR QUALITY (53)

for 0.2 < a/c <2, a/t <1, 0.5 <r/t <2, (r + c)/b < 0.5, and

-®/2 < & ¢ /2. (Note that here t 1is defined as one~half of the full plate

thickness.) The function Psh was chosen as
a 2 a 4
Fan = M1 * M) *M3(3) 8, 8, 85 €, £, (54)

For a/c < 1:

M =1 (55)
0.05
M (56)
0.11 + (2)
c
My = __°.:.2_9..m. (57)
a
0.23 + (-c-)
4 1/2
(%) (2.6 - 2 %)
g = 1- = cos ¢ (58)
1+ 4(<)
c
2 3 4
1 + 0.358\ + 1.425A° = 1.578%° + 2.156A
8y ° 3 59
1 + 0.082\
A e (60)
1+ T cos(0.99)
2 10
8y = 1 +0.1(1 - cos )1 -2) (61)

(Note that eq. (58) is slightly different, and ls believed to be more accurate,

than that given in Ref. 19.) The function fO is given by equation (10).

16
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The finite-width correction, f,» vas taken as

1/2
T n{2r + ac) a
£, - {“c(ib-)“c';(b o+ Tne JE]} (62)

where n = 1 18 for a single crack and n = 2 1s for two-symmetric cracks.

This equation was chosen to account for the effects of width on stress concen~

tratlon at the hole {22] and for crack eccentricity {21]). For a/c > 1:

N - E (63)

The functions My, M3, 81s B2, &3 and )\ are given by equations (56)
through (61), and the functions f0 and f, are given by equations (13) and

(62), respectively.

Estimates for a single-surface crack.- The stress-intensity factors for a

single~surface crack located along the bore of a hole were estimated from the
present results for two symmetric surface cracks by using a conversion factor

developed by Shah [15]. The relationship between one- and two-surface cracks

was given by

(K) -

one
crack

(64)

where K for two cracks must be evaluated for an infinite plate (fw = 1) and
then the finite~width correction for one crsck must be applied. Shah had
assumed that the conversion factor was constant for all locations along the
crack front, that (s, independent of the parametric angle.

Flgure 9 shows souwe typical boundary-correction factors for a single
surface crack at a hole for various crack shapes (a/c = 0.2, 0.5, 1, and 2)

with a/t varying from 0 to 1. These results were in good agreement with

17
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boundary-correction factors estimat.: by Shah [15]. The agreement was
generally within about 2 perzent except where the crack intersects the free
surface (2¢/n = 1). Here the equation gave results that were 2 to 5 percent

higher than those estimated by Shah.
Stress~intensity factor equations for bending were not developed for a

surface crack located at the center of a hole.

Quarter-Elliptical Corner Crack at a Hole

Two syametric corner cracks.— The stress-intensity faztor equations for

two symmetric quarter—elliptical corner cracks at & hole in a finite plate,
Figure 2(e), subjected to remote tension and bending loads were obtained by

ficting to finite-element results in Reference 18. The equation is

- 2 a a r ¢
R o= (s, +H,sS,) \"Q oo ¥ (65)

for 0.2 <a/ec <2, a/t <1, 0.5 </t €2, (r + c)/b<0.5 and

0 < 3 < n/2. The function F,, was chosen a3

2 4
8 a
Fen * [E‘x * () ¢ "3(?)] 8 8,838, f, £, (66)

For al/c < 1:

M, = 1.13 - 0.09(3) (67)
M, = -0.54 + -"-ﬂ-; (68)
0-2 + -
[
) ( .)za
M, ® 05—+ 141 -2 (69)
3 0.65 + 2 c

18
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2
sl =1+ E).l + 0-35(%))(1 - 3in .)2 (70)
2 3 4
g, = 1 + 0.358A + 1.425X" - 1.578X" + 2.156) (71)
2 1 + 0.13)?
vhere
A= SRS S— (72)

1 +-;:- cos( ud)
p = 0.85 for tension and . = 0.85 - O.ZS(a/t)b’-" for bending. The

functions gy and g, are given by
a 3 a 1/4
8 = (1 + 0.04 ?) [1 + 0.1(1 - cos 0)] 0.85 + o.1s(?) (73)
and
ayra a
86 =1~ 0.7.’1 - 'E)(E- - 0-2)(1 - E) (74)

Functions fo and f, are 3given by equations (10) and (62), respectively.
The bending multiplier, H,),, is given by equation (2C) for a/c < 1.

The terms p, H;, and Hy are given by

a a. ans
p=0.l+1.35+1.12-07 c(t) (75)
a a 2 a 3
Hy = 1+ Gy v+ 6,(F) +63(F) (76)
znd
a 8 2 & 3
Hy = L+ Gy T+ 6pi7) +6x(F) an
vhere
a .\2
CIl - -0043 - 007‘ : - 0.8‘(2, (78)
a a 2

19
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2
Gy3 = -1.94 + 4.22 2. 5.51(2) OF POOR QUALITY (80)
€ c
Gyy = =1.5 - 0.04 a_ 73(2)2 (81
21 . 04 < 1303
S 7 724+ 6.86(2 2 82
Gy = 1.71 - 3.1 o+ .8 (?) (82)
) & 2
Gyy = -1.28 + 2.71 - 5.22(—;) (83)
For al/c > 1l:
M - E (L + 0.04 %) (84)
c 4
"2 - 0-2() (85)
c 4
Cyra 2 2
g = 1+ 0.1 +0.35(2)(T) [ - s1a @) (87)

Functions g, and ) are given by equations (71) and (72). Function gy 1is

givea by

1/4
33 = 113 = 0.09 S}{1 + 0.1(1 - cos .)Z]E).as +0.15(3) ] (88)

and g, = l. The func:ions f’ and f_ are, again, given by equations Q13)
and (62), resjectively.

Again, the bending-correction factor, Hepr 1s glven by equation (20).
The function > s given by equation (30) for a/c > 1. The H-functions are

given by equazions (75) and (76) where
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Gy, = -2.07 + 0.06 T e (89)

Cyg = 4.35 +0.16 (90)
Gy = -2.93 - 0.3 £ (91)
Gpy = -3.64 +0.37 2 . (92)
Cpp = 5.87 - 0.49 £ (93)
Cpy = =4.32 + 0.53 (94)

Estimates for a single-corner crack.- The stress-intensity factors for a

single~corner crack at a hole were estimated from the present results for two-
syametric corner cracks by using the Shah-conversion factor (eq. (64)). Raju
and Newaan [18]) have evaluated the use of the conversion factor for some
corner-crack-at-a-hole configurations. The stress-intensity factor obtalned
using the conversion factor were i{n good agreement wich the results from Saith
and Kullgren [16] tor a single-corner crack at a hole.

Figures 10 and 11 show some typical houndary-corre:ztion factors for a
single corner crack at a hole for varfous a/c and &'/t ratios for teaston
and bending, respectively. Again, the use of negstive stress—-intensity
factors in the case of bending sre applicable only vhen there ts sufficient
tension to make the totsl stress-intensity factor, due to combined tension and

bending, positive.
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CCNCLUDING REMARKS

Stress-intensity factors from three-disensionsl fi{nite-elesent anslyses
vere used to develop stress-intensity factor equations for a wide variety of
crack configurations subjected to elther remote uniform tension or bending
loads. The following configurations were included: an esbedded elliptical
crack, & semi-elliptical surface crack, a quarter—elliptical corner crack, a
seai-elliptical surface crack along the bore of a hole, and a quarter-
elliptical corner crack at the edge of 2 hole in finite plates. The equations
cover a wvide range of configuration parameters. The ratlo of crack depth to
plate thickness (a/t) ranged from O to 1, the ratio of crsck depth to crack
length (a/c) ranged from 0.2 to 2, and the ratlo of hole radius to plate
thickaess (r/t) ranged from 0.5 to 2 (where applicable). The effects of plate
width (b) on stress-intensity variations along the crack front were also
included, bdut were bssed on engineering estimates.

Por all configurations for which ratios of crack depth to plate thickness
do not exceed 0.8, the equations are generslly within S percent of the finfite-
element resulte, except wvhere the crack front intersects a free surface. Rere
the proposed equations give higher stress-intensity factors than the finite-
element results, but these higher values probabdly represent the limiting
behavior as the mesh (s refined near the free surface. FPor ratios greater
then 0.8, no solutions are available for direct coeparison; however, the
equations appear reasonadle on the basis of engineering estimates.

The stress-intensity factor eguations presented herein should be useful
for correlating and predicting fatigue-crack-grovth rates as well as in

computing fracture toughness and fracture loads for these types of crack

conf igurations.
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Table 2. Boundary-correction factors, F_H for quarter-elliptical

cer
corner crack in a plate subjected to bending

(v = 0.3; FH_ = K/(s5,/m/qQ )).

alt
alc 24/x 0.2 0.5 0.8
0 0.522 0.609 0.779
0.25 0.669 0.702 0.808
0.2 0.5 0.801 0.746 0.716
0.75 0.868 0.746 0.577
1.0 0.876 0.750 0.604
] 0.740 0.799 0.904
0.2% 0.724 0.690 0.670
0.4 0.5 0.785 0.632 0.451
0.75 0.826 0.583 0.272
1.0 0.846 0.569 0.262
0 1.084 1.046 1.027
0.25 0.934 0.770 0.604
1.0 0.5 0.838 0.547 0.237
0.75 0.798 0.417 0.011
1.0 0.839 0.407 -0.032
0 0.932 0.811 0.73
0.25 0.851 0.623 0.442
2.0 0.5 0.761 0.413 0.105
0.75 0.700 0.268 -0.131
1.0 0.677 0.215 -0.206
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Fig. 1--Corner cracks at the edge of a hole in a
finite plate subjected to remote tension

and bending.
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1.0
Fe
.54
0 +
(0) a/c = 0.2,
1.5,
a’t =1
r-———“""—~"‘——j:::§225
1‘0f=__7‘=_—==00'5
Exact [1]
Fe
0.5¢
0 -t
0 .5 1l
2/
(¢c) a/c =1,

CRIGEY M @ wl '3
CF PCOR QUA-TI

9.75

Exact 1]

3
v

(b) a/c = Q.5,

g/t =1

Exact [1] 0

0 5 1
20/7
() a/c = 2.

Fig. 4~-Typical boundary-correcticn factors for an embedded elliptical
crack in the center of a plate subjected to remote tension

(c/b = 0).
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4 4 e -y
v e v 1)

(a) a/c = 0.2, (b) a/c = 0.5,

N
-4

PN/t =1 1

% 5 1 0 5 1
20/ w 20/
(c) a/c = 1, (d) a/c = 2,

Fig. 5~-Typical boundary-correction factors for a surface crack in a
plate subjected to remote tension (c/b = Q).
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(@) a/c = 0.2, (b) a/c = 0.5,
1!5]’
~——__ 0/t =0
1'04 T
a/t =0
5 \
.54 {
IS
1
_'S.L F Y
0 5 1 0 5 1
20/m 20/
(c) o/c = 1. (d) o/c = 2,
. 6--Typical boundary-correction factors for a surface crack in a

plate ‘subjected to remote bending (c/b = 0).
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0 — - . e

(@) a/c = 0.2. (b) as/c = 0.5,
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&
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& L J
1 0 a/t =1
J ¢ 0
0 + - + —
0 .5 1 0 .5 1
29/ 20/
(c) a/c = 1. (d) a/c = 2,

Fig. 7--Typical boundary-correction factors for a corner crack in a
plate subjected to remote tension (c/b = 0).
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(a) a/c = 0.2. (b) a/c = 0.5,
1.5*(

0 5 1 0 5 1

20/ 20/ m
(c) a/c = 1, (d) a/c = 2,

Fig. 8--Typical boundary-correction factors for a corner crack in s
plate subjected to remote bending (c/b = 0).
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(a) a/c = 0.2. (b) a/c = 0.5.
1? a/t '/ W
t
1 a/t=0
4T-_'-._---~.--~.--—-—
} 1
{ ¢
i
]
0 + — ¢ + 4
0 .5 i ) .5 1
29/ 20/
(c) a/c = 1. (d) a/c = 2,

Fig. 9--Typical houndsry--correction factors for a single surface crack
at the ceanter of a circular hole in & plate subjected to remote

tension (t/t = 1; /b = 0).
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Fig. 10--Typical boundary-correction factors for & single corner crack
at the edge of a circulsr hole in a plate subjected to remote
tension (r/t = 1; /b = 0).
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[

a/t =0

(o) a/c = 0.2. (b) a/c = 0.5.

3 | a/t =0 ;
\_____—/

Fenlen .2 %

) .S 1 0 5 1
20/ 7 20/
(c) a/c = 1. @ a/c = 2.

Fig. 11--Typical boundary-correction factors for a two-symmetric corner
crack at the edge of a circular hole in & plate subjected to
remote dending (r/t = 0.5; r/b = 0).
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