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FORIWORD

This report was prepared by Dr. Frank W, Bubb, Chlef Soientist
- of the Office of Air Resesarch, Hq., Wright Air Development Center.
The re=-

Work was completed under Expenditure Order Number L6l.l,
port is one of a series to be issued on this project, Others in

the series will be published as research progresses.
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L
This paper presonts s new operctional cailculus applicable to the approximate

(aund in the 1imi¢, exaot) amalysis and syanthesis of linear physical systems (aach

&8 soyvowechanisms, <lectrical olromfita, aad so on). Corresponding to any tiue

[ WS
function P{t), « "Pbtrunstow-r gkl) = §£ P(kv)gt is defined, P(kv) being
ke=K

ordinates of P(t) at intogral malgipies af » €lae interval v. The relation be-
tween impat F(t) to asy lisear syateam, its output H(t), ead its wemory function
{(icpaleive aduittance) H(t), is given by the superpositioan integral, hH(t) .

[~
F(s)H(t-s)ds. Correospouding to this convolution intsgrai, the relation ﬁ?x)::

?k;fg(x) holds bstween the respoective F-transforas. Converssly, this transform
oquation fmwpliies the convolution equation. This correspondences is identical im
form to the correspoundence betwesn convolution fntegral snd its Laplace (or
Fourier) transforw which ig the basic theorem of the classical operationsl methods.
The mods of constructing s table of P~trauvsforus 1o indicated by working out the
transfurms of the olo,ontcry functions of uechanios nnd-sf cirouit avalyeis., By
way of indicating Bow this uneow opérattonml oaloulas mey be doveloped, a sot of
usoful trausform theoreas are worked out for such amslytical operastione ss die—
ferentiction, imtegration, and so on, ¥Finally, to siemplify the powur of this
aov calculus, s linsar differential eguaticn is solved, numsrical resnlts beiag
compared with thoee of the ansiytiosl solution. An ocutstsading virtue of this
now operationsl calculus ie that it does not depart from the time domain itself,

Ta w subsoquent Alr Force Techaical Report Ko. 68586, this method {8 used to give

a simple esxplanation of Wienex's theory of the spocthing aad predicting filter.
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PUBLICATION REVIEW

Nunusoript copy of this report has been reviewed and found satisfactory for

publicstion.
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A NEW LINEAR OPERATIONAL CALCULUS

This paper presents an cperaticnal calecvlus applicable to the approximate
(and in the 1limit, exsot) analysis and synthesis of linear physical gystems,
such as servomschanisms, electrical ocircuits, slectromechanisms, and. the like.
In oontrast to the methods based upon the transform theories of Fourier and
Laplace, this valoulus does not depsrt from the time domain(', thus allowing
a more direot appeal to the intuition.

The new operational method takes origin in the notion of the generating
funotion, used soc effectively by Laplaco(')in the theory of probability.
Actually, the new method is olosely related to the Fourier and Laplace trans-
form methods, but provides familiar algebraic methods of executing analyses
and syntheses. Before setting forth the new methods, we recapitulate a well
known bit of linear system theory which brings out the essential features of
any operational method.

THE SUPERPOSITION INTEGRAL

Consider the oonventional "black box" representation of a physioal sys-
tem shown in Figure 1. F(t) represents the input (cause or driving fumotion)
which actuates tho system. The output of the system {effect or response)
is represented by H(t). The system itself is charaoterized by its MEMORY
FONCTION M(t), which is the response of the system at time t caused by a
unit impulsive input applied to the system at time t = 0. M(t) is also
called the system weighting function or its impulsive admittance and is the
Fourier transform of the system frequency response as well as the, Laplace
transform of the system transfer function. tdnvaer

Input F(t), response H(%) and memory funoction M(t) are related(” by
the superposition (convolution or faltung) integral

1
H(t):f F(8)M(t-8)ds (1)

)

This is easy to see from the following considerations, illustrated in Figure
2. The element F(s8)ds may be regarded as a small impulse st time s. Had
thig been a unit impulse, the corresponding response at time t {later by the
time t - s) would be M(t~s). The proportional response due to the non-unit
impulse is then F(s)dsM(t-s)., Ths total response H(t) at time t is the sum
of all the responses at time t due to similar elementary impulses oocourring
preceding time ¢, namely, is the superposition integral (1),

The memory function M(t) vanishes for negative %, since it is axiomatio

that an effect or response oannot precede its omuse (the unit impulse at
t = 0)s This means that M(t-s) = O for s> t; henos the upper limit t in

AFTR 6581 1



(1) may chenged to <= ., This is also olear, since any impulse after t cannot
be retrosctive to produce any response at the earlier time t,

It is important to note that (1) is a very somprehensive equation. It
covers the oomplete range of linevar system analysis and synthesis covered by
Laplace or Fourier transform methods. M(t) may be equivalent to the opera~
tion of differentieting, or integrating, or, in fact, may be equivalent to
any ordinary integro-differential equations. Due to this faot that the super-
poslition integral embruoes all of linear system analysis and synthesis, it
" provides e proper basis for the development of any form of operational cale
culus.

To construot an operational calculus, one defines, corresponding to a
given %ime funoction F(t), another funotion F(x), called ths transform of
F(t). If then, corresponding to the superposition integral (1), there
exists @« simple relation between the transforms of F(t), M(t) and H(t), we
shall have an operational method. In Laplece transform theory, the trans-
form relation is L{H(t)| = LM(t)] « L{F(t)]. In Fourier transform theory
the relation is identical in form, being H(jw) = M(jw) F(j®w). In the new
method to be set forth here, the transform relation is again of this smms
form, H(x) = #(x) + ¥(x), where these respective funotions are the "Poly-
nomisl-Transforms™ of H(t), M(t), F(t). We must now define, of course, this
new type of transform, which we abbreviate as "P-Transfcrm",

POLYNOMIAL TRANSFORMS

Corresponding to a given time funotion F(t), we define now a transform
F(x), oalled hers a P-Transform, by the equation,

=

Flx) =P F(t) = 2_3F(av)x" (2)
nz=¥

where the F(nv) constitutes & sequence of ordinates of F(t) equally spaced

e time v apart. The respective feotors xN may, for the moment, be thought
of ag & means of ordering the gequenoce F(nv) of ordinatea. The word ordinate
F(nv) may, of course, include an ordered sequence of empirical valuecs, taken
for example, from a table, And the independent variable % does not, of
oourse, have to be time,

We alsc define an operator P"', inverse to P as defined in (2). Thus,
having given a P-transform ¥(x), that is to say, its sequence of ordinates
F(nv), we shall understand by the expression

% By

r(t) = P' P(x) (3)

the interpolation of a time fumotion f(t) having the values f(nv)=F(nv)
(n = <K to L)s Graphically, this amounts to drawing a ourve f{t) exaotly

AFTR 6581 o



through the points F(nv). We shall call f(t) in (3) a DETERMINING FUNCTION
or TIME FUNCTION ocorresponding to the P-transform F(x), The function f£(t)
is an approximation to F(t) whioch can be made exact., Before a determing
funetion f(t) becomes uniguely defined, we shall have to prescribe how its
ordinate sequence f(nv) = F(nv) is i< be interpolated. Ior conciseness, we
shall ocoasionally write F,, for F(av),

CARDINAL INTERPOIATION

For present purpcses, interpolations will be limited to the form

[
£(6) = &__sF, L(tenv) (1)

K

4
where the interpolating fumstion L{t) will be taken as the CARDINAL FUNCTION( Z

T
L(t) = 2oy ® (5)

R il

& graph of which is shown in the upper sketoh of Figure 3, This funotion
has the properties

-

1 for t = nv
0 for t = kv (6)
n,k = integers, nf k

!

L(t=nv)

li

L(t) = L{~t), (7)

is continuous for all t and its tails attenuate hyperbolioally to zero as
t approaches infinity.

The memning of the inverse Yransform f(t) = P 'f(x) may be seen olearly
as follows. If we multiply L(t-nv) by k, and graph this produot in proper
position on the graph of F(t), see Figure 3, we obtain a ocurve enclosing the
shaded area. This curve passes exaotly through this partioular point (nv,ﬂ‘)
and orosges the time axis at every other ordinate of the sequence F, . If we
do the like for every ordinate ¥, end add the separate interpolating ourves
so obtained for all values of ¢, we see that the sum curve (L) representing
the inverse transform f(t) is an approximation or interpolation, continuous
for all t, of the time funotion F(t). Note that this interpolation f(t)
passos exactly through all points of the ordinate sequence F,. Note further
that, by passing to the limit as v -0, f(t) oan be made exactly equal to
F(t) if +(t) is continuous.

AFTR 6581
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It is also of interest to note that the area under the curve F,L(t~-nv)
is Fy,ve This is the correct amount of impulse to be associated with the

ordinate F, .

5)
The oardinal funotion also has the following useful pr'Operties( . L(t)
is equal, up to & donstant multiplier v, to its auto-convolution, namsely,

oo

fL(a)L(t-u)ds = v L(t) (8)

~ o0

From this it is easy to show that the funotion set L{t-nv), where k,n are
integers, is orthogonal, namely,

fL(s-nv)L(a-kv) ds = v when n = k, = O when n | Xk, (9)

-0

The properties (6) to (9) will suffice for our present purposes.

PRINCIPAL THEOREM: We are now in position to proceed with the statement
and proof of our principal theorem:

PRINCIPAL THEOREM: THE CONVOLUTION OR SUPERPOSITION INTEGRAL,

<O

H(t) = fF(s)M(t-s)ds (1)

Y-
IMPLIES THFE P-TRANSFORM RELATION
H(x) = v F(x) M(x) (10)

AND CONVERSELY, IN THE SENSE OF APPROXIMATION WHICH CAN BE MADEL
EXACT, THE TRANSFORM RELATION IMPLIES THE SUPERPOSITION INTEGRAL.

We now prove this theorem, The time funoctions F(t), M(t) and H(t)
needed in (1) may be represented by the interpolations of the cardinal

type (L)1 .
F(e) 32 F. L(a=3v), Fj = 0 outsido «J< jec I
T
U(tes) = MkL(t*n-kv), M, = O outsida “K& k&L (11)
4

H(t) uZ_JHnL(t-nv), H = 0 outside -NH&n&M
n=x-N
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Inserting these into (1) and comruting the order of summetion and integra-
tion,

H(t) = ZH L(tenv) = Z:F-Z:ll f L\(s-jv)L(t-a-kv)ds.

nw-y§ N 3=-7 A=

Setting x = s-jv and invoking (B8), we have

™M
H(t) =Z:H L(tenv) = VZ: F Z M L [t-(j+k)v} .
nz=-N J""‘T k

Making use of (6), the last expression will yield explicit values for the
Hy in terms of the F; and M. Thus, let us set t = iv in the last equa-
tions on the left, ail terms venish except H;. In the seocond summation
on the right, all terms wvanish except that for which 1 = j + k, the surviv-
ing term being Mi:-j o Hence,

whioh we write as

H mvz:.i}bloj (12)

This is & very useful result.

To see mors olearly what (12) means, let us now form the P-transform
for ths sequense H 1

1
VRN S PIUNE 0 S
ne-N Au-N e
= v 2%* jE::.N =" n-3
.- no-~MN n-J

Replaoing the index n - J by k mnd olanging ths limite on ths n summation
to corrssponding valuss of k, ws have

M-}
ﬁ(x) ZH): -"‘-‘-'V‘ZFX 2 ,N“xk (12‘)

nz-N " jo—1° k=M=

In the appliocations of thils operational method, we shall frequently encounter
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equations of this form (12'), for whioh roason (12 ) degerves a oareful
atudy.

In equations (11), we placed oertain reastrictione upon the F;, M) and
H , etating that these ordinates vanish outside oertain ranges - it amounts
to the sdme thing %o say that outside these ranges these sets of ordinates
bavome negligidble. For the purposes of system analysis and synthesis, we
oun pleoe upon the ranges concerned the furthor restriotion that M= I + L,
WwJd+ Ko Thies lest resgtrioction will not be mainteined in a later report
dealing with noise smonthing problems, and this will require a mors detailed
study of the form (12').

We can now aimplify (12') es follows. Equating coeffioients of 3ike
powsra of x on both wides of {(12'), we have,

miy L M-§ | xM--.t
"' 3
-I;H“mg‘ % 2,.__._4.Hxh+o.o+l§xZ:‘.Hx‘+no+FxZ.llxk.
v T kveNey & ke-f-j % bogs-nl

Rscalling the additione) restriotion that ¥ = I + L, we ase that the upper
limits on these euccossive gummations decresse from ¥ + JY>L to M « I = L,
and sinve My = O for all k> L, all these upper limits ocen be replaced by L.
In gixilar meaner, the successive lower limits go from «N + J = =K to

-N «I<«K, and ginoo M, = O for all k«K, we soo that all theso lower limits
osn bo replaced by -K. Henoe, in {12') the lowsr and upper limits k = N - j
and k = B - § car b9 replaved rospeotively by k = ~K and k=~L, Accordingly,
(12') vecomes

X .
o 12 3 k
H(x)minx =v§ F-xi x
e A S (13)
whore M= I + L and N =J ¢+ K

This relation sy slso be illustrated by multiplying out two polynomials
of low dogress.

Wo note now that the two polynomiel fectors_on the right side of (13)
are rospectively F(x) end M(x). Hence H(x) = v F(x) ¥(x). This proves the
firgt part of our principal thsorsm,

1t remmine to prove the converss, namely, that (1) follows from (10).
Lot us write (12) in the funotional notation:

H(iv) = F(3v) U(iv=3v) v
ve-Yv

Now let ¢the time interval v = de+0, Simoe v ig decreasing, ths number of
intorvals must increase to oover the given renges of variubless hence, we

AFTR 658} 6




sot lv=t, jv=s8, Jv=1T, and Iv=T,, Passing to the limit, then,

[ 2
v,
) H(iv) = ;iﬂd F(Iv)¥(iv - Jv) v
v=Tv
gives

Ta
H(t) = j‘ F(s) M(t=s)ds.
-

With proper restrictions es to convergaencs of this integral, already ime
plied in (1), we oan let T\~»@ and T, -4 o and so obtain (1), Hanne,
since {12) passes over in the limit to (1), the equation (10} whic. s equi-
valent %o (12) is an approximstion to (1) whioch can be mrde exact. This
completes the proof of our principal theorem,

I is interesting to compare (see Appendix A) the present operational
methods with the familiar methods based upon the Fourier and Laplaoce transiorm
theory.

LINEAR SYSTEM THEORY

There are three typical problems in linear system theory: the analysis
problem, the synthesis or design prublem, and the instrument problem.

In the typioal ANALYSIS PROBLEM, one has the system M(t) given (the
memory function being used here to charaoterire the system), one has giwven
the input F(t), and one has to oaloulate the system output H(t).

In the typical SYNTHESIS PROBLEM, one has given the input F(%) and the
output H(t), and one has to oaloulate the system memory funotion M(t) -
accepting M(t) as the attorney or mathematiocal representative of the system
itself, and leaving it up to the de~ign engineer actually to make the system
50 it will have this memory functio. response to unit impulse.

In the INSTRUMENT FROBLEM, one has given the system M(t) (the measuring
device), one has given its output H(t) (the measurement), end one has to find
out what the input F(t) is or was,

Al]l these problems are eaglly solved by the present operational caloulus,
nothing but the ordinary algebraic operations of polynomial multiplication
or division being needed.

Consider the apalysis problem. Having given the input F(t), oms ploks
off its graph or caloulates a sequence of ordinates F; equally spaced at
integral time multiples jv, esnd forms the input P-transform

1

'f?.(x) u%l}xi ¢

A¥TR 6581 T




In similar manner, one forms (practically by inspection) the memory P-transform

da
- i
K(x) = 2w .
ezt K
One then multiplies these two polynomiels by the femiliar algorithm of ordinery
elgebre to oMlain T4t
H(zx) = v F(x)i(x) = v (2 __B x Mx) = Hx
e R Ve g =T "

One then picks off the coefficisnts H,, plots these at the respsotive pointe
nv, fairs in & time ocurve h{(t) through these points, and acoepte this ourve
as an adequate interpolation of the required response H(%).

_In the synthesis problem, one forms as above the P-transforms F(x)
and H(x) of given input and output. One then divides, by ordinary poly-
nomial division the first by the sesond to get the memory transform

M
~ _ 1 H(x) _ %7 "
M(x) = T a5 2;-:;‘ ka »

picks off and graphs the ordinate sequence M, and obtains the interpolated
time function M(t),

In the instrument problem, one forms the P-transforms of the given mea-
surement H(t) and given memory M(t), divides to get the polynomisl
1 H(x
v oH(x)
picks off this P-transform ¥(x) its ordinate sequence F, , graphs these or-
dinates, and obtains the interpolated measured quantity F(t).

F(x) =

It will be noted in all three of these problems that, because of the
ocbvious relation between P-transform and corresponding time function, one
remaing essentially in the time domamin itself. The great intuitive value
of this fact will be made apparent in & later paper (AF Technical Report No,
6586) in which the Kolmogoroff-Viiener theory of noise smoothing and prediect-
ing will be pregented in terms of the new operational mothod. The essential
ideas of noise analysis (regarded by engineers as too abstruge for practioal
use) take on a simple, obvious character.

The value of thig new method as a practical way of getting numeriocal

results will be illustrated later in a numerical example. This sxample will
be delayed in order to set forth a number of useful theorems,
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USEFUL THEOREMS

Theore are many propertiss of the P-tranaformation whioh are useful in
appliocations of tho preosent operational method. In general, these proposi-
tions correspond to parallel propositions in laplace transform theory., Some
are suffiviently obvious to be stated without proof.

The Y&  The following operations, respestively iu the tims and trans-
form domains, ocorrespnnds

If H(t) = F(t) + K(%),

" - (1)
then H(x) = F(x) + X(x)
The 23 If H(t) = o F(%),
. (15)
then, H{x) = o F(x)
The 2 I B(Y) = F(tenv)
(16)

ghen H(x) = x F(x)

The last theorem means thamt multiplication of the transform ﬁkx) = PP(%)
by =™ ocorresponds in the time domein to shifting the time function by
smount wv into the future,.

The Ly If H(t) = F(=t) l
» s " (17)
then H(x) = 7 _, F(nv) =« j

This means that, correaponding to the time domain operation of refleoting
the funotlon F(t) sbout the time origin, one merely has to change the signs
of the oxponents of x in the transform ¥(x) = F7 F(av)x",

The 5: if H(t) =& F(%) = F(t+v) -I"(t)l (18)
1
then E(x) = (%-« 1) F(x)

which means that the operation of taking finite differences in the time do-
mein corresponds to multiplication by QE = 1) in the transform domain.

The 61 If H(t) = t F(%) (19)
s 1 1
then H(x) = xv E%é;l
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whioh mesns that multiplloation by t in the time domain gorresponds to the
operation wvx c‘iq&" in the transform domain, If one writes l(x) = 2. IF(nv) x"

and differentiatos, the proposition readily follows,

The 71 A theorem for integration in the P domain goss as follows:

3 3\
1e w(e) = L8
t +v
i  H Lﬁ
then H(x) = == j T(x) dx (20)
vx J,
0
whore T (x) = Z-. F(nv) x"
13O

whioh follows readily by subatitutlog the third equation into the seocond.

The term F(=v)x™' would introduca a logarithmic singularity and is reserved
for later study.

The amount of impulse H(nv) due to the aotion of a driving funstion
F(t) aoting over a time from O to nv is the definite integral
ny

f F(t)at
Q

and is the area under the ourve ¥(t) from O o t = nv,

Conosrulrng the
soquonce of values H, = H(nv), we ocan state the theorem

The 83 If in the time domain

v |
H{nv) = J F(t) dt
o
by
in the P-domain H(x) = & %‘2‘. (%) = LB, Zue x¥)
2 I 2 et (21)
ot
whore F(x) x?.__* P‘kx\“
KO
and where HB(x) = ﬁf; g x"

nuo " 7

In other words Hy 18 the coefficient of ' in the seoond equation of (21).
This theorem will be ugeful later in reduoing ordinary linear differential

oquations vo the polynomiel operations of ordinary algobra, For this rea-
son, it deserven a oereful disoussion. '

The area under any portion of the ourve F(t) 1o, to a wufficient ap-
LYy
proximation, equal to the area under that part of ite interpolntionZIFRL(t-.kv)..

-
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R

| N
\|‘: "‘ "‘.“ .
)‘?};};d\‘ The area from 0 to t ~ nv ia then
: n
"
N SN
Hinv) a B ow [ > N L{tekv)dt
e kuo
n nyv
e b f L t-kv)dt
ko .
For conolaenoas, wo write
NV
Sk s L{tekv)dt RAD!
J,
wo that \
\
A
Mo o Zﬂu I8 (23)
n ko koOK

It romaine, of oourse, to svaluate Sy e

If' wo uso an interpolating funotton the trlangle shown {n Plgure |y,
whioh produces the atvaight line approaiwmation or polygon shown in the lower
sketoh, 1t 1e obvioun (ainos the arsa of the triangle la v) that

Sl« v for Ov kan
(243)

v [y
o= ffor kw0 oron
[

Note that of the trlangular interpolating funotiouns at ¢t = 0 and t = nv, the
half triengles oulelde the range 0 to uv are oexoluded in order to provide
battor approximatlion,

Tho oardinal tunotion (%) glves approximately the samo result -~ and this
1o digovssed in Appoendix B to aveld Interrupting the vontinulty here.

Expanding (2%) and uaing (24),

4+ wwew + §

=
g
72
=
<+~
o
-
[~
el

ar A N ) 2 \ . . . n L Y
M.Qb v VF o WE e e b VR F vy ¥,

whioh s also obvious from a oaloulation of tho trapesoidal areas of the
interpolation as shown in IFigure L,s Thig rosult oun be writteun as

v' hl ) ] r "l oy
Hyo= 5 | (2K, 421 + 2 b vee + 21, + F,) "E,] (&)
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The quantity in the paranthenes () ta Ll acefflotant of » in the produat
(LY

Wy .
of the Lwo polynomiala (>\., . l“hx\) (1 + 2x AR teesad,luf,), whioh
gan be readily shown by & bit of penoll work., Furthormore, a diviasion by
lex will whow that (1 ¢ 2x 4 0x' 1 2xd teevadoing,) = 20X
w
tarwm I in the hreoketl of (£4) 4n the oovefflotant of x" in the polynomial
ae L‘

e X
¥ P I l‘;“f*';(‘ wherae the term Uor K w 0 ts omitted to avold cancelling
o -

the x  term of tha previous pert. Henoe, it appears that Il 4a the oovef-

o The remaining

flotont of x"  in the Petranstorm,

x \ (ke
~ v olix 3 VoSN
H(I) w o '-1'"““ AR R “‘%;‘-' i xh‘
R TT L
Tex v N k '
v : . \ ) EA)
i -p ‘a.::; \(X) - ~7:’ l‘, im,“ X (‘1 )
v lix = Iy Va
PR I'(x - o vamga
x4 PO - mi
J
from whioh Theorem 8 followa,
A botter approstmation than (%) to the area or tmpulase n, 1= p‘,ivem(
by Simpason's one=thivd rule
N, = LE, ol o, vy oty veseee ety | )
whore n 1o oven, Uy dlreoct exeoution of the operations below, it oan be
shown that
v L™ 5=
‘\((x) w1 X -2 LA ’I:\(li) - 1 | Xk1 ’?.')
50 lex 30Nl W
K avan

Honow, (27) may be used in pluce of the seoond eyuation of (21) - one should
rooall then that n is to be taken only as an evon number,

A Yerge olass of interpolating funotions Crom whioh additional approxi-
wationy may be dorived are glven by Svhoenberg (4) A

If ons writes the first equation of (21) in the form H(t) = j F(t)ds,
\ B o3 \')
it follows that I'(t) = }‘{(t) = _Su_é‘(;ﬁ).o In this oase, the constant lower limit
pleys no part, Aocording, we may drop the term in F, fvom the recond equation

“, e
of (21). Solving this seoond equation for H(x) = F(x), we have the theorem,

APTR 658) 17




The 91 Cerragponding to the time domain operation of ditferentiation,

)
: dh(t)
() dv
41‘ ll) » e
wo have in the Pedomain  H{x) = %- XT: h(x)>‘ (28)
~ ay
whero H(x) s 2 }I(k'v)xk
TETY
A atill batter Pedopain operation cocereapondlny to differentiation in the
time domain {a obtalned by & salmllar inversion of (), thua
() = o dXl i) (29)

umthX’

and this may he used in plave of the ascond equatiton in (20).

Thowe theorems might ho continued, wmore or lpas paralleling those
of Laplave transtform theory,. bEnough have beon given, however, to usketoh
out the prooedure for developing the new opmrational oaloulus.

A oxampla (oombng under Th, B) will now be worked out to illustrate
the aritlmetio oconvenlenoe of the new methaiae.

NUMERICAL EBXAMPLE

As an mfampla under Th, 8, we ocaloulutie the ordinatoa H(nv) of whe
SCwny

\ Intogral ‘ sin b dt, Taking the time intorval ee v = TB = 189, the P

A Al

bl

,Fg
uA
W

tranasloru of sin t, taken from e trigonometrio table, is

Yy

o Y . ¢
F(x) = 0+ J31lx + J59x + .le\ + .951+ + x o+ .95x‘ + vboe

From (21), the transform operator iu-g %j;-n 1597 %15 o Henoce, noting

that F(0) = win 0 = O, we have

1+x

fi(x) = 0. 157 (0 FooBlx + o50xY 4 o8lx 4 J95x 4+ 1x” 4 O5x" )

With & bit of penoil work on the side (one may multiply first by 1 + x and
then divide by 1 « x or vise versa), the reader will readily verify the
results oaloulated here, the second gives values caloulated from the analy-
tioal solution AN

sin t 3¢ = leoog uv.

o
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RUWUAY
:F}\\'g‘éf‘\‘

4
gsw-\; .

B, H H, W H, H; H_, H, Hy H, H, Hyg:--

o \ 3

0 905 019 .JLI .69 n% 1030 1'57 1a79 1091‘1 1098 1.914 1079
0 5 «19 oAyl L9 1,00 1.3 1.5 1.81 1.95 2,00 1.95 1,81

These results aro suf'ficfently asourate to illustrate the gimpliclty and pre-
oiswlon of the new methods, As an additional bit of practice, the reader
may use, instead of the integrating operator above, the bettor ono given in

(27), namely,

X A
YoMl ooy A
3 lex lex

A TABLE OF P~TRANSFORMS
Q|

For reagons brought out so olearly by Gardnor and Barnes )in the omse
of Laplace traneform theory, we find here that a table of Petranaforme are
ugetuls A foew exmmplsog only can be worked out here, and these will be
limited to the olamentary funotions usually enocountered in linear system
theory. The caloulations amount, of osourse, Lo direot appliostions of the
dof'inition

M.
F(x) = p [1(1)] = ZL&F(M) x" (2)

YY o
of' the Petrangform.
The unit step funotion S(k) is defined by the equation

$(t) = 1 for t20

(30)
= () for £ 0
NS ~ A “
The sorvesponding P-transform S(x) is S(x) = 1 + x + x~ +eecedx" + oto
[ v
&,
i L X e But 1 + x + x" +oseadoinf, = mlaa, henog
nso lax
o~ 1‘
S(x) = 7= (31)

in g olosed and simple form,

The truncated exponential fumotion 1s defined by
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~at

E(t) = e for t2 0

i

(32)
0 for t< 0

]

~ - O
)5 hence, E(x) = ® x"

12} RV
= (o
nw=a

The ordinate sequence is E(nv) =

?"‘ -~V 0
=/ _.(6 x) » Accordingly, we can write

£ ax)' ____.,,._.
) = HE:‘; ( 1eax (33)

-
where a = @

Note that by getting ol = 0, and henoce & = 1, we recover the previoug re-
gult for the unit step funotion.

In gimilar fashicn, by caloulating P[ ot ‘1 }and geparating real

and imaginary parta, we find for the trunoated damped sinusoids the poly-
nomial transforms,

(a sinww) x (382)

1-(2a ocswv) xie*x"

Pl e stnwt]

- AV
where a = o P

~at l-(a coswy) x
P07 ooswe] = RS, (35)

Appliocation of Theorem 6 (Equations 1%) will introduce a factor ¢ into
any one of the above funotionsg corresponding to which one applies to the

P-transform the operation WEE e As an example of this, consider the remp
function

R(t) = t &(t) (36)
- i xR = d ¥y _ . 4 1
Its transform is R(x) = Vg 8{x) = Vg (l-x)‘ Hence
'E(x) S ﬁ3~= v(0+x+2x1+---+nx" + oto) . (37)

The respective coefficleonts 0, v, 2V,cee,nv, otc, in the last expression
are obviously the sequencs of ordinates of this ramp funotion,

Kultiple applisation of Theorems 6, 1 and 2 to the above functions‘and
their transforms will yleld the transferms of any polynomial im t times the
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3 z -5¢
original funotiom - such as (2t +5t -3) @ . This corresponds, of course,
to a multiple pole (degonerate eigen functions) on the complex plane of the
Laplsoce transform,

The unit impulse §(t) at time t = 0 is defined by the oconditions
8(t) = 0 for t£0

) (38)
[ S(t) at =1
From (L) we can write & (t) = k}w § (xv)L(t-kv) which (since & (kv) =
for kf 0) reduces to (t) = §(0) L(%t). Uaing this result in the second
equntion of (38) gives j 8 (t) at = &5(0) f L(t)dt = v5(0) = 1, Hence
& (0) =--. Insertion of thia into the transform O (x) =L S (xv) x< gives
S =1 | (39)

The time orig,in of anz of the mbove funotions may be changed from O to
mv by use of our “shifting Thoorom 3+ The corrsesponding operation in the
Pedomain i¢ multiplication by x™, For example, the trensform of the delta
funotion looated "at" mv, namely, & (t-mv) is

P [j(‘.;(tumv)] = "x;t'n (39 )

These results may be collected in & table, one column listing the time
funotion, the cther the corresponding Potransform. Such a table can be made
quite extensive and would serve the same general purposes as & table of
laplace transforms or a table of Fourlier transforms. The few items liated
sbove suffice for our present purpose of showing how such & table oan be

songtruoted,

We now apply these methods to the solution of ordinary linear differens=
tial equations, .

LINEAR DIFFERENTIAL EQUAT IONS

The few theorems set down above enable us to solve ordinary linear
differential equations. The general method of attack can be olearly indiocatsd

by & coupls of simple examples.

Consider the first order equatiom with its initial ocondition,



(Lo)
with H(0) = B

Integrating from O to ¢,
t+ t +
[ﬁ(t)dt +B fﬂ(t)dt = f F(t)dt
-3 (=] {: 2
= H(t) - H(0) + B f H(t)dt
Q

Inserting the initial condition H(O) = H, end write this as H_S(t) where
$(t) ia the unit step funotion, we have

+ t
H(t) + B fﬂ(t)dt = f F(t)at + E_S(t) : (L)

&} )
which 18 now in proper condition to apply the P-transformation,

Theorems 1 and 2 show that P[ ] ies a linear operation {epplies distri-
butively end commutes with a oconstant); hence, we have

) t ) ok
p (H(s)] + e[ LH(t)dtJ =p| fF(t)dt] + 1P [s(t)] (L2)

The first term on ths left is simply K(x). The second term on the left, by
v v Hyx .

Theorsm 8 is B[ > -i—- H( ) - -I:—i-] , the last term of whioh is & minor

correction (vanishing in the limit as v-=0) and will be omitteds The first

term on the righf is similarly % .%13. F(x)s The last term on the right,

~ H
see (31), ia ¥ §(x) 51:;2-9 Putting these velues in plsoce of tha respective

terms in (L2), and solving for H(x), wo have

Y 14+x Ho
H(x) = %E’fm . F(x) +}§E_ﬂ§. (13)
-2 v 2 1x
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The cosfficlent of F(x) correspords to the transfer function of Laplaoce
transform thecry and tc the frequency response of Fourier transform theory.
The second term in (L,3) is due to the initial condition. In the so-called
normal golution (initially quiescent system with dependent varisble and all
its derivatives rzeroc) the second term in (3) vanishes - which is usually the
case treated in lLaplace transform theory.

It 1s interesting to note the correspondence hers with usual operational
methods., Thus, writing (40) in operational notation, pH + BH = F, and solving
in the form

R
H= __2_§m F,

1+~
Q

we ses that our "transfer” operator in (43) oould have been obtained simply

v 2 1l-
by rogarding% as our integrating operator 7 -};_:. w-= Or p=< %-4-_-; as

our differentiating operator,

But equation (L43) can be simplified still more. Clearing out the l-x and
simplifying, we have

v w()F(x)+ 2He .
B(x) =~ e (5v-a)a (ks )

which is an essily msnipulated form.

AT this stege in our process of finding H(t), one could throw fi(x) into
a sum of slementary types to be found in a table of P-transforms, and write
out the 1lnverse transformations to obtain H(t). The procedure here would
follow the familiar pattern of Laplace trensform theory., But this provedure
is not necessary,

An outstanding virtue of this P.transform method lies in its easy handling
of numerloal problems. For example, in the oase of the above differential
equation, every quantity except x on the right side of (43 ) would be given.,
The denominator in this expreseion . an be (by dividing by Bv+2) put into the
form 1+Ax. The numerstor reduces, after oolleoting coeffioients of like powers
of x, to a gimple polynomial, After division by 1+Ax, we get then a simple
polynomial H(x) = H, + H x + H.x™ +ees + H x" +ous0to,, where sll the H, are
mere numbers, This sequence, ﬁo, Hy, Higues, By eveoto., of ovefficients give
the successive ordinates of H(nv) = H(t), and may be plotted to give & graph
closely epproximating our desired H(t). Thus, no formal work whatever is
required to pass from H(x) to H(t) « & more inspeoction of H(x) gives H(t),
and vice verasa,
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The above procedure for golving a linear differential squation subjeot
to its initial conditions may be formeliszed into the following steps:

(1) Apply to the differential equation the definite integration
J'( )dt, as many times as the order of the equation. This introduces the
1;;t1a1 conditions inte our solution and puts the equation into proper form
for applying our P-transformation.

(2) Apply to the result of Step 1 the P-transformation, make use of
Theorems 1 to 8 to reduce every term containing H(t), its derivatives or inte-
grals into terms containing H(x).

(3) Apply to the result of Step 2 the indicated operations of ordinary
algebra including polynomial multiplication and division, thus reducing ﬁ?x)
to the simple polynomial form H(x) = H, + H x + H x* + eta,

(L) Pik off the coefficients (or time ordimmtes) B , H , H,, Hy, eto.,
plot at the successive points 0, v, 2v, 3v, eto, on & time axis , fair a ourve
through these points to obtain an approximation to the required solution H(%).

Consider now the second order equation with normal boundary conditiocna

2.
d H aH

+ + BH = F(%
at ™ A’d‘%‘ i (+)

with H, = H, = 0

(L)

Tre system 1s assumed to be initielly quiescent (deperndent veriable and all
its derivatives being zero at t=0) to oonform to the usual oase treated in
Laplace transform theory. All this assumption does is to omit & number of
edditional terms which omn be easily handled but whioch elutter up the equations,

Applying step 1, we integrate the equation from O to t, with the reault
t +
H(t) + AB(t) + Bf H(t)dt = f F(t)dt

Q
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whore we omit a term (E'l,, + AH_)8(%) from the right side due to initial vaelues,
boomuve N = H = 0, Integrating a seocond time,

.

t T o~ N
n(e) + A | H(e)aw + B{dr[lgf(a)ds = L“" f‘y(a)am (L)

whore & ters H 8(t) iz again omitted becauss H, vanishes.

As in step 2 above, we now apply the F-transformation. The only new
{tem hore ia the doudble integral., This is handled by a doubls application of
Theorem 8. Thua, writing out the result in full, we have

X n ©
. v lix (v l4x o v Fex vX
P [ jdr (P(u)da = [ ¥ Yoz ! {x) « ) 'T:}'] - B 1=%) fo F(t)at

v o

The last torm vanighes (unless wo have an impulse at =0, a case we omlt
heve for brevity). The last torm inside the braoket is only a small eorreoc-
tion (vanighing as va0) whioh wmay be serried slong by those who wish, but
whioh will be cnitted here for drevity. Thus, we shall have

A

o[ [of

n C
A2 . Y . -
fF(u)da} = (% «i‘-;%) r(x) (L5)
>
A still botter transform for a double integral is obtained by using the

transfors vpersetor of (27). Let us compromise here and use both, the operatoy
of (27) onve and that of (21) once. This gives

-3
@

- \t' n 1. ~
P[ Idr{f*‘(n)dn] '-m;;» }-{-é:w? “}:y %ﬂ F(x)
(4]
o

ﬂ‘g 34 ’:.’Kt %{(1) (’-&5 )

where, ag above, we heve cmitted one term which vanishes and another whieli,
for sulficlontly swall w, is negligible.

Putting tho result (L5) in for double integrals, as well as the more
faniliey transformg for the other terms, equation (Lly ) transforms inkto,

) +a @ 2= + 8 G EEY B = G EE) T

Solving this for H(x) gives
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~ v lix,* o
H(x) = &3 F(x) (46)
TG TR

The parallel hero between the polynomisl svefficisnt of F(x) aad the corres-
ponding {transfer function of Laplace thoory will bo immediately recognised.

In place of the operator % iz used in (L6), cne mey use the opsrator
R
+ .
~§ lﬁéﬁ%? of equation {27) « or one may use %» %if as tha firgt order opera-
4. 2.
tor and the operutor-g l%%£§§i of (45 ) for the second order,

By olearing the denominators 2(l-x) from (L6), we immediately simplify
this equation to

~ v* (142x4x°) F(x)
H(x) = T[72aetbv®) = (B-2Bvi)x + (L-PAv+BYL) x* (L6")

Further reduction of H(x) to the simple polynomial form H(x) = H,+ H = + H,x '+ eto.
by polynomial division would appear to be profitable if we have numerical values

to put into (46'). The time function H(t) is immediately specified, as before,

by ite ordinate sequence H , H , H, , eto, picked off by inspection of ﬁ(x).

The P-transform golution of the two sgimple equations worked out above
was given in oonsidersble detalil. These examples should make the pattern
olear 8o that one should be sble to write dawu by ingpestion the transform
squation for the normal solution of a linmear equetion of any order. As a
final example, we write out the result by inspsction for the third order
eguation

.
-§¥% + A d,§'+ B'%% + CH = F(t)

or in operatiorel form

(p*> +Ap " +Bp+ o) H=F

~s

-~ F .
From this, = ST ApsF Bp ¢
in whioh we can now replace p by our differentiator % 1}5 or one of its
X

substitutes, One may also throw the equation inte the form
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13
A2 (m) F

H=
1+A()+B( * o o(dy?
p
) . v lix ) y
and replace ? by the integrator = or one of lts sudbstitutes.
pad -,

In case one is intorested in a problem where the initial velues of H
and all its derivativea do not vanish, the more careful prowvedure used in
solving our firat equation above should be followed in order to get thoge
initial oconditions introduced properly into the problem. Additional oare
mus% be taken if one wishes Yo ocarry along the small corrections which
wore dropped.

In order to emphasize again the practical arithmetic advantages of our
P~transform method, & numerioal example is worked out below,

EXAMPIE: The following exemple illustrates the arithmetio convenience
of the polynomial-transform method - as well as the other advantages in-
herent in a&ll operational methods.

Consider the simply aorvnmomnism(a)shmn in Figure 5. The torque
oquation ig T = Jfa + F6,, the controller squation ig T = X¥, and the error
squation is E = By «» 9, Eliminating 6, and T, wo obtaln for the cerror the
differential equation

JE + I + KE = J8; + Féy

Transforming parameters in the usual way by writing w, ::‘\/K/J = giproular
frequency of free undampsd vibration, Fo = 2VKJ = oritical damping coof-
ficient, and C = F/F = damping m.tio (which for ocounoiseness we take hore
as 1), the differential equation beoocuws

ae

E + E%i: +WEE = O; +2w,9;

The operational form of this equation is

S
ORI 2%
p: + Qu')ip +w, >

»

In order to meke the problem numerionl, let us take W, = 20, and the
driving function as the step velooity ©F = w,tS(t) = t8(t). Then

£+ Lop
P+ hop + koo ° (u7)

E =
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The analytioml soluticn of this equation (normal svlution with R(Q) w E(O) w ()

iu
L 2ot ‘
Bege | 1-@ (e o] (1)

It is this oquation (47) whioh we solvo hore by the Petransform mathod. We
shall then compere our nunerioul results with thoas of the analyticel aolution

Wo take the time interval ws v = 0,05, Our differantiating P-oparvator

A - U 2 lﬂx, 1”‘ ¢ J s .
Peoperator beoomes v Yo L0 i The ordinate asquence of the driving

funotion 1s t+0.05 (0,1,2,%,..v0t0.) 1 hence, the transform of the driving

funotion ia ﬁi(x) = 0,05 L0+xwemf+§x’+h£*+..«utou-] =] F[p]. Ingerting these

into (L7) glivee

, Lax, 4= , Lex
w 1600 (vr=)  + 1600 g
B(x) = T?x Lix 0,05 (x%2£'+3xg+.“.etou)
1600 (22X)* 4 1600 X=X 4 Loo

T 1+x

1 (ex)” s (hix) {lex) Y
'g' lb(l“l)“‘ ‘fI;(-‘l'*'X) (1"1)‘*‘(1"’!)" (1+2x +-_’5x +oauﬁt00)

H}

- QL 3 v OG0,
w04 2 x)éxi\.gx+2.(:: oto,)

8
X + X + & +eooto,
= Ouly R S

Oblx + L0Thx+ L089xT + .096x¢+ o098x£+ 0099xh Feaet 1,006

it

The coelflolents bwro sare the respective ordinates of the required time furio-
tion E(t) ot .05, .10, .15, o20,0es0t0, The following table, whish comparey

those results with thoge ¢aloulatad from the analytical solution (L8), shows

the praoctioal degres of aovuracy of our polynomial transTorm method,

TIME .00 .()5 .10 .15 020 .25 .30 LN BN N 00
ANALYSIS <000 L0l L073  L087  .09L  W097 o099 eeao o100
P-TRANSFORM 000 . O4l4 LO7TL 089  ,096  L098  ,099 «eoe 100
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Figura 0 showa 8 piaph of the drdving funatton @(8) ~ 1, any whowa
how esuy LG o bo werdle down by dnapeatbon the driving Leanalorm ml(;) -
JUhx Jox ,\hx‘ Vato. = W00 (x0T WL Lato, Thin fArure alao
whowa & graph of tho anklytioal wolution together with polntie ahowlng the
ordlnates oaloulated above by tha P-tranatform method,

The whove dlasartation on lnear At ferantial ogquat Lona aught to bae
proatly alnbhorated.  Our ahort treatment aarvoeas, however, to oubline how
tha new oalouluag may bo appllad Lo Mpear ditforential agquations, aml out-
Tinaa how & more oomplete prasentatlon van be worked out,

GONCLUSTON

The polynomial - transaform wethod outlined in thia paper fu worthy of
o oomplate development, It haa the virtue of groat simplioity, The analyula
follows the matural moda of thought, sinoe 1t remaina slwaya in tha time
domain (the Putranaform itaslf being eo obviounly connsotoed with the time
domain), The very rual difftoulties in Laplace and Fourier transform theory
in omlouvlating dirveot and {nvevse transforms are svolded completely here, the
connes tion between time funotion and its P-transform boing go ohvious that
{f one has elther funotion one oan write dovm tho other Ly inspeotion. The
arithmatio convonlionom of tha new mothods Lg obvious, winos actusl caloulae
tiong involve only a high sohool knowladge of elgobra. And finally, whoreas
in the older mothods tho synthosts and instrument types of problem are oome
monly regarded as wuoh more dif'fioult than the analysis problem, a notae-
worthy festure of the polynowmial-transform mothod is the tyivial diastinotion
betweon thesoe types.

A paper will appear later applying the new methods to non-linear problems.
Useful work on non-linear problems has already besn done by Madwed (Y,

A paper will appear shortly applying ths Pe-transform methods to "noiso"
prob lems frundom disturbanoces in eleotrioal olroults, servomschanisms, in-
etruments, snd so on). The Wiener - Kolmogoroff theory of smoothing and pro-
dioting filters will be reduced $o a simple, immediately obvious set of
algobraio operations.
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AVITINDIX A

Cone tder the Palranaform
N
'\\‘ ya \ 3}
F(x) = [ P (nv) x
N ™
Lot nv = 4, v & db 0, Nv mw | oand wob

Lu)V
LRI N

then, passing to ths limit,.

lwv o S 1 watny)
Vi (x) = VZ-.\I‘ (nv) ) = >..n F(av) ¢ o v
N <My
m Py
L A
e g F(t)€  db = F(u)
- ®

whare {“-\‘(w) is the Fourier transfoyrm of F(t)e. Thus, we sce a olose relation
between our P-transform and the Fourier transform. Had we taken x = ¢~ 3V
and kept tha summation unilateral from 0 to e , the limiting form would
huave been the Lapleoce tranasform,

Consider now the inverse Fourler transform,

o
~wt

P(t) =-é-1-7; f Iu(w)e dw

[

This is, as shown above, the limiting value of

v ] .
£(t) = i f (v Z_. F(nv) X )5hw*dw
2‘"‘ " "'H

: v

W
as v+ 0. Roplacing x dye , and interchanging order ¢f summation and
integration, we have

N V o jw(nv-t)
£(t) -—.3% 5 F(nv)f e ¢ des
" 7
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. 1’“’ - — ) ‘.Tr ““t
L - ¢) (RGN )

N
.v_ imt e . ' e Py Q?
T ‘}‘ F(uv) {(nwet)
N LYTRY
o atn % (t-nv)
= A F(av) .“.‘t
N =N b (tenv)

vhioh is a determining or time funotion correeponding to the Petransform
f(x). Thus, tho inverse Fourier tranaform leads to the invorse P-transform.
Conversely, one osn start with the inverse P-transform and, upon psssing to

the limit, obisin the inverse Fourler transgform,
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APFENDIX B

In the proof of Theorem 8, the ocardinal function itself 1y be used
instesd of the triangular interpolation functlon. Thus, in osaloulating the
soeffiotents S, of equation (22), we sot

» NV
[ etn % (bekv)
S R
o “.;’ (Q‘:"kV)

This cen bHe written aa
ny T )
8in e (kv \
§ = & M I E (tekv
v

% o0

Chenging the variable of integration to u =“T-$ (t-kv) and replacing the

limits by the corresponding valuss of u, we have

(n-k)m (n-k)w kw
s =¥ [ sinu 4, = 1[[ sinu o +f 8in u du]
a u u
Ko —lar n w o

=%{ 51 [ (n-k)“‘] + 8% (kﬂ‘)}
¥

i Q)
The gine-integral fumction (Si x = f 2 ﬁu du) increases from O at

4]
o
X = 0 end oecillutes with decreasing amplitude about the value # , spproach-

\“\
ing % a8 x inoreamges, the greatest overghoot being about 9% with the anm-

plitude of overshoot deoreasing approximetely hyperboliocally.

With this informetion about the sine-integral funstion, ocongider thea
the result,

5, = % { st [ (n-k)yw] + s1(iw) }

v
For k = 0, the second term vanishes and SD =T Si(nw) which Approximmtyg

;} . Z,:- = % even for moderate values of n. Similarly, for k = n, the first
[
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v o .
torm vanishos and S“ =g 91 (n>r) whioh oen again he taken as 7.',' « lFor
I N

v 1y, \
k u-g R SQ_ o Sl(é}W}, sc that Sn * v approximately. In faot, due to
: p - i

tho rapid inoreass of 8i(x) from O to .%f 8o x lnoreanea from 0, all in-
tormedinte valueg of S\\ aan be teken as approximately v, Accordingly, we

heve spproxlmately,

8 = v Yor Q<k«n

H

‘% for k = 0O orn

confirming our result (24).
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FIGURE 3
Example of Cardinal
Function Interpolation
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Schematic of a Simple Servomechanism
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