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FORnEIORD

This-report was prepared by Dr. Frank W. Bubb, Chief Scientist
of the Office of Air Rzoearch, Eq., Wright Air Development Center.
Work was completed undertExpenditure Order Number 4~61'-1, The re-
port is one of a series to be issued on this project. Others in
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This paper presents a new operational calculus applicable to the apprnximate

(and In the limit. exsct) saa.lysis and synthesis of linear physical systems (such

as servomechanisms. alectyloal airoalts, sad so on). Corresponding to any tiale

function NOt, a P-transform PMa P(kv)z iodfne.sky ea

ordinates of 6(t) at latogral "Iitiples of a tiwe Interval v. Th. relation be-

tween impot FMt to OWy limear s"ste, its output HM(t, and Its memory function

(impulsive adaittance) U(t). Is 9iVOU by t9e superposition Integral, H1(t)

r~)~-~s Corresponding to this convolution integrua, the relation 11()

VP(x)iF(x) holds between the respective Pl-transforma. Conversely, this transform

* equation Implies the convolution equation. This correspondence is Identical in

form to the correspondence between convolution integral and its Laplace (or

* Fourier) transform whIch ic the basic theoren of the claubical operational methods.

The mode of constructing a table or P-trausforms is- iadicated by working out the

transfo~rms of tho elementary functione of uschavios and of circuit analysis. By

way of Indioating how this new operational, calculus nsy be developed. a set of

usoful transform theorems are worked out for such analytical operationii as dir-

ferentintion, integration, and so on. Finally, to exemplify the power of this

now calculus, a linear differential equation io solved, numerical results being

compared with those of the analytical solution. An outstanding virtue of this

a now operational calculus ts that It does not depart from the tinse domain Itself.

in a subiaoquont Alir Force* Technical Report No. 6506. this method is used to give

a simple explanation of ieneor's theory of tho smoothing and predicting filter.
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A TXW LINEAR OPERATIONAL CALCULUS

This paper presents an operational calculus applicable to the approximate

(and in the limit, exact) analysis and synthesis of linear physical systems,
such as servomechanisms, electrical circuits, electromechanisms, and. the like.
In contrast to the methods based upon the transform theories of Fourier and
Laplace, this calculus does not depart from the time domain~'), thus allowing
a more direct appeal to the intuition.

The new operational method takes origin in the notion of the generating
function, used so effectively by Laplace(2) in the theory of probability.
Actually, the new method is closely related to the Fourier and Laplace trans-
form methods, but provides familiar algebraic methods of executing analyses
and syntheses. Before setting forth the new methods, we recapitulate a well
known bit of linear system theory which brings out the essential features of
aAn operational method.

THE SUPERPOSITION INTEGRAL

Consider the conventional "black box" representation of a physical sys-
tem shown in Figure 1. F(t) represents the input (cause or driving function)
which actuates tho system. The output of the system (effect or response)
is represented by H(t). The system itself is charaoterized by its MEMORY
FUNCTION M(t), which is the response of the system at time t caused by a
unit impulsive input applied to the system at time t = 0. M(t) is also
called the system weighting function or its impulsive admittance and is the
Fourier transform of the system frequency response as well as the Laplace
transform of the system transfer function. tn•ar•.

Input F(t), response H(t) and memory function 11(t) are related by
the superposition (convolution or faltung) integral

H(t) F(s)M(t-s)ds

This is easy to see from the following conbiderations, illustrated in Figure
2. The element F(s)ds may be regarded as a small impulse at time s. Had
this been a unit impulse, the corresponding response at time t (later by the
time t - a) would be M(t-s). The proportional response due to the non-unit
impulse is then F(c)dsMv(t-s). The total response H(t) at time t is the sum
of all the responses at time t due to similar elementary impulses occurring
preceding time t, namely, is the superposition integral (1).

The memory function M(t) vanishes for negative t, since it is axiomatic
that an effect or response cannot precede its cause (the unit impulse at
t 0). This means that W(t-s) = 0 for s>t; hence the upper limit t in

Ae
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(1) may changed to cn . This is also clear, since any impulse after t cannot
be retroactive to produce any response at the earlier time t.

It is important to note that (1) is a very comprehensive equation . It
covers the complete range of linear system analysis and synthesis covered by
Laplace or Fourier transform methods. M(t) may be equivalent to the opera-
tion of differentiating, or integrating, or, in fact, may be equivalent to
any ordinary integro-differential equation. Due to this fact that the super-
position integral embraces all of linear system analysis and synthesis, it
providen e. proper basis for the development of any form of operational cal-

To construct an operational calculus, one defines, corresponding to a
given time function F(t), another function F(x), called the transform of
F(t). If then, corresponding to the superposition integral (1), there
exists a simple relation between the transforms of F(t), M(t) and H(t), we
shall have an operational method. In Laplace transform theory, the trans-
form relation is L(H(t)I = L[M(t)] • L(F(t)I. In Fourier transform theory
the relation is identical in form, being H(Jo) = M(jw) F(jw) ). In the now
method to be set forth here, the transform relation is again of this same
form, H(x) = IV(x) • T(x), where these respective functions are the "Poly-
nomial-Transforms" of H(t), M(t), F(t). We must now define, of course, this
new type of transform, which we abbreviate as "P-Transifcrm".

POLYNOMIAL TRANSFORMS

Corresponding to a given time function F(t), we define now a transform
T(x), called here a P-Transform, by the equation,

41 L

Px =p F(t) Zx nvx()

where the F(av) constitutes a sequence of ordinates of F(t) equally spaced
a time v apart. The respective factors x may, for the moment, be thought
of as a means of ordering the sequence F(nv) of ordinates. The word ordinate
F(nv) may, of course, include an ordered sequence of empirical values, takon

for example, from a table. And the independent variable t does not, of
course, have to be time.

We also define an operator P-, inverse to P as defined in (2). Thus,
having given a P-transform "(x), that is to say, its sequence of ordinates
F(nv), we shall understand by the expression

f(t) = (3)

the interpolation of a time furotion f(t) having the values f(nv)=F(nv)
(n -K to L). Graphically, this amounts to drawing a curve f(t) exactly

AFTR 6581 2



through the points F(nv). We shall call f(t) in ()a DETE~RMINING FUNCTION
or TIDE FUNCTION corresponding to the P-transform F(x), The function f(t)
is an approximation to F(t) which can be made exact,, Before a determing
function f(t) becomes uniquely defincl, we shall have to presoribe how its
ordinate sequence f(nv) =F(nv) is i; be interpolated. bkor conciseness, 'we
shall occasionally write F,. for F(nv)o

CARD INAL INTERPOL&T ION

For present purposes, interpolations will be limited to the form

x-K

y 2 (4)
where the interpolating fuzwtion L(t) will be taken as the CARDINAL FUNCTION

a graph of which is shown in the upper sketch of Figure 3. This function
has the properties

L(t-nv) =1 for t v m

=0 for t =kv()

n,k =integers, ni (7

is continuous for all t and its tails attenuate hyperbolically to zero an
t approaches infinity.

The meaning of the inverse t;ransf orm f (t) P '(x) may be seen clearly
as follows. If we multiply L(t-nv) by i, and graph this product in proper
position on the graph of F(t), see F'igure 3, wf obtain a ourve enclosing the
shaded area. This curve passes exactly through this par-ticular point (nv,F~
and crosees the time axis at every other ordinate of the sequence F. If we
do the like for ever-y ordinate F. and add the separate interpolating curves
so obtained for all valuer, of t, we see that the sum curve (4) representing
the inverse transform f(t) is an approximation or Interpolation, continuous
for all t, of the time function F(t) Note that this Interpolation f(t)
passos exactly through all points of' the ordinate sequence Fl * Note farther
that, by passinfg to the limit as v 0, f(t) can be made exactly equal to
F(t) if 1,(t) in continuous.
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It is also of interest to note that the area under the curve F~L(t-nv)
is Br~ve This is the correct amount of impulse to be associated with the
ordina.te F~.

The cardinal function also has the follorWing useful properties .L~t

is equal, up to a oonstant multiplier v, to its autoconVolU~ion, nmey
namly

fL(a)L(t-a)ds =v L(t)(8

T From this it in easy to show that the funotion set L(t-nv), where k,n are
integers, is orthogonal, namely,

L (s-v)Ls-kv u = v when n =k, =0 when ni k. (9)

The properties ()to ()will suffice for our present purposes.

PRINCIPAL THEOREMt We are now in position to proceed with the statement
J, and proof of our principal theorem:

PRINCIPAL THEOREMt THE CONVOLUTION OR SUPLRPOSITION INTEGRAL,

H(t) = F(s)M(t-s)ds()

IMPLIES THE P-TRANSFORM RELATION

=~x V '(x) 'i(x) (0

AND CONVERSELY, IN ITHE, SENSE OF APPROXIMATION WHICH CAN BE MADE
EXACT, THE TRANSFORM RELATION IMPLIES THE SUPERPOSITION INTE~GRAL.

We no rv thia theorem. The time functions F(t), M(t) and H1(t)
41 needed ina (1 )way be represonted by the interpolati.ons of the cardinal

"il~ŽZ.F.L(@-Jv), Fj 0 outs lda --J I

M~t-8) N~Lts- ,W a 0 outaidA -*It kf:L

H1(t) 11 L( t-av), H~ 0 outside -W4--n t5W
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Inserting these into (1) and coimmuting the order of summation and integra-
tion,

Ii~) HL(t-nv) U Fi V ~ f s-iv)L(t-s-kv)d*.

4!Setting x s-jv and invoking (8), we have

H(t)~ 2IH L TZIII F. M. L [e-(J+k)v]

Making use of (6), the last expression will yield explicit values for the
H in terms of' the F- and Mk. Thus, let us set t = iv in the last equa-.

tion: on the left, ail terms vanish except Hj,. In the second summation
on the right, all terms vanish except that for which i= j + k, the surviv-
ing term being H. . . Hence,

RX H.v. M.~ which we write as

This is a very useful result.

To see more olearly what (12) seone, lot us now form the P-transform
for the sequexes. R i

M X

Replacin~g the index n -j by kr and changing the limits on the n summAtion
to corresponding values of k, we have

..... ~~ .

In the applications of thin operational method, we shall frequently encounter
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equ.atione of this form (120), for which roason (12 )deserves a careful
atudy.

In equations (11), we placed certain restriotiono upon the F.; , kand
Tk,, atating that those ordivate, vanish outmide. certain ranges amt&Il~ft

to the mikms thikiF to any thALt outaide those ranges these sets of ordinates
booulo ne~ligiblo. For the purposee of systemI analysis and aynthesis0 we
own place upona the ranges concerned the furthor restriction that M =I + L,

d~lng ithnoie sootingprolem, ad tis illrequire a more detailed
atud:yt in th later r1port

H H + + F +oFxiL xk+
kv-t447 k-4

Racalling the additional restriction that N I + L, we moo that the upper
limitsi on these suolonasive mummxationo deoroaa~e frmM 0> L to 9 - I =L
and since MR 0 for all k> L, all these upper limits can be replaced by L,
In Similar manner, the s3uccessive lower limits go fo-N+ J -K to
-N -I< -K " and minceIt, -~ 0 for all k< A, we one that all those lower limits
oan be replaced by -K. fHence,, in (12') th. lower and upper limits k = -N - j

l Wavid k =- j Qan be roplacce respectively by k =-K and k=-L. Accordingly,
(121) beomoes

where U I + ILLanddX J +}

Th41, relation way also be illuctrated by multiplying out two polynomnials
of low dogroos.

We note amw that the two polynomial factors on the righit side of' (13)
V., are rospectively R(X) and M(x) Hence H(x) v 5(x) V(x). This proves then

firat part of our principal theorem.

'o, It ramains to prove the converse, namely, that (1) follows from (10).
Lot us write (12) in the functional notation&

H(iv) =2Fj)M(iV-jV) V

Vow lot the time interval v do,.O.l Simse v is decreasing, the number of
intervrals uusst increase to cover the given ranges of variiibless henoce, we

AYTh 65616



set iv to jv = s, Jv T,,* and Iv T*. Passing to the limit, then,
Iv

H(iv) F(Jv)M(iv - Jv) v

gives
H(t) F(s) M(t-s)dso

With proper restrictions as to convergence of this integral, already im-
plied in (1), we can let T,-'o and T% and so obtain (1). R-ne,
since (12) passes over in the limit to (1), the equation (10" whici as equi-
valent to (12) is an approximation to (1) which can be made exact. This
completes the proof of our principal theorem.

It is interesting to compare (see Appendix A) the present operational
"methods with the familiar methods based upon the Fourier and Laplace transform
theory.

LINEAR SYSTEM THEORY

There are three typical problems in linear system theory: the analysis
problem, the synthesis or design problem, and the instrument problem.

In the typical ANALYSIS PROBLEM, one has the system M(t) given (the
memory function being used here to characterize the system), one has given
the input F(t), and one has to calculate the system output H(t).

In the typical SYNTHESIS PROBLEM, one has given the input F(t) and the
output 11(t), and one has to calculate the system memory function M(t) -
accepting M(t) as the attorney or mathematical representative of the system
itself, and leaving it up to the degign engineer actually to make the system
so it will have this memory funotio. response to unit impulse.

In the INSTRUMENT PROBLEM, one has given the systftn M(t) (the measuring
device), one has given its output H(t) (the measurement), and one has to find
out what the input F(t) is or was.

All these problems are easily solved by the present operational calculus,
nothing but the ordinary algebraic operations of polynomial multiplication
or division being needed.

Consider the analysis problem. Having given the input F(t), one picks
off its graph or calculates a sequence of ordinates F5  equally spaced at
integral time multiples jv, and forms the input P-transform

I
S~--T
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In similar manners, one forma (practically by inspection) the memory P-transform

~ One then wltipliev these two polynomials by the familiar algorithm of' ordinary

algebra to obtain IL

One then picks off the coefficients H.. plots these at the. reopeotive points
60 nv, fairs in a time curve h(t) thr-ough these pointai, and accepts this ourve

as an adequate interpolation of the required response H1(t).

In the synthesis problem, one forms as abovre the P-transforms F(X)
and 11(x) of given input and output. One then divides, by ordinary poly-
nomial division the first by the aseond to get the memory transform

picks off and graphs the ordinate sequence lik and obtains the interpolated
time function IA(t),

In the instrument problem, one forms the P-transforms of the given Raea-

surenient H(t) and given memory M(t), divides to get the polynomial

picks off this P-transform F^'(x) its ordinate sequence Fn, graphs these or-
dinates, and obtains the interpolated measured quantity Fit).

It will be noted in all three of these problems that, because of the

obvious relation between P-transform and corresponding time function, one
remains essentially in the time domain itself. The trout intuitive value
of this fact will be made apparent in a later paper (AF Technical Report No.

A-: 6586) in which the 1{olmoooroff-Viiener theory of noise smoothing and predict-
ing will be presented in terms of the new operational mathod. The essential
ideas of noise analysis (regarded by enpineers as too abstruse for practical
use) take on a simple, obvious character.

The value of this new method as a practictil way of getting numerical
results will be Illustrated later in a numerical example. This example will
be delayed in order to set forth a number of useful theorems.

AFTR 65818



1USEFUL ThOUr0IUW3

/Thore are itany proportioz of' the P-tr&11sformation which are usoftu1 in
applicationsi of tho preasent oporatioral method. Ili ganoral, those proposi-
tions correapondl to parallel propositions ill LAPI&CO trannform theory. 8 ome
are sufficiently 6blvious to lie sta~ted without proof.

Th, I: t De following, operations, respeoti~vely in the tiznw tnd trans-
form. domains, oorresponds

then fi(x) P(x) + 'K(x)J

Th. 2s If HNt kt

Ate 1 1f(x) 0 F X

Th. 3~Ir H(t) = F(t-mv)

thein 11(x) X" Y(x} 16

The lost theorem means that multiplication of' the transform F~(m) PF(t)
by x1 corresponds in the time donain to shifting tho time function by

!R~i amount mv into the future,

Th. 41 If H(t) r(-t) .. (7

then H(x) Ž1.F(nv)

This m3eans that, correaponding to the time do~main o~eraItion of reflaciting
~ the functi.on F(t) *ibout the time origin, onog merely has to change the signs
I.of the exponents of x in the transform V(x) 1inx

Th. 5: If H(t) AF(t) I~~)(8

then 11(X) 4 - 1) F(X)

which moknci that the operation of taki n finite differences in the time do-
msain corresponds to multiplication by in the transf or domain.

Th. 6t If 11(t) t FMt } (9

then H(x) xv

AFTR 65819
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which nwans that multiplication by t in the tiaiie domatin corrouportds to tho
operat ion vux d in the tranarorni domain. If one writeu 1' (x) )L.0i(rv) X"'

mild dirffrentiaten, the propositlon readily fol lowni.

Th- 7 A theorewi for integration in the P' donm~in goas am followot

If 0. (t)

then f(x) L i"(x) dx (20)
Ca

where F(z) F (nV) X0

which follows readily by subtttitutng the thirdc equation into tho e confd.
The ter'm F(-v)x7 would introduce a logarithmic singularity and in reserved

a ~f or later study,

The amount of inipulso li(n'v) due to the action of a driving, fnotion
M F(t) noting over a time from 0 to nv in the defin~ite integra~l

Ot and in the arobi under the curve Q~) from 0 to t av. CornoorniY4., tho
sequnenofvle H., =H(nv), we oan state the theoreom

Th. 8t If in the time domaia

H(nv) F(t) dt
ggxi

in the P-dommir) xkx ~~()-l

whoro iF(X) E. x

and where Hi1 x ~ffl

In other words H"~ In the cooefficient of in the second equation of' (21).
This theorem will be useful later in reduoing ordinary linear differential

It, 1 quat ions to the polynomiel operations of ordinary algohra. For thim rea-
non, it deserves a careful disoussion.

The area under any portion of the curve F(t) ia, to a tufficient up-
400

proximation, equal to the area under that part of its interpolation EF L(t-'kv)..

A~FTR 6501 10
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The earoi l'rmo 0) to t; - v iti theal

11V

.IýI N11u 0 that

Atk It g-li ll~is, DOf 0oursoi to 6 V141%)Oto k

whih r ou&e~ han ta ~;h 1litio appr oit ~;i uion or polygoim ,Ohon ti tho low~er
akotoh, it id Ohvi oklet (Nil awll the. , crll'o C~ho ra~ Id V.) thait

~(214)
f. or k 1w 0 or it

NoI;6 that of flohe1 ilanpilm- iiiCO1-jAtifl% hfut-otldu At t u~0 Wid t 1 1W, 010
141.half' ti-larr'1i, out si dt" tha vikogo 0 to tiv twoi eohi~ded in ordtv to provida

battoew app. oximfat 1 (11

Mi ~ ~ ( )adnlCtto givoki appr ox 1hu~toly tho da~w regaulI; - anud this

whiah .It A1lo oilv Ao u. m roim ak otk1oulationl of tho trapor~oida1 al-OUN of tile
izttalpiju~tijoz as ahown in~ FipiUre 14 Thio remilt can boo writtan ase

tl (21P) 1' 2F 1, F 2F,,. + ~)-Fj. (25)
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oft t~ht two poyoil 1VI(ýI¶') (It ,xP hn

oa b radlyshwnbya hit or pono 11 work. I"thauriovo, * a divisuion hy

1~x will ahow that. (I 2i Ox I ~ OxIWxI d.inf.) The r onuin inln

t ari V,, in tht broa r (2y in C ~tho uovati o tt of. x"1 An' Chot.) poly Inomial

I~ x ~' 1"1101-11 ttie torml ior' 0( laU (unit tted to tavold oeutool Iink;

t- 110 x torm of t 1w prov 1001 11 )#t.~ l~e, t pMVt. tht Isa t~ho ooai'-
Cuum It MVunt. tha th

Imp 14A ~ It "

v 14.1 ) V (2 '

V~ I

5 1-

(27) nur y heoxinution than~ (P5 tho tho ioadejt o or ' (21)u H ton ghoul

. . . .. W ha ' on to to even By ireat exquation of 2)i the op ftorn~ belw,(t) Lanb

Ihow thhatUDte oaan oer1~

playsnoo (2' , oard1)w may dothe tuerm in place u the smooncI aquation o 2) oasol

A lrg (21)e ofvi~ tint eroln ationg b runoio) fro wa haddithona throxi-

awwti'U k 6 ma1 1v12vdangvn yShebrei



SITh. 91 U rro mpond1 ng to the' tin*m do~main operation of dit'rrc' ntiuaIion,

Mt

al -,A hmviv in the P.-doii vnf(x 1x(

w~h aro fl(n) Qv'

A st ill hettar P-dommin. opovatt;ion toorx pn ding to difertn'tia~tlon in the
ti me~ domain in obtulnutid by a ttAxi 1 r I uver i on of' (27 ),~ thus

andxc this niay ho usetd 3.In plac Mo f the Stioo eq(1O(uat ion 1.in (08) .

Tho se thtoarenn mlight ho continued, more ov lose1 invalleing thoso
of Loplau e transt'form thoory. Enougih haxvo~ boon g lveai hawevter to WWIt~o

out tho procedure Cur dt'voIopiiW, thlo noew opora'iot A. l oka ou1ts.

An eiuunplm ( oomn Iii unde r T'h. i3) will nlow he workad out t~o illunt~rato

ARtheo arithnowtio oonven.ionao of t~ht now qw~tho'An.

N UJMAI'~CAL, IXAMUPIM

010Ao an examxple under' Th. 8, we c~alculate the ovdinato s H( nv) or the

gto~ral win t dt, Takirxj V etmeltr; isv~ the1.

AtranelfortU or' min t, taken from ai trigonometric tablc, let

them trnfor -31x + .5x+-I 95,. + x + .95X + utoo

F'rom (21.) , th.rnfr oporatox is y-1 ox-* 1 5 7  1=+0 Hance, noting

M that 1' (0) -~ sin 0 ::1 0, wo htivo

1Nt +X fee
MV_;(+.3X11(x)-1 04157 y- (90 + .81X + v595P + 001x + -95x1 Fx .r 4

1 
1-

Mmin". With a bit of' ponoil work on the side (ono may multiply f ir at by I + x and
then divide by I1 x or Wie versa), the reader will readily verify the

remults calculated hero, the seondl( gives valuos calculated from then analy.,

A sn t dt 1 -000 xiv.
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*W"N'~



3. 0 .05 .19 .41 .69 .98 1-30 1.57 1.79 1.94 1.98 1.94 1-79

0 . .19 .141 .69 1.00 I.~ -.59 1.81 1-95 2.00 1.95 1.81,

Thesio rasults exre tiuffio~iontly aocurtate to illustrate the giimpliofty and pro-
coizlort of the riow ilteflcods. Ars an additional bit of practioe, the reader
mauy us¶o, insttOU(1 of the intograting operator abovo, the better one given in

v +4xi~x ~ .

A TABLEJ OY P-TWANSFORU',

of Fox ift~ons brought out no olatirly by Gaide n ~nc nteo~

ofLaplace trantsforin theory, we find here that. a table of P-transformu aria
useoful. A few oxamp1nip~ only can bo worked out hora, and tho~ol will be
li~iitoki to the 4ieolometttkry funotiot-i usu~ally anaountered in linear eystem

v,` theory. Ilia oalou1ationa &iOmlaut, of aourue, to direct applications of the
dof inition

M
1,(x) P [1'(t)J Ž..F (nv') xc (2)

ofteP-trunefo~rm.

The unit atep function S(t;) is defined by 'te quation

S(t) 1 for t0!(00

S0 for 1- + 0 t

xn But I + x +x" ±...adoinr. henoo

1(X (31)

i.n closed and simple form.

The truncatted emponeritial furwtioln I#~ defined by

AFTR 6561



* ~E~t M for t7O (32

- 0 f or jC
OMW r

Tho ordinate sequence is E(nv) e ~ hence, E(x) a-

ýzgcV f Aocordingly, we can write

n;

E~z)=L~ (ax)
I-ax (33)

where a a

Note that by setting a( = 0, and hence a 1, we recover the previous re-
cult for the unit stop function.

W1VIn similar fashion, ycluaigi e ~~ and aeparating real
and im~aginary parts, we find for the truncated damped sinusoida the poly-
nomial traneforms,

1 ~(a sinwv) x()
esiflwt] (14

where a a

vN4 1(35)

Application, of Theorem 6 (Equations 19) will introduce a factor t into
any one of the above functions. cor-responding to which one applies to the

"~~~d?-transform the operation vx . As an example of this, consider the ramp
function

Its transf'orm Is R(x) vx X .

iv(x v(G&x+2xz'+ooo+n + etc) (37)

The respective coefficients 0, v. P2v, 0 *.,nv. aet. in thie last expression
are obviously the sequence of ordinates of this ramp function,

Wiltiple application of Theorems 6. 1 and 2 to the above funotionsland
their transforms will yield the transforms of any polynomial in t times the

AFTR 6581 15



oriinl uncio -such as (2 -t-3) a This corresponds, of course,
to a multiple pole (degenerate eigerx functions) on the complex plane of the
Laplace transform.

The unit impulse 6(t) at time t =0 is defined by the conditions

S(t) =0 for tj 0

(38)

(t) dt 1

From ()we can write &(t) >~S(kv) L(t-kv) which (sine. (kv) =0

for ký 0) reduces to 8(t) = (0) L(t). Usine this result in the cond

equation of (38) gives J ( t) dt 8(0) J L(t)dt =v8(0) 1.. Hence

&(0) = .Insertion of this into the transform 8(x 2 S (kv) xk gives

$() (39)

The time origin of any of the above functions may be changed from 0 to
mv by use of our wsh ifting' Theorem 3. The corresponding operation in the
P-domain icG multiplication by x"n . For example, the transfoarm of the delta
function located "at" my, namely, S(t-mv) isa

These results may be collected in a table, onae column listing the time
function, the other the corresponding P.-transform. Such a table can be made
quite extensive and would serve the same general purposes as a table of
Laplace transforms or a table of Fourier transforms. The few items listed
above suffice for our present purpose of showing how such a table can be
constructed.

We now apply these methods to the solution of' ordinary linear differen-
tial. equations.

LINEAR DIFFEREN4TIAL EQUATIONS

Thf, few theorems act down above enable us to solve ordinary linear
differential equations, The general method of attack can be clearly indicated
by a coupI3 of simple exampleb.

Consider the first order equation with its initial condition,

AFT 6581 16



wd
dH+ BH F(t)

(40)

withHn(O) HO

Integrating from 0 to t,

ft(t)dt + B HA:d ~ td

H1 0t)t (h0) B i)d

Xsert)in the intia tep ditioBfH(O) H. and write this as H.S(t) where

which in now in proper condition to apply the P-transfornwation.

Theorems 1 and 2 show that P L I is a linear operation (applies distri-

butively and -eommutes with a oonotant)j hence, we lave

P LiH(t)'1 + BP [ H(t)dt] P[~ td + 110P [st(42)

2.2The first term on the left is simply 11(x). The secondx term on the left, by
I -f

Theorem 8~is B1 ~ 142 xE) the last term of which is a minor

correction (vanishing in the limit as v*.*0) and will be omitted. The first

term on the right is similarly T .. F(x). The last term on the right,

see (31), 1a H ' ý l-z Putting these values in ;laoe of tk* respective

terms in (L42)9 and s olving for iHf(x), we have

T y*- 2 l-

AFTRl 6581 17



The coefficient of F(%) correspon~ds to the transfer function of Laplace
transform theory and to the frequency response of' Fourier transform theory.
The second term in (43) is due to the initial condition,, In the so-called
normal colution (initially quiescent system with dependent variable and all
its derivativer zero) the second term in (43) vanishes - which is usually the
case treated in Laplace transform theory.

Xt is interesting to note the correspondence hero with usual operational

R methods. Thus, writing (40) in operational notation, pH + BH =F, and solving

in the form

H P FSI+
we see that our "transfer" operator in (43) could have been obtained simply

by regarding -~ as our integrating operator " -or 2= l-TX a

cur differentiating operator.

But equation (43) oan be simplified still more. Clearing out the 1-x and
simplifying, we have

v(l+Xc'F(x)+ 2H,H (43

which is an easily manipulated form.

At this stage in our process of finding H1(t), one could throw 11(x) into
a suma of elementary types to be found in a table of P-transforma, and writ.
out the inverse transformations to obtain H1(t). The procedure heri would
follow the familiar pattern of IAplace transform theory* But this procedure
is not necessary.

N NSIL,',',ýýAn outstanding virtue of this P-transform, method lies in its easy handling
A'. of numerical problem.. For example, in the case of the above differential

eq uation~, every quantity except x on the right side of (43 ) would be given.
The denominator in this expression an be (by dividing by Bv+2) put into the

form l+Ax. The numerator reduces, aifter collecting coefficients of like pwr
of x, to a wimp lo polynomial, After division by l+Axo we got then a simple
polynomial H"(7) = , + H x + H1 X' +-... + H X' -$-..eto., whore all the Hn are

''Cmere numberes, Thia seq~.rence, N1 Hj*eH#*,t of coefficients gvthe's~ Hr,,...eto. oriitsveH(0the uccagie orir~es f Hnv) =1(t), and emy~ be plotted to give a graph
closely upproximating our desired H1(t). Thus, no formal work whatever in
required to pans from 11(x) to H(t) -a more inspection of Tx)givesHt)
and vice versa.

AFTRl 6581 1



The above procedure for solving a linear differential equation subject
to its initial condlitions may be formalized into the following step.:

(1) Apply to the differential equation the definite integration
(.J()dt, as many times as the order of the equation. This introduces the

initial conditions into our solution and puts the equation into proper form

for applying our P-trans fotmationo

(2) Apply to the result of Stop 1 the P-transformation, make use of

Theorems 1 to 8 to reduce every term containing H(t), its derivatives or into-

grals into terms containing if(X).

(3) Apply to the result of Step 2 the indicated operations of ordinary

algebra including polynomial multiplication and division, thus reducing Hfx

to the aimple polynomial form 11(x) HO I 3 +ec

ý'A(4) Pick off the coefficients (or time ordinates) H., H, HZ, H~ etc.,

plot at the successive points 0, v, 2v, 3v, etc* on a time axis,, fair a curve

through these points to obtain an approximation to the required solution H1(t).

4, Consider now the second order equation with normal boundary conditions

+ +~ BH = (14

with 11, HOl 0

The system its assumed to be initially quiescent (dapentdent variable and all
its derivatives being zero at t-0) to conform to the usual case treated in
Laplace tranaform theory. All this assumption does is to omit a number of
additional terms w.hich can be easily handled but which clutter up the equations.

Applying step 1, we integrate the equation from 0 to t, with the result

H(t) + AR(t) + B jH(t)dt fF(t)dt

iAAFTR 6581 19



whore em omit a& tern (HI, + AHO)8(t) from tho right sides due to initial values,

beaosmaus n ' 0. Integrating a seoond time,

t

11(-t) + A H(t)dt + B rf'H(*)dm4 dr FOw(40h)
0 ~0

whwo.. Ok tr" H08(t) ic again emitted beoause H, vanishla.

An in stop 2 abovo, wo now apply the P-trandforumtion. The only new
i t~ hore it the double integral. This is handled by a double applioation of
Theorem 8. ITus, writing out the result in full, we have

IIV I+x Fe Fx Yx td

The last t•rm vantahes (unless we have an impulse at twO, a oaso we omit
here for brevity). The last term inside the braoket is only a small correo-
tion (V'nighi1% as v-V.O) whioh may be earried along by those who wish, but
whioh will be miitted here for brevity. Thus, we shall lave

P [ drfF(s)da = (.! 1+1 1(x (45)

A still better trantform for a double integral is obtained by using the
traf sorm operator of (27). Lot us oompromise here and use both, the operator
of (7) once and that of (21) once. This gives

-P t~y~x 1-...i~

= q l t- {) (45)

whered as abovw, we Iave omitted oin term Vlhioh vaninhes and another whiohi
for suffioiontly small v, is negligible.

PuttA" th-o roult (45) in for double integral, an wall as the more
familiar tranforu l for tl n ot or ll term, equation ( a4l transforms into,

1s .V v l• _+x l+-
VV I() + A (f ) + W 3 (7 y:x ) H(x) - (Y.+xd) )

S olving thi. fotr H(x) gives

"MIW
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~I'~ V1 X 1 Bt A(T-
d+

The aralelhereo bet-ween the polynomial coefficient of F'(x) and the correff-
podn rnfe ucino Laplace theory will be immediately recognized.

In pace f th opeatorused in (i46), one may use the operator2 -x

of equation (27) or one Ma~y use as the f irst order opera-

tor and the operator ., -7-1-- of (45 )for the second order.

By clearing the denominators 2(1-x) from (ý6), we inumediately simplify
this equation to

v~ (1+2xx) F ______

"n (h+2Av+Bvl) (8ý2ft4)x + (4-2Av+Bvl-) xL(16w

Further reduction o,' H'(x) to the simple polynomial form 11(x) H + H + HX + etc.
by polynomial division would appear to be profitable if we have numerical valuaes
to puit into (t461). The time function H1(t) is immediately specified I as before,
by its ordinate sequence H,, H1 D2' atet. picked off by inspection of 'ff(x).

The P-transform solution of the two simple equations worked out above
. . .. . .was given in considerable letail. These examples should make the pattern

clear so that one should be able to write down by inspection the transform
equation for the normal solution of a linear equation of any order. As a
f inal exzpVe, we write out the result by inepection for the third order
equation

4.

4H d7 + B Tv ±CH=F(t)

or in operational form

(pý + Ap '+ Bp + o) H =F

F
From this, Hi~ rA ~ T

in which we can now replace p by our diff'erentiator 2 l.-o neo t

substitutes. One may also throaw the equation into the form
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'01*

A ~H=~
1 + A + B

p p p

and replace by the integrator V l+X o n fissbtttu
P~ 1-7 oron f t sbsiutx

in caoe ono is interested in a problem where6 the initial values o'LI
and all its derivatives do not vanish,, the more careful prooedure used in

M solving our firat equat~ion above should be followed In order to get those
initial oonditione introduced properly into tho problem. Additional care
must be taken if one wishes to carry along the small corrections which
were dropped*

In order to emphasirs again tho practical arithmetic advanteages of our
P-transform method, a numerical example is worked out below.

LUXMiPLEa The following example illustraten the arithnmetioc onzvenience
of the polynomial-transform method - as well &a the other advantages in-
herent in all operational methods*

Consider the a~implT sorvomackanism~ shown in Figure 5. The torque
Oquation is T = 0+ O6. *the oontroller equation is T = N, and the error
equation is U = 9 - 0.,. Eliminating &~and T, we obtain for the arror the
differential equation

JE + IT- + RE JO + F0

Transforming parameters in the usual. vjuy by writing wjj =VK/j ciroular
,4,Wlý frequency of free undamped vibration., Fc 21/ rtca apngce.

Y1 icient, and C = F,=damping ratio (which for tooaicisonesa we take here
as 1), the differential equation becomes

E + 2uKE + w4 .E +2c

The operational form of this equation is

In order to make the problem numerioul, let uS tatke Wjr 20, and the

driving function as thea step velocity 01 cW~tS(t) tS(t). Then

4 40 (47)
p±Op+O
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6The Pam~lytioul solution of this oquation~ (itox'nka nolitio~n withl N~O) MO)a 0)

It it, thli& equation (47) Wich we aolvo hore hy hOw P-tranofCorm tunthod * Wo
* mhall than uonirw*ro our mnuna~rloil roriulto with thlono of tOw Unaytioal golutiorn

(48)-

YWe tako tho tim&, interval txn v 0.05. Our diffarozntiatine. P.-Oler(Alor

1'-opvvat~or baeoous 2 1 0 'Ili ordinAto nequeono of tho driving

ifunction. is t-~-Q.0(O~ l23,.ot henoo, the trakwsforii of theo driving
funotion is~ 0 0.05 104*4 +3x +1 4 s..,to,, L~tJ.I~ri h

into (4ý7) givas

E~x (~ 160 oO5 (x.+22& +3:K +00.otou~)
1600 + - 1600 35 *400

1+x x

8;l1(+) ~-x

=.4x + x07pc+ x 006t+o 06 09x+,09 .. +1,,

The ooeffioients 1wre mro the respeotive ordinates of the required time furna-
tion U(t) at .05, .10, .15, *20,oo*Gtoo Theo following table, whielchowuiprei,

( those reaultto with those oaloulatod from the analytical solution (48) , allows
the practioal dogree of aocur~oy of our polynomial tiransform method.

TIME .00 .05 .10 .15 .20 .25 .30 0090,. d
ANALYSIS .000 .041 -073 .087 .094 .097 .099 0~ 1.00

P-TRASOIU .0(0) 90144 .074 9089 .096 .098 -09)9 ... 100
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A~fi1.qu, mhown n tgvnph oi' tho~ Al' lv mv f'E rot, Oion eu, ( i ) -4

hlow 000Yia t In to vrIt d towni by 1tiMOI ct Lo .hr dri'vming ti'a"Mmiolrmi t. 0
~~%40! xi I lox rI~ Sox Ih Piai~LO. ( ~1 It it I oilI U1 ct~ i .vI t p Thi rinur alno I

ovditcat. n ai oui1 atod th ova by 1 wnI.1m~a&iaf mathoiiet. o

1'ha ahova A i i am i' Iit on on 11 ineinar I tfe r itt a i 1 jut I onn %,~ m, Co
rg\oatly 411thomv4.od., Our ahlort' tvi'ettwntiL matrvan, hoavoV, to outi Izi how
t.he now (3m?.uin 1OI ?tlmmy hmn Iappue 1 o nnu d$AI0I i~'Ai t' oI mw ai quait ta 01, Iand out-
1 nai m how a move atopflpte~ t. $ oss4$I1LtMi. ni vant he workemd out.,

0A

The pol ynomial ~ - tCramuu oimm tma4thod ouln t~i Ad Ain thid papor iii worbthy o V

a 0111plot-0 doti1Opiiomt.~ It, h 0 v~rttmtm mt greaat airmplAo Iy. Teaalyaitm
fo1 1ow4 thkt) ti tturttl imlodo of tholug;ht, unoit. ronmn~Aint til~wayye In t;Ii thlue
dlomiftn (the P-tvmanniformiA itnal boinrg o() obviountly oanul4titn( wi th the t ime
A onuimin) . The vary romnt dic'r toui.tian$m in l aplIaca and I'ourivAi trmainnform theory
ink ofAlkulla t illn d Ami V4o t a n I umvowis trantif orma~ mv~ avolIdod o omplae oly hure, the
kooziea t~ioi bolt;ween time flnoiOtIon and As 14 P.tmansfIornt beinrg so ohvioun that-
AC one has? either fumnct ion one ann wr ite down tho o ther by inmpnot ion. TIhe
(Ar t~hmaia' co onvenience of the tnew ytlothodm? is obviouso, W ron wat~ualI oua~loua.
tioneA involve only a high achool, knowladge of algabra. And finallly, whereas
Iii t~he older mnathod11 t0w iynthavid and ntneztummont typeu of problem are cant..

"k~omionly r'~ag(Ifld an mucih more diffIicult than the analys$is pr oblem,~ a oa
worthy Ciasture of the polynomnial- tra'nsformn methodI ini thm trivial distinction
betwee n these types.

A paper will appeair later alpp lying the new methods to non.-linear problemso.
Useful work- on non-linear problems~ han already been done by Madvwedkm~

1:1~ ~ tV*hpa 'or will appear sor~tly applying the P-transforra u~thods to "noise"
vra'I I b r elme rxandomn disturbancea in alectr~ioal cirouits, sorvonaeohanisms, in-

etrxusaents, and so on), The Wiener - IRolno~goroff t;heory of snmoothing and pro.-
dicting; filterse will be reduced to a simple, immnediatealy obvious net of

0 H Algebraic operaitions,

0 Itlfl
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6*wylk

At'''NYNO). A

gv,

Let nv ~at, v (It; #0, Nv fi end kuoti

U1611, p)1UV~ii'W tO thtt lii~it,

VFi(x) V~, Ž_..1(nV) (e ) f.V(nv) e! *v

~ A
*-- W e~) Lt *A(L)

where i a'w)i the FouriLor transform or F(t). Thus, we see a close relation
I 'a between our P..transCorin and the Fourier transform. Had we taken x = o

and kept tho *uuxnatioii unilateral fromi 0 to w 11h intn~rr ol
huve been the Laplace tr&anaforuio

Consider now the inverse Fourier transform,

F(t) F(L {e dwto

This is, as shown above, the Iiimiting value of

'Tr

as v-.,P0. Roplacing x bye ,and interchanging order of summation and
integration, we ha~ve

W V.
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-e

N

yffi(ih is a daterinining or tiliw 1%iuition oorr~eponding to the P-trunvdforzm
1 Pd (Y) .Tkuu, tho inverve F~ourier tr&njfoxw leads to tho in'verse P".trans±1 orm.

Convorsely, one oan start with the invowtco P-transforat and, upon p~asing to
te -lia iit, obta~in the invarate Fourier transform*.

04~
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APWNIIX D3

In theo proof' of Theororu t3, tha oareinal funotion ittself rd~y bo tided
11.11ý41instead of the triangular interpolation function# Thuiv, In oailoulating the

0ooffiiolnto Sk, of equation (22), we sot

S in V (t-kv)
k -~ dt

This can be written an

sin t-kcv

V,

Changing the variable of integration to U ~(-v n elcn h

limits by the corroaponding values of u, we have

(n - (n I r

k Ir#in udusin udu + sin U u

v Si [(ri-k)lr + Si (kW)}

The sine-integral function (Si x =du) increases frm0a
inu ( rm0a

x =0 and oeoillu tes with decreasing amplitude about the valuo approach-

ing as x iacreases, the greatest overehoot being about 9%with the sz-

plitude of overshoot decreasing approxinately hyperbolically.

With this information about the sine-integral function, consider then
the result,

{Si (n-k)-yrI+ Si(k'Ir3

For k =0, the second term vanishes and S ~ j Si(znr) which approx~i:wf~s

-0- 7~ even for moderate values of n. Sim~ilarly, for k =n, the first
Iv.
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k ax S, M SQ1T) me hmt S v pproxima~toly.infodot

.log towdaevliuo S oem bo tae & pproximattily it.Acodr

v for 0 k'< n

f'ork 0 or n

coairmngour result (24)

A
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(1) Tho init~iixl paper prossontinjs the principal ideas of thei operational
owthodu (lovelopad hae. weks presented in a highly condenised form by Dr. It. G.
Piety in a paper, "A Linvar' Operationail Calouluoi of I-;&pirical Functions",
bef ore the March 1951 meeting of the IR~E in Now York City.

X, ~An additional inytreoating, roearonoe ini, "A Method of Analyzing the
Bihavlor of Lixtvar Sysatme in Terina of Time Sories", by Tustin, Jour, Inst.
Eloo. EnrVol. 91ý, Part ITA, 1947.ý

A much fiatler troatyent fromt this point of' view ia presented by
Madvod, "Numbar Seriou Method of' Solving ltnefir anid Non-~LineeAr Differential
Equations". Roport 61145.-T-,r6, In~strumentation Laboratory, MIT.

(2) Uarquin do lAplace, "Theorie Analytique doci Probabilities", Couroier,
T.. Paris, 1812.. Generating polynomials formed the basia of this groat work of

JAplaoo, although they ha~ve been neglected since his time.

I AN iý,;One of the heat roferancou in English on generating functions is,,
"Calculus of Finite Differences", by C. Jordan, 2nd Edition, Chelsea Pub-
lishing, Company. Now York, 1947.

j~i1 An excellent disous~sion of generating functions also appeare inl,
OAn Introduction to Probability Thoory and Its Applications", W. Feller,

Wiley, 1950.

(3) Jiumes, Nichols and Phillips, "Theory of Ser'vomeoohanisms", Vol. 24,
Mad. lAb, Series, )AcGraw-Hill.

"()"Contributions to the Problem of Approxiruition of Equidietwnt Data
'N'. Myby Analytic Functions", by 1. J. Schoenberg, Quar. App. Math., April and

June 1946

Considerable uee le made of the cardinal function by Wheeler,
§Wig"Tho Interpretation of Amplitude and Phaae Distortion in Terms of' Paired

Echoes". Proc * IRE.* Julie 1939,

Guillemin also makes effective use of the cardinal function in
his book, "The Mathematics of Circuit Analysis", Wiley. Guillemin calls
ita scnnn function" and usea it sonewhat as used here.

()Shown by direct integration in, "On an Integral Equation", Go 11.
Hardy, Proc. Lon. Math. Soc. 27, 7 (1909).

See also, "On the Cardinal Function of Interpolation Theory", by
W. L. Farrar, Proc. Roy. Soo. Edin., May 1925, June 1926, April 1927.
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(6) Kar &anad Bit, athesstioel Methods in Buineering", MoGraw-
Hill.

(7) "~rdzwr and Barasso "Transients in Linear Syst;ems",9 John Wiley
and Sons.

(6) See 'Servomechanism Fundamentals",, by Lauer. Lesnick, Matson, p.
I -p oGraw.-Hill.

()See tho book, *Fraquenay Analysis, Modulation and Noise"~, by
* Goldman, MoGrave-Hill,
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FIGURE I
Black-box Representation of a

Physical System
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Example of Cardinal
Function Interpolation
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FIGURE 5

Schemnatic of a Simple Servomechanism
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FIGURE 6

Servomechanism Input and Error Spectra
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DEPARTMENT OF THE AIR FORCE

HEADQUARTERS 88TH AIR BASE WING (AFMC)

WRIGHT-PATTERSON AIR FORCE BASE OHIO

88 CG/SCCMF M A1P 1 113 14

Bldg 676 Area B
2435 5th Street Rm 150
Wright-Patterson AFB OH 45433-7802

Defense Technical Information Center,, /

Attn: Ms. Kelly Akers (DTIC-R) \ký"X
8725 John J. Kingman Rd, Suite l9f4
Ft Belvoir VA 22060-6218

Dear Ms. Akers,

This concerns Technical Report 443516, A New Linear Operational
Calculus by Frank W. Bub, Ph.D., May 1951. This technical report, previously
Unclassified/Limited Distribution, is now releasable to the public. The attached
AFMC Form 559 verifies that it was reviewed by release authorities at Air Force
Research Lab Air Vehicles Directorate (AFRL/VA).

Please call me at (937) 904-8189 if you have any questions.

Sincerely

Lynn Kane
Freedom of Information Act Analyst
Management Services Branch
Base Information Management Division
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