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Introdyotion

Stome's solution for a elightly yawing supersonic cone takes advantage of
the fast that the differential equations (equation of motiom, equation of con-
timuity, ete.) to be solved for flow over a slightly yawing cone are idemtical
with the differential equatioms that must be solved for flow over a non-yaw
cone vith small dut finite w-camponents of velocity caused by extermal forces.
This 1dentity implies that any solutiom obtained for the second prodlem must
be applicable to the first flow problem provided the boundary comditions were
properly chosen,

Vith the aid of the imown solution (presented by Teylor and Maccoll) for
flow over a nan-yav cone vith zero w-compomsnts of velocity, the solution for
the flov field about a non-yaw cane with small w-camponents of velocity cam be
approximated as follows. Since the latter flov apyroachss the former flow
field as the finite w-ommponents of velocity tend to zero, one can postulate
that for mmall v-campansnts of velocity, the solution for the flow field with
finite w-oomponents of velooity is equal to the solution for the flow fleld
with zero v-camponemts of veloeity plus a deviation resulting from the presemce
of the finite bdbut small wv-componsnts of velocity.

The oomtributions of Stome, then, are a proper choice of the doundary com~
ditions and the evalmtion of the deviatioms mentiomed. Typical flov fields

*Stome, A. H., “The Aerodynmmiss of a Slightly Yeving Supersonic Cone", KIEC
Fo. A-338, OBRD No. 6306, July 10, 1945,




‘ for flow over a nan-yav cons wvith zero w-campoments of velocity, for flow over ,
' a non~yawv come vith finite w-oamponents of velooity and for flow over a yawing
oons are presented in Figs. 1, 2 and 3 at a Mach mmber of 3.1617 for a oome
vith a half angle of 30 degrees (for § = 0°, 180°%).
Thus Stome's solution insludes the following three basic steps:
(a) The solution of Taylor and Maoccoll for the fluld properties of nom-yaw
motion is asswmed to bYe correct. The differemtial equations describing non-

2

yav motion with zero w-oamponents of velooity are:
1. The equatioms of motion
W o= ¥

. i.zn-l'(l-l-'\'i')



,’ 2. The contimity equation

"+ [cot0+(1n'5)'] B+ JA=0
3. The equation of state

18 P - ylup = comtenmt.

The bowndary conditions for non-yav motion with zero w~camponents of velocity,
referring to Diagrem I, are:

at =0, ¥=uU'=0
at =9, U="Uocos 8

Upl sin © +-B; = 0

[ J

P-P, =TUp sine (¥+Usino)

" sin? @ = (r-2)B +(y+1) P
2p

1

vhere the bare demote the Taylor and Maccoll's or non-yaw solution with zero
v-gcamponents of velooity, the subscripts 1 demote free streem conditions and
the primes denote differentiation with respest to 6.

(b) A podlem of flov about a non-yav come vith mmall w-oamponsmts of velooity
is set wp with doundary cenditions that will have physical meeming upon appli-
cation to the flowv over a yawing oone. The differemtial equatioms descriding
wmmmnumlvwamzwmmmmmovto

g o_ are:
[
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Diagren I

1. The equations of motiom

u'=v

%--u' (» +u")

;—.‘};3 -g; = = (uv + woot @)

2. The cmtimuity equation

w (Anp)'+2u+voot @+ v +vg;-—9§% =0

3. The equatiom of state

hP-mp-f(E, ‘)
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Referring to Diagrem II, € is the yav angle of the correspanding problem of
flow over a yawing cone and O + 2(%co¢n¢+%dnn¢),muhook
fromt, The boundary conditions for nom-yay motion vith small w-components
of veloocity are odtained in the followimg mamner. At the oone smurface
(0-0')&010.1“0!7‘.@'6. [- ('g-)e‘] mst satisfy the relation

Y + VYo coos § =0

Mmimmmmttbmlmmitiumamnrrmaro’+eooe¢
are oqual to zero. This oone surfase (8, + .ccos §) describes a como yawed at

an angle of € with respect to the free stream arxis. Similarly at the ahock wave
surface (6 = 0 ), the fluld properties (u, v, otc.) and their derivatives (vith
respect to @) are related in such a manner that the Rankine-Hugomiot equations
are satisfied at the surface given dy

0'462(%o-n¢+i\nunn¢).

This swrface will be shown later to be the shock wvave surface about a slightly
yaving ocme.

HNov, the w-oamponsnts of velocity that are of comoern, in the present
problem, are equivalemt to those sansed by a mmll yav angle in the flow adbout
a yawing oone. Sinse v and ¢ are of the same order of magnitule ome can
postulate that the fluid properties adout a non-yaw cone vith mmall v-componemts
of velosity are relsted to the fluid propsrties adbout a nom~yaw oone vith serc
wv-oompoments of velooity as fellows:

% - %0 Gr“ + Garn + E%’ Xy




v -
ol A S 6""!22 + e’ras

P, = 50 + €L, + €20 4 ¢ ...

() r'YY a2 43
ry 2 3,
pe - Pe + efsl + € t” + ‘ rss [ XXX

wvhere the f's are function of §. The fumotions f's are analytic and periodic
and tinw oould de expanded into Fourier Series. Neglecting the higher order
€'s (€2,€%, oto.), then

% -io+€g (xnooan¢+xnu.nn¢)
v‘-?e+eg(ynooon¢4lnomn¢)
- éé (znooon¢+znoinn¢)
P -F. +‘g (nnoo-n¢+Hnunn¢)

P * Pe 062 ({neoln¢+:-§"unn¢)

The coefficients are evaluated by sudstituting these expressions into the
differential eguations and the boundary oondition relationships. Thus the
fluid properties of flow adout & nom~yaw cons vith finite but mmall w-oom-
ponemte of velooity are obtaimed. This flow fisld vill de desigmated as
the imaginary flov f£ield Decsuse it has no phyeicel meemning. It only




serves as an intermediate step in the detemmination of flov about a ymwring oone.

(o) The last step of Stone's solution is the application of the results obtained
for the flov past a non-yaw oone vith amall v-oomposents of veloeity to the
problem of flow about a yaring ooms. It has deen mentionsd that the differemtial

oquations descriding these two prodlems are identical. Therefore the results

odtained for the fluid properties in Step (b) may be wsed in the regiom detween
o'uo.nmq:-m. Rowvever, the direst tremsfer of the results has no

physieal meeniing due to the mamner ia which the doundary ecomditions vere chosen
hM(b);Mg,mmm,\,vﬂv’,l’.,m%mnotm
fiuid properties for the flow adout a yawiag oome.
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The bomadary conditions require that at 8, + € cos §, the yawing come
m,mmmxmumm.tovwg (g 008 nf+ A, etnn
the shosk wave surfase, the Ramkine-Hugoniot conditions be satisfied. These
bowndary comditions oen culy be satisfied vhem the fluid properties are evaluatod

as follove:

% * Percoosd)” up + %y €oced

V. P*““‘)- Yot % ¢ cos §

<€
[}

r %4»(-0“‘)- Vg * Vo €oos §

-
[ ]

e Toocond)" Tt Ry Coond
brp ® %46.0.“" Po * Pg € oo §

In these expressioms, the variables, Wor Yr Vgr Yg» Ste., satiafy the mutual
differential equations, thws w , v, eto., also satisfy the mutual differential
oquations. Dwe to the mammer in vhieh the bdowndary conditioms were chosen in
Step (b), the fluid properties u, v, otc., also satisfy the bowndary comditions
specified by the prodlem of flov past a supereonie ysving oome.

In drief, them, the method of Stone comsists of the evaluation of the
doviations of the fluid properties for nom-ysw motion with emall v's from the
flxid properties for mon-yaw motion with serc w's and the calculation of the
fluid properties for yaving motion by the rotation of each canloal swrface as

shown is Diagrems II amd III.
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Amlyels

The generel equations of steady motion for three-dimemsional flov in
stherical coordinates, meglecting the effects of viscosity, are

uﬂ lg"rdﬂ‘% -L—'-L (P ++¥) =0
“%‘?%*rcmoo %-3%‘1' (ur - ¥ oot 0) =0 (1)

‘or’ ao’runoo*pr-meﬁ*r("’*""”te)’o

The equation of comtimuity is
%_(pr’uuno)+-§;(prv-1n0)4-'§)3(prﬂ--0 (2)

The equation of state for steady motion and upon the postulation that the
flov is adiadatic along each streamline is

d
g -

vhere the stresmline direction is given by




1 S A Y __
. (3)
%, x%, % 09
Yty ae"ruines%

Equatioms (1), (2) and (3) must be satisfied for any three dimemsional, steady
state fluld motion where viscosity oan be neglected.

For non-yav flow about a gone these equations were simplified and solved
by Taylor and Mascoll for the reglom between the shock wave and the cone. Ths
simplifieation wvas made by postulating that the fluid properties do not change
along any radius element emanating from the vertex of the cone and that the w-

coeponent of velocity 18 zero. Thus the equations of motion (1) become,

-5 (%)
| %—--W(i+w) (5)
0 =0 (6)

the contimity equation becomes

o+ [c:.ote-r(lnﬁ)'] '+ =0 (7

and the squation of state becames

= constant (8a)

‘_.Jrul

- InP -yln 5 = oconstant (8v)




I vhere the barred letters, T, ¥, etc. are used to refer to the non-yaw case, and
the primes denote differentlation with respect to . The boundary conditions
asployed by Teylor and Maccoll are:

vhen & = @, v=12' =0

vhen 6 = e', Uu=Uocos @
Up 8in 6+ BV = 0 (9)

-13~P13Up1 8in 6 (¥ + U ain @)

W¥ooln® e = [(7‘-1)?1 +(y+l)§:l§'!'p-l-

vherees denotes the cone sm'faoo,ew,dmteetheehookvave; U, the free atream
- velooity, and the subsoripts 1 demote free streem conditioms.

In the case of flow past a yawed come the postulation of the non-variance
of the fMuid properties along r may still be used, but the w-camponent of the
velooity camot be assumed zero. Stome, following the work of Earush and
Critohfield, postulated that v and the variatiom of fluid properties in the w
(or ) direction are of the order of magnitude of the yav angle, ¢, and that for
slightly yaving oones (small € ), the texms in the above equations of the order
of magnitude of €2 or higher can be neglected. The resulting equatioms are:

Equations of motiom

u' = v (10)
%:- « -u' (u+u®) (1)

;—;11;—0- %5 = - (ur +vwoot @) (12)
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The oontimuity equatiom,

u! (lnp)'+2a+vcote+v’+v3%-e%%+g§“‘—"°-0 (13)

The equation of state,

-
°|3
]
Q Q
0'—8{0'%

1l ap
or Pﬁ-

ok

%%

integrating with 6,

InP- ylnp = (€, §) (14)
(notice that £ is independent of ©)

The fluid properties in the region between the shock wave and the cone for
a slightly yawing cone must satisfy these equations (Eqs. 10 to 14). At this
point one must remember that these equations do not demand the existemce of a
yaving cone. These equations can also describe the flow adbout a non-yaw cone
with finite v-camponent of velocity caused by external foroea. The magnitude
of v cammot, however, exceed the w resulting from flov pest a slightly yawing
oone,

Due to the ommplexity of these equatioms, Stone, also Karush and Critch-
field, took advantage of the solutiom of Taylor and Macooll for mon-yav motion
and odtained a solution to these equations, vhich yield an imaginary flowv field
about a non-yaw eone with finite w's. Then the imaginary flow field is rotated
%0 give the approximate flow field of fluld motion past a yawed oome.




< ——— i s

“~

The imaginary flow field is obtalned im the following mamner.
fluid woportiu.orr the imaginary flow field must degemerete to the solutiam
of Taylar amd Macooll as v approaches zero, the equivalemt of € approaches
Zero, and the deviation from the solution of Taylor and Maoccoll is small for

-13 -

amall v or € , Stome postulated that

Por mmall v or € , the functions, f's, are only a function of ¢ and are periodic
and thus cam be expanded into Fourier's Series (notice that terms of ¢ and higher

are neglected).

[~
]

<4
L]

<
"

-}
L}

©
]

<

+€L,

-1}

€
+f‘

P +€
p+f5

That is

E+e§ (xnooan¢+xnainn¢)
'v'+eg (ynoosn¢+1nsinn¢)
0+€§ (zneoan¢+znsi.nn¢)

F+e§ (r.nooonﬁ-o-Hnunnﬂ

5062 (gloo.nd-o-,:';linnd)

S8ince the
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; t Sinoce the flov field about a nom-yaw cone is symetrical with the plane
' (f = 0, @ = 0) and the magaitede of v (or € ) is emall, the imaginmary
flow fisld is expected to De symmetriocal. Thus

vV = € (z,_ sin n ¢) (15)

The doundary sanditions of the imaginary flow field are sush that upon
rotation of the imaginary flow field, the flow mwt satisfy the requirements
that at the yawed cone swface the moxmal velocity is to be zero, and at the
shoek vave, the standard Rankins-Hugoniot shook comditioms are to be obeyed.

Let the sudscript r demote the rotated imaginary flow field,

then a poimt on the surface of the yawed oome in the rotated field is er =
[

{ 0, + €eos §. The normal veloeity at 6, 1s v, + evoss @ sing . Sinoe
s 6
€v=~0, then v, must be zero. The value of v, 1s also vg + ¥} €oos §,

s
therefore from Bg. (1%5)

Ts

v, = T ¢ 6; (ynmnl)+§; €oos § + eooe¢£§°(y;ooen¢)-o.




(3K )

«15 =

Wmmo-o.,mmmmmwmmwrnm(-m

;. = 0),

e;(ynoosnﬂ)+7; €coosf = O (16)

neglecting the ¢> terms. Or, equating like coefficiemts

and 1 s 7
= 0 ifnk 1

Sinse, fram Eqe. (7) and (9), ¥ = u" = - 2u at 6_, them at

e = o, ylaeeie. (18)

The shock wave bourdary condition 18 also svaluated in the rotated field.
Here a point on the shock wave swrface is given by

r
v

8, =6 + ei(anooon¢+Ansinn¢)

The arguments for this approximation are, as before, that for eamall ohanges in
€, the change of the shook vave position is a fumction of ¢ and §. Neglesting
€2 terms and since the fumetion of ¢ is periodic, the above equation is Justi-

fied. Dus to symmetry

e -ov+e$ anooond (19)

Ty

AS the dhssk wave 1n Whe yotabed field, Whe Remkiag-Bugoaiot equnticus e=m Yo
givan e femm
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®
at 6, =0  + €> ancoenf Continuous
v ;) Tangemtial
Velocities

(Uoos e, ,-Usine, ,0) " (1,0, 0) =(u, v, w)g* (1, 0, 0)
v v T,

®
(u“.rv’ -Ulinﬁrw,o)' (0, - ose erw -egnansinnh 1) =

(u, v, ')er * (1, 0, 0)
w
(20)

F. r = p_r (comtinmuity)

Po=® + p % (r,-r,) =0  (impulse)

22
r, s by [rj‘ + (Y-l)rl](energy)

vhere the subseripts 1 amd 2 refexr to the two sides of the shock wave (side 1
facing the wadisturbed mniform air stream), a, is the undisturbed sound velosity

(so that of = %),m

Q0
r,=(Ucose, ,-Usino ,0) (0,1, 00086 - egnaneinﬂ)
w v v
Normal
Velooities
rg-(u, v, wv) (0, 1, cs0 O °62 naneinnd)
v
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®
Vew =w +W,. ¢ oos n § , eto.
™ 9% O g% ’

mmwmwrl,ra,n,v,v, etc. into Eq. (20), the temms that
do not vanish with € will cancel, since the nom-yav solution U, ¥, etc. satisfies

the same bowdary eonditiom (20) with € = O, The coefficiemts of cos n §f can
then Yo equated, them,

vhen 0-0'
X, --al(i'-l-Uainev)

z, 8in6 =na (?. +Usine)

v
o ~-vV, 008060 +¥! +¥ (Lnb')']'o»y + ¥ L2 = 0 (22)
n[ 0" v Ow o, n n p .
£ ' t8+2UVcos® ) +7 +r-n3-— =0
%G (F3 + V' + Voot cos n A
v v W

=, 2..1 cotey_ 1
an<v°w (Y+1)Ulin0 +Y+ Uoose)-c-yn-o

To simplify Eg. (21), the properties given by Eqs. 4, 5, 7 amd 9 of the non-yav
solutions were used. Further, since it is easily seen that i'\"«o-Usinovoan-
mum,mmam.amumwm%mmm.
The resulting simplified equations are

MO-O'

X (22)

%" " T +Ueine,

.



[

*4

nxh-bznainev = 0

T
zhootev-ryn-o-gn ry =0

n
-5cot0v+yn+ -ﬁ = 0
Y+1

S - .
(28 - u cotev)+yn(u'+vein9w) 0

(22)

Upon examination of Egs. 17 and 22, it is seen that the coefficients s Xno

2y 3gp? " 87O funotions of T and that ¥, is finite but In forn 1 ie

zero. Therefore only a,, x,, 2,, &, 1,, Y, exist. At this point the subsoript

is aropped.

Thus the solutions to the Eqs. 10 to 14 in the imaginary flov field are

Uu=U+ € xo008 §
Y=Y+ €Eyoos §
v=¢€zoinf

P=P+ €nocef

PmP + €Eoos §

Or in the yewed oone flov field vhere 8 = @ + €oos §

themt. e u+wn €oos §

vV, eve+ew €oosf

v, swev €Egoof
P wPoP €cosf

P =P+ P €oos

(23)

(24)
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Nov the Eqs. (23) are substituted in Eqa. 10 to 14 in order to evaluate x,
and omoe X is imovn, the coefficlents y, z, n,  and & immedlately follow
from Eqs. 22. The substitution ylelds (since the terms that do not venish
with € must cancel, for U, ¥, etc., satisfy the equations of motion with

€ = 0(or w=0)).
y = x* (thus y' = x")

B y+("+0)y+u' x4+ -%-'-g-;gso (25)

+y [oote +(1n5)'] +2:+zm9+?(-§->. = 0

The last expression is obtained from the equation of state (1h) vhich is
InP + vYlnp =f (€, )

Since 1n P - In§ = constant, folloving the earlier reasoning for expansion
into Fourier's Series, then

P . £
1n ¥ vl.nb_ aeidncoon¢+nnain¢

= Gdlooaf

= €4 cos § (dropping the subscript)

Upon swdstitution from Eq. (23)

hh—%’l&i - Yh.p_ﬁém.edou‘




¢4

.20.

which is equivalent to (neglecting texms of ¢ 2, etc.)

iﬂ.iva-_!-l.s.s:&.! = €2ocos ¢
)

and thus

-1 -
P
Equations (25) can now be combined to yield a single equatiom of x,

x" ¢+ x* (eote +A[2ﬁ+ 3ucot @ + (y+ 1) AN' (U + B oot 0)]}

+x{1-oot20+h[-ﬁ'oot29+(7-1) Au(u+ coto)]}

pot
k

(26)

e
+ YEI \/-E'E sin 8 (1 + \W') ome® @ -f
")
v

2w

(vY=21) (" - %) - (ye+ 1) W®

for. By

and %he Yowmiary ocmiitions 18 end 22 desame

vhs ¢ - .'
2 = d P tan 0
7‘: P WeUesino

e —a4. . £ 2Ueine-§'
-1 7 (@ +Usmep

’
::.l
hat)
)
::_l
T
E
ks o

(27)

(28)



)

x' = 2§ (29)

For the actual oampwtation, it is preferable to work vith nondimensional
quantities. Thus Eq. 26 is ohanged as followe:

x"+3B x'+B,x4+B,04=0 (30)
vhere

B, - mon[au oot +(y + 1) \T* (U + @' oot @)

B, = l-oot30+x[—i' 6ot? 9 + (- 1)An (u+ cote)]

-

s oo 7y fEreme (ei)amte [ —— L -
v

Bquations 30 exd 26 are solved for é Equation 29 pext determines d. This
glmf dg.(-x.;),unitnthmuqtowumtommmugqmtiuu.
That 1s

- ut e

3—? sin © £ae
ﬁ —ns / -
e, -av?\[%'-r-mo
u —-—
4 (&%)
[
o
2
ﬂ--g--- . °
-.-'- I stnoe,




These equations give the imaginary flov field for a non-yav come with finite w-
oampomant of velooity cansed by an imaginary extermal foree. The bowndary
ecomditions at the surfases of the ecms and the ahock vave (the position of
vhich is the same a8 the Taylor amd Maoccoll solution) are such that upon
rotation of these swrTases to coinoide vwith the respective surfaces of the
Yaved oo in question, the bowmdary comditions of the yawed motion are
satisfied.

The solution to yaving oome motion, them, is as follows (wvhere the
subsoript, r, demotes the fluid properties adout the ysving cane):

Nov © @+ Coos §

r

E

0.+eooo¢

6, = ovq»eaoo.ﬂ

m‘_-n+u'ém¢ deecxoon f+ @ cocon

w G+ ecxoosf+¥ coos f

v = vev coonf ?+éyml+?'.€ooo‘

+ezpinfe0

8
o

V. @« vaev €ocos

P_ = PeP'cooaf = F(1+-% €oos §) + P' €oos

b, = p+p'coos I'(l#é’(OM‘)#E"(M‘

(25+ @ oot 0)(¢® - # - B2) - —Ez a2

¥ o @ o~

(q’-f—i”) -—t ae

Y-3




and

Notice that at era = 8, + ¢cos ¢

u, = u €

. - xﬂcos{ﬁ
8

v, =_€yﬂcos¢+w‘r'€cos¢=-62ﬁscos¢+€2ﬁsoos¢=o :
B

v, o= ezssingﬁ

P = _— .
r, P (1+ 5 €cos §)
Praz"p'(l+—§eom¢)

These equations describe the flow field ebout a ocons yawed at an angle of €
with the free stream axis. |

Concluding Remaris

The above derivation is Iintended to elucidate Stone's enalysis by simplifying
the annlytieal procedure and deacriding the basic principles involved. The simpli-
fied analysis is necessarily not as rigorous. For the more rigorous analys;a and.
the disoussion on the wmiquenmess of the aclution, the origlmal paper showld de

consulted,

s e W R R E R A B SRR et i L ’f‘;&";’y‘;‘»%--*:e:,g;;;géz,Wa&;;:ezrﬁw;wrﬁ»,v"~%;&wﬁmé§iﬂmr g




-2h -

This simplified verwion of Stone's analysis brings out the point that
three systems of fluid flov wero analysed and related to yield the solution
of the flow field about & slightly yawing cone. The three systems are:

1. Flow about & non-yav come with Zero w-camponent of wvelocity.
2. Flow ebout & non-yav cone with finite w-component of veloolity.
3. Flow about a yawing oone with finite w~campoment of welocity.

Acknovlodzement.
The author acknovledges his gratitude to Mr. C. P. Siska, who performed

the caloulation for the flow fields in the figures.
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