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ABSTRACT

Based on theories of laminate anisotropic elasticity and interlaminar frac-

ture, the complete solution structure associated with a composite delamination

is determined. Fracture mechanics parameters characterizing the interlaminar

crack behavior are defined from asymptotic stress solutions for delaminations

with different crack-tip deformation configurations. A numerical method employ-

ing singular finite elements is developed to study delaminations in fiber com-

posites with any arbitrary combinations of lamination, material, geometric, and

crack variables. The special finite elements include the exact delamination stress

singularity in its formulation. The method is shown to 'e computationally accurate

and efficient, and operationally simple. To illustrate the basic nature of com-

posite delamination, solutions are shown for edge-delaminated feI-e/-8/1 and

((=9)/(±8)/900/900] graphite-epoxy systems under uniform axial extension. Three-S

dimensional crack-tip stress intensity factors, associated energy release rates,

and delamination crack-closure are determined for each individual case. The basic

mechanics and mechanisms of composite delamination are studied, and fundamental

characteristics unique to recently proposed tests for interlaminar fracture cough-

ness of fiber composite laminates are examined. Influences of lamination, geome-

tric, and crack variables on the delamination behavior are investigated.
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I. Wr TIOBUCTIOU

In an associate paper (11, the fundamental nature of stress singularity

and asymptotic solution fields associated with a delamination between

dissimilar anisotropic fiber composites have been studied. Lekhnitskii's

cnuplex-variable stress potent!.ls [2) in conjunction with an eigenfunction

expansion method have been used in the formulation and establishmenc of the

general solution. The eigenvalues, especially the ones which characterize the

strength of stress singularity, for delaminations with different local

traction boundary conditions near the crack tip have been determined. Of

particular interest are the asymptotic deformation and stress governing the

composite delamination fracture. Since logarithmic terms are absent in the

solutions for the delamination stress and deformation f1], the general

structure of the complete solutions consists of only a power-type

eigenfunction series of both singular and higher-order terms. The set of

unknown constants in the eigenfunction series solution for a delamination

problem can only be determined by solving the complete boundary-value problem

with a full consideration of overall composite geometry, lamination and

material variables, remote boundary conditions, and end loading conditions.

In a finite-dimensional fiber composite laminate with simple lamination

variables and crack geometry, for example, a symmetric angle-ply [01-01-4/]

composite containing edge delaminations along the 0 and -0 ply interface, the

complete aminate elasticity solution can be determined in an explicit form by

the use of different analytical methods such as the boundary-collocation

method [3). However, for a composite laminate having more than four plies,

the aforementioned collocation method is not applicable, and a more general

and versatile method of approach to the problem is needed. The situation

could become extremely complex for delaminations in a composite containing a

i
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large number of plies with different fiber orientations and laminar

thicknesses. The almost unlimited number of variables in a general composite

delamination problem requires the development of an advanced analytical method

which can not only deal with the local singular behavior of the delamination

but also take into account various combinations of lamination, material,

geometric, and crack variables. Numerical methods such as finite elemenL

methods are considered to be most attractive because of their versatility in

handling mechanics problems with complex structural geometry and material

properties. In this paper, the currently developed laminate elasticity

solution is incorporated in the formulation of a set of conforming finite

elements with singular derivative fields (4]. The special crack-tip elements

are shown later to be particularly suitable for modeling the composite

delamination problem. The use of laminate elasticity solutions derived from

the associated paper [i] permits the inclusion of exact delamination stress

singularities in finite element formlation, leading to extremely accurate and

efficient numerical solutions for studying the fundamental behavior of

composite delamination with complex lamination variables and geometric

parameters.

Specific objectives of this paper are to: (1) establish complete

solution structures for different delamination configurations to serve as a

basis of formulating an advanced numerical method, (2) construct special crack

elements of various kinds to model the composite delamination, (3) properly

define interlaminar fracture mechanics parameters, e.g., stress intensity

factors and energy release rates, for general composite laminates, (4) examine

the fundamental behavior and associated characteristics of the composite

delamination, and (5) assess influences of lamination, geometric and crack

variables on the delamination response and composite failure modes.
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In the next section, the general structure of complete solutions for

delaanation stress and displacement fields is given. Fracture mechanics

parameters in term of interlaminar crack-tip stress intensity factors and

strain energy release rates are defined for various deformation modes of

composite delamnation. Special six-node, quasi three-dimensional crack

elements for the present composite delamination problem are introduced in

Section 3. Formulations of the singular elements and adjacent nonsingular

eight-node isoparametric elements are briefly outlined. Solution strategy and

computational scheme for the delamination problem, especially in the case that

crack-surface closure (i.e. the contact problem) occurs, are discussed.

Computational methods for evaluating stress intensity factors and energy

release rates by using the singular finite elements are given in detail. In

Section 4, solution accuracy and convergence are studied to demonstrate the

efficiency and effectiveness of the present approach. The fundamental

behavior and unique characteristics of composite delamination are examined in

Section 5. Two graphite-epoxy laminate systems, i.e., symetric angle-ply

[el-el-Sial and symmetric [(*0)/(*)/90*/901, composites, with delainations

emanating from laminate edges are studied. Delamination crack-tip deformation

and fracture mechanics parameters are determined for each case. Influences of

fiber orientation, ply thickness, and crack size on delamination failure

mechanics and mechanism are investigated also.
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2. COMMUT SOLWTO AI EUACIM N9K iU CS M MM

2.1 Complete Solutloms for Stress d Displacement

As discussed in the associated paper 11), the eigenvalues in can be

determined by solving the transcendental characteristic equation Eq. 20 in

(LI. Depending upon the local crack-tip boundary conditions and the interface

costinuity conditions, the in have the following values:

(i) delamination with open crack surfaces

In - A2 (single root),

6n 0a (triple roots),

t(n -Y2 *1i (single root), (a -O ,1,2,...-);

(ii) delamination with closed crack surfaces in frictionless contact

Jn -1V2 (double roots),

a (quadruple roots), (n a 0,1,2,...-);

(iii) delamination ich closed crack surfaces in frictional contact

Vi2 (single root),

=n  a -I (single root),

a (quadruple roots), (n - 0,1,2,...-).

Once the values of 6n are determined, the relationship among Ck's can be found

and the complete solutions for displacement and stress can be established in

explicit forms. For example, for a delamination with homogeneous local

boundary conditions in a composite laminate subjected to planar loading, the

complete solutions for stress and displacement components have the following

expressions:

. o .....
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where bi ) are known eLgenvectors corresponding to the unknowns c., for each

given 6n, and Oi and uoj are known quantities from particular solutions for

each individual case. We note that the bk) are found to be the same for

all 6;s because of the involvement of the term einO(# - x and -x) in the

n
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1rk- Z WV2. A Al. ^ -=%.- k .Mkn - " k _k;

rlk- 1, r: k'"k rlk' ai tMk* r4k" Pk- r~k"0 qks r6k-a t k .  (3)

wbere Uk, , pk. qk, tk are related to ply stiffness matrix and can be found

in 12,31. The expressions for stresses and displacements for delamination

vith closed crack surfaces, i.e., nonvanishing local traction boundary

condit.oons, can be easily determined to have form- similar to Eqs. 1 and 2 but

with slight modifications owing to different numbers of algebraic multiplicity

of the elgenvalues involved.

2.2 bLeminattom Stre.. Jntmity Factors sd Ibergy Isleae blae

The stress and displacement fields for a delamination are shown in the

preceding section to possess general form of Eqs. 1 and 2 with unknown

Constants can to be determined. A proper analytical or numerical method with

the aid of global laminate boundary conditions and remote loading conditions

is required to determine the detailed solution for the complete boundary-value

problem. Since the interlaminar fracture is controlled by local stress and

deformation, the asymptotic solution is of primary importance and interest in

understanding the near-field behavior and fracture phenomenon. The asymptotic

solution is recognized to be singular in nature and governed by the

delamination stress singularities, which have been obtained in detailed in

[11. As pointed out in the associated paper (11, the singular eigenvalues

depend upon the local delamination configuration; thus, distinct structures of

asymptotic solutions are obtained for different crack-tip deformations.

In general, the asymptotic solution for a delamination stress field can

be written in the following form:

Em.
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aim k A1 -) Zk i(k+3) kj)J-1 k-l'ik( )

U - 1,2,3,...,6), (4)

where Zk a W have their origin located at the delam iation tip.

The f Q)and f() are functions of Lm=Ina material conastants, lamination
1k L(k43)

variables, and loading conditions. The integer I is the total number of

elgonvalues 6j which satisfy the constraint condition,

-1 < 3e( 6 3 < 0 (5)

For the convenience of further developments, 1q. 4 my be rewritten as

a . - (r,*; I (6)
-I-

where 20 ) is the jth component (coarespondisS to the eignSvalue 6J) of the

asymptotic stress 0 i in the rolar coordinate system.

In view of the asymptotic solution structures given in Eq. 4 and those

given in 11,5,61, it is possible to define, in the context of interlaminar

fracture mechanics, the delaminstion stress intensity factors and strain

ener release rates in a manner consistent with those for a homogeneous crack

and for the refined model of an interface crack between dissimilar Isotropic

media [7,81. For ezample, in the case of a closed delamination with crack

surfaces in frictionless contact, the stress intensity factors can be

introduced by considering the crack-tip interlaminar stresses 02, 06 and 04

(i.e., Cy, Tr1 , ryz, or o0, Tr*, 'a#) along the ply interface * - 0 as

L



K, - Us- .- 2r 02(r.0) (7a)
r*O

Ki1 * Itm+ -2C 6(r,O) (7b)
r*O

i llLm, /21r 04 (r,0) (7c)r#0

wbare • - 0- and 0+ denote the positions Infinicessally behind and shead of

the crack tip, repectively, because the norml traction 02 is fitie abead of

a closed crack tip wbere shear tracctions a6 and o are singular.

The strain enery release rate, C, and its components G, (L - 1,2.3) may

be evaluated by using Irvin's virtual crack extension concept 191 as

C 1 * C2 C+G3

11. 1 1 ( 2 (r.O)|Ju (&za) u-rrw) -a

4 o6 (r.O)1u a)(6a-r,,) - (8+0

6 1 1~(2r-~~r

+o 4(rO)(u'(&2-r w) - (6)

were da s the length of virtual crack extensioa. The interLasinat stresses,

02, 06, and o4, in 9q. 8 can be obtained from the asymptotic stress field such

as Sq. 4. The corresponding displacements are also tboe of the asymptotic

field equations discussed t the previous section. ta term of the

delainatio stress intensity solutions Kx the C eand C for a closed crack

cam be showo to have a simple expression as

C - 2 + G(A 2 KII + A3KIII) (9)

In Eq. 9, 6 1 is identically aro because of the displacement continuity across

the closed delamination surfaces.

(m)(r,') - u~g )( r,-) - 0 -c ( r ( 0, (10.)
I2
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and 42 and A3 are evaluated from 151 with

%(S) _ ,.,..) .  . .. ,.1  (1ob)

2 2

3 3 ,i/21 a (l, 0

for a delamination v ith extremely sml crack closure, the simplified

model by taking the llting case of a partially closed crack discused in

15,61 is used. The stress intensity solutions Kl and K111 are the same as

those Siven In Eqs. 7(b) and 7(c). but the Kt is defiLnod at r # 0+ as

S14, (r2vr o2(r.). (11)
r-O

And the correspooding train energy release rates G and GS. then, have the

for,

G aG I *C 2  + C3  T (A1 Kt *A2Kl1 eA 3 K1 ). (L2)

In the case that a fully opened delaminatLoc is asuoed and the

sigeefunction expansion series is used for the asymptotic solution, the

delalaiation stress Intensity factors are Introduced as (31

3 -6 )
/ r-J a '2 (r.O;,).,

r-O J-1

3 -6j J)
NJ l" I Or r (rO; (13b)r-O+ J-1

KI, i.i J
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We note that in this case exact integration in Eq. 8 can be carried out and

the strain energy release rate, G, can be determined easily. However,

individual components Gi can not be separated explicitly in the integration

because of the complex mathematical structure of the asymptotic solutions.

Other methods such as the hybrid singular finite element analysis (10,11] are

needed to determine the values of individual Gi.
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3. C MIUTfION OF FIELD SOLUTIONS AND FRACTURE inCAiCS PARAMETKRS

We have thus far obtained the complete solutions for stress and

displacement and the fracture mechanics parameters from the asymptotic

solutions for each individual case. The unknown constants c., as well as

and Gi are to be determined by solving the complete boundary-value problem,

involving remote loading conditions and global geometric and lamination

parameters. Now consider a finite-width composite laminate containing

delaminations under mechanical loading as shown in Fig. 1 in [1]. As

mentioned in Section 1, several numerical methods could be used to determine

the complete solution for the delamination problem in a finite dimensional

laminate. Owing to the singular nature of the interlaminar crack, the complex

structural geometry, and numerous lamination parameters involved, the special

numerical method employing recently introduced conforming singular finite

elements is an attractive approach to the current problem. In this approach,

the exact delamination stress singularities can be included in the formulation

of the special elements. Thus, the unknown constants associated with the

asymptotic solution and the fracture mechanics parameters governing the

delamination behavior can be evaluated conveniently with a high degree of

accuracy and a fast rate of solution convergence.

3.1 Singular Crack-Tip Elements and Surrounding lonsingular Elementas

In this study, we generalize the formulation and concepts of the

conforming singular elements originally introduced for homogeneous isotropic

elasticity problems [4] to the present quasi three-dimensional, anisotropic

composite delamination problem. Formulation of the singular elements is based

on selection of shape functions and their derivatives containing the exact

eigenvalues which meet the constraint condition Eq. 5 of stress singularity
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derived from the aforementioned eigenfunction analysis for the composite

delamination. Detailed discussion of the nature of the singular elements has

been given in (4]. Only relationships relevant to the current development are

given here.

Consider a six-node triangular element witt chree degrees of freedom per

node and stress singularity at node I as shown in Fig. 1(a). The element has

general rectilinear anisotropic material properties with elastic compliance

Sij. By a proper transformation, any point in the element defined in global

Cartesian coordinates (x,y,z) can be referred to both local polar coordinates

(r,+,z) and triangular coordinates (p,E,z) with the origin located at node

1. Within the element, the displacement components u are related to the nodal

displacements q by the interpolation (or shape) function N as
m-S

u s U(x.y) + u°  with U - Ns q, (14a,b)

where u are known quantities resulted from applied loading, and

UT u2, u3} ,  u T . {uo it Uo3}1 (15a)
ul2' 3 -o o o2' '

qT (() (1) (1) (2) (2) (2) (6) (6) (C6)}
q . {q ' q 3 q q q3  .... q q2  q (15b)

N -N (p, ; 6), (15c)

in which the superscript T denotes transposeof theassociated column vector, and

the number in the superscript parentheses in Eq. 15(b) refers to the

associated nodal number of q. Explicit expressions of the shape

function N , involving proper eigenvalues 6 determined for each individual

delamination problem from [11 and local coordinates, are given in Appendix

1. Equation 14(b) can be written in a more explicit form as follows:

6 +q
U = (p M( ) + L-(p, )) q, (16)

LI.'
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where L(p,&) is the nonsingular polynomial part of N (p,&;Sj ), independent of

the number and location of nodes along the 2-3 edge of the element. Using the

minimum potential energy theorem and following the same procedure as the

conventional displacement-based finite element formulation, we can construct

the element stiffness matrix k for the crack-tip element as
-S

k - ff BT C B dA, (17).s A -s - .s
s

where C is the material stiffness matrix, and B has the form
-S

B = a(p+M + L). (18)
-.5 - - -

In Eq. 18, the a is a matrix differential operator. We remark that the shape

function of the singular element is chosen such that the element conforms with

a nonsingular quadratic element matched through the common element boundary

(i.e., along edge 2-3), and with singular elements of the same formulation

through boundaries 1-2 and 1-3.

The surrounding nonsingular elements used in this study are quasi three-

dimensional, eight-node isoparametric elements [Fig. l(b)] with 24 degrees of

freedom (three D.O.F.'s per node). Formulation of the element stiffness

matrix for the nonsingular element has been given in detail in [12,131. The

element stiffness matrix kr for the adjacent element can be shown as

k - ff BTC B dA, (19).r A 'r ..

where r

B r - a N . (20)

The shape function Nr for an eight-node, quasi three-dimensional isoparametric

element has standard quadratic expressions which can be found in [12,131.
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3.2 Solution Procedure and iteration Scheme for Crack Closure

In the finite element discretization of the delaninated composite, the

singular elements are placed in a ring form with the delamination tip as the

common node (Fig. 2). The element stiffness matrices ks and kr are true

stiffness matrices relating unknown nodal displacements to nodal force

vectors. The standard procedure of the matrix-displacement method [141 can be

used to assemble the global stiffness matrix K and loading vector Q leading to

the relationship,

Kq -Q+Qo, (21)

where Q denotes the additional nodal force resulted from the applied strain

CO, and the assemblage may be expressed symbolically by

K I k + r (22a)
- i-1I i-I.

n n

in which n. and nr are the total numbers of singular and nonsingular elements,

respectively.

In actual n, aerical computation of a delamination problem, a finite

length of crack closure is assumed first. The problem now becomes an elastic

contact problem because a part of the local boundary conditions is not known

and needs to be determined from the solution. Specifically, the following

continuity conditions are required along the closed portion of the

delamination, -c 4 r 4 0:

* '



15

[a2(r,w)] 0 0, (23a)

[u2(r,w)] - 0, (23b)

where the bracket [ ] denotes the jump of the associated quantity across the

closed crack surfaces, e.g., u(l) (r,-r) - 2)(r,w ) - 0. Thus, we solve

Eq. 21 in terms of unknown pressures along the closed crack surface and use

Eq. 23(a) to determine the contact stress on this surface. To enforce the

conditions Eqs. 23(a) and 23(b), the solution technique proposed by

Francavilla and Zienkiewicz [151 for an elastic contact problem is employed.

The numerical procedure involves an iteration scheme to determine crack

closure length and contact stress along the delamination surface. If the

solution is admissible, the contact stress so obtained must be in compression

and the displacement field should have no overlapping or interpenetration

outside the contact region. In the case that crack closure length is found to

be extremely small, say, less than the order of 10- 5 _ 10- 6 times crack

length, the delamination is then assumed to be open, and the simplified model

discussed in (1,51 and in the preceding sections in this paper is used. For

the case of a delamination with finite-length crack closure, the detailed

iterative algorithm for evaluating crack closure and contact stress is given

in Appendix 2.

3.3 Computation of Delnnation Stress Intensity Factors and Energy Release

Rates

As mentioned in the preceding sections, the stress intensity factors and

energy release rates for a delamination are evaluated from the asymptotic

solution of interlaminar stresses 02, 06 and 04 (or ay, TXY and Tyz) and the

displacements ui along the plane of the crack. For a finite dimensional

composite laminate containing delaminations, the asymptotic stress and

displacement can be conveniently determined by the aforementioned singular
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finite element method. Along the delamination plane -o the near-field

stress and displacement fields are approximated by using Eq. 16 and its

derivatives as

a - p R(g ;6) q, (24a)
~0 -

6+1
u p (&_) q + u , (24b)

- -0

where R(& ;6) is a matrix of derivatives of the shape function H and ply

elastic constants, and the p and Co are related to the global coordinates by a

simple transformation given in Appendix 1.

For a partially closed delamination or a delamination with a very small

size of crack-tip closure for which the simplified model with inverse square-

root singularity is used, the stress intensity factors and strain energy

release rates can be evaluated easily from the singular finite element

results. Taking a and u along the delamination crack plane

&0 M 0 (i.e., *o = 0) , we can write the asymptotic inteLlaminar stresses and

displacements along the interface in simple expressions as

o, 2 A. r- 1/2 (1-2, k-i; i-6, k-2, and
i4, k-3), (25a)

uj 2 Bk r 1/2 + uoj (-1, k-2; J- 2 , k-l, and
J-3, k-3), (25b)

where Ak and Bk are obtained from the corresponding components of R(Eo;6) and H(C o) in

Eqs. 24(a) and 24(b) by setting Co " 0, and 6 - - 1/2 . Thus, the delamination

stress intensity factors X1 can be easily determined by

K1 -i Ai (i.,tIrI), (26)

The energy release rates can be determined in a manner similar to that for

through Eq. 8 as
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G = G + G2 + G3

= z+O [  (  (Ak r- ()[B( -r) 2 Jdr
6a:0W f0 k=1 B

lir 1 6a 3 6a-r /2
6a +0 M f I A kSk(M -r ) dr. (27a)

0 k-l

The term Uoj in Eq. 25(b) is not included, because it does not result in any

contributions to G. and G after integration. Integration of the singular

integral Eq. 27(a) can be carried out explicitly without difficulty. Then the

strain energy release rates have the form

3
. -"(AGB! + A2B2 + A3B3 ). (27b)

We remark here that each term in Eq. 27(b) corresponds to the individual Gi

components and that for a delamination with finite crack closure, the first

tern in Eq. 27(b) is identically zero, i.e., , - 0, because of the continuity

of displacement across the crack surface.
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4. SOLU'RlOU iCCUNAY AID NTZY UIGCZ

To demonstrate the accuracy and efficiency of the present method of

approach, a symmetric angle-ply [45"/-45"/-45*/45"] graphite-epoxy laminate

containing edge delaminations along the 45*/-45" ply interace is considered.

For simplicity and without loss of generality, the composite is assumed to be

subjected to uniform axial strain ez - Eo along the z-axis and have a geometry

of b/h - 8 and hl - h 2 - h - 0.25 inch and delaminations of length a - 0.25

inch emanating from the edges. Elastic ply properties of unidirectional high-

modulus graphite-epoxy identical to those of Eq. 28 in [11 are used. Owing to

the geometric and lamination symmetry, only a quarter of the cross sectional

area needs to be considered. In finite element discretization of the

continuum, twelve special crack-tip elements of identical size and shape (Fig.

2) are used to model the near-field response of the composite delamination.

The crack-tip elements are embedded in the mesh of eight-node, quasi three-

dimensional isoparametric elements. Local and overall mesh arrangements for

the finite element enalysis of the composite delamination are shown in Fig.

3. To study the accuracy and convergence of field solutions, the mesh near

the crack tip is continuously refined by halving the lengths of equal sides of

the singular elements (e.g., the sides OE and OF in Fig. 3).

Using the computational method and the solution scheme discussed in the

preceding sections, numerical results are obtained for the convergence

study. Significantly global crack closure with c/a - 0.34 is found for the

delamination in the (45"/-45"/-45"/45"1 graphite-epoxy under the uniform axial

extension, resulting in a negative KI and identically vanishing G1 . [The

detailed nature of delamination closure and related problems will be discussed

in the next section.] In Tables I and 2, delamination stress intensity

factors and energy release rates associated with the finite-element mesh
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refinement are shown for systemsetic reduction in crack-tip element size

(Ah/h) and increase in the total number of elements. It can be seen clearly

that stable and converged solutions for all Lt and G are obtainable, as the

crack-tip element size becomes smller than 0.lh and the associated total

number of elements exceeds 100. As anticipated, the delamination stress

intensity factors (Table 1) are sensitive to the size of the crack-tip

elements owing to the localized nature of the singular domain. However, the

strain energy release rates are relatively insensitive to the element size and

mesh refinement (Table 2) because the Gi are related to the global structural

response of the delaminated composite. Furthermore, the crack-closure length

is also found to be insensitive to the mesh refinement in this case.

To assess the accuracy of the current solutions for the composite

delamination with global crack closure is not trivial because no analytical

and numerical solutions are available in the literature for comparison. The

only analytical study, which may be used as a reference, deals with the

delamination problem by assuming the crack surface being fully open and

employing an eigenfunction expansion method with the aid of a boundary

collocation technique 131. in Fig. 4, stress intensity solutions determined

by the present singular finite element method including the crack-closure

consideration are presented as a function of delamination length in the (45"/

-45"/-45"/45"] graphite-epoxy. The dominant stress intensity factor KI1I

determined for the partially closed composite del ..; ation by the present

approach is about 6 - 7Z higher than the value for an open crack from the

boundary collocation results. However, solutions for K1 obtained by using the

two distinct models differ from each other both in sign and in magnitude. In

the current singular finite element analysis of the delamination problem, K1

is found always to be negative owing to the aforementioned crack closure,
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whereas K, determined for an assumed open crack is positive. Values of K11

and G2 determined by the two approached are both negligibly sa11. The strain

energy release rates obtained for the delamination are given In Fig. 5. For

the partially closed delamination determined by the present approach, G1 is

identically zero, whereas the value of G1 /(10 c2 ) from the assumed open crack

model is of the order of 10-6_a value much smaller than that of G3 , the

dominant component of energy release rates. Despite the different nature at

the crack tip in these two approaches, the values of G3 differ only slightly

from each other.

We remark that though mathematically rigorous, the solution obtained

using the eigenfunction expansion method with the assumption of open crack

surfaces is physically inadmissible because severe interpenetration of

dissimilar materials is found in the oscillatory displacement solution near

the crack tip. Thus, the present singular finite element approach with a

partially closed crack consideration provides physically meaningful solutions

with a high degree of efficiency and accuracy for general composite

delamination problems.

000%



21

5. T33IUR A Z. 3&AIOM hm AM 3AcuISTZcs OF QWSITK DIANNMZUM

In the preceding sections, we have introduced the complete solution

structure and defined the governing fracture mechanics parameters for the

delamination problem. Special finite elements with singular derivatives have

been formulated to model the near-field response of a delamination in a finite

dimensional composite laminate. Solution convergence and accuracy have been

affirmed In terms of computational parameters (e.g., the size of crack-tip

elements, the degree of finite element discretization, etc.). Having

established these basic mechanics theories and the numerical method, we nov

proceed to study the fundamental behavior and characteristics of delamination

in fiber composites with general lamination and geometric variables.

Wo fiber composite material systems are examined in this section: (1)

symmetric angle-ply 1* 1, graphite-epoxy laminstes with edge delaminations

between 0 and -0 plies, and (2) symmetric ((*e)/(*e)/9O/l-9-Tj, graphite-epoxy

with edge delaminstions between -0 and 90* plies. The symmetric angle-ply

composite laminate system is selected because several unique delamination

characteristics are observed, which cani be used to illustrate most clearly the

basic interlaminar fracture mechanics and failure modes. More Importantly,

some of the most fundamental nature of delanination fracture determined from

the presently introduced physically admissible model and mathematically

rigorous solutions are not observable in the previously obtained solutions

which contain the Inadmissible oscillatory stress and deformation 13,51. The

[(*O)I(*)190"f'JJJ'1 graphite-epoxy system is studied also because this

lamination system, especially the one with ((*30")/(*30")/90"/1rJ. fiber

orientations, is currently being considered for use in the evaluation of

interlami-ar fracture toughness of composite materials under static and cyclic

loading (16,171. The ply elastic properties of high-modulus unidirectional
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graphite-epoxy given in zq. 28 of Ref. (11 are used to all computations. In

the [O/-S/-OIOj composites, toe ftl,-ing lamination OW geomtric paramters

are employed: h, - h2 - h - 0.25 Inch and b/h - 8. whereas in the

((*O)/(*O)/9O0)"*1, composite laminates, actual dimansions of unidirectional

graphite-epoxy used In laboratory experiments 116,171 are taken, i.e.,

hl- h2 - ... - hb - 0.00:4 inch and b - 0.75 inch. Moreover, in all cases

studied in this paper the composite lainsates are considered to be subjected

to uniform axial extension Cz a co along the z direction.

Since the interlaminar crack-tip deformation and fracture mechantsm are

governed by the asymptotic field solutions, we shall examine the fundamntal

behavior and associated characteristics of composite delamination in term of

interlaminar fracture mchanics prmeters, i.e., crack-tip stress

intensities, strain energy release rates, and crack-surface closure.

5.1 laflm of Fiber Otemtmtiom

The behavior of a delaination in the relatively simple angle-ply 101,

laminates is significantly influenced by the fiber orientation S. Results

obtained by using the iterative solution schema in Section 3.2 reveal that the

delamination always possesses a finite-length crack-tip closure. Assuming

that the crack surface is in frictionless contact, we find that the closure

legth is global in general. For example, in the 1*j graphite-epoxy vith

edge delaminatioas of length a - 0.25 inch, significant crack closure is found

in each case studied (Table 3). The contact-zone lo, c/a, varies from

approximately two-centhe to more than one-third of total delamination length

for S ranging betveen 15* to 60. The crack-tip closure results in a negative

opening-mode stress intensity factor K, < 0 and an identically vanishing

energy release rate G1 a 0, as shown in Tables 4 and 5. Thus, the

delamination behavior in the IS/-O/-S/6J composites is apparently governed by
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inCerlaulnar shear stresses and deformations. In Tables A and 5. the out-of-

plane cearing-mode (mode ill) stress intensity factor KILL and associated

energy release rate G3 are clearly the dominant ones controlling the

deLaaInation fracture. (The values of KILL and G3 are several orders of

magnitude higher than those of KII and G2 .) Also, the composite wich 0 x 152'

possesses the highest Kill and G3 namon all 0e' studied. These results

suggest that In symnetric anSle-ply composites, delamination initiation and

growth are more intimately associated wtth local interlaaInar shear than

transverse normal stress.

le reiterate that the solutions obtained here by the use of the present

Interlaminar :rack-closure model and the rigorous mathematical (combined theo-

retical and numerical) approach are physically admissible and meaningful, as

contrary to the previously obtained inadmissible, oscillatory solutions from

an elgsnfanction expansion approach with the assumption of a fully open crack.

In the more complex graphite-epoxy laminates with [(*8)/(a)/9O*/90*

ply orientations, delatinations are always observed to occur between the -e

and 90' plies 116.171. Starting vith the partially closed crack model and

using the Iterative solution scheme, w find that the closure length of a

delasInation is less than 10- 6 Inch. Thus, for this extremely small crack

closure the simplified model with an Inverse square-root stress singularity

discused to Section 4.3 of III and in 15.61 is employed. In figs. 6 and 7,

variations of stress Intensities K1 and energy release rates GC with fiber

orientation 6 are shown for a delamination of length a - O.5b. The crack tip

is apparently governed by the opening- and inplane shearing-mode stresses; the

%I and Kit are oe order of magnitude higher than K[I for all V's studied.

The value of G3 is vanishingly smell in general, end G1 and G2 are three

orders of magnitude Migher than G3 because of the extremely small value of
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A3. Note that values of G; G2 and G3 depend not only on Ki but also on Ai as

indicated in Eqs. 12 and 27(b). (Unfortunately, an explicit relationship

among Ai, ply elastic constants, lamination parameters, geometric, and loading

variables needs to be determined numerically because of the complex algebra

involved.] We remark that the maximum KI and G, appear at 6 = 32.50 and the

maximum K11 and G2 occur at 6 = 350 in the [(t6)/(*6)/90°/§001s graphite-epoxy

system. The zelection of [(±30O)/(±30*)/90/90*]s lamination in the recently

proposed interlaminar fracture toughness tests [16,171 using edge-delamination

composite specimens is therefore a proper choice.

5.2 Influence of Ply Thicknecs

The ply thickness is an impoctant geometric variable in studying the

delamination behavior of composites. Changing the laminar thickness in a

laminate alters the lateral constraint of adjacent plies in the thickness

direction and, thus, directly affects the interlaminar crack behavior. For

illustration, fracture mechanics solutions for the (45*/-45*/-45*/45*j

graphite-epoxy composites with several ply thicknesses are presented in this

section. For simplicity and without introducing further complications, the

laminate width 2b and thickness 2W as well as the delamination length a are

kept constant as before, while variation of ply thicknesses h1 and h2 (with h1

+ h2 - W = 0.5 inch) is considered.

As shown in Figs. 8-10, altering the ply thickness hl/W has appreciable

effects on the fundamental behavior of the delamination. For instance, when a

thick outer 450 ply is used, say, hI/W > 0.8, the entire delamination surface

is in contact with the other (Fig. 10), leading to a negative KI with G! -

0. Delamination fracture in this situation is governed by the tearing-mode

stress intensity factor KI11 and the associated energy release rate G3 (Figs.

8 and 9). When equal ply thickness, i.e., h, - h2 , is used, the in-plane
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shearing-mode stress intensity KI and the energy release rate G2 are about

zero, and KIII has the maximum stress intensification. However, as the outer

450 ply becomes thin, e.g., h1 < 0.2W, the surfaces of delamination are opened

up, i.e., c/a = 0, as shown in Fig. 10. In this situation, contributions of

KI and KII to the local failure become increasingly appreciable; KII and K111

are of the same order of magnitude but G2 and G1 are still relatively small as

compared to G3. In the limiting case of hl/W + 0, the in-plane shear could

become dominant to govern the delamination.

5.3 Influence of Interlainar Crack Length

For the symmetric composite laminates with either [*e] s or

[((8)/(*8)/90°/90°]s fiber orientations, the interlaminar crack-tip behavior

is affected by the size of delamination. As discussed in Section 5.1, the

delamination in the [6/-6/-9/61 graphite-epoxy system has a global crack

closure. Figure 11 reveals general characteristics of the crack closure in

the delaminated [45*/-45*/-45*/45*] graphite-epoxy. Under a uniform axial

strain co, the crack closure increases monotonically with crack length until

the delamination becomes about two-ply thicknesses. As the delamination

extends further, the closure length approaches an asymptotic value of c/h =

0.375, indicating that crack growth is governed by the interlaminar shear Tyz

and the tearing-mode stress intensity factor K1 I I, as shown in Fig. 4. The

values of Txy, KII and G2 are orders of magnitude smaller than those of Tyz,

KII and G3 (Figs. 4 and 5). Note again that crack closure occurs for all

a/h's in the 145*/-45/-45/45*1 graphite-epoxy, leading to an identically

zero G1 and negative opening-mode stress intensity factor KI < 0. In the case

of a very small delamination emanating from a free edge under rising load, the

interlaminar crack is inherently unstable and extends rapidly to about one or

two-ply thicknesses (i.e., the plateaus in Figs. 4 and 5) before stable growth

V A. 0
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would occur. This phenomenon has been indeed observed in laboratory

experiments of edge-delamination tests of ((*30O1/*(30")/90/9"*] s T300-5208

graphite-epoxy composite laminates [161.

In the [(30O)/(30O)/90O/90"]s graphite-epoxy containing delaminations

between -30* and 90" plies, the delamination is found to be open all along the

crack surface for any given a/h, as discussed In Section 5.1. The solutions

for Ki and Gi as a function of delamination length a/b are given in Figs. 12

and 13. Also shown in Fig. 13 are the results reported in [16) by using a

conventional nonsingular finite element method in conjunction with a virtual

crack-closure scheme for calculating the strain energy rates (181. The

difference is very appreciable to warrant the necessity of using the advanced

analytical and numerical technique for solving the delamination problem

accurately. We observe that local delamination growth in the

[(30O)/(30O)/90°/901 s graphite-epoxy is governed by an inherently three-

dimensional mixed-mode fracture process because the simultaneous presence of

significantly high values of KI , K1I and KI11 shown in Fig. 12. Owing to the

vanishingly small A3 , the value of G3 is found to be negligible in comparison

with G, and G2 (Fig. 13). We remark that in the limiting case of a very small

delamination crack (i.e., a/h * 0), interactions occur between the

delamination crack tip and the laminate edge, leading to a slightly higher

value of Kill as shown in Fig. 12.

A salient feature shown in Figs. 4, 5 and 12, 13 is that the stress

intensity factors K1 and energy release rates G1 become independent of the

crack length a/h or a/b as the delamination extends beyond a few ply

thicknesses. This unique feature has been observed and used in the

experimental study of interlainar fracture toughness of composite laminates

S. *
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116,171. Provided that the K1 and Gi are accurately determined by appropriate

methods such as the present one, the stress intensity factors and energy

release rates associated with observed 
edge delamination initiation and 

growth

may be useful for characterizing delamination 
fracture -nd interlaminar crack

resistance of composite laminates.

p

III III•III 
lI I
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6. SUMMUT AND (OECLUSIONS

General expressions of stress and deformation fields in a fiber composite

laminate with delaminations have been obtained from presently developed

anisotropic laminate elasticity theory and basic concepts of interlaminar

fracture mechanics. Fracture mechanics parameters such as stress intensity

factors and energy release rates for delaminations with different crack-tip

deformation configurations are defined in a manner consistent with those for a

homogeneous crack and for the refined model of an interface crack between

dissimilar isotropic solids (7,81. In finite-dimensional composite laminates

with complex lamination and geometric variables, an advanced numerical method

employing special singular crack-tip finite elements is developed for modeling

the delamination. Exact delamination stress singularities obtained from the

laminate elasticity solution are included in the crack-tip element

formulation. Solution convergence and accuracy have been studied to ensure

the validity of the results and to demonstrate the efficiency and

effectiveness of the method. To illustrate the fundamental nature of

composite delmination, numerical results are shown for the [8/-/-/el and

[(*B)/(*e)/90o/90°1s graphite-epoxy laminate systems containing edge

delaminations under uniform axial extension. Fracture mechanics parameters

and failure modes associated with the composite delamination are determined

for each case. The basic mechanics and mechanisms of delamination are studied

for the composites with different lamination and geometric variables and crack

parameters. Based on the results obtained, the following conclusions may be

reached:
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(1) To study the fundamental mechanics of delamination in a composite

laminate having a large number of plies with different fiber orientations,

advanced numerical methods such as the present one are essential to take into

account the crack-tip singularity and the large number of lamination,

material, and geometric variables involved.

(2) In the crack-tip element formulation, the inclusion of delamination

stress singularities determined from the laminate elasticity solution by using

an eigenfunction expansion method leads to very accurate solutions with a

rapid rate of convergence. This is particularly advantageous for studying

delaination problems in composite laminates with complex lamination,

geometric, and material variables.

(3) Since the singular eigenvalues and their algebraic mltiplicity are

different for different crack tip deformation configurations, the crack

element formulation and solution strategy for each delamination problem need

to be treated on an individual basis. Stress intensity solutions and energy

release rates in each case should be evaluated in accordance with the

appropriate delamination models given in Section 2.

(4) The state of stress and deformation in the vicinity of a delamination

crack tip are three dimensional in general. The asymptotic solutions can not

be determined accurately by using classical lamination theory nor by any

approximate methods without including interlaminar stresses and the correct

stress singularities associated with the delamination. The current laminate

elasticity solution and associated numerical method provide accurate

information on the singular nature of the crack tip and complete field

solutions for the delamination problem.
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(5) The singular delamination stress field may be characterized by the

presently introduced interlaminar fracture mechanics parameters. Crack-tip

stress intensity factors Ki and energy release rates Gi can be determined only

by solving the complete boundary-value problem. In contrast to the singular

elgenvalues which depend only on local boundary conditions and material

properties of adjacent plies, the Ki and Gi are functions of all lamination

and geometric parameters, remote loading conditions, and crack variables.

(6) Oing to the local nature of interlamtinar fracture, the mechanics and

mechanisms of delamination growth are governed by the crack-tip stress

intensity factors. In angle-ply 18/-0/-Q/0 graphite-epoxy, crack-tip closure

occurs and, thus, KI < 0; delamination growth may be, therefore, more

intimately related to interlaminar shear stresses and interface shear strength

than the transverse normal stress. In the cases of J(*6)/(*-)/90*/90- ,

graphite-epoxy, crack surfaces are open and delamination growth is controlled

by all of the three-dimensional, mixed-mode stress intensity factors, KI, KII,

and KIT1 .

(7) While the K1 govern local deformation and delamination fracture, the

Gi are related to the global structural response and less sensitive to the

local deformation and fracture. For example, the total G and G3 differ only

slightly between the cases of a delamination with a closed and an open crack

tip in the [8/-8/-O/G graphite-epoxy composite. Thus, Ki may provide a more

sensitive measure and, thus, better fracture parameters than Gi for evaluating

the composite delamination growth.

(8) Influences of lamination variables such as fiber orientation and ply

thickness on the delamination behavior are significant. Changing fiber

orientation generally alters failure modes appreciably. For instance, in

[(*O)/(*e)/90"/90] s graphite-epoxy, the opening-mode (KI) dominated
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delamination fracture changes into a shearing-mode (KII) controlled failure,

as the 0 becomes greater than 40". Also, increasing ply thickness hl/W in

[e/-e/-8/0] graphite-epoxy affects the failure mode from a shearing-dominated,

open delamination fracture to a closed one.

(9) Stress intensity solutions and energy release rates appear to be

independent of crack length during the growth of an edge dela".ination, as long

as the crack exceeds a length of few ply thicknesses [3,191. This unique

feature in composite edge-delamination is being used for evaluating of

interlaminar fracture toughness of fiber composite laminates 116,171, provided

that the Ki and Gi can be calcalated accurately by using advanced analytical

methods such as the present ons..

OP.
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TABLE 1

Delamination Stress Intensity Factors K Associated with
Finite-Element Mash Refinement in t45/-45o/-15o/45" ] Graphite-Epoxy

No. of Element Size K* KI
Elements (Ah/h) II III

72 0.25 -0.6458E-1 0.3424E-2 -0.7114E 0

84 0.125 -0.6219E-1 0.2463E-2 -0.6967E 0

96 0.0625 -0.6141E-1 0.1796E-2 -0.6894E 0

108 0.03125 -0.6152E-1 0.1401E-2 -0.6855E 0

1Ki are normalized by 106C (psi-/i'n).
0

Closed crack tip with c/a = 0.34.
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TABLE 2

Delonac ion Energy Release Rates Gi tAssociated with
FLatte-Elemeit Hash Refinement Ln (45*/-45*/-451/45*1 Graphite-Epoxy

15o. of Element Size G
Elements (6h/h) 2 3

72 0.25 0. 0.68559-6 0.1533E 0

84 0.125 0. 0.55281-6 0.1519E 0

96 0.0625 0. 0.4619E-6 0.1512E 0

Los 0.03125 0. 0.3943146 0.1508E 0

t iare normalized by 106c2 C lb-ln/in 2).
0

Closed crack tip with c/a - 0.34
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TABLE 3

Influence of Fiber Orientation on Crack-Tip Closure Length t

for a Delamination in 1e1-e1-0101 Craphite-Epoxy Composite

0 c/a

06 0.0

15" 0.2292

30" 0.2834

450 0.3402

60o 0.3603

*hI * h o 0.25 In., b - 2 in.;

a .05 in.

at strain c 10- 6o
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TABLE 4

Effects of Fiber Orientations on Stress Intensity Solutions
for Delamination in [I/-I1Graphite-Epoxy Compositet

e K I K IIK I I

00 0. 0. 0.

150 -0.3782E-1 0.3866E-2 -0.2379E 1.

300 -0.1072E 0 0.8744E-2 -0.1943E 1

450 -0.6152E 0 0.1401E-2 -0.6855E 0

600 -0.8599E-2 0.2034E-3 -0.9270E-1

t i= h2 =0.25 in., b =2.0 in.; a = 0.25 in.

Ki are scaled by 16 pi/~j
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TABLE 5

Effects of Fiber Orientation on Strain Energy Release Rates
for a Delamination in [6/-6/-6/e] Graphite-Epoxy Composite t

0 B G3

00 0. 0.0 0.0

150 0. 0.6059E-5 0.2111E 1

300 0. 0.2748E-4 0.1074E 1

450 0. 0.3943E-6 0.1508E 0

600 0. 0.1425E-7 0.3597E-2

t1 h2 =0.25 in., b 2 in.; a - 0.25 in.

G are scaled by (106E2) (lb-in/in2].
1 0
ttG1is identically zero due to crack-tip closure.

I d
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9. LIST OF FIGURE CAPTIONS

Fig. I (a) Six-Node Quasi Three-Dimensional Crack-Tip Element with Singular
Derivatives; (b) Eight-Node Quasi Three-Dimensional (nonsingular)
Isoparametric Element.

Fig. 2 Arrangement of Special Crack-Tip Elements for the Composite
Delamination Problem.

Fig. 3 Overall and Local Crack-Tip Finite-Element Mesh Arrangements for
Modeling Delamination in (45*/-45*/-45°/45° ] Graphite-Epoxy
Composite.

Fig. 4 Comparison of Stress Intensity Solutions Obtained by Two Different
Models/Approaches for Delamination in (450/-450/-45*/45*J Graphite-
Epoxy Subjected to Uniform Axial Strain cz - co
(h, = h2 = h - 0.25 in., b/h - 8 in., a - 0.25 in.).

Fig. 5 Comparison of Energy Release Rates Determined by Two Different
Models/Approaches for Delamination in [45*/-45/-45°/45°J Graphite-
Epoxy Subjected to Uniform Axial Strain c - e

(hl - h 2 - h - 0.25 in., b/h - 8, a - 0.9 in.3.

Fig. 6 Variation of Stress Intensity Factors K1 with Fiber Orientaticn 0 for
Delamination in [((O)/(*O)/90*/90*]s Graphite-Epoxy under Uniform
Axial Strain £z = Co (hl - h2 = ... - h1l 0.0054 in.,
b = 0.75 in., a = 0.5b).

Fig. 7 Variation of Strain Energy Release Rates Gi with Fiber Orientations 8
for Delamination in [(6)/(*8)/900/90*], Graphite-Epoxy under Uniform
Axial Strain cz = co (hl - h 2 = "'" - hll - 0.0054 in., b a 0.75 in.,
a - 0.5b).

Fig. 8 Influence of Ply Thickness hl/W on Stress Intensity Factors for

Delamination in (45*/-45*/-45°/45*] Graphite-Epoxy Subjected to
Uniform Axial Strain ez = Co (h, + h2 - W - 0.5 in., 2b/W - 8,
a - 0.25 in.).

Fig. 9 Influence of Ply Thickness hl/W on Energy Release Rates Gf for
Delamination in [45*/-45*/-450/45°] Graphite-Epoxy Subjected to
Uniform Axial Strain, ez = Co (h, + h2 - W = 0.5 in., 2b/W - 8,

a - 0.25 in.).

Fig. 10 Crack-Tip Closure Length as a Function of Ply Thickness hl/W for

Delamination in [45*/-450/-450/45*] Graphite-Epoxy Subjected to
Uniform Axial Strain cz W co (h, + h2 - W - 0.5 in., 2b/W - 8,
a - 0.25 in.).

Fig. 11 Crack-Tip Closure Length c/h as a Function of Delamination Size a/h

in [450/-450/-450/45*J Graphite-Epoxy Subjected to Uniform Axial
Strain cz a co (h, - h2 - h - 0.25 in., b/h - 8, a - 0.25 in.).

p f -
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Fig. 12 Change of Stress Intensity Solutions 1L with Delamination Length a/bin [(*30")/(30.)/90o/-J Graphite-Epoxy Subjected to Uniform AxialStrain cz - Co (h, - h2 - .. - hi ! - 0.0054 in., b - 0.75 in.).
Fig. 13 Change of Strain EnerQ _Release Rates Gi with Delamination Length a/bin ((*30)/(*30/90 ', Graphite-Epoxy Subjected to Uniform AxialStrain cz - Co (h , h2 .,.. - 0.0054 in., b - 0.75 in.).
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[45/..45*/-450/45!*] Graphite-Epoxy

0.7 -K

0.6-

S0.5-

0.2-
O Ku

0. 1 -2IAZ 

A 
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rig. a Influ~ence of Ply Thickness h /W oni Stress Intensity Factors for
Delasination in f45/-45*/-4;5/45J1 Graphite-Epoxy Subjected to
Uniform Axial Strain z a t (h1 +4h - W - 0.5 in., 2b/W - ,a
0.25 in.).
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fig. 9 Influenc, of Ply Thickness h i/ on Energy .elease Rates Gt for
Delamination in (45/-A45*-4k"I/S!J Graphite-Epoxy Subjected to
Uniform Axial Strain, ex - Co (hl + h2 - V - 0.5 in., 2b/W - 8, a
0.25 in.).
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Fl. 10 Crack-Tip Closure Length as a Function of Ply Thickness hI/V for
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APPENDIX 1

Shape Ftuctions % (P ,9;6) for the Singiular eLautination Crack-uip iMuat

Corresponding to a singular elgenvalue 6, the shape functions N 8in local

triangular polar coordinates (p,&) for the six-node conforming crack-tip

element in the delamination problem are shown (41 to have the following
expressions:

N iI + ((2-26 )P-P + 11(26 -1), (Al-I)

N131 2-4 p(16/(-6-1 -4 -6+ (l2

N (61 2 pl-P&/(2-1 -) P p+ 2 (-+(1-_)](2 -1( AI-3)

N 1(+1 - I2P(l-E)+2p C+l(-Q)I/(2a -I), (Al-4)

N112+1) -4p 6+1 90-9), (Al-5)

N -(51 2IA-P 6+ 1 /(2- 6 -1), (i - 1,2,3). (Al-6)

where the singular eigenvalues P's are determined in accordance with the local

crack-surface boundary conditions discussed in Section 2.1, and the p and F

are related to the global coordinates by

(X ( 2 _x 1) tan 0_yyd(Al-i)

(y3-y2) -(x3-x2) tan *

p - rf(~),(A1-8)

in which

Q _1)2+(y2-yl) 2+2E[(x 2 _x )(x3 _x2)+(y2-Yj)(y3-y2)1

+C R3 _ 2) (y3y2)(AI-9)
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API'NIX 2

Iteratiou Scheme for Partially Closed Ielamolation

For a delaminatiun with crack surfaces in finite-length contact, the

following iteration scheme is used for determining contact stress and crack

closu:e length:

(i) Assume an initial contact length cl, and solve Eq. 21 with the side

conditions Eqs. 23(a) and 23(b) for contact stress and displacement.

(ii) Check the solution against preset criterion nf. If the compressive

stress F, - a2 (-cj,N) gives a nj In, E I(F1-Fo)/Fo, and Fo is a

properly selected sealing factor, for example, Fo is set as 106 eo

(psi), in the present calculation.] such that nj < nf and if the

displacement field is admissible (i.e., no overlapping or

interpenetration beyond the contact region), we set the crack closure

length c - c1 and terminate the iteration.

(iii) If the two constraint conditions are not met, a new contact length c 2 >

ci is assumed and the procedure of (i) and (ii) is repeated for F2 and

u 2 .

(iv) If Fi < 0 (i - 1,2) and 1n21 > nlji > nf, the next assumed length c 3

should be c3 < c l, and repeat (iii) and (iv).

(v) If either Fi < 0 and IlIl > In21 > if or FlF 2 < 0 and Inil > cf, the

next assumed contact length is set as

c 3 a c2 + F2(c2-cl)/(Fl-F2 ). (A2-1)

The iteration from (i)-(iii' continues until sufficient accuracy is

reached.
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(vi) As the constraint conditions are satisfied and the difference between

assud contact lengths is Icn+ 1-cnj < ec the iteration is terminated

with c -1/21Cn+I.l


