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ABSTRACT

Based on theories of laminate anisotropic elasticity and interlaminar frac-
ture, the complete solution structure associated with a composite delamination
is determined. Fracture mechanics parameters characterizing the interlaminar
crack behavior are defined from asymptotic stress solutions for delaminations
with different crack-tip deformation configurations. A numerical method employ-
ing singular finite elements is developed to study delaminations in fiber com-
posites with any arbitrary combinations of lamination, material, geometric, and
crack variables. The special finite elements include the exact delamination stress
singularity in its formulation. The method is shown to “e computationally accurate
and efficient, and operationally simple. To illustrate the basic nature of com-
posite delamination, solutions are shown for edge-delaminated [68/-8/-8/6] and
[(:9)/(:9)/90°/§6’]s graphite-epoxy systems under uniform axial extension. Three-
dimensional crack-tip stress intensity factors, associated energy release rates,
and delamination crack-closure are determined for each individual case. The basic
mechanics and mechanisms of composite delamination are studied, and fundamental
characteristics unique to recently proposed tests for interlaminar fracture tough-
ness of fiber composite laminates are examined. Influences of lamination, geome-

tric, and crack variables on the delamination behavior are investigated.
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1. INTRODUCTION

In an associate paper (1], the fundamental nature of stress singularity
and asyamptotic solution fields assoclated with a delamination between
dissimilar anisotropic fiber composites have been studied. Lekhnitskii's
crmplex-variable sctress potent!+ls [2] in conjunction with an eigenfunccion
expansion method have been used in the formulation and establishment of the
general solution. The eigenvalues, especially the ones which characterize the
strength of stress singularity, for delaminations with different local
traction boundary conditions near the crack tip have been determined. Of
particular interest are the asymptotic deformation and stress governing the
composite delamination fracture. Since logarithmic terms are absent in the
solutions for the delamination stress and deformation [l], the general
structure of the complete solutions consists of only a power-type
eigenfunction series of both singular and higher-order terms. The set of
unknown constaats in the eigenfunction series solution for a delamination
problem can only be determined by solving the complete boundary-value problem
with a full consideration of overall composite geometry, lamination and
amaterial variables, remote boundary conditions, and end loading conditions.

In a finite-dimensional fiber composite laminate with simple lamination
variables and crack geometry, for example, a symmetric angle-ply [6/-8/-0/08]
composite containing edge delaminations along the © and -9 ply interface, the
complete laminate elasticity solution can be determined in an explicit form by
the use of different analytical methods such as the boundary-collocation
sethod [3]). However, for a composite laminate having more than four plies,
the aforementioned collocation method is not applicable, and a more general

and versatile method of approach to the problem is needed. The situation

could become extremely complex for delaminations in a composite containing a




large number of plies with different fiber orientations and laminar
thicknesses. The almost unlimited number of variables in a general composite
delamination problem requires the development of an advanced analytical method
which can not only deal with the local singular behavior of the delamination
but also take {ato account various combinations of lamination, material,
geometric, and crack variables. Numerical methods such as finite element
methods are considered to be most asttractive because of their versatility in
handling mechanics problems with complex structural geometry and material
properties. In this paper, the currently developed laminate elasticity
solution {s incorporated in the formulation of a set of conforming finite
elements with singular derivative fields [4]. The special crack-tip elements
are snown later to be particularly suitable for modeling the composite
delamination probiem. The use of laminate elasticity solutions derived from
the associated paper [l] peraits the inclusion of exact delamination stress
singularities in finite element formulation, leading to extremely accurate and
efficient numerical solutions for studying the fundamental behavior of
composite delamination with complex lamination variables and geometric
parameters.

Specific objectives of this paper are to: (1) establish complete
solution structures for different delamination configurations to serve as a
basis of formulating an advanced numerical method, (2) construct special crack
elements of various kinds to model the composite delamination, (3) properly
define interlaminar fracture mechanics parameters, e.g., stress intensity
factors and energy release rates, for general composite laminates, (4) examine
the fundamental behavior and associated characteristics of the composite
delamination, and (5) assess influences of lamination, geometric and crack

variables on the delamination response and composite failure modes.

f




In the next section, the general structure of complete solutions for
delamination stress and displacement fields is given. Fracture mschanics
parsmeters in terms of ianterlaminar crack-tip stress inteasity factors and
strain energy release rates are defined for various deformation modes of
composite delamination. Special six-node, quasi three-dimensional crack
elements for the present composite delamination problem are introduced in
Section 3. Formulations of the singular elements and adjacent nonsingular
eight-node isoparamettric elements are bdriefly outlined. Solution strategy and
computational scheme for the delamination prablem, especfally in the case that
crack-gurface closure (i.e. the contact problem) occurs, are discussed.
Computational methods for evaluating stress intensity factors and energy
release rates by using the singular finite elements are given in detsil. In
Section 4, solution accuracy and convergence are studied to demonstrate the
efficiency and effectiveness of the present approach. The fundamental
behavior and uanique characteristics of composite delamination are examined in
Section 5. Two graphite-epoxy laminate systems, i.e., symmetric angle-ply
[8/-06/-08/8) and symmetric l(te)/(te)/sovW], composites, with delaainations
emanating from laminate edges are studied. Delamination crack-tip deformation
and fracture mechanics parameters are determined for each case. Influences of
fiber orientation, ply thickness, and crack size on delamination failure

msechanics and mechanisms are investigated also.




2. COMPLEYE SOLUTION AMND FRACTURE MECEANICS PARAMETERS

2.1 Complete Solutiocos for Stress and Displacemsnt

As discussed in the associated paper [1l], the eigenvalues &, can be
determined by solving the transcendental characteristic equation Eq. 20 in
(1]. Depending upon the local crack-tip boundary conditions snd the interface
coatinuity conditlons, the §, have the following values:

(1) delamination with open crack surfaces

n -l (single root),
Gn I XE (triple roots),
(rn -1p) % 1y (single root), (n = 0,1,2,...%);

(11) delamination with closed crack surfaces in frictionless contact

n -l (doyble roots),
§ =
n n (quadruple roots), (n=0,1,2,00.");

(111) delamination wich closed crack surfaces in frictional contact

n -lfp (stingle root),
sn =¢4n ~-B (single root),
n (quadruple roots), (n = 0,1,2,,..%).

Once the values of §, are determined, the relationship among Cy's can be found
and the complete solutions for displacement and stress can be established in
explicit forms. For example, for a delamination with homogeneous local
boundary conditions in a composite laminate subjected to planar loading, the
complete solutions for stress and displacement components have the following

expressions:
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where b‘(‘:) are known efgenvectors corresponding to the unknowns c,, for each
given 6n. and o, and Ugy are known quaantities from particular solutions for
each individual case. We note that the bé:) are found to be the same for
all 6"‘3 because of the involveament of the tera ei“"(o = % and =%) {n the

13(6“) watrix. The constants Ay, and [y, are defined as
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where 1, T, Px. Qx. tg are related to ply stiffness macrix and can be found
in [2,3]. The expressions for stresses and displacements for delamination
vith closed crack surfaces, {.e., nonvanishing local traction boundary
conditfoas, can be easily determined to have forms similar to Eqs. | and 2 but
with slight sodifications owing to different numbers of algebraic multiplicity

of the eigenvalues involved.

2.2 Dslsminstion Stress Intessity Vactors ssd Hoergy Dalease Rates

The stress and displacement fields for a delamination are shown in the
preceding section to possess general form of Eqs. | and 2 with unknown
constants ¢, to be determined. A proper analytical or numerical method with
the aid of globsl laminate boundary conditions and remote loading conditions
is required to determine the detailed solution for the complete doundary-value
problem. Since the interlaminar fracture is controlled by local stress and
deformation, the asymwptotic solution is of primary importance and interest in
understanding the near-field behavior and fracture phenowenon. The asymptotic
solution 1is recognized to be singular in nature and governed by the
delsainstion stress singularities, which have been obtained in detailed in
[1]1. As pointed out in the associated paper (1], the singular eigenvalues
depend upon the local delamination configuration; thus, distinct structures of
asymptotic solutions are obtained for differeant crack-tip deformations.

In genersl, the asymptotic solution for a delamination stress field can

be written in the following form:




L 8
. () 1) 4
% 321 kgl zk * ey W)
(1 - 1.2.3.....6). (‘)

vhere Zy and 7, have their origin located st the delamtnacion tip.
The t{i) and !{*R*” are fuanctions of lamina material coastants, lamination
variables, and loading coanditions. The integer L is the total number of

eigenvalues 61 vhich satisfy the constraint condition,

For the conveniencs of further developments, Eq. 4 may be revritten as

i o (e,0; 8, (6)
j-l
vhere s{” is the jth component (corresponding to the eigenvalue 55) of the
asysptotic stress J; in the folar coordinate systes.

In viev of the asymptotic solution structures given in Eq. 4 and those
given in [1,5,6]), it is possible to define, in the context of interlaminar
fracture sachanics, the delamination stress iateansity factors and strain
energy rslease rates in a manner consistent with those for a howogeneous crack
and for the refined model of an interface crack between dissimilar isotroptc
media [7,8). Por example, in the case of a closed delamination with crack
surfaces in frictionless contact, the stress iatensity factots can be
introduced by considering the crack-tip interlsainar stresses g3, 0g and 0,

(1.e., % Txys Tygs OF Oy, Trg, t") along the ply interface ¢ = 0 as
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K- 11;_ /=2sr 0,(r,0) (7a)
| S d
K ® u.;, /2xe 04(r,0) ()
r
Kiir ® 11.;, /23¢ o,(r,0) (7c)
r

where ¢t = 0" and O denote the positions infinitesmslly behind and chead of
the crack tip, respectively, becsuse the normsl traction o; is fiaite ahead of
a closed crack tip vhere shear tractions og and g, are singular.

The strain evergy releass rate, G, and its components G (i = 1,2,3) may

bs evalusted by using Irwvin's virtusl crsck exteasion coacept (9] as
CeoGy+Gy+ Gy
L 4 () (at1)
- ::0 m‘]) {oy(r,0)[uy "(da-r,7) ~uy  (&-r,~t)]

+ oy(r,0)(a$® (g2, 1) - o™ (hgor,-0))

+ d~(r.0)(n§.)(éﬂ-t.!) - ug""(an-f.--))}ar. (8)

wvhere &2 is the length of virtual crack extension. The inteclaminar stresses,
S, 9, and 04, in E£q. 8 can be obtained from the asywptotic stress field such
as Eq. 4. The cotresponding displacesents sre also those of the asysptotic
field equations discussed ia the previous section. 1o terms of the
delasination stress {ntensity solutions Ky, the G and G; for a closed crack

can de shown to have a simple expression as
) |
G =G+ Gy =7 (AKpp + AyKyypyp) ¢

In Eq. 9, G is identically zero because of the displacement continuity ecross
the closed delsmination surfaces,
u;.)(r.') - ug""(r.--) -0 ~<r<o, (108)




and A, and Ay are evaluated from [5] wich
ug.) - u;'ﬂ) - AT (10b)
ug.) - ug'ﬂ) . Ay/2[Tac] (10c)

as 1 « 0%,

for a delasination with extreesly smsll crack closure, the simplified
model by taking the limiting case of a psrtially closed crack discussed in
(5,6) i3 used. The stress intensity solutions Ky and Kyy; are the same as
thoee given in Eqs. 7(d) and 7(c). but the Ky ie defined at r « 0% as

K, = Ma, /29 0,(r,0). (1)
r+0

And the corraspoading strsin «nergy relesse rates C and G;, then, have the

torm,

:
CoG +G +Gy =g (MK + 4K, +AK ). (12)

In the case that a fully opened delamination {s assumed and the
eigenfunction expansion series is used for the asysptotic solution, the

delasination stress intensity factors are introduced as (3]

3 ¢
X, = la, ] /v 8,7 °(r,0;6,), (13a)

r+0" jel J

3 -8
K oliw, § /Fe ! cﬁ”(r.o;c

J). (13b)
20 j=1

B -8
‘Ill - u-, I TS 4 si‘”(r,o;6

j). (13c¢)
20 Js=l
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We note that in this case exact integration in Eq. 8 can be carried out and
the strain energy release rate, G, can be determined easily. However,
individual components Gy can not be separzted explicitly in the integration
because of the complex mathematical structure of the asymptotic solutions.
Other methods such as the hybrid singular finite element analysis [10,11] are

needed to determine the values of indiridual Gi’
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3. COMPUTATION OF FIELD SOLUTIONS AND FRACTURE MECHANICS PARAMETERS

We have thus far obtained the complete solutions for stress and
displacement and the fracture mechanics parameters from the asymptotic
solutions for each individual case. The unknown constaats c,, as well as Kj
and Gy are to be determined by solving the complete boundary-value problem,
involving remote loading conditions and global geometric and lamination
parameters. Now consider a finite-width composite laminate containing
delaminations under mechanical loading as shown in Fig, I in [l]. As
mentioned in Section 1, several numerical methods could be used to determine
the complete solution for the delamination problem in a finite dimensional
laminate. Owing to the singular nature of the interlaminar crack, the complex
structural geometry, and numerous lamination parameters involved, the sgpecial
numerical method employing recently introduced conforming singular finite
elements 18 an attractive approach to the current problem. In this approach,
the exact delamination stress singularities can be included in the formulation
of the special elements. Thus, the unknown constants assoclated with the
asymptotic solutfon and the fracture mechanics parameters goveraing the
delamination behavior can be evaluated conveniently with a high degree of

accuracy and a fast rate of solution convergence.

3.1 Singular Crack-Tip Elements and Surrounding Honsingular Klements

In this study, we generalize the formulation and concepts of the
conforming singular elements originally introduced for homogeneous isotropic
elasticity problems [4] to the present quasi three-dimensional, anisotropic
composite delamination problem, Formulation of the singular elements is based
on selection of shape functions and their derivatives containing the exact

eigenvalues which meet the constraint condition Eq. 5 of stress singularity

&)
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derived from the aforementioned eigenfunction analysis for the composite
delamination. Detailed discussion of the nature of the singular elements has

- been given in [4]. Only relationships relevant to the current development are
given here.

Consider a six-node triangular element with chree degrees of freedom per
node and stress singularity at node 1 as shown in Fig. l(a). The element has
general rectilinear anisotropic material properties with elastic compliance
sij. By a proper transformation, any point in the element defined in global
Cartesian coordinates (x,y,z) can be referred to both local polar coordinates
(r,$,z) and triangular coordinates (p,£,z) with the origin located at node
l. Within the element, the displacement components u are related to the nodal

displacements q by the interpolation (or shape) function Ns as

u = U(x,y) + u, with U= Ns q, (14a,b)

where u are known quantities resulted from applied loading, and

‘.‘T = Ly vy w3k ‘.‘: = {ugys Yg20 Y3hs (152)
C_lr - {qil). qél). qgl). qu),. qu), qu).-----. q§6), qgs)’ q§6)}. (15b)
tjs - §S (D, €; Gj)l (15¢)

in which the superscript T denotes transpose of the associated column vector, and
the number in the superscript parentheses in Eq. 15(b) refers to the
associated nodal number of S‘ Explicit expressions of the shape

function §', involving proper eigenvalues Gj determined for each {ndividual
delamination problem from [1] and local coordinates, are givean in Appendix

1. Equation 14(b) can be written in a more explicit form as follows:

6j+l
U={p M(E) + L(p,E)} q, (16)

[V}
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where L(p,§) 1s the nonsingular polynomial part of Ns(p,£;6 ), independent of

3
the number and location of nodes along the 2-3 edge of the element. Using the
ainimum potential energy theorem and following the same procedure as the
conventional displacement-based finite element formulation, we can construct
the element stiffness matrix Es for the crack~tip element as

T
Es ot Es 9 Es da, an
A
S
where C is the material stiffness matrix, and Bs has the form
6j+l
B, = A(p M+ L), (18)

-

In Eq. 8, the ? is a matrix differential operator. We remark that the shape
function of the singular element is chosen such that the element conforms with
a nonsingular quadratic element matched through the common element boundary
(i.e., along edge 2-3), and with singular elements of the same formulatioa
through boundaries 1-2 and 1-3.

The surrounding nonsingular elements used in this study are quasi three-
dimensional, eight-node isoparametric elements [Fig. 1(b)] with 24 degrees of
freedom (three D.0.F.'s per node). Formulation of the element sti{iffness
matrix for the nonsingular element has been given in detail in [12,13]. The

element stiffness matrix kr for the adjacent element can be shown as

T
%t Il !r g ?r dA, (19)
where ]
!t = ? !r' (20)

The shape function “r for an eight-node, quasi three-dimensional isoparametric
element has standard quadratic expressions which can be found in [12,13].
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3.2 Solution Procedure and Iteration Scheme for Crack Closure

In the finite element discretization of the delaminated composite, the
singular elements are placed in a ring form with the delamination tip as the
common node (Fig. 2). The element stiffness matrices Es and Er are true
stiffness matrices relating unknown nodal displacements to nodal force
vectors. The standard procedure of the matrix-displacement method [14] can be
used to assemble the global stiffness matrix 5 and loading vector 9 leading to

the relationship,

Kq=q+q, (any

where Qo denotes the additional nodal force resulted from the applied strain

€y» and the assemblage may be expressed symbolically by

ns nt
k= ] ke ]l (22a)
~ a1 % ge) -

r

n
Q= I 9§”+ji P, (220)

1
in which ag and n, are the total numbers of singular and nonsingular elements,
respectively.

In actual n nerical computation of a delamination problem, a finite
length of crack closure is assumed first. The problem now becomes an elastic
contact problem because a part of the local boundary conditions is not knowm
and needs to be determined from the solution. Specifically, the following
continuity conditions are required along the closed portion of the

delamination, ~c < r < O:
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[og(r,m)] = 0, (23a)
[ug(c,m)] = 0, (23b)

where the bracket [ } denotes the jump of the associated quantity across the
closed crack surfaces, e.g., u§m+1)<r’_") - ugm)(r,w) = 0., Thus, we solve
Eq. 21 in terms of unknown pressures along the closed crack surface and use
Eq. 23(a) to determine the contact stress on this surface. To enforce the
conditions Eqs. 23(a) and 23(b), the solution technique proposed by
Francavilla and Zienkiewicz [15] for an elastic contact problem is employed.
The numerical procedure involves an iteration scheme to determine crack
closure length and contact stress along the delamination surface., If the
solution 1s admissible, the contact stress so obtained must be in compression
and the displacement field should have no overlapping or interpenetration
outside the contact region. In the case that crack closure length is found to
be extremely small, say, less than the order of 10-5 -~ 10.6 times crack
length, the delamination is then assumed to be open, and the simplified model
discussed in (1,5] and in the preceding sections in this paper is used. For
the case of a delamination with finite-length crack closure, the detailed
iterative algorithm for evaluating crack closure and contact stress is givea
in Appendix 2.
3.3 Computation of Delamination Stress Intensity Factors and Knergy Release

Rates

As mentioned in the preceding sections, the stress intensity factors and
energy release rates for a delamination are evaluated from the asymptotic

solution of interlaminar stresses %5, S and A (or ¢ ‘xy and tyz) and the

yl
displacemeats u; along the plane of the crack. For a finite dimensional
composite laminate containing delaminations, the asymptotic stress and

displacement can be conveniently determined by the aforementioned singular
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finite element method. Along the delamination plane £ = £, the near-field
stress and displacement flelds are approximated by using Eq. 16 and its
derivatives as

s o’ R(E 36) q, (24a)

ta

§+1
o ME) a +u (264b)

[
n

where 5(60;6) i3 a matrix of derivatives of the shape function ? and ply
elastic constants, and the p and £, are related to the global coordinates by a
simple transformation given in Appendix 1.

For a partially closed delamination or a delamination with a very small
gize of crack-tip closure for which the simplifi{ed model with inverse square-
root singularity is used, the stress intensity factors and strain energy
release rates can be evaluated easily from the singular finite element
results., Taking g and u along the delamination crack plane
Eo =0 (L.e., ¢° = () , we can write the asymptotic inte.laaminar stresses and

displacements along the interface in simple expressions as

o, x A r 2 (i=2, k=1; 126, k=2, and
i=4, k=3), (25a)
Vz
u, =B r +u (i=1, k=2; j=2, k=1, and
j k Oj 1-3' k-3)’ (25b)

where Ak and Bk are obtained from the corresponding components of R(EO;G) and H(Eo) in

Eqs. 24(a) and 24(b) by setting Eo =0, and § = -HQ. Thus, the delamination

stress iatensity factors K; can be easily determined by
K, = 4 A (4=1,1I,11I), (26)

The energy release rates can be determined in a manner similar to that for Kj

through Bq, 8 as

(-




'Y

17

G = Gl + Gz + 63

- o ml { Z KO Y213, (8a-r) Y2 3ar

]6';:0 = I Z AkBk( ) dr. (27a)

The term Yoy in Eq. 25(b) is not included, because it does not result in any
coutributions to Gy and G after integration. Integration of the singular
integral Eq. 27(a) can be carried out explicitly without difficulty. Then the
strain energy release rates have the form
3 n

G= 1§1 G, = 3(A;B, + A,B, + A;B,). (27b)
We remark here that each term in Eq. 27(b) corresponds to the individual Gy
components and that for a delamination with finite crack closure, the first
tecru ia Eq. 27(b) {s identically zero, i.e., G} = O, because of the continuity

of displacement across the crack surface.
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4. SOLUTION ACCURACY AMD CONVERGENCE

To demonstrate the accuracy and efficiency of the present method of
approach, a symmetric angle-ply [45°/-45°/-45°/45°] graphite—epoxy laminate
containing edge delaminations along the 45°/-45° ply interace is considered.
For simplicity and without loss of generality, the composite 1is assumed to be
subjected to uniform axlal strain €, = ¢, along the z-axis and have a geometry
of b/h = 8 and h) = hy = h = 0,25 inch and delaminations of length a = 0.25
inch esanating from the edges. Elastic ply properties of unidirectional high-
modulus graphite—epoxy identical to those of Eq. 28 in [1l] are used. Owing to
the geometric and lamination symmetry, ouly a quarter of the cross sectional
area needs to be considered. In finite element discretization of the
continuum, twelve special crack-tip elements of identical size and shape (Fig.
2) are used to model the near-field response of the composite delamination.
The crack-tip elements are embedded in the mesh of eight-node, quasi three-
dimensional isoparametric elements, Local and overall mesh arrangements for
the finite element analysis of the composite delamination are shown in Fig.

3. To study the accuracy and convergence of field solutions, the mesh near
the crack tip is continuously refined by halving the lengths of equal sides of
the singular elements (e.g., the sides OE and OF in Fig. 3).

Using the computational method and the solution scheme discussed in the
preceding sections, numerical results are obtained for the convergence
study. Significantly global crack closure with c¢/a = 0.34 is found for the
delamination in the [45°/-45°/-45°/45°] graphite-epoxy under the uniform axial
extension, resulting in a negative Ky and identically vanishing Gi. [The
detailed nature of delamination closure and related problems will be discussed

in the next section.] In Tables 1 and 2, delamination stress intensity

factors and energy release rates associated with the finite-element mesh
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refinement are shown for systemmatic reduction in crack-tip element size
(Ah/h) and increase in the total number of elements. It can be seen clearly
that stable and coaverged solutions for all Ki and Gy are obtainable, as the
crack-tip element size becomes smaller than 0,.lh and the assoclated total
number of elements exceeds 100. As anticipated, the delamination stress
intensity factors (Table 1) are sensitive to the size of the crack-tip
elements owing to the localized nature of the singular domain. However, the
strain energy release rates are relatively insensitive to the element size and
mesh refinement (Table 2) because the G; are related to the global structural
response of the delaminated composite. Furthermore, the crack-closure length
is also found to be insensitive to the mesh refinement in this case.

To assess the accuracy of the current solutions for the composite
delamination with global crack closure is not trivial because no analytical
and numerical solutions are available in the literature for comparison. The
only analytical study, which may be used as a reference, deals with the

delamination problem by assuming the crack surface being fully open and

employing an eigenfunction expansion method with the aid of a boundary
collocation techanique [3]). In Fig. 4, stress intensity solutions determined
by the present singular finite element method including the crack-closure
consideration are presented as a function of delamination length in the [45°/
-45°/-45°/45°] graphite-epoxy. The dominant stress intensity factor Kyyp
determined for the partially closed composite de® ...aiation by the present
approach 18 about 6 ~ 7% higher than the value for an open crack from the
boundary collocation results. However, solutions for Ky obtained by using the
two distinct models differ from each other both in sign and in wmagnitude. In

the current singular finite element analysis of the delamination problem, Kp

is found always to be negative owing to the aforementioned crack closure,
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vhereas Ky determined for an assumed open crack is positive. Values of Kyp
and G, determined by the two approached are both negligibly smcll, The strain
energy release rates obtained for the delamination are given ia Fig. 5. For
the partially closed delaaination determined by the present approach, G; is
identically zero, whereas the value of Gll(lose:) from the assumed open crack
model is of the order of 10"%—a value much smaller than that of Gy, the
dominant component of energy release rates, Despite the different nature at
the crack tip in these two approaches, the values of Gy differ only slightly
from each other.

We remark that though mathematically rigorous, the solution obtalaed
using the eigenfunction expansion method with the assuamption of open crack
surfaces is physically inadmissible because severe interpenetration of
dissimilar materials is found in the oscillatory displacement solutioa near
the crack tip. Thus, the present singular finite element approach with a
partially closed crack constderation provides physically meaningful solutions
with a high degree of efficiency and accuracy for general composite

delamination problems.
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5. THE FOMDAMENTAL BEHAVIOR AND CHARACTERISTICS OF COMPOSITE DELAMINATION

In the preceding sections, we have introduced the complete solution
structure and defined the governing fracture meschanics psrameters for the
delamination problem. Special finite elements with singular derivatives have
been formulated to model the near-field response of a delamination in a finite
dimensional composite laminaste. Solution convergence and accuracy have been
affirmed in terms of computational parameters (e.g., the size of crack-tip
elements, the degree of finite element discretization, etc.). Having
established these basic mechanics theories and the numerical method, we now
proceed to study the fundamental behavior and characteristics of delaminatioa
in fiber composites with general lamination and geowetric variasbles.

Two fiber cotposit; aaterisl systems are examined in this section: (1)
symmetric angle-ply [$8], graphite-epoxy lasinastes with edge delaminations
between 6 and -6 plies, and (2) symmetric ((to)/(ﬂ)/90'/-93‘]. graphite—epoxy
with edge delaminations between ~8 and 90° plies. The symmetric angle-ply
composite laminate system is selected because several unique delamination
characteristics are observed, which ccn be used to fllustrate most clearly the
basic interlaminar fracture mechanics and failure modes. More importantly,
some of the most fundaaental nature of delaminstion fracture determined from
the presently introduced physically adaissible model and mathematically
rigorous solutions are not observable in the previously obtained solutions
which coatain the inadmissible oscillatory stress and deformation [3,5]. The
[(£0)/(£0)/90°/30% ], graphite-epoxy system is studied also because this
lamination system, especilally the one with ((£30°)/(+30°)/90°/30%], fiber
orientations, is currently belag considered for use in the evaluation of

interlaminar fracture toughness of composite matertals under static and cyeclic

loading [16,17], The ply elastic properties of high-modulus unidirectional




0

2

graphite-epoxy given in Zq. 28 of Ref. [l] are used in all cowputations. In
the (0/-8/-6/0] composites, tne ?nllaviag lamination and genmttric parsasters
are employed: h) = hy = h = 0.25 inch and b/h = 8, vhereas in the
l(ﬂ)/(tO)/N‘IWI. composite laminates, sctual dimeasions of unidirectional
graphite-epoxy used {n laboratory experiments [16,17] are taken, i.es.,

h) = by = ... = b)) = 0.0074 {nch and b = 0.75 inch. Moreover, in all cases
studied in this paper the cospoeite laminastes are cousidered to be subjected
to uniform axial extension ¢, = ¢, aloag the z direction.

Since the interlamiaar crack-tip deforastion and fracture sschanises are
governed by the asysptotic field solutions, we shall examine the fundamental
behavior and assoclated characteristics of composite delaminstion in terms of
faterlsainar fracture mechanics parassters, i.e., crack-tip stress

intensities, strain energy release rates, and crack-surface closure.

5.1 Iaflusaca of Fiber Ozieatstios

The benavior of a delamination in the relstively simple sngle-ply (»0],
leminates is significantly influenced by the fiber orientation 0. Results
obtained by using the iterstive solution scheme i{n Section 3.2 revesl that the
delamination always possesses a finite-leagth crack-tip closure. Assuaing
that the crack surface {s ia frictionless contact, we find that the closure
leagth is global in general. For exasple, ia the lﬂl. graphite-epoxy vwith
edge delsainations of length a = 0,25 inch, significaat crack closure is found
in each case studied (Table ]). The contact-zons size, c/a, varies from
approximstely two-tenths to sore than one-third of total delamination leagth
for O ranging between 15° to 60°. The crack-tip closure results in & negative
opening-mode stress fatensity factor K; < O and an identically vanishing

energy relesse rate G) » 0, as shown {n Tables 4 and 5. Thus, the

delssination behavior in the [0/-8/-0/0) composites is apparently governed by
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interlaminar shear stresses and deformations. In Tables 4 and 5, the out-of-
plane tearfog-mode (wode IIl) stress intensity factor Kyyr and assoclated
energy release rate Gy are clearly the dominant ones controlling the
delaatnacion fracture. (The values of Ky and Gj are several orders of
asgnitude higher than those of X;; and Gy.) Also, the composite with 8 = 157
possesses the highest Kyy{ and Gy among all 8's studied. These results
suggest that in syesetric angle-ply composites, delamination initfaction and
grovwth are wore intizately assoclated with local interlaminar shear chan
transverse noraal stress,

Ye reiterate that the solutions obtained here by the use of the present
interlaminar ~rack-closure model and the cigorous sathesmatical (combined theo-
retical and numerical) approach are physically admissible and meaningful, as
contrary to the previously obtained {nadaissidle, oscillatory solutions from
an eigenfunction expansion approach vith the assusption of a fully open crack.

1n the more complex graphite-epoxy laminates with [(tO)/(tO)/90‘/;5:l,
ply orientations, delaminacions are always obsecved to occur between the -9
and 90° plies [16,17). Starting with the partially closed crack model and
using the itecstive solution schemse, va find that the closure length of a
delamination is less than 107% fnch. Thus, for this extremely small crack
closure the sleplified model vith an inverse square-troot stress singularity
discuvsed in Section 4.3 of (1] and ta [5.6] is employed. In Pigs. 6 and 7,
variations of stress intensities Ky and energy relesse rates Gy with fidber
orientation 6 ate shown for a delamination of length a = 0.5b. The crack tip
is apparently governed by the opening- and inplane shearing-wode stresses; the
K; and Kyp ate one order of magnitude higher than Kpyp for all 9's studied.
The value of Gy 1s vanishingly small {n genecal, end Gy and G; are three

ocders of aagnitude higher than G3 because of the extremely small value of
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A3. Note that values of Gl' G, and Gy depend not only on Ki but also on Ay as
indicated in Eqs. 12 and 27(b). (Unfortunately, an explicit relationship
among A,, ply elastic constants, lamination parameters, geometric, and loading
variables needs to be determined numerically because of the complex algebra
involved.] We remark that the maximum K; and G; appear at 8 = 32.5° and the
maximum Kiy and G, occur at 8 = 35° in the {(te)/(te)/90°/§6?]s graphite-epoxy

——

system. The celection of [(t30°)/(:t30°)/90°/90°]s lamination in the recently
proposed interlaminar fracture toughness tests [16,17] using edge-delamination

composite specimens is therefore a proper choice.

5.2 Influeace of Ply Thicknecs

The ply thickness is an impoctant geometric variable in studying the
delamination behavior of composites. Changing the laminar thickness in a
laminate alters the lateral constraint of adjacent plies in the thickness
direction and, thus, directly affects the interlaminar crack behavior. For
illustration, fracture mechanics solutions for the [45°/-45°/-45°/45°]
graphite—epoxy composites with several ply thicenesses are presented in this
section, For simplicity and without introducing further complications, the
laminate width 2b and thickness 2W as well as the delamination length g are
kept constant as before, while variation of ply thicknesses hy and hy (with b
+ hy = W = 0.5 inch) 1s considered.

As ghown in Figs. 8-10, altering the ply thickness h1/H has aporeciable
effects on the fundamental behavior of the delamination. For instance, when a
thick outer 45° ply is used, say, hI/H > 0.8, the entire delamination surface
1s in contact with the other (Fig. 10), leading to a negative K; with G, =
0. Delamination fracture in this situation is governed by the tecring-mode
stress intensity factor Kyyy and the associated energy release rate G, (Figs.

8 and 9). When equal ply thickness, l.e,, h; = hy, is used, the in-plane
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shearing-mode stress intensity K;y; and the energy release rate G, are about
zero, and Kyyy has the maximum stress intensification. However, as the outer
45° ply becomes thin, e.g., hj < 0.2W, the surfaces of delamination are opened
up, l.e., ¢/a = 0, as shown in Fig. 10. 1In this situation, contributions of
Ky and Kyy to the local failure become increasingly appreciable; Kyr and Kppy
are of the same order of magnitude but G; and G; are still relatively small as
compared to G3. In the limiting case of h;/W + 0, the in-plane shear could

become dominant to govern the delamination.

5.3 Influence of Interlaminar Crack Leagth

For the symmetric composite laminates with either [#0]; or
[(te)/(te)/90°/§6?]s fiber orientations, the interlaminar crack-tip behavior
is affected by the size of delamination. As discussed in Section 5.1, the
delamination in the {6/-6/-8/6] graphite-epoxy system has a global crack
closure. Figure 11 reveals general characteristics of the crack closure in
the delaminated [45°/-45°/-45°/45°] graphite-epoxy. Under a uniform axial
strain €,, the crack closure iancreases monotonically with crack leagth until
the delamination becomes about two-ply thicknesses. As the delamination
extends further, the closure length approaches an asymptotic value of c/h =
0.375, indicating that crack growth is governed by the interlaminar shear Tyz
and the tearing-mode stress intensity factor Ky, as shown in Fig, 4. The

values of T,,, Kyy and ) are orders of magnitude smaller than those of t

yz:
Kyrpy and Gj (Figs. 4 and 5). Note again that crack closure occurs for all
a/h's in the ([45°/-45°/-45°/45°] graphite-epoxy, leading to an identically
zero G; and negative opening-mode stress intensity factor Ky < 0. In the case

of a very small delamination emanating from a free edge under rising load, the

interlaminar crack is inherently unstable and extends rapidly to about one or

two-ply thicknesses (1.e., the plateaus in Figs. 4 and 5) before stable growth
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would occur. This phenomenon has been indeed observed in laboratory
experiments of edge-delamination tests of ((t30‘]/t(30‘)/90'/'357le T300-5208
graphite—epoxy composite laminates [16].

In the ((t30°)/(t30°)/90°/§67]s graphite-epoxy containing delaminations
between ~30° and 90° plies, the delamination i3 found to be open all along the
crack surface for any given a/h, as discussed in Section 5.1. The solutions
for Xy and Gy as a function of delamination length a/b are given in Figs. 12
and 13. Also shown in Fig. 13 are the results reported in [16] by using a
conventional nonsingular finite element method {n conjunction with a virtual
crack-closure scheme for calculating the strain energy rates (18]. The
difference is very appreciable to warrant the necessity of using the advanced
analytical and numerical technique for solving the delamination problem
accurately. We observe that local delamination growth in the
[(t30°)/(t30’)/90°/§6:]s graphite—epoxy is governed by an inherently three-
dimensional mixed-mode fracture process because the simultaneous presence of
significantly high values of Ky, Kyy and Kyyy shown in Fig. 12. Owing to the
vanishingly small A5, the value of Gj is found to be negligible in comparison
with G, and G, (Fig. 13). We remark that in the limiting case of a very small
delamination crack (i.e., a/h + 0), interactions occur between the
delamination crack tip and the laminate edge, leading to a slightly higher
value of Kyyy as shown in Fig. 12.

A salient feature shown in Figs. 4, 5 and 12, 13 is that the stress
intensity factors Ky and energy release rates G; become independent of the
crack length a/h or a/b as the delamination extends beyond a few ply
thicknesses. This unique feature has been observed and used in the

experimental study of interlaminar fracture toughness of composite laminates

(4
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{16,17). Provided that the Ky and Gy are accurately determined by appropriate

methods such as the present one, the stress intensity factors and enecrgy

release rates associated with observed edge delamination initiation and growth

may be useful for characterizing delamination fracture *nd interlaminar crack

resistance of composite laminates.

ot
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6. SUMMARY AND CONCLUSIONS

General expressions of stress and deformation fields in a fiber composite
laminate with delaminations have been obtained from presently developed
anisotropic laminate elasticity theory and basic concepts of interlaminar
fracture mechanics. Fracture mechanics parameters such as stress intensity
factors and energy release rates for delaminations with different crack-tip
deformation configurations are defined in a manner consistent with those for a
homogeneous crack and for the refined model of an interface crack between
dissimilar isotropic solids [7,8]. In finite-dimensional composite laminates
with complex lamination and geometric variables, an advanced numerical method
employing special singular crack-tip finite elements is developed for modeling
the delamination. Exact delamination stress singularities obtained from the
laminate elasticity solution are included in the crack-tip element
formulation. Solution convergence and accuracy have been studied to ensure
the validity of the results and to demonstrate the efficiency and
effectiveness of the method. To illustrate the fundamental nature of
composite delamination, numerical results are shown for the {68/-6/-8/6] and
[(te)/(te)/90°/§5?]s graphite—epoxy laminate systems containing edge
delaminations under uniform axial extension, Fracture mechanics parameters
and failure modes associated with the composite delamination are determined
for each case., The basic mechanics and mechanisms of delamination are studied
for the composites with different lamination and geometric variables and crack
parameters, Based on the results obtained, the following conclusions may be

reached:
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(1) To study the fundamental mechanics of delamination in a composite
laminate having a large number of plies with different fiber orientations,
advanced numerical methods such as the present one are essential to take into
account the crack-tip singularity and the large number of lamination,
material, and geometric variables involved.

(2) In the crack-tip element formulation, the inclusion of delamination
stress singularities determined from the laminate elasticity solution by using
an eigenfunction expansion method leads to very accurate solutions with a
rapid rate of convergence. This is particularly advantageous for studying
delamination problems in composite laminates with complex lamination,
geometric, and material variables.

(3) Since the singular eigenvalues and their algebraic multiplicity are
different for different crack tip deformation configurations, the crack
element formulation and solution strategy for each delamination problem need
to be treated on an individual basis. Stress 1intensity solutions and energy
telease rates in each case should be evaluated in accordance with the
appropriate delamination models given 1in Section 2,

(4) The state of stress and deformation in the vicinity of a delamination
crack tip are three dimensional in general. The asymptotic solutions can not
be determined accurately by using classical lamination theory nmor by any
approximate methods without including interlaminar stresses and the correct
stress singularities associated with the delamination., The current laminate
elasticity solution and associated numerical method provide accurate
information on the singular nature of the crack tip and complete field

solutions for the delaminat{on problem.

A
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(5) The singular delamination stress field may be characterized by the
presently introduced interlaminar fracture mechanics parameters. Crack-tip
stress intensity factors K; and energy release rates Gy can be determined only
by solving the complete boundary-value problem. In contrast to the singular
eigenvalues which depend only on local boundary conditions and material
properties of adjacent plies, the Kj and Gy are functions of all lamination
and geometric parameters, remote loading conditlions, and crack variables.

{(6) Owing to the local nature of interlaminar fracture, the mechanics aand
mechanisms of delamination growth are governed by the crack-tip stress
intensity factors. In angle-ply (8/-8/-0/9] graphite-epoxy, crack-tip closure
occurs and, thus, KI < 0; delamination growth may be, therefore, more

{ntimately related to interlaminar shear stresses and interface shear strength

than the transverse normal stress. In the cases of [(tﬂ)/(te)/90°/90°)s
graphite—epoxy, crack surfaces are open and delamination growth is coantrolled
by all of the three-dimensional, mixed-mode stress intensity factors, Ky, Kyp,
and Kypp.

(7) While the K; govern local deformation and delamination fracture, the
Gy are related to the global structural response and less sensitive to the
local deformation and fracture. For example, the total G and Gy differ only
slightly between the cases of a delamination with a closed and an open crack
tip 1in the [6/-8/-8/8] graphite-epoxy composite. Thus, K; may provide a more
sensitive measure and, thus, better fracture parameters than Gy for evaluating
the cowposite delamination growth,

(8) Influences of lamination variables such as fiber orientation and ply
thickness on the delamination behavior are significant. Changing fiber
orientation generally alters failure modes appreciably. For instance, in

((*e)/(te)/90°/36?1, graphite-epoxy, the opening-mode (K;) dominated
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delamination fracture changes into a shearing-mode (le) controlled failure,
as the O becomes greater than 40°., Also, increasing ply thickness h;/VW in
[8/-8/-0/8] graphite-epoxy affects the failure mode from a shearing—dominated,
open delamination fracture to a closed one.

(9) Stress intensity solutions and energy release rates appear to be
independent of crack length during the growth of an edge delamination, as long
as the crack exceeds a length of few ply thicknesses {3,19]. This unique
feature in composite edge-delamination 13 being used for evaluating of
interlaminar fracture toughness of fiber composite laminates [16,17], provided
that the K; and G; can be calculated accurately by using advanced analytical

methods such as the present on=,
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TABLE 1

Delamination Stress Intensity Factors K t Associated with
Finite~-Element Mesh Refinement in 165‘/-45’/-25‘/65'] Graphite-Epoxy

No. of Element Size K * K K
Elements (4h/h) h¢ II IIL
72 0.25 -0.6458E-1 0.3424E~2 -0.7114E 0
84 0.125 -0.6219E-1 0.2463E-2 ~-0.6967E 0
96 0.0625 -0.6141E-1 0.1796E-2 ~0.6894E 0O
108 0.03125 -0.6152E-1 0.1401E-2 ~-0.6855E 0

fki are normalized by 105e° (psi-vin).

*
Closed crack tip with c/a = 0.34.
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TABLE 2

Delamination Energy Release Rates Gl' Associated vwith
Finite-Element Mesh Refinement in [45°/-45°/-45"/45°) Graphite-Epoxy

%o. of Element Size L

Elements (8h/h) ¢ ¢, )
72 0.25 0. 0.6855E-6 0.1533 0
84 0.125 0. 0.5528E-6 0.1519€ 0
96 0.0625 0. 0.4619E-6 0.1512€ 0
108 0.03125 0. 0.39438-6 0.1508E 0

?Cl are normalized by 10‘:: (1b-1n/1n?).

L]
Closed crack cip with c/a = 0.3%
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TABLE 3

Influence of Fiber Orientation on Crack-Tip Closure Length.
for a Delamination in [8/-8/-8/8] Graphite-Epoxy Composite

] c/a
0* 0.0
15° 0.2292
30° 0.2834
4s° 0.3402
60° 0.3603
*n «0.25 in., b = 2 fa.;

L
al- 0.35 in.

. -6
at strain ‘o = 10
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TABLE 4

*
Effects of Fiber Orientations on Stress Intensity Solutions
for Delamination in [8/-8/-8/6] Graphite~Epoxy Compositef

1 II III
0° 0. 0. 0.
15° -0.3782E-1 0.3866E-2 ~0.2379E 1
30° -0.1072E O 0.8744E-2 -0.1943E 1
45° -0.6152E 0O 0.1401E-2 -0.6855E 0
60° -0.8599E-2 0.2034E-3 ~0.9270E-1
-f.

hy = hy = 0.25 in., b = 2.0 in.; @ = 0.25 in.

K; are scaled by 10680 (psi-/inl.
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TABLE 5

*
Effects of Fiber Orientation on Strain Energy Release Rates
for a Delamination in [6/-68/-6/68) Graphite-Epoxy Composite

+

. ] G1 GZ G3
0° 0. 0.0 0.0
15° 0. 0.6059E-5 0.2111E 1
30° 0. 0.2748E-4 0.1074E 1
45° 0. 0.3943E-6 0.1508E 0
- 60° 0. 0.1425E-7 0.3597E-2
_ +h1 = h2 = 0.25 in., b = 2 in.; a = 0.25 in.
) *Gi are scaled by (10683)[1b—in/1n2].
++Gl is identically zero due to crack-tip closure.

BRI




3

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig,

Pig.

10

11

40

9. LIST OF FIGURE CAPTIONS

(a) Six—Node Quasi Three-Dimensional Crack-Tip Element with Singular
Derivatives; (b) Eight-Node Quasi Three-Dimensional (nonsingular)
Isoparametric Element.

Arrangement of Special Crack-Tip Elements for the Composite
Delamination Problen.

Overall and Local Crack-Tip Finite-Element Mesh Arrangements for
Modeling Delamination in [45°/-45°/-45°/45°] Graphite-Epoxy
Composite.

Comparison of Stress Intensity Solutions Obtained by Two Different
Models/Approaches for Delamination in [45°/-45°/-45°/45°] Graphite-
Epoxy Subjected to Uniform Axial Strain e, = €,

(hl’hzah-o 25 1no, b/h'Sin.,a-ozs 1“.).

Comparison of Energy Release Rates Determined by Two Different
Models/Approaches for Delamination in [45°/-45°/-45°/45°] Graphite-
Epoxy Subjected to Uniform Axial Strain ¢, = €

(hy = hy = h = 0.25 in., b/h = 8, a = 0.2§ 1n.5.

Variation of Stress Intensity Factors Ki with Fiber Orientaticn 6 for
Delamination in [(te)/(ta)/90°/90°]s Graphite—-Epoxy under Uniform
Axial Strain €, = ¢, (h) = hy = ... = h); = 0.0054 in.,

b =0.75 in., a = O 5b).

Variation of Strain Energy Release Rates G; with Fiber Orientations 6
for Delamination in [(te)/(te)/90°/90°]8 Graphite-Epoxy under Uniform
Axial Strain €, = ¢, (h} = hy = ,.. = h)) = 0.0054 in., b = 0.75 in.,
a = 0,5b).

Influence of Ply Thickness h;/W on Stress Intensity Factors for
Delamination in [45° /—45°/-45°/&5°] Graphite-Epoxy Subjected to
Uniform Axial Strain €, = €, (hj + hy = W = 0,5 in., 2b/W = 8,
a= 0,25 in.).

Influence of Ply Thickness hllw on Energy Release Rates Gy for

Delamination in [45°/-45°/-45°/45°] Graphite-Epoxy Subjected to
Uniform Axial Strain, €, = €, (h) + hy = W = 0.5 in., 2b/W = 8,
a= 0.25 in.).

Crack-Tip Closure Length as a Function of Ply Thickness h;/W for
Delamination in [45°/-45°/-45°/45°] Graphite—Epoxy Subjected to
Uniform Axial Strain €, = €, (hy + hy = W = 0.5 in., 2b/W = 8,
a= 0.25 1in.).

Crack-Tip Closure length c/h as a Function of Delamination Size a/h
in [45°/-45°/-45°/45°] Graphite~Epoxy Subjected to Uniform Axial
Strain €, = €, (hy = hy = h = 0.25 in., b/h = 8, @ = 0.25 in.).

(4
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Fig. 12
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Change of Stress Intensity Solutions Ky with Delamination Length a /b
in [(:t30')/(:t30°)/90"/90‘]s Graphite-Epoxy Subjected to Uniform Axtal
sttain Ez il Co (hl - hz = see ® hll = 000056 1!1., b = 0075 ino).

Change of Strain Ener%zrgelease Rates Gy with Delamination Length a/b
in [(£30°)/(£30°)/90° lg Graphite-Epoxy Subjected to Uniform Axial
Strain €; = €5 (hp = hy = .o = hyy = 0,005 1n., b = 0.75 in.).

N
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ORIGINAL Biis 3
OF POOR QUALITY

(2)
= q?)’ q(:)

(b)

Fig. 1 (a) Six-Node Quasi Three-Dimensional Crack-Tip Element with
Singular Derivatives; (b) Eight-Node Quasi Three-Dimensional
(nonsingular) Isoparametric Element,

(2}
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[45%/-45%-45%45°] Graphite-Epoxy

Ky

Influence of Ply Thickness h;/W on Stress Intensity Factors for
Delaminatfon in [45°/-45°/-45°/45°) Graphite-Epoxy Subjected to
Uniform Axial Strain e, = ¢, (hl +hy =W =05 in., DB/W =B, g =
0.25 tn.).
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Fig. 9 Influence of Ply Thickness h;/V on Energy Relesse Rates G, for
Oslamination in (45°/-45°/-45°/45°] Graphite-Epoxy Subjected to
Uniform Axial Strain, €, = €, (h) + hy = W= 0.5 tn., 2bD/W = 8, = »
0.25 1“.)0
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Fig. 10 Crack-Tip Closure length as a Function of Ply Thickness hy /W for

Delamination in [45°/-45°/-45°/45°] Graphite-Epoxy Subjected to
Uniform Axial Strain € = €5 (hy ¢ hy = W = 0.5 {n., 2b/W = 8,
0.25 in.).
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APPENDIX 1

Shape Functions !9(0,6;6) for the Siogular Delamination Crack-Tip Element

Corresponding to a singular eigenvalue §, the shape functions Ns in local
triangular polar coordinates (p,§) for the six-node conforming crack-tip

element in the delamination problem are shown [4] to have the following
expressions:

N = 1+ (2200 0, (Al-1)
Ny gy = 2 00072701 - o™ zea-e+a-e270-n1, (A1-2)
Ny gery = 2 o06/27%-1) - o®2eqi-erer -1, (AL-3)
Ny gury = - [2001-0)+25 (-1 2700, (Al=4)
N (1241) apg(1-5), (A1-5)
Ny 15e1y = - e el 27y, (= 1,2,3, (A1-6)

where the singular eigenvalues §'s are determined in accordance with the local
crack-surface boundary conditions discussed in Section 2.1, and the p and £
are related to the global coordinates by

(xz-xl) tan ¢ _(YZ-YI)

¢ " G,y () an # A1=7)
b = T/E(E), (A1-8)
in which
£(6) = {(x,=x) 24y, D H2EL(xy % Y0ty xy WY, M5 7,)]
+£zl(x3-xz)2+(y3-‘>’2)zl}llzo (A1-9)

-—
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APPENDIX 2

Iteration Scheme for Partially Closed Delamination

For a delaminatiun with crack surfaces in finite-length contact, the
following iteration scheme 18 used for determining contact stress and crack
closuse length:

(1) Assume an initial contact length s and solve Eq. 21 with the side
conditions Eqs. 23(a) and 23(b) for contact stress and displacement.

(11) Check the solution against preset criterion ng. If the compressive
stress F| = dp(~c),") gives a ny [n; = '(Fl’Fo)/Folt and F, is a
properly selected sealing factor, for example, F, is set as 106 €o
(psi), in the preseat calculation.] such that n < ng and 1f the
displacement field is admissible (i.e., no overlapping or
interpenetration beyond the contact region), we set the crack closure
length ¢ = ¢; and terminate the iteration.

(111) If the two constraiat conditions are not met, a new contact length ) >
c) is assumed and the procedure of (i) and (ii) is repeated for F, and
uje.

(1v) If F{ <0 (1 = 1,2) and [ny| > [n;]| > ng, the next assumed length c,
should be c3 < c|, and repeat (1ii) and (iv).

(v) 1f efther F; < O and |n| > |ny| > n¢ or FiF; < 0 and |ny| > €, the
next assumed contact length is set as

cy=cy+ Fz(cz-cl)/(Fl-Fz). (A2-1)

The iteration from (1)-(111} continues until sufficient accuracy is

reached.

A4
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(vi) As the constraint conditions are satisfied and the difference between

assumed contact lengths is |°n+1"¢n' < €., the iteration is terminated

with ¢ = 1l Icn+l+cnl’

a




