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ABSTRACT

The fundamental mechanics of delaminution in fiber composite laminates is
studied. Mathematical formulation of the problem is tased on recently developed
laminate anisotropic elasticity theory and interlaminar fracture mechanics con-
cepts. Stress singularities and complete solution structures associated with
general composite delaminations are determined. For a fully open delamination with
tractfon-free surfaces, oscillatory stress singularities always appear, leading to
physically inadmissible field solutions. A refined model is introduced by con-
sidering a partially closed delamination with crack surfaces in finite-length
contact. Stress singularities associated with a partially closed delamination
having frictional crack-surface contact are determined, and are found to be dif-
ferent from the inverse square-root one of the frictionless-contact case. In the
case of a delamination with very small area of crack closure, a simplified model
having a square-root stress singularity is employed by taking the limit of the
partially closed delamination. The possible presence of logarithmic-type stress )
singularity is examined; no logarithmic singularity of any kind is found in the
composite delamination problem. Numerical examples of dominant stress singular-
ities are shown for delaminations having crack-tip closure with different fric-

tional coefficients between general 61 and 92 graphite-epoxy composites.
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1. INTRODUCTION

Delamination has been a problem of significant concern ia the reliable
design and analysis of advanced fiber composite lsainstes. Separation of
composite laminae, caused by high local interlaminar stress and low strength
sloog the ply interface, can result in destruction of load trsasfer, reduction
of stiffness, and loss of struc’.ral integrity, leading to fiasl structural
and functionsl failure. Froam the mschanics point of view, delamination
involves iniciation and growth of macroscopic cracks batween dissimilar,
strongly anisotropic solids. A rigorous mathematical scudy of delamination is
recognized to be difficult, especlally in a finite~dimensional fiber cosposite
laainate. The complexities include the inhersat crack-tip siogularity, the
effect of snisotropy of each constituent fiber lamina, and the abrupt change
of stiffness or ply orientation through the laminate thickoness direction. Inm
addition, the three~dimensional state of stress and deformstioa asssociated
with the composite delamination alvays gives rise to s combined opeaing (mode
1), ia~plane shearing (mode 1I), and out-of-plane teariag wode (mode III)
fracture, vhich render che prodleam mathematically intractable in many
cases. The mschanics of delamination in fiber composite laminates s,
tharefore, not only of significant academic interest but of practical
importance. In this paper, the first of two articles ia a row, the
fundsmental nature of stress s.agulacities and associated field solutions for
a delamination in s fiber composite laminate are iavestigated,.

Oving to ths aforement{oned complexities, studies on an interface crack
batween dissiailar anisotropic msterials have been limited. Gotoh {1] appears
to be the first to examine the two-dimensional problem of partisl debonding

between dissiamilar anisotropic plates under a plane stress condition.

Clements [2) has used Stroh's spproach (3] to study the prodblem of an
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interfsce crack batween two generally aamisocropic half-spaces. Willis [4] hase
also conducted a two-dimensional stress analysis of a crack on the plane
intecface of two bonded dissimilar half-spaces. The analysis has been
combined with the usual local form of Griffith's virtusl work argument to give
a failure criterion, involving s stress concentration vector sud specific
surface energy of the bonded interface. All of the asymptotic solutions
obtained in [1,2,4) have an oscillatory displacemsnt field that material
interpenstration on either side of the crack surface is predicted. Similar to
those found in the solutfions for an interface crack bectween diseimilar
isotropic materials [5-9], these physicslly unreasonable results have led to
the argumeat of solution inadmissibility for the crack problem in diseimilar
anisotropic media. To correct the uansstisfactory feature of oscillatory
stress singularity, Wang and Choi (10] have receantly reconsidered the problea
of an interface crack betwaen dissimtlar, strongly anisotropic fiber-composite
half-spaces by introducing a partially closed interface crack model, {n which
the crack is not completely open and that its surfaces are in frictionless
contact near the tip. The formulstion leads to a singular integral equation,
vhich is solved numerically. Mumerical results from this refined wodel {10}
exhibit an inverse square-troot stress singularity end, therefore, physically
msaningful fracture sechanics parameters csn bs defined consistently with
those in fracture problems of homogeneous materials [11-13) and in the model
given by Comninou [14,15] for an interface crack between two feotropic

ssdia. Moreover, significantly global crack closure has been found [16) for
an interface crack between diesimilar anisotropic elasiic half-gpaces
subjected to mixed-mode loading~—a situation that is gensrally experienced by
s delaminstion in finite dimeneional fiber cowposite lsminates.
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in this paper, ve employ lekhaitskii's coaplex-varisble stress potemtials
(17] in conjunction with sa eigenfunction expsnsion method to examine the
sechanics and the msthematical solutioa structure for a delamination with
frictional crack-tip closure in a composite laminate. Based on the general
solution structure determined, an advanced numerical method using singular
finite elemsnts is then developed to study the detailed delsmination behavior
in finite dimensional fiber composite laminates vith sny arbitrary
combinations of lamination parameters, geometric varisbles, and crack
dissnsions. Owing to space limitation, the numerical method and the detatled
composite delamination behavior ars reported in sn accompanying article [18].

In the next section, the problem definition and bdasic sssumptions are
stated. Basic laminate anisotropic elasticity equations and formulation of
the coaposite delamination problem are iantroduced in Sectioa 3}, General
solution structures for asymptotic stress and displacesent fields are
obtained. Stress singularities associated vwith an open interlsminsr crack and
vith a partially closed delasination tip with frictional crack-surfaces coatact
sre determined respectively in Section 4. Influences of frictional
coefficients on delamination stress singularities are examined. A simplified
model for a delamination with a very samall ares of crack-tip closure is also
introduced. The possibility of existence of additional singulsrities in
logarithaic forms in homogensous snd particular solutions is investigated.
Results are presented for delssinations with different local crack-surface
traction boundary conditions in composite laminates containing various fiber
orientations. The eigenvalues and associated stress singularities obdtained in
this study provide the most fundamental information on complete solution
structures of delaminstion stress and deformation fields, and establish a

basis for formulation of the singular finite e'2wents used in the next peper




(18] to study the dstailed delamination bshavior in finite dimeasionsl

composites with general lamination and gecmstric variabdles.
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2. STATERENT OF THR FROBLIN AND ASSBATIONS

The problem consi - : -\ hare is & coaposits laminate (Fig. 1) composed of
unidirectional fiber-reinforced plies of umiforw thicknesses, h), hy, hy, ...,
h,e The composite has a finite dimeasion vith a width equal to 2b. For
simplicity and without loss of ganerality, we restrict our stteatioa to the
cases of symmstric composite laminates vith fiber orieantatioas
(8,/02/84/...09/09/0;]. Ply thicknesses are also symmstric vith respect to
the x-s plane, i.s., for each ply above the x-s plans (y > 0), there exists asn
identicsl ply with the sams ply thickness beslovw the x~z plans (y < 0).
Delaminatioca with a length a is sssumed to occur ia the form of an iaterface
crack betveen dissimilar, strongly smisotropic fiber-treinforced composite
laminse vith fiber orientations 6, and Q..

The composite laminate is assumed to de subjected to tractioas acting in
planes normsl to the s-axis and distriduted uniforuly aloag the z-axis without
variation. In the case that the finite dimsnsicnsl compoeite laminate has a
finite length, axisl loads and moments sre sssumed to act on the ends of the
composite body. The compoeite laminate is further assumed to be sufficieantly
long that in the region sway from the ends, end effects are negligidle dy
virtue of the Saint Venant principle. Consequently, tha coaponeats of
stresses in the lsminate are independent of the s-axis. The special case in
which all components of stresses and displacemsnts in the coaposite are
independent of the 3z is well-known as the geoerslized plans deformation
problea (17]).

The objectives of this study are to: (1) establish a mathematical besis
for the mechanics of delamination baseed on laminste elasticity theories and

faterlaninar fracture mechanics concepte; (2) determine stress singularities

and associated solution structures for composite delaminations with different




local creck-tip deformation coafiguratioms; (3) obtain asymptotic stress and
deformation fields governing ths fundsmsautal behavior of delaminstion; and
(4) study the influences of various lsminatioa snd matertial vartables such as
fider orientation snd crack-surfacs frictioansl cosfficients on the

delasination etress singularities.
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3. LAMMATE EASTICITY MSIS FOR OMPOSITE OELAMINBATION

Tha development of the meschanics of composite delaamination {s based on
tecently estadlished theories of anisotropic lamtnate elasticicy (19,20,21]
snd fracture mechsnics coancepts of iaterface cracks between dissimilar,
strongly saisotropic compoeites [4,10,16,21). Ian this section, goveraning
partial differentisl equatiocas for cosposite laminate elasticity problems are
estabdlished firet, besed on lekhnitekii's cosplex-~variable stress potentials
(17). Geaersl sclutiocns for the laminate elasticity problem vith interlaminar
cracks sre introduced. Stress singularities associated with a composite
delamination having homogeneous local bdoundary conditions are defined.
Solution structures of ssymptotic etress and displacemant fields are
constructed for a delamination bDetween dissisilar general fiber coeposite
laminse. Additionsl terms of logsrithaic forws in the homogensous and

psrticular solutioas for the coepoeits delsmination prodlem sre examined.

3.1 BSesic Bgustioes

The fundsmentsl sechanics of delsalnation in a fibder-reinforced coaposite
leminate may be studied from tha schemstics fllustrated 1o PFig. 1. The
constitutive equations of each fider-reinforced composite laaina with
rectilinesr anisotropy of a general form in the structural (x-y-z) coordinates
are danoted by generalized Wooke's law {n contracted notatioa as

€ - !u o’ (1, = 1,2,3,...,6), (1)

vhere the repeated subecript indicstes summation, and S“ is & compliance
tensor. The engineeriag straias ¢; ia Eq. 1 are defined in a Cartestan

coordinate systeam by

&)
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where u, v, and w are displacement components. The stresses o, are defined in
an analogous manner in the Cartesian coordinate system. For a composite
laminate in the aforementioned loading condition, mathematical formulation for
this class of elastostatic problems can be made using the well-knowm

Lekhnitskii complex-variable stress potentials [.7], F(x,y) and 7(x,y),

defined as
3%F a2F 3%F
%" ST o Ty
3y? Y a2 Y y
Y oY
Tyz--ﬁ “ez 3y (3)

Following the same procedure in [17,19], w« can easily obtain the following
system of partial differential equations for each anisotropic composite
lamina:

Lyf + LY = = 24, + A5, - A,S35s (4a)

L,‘? + L3v = 0, (4b)

where 12, Ly and L, are differential operators of the second, third, and

fourth orders which have the form:

Lo=3, 2 -8, 2 45 2
= —— — —’
2" Su 3 4s T3y 055 5
L 5, 2, (5,5 ) (3, +8 )2 —-+3, 2
- e e— —'
3 27 S46 2 2y 16" 567" s s
Lo=3. & 3 (B +3 -3 3 3.8 (s
s = S22 26 12+ S¢6 1
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The constants A; and A, in Eqs. 4(a) and 4(b) characterize the bending of the
composite body in the x~z and y-z planes respectively, and A, is the relative
angle of rotation about the z-~axis.

Assume that external tractions on the lateral surface of the composite

cross section are given as Tx’ Ty

lateral surface 3B are as follows:

and T;. The boundary conditions on the

o n, + "y My " T;,

- 7
ey "x + o& ny Ty. N

where n; are directional cosines of the bounding surface 3B, The conditions

at the ends of the composite have the form:

I{ T, dx dy = ]{ T, dx dy = 0, f{ o, dx dy = P_,
]£ o, v dx dy = M, f{ o, x dx dy = M,, (8)

f{ (ty, x = Ty, )dx dy = W,

where the integrals are taken over the entire area of the cross section B, and

P,, M;, My, and M, are applied force, bending moments, and twisting moment at

ends of the composite, respectively.

3.2 General Solutions

The general solutions for the governing differentisl equations have been

shown [17] to have the form as

ftewr)
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6
F = n(Z)+F,
kzl k zk o

6
- I onR@ T,

(9

(10)

vhere the cowplex varlables Z, are defined as Zk =x +u ¥y Fo and Yo are

particular solutions of the nonhomogeneous system;

the prime (') denotes

differentiation of the analytical functions Fi with respect to their

arguments, and Py are roots of the following algebraic characteristic

equation:

2,(m)25() - 23w = 0, (1)
with L5w) = 8g5u? - 28,.u + § ., (12a)
130 = Bygu = By, + 3500 + By + B0u - 3y, (1zb)
2() = 8wt - B d 4 (28, +3 2 - Byt B, (12¢)

The m in Eq. 10 are complex numbers equal to
EIE W V2 R ILIEE W VN (N (13)

We now choose the form of Fi(Z)) as

7(3) = G 2 /1(sH) (8], (14)

vhere G and § are arbitrary complex constants to be determined. Substituting

Eq. 14 into Eqs. 3, 9 and 10, we obtain the homogeneous solutions for stress

and displacement components in polar coordinates (r-¢-z) as follows:

l~,
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(15)

k=l

3
z6+l

I lcu
ok Tk

=6+1

(h) T
uy' = 1(8+1) + Cry3 By 7y 1(8+1)],

(16)

§+1
sk

= =8+]

(b) _ flc H /(&+1) + C . Ho Z.7"/(5+1)]
u, ol k k+3 8k “k ’

where z = e + 2Ty 0, (17a)

A= (1 + L )/ (L = 1y (17b)

The coefficients Hik(O) (1 =1,2,3,,..,8; k = 1,2,3) are known functions
of ¢, M, U, and “sij. defined in Appendix 1!.

The complete laminate elasticity solutions for the composite mechanics

problem can be written as

(p) ,

N 1 =1,2,3,4,5,6),

o (18a)

_ . (h)
1 di +0

(M) 4 o),

uj ) (18b)

u J= 1,2,3),

J

vhere oip) and ugp) are particular solutions associated with the loading
(h) (»
z and S,

condition of each individual case studied. The expressions for ¢

can be obtained as




12
M L _ (h)
O'z s3j Uj /533! (18c)
and
cil’) = Az + Ay +A) -5, cj(p)/s” (3 = 1,2,4,5,6). (18d)

3.3 Asymptotic Stress and Displacement Pields

Using Eqs. 15 and 16 and applying local lLicmogeneous traction boundary
conditions on crack surfaces 0B, (Fig. 2) and interface continuity (matching)
conditions along 3By, we obtain a systeam of twelve homogeneous linear

equ‘tion‘ in cia)(a =m, m+ l)n 1.30)
bco 1)

where D(8) is a 12 x 12 coefficient matrix involving 5 in a transcendental
form, and C is an unknown 12 x 1l column eigenvector. The nontrivial solution

for C requires that the determinant of the coefficient matrix vanishes, i.e.,
1D(&)N = 0, (20)

This leads to a standard eigenvalue problem, and the § can be determined from
the transcendental characteristic equation. Standard numerical methods such
as the Miller method [22] with the aid of a digital computer are needed for
this purpose. The eigenvalues determined from Eq. 20 provide importaant
information on the fundamental structure of stress and displacement solutions
for the composite delamination problem. Furthermore, the eigenvalues §; which

satisfy the following condition:
-1< Re[&n] <0 (21)

characterize the fundamental nature of stress singularities and provide the

asyaptotic stress and deformation fields at the delamination tip. In the case
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that local crack surface tractions are nonvanishing, for example, the crack
closure problem, Eq. 19 needs to be modified. Delaminations having crack-tip
deformation configurations with nonvanishing local traction boundary
conditions are discussed in detail in the next section.

For a delamination problem in composite laminates with general lamination
variables and fiber orientations, the algebraic multiplicity of the
eigenvalues determined from Eq. 20 may give rise to additional terms of the
logsrithmic form an(ln Z) ® in the homogeneous solution, as first suggested
by Dempsey and Sinclair [23,24]. 1In this situation, the following terms may

also be a part of the homogeneous solution in addition to Eqs. 15 and 16:

l
66
(5_+1)
u{® le —!—(ck Hogasp B /(8HD)] (=129, QW)

where L, is the order of the logarithaic multiplier in the eigenfunction
corresponding to eigenvalue §,, and is related to the property of the D
matrix by £, = M=(N-R), in which M is the algebraic multiplicity of the root

)

ns and N and R are the order and the rank of the D matrix, respectively. The

presence of the logarithaic terms, Eqs. 22(a) and 22(b), in the homogeneous
solution equires a nontrivial solution for Cy. Detailed discussion of the
conditions for the existence of Eqs. 22(a) and 22(b) in the composite
delamination problem can be found in [25].

In the construction of asyamptotic solutions for delsmination stress and
displacement fields, the particular solution for the system of governing
differential equations also contributes to the complete solution. It s

apparent that the structure of the particular solution is related to the
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applied loading and deformation of the delaminated composite. For the
coavenience of further developments, we consider here the case of a composite
laninate with delaminations subjected to a uniform axial stretching, i.e.,

€ = €,. Uander this circumstance, it has been shown {25) chat the particular

solution has a similar form as Eqs. 22(a) and 22(b),

(» 20, 8 (p) 8

o wo + [ 1 " n, 2] (1 = 1,2,4,5,6), (23a)
n

(p) blo § (») Sas1

“jp "YUy * L1 ¢f Hegesm & 18,#1)]5 g (3 = 1L,2,3), (23b)
n

vhere the components 0,4 and uyy are known quantities determined by the remote
loading condition. The 2, in Eqs. 23(a) and 23(b) is the order of the
logarithmic eigenfunction at 8, = 0 and is related to the multiplicity M, of
the root éh = 0 and the rank and the order of the matrix ? by L, = M,~(N-R).
{Note that Eqs. 23(a) and 23(bi contain logarithaic terms of the forms

(fn zk), (1a Zk)z. ees (In Zk) °.l The necessary and sufficient coanditions
for the existence of the particular solution, Eqs. 23(a) and 23(b), can be

shown [25) as

G - gt =0 (24)

* )
for every left asigenvector Ch(L) of D (0) defined in [25), where p. is a
loading vector resulting from Oy and uy4, and the dot (°) denotes the inner
product of the two column vectors. In the case that Eq. 24 does not hold, one
needs to consider the logarithaic terms of a higher order through a higher-
(!.o-o-l) ().°+1)
order differentiation d /66n in Eqs. 23(a) and 23(b). A detailed

discussion on this 1is given in Reference 25,

S
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4, DELAMIRATION STRESS SISCULARITIES IN COMPOSITE LAMINATES

Based on the general solution structures given in Eqs. 15, 16, 22 and 23,
it is possible at this point to examine the detailed nature of stress
singularity associated with a delamination in a fiber-reinforced composite
laminate. Because of the local nature of the stress siangularity, we focus our
attention on the crack-tip region of a delamination between the ath and
(atl)th laminae with fiber orientations 6, and O'H. respectively. Both fully
open and partially closed delaminations are considered. In the case of a
delasination with an extremely small area of crack—-tip closure, a simplified

model by taking the limiting case of a partially closed crack is introduced.

4.1 Delamination with Traction-Free (Fully Open) Surfsces

Assuming that the crack surfaces are fully open and that the facerface
OBy between the plies is perfectly bonded along r > O as shown in Fig. 2, we
can immediately introduce the local traction-free boundary conditions along

the delamination surfaces ¢ = £x,
(')(r. x) = t(')(r ) = t(")(r x) = 0, (25a)

(& (r,-1) = (T r o) o 2 (e, x) = 0, (25b)

The continuity (or matching) conditions of interlaminar stresses and

displacements along the ply interface ¢ = O read as follows:
(a(.:)(r.O).tg:)(r.O).15,:)(:,0)) = (o('ﬂ)(r 0), t('ﬂ)(r 0).1("'"(: 0)}, (25¢)
W™ (r,00,0{ (r,0),u{M(r,0) = (W™ (r,0),u{™ (2,00 ™V (x,00). (250)

More explicitly, the local homogeneous boundary conditions, Eqs. 25(a) and

25(b), and continuity conditions, Eqs. 25(c) and 25(d), have the forms as




(&

16 Cl.wa .
OF *u.-.
3
(=) (m) (m) 8§ (a) (lf‘*' (w) 8, .
l‘Zl(ck o (0 [ (017 + ¢35 80 18 (0]1% =0, (26a)

(m+l) (-+1) (mtl) (m+l) (nﬂ) (+]),
el ck ll (-x%) [0 ( 1t)l + Cre3 Ho (-xn) {O (=x)) ) = 0, (26b)

Yn(m) ) -+1) (-ﬂ) (m+l) pimtl)
I"c:r‘wmf?:l rie )+ o TN - o,

(14 =1,2,3; § = 1,2,3,4,5,6), (26¢c)
vhere
Q@ () = e + (D o114 2(), (264)

and

(a) (a), (a) (a), (@) (a)
Pix =1 T Ty W v T

e, . (a) Pg:)_qia) ria), t(uz)

'Pk ’ ’ 6k
(a = m, m+l), (26e)

Equations 26(a), 26(b) and 26(c) consist of a system of twelve
homogeneous linear algebraic equations in Cé') and C£'+l). The existence of a
nontrivial solution requires that Eq. 20 holds, leading to a standard
eigenvalue problem. The solution for &, can be obtained easily from Eq. 20

and shown to have the fora,
§,=(n-Y) 21y, (a-V3), a1n, 27

vhere n = 0,1,2,...®; and vy is - constant related to material elastic

properties, S(?) and S(;+l), of the adjacent ath and (mtl)th fiber-composite
laminae. In general, the value of y needs to be determined numerically from
Eq. 20, which involves 5, in a transcendental form. It is important to note

that the eigenvalues of 6n obtained from Eq. 27 give critically important

information on the fundamental structure of stress and displacement solutions

*)
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for delaminated cowposite materials. We remark that the eigeavalues
(a=Y3) £ 1y and (o~ V) are single roots and that all the iategers, n,
including zero, have an algebraic multiplicity of 3 in general. As mentioned
in the preceding sectior, the values of §; vhich meet the condition Eq. 21
provide the exact strength (or order) of tha inherently stress singularity for
the asymptotic stress solution at the delamination crack tip. The possible
presence of weaker singularities and related tcmbin logarithaic forws as
discussed in Section 3.3, i.e., (10 Z“)’.o and/or an(ln Zk)l.. in the
homogeneous solution as well as in the particular solution will be discussed
later,

For the purpose of illustration, consider a delamination located along
the ply interface of 6/90° graphite-epoxy composite laminae (Fig. 2). The

following msterial elastic conluntl' of high-modulus unidirectional graphite-

epoxy are used in the computation:

B; = 20 x 10°% pst (137.9 GPa),
Ep = E; = 2.1 x 106 pst (14.48 GPa),
Gy = Gz = Gz = 0.85 x 10° pst  (5.86 GPa), (28)

VLT - vu - “rz - 0021|

*These ply elastic constants are used in the computation here oaly to
illustrate the general nature of the current problem. (These constants are
selected for historical reasons because they have been used in many previous
studies of the mechanics of composite laminates [19,26,27).) MNumerical
results based on real material constants of the commonly employed T300/5208
graphite—-epoxy with

By = 19.5 x 106 psi (134,45 GPa), Ep = E, = 1.48 x 106 pst (10.2 GPa),
GLr = Grg = 0.8 x 10° psi (5.52 GPa), Gpy = 0.49 x 10° psi (3.38 GPa),
VT * Vg * 0.3, vpg = 0.49, (28a)

are also given in Tables | and 2 for comparison. The differences between the
tvo cases are generally very small.
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vhere the subscripts L, T and z denote the fiber, transverse and thickness
directions of the composite lamina, respectively. The first three eigenvalues
84(1 = 1,2,3) which satisfy the aforemsntioned constraint condition Eq. 21 are
given in Table 1 to illustrate the exact strength of the stress singularity
associated vith the delamination. To demonstrate further the general
characteristics of the stress singulacrities for delaminstion, results for an
interlaminar crack between 30°/0 graphite-epoxy cosposites with the same ply
properties are also shown (Table 2) for wvarious fiber orientations 0's. From
Tables 1 and 2, we observe that a fully opened delamination between dissimilar
highly anisotropic laminae always possesses three distinct stress
singularities, i.e., a pair of complex conjugates, 61.2 - -llzt iy , and &
real constaat, 83 = -0.5. This situation is unique and apparently different
from the cases of an interface crack between two dissimilar isotropic media or
orthotropic solids in that the three distinct dominant stress singularities,
814 87 and 63, always exist simultaneously in the present fiber-composite
delamination problem. In the special cases when a delamination is located in
the 90°/90° or 30°/30° composite system the classical inverse square-root
singularity for crack-tip stresses is fully recovered as shown in the Tables,
because the composite laminate becomes unidirectional. We note here that the
imaginary part of &) and 87, i.e., the value of vy, is generally very small as

compared with the real part of &; in all cases studied.

4.2 Deslamination with Crack-Tip Clossre

From Eq. 27 and from the results shown in Tables | and 2, it is clearly
seen that the asymptotic delaminatioa stress field in dissimilar anisotropic
composites possesses the well-knowm oscillatory singularities. The associated

displacesent field also exhibits oscillatory characteristics, leading to

controversial crack-surface interpenetration or overlapping, which {s
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physically inadmissible. Similar results have also been noted by several
investigstors in studying an interface crack between dissiailar isotropic
saterials. In recent studies, Wang and Choi [(10,16] have shown that for
delaaination between dissimilar, strongly anisotropic fiber composites with
certain combinations of laminar elastic properties, ply orientations, and
loading conditions, global crack surface closure may occur. Under these
circusstances, interlaminar crack-surface contact or closure needs to be
considerad.

Consider the case that a delamination g is located between the sth and
(o+l)th laminse and a portion of the crack surface, ¢, s closed as shown in
Fig. 3. FPrictional coefficlents associated vith 1y, and Try 00 the interface
¢ » 0 are denoted by f“ and f“. respectively. An exact analyticid cosplete
elasticity solution for the delamination problem with crack closure is
generally difficult to obtain because the unknown contact stress distributions
along the crack-closure region need to be determined as a part of the final
solution [10,14). However, the locsl stress singularities, asymptotic field
solutions, and associated characteristics can still be deterained exactly by
using the same procedure discussed in Section 4.1 but with some
wodifications. Referring to Fig. 3 for a partially closed delaminacioa,
fastead of using Eqs. 25(a) and 25(b) we can introduce the local boundary

conditions in the crack-closure region (= ¢ < r < 0) as follows:

(a)

Tee (c,%) -0

e w0, (Drar. T r,) -0,

tﬁ:)(r.t) - ft(':ﬂ)(r.-v) -0, \l?)(r.r) - llg.ﬂ)(t-") -0,




W -1, o, (29)
(a = u, utl),

'ﬁ:)(r.') . - !r. Ui:)(ru')'

Along the ply interface ¢ = 0, the same continuity coaditions Eqe. 25(c) and
25(d) for c{") and uj“’ (c = @, wtl) are applicable.

Using Eqs. 25 and 29 sad following the same procedure givea in Sectioa
4.1, ve can immedistely determine the eigenvaluee §, for a composite
delaminstion with crack-tip closurs. The mmmerical example of a delamination
located along the interface of 9/-8 graphite—epoxy compoeites is studied here
first. Stress singularities sssociated with the partially closed delamination
crack tip with different values of frictional coefficients f,. and !" are
shown in Table ). The crack-tip stress siagularity s fouad to be always -0.5
vith an algebraic multiplicity of 2 (i.e., double roots &, = &3 = -0.5) for
the delsainstion having crack surfaces in frictionless coatsct (i.e., f“ -
f“ = 0). In fasct, the inverse square-toot etress singularity, §; = 6y =
=0.3, 1s found for all delaminated 98/-0 fiber composites with frictionless
crack-surfacs contact. In ths cases of f“ ¢ 0 and/or f” * 0, stress
siagularities slvays possess an invarisnt constaat §; = -0.5 (slagle root) as
ia the aforementioned frictionless contact case, and a 8; (with §; & -0.5,
single root), vhich depends on values of the frictional coefficiente (Tables )
and 4). In Tadble 3, values of §; for all delaminated 0/-6 fider composites
studied are obeerved to be slightly larger than 0.5, when f“ >0 1s
considered. That is, frictionsl contributions lead to a wesker delamination
stress siogulerity & than that in a frictionless contact case snd in @
conventional homogeneous open crack case. We note here that for a

delaminstion between 8/-8 graphite-epoxy coaposites, the stress singulsrities
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are always independent of the valus of the frictivnal coefficient Seer because
of the s~wmetry (and antisymmetry) of componoeats in elastic stiffness matrices
of the 0 and ~0 plies sud the decoupling of ey from o and Tys in the
fermulation. This phencmsnon is clearly seea {n Table 3, vhere §, is alvays
~0.3 and §; differs f.om -0.3 gradually as the value of f,, Lncresses. Note
ferther that deviatioas of §7 in the frictionsl coatact cases froa the
coaventionsl square-toot eingularity are rather sasll for all 6/-8 graphite-
epoxy dels isination prodlems.

Stress singularities are also determined for delsainations in more
geearal cases of 0,/8; fiber composites with 0, » 05, For {llustrstion, the
results of s delssination between 30°/90° graphite-epoxy cosposites are
presented in Tadle & fo: verious values of f“ and f“. It ts seen from the
Tadble thet the doudle roots &; = &3 = -0.5 also sppear for & delamination in
9)/83 compoeites with crack eurfaces in frictionless coatact (f .y = fop = 0).
Sswever, in the cases of a delamination with crack surfaces {n frictional
csatact, §7 is apparently influenced by the values of both feo and f.,. In
Tadle &, values of &; for the partially closed delaataation in 30°*/90°
graphita-epoxy coapoeites with different f“ and f” are observed to be
sasller thaa the classical square-root stress siagulacity. Thus, §3 can be
either greater or smaller than the coaventional iavecse square-root
siagulerity, depeading upoa the values of f“ and f“ and fider orientations
of the compoeites. Owing to the complex algebraic structure of the
trsascendental charaecteristic equatioa, Bq. 20, it is generally not possible
te predict in explicit form whather 83 > -0.3 or &3 ¢ -0.3 for e delamination
with crack surfaces in frictional contact vithout sulving the transcendental
ejuation nuaerically. We remark that i{n the cese of a delamination vith crack

secfaces in frictionless contact between dissimilar anisotropic wmedia, the
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dominant stress singularity, & = -0.5, has also been determined independently
by using a singular integral equation approach in [10,16]. Furthermore, a
similar phenomenon of stress singularity 6§ > -0.5 or 6 < -0.5 has been
observed in studying the interface crack between dissimilar isotropic media

with crack surfaces in frictional contact [28].

4.3 Delamination with a Very Small Area of Crasck-Tip Closure

The delamination with open crack surfaces between dissimilar fiber
composites has been shown mathemztically in Section 4.1 to possess
controversial oscillatory crack-tip stress and displacement fields. This
abnormality is thought to be artifacts resulting from the method of approach
by using eigenfunction expansion in the formulation and solution. As first
pointed out by England (7], Malyshev et al. {6], and later by Wang and Choi
[10], the region of oscillatory solutions for a delamination with open crack
surfaces in a nominal tensile field is generally extremely small in comparison
with the size of the interface crack and this very localized abnormality may
not be significant in practical terms of linear fracture mechanics. Im fact,
using the partially closed crack model, Wang and Choi [10] have shown that a
composite delamination in a tensile field has an extremely small crack-tip
closure with c/a ~ 0(10'6). A simplified model which disregards the small
closure (or oscillatory) region and approximates the asymptotic field by an
inverse square-root stress singularity is, therefore, proposed for this
situation and shown to provide excellent results couparing with those
determined by using a partially closed crack model [10].

Under certain loading conditions other than pure tension, however, an
ianterl minar crack may also possess a very small area of crack-tip closure,

depending upon loading modes and material elastic properties of the dissimilar

composite laminae (16]. A simplified solution for this case can be obtained
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by taking the limit of the crack-closure length, i.e., ¢ + 0, in the results
derived from a partially closed delamination. In particular, the delamination
stress singularity can be taken directly from the partially closed crack model
(with frictionless crack surface contact) as an inverse square-roct one.
Macthematically, this is equivalent to finding an analytical solution for a
fully open crack by following the same formulation and procedure for a
partially closed crack case with Infinitesimal closure leagth, and the
approximation introduced has the effect of smoothing the oscillatory
singularity to an inverse square-root singularity for the composite
delamination, Therefore, interlaminar stress intensity factors and strain
energy release rates can be defined in a manner consistent with those for a
homogeneous crack and for the refined model of an interface crack between
dissimilar isotropic solids introduced by Comninou {14). As will be shown
later [18], this simplification leads to a very effective and efficient
approach to the complex problem of delamination with a fully open crack tip or
with a very small area of crack-tip closure, and provides meaningful
information on the fundamental mechanics of delamination problems in composite

laminates under general loading conditions.

4.4 lLogarithmic Stress Singularities

As mentioned in Section 3 that besides the power-type stress
singularities given in Sections 4,1, 4.2 and 4.3 for various conditions in the
crack-tip region, weak logarithmic-type singularities may also appear in the
homogeneous and particular solutions for the delamination stress field. Since
the particular solution is related to the remote loadlag applied to the
delaminated composite, it has to be considered and constructed for each

individual case. To study the possible presence of the logarithmic stress

singularities in a delamination mechanics problem, we consider a symmetric

'
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composite laminate subjected to uniform in-plane stretching with

€; = &, for simplicity and without loss of generality. Also, we restrict our

z
attention at this point to delaminations located in the following three
composite systems: ©/-6, 6/0°, and 8/90° graphite-epoxy composites. Based on
the preceding theoretical developments and ihe conditicas for the presence of
the logarithamic terms given in [25], we address each individual case
separately,
(1) Delamination between 0/-0 composites (9 # 0° and 90°)

Numerical calculations by using the ply elastic constants given in
Eq. 28 provide the following:

N=12, R=9, M=3 (6, = integer), (30a)

N= 12, R =11, M= (6n # iateger). (30b)
Applying both Eq. 30(a) and Eq. 30(b) to the c%?dition i‘ = M-(N-R), we obtain
1, = 0. Thus, logarithmic terms of the form an(ln Zk) ® with 2, 2 1 do not
appear in the homogeneous solution for this class of problems.
Also, carrying out the computations of constructing the left

*(L)
h

*
elgenvector and the lonading vector p , we find that, for all three sets

*(L)

of at 6n = 0 in this case, Equation 24 ic gatisfied identically.

Therefore, logarithmic terms of the form (tn Zk)(1°+l) do not occur in the
particular solution either.
(2) Delamination between 6/0° or 8/90° composites (0 # 0° and 90°)

In these two cases, following the same procedure and computations as

discussed in (1) but with minor modifications, we obtain similar results as

those in the 9/-6 case, i.e.,

N=12, R=9, and M =], (6, = integer) (3la)

N=12, R =11, and M=, (6n # integer) (31b)
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and, also, 2, = 0. Moreover, Eq. 24 also holds for this problem. Thus, we
conclude that no logarithmic singularities of any kind would appear in the
asymptotic solutions for delamination in 6/90° and 8/0° composites; only
power-type aingglarities Z:n occur in these problems.

We further remark that, i{n fact, it has been shown in [25] that no
logarithmic terms of any kind would occur in the solutions for a general case

of a delamination located between 8) and 0; fiber composites with 6, and 0,

being any arbitrary fiber orientations.
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5. SUMMARY AND CONCLUSIONS

The mechanics of delamination in fiber composite laminates has been
atudied, Formulation of the problem is based on Lekhnitskii's coamplex-
variable stress potentials and basic relationships in laminate elasticity
theory for anisotropic fiber composites. The eigenfunction expansion method
ugsed in this study appears to be a suitable approach to determine delamination
stress singularities and fundamental structures of stress and deformation
field solutions. Stress singularities for a delamination are found to be
related to adjacent ply material properties and local traction boundary
conditions. Numerical results for interlamisar cracks in commonly used
graphite-epoxy compoeites with different fiber orientations and crack-tip
conditions are shown to illustrate the basic nature of stress singularities
and general solutions for the composite delamination problem. Based on the
information obtained, the following conclusions may be reached:

(1) Assuming the delamination is fully open and free from surface
traction, we find that delamination stress singularities always possess an
oscillatory form by simultaneous presence of three distinct eigenvalues,
-U§+4y, -Vz-iy, and -Vz. The oscillatory stress singularities and field
solutions for composite delamination are physically inadmissible because of
interpenetration of crack-surface displacements,

(2) For a delamination with partially closed crack surfaces in
frictionless contact, the present eigenfunction expansion approach always
gives an eigenvalue § = -HQ with an algebraic multiplicity of two (i.e.,
double roots), indicating the classical square-root stress singularity {s

recovered in the closed crack case.

/
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(3) In the case of a delamination with crack surfaces in frictional
contact, crack-tip stress singularities depend not only on material elastic
coustants and fiber orientations of adjacent plies but also on frictional
coefficients f}. and f.z along the delamination surface.

(4) The crack-surface friction msy lead to either a stronger or weaker
stress singularity than the conventional inverse square-root one, depending
upon fiber orientations of the adjacent plies. Present numerical results, for
example, show that a weaker stress singularity, {.e., 0> 4§ > -H&. occurs for
a delamination between any 6 and -0 fiber composites, but a stronger
singularity, i.e., -1 > 6 > <1, occurs for a delamination between 30° and
90° composites, 1f fry > 0 and fyp > 0.

(5) In the situation that the delamination contains a very small area of
crack-surface closure (e.g., ¢ £ lo-ﬁz). a simplified model with the crack-tip
stress field having an inverse square-root stress singularity, as determined
by finding the solution from the limiting case of a partially closed crack
solution, is suggested and later used for solving the complete boundary value
problen.

(6) Examining the multiplicity of eigenvalues and the rank and order of
the coefficient matrix in the eigenfunction solution, we find that no
logarithmic stress singularities of any kind would appear in the homogeneous
and particular solutions for the composite delamination prob’ =; only power-

s
type singularities of the form an could occur.

(7) After determining of all the eigenvalues for each individual
delamination case, general solution structures for composite deformation and
stress fields can be established immediately. Numerical methods such as the
singular finite-element technique, which can incorporate exact delamination

stress singularities in the element formulation, can be easily developed to

N
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solve the complete boundary-value problem for delaminations in composite
laminates with any srbitrary combinations of lamination, geometric, and crack
variables. One of such methods employing displacement-based singular crack-

tip elements is given in the associasted paper [18].

ia -
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TABLE 1

DOMINANT STRESS SINGU’LARI‘IIES. FOR DELAMINATION
BETWEEN #/90° GRAPHITE-EPOXY COMPOSITES

3 8, 5, 5
ot -0.5 + 0.051101< -0.5 - 0.051101% -0.5
(=0.5 + 0.032924°) (-0.5 - 0.032924<) (-0.5)
15° 0.5 + 0.050349% -0.5 - 0.050349: -0.5
(-0.5 + 0.032584%) (0.5 - 0.032484%) (-0.5)
30° -0.5 + 0.045138% -0.5 - 0.045138% -0.5
(-0.5 + 0.025764%) (-0.5 - 0.0257645) (-0.5)
48° ~0.5 + 0.034504° 9.5 - 0.034504° -0.5
(<0.5 + 0.015604%%) (0.5 - 0.015604-) (-0.5)
60° 0.5 + 0.021119% -).5 - 0.021119% -0.5
(<0.5 + 0.008067%) (~0.5 - 0.008C673) (-0.5)
75° -0.5 + 0.008899< -0.5 - 0.008899< -0.5
(<0.5 + 0.006265%) (<1.5 - 0.00%265:) (-0.5)
90" 0.5 2.5 0.5
(=0.3) (-).3) (-0.5)

*yalues in the parentheses are for T300.528) zraphite-epoxy with laminar
elastic constants given f{n £q. 28(a).

‘Thcse eigenvalues are for 0°/90° and 90°/9N” composites in a general loading
condition. In the cases of 0°/90” and 90°/90® composites under uniform
strecching ¢, = €9 53 = =).5 does not appear “ecause of Tz "7 = 0 and

y2z
being dccoupicd from other stress components,
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TABLE 2

DOMINANT STRESS SINGULARITIES® FOR DELAMINATION
SETVEEN )0°/0 GRAPMRITE-EPOXY COMPOSITES

] 6). 62

0* 0.5 + 0.012451¢ =-0.5 -~ 0.012451¢
(-0.5 + 0.00945617) (-0.5 - 0.0094561)

15° 0.5 + 0.010491¢ 0.3 - 0.010491¢
(-0.5 + 0.007920%) (-0.3 - 0.0079201)

30° -0.3 -0.5
(-0.5) (-0.9)

45° <0.5 + 0.015968¢ 0.5 - 0.015968:
(-0.5 + 0.0116087) (0.5 - 0.011608¢)

60° -0.5 + 0.030943¢ ~0.53 - 0.030943¢
(-0.3 + 0.0204411) (-0.5 - 0.0204411)

73° 0.3 + 0.0410301 <0.5 - 0.041030¢
(=0.5 + 0.0246641) (-0.5 - 0.0246641)

90° -0.5 + 0.045138{ 0.5 - 0.045138:
(-0.5 + 0.0247641) (0.5 - 0.0257641)

*Values in the parentheses are for T300/5280 graphite-epoxy with
elastic properties given in Zq. 28(a).
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TABLE )

DOMIMANT STRESS SINGULARITIES® POR DELAMINATION
WITH CRACK-TIP CLOSURE IN 0/-0 GRAPHITE-ZPOXY COMPOSITES

75°

60°

45°

w.

15°

Lall'sl
o

v
o

[ 2 )
.

<

La X 4]
.

LN )
. .

99

-0.5

0.5

.3

?

-0.5

4.’

=0.4941 -0.,4964

4940

?

-0.4962

-0.499%

-0.4928

-0.5

=0.492)

-0.3
-0.4977

0.5

0.4

-0.4892

-0.5

-0.4822

-0.5

=0.4963

-0.5

0.6

-0.4855

0.5

-0.4763

-0.5

<0.4762

0.3

=0.4954

-0.5%

*8) and 4, are found to be independent of the value of f ..
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TABLE

DOMINANT STRESS SINGULARITIES FOR DELAMINATION

E/EPOXY COMPOSITLS

iT

WITH CRACK-TIP CLOSURE LN 30°/90° GRAPH

7

0.5

.3

.1

0.0

-0.5

-0.5

-0.5

-0.5

0.0

-0.5031 -0.5051 -0.5072

~-0.5010

-0.5

-0.5

-0.5

-0.5

-0.5

.1

-0.5046 -0.5067 -0.5087 -0.5108

-0.5036

-0.5

-0.5

-0.5

-0.5

-0.5

0.3

-0.5118 -0.5138 -0.515¢ -0.5179

-0.5108

-0.5

-0.5

-0.5

~0.5

0.5

-0.5189 -0.5210 -0.5239 -0.5251

-0.5179

-0.5

-0.5

-0.5

-0.5

-0.5

0.7

-0.5261 -0.5281 -0.5302 -0.5322

-0.5251
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7. LIST OF FPIGURE CAPTIONS

- Fig. 1 Delaminations in a {08)/89/03/.../03/62/61] Fiber-Reinforced Composite
Laainate.

Fig. 2 Coordinates and Geometry of a Delamination with Open Crack Surfaces
between 6. and O+l Plies.

Fig. 3 Coordinates and Geometry of a Delaaination with Finite Length of
Crack-Surface Closure between 8, and 6., Plies.
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1/02/93/.../63/62/611 Fiber-Reinforced Composite

Laminate.

Fig. | Delaminations in a {e

(¢4
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APPENDIX 1

Expressions for coefficients Hyp(é) in Eqs. 15 and 16 are as follows:

Hy = (uksimb + cos¢)?, Hy = =n (s, sing + cose),
Hy, = =(u, 9100 + cosé)(u cosd - sing), M, = (u coss - sing)?, (A-1)
HSk = nk(ukcosd; - sin¢), u&k - pkcoso + qksino.
“7k = -pksin¢ + chou. Zi‘sk - ‘k’
where e and N are defined in Eqs. 11, 12 and 13, and py, qy and tg are
complex constants related to laminar elastic congtants 311 by
=32+ 35 7 Bin *+ 3isne - Signe
G = St * S92/, = Sy /i + Sasny - e (A-2)
e " St S2a e = Same * Sus™ ~ Su6e

N




