
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB152500

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; FEB 1991. Other
requests shall be referred to Air Force
Electronic Systems Division, Hanscom AFB, MA
01731.

UNISYS Ltr via ESD dtd 26 Feb 1991

TASK: UR2(
CDRL: 010*

02/15/91

:,
.-.. .
•,vv..; 1

UR20 -
AD-B152 500 Process Environment Integration

Reusable Graphical Browser Version 0.3.2

UNISYS

DTIC
PXECTE
HAR0 51991

STARS-RC-01080/002/00

15 February 1991

91 2 28 027

TASK: UR20
CDRL: 01080

15 February 1991

USER'S MANUAL

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Reusable Graphical Browser
Version 0.3.2

STARS-RC-01080/002/00
Publication No. GR-7670-1208(NP)

15 February 1991

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091

*\

xOh/Md J
DistributionUfifffKM to

U.S. Government and U.S. Government
Contractors only:

Administratively February 1991)

Accesion For

NTIS CftA&l
D'fiO TAfl
U id,', oi. ::• J

J. jsti i ication

By
D.-t ib'.io. /

Avai.a!: i«'y -. • •:

Dt»t

m
H'vj i v. . ..;

Special

TASK: UR20
CDRL: 01080

15 February 1991

USER'S MANUAL

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Reusable Graphical Browser
Version 0.3.2

STARS-RC-01080/002/00
Publication No. GR-7670-1208(NP)

15 February 1991

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0002

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

Unisys Defense Systems
Tactical Systems Division
12010 Sunrise Valley Drive

Reston, VA 22091

11 February 1991 STARS-RC-01030/002/00

PREFACE

This document was produced by TRW in support of the Unisys STARS Prime contract under
the Process/Environment Integration task (UR20). This CDRL, 01080, Volume II is type
A005 (Informal Technical Data) and is entitled "Reusable Graphical Browser User's Manual,
Version 0.3.2".

Task Manager: Dr. Thomas E. Shields

Reviewed by:

Approved by:

eri F. Payton, System Architect

7v4^ kj.A
Hans W. Polzer, Program Manager

15 February 1991 STARS-RC-01080/002/00

Contents

1 Introduction 1
1.1 Purpose 1
1.2 Scope 1
1.3 Organization 1

2 Overview of The Reusable Browser 1
2.1 Architecture 2
2.2 Operation 5

2.2.1 The ERA Data Model 6
2.2.2 Graphs 6
2.2.3 Views 7
2.2.4 Node and Arc Depictions 8
2.2.5 Layout Algorithms 9
2.2.6 Command Lists 9
2.2.7 Menus 10
2.2.8 Text Displays 10
2.2.9 Dialog Boxes 11
2.2.10 Events 11
2.2.11 Callbacks 12

3 Reusing The Reusable Browser 12
3.1 Model of Reuse 13
3.2 Step-By-Step Instructions 15

3.2.1 Step 1: Define Data Types for Instantiation 15
3.2.2 Step 2: Define Subprograms for Instantiation 16
3.2.3 Step 3: Instantiate The BROWSER Package 19
3.2.4 Step 4: Define Graphs 20
3.2.5 Step 5: Define Views of Each Graph 23
3.2.6 Step 6: Lay Out Each View 33
3.2.7 Step 7: Display A View 39
3.2.8 Step 8: Allow User Interaction With The Display 39
3.2.9 Step 9: Define Responses To User Selections 41

A Appendix: Ada Specifications 45

B Appendix: User Interface 98
B.l Model of User Interaction 98

B.l.l Output 99
B.1.2 Input 100

B.2 Tailoring The User Interface 103
B.2.1 Contents 103
B.2.2 Presentation Style 106

C Appendix: Limitations 112

Page ii

15 February 1991 STARS-RC-01080/002/00

C.l Capabilities Not Yet Implemented 112
C.2 Limitations On Existing Capabilities 112
C3 Potential Problems 112
C.4 Compiler Dependencies 113
C5 X Toolkit Version Dependencies 114

D Appendix: Acronyms 115

List of Figures
1 Browser Tool Architecture 3
2 Browser Screen Layout 100

Page iii

15 February 1991 STARS-RC-010S0/002/00

1 Introduction

1.1 Purpose

This document is the User's Manual for the Reusable Graphical Browser developed by TRW,
under contract to UNISYS, as a subtask of the STARS User Interface Task (UR20). The
Reusable Graphical Browser (also referred to as the Reusable Browser) is a reusable software
component designed to facilitate the construction of graphical tools for browsing over the
contents of various object management systems. More specifically, it is intended to serve as
a basis for constructing such tools quickly and easily using the Ada programming language.
The purpose of this Manual is to provide guidance to tool builders using the Reusable
Graphical Browser to construct specific graphical browser tools.

1.2 Scope

The User's Manual presents both a conceptual description of the Reusable Graphical Browser
and detailed instructions for its reuse. Among other information, it contains complete tech-
nical specifications for the application (browser tool) interface provided by the Reusable
Graphical Browser and a general description of the user (man-machine) interface imple-
mented by the Reusable Graphical Browser. It does not, however, contain instructions re-
garding the use of tools constructed from the Reusable Graphical Browser. Such instructions
are necessarily application-specific.

1.3 Organization

The main body of this manual consists of three sections. Section 1 is this introduction.
Section 2 describes the Reusable Graphical Browser at the conceptual level. Section 3
presents detailed instructions for reuse, and illustrates those instructions with an example.

At the end of the manual are four appendices for quick reference. Appendix A presents Ada
package specifications for the application interface. Appendix B describes the user interface,
and discusses ways in which it may be tailored for a specific application. Appendix C lists
current limitations of the Reusable Graphical Browser. Appendix D defines acronyms used
in this manual.

2 Overview of The Reusable Browser

The Reusable Graphical Browser is a reusable software component designed to facilitate the
construction of graphical tools for browsing over the contents of various object management
systems. It is not, in and of itself, a browser tool. Rather, it is intended to serve as a
foundation for constructing such tools using the Ada programming language.

In that capacity, the Reusable Graphical Browser accomplishes the following:

Pagel

15 February 1991 STARS-RC-01080/002/00

• it reduces development costs for graphical browser tools, by providing a graphical user
interface that is easily adaptable to a wide variety of browsing applications;

• it improves maintainability and portability of such tools, by insulating them from the
underlying graphics systems;

• it reduces user training costs, by promoting a common "look and feel" across all such
tools.

2.1 Architecture

Figure 1 illustrates how the Reusable Graphical Browser fits into the overall architecture
of a graphical browser tool. The application, a specific graphical browser tool, relies on
services provided by the Reusable Graphical Browser for interaction with the user (i.e., the
human). The Reusable Graphical Browser, in turn, relies on services provided by an under-
lying graphics system (in the current implementation, the X window system) for terminal
input and output. In addition, the application relies on services provided by an object
management system (OMS) to query and/or manipulate application-specific objects. Note
that the Reusable Graphical Browser does not interact directly with the OMS; rather, the
application must actively transfer information between the two.

The interface between the application and the Reusable Graphical Browser is termed the
"Application Interface". It provides a much higher level of abstraction than the X window
system interface. Furthermore, it hides virtually all X window system dependencies from
the application. As a result of this high degree of abstraction and information hiding, the
Reusable Graphical Browser may be ported to another (comparable) window system with
minimal impact on application code. Similarly, migration to later releases of the X window
system should also be possible with little or no impact on application code.

The Application Interface is generic with respect to the data types used to represent the ob-
jects within the OMS and the relationships among them. Recall that the Reusable Graphical
Browser does not interact directly with the OMS, and therefore has no immediate knowl-
edge of the OMS schema. Consequently, it must rely on the application to provide any
and all information concerning the structure of data within the OMS. For the most part,
the Reusable Graphical Browser doesn't need much of this type of information in order to
function. Minimally, it needs enough to be able to identify individual objects and relation-
ships (and also collections of objects and relationships, if the application deals with multiple
collections). It may also need some information to distinguish between different kinds of
objects and/or relationships, if the application wishes them to be treated differently (e.g.,
displayed differently). And finally, it may need a way to retrieve the attributes of an object
or a relationship, if the application wishes them to be automatically integrated into the
screen layout. The application is, therefore, expected to provide the following parameters
when instantiating the Application Interface:

• an arbitrary data type for values that uniquely identify objects;

Page 2

15 February 1991 STARS-RC-01080/002/00

APPLICATION (BROWSER TOOL)

i

REUSABLE
GRAPHICAL
BROWSER

OBJECT
MANAGEMENT

SYSTEM

X
WINDOW
SYSTEM

OBJECTS

USER (HUMAN)

Figure 1: Browser Tool Architecture

Page 3

15 February 1991 STARS-RC-01080/002/00

• an arbitrary data type for values that uniquely identify relationships;

• an arbitrary data type for values that uniquely identify collections of objects and
relationships;

• a scalar data type for values that distinguish different kinds of objects;

• a scalar data type for values that distinguish different kinds of relationships;

• a function for retrieving the attributes of an object;

• a function for retrieving the attributes of a relationship.

This parameterization allows the Reusable Graphical Browser to accommodate a wide range
of OMSs. The Application Interface is presented in detail in Appendix A.

The interface between the application and the human operator (henceforth referred to as "the
user"), via the the Reusable Graphical Browser and the underlying window system, is termed
the "User Interface". It is primarily a graphical interface, although text input and output are
also supported to a limited extent. In general, the user interacts with the application using
a pointing device (e.g., a mouse) to select various items (buttons, scrollbars, etc.) depicted
on a high-resolution graphics display. In X Window System terminology, these items are
referred to as "widgets". The window system provides primitive operations for constructing
and manipulating widgets. The Reusable Graphical Browser uses these primitive operations
to compose more sophisticated widgets, and provides abstract operations for defining and
manipulating them at the Application Interface. Some of these widgets are windows in which
text can be displayed, or into which text can be typed using a keyboard; this is how text
input and output are supported.

The User Interface is tailorable with respect to both presentation style and content, though
that tailoring is constrained in order to promote a common "look and feel" across all graphical
browser tools. The term "content" refers to what information is presented, whereas the term
"presentation style" refers to how it is presented. The ability to tailor presentation style
is primarily attributable to facilities provided by the underlying window system. The only
capability that the Reusable Graphical Browser, itself, provides in this area is the ability to
override the default algorithm for laying out (i.e., positioning) objects and relationships on
the screen. The ability to tailor content is attributable to facilities provided directly by the
Reusable Graphical Browser at the Application Interface. In particular, it is attributable
to the abstract operations provided for defining and manipulating items such as menus,
command lists and views. The User Interface is presented in detail in Appendix B.

The combination of a generic Application Interface and a tailorable User Interface is what
makes the Reusable Graphical Browser reusable. The generic Application Interface allows
the tool builder to integrate the Reusable Graphical Browser with almost any OMS. The
tailorable User Interface allows the tool builder to customize, in a constrained way, the
appearance and behavior of the application as perceived by the user. In short, these features

Page 4

15 February 1991 STARS-RC-01080/002/00

provide the flexibility that a tool builder needs to adapt the Reusable Graphical Browser to
various browsing applications.

Internally, the Reusable Graphical Browser is partitioned into two layers: an application
interface layer, and a window interface layer. The application interface layer implements the
Application Interface as a collection of abstract data types and utilities to manipulate them
(in the manner of reference [1]). It consists of the following components:

• CALLBACKS - abstract data type for application-defined procedures to be invoked
in response to user actions;

• MENUS - abstract data type for modal menus;

• CMD_LISTS - abstract data type for non-modal (continually selectable) commands;

• GRAPHS - abstract data type for application-defined graph structures;

• VIEWS - abstract data type for graph depiction information;

• TEXT - abstract data type for text to be displayed;

• VIEW.UTILITIES - utilities for constructing and filtering views;

• LAYOUT_ALGORITHMS - utilities for automatically laying-out (assigning display
coordinates to) the nodes and arcs in a view;

The window interface layer implements an interface for graphical interaction with the user
that is not specific to any particular window system. It serves to encapsulate the details
of the underlying window system, thereby promoting portability and maintainability of the
Reusable Graphical Browser itself.

2.2 Operation

In general, a graphical browser tool performs three functions:

1. it acquires information about the objects managed by the OMS and relationships
among them;

2. it displays those objects and relationships graphically;

3. it allows the user to interact with those objects and relationships through the graphical
display.

The Reusable Graphical Browser is mostly concerned with the latter two functions. It relies
on the application to acquire information from the OMS. Then, given that information, the

Page 5

15 February 1991 STARS-RC-01080/002/00

Reusable Graphical Browser is able to display it graphically and allow the user to interact
with it. The user's actions are communicated back to the application, which processes
them accordingly. After processing each user action, the application returns control to the
Reusable Graphical Browser so that the user may further interact with the display.

2.2.1 The ERA Data Model

In order for the application to communicate information about OMS objects and relation-
ships to the Reusable Graphical Browser, a common data model is required. Essentially, the
application must present the information in terms that the Reusable Graphical Browser can
understand. This is where the Entity-Relationship-Attribute (ERA) data model comes in.

The Reusable Graphical Browser assumes that the information acquired from the OMS can
be represented as a set of entities, a set of relationships between those entities, and possibly
some attributes associated with individual entities and/or relationships. The entities need
not be all of the same kind; the Reusable Graphical Browser allows the application to
distinguish between different kinds of entities. The same is true of relationships. Attributes
are treated as arbitrary text strings, the contents of which the Reusable Graphical Browser
knows nothing about.

One nicety of the ERA data model is that there is a convenient graphical representation for
it. In particular, it can be depicted quite elegantly as a directed graph. This is the approach
taken by the Reusable Graphical Browser. The entities are depicted as nodes (vertices) of
the graph, and the relationships are depicted as arcs (edges) connecting the nodes. One-way
relationships are depicted as unidirectional arcs, whereas two-way relationships are depicted
as bidirectional arcs. Different kinds of entities and relationships can be distinguished by
marking the nodes or arcs with different icons (symbols). In addition, each node and each
arc can be individually labelled with a single line of text. Attributes may be displayed as an
integral part of the graph as well, though this requires that all attributes to appear in the
graph be retrieved before the graph is displayed. Alternatively, they may be retrieved and
displayed individually in response to user interactions with the graph.

2.2.2 Graphs

Graphs are the means by which an application communicates the contents of an OMS to the
Reusable Graphical Browser. They provide a mapping between entities and relationships in
the application domain and corresponding nodes and arcs in the Reusable Browser domain
(note that henceforth the terms "node" and "arc" are used in the context of the Reusable
Graphical Browser, whereas the terms "entity" and "relationship" are used in the context of
the application). An application may define any number of graphs - though one is normally
sufficient for most applications. A graph consist of a set of nodes (entities) and a set of
arcs (relationships). Depending on the application, it may include the entire contents of the
OMS or only a portion thereof.

Page 6

15 February 1991 STARS-RC-01080/002/00

The Reusable Graphical Browser provides an abstract data type for graphs, which the ap-
plication uses to define them. Typically, the application declares an object of the graph
data type, invokes a procedure to initialize it, and then invokes procedures to add nodes
and arcs to the graph one at a time. For each node and each arc added to the graph, the
application must specify a unique identifier mapping it to a corresponding entity or rela-
tionship in the application domain. In addition, to allow the Reusable Graphical Browser
to distinguish between different kinds of entities and relationships, the application has the
option of specifying a node kind or arc kind.

Although graphs contain information about how the arcs and nodes are connected, they do
not contain any information about how to depict the individual nodes and arcs or about how
the user is supposed to interact with them. That is the purpose of views.

2.2.3 Views

Views are the means by which an application controls the manner of depiction of a graph
and the semantics of user interactions with that depiction. They allow the application to
control such factors as which nodes and arcs are presented to the user, how they are laid
out, how they are labelled, and what actions are taken in response to their selection by the
user. An application may construct any number of views for a graph. Each view consists of
a subset (not necessarily a proper subset) of the nodes and arcs in the graph, with various
depiction and behavior parameters for each one. In addition, each view has a title that is
displayed when the view is displayed and a set of commands that may be invoked by the
user to operate on the view.

The Reusable Graphical Browser provides an abstract data type for viev/s, which the appli-
cation may use to construct them. Using the primitive operations provided by the abstract
data type to construct a view can be tedious, however. Thus, a view utility is provided to
automate this process. All in all, there are two alternative ways to construct a view:

1. using a utility to automatically select nodes and arcs from a graph and insert them
into the view;

2. directly inserting nodes and arcs from a graph into the view, one at a time.

Regardless of which method is used, the application must first declare an object of the view
data type. Using the first method, the application must also instantiate the appropriate
view construction utility, providing functions that this utility requires to determine which
nodes and arcs to include in the view and what depiction and behavior to assign to them.
The application then applies the utility to a graph to produce the desired view.

Using the second method, the application invokes a procedure to initialize the view and then
invokes procedures to insert nodes and arcs from the graph into the view one at a time. For
each node and each arc inserted into the view, the application must explicitly specify the
desired depiction and behavior.

Page 7

15 February 1991 STARS-RC-01080/002/00

Once a view has been denned, it may be laid out either by invoking an automatic layout
algorithm to process the view or by explicitly assigning positions to each and every node
and arc in the view on an individual basis. Once a view is laid out, it may be displayed to
the user and the user may be allowed to interact with it. Multiple views may be displayed
simultaneously, if desired.

Regardless of what layout algorithm an application uses, it is possible for the display to
become cluttered with too many arcs and nodes. In order to reduce clutter, the views ab-
straction provides primitive operations that can be used to suppress or unsuppress individual
nodes and arcs from a view's display. For convenience, a view utility that supports the filter-
ing of multiple nodes and arcs in a single operation is also provided. This view utility uses
application-defined predicates to determine which nodes and arcs of the view to suppress.

To facilitate navigation over the view, the view abstraction provides a mechanism for dis-
playing the topology of a view alongside the main view display. This mechanism consists of
an operation that turns the topology display on or off for a specified view. The portion of the
topology display that corresponds to the portion of its associated view visible in the main
view display is highlighted. The user can reposition a view within its main view display via
interactions with its associated topology display.

2.2.4 Node and Arc Depictions

Nodes and arcs in a view are generally depicted by icons (symbols) that indicate the kind
of node or arc. Alternatively, they may be depicted by labels indicating the node kind or
arc kind. These icons or labels are normally sensitive to mouse events so that the user may
interact with them using the mouse. In addition to an icon or label indicating its kind,
each node or arc may (optionally) be depicted with a corresponding label that indicates its
individual name. Furthermore, some or all of the attributes of each node or arc may also
(optionally) be included in its depiction.

The icons or labels to be used for each kind of node and arc in a view are determined by
specifications in an application-defined resource file. These resource specifications may also
be used to indicate which kinds of nodes and arcs are to be sensitive to mouse events and
which particular mouse events they are to be sensitive to. Other presentation parameters,
such as fonts for labels, border widths, border patterns and highlighting styles may be spec-
ified via the resource file as well. Although these resource specifications cannot be changed
during execution of the application, they may be changed between executions without even
having to recompile or relink the application. Further information on resource files and how
to use them to tailor the appearance of a browser application is provided in Appendix B.

The optional name labels and attributes associated with individual nodes and arcs in a view
are determined differently. Rather than being predetermined by specifications in a resource
file, they are determined programatically as each node and each arc is inserted into the
view. This is necessary because their determination may require retrieval of information
from the OMS. Name labels are determined by the application before it calls the node and

Page 8

15 February 1991 STARS-RC-01080/002/00

arc insertion procedures, in order that they may be passed as parameters. Attributes, on
the other hand, are implicitly obtained by the node and arc insertion procedures via calls to
the attribute retrieval functions specified when the browser was instantiated.

2.2.5 Layout Algorithms

Layout algorithms are a means of automatically assigning positions (display coordinates) to
each node and each arc in a view. They are implemented as procedures. These procedures
calculate the positions of the nodes and arcs in a view based upon their connectivity and
depiction specifications. Although layout algorithms are intended to produce aesthetically
appealing layouts automatically, they often fall short of the mark. One reason for their
shortcomings is that the definition of what is "aesthetically appealing" may vary consider-
ably from one application to another. Another reason is that most of the algorithms are
computationally very expensive (in fact, in its most general form, the problem of how to
layout a directed graph is NP-complete); for practical applications, tradeoffs often have to
be made between aesthetics and performance.

The Reusable Graphical Browser provides several predefined layout procedures. These pro-
cedures are designed primarily for simplicity and speed, rather than for quality of layout.
They are all based on a common algorithm, which is presented in reference [5], but they have
improved upon that algorithm somewhat. These layout procedures also make use of a topo-
logical sort algorithm based on the one presented in reference [2]. An application may either
use the default layout procedures provided by the Reusable Graphical Browser or define
layout procedures of its own. It is not required to use the predefined layout procedures.

2.2.6 Command Lists

Command lists are the means by which an application specifies operations to be associated
with a view. Each command list consists of a list of commands and subcommands that
may be selected by the user at any time while the view is displayed. One command list
is associated with each view when the view is created. The command list associated with
a view is displayed when the view is displayed, and remains displayed as long as the view
remains displayed.

The Reusable Graphical Browser provides an abstract data type for command lists, which
the application uses to define them. Typically, the application declares an object of the
command list data type, invokes procedures to initialize it, and then invokes procedures to
define individual commands and subcommands one at a time. When initializing a command
list, the application must specify the number of commands in the command list and the
number of subcommands (if any) for each command. The effects of selecting a particular
command or subcommand are determined by an application-defined callback procedure that
is invoked when the selection is made. There is only one such procedure for each command
list. The application must define this procedure after initializing the command list, but
before displaying a view with which the command list is associated. If it fails to do so, the

Page 9

15 February 1991 STARS-RC-01080/002/00

user's selections from the command list will have no effect.

2.2.7 Menus

Menus are the means by which an application specifies operations to be associated with
individual nodes and arcs in a view. In addition, they provide a means by which applications
may input parameters for commands or subcommands selected from a command list. Each
menu consists of a fist of items, any one of which may be selected by the user while the
menu is displayed. A menu may be displayed by the application at any time - although the
most logical time to display a menu is immediately after the user has selected a node, arc,
command or subcommand. The Reusable Graphical Browser supports three different ways
of displaying a menu: one associates the menu with a specified node; another associates
the menu with a specified arc; the third does not associate the menu with anything. When
a menu appears, the user must select an item from it immediately; any other selection is
ignored and causes the menu to disappear.

The Reusable Graphical Browser provides an abstract data type for menus, which the ap-
plication uses to define them. Typically, the application declares an object of the menu
data type, invokes a procedure to initialize it, and then invokes procedures to define the
individual items in the menu one at a time. When initializing a menu, the application must
specify the title of the menu and the number of items in the menu. The effects of selecting a
particular item from the menu are determined by an application-defined callback procedure
that is invoked when the selection is made. There is only one such procedure for each menu.
The application must define this procedure after initializing the menu, but before displaying
the menu. If it fails to do so, the user's selections from the menu will have no effect.

2.2.8 Text Displays

Text displays are the means by which an application displays textual information to the
user. These are pop-up displays that the application may create as necessary. They are
read-only; their contents cannot be modified directly by the user. An application may use
these displays to present the values of attributes, the contents of various files, alert messages,
or any other information that makes sense to present as text.

The Reusable Graphical Browser supports two kinds of text displays. One kind of text
display, which is intended to display arbitrary text for an indefinite period of time, consists
of a scrollable text window with window manager decorations and a "QUIT" button. The
window manager decorations allow the user to move, resize, raise, lower or iconify the text
display. The "QUIT" button allows the user to erase it altogether. The second kind of text
display, which is intended to display alert messages, consists of a scrollable text window with
a confirmation button (marked "OK") but no window manager decorations. The user must
acknowledge the alert message immediately by selecting the confirmation button. Until the
message is acknowledged, all other selections are disabled. Once acknowledged, the message
disappears and other selections are reenabled.

Page 10

15 February 1991 STARS-RC-01080/002/00

The source for the first kind of text display may be either an in-memory buffer or a text file.
The Reusable Graphical Browser provides an abstract data type for in-memory text buffers,
which the application uses to define them. An abstract data type for text files is already
provided by the standard Ada Text I/O facilities. The application may either create text
files itself, using these facilities, or may use text files created by other programs (e.g., text
editors). The source for the second kind of text display is an ordinary Ada text string.

Changes to the source of a text display are not immediately reflected in the display. Rather,
the text display must be erased and redisplayed in order for the changes to become visible.

2.2.9 Dialog Boxes

Dialog boxes are the means by which an application obtains input from the user via the
keyboard. These are pop-up displays consisting of a prompt string, a box into which the
user may type input, and a pair of buttons for confirming or cancelling the input. Whenever
a dialog box is displayed, the user must respond to it immediately; all other selections are
disabled until the user has either confirmed or cancelled the input. The user supplies input
for a dialog box by typing at the keyboard. When the user is satisfied with the input, he/she
selects the confirmation button to transmit the input to the application. If the user decides
to cancel the input, he/she selects the cancel button instead; this erases the dialog box
without transmitting any input to the application.

The Reusable Graphical Browser provides an operation associated with text displays that
prompts the user for input. This is the operation that displays a dialog box. The keyboard
input supplied by the user is transmitted to the application via the event that is generated
when the user selects the confirmation button.

2.2.10 Events

Events are the means by which user interactions are communicated to an application. When-
ever the user makes a selection, the Reusable Graphical Browser is informed of that selection.
It handles some kinds of selections itself (e.g., scrollbar selections). Others are reported to
the application. This reporting is accomplished via events.

Events are records containing information that describes the user's selection. Different kinds
of events contain different information. For example, the event generated when a user selects
the confirmation button on a dialog box contains the input string and its length, whereas
the event generated when a user selects a node contains information identifying which node
of which view was selected.

An application may choose to receive events in one of two different ways:

1. as input parameters to callback procedures;

Page 11

15 February 1991 STARS-RC-01080/002/00

2. as output parameters from the browser mainloop.

Using the first method, the application predefines callback procedures to be invoked for
every possible event. These callback procedures are then invoked automatically by the
Reusable Graphical Browser whenever corresponding events occur. The second method is
assumed by default for any events for which no callback has been defined. In this case,
the Reusable Graphical Browser returns control to the application via a return from the
"browse" procedure. One drawback to the second method is that the application must
explicitly reinvoke the "browse" procedure in order to enable subsequent user inputs. Using
the first method, user inputs are implicitly reenabled upon exiting the callback procedure.

2.2.11 Callbacks

Callbacks are the means by which an application specifies actions to be taken in response
to various user-generated events. A callback is a value that designates a procedure (referred
to as the "callback procedure"). This value can be passed between subprograms and stored
in data structures just like any other value. Each displayed object that can be selected by
a user has a callback value associated with it. That callback value designates the procedure
that is to be invoked when the user selects the object.

The Reusable Graphical Browser provides an abstract data type for callbacks, which the
application uses to define them. In order to define a callback, the application must instantiate
a generic package that imports (as a generic parameter) the name of the callback procedure.
That generic package, in turn, exports a function which returns a callback value designating
the imported callback procedure.

Once a callback has been defined, it may be associated with objects (e.g., command lists,
menus, nodes and arcs) to be displayed. The Reusable Graphical Browser provides proce-
dures to set the callback value for each object.

3 Reusing The Reusable Browser

Recall, from the preceding section, that the Reusable Graphical Browser is intended to serve
as a foundation for constructing a wide variety of graphical browser tools using the Ada
programming language. Tool builders must, therefore, be provided with a description of
how to reuse this software component. This section provides such a description. It begins
with a general description of the intended model of reuse for the Reusable Graphical Browser,
and concludes with step-by-step instructions describing how to use it to construct graphical
browser tools.

Page 12

15 February 1991 STARS-RC-01080/002/00

3.1 Model of Reuse

The process of adapting the Reusable Graphical Browser to a particular browsing application
is a two-part process. One part of the process is to integrate it with a particular OMS. The
other part of the process is to tailor the user interface to the application.

The Reusable Graphical Browser takes the form of an Ada generic package. An application
integrates it with a particular OMS by instantiating it with OMS-specific data types and
subprograms. In particular, the application is required to provide the following parameters
at the time of instantiation (though not necessarily in this order):

• a data type for values that uniquely identify entities;

• a data type for values that uniquely identify relationships;

• a data type for values that uniquely identify collections of entities and relationships;

• a data type for values that distinguish different kinds of entities;

• a data type for values that distinguish different kinds of relationships;

• a function for retrieving the attributes of an entity;

• a function for retrieving the attributes of a relationship;

• a function for hashing entity identifiers;

• a function for hashing relationship identifiers.

The following additional parameters may also be required, depending on the datatype :

• a function for determining whether two values identify the same entity;

• a function for determining whether two values identify the same relationship;

• a function for determining whether two values designate the same collection of entities
and relationships.

Some of these parameters may not make sense for all applications. In order to get around
this problem, applications may specify arbitrary data types or functions for such parame-
ters. For example, an application that has no concept of multiple collections of entities and
relationships may specify a data type such as the following for the identifier of a collection:

type collectionJd is (anonymous);

Page 13

15 February 1991 STARS-RC-01080/002/00

(of course, the application can then define only one collection - i.e, only one graph). Similarly,
an application that has no concept of attributes of a relationship may specify a function that
always returns a null attribute string in place of the function for retrieving the attributes of a
relationship. Also, an application that has no need to optimize the translation between OMS
entities and relationships and browser nodes and arcs (respectively) may specify functions
that always return a value of one (1) for the hash functions.

Once the Reusable Graphical Browser has been instantiated, the application uses facilities
provided by the browser instance to display the contents of the OMS and to allow the user
to interact with the display. The application first defines one or more graphs using primitive
operations provided by the graphs abstraction. Next, it defines views of those graphs using
either view construction utilities or primitive operations provided by the views abstraction.
In the process of constructing a view, it defines a command list for the view and callbacks
for the individual nodes and arcs that make up the view. The command list is defined via
primitive operations provided by the command lists abstraction. In the process of defining
the command fist, the application defines a callback for the command list as well. The
callbacks are defined by instantiating a generic callback package provided by the callback
abstraction. Once the views have been defined, the application lays them out using either
an automatic layout utility or primitive operations provided by the views abstraction. The
application may then display a view via another operation provided by the views abstraction.
Once a view has been displayed, the application invokes a browse procedure to turn control
over to the window system so that the user can interact with the display. The window
system notifies the browser instance when the user makes a selection. The browser instance,
in turn, notifies the application of the user's selection. If a callback procedure has been
defined for the selection, the application is notified by invoking that callback procedure and
passing it an event describing the selection. The callback procedure may take any action at
all in response to the selection, including actions that modify the display (e.g., displaying a
menu). Upon completion of the callback procedure, control is again returned to the window
system so that the user may interact further with the display. If no callback procedure has
been defined for the selection, the application is notified by returning the event as an "out"
parameter from the browse procedure instead. In this case, the application must reinvoke
the browse procedure after processing the selection, in order to allow the user to interact
further with the display.

The facilities provided by the browser instance give the application extensive control over
the dynamic behavior of the user interface. The ability to define the contents of graphs,
views, command lists, menus and the like allows the application to specify the information
content of the display. The ability to specify the layout and depiction of individual nodes
and arcs in a view allows the application to tailor the aesthetic appearance of the display.
And lastly, the ability to specify the actions to be taken in response to user selections allows
the application to control the sequencing of user interactions.

Page 14

15 February 1991 STARS-RC-01080/002/00

3.2 Step-By-Step Instructions

Detailed instructions for the tool builder, describing how to use the Reusable Graphical
Browser to construct graphical browsing tools, are presented below. These instructions
describe only how to design and code such tools - not how to compile and link them (com-
piling and linking are discussed in the Version Description Document). The instructions
are illustrated with code fragments taken from a simple browser tool (a UNIX1 file system
browser) that was developed as a demonstration of the Reusable Graphical Browser. Com-
plete source code for this demonstration program is distributed along with the source code
for the Reusable Graphical Browser.

Note that the instructions make frequent reference to items declared in package BROWSER.
For convenience, a listing of the specification of that package is included in Appendix A of
this manual. The reader is directed to that listing for more complete descriptions of the
referenced items.

3.2.1 Step 1: Define Data Types for Instantiation

The first step in constructing a browser tool is to define data types for instantiating the
BROWSER package. As indicated in Subsection 3.1, the application must supply five data
types when instantiating this package:

• a data type for values that uniquely identify entities;

• a data type for values that uniquely identify relationships;

• a data type for values that uniquely identify collections of entities and relationships;

• a data type for values that distinguish different kinds of entities;

• a data type for values that distinguish different kinds of relationships.

These data types must match the specifications stated in the generic formal part of package
BROWSER. Predefined data types may suffice for some of these, though probably not for
all of them. Even so, you may still wish to declare subtypes of the predefined types (for
example, to make the application code more understandable) rather than use them directly.

The data types specified for the unique identifiers may be anything you desire (scalar types,
arrays, records, whatever), provided that they have a sufficient range of values to guarantee
uniqueness. Normally, the best idea is to use the same data types that the OMS uses for
these identifiers, since the application can then use them to directly query and manipulate
the contents of the OMS. There is, however, a performance consideration that you should be
aware of concerning the choice of these data types: namely, that the amount of memory (in
particular, heap space) used by the application depends somewhat on the amount of memory

'UNIX is a registered trademark of AT&T

Page 15

15 February 1991 STARS-RC-01080/002/00

used to store each identifier. This is a consequence of the fact that the Reusable Graphical
Browser typically has to store a large number of these identifiers.

The data types specified for distinguishing different kinds of entities and relationships must
be scalar types. Enumerated types are typically the best choice for these, although you are
free to use integer or character types if you so desire.

If any of these required data types does not have meaning for your particular application, you
may supply some arbitrary type when instantiating the browser - subject to the constraints
described above. The predefined data types are often handy for these situations.

An example, showing how the UNIX file system browser defines data types for instantiating
the BROWSER package, is given below:

I — Excerpt from application/browser_params.a:

2

3 subtype file_id is file_system.infoptr; — Identified by file system info

4

5 type link_id is — Identified by source and destination file IDs

6 record

7 source : file_id;

8 dest : file.id;

9 end record;

10

II type file.kind is (file, directory, other); — Kinds of UNIX file system

12 — entities

13

14 type link.kind is (structural); — Kinds of UNIX file system relationships

15 — (only one)

The UNIX file system browser declares the type "filejd" to uniquely identify objects main-
tained by the UNIX file system. The identifier, in this case, is an access value that designates
a record containing information about the object. That information is obtained from the
UNIX file system when the browser tool is activated. This browser tool also declares the
type "file_kind" to distinguish between different kinds of objects maintained by the UNIX file
system. Similarly, the type "linkJd" is declared to uniquely identify relationships between
these objects and the type "link_kind" is declared to distinguish between different kinds of
relationships. As you can see, this browser tool defines only one kind of relationship; so all
relationships that the tool deals with must be of this one kind. It uses a predefined type for
the other data type required to instantiate the BROWSER package.

3.2.2 Step 2: Define Subprograms for Instantiation

The second step in constructing a browser tool is to define subprograms that are required
for instantiation of the BROWSER package. As indicated in Subsection 3.1, the application

Page 16

15 February 1991 STARS-RC-01080/002/00

must supply four such subprograms:

• a function for retrieving the attributes of an entity;

• a function for retrieving the attributes of a relationship;

• a function for hashing entity identifiers;

• a function for hashing relationship identifiers.

If any of the identified datatypes is an access type or a private type, additional functions
must be denned to compare values of these types :

• a function for determining whether two values identify the same entity;

• a function for determining whether two values identify the same relationship;

• a function for determining whether two values designate the same collection of entities
and relationships.

These subprograms must match the specifications stated in the generic formal part of package
BROWSER.

The functions for retrieving attributes are only necessary if the Reusable Graphical Browser
is to automatically display the attributes for nodes and arcs when displaying a view. If
this is not the case for your application, simply provide functions that always return a null
attribute string. If, on the other hand, your application does require that the attributes for
nodes and arcs be automatically displayed along with the view, you must provide functions
that retrieve those attributes from the OMS and format them into a single text string. That
string may contain ASCII linefeed (LF) characters to separate individual lines of text.

Similarly, the functions for hashing identifiers are not necessary for all applications. In
particular, they are only necessary for applications that deal with a large number of entities
and/or relationships. If your application falls into that category, you must provide hashing
functions that transform the identifiers into integers between one and the number of hash
buckets (inclusive). If not, simply provide functions that always return a value of one (1).

An example, showing how the UNIX file system browser defines subprograms for instantiating
the BROWSER package, is given below:

1 — Excerpts from application/brovser.params.b.a:
2
3 function get_attributes (— Return attributes of node
4 the.node: file.id — lode ID
5) return string is
6

Page 17

15 February 1991 STARS-RC-01080/002/00

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

begin

Just return nothing

return "";

end get.attributes;

function hash (

the.node: file.id;

number.of.buckets: positive

) return positive is

begin

Return the inode value modulo the number of buckets

— Hash node ID to a bucket number

~ Hode ID

— Humber of buckets

return (positive (the.node.sbuf.st_ino) mod number_of.buckets) + 1;

end hash;

function get.attributes (

the_arc: link.id

) return string is

begin

— Just return nothing

return

end get_attributes;

— Return attributes of arc

~ Arc ID

function hash (

the_arc: link.id;

number.of.buckets: positive

) return positive is

begin

— Hash arc ID to a bucket number

~ Arc ID

— Humber of buckets

Page 18

15 February 1991 STARS-RC-01080/002/00

52
53
54 — Return the inode value of the destination file modulo the number of buckets

55

56

57 return (positive (the_arc.dest.sbuf.st_ino) mod number_of..buckets) + 1;

58

59 end hash;

The functions for retrieving attributes are not necessary for this application. Therefore,
functions that return null attribute string have been provided. The functions for hashing
identifiers were easily constructed by applying modulo arithmetic to the unique identifiers
that UNIX uses to identify the files.

3.2.3 Step 3: Instantiate The BROWSER Package

The third step in constructing a browser tool is to instantiate the BROWSER package.
This is done by declaring an instance of the generic BROWSER package and supplying the
required generic parameters. The BROWSER package has seven formal generic parameters
that are required for instantiation and three that are optional. These parameters are matched
by data types and functions that were defined in steps 1 and 2 - provided that you have
performed those steps correctly.

An example, showing how the UNIX file system browser instantiates the generic BROWSER
package, is given below:

I — Excerpt from application/browser_instance.a:

2

3 with browser;

4 with browser_params;

5

6 package browser_instance is new brow ler (

7 graph_id => integer,

8 — designates_same_graph -> standard."=",

9 node.id => browser.params.file.id,

10 node_kind => browser_params.file_kind,

II designates_same_node => browser.params."=",

12 hash_of_node => browser_params.hash,

13 arc_id => browser_params.link_id,

14 arc_kind => browser_params.link_kind,

15 hash_of_arc => browser.params.hash,

16 de3ignates_same_arc => browser_params."="

17);

~ Graph ID

— Equality operator

-- Mode ID

— Node kind

— Equality operator

— Hash of node ID

~ Arc ID

— Arc kind

— Hash of arc ID

— Equality operator

Page 19

15 February 1991 STARS-RC-01080/002/00

Note that the predefined data type, integer, is specified as the data type for unique identifiers
of collections of entities and relationships (graphs). This choice of data types is arbitrary.
The UNIX file system browser, having no need to communicate with the OMS (in this case
UNIX) concerning collections of entities and relationships, simply uses a predefined type out
of convenience. The other data types specified for instantiation of the BRO WSER package
were defined in step 1. The specified functions were defined in step 2.

3.2.4 Step 4: Define Graphs

The fourth step in constructing a browser tool is to communicate the contents of the OMS
to the Reusable Graphical Browser. This is accomplished by defining one or more graphs
representing collections of entities and relationships contained in (i.e., managed by) the
OMS. First, declare the graphs as objects of type <browserJnstance>.graphs.graph.type
(where <browserJnstance> denotes the name that you have given to your instance of the
BROWSER package). These are the objects that you pass to subprograms that operate
on graphs. Next, initialize these graph objects by calling the <browserJnstance>.graphs.
create„graph procedure for each one. The "estimated_nodes" and "estimated_arcs" param-
eters for this procedure are optional; they are only useful for applications that instan-
tiate the BROWSER package with actual hash functions. After initializing the graphs,
add individual entities (nodes) and relationships (arcs) to them by calling the <browser_
instance>.graphs.add_node and <browser_instance>.graphs.add-arc procedures, respectively.

The following example illustrates this process by showing how the UNIX file system browser
defines a graph for the contents of the directory hierarchy rooted at the current working
directory. Before defining the graph, the UNIX file system browser first preserves the contents
of that directory hierarchy. It does so by querying the UNIX file system and recording the
information in an internal data structure. Once the contents of the directory hierarchy
have been recorded in the internal data structure, a function is invoked to traverse that
data structure and use the information contained therein to define a graph. That function
is the "make_graph" function, listed below. The umake_graph" function makes use of the
"addanode" function, also listed below, to add individual nodes and arcs to the graph.

I — Excerpts from application/utilities_b.a:

2

3 procedure addanode (

4 graph: in out browser_instance.graphs.graph_type;

5 node: in out browser_instance.graphs.node_type;

6 parent: in 1ile_system.inioptr

7) is

8

9 curr: file_system.infoptr; — Child object of interest

10 kid: browser.instance.graphs.node_type; — Created node

II arc: browser.instance.graphs.arc_type; — Created arc

12

Page 20

15 February 1991 STARS-RC-01080/002/00

13 begin

W 15

16 — Walk through the children

17

18
19 curr : = parent.child;

20 while curr /= HULL

21 loop

22

23

24 — Create the child node

25

26
27 browser_instance.graphs.add_node (

28 the_node => kid,

29 with_id => curr,

30 with_name => browser_instance.graphs.node_name (curr.name),

31 of_kind => to_file_kind (curr.sbuf.st_mode.s_ifmt),

32 to_graph => graph);

33
34

^fe — Add an arc between the parent and this node

^P

37

38 browser.instance.graphs.add_arc (

39 the_arc => arc,

40 with_id => browser_params.link_id'(parent, curr),

41 from_node => node,

42 to.node => kid,

43 to.graph => graph);

44
45 arc_count := arc.count - i;

46
47

48 — Recurse if this is a directory

49

50
51 if file_system."/="(curr.child, HULL) then

52 addanode (graph, kid, curr);

53 end if;

54

55 curr := curr.next;

56 end loop;

57

Page 21

15 February 1991 STARS-RC-01080/002/00

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

end addanode;

function make_graph (

root: in file_system.infoptr

) return browser.instance.graphs.graph_type is

graph: brows er_instance.graphs.graph_type;

node: brows er_ inst ance.graphs.node_t ype;

— Graph object created

— Mode object created

begin

Set initial arc count for assigning unique arc IDs:

arc_count := file_system,arc_count;

— Create the graph object

browser.instance.graphs.create.graph (
the_graph =>

with.id =>

estimated_arcs =>

estimatednodes =>

Now create the root node

graph,

1.

positive (file_system.arc_count + 1),

positive (iile_system.node_count));

browser_instance.graphs.add_node (

the.node => node,

with_id => root,

with_name => bro«ser_instance.graphs.node_name (root.name),

of_kind => to_file_kind(root.sbuf.st_mode.s_ifmt),

to_graph => graph);

— Create the rest of the graph from this node's children

addanode (graph, node, root);

return graph;

end make_graph;

Page 22

15 February 1991 STARS-RC-01080/002/00

3.2.5 Step 5: Define Views of Each Graph

The fifth step in constructing a browser tool is to define one or more views of each graph.
Each view delineates a subset of the graph's nodes and arcs to be displayed, and indicates
the manner in which individual nodes and arcs are to be depicted. Each view also specifies,
via callbacks, the behavior of the application in response to selection of these nodes and arcs
by the user. Furthermore, each view provides a list of commands that the user may select
to perform operations on the view.

As mentioned in the preceding section, there are two alternative methods that can be used
to define views.

1. use a utility to automatically select nodes and arcs from a graph and insert them into
the view;

2. directly insert nodes and arcs from a graph into the view, one at a time.

Before you can define a view, you must decide which of these methods to use. Depending
on the application, one method may be more appropriate than another.

Regardless of which method you use, you will have to declare an object of type <browser.
instance>.views.view_type (where <browserJnstance> denotes the name that you've given
to your instance of the BROWSER package) to represent each view. These are the objects
that you pass to subprograms that operate on views.

If you use one of the utilities provided by the <browser_instance>.view_utilities package
(i.e., the first method) to construct the view, you will have to instantiate the utility before
using it. This is necessary because the view construction utilities are generic. The utility for
constructing a view from a graph requires eight generic parameters:

• a function that determines whether or not to include a given node from a graph;

• a function that determines the label for a given node;

• a function that determines the attributes for a given node;

• a function that determines the callback value for a given node;

• a function that determines whether or not to include a given arc from a graph;

• a function that determines the label for a given arc;

• a function that determines the attributes for a given arc;

• a function that determines the callback value for a given arc.

Page 23

15 February 1991 STARS-RC-01080/002/00

These functions must be defined before the view utility can be instantiated.

In order to define functions that determine callback values for the nodes and arcs of a view,
you first have to define all of the callback procedures that may be invoked in response to
selection of the nodes and arcs by the user. These procedures must either be declared as Ada
library units or as subprograms in the outermost scope of a package that is itself a library
unit. Once you have declared the callback procedures, you have to declare an instance of
the <browserJnstance>.callbacks.callback package for each of them. The callback value
designating a particular callback procedure can then be obtained by invoking the function
exported by the corresponding instance of the callback package.

You will also have to define a command fist before defining the view. Every view has a
command list associated with it. To define a command list, first declare an object of type
<browserJnstance>.cmd Jists.cmd Jist.type.
Then, call the <browser jnstance>.cmd_lists.create_cmd_list procedure to initialize the com-
mand list. Also, if there are to be subcommands for any of the commands in the command
list, call the <browser jnstance>.cmd_lists.create_subcmdJist procedure to initialize the sub-
command list for each command. Then, call the <browserJnstance>.cmd_lists.set.cmd
procedure and the <browser_instance>.cmdJists.set_subcmd procedure to define the indi-
vidual commands and subcommands, respectively.

To define a view using the first method, first declare an object of type <browserJnstance>.
views.view.type. Then, invoke an appropriate instance of the <browser_instance>.vie\v_
utilities.construct.view procedure to construct the desired view of a graph. When invoking
this procedure, you must specify four parameters:

• the view object for the view to be constructed;

• the graph object for the graph to use as input;

• the command list object for the command list to be associated with the view;

• a title for the view.

There are also two optional parameters that may be provided to improve performance in
conjunction with a hashing function:

• the estimated number of arcs in the view;

• the estimated number of nodes in the view.

These are only estimates; they need not be exact. They are used to determine the number
of hash buckets for the view.

To define a view using the second method, also declare an object of type <browser_instancc>.
views.view.type. Then, instead of invoking a view utility, invoke the <browser_instance>.

Page 24

15 February 1991 STARS-RC-01080/002/00

views.create_view procedure to initialize the view object. When invoking this procedure,
you must specify the graph that the view is to be a view of, the command list to be as-
sociated with the view and a title for the view. You may also (optionally) specify the
estimated number of arcs and nodes in the view, in order to improve performance. You
may then insert individual nodes and arcs from the graph into the view by calling the
<browser_instance>. views. insert_node procedure to insert each node and the
<browserJnstance>.views.insert_arc procedure to insert each arc.

The following example illustrates the first method described above, by showing how the
UNIX file system browser defines two of its views. Before defining the view, the UNIX file
system browser defines functions for instantiating the view construction utilities. But before
even defining these functions, it must first define all of the callbacks for the nodes and arcs
of the view. The callbacks for nodes and arcs are defined as follows:

I — Excerpts from application/callbacks.b.a

2

3 procedure process.node.selection (

4 to_process_event: in browser.instance.event_ptr

5);
6
7 procedure process_arc_selection (

8 to_process_event: in browser,instance.event_ptr

9);
10
II package node_selection is new browser.instance.callbacks.callback (

12 the_procedure => process_node_selection

13);
14
15 package arc.selection is new browser.instance.callbacks.callback (

16 the.procedure => process_arc_selection

17);

The functions for instantiating the view construction utilities are defined as shown below:

I — Excerpts from application/utilities.b.a:

2

3 function always.true (

4 the.node: browser_instance.graphs.node_type

5) return boolean is

6

7 begin

8 return true;

9 end always.true;

10

II function file.name (

15 February 1991 STARS-RC-01080/002/00

12 the.node: browser.instance.graphs.node.type

13) return browser.instance.views.node.label is

14

15 leaf: file.system.infoptr;

16

17 begin

18 leaf := browser.instance.graphs.id.of (the.node);

19

20 case leal.sbuf.st.mode.s.ifmt is

21

22 when stat.s.unknown =>

23 return browser_instance.views.node_label (leaf.name ft '?');

24

25 when stat.s.ififo =>

26 return browser.instance.views.node.label (leaf.name);

27

28 when stat.s_ifchr =>

29 return browser.instance.views.node.label (leaf.name);

30

31 when stat.s.ifdir =>

32 return browser.instance.views.node_label (leaf.name ft '/');

33

34 when stat.s.ifblk =>

35 return browser.instance.views.node.label (leaf.name);

36

37 when stat.s.ifreg =>

38 if leaf.sbuf.st_mode.s_iezecu or else

39 leaf.sbuf.st_mode.s_iexecg or else

40 leaf.sbuf.st_mode.s_iezeco then

41 return browser.instance.views.node.label (leaf.name ft '*');

42 else

43 return browser.instance.views.node.label (leaf.name);

44 end if;

45

46 when stat.s.ifInk =>

47 return browser.instance.views.node.label (leaf.name ft '#');

48

49 when stat.s.ifsock =>

50 return browser.instance.views.node.label (leaf.name ft '=');

51

52 when others =>

53 return browser.instance.views.node.label (leaf.name);

54

55 end case;

56

Page 26

15 February 1991 STARS-RC-010S0/002/00

57 end iile_name;
58

59 function no_attributes (

60 the_node: browser_instance.graphs.node_type

61) return browser_instance.views.attributes is

62 begin

63 return "";

64 end no_attributes;

65

66 function node.action (

67 the.node: browser.instance.graphs.node.type

68) return browser.instance.callbacks.callback.type is

69

70 begin

71 return callbacks.node.callback;

72 end node.action;

73

74 function always.true (

75 the_arc: browser.instance.graphs.arc_type

76) return boolean is

77

78 begin

79 return true;

80 end always.true;

81

82 function no.label (

83 the_arc: browser.instance.graphs.arc_type

84) return browser_instance.views.arc_label is

85

86 begin

87 return "";

88 end no.label;

89

90 function arc.attributes (

91 the.arc: browser_instance.graphs.arc_type

92) return browser_instance.views.attributes is

93 arc.id : browser.paraos.link.id

94 :■ browser.instance.graphs.id_of (the.arc);

95 begin

96 return browser,instance.views.attributes(

97 "Source: " It arc.id.source.name ft ascii.lf ft

98 "Dest: " ft arc_id.dest.name);

99 end arc.attributes;

15 February 1991 STARS-RC-01080/002/00

102 the_arc: browser.instance.graphs.arc.type

4fc 103) return browser.instance.callbacks.callback_type is

^^ 104

105 begin
106 return callbacks.arc.callback;

107 end arc.action;

108

109 function is_directory (

110 the_node: browser.instance.graphs.node.type

111) return boolean is

112 begin
113 return browser_instance.graphs.kind_of(the_node) = directory;

114 end is_directory;

115
116 function dest_is_directory (
117 the_arc: browser.instance.graphs.arc.type

118) return boolean is
119 begin

120 return browser_instance.graphs.kind_of(

121 browser_instance.graphs.destination_of(the_arc)) = directory;
122 end dest_is_directory;

A The view construction utilities are then instantiated as follows:

1 -
2

3 I

— Excerpts from application/utilities_b.a:

irocedure construct_view_of_all_files is
4 new browser_instance.view_utilities.construct_view (

5 include_node => always_true,

6 label_for_node => file_name,

7 attributes_for_node => no.attributes,

8 action.for.node => node_action,

9 include.arc ~> always.true,

10 label_for_arc => no.label,

11 attributes_for_arc => arc_attributes,

12 action_for_arc => arc.action

13);
14
15 procedure construct_view_of_dir«ctories is

16 new browser_instance.viflw_utilities.construct_view (

17 new browser_instance.view_utilities.construct_view (

18 include.node => is.directory,

19 label_for_node => fila.name,

20 attributes_for_node => no_attribut«s,

• »
action_for_node => node.action,

Page 28

15 February 1991 STARS-RC-01080/002/00

22 include.arc => de8t_is_directory,
23 label.for.arc => no.label,
24 attributes.!or_arc => circ_at tributes,
25 action.for.arc => arc.action
26);

Finally, the views are constructed by invoking the view construction utilities like so:

I — Excerpt from application/utilities_b.a:

2

3 procedure make.full.view (— Make a vies showing all files/directories

4 view : in out browser.instance.views.view.type; — The view to make

5 graph: in browser.instance.graphs.graph_type; — To make it from

6 cmd.list: in browser_instance.cmd_lists.cmd_list_type — For the view

7) is

8 begin

9

10 construct.view.of.all.files (the_view => view,

II of.graph => graph,

12 with_cmd_list => cmd.list,

13 with_title => "All Files",

14 estimated.arcs => file_system.arc_count,

15 estimated_nodes => file.system.node.c^unt);

16

17 end make.full.view;

18

19 procedure make_dir_view (— Make a view showing directories only

20 view : in out browser.instance.views.view_type; — The view to make

21 graph: in browser.instance.graphs.graph_type; — To make it from

22 cmd_list: in browser_instance.cmd_lists.cmd_list_type — For the view

23) is

24 begin

25

26 construct_view_of.directories (the.view => view,

27 of.graph => graph,

28 with.cmd.list => cmd.list,

29 with.title => "Directories Only",

30 estimated.arcs => file.system.arc.count,

31 estimated.nodes => file.system.node.count);

32

33 end make.dir.view;

34

35 — Excerpt from application/main.a

36

37 — Create a view of all files (and directories, etc.).

Page 29

15 February 1991 STARS-RC-01080/002/00

38
39 utilities.make_full_view (

40 view => globals.iull_vista,

41 graph => graph,

42 cmd.list => static_cmds.full_view_cmd_list);

43

44 — Create a view of only the directories.

45

46 utilities.make_dir_view (

47 view => globals.dir_vista,

48 graph => graph,

49 cmd_list => static_cmds.dir_view_cmd.list);

The command lists that are specified in the calls to the view construction utilities are static,
so the UNIX file system browser has predefined them during elaboration of the static_cmds
package. This is done by the following sequence of statements in the package body:

1 — Excerpts from application/static_cmds_b.a
2

3 with browser.instance;

4 with callbacks;

5 pragma elaborate (callbacks);

6 package body static.cmds is

7

8 package cmd.lists renames browser.instance.cmd_lists;

9

10 begin

11

12 — Initialize all static command lists

13

14 init_initial_cmd_list:

15 declare

16 the_cmd_list : cmd_lists.cmd_list_type renames initial_cmd_list;

17 the.callback : constant browser.instance.callbacks.callback.type

18 := browser_instance.callbacks.no_callback;

19 n_cmds : constant := 2;

20 item_l : constant cmd_lists.cmd_item := "Select View";

21 item_2 : constant cmd_lists.cmd_item := "Quit";

22 begin

23 — Create the cmd.list object.

24 cmd_lists.create_cmd_list(the_cmd_list, n.cmds);

25 — Set up the cmd.list callback.
26 cmd_lists.set_action(the_cmd_list, the.callback);
27 — Set the commands.
28 cmd_lists.set_cmd(in_cmd.list => the_cmd_list, the_cmd => 1,

Page 30

15 February 1991 STARS-RC-01080/002/00

29 to.value => item_l);

30 cmd_lists.set_cmd(in_cmd_list => the__md_list, the.cmd => 2,

31 to.value => item_2);

32 end init_initial_cmd_list;

33

34 init.full_view_cmd.list:

35 declare

36 the.cmd.list : cmd.lists.cmd_list_type renames full.view.cmd.list;

37 the.callback : constant browser.instance,callbacks.callback_type

38 := callbacks._ull_view_cmd_list_callback;

39 n.cmds : constant := 3;

= "Filter Vies'

- "Topology";

■ "Quit";

40 item.l : constant cmd_lists.cmd_item

41 item_2 : constant cmd.lists.cmd.item

42 item_3 : constant cmd.lists.cmd.item

43 begin

44 — Create the cmd.list object.

45 cmd_lists.create_cmd_list(the_cmd_list, n.cmds);

46 — Set up the cmd.list callback.

47 cmd_lists.set_action(the_cmd_list, the.callback);

48 — Set the commands.

49 cmd_lists.set_cmd(in.cmd.list => the.cmd.list, the.cmd => 1,

50 to.value => item.l);

51 cmd_lists.set_cmd(in_cmd.list => the.cmd.list, the.cmd => 2,

52 to.value => item_2);

53 cmd_lists.set_cmd(in_cmd_list => the.cmd.list, the.cmd => 3,

54 to.value => item_3);

55 — Initialize subcommand lists.

56 declare

57 cmd.index : constant := 1; — Filter View

58 n_subcmds : constant := 3;

59 subitem.l : constant cmd.lists.cmd.item := "Suppress Files";

60 subitem_2 : constant cmd.lists.cmd.item := "Unsuppress Files";

61 subitem_3 : constant cmd.lists.cmd.item := "Unsuppress All";

62 begin

63 — Create the subcommand list.

64 cmd.lists.create.subcmd.list(the.cmd.list, cmd.index, n.subcmds);

65 — Set the subcommands.

66 cmd_lists.set_subcmd(in_cmd.list -> the.cmd.list, the.cmd => cmd.index,

67 the.subcmd => 1,

68 to.value => subitem_l);

69 cmd_lists.set_8ubcmd(in_cmd_list -> the.cmd.list, the.cmd => cmd_index,

70 the.subcmd => 2,

71 to.value => subitem_2);

72 cmd_lists.set_subcmd(in_cmd_li8t => the.cmd.list, the.cmd => cmd.index,

73 the.subcmd => 3,

Page 31

15 February 1991 STARS-RC-01080/002/00

74 to_value => subitem_3);

75 end;

76 end init_iull_view_cmd_list;

77

78 init_dir_view_cmd_list:

79 declare

80 the_cmd_list : cmd_list8.cmd_list_type renames dir_view_cmd_list;

81 the_callback : constant browser_instance.callbacks.callback_type

82 := callbacks.dir_view_cmd_list_callback;

83 n_cmds : constant := 3;

84 item.l : constant cmd_lists.cmd_item := "Filter View";

85 item_2 : constant cmd_lists.cmd_item :■ "Topology";
86 item_3 : constant cmd_lists.cmd_item := "Quit";

87 begin

88 — Create the cmd_list object.

89 cmd_lists.create_cmd_list(the_cmd_list, n_cmds);

90 — Set up the cmd.list callback.

91 cmd_lists.set_action(the_cmd_list, the.callback);

92 — Set the commands.

93 cmd_lists.set_cmd(in_cmd_list => the_cmd_list, the_cmd => 1,

94 to_value => item_l);

95 cmd_lists.set_cmd(in_cmd_list => the_cmd_list, the_cmd => 2,

96 to_value => item_2);

97 cmd_lists.set_cmd(in_cmd_list => the_cmd_list, the_cmd => 3,

98 to_value => item_3);

99 — Initialize subcommand lists.

100 declare

101 cmd_index : constant := 1; — Filter View

102 n.subcmds : constant := 1;

103 subitem.l : constant cmd_lists.cmd_item := "Unsuppress All";

104 begin

105 — Create the subcommand list.

106 cmd_lists.create_subcmd_list(the_cmd_list, cmd.index, n_subcmds);

107 — Set the subcommands.

108 cmd_lists.set_subcmd(in_cmd_list => the_cmd_list, the_cmd => cmd_index,

109 the.subcmd => 1,

110 to_value => subitem_l);

111 end;

112 end init_dir_view_cmd_list;

113

114 end static.cmds;

Page 32

15 February 1991 STARS-RC-01080/002/00

3.2.6 Step 6: Lay Out Each View

The sixth step in constructing a browser tool is to lay out each view in preparation for
displaying it. The process of laying out a view consists of setting its orientation and assigning
positions (actually display coordinates) to each of the nodes and arcs in the view. This
is typically accomplished by applying an automatic layout algorithm to the view. The
Reusable Graphical Browser predefines utilities that implement four different variations of
one particular layout algorithm. If these predefined layout utilities are suitable for your
needs, you may use them. If not, you can define your own layout utilities using primitive
operations provided by the <browserJnstance>.views package.

The following is an implementation of the original layout algorithm on which the predefined
layout utilities for the Reusable Graphical Browser are based. It is a good example of how
to use the facilities provided by the <browserJnstance>.views package to define a layout
utility. This implementation is not suitable as a layout utility itself, however, because it docs
not lay out arcs.

I procedure isi_grapher (the_view : in out views.view_type) is

2

3 — An implementation of the original layout algorithm on which the

4 — Reusable Graphical Browser's predefined layout utilities are based.

5 — This is a literal implementation of the algorithm stated in a

6 — research report by Gabriel Robins entitled, "The ISI Grapher:

7 — A Portable Tool for Displaying Graphs Pictorially," reprinted from

8 — Proceedings of Symboliikka '87, held in Helsinki, Finland, August

9 — 17-18, 1987. It is available from Information Sciences Institute

10 — (ISI), 4676 Admiralty Way, Marina del Rey, CA 90292-6695, as

II — Report lo. ISI/RS-87-196.

12

13 — Data Objects:

14

15 x_pad : constant := 30; — amount of horizontal spacing between nodes

16 last_y : natural := 0;

17 orientation : constant views.orientation.type := views.horizontal;

18

19 — Specs for procedures needed to instantiate generics:

20

21 procedure zero_y_and_continue (the_node : in views.node_type;

22 continue : out boolean);

23

24 procedure zero_z_and_continue (the_node : in views.node_type;

25 continue : out boolean);

26

27 procedure layout_a_child (the_arc : in views.arc_type;

28 continue : out boolean);

Page 33

15 February 1991 STARS-RC-01080/002/00

29

30 procedure layout_a_parent (the.arc : in views.arc.type;

31 continue : out boolean);

32

33 procedure layout_y_if_root (the.node : in views.node_type;

34 continue : out boolean);

35

36 procedure layout.x.if.leaf (the.node : in views.node_type;

37 continue : out boolean);

38

39 procedure layout_y (the.node : in views.node_type);

40

41 procedure layout.x (the.node : in views.node_type);

42

43 — Generic Instantiations:

44

45 procedure zero.y.ior.all.nodes is

46 new views.iterate_nodes(visit => zero_y_and_continue);

47

48 procedure zero.x.for.all.nodes is

49 new views.iterate_nodes(visit => zero_x_and_continue);

50

51 procedure layout.y_ior_children_of.node is

52 new views.iterate_arcs__rom (visit •;> layout_a_child);

53

54 procedure layout_x_for_parents_o__node is

55 new views.iterate_arcs_to (visit => layout_a_parent);

56

57 procedure layout_y_ior_all_roots is

58 new views.iterate_nodes (visit => layout_y_if_root);

59

60 procedure layout_x_for_all_leaves is

61 new views.iterate.nodes (visit => layout_x_if_leai);

62

63 — Procedure and Function Bodies:

64

65 procedure zero_y_and_continue (the.node : in views.node_type;

66 continue : out boolean) is

67 begin

68 views.set.position (of.node ■> the.node,
69 to.position => (views.get.position(the.node).x.coordinate.O));

70 continue := true;

71 end zero.y.and.continue;

72

73 procedure zero.x.and.continue (the.node : in views.node.type;

Page 34

15 February 1991 STARS-RC-01080/002/00

74 continue : out boolean) is

75 begin

76 views.set.position (of_node => the_node,

77 to.position => (0, views.get_position(the_node).y_coordinate));

78 continue := true;

79 end zero_x_and_continue;

80

81 function is_a_root (the.node : views.node_type) return boolean is

82 begin

83 return views.number_of_arcs_to(the.node) = 0;

84 end is_a_root;

85

86 function is.a.leaf (the.node : views.node_type) return boolean is

87 begin

88 return views.number_of_arcs_from(the_node) = 0;

89 end is_a_leaf;

90

91 procedure layout_y_if_root (the.node : in views.node_type;

92 continue : out boolean) is

93 begin

94 if is_a_root(the_node) then

95 layout_y(the.node);

96 end if;

97 continue := true;

98 end layout_y_if_root;

99

100 procedure layout_x_if_leaf (the.node : in views.node_type;

101 continue : out boolean) is

102 begin

103 if is_a_leaf(the.node) then

104 layout_x(the.node);

105 end if;

106 continue := true;

107 end layout_x_if_leaf;

108

109 procedure layout_a_child (the_arc : in views.arc_type;

110 continue : out boolean) is

111 child : views.node.type := views.destination.of (the.arc);

112 begin

113 layout_y (the.node => child);

114 continue := true;

115 end layout_a_child;

116

117 procedure layout_a_parent (the_arc : in views.arc.type;

118 continue : out boolean) is

Page 35

15 February 1991 STARS-RC-01080/002/00

119 parent : views.node.type := views.source.of(tlie_arc);

120 begin

121 layout.x (the.node => parent);

122 continue := true;

123 end layout_a_parent;

124

125 function has_any_unlayed_out_children(the_node : views.node.type)

126 return boolean is

127 result : boolean := false;

128 procedure check.child (the.arc : in views.arc.type;

129 continue : out boolean) is

130 child : views.node.type := views.destination.of (the.arc);

131 begin

132 if views.get_position(child).y_coordinate = 0 then

133 result := true;

134 continue := false;

135 else

136 continue := true;

137 end if;

138 end check_child;

139 procedure scan.children is

140 new views.iterate.arcs.from (visit => check.child);

141 begin

142 8can_children (the.node => the_node);

143 return result;

144 end has.any.unlayed.out.children;

145

146 function average.y_for_children_of.node (the_node : views.node, ype)

147 return natural is

148 number.of.children : natural := 0;

149 total.y : natural := 0;

150 procedure check.child (the.arc : in views.arc.type;

151 continue : out boolean) is

152 child : views.node.type := views.destination.of (the.arc);

153 begin

154 total.y := total.y + views.get.position(child).y.coordinate;

155 nunber.of.children := number.of.children + 1;

156 continue := true;

157 end check.child;

158 procedure scan.children is

159 new views.iterate.arcs.from (visit => check.child);

160 begin

161 scan_children (the.node -> the.node);

162 return total.y / number.of.children;

163 end average.y.for.children.of.node;

Page 36

15 February 1991 STARS-RC-01080/002/00

164
^B 165 procedure layout.y (the_node : in views.node_type) is

^^ 166 begin

167 if views.get_position(the_node).y_coordinate = 0 then

168 if has_any.unlayed.out.children(the.node) then

169 layout_y_for_children_of.node (the_node);

170 views.set_position(oi_node => the.node,

171 to_position => (views.get_position(the_node).x_coordinate,

172 average_y_for_children_of_node(the_node)));

173 else

174 views.set_position(ol_node => the.node,

175 to.position => (views.get_position(the_node).x.coordinate,

176 last_y + views.get.dimensions(the.node,orientation).height));

177 last.y := views.get_position(the_node).y_coordinate;

178 end if;

179 end if;

180 end layout_y;

181
182 function max_x_plus_width_of.parents (the.node : views.node.type)

183 return natural is

184 max : natural := 0;

185 temp : natural := 0;

4fc 186 procedure check.parent (the.arc : in views.arc_type;

^P 187 continue : out boolean) is

188 parent : views.node.type := views.source.of(the.arc);

189 begin

190 temp := views.get_position(parent).x_coordinate +

191 views.get.dimensions(parent,orientation).width;

192 if temp > max then

193 max := temp;

194 end if;

195 continue : = true;

196 end check.parent;

197 procedure scan.parents is

198 new views.iterate.arcs.to (visit => check.parent);

199 begin

200 scan.parents (the.node => the.node);

201 return max;

202 end max.x.plus.width.of.parents;

203

204 function has.parents (the.node : in views.node.type) return boolean is

205 begin

206 return views.number_of_arcs_to(the_node) /= 0;

J^ 207 end has.parents;

^P 208

Page 37

15 February 1991 STARS-RC-01080/002/00

209 procedure layout_x (the_node : in views.node.type) is

210 begin

211 ii views.get_position(the_node).x.coordinate = 0 then

212 if has_parent8(the_node) then

213 layout_x_for_parents_of_node (the_node);

214 views.set_position(oi_node => the_node,

215 to_position => (max_x_plus_width_of_parents(the_node) + x_pad,

216 views.get_position(the_node).y_coordinate));

217 end if;

218 end if;

219 end layout_x;

220

221 begin

222

223 — Pass 1: Layout all Y coordinates, beginning at each root, and

224 — traversing the graph depth-first.

225

226 zero_y_for_all_nodes (of_the_view => the_view);

227 last_y := 0;

228 layout_y_for_all_roots (of_the_view => the_view);

229

230 — Pass 2: Layout all X coordinates, beginning at each leaf, and

231 — traversing the graph in the other direction (towards the roots)
232 ~ depth-first.

233

234 zero_x_for_all_nodes (of_the_view => the.view);

235 layout_x_for_all_leaves (of_the_view => the.view);

236

237 — Indicate orientation of layout.

238

239 views.set.orientation (of_view => the_view,

240 to_value => orientation);

241

242
243 end isi_grapher;

In order to lay out a view, simply invoke the desired layout algorithm. For example, the
UNIX file system browser lays out three views, using a different layout algorithm for each.
This is done like so:

1 — Excerpts from application/main.a:

2
3 — Lay out the initial (empty) view.
4 — A layout algorithm need not be invoked for an empty view, but its

5 — orientation must still be set before the display routine can be called.

Page 38

15 February 1991 STARS-RC-01080/002/00

6
7 browser.instance.views.set.orientation (of_view => globals.init_vista,

8 to.value => browser_instance.views.horizontal);

9

10 — Lay out the lull vies (all files, directories, etc.).

11

12 browser_instance.layout_algorithms.cyclic_horizontal (

13 the_view => global8.1ull_vista);

14

15 — Lay out the directory view (directories only).

16

17 browser.instance.layout.algorithms.acyclic,vertical (

18 the_view => globals.dir_vista);

Note that the very least that a layout utility must do is to set the view orientation. This
is required even for an empty view. If the view contains any nodes and/or arcs, the layout
utility must also assign coordinates to each and every one of them.

3.2.7 Step 7: Display A View

The seventh step in constructing a browser tool is to display a view. Displaying a view
is a simple matter of invoking the <browser_instance>.views.display.view procedure and
specifying the desired view. The view title and the command list associated with the view
are automatically displayed, and the individual nodes and arcs of the view are automatically
displayed at their assigned positions and using their specified depictions.

The UNIX file system browser, for example, invokes the display_view procedure as follows:

1 — Excerpt from application/main.a:

2
3 browser_instance.views.display.view (the_view => globals.init_vista);

It is possible to display multiple views simultaneously by issuing such a call for each view to
be displayed.

3.2.8 Step 8: Allow User Interaction With The Display

The eighth step in constructing a browser tool is to allow the user to interact with the
displayed view(s). To do so, simply invoke the <browser_instance>.browse procedure.

If callbacks have been predefined for all possible user selections, this procedure never exits.
It just continues processing user selections indefinitely. Each time the user makes a selection,
the browse procedure invokes the appropriate callback procedure to process the selection.

Page 39

15 February 1991 STARS-RC-01080/002/00

If on the other hand there is some selection for which no callback procedure is denned, the
<browserjnstance>.browse procedure will exit when the user makes that selection. In that
case, the application must be prepared to process the selection following the return from
the <browser_instance>.browse procedure. Furthermore, it must reinvoke this procedure in
order to subsequently reenable user interaction.

The UNIX file system browser invokes the browse procedure like so:

I — Excerpt from application/main.a:

2

3 loop

4 browser.instance.browse (exit.event);

5 if brooser_instance.views."="(exit_event.view, globals.init_vista)

6 then — event expected

7 case exit_event.kind is

8 when browser.instance.command_select =>

9 case exit.event.command is

10 Bhen 1 =>

II browser.instance.views.display_menu (

12 the.menu => static_menus.view_menu,

13 for_vies => globals.init.vista);

14 when 2 =>

15 exit;

16 when others =>

17 null;

18 end case;

19 vhen others => — not the expected event

20 text_io.put_line ("Unexpected exit from browser.");

21 text_io.put_line ("Unhandled event: "

22 Jfc broHser_instance.event_kind'image (exit.event.kind));

23 end case;

24 else — unexpected event

25 text_io.put_line ("Unexpected exit from browser.");

26 text_io.put_line ("Unhandled event: "

27 I browser.instance.event.kind'image (exit_event.kind));

28 end if;

29 end loop;

Since the UNIX file system browser does not define a callback procedure for the command
list associated with the initial view, it must process any selections from that command list
following the return from the browse procedure. Any other selections that causes the browse
procedure to exit are treated as unexpected, since callback procedures should have been
defined for all of them.

Page 40

15 February 1991 STARS-RC-01080/002/00

3.2.9 Step 9: Define Responses To User Selections

The nineth step in constructing a browser tool is to define responses to user selections. For
selections for which callback procedures have been defined, this is a matter of specifying the
bodies of the callback procedures. For selections for which no callback procedures have been
defined, it is a matter of specifying the processing to be performed upon return from the
<browser Jnstance>.browse procedure.

Callback procedures may perform whatever processing you want them to perform. Be fore-
warned, however, that while a callback procedure is executing no further user selections can
be processed. Consequently, if your callback procedures perform too much processing, your
tool will not be very responsive to user input.

Similarly, your tool may perform any processing whatsoever between invocations of the
<browser_instance>.browse procedure; but no further selections can be processed until the
next invocation. Therefore, if your tool performs too much processing between invocations
of this procedure, it will not be very responsive to user input.

Here are some of the kinds of processing that you might want to perform in a callback
procedure or upon return from a call to the browse procedure:

• create a menu;

• delete a menu;

• turn a view's topology display on or off;

• filter a view;

• display text;

• prompt for keyboard input;

• display a menu;

• layout or re-layout a view;

• redisplay the current view;

• display a different view;

• erase a view;

• create additional graphs;

• create additional views.

Page 41

15 February 1991 STARS-RC-01080/002/00

The choices at the top of this list involve the least processing; the choices at the bottom
involve the most processing.

We have already looked at an example of how to process selections upon return from the
browse procedure. We will now look at some examples of how to process selections within
callback procedures.

WARNING : One thing you should never do from within a callback procedure is execute a
call to <browserJnstance>.browse. That procedure IS NOT REENTRANT.

In the case of the UNIX file system browser, the callback procedure defined for selection of
nodes displays a static menu of operations that may be applied to the selected node. Which
menu is displayed depends on which kind of node was selected. The body of this callback
procedure looks like the following:

1 — Excerpts from application/callbacks.b.a:

2
3 procedure process_node_selection (

4 to_process_event: in browser_instance.event_ptr

5) is

6 node_kind : constant browser_params.file_kind

7 := browser.instance.graphs.kind_of(

8 browser.instance.views.graph_node_of(to_process_event.node));

9 menu_for_node : browser.instance.menus.menu.type;

10 begin

11

12 case node_kind is

13 when file =>

14 menu_for_node : = static_menus.file_node_menu;

15 when directory =>

16 menu_for_node := static_menus.dir_node_menu;

17 when other =>

18 menu_for_node := static_menus.other_node_menu;

19 end case;

20

21 browser_instance.views.display_menu (the.menu => menu_for.node,

22 for.node => to_process_event.node,

23 of_view => to_process_event.view);

24
25 end process_node_selection;

Upon returning from the node selection callback procedure, the user may then select an item
from the displayed menu. The UNIX file system browser also defines callback procedures for
selections from the node menus. These callback procedures are declared as follows:

1 — Excerpts from application/callbacks.b.a:

Page 42

15 February 1991 STARS-RC-01080/002/00

2
3 procedure process_iile_node_menu_selection (

4 to_process_event: in browser.instance.event_ptr

5);

6

7 procedure process_dir_node_menu_selection (

8 to_process_event: in browser.instance.event_ptr

9);

10

11 procedure process_other_node_menu_selection (

12 to_process_event: in browser_instance.event_ptr

13);

The processing that is performed by the menu callback depends on which item the user
selects. For example, the body of the file node menu callback procedure looks like the
following:

I — Excerpts from application/callbacks_b.a:

2

3 procedure process_iile_node_menu_selection (

4 to_process_event: in browser.instance.event_ptr

5) is

6

7 temp.display : brosser.instance.text.display_type;

8

9 procedure suppress.arc (the_arc : in browser.instance.views.arc_type;

10 continue : out boolean) is

II begin

12 browser_instance.views.set.suppression(of_arc => the.arc,

13 to_value => true);

14 continue := true;

15 end suppress,arc;

16

17 procedure 8uppress_arcs_to_node is

18 new browser.instance.views.iterate_arcs_to (visit => suppress.arc);

19

20 procedure remove.arc (the_arc : in browser.instance.views.arc.type;

21 continue : out boolean) is

22 local.arc : browser.instance.views.arc_type := the.arc;

23 begin

24 browser.instance.views.remove_arc(the_arc => local.arc,

25 irom.view => to_process_event.view);

26 continue := true;

27 end remove.arc;

28

Page 43

15 February 1901 STARS-RC-01080/002/00

29 procedure remove.arcs_to.node is

30 new browser.instance.views.iterate_arcs_to (visit => remove_arc);

31

32 begin

33

34 case to_process_event.n_item is

35 when 1 => — Display Attributes

36 display_node_attributes (to.process.event.n.node);

37 when 2 => — Display Contents

38 declare

39 leaf : f ile.systeoi.infoptr

40 := browser.instance,graphs.id_of (

41 browser,instance.Tiess.graph_node.of (to_process_event.n.node));

42 begin

43 browser.instance.text.display_text (

44 the.display => temp.display,

45 from_file => file_system.full_pathname(leaf),

46 use_title => "Contents of " k string(browser_instance.views.label_of(

47 to.process.event.n_node)),

48 quit_action => text.quit.callback);

49 end;

50 when 3 => — Suppress File

51 browser.instance.views.set_suppression(of_node => to_process_event.n_node,

52 to.value => true);

53 suppress_arcs_to_node (the.node -> to_process_event.n_node);

54 brovser.instance.views.display_view (the_view => to_process_event.view);

55 when 4 => — Delete File

56 remove_arcs_to_node (the.node => to_process_event.n_node);

57 browser.instance.views.remove_node (the.node => to.process.event.n.node,

58 from.view => to.process.event.view);

59 browser.instance.views.display_view (the.view => to.process.event.view);

60 when others =>

61 null;

62 end case;

63

64 end process.file_node_menu_selection;

Page 44

15 February 1991 STARS-RC-01080/002/00

A Appendix: Ada Specifications

The Ada specifications presented herein delineate the applications interface for the Reusable
Graphical Browser. That interface consists of a single Ada package, named BROWSER.
Package BROWSER bundles together all capabilities of the Reusable Graphical Browser. It
is a generic package, and must therefore be instantiated by the application before use.

Within package BROWSER are a number of subpackages. These subpackages, which are
listed below, represent various abstract data types and utilities to manipulate them:

• CALLBACKS - abstract data type for application-defined procedures to be invoked
in response to user actions;

• MENUS - abstract data type for modal menus;

• CMD.LISTS - abstract data type for non-modal (continually selectable) commands;

• GRAPHS - abstract data type for application-defined graph structures;

• VIEWS - abstract data type for graph depiction information;

• TEXT - abstract data type for text to be displayed;

• VIEW-UTILITIES - utilities for constructing and filtering views;

• LAYOUT.ALGORITHMS - utilities for automatically laying out (assigning display
coordinates to) the nodes and arcs in a view.

Extensive comments in the Ada specifications for package BROWSER make it fairly self-
documenting. Unfortunately, these comments also make it difficult to quickly locate a par-
ticular declaration. The following index, which gives the line number of each declaration,
should help considerably in that respect:

54 package browser

72 type event-kind

85 type eventJnfo (incomplete)

87 type event-ptr

91 anticipatecLarcs

92 anticipated_nodes

95 package callbacks

104 type callback-type
108 nojcallback
114 callback-undefined

121 package callback
122 function procJd

Page 45

15 February 1991 STARS-RC-01080/002/00

134 procedure call

150 package menus

158 type menu_type

160 type menu.title

161 type menuJtem

162 subtype itemJndex

166 no_menu
172 menu.undefined

174 menu_overflow

176 no_suchJtem

180 procedure createjnenu

190 procedure deletejnenu

198 procedure setjtem

211 function getJtem

221 function titlejof

228 function number_ofJtemsJn

235 procedure set_action

243 function get.action

259 package cmdJists

270 type cmdJist.type

272 type cmdJtem

274 subtype cmdjndex

278 no.cmdJist

284 cmdjist.undefined

286 cmdJistjoverflow

288 subcmds.already.exist

290 no_such_cmd

295 procedure create.cmdjist

304 procedure createjsubcmd Jist

321 procedure delete.cmdJist

330 procedure deletejsubcmdJist

342 procedure set.cmd

355 procedure setjsubcmd

371 function get.cmd

381 function getjsubcmd

394 function number-ofxmds jn

402 function number_of.subcmdsjof

414 procedure set_action

423 function get..artion

439 package graphs

453 type graph .type

455 type node-type

456 type node_name

458 type arc.type

Page 46

15 February 1991 STARS-RC-01080/002/00

459 type arcjiame

460 type arc.direction

464 no_graph

467 nojiode

470 no^arc
476 graphjtlreadyjsxists

478 graphjiotJbund

479 graph-undefined

481 graphjoverflow

484 node_already_exists

486 node.undefined

488 node_not_found

489 nodeJiasjeferences

492 arcalready.exists

494 arc.undefined

496 arcjiotJbund

500 procedure creatcgraph

516 procedure destroy .graph

527 function is.defined (graph)

533 function id_of (graph)

541 function get_graph

548 procedure add_node

569 procedure deletejiode

585 function is.defined (node)

590 function is-a_memberjof (node)

600 function graphjof (node)

609 function has_references

616 function id.of (node)

623 function namejof (node)

630 function kind.of (node)

637 function get_node

650 procedure iteratejiodes

660 procedure add-arc

690 procedure deletcarc

704 function is_defined (arc)

709 function is-a_memberjof (arc)

719 function graphjof (arc)

728 function id_of (arc)

735 function namejof (arc)

742 function sourccof

750 function destination_of

758 function directionjif

766 function kind.of (arc)

773 function get-arc

786 procedure iterate-arcs

Page 47

15 February 1991 STARS-RC-01080/002/00

809 package views

830 type view .type

831 type view .title

833 type node.type

834 type nodeJabel

836 type arc.type

837 type arclabel

839 type attributes

842 type coordinates.type

848 type dimensions.type

854 type orientation.type

859 no.view

862 no_node
865 no-arc

869 no_attributes

873 view_undefined

875 viewjoverflow

877 view_is.displayed

880 node.undefined

882 node_not_found

883 node_has_references

886 arc.undefined

888 arcnot-found

890 notJaidjout

894 procedure create.view

916 procedure delete.view

929 function is_defined (view)

934 function graph .of

940 function cmdJistjof

948 function titlejof

955 function number.ofjiodesJn

962 function number.oLarcs jn

969 procedure setjorientation

977 function get.orientation

984 procedure set-arrow .spacing

1002 function get_arrow.spacing

1009 procedure set_outdated_flag

1018 function isjoutdated

1025 procedure set.topology.display

1036 function get.topology.display

1043 procedure display.view

1054 function is.displayed

1061 procedure search-view (node)

1073 procedure search.view (arc)

1085 procedure erase.view

Page 48

15 February 1991 STARS-RC-01080/002/00

1093 procedure display-menu (view)

1103 procedure display-menu (node)

1116 procedure displayjnenu (arc)

1132 procedure iterate.views;

1141 procedure insert-node

1165 procedure remove_node

1181 function is.defined (node)

1186 function is_a-member_of (node)

1196 function graphjnode.of

1203 function isjn.view

1213 function view_node_of

1225 function label.of (node)

1233 function has_attributes (node)

1240 procedure refresh-attributes (node)

1249 procedure set_action (node)

1257 function get_action (node)

1265 procedure set.position (node)

1273 function get.position (node)

1280 function get.dimensions (node)

1290 function get .icon-dimensions (node)

1298 procedure setjsuppression (node)

1307 function is_suppressed (node)

1314 function number_of_arcs_from

1321 function number.of_arcs.to

1331 procedure iteratejiodes

1343 procedure insert_arc

1368 procedure removcarc

1382 function is.defined (arc)

1387 function is_a_member_of (arc)

1397 function graph_arc_of

1404 function isjn.view

1414 function view_arc_of

1426 function label.of (arc)

1434 function source_of

1442 function destination^

1450 procedure redirec.t.arc

1470 function has_attributes (arc)

1477 procedure refresh-attributes (arc)

1486 procedure set .action (arc)

1494 function get-action (aTc)

1502 procedure set.position (arc)

1510 function get.position (arc)

1517 function get.dimensions (arc)

1527 function get icon-dimensions (arc)
1535 procedure set-suppression (arc)

Page 49

15 February 1991 STARS-RC-010S0/002/00

1544 function is.suppressed (arc)

1554 procedure iterate_arcs

1567 procedure iterate_arcs_from

1580 procedure iterate_arcs_to

1605 package text

1612 type buffer_type

1614 type display .type

1615 type display Jcind

1619 buffer-undefined

1620 buffer-overflow

1622 bufferJn.use

1624 display-undefined

1625 display-overflow

1627 wrong.displayJdnd

1632 no-display

1636 no.buffer

1640 max.inputJengch

1644 procedure create.bufier

1652 procedure delete.buffer

1663 procedure clear-buffer

1668 procedure append

1677 procedure appendJine

1686 procedure newjine

1695 function length.of

1701 function contents.of

1709 procedure display .text (buffer)

1726 procedure display .text (file)

1742 procedure erase.text

1752 procedure refreph.text

1759 function kind_of

1766 function get.buffer

1775 function getJile

1786 procedure display .alert

1793 procedure prompt Jor.input

182' package view.utilities

1852 procedure construct.view

1903 orocedure refresh.view

1932 procedure filter.view

1946 package layout-algorithms

1953 procedure cyclic-horizontal

1969 procedure acyclic-horizontal

1986 procedure cyclic-vertical

2003 procedure acyclic.vertical

2025 type eventJnfo (completed)

Page 50

15 February 1991 STARS-RC-01080/002/00

2066 procedure initialize

2074 procedure browse

2089 procedure quit;

1 —
2 — START OF REUSABLE BROWSER PACKAGE SPEC

3 ~
4 with system;

5 with x_windowc;

6 WITH TEXT_I0; — for stubs of unimplemented routines

7 WITH TBD; ~ ditto

8 with intrinsics;

9 with shell_public;

10 with command.public;

11 with node.public;

12 with arc_public;

13 with label_public;

14 with viewport_public;

15 with xw_bboard_public;

16 PRAGMA ELABORATE(TEXT_I0, TBD, intrinsics, shell.public, command.public,

17 node_public, arc.public, label_public, viewport_public,

18 xw_bboard_public); — ditto

19 generic

20

21 — Imported information about the instantiating application's graph objects.

22

23 type graph.id is private; — uniquely identifies the instantiator's graphs

24 with function designates_same_graph (graph_a, graph_b : graph.id)

25 return boolean is "=";

26

27 — Imported information about the instantiating application's node objects.

28

29 type node.id is private; — uniquely identifies the instantiator's nodes

30 type node.kind is (<>); — differentiates between different kinds of nodes

31 with function designates_same_node (node.a, node_b : node.id)

32 return boolean is "=";

33

34 — Imported information about the instantiating application's arc objects.

35

36 type arc.id is private; — uniquely identifies the instantiator's arcs

37 type arc.kind is (<>); — differentiates between different kinds of arcs

38 with function designates.same.arc (arc_a, arc.b : arc.id)

39 return boolean is "=";

40

Page 51

15 February 1991 STARS-RC-01080/002/00

41 — Imported hash functions, for improving performance when constructing

42 — views with large numbers of nodes and arcs.

43

44 with function hash_of_node (the.node : node.id;

45 number_of_buckets : positive) return positive;

46 — maps node IDs into integers in the range 1..number_of.buckets with

47 — a linear (or near-linear) distribution.

48

49 with function hash_of_arc (the_arc : arc_id;

50 number.of.buckets : positive) return positive;

51 — maps arc IDs into integers in the range 1..number.of.buckets vith

52 — a linear (or near-linear) distribution.

53

54 package browser is

55

56 — A reusable graphical browser, capable of browsing over any object

57 — management system whose objects and the relationships among them can

58 — be depicted as a directed graph. It supports application-defined

59 — data types for unique node and arc identifiers. It also supports

60 — application-defined data types for distinguishing between different

61 — kinds of nodes and arcs. It supports the association of

62 — application-defined attributes with individual nodes and arcs. And

63 — lastly, it supports tuning of translations between objects in the

64 — application domain and those in the browser domain.

65

66

67 — Browser Global Types:

68

69 — Events are user actions that are reported to the application by the

70 — reusable browser. The following type defines the kinds of events

71 — that are reported.

72 type event_kind is (position_select,

73 command.select,

74 subcommand.select,

75 menu.item.select,

76 node.menu.item.select,

77 arc.menu.item.select,

78 menu.cancel,

79 node.select,

80 arc.select,

81 text.quit,

82 string.input,

83 input.cancel,

84 browser.quit);

85 type event.info (kind : event.kind

Page 52

15 February 1991 STARS-RC-01080/002/00

86 := event_kind'first); — describes the event in detail

87 type event_ptr is access event_info; — points to an event description

88

89 — Browser Global Constants:

90

91 anticipated.arcs : constant := 100; — optimized for this many by default

92 anticipated.nodes : constant := 100; — optimized for this many by default

93

94

95 package callbacks is

96

97 — Abstraction for callback procedure type. This abstraction allows the

98 — the application to define procedures that sill handle specific user

99 — actions (events).

100

101

102 — Types:

103

104 type callback.type is private; — a handle for callback procedures

105

106 — Constants:

107

108 no.callback : constant callback_type; — a value corresponding to no

109 — callback procedure; all objects of type callback_type are initialized

110 — to this value by default.

Ill

112 — Exceptions:

113

114 callback_undefined : exception; — an attempt was made to call an undefined

115 — callback procedure

116

117 — Operations:

118

119 generic

120 with procedure the_procedure (to_process_event : in event_ptr);

121 package callback is

122 function proc.id return callback.type;

123 end callback;

124

125 — Synopsis: Instantiation of this package defines a callback procedure.

126 — The generic parameter is the procedure to serve as a callback procedure.

127 — The function proc_id returns a handle that can be used to refer

128 — to the procedure (i.e., for the purpose of assigning it to process a

129 — particular event).

130 ~ WARIIIG: THE SPECIFIED PROCEDURE MUST NOT BE NESTED WITHIN ANOTHER

Page 53

15 February 1991 STARS-RC-01080/002/00

131 ~ PROCEDURE OR A TASK. OTHERWISE, A PROGRAM.ERROR EXCEPTION HAY BE RAISED

132 — WHEM IT IS IIVOKED VIA "CALL".

133

134 procedure call (the_proc_id : in callback_type;

135 to_process_event : in event_ptr);

136

137 — Synopsis: This procedure is used to invoke a callback procedure.

138 — It calls the specified procedure, passing it the specified event to

139 — process.

140 — If the specified procedure has not been defined as a callback procedure,

141 — callback.undefined is raised.

142

143 private

144 type callback.rep;

145 type callback.type is access callback_rep;

146 no.callback : constant callback.type := null;

147 end callbacks;

148

149

150 package menus is

151

152 — Nodal menus to be displayed (popped-up) by the browser, and from which

153 — user selections are to be immediately obtained.

154

155

156 — Types:

157

158 typ* menu.type is private; — abstract type for a menu

159

160 typ* menu.title is new string; — menu title to be displayed

161 type menu.item is new string; — item in a menu

162 subtype item.index is positive; — position of an item in a menu

163

164 — Constants:

165

166 no.menu : constant menu.type; — a value for an undefined menu;

167 — all objects of type menu.type are initialized to this value by

168 — default, and are set to this value when deleted.

169

170 — Exceptions:

171

172 menu.undefined : exception; — the specified menu has not been defined

173 — or is no longer defined

174 menu.overflow : exception; — there are insufficient resources available

175 — to create or expand the menu

Page 54

15 February 1991 STARS-RC-01080/002/00

176 no_such_item : exception; — there is no such item in the specified menu
177
178 — Operations:

179

180 procedure create.menu (the_nenu : in out menu.type;

181 with_title : in menu.title;

182 number.of.items : in positive);

183

184 — Synopsis: This procedure creates a menu with the specified number

185 — of items and gives it the specified title. The menu is initially

186 — empty (i.e., all of the items are blank).

187 — Menu.overflow is raised if there are insufficient resources available

188 — to create the menu.

189

190 procedure delete.menu (the.menu : in out menu.type);

191

192 — Synopsis: This procedure deletes the specified menu.

193 — If the specified menu is not defined to begin with,

194 — menu.undefined is raised.

195 ~ WARNING: THIS OPERATION MAY LEAVE DANGLING REFERENCES, IF THE

196 ~ APPLICATION HAS CREATED MULTIPLE ALIASES FOR THE MENU VIA ASSIGNMENT.

197

198 procedure set.item (in_menu : in menu.type;

199 the.item : in item.index;

200 to_value : in menu.item);

201

202 — Synopsis: This procedure sets the specified item in the specified

203 — menu to the specified value.

204 — If the specified menu has not been defined or has been deleted,

205 — menu.undefined is raised.

206 — If there is no such item as the specified item in the menu,

207 — no_such_item is raised.

208 — Menu.overflow is raised if there are insufficient resources available

209 — to add the item to the menu.

210

211 function get_item (from.menu : menu.type;

212 the.item : item.index) return menu.item;

213

214 — Synopsis: This function returns the specified item from the specified

215 — menu.

216 — If the specified menu has not been defined or has been deleted,

217 — menu.undefined is raised.

218 — If there is no such item as the specified item in the menu,

219 — no_such_item is raised.

220

Page 55

15 February 1991 STARS-RC-01080/002/00

221 function title_of (the.menu : menu.type) return menu.title;

222
223 — Synopsis: This function returns the title of the specified
224 — menu.
225 — If the specified menu has not been defined or has been deleted,

226 — menu_undefined is raised.

227

228 function number_of_items_in (the_menu : menu.type) return positive;

229

230 — Synopsis: This function returns the number of items in the specified

231 — menu.

232 — If the specified menu has not been defined or has been deleted,

233 — menu.undefined is raised.

234

235 procedure set_action (the.menu : in menu.type;

236 the_action : in callbacks.callback_type);

237

238 — Synopsis: This procedure defines a callback procedure to be invoked

239 — automatically when the user selects an item from the specified menu.

240 — If the specified menu has not been defined or has been deleted,

241 — menu.undefined is raised.

242

243 function get_action (the.menu : menu.type)

244 return callbacks.callback.type;

245

246 — Synopsis: This function returns the previously defined callback

247 — procedure for the specified menu.

248 — If the specified menu has not been defined or has been deleted,

249 — menu.undefined is raised.

250

251 private

252 type menu.structure (number.of.items : positive); — full type declaration

253 — deferred to the package body

254 type menu.type is access menu.structure;

255 no.menu : constant menu.type := null;

256 end menus;

257

258

259 package cmd.lists is

260

261 — Non-modal (continually selectable) commands to be associated with

262 — individual browser views, specifying operations that may be

263 — performed in those views at any time. A two-level hierarchy

264 — of commands is supported, consisting of top-level commands and their

265 — associated subcommands (if any).

Page 56

15 February 1991 STARS-RC-01080/002/00

266

267

268 ~ Types:

269

270 type cmd_list_type is private; — abstract type for a list of commands
271

272 type cmd.item is new string; — item in a command list

273

274 subtype cmd_index is positive; — position of a command in a list

275

276 — Constants:

277

278 no_cmd_list : constant cmd_list_type; — a value for an undefined command

279 — list; all objects of type cmd_list_type are initialized to this value

280 — by default, and are set to this value vhen deleted.

281

282 — Exceptions:

283

284 cmd_list_undefined : exception; — the specified command list has not been

285 — defined or is no longer defined

286 cmd_list_overflow : exception; — there are insufficient resources available

287 — to create or expand the command list

288 subcmds_already_exist : exception; — a subcommand list already exists for

289 — the specified command

290 no_such_cmd : exception; — there is no such command in the specified

291 — command list

292

293 — Operations:

294

295 procedure create_cmd_list (the_cmd_list : in out cmd_list_type;

296 number.of.cmds : in positive);

297

298 — Synopsis: This procedure creates a command list with room for the

299 — specified number of commands. The list is initially empty (i.e., all

300 — of the items are blank).

301 — Cmd_list_overflow is raised if there are insufficient resources available

302 — to create the command list.

303

304 procedure create_subcmd_list (the_cmd_list : in cmd_list_type;

305 the.cmd : in cmd_index;

306 number_of_subcmds : in positive);

307

308 — Synopsis: This procedure creates a subcommand list associated with

309 — the specified command and with room for the specified number of

310 — subcommands. The list is initially empty (i.e., all of the items

Page 57

15 February 1991 STARS-RC-01080/002/00

311 — are blank).

312 — If the specified command list has not been defined or has been deleted,

313 — cmd_list_undefined is raised.

314 — If there is no such command as the specified command in the command list,

315 — no_such_cmd is raised.

316 — If a subcommand list already exists for the specified command,

317 — subcmds_already_exist is raised.

318 — Cmd.list.overflow is raised if there are insufficient resources available

319 — to create the subcommand list.

320

321 procedure delete_cmd_list (the_cmd_list : in out cmd.list.type);

322

323 — Synopsis: This procedure deletes the specified command list.

324 — If the specified command list is not defined to begin with,

325 — cmd_list_undefined is raised.

326 ~ WARHIMG: THIS OPERATION MAY LEAVE DANGLING REFERENCES, IF THE

327 ~ APPLICATION HAS CREATED MULTIPLE ALIASES FOR THE COMMAND LIST VIA

328 ~ ASSIGNMENT.

329

330 procedure delete_subcmd_list (the.cmd.list : in cmd_list_type;

331 the.cmd : in cmd_index);

332

333 — Synopsis: This procedure deletes the list of subcommands associated

334 — with the specified command.

335 — If the specified command list has not been defined or has been deleted,

336 — cmd_list_undefined is raised.

337 — If there is no such command as the specified command in the command list,

338 — no_such_cmd is raised.

339 — If the specified subcommand list is not defined to begin with,

340 — cmd.list.undefined is raised.

341

342 procedure set.cmd (in_cmd_list : in cmd.list.type;

343 the.cmd : in cmd.index;

344 to.value : in cmd_item);

345

346 — Synopsis: This procedure sets the specified command in the specified

347 — command list to the specified value.

348 — If the specified command list has not been defined or has been deleted,

349 — cmd.list.undefined is raised.

350 — If there is no such command as the specified command in the command list,

351 — no_such.cmd is raised.

352 — Cmd.list.overflow is raised if there are insufficient resources available

353 — to add the command to the command list.

354

355 procedure set.subcmd (in.cmd.list : in cmd.list.type;

Page 58

15 February 1991 STARS-RC-01080/002/00

356 the.cmd : in cmd_index;

357 the.subcmd : in cmd_index;

358 to.value : in cmd.item);

359

360 — Synopsis: This procedure sets the specified subcommand (of the

361 — specified command) in the specified command list to the specified value.

362 — If the specified command list has not been defined or has been deleted,

363 — cmd_list_undefined is raised.

364 — If there is no such command as the specified command in the command list,

365 — no_such_cmd is raised.

366 — If there is no such subcommand as the specified subcommand in the

367 — command list, no_such.cmd is raised.

368 — Cmd.list.overflos is raised if there are insufficient resources available

369 — to add the subcommand to the command list.

370

371 function get.cmd (from_cmd_list : cmd_list_type;

372 the_cmd : cmd_index) return cmd_item;

373

374 — Synopsis: This function returns the specified command from the

375 — specified command list.

376 — If the specified command list has not been defined or has been deleted,

377 — cmd_list.undefined is raised.

378 — If there is no such command as the specified command in the command list,

379 — no_such_cmd is raised.

380

381 function get.subcmd (from_cmd_list : cmd_list_type;

382 the.cmd : cmd.index;

383 the_subcmd : cmd_index) return cmd.item;

384

385 — Synopsis: This function returns the specified subcommand (of the

386 — specified command) from the specified command list.

387 — If the specified command list has not been defined or has been deleted,

388 — cmd.list.undefined is raised.

389 — If there is no such command as the specified command in the command list,

390 — no_such.cmd is raised.

391 — If there is no such subcommand as the specified subcommand in the

392 — command list, no_such.cmd is raised.

393

394 function number.of.cmds.in (the.cmd.list : cmd.list.type)

395 return positive;

396

397 — Synopsis: This function returns the number of top-level commands in

398 — the specified command list.

399 — If the specified command list has not been defined or has been deleted,

400 — cmd.list.undefined is raised.

Page 59

15 February 1991 STARS-RC-01080/002/00

401
402 function number_of_subcmds_of (the_cmd_list : cmd_list_type;

403 the_cmd : cmd_index)

404 return natural;

405

406 — Synopsis: This function returns the number of subcommands associated

407 — with the specified command. If there are no subcommands of the specified

408 — command in the specified command list, zero (0) is returned.

409 — If the specified command list has not been defined or has been deleted,

410 — cmd.list.undefined is raised.

411 — If there is no such command as the specified command in the command list,

412 — no_such_cmd is raised.

413

414 procedure set.action (the_cmd_list : in cmd_list_type;

415 the_action : in callbacks.callback_type);

416

417 — Synopsis: This procedure defines a callback procedure to be invoked

418 — automatically when the user selects an item from the specified command

419 -- list.

420 — If the specified command list has not been defined or has been deleted,

421 — cmd_list_undefined is raised.

422

423 function get.action (the_cmd_list : cmd_list_type)

424 return callbacks.callback.type;

425

426 — Synopsis: This function returns the previously defined callback

427 — procedure for the specified command list.

428 — If the specified command list has not been defined or has been deleted,
■

429 — cmd_list.undefined is raised.

430

431 private

432 typ® cmd_list_structure (number.of.cmds : positive); — full type

433 — declaration deferred to the package body

434 type cmd_list_type is access cmd_list_structure;

435 no_cmd_list : constant cmd_list_type := null;

436 end cmd.lists;

437

438

439 package graphs is

440

441 — Graph structures defined by the application. A graph structure

442 — consists of a collection of of nodes and the arcs connecting them.

443 — The reusable browser caches the application-defined unique identifier

444 — (ID) associated with each node and each arc, as veil as the

445 — application-defined kind indication for each node and each arc.

Page 60

15 February 1991 STARS-RC-01080/002/00

446 — The purpose of the graph structure is to translate between objects

447 — in the browser domain and those in the application domain, and to

448 — facilitate the construction and maintenance of views.

449

450

451 — Types:

452

453 type graph_type is private; — abstract type for a graph definition

454

455 type node_type is private; — abstract type for a node

456 type node.name is new string; — the textual name associated with a node

457

458 typo arc_type is private; — abstract type for an arc

459 type arc.name is new string; — the textual name associated with an arc

460 type arc_direction is (onti_way, two_ways);

461

462 — Constants:

463

464 no_graph : constant graph_type; — a value for an undefined graph;

465 — all objects of type graph_type are initialized to this value

466 — by default, and are set to this value when deleted.

467 nc.node : constant node_type; — a value for an undefined node;

468 — all objects of type node_type are initialized to this value

469 — by default, and are set to this value when deleted.

470 no_arc : constant arc_type; — a value for an undefined arc;

471 — all objects of type arc_type are initialized to this value

472 — by default, and are set to this value when deleted.

473

474 — Exceptions:

475

476 graph_already_exists : exception; — a graph with the specified ID already

477 — exists

478 graph_not_found : exception; — the specified graph could not be found

479 graph.undefined : exception; — the specified graph has not been defined or

480 — is no longer defined

481 graph.overflow : exception; — there are insufficient resources available

482 — to create or expand the graph

483

484 node_already_exists : exception; — a node with the specified ID already

485 — exists

486 node_undefined : exception; — the specified node has not been defined or

487 — is no longer defined

488 node_not_found : exception; — the specified node could not be found

489 node_has_references : exception; — the specified node cannot be deleted,

490 — because it is referenced by one or more arcs

Page 61

15 February 1991 STARS-RC-01080/002/00

491
492 arc_already_exists : exception; — an arc with the specified ID already

493 — exists

494 arc.undefined : exception; — the specified arc has not been defined or

495 — is no longer defined

496 arc_not_found : exception; — the specified arc could not be found

497

498 — Graph Operations:

499

500 procedure create.graph (the_graph : in out graph_type;

501 with_id : in graph.id;

502 estimated_arcs : in positive

503 := anticipated_arcs;

504 estimated.nodes : in positive

505 := anticipated_nodes);

506

507 — Synopsis: This procedure creates a graph definition having the

508 — specified ID. The translation of objects from the application domain

509 — into objects in the browser domain is optimized for a graph having

510 — the estimated number of arcs and nodes.

511 — Attempting to create a second graph definition with the same ID

512 — raises graph_already_exists.

513 — Graph_overflow is raised if there are insufficient resources available

514 — to create the graph definition.

515

516 procedure destroy_graph (the_graph : in out graph_type);

517

518 — Synopsis: This procedure destroys the specified graph definition.

519 — All arcs and nodes are deleted from the graph, and the graph becomes

520 — undefined.

521 — If the specified graph is not defined to begin with, graph.undefined

522 — is raised.

523 — WARNING: THIS OPERATION MAY LEAVE DANGLING REFERENCES, IF THE

524 ~ APPLICATION HAS CREATED MULTIPLE ALIASES FOR THE GRAPH OR FOR ANY

525 — OF ITS NODES OR ARCS VIA ASSIGNMENT.

526

527 function is.defined (the_graph : graph_type) return boolean;

528

529 — Synopsis: This function indicates whether or not the specified graph

530 — definition is currently defined (i.e., whether or not it currently

531 — exists).

532

533 function id_of (the_graph : graph_type) return graph_id;

534

535 — Synopsis: This function returns the ID of the specified graph

Page 62

15 February 1991 STARS-RC-01080/002/00

536 — definition (i.e., the ID that was specified when the graph definition

537 — was created).

538 — If the specified graph definition has not been defined or has been

539 — destroyed, graph_undefined is raised.

540

541 function get.graph (with_id : graph.id) return graph_type;

542

543 — Synopsis: This function returns the graph having the specified ID.

544 — If there is no such graph, graph_not_found is raised.

545

546 — Hode Operations:

547

548 procedure add.node (the_node : in out node_type;

549 with_id : in node_id;

550 with_name : in node.name

551 := "";

552 of_kind : in node_kind

553 := node_kind'first;

554 to_graph : in graph_type);

555

556 — Synopsis: This procedure defines a node having the specified ID

557 — and name, and distinguished as being of the specified kind, and adds

558 — it to the specified graph definition.

559 — Note that the node kind defaults to the base value of the node.kind

560 — type. This is useful for applications where there is no notion of

561 — node kind (i.e., where all nodes are of the same kind).

562 — If the specified graph definition has not been defined or has been

563 — destroyed, graph.undefined is raised.

564 — Attempting to add a second node with the same ID to the same graph

565 — raises node_already_exists.

566 — Graph.overflow is raised if there are insufficient resources available

567 — to add the node.

568

569 procedure delete.node (the.node : in out node_type;

570 from_graph : in graph_type);

571

572 — Synopsis: This procedure deletes the specified node from the specified

573 — graph. The specified node is deleted and becomes undefined.

574 — If the specified graph definition has not been defined or has been

575 — destroyed, graph.undefined is raised.

576 — If the specified node is not defined to begin with, node_undefined

577 — is raised.

578 — If there is no such node in the specified graph, node_not_found

579 — is raised.

580 — If the specified node is referenced by any arcs (as either a source

Page 63

15 February 1991 STARS-RC-01080/002/00

581 — node or a destination node), node.has.references is raised.

582 — WARIIIG: THIS OPERATIOI NAY LEAVE DANGLING REFERENCES, IF THE

583 ~ APPLICATIOI HAS CREATED MULTIPLE ALIASES FOR THE NODE VIA ASSIGNMENT.

584

585 function is.defined (the.node : node.type) return boolean;

586

587 — Synopsis: This function indicates whether or not the specified node is

588 — currently defined.

589

590 function is_a_member_of(the.node : node.type;

591 the_graph : graph_type) return boolean;

592

593 — Synopsis: This function indicates whether or not the specified node is

594 — a member of the specified graph.

595 — If the specified graph definition has not been defined or has been

596 — destroyed, graph.undefined is raised.

597 — If the specified node has not been defined or has been deleted,

598 — node.undefined is raised.

599

600 function graph_of (the.node : node_type) return graph_type;

601

602 — Synopsis: This function returns the graph that the node was originally

603 ~ added to.

604 — If the specified node has not been defined or has been deleted,

605 — node_undefined is raised.

606 — If the graph's definition has been destroyed, graph.undefined is

607 — raised.

608

609 function has.references (the.node : node.type) return boolean;

610

611 — Synopsis: This function indicates whether or not there are any arcs

612 — currently referencing the specified node.

613 — If the specified node has not been defined or has been deleted,

614 — node.undefined is raised.

615

616 function id.of (the.node : node.type) return node.id;

617

618 — Synopsis: This function returns the ID of the specified node (i.e.,

619 — the ID that was specified when the node was defined).

620 — If the specified node has not been defined or has been deleted,

621 — node.undefined is raised.

622

623 function name.of (the.node : node.type) return node.name;

624

625 — Synopsis: This function returns the name of the specified node (i.e.,

Page 64

15 February 1991 STARS-RC-01080/002/00

626 — the name that was specified when the node was defined).

627 — If the specified node has not been defined or has been deleted,

628 — node_undefined is raised.

629

630 function kind_of (the_node : node.type) return node_kind;

631

632 — Synopsis: This function returns the kind of the specified node (i.e.,

633 — the node kind that was specified when the node was defined).

634 — If the specified node has not been defined or has been deleted,

635 — node_undefined is raised.

636

637 function get.node (with_id : node_id;

638 from_graph : graph_type) return node_type;

639

640 — Synopsis: This function returns the node having the specified ID

641 — from the specified graph.

642 — If the specified graph definition has not been defined or has been

643 — destroyed, graph_undefined is raised.

644 — If there is no such node in the specified graph, node_not_found

645 — is raised.

646

647 generic

648 with procedure visit (the.node : in node.type;

649 continue : out boolean);

650 procedure iterate.nodes (of_the_graph : in graph.type);

651

652 — Synopsis: This procedure "visits" each node of the graph, executing

653 — the specified "visit" procedure for each node. The iteration order

654 — is not defined.

655 — If the specified graph definition has not been defined or has been

656 — destroyed, graph.undefined is raised.

657

658 — Arc Operations:

659

660 procedure add.arc (the_arc : in out arc.type;

661 with_id : in arc_id;

662 with_name : in arc.name

663 := "";

664 from_node : in node_type;

665 to_node : in node_type;

666 directed : in arc.direction

667 :* one_way;

668 of.kind : in arcjcind
669 := arcjcind'first;
670 to.graph : in graph_type);

Page 65

15 February 1991 STARS-RC-01080/002/00

671
672 — Synopsis: This procedure defines an arc having the specified ID

673 — and name, connecting the specified nodes in the implied direction(s),

674 — and distinguished as being of the specified kind, and adds it to

675 — the specified graph definition.

676 — lote that if no arc direction is specified, the arc is assumed to be

677 — unidirectional (emanating from from_node and terminating at to_node).

678 — lote also that the arc kind defaults to the base value of the arcjcind

679 — type. This is useful for applications where there is no notion of

680 — arc kind (i.e., where all arcs are of the same kind).

681 — If the specified graph definition has not been defined or has been ,

682 — destroyed, graph.undefined is raised.

683 — Attempting to add a second arc with the same ID to the same graph

684 — raises arc_already_exists.

685 — If either of the specified nodes has not been defined as a member of

686 — the specified graph or has been deleted, node.undefined is raised.

687 — Graph_overflow is raised if there are insufficient resources available

688 — to add the arc.

689

690 procedure delete.arc (the_arc : in out arc_type;

691 from_graph : in graph_type);

692

693 — Synopsis: This procedure deletes the specified arc from the specified

694 — graph. The specified arc is deleted and becomes undefined.

695 — If the specified graph definition has not been defined or has been

696 — destroyed, graph.undefined is raised.

697 — If the specified arc is not defined to begin with, arc_undefined

698 — is raised.

699 — If there is no such arc in the specified graph, arc_not_found

700 — is raised.

701 ~ VARIIIG: THIS 0PERATI0I MAY LEAVE DANGLING REFERENCES, IF THE

702 — APPLICATIOM HAS CREATED MULTIPLE ALIASES FOR THE ARC VIA ASSIGNMENT.

703

704 function is.defined (the.arc : arc_type) return boolean;

705

706 — Synopsis: This function indicates whether or not the specified arc is

707 — currently defined.

708

709 function is_a_member_of(the.arc : arc_type;

710 the_graph : graph_type) return boolean;

711

712 — Synopsis: This function indicates whether or not the specified arc is

713 — a member of the specified graph.

714 — If the specified graph definition has not been defined or has been

715 — destroyed, graph.undefined is raised.

Page 66

15 February 1991 STARS-RC-01080/002/00

716 — If the specified axe has not been defined or has been deleted,

717 — arc.undefined is raised.

718

719 function graph_of (the.arc : arc.type) return graph_type;

720

721 — Synopsis: This function returns the graph that the arc was originally

722 — added to.

723 — If the specified arc has not been defined or has been deleted,

724 — arc.undefined is raised.

725 — If the graph's definition has been destroyed, graph.undefined is

726 — raised.

727

728 function id_of (the.arc : arc_type) return arc_id;

729

730 — Synopsis: This function returns the ID of the specified arc (i.e.,

731 — the ID that was specified when the arc was defined).

732 — If the specified arc has not been defined or has been deleted,

733 — arc_undefined is raised.

734

735 function name.of (the_arc : arc_type) return arc_name;

736

737 — Synopsis: This function returns the name of the specified arc (i.e.,

738 — the name that was specified when the arc was defined).

739 — If the specified arc has not been defined or has been deleted,

740 — axc.undefined is raised.

741

742 function source_of (the.arc : arc_type) return node_type;

743

744 — Synopsis: This function returns the source node of the specified

745 — arc (i.e., the node that was specified as from.node when the arc

746 — was defined).

747 — If the specified arc has not been defined or has been deleted,

748 — arc.undefined is raised.

749

750 function destination.of (the_arc : arc_type) return node.type;

751

752 — Synopsis: This function returns the destination node of the specified

753 — arc (i.e., the node that was specified as to.node when the arc was

754 — defined).

755 — If the specified arc has not been defined or has been deleted,

756 — arc.undefined is raised.

757

758 function direction.of (the.arc : arc.type) return arc rection;

759

760 — Synopsis: This function returns the direction of the specified arc

Page 67

15 February 1991 STARS-RC-01080/002/00

761 — (i.e., the direction that was specified when the arc was defined).

762 — This indicates whether the arc is unidirectional or bidirectional.

763 — If the specified arc has not been defined or has been deleted,

764 — arc.undefined is raised.

765

766 function kind.of (the_arc : arc_type) return arc_kind;

767

768 — Synopsis: This function returns the kind of the specified arc (i.e.,

769 — the arc kind that was specified when the arc was defined).

770 — If the specified arc has not been defined or has been deleted,

771 — arc.undefined is raised.

772

773 function get_arc (with_id : arc_id;

774 from_graph : graph_type) return arc_type;

775

776 — Synopsis: This function returns the arc having the specified ID

777 — from the specified graph.

778 — If the specified graph definition has not been defined or has been

779 — destroyed, graph_undefined is raised.

780 — If there is no such arc in the specified graph, arc_not_found

781 — is raised.

782

783 generic

784 with procedure visit (the_arc : in arc_type;

785 continue : out boolean);

786 procedure iterate.arcs (of_the_graph : in graph_type);

787

788 — Synopsis: This procedure "visits" each arc of the graph, executing

789 — the specified "visit" procedure for each arc. The iteration order

790 — is not defined.

791 — If the specified graph definition has not been defined or has been

792 — destroyed, graph_undefined is raised.

793

794 private

795 type graph.structure (node_hash_buckets : positive;

796 arc_hash_buckets : positive); — full type

797 — declaration deferred to the package body

798 type graph.type is access graph.structure;

799 type node_info; — full type declaration deferred to the package body

800 type node.type is access node.info;

801 type arc_info; — full type declaration deferred to the package body

802 type arc.type is access arc.info;

803 no.graph : constant graph.type := null;

804 no.node : constant node.type := null;

805 no.arc : constant arc_type := null;

Page 68

15 February 1991 STARS-RC-01080/002/00

806 end graphs;
807
808
809 package views is

810

811 — The user's view of application-defined graph structures, as presented

812 — to the user by the reusable browser. This view abstraction enables

813 — the application to control both the manner of depiction of the graph

814 — structure and the semantics of user interactions with the graph

815 — structure. In particular, it allows applications to control such

816 — factors as which nodes and arcs are presented to the user, hov they

817 — are laid out on the display screen, hov they are labelled, and what

818 — actions are taken in response to their selection by the user.

819 — Note that for some applications it may be desirable to present users

820 — with several views of the same graph structure, or even views of

821 — several different graph structures, simultaneously. Different views

822 — may show different graphs, different subsets of the same graph, or

823 — the same subset of the same graph but depicted differently.

824 — Alternatively, different views of the same graph may be depicted

825 — identically, but may respond differently to user actions.

826

827

828 -- Types:

829

830 type view_type is private; — abstract type for a view of a graph

831 type view_title is new string; — view title to be displayed

832

833 type node.type is private; — abstract type for a view of a node

834 type node.label is new string; — label to be displayed for a node

835

836 type arc.type is private; — abstract type for a view of an arc

837 type arc.label is new string; — label to be displayed for an arc

838

839 type attributes is new string; — attributes to be displayed for node/arc

840 — multiple lines of text may be seDarated by ASCII.LF characters

841

842 type coordinates.type is

843 record

844 x.coordinate : natural := 0;

845 y_ coord mate : natural := 0;

846 end record; — specifies positions of nodes and arcs in the x-y plane

847

848 type dimensions.type is

849 record

850 width : natural := 0; — x dimension

Page 69

15 February 1991 STARS-RC-010S0/002/00

851 height : natural := 0; — y dimension

852 end record; — specifies dimensions of nodes and arcs

853

854 typ« orientation_type is (none, vertical, horizontal); — specifies

855 — orientation of layout for the view

856

857 — Constants:

858

859 no_view : constant view_type; — a value for an undefined vies;

860 — all objects of type view_type are initialized to this value

861 — by default, and are set to this value when deleted.

862 no.node : constant node.type; — a value for an undefined node;

863 — all objects of type node.type are initialized to this value

864 — by default, and are set to this value when deleted.

865 no_arc : constant arc_type; — a value for an undefined arc;

866 — all objects of type arc_type are initialized to this value

867 — by default, and are set to this value when deleted.

868

869 no_attributes : constant attributes := ""; — no attributes for node/arc

870

871 — Exceptions:

872

873 view.undefined : exception; — the specified view has not been defined or

874 — is no longer defined

875 view_overflow : exception; — there are insufficient resources available

876 — to create or expand the view

877 view_is_displayed : exception; — the specified view is currently displayed,

878 — so it cannot be deleted

879

880 node.undefined : exception; — the specified node has not been defined or

881 — is no longer defined

882 node_not_found : exception; — the specified node is not in the view

883 node_has.references : exception; — cannot remove a node that is the

884 — destination of at least one arc.

885

886 arc.undefined : exception; — the specified arc has not been defined or

887 — is no longer defined

888 arc_not_found : exception; — the specified arc is not in the view

889

890 not_laid_out : exception; — the view was not laid out before displaying it

891

892 — View Operations:

893

894 procedure create.view (the.view : in out view_type;

895 of_graph : in graphs.graph.type;

Page 70

15 February 1991 STARS-RC-01080/002/00

with_cmd_list : in cmd_lists.cmd_list_type;

897 with_title : in view.title;
898 estimated_arca : in positive

899 := anticipated_arcs;

900 astinated_nodes : in positive

901 := anticipated_nodes);

902

903 — Synopsis: This procedure creates a view of the specified graph,

904 — providing the specified list of commands to operate on it, and

905 — assigns it the specified title. Insertion, deletion and lookup

906 — operations involving arcs and nodes of the view are optimized for

907 — a view having the estimated number of arcs and nodes, respectively.

908 — The view is initially empty (i.e., it contains no nodes or arcs).

909 — If the specified graph is not defined or has been deleted,

910 — graphs.graph_undefined is raised.

911 — If the specified command list has not been defined or has been deleted,

912 — cmd.lists.cmd_list_undefined is raised.

913 — View_overflow is raised if there are insufficient resources available

914 — to create the view.

915

916 procedure delete.view (the_view : in out view.type);

917

918 — Synopsis: This procedure deletes the specified view.

919 — All arcs and nodes are removed from the view, and the view becomes

920 — undefined.

921 — If the specified view is not defined to begin with, view.undefined

922 — is raised.

923 — If the specified view is currently displayed, view_is_displayed

924 — is raised.

925 ~ WARIIIG: THIS OPERATIOI MAY LEAVE DANGLING REFERENCES, IF THE

926 — APPLICATION HAS CREATED MULTIPLE ALIASES FOR THE VIEW OR FOR ANY

927 — OF ITS IODES OR ARCS VIA ASSIGNMENT.

928

929 function is.defined (the.view : view.type) return boolean;

930

931 — Synopsis: This function indicates whether or not the specified view

932 — is currently defined (i.e., whether or not it currently exists).

933

934 function graph.of (the.view: view.type) return graphs.graph_type;

935

936 — Synopsis: This function returns the graph that the view is a view of.

937 — If the specified view is not defined or has been deleted, view.undefined

938 — is raised.

939

940 function cmd_list_of (the.view: view.type)

Page 71

15 February 1991 STARS-RC-01080/002/00

941 return cmd_lists.cmd_list_type;

942

943 — Synopsis: This function returns the command list associated with

944 — the specified vies.

945 — If the specified vies is not defined or has been deleted, vieu.undefined

946 — is raised.

947

948 function title_of (the.view: view.type) return view.title;

949

950 — Synopsis: This function returns the title of the specified

951 — view.

952 — If the specified view is not defined or has been deleted, view_undefined

953 — is raised.

954

955 function number_of_nodes_in (the_view : view_type) return natural;

956

957 — Synopsis: This function returns the total number of nodes in the

958 — specified view.

959 — If the specified view has not been defined or has been deleted,

960 — view.undefined is raised.

961

962 function number_of_arcs_in (the.view : view_type) return natural;

963

964 — Synopsis: This function returns the total number of arcs in the

965 — specified view.

966 — If the specified view has not been defined or has been deleted,

967 — view_undefined is raised.

968

969 procedure set.orientation (of_view : in view.type;

970 to.value : in orientation_type);

971

972 — Synopsis: This procedure sets the orientation of the layout of the

973 — specified view to the specified value (i.e., vertical or horizontal).

974 — If the specified view has not been defined or has been deleted,

975 — view.undefined is raised.

976

977 function get.orientation (of_view : view.type) return orientation_type;

978

979 — Synopsis: This function returns the orientation of the layout

980 — of the specified view.

981 — If the specified view has not been defined or has been deleted,

982 — view.undefined is raised.

983

984 procedure set_arrow_spacing (of_view : in view.type;

985 to_value : in natural);

Page 72

15 February 1991 STARS-RC-01080/002/00

986
987 — Synopsis: This procedure sets the spacing between the arrow heads

988 — and tails drawn for the arcs enunanating from and terminating at each

989 — node of the specified view. The specified value indicates the number

990 — of pixels to offset the arrow heads and tails from the center of each

991 — node's icon. For acyclic layouts (containing no backward-directed

992 — arrows), a value of zero is appropriate; this is the default value if

993 — the arrow spacing is not explicitly set. For cyclic layouts, though,

994 — a non-zero value should be set: if the layout is vertical, the

995 — specified value should not exceed one half the width of the narrowest

996 — node icon; if the layout is horizontal, it should not exceed one half
1
J97 — the height of the shortest node icon. These limits will be enforced

998 — automatically for any nodes for which they are exceeded.

999 — If the specified view has not been defined or has been deleted,

1000 — view_undefined is raised.

1001

1002 function get_arrow_spacing (of_view : view_type) return natural;

1003

1004 — Synopsis: This function returns the arrow spacing value for the

1005 — specified view.

1006 — If the specified view has not been defined or has been deleted,

1007 — view_undefined is raised.

1008

1009 procedure set_outdated_flag (of_view : in view_type;

1010 to.value : in boolean);

1011

1012 — Synopsis: This procedure sets the outdated flag for the

1013 — specified view to the specified value, indicating whether or not the

1014 — view is currently up to date.

1015 — If the specified view is not defined or has been deleted,

1016 — view_undefined is raised.

1017

1018 function is.outdated (the_view : view_type) return boolean;

1019

1020 — Synopsis: This function returns an indication of whether of not the

1021 — specified view is currently up to date.

1022 — If the specified view is not defined or has been deleted, view_undefined

1023 — is raised.

1024

1025 procedure set_topology_display (of.view : in view_type;

1026 to_value : in boolean);

1027

1028 — Synopsis: This procedure sets the topology display flag for the

1029 — specified view to the specified value, indicating whether or not the

1030 — view's topology is to be displayed. If the view is currently displayed,

Page 73

15 February 1991 STARS-RC-01080/002/00

1031 — the topology display is immediately made visible or invisible (depending

1032 — on the specified value).

1033 — If the specified view is not defined or has been deleted,

1034 — view_undefined is raised.

1035

1036 function get_topology_display (of_view : view_type) return boolean;

1037

1038 — Synopsis: This function returns the topology display flag for the

1039 — specified view.

1040 — If the specified view is not defined or has been deleted, view_undefined

1041 — is raised.

1042

1043 procedure display_view (the_view : in view_type);

1044

1045 — Synopsis: This procedure displays the specified view. Only nodes and

1046 — arcs that have been layed out and are not suppressed are displayed.

1047 — If the view is already displayed, that display is revised to conform

1048 — with current layout and suppression settings.

1049 — If the specified view is not defined or has been deleted,

1050 — view.undefined is raised.

1051 — If the view has not been completely laid out (including specifying its

1052 — orientation), not_laid_out is raised.

1053

1054 function is.displayed (the_view : view_type) return boolean;

1055

1056 — Synopsis: This function returns an indication of whether of not the

1057 — specified view is currently displayed.

1058 — If the specified view is not defined or has been deleted, view_undefined

1059 — is raised.

1060

1061 procedure search.view (the.view : in view.type;

1062 for.node : in graphs.node_type);

1063

1064 — Synopsis: This procedure searches the specified view for the specified

1065 — node and (if found) centers it in the display area.

1066 — If the specified view is not defined or has been deleted,

1067 — view.undefined is raised.

1068 — If the specified node is not defined or has been deleted,

1069 — graphs.node_undefined is raised.

1070 — If the specified node is not found in the specified view,

1071 — node_not.found is raised.

1072

1073 procedure search.view (the_view : in view_type;

1074 for_arc : in graphs.arc_type);

1075

Page 74

15 February 1991 STARS-RC-01080/002/00

1076 — Synopsis: This procedure searches the specified vies for the specified

1077 — arc and (if found) centers it in the display area.
1078 — If the specified vies is not defined or has been deleted,

1079 — vies_undefined is raised.
1080 — If the specified arc is not defined or has been deleted,
1081 — graphs.arc.undefined is raised.
1082 — If the specified arc is not found in the specified vies,

1083 — arc_not_found is raised.
1084
1085 procedure erase.vies (the_vies : in vies_type);

1086
1087 — Synopsis: This procedure erases the display of the specified vies.
1088 — If the specified vies is not currently displayed, this procedure has no

1089 — effect.
1090 —- If the specified vies is not defined or has been deleted,
1091 — vies.undefined is raised.
1092
1093 procedure display_menu (the.menu : in menus.menu_type;
1094 for_vies : in vies_type);

1095
1096 — Synopsis: This procedure displays the specified modal menu, associating
1097 — it sith the specified vies, and constrains user input exclusively
1098 — to that menu. The menu is erased automatically after the user has
1099 — made a selection.
1100 — If the specified menu is not defined or has been deleted,
1101 — menus.menu.undefined is raised.
1102
1103 procedure display_menu (the.menu : in menus.menu.type;

1104 for_node : in node_type;

1105 of_vies : in vies.type);

1106
1107 — Synopsis: This procedure displays the specified modal menu, associating
1108 — it sith the specified node, and constrains user input exclusively
1109 — to that menu. The menu is erased automatically after the user has

1110 — made a selection.
1111 — If the specified node is not defined or has been deleted,

1112 — node.undefined is raised.
1113 — If the specified menu is not defined or has been deleted,
1114 — menus.menu_undefined is raised.

1115
1116 procedure display_menu (the.menu : in menus.menu.type;
1117 for.arc : in arc_type;
1118 of_vies : in vies_type);

1119 ~

1120 Synopsis: This procedure displays the

Page 75

specified modal menu, associating

15 February 1991 STARS-RC-01080/002/00

1121 — it with the specified sire, and constrains user input exclusively

1122 — to that menu. The menu is erased automatically after the user has

1123 — made a selection.

1124 — If the specified arc is not defined or has been deleted,

1125 — arc_undefined is raised.

1126 — If the specified menu is not defined or has been deleted,

1127 — menus.menu_undefined is raised.

1128

1129 generic

1130 with procedure visit (the_view : in view_type;

1131 continue : out boolean);

1132 procedure iterate_views;

1133

1134 — Synopsis: This procedure iterates through all views, and executes the

1135 — specified "visit" procedure for each view. The iteration order is not

1136 — defined. Iteration terminates when the "visit" procedure returns a

1137 — value of FALSE for the continue parameter.

1138

1139 — Node Operations:

1140

1141 procedure insert_node (the_view_node : in out node_type;

1142 of_graph_node : in graphs.node_type;

1143 into_view : in view_type;

1144 label_as : in node_label

1145 := "";

1146 set_attributes : in attributes

1147 := no_attributes;

1148 set_action : in callbacks.callback_type

1149 := callbacks.no_callback);

1150

1151 — Synopsis: This procedure creates a view node corresponding to the

1152 — specified graph node, indicating that the node is to be depicted with

1153 — the specified label and attributes and that the specified action is to

1154 — be taken upon node selection, and inserts it into the specified view.

1155 — Mote that by default the nodes are depicted with no labels or attributes.

1156 — If the specified view has not been created or has been deleted,

1157 — view_undefined is raised.

1158 — View_overflow is raised if there are insufficient resources available

1159 — to insert the node into the view.

1160 ~ WARNING: THERE IS NO PROTECTION AGAINST INSERTING TWO VIEW NODES THAT

1161 — BOTH REFERENCE THE SAME GRAPH NODE INTO THE SAME VIEW; DOING SO MAY

1162 ~ PRODUCE UNEXPECTED RESULTS. IT IS THE APPLICATION'S RESPONSIBILITY

1163 ~ TO ENSURE THAT THIS DOES NOT HAPPEN.

1164

1165 procedure remove_node (the_node : in out node_type;

Page 76

15 February 1991 STARS-RC-010S0/002/00

1166 from_view : in view_type);

1167

1168 — Synopsis: This procedure removes the specified node from the specified

1169 — view. The specified node is deleted and becomes undefined.

1170 — If the specified view has not been defined or has been

1171 — deleted, vies.undefined is raised.

1172 — If the specified node is not defined to begin with, node_undefined

1173 — is raised.

1174 — If there is no such node in the specified view, node_not_found

1175 — is raised.

1176 — If the specified node is referenced by any arcs in the view (as either

1177 — a source node or a destination node), node_has_references is raised.

1178 ~ WARNING: THIS OPERATION MAY LEAVE DANGLING REFERENCES, IF THE

1179 — APPLICATION HAS CREATED MULTIPLE ALIASES FOR THE NODE VIA ASSIGNMENT.

1180

1181 function is„defined (the.node : node_type) return boolean;

1182

1183 — Synopsis: This function indicates whether or not the specified node is

1184 — currently defined.

1185

1186 function is_a_member_of(the.node : node_type;

1187 the_view : view_type) return boolean;

1188

1189 — Synopsis: This function indicates whether or not the specified node is

1190 — member of the specified view.

1191 — If the specified view has not been defined or has been deleted,

1192 — view_undefined is raised.

1193 — If the specified node has not been defined or has been deleted,

1194 — node_undefined is raised.

1195

1196 function graph_node_of (the_node : node_type) return graphs.node_type;

1197

1198 — Synopsis: This function returns the graph node that the view node is

1199 -- a view of.

1200 — If the specified view node is not defined or has been removed,

1201 — node.undefined is raised.

1202

1203 function is_in_view (graph.node : graphs.node_type;

1204 the_view : view_type) return boolean;

1205

1206 — Synopsis: This function indicates whether or not the specified graph

1207 — node is depicted in the specified view.

1208 — If the specified view has not been defined or has been deleted,

1209 — view.undefined is raised.

1210 — If the specified graph node has not been defined or has been de'eted,

Page 77

15 February 1991 STAR5-RC-01080/002/00

1211 — graphs.node_undefmed is raised.

1212

1213 function view.node.of (graph.node : graphs.node_type;

1214 from.view : view.type) return node_type;

1215

1216 — Synopsis: This function returns the node of the specified view

1217 — that depicts the specified graph node.

1218 — If the specified view has not been defined or has been destroyed,

1219 — view.undefined is raised.

1220 — If the specified graph node has not been defined or has been deleted,

1221 — graphs.node.undefined is raised.

1222 — If there is no such node in the specified view, node_not_found

1223 — is raised.

1224

1225 function label_of (the_node : node_type) return node_label;

1226

1227 — Synopsis: This function returns the label associated with the

1228 — specified node (i.e., the label that was specified when the node was

1229 — inserted into the view).

1230 — If the specified node has not been defined or has been deleted,

1231 — node_undefined is raised.

1232

1233 function has.attributes (the.node : node_type) return boolean;

1234

1235 — Synopsis: This function indicates whether or not any attributes have

1236 — been set for the specified node.

1237 — If the specified node has not been defined or has been deleted,

1238 — node.undefined is raised.

1239

1240 procedure refresh_attributes (the.node : in node.type;

1241 new.attributes : in attributes);

1242

1243 — Synopsis: This procedure refreshes the attributes displayed for the

1244 — specified node. If no attributes were set for the node when it was

1245 — first inserted into the view, this procedure has no effect.

1246 ~ If the specified node has not been defined or has been deleted,

1247 — node.undefined is raised.

1248

1249 procedure set.action (the.node : in node.type;

1250 the.action : in callbacks.callback.type);

1251

1252 — Synopsis: This procedure defines a callback procedure to be invoked

1253 — automatically when the user selects the specified node.

1254 — If the specified node has not been defined or has been deleted,

1255 — node.undefined is raised.

Page 78

15 February 1991 STARS-RC-01080/002/00

1256
1257 function get.action (the.node : node_type)

1258 return callbacks.callback_type;

1259

1260 — Synopsis: This function returns the previously defined callback

1261 — procedure for the specified node.

1262 — If the specified node has not been defined or has been deleted,

1263 — node.undefined is raised.

1264

1265 procedure set.position (of.node : in node_type;

1266 to.position : in coordinates.type);

1267

1268 — Synopsis: This procedure sets the x-y coordinates of the specified

1269 — node to the specified values.

1270 — If the specified node has not been defined or has been deleted,

1271 — node.undefined is raised.

1272

1273 function get.position (of.node : node.type) return coordinates.type;

1274

1275 — Synopsis: This function returns the x-y coordinates of the specified

1276 — node.

1277 — If the specified node has not been defined or has been deleted,

1278 — node.undefined is raised.

1279

1280 function get.dimensions (of.node : node.type;

1281 with.orientation : orientation.type)

1282 return dimensions_type;

1283

1284 — Synopsis: This function returns overall the x-y dimensions (i.e.,

1285 — width and height) for layout of the specified node, including its icon

1286 — and any labels or attributes, in the specified orientation.

1287 — If the specified node has not been defined or has been deleted,

1288 — node.undefined is raised.

1289

1290 function get.icon.dimensions (of.node : node.type) return dimensions.type;

1291

1292 — Synopsis: This function returns the x-y dimensions (i.e., width and

1293 — height) of the icon representing the node, exclusive of any labels or

1294 — attributes.

1295 — If the specified node has not been defined or has been deleted,

1296 — node.undefined is raised.

1297

1298 procedure set.suppression (of.node : in node.type;

1299 to.value : in boolean);

1300

Page 79

15 February 1991 STARS-RC-01080/002/00

1301 — Synopsis: This procedure sets the suppression flag for the

1302 — specified node to the specified value, indicating whether or not

1303 — the node is to be suppressed from the display.

1304 — If the specified node has not been defined or has been deleted,

1305 — node.undefined is raised.

1306

1307 function is_suppressed (the.node : node.type) return boolean;

1308

1309 — Synopsis: This function indicates whether or not the node is to be

1310 — suppressed from the display.

1311 — If the specified node has not been defined or has been deleted,

1312 — node.undefined is raised.

1313

1314 function number_of_arcs_from (the_node : node_type) return natural;

1315

1316 — Synopsis: This function returns the number of arcs emanating from

1317 — the specified node.

1318 — If the specified node has not been defined or has been deleted,

1319 — node.undefined is raised.

1320

1321 function number_of_arcs_to (the_node : node_type) return natural;

1322

1323 — Synopsis: This function returns the number of arcs terminating

1324 — at (i.e., directed to) the specified node.

1325 — If the specified node has not been defined or has been deleted,

1326 — node.undefined is raised.

1327

1328 generic

1329 with procedure visit (the.node : in node_type;

1330 continue : out boolean);

1331 procedure iterate.nodes (of_the_view: in vieo_type);

1332

1333 — Synopsis: This procedure iv.erates through all of the nodes in the

1334 — specified view, and executes the specified "visit" procedure for each

1335 — node. The iteration order is not defined. Iteration terminates when

1336 — the "visit" procedure returns a value of FALSE for the continue

1337 — parameter.

1338 — If the specified view has not been defined or has been deleted,

1339 — viev.undefined is raised.

1340

1341 — Arc Operations:

1342

1343 procedure insert.arc (the_view_arc : in out arc.type;

1344 of_graph_arc : in graphs.arc.type;

1345 into_view : in view_type;

Page 80

15 February 1991 STARS-RC-01080/002/00

in arc_label

in attributes

= no_attributes;

in callbacks.callback_type

= callbacks.no_callback);

1346 label.as

1347

1348 set_attributes

1349

1350 set_action

1351

1352

1353 — Synopsis: This procedure creates a view arc corresponding to the

1354 — specified graph arc, indicating that the arc is to be depicted with

1355 — the specified label and attributes and that the specified action is to

1356 — be taken upon arc selection, and inserts it into the specified view.

1357 — lote that by default the arcs are depicted with no labels or attributes.

1358 — If the specified vies has not been created or has been deleted,

1359 — vies.undefined is raised.

1360 — If either the source or destination node of the specified arc has not

1361 — been inserted into the specified vies or has been deleted,

1362 — node.undefined is raised.

1363 — View_overflos is raised if there are insufficient resources available

1364 — to insert the arc into the vies.

1365 ~ WARNING: THERE IS 10 PROTECTION AGAINST INSERTING TWO VIEW ARCS THAT

1366 ~ BOTH REFERENCE THE SAME GRAPH ARC INTO THE SAME VIEW.

1367

1368 procedure remove.arc (the_arc : in out arcjtype;

1369 from_view : in vies_type);

1370

1371 — Synopsis: This procedure removes the specified arc from the specified

1372 — vies. The specified arc is deleted and becomes undefined.

1373 — If the specified vies has not been defined or has been

1374 — deleted, vies.undefined is raised.

1375 — If the specified arc is not defined to begin sith, arc.undefined

1376 — is raised.

1377 — If there is no such arc in the specified vies, arc_not_found

1378 — is raised.

1379 -- WARNING: THIS OPERATION MAY LEAVE DANGLING REFERENCES, IF THE

1380 ~ APPLICATION HAS CREATED MULTIPLE ALIASES FOR THE ARC VIA ASSIGNMENT.

1381

1382 function is.defined (the_arc : arc_type) return boolean;

1383

1384 — Synopsis: This function indicates shether or not the specified arc is

1385 — currently defined.

1386

1387 function is_a_member_of(the.arc : arc.type;

1388 the.vies : vies.type) return boolean;

1389

1390 — Synopsis: This function indicates shether or not the specified arc is

Page 81

15 February 1991 STARS-RC-01080/002/00

1391 — a member of the specified vies.

1392 — If the specified view has not been defined or has been deleted,

1393 — vies.undefined is raised.

1394 — If the specified arc has not been defined or has been deleted,

1395 — arc_undefined is raised.

1396

1397 function graph_arc_of (the.arc : arc_type) return graphs.arc.type;

1398

1399 — Synopsis: This function returns the graph arc that the vies arc is

1400 — a vies of.

1401 — If the specified vies arc is not defined or has been removed,

1402 — arc.undefined is raised.

1403

1404 function is_in_vies (graph_arc : graphs.arc.type;

1405 the_vies : vies_type) return boolean;

1406

1407 — Synopsis: This function indicates shether or not the specified graph

1408 — arc is depicted in the specified vies.

1409 — If the specified vies has not been defined or has been deleted,

1410 — vies_undefined is raised.

1411 — If the specified graph arc has not been defined or has been deleted,

1412 — graphs.arc.undefined is raised.

1413

1414 function vies_arc_of (graph_arc : graphs.arc.type;

1415 frr-i.vies : vies_type) return arc_type;

1416

1417 — Synopsis: This function returns the arc of the specified vies

1418 — that depicts the specified graph arc.

1419 — If the specified vies has not been defined or has been destroyed,

1420 — vies.undefined is raised.

1421 — If the specified graph arc has not been defined or has been deleted,

1422 — graphs.arc.undefined is raised.

1423 — If there is no such arc in the specified vies, arc.not.found

1424 — is raised.

1425

1426 function label.of (the.arc : arc_type) return arc_label;

1427

1428 — Synopsis: This function returns the label associated sith the

1429 — specified arc (i.e., the label that sas specified shen the arc sas

1430 — inserted into the vies).

1431 — If the specified arc has not been defined or has been deleted,

1432 — arc.undefined is raised.

1433

1434 function source.of (the.arc : arc.type) return node.type;

1435

Page 82

15 February 1991 STARS-RC-01080/002/00

1436 — Synopsis: This function returns the source node of the specified

1437 — arc (i.e., the node that was specified as from.node when the arc

1438 — was defined).

1439 — If the specified arc has not been defined or has been deleted,

1440 — arc.undefined is raised.

1441

1442 function destination.of (the.arc : arc_type) return node.type;

1443

1444 — Synopsis: This function returns the destination node of the specified

1445 — arc (i.e., the node that was specified as to_node when the arc was

1446 — defined).

1447 — If the specified arc has not been defined or has been deleted,

1448 — arc.undefined is raised.

1449

1450 procedure redirect.arc (the_arc : in arc_type;

1451 of.view : in view.type;

1452 new_source : in node.type;

1453 new_dest : in node.type);

1454

1455 — Synopsis: This procedure redirects an arc from the newly-specified

1456 — source node to the newly-specified destination node. It is intended

1457 — to support automatic layout procedures by allowing them to temporarily

1458 — break cycles in a cyclic graph. It is expected that such automatic

1459 — layout procedures sill restore redirected arcs to their original

1460 — directions upon completion of the layout algorithm.

1461 — If the specified view has not been created or has been deleted,

1462 — viev.undefined is raised.

1463 — If the specified arc has not been defined or has been deleted,

1464 — arc.undefined is raised.

1465 — If there is no such arc in the specified view, arc.not.found

1466 — is raised.

1467 — If either of the specified nodes has not been inserted into

1468 — the specified view or has been deleted, node.undefined is raised.

1469

1470 function has.attributes (the.arc : arc.type) return boolean;

1471

1472 — Synopsis: This function indicates whether or not any attributes have

1473 — been set for the specified arc.

1474 — If the specified arc has not been defined or has been deleted,

1475 — arc.undefined is raised.

1476

1477 procedure refresh_attributes (the.arc : in arc.type;

1478 nev.attributes : in attributes);

1479

1480 — Synopsis: This procedure refreshes the attributes displayed for the

Page 83

15 February 1991 STARS-RC-01080/002/00

1481 — specified axe. If no attributes were set for the arc when it was

1482 — first inserted into the view, this procedure has no effect.

1483 — If the specified arc has not been defined or has been deleted,

1484 — arc.undefined is raised.

1485

1486 procedure set.action (the_arc : in arc_type;

1487 the.action : in callbacks.callback.type);

1488

1489 — Synopsis: This procedure defines a callback procedure to be invoked

1490 — automatically when the user selects the specified arc.

1491 — If the specified arc has not been defined or has been deleted,

1492 — arc.undefined is raised.

1493

1494 function get_action (the_arc : arc_type)

1495 return callbacks.callback.type;

1496

1497 — Synopsis: This function returns the previously defined callback

1498 — procedure for the specified arc.

1499 — If the specified arc has not been defined or has been deleted,

1500 — arc.undefined is raised.

1501

1502 procedure set.position (of_arc : in arc_type;

1503 to_position : in coordinates_type);

1504

1505 — Synopsis: This procedure sets the x-y coordinates of the specified

1506 — arc to the specified values.

1507 — If the specified arc has not been defined or has been deleted,

1508 — arc.undefined is raised.

1509

1510 function get.position (of.arc : arc.type) return coordinates.type;

1511

1512 — Synopsis: This function returns the z-y coordinates of the specified

1513 — arc.

1514 — If the specified arc has not been defined or has been deleted,

1515 — arc.undefined is raised.

1516

1517 function get.dimensions (of.arc : arc.type;

1518 with.orientation : orientation.type)

1519 return dimensions.type;

1520

1521 — Synopsis: This function returns overall the x-y dimensions (i.e.,

1522 — width and height) for layout of the specified arc, including its icon

1523 — and any labels or attributes, in the specified orientation.

1524 — If the specified arc has not been defined or has been deleted,

1525 — arc.undefined is raised.

Page 84

15 February 1991 STARS-RC-01080/002/00

1526
1527 function gat_icon_dimensions (of_arc : arc_type) return dimensions.type;

1528

1529 — Synopsis: This function returns the z-y dimensions (i.e., width and

1530 — height) of the icon representing the axe, exclusive of any labels or

1531 — attributes.

1532 — If the specified arc has not been defined or has been deleted,

1533 — arc.undefined is raised.

1534

1535 procedure set.suppression (of.arc : in arc.type;

1536 to.value : in boolean);

1537

1538 — Synopsis: This procedure sets the suppression flag for the

1539 — specified arc to the specified value, indicating whether or not

1540 — the arc is to be suppressed from the display.

1541 — If the specified arc has not been defined or has been deleted,

1542 — arc.undefined is raised.

1543

1544 function is.suppressed (the_arc : arc.type) return boolean;

1545

1546 — Synopsis: This function indicates whether or not the arc is to be

1547 — suppressed from the display.

1548 — If the specified arc has not been defined or has been deleted,

1549 — arc.undefined is raised.

1550

1551 generic

1552 with procedure visit (the.arc : in arc.type;

1553 continue : out boolean);

1554 procedure iterate.arcs (of.the.view : in view.type);

1555

1556 — Synopsis: This procedure iterates through all of the arcs in the

1557 — specified view, and executes the specified "visit" procedure for each

1558 — arc. The iteration order is not defined. Iteration terminates when

1559 — the "visit" procedure returns a value of FALSE for the continue

1560 — parameter.

1561 — If the specified view has not been defined or has been deleted,

1562 — view.undefined is raised.

1563

1564 generic

1565 with procedure visit (the.arc : in arc.type;

1566 continue : out boolean);

1567 procedure iterate.arcs.from (the.node : in node.type);

1568

1569 — Synopsis: This procedure iterates through all of the arcs emanating

1570 — from the specified node, and executes the specified "visit" procedure

Page 85

15 February 1991 STARS-RC-01080/002/00

1571 — for each arc. The iteration order is not defined. Iteration terminates

1572 — shen the "visit" procedure returns a value of FALSE for the continue

1573 — parameter.

1574 — If the specified node has not been defined or has been deleted,

1575 — node_undefined is raised.

1576

1577 generic

1578 with procedure visit (the_arc : in arc_type;

1579 continue : out boolean);

1580 procedure iterate_arcs_to (the.node : in node.type);

1581

1582 — Synopsis: This procedure iterates through all of the arcs terminating

1583 — at the specified node, and executes the specified "visit" procedure

1584 — for each arc. The iteration order is not defined. Iteration terminates

1585 — when the "visit" procedure returns a value of FALSE for the continue

1586 — parameter.

1587 — If the specified node has not been defined or has been deleted,

1588 — node.undefined is raised.

1589

1590 private
1591 type view.structure (node_hash_buckets : positive;

1592 arc_hash_buckets : positive); — full type

1593 — declaration deferred to the package body

1594 type view.type is access view.structure;

1595 type node.info; — full type declaration deferred to the package body

1596 type node.type is access node.info;

1597 type arc.info; — full type declaration deferred to the package body

1598 type arc.type is access arc.info;

1599 no.view : constant view.type := null;

1600 no.node : constant node.type := null;

1601 no.arc : constant arc.type := null;

1602 end views;

1603

1604

1605 package text is

1606

1607 — Abstract data types and utilities for text-based interactions.

1608

1609

1610 — Types:

1611

1612 type buffer.type is private;

1613

1614 type diaplay.type is private;

1615 type display.kind is (buffer.display, file.display);

Page 86

15 February 1991 STARS-RC-01080/002/00

1616
1617 — Exceptions:

1618

1619 bulfer_undefined : exception; — the specified buffer does not exist

1620 buffer.overflow : exception; — insufficient resources axe available to

1621 — create the buffer or to append to it

1622 buffer_in_use : exception; — the buffer contents are currently displayed

1623

1624 display_undefined : exception; — the specified text display does not exist

1625 display.overflow : exception; — nsufficient resources are available to

1626 — create the text display

1627 wrong_display_kind : exception; — operation not compatible with the

1628 — kind of display specified

1629

1630 — Constants:

1631

1632 no.display : constant display_type; — a value for an undefined text

1633 — display; all objects of type display_type are initialized to this

1634 — value by default, and are set to this value when erased.

1635

1636 no.buffer : constant buffer_type; — a value for an undefined text

1637 — buffer; all objects of type buffer_type are initialized to this

1638 — value by default, and are set to this value when deleted.

1639

1640 max_input_length : constant := 100; — max length of arbitrary string input

1641

1642 — Buffer Operations:

1643

1644 procedure create_buffer (the.buffer : in out buffer.type;

1645 size : in positive);

1646

1647 — Synopsis: This procedure creates a text buffer of the specified size

1648 — (in characters).

1649 — Buffer.overflov is raised if there are insufficient resources available

1650 — to create the buffer.

1651

1652 procedure delete_buffer (the.buffer : in out buffer_type);

1653

1654 — Synopsis: This procedure deletes the specified text buffer.

1655 — If the specified text buffer does not exist in the first place,

1656 — buffer.undefined is raised.

1657 — If the contents of the specified text buffer are currently being

1658 — displayed, buffer_in_use is raised.

1659 — VARIIIG: THIS 0PERATI0I MAY LEAVE DAHGLING REFERENCES, IF THE

1660 ~ APPLICATI0I HAS CREATED MULTIPLE ALIASES FOR THE TEXT BUFFER VIA

Page 87

15 February 1991 STARS-RC-01080/002/00

1661 — 1SSIGIME1T.
1662
1663 procedure clear_bufier (the.buffer : in out buffer.type);

1664

1665 — Synopsis: This procedure clears the specified text buffer.

1666 — If the specified text buffer does not exist, buffer.undefined is raised.

1667

1668 procedure append (the_buffer : in out buffer.type;

1669 the_text : in string);

1670

1671 — Synopsis: This procedure appends the specified string to the

1672 — specified text buffer.

1673 — If the specified text buffer does not exist, buffer.undefined is raised.

1674 — If appending the specified text to the buffer would cause it to overflow,

1675 — buffer_overflow is raised.

1676

1677 procedure append_line (the_buffer : in out buffer_type;

1678 the.text : in string);

1679

1680 — Synopsis: This procedure appends the specified string and an end-of-

1681 — line character to the specified text buffer.

1682 — If the specified text buffer does not exist, buffer.undefined is raised.

1683 — If appending this text to the buffer would cause it to overflow,

1684 — buffer_overflow is raised.

1685

1686 procedure new_line (the_buffer : in out buffer_type;

1687 count : in positive := 1);

1688

1689 — Synopsis: This procedure appends the specified number of end-of-line

1690 — characters to the specified text buffer.

1691 — If the specified text buffer does not exist, buffer.undefined is raised.

1692 — If appending the specified number of end-of-line characters to the

1693 — buffer would cause it to overflow, buffer.overflow is raised.

1694

1695 function length.of (the.buffer : in buffer.type) return natural;

1696

1697 — Synopsis: This function returns the length of the contents of the

1698 — specified text buffer, in characters.

1699 — If the specified text buffer does not exist, buffer.undefined is raised.

1700

1701 function contents_of (the.buffer : in buffer.type) return string;

1702

1703 — Synopsis: This function returns the contents of the specified text

1704 — buffer.

1705 — If the specified text buffer does not exist, buffer.undefined is raised.

Page 88

15 February 1991 STARS-RC-01080/002/00

1706

1707 — Display Operations:

1708

1709 procedure display_tezt (the_display : in out display_type;

1710 from.buffer : in buffer.type;

1711 use.title : in string := " ";

1712 quit.action : in callbacks.callback.type

1713 := callbacks.no.callback);

1714

1715 — Synopsis: This procedure displays text from the specified buffer on

1716 — the screen, exhibiting the specified title, and returns a display object

1717 — that may later be used to erase or refresh the display. The text

1718 — remains displayed until explicitly erased by the application (via a

1719 — call to erase.text). The user may request that the taxt display be

1720 — erased by selecting its "QUIT" button. In that case, the application

1721 — is notified of the user's request via a text_quit event. The

1722 — application may specify a callback procedure (quit_action) to handle

1723 — the text_quit event.

1724 — If the specified text buffer does not exist, buffer_undefined is raised.

1725

1726 procedure display.text (the.display : in out display_type;

1727 from_file : in string;

1728 use.title : in string := " ";

1729 quit.action : in callbacks.callback.type

1730 := callbacks.no_callback);

1731

1732 — Synopsis: This procedure displays text from the specified file (i.e.,

1733 — the file having the specified external name) on the screen, exhibiting

1734 — the specified title, and returns a display object that may later be used

1735 — to erase or refresh the display. The text remains displayed until

1736 — explicitly erased by the application (via a call to erase.text). The

1737 — user may request that the text display be erased by selecting its

1738 — "QUIT" button. In that case, the application is notified of the user's

1739 — request via a text.quit event. The application may specify a callback

1740 — procedure (quit.action) to handle the text.quit event.

1741

1742 procedure erase.text (the.display : in out display.type);

1743

1744 — Synopsis: This procedure erases the specified text display from the

1745 — screen and then makes the display object undefined.

1746 — If the specified display object is initially undefined,

1747 — display.undefined is raised.

1748 — WARNING: THIS OPERATION MAY LEAVE DANGLING REFERENCES, IF THE

1749 ~ APPLICATIOI HAS CREATED MULTIPLE ALIASES FOR THE DISPLAY OBJECT VIA

1750 ~ ASSIGIMEIT.

Page 89

15 February 1991 STARS-RC-01080/002/00

1751
1752 procedure refresh.text (the.display : in display.type);

1753

1754 — Synopsis: This procedure updates the specified text display, using

1755 — the latest contents of its associated buffer or file.

1756 — If the specified display object is undefined, display.undefined is

1757 — raised.

1758

1759 function kind.of (the.display : display_type) return display_kind;

1760

1761 — Synopsis: This function indicates whether the text being displayed

1762 — is from file or a buffer.

1763 — If the specified display object is undefined, display.undefined is

1764 — raised.

1765

1766 function get.buffer (the.display : display.type) return buffer.type;

1767

1768 — Synopsis: This function obtains the text buffer that is associated

1769 — with the specified display.

1770 — If the specified display object is undefined, display.undefined is

1771 — raised.

1772 — If the specified display is not of kind buffer.display,

1773 — wrong.display.kind is raised.

1774

1775 function get.file (the.display : display.type) return string;

1776

1777 — Synopsis: This function obtains the name of the text file that is

1778 — associated with the specified display.

1779 — If the specified display object is undefined, display.undefined is

1780 — raised.

1781 — If the specified display is not of kind file.display,

1782 — wrong.display.kind is raised.

1783

1784 — Miscellaneous Text Utilities:

1785

1786 procedure display.alert (the.alert.msg : in string);

1787

1788 — Synopsis: This procedure displays an alert message (e.g., an error

1789 — message), which remains displayed until acknowledged by the user.

1790 — The user must acknowledge the alert message before any further

1791 — selections can be made.

1792

1793 procedure prompt.for.input (the.prompt : in string

1794 := " ";

1795 input.length : in positive

Page 90

15 February 1991 STARS-RC-01080/002/00

= max.input.length;

in callbacks.callback.type

= callbacks.no.callback);

1796

1797 the.action

1798

1799

1800 — Synopsis: This procedure prompts the user to type in a string of at

1801 — most the specified input length, and causes the specified action

1802 — routine to be invoked once the user has responded. The application

1803 — is notified of the user's response via a string_input event. The

1804 — application may define a callback procedure (the.action) to handle

1805 — the string_input event. The user must respond to the prompt before

1806 — any further selections can be made.

1807

1808 private

1809 type buffer_structure (size : positive); — full type declaration deferred

1810 — to the package body

1811 type buffer.type is access buffer.structure;

1812 no.buffer : constant buffer_type := null;

1813 type display.info (kind : display.kind); — full type declaration deferred

1814 — to the package body

1815 type display.type is access display.info;

1816 no.display : constant display.type := null;

1817 end text;

1818

1819

1820 package viev.utilities is

1821

1822 — Generic utility routines to facilitate the construction and maintenance

1823 — of views.

1824

1825

1826 generic

1827

1828 — lode selection function and functions to supply representation

1829 — and behavioral characteristics for each node.

1830

1831 with function include.node (the.node : graphs.node.type)

1832 return boolean;

1833 with function label_for_node (the.node : graphs.node.type)

1834 return views.node.label;

1835 with function attributes_for_node (the.node : graphs.node.type)

1836 return views.attributes;

1837 with function action.for.node (the.node : graphs.node.type)

1838 return callbacks.callback.type;

1839

1840 — Arc selection function and functions to supply representation

Page 91

15 February 1991 STARS-RC-01080/002/00

1841 — and behavioral characteristics for each arc.

1842

1843 with function include.arc (the_arc : graphs.arc_type)

1844 return boolean;

1845 uith function label.for.arc (the.arc : graphB.arc_type)

1846 return views.arc_label;

1847 with function attributes.for.arc (the.arc : graphs.arc_type)

1848 return views.attributes;

1849 with function action_for_arc (the.arc : graphs.arc_type)

1850 return callbacks.callback.type;

1851

1852 procedure construct.view (the.view : in out views.view.type;

1853 of_graph : in graphs.graph.type;

1854 with_cmd_list : in cmd_lists,cmd_list_type;

1855 with_title : in views.view.title;

1856 estimated_arcs : in positive

1857 := anticipated_arcs;

1858 estimated.nodes : in positive

1859 := anticipated.nodes);

1860

1861 — Synopsis: This procedure automates the construction of a view of a

1862 — graph. It scans all nodes and arcs of the specified graph, applies

1863 — the "include" function to determine whether or not to include each one,

1864 — and inserts the included arcs and nodes into the view.

1865 — The "label.for", "attributes_for" and "action_for" functions are applied

1866 — to each included node and arc to obtain the required representation

1867 — and behavioral characteristics.

1868 — The view is created with the specified command list and title.

1869 — Insertion, deletion and lookup operations involving arcs and nodes of

1870 — the view are optimized for a view having the estimated number of arcs

1871 — and nodes, respectively.

1872

1873 generic

1874

1875 — lode selection function and functions to supply representation

1876 — and behavioral characteristics for each node.

1877

1878 with function include_node (the.node : graphs.node.type)

1879 return boolean;

1880 with function label.for.node (the.node : graphs.node.type)

1881 return views.node.label;

1882 with function attributes.for.node (the.node : graphs.node.type)

1883 return views.attributes;

1884 with function action.for.node (the_node : graphs.node.type)

1885 return callbacks.callback.type;

Page 92

15 February 1991 STARS-RC-01080/002/00

1886
1887 — Arc selection function and functions to supply representation

1888 — and behavioral characteristics for each arc.

1889

1890 with function include_arc (the.arc : graphs.arc.type)

1891 return boolean;

1892 with function label.for.arc (the.arc : graphs.arc.type)

1893 return views.arc.label;

1894 with function attributes.for.arc (the.arc : graphs.arc.type)

1895 return views.attributes;

1896 with function action_for_arc (the.arc : graphs.arc.type)

1897 return callbacks.callback.type;

1898

1899 — Layout algorithm for re-layout.

1900

1901 with procedure layout (the.view : in views.view.type);

1902

1903 procedure refresh.view (the.view : in views.view.type);

1904

1905 — Synopsis: This procedure updates a view to conform to the current

1906 — state of its associated graph. It scans all nodes and arcs of the

1907 — graph, applies the "include" function to each one to determine which

1908 — ones are included in the view, and updates the corresponding nodes

1909 — and arcs of the view. Included nodes and arcs that have been deleted

1910 — from the graph are removed from the view. Included nodes and arcs

1911 — that have been added to the graph are inserted into the view.

1912 — Other included nodes and arcs are updated to show the latest attribute

1913 — values. The "label.for", "attributes.for" and "action.for" functions

1914 — are applied to nodes and arcs of the graph to obtain the required

1915 — representation and behavioral characteristics for insertion into the

1916 — view. The "attributes.for" functions are applied to nodes and arcs

1917 — of the graph to obtain the latest attribute values.

1918 — The view is then re-laid-out and re-displayed.

1919

1920 generic

1921

1922 — lode selection function (selects which nodes to suppress).

1923

1924 with function suppress.node (the.node : views.node.type)

1925 return boolean;

1926

1927 — Arc selection function (selects which arcs to suppress).

1928

1929 with function suppress.arc (the.arc : views.arc.type)

1930 return boolean;

Page 93

15 February 1991 STARS-RC-01080/002/00

1931
1932 procedure filter.view (the.view : in views.view.type);

1933

1934 — Synopsis: This procedure filters an existing view, by suppressing

1935 — the display of soae or all of its nodes and arcs. The nodes are

1936 — filtered first, then the arcs. Any node that is not explicitly

1937 — suppressed is unsuppressed by default. Any arc that is not

1938 — explicitly suppressed is unsuppressed if and only if neither its

1939 — source nor destination node has been suppressed. The filtering

1940 — is not apparent to the user until the view is redisplayed (via a

1941 — call to the views.display.view procedure).

1942

1943 end view.utilities;

1944

1945

1946 package layout.algorithms is

1947

1948 — Algorithms for laying out a view of a directed graph.

1949

1950

1951 — Constants:

1952

1953 procedure cyclic.horizontal (the.view : in views.view.type;

1954 x.pad : in natural := 30;

1955 y-P&d : in natural := 10);

1956

1957 — Synopsis: This procedure lays out the specified view horizontally,

1958 — using an algorithm accomodates cycles. The algorithm is based on

1959 — an algorithm presented in the following paper:

1960 — Robins, G., "The ISI Grapher: a Portable Tool for Displaying Graphs

1961 — Pictorially," ISI/RS-87-196, USC/Information Sciences Institute,

1962 — reprinted from the Proceedings of Symboliikka '87, Helsinki, Finland,

1963 ~ August 17-18, 1987.

1964 — It has been optimized somewhat, however, and has been modified

1965 — substantially to accomodate cycles and to lay out arcs as well as nodes.

1966 — The x.pad and y_pad parameters specify the minimum spacing (in pixels)

1967 — between node and arc depictions in the X and Y directions, respectively.

1968

1969 procedure acydic.horizontal (the.view : in views.view.type;

1970 x.pad i in natural := 30;

1971 y_P&d : in natural := 10);

1972

1973 — Synopsis: This procedure lays out the specified view horizontally

1974 — as well, but uses an algorithm that does not handle cycles. This is

1975 — essentially the same algorithm as is used for the cyclic.horizontal

Page 94

15 February 1991 STARS-RC-01080/002/00

1976 — layout procedure, but without the modifications to accomodate cycles.

1977 — The x.pad and y_pad parameters specify the minimum spacing (in pixels)

1978 — between node and arc depictions in the X and Y directions, respectively.

1979 — Because it does not have to check for cycles, this algorithm is faster

1980 — than the algorithm use for the cyclic_horizontal procedure. Therefore,

1981 — this procedure should be preferred for applications that can guarantee

1982 — that the view does not contain a cycle.

1983 — WARIIIG: IF USED 01 A VIEW COHTAIHIHG A CYCLE, THIS PROCEDURE WILL

1984 — EITHER HAI6 OR RAISE A STORAGE.ERR0R EXCEPTION.

1985

1986 procedure cyclic_vertical (the.view : in views.view.type;

1987 x_pad : in natural := 10;

1988 y_pad : in natural := 30);

1989

1990 — Synopsis: This procedure lays out the specified view vertically,

1991 — using an algorithm accomodates cycles. The algorithm is based on

1992 — an algorithm presented in the following paper:

1993 — Robins, G., "The ISI Grapher: a Portable Tool for Displaying Graphs

1994 — Pictorially," ISI/RS-87-196, USC/Information Sciences Institute,

1995 — reprinted from the Proceedings of Symboliikka '87, Helsinki, Finland,

1996 — August 17-18, 1987.

1997 — It has been rewritten to produce a vertical layout, rather than a

1998 — horizontal layout. It has also been optimized somewhat, and has been

1999 — modified to accomodate cycles and to lay out arcs as well as nodes.

2000 — The x.pad and y.pad parameters specify the minimum spacing (in pixels)

2001 — between node and arc depictions in the X and Y directions, respectively.

2002

2003 procedure acyclic.vertical (the.view : in views.view.type;

2004 x_pad : in natural := 10;

2005 y-P*d : in natural := 30);

2006

2007 — Synopsis: This procedure lays out the specified view vertically

2008 — as well, but uses an algorithm that does not handle cycles. This is

2009 — essentially the same algorithm as is used for the cyclic.vertical

2010 — layout procedure, but without the modifications to accomodate cycles.

2011 — The x.pad and y.pad parameters specify the minimum spacing (in pixels)

2012 — between node and arc depictions in the X and Y directions, respectively.

2013 — Because it does not have to check for cycles, this algorithm is faster

2014 — than the algorithm use for the cyclic.vertical procedure. Therefore,

2015 — this procedure should be preferred for applications that can guarantee

2016 — that the view does not contain a cycle.

2017 — VARIIIG: IF USED 01 A VIEW COITAIIIIG A CYCLE, THIS PROCEDURE WILL

2018 — EITHER HAIG OR RAISE A STORAGE.ERROR EXCEPTION.

2019

2020 end layout.algorithms;

Page 95

15 February 1991 STARS-RC-01080/002/00

2021
2022
2023 — The following is the full definition of type event, which describes

2024 — user actions (events) in detail.

2025 type event.info (kind : event.kind

2026 := event.kind'first) is — describes the event in detail

2027 record

2028 view : views.view.type;

2029 case kind is

2030 when position_select =>

2031 position : views.coordinates_type;

2032 when command_select =>

2033 command : cmd.lists.cmd.index;

2034 when subcommand.select =>

2035 topcommand : cmd.lists.cmd.index;

2036 subcommand : cmd_lists.cmd_index;

2037 when menu_item_select =>

2038 menu : menus.menu.type;

2039 item : menus.item.index;

2040 when node_menu_item_select =>

2041 n.node : views.node_type;

2042 n.menu : menus.menu.type;

2043 n_item : menus.item.index;

2044 when arc_menu_item_select =>

2045 a_arc : views.arc_type;

2046 a_menu : menus.menu.type;

2047 a_item : menus.item.index;

2048 when menu.cancel =>

2049 null;

2050 when node.select =>

2051 node : views.node.type;

2052 when arc.select =>

2053 arc : views.arc.type;

2054 when text.quit =>

2055 display : text.display.type;

2056 when string_input =>

2057 input : string (1..text.max.input.length);

2058 length : natural;

2059 when input.cancel =>

2060 null;

2061 when browser.quit =>

2062 null;

2063 end case;

2064 end record;

2065

Page 96

15 February 1991 STARS-RC-01080/002/00

2066 procedure initialize (main.commands : in cmd_lists.cmd_list_type);

2067

2068 — Synopsis: This procedure displays the browser application's main

2069 — window and the specified command list. II the main window is already

2070 — displayed, this procedure has no effect.

2071 — If the specified command list has not been defined or has been deleted,

2072 — cmd_lists.cmd_list_undefined is raised.

2073

2074 procedure browse (event : out event.info);

2075

2075 — Synopsis: This procedure activates the browser, thereby allowing the

2077 — user to interact with the display. Ideally, the application would

2078 — define actions procedures (callbacks) for all display objects, which

2079 — would be automatically invoked by the browser in response to user

2080 — actions. In this case, the browse procedure would never exit. This

2081 — is the preferred style of interaction, since it avoids interference

2082 — with the window system. If, however, it is desired that the browser

2083 — return control to the application in response to certain user actions,

2084 — the application need only refrain from defining action procedures for

2085 — those actions. If the user performs some action for which there is

2086 — no action procedure defined, the browse procedure exits and returns

2087 — an event indicating the nature of the user action.

2088

2089 procedure quit;

2090

2091 — Synopsis: This procedure erases and destroys all windows created

2092 — by the browser application and terminates its connection with the

2093 — underlying window system. If this procedure is called from within a

2094 — callback procedure, the browse procedure will exit upon completion of

2095 — the callback and will return a browser.quit event.

2096

2097

2098 end browser;

Page 97

15 February 1991 STARS-RC-01080/002/00

B Appendix: User Interface

In order to promote a common "look and feel" across all browser tools, it was necessary to
somewhat constrain the user interface implemented by the Reusable Graphical Browser. Yet,
in order to promote reuse, the user interface had to be made general enough to support a wide
variety of browsing applications. These apparently conflicting goals have been reconciled by
implementing a generic user interface that is tailorable for specific browser tools. This
appendix describes the nature of that generic user interface and discusses the ways in which
it can be tailored.

B.l Model of User Interaction

As evidenced by its name, the Reusable Graphical Browser provides a primarily graphical
user interface. This is not to say that the user interface is exclusively graphical. Provisions
are made for text-based interaction as well, where appropriate.

In general, the user is presented with a graphical display of the objects within the OMS, the
relationships between them, and the operations that may be performed on them. The user
then interacts with the graphical display via a pointing device (e.g., a mouse). The user
may use the pointing device to scan over the objects and relationships, select from among
them or select an operation. When an object or relationship is selected, information about it
may be displayed either graphically or textually. Similarly, the user may enter information
concerning an object or relationship either graphically (via a pointing device) or textually
(via a keyboard).

In the current implementation of the Reusable Graphical Browser, input and output are
performed under the control of the X Window System. The Reusable Graphical Browser
uses the X Toolkit to create a viewport widget (a scrollable window) in which to display
the objects and relationships, to create widgets representing individual objects and relation-
ships, to create command and menu widgets listing available operations, and to create text
widgets and dialog boxes for text-based interactions. Mouse clicks on the viewport widget's
scrollbars are handled internally by the X Toolkit, which scrolls the window in the selected
direction. Mouse clicks on the object, relationship, command or menu widgets are reported
to the Reusable Graphical Browser, which in turn dispatches them to predefined application
callback procedures. Similarly, text entered into a dialog box is dispatched to a predefined
application callback procedure. The application callback procedures may use facilities pro-
vided by the Reusable Graphical Browser to switch views or to display additional widgets
(e.g., menus, dialog boxes or text) which the user may then interact with.

If a mouse click occurs which would normally be dispatched to an application callback
procedure but the application has not defined such a procedure, the X Toolkit main loop
is exited. The user's selection is then reported to the application via a return from the
browser jnstance.browse procedure instead of via a callback. In this case, the application
must issue another call to the browserJnstance.browser procedure before any more user
inputs can be processed by the X Toolkit. Before issuing this call, the application may (if

Page 98

15 February 1991 STARS-RC-01080/002/00

so desired) use facilities provided by the Reusable Graphical Browser to switch views or to
display additional widgets.

B.l.l Output

Figure 2 illustrates the general screen layout supported by the Reusable Graphical Browser.
Multiple instances of screens can be displayed simultaneously. Figure 2 demonstrates three
instances of screens. Nevertheless, only one screen instance is allowed for each view. For
example, the three screen instances in figure 2 represent three different views. A screen
layout consists of the following elements:

• a single scrollable window, with both vertical and horizontal scrollbars, for displaying
a view of the objects and relationships within an OMS;

• a label showing the title of the currently displayed view;

• a row of command buttons for commands (non-modal operations) associated with the
view;

• menus of subcommands for individual commands;

• icons and associated labels (optional) and attributes (optional), depicting individual
objects within the OMS;

• directed fine segments connecting these object depictions, themselves marked with
icons and associated labels (optional) and attributes (optional), depicting relationships
between the objects;

• pop-up menus of modal operations that may be associated with individual objects or
relationships or with individual views;

• scrollable pop-up text windows, with quit buttons, for displaying arbitrary text (e.g.,
attributes of objects or relationships);

• pop-up text windows, with confirmation buttons, for displaying alert messages;

• dialog boxes, with confirmation buttons, for inputting arbitrary text strings.

• optional topology display window, with scrollbars (if necessary), for navigating over
the view.

For the purposes of this illustration, solid lines are used to indicate elements that are more
or less permanent, whereas dashed lines are used to indicate elements that are transient.
None of these elements would actually have dashed borders when they appear on the screen,
however.

Page 99

15 February 1991 STARS-RC-01080/002/00

In addition to these screen elements, the twm window manager decorates the main application
window and the pop-up text windows with title bars. The user can interact with these title
bars to raise, lower, move, iconify or resize the windows. For further information on such
interactions, please refer to the documentation provided with twm on the X window system
distribution tape.

E Tool Name
View-3 Title .HI

33 Tool Name
View-2 Title

EH

^ Tool Name m
View Title

Command^ Camgiaadj! Command3 Command n

Sub-
OK Command iLr£ J

Menu J

Pop-up
Alert Message

J"
I Pop-up
■ Dialog Box
£QUITJ5KJ

-Pop-up Menu*— -j

i Node
A

',A" ,1c

_ _ -l_
re Node

Icon Icon sn
' Label
, (if any) j Label

I (if any)

I"
Attri-
butes

(ft any;
1 ■ - Attm*

butes
(if a ny)

FQ~ TexF Title"
fQUIT"^"

IEM
I

1

Pop-up Text
Display

Topology
Display

Navigation
window

L_L

Figure 2: Browser Screen Layout

B.1.2 Input

The user supplies input to a browser tool by using the mouse to select various items appearing
on the screen. To select an item, the user positions the mouse so that the pointer (a cursor
in the shape of an arrow) is over the item and then clicks (depresses and releases) a mouse

Page 100

15 February 1991 STARS-RC-01080/002/00

button. Not all items appearing on the screen are selectable, however, nor are they all
sensitive to the same mouse buttons. Of the screen elements listed above, only the following
are selectable:

• vertical scrollbars;

• horizontal scrollbars;

• command buttons;

• menu items;

• icons depicting objects and relationships;

• quit buttons on text displays;

• confirmation buttons on alert messages;

• confirmation buttons on dialog boxes;

• topology display.

Vertical scrollbars are selected with either the left, right or middle mouse button. Clicking
the left mouse button scrolls the window down. Clicking the right mouse button scrolls the
window up. The amount by which the window scrolls for each mouse click depends on the
position of the pointer at the time the mouse button is released: the closer to the top of
the scrollbar, the smaller the increment; the closer to the bottom of the scrollbar, the larger
the increment. Clicking the middle mouse button shifts the window directly to the position
indicated by the pointer. In this case, the vertical position of the pointer relative to the
scrollbar is interpreted as the desired position of the top of the window relative to the image
over which it is scrolling. If the middle mouse button is depressed and held, the window
position tracks the pointer position as the pointer is moved vertically (provided that it is
moved only very slowly), giving the impression of smooth-scrolling. Note that the current
position and extent of the window, with respect to the image over which it is scrolling, is
indicated by the dark column within the scrollbar.

Horizontal scrollbars are selected in much the same manner as vertical ccrollbars, except
that they are oriented from left to right rather than from top to bottom. Clicking the left
mouse button scrolls the window to the left. Clicking the right mouse button scrolls the
window to the right. Just as for vertical scrollbars, the amount by which the window scrolls
for each mouse click depends on the position of the pointer at the time the mouse button
is released: the closer to the left of the scrollbar, the smaller the increment; the closer to
the right of the scrollbar, the larger the increment. Clicking the middle mouse button shifts
the window directly to the position indicated by the pointer: the horizontal position of the
pointer relative to the scrollbar is interpreted as the desired position of the left of the window
relative to the image over which it is scrolling. If the middle mouse button is depressed and
held, the window position tracks the pointer position as the pointer is moved horizontally

Page 101

15 February 1991 STARS-RC-01080/002/00

(provided that it is moved only very slowly), giving the impression of smooth-scrolling. As
with vertical scrollbars, the current position and extent of the window, with respect to the
image over which it is scrolling, is indicated by the dark column within the scrollbar.

Command buttons are selected by clicking the left mouse button. While the pointer is
positioned over a command button, the command button is displayed in reverse video (i.e.,
the black parts become white and the white parts become black). If the mouse button is then
clicked, the command button returns to normal video and any subcommands associated with
the selected command are displayed in a menu. If there are no subcommands associated with
the selected command, no menu is displayed. In that event, the Reusable Graphical Browser
immediately invokes a predefined application callback procedure to process the command.
If no callback procedure is defined for the view's command buttons, the user's selection is
reported to the application via a return from the browserJnstance.brows > procedure instead.

Individual items appearing in a menu are also selected by clicking the left mouse button.
Whenever a menu is displayed, the user is forced to make a selection from it; all other se-
lections are disabled. Positioning the pointer over an item in the menu causes the item's
border to be highlighted. If the mouse button is then clicked, the menu is erased from
the display. In that event, the Reusable Graphical Browser immediately invokes a prede-
fined application callback procedure to process the selection. If no callback procedure is
defined for the menu, the user's selection is reported to the application via a return from
the browserJnstance.browse procedure instead. Alternatively, the mouse button may be
clicked while the pointer is positioned over the menu title (the top line of the menu). In that
event, the menu is erased, but no selection is reported to the application (i.e., the menu is
cancelled).

Icons depicting objects and relationships are selected in exactly the same manner as com-
mand buttons. While the pointer is positioned over one of these icons, the icon is displayed
in reverse video (i.e., the black parts become white and the white parts become black). If the
left mouse button is then clicked, the icon returns to normal video and the Reusable Graph-
ical Browser immediately invokes a predefined application callback procedure to process the
selection. If no callback procedure is defined for the corresponding object or relationship, the
user's selection is reported to the application via a return from the browserJnstance.browse
procedure instead.

Quit buttons on text displays (labelled "QUIT") are also selected in exactly the same manner
as command buttons. The effects of that selection are somewhat different, however. While
the pointer is positioned over a quit button, the button is displayed in reverse video (i.e.,
the black parts become white and the white parts become black). If the left mouse button
is then clicked, the button returns to normal video and the text window is erased. The
application is not notified of the selection.

Confirmation buttons on alert messages (labelled "OK") are selected in the same manner
as quit buttons on text displays, and have similar effects. One difference, though, is that
the user is forced to confirm an alert message immediately; all selections other than the
confirmation button are disabled until the confirmation button is selected. While the pointer

Page 102

15 February 1991 STARS-RC-01080/002/00

is positioned over one of these confirmation buttons, the button is displayed in reverse video
(i.e., the black parts become white and the white parts become black). If the left mouse
button is then cUcked, the button returns to normal video and the alert message is erased.
The application is not notified of the selection.

Confirmation buttons on dialog boxes are selected in the same manner as confirmation
buttons on alert messages, although their effects are somewhat different. There are two such
buttons, labelled "QUIT" and "OK". The purpose of the "QUIT" button is to cancel the
dialog altogether; the purpose of the "OK" button is to confirm that the user's keyboard
input is ready to be reported to the application. Like the confirmation buttons on alert
messages, the user is forced to select a confirmation button before any other selections can
be made. While the pointer is positioned over one of these confirmation buttons, the button
is displayed in reverse video (i.e., the black parts become white and the white parts become
black). If the left mouse button is then clicked, the button returns to normal video and the
dialog box is erased. If the "QUIT" button is selected the application is not notified of the
selection. If the "OK" button is selected, however, the application is notified of the selection.
In that event, the Reusable Graphical Browser immediately invokes a predefined application
callback procedure to process the user's keyboard input. If no callback procedure is defined
for the menu, the user's keyboard input is reported to the application via a return from the
browserJnstance.browse procedure instead.

The topology display can be selected by clicking the left mouse button anywhere in the
topology display. The application is not notified of the selection. The effect of the selection
is that the navigation rectangle centers around the selected point. Also, the main display
area is updated, showing the portion of the view that is currently covered by the navigation
rectangle. View navigation using the topology display can also be done using scrollbars in
the topology display.

B.2 Tailoring The User Interface

There are two kinds of tailoring that can be performed with respect to the user interface:
tailoring of contents and tailoring of presentation style. The latter is not supported by the
Reusable Graphical Browser, per se, but rather by the underlying window system. Different
window systems may support this kind of tailoring to different degrees. Tailoring of contents,
on the other hand, is supported directly by the Reusable Graphical Browser, and is intended
as the primary mechanism for tailoring the user interface to a particular application.

B.2.1 Contents

The features of the user interface that may be tailored using facilities provided directly by
the Reusable Graphical Browser are the following:

• the title displayed for a view;

Page 103

15 February 1991 STARS-RC-01080/002/00

• the commands (and subcommands) displayed for a view;

• the effects of selecting a particular command (or subcommand);

• the particular objects and relationships displayed in a viewport;

• the positions of objects and relationships displayed in a viewport;

• the labels and attributes (if any) displayed for individual objects and relationships;

• the effects of selecting a particular object or relationship;

• the items in each pop-up menu;

• the object or relationship (if any) with which a pop-up menu is to be associated;

• the effects of selecting a particular item from a pop-up menu;

• the text displayed in a pop-up text window;

• the text of an alert message;

• the prompt string and input constraints for a dialog box.

The title displayed for a view is the title that is specified when the view is created. To tailor
this feature, simply specify the desired title when creating the view.

The commands (and subcommands) displayed for a view are also determined when the view
is created. In particular, the commands (and subcommands) are those in the command list
specified for the view when the view is created. To tailor the commands (and subcommands),
create the desired command list and specify it when creating the view.

The effects of selecting a particular command (or subcommand) are determined by the ac-
tions of the application callback procedure invoked by the Reusable Graphical Browser when
the command (or subcommand) is selected. To tailor the effects of selecting a command (or
subcommand), install the desired callback procedure for the command list before displaying
a view with which the command list is associated. Note that only one callback procedure is
defined for each command list; so if different effects are desired for different commands (or
subcommands) in the same command list, the callback procedure must take into account
which command (or subcommand) was selected.

The particular objects and relationships displayed in a viewport are determined when a
view is displayed. At that time, any objects and relationships in the view that have not
been suppressed are displayed in the viewport. To tailor which objects and relationships are
displayed, first create the desired view by inserting and/or removing nodes and arcs. The
view must then be laid out before it can be displayed. By default, all nodes and arcs in the
view will be displayed when the view is displayed. If desired, however, individual nodes and
arcs may be temporarily eliminated from the display by suppressing them before displaying
or redisplaying the view. They may later be made to reappear by unsuppressing them and

Page 104

15 February 1991 STARS-RC-01080/002/00

then redisplaying the view. For convenience, a view filtering utility may be applied to the
view to suppress and unsuppress some combination of nodes and arcs all at once.

The positions of objects and relationships displayed in the viewport are determined when
the view is laid out. This is normally accomplished by means of a layout utility that sets
the positions of individual nodes and arcs in the view. Several predefined layout utilities are
provided by the Reusable Graphical Browser. They are all essentially based on the same
algorithm, which is presented in reference [5]. Some of them also make use of a topological
sort algorithm, which is presented in reference [2], in order to break cycles. An application
is not required to use one of the predefined layout utilities; it may use some layout utility
of its own, if desired. To tailor the positions of objects and relationships displayed in the
viewport, simply invoke the desired layout utility to process the view. Note that it is possible
to re-layout a view that has already been layed out, but the new layout does not take effect
until the view is re-displayed.

The labels displayed for individual objects and relationships are determined as the view is
being constructed. Note that there are several ways to construct a view: by using a utility
to automatically select objects (nodes) and relationships (arcs) from an application-defined
graph and insert them into the view; by using a utility to automatically copy objects and
relationships from another view; or by directly inserting objects (nodes) and relationships
(arcs) from an application-defined graph into the view one-at-a-time. Using the first method,
the application must supply functions that determine the labels for each object and rela-
tionship. Using the second method, the labels are inherited from the source view. Using
the third method, the labels must be explicitly specified as each object and relationship is
inserted into the view. Consequently, the mechanism for tailoring the labels depends on
which method is used to construct the view. Regardless of which method is used, specifying
a null string for the label causes no label to be displayed whatsoever.

The attributes displayed for individual objects and relationships are also determined as the
view is being constructed. As each node or arc is inserted into the view, the Reusable
Graphical Browser invokes an application-defined function to obtain an attributes string for
that node or arc. If the function returns a null string, no attributes whatsoever are displayed
for the specified node or arc. To tailor the attributes, instantiate the browser with functions
that return the appropriate attributes strings for each node and arc.

The effects of selecting a particular object or relationship are determined by the actions of the
application callback procedure invoked by the Reusable Graphical Browser when the object
or relationship is selected. One callback procedure may be defined for each object, and one for
each relationship. To tailor the effects of selecting a particular object or relationship, install
the desired callback procedure when constructing the view. Depending on the method used
to construct the view, the callback procedure is either determined by an application-supplied
function, inherited from a source view or specified explicitly as the object or relationship is
inserted into the view. Note that once a callback procedure has been defined for a particular
object or relationship it may be superseded by a different callback procedure, but the new
callback procedure does not take effect until the view is re-displayed.

Page 105

15 February 1991 STARS-RC-01080/002/00

The items displayed in each pop-up menu are those specified by the application when the
menu is constructed. To construct a menu, the application first creates a menu with room
enough for the desired number of items and then sets the individual items as desired. Once
a menu has been constructed, the individual items may be changed; the changes will be
apparent the next time the menu is displayed. To tailor the pop-up menus, simply construct
them and/or modify them as desired.

The object or relationship (if any) with which a pop-up menu is to be associated is determined
by which procedure is used to display the pop-up menu. The Reusable Graphical Browser
provides three such procedures: one associates the pop-up menu with a specified object
(node); another associates the pop-up menu with a specified relationship (arc); the third
does not associate the pop-up menu with any object or relationship at all.

The effects of selecting a particular item from a pop-up menu are determined by the actions
of the application callback procedure invoked by the Reusable Graphical Browser when the
item is selected. The same callback procedure is invoked for all items in the same menu, since
there is only one callback procedure per menu. To tailor the effects of selecting an item from
a pop-up menu, install the desired callback procedure for the menu before displaying the
menu. Note that if different effects are desired for different items in the menu, the callback
procedure must take into account which item was selected.

The text displayed in a pop-up text window is determined by the source that is specified
when calling the procedure to display the text. The source may be either a text file or a
text buffer. If a text file is specified, the contents of the file are displayed. If a text buffer is
specified, the contents of the buffer are displayed. To tailor the text displayed in a pop-up
text window, create a text file or text buffer containing the desired text and then specify it
as the source for the display call.

The text of an alert message is specified explicitly when calling the procedure that displays
the alert message. It is passed to that procedure as a string parameter. To tailor this text,
simply pass the desired string when calling the display procedure.

The prompt string and the input constraints for a dialog box are specified explicitly when
calling the procedure that displays the dialog box. They are passed as parameters to that
procedure. To tailor them, simply pass the desired values when calling the display procedure.

B.2.2 Presentation Style

Tailoring of presentation style encompasses such things as changing icons, fonts, border
widths, border patterns, colors (if a color display is used) and sensitivity (to user inputs) of
individual widgets or groups of widgets. This kind of tailoring is accomplished by modifying
the X Toolkit resource file used by the application. For applications that use the Reusable
Graphical Browser, this file is named "Browser" and its directory path is indicated by the
environment variable SXAPPLRESDIR. An example of such a file is provided in the source
directory for the sample application that is distributed with the Reusable Graphical Browser.

Page 106

15 February 1991 STARS-RC-01080/002/00

The syntax of the X Toolkit resource file is described in detail in references [3] and [4].
Basically, it is a simple text file, where each line of text specifies a value for a particular
widget resource. It may also contain comment lines, which are designated by a sharp sign
(#) at the beginning of the line. Each resource specification line consists of either a widget
instance name or a widget class name, followed by the resource name, followed by a colon (:),
followed by the resource value. Widget instance names or widget class names specify a path
through the widget instance hierarchy rooted at the the application's top-level widget. The
names of individual widget instances or widget instance classes in the path are separated
using dot (.) notation. Alternatively, asterisks (*) may be substituted as wildcard separators
that match any number of intervening widget instances in the path. Resource names, data
types and default values are fisted in the documentation for each individual widget class.

The following table fisting shows all the widget names and classes used in the Reusable
Graphical Browser.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Widget names and classes of the RGB widget hierarchy :

Name

bshell

bshell*bshell_bb

bshell*bshell_bb*vp

bshell*bshell_bb*vp*arc_<arc_kind>

bshell*bshell_bb*vp*arc_attrib_<arc_kind>

bshall*bshell_bb*vp*arc_label_<arc_kind>

bshell+bshell_bb*vp*node_<node_kind>

bshell*bshall_bb*vp*node_attrib_<node_kind>

bshell*bshell_bb*vp*node_label_<node_kind>

Class

application

shell

bulletin board

viewport

command

ascii string

label

command

ascii string

label

bshell*bshell_main_bb bulletin board

bshell*bshell_main_bb*popup_alert_text_pBh transient shell

bshell*bshell_main_bb*popup_alert_teit_bb bulletin board

bshell*bsh«ll_main_bb*popup_alert_text_bb*popup_alert_text_quit command

bshell*bshell_main_bb*popup_alert_text_bb*popup_alert_text ascii string

bshell*bshell_main_bb*poup_dialog_psh

bshell*bsh«ll_main_bb*poup_dialog_psh*popup_dialog

*popup_str_text_sh

*popup_str_text_«h*popup_str_text_bb

*popup_«tr_text_sh*popup_str_text_bb*popup_str_text

transient shell

dialog

top level shell

bulletin board

ascii string

Page 107

15 February 1991 STARS-RC-01080/002/00

31 *popup_str_text_sh*popup_str_text_bb*popup_str_text_quit C0BS&&XVC1

32

33 *popup_file_text_sh top level shell

34 *popup_xile_text_sh*popup_iile_text_bb bulletin board

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

*popup_file_text_sh*popup_file_text_bb*popup_file_text
*popup_file_text_sh*popup_file_text_bb*popup_file_text_quit

*menu_shell
*menu_shell*menu_bb
*menu_shell*menu_bb*menu_label
*menu_shell*menu_bb*<menu_item_naaie>

*bb_menu_shell
*bb_menu_shell*bb_menu_bb
*bb_menu_8hell*bb_menu_bb*bb_menu_lab«l
*bb_menu_shell*bb_menu_bb*<Benu_item_name>

*node_menu_shell

*node_menu_shell*node_menu_bb

*node_menu_shell*node_menu_bb*node_menu_label

*node_menu_shell*node_menu_bb*<menu_itejn_name>

*arc_menu_shell

*arc_menu_shell*arc_menu_bb

*arc_menu_shell*arc_menu_bb*arc_menu_label

*arc_menu_shell*arc_menu_bb*<menu_item_name>

*outdatci_ilag_down
*outdated_ll«Lg_up

transient shell

bulletin board

label

conunsLTid.

transient shell

bulletin board

label

command

transient shell

bulletin board

label

command

transient shell

bulletin board

label

command

label

label

The following file listing is from the Browser file, which is the resource file for the sample
application distributed with the Reusable Graphical Browser.

1 #««##**#«*««***««***««#*#«#****##*#««##*«#*#««*#*««***««*#*»«*##########«»»###«

2 # Resource file for the Reusable Graphical Browser sample application

3 ######################################*##

4 # RGB resource file name = Browser

5 # RGB resource directory path = IXAPPLRESDIR

6 *

7 * bitmap iile path (must be set to directory containing bitmap files)

8 «

9 *bitmapFilePath: /usr/zoo/chen/stars/code/application/bitmaps

10

11 * initial size of the shell

12 bshell.width: 350

Page 108

15 February 1991 STARS-RC-01080/002/00

13 bshell.height: 450
14
15 # initial size of the view port

16 #
17 bshe11*bshell_bb*vp.width: 300

18 bshell»bshell_bb*vp.height: 400

19

20 * initial size of the shell's bulletin board

21 #

22 ##bshell*bshell_bb.width: 700

23 ##b«hell*b«hell_bb.height: 500

24 bshell*bshell_bb.width: 800

25 bshell*bshell_bb.height: 600

26

27 # fix up the arcs

28 #

29 ##bshell*bshell_bb*vp*arc_STRUCTURAL.bordertfidth: 0 — perm set to 0 in code

30 bshell*bshellJ>b*vp*arc_STRUCTURAL.internalHeight: 0

31 bshell*bshell_bb*vp*arc_STRUCTURAL.internalVidth: 0

32

33 * show the arcs using bitmaps

34 #

35 ##bshell*bshell_bb*vp*arc_STRUCTURAL.sensitive: false

36 ##bshell*bshell_bb*vp*arc_STRUCTURAL.bitmap: point.zbm

37 bshell*bshell_bb*vp*arc_STRUCTURAL.bitmap: smalltriangle.zbm

38

39 # set dimensions of the arcs' atribute widgets

40 #

41 bshell*bshell_bb*vp*arc_attrib_STRUCTURAL.height: 30

42 bshell*bshell_bb*vp*arc_attrib_STRUCTURAL.width: 150

43

44 # set dimensions of the arcs' label widgets

45 #

46 ##bshell*bshell_bb*vp«arc_label_STRUCTURAL.height:20

47 ##bshell*bshell_bb*vp*arc_label_STRUCTURAL.height:40

48 bshell*bshell_bb*vp*arc_label_STRUCTURlL.border.width: 1

49

50 # show the nodes using bitmaps

51 #

52 bshell*bshell_bb*vp*node_FILE.bitmap: bigsquare.zbm

53 bshell*bshell_bb*vp*node_DIRECTORY.bitmap: bigcircle.zbm

54 bshell*bshell_bb*vp*node_0THER.bitmap: bigquest ion.zbm

55

56 » set dimensions of the nodes

57 #

Page 109

15 February 1991 STARS-RC-01080/002/00

58 bshell*bshell_bb'-vp*node_FILE.borderWidth: 1

59 bshell*b8hell_bb*vp*aode_FILE.internalVidth: 0

60 bshell*bshell_bb*vp*node_FILE.internalHeight: 0

61 bshell*bshell_bb*vp*node_DIRECTORY.borderVidth: 1

62 bshell*bshell_bb*vp*nodeJDIRECTORY.internalVidth: 0

63 bshell*bshell_bb*vp*node_DIRECTORY.internalHeight: 0

64 bshell*bshell_bb*vp*node_OTHER.borderWidth: 1

65 bshell*bshell_bb*vp*node_OTHER.internalWidth: 0

66 bshell*bshell_bb*vp*node_OTHER.internalHeight: 0

67

68 # set dimensions of the nodes' attributes widgets

69 #

70 bshell*bshell_bb*vp*node_attrib_FILE.height: 50

71 bshell*bshell_bb*vp*node_attrib_FILE.width: 100

72 bshell*bshell_bb*vp*node_attrib_DIRECTORY.height: SO

73 bshell*bshell_bb*vp*node_attrib_DIRECTORY.width: 100

74

75 # set dimensions of the nodes' label widgets

76 #

77 bshell*bshell_bb*vp*node_label_FILE.borderWidth: 0

78 bshell*bshell_bb*vp*node_label_DIRECTORY.borderWidth: 0

79

80 # set dimensions of the popup text window

81 #

82 *popup_str_text_sh.width: 160

83 *popup_str_text_sh.height: 85

84 *popup_str_text.width: 150

85 *popup_str_text.height- 85

86 #

87 *popup_file_text_sh.width: 150

88 *popup_file_text_sh.height: 85

89 *popup_file_text.width: 150

90 *popup_file_text.height: 85

91 #

92 *popup_alert_text_psh.width: 300

93 *popup_alert_text_psh.height: 50

94 *popup_alert_text.width: 300

95 *popup_alert_text.height: 50

96

97 # set dimensions of the popup dialog window

98 #

99 •popup_dialog_psh.width: 600

100 «popup_dialog_psh.height: 90

101 *popup_dialog.width: 600

102 *popup.dialog.height: 90

Page 110

15 February 1991 STARS-RC-01080/002/00

103
104 # customize menu labels

105 #

106 *menu_label.background: black

107 *menu_label.sensitive: false

108 *bb_menu_label.background: black

109 *bb_menu_label.sensitive: false

110 *node_menu_label.background: black

111 *arc_menu_label.background: black

112 *menu_label.foreground: shite

113 *bb_menu_label.foreground: shite

114 *node_menu_label.foreground: shite

115 *arc_menu_label.foreground: white

116

117 # customize outdated flag icons

118 #

119 *outdated_flag_dosn.bitmap: od.flag.dovn.xbm
120 *outdated_flag_up.bitmap: od_flag_up.zbm

Page 111

15 February 1991 STARS-RC-01080/002/00

C Appendix: Limitations

In keeping with the goals of reuse, every effort has been made to assure that the Reusable
Graphical Browser is as flexible and portable as possible. Nevertheless, it still has its limi-
tations. These are listed below.

C.l Capabilities Not Yet Implemented

Since the Reusable Graphical Browser is not yet complete, there are a number of limitations
arising from unimplemented or partially-implemented capabilities. The current plan is to
eventually eliminate these limitations:

• Mechanisms for synchronization of multiple views (e.g., user-selectable refresh) are not
yet supported.

• Interactive editing capabilities are not yet fully supported - although interactive dele-
tion of objects and relationships is supported.

• Incremental re-layout and re-display of a view is not yet supported.

C.2 Limitations On Existing Capabilities

Some of the capabilities that have already been implemented also have limitations on their
use:

• Before any menus can be displayed, a view must first be displayed.

• Before a view can be displayed, it must be laid out; all of its nodes and arcs must be
assigned coordinates, and its orientation must be set.

• View layouts are constrained to a coordinate space having dimensions 32767 x 32767;
the coordinates (0,0) are reserved to indicate un-laid-out nodes and arcs.

• Dialog box (text) input is limited to a single line of no more than 100 characters.

C.3 Potential Problems

The following problems are known to exist in this version of the Reusable Graphical Browser:

• A CONSTRAINT-ERROR exception may occur during display of a view (particularly
if the view is large or if vertical layout orientation is used). This is due to node and
arc coordinates exceeding the pixel address range supported by the X window system.
Possible workarounds include the following:

Page 112

15 February 1991 STARS-RC-01080/002/00

— use horizontal layout instead of vertical layout.

— specify smaller x_pad and/or y_pad values when calling the layout procedure.

— use smaller fonts and/or icons for displaying the nodes and arcs (these can be
changed via the resource file, without recompiling the application).

— construct views having fewer nodes and/or arcs to begin with.

There is no fix for this problem. It is inherent in the implementation of tl.e X window
system and the X Toolkit.

• Arc depictions (icons, labels, etc.) may overlap on the screen. This is caused by current
limitations in the layout algorithm. A workaround is to change the sizes of the node
and/or arc widget depictions (icons, labels, etc.), via the resource file, such that the
arc depictions take up less space on the screen than the depictions of their destination
nodes depictions. An alternative workaround is to use larger x_pad and/or y.pad values
when calling the layout procedure.

• A view's pop-up and text windows are not necessarily erased when the view is erased.
Similarly, they are not necessarily raised, lowered or iconified along with the view's
main window. This problem is currently being investigated.

• I/O Error (Broken Pipe) may occur when resizing a viewport to a larger size. This
problem seems to occur most often when the view contains many nodes and arcs and
their attributes are integrated with the display. This problem is also being investigated.
It is most likely an Xlib or X Server problem, since it is caused by loss of the socket
connection between the application and the X server.

• The scrollbars are missing from the attribute (text) displays that are integrated with
the screen layout. It was necessary to remove them in order to work around a bug in
the X Toolkit.

• If the cursor is positioned too close to the edge of the screen when a pop-up dialog box
is displayed, the diaiog box's buttons may end up being displayed off screen. Since the
user is forced to select one of these buttons before proceeding, the browser is effectively
hung.

• Limitation: before any menus may be displayed, a view must first be displayed. If
this limitation is violated, a CONSTRAINT-ERROR is raised. Application developers
that wish to display menus before displaying a view may work around this limitation
by first creating and displaying an empty view.

C.4 Compiler Dependencies

Although it was intended that the code for the Reusable Graphical Browser be compiler-
independent, certain compiler dependencies were unavoidable. For one, the naming conven-
tions used for the source files are compiler-dependent. For another, certain implementation-
dependent pragmas (e.g., pragma interface) were used in constructing the Ada bindings to

Page 113

15 February 1991 STARS-RC-01080/002/00

the X library routines (Xlib). Consequently, the source files may have to be renamed and/or
modified slightly in order to compile with a different compilation system.

Furthermore, Tools constructed from the Reusable Graphical Browser may not function
properly if compiled by an Ada compiler whose parameter passing conventions are incom-
patible with those of the C compiler used to compile the file "call_ada.c". This is because a C
language routine (whose source is in call_ada.c) is used to implement the callback mechanism
described in Section 2. For example, such incompatibilities have been observed in the Sun-3
UNIX environment between the Alsys Ada compiler and the Sun C compiler.

C.5 X Toolkit Version Dependencies

The Reusable Graphical Browser has a version dependency on the X Toolkit. It uses Version
2.4 of the MIT X Toolkit: Ada Language Interface developed by UNISYS. It may not be fully
compatible with later releases of that product, depending on the degree to which those later
releases differ from Version 2.4. Furthermore, since the Toolkit is dependent on Version 11,
Release 3 of the X window system (X11R3), there is an implied dependence of the Reusable
Graphical Browser on X11R3 as well.

Page 114

15 February 1991 STARS-RC-01080/002/00

D Appendix: Acronyms

The following acronyms are used in this manual:

BSD Berkeley System Distribution

OMS Object Management System

VADS Verdix Ada Development System

X11R3 X Window System, Version 11, Release 3

Page 115

15 February 1991 STARS-RC-01080/002/00

References

[1] Booch, Grady, Software Components With Ada, Benjamin/Cummings, Menlo Park,
CA., 1987.

[2] Knuth, Donald E., The Art of Computer Programming: Fundamental Algorithms, Sec-
ond ed., Addison-Wesley, Reading, MA., 1975.

[3] Nye, Adrian and Tim O'Reilly, The X Window System Series, Vol. 4: X Toolkit In-
trinsics Programming Manual, O'Reilly & Associates, Inc., Sebastapol, CA., January
1990.

[4] O'Reilly, Tim, ed., The X Window System Series, Vol. 5: X Toolkit Intrinsics Reference
Manual, O'Reilly h Associates, Inc., Sebastapol, CA., January 1990.

[5] Robins, Gabriel, "The ISI Grapher: A Portable Tool For Displaying Graphs Pictorially,"
reprinted from Proceedings of Symboliikka '87, USC/Information Sciences Institute, Ma-
rina del Rey, CA., September 1987.

Page 116

