
UNCLASSIFIED

AD NUMBER

ADB145741

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors; Critical
Technology; 10 JAN 1990. Other requests
shall be referred to Defense Advanced
Research Projects Agency, Arlington, VA
22203.

AUTHORITY

DARPA ltr, 5 Apr 1991

THIS PAGE IS UNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DI-ReCTIVE 5200.20 AND
No RESTRICTIONS ARE IMPOSED UPON

1'S USE AND DISCLOSURE,

DISTRIBUTION STATEPENT A

APPROVED FOR PUBLIC RELIASEj

DISTRIIUTION UNLIMITED#

A TECHNIQUE FOR PROVING
SPECIFICATIONS ARE

u ILE_ COPY MULTILEVEL SECURE

10 January 1980

Computer Science Laboratory Report CSL-109'4"

Ln By: Richard J. Feiertag, Computer Scientist

'SRI Computer Science Laboratory
Computer Science and Technology Division

IDT C
EI-ECTE 0
JUL 17 1990

90 07 16 -1
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025
(415) 326-6200 00 NOT
Cable: SRI INTL MPK REMOVE

(I I TWX: 910-373-1246

SECTOR TECHNOLOGY DA323914Z

A TECHNIQUE FOR PROVING
SPECIFICATIONS ARE

0) MULTILEVEL SECURE

S . 10 January 1980 Accesion For

NTIS CRA&I 0
r DTIC TAB

Unannoun.ced 0]

Computer Science Laboratory Report CSL-109 Justfcan on

By

By: Richard J. Feiertag, Computer Scientist Distribution I

SRI Computer Science Laboratory Availability Codes

Computer Science and Technology Division
S ist Special

\. \

O tl,nre r , " " .-. . .-.Ctbter ref, ." . ° "- " .. "'- s!-lI be

ref-rred fcl /T'Q, 1400 i!:on Blvd.
Arlingtcn, VA 22209 -7 - C/ (C)

rzzzzl I CAL r-fX0y

The work described in this report was funded by a variety of sources dating
back to 1973. The specification approach began with work on PSOS for the
U.S. Department of Defense, and later also received support from NSF and the
U.S. Navy (NOSC). The multilevel security iMLS1 model has its roots in the
work of Bell and LaPadula at MITRE. SRs involvement with the model began
with work on the PSOS secure object manager and work on a proposed
multilevei-secure kernel for Multics (DARPA/Honeywelh. The present MLS
model used here was formulated precisely for the first lime in work on
TACEXEC for the U S. Army IFt. Monmouthi. The MLS proof tools were
developed with several sources of funding. primarily under a subcontract from
Ford Aerospace on the KSOS project (sponsored by DARPA . but also with
support from the U.S. Army and from Honeywell The tools described here are
being used for both KSOS-1 1 and KSOS-6.

Mitenational

Table of Contents
1. Introduction 1
2. Multilevel Security Model 3

2.1. General Model 4
2.2. Restricted Model 5
2.3. Formal Definitions of Relations and Predicates 6

3. Interpreting the Security Model for SPECIAL 8
4. The Proof Process 10
5. Automation of the Proof 10
6. The Formula Generator 12

6.1. Important Data Structures 12
6.2. Important Procedures 21
6.3. Dependency Determination Procedures 28
6.4. Simplification Procedures 29
6.5. Augmentation of the Boyer-Moore Theorem Prover 31

7. Use of the Automated Tools 32
7.1. Setting up 32
7.2. Use 34
7.3. Less Restrictive Model Formulation 46
7.4. Interpreting the Verifier's Output 47

8. Conclusion 53
9. Possible Future Enhancements 53
REFERENCES 55

List of Figures

Figure 5-1: Major parts of verification tool 13
Figure 7-1: Specification for module security 35
Figure 7-2: Specification for a virtual memory 36
Figure 7-3: Terminal output 37
Figure 7-4: Proof file generated by tools 39
Figure 7-5: Specification for an insecure virtual memory 50
Figure 7-6: Terminal output for insecure specification 51
Figure 7-7: False formula generated from insecure specification 52

ii

- I

1. Introduction

The following sections describe a technique for verifying that a desLgn for

an operating system or subsystem expressed in terms of a formal specification

is consistent with a particular model of multilevel security. The technique

to be described is mathematically rigorous and, if applied properly, gives

assurance that the given design is multilevel secure by this particular model.

The technique is supported by a collection of automated tools. These tools

assist the user in the performance of a large amount of detailed routine tasks

that must be performed to apply the technique. In general, contemporary

formal verification techniques such as the one described here involve a great

deal of repetitive, detailed, uninteresting steps that are necessary to

maintain the rigor of the proof process. The proofs are usually larger and

more complex than the system being proved. Under such circumstances, the

accuracy of a proof performed manually is highly suspect. Although the

accuracy of such proofs conducted using automated tools is also highly

suspect, the automation provides the following advantages.

- The results are repeatable. Successful application of the automated
tools to a number of system designs increases ones confidence in the
tools. This confidence carries over to application of the tools to
other systems.

- Use of automated tools significantly increases the speed with which
the verification can be accomplished. If the tools are sufficiently
fast, then tne verification can reasonably become part of the design
process.

- Once the development cost of the tools is sufficiently amortized,
the cost of applying the technique becomes very small and the
verification becomes highly cost effective due to the savings
produced by early discovery of errors in the design.

- The application of a rigorous verification technique increases ones
confidence in the security of the resulting system, thereby
increasing its usefulness to the user. Unfortunately this increased
usefulness is realized only if the increased confidence is
justified.

This last advantage emphasizes the point that it is important for

interested parties to understand what 'he verification technique described

here verifies and what it doesn't verify. The term "proof" is often taken to

mean that all problems have been solved. All "proof" techniques make

assumptions and have limitations and it is essential that these assumptions

and limitations be clearly understood. In the case of the technique described

CSL-109 PROVING SPECIFICATIONS SECURE Page 2

here the following assumptions and limitations apply.

- The multilevel security model described below reflects the desired
security for the system in question. Clearly, if the property being
verified is not the desired property, then no matter how correct the
verification it is not of much use.

- The design of the system, as embodied in the formal specification,
correctly describes all aspects of the behavior of the system.
There is a great deal of value in having a specification that has
been verified as multilevel secure. However, if the implementation
of the system does not follow the specification, much of that value
is lost.

- The verification technique is correct and mathematically sound.

- The multilevel security model is mathematically sound and
consistent.

- The formal specification is mathematically sound and consistent.

- The automated tools correctly embody the verification technique.

All of the above assumptions are more difficult to formally verify than the

property that is being verified. In fact, it is the making of these

assumptions that allows one to consider the velatively simple property that is

being verified. However, this does not diminish the importance of the result.

Although it may be hard to formally verify these assumptions, there has been

excellent success in informally verifying them. What has been done here is to

focus on that pdrt of the problem that has historically been error prone, thus

achieving the greatest impact at the least cost. Thus formal verification is

seen not as the ultimate solution to the problem of eliminating bugs from

systems, but as one very effective technique in reducing certain types of

errors.

As with the verification technique itself, successful use of the automated

tools requires that the user understand 4hat the tools do and what their

limitations are. Even in the case where one gives a specification to the

-oos an-' all resulting formulas are proved true, it is important tnat one

understand what is being proved. This depends upon the information that the

user has given the tools. Of course, it is not likely that everything will be

proven on the first try. The user must be able to understand the error

messages produced by the tools and must be able to interpret the output

generated by the tocls. This will enable the user to modify the inputs to the

tools to achieve a more successful result. A fully successful result does not

CSL-109 PROVING SPECIFICATIONS SECURE Page 3

necessaril/ require that all formulas generated be proved true. Some systems

may be considered adequately secure even though they contain some security

flaws. In other cases, an unproved formula may not necessarily mean a

security flaw and other techniques may be applied to verify the security of

the specification. These tools should therefore be viewed as an impcrtant aid

in verifying the multilevel security of a specification, but they are not, by

themselves, neccssary nor sufficient to meet this end.

2. Multilevel Security Model

The basic multilevel security reqairement is assurance that when

information is passed from one entity to another within the system, that the

information is being passed to an entity that is at least as secure as the

entity that the information is coming from. We can identify in a system two

types of' identities: subjects and object. Subjects are the active entities

that perform the computations. Exampleb of subjects include users, prucesses,

and tasks. Objects are repositories, sources, or sinks of data. Examples of

objects include files, memory, storage devices, and hard copy. Each subject

and object is assigned a security level. The security levels are ordered by a

partial ordering reltion. The higher the security level in the ordering, the

more secure the associated subject or object. The multilevel security

requirement states that when information flows from subject to subject, object

to object, subject to object, or object to subject, the recipient entity must

have a security level that is at least as high as that of the sending ,'..ity.

In other words, there is no declassification of information.

in normal military security, a security level consists of a classification

or clearance and a set of categories. The classifications are totally ordered

and have names such as UNCLASSIFIED, CONFIDENTIAL, SECRET, and TOP SECRET.

The set of categories is simply a set of predefined c-xmpartments. The partial

ordering relation for military security states that one security level is

lower than or equal to another security level if the classification of the

first level is less than or eqlal to that of the second by the total ordering

of classifications, and the set of categories of the first is a subset of that

of the jecond. The formal model described below does not mention

classifications or category sets, it simply considers security levels and

ordering relations. Therefore, military secur.ity is a special case of this

model. This in no way modifies the result.

C03L-109 PROVING SPECIFICATIONS SECURE Page 4

In some cases the multilevel security requirement is overly restrictive for

certain applications. In such cases it i3 meaningful to talk about less

restrictive formulations of the model. A few such formulations are discussed

briefly towarc the end of this document.

2.2. General Model

A system consists of a collection of operations or functions. Each

function may be invoked by a user of the system. (Actually the function is

invoked as part of a program running on behalf of a user.) When invoked, a

function may take a set of arguments. A function together with a particular

set of arguments is termed a function reference. When a function reference is

invoi.ed, it can cause the state of the system to change and/or return

information to its invoker. The set of all function references of a system is

called F and some member o. this set is denoted by f.

We also define a set of security levels L. The security levels L are

partially ordered by the relation tI<1. "<" is a reflexive partial ordering

relation ir that it must be reflexive, transitive, and antisymmetric.

Multilevel security involving classifications and categories is but one

example of a partial ordering of security levels, so we will be dealing here

with a more general case. There is a function K whose domain is F and whnse

range is L. The function K returns the security level of its argument. A

process is assigned a security level for its lifetime .id may only invoke

functioi references at this level. (Note that a user may have several

processes operating on his behalf simultaneously, and may therefore operate at

several security levels.)

Finally, we introduce the relation "-->" on function references. We say

that
fl-->f2

(read as fl transmits inform,.ion to f2) -f there is any possibility that the

information returned by an . :vocation of f2 could hate been in any way

affected by a prior invocation of fl. In other words, there is some

transmission of information from f1 to f2.

The definition of multilevel security can now be stated simply. For any f1

and f2 in F:

f 1-- >f 2 ==> K(fl) : K(f 2) (1)

CSL-109 PROVING SPECIFICATIONS SECURE Page 5

This simply states that if there is any possibility of information

transmission between two function references, then the transmitting function

reference must have a security level less than or equal to the that of

receiving function reference.

In other words, information can flow only upward in security or remain at

the same level. (It should be noted that in military multilevel security

cases, "the same level" implies identically the sz'me classification and the

same categories.) An alternative definition is given by Feiertag et al. [3].

Unfortunately, the abstract nature of this definition makes it difficult to

relate to constructs used in expressing system designs. This gap can be

bridged by formulating a slightly more restrictive model in less abstract

terms.

2.2. Restricted Model

Each state variable v contains some of the state information of the system.

The state variables together completely describe the state of the system. The

value of each state variable may be modified by invocation of some function

reference. Each state variable is assigned a security level which is

determined by extending the function K to apply to state variables as well as

function references. Therefore, K(v) is the security level of state variable

v. The relation -f> relates two state variables such that

vI -f> v2

means that. an invocation of function reference f may cause the value of v2 to

change in a manner dependent upon the previous value of vl. In other words

there is an information flow from v, to v2 caused by the invocation of f. Two

predicates must also be defined: the prefix form of -f>

-f>v

means that an invocation of the function reference f may cause the value of

state variable v to change; the postfix form

V -f>

means that the value returned by function reference f is dependent on the

CSL-109 PROVING SPECIFICATIONS SECURE Page 6

prior value of state variable v. Note thAt for any f1, v1, and v2 :

v I -f> v2 => -f> v2

A multilevel secure system may now be redefined. For any function

reference f and state variables v, vl, and v2

v -f> ==> K(v) < K(f) (2)

v i -f> v2 .=> K(v I) < K(v 2) (3)

-f> v ==> K(f) < K(v) (4)

These properties assure that information flow is always upward in security

level or remains at the same security level. Loosely speaking, the arrow -- >

always points upward in security level. Equation 2 states that the value

returned by an invocation of a function reference at some security level

contains information from state variables at only lower or equal security

levels. Equation 3 assures that when information is transferred from one

state variable to another by some invocation of a function reference, that the

recipient variable is at a higher or equal security level than the originating

variable. Equation 4 assures that the value of a state variable may be

changed by invocation of a function reference whose security level is 1'ss

uhan or equal to that of the variable, thereby guaranteeing that security

cannot be violated by the act of invoking a function reference. An

F-ternative definition is given by Feiertag et al. 13].

2.3. Formal)efinitions of Relations and Predicates

A multilev1 system is defined to be the following ordered 9-tuple:
<S, s., L, "-", F, K, R, Nr, Ns>

,.,er the , nt-. o~f the syte can IDCf ha 4i-,4 +-i-t1 ~ n-~.,a- ,.P-1- -t . y 4s. . n t. rp;s Ft . as f i.l.o,.

- S - States, the set of states of the svstem

- so - Initial state: the initial state of the system; so C S

- L - Security levels: the set of security levels of the system

- l<1 - Security relation: a relation on the elements of L that
p~rtially orders the elements of L

CSL-109 PROVING SPECIFICATIONS SECURE Page 7

- F - Visible function references: the set of all the externally
visible functions and operations (i.e., functions and operations
that can be invoked by programs outside the system); if a function
or operation requires arguments, chen each function together with
each possible set of arguments is a separate element of F (note that
in this document externally visible functins and operations will be
referred to collectively as visible functions (or functions) even
though operations are not functions in the mathematical sense)

- K - Function reference security level: a function from F to L giving
the security level associated with each visible function reference;
a process may invoke only function references at the security level
of the process; K:F->L

- R - Results: the set of possible values of the visible function
references

- Nr,N s - Interpreter: functions from FXS to R ana S that define how a
given visible function reference invoked when the system is in given
state produces a result and a new state; Nr:FXS->R and Ns:FXS->S.

There is also a set of state variables V, each member of which is the set of

values can be assumed by that state variable. The set of states S is

isomorphic to the cross product of all the state variables veV.

In order to define multilevel security, the following definitions are

useful:

- T - the set of al n-tuples of visible function referenjes or, in
other words, all possible sequences of operations T = F

- M - the function whose value is the state resulting from the given
sequence of operations starting at some given state M:SXT->S

- D - the function whose value is the set of state variables whose
values differ in the given states D:SXS->V

The two relations and two predicates described above can now be formally

defined:

fl -- > f2

(4tl,t 2eT)

Nr(f 2 ,M(t2 ,M(<f1>,s(tlS o))

~Nr(f2,M(t2,M(t 1,So))

CSL-109 PROVING SPECIFICATIONS SECURE Page 8

vi -f> v2 =

(4sls 2 ES1D(s1,s2)={v1)

v2eD(Ns(f,sl),Ns(fs 2))

v -f> =

(4sl,sESID(sl,s2)={v})

Nr(f'si) Nr(f,s2)

-f> v=

(UsS)

v"D(s,Ns(fs))

3. Interpreting the Security Model for SPECIAL

In order to prove that a given specification of a system written in the

specification language SPECIAL is multilevel secure by the above definitions,

it is necessary to define SPECIAL as an interpretation of the restricted

nodel. To do this it is necessary to show 'ow each constituent of the model

is represented in a specification written in SPECIAL. Recall that the model

is a 9-tuple:
<S, So, L, "<", F, K, R, Ns , Nr>

In addition to the e)ements of the model, the notion of state variable (a

refinement of the concept of state) will also be described in terms of SPECIAL

since it plays a central role in the definition of multilevel security.

The set of function references F is given in SPECIAL by the definitions of

the visible V-functions, O-functions, and OV-functions in a specification.

Since these function definitions are parameterized, each function reference in

the set F corresponds to a function definition of a specification that has

been instantiated with particular arguments. In other words, a member of F

corresponds to a visible function definition of the specification together

CSL-109 PROVING SPECIFICATIONS SECURE Page 9

with a particular value for each parameter in the function definition.

As described above, the set of states S can be defined in terms of the

values of a set of state variables V. In a SPECIAL specification it is easy to

represent the set of state variables. Each state variable (i.e., each member

of V) corresponds to a primitive V-function reference in a specification. A

primitive V-function reference is simply a defined primitive V-function

together with a value for each of its formal parameters. The collection of

current values of all the primitive V-function references therefore defines

the current state of the system.

The set of return values R is simply the set of binary tuples whose first

element is a natural number and whose second element can be any value defined

in the specification. The value of the first element of the binary tuple

indicates the first exception whose value is true (0 indicates all exceptions

are false) in the function reference returning the value. The latter element

of the binary tuple includes not only those primitive values defined by the

SPECIAL language, but also values defined by the specifications in the TYPES

paragraph. Note that if the first element of the tuple is nonzero, the second

element must have undefined value.

The interpretation functions Nr and Ns are represented by the syntax and

semantics of SPECIAL. The syntax and semantics of SECIAL define the value

returned by and the new values of the primitive V-function references that

result from the invocation of a visible function reference. These values are

expressed as a function of the parameters to the visible function reference

and the prior values of the primitive V-function references.

The initial state so is determined by the constraints placed on the initial

values of the primitive V-functions as given in the INITIALLf clause of a

primitive V-function definition. Actually, these c)nstraints do not

necessarily constrain the system to a single initial state, but to some set of

initial states. This requires that multilevel security be proved for the

entire set of initial states. In actuality the proof is carried out for every

possible state as the initial state with no increase in difficulty. This

simply indicates that the initial state has no relevance to multilevel

security as defined above.

The remaining elements of the mode2, the set of security levels L, the

CSL-109 PROVING SPECIFICATIONS SECURE Page 10

partial ordering function "<", and the security level function K, are not

given as part of the specification but are introduced into the proof process

separately. A discussion of how these elements are introduced is given

subsequently.

4. The Proof Process

With the interpretation of the model in terms of SPECIAL given above, it is

a fairly straightforward process to prove that a given specification written

in SPECIAL and following the above conventions is consistent with the model.

One simply must identify all instances of primitive V-function references in

the specifications that satisfy the relations or predicates given above in

Section 2.2 and then show that Equations 2, 3, and 4 are satisfied in each

case. In general, it is not decidable whether any of the relations of Section

2.2 is satisfied so, in order to be sure the approach is sound, we will always

assume a relation holds if we cannot determine otherwise. In this way we ma

end up trying to prove that Equations 2, 3, and 4 hold when it is unnecessary

to do so, but this is better than failing to prove that these equations hold

when we should have done so.

5. Automation of the Proof

The steps described above for accomplishing a proof are sufficiently

straightforward that they lend themselves well to automation. Automating the

proof process serves not only the purpose of making the proof easier, but in

some ways making the proof more reliable and convincing. The proof process

requires tedious attention to detail. One must examine each primitive

V-function reference of the specifications and prove one or more properties

about that reference. Although this is not hard in most cases, it is the type

of repetitive, painstakingly detailed work that can easily lead to error.

Unfortunately, a simple small error could partially invalidate the proof. To

the extent that automation is possible, it can alleviate these problems. Of

course, the automation is not necessarily foolproof. It does have the

advantage of being accurately repetitive. After demonstrating correct

operation on a number of specifications, one can have a great deal of

confidence in its continued correct operation if it is not modified. This

cannot be said of manual proof.

The remainder of this section discusses the automated system developed for

the purpose of pro-ing that specifications written in SPECIAL are consistent

CSL-109 PROVING SPECIFICATIONS SECURE Page 11

with the model given above. For purposes of automation, the proof process is

divided into the following parts:

1. Parsing the SPECIAL specification.

2. Checking the specification for consistency in the types of the
identifiers.

3. Obtaining the interpretation for those aspects of the model not
already given an interpretation, namely, the set L, the relation <,
and the functions K and I.

4. Resolving external references of the module under consideration.

5. Building a symbol table of all identifiers.

6. Renaming of some identifiers to avoid potential future name
conflicts.

7. Performing some syntactic transformations which serve to simplify
the language of the specification.

8. Identifying all primitive V-function references.

9. Identifying occurrences of the relations given in Section 2.2.

10. Composing formulas using Equations 2, 3, and 4.

11. Simplification of the composed formulas.

12. Proof of the simplified formulas.

These parts of the proof process are not necessarily performed in the order

given above and are not necessarily performed as separate steps in the

automating programs. Some are performed as separate passes over the entire

specifications and some are performed as separate passes over single

expressions and parts of expressions.

In this proof process, three of the parts are particularly difficult,

requiring heuristic, rather than simple algorithmic techniques. These three

are:

- Identifying occurrences of the relations given in Section 2.2.

- Simplication of the composed formulas.

- Proof of the simplified formulas.

The immediately following discussion describes how the automation accomplishes

the parts of the proof process other than these three. The difficult three

CSL-109 PROVING SPECIFICATIONS SECURE Page 12

are discussed separately after that.

The automation tools are divided into three main parts as shown in Figure

5-1.

Part I is the SPECIAL specification checker of the HDM tools. This part

performs the parsing and syntax and type checking of the SPECIAL

specifications. The output of this part of the tools is a parse tree of a

legal SPECIAL specification. This part of the tools is documented in the HDM

Handbook [4] and is not discussed further in this document.

Part 2 is the formula generator which takes the parse tree produced in Part

I and generates a list of partially simplified formulas whose truth implies

the security of the restricted model descrited above. The operation of this

part of the automation tools is discussed in detail below.

Part 3 is the theorem prover. The theorem prover used here is a slightly

augmented version of th3 Boyer-Moore theorem prover described in A Computation

Logic [1] and whose use is described in "A Theorem-Prover for Recursive

Functions: A User's Manual" [2]. Subsequent sections of this document will

describe the augmentation of the Boyer-Moore theorem prover used in these

tools. It will be assumed that the reader is familiar with the basic theorem

prover.

6. The Formula Generator

This section presents a detailed description of the inner workings of the

formula generator, Part 2 of the automated multilevel security proof tools for

specifications written in SPECIAL. The purpose is to give the reader a start

in understanding how the code of the tools functions. The formula generator

is written in INTERL1SP [5] and the reader of this section should be familiar

with this language.

6.1. Important Data Structures

Before discussing the algorithms used in the formula generator, some of the

important data structures are described -- namely the following:

- Specification parse tree

- Symbol table

- Symbol list

CSL-109 PROVING SPECIFICATIONS SECURE Page 13

Specification

I SPECIAL parser
and type checker

formula generator

I theorem prover

Proof

Figure 5-1: Major parts of verification tool

CSL-109 PROVING SPECIFICATIONS SECURE Page 14

- Transformed parse tree

- SPECIAL operation list

- SPECIAL symbol translation list

- Declared functions list

- Global assertions list

- Local preconditions list

- SOME variables list

- Delayed effects list

- Formulas list

- Theorem prover command list

- Link file

- Special symbols

All of these data structures, with the exception of the link file, exist only

while proceo6ing a module. The link file persists indefinitely and is u3ed in

processing other modules. The purpose (and in some cases the structure) of

each of these data structures will be described in turn.

The specification parse tree is the primary input to the formula generator.

It is the representation of the specification in tree form. In LISP this

turns out to look like a prefix form of the SPECIAL specification from which

it is derived by the parser of the HDM tools. The formula generator assumes

that the specification is syntactically correct and that all type checking has

been performed. The formula generator and theorem prover pay no attention to

. types.

The symbol table (bound to the variable TABLE) is the central repository of

needed information about each identifier encountered in the specification.

Each entry in the symbol table contains three standard pieces ofinoato

about an identifier plus some additional information whose nature depends upon

the nature of the identifier being described. The three standard pieces of

information are:

- the name of the identifier in the original specification,

- the name of the identifier to be used in the generated formulas, and

CSL-109 PROVING SPECIFICATIONS SECURE Page 15

- the nature of the entity to which the identifier corresponds.

The second piece of information is needed because within a given

specification, two different identifiers might have the same name. This can

happen if the two identifiers appear in different scopes. Because The

formulas to be generateO do not have scopes as such and because two

identifiers with the same name could both appear in the same formula, it is

necessary to disambiguate the names. However, it is desirable for someone

examining the formulas to be able to relate the name of an identifier in a

formula to the name of the identifier in the original specification.

Therefore, the renaming is done as follows:

1. The first occurrence of a given name in the specification will be
renamed to itself. This means that if a name is associated with
only one identifier then the original name will be associated with
that identifier.

2. When an identifier is encountered worth a name that is already
associated with another identifier, and if there is a possibility
of generating a formula that references both identifiers, then this
most recently encountered identifier will be renamed and the new
name will consist of the original name concatenated with a period
and some string that will serve to disambiguate. Therefore, the
new name will always have the original name as an easily
identifiable initial substring. The added string is simply a
number assigned sequentially so that the first duplicate name will
have the string "1.1I" concatenated and the next duplicate of the
same name will have ".2" added and so on. It is sometimes possible
for an identifier name to have several of these disambiguating
suffixes. This arises if a definition or function is invoked that
has local identifiers that have previously been disambiguated. For
example, a definition might have a local identifier arising from
the use of the FORALL construct. such as: FORALL INTEGER i : P(i):
Q(i). If when the definition was first defined the use of the name
"i" was ambiguous, it might have been renamed to "i.1". When this
definition is invoked in some function description, and if .he name
"i.1" is already in use in this context, the identifier might get

renamed to "i.1.1". Therefore, the number of added suffixes is a
clue to the depth of nesting of invocation of the identifier in
question.

The third field of the symbol table gives the nature of the entity to which

the identifier refers. Possible values for this field include: CONSTANT (an

element of an enumerated type), PARAMETER (a parameter of the specif2.cation),

VFUN (primitive V-functions), OVFUN (derived V-functions, O-functions, and

OV-functions), iNSTANTIATION (an identifier instantiated in a FORALL, EXISTS,

SOME, LET, etc.), ARGUMENT (a formal parameter to a function or definition),

DEFINITION, or RETURNARG (a return value in a function). For the cases

CSL-109 PROVING SPECIFICATIONS SECURE Page 16

CONSTANT, ARGUMENT, and RETURNARG there is no additional information in the

symbol table. For the other cases the additional information is as follows:

- PARAMETER - The fourth field is ignored and the fifth field contains
a list of the formal argument identifiers to the parameter function.
If the parameter is not a function, then the fifth f±lld is empty.

- INSTANTIATION - The fourth field is usually empty, but in the case
where the identifier was instantiated from a SOME construct, the
fourth field contains the qualifier in the SOME construct. This is
necessary because it is important to ascertain if two insfantiated
identifiers represent the same value. In the case of thfe SOME
construct this can be done by comparing the qualification
expressions.

- VFUN - The fourth field is the numeric position of the argument to
the V-function that is the security level of that V-function. The
fifth field is the formal parameters to the V-function. The sixth
field if the identifier representing the return value. The seventh
field is the name of the module in which this V-function was
defined, and the eighth field is the body of the V-function.

- OVFUN - The fifth through eighth fields of entries for VFUN above
become the fourth through seventh fields here. For VFUNs and OVFUNs
the body field consists of a list of paragraphs. Each paragraph is
a list whose first member identifies the type of paragraph
(ASSERTIONS, EXCEPTIONS, DERIVATION, or EFFECTS), whose second
member is a list of the local variables of the paragraph, whose
third member is a list of the local variables derived from SOME
constructs together with their qualifications, and whose fourth
member is a list of the expressions in the paragraph.

- DEFINITION - The fourth field is a list of formal parameter
identifiers of the definition. The fifth field expression defining
the value of the definition. The sixth field is the list of local
variables in the definition.

The information in the symbol table is also stored on the property lists of

the atoms whose names correspond to the second field in the symbol table. The

name of the property under which tIis information is stored is TGINFO.

Placing the information from the symbol table on the property list of the

renamed name makes it fairly easy to retrieve the information from the renamed

name. Symbol table accesses using the renamed name are far more common than

accesses using the original name.

The symbol list (bound to the variable SYMBOLCOUNT) is simply the list of

all identifiers that have already been encountered and the number of

disambiguated names generated from this name. This list is used when

generating suffixes for disambiguation.

CSL-109 PhOVING SPECIFICATIONS SECURE Page 17

As each expression in the parse tree is processed, it is transformed in two

ways. The unambiguous names replace the ambiguous names. Certain constructs

are replaced with other equivalent constructs. The result of these

transformations is the transformed parse tree. This transformed parse tree

never exists in its entirety, rather small portions of the entire tree exists

as attention is placed upon a specific portion of the tree. However, it is an

important conceptual data structure because most of the code acts on the

transformed parse tree rather than on the original parse tree. Some of the

transformations are these:

- Implications are transformed to conditionals.

- FORALL quai.tification is transformed into simple expressions in
which the previously quantified identifiers become free identifiers.

- Identifiers instantiated in SOME expressions become simple
instantiated variables. Vector constructors become universally
quantified expressions.

- Definitions, uses of derived V-functions, and EXCEPTIONS OF and

EFFECTSOF expressions are expanded.

The purpose of these transformations is to reduce the number of different

kinds of expressions that subsequent code has to deal with.

The formula generator is basically a syntax driven tool. As an expression

is processed, routines are invoked that correspow' to the operation in the

expression that is currently being processed. The SPECIAL operations list

(bound to the variable OPLST) associates the name of a routine in the tools

that is called whenever a particular operation in the specification is

encountered.

The formula generator converts all special mathematical symbols such as =,

<, >, +, etc. to function names. The correspondence between a symbol and its

name is given in the SPECIAL symbol translation list (bound to the variable

OPNAMES).

All functions which appear in the generated formulas must be declared to

the theorem prover. These names are collected on the declared functions list

(bound to the variable DECLLIST) and passed on the the theorem prover as part

of the theorem prover command list.

The global assertions made in the specification are passed on to the

CSL-109 PROVING SPECIFICATIONS SECURE Page 18

theorem prover where they are defined as axioms. The global assertions are

collected on the global assertions list (bound to the variable COLLECTABLES)

and then passed to the theorem prover as part of the theorem prover command

list.

As a function specification is processed, expressions in the EXCEPTIONS,

ASSERTIONS, and DELAY paragraphs become preconditions for other parts of the

function specification. These preconditions are collected on the local

Preconditions list (bound to the variable PRECONDS) for use when they are

needed.

The names of identifiers instantiated in a SOME construct are collected

into the SOME identifiers list (bound to the variable SOMEVARS). Whenever a

new identifier is about to be instantiated in a SOME construct, its

qualification is compared with identifiers on the SOME identifiers list and,

if the qualifiers are the same, the existing identifier is used and no new

identifier is instantiated.

When processing the EFFECTSOF an OV-function, some of the effects of that

OV-function cannot be instantiated at the point of the EFFECTSOF expression.

The instantiation of these effects must be delayed until a place appropriate

for their instantiation is encountered. These effects are stored on the

delayed effects list (bound to the variable DELAYED.EFFECTS) and are

instantiated and removed from the list at some subsequent time.

The objective of the formula generator is to generate a list of formulas

whose truth implies the multilevel security of the specification. This list

of formulas is generated by means of a formula list. Eac'h entry on the

formula list has three fields. The first field is the formula being

generated. At different stages during processing a specificatiun this f3rmula

may be only partially complete. The second field is a list of important

identifiers appearing in the consequent of the formula. This information is

used in the simplification. The third field indicates whether the consequent

of the formula is complete. At the time a formula is first generated, it is

possible that not all the names of the identifiers in "he consequent are

known. In this case a temporary name is used to indicate that some identifier

is unknown. At a later stage, when the identifier is known, it will be filled

in in place of the temporary using the information in the third field.

CSL-109 PROVING SPECIFICATIONS SECURE Page 19

The information produced by the formula generator must be passed on to the

theorem prover (unless a formula can be trivially proven true by the formula

generator). This information is passed on to the theorem prover as a list of

commands to the augmented theorem prover. The commands have the form of

command name followed by some number of arguments. The following is a list of

the commands:

- PARTIAL.ORDERING - T is command identifies the partial ordering
function, "1<1", and the security levels at the top and bottom of the
partial ordering if such levels exist. The first argument is a list
of arguments to the partial ordering function in the order of lower
argument first. The second argument is the partial ordering
function together with its arguments. The first two arguments

essentially identify the partial ordering function and determine if
it is a less than or equal to or a greater than or equal to
function. The third argument to the partial ordering command is the
bottom security level in the partial ordering, and the fourth
argument is the top security level.

- SETVARS - This command takes an arbitrary number of arguments. Each
argument is a pair, the first element of this pair being the name of
a theorem prover variable and the second element of the pair being a
value. The theorem prover variable is set to the given vaiue. This
command allows the formula generator to set the value of theorem
prover variables.

- DECLARATIONS - This command takes an arbitrary number of arguments.
Each argument is a function invocation. These function invocations
are used to declare the functions to the the3rem prover. These
functions are deriv.d from the function declaration list described
above.

- ASSERT - This command declares as an axiom each of its arguments.

- FORMULA - This command is different in format from those above. The
command name does not appear in the command. The first element of
the command is a list of information about the origin of the

formula. This information is the name of the module, the name of
the function, the type of the expression, and the expression from
which the formula was generated. The remaining elements ,f the
command are generated formulas. These formulas ars successively
more complex versions of the same formula. In other wo.rds one of
the tc'rmulas generated by the theorem prover is simplified in
successive stages. The various simplified formulas are then placed
in the formula command starting from the most simplified and
proceeding to the least simplified.

The theorem prover command list is placed in a file and this file is read by

the theorem prover. The file is called the formulas file.

The formula generator processes each module of a specification

CSL-109 PROVING SPECIFICATIONS SECURE Page 20

individually. However, some modules of a specification may reference other

modules of the specification. Such cross module references may require that

information about other modules be known to the formula generator when it is

processing some module. This information is kept in a link file. The link

file for a given module is generated by the formula generator when it

generates the formulas for that module. This link file can then be read by

the formula generator as needed when processing other modules. The primary

data structure of the link file is a subset of the symbol table for the module

from which the link file was produced. Preceding the symbol table in the link

file is some information about the specification source file from which it was

produced. This added information helps the formula generator verify that the

link file corresponds to the current source file.

There are in addition to the above several items of data that assist the

operation of the formula generator. These are given below listed by their

INTERLISP variable names:

- LTEQ.FUNCTION - An invocation of the partial ordering function "1"
for security levels.

- BOTTOM.ELEMENT - The name of the least element in the partial
ordering of security levels if such a least element exists.

- TOP.ELEMENT - The name of the greatest element in the partial
ordering of security levels is such a greatest element exists.

- DEFAULT.LEVL.NAME - The name supplied as the argument to a
specification function that corresponds to the security level of the
function if no such name is supplied by the user.

- DEFAULT.TLINK.ANSWER - If the us'-r does not respond to the question
about whether or not a link file 3hould be created, this value is
used as the reply.

- DEFAULT.WAIT.TIME - The amount of time the formula generator will
wait for an answer from the user before using a default response.
If the value of this variable is NIL then the formula generator will
use tl default Lmmediately.

- DEFAULT.LEVELS - A list of the specification function names and the
name of the argument to each function that corresponds to the
securiLy level last supplied by the user. These argument names are
used as the aefault whenever a function name on the list is again
encounterea. This makes it possible to utilize the 'ools repeatedly
for the same modules without having to enter the security levels
each time.

- CRITICAL.NAMES - A list of names whose presence in the antecedent to

CSL-109 PROVING SPECIFICATIONS SECURE Page 21

a theorem causes the simplifier to include the antecedent in the
theorem.

The value of each of these variables can be recorded permanently in a profile

file for use in a later session.

6.2. Important Procedures

The formula generator is driven essentially from the transformed parse

tree. Starting with the root node of the parse tree, the formula generator

examines the name of ihis node, takes some appropriate action, and then

recursively invokes itself for each immediate descendant node. In this way

the formula generator eventually encounters all the nodes of the parse tree.

(In actuality, some nodes are never seen because there are certain nodes below

which descent is not permitted. However, such nodes are not relevwnt to

formula generation.) The LISP function thar performs this recursive descent

is named TG. The primary function of TG is to examine the name of the node it

is given and to call another LISP function to process that node. It obtains

the name of the function to call be searching the SPECIAL operations list

described above. TG recognizes certain cases where processing is unnecessary

because the tree below the node is not relevant, or because the current node

is a leaf in the tree and processing is not necessary.

The remaining functions of the formula generator can be divided into three

classes: functions supporting dependency heuristics, functions supporting

simplification heuristics, and other functions. Functions of the last class

are described first. Those of the first two classes are then described next.

- ADD.FUNCTION - This function adds an entry to t~e SPECIAL operations
list. The first argument is the name of the SPf2IAL operation to be
added to the list and the second argument is the name of the
INTERLISP function to be called when that operation is encountered.
If no second argument is supplied, the function TGNARY will be
called.

- ADDPRECOND - The only argument is an expression to be added to the
local preconditions list or the global assertions list, depending on

context.

- ADDSYMBOL - The first argument is the name of a newly encountered
identifier which is added to the symbol table. The second argument
is a list of fields which become fields of the symbol table entry
beginning with the third field. ADDSYMBOL returns the disambiguated
name for the identifier.

- ASSERTIONS - This function is called by TG to process all assertions

CSL-109 PROVING SPECIFICATIONS SECURE Page 22

paragraphs whether they be local or global. Global assertions are
added to the global assertions list. Local assertions are added to
the local preconditions list. All assertions are transformed before
being added to the appropriate list.

- CLOSETHMS - This function is called to generate formulas for some
top level expression. A formula list generated from the given
expression is returned.

- COMPLETETHMS - This function is called to resolve any previously
unresolved consequents in a formula list. Its first argument is the
list of formulas to be resolved and the second argument is a list
containing one security level which is used to resolve the
incomplete consequents in the formulas. COMPLETETHMS searches the
formula list for unresolved formulas (which can be identified by a
non-NIL third field) and substitutes the security level given in the
second argument for the temporary used to hold the place for the
level. The resolved formula list is returned.

- CONSTLIST - This function is a predicate of two arguments. The
first argument is an expression. The second argument is a flag. If
the flag is NIL, CONSTLIST is true if the expression contains no
V-functiors. If the flag is non-NIL then CONSTLIST is true if the
expression contains no modified V-functions.

- DEFINE.EXTERNALS - This function is used to read and process a link
file from another module referenced by the module currently being
processed. It reads the symbol table from the link file and adds
the symbols to the current symbol table if they are needed by the
current module.

- DEFINITIONS - This function is called by TG to process all
definitions paragraphs in the specification. The definitions are
transformed and are added to the symbol table. Before processing,
the definitions are sorted so that all definitions are defined

before being used in other definitions. Any recursive definitions
or, mutually recursive definitions are ignored and a warning message
is printed.

- DEFINITIONS.SORTED - This functions is a utility routine of the
DEFINITIONS function and actually does the adding of definitions to
the symbol table.

- DERIVATION - This function is called by TG to process the derivation
paragraph of a V-function. The derivation is transformed and
formulas are generated. The resulting formula list is returned.

- EFFECTS - This function is called by TG to process the effects
paragraph of an 0-function or OV-function. Each effect is
transformed, and formulas are generated. The concatenation of the
formula lists from all the effects are returned.

- ENCLOSE.AND - This function is a utility routine which takes as an
argument a list of expressions to be conjoined. The returned value

CSL- 109 PROVING SPECI' ^ATIONS SECURE Page 23

is an expression which represents the conjunction.

- EXC.THMS - This function is a utility function of the EXCEPTIONS
function It takes a single transformed exception and returns the
formula list generated from the exception. The negation of each
exception is added to the local preconditions list.

- EXCEPTIONS - This function is called by TG to process the exceptions
paragraph of a function specification. Each exception is
transformed and formulas are generated. The negation of each
exception is added to the local preconditions list. The returned
value is the list of all formulas generated for the paragraph.

- EXTERNALREFS - This function is called by TG to process the external
references paragraph of a specification. Any data required from
other modules is obtained by reading the link files of the other
modules. The data read is added to the current symbol table. The
names of all files read is printed.

- EXTRACTVAR - This function is a utility function that is given an
identifier specification and returns the identifier name. fin
identifier specification may be simply the identifier name or the
identifier type followed by the identifier name.

- FIND.SYMBOL - This predicate is true if the first argument is
contained in the second.

- FUNCTIONS - This function is called by TG to process the functions
paragraph of a specification. The functions are ordered so that all
function specifications are defined before they are referenced. Any
recursive or mutually recursive function specifications are ignored
and a warning message is printed. Each function is processed and
its definition is added to the symbol table. If the function

specification causes any formulas to be generated, the necessary
commands are added to the theorem prover command list and written
into the formulas file.

- GENERATE.DCLS - This function generates the DECLARATIONS command for
the theorem prover command list.

- GENERATE.FORMULAS - This is a high-level function that calls the
parser, the type checker, and the formula generator for a given
specification contained in the file whose name is given as its first
argument. The third argument indicates one of several possible
debugging modes. The fourth argument, if non-NIL, indicates that
the formulas file should be created in TOPS-20 temporary mode.

- GET.DEFAULT.LEVEL - This utility function returns the name of the
default security level associated with the given function name.

- GET.LTEQ.FUNCTION - This utilily function prompts the user for the
partial ordering function, the greatest element in the partial
ordering, and the least element in the partial ordering. If the
user does not respond then the default values are used. These data

CSL-109 PROVING SPECIFICATIONS SECURE Page 24

are stored in the variables LTEQ.FUNCTION, TOP.ELEMENT, and
BOTTOM.ELEMENT.

- GETLEVEL - This function returns the security level associated with
a given specification function.

- GETPRECONDS - This function returns the expressions on the local
preconditions list.

- GETSYMBOL - This function returns the symbol table entry for the
given identifier name.

- GT - This is a high-level function which sets up the debugging
attributes of the formula generator, calls TG with the entire module
specification, and writes out the link file if requested to do so.

- INSTANTECEDENTS - This utility function takes a list of antecedents
as its first argument and instantiates these antecedents in eacn
formula in the formula list given as its second argument.

- INSTDEF - This utility routine expands a definition. The first
argument is the list of formal parameters to the definition, the
second argument is the list of arguments to the definition, the
third argument is the body of the definition, the fourth argument is
the list local identifiers of the definition, and the fifth argument
is the list of identifiers together with qualifications of all local
identifiers of the definition that were instantiated in a SOME
construct. The returned value is the body of the definition in
which the arguments have been substituted for the formal parameters
and where all the local identifiers have been suitably renamed to
avoid ambiguity.

- INSTMODVFUN - This function generates the necessary formula whenever
a modified V-function or return value identifier is encountered.
The presence of a modified V-function indicates the truth of a
relation of the form -f> v, and a forLmula of the form in Equation 4
is generated. The existence of the modified V-function or return
valve identifier in the expression is noted for use when an
u r.iified V-function is encountered.

- INSTVFUN - This function generates the necessary formulas whenever
an unmodified V-function is encountered. The presence of an
unmodified V-function indicates the truth of a relation of the form
v 1 -f> v2 or v -f>, and a formula of the form in Equations 2 or 3 is
generated. If a modified V-function or return value identifier has
not already been encountered in the expression being processed, a
temporary identifier will be created to hold the place for the
security level of the modified V-function or return value
identifier. The function COMPLETETHMS will later replace the
temporary with the needed security level.

- LEVELARG - This utility function is invoked to request from the user
the name of the argumnent corresponding to the security level of the
given specification function. The first argument to LEVELARG is a

CSL-109 PROVING SPECIFICATIONS SECURE Page 25

list of argument names to the specification function. The second
argument is the name of the specification function. The third
argument is a list of other answers which LEVELARG can accept from
the user. The return value is the answer provided by the user or,
if the user did not respond, the default response.

- MAINEXP - This utility function takes an expression, a security
level, and data about the expression and returns a theorem prover
command list of formulas generated from the expression. The
security level is the level of the function being processed -or use
in generating formulas for exceptions. In addition, MAINEXP does
simplification of the formulas, but this will be discussed in a
subsequent section.

- MAKE.PROFILE - This high-level function produces a profile file
whose name is the given argument. The profile file contains the
values of certain formula generator variables. If no argument is
provided, the name MLS.PROFILE is used.

- MAKTHM - This utility function takes as its first argument a list of
antecedents and as its second argument a consequent, and returns an
expression for the desired implication.

- MAKEXP - This utility function takes an expression and returns the
transformed version of the expression.

- MODULE - This function is called by TG with the entire module to be
processed. It sets up the environment in which the rest of the
processing is to be done and declares an error handler to catch any
errors that could not be handled by other functions.

- NILFUN - This function returns the empty list. It is called by TG
to handle certain subexpressions that do not generate any formulas.

- NORMQUANT - This function takes the qualification part of many
expressions (e.g. FORALL, LET, EXISTS) and returns two lists. One
list is simply the identifiers instantiated in the qualification and
the other is a list of qualification expressions.

- OFUN - This function is called by TG to handle O-function
definitions. It queries the user a, to the security level of the
O-function, returns a theorem prover command list of formulas
generated from the O-function aefinition, and puts the O-function
onto the symbol table. It also prints out statistics about the
formulas gcnerated.

- OVFUN - This function performs the same duties as OFUN, but for
OV-functions instead of 0-functions.

- PAIR.PERMUTATIONS - This utility function takes as arguments a list
and a relation. It generates all pairs of elements in the list that
obey the relation. This function is used for sorting of definitions
and specification functions.

CSL-109 PROVING SPECIFICATIONS SECURE Page 26

PARAGRAPH.ORDERP - This predicate indicates whether two paragraphs
of a specification function definition are in the proper order for
processing.

- PARAMETERS - This function is called by TG to process the parameters
paragraph of a specification. The parameters are added to the
symbol table and to the function declaration list.

- PARTIAL.SORT - This utility function takes as arguments a list to be
sorted and a list of pairs generated by applying PAIR.PERMUTATIONS
to the list. The result is a list sorted according to the partial
ordering relation given to PAIR.PERMUTATIONS.

- PRUNE - This function takes a list of antecedents and a list of
names and returns a list of the antecedents which form the closure
on the names. This guarantees that none of the names in the second
argument to PRUNE and none of the names in the list of antecedents
returned by PRUNE appear in those antecedents in the first argument
to PRUNE but not returned by PRUNE.

- PRINTEXP - This utility function prints its argument.

- READ.PROFILE - This high-level function reads in and sets the values
of the variables in the profile file whose name is given as its
argument. If no name is given, the name MLS.PROFILE is used. A
READ.PROFILE is automatically executed each time the tools are
initialized.

- READARG - This utility function is called to query the user for a
file name if none is given where needed in a user command.

- RELVARS - This utility function takes an expression and returns a
list of important identifiers in that expression.

- RETURNARG - This utility function takes a formal argument list and
returns the identifier representing the return value of that
argument list.

- SET.DEFAULT.LEVEL - This high-level function takes a function name
and an argument name, and makes the argument name the default
security level for the function.

- SOMECOMPARE - This utility function takes an identifier to be

instantiated in a SOME construct and returns an identifier
representinq an equivalent value if one exists.

- SOMEVARS - This utility function takes a list of entifiers and
returns a list of those identifiers instantiated in SOME constructs
together with their qualifiers.

- STRIPARGS - The utility function takes a formal parameter list and

returns a list of the formal parameter names.

- STRIPTYPE - This utility function takes an identifier specification

CSL-109 PROVING SPECIFICATIONS SECURE Page 27

and returns a list containing the identifier name.

- TGDELAY - This function is called by TG to process the DELAY
paragraph in a specification function definition. Formulas are
generated for the UNTIL clause. The UNTIL clause becomes a
precondition for the effects of the specification function, and the
negation of the UNTIL clause becomes a precondition for the effects
in the WITH clause.

- TGEFFECTSOF - This function is called by TG to process an
EFFECTSOF expression. If the function being expanded is an
0-function, then the effects of the target 0-function are suitably
renamed and formulas are generated for them. If the function being
expanded is an OV-function, then -- after renaming -- formulas are
generated for the effect in the target OV-functions containing the
return value identifier; generation of formulas for the other
effects is delayed until an appropriate situation is encountered.

- TGERROR - This utility function prints an error message and signals
an error.

- TGNEWSTATE - This function is called by TG to process modified
V-functions. The actions taken are described under INSTMODVFUN.

- TGRENAME - This utility function takes an expression and transforms
it. All identifier names are disambiguated, and certain constructs
are converted to equivalent constructs.

- TGSELECT - This utility function takes a list of expressions, a list
of truth values, and a truth value. It returns a list of all those
expressions in the first list that correspond to values in the
second list whose truth value matches the third argument. In other
words TGSELECT is a filter.

- TGTYPES - This function is called by TG to process the types
paragraph of a specification. The only information in the types
paragraph of interest to the formula generator is those identifiers
which are declared elements of enumerated types. Those identifiers
are entered in the symbol table as constants.

- VARARGS - Certain SPECIAL operators take an indefinite number of
arguments. However, the theorem prover does not accept such
operators as functions. This utility function takes expressions and
(if they contain such an operator) renames the operator to a
distinct function name depending on the number of arguments. The
result is a transformed expression containing functions that take
only fixed numbers of arguments.

- VERIFIY - This high level function calls the parser, type checker,
formula generator, and theorem prover with a given file containing a
specification to be processed. This is the top level function
invoked by the user.

- VFUN - This function is called by TG to process V-function

CSL-109 PROVING SPECIFICATIONS SECURE Page 28

definitions. It performs the same duties as OFUN except for
V-functions instead of O-functions.

6.3. Dependency Determination Procedures

For each operator that can appear in an expression, there is an INTERLISP

function (called by TG) to determine if the value of that expression is

dependent upon the values of the arguments of the expression. For most cases

the answer to this question is a simple "yes", and any formulas generated from

the arguments are simply merged into a single formula list with this list

being returned (to TG) as the result of processing the expression. However,

in some cases the answer is not a simple "yes" and more complex processing is

done. For example, in a conditional expression, the value of the expression

is dependent upon the arguments to the expression only if certain conditions

are met. In this case these conditions are added as antecedents to the

formulas generated from the arguments, and the resulting list is returned.

The following describes what is done for each SPECIAL operation. The name

given in parentheses following the operation is the INTERLISP function called

by TG to do the processing and the dependency decision making. Some of the

SPECIAL operations are not included explicitly because certain operations are

transformed away during the transformation process. A few SPECIAL operations

are not implemented (and are listed in a subsequent section).

- AND (TGAND) - Formulas are generated for each of the arguments.
Formulas are generated for any delayed effects and concatenated to
the formula list. If any of the arguments are constdnt expressions
(i.e., do not contain any primitive V-functions) then they become
antecedents to the formulas generated from the other arguments.
This latter step is useful because if any of the arguments of a
conjunction is false, then the conjunction is false, the values of
the other elements of the conjunction are irrelevant, and there is
no dependency upon them.

- (TGDOT) - The value of a "." operator is dependent only upon the
value of its left argument. The right argument is a field name and
a constant.

- IF, =>, EXISTS (TGIF) - The value of an IF operator is dependent
upon either the value of the THEN clause or the ELSE clause
depending upon whether or not the boolean expression is true or
false. Therefore, the boolean expression is added as an antecedent
to all formulas generated from the TP'IN clause, and the negation of
the boolean expression is added as an antecedent to all formulas
generated from the ELSE clause. The formulas generated from the two
clauses are concatenated with the formulas generated from the
boolean expression itself. Implication is treated as an IF

CSL-109 PROVING SPECIFICATIONS SECURE Page 29

expression with no ELSE clause. Existential quantification is
treated as implication. This latter case of existential
quantification is a case where the dependency rule is overcautious,
since the value of the e"istentially quantified expression need be
dependent upon the body of the existential quantifier for only one
value of the quantified identifier. However, the tools have no easy
way of determining which value that is, so the worst case assumption
is taken in assuming dependency for all values of the quantified
identifier.

- LET (TGLET) - The qualifications in the LET expressi become
antecedents to formulas generated from the body of the LET
expression. The formulas generated from the body are concatenated
with the formulas generatea from the qualificatfons.

- OR (TGOR) - The formulas generated from the arguments are
concatenated with the formulas generated from any delayed effects.

- [}(qualified form) (TGSET) - The formulas generated from the
qualifier are returned.

- VECTOR(4'ROM-.TO form) (TGVECTOR) - The expressions in the FROM and TO
clauses become antecedents to the formulas generated from the body
of the VECTOR expression. The formulas generated from the body are
concatenated with the formulas generated from the FROM and TO
clauses.

- CARDINALITY, DIFF, =, FRACTPART, INSET, INTER, .. , INTPART, LOG,
MAX, MIN, MOD, - [, {(itemized form), -, /, , >, <, >=, <=, -=,
+, *, UNION, STRUCT, SUBSET, SUM, VECTOR(itemized form) (TGNARY) -
The formulas generated from each of the arguments are concatenated
and returned. If more than one modified V-function is encountered
in the expression, an error is signalled.

6.4. Simplification Procedures

In order to help minimize the amount of work that must be done by the

theorem prover and to take advantage a certain specialized knowledge the

formula generator has about the formulas it generates, the formula generator

performs some simplification of the formulas it generates. Three types of

simplification are performed as follows:

The formula gerieralor can simplify certain very simple types of
formulas to true. They are formulas whose consequent has the
following form:

x <x
bottomelement < x
x < topelement

where < is the partial ordering relation on security levels, x is
any security level, bottomelement is the least security level in
the partial ordering, and top element is the greatest element in
the partial ordering. Formulas of these forms are generated very

CSL-109 PROVING SPECIFICATIONS SECURE Page 30

frequently and simplifying them at the earliest possible stage
significantly reduces the amount of work done by the formula
generator and theorem prover, and also significantly reduces the
amount of information that must be kept around. The formula
generator prints out a count of the number of formulas it has
simplified to true in this manner for each specification function
it processes. The name of the INTERLISP function that carries out
this simplification is TRIV.THM.

2. The second type of simplification involves taking each formula
generated and performing a closure over the antecedents of certain
important variables present in the consequent. This has the effect
of identifying those antecedents that have relevance to the
consequent. Only the antecedents so identified are included in the
simplified formula. This simplification is done in the INTERLISP
function MAINEXP.

3. The third type of simplification involves selecting antecedents for
inclusion in the simplified formula by applying certain tests to
each antecedent. A selected antecedent must pass at least one of
the tests. The tests are:

- The antecedent contains the consequent.

- The antecedent contains a name present on a list of names
provided by the user.

- The antecedent contains an expression that is close in form to
the consequent.

- The antecedent contains another antecedent that has passed one
of the above tests.

This type of simplification is performed by the INTERLISP function

TRIMANTS.

The formula generator produces two simplified versions of each formula it

passes to the theorem prover. Note that the unsimplified version is not

passed. The first simplified version involves simplifications of types 2 and

3 above. The second simplified version involves simplication of type 2 only.

The theorem prover will first attempt to prove the first simplified version

and, if it is unable to prove this version, will attempt to prove the second

simplified version. If neither proof attempt succeeds, then the formula is

considered unproven. Note that if the simplification of type 1 above is

possible, the formula is known to be true and there is no need to pass the

formula on to the theorem prover at all.

CSL- 109 PROVING SPECIFICATIONS SECURE Page 31

6.5. Augmentation of the Boyer-Moore Theorem Prover

The theorem prover part of the Putomated tools is based on the Boyer-Moore

theorem prover [1]. However, certain additions were made to the basic theorem

prover enable it to prove theorems of the type generated by the formula

generator. These additions are enumerated below.

- The Boyer-Moore theorem prover was modified to accept lower case
characters in its formulas. It also was augmented to accept the
characters "I" (exclamation point) and " " (underscore).

- All of the treorems listed in A Computational Logic [1] are known to
the theorem prover as lemmas.

- Several SPECIAL operations are defined to the theorem prover,
namely: =, -:, -, =>, IF, OR, and AND.

- Several axioms have been given to the thecrem prover. These are:
x INSET {:

x INSET [x, y}
y INSET {x, y}

x INSET UNION({x}, y)
y INSET UNION(x, {y})

where x and y are any identifiers.

- All the SPECIAL operators handled by the formula generator other
than those which have been defined are declared as functions to the
theorem prover.

What is surprising about this list is how small it is and how little the

theorem prover needs to know about SPECIAL in order to prove the generated

formulas. Of course, the sufficiency of this list depends upon the style in

which the specifications are written and, therefore, more information about

the operators of SPECIAL may have to be added in order to prove formulas

generated for future uses. It is easy to write specifications that are secure

and yet will not be proven by these tools as they are currently constituted;

however, the more important issue is whether or not anyone is likely to write

such specifications. In any case it is a simple task to increase the

knowledge of the theorem prover by introducing new definitions or axioms. One

must be careful about the introduction of new axioms, for they may have an

adverse effect upon the mathematical soundness of the tools. One must also be

careful to assure that new axioms or definitions about SPECIAL operations are

consistent with the definition o: SPECIAL.

CSL-109 PROVING SPECIFICATIONS SECURE Page 32

7. Use of the Automated Tools

This section provides a brief introduction ro 1*he use of the automated

tools. The tools do not provide a comprehensive solution to the problem of

proving that a given specification describes a multilevel secure system, they

merely provide assistance in performing some of the more laborious and lengthy

computations. In order to produce a complete and sound proof of multilevel

security, the user of these tools must understand precisely what the tools do

and do not provide. The first part of this section establishes the context in

which the use of the tools is meaningful. The second part of this section

describes the use of the tools.

7.1. Setting up

The definition of multilevel security with respect to which proofs are done

has been given above. Specifications are written in SPECIAL. A complete

description of SPECIAL is given in the HDM Handbook, Volume II [4]. It will

be assumed that the reader is familiar with these documents. A SPECIAL

specification provides a description of the externally visible behavior of a

system, i.e., a description of how the system responds to each possible

external stimulus. The possible external stimuli are the invocations of the

visible operation references (a visible operation together with a particular

set of values for its arguments). The specification describes (1) how the

internal state of the system changes when a particular visible operation

reference is invoked, and (2) the value returned by the invocation of the

operation reference. The multilevel security model requires that there be a

set of values L which acts as security levels and that these values be

partially ordered under some binary relation, named here as "<". In addit-un,

there must be some mathematical function, K, that maps the union of the set of

visible operation references and the set of hidden primitive V-function

references (the state variables) into the set of security levels. All this

information must be provided before a proof can be attempted.

Most of this information must be supplied explicitly to the tools, but some

is supplied implicitly. For example, the specifications and the definitions

of < and K are supplied explicitly, whereas the set of security levels L is

supplied implicitly and is the set of all values related by . and in the range

of K. The tools check the validity of some of the information supplied, but

not all. For example, the syntactic legality of the specifications is

CSL-109 PROVING SPECIFICATIONS SECURE Page 33

checked, but the fact that the relation < partially orders L is assumed.

Therefore, presenting a relation to the tools to serve as < that does not

partially order L would invalidate any resulting proof. The validity of some

of the information is checked by means of imposed convention. For example,

the functicn K is assured to be a true mathematical function, because the

value of K for any given function reference must be either an argument of the

function reference or one of a predetermined set of constants.

The result of applying the multilevel security proof tools is a listing of

the attempted proofs of a set of formulas. If the attempted proofs of all the

formulas are successful, this implies that the specification is multilevel

secure with respect to the given security levels. hote that the proof says

nothing about how the security levels are interpreted or how access to them is

controlled ip a given implementation.

The current version of the tools is able to prove multilevel security only

for specifications written in a particular subset of SPECIAL, and then only

within the framework of the given model -- i.e., for suitable definitions of

<, K, and L. The restrictions on SPECIAL are as follows:

- No recursive or mutually recursive definitions are permitted.

- The key words NEW, TYPECASE, and RESOURCEERROR may not be used.

- An expression may contain no more than one reference to a new value.
A new value is either a quoted V-function reference, an EFFECTSOF
expression, or (in an OV-function) a return value reference. (Note
that for the purposes of this restriction, the elements of a
conjoined expression are considered to be separate expressions.)

- In the effects of an OV-function, the return value reference mey
occur only once.

- A new value reference may not occur in:

* The qualification part of a LET, FORALL, EXISTS, SOME, or set

expression.

* The antecedent of an implicarion.

* The boolean expression in an IF expression.

* The range of a vector constructor.

If the specification consists of more than one module, the directed
graph of external references between the module must have no loops.

CSL-109 PROVING SPECIFICATIONS SECURE Page 34

7.2. Use

The multilevel security verification tools are part of the collection of

tools used to support the Hierarchical Development Methodology (HDM). The

multilevel security verifier accepts the information described above and

generates a collection of f-rmulas whose truth implias the multilevel security

of the given specification with respect to the given L, <, and K. The theorem

prover is then used to attempt to prove these formulas true The result is a

file showing the formulas generated and the attempted proofs. The use of the

tools described below is illustrated by the examples of Figures 7-2, 7-3, and

7-4. Figure 7-3 gives the terminal session for the application of the tools

to the specification given in Figure 7-2. Figure 7-4 shows the output file

produced by this application.

The multilevel security verifier is invoked by calling the HDM support

tools. A more complete discussion of the tools is given in Volume II of the

HDM Handbook [4]. On the SRI-KL system, these tools reside in the file NS.EXE

in the directory HIER. They can be invoked from TOPS-20 command level by

typing the command

<HIER>NS

This is an interlisp subsystem; once you see the Interlisp prompt character,

you will be at Interlisp command level. The verifier assumes that the

specification for the system to be proved secure consists of one or more

SPECIAL modules and that the text for each module is in a file with name of

the form

<name>.SOURCE

where <name> is the name of the module. The verifier is invoked by typing

"1MLS"I followed by the name of the module for which formulas are to be

generated (see examples at the end of this document). If the specification

consists of more than one module, then each module must be run through the

verifier. If a module contains external references to another module, then

the referenced modul: must be run through the verifier before the referencing

module. Whenever a module is run through the verifier, a file with name

<name>.TLINK is created at the user's option. This file contains information

needed by the verifier when processing a module that externally references

this module. The user must, therefore, request such a link file when

processing a module that is so referenced.

CSL-109 PROVING SPECIFICATIONS SECURE Page 35

MODULE security

TYPES
security level: DESIGNATOR;

PARAMETERS
BOOLEAN lteq(securitylevel 11, 12);

ASSERTIONS
FORALL securityjevel 11: lteq(11, 11);
FORAL security level 11; securityjlevel 12; security evel 13

lteq(ll, 12) AND lteq(12, 13): lteq(11, 13);
FORALL securitylevel 11; securitylevel 12

l iteq(ll ,12) AND 11 -= 12: ~lteq(12,11);

ENDMODULE

Figure 7-1: Specification for module security

CSL-109 PROVING SPECIFICATIONS SECURE Page 36

MODULE virtual-memory

PARAMETERS

INTEGER maxsegno, max-seg index;

EXTERNALREFS

FROM security:
securityjlevel: DESIGNATOR;
BOOLEAN lteq(securityjevel 11, 12);

FUNCTIONS

VFUN contents(INTEGER segno, indey: securitylevel sl)
-> INTEGER c;

HIDDEN;
INITIALLY

c = ?;

VFUN read(INTEGER segno, index; securitylevel sl)
[securitylevel pl]
-> INTEGER c;

EXCEPTIONS
segno < 0 OR segno > max segno;
~lteq(sl, pl);
contents(segno, index, sl) = ?;

DERIVATION
contents(segno, index, sl);

OFUN write(INTEGER segno, index, c; security level sl)
[security_level pl];

EXCEPTIONS
segno < 0 OR segno > max-seg_no;
index < 0 OR index > max-seg index;
- lteq(pl, sl);

EFFECTS
"contents(segno, index, sl) = c;
FORALL INTEGER i I i >= 0 AND i < index

AND contents(segno, i, sl) ?:
"contents(segno, i, sl) = 0;

ENDMODULE

Figure 7-2: Specification for a virtual memory

CSL-109 PROVING SPECIFICATIONS SECURE Page 37

@<hier>ns
SRI Specification Handler and Hierarchy Manager (30-Dec-79)

Type DOC for documentation and NEWS for the latest news.
(<HIER>NS.EXE.8 . <LISP>LISP.EXE.132)
_MLS SECURITY
<FEIERTAG>SECURITY.SOURCE.2

Beginning generating formulas for module security
The partial order function for security levels is defined as:

LessThanOrEqualTo(argl arg2) = lteq(argl arg2)
The bottom element is: low level
The top element is: high level
Link file? yes
<FEIERTAG>SECURITY.TLINK.1
END

Figure 7-3: Terminal output

CSL-109 PROVING SPECIFICATIONS SECURE Page 38

_MLS VIRTUALMEMORY
<FEIERTAG>VIRTUAL_.MEMORY.SOURCE.23

Beginning generating formulas for module virtual-memory
The partial order function for security levels is defined as:

LessThanOrEqualTo(argl arg2) = ... lteq (argl arg2)
The bottom element is: ... low level
The top element is: ... high_level
<FEIERTAG>SECURITY.TLINK. 1
Beginning processing V-function contents
Which argument is the access level of contents (segno index sl) ? sl
Beginning processing V-function read
Which argument is the access level of read (segno index sl pl) ? pl
2 formulas generated.
Beginning processing of O-function write
Which argument is the access level of write (segno index c sl pl) ? pl
3 formulas generated.
1 trivial formulas resolved to true.
<FEIERTAG>VIRTUALMEMORY.FORMULAS.100021
Link file? ...Yes
<FEIERTAG>VIRTUALMEMORY.TLINK. 1
Attempting to prove formulas for module VIRTUALMEMORY
lteq,LTEQ.REFLEXIVITY,LTEQ.TRANSITIVITY,
collecting lists
5126, 10246 free cells
low level,LTEQ.BOTTOM,highievel,LTEQ.TOP,contents,axseg_index,
max segjno,Beginning proving theorems for function read
Unable to prove theorem for EXCEPTION (= (contents segno index sl) ?)
I formulas proved for function read

Beginning proving theorems for function write

2 formulas proved for function write

Beginning proving theorems for function read
Unable to prove tneorem for EXCEPTION (= (contents segno index sl) ?)
0 formulas proved for function read
Failed to prove theorems.
END
_LOGOUT)

Figure 7-3 - Terminal output (cont'd)

CSL-109 PROVING SPECIFICATIONS SECURE Page 39

Declaring partial ordering for lteq (argi arg2)
Adding axioms:

.DCL(lteq (argl arg2) NIL)
1teq
(EQUAL (lteq A0017 A0017) T)

_ADD.AXIOM(LTEQ.REFLEXIVITY (REWRITE)
(EQUAL (lteq A0017 A0017) T)
NIL)

LTEQ.REFLEXIVITY
(IMPLIES (AND (lteq A0017 A0018) (lteq A0018 A0019)) (lteq A0017 A0019))

_ADD.AXIOM(LTEQ.TRANSITIVITY (REWRITE)
(IMPLIES (AND (lteq A0017 A0018)

(lteq A0018 A0019))
(lteq A0017 A0019))

NIL)
LTEQ.TRANSITIVITY
Declaring bottom element lowlevel with axiom:

_DCL(lowlevel NIL NIL)
lowlevel
(EQUAL (lteq (lowlevel) A0017) T)

_ADD.AXIOM(LTEQ.BOTTOM (REWRITE)
(EQUAL (lteq (lowlevel) A0017) T)
NIL)

LTEQ.BOTTOM
Declaring top element highlevel with axiom:

_DCL(highjlevel NIL NIL)
high_level
(EQUAL (lteq A0017 (hig.h_level)) T)

_ADD.AXIOM(LTEQ.TOP (REWRITE)
(EQUAL (lteq A0017 (high_level)) T)
NIL)

LTEQ.TOP
Figure 7-4: Proof file generated by tools

CSL-109 PROVING SPECIFICATIONS SECURE Page 40

Declare contents (segno index sl)

DCL(contents (segno index sl) NIL)
contents
Declare maxseg index NIL

_DCL(maxseg_index NIL NIL)
maxseg index
Declare max_seg_no NIL

_DCL(max seg_no NIL NIL)
maxsegno

Figure 7-4 - Proof file generated by tools (cont'd)

CSL-109 PROVING SPECIFICATIONS SECURE Page 41

Module: virtual-memory
Function: read
EXCEPTION
(= (contents segno index sl)

Proving:
(IMPLIES (lteq sl pl)

(lteq sl pl))

This formula simplifies, clearly, to:

(TRUE).

Q.E.D.

Load average during proof: 2.681496
Elapsed time: 2.506 seconds
CPU time (devoted to theorem proving): .213 seconds
GC time: 0.0 seconds
10 time: .136 seconds
CONSes consumed: 84

Figure 7-4 - Proof file generated by tools (cont'd)

CSL-109 PROVING SPECIFICATIONS SECURE Page 42

Module: virtual memory
Function: read
DERIVATION
(contents segno index sl)

Proving:
(IMPLIES (lteq sl pl)

(lteq sl pl))

This conjecture simplifies, obviously, to:

(TRUE).

Q.E.D.

Load average during proof: 2.681496
Elapsed time: .234 seconds
CPU time (devoted to theorem proving): .148 seconds
GC time: 0.0 seconds
10 time: .069 seconds
CONSes consumed: 84

Figure 7-4 - Proof file generated by tools (cont'd)

CSL-109 PROVING SPECIFICATIONS SECURE Page 43

Module: virtual-memory
Function: write
EFFECT
(= (NEWSTATE contents segno index sl)

c)

Proving:
(IMPLIES (lteq pl sl)

(lteq pl sl))

This simplifies, trivially, to:

(TRUE).

Q.E.D.

Load average during proof: 2.6666
Elapsed time: .259 seconds
CPU time (devoted to theorem proving): .157 seconds
GC time: 0.0 seconds
10 time: .067 seconds
CONSes consumed: 84

Figure 7-4 - Proof file generated by tools (cont'd)

CSL-109 PROVING SPECIFICATIONS SECURE Page 44

Module: virtualmemory
Function: write
EFFECT
(FORALL ((I (INTEGER i)

(AND (AND (= i 0)
(< i index))

(= (contents segno i si)

(= (NEWSTATE contents segno i sl)
0))

Proving:
(IMPLIES (lteq pl sl)

(lteq pl sl))

This formula simplifies, obviously, to:

(TRUE).

Q.E.D.

Load average during proof: 2.6666
Elapsed time: .273 seconds
CPU time (devoted to theorem proving): .162 seconds
GC time: 0.0 seconds
10 time: .068 seconds
CONSes consumed: 84

Events undone: (maxseg no max seg index contents LTEQ.TOP high_level
LTEQ.BOTTOM lowlevel LTEQ.REFLEXIVITY LTEQ.TRANSITIVITY lteq)
Theorems proved.

Figure 7-4 - Proof file generated by tools (cont'd)

CSL-109 PROING SPECIFICATIONS SECURE Page 45

Once invoked, the verifier types the name of the source file. This

s'3nifies that the module has been successfully parsed. This is followed by a

listing of type checking errors, if any, and the beginning of formula

generation. The verifier then asks for the partial ordering relation. You

must respond by typing an invocation of the partial ordering relation, i.e.,

the name of the partial ordering relation followed by its arguments in

parentheses. The two arguments named argl and arg2 represent the two security

levels being compared and the invocation you type must mean that the given

relation is true is argi is less than or equal to arg2. In the example shown,

the partial ordering relation is named "ilteq", so the user types

lteq(argl arg2)

signifying that the value of lteq(argl arg2) is true if argl is less than or

equal to arg2.

Next, the verifier asks for the name of the bottom element in the partial

ordering. If the bottom element is needed to answer any subsequent questions

of tfle verifier, its name must be provided at this point. Simply type the

name of the bottom element followed by a carriage return. If you do not need

to supply the name of the bottom element then simply type a carriage return.

The same procedure holds for the top element of the partial ordering.

If the user does not respond to the requests for the names of the partial

ordering relation, the bottom element, and the top element within some period

of time, the verifier will use the information supplied by the user the last

time the verifier was invoked in this session. In this case, the verifier

will type out the information it is using preceded by "...".

As the verifier processes each function in the module, it will request that

the user supply the value of the function K for the function it is processing.

As stated above, the user must respond with the name of one of the parameters

to the function followed by a carriage return. Alternatively, the user can

respond with the name of the bottom element or the name of the top element if

either was supplied in answer to the questions described above. In the case

of a nonprimitive V-function, an 0-function, or an OV-function, the user may

respond with the name NONE. This signifies that this function is not part of

the interface under consideration and that no formulas should be generated.

For each function in the specification, the verifier will state the number of

formulas generated from the specification of the function, if any, and the

CSL 109 PROVIN SPECIFICATIONS SECURE Page 46

number of these generated formulas that it can immediately determine to be

true. The formulas known to be true are removed from the list of generated

formulas.

Once the verifier has completed generating formulas for a module, the user

is asked if he wants a link file produced. As mentioned above, the user must

respond "y" for "yes" if the verifier is to be run on a module that externally

references the module being processed. A response of "n" for "no" means that

no link file is produced.

The verifier then invokes the theorem prover to attempt to prove the

formulas true. The verifier prints out information about any formula it is

unable to prove true. If all formulas are proved then the verifier prints

"Theorems proved". This indicates that the module being considered has a

multilevel secure interface with respect to the information provided. The

formulas and their attempted proofs are listed in a file of the form

<name>.PROOFS

where <name> is the name of the m3dule. Operation of the verifier ends with

typing of the word "END".

As mentioned above, the verifier remembers the names of the partial

ordering relation, the bottom element, the top element, and all the security

level arguments associated with the functions from one invocation to another

within a single invocation of the HDM tools. However, it is possible to make

the verifier remember this information permanently. This is done by typing

the command MPF (make profile) while in the HDM tools. This command creates a

file named MLS.PROFILE in your current directory that contains the current

values of the partial ordering relation, the bottom element, and the top

element. Whenever you subsequently invoke the HDM tools from this directory,

this file will be read and the state of the verifier restored to this value.

Remember that these defaults can be overridden by typing the desired response

when the information is requested by the verifier.

7.3. Less Restrictive Model Formulation

It is possible to instruct the verification tool to prove some less

restrictive security requirements. This is ac-omplishcd by supplying an

optional argument to the MLS command as follows:

MLS <name> <option>

CSL-109 PROVING SPECIFICATIONS SECURE Page 47

where <name> is, as before, the name of the specification module to be

analyzed, and <option> is either not present or one of: SSO or *PO. If

<option> is not present then the verifier works as described above and

attempts to prove the full multilevel security model. If the <option> is SSO

then the verifier attempts to prove Equation 2 plus the equation

v(v -> v2 AND (Kvl) < K(f)) ==> K(vl) K K(v2) (5)

Specifications that obey Equations 2 and 5 are said to have the simple

security property. If the <option> is *PO then the verifier attempts to prove

Equation 4. Specifications that obey Equation 4 as saie to have the

*-property (pronounced star-property). These properties are meaningful

because they enforce multilevel security above or below the level of the

subject. For example, if a given specification has the sfnple security

property, then a given subject can violate multilevel security below its own

security level but cannot violate multilevel security above its security

level.

7.4. Interpreting the Verifier's Output

In the example given above, the result of applying the verifier to the

specifications is a set of proven theorems. However, most applications of the

verifier to a specification are likely to be less successful. In these cases

it will be necessary for the user to interpret the output from thE verifier in

order to ascertain why some formulas could not be proved and if the inability

to prove a formula is due to a security violation in the specifications.

Depending upon the complexity and size of the specifications this could be an

easy or a rather painstaking task.

The output of the verifier consists of the messages it prints on the users

terminal and the contents of the proofs file. The terminal output summarizes

the success)r lack of success of the verifier. The proofs file provides tht

information necessary to analyze the cause of a lack of success. The proof

file lists all the commands given to the theorem prover and the response of

the theorem prover to those commands. In general, the proof file gives a

fairly thorough description of how it attempted to prove a particular formula

and it is, therefore, fairly easy to detect why a particular formula could not

CSL-109 PROVING SPECIFICATIONS SECURE Page 48

be proved. However, the proof file is not as thorough in documenting the

source of a formula and it can be difficilt in some cases to pinpoint the

difficulty in the specification that leads' to the unprovable formula. This is

not an inherent difficulty in the verifier, it is simply an area 'hat has not

been given much attention in this early stage of the verifier's deelopment.

This section provides the user with some advice on how to relate a formula

found in the proof file to that part of the specification that gave rioe to

the formula.

The bulk of the proof file documents the attempted proof of the generated

formulas. The beginning of the proof file documents some theorem prover

commands necessary to set up the proof of the formulas. All functions used in

the formulas must be known to the theorem prover. All the operators defined

by SPECIAL have been previously defined or declared to the theorem prover.

However, functions particular to a given specification must be declared.

These functions include the primitive V-functions and the functicnal

parameters of the specification. In addition the security level partial

ordering function is declared. In order to inform the theorem prover about

the partial ordering function the properties of reflexivity and transitivity

on this partial ordering relation are introduced as axioms. (Note that the

property of ant4symmetry has not been included because it has not generally

proved to be necessary.) Any global assertions of the specifications are also

introduced as axioms to the theorem prover. Once these preliminaries are

complete, the theorem prover attempts to prove the formulas. Finally, the

theorem prover removes from its data base all the axioms and declarations

derived from the given specification. The theorem prover is then ready to

begin anew. The proof file provides complete documentation of this process.

For each formula which the theorem prover attempts to prove, the proof file

records the name of the module from which the formula was generated, the name

of the specification function from which the formula was generated, the type

of paragraph from which the formula was generated (i.e., EXCEPTIONS, EFFECTS,

DELAY, or DERIVATION), the exception, effect, delay clause, or derivation from

which the formula was generated, the generated formula, and a description of

the attempted proof. For a straightforward specification, determining which

expression in the specification produces a particular formula is rather easy

because the expression is given as part of the documentation. Relating the

CSL-109 PROVING SPECIFICATIONS SECURE Page 49

identifiers in the formula to identifiers in the specification is very easy

also because they are identical or very similar (i.e., the identifier in the

formula may have a disambiguating suffix). However, the part of the

specification from which a given formula is generated and which is given in

the proof file is the unexpanded text. The formula is derived from the text

after all definitions, EXCEPTIONSOF expressions, and EFFECTSOF expressions

have been fully expanded. In the cases of specifications that make extensive

use of such expressions and where they are deeply nested, the formula

generated may bear little obvious resemblance to the original unexpanded

sou.- e expression. Also in specifications where the same name is used over

and over again in different scopes, it may become difficult to find the

identifier in the specification corresponding to a particular identifier in a

formula. In these cases, the user may have to use heuristic pattern matching

techniques or expand the specification by hand in order to determine precisely

the source of a given formula. However, experience has shown that even in

fairly complex specifications one quickly learns to recognize patterns in

formulas and specifications and, after tracing back a few formulas, one can

trace the others back fairly quickly.

Let us investigate the specification given in Figure 7-5. This is a

slightly modified version of the specification given in Figure 7-2 above. The

verifier is applied to this specification as shown in Figure 7-6 and part of

the resulting proof file is shown in Figure 7-7. Figure 7-7 contains only

that part of the proof file different from that given in Figure 7-4. Looking

at this formula we see that it obviously cannot be proven because there is

insufficient information.

We note that the untrue formula arises from the second exception to the

function "read". This exception accesses the primitive V-function

"contents(segno, index, sl)". This primitive V-function has the security

level "sl". The security level of the "read" operation is "pi". There are no

established conditions for relating these two levels. We must show that "sl <

p1l" or in terms of the specification that "Iteq(sl, pl). However, this is

precisely the condition established by the third exception to "read". The

obvious solution to the problem is to place the third exception before the

second. Since the exceptions are evaluated in order of appearance, if the

third exception is evaluated, the second exception must have been false.

CSL-109 PROVING SPECIFICATIONS SECURE Page 50

MODULE virtual-memory

PARAMETERS

INTEGER maxsegno, max-seg index;

EXTERNALREFS

FROM security:
securitylevel: DESIGNATOR;
BOOLEAN iteq(security jevel 11, 12);

FUNCTIONS

VFUN contents(INTEGER segno, index; security level sl)
-> INTEGER c;

HIDDEN;
INITIALLY

c = ?;

VFUN read(INTEGER segno, index; security jevel sl)
[securitylevel pl]
-> INTEGER c;

EXCEPTIONS
segno < 0 OR segno > max segno;
contents(segno, index, sl) ?;
-lteq(sl, pl);

DERIVATION
contents(segno, index, sl);

OFUN write(INTEGER segno, index, c; security9level sl)
[security_level pl];

EXCEPTIONS

segno < 0 OR segno > max-seg-no;
index < 0 OR index > max-seg index;
iteq(pl, sl);

EFFECTS
Icontents(segno, index, sl) = c;
FORALL INTEGER i 1 i >= 0 AND i < index

AND contents(segno, i, sl) =?:
contents(segno, i, sl) = 0;

Figure 7-5: Specification for an insecure virtual memory

CSL-109 PROVING SPECIFICATIONS SECURE Page 51

_MLS VIRTUALMEMORY
<FEIERTAG>VIRTUALMEMORY.SOURCE.24

Beginning generating formulas for module virtual-memory
The partial order function for security levels is defined as:

LessThanOrEqualTo(argl arg2) = ... lteq (argl arg2)
The bottom element is: ... low level
The top element is: ... high_level
<FEIERTAG>SECURITY.TLINK.1
Beginning processing V-function contents
Which argument is the access level of contents (segno index sl) ? ...sl
Beginning processing V-function read
Which argument is the access level of read (segno index sl pl) ? ... pl
2 formulas generated.
Beginning processing of 0-function write
Which argument is the access level of write (segno index c sl pl) ? ... pl
3 formulas generated.
1 trivial formulas resolved to true.
<FEIERTAG>VIRTUALMEMORY.FORMULAS.100021
Link file? ... Yes
<FEIERTAG>VIRTUALMEMORY.TLINK.2
Attempting to prove formulas for module VIRTUALMEMORY
lteq,LTEQ.REFLEXIVITY,LTEQ.TRANSITIVITY,lowIevel,LTEQ.BOTTOM,highjIevel
,LTEQ.TOP,contents,max-seg_index,max-segno,
Beginning proving theorems for function read
2 formulas proved for function read

Beginning proving theorems for function write

2 formulas proved for function write
Theorems proved.
END

Figure 7-6: Terminal output for insecure specification

CSL-109 PROVING SPECIFICATIONS SECURE Page 52

Module: virtual-memory
Function: read
EXCEPTION
(= (contents segno Index sl)

.0)

Proving:
(iteq sl pl)

Name the conjecture *1.

Since there is nothing to induct upor., the proof has

F A I L E D!

Load average during proof: 3.810249
Elapsed time: 3.147 seconds
CPU time (devoted to theorem proving): .332 seconds
GC time: 0.0 seconds
10 time: .183 seconds
CONSes consumed: 146

Will later attempt to prove:

(lteq sl pl)

Figure 7-7: False formula generated from insecure specification

CSL-109 PROVING SPECIFICATIONS SECURE Page 53

Therefore, if we interchange the second and third exceptions, when

"contents(segno, index, sl) = ?" is encountered, then "~lteq(sl, pl)" must be

false or "lteq(sl, pl)" must be true. Hence we can trivially show that the

requirement generate from "contents(segno, index, sl) = ?", namely "lteq(sl,

pl)" is true. We see this result in the formula (in Figure 7-4) generated

from the correct specification of Figure 7-2.

8. Conclusion

This document has described a technique and automated tools that support

the technique for proving that a the specification, written in SPECIAL, of a

given system is multilevel secure. The automated tools are applicable to

sceifications written within certain guidelines given above, however, these

guidelines are not overly restrictive. Even in the case of systems that are

not completely multilevel secure, the technique and the tools are extremely

useful in establishing that the only security violations are those that were

intended. UsA of these techniques and tools on several system specifications

has exposed previously unknown security flaws in these systems thereby

demonstrating the utility of the technique and tools.

One cannot, however, blindly apply the tools without proper understanding

of their use. The tools can provide meaningful results only if they are

provided with meaningful input. Providing improper security levels or an

invalid partial order function renders the output of the tools meaningless.

The tools are therefore just tools and provide meaningful assistance only if

they are utilized properly as part of the overall proof technique.

It is also necessary to recall that the technique and the tools are useful

only in proving the multilevel security of a specification. They do not

guarantee that a specification is consistent or realizable. However, the

technique is extremely valuable in accomplishing what has previously been a

very difficult task.

9. Possible Future Enhancements

Although there is an unlimited number of possible improvements and

enhancements that could be made to the technique and tools described above,

there are a few areas where experience has shown that some modifications are

important to significantly increasing the effectiveness of the technique.

Following is a list of such areas for improvement in no particular order.

CSL-109 PROVING SPECIFICATIONS SECURE Page 54

- With respect to the multilevel security verification technique, the
semantics of SPECIAL is rigorously defined only within the code for
the formula generator and in the definitions and axioms of the
theorem prover. This is only a partial definition relating to those
properties of SPECIAL that are relevant to verifying multilevel
security. Other definitions exists in other tools. There is no
assurance that any of these definitions are consistent, or that they
embody the SPECIAL manual. Parts of the semantics of SPECIAL are
not documented at all either formally or informally. This is not to
say that all the different views of SPECIAL are grossly diverse, it
simply means that there might be differences in some of the fine
points. A complete and fairly rigorous definition of a
specification language would be useful.

- The automated tools are significantly slower than they have to be.
They take from 15 to 90 minutes of CPU time on a DEC KL-10 processor
to process a system specification from moderate to high complexity.
Although this is not unbearably slow, it means that the tools are
hard to use on an interactive basis. Some fairly straightforward
modifications could significantly improve the performance of the
tcols. For example, it would appear that a much less sophisticated
theorem prover would suffice for proving the formulas that are
generated. A simpler theorem prover could execute much more
quickly. About two thirds of the time spent in the tools is spent
in the theorem prover. Also, the formula generator is not currently
block compiled. Certain parts of the operation of the formula
generator could significantly benefit from block compiling.
Attention to some of the less efficient parts of the tools could
probably improve its performance by a factor of five.

- Very little attention has been paid to the interface of the user
with the tools. The interface is rather clumsy. Also the user gets
little help in analyzing the output from the tools. The tools have
sufficient information to isolate security flaws very well and could
very possibly produce a list of given specification with the
offending subexpressions underlined. It is conceivable that the
tools could provide the user with a list of possible corrections
although this is somewhat more difficult.

- The automated verification tools currently handle only a subset of
SPECIAL. It is possible for the tools to handle the entire SPECIAL
language. However, the subset was chosen because it contained the
most used portions of SPECIAL and because reasonable formulas could
be generated and proved. As the remaining portions of SPECIAL are
addressed by the tools, the dependency heuristics will need to
become more complex and the formulas will be harder to prove. As
the formulas become more complex and difficult to prove, the tools
become slower and less effective for frequent use. Therefore, one
must be careful that any effort to have the tools handle the
remaining and infrequently used constructs does not render the tools
so inefficient as to make them a burden. The existence of the
current allowed subset of SPECIAL forces the user to utilize the
tools most effectively.

CSL-109 PROVING SPECIFICATIONS SECURE Page 55

REFERENCES

1. R.Boyer and J Strother Moore. A Computational Logic. Academic Press,
1979.

2. R.S.Boyer and J Strother Moore. A Theorem-Prover For Recursive Functions:
A User's Manual. CSL-91, SRI International, 979.

3. R.J.Feiertag, K.N.Levitt,and L. Robinson. Proving Multilevel Security of

a System Design. Proceedings of Sixth ACM Symposium on Operating Systems
Principles, ACM, November, 1977.

4. B.Silverberg, L.Robinson, and K. Levitt. HDM Handbook, Volume II: The

Languages and Tools of HDM. SRI International, June, 1979.

5. W. Teitelman. Interlisp Reference Manual. Xerox Palo Alto Research
Center, 1978.

