UNCLASSIFIED

AD NUMBER

ADB120259

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors; Critical Technol ogy; MAR
1988. Ot her requests shall be referred to Air
Force Armanent Lab., Eglin AFB, FL. This

docunent contains export-controlled technical
dat a.

AUTHORITY

AFSC/ MNOL Wight Lab Itr dtd 13 Feb 1992

THISPAGE ISUNCLASSIFIED

_ _ : 0T FILE cop:

SECUKRI IFICATION OF THIS PA
. Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
ITnelassified :
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Distribution authorized to U.S. Government
Agencies and their contractors; Q7 (over)

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFATL-TR-88-18, Vol 12

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL [7a. NAM: OF MONITORING ORGANIZATION
McDonnell Douglas (If applicable)

. Aeromechanics Division
Astronautics Company

6c. ADDRESS (City, State, and ZIP Code) 7b. ADORESS (City, State, and ZIP Code)
P.O. Box 516 Air Force Armament Laboratory
, St. Louis, MO 63166 Eglin AFB, FL 32542-5434
- 8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
P e aa ORGANIZATION . (If applicable)
STARS Joint Program Office F08635-86~C-0025
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Room 30138 1 {#1{"Fern so) PROGRAM PROJECT TASK WORK_UNIT
The Pentagon ELEMENT NO. I NO. NO. ACCESSION NO.,
’ N 11. TITLE (Include Security Classification)
Boiia | Common Ada Missile Package (CAMP) Project: Missile Software Parts, Vol 12:

L Q) Detail Design Documents_(Vol 7-12)
. ... CN] 12. PERSONAL AUTHOR(S)

B iy D, McNicholl, S, Cohen, C. Palmer, et al.
m 13a. TYPE OF REPORT 13b. TIME §ov5R§g Mar 88 14. DATE OF REPORT (Year, Month, Day) |[}5. PAGE COUNT
el I Technical Note rrom _S€P 89 ro AL P%) march 1988 230
s 16. SUPPLEMENTARY NOTATIO
0 Y ARY NOTATION SUBJECT TO EXPORT CONTROL LAWS.
- < Availability of this report is specified on verso of front cover. (over),
17. COSATI CODES 18. SUBJECT TERMS (Copti i nd identi block_pumbe
FIELD GROUP SUB-GROUP Reusable o?'m;;g,' ‘Missile Sottware, oftWare Generators
Ada, Parts Composition Systems, Software Parts Y
£ 3
e 19. ABSTRACT (Conti T nd identify by block numbe
e @.—aThe objggt;;;ogfm{ﬁg.bﬁﬁ?grggfagui% (o) ?dcergg’;s{{-ate the feasibility of reusahble Ada software
S parts in a real-time embedded application area; the domain chosen for the demonstration was

that of missile flight software systems. This required that the existence of commonality
within that domain be verified (in order to justify the development of parts for that domain),
and that software parts be designed which address those areas identified. An associated
parts system was developed to support parts usage.” ‘Volume, 1 of this document is the User's
Guide to the CAMP Software parts; Volume 2.is the Version Description Document; Volume 3
Y} is the Software Product-Specification; Volumes 4-6 contain the Top-Level Design Documenj
and, Volumes 7-12Q:ontainAthe Detail Design Documents. t

) Fnr’f&g | 7‘ , [E;)L_ECTE

APR 0 71988
20. DISTRIBUTION / AVAILABILITY QF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O UNCLASSIFIED/UNLIMITED SAME AS RPT. {3 oTiC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 220, TELEPH (i Area Code) | 22c¢. {CE QY
Christine Anderson ¢ 8045 $n reL K5t FRc
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
: UNCLASSIFIED '

UNCLASSIFIED

3. DISTRIBUTION/AVAILABILITY OF REPORT (CONCLUDED)

iaR, distribution limitation applied March 1988.
Other requests for this document must be referred to AFATL/FXG, Eglin AFB,
Florida 32542-5434.

16. SUPPLEMENTARY NOTATION (CONCLUDED)

>

These technical notes accompany the CAMP final report AFATL-TR-85-93 (3 Vols)

e R

UNCLASSIFIED

&;‘3{ AFATL-TR-88-18, Vol 12
SOFTVARE DETAILED DESIGN DOCUMENT
FOR THE
MISSILE SOFTVARE PARTS
OF THE

COMMON ADA MISSILE PACKAGE (CAMP)
PROJECT

CONTRACT F08635-86-C-0025

CDRL SEQUENCE NO. C007 Accession For
NTIS GRAXI O
DTIC TAB
Unannounced %
Just.ificat.ion___.ﬁ
By.
Distribution/
Avallability Codes

| Avall and/or
i0ist Special
L]

5

=l

30 OCTOBER 1987 Ie‘

Distribution authorized to U.S. Govemment agencies and their contractors only; 7—

thevepci-deosumerntatest-and-evaluationy distribution limitation applied July 1987.
Other requests for this document must be referred to the Air Force Armament
Laboratory (FXG) Eglin Air Force Base, Florida 32542 - 5434.

-DESTRUCTION NOTICE - For classified documents, follow the procedures

in DoD 5§220.22 - M, Industrial Security Manual, Section Il - 19 or DoD 5200.1 - R,
Information Secunty Program Regulation, Chapter IX. For unclassified, limited
documents, destroy by any method that will prevent disclosure of contents or
reconstruction of the document.

WARBNING: This document contains technical data whose export is restricted by

the Arms Export Control Act (Title 22, U.S.C., Sec. 2751, et seq.) or the Export Admin -~
istrationy Act of 1979, as amended (Title 50, U.S.C., App. 2401, et seq.). Violations

of these export laws are subject to severe criminal penalties. Disseminate in

accordance with the provisions of AFR 80 - 34.

MIR FORCE ARMAMENT LABORATORY
|

ir Force Systems CommandB United States Air Force REglin Air Force Base, Florida

88 4 6 131

- T R EER——

CAMP Software Detailed Design Document

3.3.7 ABSTRACT MECHANISMS

Page 1729

CAMP Software Detailed Design Document Page 1730

é

(This page intentionally left blank.)

CAMP Software Detailed Design Document Page 1731

3.3.7.1 ABSTRACT DATA_STRUCTURES TLCSC P691 (CATALOG #P330-0)

This package contains the bodies of the generic packages required to define and
manipulate the following abstract data structures:

o bounded FIFO buffer o unbounded FIFO buffer o nonblocking circular buffer o
unbounded priority queue o bounded stack o unbounded stack

It also contains the package required by the unbounded parts to handle the
manipulation of their available space lists.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.
3.3.7.1.1 REQUIREMENTS ALLOCATION

The folloving chart summarizes the allocation of CAMP requiremerts to this
part:

Name	Requirements Allocation
Bounded FIFO Buffer	R125
Unbounded_FIFO Buffer	R164
Nonblocking_Circular Buffer	R126
Unbounded Priority Queue	R165
Bounded_Stack	R166
Unbounded_Stack	R167

3.3.7.1.2 LOCAL ENTITIES DESIGN
Packages:

The following table describes the packages maintained local to this part:

Name	Type	Description
Available Space_	generic	Contains a set of functions to retrieve a
List_Operations	package	node from and add a node to an available

| space list |

3.3.7.1.3 INPUT/OUTPUT

None.

3.3.7.1.4 LOCAL DATA

None.

N XN B PN N XX R AT

Lk = B g o= o

T T WY, . T W AR IR B BB s ™

CAMP Softvare Detailed Design Document Page 1732

3.3.7.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.6 PROCESSING
The following describes the processing performed by this part:
package body Abstract_Data_Structures is

-- --separate package bodies

package body Bounded FIFO Buffer is separate;

package body Unbounded FIFO Buffer is separate;

package body Nonblocking Circular Buffer is separate;

package body Unbounded Priority Queue is separate;

package body Bounded_Stack is separate;

pgckage body Unbounded Stack is separate;

package body Available Space List Operations is separate; c

end Abstract_Data_Structures;

3.3.7.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.8 LIMITATIONS

None.

3.3.7.1.9 LLCSC DESIGN
3.3.7.1.9.1 AVAILABLE SPACE_LIST OPERATIONS PACKAGE DESIGN

This package contains a set of routines used to manipulate an available space
list which is maintained local to the part instantiating this package.

The first routine, New Node, will return a node to the calling routine. If a
node is available in the available space list, the node will be retrieved from
there. If not, a new node will be dynamically allocated. If no memory is
available for the allocation, a STORAGE_ERROR exception is raised.

b

CAMP Software Detailed Design Document Page 1733

The second routine, Save_Node, places a nocde in the available space list.

The third routine, Save List, places a list of nodes in the available space
list.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.
3.3.7.1.9.1.1 REQUIREMENTS ALLOCATION

This part helps meet CAMP requirements R164, R165, R167.

3.3.7.1.9.1.2 LOCAL ENTITIES DESIGN
None.
3.3.7.1.9.1.3 INPUT/OUTPUT

GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Desecription |
| Nodes | 1imited private | A single element in the available space list

| Pointers | access Nodes | A pointer to an element in the available

| | | space list |

Data objects:

The following table summarizes the generic formal objects required by this
part. All of these objects are in/out parameters and are changed by calles to
the enclosed routines.

available space list
Points to the last element in the
available space list

Available Tail

| Name | Type | Value | Description |
Available_ INTEGER N/A Length of the available space list |
Length |

|

I

|

I

| | |
Available Head | Pointers | N/A | Points to the first element in the
I I |
| I I
I I I

Subprograms:

The folloving table describes the generic formal subprograms required by this
part:

CAMP Software Detailed Design Document Page 1734

| Dot _Next | function | Given a pointer to a node, this function returns a |

| pointer to the next node in the list
| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

3.3.7.1.9.1.4 LOCAL DATA

None.

3.3.7.1.9.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.1.6 PROCESSING

The folloving describes the processing performed by this part:

generic
type Nodes is limited private;
type Pointers is access Nodes;

Available Length
Available Head in out Pointers;
Available Tail in out Pointers;
wvith function Dot _Next (Ptr : in Pointers) return Pointers is <>;
vith procedure Set_Next (Ptr : in Pointers;
) Ptr_dot Next : in Pointers) is <;
package Available_Space_List_OperatTons is

in out INTEGER;

function New_Node return Pointers;

procedure Save Node (Saved Node : in Pointers);

procedure Save List (Saved Head : in Pointers;
Saved Tail : in Pointers;
Node_Count : in POSITIVE);

end Available Space List_Operations;

3.3.7.1.9.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.9.1.8 LIMITATIONS

The following table describes the exceptions raised by this part:

CAMP Software Detailed Design Document Page 1735

Name	When/Why Raised
STANDARD.STORAGE ERROR	Raised during elaboration of this package if an
	attempt is made to allocate memory when no more
	1is available

3.3.7.1.9.1.9 LLCSC DESIGN

None.

3.3.7.1.9.1.10 UNIT DESIGN

None.

3.3.7.1.9.2 AVAILABLE_SPACE_LIST_OPERATIONS PACKAGE DESIGN

This package contains a set of routines used to manipulate an available space
list which is maintained local to the part instantiating this package.

The first routine, New Node, will return a node to the calling routine. If a
node is available in the available space list, the node will be retrieved trom
there. If not, a nev node will be dynamically allocated. If no memory is
available for the allocation, a STORAGE_ERROR exception is raised.

The second routine, Save Node, places a node in the available space list.

The third routine, { ive List, places a list of nodes in the available space
list.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.2.1 REQUIREMENTS ALLOCATION

This part hel;s meet CAMP requirements R164, R165, R167.

3.3.7.1.9.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined when this was
specified in the package body of Abstract_Data_Structures.

CAMP Software Detailed Design Document Page 1736

Data types:

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Nodes	limited private	A single element in the available space list
Pointers	access Nodes	A pointer to an element in the avaiiable
		space list

Data objects:

The following table summarizes the generic formal objects required by this
part. All of these objects are in/out parameters and are changed by calls to
the enclosed routines.

| Name | Type | Value | Description |
| Available_ | INTEGER | N/A | Length of the available space list

| Length I I I I
| Available Head | Pointers | N/A | Points to the first element in the

| | | | available space list |
| Available Tail { Pointers ’ N/A ’ Points to the last element in the |
I I

available space list

Subprograms:

The following table describes the generic formal subprograms required by this
part:

| Dct_Next | function | Given a pointer to a node, this function returns a |
| pointer to the next node in the list
| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

3.3.7.1.9.2.4 LOCAL DATA

None.

3.3.7.1.9.2.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 1737

3.3.7.1.9.2.6 PROCESSING
The following describes the processing performed by this part:

separate (Abstract Data_Structures)
package body Available Space List Operations is

end Available Space_List Operations;

3.3.7.1.9.2.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.9.2.8 LIMITATIONS

None.

3.3.7.1.9.2.9 LLCSC DESIGN

None.

3.3.7.1.9.2.10 UNIT DESIGN

3.3.7.1.9.2.10.1 NEV_NODE UNIT DESIGN

This function returns a node to the calling routine. If nodes are available in
the space list, the node returned will be from there. If the available space
list is empty, this routine will attempt to dynamically allocate memory. If no
more memory is available on the system, a STORAGE_ERROR exception will be
raised.

3.3.7.1.9.2.10.1.1 REQUIREMENTS ALLOCATION

This part helps meets CAMP requirements R164, R164, R176.

3.3.7.1.9.2.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.10.1.3 INPUT/OUTPUT

None.

3.3.7.1.9.2.10.1.4 LOCAL DATA

Data objects:

CAMP Software Detailed Design Document Page 1738

The following table describes the data objects maintained by this part:

Ptr	Pointers	N/A	Points to the node being returned
Nev Available	Pointers	N/A	Temporary variable used to mark
Head			where Available_Head will point
			when this routine is exited

———————— — —————— - ——— —— ——— —— - T — — — —————— s S o b i VD ek Y S T e o S D e S S ———————————

3.3.7.1.9.2.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.2.10.1.6 PROCESSING
The following describes the processing performed by this part:

function New_Node return Pointers is

— --declaration section

Ptr : Pointers;
New_Available Head : Pointers;

-- --begin function New_Node

begin
if Available Length > 0 then

- --get the node from the available space list and mark the node
- -~-that will nowv be the head of the available space list

Ptr := Available_Head;

New_Available Head := Dot Next(Available Head);

- --initialize node being returned

Set_Next (Ptr => Ptr,
Ptr_dot_Next => NULL);

- --adjust the available space list
Available Head := Newv_Available_Head;
Available Length := AvaTlable_Length -1;

else

- --allocate space to get the node
Ptr := NEV Nodes;

end if;

2

CAMP Software Detailed Design Document Page 1739

return Ptr;

end New Node;

3.3.7.1.9.2.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table describes the subroutines required by this part and defined
as generic formal subprograms to the Available Space List_Operations package:

| Dot_Next | function | Given a pointer to a node, this function returns a |
| pointer to the next node in the list
| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data Structures. Available Space -
List_Operations package.

Name	Type	Description
Nodes	limited private	A single element in the available space list
Pointers	access Nodes	A pointer to an element in the available
		space list

Data objects:

The following table summarizes the objects required by this part and defined as
generic formal parameters to the Abstract Data_Structures. Available_Space -
List_Operations package.

| Name | Type | Value | Description |

| Available_ | |
| Length | |
| Available Head | Pointers | N/A
I | I

| Length of the available space list
|
l
|

|
I
Points to the first element in the |
available space list |

CAMP Software Detailed Design Document Page 1740

3.3.7.1.9.2.10.1.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| STANDARD.STORAGE ERROR | Raised if an attempt is made to allocate memory |
[| when no more is available |

3.3.7.1.9.2.10.2 SAVE_NODE UNIT DESIGN

This procedure returns a node to the available space list. The node returned
to the list is the one pointed to by Saved_Node.

3.3.7.1.9.2.10.2.1 REQUIREMENTS ALLOCATION

This part helps meets CAMP requirements R164, R164, R176.

3.3.7.1.9.2.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters: o
| Name | Type | Mode | Description |
| saved_Node | Pointers | in | Pointer to the node which is to be placed |

| | | | in the available space list I

3.3.7.1.9.2.10.2.4 LOCAL DATA

None.

3.3.7.1.9.2.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.2.10.2.6 PROCESSING
The following describes the processing performed by this part:

procedure Save_Node(Saved Node : in Pointers) is

CAMP Software Detailed Design Document Page 1741

begin

Set_Next (Ptr => Available Tail,
Ptr_dot_Next => Saved_Node);

Available Tail := Saved_Node;

Set Next (Ptr => Available Tail,
Ptr_dot_iNext => NULL);

Available_Length := Available Length + 1;

end Save_Node;

3.3.7.1.9.2.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table describes the subroutines required by this part and defined
as generic formal subprograms to the Available Space List Operations package:

| Name | Type | Description |

| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data Structures. Available Space -
List_Operations package.

Name	Type	Description
Nodes	limited private	A single element in the available space list
Pointers	access Nodes	A pointer to an element in the available
	space list	

Data objects:

The following table summarizes the objects required by this part and defined as
generic formal parameters to the Abstract_Data_Structures. Available_ Space -
List_Operations package.

CAMP Software Detailed Design Document Page 1742

| Name | Type | Value | Description |
| Available_ | INTEGER | N/A | Length of the available space list |
| Length I I | I
| Available Tail | Pointers | N/A | Points to the last element in the |
I | | I |

available space list

3.3.7.1.9.2.10.2.8 LIMITATIONS

None.

3.3.7.1.9.2.10.3 SAVE_LIST UNIT DESIGN

This procedures places a linked list of nodes in the available space list.

3.3.7.1.9.2.10.3.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.2.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name | Type | Mode | Descrijtion |

Saved_Head in Pointer to the first node to be placed in

the available space list

Pointers

Pointer to the last node to be placed in
Node Count | POSITIVE | in Number of nodes to be placed in the

I

I |

I Saved Tail | Pointers I in
| |

I I

I | I
I I I
| | the available space list |
I | I
| | available space list |

3.3.7.1.9.2.10.3.4 LOCAL DATA

None.

CAMP Softwvare Detailed Design Document Page 1743

Saf:
ﬁé& 3.3.7.1.9.2.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.2.10.3.6 PROCESSING
The following describes the processing performed by this part:

procedure Save List (Saved_Head : in Pointers;

Saved Tail : in Pointers;
Node Count : in POSITIVE) is
begin
Set Next (Ptr => Available Tail,

Ptr_dot_Next => Saved_Head);
Available Tail := Saved_Tail;

Set_Next (Ptr a> Available Tail,
Ptr_dot_Next => Saved_Head);

Available Length := Available Length + Node_Count;

end Save List;

3.3.7.1.9.2.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table describes the subroutines required by this part and defined
as generic formal subprograms to the Available Space List Operations package:

| Name | Type | Description |

| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

Data types:

The folloving table summarizes the types required by this part and defined as
generic formal parameters to the Available Space List Operations LLCSC:

Name | Type | Description |

I
@b | Pointers | access Nodes | A pointer to an element in the available |
‘ | | | space list |

CAMP Software Detailed Design Document Page 1744

Data objects:

The following table summarizes the objects required by this part and defined as
generic formal parameters to the Available Space List Operations LLCSC:

| Name | Type | Value | Description |
Available INTEGER N/A Length of the available space list
Length

|
Points to the last element in the |
available space list |

| | |
| Available Tail | Pointers | N/A
| | I

3.3.7.1.9.2.10.3.8 LIMITATIONS

None.

3.3.7.1.9.3 BOUNDED_FIFQO_BUFFER PACKAGE DESIGN (CATALOG #P331-0)

This generic package defines the data type and contains the operations required
to perform first-in-first-out buffering operations on incoming data. The head
alwvays points to a dummy node. The first node following the dummy node
contains the next piece of data to be retrieved. The tail always points to
where the next element should be added. If the tail points to the element c ‘
immediately in front of the head, the buffer is empty. If the tail points to
the same element as the head, the buffer is full. Since the buffer is
implemented as an array, the head and tail will advance through the array in a
circular fashion, but no overwriting of data currently in the buffer will be
permitted.

Empty FIFQO buffer: +-+ {-=v=ea Head +-+ 4=+ +=4 {e—eo- Tail +=+ +=4 +=4 +=-+

Full FIFQ buffer: Tail----- Pttt Lo Head +-+ +—+ +=+ +—+ +=+ +=+ +-+

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP required R125.

3.3.7.1.9.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.3 INPUT/OUTPUT

GENERI” PARAMETERS: ﬂ

CAMP Software Detailed Design Document Page 1745

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

The folloving table summarizes the generic formal types required by this part:

| Elements | private | User defined type of data contained in the buffer |

Data objects:

The following table summarizes the generic formal objects required by this
part:

Name	Type	Value	Description
Initial_	POSITIVE	N/A	Maximum number of elements which can
Buffer Size			be in the buffer at any given time

3.3.7.1.9.3.4 LOCAL DATA

None.

3.3.7.1.9.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.6 PROCESSING
The following describes the processing performed by this part:

separate (Abstract_Data_Structures)
package body Bounded FIFO Buffer is

end Bounded_FIFO Buffer;

3.3.7.1.9.3.7 VUTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

CAMP Softvare Detailed Design Document Page 1746

¢

The following table describes the data types which were previously defined in
this part’s specification:

| Name | Type | Range | Description [
| Buffer Range | NATURAL | O .. | Used to dimension the list of

| - | subtype | Buffer Size | elements |
| Buffer | discrete | Empty, | Used to indicate the status of |
| Statuses | type | Available, | the buffer

| l | Full | I

The following table describes the data types defined in the private part of
this part’s specification:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information
Lists	array	N/A	Array of elements

Data objects:

The following table describes the data objects which were previously defined in

this part’s specification: ‘
| Name | Type | Value | Description |

| Buffer_Size | POSITIVE | Initial | Number of usable elements in a |

| | | Buffer_Size | buffer |

Exceptions:

The following table describes the exceptions which were previously defined in
this part’s specification:

| Name | Description |
| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty buffer |
| Error condition raised if an attempt is made to add |
| elements to a full buffer |

3.3.7.1.9.3.8 LIMITATIONS

None. ﬁ

oo

CAMP Software Detailed Design Document Page 1747

3.3.7.1.9.3.9 LLCSC DESIGN

None.

3.3.7.1.9.3.10 UNIT DESIGN
3.3.7.1.9.3.10.1 CLEAR_BUFFER UNIT DESIGN

This procedure clears an jnput buffer by setting its length to O and resetting
its head and tail to 0 and 1, respectively.

3.3.7.1.9.3.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | out | FIFO buffer being accessed |

2.3.7.1.9.3.10.1.4 LOCAL‘DATA

None.

3.3.7.1.9.3.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.1.6 PROCESSING
The following describes the processing performed by this part:

procedure Clear Buffer (Buffer : out Buffers) is

— ~--declaration section

Buffer_Length : Buffer Range renames Buffer.Buffer Length;

CAMP Software Detailed Design Document Page 1748

Head : Buffer Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;

begin
Buffer Length := 0;
Head t= 03
Tail 1= 1

end Clear_Buffer ;

3.3.7.1.9.3.10.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.9.3.10.1.8 LIMITATIONS

None.

3.3.7.1.9.3.10.2 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to an input buffer if the buffer is not already
full. After the element is added, the tail is advanced one place in the buffer
and the length counter is incremented by 1.

The exception Buffer Full is raised if an attempt is made to add an element to
an already full buffer.

3.3.7.1.9.3.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

%

CAMP Software Detailed Design Document : Page 1749

| Name] Type | Mode | Description |
| Buffer | Buffers | in out | FIFO buffer being accessed
| New Element | Elements | in | Element to be added to the buffer |

3.3.7.1.9.3.10.2.4 LOCAL DATA

None.

3.3.7.1.9.3.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.2.6 PROCESSING
The following describes the processing performed by this part:

procedure Add _Element (New Element : in Elements;
Buffer : in out Buffers) is

— --declaration section

List : Lists renames Buffer.List;
Buffer Length : Buffer Range renames Buffer.Buffer_Length;
Head : Buffer Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;

begin

- ~-make sure buffer isn’t full
if Head = Tail then
raise Buffer Full;
end if;

List(Tail) := New_Element;
Buffer Length := Buffer Length + 1;
if Tail = Buffer Size then
Tail := 03
else
Tail := Tail +.1;
end if;

end Add_Element ;

CAMP Software Detailed Design Document Page 1750

3.3.7.1.9.3.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level compcnent:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Abstract Data_Structures. Bounded FIFO Buffer
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of Abstract Data_Structures. Bounded FIFO Buffer.

Name	Type	Range	Description
Buffer Range	NATURAL	O ..	Used to dimension the list of
subtype	Buffer Size	elements	

The following table describes the data types defined in the private part of the
Abstract Data Structures.Bounded FIFO Buffer package:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information
Lists	array	N/A	Array of elements

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded FIFO Buffer:

Name	Type	Value	Description
Buffer_Size	POSITIVE	Initial_	Number of usable elements in a
		Buffer Size	buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Bounded FIFO Buffer:

-

X,
1

CAMP Software Detailed Design Document Page 1751

| Buffer Full | Error condition raised if an attempt is made to add |
| | elements to a full buffer |

3.3.7.1.9.3.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Buffer_Full | Error condition raised if an attempt is made to add |
| | elements tc a full buffer |

3.3.7.1.9.3.10.3 RETRIEVE_ELEMENT UNIT DESIGN

This procedure retrieves the top element in the buffer if the buffer is not
empty. The head is advanced through the buffer by 1 before the element is
retrieved and the size of the buffer is decremented by 1 after the element is
retrieved. '

If the buffer is empty before calling this routine, the exception Buffer Empty
is rzised.

3.3.7.1.9.3.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed . |
| 0ld_Element | Elements | out | Element retrieved from the buffer |

CAMP Software Detailed Pesign Document Page 1752

3.3.7.1.9.3.10.3.4 LOCAL DATA

None.

3.3.7.1.9.3.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.3.6 PROCESSING
The following describes the processing performed by this part:

procedure Retrieve Element (Buffer : in out Buffers;
0ld_Element : out Elements) is

Buffer Length : Buffer_ Range renames Buffer.Buffer Length;

Head : Buffer:Range renames Buffer.Head;
List : Lists renames Buffer.List;
Tail : Buffer_Range renames Buffer.Tail;

-- --begin procedure Retrieve Element

begin

- --make sure don’t have an empty buffer
if Head = (Tail-1) or else (Tail = O and Head = Buffer_Size) then
raise Buffer Empty;
end if;

if Head = Buffer Size then
Head := 0;
else
Head := Head + 1;
end if;
01d Element t= List(Head);
Buffer_Length := Buffer Length - 1;

end Retrieve Element ;

3.3.7.1.9.3.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewvhere in the parent top level component:

o

CAMP Software Detailed Design Document Page 1753

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Abstract_Data_Structures. Bounded FIFO Buffer
package:

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded FIFO Buffer.

Name	Type	Range	Description
Buffer Range	NATURAL	O ..	Used to dimension the list of
	subtype	Buffer_Size	elements

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Bounded FIFO Buffer package:

| Name | Type i Range | Description |
| Buffers | record | N/A | List of data along with relevant |

| information |
| Lists | array | N/A | Array of elements |
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Bounded FIFO_Buffer:

| Name | Description |

| Buffer_Empty | Error condition raised if an attempt is made to look at or |
| | retrieve elements from an empty buffer

3.3.7.1.9.3.10.3.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Description |

| Buffer_Empty | Error condition raised if an attempt is made to look at or |
| | retrieve elements from an empty buffer |

CAMP Software Detailed Design Document Page 1754

3.3.7.1.9.3.10.4 PEEK UNIT DESIGN

This function returns the first element of the buffer if the buffer is not
empty. The status of the buffer is not changed, however, and the element
itself remains in the buffer.

The Buffer Empty exception is raised if an attempt is made to look at an empty
buffer.

3.3.7.1.9.3,10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer . | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.3.10.4.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained local to this part:

| Name | Type | Description |

3.3.7.1.9.3.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.4.6 PROCESSING
The following describes the processing performed by this part:

function Peek (Buffer : in Buffers) return Elements is

&

CAMP Software Detailed Design Document Page 1755

Buffer Length : Buffer Range renames Buffer.Buffer Length;

Head g Buffer:Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;
List ¢ Lists renames Buffer.List;
Spot : Buffer Range;

begin

- --make sure don’t have an empty buffer
if Head = (Tail-1) or else (Tail = O and Head = Buffer Size) then
raise Buffer Empty;

end if;

if Head = Buffer_Size then
Spot := 0;

else
Spot := Head + 1;

end if;

return List(Spot);

end Peek ;

3.3.7.1.9.3.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Abstract Data_Structures. Bounded FIFO Buffer
package:

—— s - — — ——— > o " T o S S T e . . S e e S S e o - - —— — s e e s

The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded FIFO Buffer.

CAMP Software Detailed Design Document Page 1756

Name	Type	Range	Description
Buffer Range	NATURAL	O ..	Used to dimension the list of
	subtype	Buffer Size	elements

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Bounded FIFO Buffer package:

| Name | Type | Range | Description |
| Buffers | record | N/A | List of data along with relevant |

[| | information |
| Lists | array | N/A | Array of elements |
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data Structures. Bounded FIFO Buffer:

| Name | Description |

| Buffer Empty | Error condition raised if an attempt is made to look at or
| | retrieve elements from an empty buffer

3.3.7.1.9.3.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Description

| Buffer Empty | Error condition raised if an attempt is made to look at or
| retrieve elements from an empty buffer

3.3.7.1.9.3.10.5 BUFFER_STATUS UNIT DESIGN
This function returns the status of the buffer. If there are no elements in

the buffer, the status is empty; if there is no room for additional elements,
the status is full; otherwise, the status is available.

3.3.7.1.9.3.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

CAMP Software Detailed Design Document

3.3.7.1.9.3.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 1757

3.3.7.1.9.3.10.5.4 LOCAL DATA
Data objects:

The following objects are maintained local to this part:

| Name | Type | Description

| Status | Buffer Statuses | Status of the buffer

3.3.7.1.9.3.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.5.6 PROCESSING

The following describes the processing performed by this part:

function Buffer Status (Buffer : in Buffers) return Buffer Statuses is

— --declaration section

Head
Tail

Buffer Range renames Buffer.Head;
Buffer Range renames Buffer.Tail;

Status : Buffer_ Statuses;

-- --begin function Buffer Status

begin

CAMP Software Detailed Design Document Page 1758

if Head = (Tail-1) or else (Tail = 0 and Head = Buffer_Size) then

Status := Empty;
elsif Head = Tail then

Status := Full;
else

Status := Available;
end if;

return Status;

end Buffer Status ;

3.3.7.1.9.3.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of Abstract _Data Structures. Bounded FIFO Buffer.

| Name | Type | Range | Description |

Buffer Range	NATURAL	O .	Used to dimension the list of
	subtype	Buffer Size	elements
Buffer_	discrete	Empty,	Used to indicate the status of
Statuses	type	Available,	the buffer
I | | Full I I

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Bounded FIF(Buffer package:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract Data_Structures. Bounded FIFO Buffer:

| Name | Type | Value | Description

| Buffer_Size | POSITIVE | Initial_ | Number of usable elements in a
| | | Buffer Size | buffer

CAMP Software Detailed Design Document Page 1759

Y 3.3.7.1.9.3.10.5.8 LIMITATIONS

None.

3.3.7.1.9.3.10.6 BUFFER_LENGTH UNIT DESIGN

This function returns the length of the current buffer.

3.3.7.1.9.3.10.6.1 REQUIREMENTS ALLOCATION
This part meets CAMP requirement R125.

3.3.7.1.9.3.10.6.2 LOCAL ENTITIES DESIGN

1

None.

3.3.7.1 7 3,10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
| Buffer | Buffers | in out | FIFO buffer being accessed |)

3.3’7.1.9.3.10.6.4 LOCAL DATA

None.

3.3.7.1.9.3.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.6.6 PROCESSING
The following describes the processing performed by this part:
function Buffer_Length (Buffer : in Buffers) return Buffer_ Range is
begin
return Buffer.Buffer_Length;

end Buffer Length ;

CAMP Softwvare Detailed Design Document * Page 1760

5
3.3.7.1.9.3.10.6.7 UTILIZATION OF OTHER ELEMENTS F
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:
The following tables describe the elements used by this part but defined
elsewvhere in the parent top level component:
Data types:
The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded FIFO Buffer.
| Name | Type | Range | Description |
| Buffer Range | NATURAL | O .. | Used to dimension the list of
| | subtype | Buffer_Size | elements |
The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Bounded FIFO Buffer package:
| Name | Type | Range | Description |
| Buffers | record | N/A | List of data along with relevant |
| | | | information | é

3.3.7.1.9.3.10.6.8 LIMITATIONS

None.

3.3.7.1.9.4 UNBOUNDED_FIFO BUFFER PACKAGE DESIGN (CATALOG #P332-0) ,
This generic package defines the data type and contains the operations required
to perform first-in-first-out buffering operations on incoming data. The head
of the buffer always points to a dummy node. The first node following the
dummy node contains the next piece of data to be retrieved. The tail always
points to the node containing the last element added to the buffer. If the

tail points to the same node as the head, the buffer is empty.

A buffer must be initialized before it is used. If an attempt is made to use
an uninitialized buffer, the exception Buffer Not Initialized will be raised.
The Initialized Buffer procedure returns an initialized buffer. The Clear -
Buffer procedure returns the nodes of a buffer to the available space list and
then returns an initialized buffer.

An available space list is maintained local to this part. When this part is

elaborated the available space list will have a dummy node plus Initial -
Available Space _Size nodes. When nodes are added to the buffer, the Add_-

Element routine will try to get a node from the available space list before

attempting to allocate more memory. When the Retrieve Element routine is G§
called, the unused node will be returned to the available space list for later

use. The memory committed to the available space may be deallocated by calling

CAMP Software Detailed Design Document Page 1761

the Free Memory procedure.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.4.1 REQUTEMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.2 LOCAL ENTITIES DESIGN

Data structures:

An available space list is maintained local to this part’s package body.
Subprograms:

The following subprograms are contained local to this body:

Name	Type	Description
Free Node	procedure	Instantiation of UNCHECKED DEALLOCATION
Dot Next	function	Given a pointer P, this function returns
	:	the value of P.Next
Set Next	procedure	Given two points P & Q, this procedure
I I I I

sets P.Next = Q

The following subprograms are contained in this part as a result of renaming
operations on identically named routines contained in the locally instantiated
Available_Space Operations package.

| Name | Type | Description |

function | Returns a node to the calling routine; will get a |
| node from the available space list if possible, |
» | otherwvise will allocate a new node |
ave_Node | procedure | Handles placing a node in the available space list |
ave_List | procedure = Handles placing a list of nodes in the available |
|

space list

wnwn

This package body contains code to initialize the Available Space List. This
code is executed when the package is elaborated. At a minimum, this code calls
the Initialize Buffer procedure to initialize the Available Space List so it
contains a dummy node. If the generic formal object Initial Available Space -
Size is greater than or equal to 1, this routine then places the requested
number of nodes (in addition to the dummy node) in the available space list.

CAMP Software Detailed Design Document Page 1762

'

3.3.7.1.9.4.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract Data_Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

| Elements | private | User defined type of data contained in the buffer

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name | Type | Description |

| Initial_Available_ | NATURAL | Number of nodes to be initially placed in |
| Space_Size | | the available space list | ‘

3.3.7.1.9.4.4 LOCAL DATA

None.

3.3.7.1.9.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4'6 PROCESSING
The following describes the processing performed by this part:
with UNCHECKED DEALLOCATION;

separate (Abstract_Data_Structures)
package body Unbounded FIFO Buffer is

-~ --this variable is accessed ONLY when setting up the available space list
Initial Head : Pointers := new Nodes; Gi

Available Space : Buffers := (Current_Length => 0,
Head => Initial_Head,

CAMP Software Detailed Design Document Page 1763

Tail => Initial Head);

Available Length : INTEGER renames Available Space.Current_Length;
Available Head : Pointers renames Available _Space.Head;
Available Tail : Pointers renames Available_Space Tail;

procedure Free is new UNCHECKED DEALLOCATION
(Object => Nodes,
Name => Pointers);

procedure Free Node (Which_Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

in Pointers;

procedure Set Next (Ptr
in Pointers);

Ptr_dot_Next :
package Available Space Operations is new
Available Space List_Operations

(Nodes => Nodes,

Pointers => Pointers,
Available Length => Available Length,
Available Head => Available Head,
Available_Tail =) Available_Iail),

function New Node return Pointers
renames Available_Space_Operations.Nev_Node;

procedure Save Node (Saved Node : in Pointers)
renames Available _Space_Operations.Save Node;

procedure Save List (Saved Head : in Pointers:
Saved Tail ¢ in Pointers;
Node Count : in POSITIVE)

renames Available_Space_Operations.Save_List;

--begin package Unbounded FIFO Buffer
--(see header for package body for details)

-- --set up available space list if one is desired
if Initial_Available_Space_Size > O then

Add_Nodes To Available Space List:
for I In 1..Initial Available Space_Size loop
Available Tail.Next := NEW Nodes;
Available_Tail := Available Tail.Next;
end loop Add_Nodes_to_Available Space List;

Available Length := Initial Available Space Size;
end if;

CAMP Software Detailed Design Document Page 1764

&

end Unbounded FIFO Buffer;

3.3.7.1.9.4.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part:
1. Unchecked Deallocation

Subprograms and task entries:

The following table describes the subroutines required by this part:

| Name | Type | Source Description |

I
| UNCHECKED _ | generic | N/A | Used to deallocate memory
| DEALLOCATION | function | |

Exceptions:

The following table describes the exceptions required by this part and defined
in the Ada predefined package STANDARD:

| Name | Description |

| STORAGE_ERROR | Raised when an attempt is made to dynamically allocate | ‘i
| | more memory than is available |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Packages:

The following table describes th: packages required by this part and specified
in the package body of the Abstract_Data_Structures package:

Name	Type	Description
Available_Space_	generic	Contains the routines required to retrieve
List_Operations	package	a node from and place a node in the
		available space list

Data types:

The following data types were previously defined in this part’s package
specification:

CAMP Software Detailed Design Document Page 1765

Name	Type	Ran e	Description
Buffer_	discrete	Empty,	Used to indicate the status of the
Statuses	type	Available,	buffer
		Uninitialized	

The following data types were previously defined in the private portion of this
part’s package specification:

| A single entity in the buffer; contains |
| data and a pointer to the next node |
| Points to a node in the buffer |
I I
I I

| I |
I | |
| Pointers | access |
I I I
| | I

N/A
Buffers record | N/A Record containing the value of the current
length, head, and tail of the buffer
Exceptions:

The following exceptions were previously defined in this part’s package
specification:

| Name | Description

I
| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty buffer |

Buffer Not_ | |
Initialized | |

Raised if an attempt is made to use an uninitialized buffer

3.3.7.1.9.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Storage Error | Raised during elaboration of this package if an |
| attempt is made to allocate memory when no more |
| | 1is available |

3.3.7.1.9.4.9 LLCSC DESIGN

None.

CAMP Software Detailed Design Document Page 1766

3.3.7.1.9.4.10 UNIT DESIGN
3.3.7.1.9.4.10.1 INITIALIZE BUFFER UNIT DESIGN
This procedure initializes a buffer. It does this in the following manner:

1) If the buffer has never been initialized then: o places a dummy node in the
buffer and o initializes the length to O

2) else if the buffer has elements in it then: o calls the Clear Buffer
procedure

3) else if the buffer has a length of O then o does nothing

3.3.7.1.9.4.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The foliowing table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being initialized |

3.3.7.1.9.4.10.1.4 LOCAL DATA

None.

3.3.7.1.9.4.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.1.6 PROCESSING
The following describes the processing performed by this part:

procedure Initialize Buffer (Buffer : in out Buffers) is

CAMP Software Detailed Design Document Page 1767

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;
Tail : Pointers renames Buffer.Tail;

begin
if Current_Length = -1 then
- --handle an uninitialized buffer
Head := New Node;
Tail := Head;
Current_Length := 0;
elsif Current_Length > O then

- --handle a buffer that has something in it
Clear Buffer(Buffer => Buffer);

else

- --current length = 0 so it is already initialized
NULL;

end if;

end Initialize Buffer ;

3.3.7.1.9.4.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package specification of Unbounded FIFO_Buffer:

Name	Type	Description
Clear_	procedure	Returns all the nodes in a buffer to the available
Buffer		space list

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

a

CAMP Software Detailed Design Document Page 1768

| Name | Type | Range | Description |
| Nodes | record | N/A | A single entity in the buffer; contains |
[| | | data and a pointer to the next node |
| Pointers | access | N/A | Points to a node in the buffer |
| Buffers | record | N/A | Record containing the value of the current |
I | I | I

length, head, and tail of the buffer

3.3.7.1.9.4.10.1.8 LIMITATIONS

None.

3.3.7.1.9.4.10.2 CLEAR_BUFFER UNIT DESIGN

This procedure returns all the elements in a buffer, except for the dummy node,
to the available space list. If this routine is sent an uninitialized buffer,
a Buffer Not Initialized exception is raised.

3.3.7.1.9.4.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.2.2 LOCAL ENTITIES DESIGN .

None.

3.3.7.1.9.4.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being cleared |

3.3.7.1.9.4.10.2.4 LOCAL DATA
Data objects:

The following table describes the objects maintained local to this part:

| Name | Type | Description |

| This_Node | Pointers | Node to be placed in the available space list |

=

CAMP Software Detailed Design Document

3.3.7.1.9.4.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.2.6 PROCESSING
The following describes the processing performed by this part:

procedure Clear Buffer (Buffer : in out Buffers) is

Current_Length : INTEGER renames Buffer.Current_Length;

Head : Pointers renames Buffer.Head;
Tail : Pointers renames Buffer.Tail;
This_Node : Pointers;

-~ --begin procedure Clear Buffer

begin

- --make sure this is an initialized buffer
if Current_Length = -1 then
raise Buffer Not_Initialized;
end if;

- --placed nodes in the available space list
Save_List (Saved Head => Head.Next,
Saved Tail => Tail,
Node_Count => Current_Length);
- --reinitialize buffer variables
Current_Length := 0;
Head.Next s= NULL;
Tail := Head;

end Clear Buffer ;

3.3.7.1.9.4.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewvhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded FIF0 Buffer:

Page 1769

CAMP Software Detailed Design Document Page 1770

| Save_List | procedure | Handles placing a list of nodes in the available |
| | | space list |

Data types:

The following table summacizes the types required by this part and defined in
the private portion of the part’s package specification:

Name	Type	Range	Description
		N/A	A single entity in the buffer; contains
			data and a pointer to the next node
Pointers	access	N/A	Points to a node in the buffer
I l l			
l			

Buffers record | N/A Record containing the value of the current
length, head, and tail of the buffer

Exceptions:

The folloving table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded FIFO -
Buffer:

Name	Description
Buffer Not_	Raised if an attempt is made to use an uninitialized buffer
Initialized	
3.3.7.1.9.4.10.2.8 LIMITATIONS

The folloving table describes the exceptions raised by this part:

| Name | Vhen/Why Raised |

| Buffer Not_Initialized | Raised if an attempt is made to use an |
| | wuninitialized buffer |

3.3.7.1.9.4.10.3 FREE_MEMORY UNIT DESIGN

This procedure deallocates the memory occupied by the available space list.

CAMP Software Detailed Design Document

3.3.7.1.9.4.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.3.3 INPUT/CUTPUT

None.

3.3.7.1.9.4.10.3.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

Page 1771

Name	Type	Value	Description
Node_to be Freed	Pointers	N/A	Pointer to the node to be
			deallocated

3.3.7.1.9.4.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.3.6 PROCESSING
The following describes the processing performed by this part:

procedure Free Memory is

-- --declaration section

Node_to_be Freed : Pointers;

-~ --begin procedure Free Memory

begin

Clear Out_Available Space_List:
vhile Available Head /= Available Tail loop

Node To Be Freed := Available Head;
Available Head := Available_Head.Next;

CAMP Softvare Detailed Design Document Page 1772

Free Node (Which_Node => Node_to_be Freed);
end loop Clear Out_Available Space List;
Available Length := 0;

end Free Memory ;

3.3.7.1.9.4.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded FIFO Buffer:

| Name | Type | Description |

| Free_Node | procedure | Instantiation of UNCHECKED_DEALLOCATION |

Data types:

The folloving table summarizes the types required by this part and defined as
generic parameters to the Abstract Data_Structures. Unbounded FIFO Buffer
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name	Type	Range	Description
		N/A	A single entity in the buffer; contains
			data and a pointer to the next node
Pointers	access	N/A	Points to a node in the buffer
I | | | |
I I I I I

Buffers record | N/A Record containing the value of the current
length, head, and tail of the buffer

Data objects:

@

CAMP Software Detailed Design Document

Page 1773

The following table summarizes the objects required by this part and defined in

the package body of Unbounded FIFO Buffer:

| Name | Type | Description

Space

| List of available nodes; nodes will be added to
| 1list when Retrieve Element is called and

| retrieved from the list when Add_Element is

| called; the nodes in the list are deallocated
| when Clear Memory is called

The following table summarizes the data objects required by this part and
defined in the package body of Unbounded FIFO Buffer:

Description

Available

Available Space.

| | |

| Length | | Current_Length
| Available_ | Pointers | Available_Space.
| Head | | Head

| Available_ | Pointers | Available_Space.
| Tail | | Tail

|

Indicates the current length of
the available space list

Points to the head node in the
available space list

| Points to the tail node in the

available space list

3.3.7.1.9.4.10.3.8 LIMITATIONS

None.

3.3.7.1.9.4.10.4 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the end of the FIFO buffer.

If the buffer has not been initialized, the exception Buffer Not Initialized is

raised.

The Storage Error exception is raised if a call to this routine requires memory
to be dynamically allocated when no more memory is available.

3.3.7.1.9.4.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.4.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1774

3.3.7.1.9.4.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
| Buffer | Buffers | in out | FIFO buffer being accessed
| New Element | Elements | in | Element to be added to the buffer [

3.3.7.1.9.4.10.4.4 LOCAL DATA

None.

3.3.7.1.9.4.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.4.6 PROCESSING

The following describes the processing performed by this part: ‘ ' ‘i
procedure Add_Element (New Element : in Elements;
Buffer : in out Buffers) is

— --declaration section

Current_Length : INTEGER renames Buffer.Current_Length;
Tail : Pointers renames Buffer.Tail;

New_Tail : Pointers;

-- --begin procedure Add_Element

begin

- --make sure buffer has been initialized
if Current_Length = -1 then
raise Buffer Not Initialized;
end if;

- --nov get a node
New_Tail := New_Node;

- --nov adjust the buffer dg
Tail.Next t= New_Tail;
Tail := New_Tail;

CAMP Software Detailed Design Document Page 1775
Tail.Data := New_Element;
Current_Length := Current_Length + 1;

end Add_Element ;

3.3.7.1.9.4.10.4.7 UTILIZATION OF GTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded FIFO Buffer:

| Name | Type | Description

I
| New_Node | function | Returns a node to the calling routine; will get a |
| | | node from the available space list if possible,
I | | otherwise will allocate a new node |

Data types:

The following table summarizes the types required by this part and defined as
generic parameters to the Abstract Data_Structures. Unbounded FIFO Buffer

package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer l

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name | Type | Range | Description |

A single entity in the buffer; contains
data and a pointer to the next node

e :
Pointers | access | | Points to a node in the buffer |
I I I I
I I | |

N/A
Buffers record | N/A Record containing the value of the current
length, head, and tail of the buffer
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data Structures. Unbounded FIFO -

Buffer:

CAMP Software Detailed Design Document Page 1776

g
| Name | Description |
| Buffer Not_ | Raised if an attempt is made to use an uninitialized buffer |
| Initialized |]

The following table describes the exceptions required by this part and defined
in the Ada predefined package STANDARD:

| Name | Description |

| STORAGE_ERROR | Raised whmn an attempt is made to dynamically allocate |
| | more memury than is available |

3.3.7.1.9.4.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | WVhen/VWhy Raised |

| Storage_Error.

| Raised if an attempt is made to allocate memory |
| when no more is available |
| Buffer_Not Initialized | Raised if an attempt is made to use an | i
| | wuninitialized buffer |

3.3.7.1.9.4.10.5 RETRIEVE_ELEMENT UNIT DESIGN

This procedure retrieves the oldest element from the FIFO buffer, places the
spare node on the available space list, and updates the status of the FIFO
buffer.

If the buffer has not been initialized, a Buffer Not_Initialized exception is
raised.

If the buffer is empty, a Buffer Empty exception is raised.

3.3.7.1.9.4.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.5.2 LOCAL ENTITIES DESIGN

None.

e

CAMP Software Detailed Design Document Page 1777

3.3.7.1.9.4.,10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Buffer	Buffers	in out	FIFO buffer being accessed
01d_Element	Elements	out	Element retrieved from the buffer

3.3.7.1.9.4.10.5.4 LOCAL DATA
Data objects:

The following tahle describes the objects maintained local to this part:

3.3.7.1.9.4.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.5.6 PROCESSING
The following describes the processing performed by this part:

procedure Retrieve Element (Buffer : in out Buffers;
01d_Element : out Elements) is

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;

This_Node : Pointers;

begin

- --make sure an element is available
if Current_Length = -1 then
raise Buffer Not_Initialized;

CAMP Software Detailed Design Document Page 1778
elsif Current_Length = 0 then @
raise Buffer Empty;
end if;
- --save dummy node in the available space list
This_Node := Head;
Head := Head.Next;
Save Node (Saved Node => This_Node);

- --retrieve element (its node becomes the new dummy node)
0ld_Element := Head.Data;

- --update buffer status
Current_Length := Current_Length - 1;

end Retrieve Element ;

3.3.7.1.9.4.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by ‘
this part and defined in the package body of Unbounded FIFO Buffer:

| Name | Type | Description |

| save_Node | procedure | Handles placing a node in the available space list |

Data type.:

The following table summarizes the types required by this part and defined as
generic parameters to the Abstract_Data_Structures. Unbounded FIFO Buffer
package:

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

CAMP Software Detailed Design Document Page 1779

JESRN

w)
‘..I‘.’.
e o e S e o e e e

		A single entity in the buffer; contains	
		data and a pointer to the next node	
Pointers	access	N/A	Points to a node in the buffer
Buffers	record	N/A	Record containing the value of the current
			length, head, and tail of the buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded FIFO -
Buffer:

| Name | Description

|
| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty buffer |
Buffer Not | Raised if an attempt is made to use an uninitialized buffer |
I I

Initialized

3.3.7.1.9.4.10.5.8 LIMITATIONS

b The follcwing table describes the exceptions raised by this part:

I Name | When/Why Raised |

Buffer Empty | Raised if an attempt is made to access an empty |
| buffer |
| Raised if an attempt is made to use an |
I I

uninitialized buffer

Buffer Not_Initialized

3.3.7.1.9.4.10.6 PEEK UNIT DESIGN
This function returns the vldest element in the FIF0 buffer.

If the buffer has not been initialized, a Buffer Not_Initialized exception is
raised.

If the buffer is empty, a Buffer Empty exception is raised.

3.3.7.1.9.4.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

CAMP Software Detailed Design Document

3.3.7.1.9.4.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 1780

3.3.7.1.9.4.10.6.4 LOCAL DATA

None.

3.3.7.1.9.4.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.56.6 PROCESSING
The following describes the processing performed by this part:

function Peek (Buffer : in Buffers) return Elements is

S --declaration section

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;

-- --begin function Peek

begin

- --make sure something is there to look at
if Current_Length = -1 then
raise Buffer Not Initialized;
elsif Current_Length = 0 then
raise Buffer Empty;
end if;

return Head.Next.Data;

end Peek ;

[on i
s

.
«x

i

il

CAMP Software Detailed Design Document Page 1781

3.3.7.1.9.4.10.6.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:
The following table summarizes the types required by this part and defined as

generic parameters to the Abstract_Data_Structures. Unbounded FIFO Buffer
package:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name | Type | Range | Description

I
A single entity in the buffer; contains '|
data and a pointer to the next node |
I
I
I

Nodes |
I
| Points to a node in the buffer
I
I

I

I | I
I I I
| Pointers | access |
| I I
I | |

N/A
Buffers record | N/A Record containing the value of the current
length, head, and tail of the buffer
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded FIFO -
Buffer:

Name | Description |

Buffer_Empty | Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty buffer |
Buffer Not_ | Raised if an attempt is made to use an uninitialized buffer |
I I

Initialized

3.3.7.1.9.4.10.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

CAMP Software Detailed Design Document Page 1782

| | Raised if an attempt is made to access an empty [
	buffer
Buffer Not_Initialized	Raised if an attempt is made to use an
	uninitialized buffer

3.3.7.1.9.4.10.7 BUFFER_STATUS UNIT DESIGN

This function returns the status of the buffer based on the following
algorithm:

if buffer has never been initialized then status is uninitialized elsif buffer
has no nodes in it then status is empty else status is available
3.3.7.1.9.4.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.7.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.4.10.7.4 LOCAL DATA

None.

3.3.7.1.9.4.10.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.7.6 PROCESSING
The following describes the processing performed by this part:

function Buffer_ Status (Buffer : in Buffers) return Buffer_Statuses is

CAMP Software Detailed Design Document Page 1783

Current_Length : INTEGER renames Buffer.Current_Length;
Status : Buffer Statuses;

begin

if Current_Length = -1 then
Status := Uninitialized;

elsif Current_Length = 0 then
Status := Empty;

else
Status := Available;

end if;
return Status;

end Buffer_Status ;

3.3.7.1.9.4.10.7.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of Abstract Data Structures. Unbounded FIFO_Buffer

Name	Type	Range	Description
Buffer_	discrete	Empty,	Used to indicate the status of the
Statuses	type	Available,	buffer
		Uninitialized	

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

CAMP Software Detailed Design Document Page 1784

| Buffers | record | N/A | Record containing the value of the current |
| | | | length, head, and tail of the buffer |

3.3.7.1.9.4.10.7.8 LIMITATIONS

None.

3.3.7.1.9.4.10.8 BUFFER_LENGTH UNIT DESIGN
This function returns the length of the current buffer.

If the buffer has not been initialized, a Buffer Not_Initialized exception is
raised.

3.3.7.1.9.4.10.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.8.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.8.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.4.10.8.4 LOCAL DATA

None.

3.3.7.1.9.4.10.8.5 PROCESS CONTROL

Not applicable.

CAMP Softwvare Detailed Design ‘Document Page 1785

[
Qﬁ$ 3.3.7.1.9.4,10.8.6 PROCESSING
The following describes the processing performed by this part:

function Buffer_ Length (Buffer : in Buffers) return NATURAL is

- --declaration section

Current_Length : INTEGER renames Buffer.Current_Length;

begin
-- --make sure the buffer has a length
if Current_Length = -1 then
raise Buffer Not_Initialized;
end if;
return Current_Length;

end Buffer Length ;

3.3.7.1.9.4.10.8.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

¢

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name	Type	Range	Description
Buffers	record	N/A	Record containing the value of the current
			length, head, and tail of the buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded FIFO -
Buffer:

CAMP Software Detailed Design Document Page 1786

Name	Description
Buffer Not_	Raised if an attempt is made to use an uninitialized buffer
Initialized	
3.3.7.1.9.4.10.8.8 LIMITATIONS

The following table describes the exceptions raised by this part:

Name	When/Why Raised
Buffer Not Initialized	Raised if an attempt is made to use an
	uninitialized buffer

3.3.7.1.9.4.10.9 DOT_NEXT UNIT DESIGN

Given an input pointer P, this function returns the value of P.Next.

3.3.7.1.9.4.10.9.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.4.10.9.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.9.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry is to |
[| | | be returned

3.3.7.1.9.4.10.9.4 LOCAL DATA

None.

§

&

(e

CAMP Software Detailed Design Document ’ Page 1787

3.3.7.1.9.4.10.9.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.9.6 PROCESSING

The following describes the processing performed by this part:
function Dot Next (Ptr : in Pointers) return Pointers is
begin

return Ptr.Next;

end Dot_Next;

3.3.7.1.9.4.10.9.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name | Type | Range | Description

N/A A single entity in the buffer; contains
data and a pointer to the next node

record |

I
A | Points to a node in the buffer
A I

I

Nodes

N/
N/ Record containing the value of the current
length, head, and tail of the buffer

I I
I I
Pointers | access |
Buffers | record |

I I

3.3.7.1.9.4.10.9.8 LIMITATIONS

None.

3.3.7.1.9.4.10.10 SET_NEXT UNIT DESIGN

Given an two input pointers, P and Q, this procedure sets P.Next equal to Q.

3.3.7.1.9.4.10.10.1 REQUIREMENTS ALLOCATION

None.

CAMP Software Detailed Design Document

3.3.7.1.9.4.10.10.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.10.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 1788

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry |
| 1is to be modified |

| Ptr_dot_Next | Pointers | in | Value to which Ptr.Next is to be set |

3.3.7.1.9.4.10.10.4 LOCAL DATA

None.

3.3.7.1.9.4.10.10.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.10.6 PROCESSING
The following describes the processing performed by this part:
procedure Set Next (Ptr ¢ in Pointers;
Ptr_dot_Next : in Pointers) is
begin
Ptr.Next := Ptr_dot_Next;
end Set_Next;
3.3.7.1.9.4.10.10.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in

the private portion of the part’s package specification:

e

CAMP Software Detailed Design Document Page 1789

length, head, and tail of the buffer

| Name | Type | Range | Description |
| Nodes | record | N/A | A single entity in the buffer; contains |
| [| | data and a pointer to the next node l
| Pointers | access | N/A | Points to a node in the buffer |
| Buffers | record | N/A | Record containing the value of the current

l l I | |

3.3.7.1.9.4.10.10.8 LIMITATIONS

None.

3.3.7.1.9.5 NONBLOCKING CIRCULAR BUFFER PACKAGE DESIGN (CATALOG #P333-0)

This generic package defines the data type and contains the operations required
to perform circular buffering operations on incoming data. These operations
are performed in a non-blocking fashion such that if the buffer is full,
incoming data will overwrite old data. The head of the buffer always points to
a dummy node. The first node following the dummy node contains the next piece
of data to be retrieved. The tail always points to where the next element
should be added. If the tail points to the element immediately in front of the
head, the buffer is empty. If the tail points to the same element as the head,
the buffer is full. This is illustrated below.

Empty circular buffer: +-+ <{-ee—o Head +-+ +-+ +-4 {————- Tail + -+ +=+ 4=+ +=4
Full circular buffer: Tail----- demt oo Head +-+ +—4 +=+ +-4 +=4+ +=+ +~+
The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

N

CAMP Software Detailed Design Document Page 1790

§

The following table summarizes the generic formal types required by this part:

Data objects:

The following table summarizes the generic formal objects required by this
part:

Name	Type	Value	Description
Initial_	POSITIVE	N/A	Maximum number of elements which can
Buffer Size			be in the buffer at any given time

3.3.7.1.9.5.4 LOCAL DATA

None.

3.3.7.1.9.5.5 PROCESS CONTROL ‘

Not applicable.

3.3.7.1.9.5.6 PROCESSING
The follow. 3z describes the processing performed by this part:

separate (Abstract_Data_Structures)
package body Nonblocking Circular Buffer is

end Nonblocking Circular Buffer;

3.3.7.1.9.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following data types were previously defined in this part’s package
specification:

CAMP Software Detailed Design Document Page 1791

Name	Type	Range	Description
Buffer Range	NATURAL	O ..	Used to dimension the list of
B	subtype	Buffer Size	elements
Buffer_	discrete	Empty,	Used to indicate the status of
Statuses	type	Available,	the buffer
I I | Full | I

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking Circular Buffer package:

Name	Type	Range	Descriptio
Lists	array	N/A	Array of elements
Buffers	record	N/A	List of data along with relevant
			information

Data objects:

The following data objects were previously defined in this part’s package
specification:

| Name | Type | Value | Description |

| Buffer_Size | POSITIVE | Initial_ | Number of usable elements in a |
| | | Buffer_Size | buffer |

Exceptions:

The following exceptions were previously defined in this part’s package
specification:

Name	Description
Buffer_Empty	Ervor condition raised if an attempt is made to
	look at or retrieve elements from an empty
	buffer

3.3.7.1.9.5.8 LIMITATIONS

None.

3.3.7.1.9.5.9 LLCSC DESIGN

None.

CAMP Software Detailed Design Document Page 1792

8
3.3.7.1.9.5.10 UNIT DESIGN
3.3.7.1.9.5.10.1 CLEAR_BUFFER UNIT DESIGN
This procedure clears a buffer by setting the Head to O, the Tail to 1, and the
length to 0.
3.3.7.1.9.5.10.1.1 REQUIREMENTS ALLOCATION
This part meets CAMP requirement R126.
3.3.7.1.9.5.10.1.2 LOCAL ENTITIES DESIGN
None.
3.3.7.1.9.5.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:
The following table describes this part’s formal parameters:
| Name | Type | Mode | Description |
| Buffer | Buffers | out | Nonblocking circular buffer being | ‘
| !

I | | accessed

3.3.7.1.9.5.10.1.4 LOCAL DATA

None.

3.3.7.1.9.5.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.1.6 PRCCESSING
The following describes the processing performed by this part:

procedure Clear Buffer (Buffer : out Buffers) is

— --declaration section

Head
Tail
Current_Length

Buffer_Range renames Buffer.Head;
Buffer Range renames Buffer.Tail; @
Buffer Range renames Buffer.Current_Length;

CAMP Software Detailed Design Document Page 1793

-- --begin procedure Clear Buffer

begin

Head i= 03
Tail =1
Current_Length := 0

- -

.
?

end Clear Buffer ;

3.3.7.1.9.5.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking Circular Buffer package:

Name	Type	Range	Description
Buffer_ Range	NATURAL	O ..	Used to dimension the list of
.	subtype	Buffer_Size	elements

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking Circular_Buffer package:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information

3.3.7.1.9.5.10.1.8 LIMITATIONS

None.

3.3.7.1.9.5.10.2 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the end of the buffer, overwriting old data
if the buffer is full. If data was overwritten, both the head and tail of the
buffer are adiusted to reflect the current status of the buffer. If data was
not overwritten, only the tail of the buffer is adjusted.

" CAMP Software Detailed Design Document Page 1794

\
3.%.7.1.9.5.10.2.1 REQUIREMENTS ALLOCATION)
This part meets CAMP requirement R126.
3.3.7.1.9.5.10.2.2 LOCAL ENTITIES DESIGN
None.
3.3.7.1.9.5.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:
| Name | Type | Mode | Description |
| Buffer | Buffers | out | Circular buffer being accessed
| New Element | Elements | in | Element to be added to the buffer |
3.3.7.1.9.5.10.2.4 LOCAL DATA
None. ‘
3.3.7.1.9.5.10.2.5 PROCESS CONTROL
Not applicable.
3.3.7.1.9.5.10.2.6 PROCESSING
The following describes the processing performed by this part:
procedure Add_Element (New Element : in Elements;
Buffer : in out Buffers) is
- --declaration section
Head : Buffer Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;
Current_Length : Buffer Range renames Buffer.Current_Length;
List : Lists renames Buffer.List;
-- --begin procedure Add_Element
begin ﬁ

List(Tail) := New_Element;

CAMP Software Detailed Design Document Page 1795

if Head = Tail then

- --buffer was already full and an element was overwritten; therefore,
- -~both head and tail need to be advanced, but Current Length does
- --not need to be changed

if Tail = Buffer Size then
Head := 0;
Tail := 0;
else
Head := Head + 1;
Tail := Tail + 1;
end if;

else

- --buffer vas not already full; therefore, the Current_Length needs
- --to be increment and only the tail needs to be advanced

if Tail = Buffer Size then
Tail := 0;
else
Tail := Tail + 1;
end if;
Current_Length := Current_Length + 1;
end if;

end Add_Element ;

3.3.7.1.9.5.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Nonblocking Circular Buffer package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking Circular Buffer package:

CAMP Software Detailed Design Document Page 1796

| Buffer Range | NATURAL | O .. | Used to dimension the list of |
| | subtype | Buffer Size | elements |

The following table describes the data types defined in the private part of the
Abstract Data_Structures.Nonblocking Circular Buffer package:

| Name | Type | Range | Description |
| Buffers | record | N/A | List of data along with relevant |

| information I
| Lists | array | N/A | Array of elements |

Data objects:

The following table summarizes the types required by this part and defined in
the package specification of Nonblocking Circular Buffer:

| Name | Type | Value | Description |
| Buffer Size | POSITIVE | Initial_ | Number of usable elements in a | ‘i
| | | Buffer Size | buffer |

3.3.7.1.9.5.10.2.8 LIMITATIONS

None.

3.3.7.1.9.5.10.3 RETRIEVE_ELEMENT UNIT DESIGN
This procedure returns the first element in the circular buffer.

If there are no elements in the buffer, a Buffer Empty exception is raised.

3.3.7.1.9.5.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.3.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document

3.3.7.1.9.5.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 1797

Name	Type	Mode	Description
Buffer	Buffers	out	Circular buffer being accessed
01d_Element	Elements	out	Element retrieved from the buffer
3.3.7.1.9.5.10.3.4 LOCAL DATA

None.

3.3.7.1.9.5.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.3.6 PROCESSING
The folloving describes the processing performed by this part:

procedure Retrieve Element (Buffer : in out Buffers;
0ld_Element : out Elements) is

-- --declaration section

Head : Buffer Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;
Current_Length : Buffer Range renames Buffer.Current_Length;
List : Lists renames Buffer.List;

-- --begin procedure Retrieve Element

begin

- --make sure there is something there to retrieve
if Current_Length = O then
raise Buffer Empty;
end if;

-- --advance the head to get to the next element to go out
if Head = Buffer Size then
Head := O;
else
Head := Head + 1;
end if;

CAMP Software Detailed Design Document

- --nov retrieve the element and update the state of the buffer
0ld Element := List(Head);
Current_Length := Current_Length - 1;

end Retrieve Element ;

3.3.7.1.9.5.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined

elsevhere in the parent top level component:

Data types:

Page 1798

The following table summarizes the types required by this part and defined as

generic formal types tc the Nonblocking Circular_ Buffer package:

| Name | Type | Description

| Elements | private | User defined type of data contained in the buffer

The following table summarizes the types required by this part and defined in

the package specification of the Nonblocking Circular Buffer package:

| Name | Type | Range | Description |
| Buffer_Range | NATURAL | O .. | Used to dimension the list of |
I

| | subtype | Buffer Size | elements

The following table describes the data types defined in the private part of the

Abstract_Data_Structures.Nonblocking Circular Buffer package:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
		information	
Lists	array	N/A	Array of elements

Data objects:

The following table summarizes the types required by this part and defined in

the package specification of Nonblocking Circular Buffer:

CAMP Software Detailed Design Document Page 1799

| Buffer Size | POSITIVE | Initial_ | Number of usable elements in a |
| | | Buffer Size | buffer |

o —— T —————— e v = = = — > = " i = ——— " " ——— ————— — —————— —— ———- " v—

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Nonblocking Circular Buffer:

Buffer Empty	Error condition raised if an attempt is made to
	look at or retrieve elements from an empty
	buifer

3.3.7.1.9.5.10.3.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Description "

| Buffer Empty | Error condition raised if an attempt is made to look at or |
| | retrieve elements from an empty buffer |

3.3.7.1.9.5.10.4 PEEK UNIT DESIGN

This function returns the data contained in the first element in the buffer
without changing the state of the buffer (i.e., the element is not removed from
the buffer).

If there are no elements in the buffer, a Buffer Empty exception is raised.

3.3.7.1.9.5.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.10.4.3 INPUT/OUTPUT

FORMAL PARAMETERS:

CAMP Software Detailed Design Document

The following table describes this part’s formal parameters:

3.3.7.1.9.5.10.4.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description

| spot | Buffer Range | N/A | Marks the spot in the buffer containing
| | the element to be looked at

3.3.7.1.9.5.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.4.6 PROCESSING
The folloving describes the processing performed by this part:

function Peek (Buffer : in Buffers) return Elements is

- --declaration section

Head ¢ Buffer Range renames Buffer.Head;
Current_Length : Buffer Range renames Buffer.Current_Length;
List : Lists renames Buffer.List;

Spot : Buffer Range;

-- —-begin function Peek

begin

- --make sure there is something to peek at
if Current_Length = 0 then
raise Buffer Empty;
end if;

- --determine location of desired element
if Head = Buffer_Size then

CAMP Software Detailed Design Document Page 1801

Spot := O3
else

Spot := Head + 1;
end if;

-- --return requested element
return List(Spot);

end Peek ;

3.3.7.1.9.5.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The folloving table summarizes the types required by this part and defined as
generic formal types to the Nonblocking Circular_Buffer package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The follovwing table summarizes the types required by this part and defined in
the package specification of the Nonblocking Circular_Buffer package:

| Name | Type | Range | Description |

| Buffer Range | NATURAL | O .. | Used to dimension the list of |
| | subtype | Buffer Size | elements |

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking Circular_Buffer package:

| Name | Type | Range | Description |
| Buffers | record | N/A | List of data along with relevant |

| information |
| Lists | array | N/A | Array of elements |

Data objects:

The following table summarize {(he types required by this part and defined in
the package specification of Nonblocking Circular_ Buffer:

CAMP Software Detailed Design Document Page 1802

| Name | Type | Value | Description

l
| Buffer_Size | POSITIVE | Initial_ | Number of usable elements in a |
| I | Buffer Size | buffer |

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Nonblocking Circular_Buffer:

| Name | Description |
| Buffer Empty | Error condition raised if an attempt is made to |
| | look at or retrieve elements from an empty

| | buffer I

3.3.7.1.9.5.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

Name | Description |

|
| Buffer Empty | Error condition raised if an attempt is made to look at or |
| | retrieve elements from an empty buffer |

3.3.7.1.9.5.10.5 BUFFER_STATUS UNIT DESIGN

This function returns the current status of the buffer according to the
following algorithm:

if there are no elements in the buffer then buffer status is empty elsif if the

buffer contains the maximum number of elements buffer status is full else
buffer status is available end if;

3.3.7.1.9.5.10.5.1 REQUIREM:ENTS ALLOCATION

This part meets CAMP requirement R12€.

3.3.7.1.9.5.10.5.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1803

3.3.7.1.9.5.10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

3.3.7.1.9.5.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| Status | Buffer Statuses | N/A | Current status of the buffer |

3.3.7.1.9.5.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.5.6 PROCESSING
The following describes the processing performed by this part:

function Buffer Status (Buffer : in Buffers) return Buffer Statuses is

Current_Length : Buffer Range renames Buffer.Current_Length;

Status : Buffer Statuses;

b - —

begin

if Current_Length = O then
Status := Empty;

elsif Current_Length = Buffer Size then
Status := Full;

else
Status := Available;

CAMP Software Detailed Design Document Page 1804

end if;
return Status;

end Buffer Status ;

3.3.7.1.9.5.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking Circular Buffer package:

Name	Type	Range	Description
Buffer Range	NATURAL	O .	Used to dimension the list of
	subtype	Buffer Size	elements
Buffer_	discrete	Empty,	Used to indicate the status of
Statuses type	Available,	the buffer	
	Full ! I		

The following table describes the data types defined in the ﬁfivate part of the
Abstract_Data_Structures.Nonblocking Circular Buffer package:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information

Data objects:

The following table summarizes the types required by this part and defined in
the package specification of Nonblocking Circular Buffer:

| Name | Type | Value | Description |

| Buffer Size | POSITIVE | Initial . | Number of usable elements in a |
| | | Buffer Size | buffer |

3.3.7.1.9.5.10.5.8 LIMITATIONS

None.

§

CAMP Software Detailed Design Document Page 1805

3.3.7.1.9.5.10.6 BUFFER_LENGTH UNIT DESIGN

This function returns the current length of the buffer.

3.3.7.1.9.5.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | out | Circular buffer being accessed |

3.3.7.1.9.5.10.6.4 LOCAL DATA

None.

3.3.7.1.9.5.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.6.6 PROCESSING
The following describes the processing performed by this part:
function Buffer Length (Buffer : in Buffers) return Buffer Range is
begin
return Buffer.Current_Length;

end Buffer Length ;

3.3.7.1.9.5.10.6.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

CAMP Software Detailed Design Document Page 1806

0,
)
The following tables describe the elements used by this part but defined w
elsevhere in the parent top level component:
Data types:
The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking Circular Buffer package:
Name	Type	Range	Description
Buffer Range	NATURAL	O ..	Used to dimension the list of
	subtype	Buffer Size	elements
The following table describes the data types defined in the private part of the			
Abstract_Data_Structures.Nonblocking Circular Buffer package:			
Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information
3.3.7.1.9.5.10.6.8 LIMITATIONS ‘
None.

3.3.7.1.9.6 UNBOUNDED PRIORITY QUEUE PACKAGE DESIGN (CATALOG #P334-0)

This generic package defines the data type and contains the operations required
to perform priority queueing operations on incoming data. The head of the
queue alwvays points to a dummy node. The node following the dummy node
contains the element with the highest priority. The tail always points to the
element with the lowest priority.

The elements will be ordered in the queue such that: 1) Elements wiin higher
priorities are placed before those with lower priorities. 2) Elements with the
same priority are arranged in the queue in a first-in-first-out manner.

A queue must be initialized before it is used. If an attempt is made to use an
uninitialized queue, the exception Queue Not Initialized will be raised. The
Initialized_Queue procedure returns an initialized queue. The Clear Queue
procedure returns the nodes of a queue to the available space list and then
returns an initialized queue.

An available space list is maintained local to this part. When this part is

elaborated the available space list will have a dummy node plus Initial -

Available Space_Size nodes. When nodes are added to the queue, the Add “Element

routine will try to get a node from the available space list before attempting

to allocate more memory. When the Retrieve Element routine is called, the

unused node will be returned to the available space list for later use. The Q@
memory committed to the available space may be deallocated by calling the

Free_Memory procedure.

i 3
B

CAMP Software Detailed Design Document Page 1807

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.2 LOCAL ENTITIES DESIGN

Data structures:

An available space list is maintain local to this part’s package body.
Subprograms:

The following subprograms are contained local to this body:

procedure | Instantiation of UNCHECKED DEALLOCATION

Dot_Next function Given a pointer P, this function returns
Set_Next procedure | Given two points P & Q, this procedure

| |
| the value of P.Next |
I I
I I

sets P.Next = Q

The following subprograms are contained in this part as a result of renaming
operations on identically named routines contained in the locally instantiated
Available_Space_Operations package.

Name | Type | Description |

function	Returns a node to the calling routine; will get a
	node from the available space list if possible,
	othervise will allocate a new node
Save Node | procedure | Handles placing a node in the available space list |
Save_List } procedure = Handles placing a list of nodes in the available |

I

space list

P e w

This package body contains code to initialize the Available Space List. This
code is executed wvhen the pacitage is elaborated. If the generic Iormal object
Initial Available Space_Size is greater than or equal to 1, this routine then
places the requested number of nodes (in addition to the dummy node) in the
available space list.

3.3.7.1.9.6.3 INPUT/OUTPUT
GENERIC PARAMETERS:

CAMP Software Detailed Design Document Page 1808
The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract Data Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Elements	private	User defined type of data contained in the queue
Priorities	private	User defined type determining the priority of the
I I | node |

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name | Type | Description I
| Initial | NATURAL | Number of available nodes to be initially |
| Available_ | | placed in the available space list

| Space Size | | |
Subprograms:

The following table summarizes the generic formal subroutines required by this
part:

30307.109-6.4 LOC[tL DATA
Data objects:

The following table summarizes the data objects defined by this part as the
result of renames:

- — e s > —— — — — -

Name	Type	Value	Description
Available	INTEGER	Available Space.	Indicates the current length of
Length		Current_Length	the available space list
Available	Pointers	Available Space.	Points to the head node in the
Head		Head	available space list
Available_	Pointers	Available Space.	Points to the tail node in the
Tail		Tail	available space list

&

CAMP Software Detailed Design Document Page 1809

3.3.7.1.9.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.6 PROCESSING
The following describes the processing performed by this part:

with UNCHECKED_ DEALLOCATION;
separate (Abstract_Data Structures)
package body Unbounded Priority Queue is

-- --declaration section

-- -~this pointers is accessed ONLY vhen setting up the Available_Space
Initial Head : Pointers := new Nodes;

Available Space : Queues := (Current_Length => 0,
Head => Initial Head,
Tail => Initial Head);

Available Length : INTEGER renames Available Space.Current_Length;
Available Head : Pointers renames Available _Space.Head;
Available Tail : Pointers renames Available Space.Tail;

procedure Free is new UNCHECKED DEALLOCATION
{(Object => Nodes,
Name > Pointers);

procedure Free Node (Vhich_Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

procedure Set Next (Ptr : in Pointers;
Ptr_dot_Next : in Pointers);

package Available Space Operations is new
Available _Space_ List _Operations

(Nodes™ => Nodes,

Pointers =) Pointers,
Available Length => Available Length,
Available Head => Available _Head,
Available Tail => Available Tail);

function New_Node return Pointers
renames Available Space Operations.New_Node;

procedure Save Node (Saved Node : in Pointers)
renames Available _Space_Operations.Save_Node;

procedure Save_ List (Saved Head : in Pointers;
Saved Tail : in Pointers;
Node_Count ¢ in POSITIVE)

CAMP Software Detailed Design Document Page 1810

renames Available Space Operations.Save List;

--begin package Unbounded Priority Queue
--(see header for package body for details)

-- --set up available space list if one is desired
if Initial Available Space_Size > O then

Add Nodes To Available Space List:
for I In 1..Initial Available_Space_Size loop
Available Tail.Next := NEV Nodes;
Available Tail := Available_Tail.Next;
end loop Add Nodes_to_Available Space List;
Available Length := Initial_Available Space_Size;
end if;

end Unbounded Priority Queue;

3.3.7.1.9.6.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part:
1. Unchecked Deallocation

Subprograms and task entries:

The following table describes the subroutines required by this part:

Name	Type	Source	Description
Unchecked_	generic	N/A	Used to deallocate memory
Deallocation	function		
Exceptions:

The following table describes the exceptions required by this part and defined
in the Ada predefined package STANDARD:

| Name | Description |

| Storage Error | Raised when an attempt is made to dynamically allocate |
| | more memory than is available |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

<,

CAMP Software Detailed Design Document Page 1811
The following tables describe the elements used by this part but defined

elsevhere in the parent top level component:

Packages:

The following table describes the packages required by this part and specified
in the package body of the Abstract_Data_Structures package:

Name	Type	Description
Available Space_	generic	Contains the routines required to retrieve
List _Operations	package	a node from and place a node in the

| available space list |

~Data types:

The following data types were previously defined in this part’s package
specification:

Name	Type	Range	Description
Queue_-	discrete	Empty,	Used to indicate the status of the
Statuses	type	Available,	queue
	Uninitialized		

The following data types were previously defined in the private portion of this
part’s package specification:

| Name | Type | Range | Description |

A single entity in the queue; contains
data and a pointer to the next node

I | I I I
I I I I I
| Pointers | access | A | Points to a node in the queue |
I I | N/A I I
| I I I |

N/
Queues record | N/ Record containing the value of the current
length, head, and tail of the queue
Exceptions:

The following exceptions were previously defined in this part’s package
specification:

| Name | Desecription |

| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty queue |
I I
| I

I
| Queue Not Indicates an attempt vas made to use an uninitialized queue
I

InitIalized

CAMP Software Detailed Design Document Page 1812

3.3.7.1.9.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Raised during elaboration of this package if an |
| | attempt is made to allocate memory when no more |
| is available |

3.3.7.1.9.6.9 LLCSC DESIGN

None.

3.3.7.1.9.6.10 UNIT DESIGN
3.3.7.1.9.6.10.1 INITIALIZE UNIT DESIGN

This procedure initializes a queue by placing a dummy node ir it, pointing the
head and the tail to the dummy node, and setting u:e length to O.

3.3.7.1.9.6.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Queue	Queues	in out	Unbounded priority queue being
			manipulated

3.3.7.1.9.6.10.1.4 LOCAL DATA

None.

A

CAMP Software Detailed Design Document

3.3.7.1.9.6.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.1.6 PROCESSING
The following describes the processing performed by this part:

procedure Initialize (Queue : in out Queues) is

— --declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Head ¢ Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;

begin
if Current_Length = -1 then
- --handle an uninitialized queue
Head := New Node;
Tail := Head;
Current_Length := 0;
elsif Current_Length > O then

- --handle a queue that has something in it
Clear_Queue(Queue => Queue);

else

- --current length = 0 so it is already initialized
NULL;

end if;

end Initialize ;

3.3.7.1.9.6.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

Page 1813

CAMP Software Detailed Design Document Page 1814

The following table summarizes the subroutines and task entries required by
this part and defined in the package specification of Unbounded Priority Queue:

Name	Type	Description
Clear_	procedure	Returns all the nodes in a queue to the available
Queue		space list

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority Queue:

Name	Type	Description
New Node	function	Returns a node to the calling routine; will get a
		node from the available space list if possible,
[otherwise will allocate a new node	

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract Data_Structures.Unbounded Priority_Queue
package:

Name | Type | Range | Description |

record | A single entity in the queue; contains |
| data and a pointer to the next node |
| Points to a node in the queue |
{ Record containing the value of the current g

length, head, and tail of the queue

I |
I I
Pointers | access |
Queues | record |

I |

3.3.7.1.9.6.10.1.8 LIMITATIONS

None.

3.3.7.1.9.6.10.2 CLEAR_QUEUE UNIT DESIGN

This procedure removes the nodes from a queue and places them in an available
space list.

The Queue Not Initialized exception is raised if this routine is called with an
uninitialized qu=ue.

3.3.7.1.9.6.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

w

*

CAMP Software Detailed Design Document Page 1815

3.3.7.1.9.6.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Queue	Queues	in out	Unbounded priority queue being
			manipulated

3.3.7.1.9.6.10.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained local to this part:

| Name | Type | Value | Description |

| This Node | Pointers | N/A | Points to the node to be returned to
| | | | the available space list |

3.3.7.1.9.6.10.2.5 PROCESS CONTROL

Not applicable

3.3.7.1.9.6.10.2.6 PROCESSING
The followir: 7 *%»ibes the processing performed by this part:

procedure U hiaq uweue (Queue : in out Queues) is

- ~--declaration section

Current_Length : INTEGER renames Queue.Current_ Length;

Head ¢ Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;
This_Node : Pointers;

-- --begin procedure Clear Queue

CAMP Software Detailed Design Document Page 1816

begin

- --make sure this is an initialized queue
if Current_Length = -1 then

raise Queue Not Initialized;
elsif Current_Length > O then
- --placed nodes in the available space list
Save_List (Saved_Head => Head.Next,
Saved Tail => Tail,
Node Count => Current_Length);

- --reinitialize queue variables
Current_Length := 0;

Head.Next := NULL;
Tail := Head;
end if;

end Clear_Queue ;

3.3.7.1.9.6.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT: °

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority Queue:

| Save_List | procedure | Handles placing a list of nodes in the available |
| | | space list |

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded Priority Queue
package:

| Name | Type | Range | Description |

record | A single entity in the queue; contains
| data and a pointer to the next node

| Points to a node in the queue
I
I

|
|
Record containing the value of the current |
I

| I |
I I I
| Pointers | access |
| Queues | record |
I I I

length, head, and tail of the queue

&

CAMP Software Detailed Design Document Page 1817

Exceptions:

The following table summarizes the exceptions required by this part and defined
elsevhere in the package specification of Abstract Data_Structures.Unbounded -
Priority Queue:

| Queue Empty | Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty queue |

3.3.7.1.9.6.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised [

| Queue_Not Initialized | Raised if an attempt is made to manipulate an |
| | wuninitialized queue |

3.3.7.1.9.6.10.3 FREE_MEMORY UNIT DESIGN

This procedure deallocates the memory taken up by the available space list.

3.3.7.1.9.6.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.3.3 INPUT/OUTPUT

None.

3.3.7.1.9.6.10.3.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

CAMP Software Detailed Design Document

Page 1818

Name | Type | Value | Description
| Node to be Freed | Pointers | N/A | Points to the node to be
| | | deallocated

3.3.7.1.9.6.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.3.6 PROCESSING

The following describes the processing performed by this part:

procedure Free Memory is

--declaration section

Node_to_be Freed : Pointers;

--begin procedure Free Memory

begin

Clear Out_Available Space List:
vhile Available Head /= Available Tail loop
Node To Be Freed := Available Head;
Available Fead := Available Head.Next;
Free Node (Which_Node => Node_to_be Freed);
end loop Clear Out_Available_Space_List;

Available Length := 0;

end Free_ Memory ;

3.3.7.1.9.6.10.3.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority_Queue:

* CAMP Software Detailed Design Document Page 1819

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded Priority Queue
package:

| Name | Type | Range | Description . |

	record	N/A	A single entity in the queue; contains
		data and a pointer to the next node	
Pointers	access	N/A	Points to a node in the queue
I I	I		
	I		

Queues record | N/A Record containing the value of the current
| length, head, and tail of the queue

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Abstract Data_Structures. Unbounded Priority Queue:

| Name | Type | Value | Description |

Available	INTEGER	Available Space.	Indicates the current length of
Length		Current_Length	the available space list
Available	Pointers	Available_Space.	Points to the head node in the
		available space list	
I	I		
I I I |

Head | Head
Available_ | Pointers | Available_Space. | Points to the tail node in the
Tail | Tail available space list

3.3.7.1.9.6.10.3.8 LIMITATIONS

None.

3.3.7.1.9.6.10.4 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the queue. The elements are added such that
the nev element is added before the first element which has a smaller priority
and after all other elements wvhich a greater or equal priority.

The Queue_Empty exception is raised if this routine is called with an empty
queue.

The Queue Not_Initialized exception is raised if this routine is called with an
uninitialJzed queue.

CAMP Software Detailed Design Document

The Storage Error exception is raised if a call to this routine requires meaory
to be dynamically allocated when no more memory is available.

3.3.7.1.9.6.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
New_Element	Elements	in	Element to be placed in the queue
New_Priority	Priorities	in	Priority of the element to be placed
		in the queue	

Queue | Queues | in out | Unbounded priority queue being |

l l I I

manipulated

3.3.7.1.9.6.10.4.4 LOCAL DATA
Data objects:

The following table describes the data objects maintainzd by this part:

Name	Type	Value	Description
Before	Pointers	N/A	Points to the element which will go before
			the new element
Here	Pointers	N/A	Points to the node to be added to the queue

3.3.7.1.9.6.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.4.6 PROCESSING
The following describes the processing performed by this part:

procedure Add_Element (New_Element : in Elements;
New Priority : in Priorities;

CAMP Software Detailed Design Document g Page 1821

Queue : in out Queues) is

Current_Length : INTEGER renames Queue.Current_Length;

Head : Pointers renames Queue.Head;
Tail ¢ Pointers renames Queue.Tail;
Before : Pointers;
Here : Pointers;

begin

- --make sure queue has been initialized
if Current_Length = -1 then
raise Queue Not Initialized;
end if; -7

- --find the nodes which are to go before and after the new element
Before := Head;
loop
exit when (Before = Tail) or else
(New_Priority > Before.Next.Priority);
Before := Before.Next;
end loop;

- --nov get a new node
Here := New Node;

- --set up the new node

Here.Priority := New_Priority; g
Here.Data t= New_Element;
Here.Next := Before.Next;

Before.Next := Here;

- --readjust the tail, if required
if Before = Tail then
Tail := Here;
end if;

- --nov adjust the queue
Current_Length := Current_Length + 1;

end Add_Element ;

3.3.7.1.9.6.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

CAMP Software Detailed Design Document Page 1822
The following tables describe the elements used by this part but defined

elsewvhere in the paren' top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority_ Queue:

| B | | iuode from the available space list if possible,
| | | othervise will allocate a new node

The folloving table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority Queue:

The folloving table describes the subroutines required by this part and defined
as generic formal subroutines to the Abstract _Data_Structures.Unbounded -
Priority Queue package:

| Name | Type | Description |
| ™" | function | Used to determine ordering of priorities |
Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded Priority_Queue
package:

| Name | Type | Range | Description |

A single entity in the queue; contains
data and a pointer to the next node

I I | I |
I I | I |
| Pointers | access | A | Points to a node in the queue |
I I | N/A I I
I I [I I

N/
Queues record | N/ Record containing the value of the current
length, head, and tail of the queue
Exceptions:

The folloving table summarizes the exceptions required by this part and defined
elsevhere in the package specification of Abstract Data_Structures.Unbounded -
Priority_Queue:

CAMP Software Detailed Design Document Page 1823

Name	Description
Storage_	Raised when an attempt is made to dynamically allocate
Error	more memory than is available
Queue Not_	Indicates an attempt was made to use an uninitialized queue
Initfalized	

3.3.7.1.9.6.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Raised if an attempt is raised to allocate memory |
| when no more is available |
Queue_Not_Initialized | Raised if an attempt is made to manipulate an |

I |

uninitialized queue

3.3.7.1.9.6.10.5 RETRIEVE_ELEMENT UNIT DESIGN
This procedure returns the first element in the queue.

The Queue Empty exception is raised if this routine is called with an empty
queue.

The Queue Not _Initialized exception is raised if this routine is called with an
uninitialized queue.

3.3.7.1.9.6.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailed Design Document

| Name | Type | Mode | Description

| Queue | Queues | in out | Unbounded priority queue being
| | manipulated

| 01d_Element | Elements | out | Data retrieved from the queue

3.3.7.1.9.6.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description

Page 1824

| This_Node | Pointers | N/A | Points to the node to be returned to the
| | I | available space list

3.3.7.1.9.6.10.5.5 PROCESS CONTROL

Not applicable.'

3.3.7.1.9.6.10.5.6 PROCESSING
The following describes the processing performed by this part:

in out Queues;

procedure Retrieve_ Element (Queue
out Elements) is

O0ld_Element

o --declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;
This_Node ¢ Pointers;

begin

- --make sure an element is available
if Curvent_Length = -1 then
raise Queue Not_Initialized;
elsif Current_Length = O then
raise Queue_Empty;
end if;

CAMP Software Detailed Design Document Page 1825

- --save dummy node in the available space list
This Node := Head;
Head := Head.Next;
Save Node (Saved Node => This_Node);

SS --retrieve element (its node becomes the new dummy node)
0ld_Element := Head.Data;

- --update queue status
Current_Length := Current_Length - 1;

end Retrieve Element ;

3.3.7.1.9.6.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority_ Queue:

| Name | Type | Description |

| Save Node | procedure | Handles placing a node in the available space list |

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Pata_Structures.Unbounded Priority_Queue
package:

| Name | Type | Range | Description |

A single entity in the queue; contains
data and a pointer to the next node

I I I I l
| I | | I
| Pointers | access | | Points to a node in the queue |
I I I I I
I I I I I

N/A
Queues record | N/A Record containing the value of the current
length, head, and tail of the queue
Exceptions:

The following table summarizes the exceptions required by this part and defined
elsevhere in the package specification of Abstract_Data_ Structures.Unbounded -

Priority_Queue:

CAMP Software Detailed Design Document Page 1826

| Error condition raised if an attempt is made to look at or
| retrieve elements from an empty queue

Queue Not |

I

|
_ Indicates an attempt was made to use an uninitialized queue |
Initialized |

3.3.7.1.9.6.10.5.8 LIMITATIONS

The following table describes the excentions raised by this part:

| Name | When/Why Raised |

| Queue_Empty | Raised if an attempt is made to look at or
| | retrieve from an empty queue
I
|

Queue Not Initialized | Raised if an attempt is made to manipulate an
| uninitialized queue

3.3.7.1.9.6.10.6 PEEK UNIT DESIGN

This function returns the value of the first element in the queue, but does not
change the state of the queue (i.e., the node is not actually removed from the
queue).

The Queue_Empty exception is raised if this routine is called with an empty
queue.

The Queue Not Initialized exception is raised if this routine is called with an
uninitialized queue.

3.3.7.1.9.6.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

b

CAMP Software Detailed Design Document Page 1827

| Name | Type | Mode | Description |
| Queue | Queues | in out | Unbounded priority queue being |
| | | | manipulated

3.3.7.1.9.6.10.6.4 LOCAL DATA

None.

3.3.7.1.9.6.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.6.6 PROCESSING
The following describes the processing performed by this part:

function Peek (Queue : in Queues) return Elements is

== --declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;

-- --begin function Peek

begin
- --make sure something is there to look at
if Current_Length = -1 then
raise Queue Not Initialized;
elsif Current_Length = O then
raise Queue_Empty;
end if;
return Head.Next.Data;

end Peek ;

3.3.7.1.9.6.10.6.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

CAMP Software Detailed Design Document Page 1828

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract Data Structures.Unbounded Priority Queue
package:

A single entity in the queue; contains
data and a pointer to the next node

| I I I I
| | | | |
| Pointers | access | | Points to a node in the queue |
I | | | |
I I I I I

N/A
Queues record | N/A Record containing the value of the current
length, head, and tail of the queue
Exceptions:

The following table summarizes the exceptions required by this part and defined
elsevhere in the package specification of Abstract Data_Structures.Unbounded -
Priority Queue:

| . Name | Description |

| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty queue |
Queue Not_ | Indicates an attempt wvas made to use an uninitialized queue |
InitTalized | |

Queue_Fmpty

3.3.7.1.9.6.10.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Raised if an attempt is made to look at or |
| retrieve from an empty queue |
| Raised if an attempt is made to manipulate an |
| uninitialized queue [

I
| Queue_Not_Initialized
I

3.3.7.1.9.6.10.7 QUEUE_STATUS UNIT DESIGN
This function returns the status of the queue based on the following algorithm:
if the queue has not been initialized then queue status is uninitialized elsif

no elements are in the queue then queue status is empty else queue status is
available end if;

CAMP Software Detailed Design Document

3.3.7.1.9.6.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.7.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 1829

Name	Type	Mode	Description
Queue	Queues	in out	Unbounded priority queue being
			manipulated

3.3.7.1.9.6.10.7.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description

| Status | Queue_Statuses | N/A | Status of the queue

3.3.7.1.9.6.10.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.7.6 PROCESSING
The following describes the processing performed by this part:

function Queue_Status (Queue : in Queues) return Queue_Statuses is

S --declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Status ¢ Queue_Statuses;

-- --begin function Queue_Status

CAMP Software Detailed Design Document Page 1830

§

begin

if Current_Length = -1 then
Status := Uninitialized;

elsif Current _Length = 0 then
Status := Empty;

else
Status := Available;

end if;

return Status;

end Queue_Status ;

3.3.7.1.9.6.10.7.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:
The following table describes the data types required by this part and defined i

in the package specification of Abstract_Data_Structures.Unbounded Priority -
Queue:

Name	Type	Range	Description
Queue_	discrete	Empty,	Used to indicate the status of the
Statuses	type	Available,	queue
		Uninitialized	

3.3.7.1.9.6.10.7.8 LIMITATIONS

None.

3.3.7.1.9.6.10.8 QUEUE_LENGTH UNIT DESIGN

This function returns the length of a queue.

The Queue Not Initialized exception is raised if this routine is called with an
uninitialized queue.

3.3.7.1.9.6.10.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165. &

43

CAMP Software Detailed Design Document Page 1831

3.3.7.1.9.6.10.8,2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.8.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Queue	Queues	in	Unbounded priority queue being
			manipulated

3.3.7.1.9.6.10.8.4 LOCAL DATA

None.

3.3.7.1.9.6.10.8.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.8.6 PROCESSING
The following describes the prccessing performed by this part:

function Queue_Length (Qucue : in Queues) return NATURAL is

Current_Length : INTEGER renames Queue.Current_Length;

-- --begin function Queue_Length

begin
- --make sure the queue has a length
if Current_Length = -1 then
raise Queue Not_Initialized;
end if;
return Current_Lengt!;

end Queue_Length ;

CAMP Software Detailed Design Document : Page 1832

3.3.7.1.9.6.10.8.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:
The following table describes the data types required by this part and delined

in the private portion of the Abstract_Data_Structures.Unbounded Priority Queue
package:

| Name | Type | Range | Description |

A single entity in the queue; contains |
data and a pointer to the next node

| I | I
| I I I
| Pointers | access | A | Points to a node in the queue
I | | N/A I
I I I l

I
N/ [
Queues record | N/ Record containi'ig¢ the value of the current |
length, head, and tail of the queue |
Exceptions:

The following table summarizes the exceptions required by this part and defined
elsevhere in the package specification of Abstract Data Structures.Unbounded -
Priority Queue:

| Name | Description |
| Queue Not_ | Indicates an attempt was made to use an uninitialized queue |
| InitTalized |

3.3.7.1.9.6.10.8.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/WVhy Raised |

| Queue_Not Initialized | Raised if an attempt is made to manipulate an [
| | uninitialized queue |

3.3.7.1.9.6.10.9 DOT_NEXT UNIT DESIGN

Given an input pointer P, this function returns the value of P.Next.

£

CAMP Software Detailed Design Document Page 1833

3.3.7.1.9.6.10.9.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.6.10.9.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.9.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry is to |
| | | | be returned

3.3.7.1.9.6.10.9.4 LOCAL DATA

None.

3.3.7.1.9.6.10.9.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.9.6 PROCESSING

The following describes the processing performed by this part:
function Dot_Next (Ptr : in Pointers) return Pointers is
begin

return Ptr.Next;

end Dot_Next;

3.3.7.1.9.6.10.9.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this pait but defined
elsevhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

CAMP Software Detailed Design Document Page 1834

			A single entity in the queue; contains
			data and a pointer to the next node
Pointers	access	N/A	Points to a node in the queue
Queues		N/7A	Record containing the value of the current
			length, head, and tail of the queue

3.3.7.1.9.6.10.9.8 LIMITATIONS

None.

3.3.7.1.9.6.10.10 SET_NEXT UNIT DESIGN

Given an two input pointers, P and Q, this procedure sets P.Next equal to Q.

3.3.7.1.9.6.10.10.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.6.10.10.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.10.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry |
| | is to be modified

| Ptr_dot_Next | Pointers | in | Value to which Ptr.Next is to be set |

3.3.7.1.9.6.10.10.4 LOCAL DATA

None.

3.3.7.1.9.6.10.10.5 PROCESS CONTROL

Not applicable.

Pl 3N

CAMP Software Detailed Design Document Page 1835

3.3.7.1.9.6.10.10.6 PROCESSING
The following describes the processing performed by this part:
procedure Set Next (Ptr ¢ in Pointers;
Ptr_dot_Next : in Pointers) is
begin
Ptr.Next := Ptr_dot_Next;
end Set_Next;
3.3.7.1.9.6.10.10.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

|. Name | Type | Range | Description |

Nodes | A single entity in the queue; contains |

| data and a pointer to the next node |
A | Points to a node in the queue |
A i Record containing the value of the current l

length, head, and tail of the queue

I I
I I
Pointers | access |
Queues : record I

3.3.7.1.9.6.10.10.8 LIMITATIONS

None.

3.3.7.1.9.7 BOUNDED_STACK PACKAGE DESIGN (CATALOG #P335-0)

This generic package defines the data type and contains the operations required
to perform last-in-first-out stacking operations on incoming data. The top of
the stack always points to the last element added to the stack and the next
element to be removed. VWhen top equals 0, the stack is empty. When top equals
Stack_Size, the stack is full.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP require R166.

CAMP Software Detailed Design Document Page 1836

&

3.3.7.1.9.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.7.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description [

| Elements | private | User defined type of data contained in the stack |

Data objects:

The following table summarizes the generic formal objects required by this
part:

Name	Type	Value	Description
Initial_	POSITIVE	N/A	Maximum number of elements which can
Stack_Size			be in the stack at any given time

3.3.7.1.9.7.4 LOCAL DATA

None.

3.3.7.1.9.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.6 PROCESSING
The following describes the processing performed by this part:

separate (Abstract Data_structures)
package body Bounded Stack is

end Bounded Stack;

A
e

CAMP Software Detailed Design Document

3.3.7.1.9.7.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following data types were previously defined in this part’s package
specification:

Page 1837

| Name | Type | Range | Description
Stack_ POSITIVE | 1 .. Used to dimension the list of
Length_ subtype Stack_Size elements
Range
Stacks limited N/A List of data along with relevant
private information
Stack_ discrete | Empty, Used to indicate the status of
Statuses type Available, the stack
Full

The following data types were previously defined in the private part of this

part’s package specification:

Name | Type | Range | Description

information

I I
Stack_	Stack_	1..	Used to dimension the list of
Dimensions	Dimensions	‘LAST	elements
Range	subtype		
Stacks	record	N/A	List of data along with relevant
	I I I		

Data objects:

The following data objects were previously defined in this part’s package
specification:

Name	Type	Value	Description
Stack_	POSITIVE	Initial_	Number of elements in the stack
Size		Stack_Size	
Exceptions:

The following exceptions were previously defined in this part’s package
specification:

CAMP Softvare Detailed Design Document Page 1838

| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty stack |
| Error condition raised if an attempt is made to add elements |
| to a full stack |

3.3.7.1.9.7.8 LIMITATIONS

None.

3.3.7.1.9.7.9 LLCSC DESIGN

None.

3.3.7.1.9.7.10 UNIT DESIGN
3.3.7.1.9.7.10.1 CLEAR_STACK UNIT DESIGN

This procedure clears a stack by setting the top to O.

3.3.7.1.9.7.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.7.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Bounded stack being manipulated |

3.3.7.1.9.7.10.1.4 LOCAL DATA

None.

CAMP Software Detailed Design Document

3.3.7.1.9.7.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.1.6 PROCESSING
The following describes the processing performed by this part:
procedure Clear Stack (Stack : out Stacks) is
begin
Stack.Top := 0;

end Clear_Stack ;

3.3.7.1.9.7.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

Page 1839

The following table summarizes the types required by this part and defined in

the package specification of the Abstract Data Structures.Bounded Stack
package:

| Name | Type | Range | Description |
| Stack_ | POSITIVE | 1 .. | Used to dimension the list of 1
| Length_ | subtype | Stack _Size | elements |
| Range I I I I

The following data types were previously defined in the private part of this
part’s package specification:

Name	Type	Range	Description
Stacks	record	N/A	List of data along with relevant
			information

3.3.7.1.9.7.10.1.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1840

~ Ty

3.3.7.1.9.7.10.2 ADD_ELEMENT UNIT DESIGN
This procedure adds an element to the top of the stack.

A Stack_Full exception is raised if this routine is called with a full stack.

3.3.7.1.9.7.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.7.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| New_Element | Elements | in | Element to be added to the stack | :
| Stack | Stacks | in out | Bounded stack being manipulated | ‘

3.3.7.1.9.7.10.2.4 LOCAL DATA

None.

3.3.7.1.9.7.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.2.6 PROCESSING
The following describes the processing performed by this part:

in Elements;

procedure Add Element (New_Element
in out Stacks) is

Stack

Se --declaration section

List : Lists renames Stack.List;
Top : Stack_Length Range renames Stack.Top; 8

-- --begin procedure Add_Element

w

CAMP Software Detailed Design Document Page 1841

begin

- --make sure the stack is not already full

if Top = Stack_Size then
raise Stack Full;

end if;

- --add element to the stack
Top := Top + 1;
List(Top) := New_Element;

end Add_Element ;

3.3.7.1.9.7.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:
The following table summarizes the types required by this part and defined as

generic formal parameters to the Abstract_Data_Structures.Bounded_Stack
package: ‘

| Name | Type | Description |

| Elements | private | User defined type of data contained in the stack |

The following table summarizes the types required by this part and defined in
the package specification of the Abstract_Data_Structures.Bounded_Stack
package:

Name	Type	Range	Description
Stack_	POSITIVE	1 ..	Used to dimension the list of
Length_	subtype	Stack_Size	elements
Range I I	I		

The following data types were previously defined in the private part of this
part’s package specification:

| Name | Type | Range | Description |
| Lists | array | N/A | List of elements
| Stacks | record | N/A | List of data along with relevant |

| | | | information |

CAMP Software Detailed Design Document Page 1842

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract_Data Structures. Bounded Stack package:

Name	Type	Value	Description
Stack_	POSITIVE	Initial_	Number of elements in the stack
Size		Stack_Size	
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract Data_Structures. Bounded_Stack
package:

| Name | Description |

| Stack_Full | Error condition raised if an attempt is made to add elements |
| | to a full stack |

3.3.7.1.9.7.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Vhen/Why Raised |

| Stack_Full | Raised if an attempt is made to add elements to a full stack |

3.3.7.1.9.7.10.3 RETRIEVE_ELEMENT UNIT DESIGN

This procedure retrieves the top element from the stack and returns it to the
calling routine.

A Stack_Empty exception is raised if this routine is called with an empty
stack.

3.3.7.1.9.7.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirément R166.

3.3.7.1.9.7.10.3.2 LOCAL ENTITIES DESIGN

None.

2600

CAMP Software Detailed Design Document

3.3.7.1.9.7.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description
| Stack | Stacks | in out | Bounded stack being manipulated
| 01d_Element | Elements | out | Element retrieved from the stack

3.3.7.1.9.7.10.3.4 LOCAL DATA

None.

3.3.7.1.9.7.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.3.6 PROCESSING
The follnwing describes the processing performed by this part:

procedure Retrieve Element (Stack : in out Stacks;
0ld_Element : out Elements) is

= --declaration section

List : Lists renames Stack.List;
Top : Stack_Length Range renames Stack.Top;

-- --begin procedure Retrieve_klement

begin

- --make sure there is something in the stack to retrieve
if Top = O then
raise Stack_Empty;
end if;

- --retrieve and remove the top element from the stack
01d_Element := List(Top);
Top t= Top - 1;

end Retrieve Element ;

Page 1843

CAMP Software Detailed Design Document Page 1844

3.3.7.1.9.7.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data Structures.Bounded Stack
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the stack |

The following table summarizes the types required by this part and defined in
the package specification of the Abstract Data_Structures.Bounded_ Stack
package:

Name	Type	Range	Description
Stack_ 1 POSITIVE	1 ..	Used to dimension the list of	
Length	subtype	Stack Size ~	elements
Range	I		

The following data types were previously defined in the private part of this
part’s package specification:

| Name | Type | Range | Description |

| Lists | array | N/A | List of elements

| Stacks | record | N/A | List of data along with relevant |
| information |

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract Data_Structures. Bounded_Stack package:

Name	Type	Value	Description '
Stack_	POSITIVE	Initial_	Number of elements in the stack
Size		Stack Size	

Exceptions:

CAMP Software Detailed Design Document Page 1845

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Bounded_Stack
package:

| Stack_Empty | Error condition raised if an attempt is made to look at or |
| | retrieve elements from an empty stack |

3.3.7.1.9.7.10.3.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Stack_Empty | Raised if an attempt is made to look at or retrieve elements |
! | from an empty stack |

3.3.7.1.9.7.10.4 PEEK UNIT DESIGN

This function returns the data in the top element of the stack, but does not
remove the element from the stack.

A Stack_Empty exception is raised if this routine is called with an empty
stack.

3.3.7.1.9.7.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.7.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailed Design Document Page 1846

3.3.7.1.9.7.10.4.4 LOCAL DATA

None.

3.3.7.1.9.7.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.4.6 PROCESSING
The following describes the processing performed by this part:

function Peek (Stack : in Stacks) return Elements is

List : Lists renames Stack.List;
Top : Stack_Length Range renames Stack.Top;

-- --begin function Peek

begin
- --make sure there is something in the stack
if Top = O then
raise Stack_Empty;
end if;

- --return value in top element of the stack
return List(Top);

end Peek ;

3.3.7.1.9.7.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data_Structures.Bounded_Stack

package:

ol
4-&\,

=

CAMP Software Detailed Design Document Page 1847

The following table summarizes the types required by this part and defined in
the package specification of the Abstract_Data_Structures.Bounded_Stack
package:

| Name | Type | Range | Description |
, Stack_ | POSITIVE | 1 .. | Used to dimension the list of |
| Length_ | subtype | Stack Size | elements |
| Range I l I I

The following data types were previously defined in the private part of this
part’s package specification:

Name	Type	Range	Description
Lists	array	N/A	List of elements
Stacks	record	N/A	List of data along with relevant
	[information .	

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract_Data Structures. Bounded_Stack package:

Name	Type	Value	Description
Stack_	POSITIVE	Initial_	Number of elements in the stack
Size		Stack_Size	
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data Structures. Bounded Stack
package:

| Stack Empty | Error condition raised if an attempt is made to look at or |
| | retrieve elements from an empty stack |

CAMP Software Detailed Design Document Page 1848

3.3.7.1.9.7.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Stack Empty | Raised if an attempt is made to look at or retrieve elements |
| | from an empty stack |

3.3.7.1.9.7.10.5 STACK_STATUS UNIT DESIGN

This function returns the status of the stack based on the following algorithm:
if no elements are in the stack then stack status is empty elsif the maximum
number of elements are in the stack then stack status is full else stack status
is available end if

3.3.7.1.9.7.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.5.2 LOCAL ENTITIES DESIGN ‘

None.

3.3.7.1.9.7.10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Bounded stack being manipulated |

3.3.7.1.9.7.10.5.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

- e o o o

| Status | Stack Statuses | N/A | Status of the stack |

CAMP Software Detailed Design Document Page 1849

'\‘.\
(W
&‘- 3.3.7.1.9.7.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.5.6 PROCESSING
The following describes the processing performed by this part:

function Stack_Status (Stack : in Stacks) return Stack Statuses is

e --declaration section

Top : Stack_Length Range renames Stack.Top;

Status : Stack_Statuses;

-~ --begin function Stack Status

begin
if Top = O then

Status := Empty;
(ﬁ: elsif Top = Stack_Size then

Status := Full;
else

Status := Available;
end if;
return Status;

end Stack_Status ;

3.3.7.1.9.7.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the Abstract_Data_Structures.Bounded Stack
package:

fyt
LYY

CAMP Software Detailed Design Document Page 1850

| Name | Type | Range | Description

| Stack_ | POSITIVE | 1 . | Used to dimension the list of |
| Length | subtype | Stack Size | elements |
| Range l | | I
| Stack_ | discrete | Empty, | Used to indicate the status of |
| Statuses | type | Available, | the stack |
I | | Full | ,

The following data types were previously defined in the private part of this
part’s package specification:

Name	Type	Range	Description
Stacks	record	N/A	List of data along with relevant
			information

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded Stack package:

| Name | Type | Value | Description 1
| Stack_ | POSITIVE | Initial_ | Number of elements in the stack |
| Size | | Stack_Size |]

3.3.7.1.9.7.10.5.8 LIMITATIONS

None.

3.3.7.1.9.7.10.6 STACK_LENGTH UNIT DESIGN

This function returns the length of the stack.

3.3.7.1.9.7.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.6.2 LOCAL ENTITIES DESIGN

None.

CAMP Softvare Detailed Design Document Page 1851

3.3.7.1.9.7.10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

3.3.7.1.9.7.10.6.4 LOCAL DATA

None.

3.3.7.1.9.7.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.6.6 PROCESSING
The following describes the processing performed by this part:
function Stack_Length (Stack : in Stacks) return Stack Length Range is
begin
return Stack.Top;

end Stack Length ;

3.3.7.1.9.7.10.6.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:
The following table summarizes the types required by this part and defined in

the package specification of the Abstract_Data_Structures.Bounded Stack
package: .

| Name | Type | Range | Description i
| Stack_ | POSITIVE | 1 .. | Used to dimension the list of |
| Length_ | subtype | Stack Size | elements |
| Range l I I I

CAMP Software Detailed Design Document Page 1852

The folloving data types were previously defined in the private part of this
part’s package specification:

| Name | Type | Range | Description |
| Stacks | record | N/A | List of data along with relevant
| | | | information |

3.3.7.1.9.7.10.6.8 LIMITATIONS

None.

3.3.7.1.9.8 UNBOUNDED_STACK PACKAGE DESIGN (CATALOG #P336-0)

This generic package performs last-in-first-out stacking operations on incoming
data. The head of the stack always points to the last element added to the
stack and the next element to be removed. The tail always points to a dummy
node located below the oldest element on the stack. If head and tail point to
the same node, the stack is empty.

An available space list is maintained local to this part. When this part is
elaborated the available space list will have a dummy node plus Initial -
Available Space Size nodes. When .nodes are added to the stack, the Add_Element ‘
routine will try to get a node from the available space list before attempting
to allocate more memory. When the Retrieve Element routine is called, the
unused node will be returned to the available space list for later use. The
memory committed to the available space may be deallocated by calling the
Free_Memory procedure.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.2 LOCAL ENTITIES DESIGN

Data structures:

This part maintains an available space list local to the package body.
Subprograms:

The following subprograms are contained local to this body:

CAMP Software Detailed Design Document Page 1853

| Name | Type | Description |
| Free Node | procedure | Instantiation of UNCHECKED DEALLOCATION

| Dot_Next | function | Given a pointer P, this function returns |
| | | the value of P.Next |
| Set_Next | procedure | Given two points P & Q, this procedure

I I | I

sets P.Next = Q

The following subprograms are contained in this part as a result of renaming
operations on identically named routines contained in the locally instantiated

Available Space_Operations package.

space list

| Name | Type | Description |
| New_Node | function | Returns a node to the calling routine; will get a |
| | | node from the available space list if possible,

		otherwise will allocate a new node
Save Node	procedure	Handles placing a node in the available space list
Save_List	procedure	Handles placing a list of nodes in the available
I I I		

This package body contains code to initialize the Available _Space List. This
code is executed when the package is elaborated. At a minimum, this code calls
the Initialize procedure to initialize the Available Space List so it contains
a dummy node. If the generic formal object Initial Available _Space_Size is
greater than or equal to 1, this routine then places the requested number of
nodes (in addition to the dummy node) in the available space list.

3.3.7.1.9.8.3 INPUT/OUTPUT

GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

| Elements | private | User defined type of data contained in the stack |-

Data objects:

The following table summarizes the generic formal objects required by this
part:

CAMP Software Detailed Design Document

Page 1854

Name | Type | Description
| Initial Available | NATURAL | Number of nodes to be initially placed in |
Space_Size | | the available space list

3.3.7.1.9.8.4 LOCAL DATA

None.

3.3.7.1.9.8.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.6 PROCESSING

The following describes the processing performed by this part:

with UNCHECKED DEALLOCATION;
separate (Abstract Data_Structures)
package body Unbounded Stack is

--declaration section

--this pointer is accessed ONLY when setting up the Available Space
Initial Head : Pointers := new Nodes;

Available Space : Stacks := (Current_Length => 0,
Top => Initial Head,
Bottom => Initial Head);

Available Length : INTEGER renames Available Space.Current_Length;
Available Top : Pointers renames Available _Space.Top;
Available Bottom : Pointers renames Available . _Space.Bottom;

procedure Free is new UNCHECKED DEALLOCATION
(Object => Nodes,
Name => Pointers);

procedure Free Node (Which Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

procedure Set Next (Ptr : in Pointers;
Ptr_dot_Next : in Pointers);

package Available Space Operations is new
Available . Space List_Operations
(Nodes™ => Nodes,
Pointers => Pointers,

CAMP Software Detailed Design Document Page 1855

o

fBB Available_Length => Available Length,
Available Head => Available™ _Top,
Available Tail => Available Bottom);

function New Node return Pointers
renames Available Space Operations.New_Node;

procedure Save Node (Saved Node : in Pointers)
renames Available™ _Space_Operations.Save Node;

procedure Save List (Saved_Head : in Pointers;
Saved Tail : in Pointers;
Node_Count : in POSITIVE)

renames Available Space_Operations.Save List;

--begin package Unbounded Stack
--(see header for package body for details)

-- --set up avaiisbie space list if one is desired
if Initial_Available Space_Size > 0 then

Add_Nodes_to Available Space List:
for I In 1..Initial Available Space Size loop
‘:; Available Bottom.Next := NEW Nodes;
Available Bottom := Available Bottom.Next;
end loop Add_Nodes to_Available Space List;
Available Length := Initial_Available_Space Size;
end if;

end Unbounded_Stack;

3.3.7.1.9.8.7 UTILIZATION OF OTHER ELEMENTS
Subprograms and task entries:

The following table describes the subroutines required by this part:

| Name | Type | Source | Description |

| UNCHECKED_ | generic | N/A | Used to deallocate memory [
| DEALLOCATION | function | | |

—— - - e e e e e e e e o e

Exceptions:

The following table describes the exceptions required by this part and defined
g&@ in the Ada predefined package STANDARD:

CAMP Software Detailed Design Document

Page 1856

| STORAGE_ERROR | Raised when an attempt is made to dynamically allocate
| | more memory than is available

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Packages:

The following table describes the packages required by this part and specified

in the package body of the Abstract_Data_Structures package:

Name	Type	Description
Available Space_	generic	Contains the routines required to retrieve
List_Operations	package	a node from and place a node in the

| | | available space list

Data types:

The following data types were previously.defined in this part’s package
specification:

| Name | Type | Range | Description [
Stack_	discrete	Empty,	Indicates the current status of
Statuses	type	Available	the stack
		Uninitialized	

The following table describes the data types defined in the private part of the

Abstract_Data_Structures.Unbounded_Stack package:

| Name | Type | Range | Description

| Nodes | record | N/A | Contains a single element and a pointer
| | | | to another node

| Pointers | access | N/A | Points to s node

| Stacks | record | N/A | List of data along with relevant

| | | | information

Exceptions:

The following exceptions were previously defined in this part’s package
specification:

CAMP Software Detailed Design Document Page 1857

X,
sy

	Error condition raised if an attempt is made to look at or
	retrieve elements from an empty stack
Stack Not_	Raised if an attempt is made to use an uninitialized stack
Initialized	

3.3.7.1.9.8.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| | attempt is made to allocate memory when no more |
| | 1is available |

3.3.7.1.9.8.9 LLCSC DESIGN

None.

3.3.7.1.9.8.10 UNIT DESIGN

3.3.7.1.9.8.10.1 INITIALIZE UNIT DESIGN

This procedure initializes a stack by placing a dummy node in the stack,
pointing the top and bottom to the dummy node, and setting the length to 0. If
this routine is called with a stack containing elements, then the stack is
cleared of all but the dummy node.

3.3.7.1.9.8.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailed Design Document

| Name | Type | Mode | Description

| Stack | Stacks | in out | Stack being manipulated
3.3.7.1.9.8.10.1.4 LOCAL DATA

None.

3.3.7.1.9.8.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.1.6 PROCESSING

The following describes the processing performed by this part:

procedure Initialize (Stack : in out Stacks) is

o --declaration section

Current_Length :
Top : Pointers renames Stack.Top;
Bottom : Pointers renames Stack.Bottom;

-- --begin procedure Initialize

begin
if Current_Length = -1 then
-- --handle an uninitialized stack
Top t= New_Node;
Bottom t= Top;
Current_Length := 0;
elsif Current_Length > O then

- --handle a stack that has elements in it
Clear_Stack (Stack => Stack);

else

- --current length = 0, so do nothing
NULL;

end if;

end Initialize ;

INTEGER renames Stack.Current Length;

Page 1858

4“ '
Y

&

CAMP Software Detailed Design Document

3.3.7.1.9.8.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:
The following table summarizes the subroutines required by this part and

defined in the package specification of Abstract_Data Structures.Unbounded -
Stack:

Page 1859

| Name | Type | Description

. — — — —— —

| Clear_Stack | procedure | Clears a stack by returning all of its nodes to
| | | the available space list

The following table summarizes the subroutines and task entries required by
this part and detinec in the package body of Abstract Data -
Structures.Unbounded Stack:

| Name | Type | Description

| New_Node | function | Returns a node to the calling routine; will get a
| | | node from the available space list if possible,
| | | othervise will allocate a new node

Data types:

The following table desrribes the data types defined in the private part of the

Abstract_Data_Structures.Unbounded_Stack paciage:

v

| Name | Type | Range | Description

| Nodes

=

/A Contains a single element and a pointer
to another node

record |
I
| Points to a node
I
|

=2
> >

/
/ List of data along with relevant

I I
I |
Pointers | access |
I I
| | information

|
| Stacks record
|

3.3.7.1.9.8.10.1.8 LIMITATIONS

The following table describes the exceptions raised by this part:

CAMP Software Detailed Design Document Page 1860

- —— ——————— " ——_ " " —— i ——— — — . ——————— —— —— T — — — ————— " T ———————

| STANDARD.STORAGE_ERROR | Raised if an attempt is made to allocate more |
[| memory than is available |

3.3.7.1.9.8.10.2 CLEAR_STACK UNIT DESIGN

This procedure removes nodes from a stack, leaving only the dummy node. The
nodes removed are placed in the available space list.

A Stack Not_Initialized exception is raised if this routine is called with an
uninitialized stack.

3.3.7.1.9.8.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Stack being manipulated |

3.3.7.1.9.8.10.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| This Node | Pointers | N/A | Points to the node to be placed in the |
| | | | available space list |

CAMP Softwvare Detailed Design Document Page 1861

3.3.7.1.9.8.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.2.6 PROCESSING
The following describes the processing performed by this part:

procedure Clear Stack (Stack : in out Stacks) is

Current_Length : INTEGER renames Stack.Current_Length;

Top : Pointers renames Stack.Top;
Bottom : Pointers renames Stack.Bottom;
This_Node : Pointers;

-- --begin procedure Clear_Stack

begin

== --make sure stack has been initialized
if Current_Length = -1 then

raise Stack Not_Initialized;

- --make sure there is something in the stack
elsif Current_Length /= 0 then

- --placed nodes in the available space list
Save_List (Saved_Head => Top.Next,
Saved Tail => Bottom,
Node_Count => Current_Length);
- --reinitialize stack variables
Top.Next ¢= NULL;
Bottom := Top;
Current_Length := 0;
end if;

end Clear_Stack ;

3.3.7.1.9.8.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

CAMP Software Detailed Design Document Page 1862

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Abstract Data -
Structures.Unbounded_Stack:

| save List | procedure | Handles placing a list of nodes in the available [
| | | space list |

Data types:

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Unbounded Stack package:

- o - — T A T " Sl o T - T VS T

Name	Type	Range	Description
Nodes	record	N/A	Contains a single element and a pointer
			to another node
Pointers	access	N/A	Points to a node e
Stacks	record	N/A.	List of data along with relevant
			information
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract _Data_Structures. Unbounded Stack:

Name	Description
Stack Not_	Raised if an attempt is made to use an uninitialized stack
Initalized	

3.3.7.1.9.8.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Stack Not Initialized | Raised if an attempt is made to manipulate an |
| | uninitialized stack |

CAMP Software Detailed Design Document Page 1863

éﬁ? 3.3.7.1.9.8.10.3 FREE_MEMORY UNIT DESIGN

This procedure deallocates the memory occupied by the nodes in the available
space list. Only a dummy node will be left in the list.

3.3.7.1.9.8.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.3.3 INPUT/OUTPUT

None.

3.3.7.1.9.8.10.3.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

——

| Name | Type | Value | Description |

| This_Node | Pointers | N/A | Points to the node to be deallocated |

- — —— - —— — — -

3.3.7.1.9.8.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.3.6 PROCESSING
The following describes the processing performed by this part:

procedure Free Memory is

This_Node : Pointers;

-~ --begin procedure Free Memory

&

begin

CAMP Software Detailed Design Document Page 1864
Deallocate_Nodes in_Available_Space_ List:
while Available Top /= Available Bottom loop
This Node := Available Top;
Available Top := Available Top.Next;
Free Node (Which Node => This_Node);

end loop Deallccate Nodes_in Available Space List;

Available Length t= 03
Available Top.Next := NULL;

end Free_ Memory ;

3.3.7.1.9.8.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:
The folloving table summarizes the subroutines and task entries required by

this part and defined in the package body of Abstract Data -
Structures.Unbounded_Stack:

| - Name | Type | Description |

| Free_Node | procedure | Instantiation of UNCHECKED DEALLOCATION |

Data types:

The following table describes the data types defined in the private part of the
Abstract Data_Structures.Unbounded Stack package:

| Name | Type | Range | Description |

| Nodes | record

Contains a single element and a pointer
to another node

I I I
| | I
Pointers | access | | Points to a node |
| | |
I I I

I

| N/A

| Stacks | record N/A List of data along with relevant
| | information

3.3.7.1.9.8.10.3.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1865

3.3.7.1.9.8.10.4 ADD_ELEMENT UNIT DESIGN
This procedure adds an element to the top of the stack.

A Stack Not_Initialized exception is raised if this routine is called with an
uninitialized stack.

3.3.7.1.9.8.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
New _Element	Elements	in	Element to be added to the stack
Stack	Stacks	in out	Stack being manipulated

3.3.7.1.9.8.10.4.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

Name	Type	Value	Description
Ptr	Pointers	N/A	Points to the new node to be placed in the
			stack

3.3.7.1.9.8.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.4.6 PROCESSING
The following describes the processing performed by this part:

in Elements;

procedure Add_Element (New_Element
in out Stacks) is

Stack

CAMP Software Detailed Design Document Page 1866

Current_Length : INTEGER renames Stack.Current_Length;
Top ¢ Pointers renames Stack.Top;

Ptr : Pointers;

begin

if Current_Length = -1 then
raise Stack Not Initialized;
end if;

- --get a node and initialize it
Ptr := New_Node;
Ptr.Data := New_Element;
- --place the node on the stack
Ptr.Next := Top;
Top = Ptr;
Current_Length := Current_Length + 1;

end Add_Element ;

3.3.7.1.9.8.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:
The following table summarizes the subroutines and task entries required by

this part and defined in the package body of Abstract Data -
Structures.Unbounded_Stack:

| Name | Type | Description |

| New Node | function | Returns a node to the calling routine; will get a |
| | | node from the available space list if possible,
| | | otherwise will allocate a new node

Data types:

CAMP Software Detailed Design Document Page 1867

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract Data Structures. Unbounded Stack
package:

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Unbounded_Stack package:

Name	Type	Range	Description
Nodes	record	N/A	Contains a single element and a pointer
			to another node
Pointers	access	N/A	Points to a node
Stacks	record	N/A	List of data along with relevant
			information
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract Data_Structures. Unbounded Stack:

| Name | Description |
| Stack Not_ | Raised if an attempt is made to use an uninitialized stack |
| InitTalized | I

3.3.7.1.9.8.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

STANDARD.STORAGE ERROR	Raised if an attempt is made to allocate more
	memory than is available
Stack_Not Initialized	Raised if an attempt is made to manipulate an
I I I

uninitialized stack

3.3.7.1.9.8.10.5 RETRIEVE_ELEMENT UNIT DESIGN

This procedure retrieves the top element of the stack and returns the data in
it to the calling routine. The node is then placed in the available space
list.

CAMP Software Detailed Design Document Page 1868

A Stack Enpty exception is raised if this routine is called with an empty
stack.

A Stack Not Initialized exception is raised if this routine is called with an
uninitialized stack.

3.3.7.1.9.8.10.5.1 REQUIRFMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
| Stack | Stacks | in out | Stack being manipulated
| Old_Element | Elements | out | Elements retrieved from the stack |

3.3.7.1.9.8.10.5.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |
| This_Node | Pointers | N/A | Node to be returned to the available l
| | | | space list |

3.3.7.1.9.8.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.5.6 PROCESSING
The following describes the processing performed by this part:

procedure Retrieve Element (Stack : in out Stacks;
0ld_Element : out Elements) is

N

!

CAMP Software Detailed Design Document Page 1869

Current_Length : INTEGER renames Stack.Current_Length;
Top : Pointers renames Stack.Top;

This_Node : Pointers;

-- --begin procedure Retrieve Element

begin

- ~-make sure there is something to retrieve
if Current_Length = -1 then
raise Stack Not_Initialized;
elsif Current Length = O then
raise Stack Empty;
end if;

- --retrieve data in the top node
01d_Element := Top.Data;

- --dispose of top node and adjust the stack
This_Node := Top;
Top t= Top.Next;
Save_Node (Saved Node => This Node); .
Current_Length := Current_Length - 1;

end Retrieve Elcment ;

3.3.7.1.9.8.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Abstract_Data -
Structures.Unbounded Stack:

| Name | Type | Description |

| Save_Node | procedure | Handles placing a node in the available space list |

Data types:

CAMP Software Detailed Design Document : Page 1870

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract Data Structures. Unbounded_Stack
package:

| Elements | private | User defined type of data contained in the stack [

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Unbounded_Stack package:

Name	Type	Range	Description
Nodes	record	N/A	Contains a single element and a pointer
			to another node
Pointers	access	N/A	Points to a node [
Stacks	record	N/A	List of data along with relevant
			information
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract Data Structures. Unbounded Stack:

| Name | Description |

| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty stack |
Stack Not | Raised if an attempt is made to use an uninitialized stack |
| |

IritTalized

3.3.7.1.9.8.10.5.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

Stack Not Initialized | Raised if an attempt is made to manipulate an |
| uninitialized stack |
| Raised if an attempt is made to retrieve or look |
| |

at elements in an empty stack

Stack_Empty

3.3.7.1.9.8.10.6 PEEK UNIT DESIGN

This function returns the data contained in the top element of the stack, but
does not remove the element from the stack.

CAMP Software Detailed Design Document Page 1871

A Stack_Empty exception is raised if this routine is called with an empty
stack.

A Stack Not _Initialized exception is raised if this routine is called with an
uninitialized stack.

3.3.7.1.9.8.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:®

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Stack ‘| Stacks | in out | Stack being manipulated |

3.3.7.1.9.8.10.6.4 LOCAL DATA

None.

3.3.7.1.9.8.10.6.5 PROCLSS CONTROL

Not applicable.

3.3.7.1.9.8.10.6.6 PROCESSING
The following describes the processing performed by this part:

function Peek (Stack : in Stacks) return Elements is

- --declaration section

Current_Length : INTEGER renames Stack.Current_Length;
Top : Pointers renames Stack.Top;

-- —-begin function Peek

CAMP Software Detailed Design Document Page 1872

begin

- --make sure there is something to peek at
if Current_Length = -1 then
raise Stack Not_Initialized;
elsif Current Length = O then
raise Stack_Empty;
end if;

- --returned desired element
return Top.Data;

end Peek ;

3.3.7.1.9.8.10.6.7 UTILIZATION OF O/HER ELEMENTS
UTILIZATION oFf OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data Structures. Unbounded Stack
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the stack |

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Uabounded_Stack package:

| Name | Type | Range | Description |

=
>

/ Contains a single element and a pointer
to another node

| | | I I
| | | | |
| Pointers | access | | Points to a node |
I | | I I
I I I I I

N/A
Stacks record N/A List of data along with relevant
information
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_ Structures. Unbounded_ Stack:

CAMP Software Detailed Design Document Page 1873

| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty stack |
Stack_ Not | Raised if an attempt is made to use an uninitialized stack |
Initialized | |

3.3.7.1.9.8.10.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised

I
| Raised if an attempt is made to manipulate an |
| uninitialized stack |
| Raised if an attempt is made to retrieve or look |
! at elements in an empty stack

3.3.7.1.9.8.10.7 STACK_STATUS UNIT DESIGN

This function returns the status of the stack according to the following
algorithm:

if stack has never been initialized then stack status is uninitialized elsif
stack has no elements in it then stack status in empty else stack status is
available end if

3.3.7.1.9.8.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.7.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description . |

| Stack | Stacks | in out | Stack being manipulated |

CAMP Software Detailed Design Document Page 1874

3.3.7.1.9.8.10.7.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

3.3.7.1.9.8.10.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.7.6 PROCESSING
The following describes the processing performed by this part:

function Stack_Status (Stack : in Stacks) return Stack_Statuses is

= --declaration section

Current_Length : INTEGER renames Stack.Current_Length;

Status : Stack_Statuses;

-- --begin function Stack Status

begin

if Current_Length = -1 then
Status := Uninitialized;

elsif Current_Length = O then
Status := Empty;

else
Status := Available;

end if;
return Status;

end Stack_Status ;

CAMP Software Detailed Design Document Page 1875

3.3.7.1.9.8.10.7.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Unbounded_ Stack:

Name	Type	Range	Description
Stack_	discrete	Empty,	Indicates the current status of
Statuses	type	Available	the stack
	Uninitialized		

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Unbounded_Stack package:

Name	Type	Range	Description
Stacks	record	N/A	List of data along with relevant
			information

3.3.7.1.9.8.10.7.8 LIMITATIONS

None.

3.3.7.1.9.8.10.8 STACK_LENGTH UNIT DESIGN
This function returns the length of the stack.

A Stack Not_Initialized exception is raised if this routine is called with an
uninitialized stack.

3.3.7.1.9.8.10.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.8.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document

3.3.7.1.9.8.10.8.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

3.3.7.1.9.8.10.8.4 LOCAL DATA

None.

3.3.7.1.9.8.10.8.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.8.6 PROCESSING
The following describes the processing performed by this part:

function Stack Length (Stack : in Stacks) return NATURAL is

- --declaration section

Current_Length : INTEGER renames Stack.Current_Length;

begin
- --make sure stack has been initialized
if Current_Length = -1 then
raise Stack_Not Initialized;
end if;
return Current_Length;

end Stack_Length ;

3.3.7.1.9.8.10.8.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

Page 1876

CAMP Software Detailed Design Document Page 1877
The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table describes the data types defined in the private part of the
Abstract _Data_Structures.Unbounded Stack package:

Name	Type	Range	Description
Stacks	record	N/A	List of data along with relevant
			information
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data Structures. Unbounded Stack:

| Name | Description |
| Stack Not_ | Raised if an attempt is made to use an uninitialized stack |
[InitTalized | _ |

3.3.7.1.9.8.10.8.8 LIMITATIONS

The following table describes the exceptions raised by this part:

Name	Vhen/Why Raised
Stack_Not Initialized	Raised if an attempt is made to manipulate an
	uninitialized stack

3.3.7.1.9.8.10.9 DOT_NEXT UNIT DESIGN

Given an input pointer P, this function returns the value of P.Next.

3.3.7.1.9.8.10.9.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.5.10.9.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1878

3.3.7.1.9.8.10.9.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

3.3.7.1.9.8.10.9.4 LOCAL DATA

None.

3.3.7.1.9.8.10.9.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.9.6 PROCESSING

The following describes the processing performed By this part:
function Dot_Next (Ptr : in Pointers) return Pointers is
begin

return Ptr.Next;

end Dot_Next;

3.3.7.1.9.8.10.9.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name	Type	Range	Description
			A single entity in the stack; contains
			data and a pointer to the next node
Pointers	access	N/A	Points to a node in the stack
I I | N/A I I
I I I I I

Stacks record Record containing the value of the current
length, head, and tail of the stack

CAMP Software Detailed Design Document Page 1879

ey
: 3.3.7.1.9.8.10.9.8 LIMITATIONS

None.

3.3.7.1.9.8.10.10 SET_NEXT UNIT DESIGN

Given an two input pointers, P and Q, this procedure sets P.Next equal to Q.

3.3.7.1.9.8.10.10.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.8.10.10.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.10.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

th | Name | Type ~ | Mode | Description |
| Ptr | Pointers | in | Pointer to the node whose "next" entry |
| | | | 1is to be modified]
| Ptr_dot Next | Pointers | in | Value to which Ptr.Next is to be set |

3.3.7.1.9.8.10.10.4 LOCAL DATA

None.

3.3.7.1.9.8.10.10.5 PROCESS CONTROL

Not applicable.

3.3.7.1.5.8.10.10.6 PROCESSING
The following describes the processing performed by this part:

procedure Set Next (Ptr ¢ in Pointers;
Ptr _dot_Next : in Pointers) is
begin
Ptr.Next := Ptr_dot_Next;

@? end Set_Next;

CAMP Software Detailed Design Document Page 1880

3.3.7.1.9.8.10.10.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

| A single entity in the stack; contains |
| data and a pointer to the next node |
| Points to a node in the stack |
I |
I |

Record containing the value of the current
length, head, and tail of the stack

I | I
I | |
| Pointers | access |
| Stacks | record |
| I I

3.3.7.1.9.8.10.10.8 LIMITATIONS

None.

3.3.7.1.10 UNIT DESIGN 5

None.

CAMP Software Detailed Design Document

package body Abstract Data Structures is

pragma PAGE;
generic

type Nodes is limited private;
type Pointers is access Nodes;
Available Length : in out INTEGER;
Available Head : in out Pointers;
Available Tail : in out Pointers;
wvith function Dot Next (Ptr : in Pointers) return Pointers is <;
vith procedure Set Next (Ptr : in Pointers;

Ptr Dot Next : in Pointers) is <>;
package Available Space List Operations is

function New _Node return Pointers;
procedure Save Node (Saved Node : in Pointers);
procedure Save List (Saved Head : in Pointers;
Saved Tail : in Pointers;
Node Count : in POSITIVE);
end Available Space List Operations;

pragma PAGE;

package body Bounded Fifo Buffer is separate;

package body Unbounded Fifo Buffer is separate;

package body Nonblocking Circular Buffer is separate;
package body Unbounded Priority Queue is separate;
package body Bounded Stack is separate;

package body Unbounded Stack is separate;

package body Available Space_List_Operations is separate;

end Abstract Data_Structures;

Page 1881

CAMP Software Detailed Design Document

separate (Abstract Data_Structures)
package body Available Space_List Operations is

pragma PAGE;
function New Node return Pointers is

- ~~—declaration section

Ptr : Pointers;
New_Available Head : Pointers;

-~ ~=begin function New Node

begin
if Available_Length > 0 then

- ——gel the node from the available space list and mark the node
- ~—that will now be the head of the available space list

Ptr := Available Head;

Nev_Available Head := Dot _Next(Available Head);
- —~initialize node being returned

Set_Next (Ptr => Ptr,

Ptr_Dot_Next => null);

- ——adjust the available space list

Available Head := New Available Head;
Available Length := Avallable_Length - 1;

else

- ~~allocate space to get the node
Ptr := new Nodes;

end if;
return Ptr;

end New_Node;

pragma PAGE;
procedure Save Node(Saved Node : in Pointers) is
begin
Set_Next (Ptr => Available Tail,

Ptr_Dot_Next => Saved_Node);
Available Tail := Saved Node;

Set_Next (Ptr => Available_ Tail,
Ptr Dot Next => null);

Page 1882

CAMP Software Detailed Design Document
Anhy
{&J
Available Length := Available Length + 1;
end Save Node;
pragma PAGE;
procedure Save List (Saved Head : in Pointers;
Saved _Tail : in Pointers;
Node Count : in POSITIVE) is

‘begin

Set_Next (Ptr => Available Tail,
Ptr_Dot_Next => Saved_Head);

Available Tail := Saved Tail;

Set_Next (Ptr =) Available Tail,
Ptr_Dot_Next => Saved Head);

Available Length := Available Length + Node Count;

end Save List;

end Available Space List Operations;

o

Page

1883

CAMP Coftware Detailed Design Document Page 1884

separate (Abstract Data Structures)
package body Bounded Fifo Buffer is

pragma PAGE;
procedure Clear Buffer (Buffer : out Buffers) is

Buffer Length
Head
Tail

Buffer Range renames Buffer.Buffer Length;
Buffer Range renames Buffer.Head;
Buffer Range renames Buffer.Tail;

begin
Buffer Length := 0;
Head t=

0
t= 0
Tail t= 1

-e we e

end Clear Buffer ;

pragma PAGE;
procedure Add_Element (New Element : in Elements;
: Buffer : in out Buffers) is

- ~—~declaration section

LIST s Lists renames Buffer.LIST;
Buffer Length : Buffer Range renames Buffer.Buffer Length;
Head : Buffer Range renames Buffer.Head;
Tail : Buffer_Range renames Buffer.Tail;

~— =—=begin procedure Add Element

begin

- ~—make sure buffer isn't full
if Head = Tail then
raise Buffer Full;
end if;

LIST(Tail) := New_Element;
Buffer Length := Buffer Length + 1;
if Tail = Buffer Size then
Tail := O
else
Tail := Tail + 1;
end if;

CAMP Software Detailed Design Document Page 1885

end Add_Element ;

pragma PAGE;
procedure Retrieve Element (Buffer : in out Buffers;
0l1d_Element : out Elements) is

Buffer Length : Buffer Range renames Buffer.Buffer Length;

Head : Buffer Range renames Buffer.Head;
LIST : Lists renames Buffev .LIST;
Tail : Buffer Range renames Buffer.Tail;

~- ——begin procedure Retrieve Element

begin

-— ——make sure don’'t have an emply buffer
if Head = (Tail-1) or else (Tail = 0 and Head = Buffer_Size) then
raise Buffer Empty;
end if;

if Head = Buffer Size then
Head := 03
else
Head := Head + 1;
end if;
0ld Element := LIST(Head);
Buffer Length := Buffer Length - 1;

end Retrieve Element ;

pragma PAGE;
function Peek (Buffer : in Buffers) return Elements is

Buffer Length : Buffer Range renames Buffer.Buffer_ Length;
Head : Buffer Range renames Buffer.Head;

Tail : Buffer_Range renames Buffer.Tail;

LIST ¢ Lists renames Buffer.LIST;

Spot : Buffer Range;

begin

- ——make sure don't have an empty buffer

CAMP Software Detailed Design Document

if Head = (Tail-1) or else (Tail = 0 and Head = Buffer Size) then
raise Buffer Empty;

end if;

if Head = Buffer_Size then
Spot := 0;

else
Spot := Head + 1;

end if;

return LIST(Spot);
end Peek ;

pragma PAGE;
function Buffer Status (Buffer : in Buffers) return Buffer Statuses is

Head : Buffer_ Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;

Status : Buffer Statuses;

~~ —=begin function Buffer Status

begin
if Head = (Tail-1) or else (Tail = 0 and Head = Buffer_Size) then
Status := Empty;
elsif Head = "ail then
Status := Full;
else
Status := Available;
end if;
return Status;
end Buffer Status ;

pragma PAGE;
function Buffer Length (Buffer : in Buffers) return Buffer Range is

begin
return Buffer.Buffer Length;
end Buffer Length ;

end Bounded_Fifo Buffer;

Page 1886

N!Hh
-

CAMP Software Detailed Design Document

vith Unchecked Deallocation;
separate (Abstract Data Structures)
package body Unbounded Fifo Buffer is

-— ——this variable is accessed ONLY when setting up the available space lisi
Initial Head + Pointers := new Nodes;

Available_Space : Buffers := (Current_Length => 0,
Head => Initial Head,
Tail => Initial Head);

Available Length
Available Head
Available Tail

INTEGER renames Available Space.Current_Length;
Pointers renames Available _Space.Head;
Pointers renames Available _Space.Tail;

procedure Free is new Unchecked Deallocation
(Object => Nodes,
NAME => Pointers);

procedure Free Node (Which | Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

in Pointers;

procedure Set Next (Ptr
in Pointers);

Ptr Dot_Next

oe oo

package Available_Space Operations is new
Available _Space_ “List _Operations

(Nodes™ => Nodes,

Pointers => Pointers,
Available Length => Available Length,
Available Head => Available Head,
Available Tail => Available Tail);

function Nev_Node return Pointers
renames Available Space_Operations.New_Node;

procedure Save Node (Saved Node : in Pointers)
renames Available _Space_Operations.Save_Node;

procedure Save List (Saved Head : in Pointers;
Saved Tail : in Pointers;
Node Count : in POSITIVE)

renames Available Space_Operations.Save List;

pragma PAGE;
procedure Initialize Buffer (Buffer : in out Buffers) is

Page 1887

CAMP Software Detailed Design Document Page 1888

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;
Tail ¢ Pointers renames Buffer.Tail;

begin
if Current_Length = -1 then
- —-handle an uninitialized buffer
Head := New Node;
Tail := Head; ,
Current_Length := 0;
elsif Current Length > O then

- —-handle a buffer that has something in it
Clear Buffer(Buffer => Buffer);

else

- ——current length = 0 so it is already initialized
null;

end if;

end Initialize Buffer ;

pragma PAGE;
procedure Clear Buffer (Buffer : in out Buffers) is

- -=declaration section

Current_Length : INTEGER renames Buffer.Current_Length;

Head : Pointers renames Buffer.Head;
Tail : Poiiters renames Buffer.Tail;
This_Node : Pointers;

~- —=begin procedure Clear Buffer

begin

- ~—make sure this is an initialized buffer
if Current_Length = -1 then
raise Buffer Not_Initialized;
end if;

- --placed nodes in the available space list
Save_List (Saved_Head => Head.Next,

R

CAMP Softwvare Detailed Design Document

Saved Tail => Tail,

Node Count =>

- -=—reinitialize buffer variables
Current_Length := 0;
Head.Next += null;
Tail := Head;

end Clear Buffer ;

pragma PAGE;
procedure Free Memory is

begin
Clear Out Available Sbace List:

Current_Length);

vhile Available_flead /=« Available Tail loop

Node To Be Freed := Available Head;
Available Head := Available_Head.Next;

Free_Node (Which_Node => Node_To Be Freed);
end loop Clear Out_Available Space List;
Available Length := 0;

end Free_ Memory ;

pragma PAGE;

in Elements;

procedure Add_Element (Nev Element
in out Buffers) is

Buffer

——declaration section

Current Length

INTEGER renames Buffer.Current_Length;

Tail Pointers renames Buffer.Tail;
Nev_Tail : Pointers;
-- —-begin procedure Add Element

o o e oy o o o e s e e e e e e S s

Page 1889

CAMP Software Detailed Design Document

——make sure buffer has been initialized

if Current_Length = -1 then
raise Buffer Not_Initialized;

end if;

~~How gel a node
New_Tail := New_Node;

——now adjust the buffer

Tail.Next := New_Tail;
Tail := New _Tail;
Tail.Data 1= New Element;

Current_Length := Current_Length + 1;

end Add_Element ;

pragma PAGE;

procedure Retrieve Element (Buffer

0ld_Element

——declaration section

: in out Buffers;

out Elements) is

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;
This_Node : Pointers;

-- -=begin procedure Retrieve Element

begin

——make sure an element is available

if Current_Length = -1 then
raise Buffer Not Initialized;

elsif Current_Length = 0 then
raise Buffer Empty;

end if;

-=—save dummy node in the available space list
This_Node := Head;

Head := Head.Next;

Save_Node (Saved_Node => This Node);

—=retrieve element (its node becomes the new dummy node)

0ld_Element := Head.Data;

——-update buffer status
Current_Length := Current_Length - 1;

end Retrieve Element ;

pragma PAGE;

Page 1890

CAMP Software Detailed Design Document Page 1891

function Peek (Buffer : in Buffers) return Elements is

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;

kegin

- ~-make sure something is there lo look at
if Current_Length = -1 then
raise Buffer Not Initialized;
elsif Current_Length = O then
raise Buffer Empty;
end if;

return Head.Next.Data;

end Peek ;

pragma PAGE;
function Buffer Status (Buffer : in Buffers) return Buffer Statuses is

= ~-declaration section

Current_Length : INTEGER renames Buffer.Current_Length;
Status : Buffer Statuses;

-- —=begin function Buffer Status

begin

if Current_Length = -1 then
Status := Uninitialized;

elsif Current_Length = O then
Status := Empty;

else
Status := Available;

end if;
return Status;

end Buffer Status ;

CAMP Software Detailed Design Document

pragma PAGE;
function Buffer Length (Buffer : in Buffers) return NATURAL is

Current_Length : INTEGER renames Buffer.Current_Length;

~— ==begin function Buffer Lengih

begin

- ——make sure the buffer has a length
if Current_Length = -1 then
raise Buffer Not_Initialized;
end if;

return Current_Length;
end Buffer Length ;

pragma PAGE;
function Dot_Next (Ptr : in Pointers) returm Pointers is
begin
return Ptr.Next;
end Dot_Next;

pragma PAGE;
procedure Set Next (Ptr ¢ in Pointers;
Ptr_Dot_Next : in Pointers) is
begin

Ptr.Next := Ptr Dot Next;
end Set Next;

pragma PAGE;

—- begin package Unbounded FIFO Buffer
~~ (see header for package body for details)

begin
-— —=sel up available space list if one is desired

if Initial Available Space_Size > O then

Add_Nodes To Available Space List:
for I In 1..Initial Available Space Size loop
Available Tail.Next := new Nodes;
Available Tail := Available Tail.Next;
end loop Add_Nodes_To_Available Space_List;

Available Length := Initial Available Space_Size;
end if;

Page 1892

LY
,*f

¢

CAMP Software Detailed Design Document

end Unbounded Fifo Buffer;

Page 1893

CAMP Software Detailed Design Document Page 1894

separate (Abstract_Data_Structures)
package body Nonblocking Circular Buffer is

pragma PAGE;
procedure Clear Buffer (Buffer : out Buffers) is

Head : Buffer Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;
Current_Length : Buffer Range renames Buffer.Current_Length;

~~ == begin procedure Clear Buffer

begin
Head := 03
Tail = 1;
Current_Length := 0;

end Clear Buffer ;

pragma PAGE;)
procedure Add_Element (New Element : in Elements;
Buffer : in out Buffers) is

— —-declaration section

Head : Buffer Range renames Buffer.Head;

Tail : Buffer Range renames Buffer.Tail;
Current_Length : Buffer Range renames Buffer.Current_Length;
LIST : Lists renames Buffer.LIST;

-= —-begin procedure Add Element

begin
LIST(Tail) := New_Element;
if Head = Tail then |

- —-buffer was already full and an element was overwriiten; therefore,
- —-both head and 1ail need 10 be advanced, but Current Length does
- —-not need to be changed

if Tail = Buffer_Size then
Head := 0
Tail := O

else

L

CAMP Software Detailed :-Design Document

Head := Head + 1;
Tail := Tail + 1;
end if;

Page 1895

- == buffer was not already full; therefore, the Current Length needs
- -—10 be increment and only the tail needs to be advanced

if Tail = Buffer Size then

Tail := 0;
else

Tail := Tail + 1;
end if;

Current_Length := Current_Length + 1;

end if;
end Add _Element ;
pragma PAGE;

procedure Retrieve Element (Buffer
01d_Element

- ~—declaration section

in out Buffers;
out Elements) is

Head : Buffer_Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;
Current_Length : Buffer Range renames Buffer.Current_Length;
LIST : Lists renames Buffer.LIST;

~~ —=begin procedure Retrieve Element

————. ————

begin

- ~~make sure there is something there to retrieve
if Current_Length = O then
raise Buffer Empty;
end if;

- ——advance the head to get 1o the next element to go out

if Head = Buffer_Size then

Head := 0;
else

Head := Head + 1;
end if;

- ——now retrieve the element and update the state of the buffer

0l1d_Element := LIST(Head);
Current_Length := Current_ Length - 1;

end Retrieve Element ;

CAMP Software Detailed Design Document Page 1896

pragma PAGE;
function Peek (Buffer : in Buffers) return Elements is

- ——declaration section

Head ¢ Buffer Range renames Buffer.Head;
Current_Length : Buffer Range renames Buffer.Current_Length;
LIST ¢ Lists renames Buffer.LIST;

Spot : Buffer Range;

begin

- ——make sure there is something to peek ai
if Current_Length = O then
_ raise Buffer Empty;
end if;

- ——determine location of desired element
if Head = Buffer Size then
Spot := 0;
else
Spot := Head + 1;
end if;

- -=return requested element
return LIST(Spot);

end Peek ;

pragma PAGE;
function Buffer Status (Buffer : in Buffers) return Buffer_Statuses is

- —-—declaration section

Current_Length : Buffer Range renames Buffer.Current_Length;

Status : Buffer_ Statuses;

-= —=begin function Buffer Status

begin

if Current_Length = O then
Status := Empty;
elsif Current_Length = Buffer_Size then

CAMP Software Detailed Design Document ' Page 1897

id Status := Full;
else
Status := Available;
end if;

return Status;
end Buffer Status ;

pragma PAGE;
function Buffer Length (Buffer : in Buffers) return Buffer Range is

begin
return Buffer.Current_Length;
end Buffer Length ;

end Nonblocking Circular Buffer;

CAMP Software Detailed Design Document Page 1898

with Unchecked Deallocation;
separate (Abstract Data _Structures)
package body Unbounded Pr10r1ty Queue is

-~ —~this pointers is accessed ONLY when setting up the Available Space

Initial Head : Pointers := new Nodes;

Available_Space : Queues := (Current_Length => 0,
Head => Initial Head,
Tail => Initial Head);

Available Length : INTEGER renames Available Space.Current_Length;
Available Head : Pointers renames Available Space.Head;
Available Tail : Pointers renames Available_Space.Tail;

procedure Free is nev Unchecked Deallocation
(Object => Nodes,
NAME => Pointers);

procedure Free Node (Vhich_Node : in out Pointers)
renames Free; :

function Dot _Next (Ptr : in Pointers) return Pointers;

in Pointers;

procedure Set Next (Ptr
in Pointers);

Ptr_Dot_Next :
package Available Space Operations is new
Available” _Space_ “List _Operations

(Nodes™ => Nodes,

Pointers => Pointers,
Available Length => Available Length,
Available Head => Available Head,
Available Tail => Available Tail);

function New Node return Pointers
renames Available_Space_Operations.New Node;

procedure Save Node (Saved Node : in Pointers)
renames Available _Space_Operations.Save Node;

procedure Save List (Saved Head : in Pointers;
Saved Tail : in Pointers;
Node Count : in POSITIVE) .

renames Available Space Operations.Save List;

pragma PAGE;
procedure Initialize (Queue : in out Queues) is

- —-declaration section

CAMP Software Detailed Design Document

Current_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;

begin
if Current_Length = -1 then
~~handle an uninitialized queue
Head := New Node;
Tail := Head;
Current_Length := 0;
elsif Current_Length > O then

-—handle a queue that has something in it
Clear_Queue(Queue => Queue);

else

—=~current length = 0 so it is already initialized
null;

end if;

end Initialize ;

pragma PAGE;

procedure Clear Queue (Queue : in out Queues) is

-—declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;
Tail ¢ Pointers renames Queue.Tail;

This_Node : Pointers;

begin

——rmake sure this is an initialized queue
if Current_Length = -1 then

raise Queue Not_Initialized;

elsif Current_Length > O then

Page 1899

CAMP Software Detailed Design Document

-- —=placed nodes in the available space list
Save_List (Saved Head => Head.Next,
Saved Tail => Tail,
Node_Count => Current_Length);

- ——reinitialize queue variables
Current Length := 0;

Head.Next = null;
Tail := Head;
end if;

end Clear_Queue ;
pragma PAGE;
procedure Free_ Memory is

- -=declaration section

Node_To_Be_Freed : Pointers;

-- —=begin procedure Free Memory

begin

Clear Out_Available Space List:

vhile Available Head /= Available Tail loop

Node_To Be Freed := Available_Head;

Available Head := Available Head.Next;
Free Node (Which_Node => Node™ _To_Be_Freed);

end loop Clear _Out Available Space List;
Available Length := 0;

end Free Memory ;

pragma PAGE;
procedure Add_Element (Nev_Element
New Priority

Queue

Current_Length

Head ¢ Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;
Before Pointers;

Here : Pointers;

in Elements;
in Priorities;
in out Queues) is

: INTEGER renames Queue.Current_Length

’

Page 1900

e W

CAMP Software Detailed Design Document

- —-begin procedure Add Element

begin

- ——make sure queue has been initialized
if Current_Length = -1 then
raise Queue Not_Initialized;
end if;

- --find the nodes which are to go before and after the new elemeni

Before := Head;
loop

exit when (Before = Tail) or else

(New Priority > Before.Next.PRIORITY);

Before := Before.Next;
end loop;

- ——now get a new hode
Here := New_Node;

- —~set up the new node
Here.PRIORITY := New Priority;
Here.Data := New_Element;
Here.Next := Before.Next;
Before.Next := Here;

-- —-readjust the 1ail, if required
if Before = Tail then
Tail := Here;
end if;

- --now adjust the queue

Current_Length := Current_Length + 1;

end Add_Element ;

pragma PAGE;
procedure Retrieve_Element (Queue

0ld_Element

- ~~declaration section

in out Queues;
out Elements) is

Current_Length : INTEGER renames Queue.Current Length;
Head ¢ Pointers renames Queue.Head;

This_Node : Pointers;

—~ -=begin procedure Retrieve Element

begin

- - make sure an element is available

Page 1901

CAMP Software Detailed Design Document Page 1902

"

if Current_Length = -1 then
raise Queue Not Initialized;

elsif Current Length = O then
raise Queue Empty;

end if;

- -—save dummy node in the available space list
This Node := Head;
Head *= Head.Next;
Save_Node (Saved_Node => This_Node);

- ——retrieve element (its node becomes the new dummy node)
0ld Element := Head.Data;

- ~~update queue status
Current_Length := Current_Length - 1;

end Retrieve Element

pragma PAGE;
function Peek (Queue : in Queues) return Elements is

- -—declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;

-— —-begin function Peek

begin

- ——make sure something is there to look at
if Current_Length = -1 then
raise Queue Not_Initialized;
elsif Current_Length = 0 then
raise Queue Empty;
end if;

return Head.Next.Data;

end Peek ;

pragma PAGE;
function Queue_Status (Queue : in Queues) return Queue_Statuses is

Current_Length : INTEGER renames Queue.Current_Length;
Status : Queue_Statuses;

CAMP Software Detailed Design Document

gs —= ==begin function Queue Staius

begin

if Current_Length = -1 then
Status := Uninitialized;

elsif Current_Length = O then
Status := Empty;

else
Status := Available;

end if;

return Status;

end Queue_Status ;

pragma PAGE;
function Queue _Length (Queue : in Queues) return NATURAL is

- -=declaration section

Current_Length : INTEGER renames Queue.Current_Length;

GA —— —=begin function Queue Length

begin

- —-—make sure the queue has a length
if Current_Length = -1 then
raise Queue Not Initialized;
end if;

return Current_Length;
end Queue_Length ;

pragma PAGE;
- function Dot_Next (Ptr : in Pointers) return Pointers is
begin
return Ptr.Next;
end Dot_Next;

pragma PAGE;
procedure Set Next (Ptr : in Pointers;
Ptr_Dot Next : im Pointers) is
begin

Ptr.Next := Ptr_Dot_Next;
end Set Next;

% pragma PAGE;

-~ begin package Unbounded Priority Queue

Page 1903

CAMP Software Detailed Design Document

—- (see header for package body for details)

—-= —=set up available space list if one is desired
if Initial Available Space Size > 0 then

Add_Nodes To_Available Space List:

for I In I..Initial Available_Space_Size loop
Available Tail.Next := new Nodes;
Available™ Tail := Available Tail.Next;

end loop Add~ _Nodes_To_Available Space List;

Available Length := Initial Available Space_Size;

end if;

end Unbounded Priority Queue;

Page

1904

&

CAMP Software Detailed Design Document

separate (Abstract Data Structures)
package body Bounded Stack is

pragma PAGE;

procedure Clear_Stack (Stack : out Stacks) is

begin
Stack.Top := 0;

end Clear Stack ;

pragma PAGE;
procedure Add_Element (New Element : in Elements;
Stack : in out Stacks) is

-~declaration section
LIST : Lists renames Stack.LIST;

Top : Stack_Length Range renames Stack.Top;

—=begin procedure Add Element

begin

~—-make sure the siack is not already full

if Top = Stack_Size then
raise Stack Full;

end if;

--add element 1o the stack
Top := Top + 1;
LIST(Top) := New_Element;

end Add_Element ;

pragma PAGE;

procedure Retrieve Element (Stack

0ld_Element

~-=declaration section

LIST

in out Stacks;
out Elements) is

Lists renames Stack.LIST;

Top : Stack Length Range renames Stack.Top;

~- begin procedure Retrieve Element

begin

Page 1905

CAMP Software Detailed Design Document Page 1906

——make sure there is something in the stack to retrieve
if Top = 0 then

raise Stack Empty;
end if;

—-retrieve and remove the top element from the stack
0ld_Element := LIST(Top);
Top := Top - 1;

end Retrieve Element ;

pragma PAGE;

function Peek (Stack : in Stacks) return Elements is

——declaration section

LIST : Lists renames Stack.LIST;
Top : Stack Length Range renames Stack.Top;

—=begin function Peek

begin

——make sure there is something in the stack
if Top = O then

raise Stack_Empty;
end if;

~=return value in top element of the stack
return LIST(Top);

end Peek ;

¢

pragma PAGE;

function Stack_Status (Stack : in Stacks) return Stack Statuses is

-=declaration section

Top : Stack_Length Range renames Stack.Top;

Status : Stack Statuses;

—-begin function Stack Status

begin

if Top = 0 then
Status := Empty;
elsif Top = Stack_Size then

CAMP Software Detailed Design Document

Status := Full;
else

Status := Available;
end if;

return Status;

end Stack Status ;

pragma PAGE;
function Stack Length (Stack : in Stacks) return Stack Length_Range is

begin
return Stack.Top;
end Stack Length ;

end Bounded Stack;

Page 1907

CAMP Software Detailed Design Document

with Unchecked Deallocation;
separate (Abstract Data_Structures)
package body Unbounded Stack is

~~ ~~this pointer is accessed ONLY when seiting up the Available Space

Initial Head : Pointers := new Nodes;

Available Space : Stacks := (Current_Length => O,
Top => Initial Head,
Bottom => Initial Head);

Available Length
Available Top
Available Bottom

INTEGER renames Available Space.Current_Length;
Pointers renames Available _Space.Top;
Pointers renames Available _Space.Bottom;

procedure Free is new Unchecked Deallocation
(Object => Nodes,
NAME => Pointers);

procedure Free Node (Which Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

in Pointers;

procedure Set Next (Ptr
in Pointers);

Ptr_Dot_Next

package Available Space Operations is new
Available _Space_ “List _Operations

(Nodes™ => Nodes,

Pointers => Pointers,
Available Length => Available Length,
Available Head => Available™ _Top,
Available Tail =) Available_Bottom);

function New_Node return Pointers
renames Available Space Operations.New_Node;

procedure Save Node (Saved Node : in Pointerws)
renames Available _Space_Operations.Save_Node;

procedure Save List (S5aved Head : in Pointers;
Saved Tail : im Pointers;
Node Count : in POSITIVE)

renames Available Space_Operations.Save_List;

pragma PAGE; .

procedure Initialize (Stack : in out Stacks) is

—=declaration section

Page 1908

&

CAMP Software Detailed Design Document Page 1909

Lafs
%" Current_Length : INTEGER renames Stack.Current_Length;
Top : Pointers renames Stack.Top;

Bottom : Pointers renames Stack.Bottom;

begin
if Current_Length = -1 then
- —-handle an uninitialized stack
Top := New_Node;
Bottom := Top;
Current_Length := 0;
elsif Current_Length > O then

- --handle a stack that has elements in it
Clear _Stack (Stack => Stack);

else

- —=current length = 0, so do nothing
null;

ifl end if;

end Initialize ;

pragma PAGE;
procedure Clear_Stack (Stack : in out Stacks) is

- ~=declaration section

Current_Length : INTEGER renames Stack.Current_Length;
Top ¢ Pointers renames Stack.Top;
Bottom : Fointers renames Stack.Bottom;

This_Node s+ Pointers;

-~ —-begin procedure Clear Siack

begin

- ——make sure stack has been initialized
if Current_Length = -1 then

raise Stack_Not_Initialized;

- ——make sure there is something in the stack
elsif Current_Length /= O then

CAMP Software Detailed Design Document Page 1910
>
%
- ——placed nodes in the available space list
Save_List (Saved Head => Top.Next,

Saved_Tail => Bottom,
Node Count => Current_Length);

- ——reinitialize stack variables
Top.Next := null;
Bottom t= Top;
Current_Length := 0;
end if;

end Clear Stack ;

pragma PAGE;
procedure Free Memory is

- —-—declaration section

This Node : Pointers;

—— -=begin procedure Free Memory

begin

Deallocate_Nodes In Available Space List:
vhile Available Top /= Avallable Bottom loop

This Node :x Available Top;
Available Top := Available Top.Next;
Free_Node (Vhich Node => This Node);
end loop Deallocate Nodes In_Available Space List;

Available Length := 0;
Available Top.Next := null;

end Free_ Memory ;

pragma PAGE;
procedure Add Element (New_Element
Stack

in Elements;
in out Stacks) is

- ——declaration section

Current_Length : INTEGER renames Stack.Current_Length;
Top : Pointers renames Stack.Top; Qﬂ

Ptr : Pointers;

CAMP Software Detailed Design Document Page 1911

begin

if Current_Length = -1 then
raise Stack Not Initialized;
end if;

- ~-—gel a node and initialize it
Ptr := New_Node;
Ptr.Data := New_Element;

- ——place the node on the stack
Ptr.Next := Top;
Top t= Ptr;
Current_Length := Current_Length + 1;

end Add_Element ;

pragma PAGE;
procedure Retrieve Element (Stack
0ld_Element

in out Stacks;
out Elements) is

. e

- ~~declaration section

Current_Length : INTEGER renames Stack.Current_Length;
Top : Pointers renames Stack.Top;
This_Node : Pointers;

~— —=begin procedure Retrieve Element

begin

-— ——make sure there is something to retrieve
if Current_Length = -1 then
raise Stack Not Initialized;
elsif Current Length = 0 then
raise Stack Empty;
end if;

- ~=retrieve data in the top node
0ld_Element := Top.Data;

- -=dispose of top node and adjust the stack
This_Node := Top;
Top := Top.Next;
Save_Node (Saved Node => This_Node);
Current_Length := Current_Length - 1;

end Retrieve Element ;

CAMP Software Detailed Design Document

pragma PAGE;
function Peek (Stack : in Stacks) return Elements is

Current_Length : INTEGER renames Stack.Current_Length;
Top ¢ Pointers renames Stack.Top;

begin

- ——make sure there is something 10 peek at
if Current_Length = -1 then
raise Stack Not_Initialized;
elsif Current Length = O then
raise Stack Empty;
end if;

o -~ returned desired element
return Top.Data;

end Peek ;

pragma PAGE;
function Stack_Status (Stack : im Stacks) return Stack Statuses is

- --declaration section

Current_Length : INTEGER renames Stack.Current_Length;

Status : Stack_Statuses;

~— ~=begin funcnon Stack Siatus

begin

if Current_Length = -1 then
Status := Uninitialized;

elsif Current_Length = 0 then
Status := Empty;

else
Status := Available;

end if;

Page 1912

CAMP Software Detailed Design Document

return Status;
end Stack Status ;

pragma PAGE;
function Stack Length (Stack : in Stacks) return NATURAL is

begin

- —-—make sure stack has been initialized
if Current_Length = -1 then
raise Stack_Not Initialized;
end if;

return Current_Length;

end Stack_Length ;

pragma PAGE;
function Dot_Next (Ptr : in Pointers) return Pointers is
begin
return Ptr.Next;
end Dot_Next;

pragma PAGE;
procedure Set_ Next (Ptr : in Pointers;
Ptr Dot Next : in Pointers) is
begin -7
Ptr.Next := Ptr_Dot_Next;
end Set Next;

pragma PAGE;

-=begin package Unbounded Stack
-~ (see header for package body for details)

begin

—— ——set up available space list if one is desired
if Initial Available Space Size > O then

Add_Nodes To Available Space List:
for I In 1..Initial Available_Space_Size loop
Available Bottom.Next := nev Nodes;
Available Bottom t= Available_Bottom.Next;
end loop Add Nodes_To Available Space List;

Page 1913

CAMP Software Detailed Design Document Page 1914

Available Length := Initial Available_Space_Size;
end if;

end Unbounded_Stack;

CAMP Software Detailed Design Document Page 1915

&

3.3.8 GENERAL UTILITIES

CAMP Software Detailed Design Document 3 A

(This page intentionally left blank.)

'HIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTivE 5200,20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE,

DJISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED,

CAMP Software Detailed Design Document Page 1917

3.3.8.1 GENERAL UTILITIES TLCSC P361 (CATALOG #P267-0)

This package provides a group of general utility routines used in a missile
system.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.8.1.1 REQUIREMENTS ALLOCATION

This part meets requirement R1l41l.

3.3.8.1.2 LOCAL ENTITIES DESIGN

None.

3.3.8.1.3 INPUT/OUTPUT

None.

3.3.8.1.4 LOCAL DATA

None.

3.3.8.1.5 PROCESS CONTROL

Not applicable.

3.3.8.1.6 PROCESSING
The following describes the processing performed by this part:
package body General Utilities is

end General Utilities;

3.3.8.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.8.1.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1918

%

3.3.8.1.9 LLCSC DESIGN

None.

3.3.8.1.10 UNIT DESIGN

3.3.8.1.10.1 INSTRUCTION_SET TEST UNIT DESIGN (CATALOG #P268-0)

This part is a generic function which checks for proper processor operation by
executing a function and comparing the result to the expected result. If the
expected and derived values match, "True" is returned. The part’s generic
parameter may be any type, but a Test function must be supplied which matches
the parameter defined in the specification.

3.3.8.1.10.1.1 REQUIREMENTS ALLOCATION

This part meets requirement R141.

3.3.8.1.10.1.2 LOCAL ENTITIES DESIGN

None.

3:3.8.1.10.1.3 INPUT/OUTPUT e
GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |

| Return _Values | private | May be any type. The type which the included |
| | | function must return. |

Subprograms:

The following table summarizes the generic formal subroutines required by this
part:

| Name | Type | Description) |

| Test | function | the function to be tested, it must return a value of |
| | | Return Values type. |

FORMAL PARAMETERS: @

CAMP Software Detailed Design Document Page 1919

The following table describes this part’s formal parameters:

| Correct Answer | Return Values | in | The answer which is to be compared |
| I | | to what the function returns.

3.3.8.1.10.1.4 LOCAL DATA

None.

3.3.8.1.10.1.5 PROCESS CONTROL

Not applicable.

3.3.8.1.10.1.6 PROUESSING
The following descri%:: the processing performed by this part:

function Instruction_Set Test(Correct_Ansver : Return_Values)
return BOOLEAN is

begin
return Test = Correct_Answver;
- -- returns true if function and answer are the same

- -~ false if they are not
end Instruction_Set_Test;

3.3.8.1.10.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.8.1.10.1.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1920

&

(This page left intentionally blank.)

@

CAMP Software Detailed Design Document

package body General Utilities is

function Instruction_Set Test(Correct Answer : Return Values)
return BOOLEAN is

begin
return Test = Correct Answer;
- —=returns true if function and answer are the same
- -— false if they are not
end Instruction_Set Test;

end General Utilities;

Page 1921

CAMP Software Detailed Design Document Page 1922

(This page left intentionally blank.)

Sl
e

CAMP Software Detailed Design Document

3.3.8.2 COMMUNICATION PARTS TLCSC F602 (CATALOG #P691-0)

This package provides a group of communication routines used in a missile
system.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.8.2.1 REQUIREMENTS ALLOCATION

This part meets requirement R137.

3.3.8.2.2 LOCAL ENTITIES DESIGN

None.

3.3.8.2.3 INPUT/OUTPUT

None.

3.3.8.2.4 LOCAL DATA

None.

3.3.8.2.5 PROCESS CONTROL

Not applicable.

3.3.8.2.6 PROCESSING
The following describes the processing performed by this part:
package body Communication_Parts is

end Communication Parts;

3.2.8.2.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.8.2.8 LIMITATIONS

None.

Page 1923

CAMP Software Detailed Design Document Page 1924

2

3.3.8.2.9 LLCSC DESIGN

3.3.8.2.9.1 UPDATE_EXCLUSION PACKAGE DESIGN (CATALOG #P692-0)

This part is a generic package containing a task providing a mechanism for
ensuring that data accessed by more than one asymchronous task is properly
protected for such accesses. The part’s generic parameter can be any type.
The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.8.2.9.1.1 REQUIREMENTS ALLOCATION

This part meets requirement R137.

3.3.8.2.9.1.2 LOCAL ENTITIES DESIGN

None.

3.3.8.2.9.1.3 INPUT/OUTPUT

GENERIC PARAMETERS:

Data types: : ﬁ

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |

| Element_Type | private | Allows any type to be protected |

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name | Type | Description |

| Initial Value |
I |
|
I

Element_Type | Allows the data type to be initialized so |
| that the first time Start_Update_Request is |
| called a constraint error is not raised by |
I |

some uninitialized value.

FORMAL PARAMETERS:

The following table describes the formal parameters for the task entries in the
task contained in this part. @

CAMP Software Detailed Design Document Page 1925

| Task | Name | Mode | Type | Description |
| Read_ | Read_Request Output | Element Type | Contains the value of
Update the returned data.
Start_Update_ | Output | Element_Type | Contains the value of
Request the returned data.
Complete Input Element_Type | Contains the new value of
Update_ the data to replace
Request the protected data.

3.3.8.2.9.1.4 LOCAL DATA

None.

3.3.8.2.9.1.5 PROCESS CONTROL

Not applicable.

3.3.8.2.9.1.6 PROCESSING
The following describes the processing performed by this part:.
package body Update Exclusion is

task Read_Update is
entry Task Read Request(Requested Data : out Element _Type);
entry Task Start _Update_Request(0Id Data : out Element _Type);
entry Task Complete Update Request(New Data : in Element _Type);
end Read_Update,

procedure Attempt Read(Requested Data : in out Element_Type;
Result : out Rendezvous Flags) is
begin
select
Read Update.Task_Read Request(Requested Data);
Result :a Success;
Else
Result := Failure;
end select;
end Attempt Read;

procedure Attempt Read Wait(Requested Data : in out Element_ Type;
Result : out Rendezvous Flags) is
begin
Read Update.Task Read Request(Requested Data);
Result := Success;
end Attempt Read Vait;

procedure Attempt Read Delay(Requested Data : in out Element_Type;
Result : out Rendezvous_Flags;
Delay Time : in DURATION) is

CAMP Software Detailed Design Document Page 1926

begin
Result := Failure;
select
Read Update.Task Read Request(Requested Data);
Result := Success;
or
DELAY Delay Time;
end select;
end Attempt Read Delay;

procedure A.tempt_Start_Update(Old_Data : in out Element_Type;
New Id : out Rendezvous Ids;

Result out Rendezvous Flags) is
begin
selec:
Read_Update.Task_Start_Update Request(0ld_Data => 0ld_Data);
New Id = Id,
Result := Success;
else
Result := Failure;
New Id := O;

end select;
end Attempt_Start_Update;

procedure Attempt Start_Update Wait(Old Data : in out Element_Type;
New Id : out Rendezvous Ids,
Result : out Rendezvous_Flags) is
" begin
Read Update.Task_Start_Update_Request(Old Data => 0ld_Data);
New Td = Id,
Result := Success;
end Attempt_Start_Update Wait;

procedure Attempt Start_Update_Delay(0ld_Data : in out Element_Type;
New Id : out Rendezvous Ids,

Result : out Rendezvous Flags,
Time in DURATION) is
begin
Result := Failure;
select

Read Update.Task_Start_Update_Request(0ld_Data => 0ld_Data);
New Id := Id;
Result := Success;
or
DELAY Time;
end select;
end Attempt_Start_Update_Delay;

procedure Attempt Complete Update(New Data
Passed Id
Result

in Element_Type;
in Rendezvous_Ids;
out Rendezvous_Flags) is

begin
if Passed Id = Id then
select
Read Update.Task_Complete_Update Request(New Data);
Result := Success;
else

CAMP Software Detailed Design Document

£

Result := Failure;
end select;
else
Result :=
end if;
end Attempt_Complete Update;

Bad_Id;

task body Read Update is
Protected Data : Element_Type

begin
process_continually:
loop
select

accept Task Read Request (Requested Data :

do

Page 1927

:= Initial Value;

out Element_Type)

Requested Data := Protected Data;

end Task _Read Request;

or

accept Task Start_Update_Request (0ld Data : out Element_Type)

do
0ld Data :

:= Protected_Data;

end Task Start_Update_ Request;

accept Task Complete_ Update Request (New Data :

C§? do

in Element_Type)

Protected Data := New Data;

end Task Complete Update Request;

if Id = Rendezvous Ids’LAST then
Id := Rendezvous Ids’FIRST + 1;

else

Id := Rendezveus_Ids/SUCC(Id);

end if;
or

terminate;
end select;

end loop process_continually;

end Read_Update;

end Update_Exclusion;

3.3.8.2.9.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.8.2.9.1.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1928
3.3.8.2.9.1.9 LLCSC DESIGN dﬁ&

None.

3.3.8.2.9.1.10 UNIT DESIGN

None.

3.3.8.2.10 UNIT DESIGN

None.

CAMP Software Detailed Design Document Page 1929

package body Communication_ Parts is
package body Update Exclusion is

task Read_Update is
entry Task Read _Request(Requested Data : out Element_Type);
entry Task Start _Update_Request(01d Data : out Element _Type);
entry Task Complete Update Request(New _Data : in Element _Type);
end Read Update,

procedure Attempt Read(Requested Data : in out Element Type;
Result : out Rendezvous _Flags) is
begin
select
Read Update.Task Read Request(Requested Data);
Result := Success;
else
Result := Failure;
end select;
end Attempt_Read;

in out Element_Type;

procedure Attempt Read Wait(Requested Data
out Rendezvous Flags) is

Result :
begin
Read Update.Task Read Request(Requested Data);
Result := Success;

end Attempt_Read_Vait;

procedure Attempt_Read Delay(Requested Data : in out Element_Type;
Result : out Rendezvous _Flags;
Delay Time : in DURATION)~ is
begin
Result := Failure;
select

Read Update.Task_Read Request(Requested Data);
Result := Success;
or
delay Delay Time;
end select;
end Attempt Read_Delay;

procedure Attempt Start_Update(0ld_Data
New_Id
Result

in out Element_Type;
out Rendezvous_Ids;
out Rendezvous_Flags) is

begin
select
Read_Update.Task_Start_Update_Request(0ld_Data => Old Data);
New Id := Id;
Result := Success;
else
Result := Failure;
New Id := 0Q;
end select;
end Attempt_Start_Update;

procedure Attempt Start_Update Wait(0ld_Data : in out Element_Type;
New_Id :+ out Rendezvous Ids,

CAMP Software Detailed Design Document Page 1930

)

Result : out Rendezvous Flags) is
begin
Read Update.Task Start Update Request(Old_Data => 0ld Data);
New Id := Id;
Result := Success;

end Attempt Start Update Wait;

procedure Attempt Start Update Delay(0ld Data : in out Element Type;
New_Id : out Rendezvous Ids;
Result : out Rendezvous_Flags;
Time ¢+ in DURATION) is
begin
Result := Failure;
select
Read_Update.Task Start_Update Request(0ld_Data => 0ld_Data);
New Id := Id;
Result := Success;
or
delay Time;
end select;
end Attempt_Start_Update Delay;

procedure Attempt_Complete Update(New Data : in Element_Type;
Passed Id : in Rendezvous_Ids;
Result : out Rendezvous Flags) is
begin _
if Passed Id = Id then ﬁ
select
Read Update.Task_Complete_Update Request(New Data);
Result := Success;
else
Result := Failure;
end select;
else
Result := Bad_Id;
end if;
end Attempt_Complete_ Update;

task body Read_Update is
Protected Data : Element_Type := Initial Value;

begin
Process _Continually:
loop
select
accept Task Read Request (Requested Data : out Element_Type)
do
Requested Data := Protected Data;
end Task_Read Request;
or
accept Task Start_Update Request (0ld_Data : out Element_Type)
do
0ld_Data := Protected Data; QQE
end Task Start_Update_Request; |

accept Task Complete_Update Request (New Data : in Element Type)

CAMP Software Detailed Design Document

o do
Protected Data := New Data;
end Task Complete Update Request;

if Id = Rendezvous_Ids’LAST then
Id := Rendezvous_Ids’FIRST + 1;

else
Id := Rendezvous Ids’SUCC(Id);
end if;
or
terminate;

end select;
end loop Process_Continually;
end Read Update;
end Update Exclusion;

end Communication_Parts;

Page 1931

CAMP Software Detailed Design Document Page 1932

&

(This page left intentionally blank.)

3

CAMP Software Detailed Design Document

3.3.9 EQUIPMENT INTERFACES

Page 1933

CAMP Software Detailed Design Document Page 1934
S
bty

(This page intentionally left blank.)

o
'

ﬁgb
L Puld

CAMP Software Detailed Design Document Page 1935

3.3.9.1 CLOCK HANDLER TLCSC P634 (CATALOG #P270-0)

This package contains the routines required to maintain an internal clock.
The following routines are provided to manipulate the clock: o Reset clock
(effectively zeroes out the clock) o Synchronize clock (effectively sets the
clock to the specified time) o Current time (effectively reads the internal
clock)

In addition, a Converted Time routine is provided to convert a CALENDAR. TIME
to the "local time zone".

An Elapsed Time routine is provided to act as a stopwatch. It returns the
elapsed time between successive calls to the function. This function is not
affected by resetting or synchronizing the clock.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.9.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R046.

3.3.9.1.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.3 INPUT/OUTPUT
GENERIC PARAMETERS:

This part is a parameterless generic.

3.3.9.1.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

N/A Internal reference clock

CALENDAR.TIME | |

| maintained by this part |
| Last time the Elapsed |
l I

=
CALENDAR.TIME | N/A
| Time function was called

CAMP Software Detailed Design Document

3.3.9.1.5 PROCESS CONTROL

Not applicable.

3.3.9.1.6 PROCESSING
The following describes the processing performed by this part:
package body Clock Handler is

use CALENDAR;

Reference Time ¢ CALENDAR.TIME := CALENDAR.CLOCK;
Time_Last_Called ¢ CALENDAR.TIME := CALENDAR.CLOCK;

end Clock Handler;

3.3.9.1.7 UTILIZATION OF OTHER ELEMENTS

The folloﬁing library units were with’d by the package specification of this

part:
1. CALENDAR

UTILIZATION OF EXTERNAL ELEMENTS:

Subprograms and task entries:

The following table summarizes the external subroutines and task entries

required by this part:

| Name | Type | Source | Description

Page 1936

| Clock | Function | Calendar | Returns the internal system time

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |
| TIME | private | CALENDAR | Implementation-dependent representation of
time |

I
| DURATION | fixed | STANDARD | Represents a length of time

4

AF\"\’‘,
WY

CAMP Software Detailed Design Document Page 1937

3.3.9.1.8 LIMITATIONS

The following table describes the exceptions propagated by this part:

STANDARD. | Raised by the following routines if a difference in times |
TIME_ERROR | does not fit within the range of type STANDARD.DURATION: |
| o Current_Time |
| o Converted Time |
| o Elapsed_Time |
| o Synchronize Time |

3.3.9.1.9 LLCSC DESIGN

None.

3.3.9.1.10 UNIT DESIGN
3.3.9.1.10.1 CURRENT TIME (FUNCTION BODY) UNIT DESIGN

This function returns the time of the current time of the clock. The current
time is the time which has passed since the last time the internal clock was
reset or since the time specified when the clock was synchronized.

3.3.9.1.10.1.1 REQUIREMENTS ALLOCATION

This part partially meets requirement CAMP R046.

3.3.9.1.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.10.1.3 INPUT/OUTPUT

None.

3.3.9.1.10.1.4 LOCAL DATA

None.

3.3.9.1.10.1.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 1938

3.3.9.1.10.1.6 PROCESSING Qﬁ
The following describes the processing performed by this part:

function Current_Time return DURATION is

begin

return CALENDAR.CLOCK - Reference Time;

end Current_Time;
3.3.9.1.10.1.7 UTILIZATION OF OTHER ELEMENTS
The following library units were previously with’d and are visible to this
parti. Calendar
UTILIZATION OF EXTERNAL ELEMENTS:
Subprograms and task entries:
The following table summarizes the éxternal subroutines and task entries
required by this part:
I-—ﬁ;;;--I Type | Source | Description | ‘i

| Clock | Function | Calendar | Returns the internal system time |

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |
| TIME | private | CALENDAR | Implementation-dependent representation of |
time

I
| DURATION | fixed | STANDARD | Represents a length of time |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Clock Handler:

C;%:,

CAMP Software Detailed Design Document Page 1939

| Reference Time | CALENDAR.TIME | N/A | Internal reference clock |
| | | | maintained by this part |

3.3.9.1.10.1.8 LIMITATIONS

The following table describes the exceptions propagated by this part:

| Name | When/Why Raised |

| STANDARD. | Raised if the elapsed time does not fit within the range of |
| TIME ERROR | type STANDARD.DURATION

3.3.9.1.10.2 CONVERTED TIME (FUNCTION BODY) UNIT DESIGN

This function converts an input time to a local time (i.e., converts it to the
"local time zone"). A local time is defined as the difference between the
input time and the internal reference time.

3.3.9.1.10.2.1 REQUIREMENTS ALLOCATION

This part partially meets requirement CAMP R046.

3.3.9.1.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.10.2.3 INPYT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
l

Time to be coverted to a local tim. |

3.3.9.1.10.2.4 LOCAL DATA

None.

CAMP Software Detailed Design Document Page 1940

3.3.9.1.10.2.5 PROCESS CONTROL

Not applicable.

3.3.9.1.10.2.6 PROCESSING
The following describes the processing performed by this part:

function Converted_Time (Clock _Time : in CALENDAR.TIME)
return DURATION is

begin
return Clock_Time - Reference Time;

end Converted Time;

3.3.9.1.10.2.7 UTILIZATION OF OTHER ELEMENTS

The following library units were previously with’d and are visible to this
parti. Calendar

UTILIZATION OF EXTERNAL ELEMENTS:

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |
| TIME | private | CALENDAR | Implementation-dependent representation of |

time |
| DURATION | fixed | STANDARD | Represents a length of time |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Clock Handler:

| Name | Type | Value | Description |

| Reference_Time | CALENDAR.TIME | N/A | Internal reference clock |
| | | | maintained by this part |

&

&

CAMP Software Detailed Design Document Page 1941

3.3.9.1.10.2.8 LIMITATIONS

The following table describes the exceptions propagated by this part:

| TIME ERROR | type STANDARD.DURATION

3.3.9.1.10.3 RESET_CLOCK (PROCEDURE BODY) UNIT DESIGN

This procedure effectively zerves out the internal clock by setting the
internal reference time equal to the system time.

3.3.9.1.10.3.1 REQUIREMENTS ALLOCATION

This part partially meets requirement CAMP R046.

3.3.2.1.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.10.3.3 INPUT/OUTPUT

None.

3.3.9.1.10.3.4 LOCAL DATA

None.

3.3.9.1.10.3.5 PROCESS CONTROL

Not applicable.

3.3.9.1.10.3.6 PROCESSING
The following describes the processing performed by this part:
procedure Reset Clock is
begin
Reference Time := CALENDAR.CLOCK;

end Reset_Clock;

CAMP- Software Detailed Design Document Page 1942

3.3.9.1.10.3.7 UTILIZATION OF OTHER ELEMENTS

The following library units were previously with’d and are visible to this
parti. Calendar

UTILIZATION OF EXTERNAL ELEMENTS:

Subprograms and task entries:

The following table summarizes the external subroutines and task entries
required by this part:

Data types:

The folivwing table summarizes the external types required by this part:

| Name | Type | Source | Description |
| TIME | private | CALENDAR | Implementation-dependent representation of |
| time |

I
| DURATION | fixed | STANDARD | Represents a length of time |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Clock Handler:

| Name | Type | Value | Description |

| Reference_Time | CALENDAR.TIME | N/A | Internal reference clock |
| | | | maintained by this part |

3.3.9.1.10.3.8 LIMITATIONS

None.

g

CAMP Software Detailed Design Document Page 1943

3.3.9.1.10.4 SYNCHKONLZE _CLOCK (PROCEDURE BODY) UNIT DESIGN

This procedure effectively sets the internal clock to a user-specified time.
It does this by setting the reference time to a system (CALENDAR) time - the
desired time. By default, the system time used is CALENDAR.CLOCK by the user
may supply his own "system" time.

3.3.9.1.10.4.1 REQUIREMENTS ALLOCATION

This part partially meets requirement CAMP R046.

3.3.9.1.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| New Time | STANDARD. | In | Time to which the internal clock |
DURATION | | should be set

| Clock_Time | CALENDAR.TIME | In | System time |

3.3.9.1.10.4.4 LOCAL DATA

None.

3.3.9.1.10.4.5 PROCESS CONTROL

Not applicable.

3.3.9.1.10.4.6 PROCESSING
The following describes the processing performed by this part:
procedure Synchronize Clock
(New_Time : in STANDARD.DURATION;
Clock Time : in CALENDAR.TIME := CALENDAR.CLOCK) is
begin

Reference Time := Clock_Time - New Time;

end Synchronize Clock;

CAMP Software Detailed Design Document ‘ Page 1944

B

3.3.9.1.10.4.7 UTILIZATION OF OTHER ELEMENTS

The following library units were previously with’d and are visible to this
parti. Calendar

UTILIZATION OF EXTERNAL ELEMENTS:

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |
| TIME | private | CALENDAR | Implementation-dependent representation of |
l I | | time !
| DURATION | fixed | STANDARD | Represents a length of time |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Dats objects:

The following table summarizes the objects required by this part and defined in €=
the package body of Clock Handler:

| Name | Type | Value | Description |

| Reference Time | CALENDAR.TIME | N/A | Internal reference clock |
| | | | maintained by this part |

[

3.3.9.1.10.4.8 LIMITATIONS

None.

3.3.9.1.10.5 ELAPSED_TIME (FUNCTION BODY) UNIT DESIGN

This function returns the time since the la - call to this function. The first
call to this function will result in the ti ie since the package was elaborated.
This function is not affected by calls to Reset_Clock or Synchronize Clock.
3.3.9.1.10.5.1 REQUIREMENTS ALLOCATION

This part partially meets requirement CAMP RO46.

R

CAMP Software Detailed Design Document Page 1945

3.3.9.1.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.10.5.3 INPUT/OUTPUT

None.

3.3.9.1.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |
| Answer | STANDARD. | N/A | Amount of time which has elapsed since the]|

| DURATION | | last call to this function |
| New Time | CALENDAR. | N/A | System time |
| | TIME | | l

3.3.9.1.10.5.5 PROCESS CONTROL

Not applicable.

3.3.9.1.10.5.6 PROCESSING
The following describes the processing performed by this part:

function Elapsed Time return STANDARD.DURATION is

- --declaration section

Ansver : STANDARD.DURATION;
New Time : CALENDAR.TIME := CALENDAR.CLOCK;

-- --begin function Elapsed_Time

begin

Ansver := New _Time - Time Last_Called;
Time_Last_Called := New Time;

return Answver;

end Elapsed_Time;

CAMP Software Detailed Design Document Page 1946

g

3.3.9.1.10.5.7 UTILIZATION OF OTHER ELEMENTS

The following library units were previously with’d and are visible to this
part;. Calendar

UTILIZATION OF EXTERNAL ELEMENTS:

Subprograms and task entries:

The following table summarizes the external subroutines and task entries
required by this part:

| Name | Type | Source | Description |

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |
| TIME | private | CALENDAR | Implementation-dependent representation of | ﬂ
time |

I
| DURATION | fixed | STANDARD | Represents a length of time |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Clock Handler:

| Name | Type | Value | Description |

| Time _Last_Called | CALENDAR.TIME | N/A | Last time the Elapsed |
| | | | Time function was called |

3.3.9.1.10.5.8 LIMITATIONS

The following table describes the exceptions propagated by this part:

CAMP Software Detailed Design Document Page 1947

| STANDARD. | Raised if the elapsed time does not fit within the range of |
| TIME_ERROR | type STANDARD.DURATION

CAMP Software Detailed Design Document Page 1948

i

(This page left intentionally blank.)

CAMP Software Detailed Design Document

package body Clock Handler is

use CALENDAR;

Reference Time : CALENDAR.Time := CALENDAR.Clock;
Time_Last_Called ¢ CALENDAR.Time := CALENDAR.Clock;

pragma PAGE;
function Current Time return DURATION is

begin
return CALENDAR.Clock - Reference Time;
end Current_Time;
pragma PAGE;
function Converted _Time (Clock _Time : in CALENDAR.Time)
return DURATION is
begin
return Clock_Time - Reference_Time;

end Converted Time;

pragma PAGE;
procedure Reset Clock is

begin
Reference_Time := CALENDAR.Clock;
end Reset_Clock;
pragma PAGE;
procedure Synchronize Clock
(Nev_Time : in STANDARD.DURATION;
Clock _Time : in CALENDAR.Time := CALENDAR.Clock) is
begin
Reference Time := Clock _Time - New Time;

end Synchronize Clock;

pragma PAGE;
function Elapsed Time return STANDARD.DURATION is

Page 1949

CAMP Software Detailed Design Document

Answver : STANDARD.DURATION;
New Time : CALENDAR.Time := CALENDAR.Clock;

begin

Ansver := New Time - Time_Last_Called;
Time_Last Called := New Time;

return Ansver;
end Elapsed Time;

end Clock Handler;

Page 1950

&

CAMP Software Detailed Design Document Page 1951

B

4 (NOT USED)

oF

CAMP Software Detailed Design Document Page 1952

&

(This page intentionally left blank.)

CAMP Software Detailed Design Document Page 1953

5 (NOT USED)

CAMP Software Detailed Design Document Page 1954

&

(This page intentionally left blank.)

4

CAMP Software Detailed Design Document

6 NOTES

This paragraph does not apply to this DDD.

Page 1955

CAMP Software Detailed Design Document Page 1956

g

(This page intentionally left blank.)

' INFORMATION

DEPARTMENT OF THE AIR FORCE
WRIGHT LABORATORY (AFSC)
EGLIN AIR FORCE BASE, FLORIDA, 32542-5434

ERRA "
L ESE wor M 297 13 reb 92

suJecT: Removal of Distribution Statement and Export-Control Warning Notices

to: Defense Technical Information Center
ATIN: DTIC/HAR (Mr William Bush)
Bldg 5, Cameron Station
Alexandria, VA 22304-6145

1. The following technical reports have been approved for public release by
the local Public Affairs Office (copy attached).

Technical Report Number AD Number

{. 88-18-Vol-4 ADB 120 251
2. 88-18-Vol-5 ADB 120 252
3. 88-18-Vol-6 ADB 120 253
4. 88-25-Vol-1 ADB 120 309
8. 88-25-Vol-2 ADB 120 310
. 88-62-Vol-1 ADB 129 568
9. 88-62-Vol-2 ADB 129 569
R. 88-62-Vol-3 ADB 129-570
9. 85-93-Vol-1 ADB 102-654 “
40. 85-93-Vol-2 ADB 102-655
M. 85-93-Vol-3 ADB 102-656
A2. 88-18-Vol-1 ADB 120 248
{S. 88-18-Vol-2 ADB 120 249
{4, 88-18-Vol-7 ADB 120 254
{S. 88-18-Vol-8 ADB 120 255
46, 88-18-Vol-9 ADB 120 256.
{7. 88-18-Vol-10 ADB 120 257%
18.88-18-Vol-11 ADB 120 258
19. 88-18-Vol-12 ADB 120 259

If you have any questions regarding this request call me at DSN 872-4620.

Chlef, Sc1ent1f1c and Technical AFDTC/PA Ltr, dtd 30 Jan 92
Information Branch

ERRATA

DEPARTMENT OF THE AR FORCE
HEADQUARTERS AIR PORCE DEVELOPMENT TEST CENTER (AFSC)
EGUN AIR FORCE BASE, FLORIOA 325428000

ATNOF. PA (Jim Swinson, 882-3931) 30 January 1992

SUBJECT: (Clearance for Public Release

T WL/MNA
v/
The following technical reports have been reviewed and are approved for
public release: AFATL~TR-88-18 (Volumes 1 & 2), AFATL~TR-88-18 (Volumes

4 thru 12), AFATL~TR-88-25 (Volumes 1 & 2), AFATL~TR-88-62 (Volumes 1 thru 3)
and AF. TR-85-93 (Volumes 1 thru 3).

VIK:D{WPRBYLA, Lt Col,

Chief of Public Affairs

AFDIC/PA 92-039

