UNCLASSIFIED

AD NUMBER

ADB120255

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors; Critical Technol ogy; 30
OCT 1987. Ot her requests shall be referred to
Air Force Armanent Lab., Eglin AFB, FL 32542.
Thi s docunent contains export-controlled

t echni cal dat a.

AUTHORITY

AFSC/ MNO wight lab fromEglin AFB, Itr dtd
13 Feb 1992

THISPAGE ISUNCLASSIFIED

~G0f

AD-B120 255

SECUiIie ‘EHEIF‘ gATlgN OF THIS PAGE

ome FLE COP

REPORT DOCUMENTATION PAGE

Form Approved
OMB8 No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
ITnelassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Distribution authorized to U.S. Government

~

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Agencies and their contractors;@7 (over)

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFATL-TR-88-18, Vol 8

6a. NAME OF PERFORMING ORGANIZATION

McDonnell Douglas
Astronautics Company

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION
Aeromechanics Division

6c. ADDRESS (City, State, and 2IP Code)
P.O. Box 516
St. Louis, MO 63166

7b. ADDRESS (City, State, and ZIP Code)
Air Force Armament Laboratory
Eglin AFB, FL 32542-5434

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

STARS Joint Program Office

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F08635-86-C-0025

e B I P 0

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
The Pentagon ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (include Securrty Classification)

| Common Ada Missile Package (CAMP) Project: Missile Software Parts, Vol §: 4

i1 Design Documents (Vol 7-12)
12. PERSONAL AUTHOR(S)
i . Palmer, et al.
13a. TYPE OF REPORT 13b. TIME ovengg Var 88 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
Technical Note FrOM €D %9 ro FAL % march 1988 282

16. SUPPLEMENTARY NOTATION

SUBJECT TO EXPORT CONTROL LAWS.

Availability of this report is snecified on verso of front cover. (over)
17. COSATI CODES 18. SUBJECT TERMS (Continue on reysrse. (f negessary and idepti block_pumber)
FIELD CROUP SUB-GROUP Reusable Software, I fosile Sottware ,deé'o?:ce\rare enerators
Ada, Parts Composition .Systems, Software Parts .

/

19. ABSTRACT (Continue on reverse if necessary and identify b
The objective of the CAMP program is

block number) G
o derggns{rate the feasibility of reusable Ada software,

parts in a real-time embedded application area; the domain chosen for the demonstration was
that of missile flight software systems. This required that the existence of commonality
within that domain be verified (in order to justify the development of parts for that domain),
and that software parts be designed which address
parts system was developed to support parts usage.“#¥olume;1 of this document is the User's
Guide to the CAMP Software parts; Volume-2 isthe—Version Description Document; Volume 3
is the Software Praduct-Specification; Volumes 4-6 contain the Top-Level Design Document;
and, Volumes 7-12contain.the Detail Design Documents.

se areas identified. An associated

DTIG

R~
“1
5 N ELECTE
, ™ APR 0 71984
20. DISTRIBUTION / AVAILABILITY QF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O UNCLASSIFIED/UNLIFITED SAME AS RPT. [oTiC USERS Unclassified

22a3. NAME OF RESPONSI'SLE INDIVIDUAL
Christine Anclerson

asoif E
S ST | RFAALIFRG

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

UNCLASSIFIED

3. DISTRIBUTION/AVAILABILITY OF REPORT (CONCLUDED)
v

wshiviroporiuicsumontorbonteandocialuiaiions distribution limitation applied March 1988.
8ther requests for this document must be referred to AFATL/FXG, Eglin AFB, "
Florida 32542-5434. o

16. SUPPLEMENTARY NOTATION (CONCLUDED) >

These technical notes accompany the CAMP final report AFATL-TR-85-93 (3 Vols)

UNCLASSIFIED

AFATL-TR-88-18, Vol 8

SOFTVARE DETAILED DESIGN DOCUMENT

FOR THE
MISSILE SOFTVARE PARTS

OF THE

COMMON ADA MISSILE PACKAGE (CAMP)

PROJECT
CONTRACT F08635-86-C-0025
CDRL SEQUENCE NO. CO007

30 OCTOBER 1987

Accession For

NTIS GRA&I 0
DTIC TAB é
Unanncunced
Justification . |
By

Distribution/

Avallability Codes

Avail and/or

Dist Speoial 77

G-

Laboratory (FXG) Eglin Air Force Base, Florida 32542 — 5434.

Distribution authorized to U.S. Government agencies and their contractors only;

thisrepen-dooumenta-testurcevaivation; distribution limitation applied July 1987.

Other requests for this dociment must be referred to the Air Force Armament

e’

reconstruction of the document.

PESTRUCTION NQTICE - For classified documents, follow the procedures

in DoD 5220.22 - M, Industrial Security Manual, Section Il - 19 or DoD 5200.1 - R,
Information Security Program Regulation, Chapter IX. For unclassified, limited
documents, destroy by any method that will prevent disclosure of contents or

accordance with the provisions of AFR 80 - 34.

WARBNING: This document contains technical data whose export is restricted by

the Arms Export Control Act (Title 22, U.S.C., Sec. 2751, et seq.) or the Export Admin —
istration Act of 1979, as amended (Title 50, U.S.C., App. 2401, et seq.). Violations

of these export laws are subject to severe criminal penalties. Disseminate in

JAIR FORCE ARMAMENT LABORATORY

Air Force Systems Commandi United States Air Force 1Eglin Air Force Base, Florida

CAMP Software Detailed Design Document Page 421

@

3.3.4 GUIDANCE AND CONTROL

8g 4 6 127

CAMP Software Detailed Design Document Page 422

(This page intentionally left blank.)

L
g-.!i

&

CAMP Software Detailed Design Document Page 423

3.3.4.1 VAYPOINT STEERING (PACKAGE BODY) TLCSC P661 (CATALOG #P106-0)

This package contains the CAMP parts required to do the waypoint steering
portion of navigation.

The following three waypoints are required to perform waypoint steering: o A :
the last waypoint passed by the missile o B : the waypoint to which the
missile is currently heading o C : the next waypoint to which the missile will

head

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.4.1.1 REQUIREMENTS ALLOCATION

The following chart summarizes the allocation of CAMP requirements to this
part:

| Name | Requirements Allocation

Steering Vector Operations R170, R171

Steering Vector Operations with Arcsin N/A

Compute_ Turn Angle and Direction R172

Crosstrack And ﬂeaaing Error_Operations R173, R174, R175
Distance_to_Current Vaypoint R176

Distance to Current Vaypoint vith_Arcsin N/A

Compute Turning and Nonturning Distances R177

Turn Test Operations R178, R179, R180

3.3.4.1.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.3 INPUT/OUTPUT

None.

3.3.4.1.4 LOCAL DATA

None.

3.3.4.1.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 424
3.3.4.1.6 PROCESSING ﬂi
The following describes the processing performed by this part:
package body Waypoint_Steering is

package body Steering Vector_ Operations is separate;

package body Steering Vector Operations_with Arcsin is separate;

procedure Compute Turn_Angle and Direction

(Unit Normal C in Unit_Vectors;
Unit_Tangent B in Unit_Vectors;
Unit Tangent C in Unit Vectors;

out Tan Ratio;

Tan_ of One Half Turn _Angle)
out Turning Directions)

Turn_Direction —
is separate;

package body Crosstrack_and_Heading_Error_ Operations is separate;

function Distance_to_Current_ Waypoint
(Unit_Radial M : Unit_Vectors;
Unit Tangent B : Unit Vectors)
return Segment Distances is separate;

function Distance_to Current_Waypoint_with Arcsin
(Unit_Radial M 7% Unit_Vectors; ;
Unit™ Tangent B : Unit Vectors) @

return Segment Distances is separate;

procedure Compute Turning and Nonturning Distances
(Tan_of_One_Half Turn_Angle : in Tan Ratio;

Segment BC Distance : in Distances;
Turn Radius : in Distances;
Turning Distance : out Distances;
NonturnIng Distance : out Distances) is separate;

package body Turn_Test Operations is separate;

end Vaypoint_Steering;

3.3.4.1.7 VUTILIZATION OF OTHER ELEMENTS

None.

3.3.4.1.8 LIMITATIONS

None.

3.3.4.1.9 LLCSC DESIGN

.,

s
R

CAMP Software Detailed Design Document Page 425

3.3.4.1.9.1 STEERING_VECTOR_OPERATIONS (PACKAGE BODY) PACKAGE DESIGN (CATALOG
#P107-0)

This package contains operations to do the following: o Initialize the
waypoint steering vectors when supplied with the latitude and longitude of the
past, current, and next waypoints o Update the waypoint steering vectors when
supplied with the latitude and longitude of the "new" waypoint, C.

The waypoint steering vectors for a course segment, extending from waypoint A
to vaypoint B, are the segment unit normal vector (UN_B) and the segment unit
tangent vector (UT_B).

The decomposition for this part is the same as that shown in the Top-Level
Design Document.
3.3.4.1.9.1.1 REQUIREMENTS ALLOCATION

The following table summarizes the allocation of CAMP requirements to this
part:

| Name | Requirements Allocation |

| Initialize | R170 |
| Update | R171 |

3.3.4.1.9.1.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.1.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined with the specification
for this part.

Data types:

The following table summarizes the generic formal types required by this part:

CAMP Software Detailed Design Document ’ Page 426

4
| Name | Type | Description
Indices discrete Used to dimension Unit Vectors
type
Earth Distances | floating Data type used to define distance
point type measurements of the Earth’s radius
Segment_ floating Data type used to define distance
Distances point type measurements of the navigation segments
Earth_Positions | floating Data type used to define latitude and
point type longitude measurements
Sin_Cos_Ratio floating Data type used to define results of a sine
point type or cosine function
Unit_Vectors array Array of "Sin Cos Ratio" dimensioned by
Indices
Data objects:
The following table describes the generic formal objects required by this part:
| Name | Type | Description |
| Earth Radius | Earth_Distances | Radius of the Earth |
Subprograms: ‘

The following table describes the generic formal subroutines required by this
part:

| Name | Type | Description
Mhh function Operator defining the operation:
Earth Distances * Sin_Cos Ratio => Segment Distances|
W/ function Operator defining the operation:
Unit_Vectors / Sin Cos_Ratio => Unit_Vectors
Cross_ procedure | Cross product functIon ~
Product
Vector function Calculates the length of a vector
Length
Sin_Cos | procedure | Calculates the sine and cosine of an input value

3.3.4.1.9.1.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

3

CAMP Software Detailed Design Document Page

| Name | Type | Value | Description |
Unit_Radial B | Unit_Vectors | N/A Unit radial vector to waypoint B
extending outwards from the
origin of the Earth-centered
reference frame towards waypoint
B

Unit_Radial C | Unit_Vectors | N/A Unit radial vector to waypoint C
extending outwards from the
origin of the Earth-centered
reference frame towards waypoint
c

3.3.4.1.9.1.5 PROCESS CONTROL

Not applicable.

3.3.4.1.9.1.6 PROCESSING

The following describes the processing performed by this part:
vith Geometric Operations;

separate (Vaypoint Steering)

package body SteerTng Vector Operations is

package Geo renames Geometric_Operations;

-- --instantiate required parts-

function U_R Vector is new
Geo.Unit _Radial Vector (Indices => Indices,
Earth_Positions => Earth Positions,
Sin Cos _Ratio => Sin Cos _Ratio,
Unit Vectors => Unit Vectors),

procedure Compute_Segment_and U N1 Vector is new
Geo. Compute Segment and Unit Normal _Vector

(Indices™ “=> Indices,
Earth_Distances => Earth Distances,
Segment Distances => Segment Distances,
Sin Cos Ratio => Sin Cos Ratio,
Unit Vectors => Unit Vectors,
Earth_Radius => Barth_Radius);

-- ~=local declarations—

Unit_Radial B : Unit_Vectors;
Unit_Radial C : Unit Vectors;

CAMP Software Detailed Design Document

-- --separate procedures-

procedure Initialize

(Vaypoint_A_Lat
Waypoint_A Long
Waypoint_ "B Lat
Waypoint_ B _Long
Vaypoint_ C Lat
Vaypoint C Long
Unit_Normal B
Unit Normal C
Unit Tangent B
Unit Tangent C

Segment_BC_Distance

procedure Update

(Vaypoint_C_Lat
Vaypoint C Long
Unit_Normal B
Unit_Normal C
Unit Tangent B
Unit Tangent “C

Segment_BC_DIstance

end Steering Vector_Operations;

*e @ es eo co se oo

in

in
in
in

out
out
out
out
out

in
in
in

in

Earth _Positions;
Earth Positions;
Earth_Positions;
Earth_Positions;
Earth _Positions;
Earth_Positions;
Unit_Vectors;
Unit_Vectors;
Unit_Vectors;
Unit Vectors;

Segment_Distances) is separate;

Earth_Positions;
Earth Positions;

out Unit_Vectors;
out Unit Vectors;
out Unit _Vectors;
out Unit Vectors;

Page 428

out Segment Distances) is separate;

3.3.4.1.9.1.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part:
1. Geometric_Operations package (Geo)

UTILIZATION OF EXTERNAL ELEMENTS:

Subprograms and task entries:

The followving table summarizes the external subroutines and task entries

required by this part:

Name	Type Source	Description
Unit_Radial Vector	generic Geo	Computes a unit radial vector
	function	
Compute_Segment_and _	generic Geo	Computes segment distance
Unit Normal Vector ~	function	and unit normal vectir

3.3.4.1.9.1.8 LIMITATIONS

None.

—

CAMP Software Detailed Design Document Page 429

%§§ 3.3.4.1.9.1.9 LLCSC DESIGN

None.

3.3.4.1.9.1.10 UNIT DESIGN
3.3.4.1.9.1.10.1 INITIALIZE (PROCEDURE BODY) UNIT DESIGN

This part initializes the waypoint steering vectors when supplied with the
latitude and longitude of the past (A), present (B), and next (C) waypoints.

This part initializes the waypoint steering vectors for the "current" course
segment AB, as well as for the "next" course segment BC.

3.3.4.1.9.1.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R170.

3.3.4.1.9.1.10.1.2 LOCAL ENTITIES DESIGN

None.

G;m 3.3.4.1.9.1.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
Vaypoint_A_Lat, Earth_Positions | in Latitude and longitude of
Waypoint_A Long the "previous" waypoint
Waypoint_B Lat, Earth _Positions | in Latitude and longitude of
Vaypoint_B Long the "current" waypoint
Vaypoint_C Lat, Earth_Positions | in Latitude and longitude of
Vaypoint_C_Long the "next" waypoint
Unit_Normal B, Unit_Vectors out Unit normal vectors for
Unit Normal C segments AB and BC
Unit_Tangent B, Unit_Vectors out Unit tangent vectors for
Unit_Tangent_C segments AB and BC
Segment BC_ Segment_ out Great circle arclength
Distance Distances betwveen waypoints B and C

3.3.4.1.9.1.10.1.4 LOCAL DATA

Data objects:

@B& The following table describes the data objects maintained by this part:

CAMP Software Detailed Design Document

Page 430

| Name | Type | Value
Temp_UN B Unit Vectors N/A
Temp UN C Unit Vectors N/A

| | |
| Unit Radial A | Unit _Vectors | N/A
| | |
| | |

| Temporary Unit Normal B vector
| Temporary Unit Normal _C vector
| Unit radial vector pointing to
| waypoint A

| Vector length

3.3.4.1.9.1.10.1.5 PROCESS CONTROL

Not applicable.

3.3.4.1.9.1.10.1.6 PROCESSING

The following describes the processing performed by this part:

separate (Waypoint_Steering.Steering Vector Operations)

procedure Initialize

(Vaypoint_A Lat
Vaypoint _ A _Long
Vaypoint B Lat
Vaypoint B _Long
Vaypoint_ C Lat
Vaypoint C Long
Unit_Normal B
Unit_Normal C
Unit_Tangent_B
Unit Tangent C
Segment_BC_DIstance

in
in
in
in
in
in
out
out
out
out
out

-- --declaration section-

Temp UN B ¢ Unit_Vectors;
Temp UN C : Unit_Vectors;
Unit_Radial A : Unit _Vectors;
V_Length : Sin_Cos_Ratio;

~-begin procedure Initialize-

begin

-- --compute unit radial vectors

Earth_Positions;
Earth Positions;
Barth . _Positions;
Earth_ _Positions;
Barth_Positions;
Barth Positions;
Unit_Vectors;
Unit_Vectors;
Unit_Vectors;
Unit_Vectors;
Segment_Distances) is

Unit_Radial A := U R Vector(Lat_of Point => Waypoint_A Lat,
Long of Point => Vaypoint A Long);

Unit_Radial B := U R Vector(Lat_of Point => Vaypoint B Lat,
Long_of_Point => Vaypoint_B_Long);

Unit_Radial C := U R Vector(Lat_ of Point => Vaypoint_ Cc _Lat,
Long_of_Point => Waypoint_C_Long);

1f“’.‘ LY

b

@

.-

CAMP Software Detailed Design Document Page 431

-- --compute UN_B
Temp_UN B t= Cross_Product(Left => Unit_Radial B,
Right => Unit Radial A),
V_Length t= Vector Length(Temp UN_B);
Temp UN B t= Temp_ UN B/ V Length,

Unit_Normal B := Temp UN_B;
-- --compute UT B

Unit_Tangent B := Cross_Product(Left => Temp UN B,
Right => Unit_Radial B);

-- --compute UN_C and segment BC distance
Compute_Segment and U N1 Vector
(Unit_Radiall => Unit_Radial B,
Unit_RadialZ => Unit Radial _C,
Unit_Normal2 =) Temp UN_C,
Segment Distance => Segment “BC _Distance);
Unit_Normal C := Temp UN _C;
-- --compute UT C

Unit_Tangent_C := Cross_Product(Left => Temp UN C,
Right => Unit_Radial C);

end Initialize;

3.3.4.1.9.1.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The folloving table summarizes the subroutines and task entries required by
this part and instantiated in the body of the Steering Vector Operations
package:

Name	Type	Description
UR Vector	function	Computes a unit radial vector
Compute_Segment_and _	function	Computes segment distance and unit
U_N1_Vector T	normal vector	

The following table describes the subroutines required by this purt and defined
as generic formal subroutines to the Steering Vector Operations package:

CAMP Software Detailed Design Document

| Name | Type | Description

| w/ | function | Operator defining the operation:

| | | Unit_Vectors / Sin _Cos_Ratio => Unit_Vectors
| Cross_ | procedure | Cross product function

| Product| |

| Vector | function | Calculates the length of a vector

| Length | |

Page 432

Data types:

The following data types are required by this part and defined as generic
parameters to the Steering Vector_ Operations package:

| Name | Type | Description
Indices discrete Used to dimension Unit_Vectors
type
Earth Distances | floating Data type used to define distance
point type measurements of the Earth’s radius
Segment _ floating Data type used to define distance
Distances point type measurements of the navigation segments
Earth Positions | floating Data type used to define latitude and
point type longitude measurements
Sin_Cos_Ratio floating Data type used to define results of a sine
. point type or cosine function
Unit_Vectors array Array of "Sin_Cos Ratio" dimensioned by
Indices

Data objects:

The following table
the package body of

summarizes the objects required by this part and defined in
Steering Vector_Operations:

| Name |

Type

Value | Description

Unit_Radial B

Unit_Radial C

Unit_Vectors

Unit_Vectors

N/A Unit radial vector to vaypoint B
extending outwards from the
origin of the Earth-centered
reference frame towards waypoint
B

N/A Unit radial vector to waypoint C
extending outwvards from the
origin of the Earth-centered
reference frame towards waypoint
C

CAMP Softvare Detailed Design Document Page 433

3.3.4.1.9.1.10.1.8 LIMITATIONS

None.

3.3.4.1.9.1.10.2 UPDATE (PROCEDURE BODY) UNIT DESIGN

This part updates the waypoint steering vectors when supplied with the latitude
and longitude of the "new" waypoint, C.

The waypoint steering vectors for a course segment, extending from waypoint A

to vaypoint B, are the segment unit normal vector (UN B) and the segment unit
tangent vector (UT_B).

3.3.4.1.9.1.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R171.

3.3.4.1.9.1.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.1.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The folloving table describes this part’s formal parameters:

| Name | Type | Mode | Description |
Waypoint C Lat, Earth Positions | in Latitude and longitude of
Waypoint_C_Long the "next" waypoint
Unit_Normal B, Unit_Vectors out Unit normal vectors for
Unit Normal C in out segments AB and BC
Unit_Tangent_B, Unit_Vectors out Unit tangent vectors for
Unit_Tangent _C in out segments AB and BC
Segment BC_ Segment_ out Great circle arclength
Distance Distances betveen waypoints B and C

3.3.4.1.9.1.10.2.4 LOCAL DATA

None.

3.3.4.1.9.1.10.2.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 434

¢

3.3.4.1.9.1.10.2.6 PROCESSING
The following describes the processing performed by this part:

separate (Waypoint_Steering.Steering Vector Operations)
procedure Update
(Waypoint_C Lat : in Earth_Positions;
Vaypoint C Long : in Earth Positions;
Unit_Normal B : out Unit_Vectors;
Unit Normal C : in out Unit_Vectors;
Unit Tangent B : out Unit_Vectors;
Unit Tangent C : in out Unit_Vectors;
Segment BC_ Distance : out Segment Distances) is
begin

-- —-advance "C" vectors into "B" vectors

Unit_Radial B := Unit_Radial C;
Unit Normal B := Unit Normal _C;
Unit Tangent B := Unit Tangen t C;

-- --calculate new values

Unit_Radial C := U R Vector(Lat_of Point => Vaypoint_C lat,
Long_oI_Point => Waypoint_C_Long);

Compute_Segment and U N1 Vector
(Unit Radiall ~ => Unit Radial B, ¢
Unit Radial2 => Unit_Radial C, .
Unit_Normal2 => Unit_Normal C,
Segment Distance => Segment BC Distance);

Unit_Tangent_C := Cross_Product(Left => Unit Normal C,
Right => Unit Radial _C);

end Update;

3.3.4.1.9.1.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The folloving tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and instantiated in the body of the Steering Vector Operations
package:

CAMP Software Detailed Design Document Page 435

| Mame | Type | Description |
| UR Vector | function | Computes a unit radial vector

| Compute_Segment_and _ | function | Computes segment distance and unit |
| U_N1 Vector | | normal vector |

The following table describes the subroutines required by this part and defined
as generic formal subroutines to the Steering Vector Operations paclage:

| Name | Type | Description |
| Cross_ | procedure | Cross product function
| Product| | |

Data types:

The following data types are required by this part and defined as generic
parameters to the Steering Vector Operations package:

| Name | Type | Description |
Indices discrete = | Used to dimension Unit_Vectors
type
Earth_Distances | floating Data type used to define distance
point type measurements of the Earth’s radius
Segment _ floating Data type used to define distance
Distances point type measurements of the navigation segments
Earth_Positions | floating Data type used to define latitude and
point type longitude measurements
Sin_Cos_Ratio floating Data type used to define results of a sine
point type or cosine function
Unit_Vectors array Array of "Sin Cos_Ratio" dimensioned by
Indices

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Steering Vector Operations:

CAMP Software Detailed Design Document Page 436

Unit_Radial B | Unit_Vectors | N/A Unit radial vector to waypoint B
extending outwards from the
origin of the Earth-centered
reference frame towards waypoint
B

Unit Radial C | Unit_Vectors | N/A Unit radial vector to waypoint C
extending outwards from the
origin of the Earth-centered
reference frame towards waypoint
C

3.3.4.1.9.1.10.2.8 LIMITATIONS

None.

3.3.4.1.9.2 CROSSTRACK_AND_HEADING_ERROR_QPERATIONS (PACKAGE BODY) PACKAGE DESIGN
(CATALOG #P109-0)

This part contains the routines require to compute the crosstrack and heading
errors for a missile in turning or nonturning flight.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.
3.3.4.1.9.2.1 REQUIREMENTS ALLOCATION

The following table summarizes the allocation of CAMP requirements to this
part:

Name	Requirements Allocation
Compute When_Turning	R173
Compute When Not Turning	R175
Compute	R174

3.3.4.1.9.2.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.2.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were defined when this part was originally
specified:

CAMP Software Detailed Design Document Page 437

I'.-h.‘
S
- Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |

Navigation_Indices | discrete Data type used to dimension Velocity
type Vectors

Unit_Indices discrete Data type used to dimension Unit_Vectors
type

Angles floating Data type of angular measurements
point type

Earth Distances floating Data type used to define distance
point type measurements of the Earth’s radius

Segment _ floating Data type used to define distance

Distances point type measurements of the navigation segments

Sin_Cos_Ratio floating Data type of results of sine/cosine
point type operations

Tan_Ratio floating Data type of tangent operations
point type

Velocities floating Data type of velocity measurements
point type

Unit_Vectors array Array, dimensioned by Unit_Indices, of

Sin_Cos Ratio
Velocity Vectors array Array, dimensioned by Navigation_
, Indices, of Velocities

Data objects:

The following table describes the generic formal objects required by this part:

| Name | Type | Value | Description |
E(ast) Navigation_ 'FIRST Used to access first element of
Indices arrays dimensioned by Navigation_
Indices
N(orth) Navigation_ 'SUCC(E) | Used to access second element of
Indices arrays dimensioned by Navigation_
Indices
u(p) Navigation_ 'LAST Used to access last element of
Indices arrays dimensioned by Navigation_
Indices
X Unit_Indices | ’FIRST Used to access first element of
Indices arrays dimensioned by Unit_
Indices
Y Unit_Indices | ’SUCC(X) | Used to access second element of
Indices arrays dimensioned by Unit_
Indices
Z Unit_Indices | ’'LAST Used to access last element of
Indices arrays dimensioned by Unit_
Indices
Q&Q Earth_Radius | Earth_ n/a Radius of the Earth
Distances

CAMP Software Detailed Design Document

Subprograms:

The following table describes the generic formal subroutines required by this

part:
| Name Type Description

e function Multiplication operator defining the operation:
Sin_Cos_Ratio * Earth Distances =>
Segment “Distances

"n function Multiplication operator defining the operation:
Sin_Cos_Ratio * Segment Distances =>
Segment “Distances

Wi function Multiplication operator defining the operation:
Segment_Distances * INTEGER => Segment_ Distances

Man function Multiplication operator defining the operation:
INTEGER * Sin Cos_Ratio => Sin_Cos_Ratio

it function Multiplication operator defining the operation:
Segment_Distances * Velocities => Tan_Ratio

MM function Multiplication operator defining the operation:
Sin_Cos_Ratio * Velocities => Velocities

i function Division operator defining the operation:
Velocities / Velocities => Tan Ratio

Dot_ function | Dot product function

Product

Sqrt function Square root function

Arctan function Arctangent function

Page 438

3.3.4.1.9.2.4 LOCAL DATA

None.

3.3.4.1.9.2.5 PROCESS CONTROL

Not applicable.

3.3.4.1.9.2.6 PROCESSING

The following describes the processing performed by this part:

separate (Waypoint_Steering)
package body Crosstrack and Heading Error Operations is

procedure Compute When Turning

(Distance_to B
Nonturning Distance
Unit Radial M
Unit Normal B’

Unit Tangent B
Turn Direction
Ground Velocity
Turn_Radius

in Segment Distances;
in Segment_ “Distances;
in Unit Vectors,

in Unit Vectors,

in Unit Vectors;

in Turning Directions;
in Velocity Vectors;
in Segment_ Distances;

K

CAMP Softwvare Detailed Design Docume

Crosstrack Error
Heading Error

procedure Compute_When Not Turnin
(Unit_Radial M
Unit_Normal B
Ground_Velocity
Crosstrack Error
Heading_Error

e o0 ee oo se

procedure Compute
(Distance_to B
Nonturning Distance
Unit_Radial M
Unit_Normal B
Unit_Tangent B
Turn_Direction
Turn_Status
Ground Velocity
Turn_Radius
Crosstrack _Error
Heading Error

end Crosstrack_and_Heading Error_Ope

3.3.4.1.9.2.7 UTILIZATION OF OTHER
UTILIZATION OF OTHER ELEMENTS IN TOP

The following tables describe the el
elsevhere in the parent top level co

Data types:

nt

: out Segment Distances;
: out Angles) is separate;

g
in Unit Vectors;

in Unit Vectors;

in Velocity Vectors;
out Segment Distances;
out Angles) is separate;

in Segment Distances;
in Segment Distances;
in Unit Vectors;

in Unit_Vectors;

in Unit Vectors;

in Turning Directions;
in Turning_Statuses;
in Velocity Vectors;
in Segment_Distances;
out Segment Distances;
out Angles) is separate;

rations;

ELEMENTS
LEVEL COMPONENT:

ements used by this part but defined
mponent:

The following table describes the data types required by this part and defined

in the package specification of WVayp

oint_Steering:

| Description |

| Name | Range

| Turning Directions | Left Turn,
| | Right_Turn
| I

| Turning_Statuses | Turning,

I I

Not_Turning

Indicates if the missile needs to make |
a right or a left-hand turn to go to |
the next waypoint |

Indicates vhether or not the missile is|
currently turning |

3.3.4.1.9.2.8 LIMITATIONS

None.

Page 439

CAMP Software Detailed Design Document Page 440

3.3.4.1.9.2.9 LLCSC DESIGN

None.

3.3.4.1.9.2.10 UNIT DESIGN
3.3.4.1.9.2.10.1 COMPUTE_WHEN_ TURNING (PROCEDURE BODY) UNIT DESIGN

This part computes the crosstrack and heading error for a missile in turning
flight.

NOTE: By the time this part is called the waypoints have been updated so that
the missile is now turning past waypoint A to go on to waypoint B.

3.3.4.1.9.2.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R173.

3.3.4.1.9.2.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.2.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailed Design Document

Page 441

| Name Type Mode Description
Distance_ Segment _ in Distance from missile position to
to B Distances the current waypoint, B
Nonturning Segment_ in Distance from point of tangency of
Distance Distanc. turn circle and next course segment,
BC, to next waypoint, C
Unit Unit_Vectors | in Unit radial vector to the missile
RadTal_H extending outward from the origin
of the Earth-centered reference
frame
Unit Unit_Vectors | in Segment AB unit normal vector
Normal B
Unit_ Unit Vectors | in Segment AB unit tangent vector
Tangent_ B
Turn_ Turning in Direction of turn required to go
Direction Directions from waypoint B to vaypoint C
Ground Velocity in Missile ground velocity with N and E
Velocity Vectors components
Turn_Radius | Segment_ in Desired missile turn radius
Distances
Crosstrack_ | Segment_ out Missile displacement normal to the
Error Distances commanded ground track; is positive
vhen missile is to the right as
vieved in the direction of flight
Heading Angles out Difference between the current
Error missile heading and the desired
heading
3.3.4.1.9.2.10.1.4 LOCAL DATA

Data objects:

The following table describes the data

objects maintained by this part:

CAMP Software Detailed Design Document

Page 442

Distance
D Y

D X
DHDC
Direction

Dot_Prod_
Result

NHDC
R M

Crosstrack _

Segment_
Distances
Segment_
Distances
Segment _
Distances
Segment_
Distances
INTEGER

Sin_Cos_Ratio

Segment_
Distances

Segment_
Distances

Distance of missile from line segment AB

Difference between turning radius and
crosstrack distance

Difference between distance to B and
nonturning distance

Used for intermediate calculations

+1 if missile is making a right turn,
-1 if missile is making a left turn
Dot product result, which, due to the
geometry, equals the angle between the
desired UR_M and the actual UR_M

Used for intermediate calculations

Turning radius actually being flown by
the missile

3.3.4.1.9.2.10.1.5 PROCESS CONTROL

Not applicable.'

3.3.4.1.9.2.10.1.6 PROCESSING

The following describes the processing performed by this part:

separate (Waypoint_Steering.Crosstrack_and_Heading Error_Operations)
procedure Compute_ Vhen_Turning

(Distance to B
Nonturning Distance

Unit Radial M
Unit Normal B
Unit Tangent B
Turn Direction
Ground _Velocity

Turn Radius

Crosstrack Error
Heading_Error

-- —-declaration section

Crosstrack Distance

D Y
DX
DHDC
Direction

Dot_Prod_Result

N_ H- DC
R M

in Segment Distances;
in Segment_ “Distances;
in Unit_Vectors;

in Unit_Vectors;

in Unit Vectors;

in Turning Directions;
in Velocity Vectors;
in Segment Distances;
out Segment “Distances;
out Angles) is

®s e 42 00 ve e o oo o en

Segment_Distances;
Segment Distances;
Segment _ “Distances;
Segment | “Distances;
INTEGER;
Sin_Cos_Ratio;
Segment Distances,
Segment Distances,

i

CAMP Softvare Detailed Design Document

begin

--convert turn direction to an integer value

if Turn Direction = Left Turn then
Direction := -1;

else
Direction := 1;

end if;

--get the sine of the angle (which approximately equals the angle)
--betveen the actual and desired UR N,
--and then compute crosstrack distance

Dot_Prod_Result := Dot_Product (Left => Unit_Radial M,
Right => Unit Normal B);
Crosstrack _Distance := Dot_Prod Result * Earth Raaius,

--compute the radius of the circle that the missile is actually traversing
:= Turn_Radius - Crosstrack Distance * Direction;

Y
X := Distance to B - Nonturning Distance;
"M t= Sqrt(D X * D X + D Y * D Y);

NUU

--compute crosstrack error

Crosstrack Error := (Turn_Radius - R_M) * Direction;

~~-compute heading error

NHDC := Direction * Unit_Tangent B(Z) * D X -
Unit_Normal B(Z) "% D RE

DHDC := -Direction * Unit Normal _B(Z) * D X -
Unit_Tangent_ B(Z) * D Y3

Heading_Error := Arctan((N_H D C * Ground Velocity(N) -
D H D C * Ground_Velocity(E)) /
(D H D C * Ground Velocity(N) +
NHDC * Ground _Velocity(E)));

end Compute_When Turning;

3.3.4.1.9.2.10.1.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Page 443

CAMP Softwvare Detailed Design Document Page 444

»}t—“
Subprograms and task entries: A
The following subprograms are required by this part and defined as generic
formal parameters to the Crosstrack and_Heading Error Operations package:
| Name | Type | Description
"hh function Multiplication operator defining the operation:
Sin_Cos_Ratio * Earth Distances =>
Segment Distances
hn function Multiplication operator defining the operation:
Sin_Cos_Ratio * Segment_Distances =>
Segment Distances
M function Multiplication operator defining the operation:
Segment Distances * INTEGER => Segment Distances
M function Multiplication operator defining the operation:
INTEGER * Sin Cos_Ratio => Sin_Cos_Ratio
N function Multiplication operator defining the operation:
Segment Distances * Velocities => Tan_Ratio
T function Multiplication operator defining the operation:
Sin_Cos_Ratio * Velocities => Velocities
LYA function Division operator defining the operation:
Velocities / Velocities => Tan Ratio
Dot_ function Dot product function _
Product
Sqrt . | funetion Square root function
| Arctan function Arctangent function é

Data types:

The following data types are required by this part and defined as generic
formal parameters to the Crosstrack and_Heading Error Operations package:

CAMP Software Detailed

Design Document

Navigation_Indices
Unit_Indices
Angles
Earth_Distances
Segment_

Distances
Sin_Cos_Ratio
Tan_Ratio
Velocities

Unit_Vectors

Velocity Vectors

discrete
type
discrete
type
floating
point type
floating
point type
floating
point type
floating
point type
floating
point type
floating
point type
array

array

Data type used to dimension Velocity_
Vectors
Data type used to dimension Unit Vectors

Data type of angular measurements

Data type used to define distance
measurements of the Earth’s radius

Data type used to define distance
measurements of the navigation segments

Data type of results of sine/cosine
operations

Data type of tangent operations

Data type of velocity measurements

Array, dimensioned by Unit_Indices, of
Sin Cos Ratio

Array, dimensioned by Navigation_
Indices, of Velocities

The folloving table describes the data types required by this part and defined
in the package specification of Waypoint_Steering:

| Name

Range

| Description |

Turning_Directions

Turning Statuses

Left Turn,
Right_Turn

Turning,

Not_Turning

| Indicates if the missile needs to make |
| a right or a left-hand turn to go to |
| the next waypoint |
| Indicates whether or not the missile is|
| currently turning

Data objects:

The following data objects are required by this part and defined as generic
formal parameters to the Crosstrack_and_Heading Error Operations package:

Page 445

CAMP Software Detailed Design Document Page 446

| Name | Type | Value | Description |
E Navigation_ 'FIRST Used to access first element of
Indices arrays dimensioned by Navigation_
Indices
N Navigation_ 'SUCC(E) | Used to access second element of
Indices arrays dimensioned by Navigation_
Indices
U Navigation_ " LAST Used to access last element of
Indices arrays dimensioned by Navigation_
Indices
X Unit_Indices | ‘FIRST Used to access first element of
Indices arrays dimensioned by Unit_
Indices
Y Unit_Indices | ’SUCC(X) | Used to access second element of
Indices arrays dimensioned by Unit_
Indices
z Unit_Indices | ’LAST Used to access last element of
Indices arrays dimensioned by Unit_
Indices
Earth_Radius | Earth_ n/a Radius of the Earth
Distances

3.3.4.1.9.2.10.1.8 LIMITATIONS

None.

3.3.4.1.9.2.10.2 COMPUTE_VHEN NOT TURNING (PROCEDURE BODY) UNIT DESIGN

This part computes the crosstrack and heading error for a missile in nonturning
flight.

3.3.4.1.9.2.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R175.

3.3.4.1.9.2.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.2.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailed Design Document Page 447

R
| Name | Type | Mode | Description |
Unit Unit _Vectors | in | Unit radial vector to the missile
Radial M extending outward from the origin
of the Earth-centered reference
frame
Unit_ Unit_Vectors | in Segment AB unit normal vector
Normal B
Ground Velocity_ in Missile ground velocity with N and E
Velocity Vectors components
Crosstrack_ | Segment_ out Missile displacement normal to the
Error Distances commanded ground track; is positive
vhen missile is to the right as
vieved in the direction of flight
Heading_ Angles out Difference between the current
Error missile heading and the desired
heading

3.3.4.1.9.2.10.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |

Sin Cos Ratio | Used for intermediate calculations

D_	Sin_Cos_	l
Dot_Prod_	Sin_Cos_Ratio	Dot product result, which, due to the
Result		geometry, equals the angle between the
		desired UR_ M and the actual UR_M
NHDC	Sin_Cos_Ratio	Used for intermediate calculations

3.3.4.1.9.2.10.2.5 PROCESS CONTROL

Not applicable.

3.3.4.1.9.2,10.2.6 PROCESSING
The following describes the processing performed by this part:

separate (Waypoint Steering.Crosstrack_and Heading Error Operations)
procedure Compute When Not Turning
(Unit_Radial M in Unit_Vectors;
Unit_Normal B in Unit_Vectors;
Ground_Velocity in Velocity Vectors;
Crosstrack_Error out Segment_ﬁistances;
8&@ Heading Error out Angles) is

-- --local declarations-

CAMP Software Detailed Design Document Page 448

&

Dot _Prod Result : Sin_Cos Ratio;
DHDC : Sin_Cos_Ratio;
NHDC 3 Sin_Cos_Ratxo,

begin

-~ --get the sine of the angle (which approximately equals the angle)
-- --between the actual and desired UR N,
-- —-and then compute crosstrack distance/error

Dot_Prod_Result := Dot_Product (Left => Unit_Radial M,
Right => Unit Normal _B);
Crosstrack Error := Dot_Prod_Result * Earth Radius;

-- --compute heading error
NHDC := - Unit_Normal B(Z);

D H D C := Unit_Normal B(Y) * Unit_Radial M(X) -
Unit Nornal B(X) * Unit Radial _M(Y);

Heading Error := Arctan((N_H D C * Ground Velocity(N) -)
D H D C * Ground Velocity(B)) / ‘
(D H D C * Ground Vclocity(N) +
N H D C * Ground Velocity(B))),

end Compute_WVhen Not_Turning;

3.3.4.1.9.2.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The folloving tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following subprograms are required by this part and defined as generic
formal parameters to the Crosstrack and_Heading Error_ Operations package:

e

CAMP Software Detailed Design Document

Page 449

| Name Type
" function
"N function
i function
L/ function
Dot _ function
Product
Arctan function

Multiplication operator defining the operation:
Sin_Cos_Ratio * Earth Distances =>
Segment “Distances

Multiplication operator defining the operation:
Sin_Cos_Ratio * Segment Distances =>
Segment “Distances

Multiplication operator defining the operation:
Sin_Cos_Ratio * Velocities => Velocities

Division operator defining the operation:
Velocities / Velocities => Tan_Ratio

Dot product function

Arctangent function

Data types:

The following data types are required by this part and defined as generic
formal parameters to the Crosstrack and Heading Error_Operations package:

| Name | Type | Description |
Navigation Indices | discrete Data type used to dimension Velocity_
type Vectors
Unit_Indices discrete Data type used to dimension Unit_Vectors
type :
Angles floating Data type of angular measurements
point type
Earth Distances floating Data type used to define distance
- point type measurements of the Earth’s radius
Segment_ floating Data type used to define distance
Distances point type measurements of the navigation segments
Sin_Cos_Ratio floating Data type of results of sine/cosine
point type operations
Tan_Ratio floating Data type of tangent operations
point type
Velocities floating Data type of velocity measurements
point type
Unit_Vectors array Array, dimensioned by Unit_Indices, of
Sin_Cos_Ratio
Velocity Vectors array Array, dimensioned by Navigation_
Indices, of Velocities

Data objects:

The following data objects are required by this part and defined as generic
formal parameters to the Crosstrack and Heading Error_Operations package:

CAMP Software Detailed Design Document Page 450

o ———————— - - . . . M " S T —— - —— —— " T T — e — — T I b D o — - ——— T — —

| Name | Type | Value | Description |
E Navigation_ ' FIRST Used to access first element of
Indices arrays dimensioned by Navigation_
Indices
N Navigation_ ' SUCC(E) Used to access second element of
Indices arrays dimensioned by Navigation_
Indices
u Navigation_ ' LAST Used to access last element of
Indices arrays dimensioned by Navigation_
Indices
X Unit_Indices ' FIRST Used to access first element of
Indices arrays dimensioned by Unit_
Indices
Y Unit_Indices 'SUCC(X) | Used to access second element of
Indices arrays dimensioned by Unit_
Indices
A Unit_Indices ' LAST Used to access last element of
Indices arrays dimensioned by Unit_
Indices
Earth_Radius | Earth_ n/a Radius of the Earth
Distances .

3.3.4.1.9.2.10.2.8 LIMITATIONS

None.

3.3.4.1.9.2.10.3 COMPUTE (PROCEDURE BODY) UNIT DESIGN

This part computes the crosstrack and heading error for a missile in turning or
noncturning flight.

3.3.4.1.9.2.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R174.

3.3.4.1.9.2.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.2.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailed Design' Document

Page 451

| Name | Type | Mode

Distance_ Segment_ in
to B Distances

Nonturning | Segment_ in
Distance Distances

Unit Unit Vectors | in
Radial M

Unit_ Unit_Vectors | in
Normal B

Unit_ Unit_Vectors | in
Tangent B

Turn_ Turning in
Direction Directions

Turn_Status | Turning_ in

Statuses

Ground Veloeity_ in
Velocity Vect ..

Turn_Radius | Segment_ in

Distances

Crosstrack_ | Segment_ out
Error Distances

Heading_ Angles out
Error

Distance from missile position to

the current wvaypoint, B

Distance from point of tangency of
turn circle and next course segment,
BC, to next waypoint, C

Unit radial vector to the missile
extending outwvard from the origin
of the Earth-centered reference
frame

Segment AB unit normal vector

Segment AB unit tangent vector

Direction of turn required to go
from waypoint B to waypoint C

Indicates if the missile is in
turning or nonturning flight

Missile ground velocity with N and E
components

Desired missile turn radius

Missile displacement normal to the
commanded ground track; is positive
vhen missile is to the right as
vieved in the direction of flight

Difference betveen the current
missile heading and the desired
heading

3.3.4.1.9.2.10.3.4 LOCAL DATA

None.

3.3.4.1.9.2.10.3.5 PROCESS CONTROL

Not applicable.

3.3.4.1.9'2.10.3.6 PRWESSING

The following describes the processing performed by this part:

separate (Vaypoint_Steering.Crosstrack and_Heading Error_Operations)

procedure Compute
(Distance_to B : in
Nonturning Distance : in
Unit_Radial M : in
Unit_Normal B ¢ in
Unit_Tangent B ¢ in
Turn_Direction ¢ in
Turn_Status ¢ in

Segment_Distances;
Segment_Distances;
Unit_Vectors;
Unit_Vectors;

Unit Vectors;
Turning_Directions;
Turning_Statuses;

CAMP Software Detailed Design Document Page 452

Ground_Velocity : in Velocity Vectors;

Turn Radius : in Segment Distances;
CrosEtrack_Etror : out Segment Distances;
Heading Error : out Angles) is

begin
if Turn_Status = Turning then
Compute_When_Turning

(Distance_to_B => Distance_to B ,
Nonturning Distance => Nonturning Distance ,
Unit_Radial M => Unit_Radial M ’
Unit_Normal B => Unit_Normal B ’
Unit_Tangent B => Unit_Tangent B 5
Turn _Direction => Turn Direction y
Ground Velocity => Ground Velocity ’
Turn_Radius => Turn_Radius ’
Crosstrack Error => Crosstrack Error .
Heading_Error => Heading Error)3

else
Compute When Not Turning

(UnTt_Radial M => Unit_Radial M ,
Unit_Normal B => Unit_Normal B y
Ground Velocity => Ground Velocity ,
Crosstrack_Error => Crosstrack Error ,
Heading Error => Heading Error);

end if;

end Compute;

3.3.4.1.9.2.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and contained in the Crosstrack_and_Heading Error_Operations package.

| Name | Type | Description |

procedure	Computes the crosstrack and heading
	errors when the missile is in
	turning flight

Compute_When Not_Turning | procedure | Computes the crosstrack and heading |
| | errors when the missile is in =
I I

nonturning flight

Data types:

The following data types are required by this part and defined as generic
formal parameters to the Crosstrack and_Heading Error_Operations package:

LN
5$iw

CAMP Software Detailed

o - ————— . —————— T ————— — = — ——————————— — T ———— — —— —————

Navigation_Indices
Unit_Indices
Angles
Earth_Distances
Segment _

Distances
Sin_Cos_Ratio
Tan_Ratio
Velocities

Unit_Vectors

Velocity Vectors

Design Document

discrete
type
discrete
type
floating
point type
floating
point type
floating
point type
floating
point type
floating
point type
floating
point type
array

array

Data type used to dimension Velocity
Vectors
Data type used to dimension Unit Vectors

Data type of angular measurements

Data type used to define distance
measurements of the Earth’s radius

Data type used to define distance
measurements of the navigation segments

Data type of results of sine/cosine
operations

Data type of tangent operations

Data type of velocity measurements

Array, dimensioned by Unit_Indices, of
Sin Cos Ratio

Array, dimensioned by Navigation_
Indices, of Velocities

The following table describes the data types required by this part and defined

in the package specification of Waypoint_Steering:

| Name

Range

Description

Turning Directions

Turning_Statuses

Left Turn,
Right_Turn

Turning,

Not_Turning

Indicates if the missile needs to make
a right or a left-hand turn to go to
the next waypoint

Indicates whether or not the missile is
currently turning

l
I
I
|
|

3.3.4.1.9.2.10.3.8 LIMITATIONS

None.

Page 453

¢

3.3.4.1.9.3 TURN_TEST_OPERATIONS (PACKAGE BODY) PACKAGE DESIGN (CATALOG #P112-0)

This part contains the operations required to determine if a missile should be

in turning or nonturning flight.

The decomposition for this part is the same as that shown in the Top-Level

Design Document.

CAMP Software Detailed Design Document Page 454

§

3.3.4.1.9.3.1 REQUIREMENTS ALLOCATION

The following table summarizes the allocation of CAMP requirements to this
part:

| Stop_Test | R178 |
| Start_Test | R179 |

3.3.4.1.9.3.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.3.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified: '

Data types:

The following table summarizes the generic formal types required by this part: ‘

| Name | Type | Description |

| Distances | floating | Data type of distance measurements |

3.3.4.1.9.3.4 LOCAL DATA

None.

3.3.4.1.9.3.5 PROCESS CONTROL

Not applicable.

3.3.4.1.9.3.6 PROCESSING
The following describes the processing performed by this part:

separate (Waypoint Steering)
package body Turn_Test Operations is

function Stop Test
(Distance_to_B : Distances; @
Nonturning Distance : Distances;
Lead_Distance : Distances)

%

S

CAMP Software Detailed Design Document Page 455

return Turning Statuses is separate;

function Start Test

(Distance_to B : Distances;
Turning_Distance : Distances;
Lead Distance : Distances)

return Turning_Statuses is separate;

end Turn_Test_Operations;

3.3.4.1.9.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The followving table summarizes the types required by this part and defined
elsevhere in the parent top level component:

| Name | Range | Description |

| Turning Statuses | Turning, | Indicates vhether or not the missile is|
| Not_Turning | currently turning

3.3.4.1.9.3.8 LIMITATIONS

None.

3.3.4.1.9.3.9 LLCSC DESIGN

None.

3.3.4.1.9.3.10 UNIT DESIGN

3.3.4.1.9.3.10.1 STOP_TEST (FUNCTION BODY) UNIT DESIGN

This part determines whether a missile should be in turning or nonturning
flight.

3.3.4.1.9.3.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R178.

CAMP Software Detailed Design Document Page 456

3.3.4.1.9.3.10.1.2 LOCAL ENTITIES DESIGN
None.
3.3.4.1.9.3.10.1.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description

Distance_ Distances | In Distance from missile position to

to B current waypoint, B

Nonturning_ | Distances | In Distance from point of tangency of turn

Distance turn circle and next course segment,
BC, to the next waypoint, C

Lead_ Distances | In Distance at vhich a turn is started or

Distance stopped early to compensate for the
delay in missile roll dynamics

3.3.4.1.9.3.10.1.4 LOCAL DATA
Data objects:

The folloving table describes the data objects maintained by this part:

Name	Type	Value	Description
Turn_Status	Turning_	N/A	Turning or nonturning status of the
	Statuses		missile

3.3.4.1.9.3.10.1.5 PROCESS CONTROL

Not applicable.

3.3.4.1.9.3.10.1.6 PROCESSING
The follovwing describes the processing performed by this part:

separate (Waypoint_Steering.Turn_Test_Operations)
function Stop Test
(Distance_to B : Distances;
Nonturning Distance : Distances;
Lead_Distance : Distances) return Turning_Statuses is

-- --declaration section-

CAMP Software Detailed Design Document Page 457

Turn_Status : Turning Statuses := Turning;

begin
if Distance_to B <= (Lead Distance + Nonturning Distance) then
Turn_Status := Not_Turning;
end if;

return Turn_Status;

end Stop _Test;

3.3.4.1.9.3.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic parameters to the Turn_Test Operations package:

| Name | Type | Description |

| Distances | floating | Data type of distance measurements |

The following table summarizes the types required by this part and defined in
the package specification of Vaypoint_Steering:

| Name | Range | Description |

| Turning_Statuses | Turning, | Indicates whether or not the missile is|
| | Not_Turning | currently turning |

3.3.4.1.9.3.10.1.8 LIMITATIONS

None.

3.3.4.1.9.3.10.2 START TEST (FUNCTION BODY) UNIT DESIGN

This part determines whether a missile should be in turning or nonturning
flight.

CAMP Software Detailed Design Document

3.3.4.1.9.3.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R179.

3.3.4.1.9.3.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.3.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 458

| Name | Type | Mode | Description |

Distance_ Distances | In Distance from missile position to
to B current wvaypoint, B

Turning_ Distances | In Distance from point of tangency of turn
Distance turn circle and current course segment,

BC, to the current wvaypoint, C

Lead_ Distances | In Distance at vhich a turn is started or

Distance stopped early to compensate for the

delay in missile roll dynamics

3.3.4.1.9.3.10.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

Name	Type	Value	Description
Turn_Status	Turning_	N/A	Turning or nonturning status of the
	Statuses		missile

3.3.4.1.9.3.10.2.5 PROCESS CONTROL

Not applicable.

3.3.4.1.9.3.10.2.6 PROCESSING
The following describes the processing performed by this part:

separate (Waypoint_Steering.Turn_Test Operations)
function Start Test
(DIstance_to_B : Distances;
Turning Distance : Distances;

g

CAMP Software Detailed Design Document Page 459

Lead Distance : Distances) return Turning Statuses is

Turn_Status : Turning_Stituses := Not_Turning;

--begin function Start_Test-

begin
if Distance_to B <= (Lead Distance + Turning Distance) then
Turn_Status := Turning;
end if;
return Turn_Status;

end Start_Test;

3.3.4.1.9.3.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The folloving tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic parameters to the Turn_Test Operations package:

| Name | Type | Description |

| Distances | floating | Data type of distance measurements |

The following table summarizes the types required by this part and defined in
the package specification of Waypoint_Steering:

| Name | Range | Description |

| Turning_Statuses | Turning, | Indicates whether or not the missile is|
| Not_Turning | currently turning

3.3.4.1.9.3.10.2.8 LIMITATIONS

None.

W

CAMP Software Detailed Design Document Page 460

3.3.4.1.9.4 STEERING VECTOR_OPERATIONS WITH_ARCSIN (PACKAGE BODY) PACKAGE DESIGN
(CATALOG #P1048-0)

This package contains operations to do the following: o Initialize the
vaypoint steering vectors when supplied with the latitude and longitude of the
past, current, and next vaypoints o Update the waypoint steering vectors when
supplied with the latitude and longitude of the "new" waypoint, C.

The waypoint steering vectors for a course segment, extending from waypoint A
to wvaypoint B, are the segment unit normal vector (UN_B) and the segment unit
tangent vector (UT_B).

It does not make the assumption that alphasin(alpha) when doing its
computations.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.
3.3.4.1.9.4.1 REQUIREMENTS ALLOCATION

The following table summarizes the allocation of CAMP requirements to this
part:

| Name | Requirements Allocation |

| Initialize | N/A . |
| Update | N/A |

3.3.4.1.9.4.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.4.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined with the specification
for this part.

Data types:

The following table summarizes tie generic formal types required by this part:

&

&

CAMP Software Detailed Design Document

Page 461

Indices

Segment _
Distances
Earth_Posi

Radians

Earth_Distances

tions

Sin_Cos_Ratio

Unit_Vectors

discrete
type
floating
point type
floating
point type
floating
point type
floating
point type
floating
point type
array

Used to dimension Unit_Vectors

Data type used to define distance
measurements of the Earth’s radius
Data type used to define distance
measurements of the navigation segments

Data type used to define latitude and
longitude measurements

Radian units of angular measurement

Data type used to define results of a sine
or cosine function

Array of "Sin_Cos_Ratio" dimensioned by
Indices

Data objects

The following table describes

.
.

the generic formal objects required by this part:

Name	Type	Value	Description
Earth_Radius	Earth_	n/a	Radius of the Earth
	Distances		
Subprograms:

The following table describes

the generic formal subroutines required by this

part:
| Name | Type | Description
hn function Multiplication operator defining the operation:
Sin_Cos Ratio * Earth _Distances =>
Segment_Distances
mn function Operator defining the operation:
Unit_Vectors / Sin Cos_Ratio => Unit_Vectors
Arcsin function Arcsin function (must return radians)
Cross_ procedure | Cross product function
Product
Vector function Calculates the length of a vector
Length
Sin_Cos | procedure | Calculates the sine and cosine of an input value

3.3.4.1.9.4.4 LOCAL DATA

Data objects:

CAMP Software Detailed Design Document

The following table describes the data objects maintained by this part:

Page 462

Unit_Radial B

Unit_Radial C

Unit_Vectors N/A

Unit_Vectors | N/A

Unit radial vector to waypoint B
extending outwards from the
origin of the Earth-centered
reference frame towards waypoint
B

Unit radial vector to waypoint C
extending outwards from the
origin of the Earth-centered
reference frame towards waypoint
C

3.3.4.1.9.4.5 PROCESS CONTROL

Not applicable.

3.3.4.1.9.4.6 PROCESSING

The following describes the processing performed by this part:

vith Geometric_Operations;
separate (Vaypoint Steering)
package body SteerIng Vector Operations with Arcsin is

package Geo renames Geometric Operations;

-- --instantiate required parts-

function UR_

Vector is new

Geo.Unit _Radial Vector (Indices => Indices,

Earth_Positions => Earth_Positions,
Sin Cos Ratio => Sin_Cos_Ratio,
Unit_Vectors => Unit_Vectors);

procedure Compute_Segment_and U N1 Vector is new

Geo.Compute_Segment_and_
(Indices
Earth Distances
Segment_Distances
Radians
Sin_Cos Ratio
Unit Vectors
Earth_Radius

-~ --local declarations-

Unit_Normal Vector with_Arcsin
“a=> Indices,”

=> Earth_Distances,

=) Segment Distances,

=> Radians,

~> Sin_Cos_Ratio,

=> Unit Vectors,

=> Earth_Radius);

{®F

CAMP Software Detailed Design Document Page 463

Unit Radial B : Unit_Vectors;
Unit_Radial C : Unit_Vectors;

end Steering Vector Operations_with_Arcsin;

3.3.4.1.9.4.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part:
1. Geometric_Operations package (Geo)

UTILIZATION OF EXTERNAL ELEMENTS:
Subprograms and task entries:

The following table summarizes the external subroutines and task entries
required by this part:

Name	Type	Source	Description
Unit_Radial Vector	generic	Geo	Computes a unit radial vector
	function		
Compute_Segment_and_	generic	Geo	Computes segment distance
Unit_Normal Vector_ ’ function } { and unit normal vector			
I I

with_Aresin™

3.3.4.1.9.4.8 LIMITATIONS

None.

3.3.4.1.9.4.9 LLCSC DESIGN

¢

None.

3.3.4.1.9.4.10 UNIT DESIGN
3.3.4.1.9.4.10.1 INITIALIZE (PROCEDURE BODY) UNIT DESIGN

This part initializes the waypoint steering vectors when supplied with the
latitude and longitude of the past (A), present (B), and next (C) waypoints.

This part initializes the waypoint steering vectors for the "current" course
segment AB, as well as for the "next" course segment BC.

3.3.4.1.9.4.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R170.

CAMP Software Detailed Design Document

3.3.4.1.9.4.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.4.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 464

| Name | Type | Mode | Description [

Waypoint_A Lat, Earth_Positions | in Latitude and longitude of
Waypoint_A Long the "previous" waypoint
Waypoint_B Lat, Earth_Positions | in Latitude and longitude of
Vaypoint B _Long the "current" waypoint
Vaypoint C Lat, Earth_Positions | in Latitude and longitude of
Vaypoint [_Long the "next" waypoint

Unit Normal B, Unit_Vectors out Unit normal vectors for
Unit Normal C segments AB and BC

Unit Tangent _B, Unit_Vectors out Unit tangent vectors for
Unit Tangent c segments AB and BC
Segment BC_ Segment _ out Great circle arclength
Distance Distances betveen waypoints B and C

3.3.4.1.9.4.10.1.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |
| Temp_UN B | Unit_Vectors | N/A | Temporary Unit Normal B vector

| Temp UN C | Unit_Vectors | N/A | Temporary Unit_Normal C vector |
| Unit_Radial A | Unit_Vectors | N/A | Unit radial vector pointing to |
I I I | waypoint A I
| V_Length | Sin_Cos_Ratio | N/A | Vector length |

3.3.4.1.9.4.10.1.5 PROCESS CONTROL

Not applicable.

3.3.4.1.9.4.10.1.6 PROCESSING
The following describes the processing performed by this part:

procedure Initialize
(Vaypoint_A Lat : in Earth Positions;

Lo o
T e}
Pl

f.E

CAMP Software Detailed Design Document

Waypoint_A Long : in Earth Positions;
Waypoint _ "B Lat ¢ in Earth_Positions;
Waypoint_ B~ _Long : in Earth_Positions;
Waypoint_ “C Lat : in Earth _Positions;
Waypoint C Long : in Earth _Positions;

Unit_Normal B
Unit Normal C
Unit Tangent B
Unit Tangent C
Segment_BC DIstance

out Unit _Vectors;
out Unit_Vectors;
out Unit_Vectors;
out Unit_Vectors;
out Segment Distances) is

- --declaration section-

Temp_UN_B ¢ Unit_Vectors;
Temp UN C : Unit_Vectors;
Unit_Radial A : Unit Vectors;
V_Length : Sin_Cos_Ratio;

-- --begin procedure Initialize-

begin
- --compute unit radial vectors

Unit_Radial A := U R Vector(Lat_of Point => Waypoint_ A Lat,
Long_of Point => Waypoint_A Long);

Unit_Radial B := U R Vector(Lat_of Point «> Waypoint B Lat,
Long_of Point => Waypoint B Long);

Unit_Radial C := UR_Vector(Lat_of Point => Vaypoint_C Lat,
Long_of_Point => Waypoint_C_Long);

- --compute UN_B ,
Temp_UN B t= Cross_Product(Left => Unit Radial B,
Right => Unit Radial _A);
V_Length t= Vector Length(Temp UN_B);
Temp_UN_B t= Temp_UN B / V_Length;™

Unit Normal B := Temp UN _B;
- --compute UT_B

Unit_Tangent B := Cross_Product(Left => Temp UN B,
Right => Unit_Radial B);

- --compute UN _C and segment BC distance

Compute_Segment :and_U N1 Vector
(Unit_Radiall => Unit_Radial B,
Unit_RadialZ => Unit_Radial C,
Unit_Normal2 => Temp_UN _C,
Segment Distance => Segment “BC _Distance);

Unit_Normal C := Temp_UN C;

Page 465

CAMP Software Detailed Design Document Page 466

- --compute UT C

Unit_Tangent_C := Cross_Product(Left => Temp UN C,
Right => Unit_Radial C);

end Initialize;

3.3.4.1.9.4.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and instantiated in the body of the Steering Vector Operations
package:

| Name | Type | Description |
| UR _Vector | function | Computes a unit radial vector

| Compute_Segment_and _ | function | Computes segment distance and unit |
| U_N1 Vector | | normal vector |

The following table describes the subroutines required by this part and defined
as generic formal subroutines to the Steering Vector Operations package:

| Name | Type | Description |

I "/"

Operator defining the operation:
Unit_Vectors / Sin Cos_Ratio => Unit_Vectors

function

Cross_	procedure	Cross product function
Product		
Vector	function	Calculates the length of a vector
Length	I I	

Data types:

The following data types are required by this part and defined as generic
parameters to the Steering Vector Operations package:

v

CAMP Software Detailed Design Document Page 467

| Name | Type] Description

Indices discrete Used to dimension Unit Vectors
type

Earth Distances | floating Data type used to define distance
point type measurements of the Earth’s radius

Segment _ floating Data type used to define distance

Distances point type measurements of the navigation segments

Earth_Positions | floating Data type used to define latitude and
point type longitude measurements

Sin_Cos Ratio floating Data type used to define results of a sine
point type or cosine function

Unit_Vectors array Array of "Sin_Cos_Ratio" dimensioned by

Indices

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Steering Vector Operations:

| Name | Type | Value | Description |

Unit_Radial B | Unit_Vectors | N/A Unit radial vector to vaypoint B
extending outwards from the
origin of the Earth-centered
reference frame tovards waypoint
B

Unit_Radial C | Unit_Vectors | N/A Unit radial vector to waypoint C
extending outwards from the
origin of the Earth-centered
reference frame tovards waypoint
c

3.3.4.1.9.4.10.1.8 LIMITATIONS

None.

3.3.4.1.9.4.10.2 UPDATE (PROCEDURE BODY) UNIT DESIGN

This part updates the waypoint steering vectors when supplied with the latitude
and longitude of the "new" waypnint, C.

The waypoint steering vectors for a course segment, extending from waypoint A
to vaypoint B, are the segment unit normal vector (UN_B) and the segment unit
tangent vector (UT_B). 0

CAMP Software Detailed Design Document Page 468

3.3.4.1.9.4.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R171.

3.3.4.1.9.4.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.9.4.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
Vaypoint_C Lat, Earth _Positions | in Latitude and longitude of
Waypoint_C Long the "next" waypoint
Unit_Normal B, Unit_Vectors out Unit normal vectors for
Unit NormaI_C in out segments AB and BC
Unit_Tangent_B, Unit_Vectors out Unit tangent vectors for
Unit_Tangent C - in out segments AB and BC
Segment_BC_ Segment _ out Great circle arclength
Distance Distances betveen wvaypoints B and C

3.3.4.1.9.4.10.2.4 LOCAL DATA

None.

3.3.4.1.9.4.10.2.5 PROCESS CONTROL

Not applicable.

3.3.4,1.9.4.10.2.6 PROCESSING
The following describes the processing performed by this part:

procedure Update

(Vaypoint_C Lat
Vaypoint_C Long
Unit_Normal B
Unit_Normal C
Unit_Tangent_B
Unit_Tangent C
Segment BC_DIstance

in Earth Positions;
in Earth Positions;
out Unit_Vectors;
in out Unit_Vectors;
out Unit_Vectors;
in out Unit_Vectors;
out Segment Distances) is

begin
- --advance "C" vectors into "B" vectors

Unit_Radial B := Unit_Radial C;

CAMP Software Detailed Design Document Page 469

Unit Normal B := Unit_Normal C;
Unit Tangent B := Unit Tangent C;

- --calculate new values

Unit_Radial C := U R Vector(Lat_of Point => Waypoint_C lat,
Long_of Point => Waypoint C_Long);

Compute Segment and_U N1 Vector
(Unit_Radiall => Unit_Radial B,
Unit Radial2 => Unit Radial™ _C,
Unit_NormalZ = Unit_Normal c,
Segment_Distance => Segment BC Distance);

Unit_Tangent C := Cross_Product(Left => Unit_Normal C,
Right => Unit_Radial C);

end Update;

3.3.4.1.9.4.10.2.7 UTILIZATION CF OTHER ELEMENTS
UTILIZATION OF CTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:
The following table summarizes the subroutines and task entries required by

this part and instantiated in the body of the Steering Vector_ Operations
package:

| Name | Type | Description |
| UR Vector | function | Computes a unit radial vector

| Compute Segment_and _ | function | Computes segment distance and unit |
| U_N1_Vector | | normal vector |

The following table describes the subroutines required by this part and defined
as generic formal subroutines to the Steering Vector Operations package:

Name	Type	Description
Cross	procedure	Cross product function
Product]		

Data types:

The following data types are required by this part and defined as generic
parameters to the Steering Vector Operations package:

CAMP Software Detailed Design Document Page 470

| Name | Type | Description

Indices discrete Used to dimension Unit Vectors
type

Earth Distances | floating Data type used to define distance
point type measurements of the Earth’s radius

Segment _ floating Data type used to define distance

Distances point type measurements of the navigation segments

Earth Positions | floating Data type used to define latitude and
point type longitude measurements

Sin_Cos_Ratio floating Data type used to define results of a sine
point type or cosine function

Unit_Vectors array Array of "Sin_Cos_Ratio" dimensioned by

Indices

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Steering Vector Operations:

| Name | Type | Value | Description |

Unit_Radial B | Unit_Vectors | N/A Unit radial vector to vaypoint B
extending outwvards from the i
origin of the Barth-centered

reference frame towards waypoint
' B

Unit_Radial C | Unit_Vectors | N/A Unit radial vector to wayr~int C

extending outwards from the

origin of the Earth-centered

reference frame towards waypoint

c

3.3.4.1.9.4.10.2.8 LIMITATIONS

None.

3.3.4.1.10 UNIT DESIGN

3.3.4.1.10.1 COMPUTE_TURN ANGLE AND DIRECTION (PROCEDURE BODY) UNIT DESI™
(CATALOG #P108-0)

Using the waypoint steering vectors, this part computes the tangent of one-half
the turn angle along with the turn direction.

3.3.4.1.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R172. @

s

CAMP Softwvare Detailed Design Document Page 471

3.3.4.1.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.10.1.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The follovwing generic parameters wvere defined when this part was previously
specified.

Data types:

The following *able describes the generic formal types required by this part:

Name | Type | Description |

I

| | One-dimensional, three-element arrays

| | defining the waypoint steering vectors
| 5in_Cos_Ratio | floating Data type of results of sine/cosine
I I

| I

I I

private |
|

point type | operations
|
I

Unit_Vectors

Tan_Ratio floating Data type of results of tangent operations

point type

Subprograms:

The following table describes the generic formal subroutines required by this
part:

| Name | Type | Description |

| function | Addition operator defining the operation:
| | Tan_Ratio + Sin_Cos Ratio => Tan_Ratio

| "/ | function | Division operator defining the operation:
! I Sin Cos Ratio / Tan Ratio => Tan Ratio

function | Calculates the dot product of two Unit Vectors

| Dot_Product

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailed Design Document Page 472

| Name | Type | Mode | Description |
Unit_Normal C Unit Vectors | in Segment BC unit normal vector
vith x, y, and z components
Unit_Tangent B Unit_Vectors | in Segment AB unit tangent vector
wvith x, y, and z components
Unit_Tangent_C Unit_Vectors | in Segment BC unit tangent vector
with %X, y, and z components
Tan_of One_Half_ Tan_Ratio out Tangent of one-half the angle
Turn Angle between the current course
segment and the next course
segment
Turn_Direction Turning out Indicates if missile is to
Directions make a right- or left-hand
turn

3.3.4.1.10.1.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

Name	Type	Value	Description
Cos_of Turn_Angle,	Sin Cos_	N/A	Sine and cosine of the angle
Sin_of_Turn_Angle	Ratio ~		between the current and next

| l | | course segments |

3.3.4.1.10.1.5 PROCESS CONTROL

Not applicable.

3.3.4.1.10.1.6 PROCESSING
The following describes the processing performed by this part:

separate (Waypoint_Steering)
procedure Compute ' Turn _Angle _and Direction

(Unit Normal C in Unit_Vectors;
Unit Tangent B in Unit_Vectors;
Unit Tangent C in Unit Vectors;

out Tan_Ratio;
out Turning Directions) is

Tan of One Half _Turn_Angle
Turn_Direction —

Tan_of_Half : Tan_Ratio renames Tan_of One_Half Turn_Angle;

CAMP Software Detailed Design Document

Cos_of Turn_Angle : Sin _Cos_Ratio;
Sin_of Turn_Angle : Sin _Cos_Ratio;

--begin procedure Compute_Turn_Angle and Direction-

begin
Cos_of Turn_Angle := Dot_Product(Left => Unit_Tangent B,
Right => Unit Tangent C);

Sin_of _Turn_Angle := Dot_Product(Left => Unit_Tangent B,
Right => Unit_Normal C);

Tan_of Half := ABS(Sin_of Turn_Angle /
(Tan_Ratio(1.0) + Cos_of Turn_Angle));
if Sin of Turn Angle < 0.0 then
Turn_DIrectIon := Left_Turn;
else
Turn_Direction := Right Turn;
end if;

end Compute_Turn_Angle and Direction;

3.3.4.1.10.1.7 UTILIZATION OF OTHER ELEMENTS

None. .

3.3.4.1.10.1.8 LIMITATIONS

None.

Page 473

3.3.4.1.10.2 DISTANCE_TO_CURRENT WAYPOINT (FUNCTION BODY) UNIT DESIGN (CATALOG

#P110-0)

This part computes the distance from the missile’s position to the current

vaypoint, B.

3.3.4.1.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R176.

3.3.4.1.10.2.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 474

'd
p

3.3.4.1.10.2.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined with this part’s
specification.

Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |
Unit_Vectors private One dimensional, three-element array of
Sin Cos_Ratio
Sin_Cos_Ratio floating Results nf sine/cosine operations
point type
Tan_Ratio floating Results of tangent operation
point type
Earth Distances | floating Data type used to define distance
point type measurements of the Earth’s radius
Segment _ floating Data type used to define distance
Distances point type measurements of the navigation segments
Data objects: ‘

The following table describes the generic formal objects required by this part:

Name	Type	Value	Description
Earth_Radius	Earth_	n/a	Radius of the Earth
	Distances		
Subprograms:

The following table describes the generic formal subroutines required by this
part:

| Name | Type | Description |
| Dot_Product | function Computes the dot product of two unit vectors

I

| " | function
I
I

I I
| Multiplication operator defining the operation: |
| Sin_Cos_Ratio * Earth_Distances => |
| Segment_Distances |

FORMAL PARAMETERS:

The following table describes this part’s formal parameters: Q&

ofF

CAMP Software Detailed Design Document

| Name | Type | Mode | Description

| Unit | Unit_Vectors | in | Unit radial vector to the missile
| Radial M | | | extending outward from the origin
| | | | of the Earth-centered reference

| | | | frame

| Unit_ | Unit_Vectors | in | Segment AB unit tangent vector

| Tangent B | | |

3.3.4.1.10.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description
| Dot_Prod_ | Sin Cos_ | N/A | Due to the geometry, this value ends up
| Result | Ratio | | being the angle between UR_M and UR_B

3.3.4.1.10.2.5 PROCESS CONTROL

Not applicable.

3.3.4.1.10.2.6 PROCESSING
The following describes the processing performed by this part:

separate (Waypoint_Steering)
function Distance_to Current_Waypoint
(Unit_Radial M * Unit_Vectors;
Unit_Tangent B : Unit_Vectors) return Segment_Distances is

-- --local declarations-

Dot_Prod_Result : Sin_Cos_Ratio;

--begin function Distance_To_Current_Waypoint-

begin

-- --dot product of UR_M and UT_B, because of the geometry, equals
-- --the angle betveen UR M and UR_B
Dot_Prod Result := Dot Product (Left => Unit_Radial M,
Right => Unit_Tangent_B);

CAMP Software Detailed Design Document ’ Page 476

return Dot Prod Result * Earth Radius;
end Distance_to_Current Waypoint;

3.3.4.1.10.2.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.4.1.10.2.8 LIMITATIONS

None.

3.3.4.1.10.3 COMPUTE_TURNING_ AND NONTURNING DISTANCES(PROCEDURE BODY) UNIT DESIGN
(CATALOG ¥P111-0)

This part computes the missile turning distance projected onto the current
course segment, AB, and the missile nonturning distance measured along the next
course segment, BC.

3.3.4.1.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R177.

3.3.4.1.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.10.3.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified.

Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |
| Distances | floating | Data type of distance measurements |
l | point type | I
| Tan_Ratio | floating | Data type of results of tangent operation |
I | point type | I
Subprograms:

The following table describes the generic formal subroutines required by this
part:

¥

"

CAMP Software Detailed Design Document Page 477

| Name | Type | Description |

| A | function | Multiplication operator defining the operation:
| | | Distances * Tan_Ratio => Distances |

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description
Tan of One Tan_Ratio | in Tangent of 1/2 the angle between
Half Turn current course segment and next course
Angle segment
Segment BC_ Distances | in Great circle arc length betveen vay-
Distance points B and C
Turn Radius Distances | in Desired missile turn radius
TurnTng_ Distances | out Distance from the point of tangency of
Distance the turn circle and the current course
segment AB to the current waypoint, B
Nonturning_ Distances | out Distance from the point of tangency of
Distance the turn circle and the next course
segment BC to the next waypoint, C

3.3.4.1.10.3.4 LOCAL DATA
Data objects:

The folloving table describes the data objects maintained by this part:

Name	Type	Value	Description
Temp_Turning_	Distances	N/A	Temporary variable
Distance			

3.3.4.1.10.3.5 PROCESS CONTROL

Not applicable.

3.3.4.1.10.3.6 PROCESSING
The following describes the processing performed by this part:

separate (Waypoint Steering)
procedure Compute_ Turning and_Nonturning Distances
(Tan_ “of _One_| Half Turn Angle : in Tan_Ratio;
Segment BC Distance : in Distances;
Turn_Radius ¢ in Distances;

CAMP Software Detailed Design Document Page 478

Turning Distance 8 out Distances;
Nonturnfng_Distance g out Distances) is

~~ --declaration section-

Temp_Turning Distance : Distances;

--begin procedure Compute Turning And Nonturning Distances-

begin
Temp _Turning Distance := Turn_Radius * Tan_of _One Half Turn_Angle;
Turning Distance t= Temp_ “Turning Distance;
NonturnIng Distance := Segment BC_| Distance - Temp _Turning_Distance;

end Compute Turning And Nonturning Distances;

3.3.4.1.10.3.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.4.1.10.3.8 LIMITATIONS

None.

3.3.4.1.10.4 DISTANCE TO_CURRENT WAYPOINT VWITH ARCSIN (FUNCTION BODY) UNIT DESIGN
(CATALOG #P1117-0)

This part computes the distance from the missile’s position to the current
vaypoint, B.

It does not use the assumption that alphasin(alpha) when doing its
computations.

3.3.4.1.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R.

3.3.4.1.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.4.1.10.4.3 INPUT/OUTPUT
GENERIC PARAMETERS:

CAMP Software Detailed Design Document

The following generic parameters were previously defined with this part’s

specification.

Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |
Unit_Vectors private One dimensional, three-element array of
Sin_Cos_Ratio
Radians floating Radian units of angular measurement
point type
Sin_Cos_Ratio floating Results of sine/cosine operations
point type
Tan_Ratio floating Results of tangent operation
point type
Earth Distances | floating Data type used to define distance
point type measurements of the Earth’s radius
Segment _ floating Data type used to define distance
Distances point type measurements of the navigation segments

Data objects:

The following table describes

the generic formal objects required by this part:

| Name | Type

| Value | Description |

| Earth_Radius | Earth_
| | Distances

| n/a | Radius of the Earth |
I I I

Subprograms:

The following table describes
part:

the generic formal subroutines required by this

| Name | Type I

Description |

Dot_Product	function	Computes the dot product of two unit vectors
A	function	Multiplication operator defining the operation:
		Radians * Earth _Distances => Segment_Distances

FORMAL PARAMETERS:

The following table describes

this part’s formal parameters:

Page 479

CAMP Software Detailed Design Document Page 480

| Name | Type | Mode | Description |

Unit Unit radial vector to the missile

I I | |
Radial M			extending outward from the origin
	[of the Earth-centered reference	
			frame
Unit	Unit_Vectors	in	Segment AB unit tangent vector
Tangent B			

3.3.4.1.10.4.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

Name	Type	Value	Description
Dot_Prod_	Sin Cos_	N/A	Due to the geometry, this value ends up
Result ~	Ratio ~		being the angle between UR_M and UR_B

3.3.4.1.10.4.5 PROCESS CONTROL

Not applicable.

3.3.4.1.10.4.6 PROCESSING
The following describes the processing performed by this part:

separate (Waypoint_Steering)
function Distance to Current _Waypoint_with_Arcsin
(Unit_Radial M * Unit_Vectors;
Unit_Tangent B : Unit_Vectors) return Segment Distances is

-- --local declarations-

Dot_Prod Result : Sin_Cos_Ratio;

--begin function Distance_To_Current_Waypoint-

begin

-- --dot product of UR M and UT_B, because of the geometry, equals
-- --the angle between UR M and UR B
Dot_Prod Result := Dot_Product (Left => Unit_Radial M,
Right => Unit Tangent _B);

&

CAMP Software Detailed Design Document

return Arcsin(Dot_Prod Result) * Earth_Radius;

end Distance_to_Current_Waypoint_with_Arcsin;

3.3.4.1.10.4.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.4.1.10.4.8 LIMITATIONS

None.

Page 481

CAMP Software Detailed Design Document

(This page left intentionally blank.)

Page 482

ked

CAMP Software Detailed Design Document

package body Waypoint_Steering is

package body Steering Vector Operations is separate;
package body Steering Vector Operations_With_Arcsin is separate;

procedure Compute_Turn_Angle And Direction

out Tan_Ratio;
out Turning Directions)

Tan Of One Half Turn_Angle
Turn_Direction
is separate;

(Unit Normal C : in Unit_Vectors;
Unit Tangent B ¢ in Unit_Vectors;
Unit Tangent C : in Unit Vectors;

package body Crosstrack_And _Heading Error_Operations is separate;

function Distance_To Current_Waypoint
(Unit_Radial M * Unit_Vectors;
Unit Tangent B : Unit Vectors)
return Segment Distances is separate;

function Distance To Current Vaypoint With_Arcsin
(Unit Radial M * Unit_Vectors;
Unit Tangent B : Unit Vectors)
return Segment Distances is separate;

procedure Compute Turning And Nonturning Distances
(Tan_Of_One_Half Turn_Angle : im Tan_Ratio;
Segment Bc Distance in Distances;
Turn Radius in Distances;
Turning Distance out Distances;
NonturnIng Distance out Distances) is separate;

package body Turn_Test Operations is separate;

end Vaypoint_Steering;

Fage 483

CAMP Software Detailed Design Document

vith Geometric_Operations;
separate (Waypoint Steering)

package body SteerTng_Vector_Operations is

package Geo renames Geometric_Operations

—-— ——instantiate required paris-

function U R Vector is new

Geo.Unit _Radial Vector (Indice:
Earth Positions

Sin

Unit Vectors

Page 484

=> Indices,

=> Earth _Positions,
=> Sin Cos _Ratio,
=> Unit Vectors),

Cos _Ratio

procedure Compute_Segment_And U N1 Vector is new
Geo. Compute Segment And Unit Normal _Vector

(Indices™
Earth_Distances
Segment_Distances
Sin_Cos _Ratio
Unit Vectors
Earth_Radius

--local declarations-

Unit_Radial B
Unit_Radial C

Unit_Vectors;
Unit_Vectors;

- separate procedures-

procedure Initialize

(Vaypoint_A Lat
Vaypoint A~ _Long
Vaypoint B_Lat
Waypoint_ B _Long
Vaypoint_ C Lat
Vaypoint C Long
Unit_Normal B
Unit_Normal C
Unit Tangent B
Unit Tangent C
Segment_Bc_DIstance

procedure Update
(Waypoint_C_Lat
Vaypoint C Long
Unit Normal B
Unit Normal (o
Unit Tangent B
Unit Tangent C
Segment_Bc_DIstance

Ta>
=)
=
=
=)
=)

in
in
in
in
in
in
out
out
out
out
out

in
in
in
in

Indices,
Earth_Distances,
Segment Distances,
Sin_Cos_Ratio,
Unit Vectors,
Earth_Radius);

Earth_Positions;
Earth_Positions;
Earth Positions;
Earth_Positions;
Earth_Positions;
Earth Positions;
Unit_Vectors;
Unit_Vectors;
Unit_Vectors;
Unit_Vectors;
Segment_Distances) is separate;

Earth_Positions;
Earth Positions;
out Unit_Vectors;
out Unit_Vectors;
out Unit_Vectors;
out Unit Vector5°
out Segment _Distances) is separate;

g

L

e

W

CAMP Software Detailed Design Document

end Steering Vector_Operations;

Page 485

CAMP Software Detailed Design Document

Page 486

separate (Waypoint Steering.Steering Vector_Operations)

procedure Initialize

(Vaypoint_A Lat
Waypoint _ AT _Long
Waypoint_ B Lat
Waypoint _ "B~ _Long
Waypoint_ C Lat
Vaypoint C Long
Unit Normal B
Unit Normal C
Unit Tangent B
Unit Tangent C
Segment_Bc_DIstance

—— —-declaration section-

Temp_Un_B : Unit_Vectors;
Temp_Un_C : Unit_Vectors;
Unit_Radial A : Unit_Vectors;
v Length : Sin_Cos_Ratio;

—-~ begin procedure Initialize-

begin

—— —=compule unit radial vectors

se se eo ee se oo e e

in
in
in
in
in
in
out
out
out
out
out

Earth Positions;
Earth Positions;
Earth Positions;
Earth Positions;
Earth Positions;
Earth Positions;
Unit _Vectors;
Unit_Vectors;
Unit_Vectors;
Unit_Vectors;
Segment Distances) is

Unit_Radial A := U R _Vector(Lat_Of Point => Vaypoint A Lat,
Long 0 Point => Waypoint_A Long);

Unit_Radial B := U R_Vector(Lat_Of Point > Vaypoint B Lat,
Long O Point => Waypoint B Long);

Unit_Radial C := U_R Vector(Lat_0f Point => Waypoint C_Lat,
Long_0f_Point => Waypoint C_Long);

-- ——compute /N B

Temp_Un_B := Cross_Product(Left => Unit_Radial B,
Right => Unit Radial _A);

V_Length := Vector_Length(Temp Un_B);

Temp Un B := Temp_ Un B / V_Length;

Unit Normal B := Temp Un B;

-= —-compute UT B

Unit Tangent B := Cross_Product(Left

-— ——compute UN C and segment BC distance

Compute_Segment And_U N1 Vector

(Unit_Radiall => Unit_Radial B,

a) Temp Un B,

Right => Unit_Radial B);

Un1t_RadialZ = Unit Radial _C,
Unit_Normal2 =) Temp Un_C,

CAMP Software Detailed Design Document Page 487

]

Segment Distance => Segment Bc Distance);
Unit_Normal C := Temp Un_C;
-- ——compute UT C

Unit_Tangent C := Cross_Product(Left => Temp_Un_C,
Right => Unit_Radial_C);

end Initialize;

CAMP Software Detailed Design Document

separate (Waypoint_Steering.Steering Vector_Operations)

procedure Update
(Vaypoint_C_Lat
Waypoint C Long B
Unit_Normal B :
Unit Normal C
Unit Tangent B :
Unit Tangent C 3
Segment_Bc_Distance :

begin

—— ——advance "C" vectors into "B" vectors
Unit_Radial B := Unit_Radial C;
Unit Normal B := Unit_Normal C;
Unit Tangent B := Unit_Tangent_C;

—= —~calculate new values

: in Earth Positions;

in Earth_Positions;
out Unit Vectors;

: in out Unit Vectors;

out Unit_Vectors;
in out Unit _Vectors;
out Segment Distances) is

Unit_Radial C := U R Vector(Lat_Of Point => Vaypoint_C_lat,
Long_Of Point => Waypoint_C_Long);

Compute_Segment And_U N1 Vector

(Unit_Radiall => Unit_Radial B,
Unit Radial2 => Unit Radial _C,
Unit_Normal2 => Unit_Normal C,
Segment_Distance => Segment Bc_Distance);

Unit_Tangent C := Cross_Product(Left => Unit_Normal C,
Right «> Unit_Radial C);

end Update;

CAMP Software Detailed Design Document

separate (Waypoint_Steering)
procedure Compute Turn _Angle_And Direction
(Unit Normal C :
Unit Tangent B
Unit™ _Tangent _ C
Tan Of One Half_Turn Angle
Turn_DIrection

ee oo oo oo

—— ~=declaration section-

in Unit_Vectors;
in Unit_Vectors;
in Unit Vectors;

out Tan_Ratio;
out Turning Directions) is

Tan_Of Half : Tan_Ratio renames Tan 0f One Half Turn_Angle;

Cos_0f Turn_Angle : Sin Cos_Ratio;
Sin_ ~of Turn Angle] Sin Cos Ratio,

-~ begin procedure Compute Turn Angle and Direction-

begin

Cos_Of Turn_Angle := Dot_Product(Left
Right

Sin_Of Turn_Angle := Dot_Product(Left
Right

Tan_Of Half := abs(Sin_Of Turn_Angle /

=> Unit_Tangent_B,
=> Unit_Tangent C);
=> Unit Tangent “B,
«> Unit_Normal C);

(Tan | Ratio(l 20) + Cos 0f Turn_Angle));

if Sin_Of Turn Angle < 0.0 then
Turn_DIrectIon := Left_Turn;
else
Turn_Direction := Right_Turn;
end if;

end Compute_Turn_Angle And Direction;

Page 489

CAMP Software Detailed Design Document Page 490

separate (Waypoint_Steering)

package body Crosstrack And_Heading_Error_Operations is

procedure Compute When Turning
(Distance To B
Nonturning Distance
Unit Radial M
Unit Normal B
Unit Tangent B
Turn Direction
Ground _Velocity
Turn_Radius
Crosstrack Error
Heading Error

: in Segment Distances;
in Segment | “Distances;
in Unit Vectors,

in Unit_Vectors,

in Unit Vectors;

in Turning Directions;
in Velocity Vectors;

in Segment_ Distances;
out Segment_Distances;
out Angles) is separate;

procedure Compute_When Not Turning

(Unit_Radfal M
Unit Normal B
Ground_Velocity
Crosstrack Error
Heading Error

%o oe eo e oo

procedure Compute
(Distance To B
Nonturning Distance
Unit Radial M
Unit Normal B
Unit Tangent B
Turn_ “Direction
Turn_Status
Ground _Velocity
Turn Radius
Crosstrack Error
Heading_Error

end Crosstrack And_Heading Error_ Ope

in Unit_Vectors;

in Unit_Vectors;

in Velocity Vectors;
out Segment ﬁistances,
out Angles) is separate;

in Segment Distances;
in Segment | “Distances;
in Unit Vectors,

in Unit Vectors;

in Unit Vectors;

in Turning Directions;
in Turning Statuses;
in Velocity Vectors;
in Segment Distances;
out Segment Distances,
out Angles) is separate;

rations;

LS

CAMP Software Detailed Design Document Page 491

&

separate (Waypoint Steering.Crosstrack_And_Heading Error_Operations)
procedure Compute_ Vhen _Turning

(Distance "To B : in Segment Distances;
Nonturning Distance : in Segment_Distances;
Unit Radial M : in Unit Vectors;

in Unit_Vectors;

in Unit Vectors;

in Turning Directions;
in Velocity Vectors;
in Segment Distances,
out Segment_ “Distances;
out Angles) is

Unit Normal B
Unit Tangent B
Turn Direction
Ground_Velocity
Turn_Radius
Crosstrack_Error
Heading Error

—- —=declaration section-

Segment_Distances;
Segment _ “Distances;
Segment _ “Distances;
Segment Distances,
INTEGER;
Sin_Cos_Ratio;
Segment_Distances;
Segment Distances,

Crosstrack Distance
DY

D_X

DHDC

Direction
Dot_Prod_Result
NHDC

R M

e 9o 0 o se e e se

(Q —-begin procedure Compute When_Turning-

begin
—— ——=convert turn direction lo an integer value

if Turn Direction = Left Turn then
Direction := -1;

else
Direction := 1;

end if;

—— ——get the sine of the angle (which approximately equals the angle)
-~ —=between the actual and desired UR M,
—— ——and then compute crossirack distance

Dot_Prod_Result := Dot_Product (Left => Unit_Radial M,
Right => Unit Normal B)
Crosstrack Distance := Dot_Prod_Result * Earth Raaius,

—-— —~compute the radius of the circle that the missile is actually traversing
:= Turn Radius - Crosstrack Distance * Direction;

:= Distance To B - Nonturning Distance;
t= Sqrt(D X * D X + D Y * D_Y);

~ OO
< 3]

”
\&Q -- =—compule crosstrack error

Crosstrack Error := (Turn_Radius - R_M) * Direction;

CAMP Software Detailed Design Document Page 492

~— ——compute heading error

N H D C := Direction * Unit_Tangent B(Z) * D X -
Unit_Normal B(Z) “* D Y;

DHDC:= —-DIrection * Unit Normal _B(Z) *D X -
- Unit_Tangent_B(2) * D_Y;

Heading_Error := Arctan((N_H D C * Ground Velocity(N) -
DHDC * Ground Velocity(E)) /
(D H D C * Ground Velocity(N) +
N H D C * Ground Velocity(E))),

end Compute When Turning;

CAMP Software Detailed Design Document

separate (Waypoint_Steering.Crosstrack_And Heading Error_ Operations)
procedure Compute_When Not _Turning

(Unit Radial M : in Unit_Vectors;

Unit_Normal_B in Unit_Vectors;

Ground_Velocity in Velocity Vectors;

Crosstrack Error : out Segment Distances,

Heading Error out Angles) is

e eo oo ea

Dot_Prod_Result : Sin_Cos_Ratio;
DHDC : Sin_Cos_Ratio;
NHDC : Sin_Cos_Ratio;

—-begin procedure Compute When Not Turning-

begin

—— —=gel the sine of the angle (which approximately equals the angle)
~— ==between the actual and desired UR M,
—-- ~—and then compute crosstrack distance/error

Dot_Prod_Result := Dot_Product (Left => Unit_Radial N,
Right => Unit Normal | _B);
Crosstrack_Error := Dot_Prod Result * Earth Radius;

~~ ==compute heading error
NHDC := - Unit_Normal B(Z);

D HDC := Unit_Normal B(Y) * Unit_Radial M(X) -
Unit_Normal B(X) * Unit_Radial M(Y);

Heading Error := Arctan((N_H D C * Ground Velocity(N) -
DHD C * Ground Velocity(E)) /
(D H D C * Ground Velocity(N) +
NH D C * Ground Velocity(E))),

end Compute_When Not_ Turning;

Page 493

CAMP Software Detailed Design Document Page 494

x
separate (Waypoint_Steering.Crosstrack_And_Heading Error Operations)
procedure Compute

(Distance_To_B : in Segment_Distances;
Nonturning Distance : in Segment_Distances;
Unit Radial M : in Unit_Vectors;
Unit Normal B : in Unit Vectors;

in Unit Vectors;

in Turning Directions;
in Turning Statuses;
in Velocity Vectors;
in Segment_ Distances;
out Segment Distances,
out Angles) is

Unit Tangent B
Turn_Direction
Turn_Status
Ground_Velocity
Turn_Radius
Crosstrack_Error
Heading_Error

begin
if Turn_Status = Turning then
Compute When Turning

(Distance_To B => Distance To B ,
Nonturning Distance => Nonturning Distance ,
Unit Radial M => Unit Radial M ,
Unit Normal B => Unit Normal B .
Unit Tangent B => Unit Tangent B o
Turn Direction => Turn Direction 0
Ground _Velocity = Gtound_Velocity y
Turn Radius => Turn_Radius 5
Crosstrack Error => Crosstrack Error y
Heading Error => Heading Error);
else . ﬁ
Compute_When Not Turning

“(UnIt_Radial M => Unit_Radial M ,
Unit Normal B => Unit Normal B -
Ground Velocity => Ground Velocity c
Crosstrack Brror => Crosstrack Error ,
Heading_Ertor => Heading_Error)

e

end if;
end Compute;

-

i

[5e

CAMP Software Detailed Design Document

separate (VWaypoint Steering)
function Distance _To Current Waypoint
(Unit_Radial M : Unit_Vectors;
Unit_Tangent B : Unit_Vectors) return Segment Distances is

-— ==local declarations-

Dot_Prod Result : Sin_Cos_Ratio;

--begin funciion Distance To Current Waypoini-

begin

== ==dot product of UR M and UT B, because of the geometry, equals
-- —-=the angle between UR M and URB
Dot_Prod_Result := Dot Product (Left => Unit_Radial N,
Right => Unit Tangent _B);

return Dot _Prod Result * Earth Radius;
end Distance_ To Current Vaypoint,

Page 495

CAMP Software Detailed Design Document Page 496

separate (Waypoint_Steering)
procedure Compute Turning And Nonturning Distances

(Tan_ “0f One Half Turn_Angle : in Tan_Ratio;
Segment Bc_Distance : in Distances;
Turn Radius ¢ in Distances;
Turning Distance : out Distances;
Nonturning_Distance : out Distances) is

-- ==declaration section-

Temp_Turning Distance : Distances;

-~ begin procedure Compute Turning And Nonturning Distances-

begin
Temp_Turning Distance := Turn_Radius * Tan_Of One Half Turn_Angle;
Turning Distance := Temp Turning Distance;
Nonturning Distance := Segment_Bc_DIstance - Temp_Turning Distance;

end Compute Turning And Nonturning Distances;

CAMP Software Detailed Design Document
R

separate (Waypoint_Steering)

package body Turn_Test_Operations is

function Stop Test

(Distance_To B : Distances;
Nonturning Distance : Distances;
Lead Distance : Distances)

return Turning Statuses is separate;

function Start Test

(DIstance _To B : Distances;
Turning_Distance : Distances;
Lead Distance : Distances)

return Turning Statuses is separate;

end Turn_Test Operations;

Page 497

CAMP Software Detailed Design Document

separate (Waypoint_Steering.Turn Test_Operations)
function Stop Test

(ﬁistance_To_B : Distances;
Nonturning Distance : Distances;
Lead_Distance : Distances) return Turning Statuses is

—— —=declaration section-

Turn_Status : Turning Statuses := Turning;

—=begin function Stop Test-

begin
if Distance _To B <= (Lead_Distance + Nonturning Distance) then
Turn_Status := Not_Turning;
end if;
return Turn_Status;

end Stop Test;

CAMP Software Detailed Design Document Page 499

separate (Waypoint_Steering.Turn Test Operations)
function Start Test

(Distance To B :
Turning Distance ¢
Lead Distance :

Distances;
Distances;

Distances) return Turning Statuses is

-=— ==declaration section-

Turn_Status : Turning_Statuses := Not_Turning;

begin

if Distance To_B <= (Lead_Distance + Turning Distance) then
Turn_Status := Turning;

end if;

return Turn_Status;

end Start_Test;

CAMP Software Detailed Design Document Page 500

vith Geometric_Operations;
separate (Waypoint Steering)
package body SteerTng_Vector_Operations_with_Arcsin is

package Geo renames Geometric_Operations;

function U R Vector is newv
Geo.Unit_Radial Vector (Indices => Indices,
Earth_Positions => Earth Positions,
Sin_Cos_Ratio => Sin Cos_Ratio,
Unit_Vectors => Unit_Vectors);

procedure Compute_Segment And U N1 Vector is new
Geo. Compute Segment And Unit_Normal Vector With Arcsin

(Indices™ “=> Indices,

Earth Distances => Earth Distances,
Segment_Distances => Segment_Distances,
Radians => Radians,

Sin_Cos _Ratio => Sin_Cos_Ratio,
Unit Vectors => Unit Vectors,
Earth_Radius => Barth_Radius);

—— —=local declarations-

Unit_Radial B : Unit_Vectors;
Unit_Radial C : Unit_Vectors;

pragma PAGE;
procedure Initialize
(Vaypoint_A Lat
Waypoint_. A _Long
Vaypoint_ "B Lat
Vaypoint_ "B _Long
Vaypoint | C Lat
Waypoint C Long
Unit Normal B
Unit Normal C
Unit Tangent B
Unit Tangent ()
Jegment Be_DIstance

in Earth Positions;
in Earth Positions;
in Earth Positions;
in Earth Positions;
in Barth Positions;
in EBarth Positions;
out Unit_Vectors;
out Unit Vectors;
out Unit _Vectors;
out Unit_Vectors;
out Segment Distances) is

- ——declaration section-

Temp_Un_B : Unit_Vectors;
Temp_Un C ¢ Unit_Vectors;
Unit_Radial A : Unit_Vectors;
V_Length : Sin_Cos_Ratio;

\

o

B

CAMP Software Detailed Design Document Page 501
- —-—begin procedure Initialize-

begin
- ~—compute unit radial vectors

Unit_Radial A := U R Vector(Lat_Of Point => Waypoint_ A Lat,
Long Of Point => Waypoint A Long);

Unit_Radial B := U R _Vector(Lat_ 0f Point => Waypoint_ B _Lat,
Long Of_Point => Waypoint B_Long);

Unit_Radial C := U_R Vector(Lat_ Of Point => Waypoint_ C _Lat,
Long_Of Point => Waypoint_C_Long);

- —-compute UN B

Temp_Un_B t= Cross_Product(Left => Unit_Radial B,
Right => Unit Radial A),

V_Length := Vector Length(Temp Un_B);

Temp_Un_B t= Temp Un_B / V_Length;~

Unit Normal B := Temp Un B,
== -—compute UT B

Unit_Tangent B := Cross_Product(Left => Temp Un B,
Right => Unit_Radial B);

- -=-compute UN C and segment BC distance

Compute_Segment And_U N1 Vector
(Unit_Radiall => Unit_Radial B,
Unit_Radial2 => Unit_Radial_C,
Unit_Normal2 => Temp_Un_C,
Segment_Distance => Segment “Be _Distance);

Unit Normal C := Temp_Un C;
- ~~compute UT C

Unit_Tangent _C := Cross_Product(Left => Temp_Un C,
Right => Unit_Radial C);

end Initialize;

pragma PAGE;
procedure Update

(Vaypoint_C Lat ¢ in Earth_Positions;
Vaypoint C Long : in Earth Positions;
Unit Normal B : out Unit_Vectors;
Unit_Normal C : in out Unit_Vectors;
Unit_Tangent B : out Unit_Vectors;
Unit_Tangent C : in out Unit_Vectors;
Segment Be_ DIstance g out Segment Distances) is

begin

- ——advance "C" vectors into "B" vectors

CAMP Software Detailed Design Document Page 502

Unit_Radial B := Unit_Radial C;
Unit Normal B := Unit_Normal C;
Unit_Tangent B := Unit_Tangent C;

- ~~calculate new values

Unit_Radial C := U_R Vector(Lat_Of Point => Waypoint_C_Lat,
Long_Of Point => Vaypoint_C_Long);

Compute_Segment And_U N1 Vector
(Unit_Radiall => Unit_Radial B,
Unit Radial2 => Unit Radial™ _C,
Unit Norma12 =) Unit Normal c,
Segment Distance => Segment Bc 5istance),

Unit_Tangent C := Cross_Product(Left => Unit Normal C,
Right => Unit_Radial C);

end Update;

end Steering Vector Operations_With Arcsin;

CAMP Software Detailed Design Document

separate (Waypoint Steering)
function Distance To Current _Waypoint_With_Arcsin
(Unit Radial M : Unit_Vectors;
Unit_Tangent_B : Unit_Vectors) return Segment Distances is

-~ ==local declarations-

Dot_Prod_Result : Sin Cos_Ratio;

--begin function Distance To Curr.... Waypoini-

begin
—— ==dot product of UR M and UT B, because of the geometry, equals
~= —=the angle between UR Mand URB
Dot_Prod_Result := Dot Product (Left => Unit Radial M,
Right => Unit_Tangent B);
return Arcsin(Dot_Prod_Result) * Earth Radius;

end Distance_To_Current Waypoint With Arcsin;

Page 503

CAMP Software Detailed Design Document Page 504

g

(This page left intentionally blank.)

CAMP Software Detailed Design Document Page 505

3.3.4.2 AUTOPILOT (PACKAGE BODY) TLCSC (CATALOG #P305-0)

This package body contains bodies for the the three packages nested in the
Autopilot package. Each of these packages is separately compiled.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.4.2.1 REQUIREMENTS ALLOCATION

This part meets the following CAMP requirements.

| Name | Type | Req. Allocation |

| Integral Plus Proportional

generic package
Pitch autopilot

|

generic package | R059
I
generic package |
I

|
|
| Lateral/Directional autopilot
I

3.3.4.2.2 LOCAL ENTITIES DESIGN

of

None.

3.3.4.2.3 INPUT/OUTPUT

None.

3.3.4.2.4 LOCAL DATA

None.

3.3.4.2.5 PROCESS CONTROL

Not applicable.

3.3.4.2.6 PROCESSING
The following describes the processing performed by this part:
package body Autopilot is
package body Integral Plus Proportional Gain is separate;
%9 package body Pitch Autopilot is separate;

package body Lateral Directional Autopilot is separate;

CAMP Software Detailed Design Document Page 506

end Autopilot;

3.3.4.2.7 VUTILIZATION OF OTHER ELEMENTS

None.

3.3.4.2.8 LIMITATIONS

None.

3.3.4.2.9 LLCSC DESIGN

3.3.4.2.9.1 INTEGRAL_PLUS_PROPORTIONAL GAIN (PACKAGE BODY) PACKAGE DESIGN (CATALOG
#P306-0)

This part contains subprograms to implement the calculations and logic
necessary to implement an integral plus proportional gain control loop. It
also contains a subprogram to update the value for the proportional gain.
The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.4.2.9.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R048.

3.3.4.2.9.1.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.1.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |

Input_Signals	generic float	Type of values input to part
Gains	generic float	Type of gain applied to input
Integrated_Signals	generic float	Input signal put through

| integrator |

Data objects:

CAMP Software Detailed Design Document Page 507

The following table describes the generic formal objects required by this part:

Name	Type	Description
Initial	Gains	Initial value of proportional gain
Proportional Gain		applied to input signal
Subprograms:

The following table describes the generic formal subroutines required by this
part:

| Name | Type | Description |

"hn Overloads Input Signals * Gains return |

function | i

| Integrated_Signals for proportional gain|
Tustin function | Performs Tustin integrator with limit |
I

Integrate |

3.3.4.2.9.1.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Proportional Gain | Gains | Gain applied to input signal. |

3.3.4.2.9.1.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.1.6 PROCESSIN.
The following describes the p., ,.ssing performed by this part:

separate (Autopilot)
package body Integral Plus Proportional Gain is

Proportional _Gain: Gains := Initial Proportional Gain;

end Integral Plus Proportional Gain;

CAMP Software Detailed Design Document Page 508

3.3.4.2.9.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.4.2.9.1.8 LIMITATIONS

None.

3.3.4.2.9.1.9 LLCSC DESIGN

None.

3.3.4.2.9.1.10 UNIT DESIGN
3.3.4.2.9.1.10.1 INTEGRATE UNIT DESIGN

This function performs the integral plus proportional gain function. The logic
to perform this operation is as follows:

Accept new input signal Use Tustin Integrator with Limit to adjust input signal
(If Integrator state within limit do not change input. If Integrator state at
positive limit and input signal > O then set input to 0. If Integrator state
at negative limit and input signal < O then set input to 0.) Use Tustin
Integrator to perform integration and limit functions. Output = Proportional -
Gain * input signal + Tustin Integrator State.

3.3.4.2.9.1.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R048 (2).

3.3.4.2.9.1.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.1.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

| Name | Type | Description |

| Signal | Input_Signals | Value of Input_Signal for integral |
| I | plus proportional gain. |

CAMP Software Detailed Design Document Page 509
B
* 3.3.4,2.9.1.10.1.4 LOCAL DATA

None.

3.3.4.2.9.1.10.1.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.1.10.1.6 PROCESSING
The following describes the processing performed by this part:
function Integrate (Signal: Input_Signals) return Integrated Signals is
begin
return (Tustin_Integrate (Signal) + Signal * Proportional Gain);

end Integrate;

3.3.4.2.9.1.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

@ The folloving tables describe the elements used by this part but defined
elsevhere in the parent top-level component:

Subprograms and task entries:

The followving table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top-level component:

| Name | Type | Source | Description |

Mk function | Generic | Overloads Input_Signals * Gains |
Fml Subp| return Integrated Signals for |
| proportional gain |

Generic | Performs Tustin integrator with |
I

Fml Subp| 1limit

Tustin function

Integrate

Data types:

The folloving table summarizes the types required by this part and defined
elsevhere in the parent top-level component:

CAMP Software Detailed Design Document Page 510

-

&
Name	Type	Source	Description
Input_Signals	generic	Generic	Type of values input to part
	float	fml type	
Gains	generic	Generic	Type of gain applied to input
	float	fml type	
Integrated_Signals	generic	Generic	Input signal put through
	float	fml type	integrator
Data objects:			
The following table summarizes the objects required by this part and defined			
elsevhere in the parent top level component:			
Name	Type	Source	Description
Proportional Gain	Gains	Package Body	Gain applied to input
I I I | signal I
3.3.4.2.9.1.10.1.8 LIMITATIONS
None. €

3.3.4.2.9.1.10.2 UPDATE_PROPORTIONAL GAIN UNIT DESIGN

This procedure updates the value stored for the proportional gain.

3.3.4.2.9.1.10.2.1 REQUIREMENTS ALLOCATION

This'part meets CAMP requirement R048.

3.3.4.2.9.1.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.1.10.2.3 INPUT/OUTPUT

GENERIC PARAMETERS:

Data types:

The following table summarizes the generic formal types required by this part:
Data types:

The following table summarizes the generic formal types required by this part: 8

CAMP Software Detailed Design Document Page 511

| Name | Type | Description

| Gains | generic float | Type of gain applied to input|

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

| Name | Type | Description |
| New_Proportional | Gains | Value to update proportional gain |
| Gain I | l

3.3.4.2.9.1.10.2.4 LOCAL DATA

None.

3.3.4.2.9.1.10.2.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.1.10.2.6 PROCESSING 0
The following describes the processing performed by this part:
procedure Update Proportional Gain (New_Proportional Gain : in Gains) is
begin
Proportional Gain := New Proportional Gain;

end Update Proportional Gain;

3.3.4.2.9.1.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:
Data objects:

The following table summarizes the objects required by this part and defined
elsevhere in the parent top level component:

| Name | Type | Source | Description |

| Proportional Gain | Gains | Packsge Body | Gain applied to input |
| | | signal

7

CAMP Software Detailed Design Document - Page 512

3.3.4.2.9.1.10.2.8 LIMITATIONS

None.

3.3.4.2.9.2 LATERAL DIRECTIONAL AUTOPILOT (PACKAGE BODY) PACKAGE DESIGN (CATALOG
#P308-0)

This package body implements the Lateral Directional Autopilot function. It

contains the instantiation of the Integral Plus Proportional Gain packages for

the integrator loops of both the Roll Command Error and the Lateral

Acceleration feedback, as well as subprogram bodies for operations declared in
the package specification.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.
3.3.4.2.9.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064.

3.3.4.2.9.2.2 LOCAL ENTITIES DESIGN

Packages:
Instantiates Integral plus proportional gain package for aileron roll commanc

and for filtered lateral directional acceleration. Also instantiates Tustin
integrator to implement each of the integral plus proportional gain packages.

3.3.4.2.9.2.3 INPUT/OUTPUT
GENERIC PARAMETERS:

Data types:

The following table summarizes the generic formal types required by this part:

o 3

CAMP Software Detailed Design Document

| Name | Type
Roll Commands Generic
Roll _Attitudes Generic
Roll _Command_Gains Generic
Missile Accelerations Generic
Acceleration_Gains Generic
Rudder_Cmd_Roll Rate_ Generic
Gains
Gravitational _ Generic
Accelerations
Velocities Generic
Trig Value Generic
Fin Deflections Generic
Feedback Rates Generic
Feedback Rate_Gains Generic

i8Y
®

Float
Float
Float
Float
Float
Float
Float
Float
Float
Float
Float

Float

Type for input commands
from user program

Type for measure missile
roll attitude

Gain to Roll commands
in integrator loop

Type for measured lateral
acceleration

Proportional gain applied
measured acceleration

Gain applied to roll rate
feedback for rudder cmd

Type for measured gravi-
tational acceleration

Type for measured missile
velocity

Type for result of sin
function

Type for rudder and
aileron commands

Type for measured roll
and yav rates

Gain applied to yaw rate
feedback

Data objects:

The following table summarizes the
part:

generic formal objects required by this

Page 513

CAMP Software Detailed Design Document

Initial_Aileron
Integrator_Gain

Initial Aileron
Integrator Limit

Initial Roll Command

Proportional Gain

Initial Roll Rate
Gain For Alleron
Initial Yav _Rate
Gain For Aileron
Initial Rudder
Integrator Gain
Initial Rudder
Integrator_Limit
Initial Yaw Rate
Gain For Rudder
Initial Roll Rate_
Gain For Rudder

Initial Acceleration_
Proportional _Gain

Roll Command_Gains
Fin Deflections

Roll Command_Gains

Feedback Rate_
Gains

Feedback Rate_
Gains

Acceleration_
Gains

Fin Deflections

Feedback Rate_
Gains

Rudder Cmd Roll
Rate Gains

Acceleration_Gains

Gain used to initialize
aileron loop
Initial limit on ailer-
on integrator output
Gain used to initialize
integrator plus pro-
portional gain loop
Gain to measured roll
rate for aileron cmd
Gain to measured yaw
rate for aileron cmd
Initial gain in rudder
integrator loop
Initial limit on rudder
integrator output
Gain to measured yaw
for rudder command
Gain to measured roll
rate for rudder cmd
Initial Prop. gain in
integrator plus pro-
portional gain loop

Su

pa

bprograms:

rt:

The following table describes the generic formal subroutines required by this

Page 514

CAMP Software Detailed Design Document

Roll Error Limit

Aileron_Command_Limit

Roll_Command_Filter

filters

function
function

function

Limiter for roll error

Limit on command signal to

aileron

Filter applied to input roll
command

| Rudder control loop limiters, filters, and operations

Rudder Command_Limit
Yaw_Rate_Filter
Acceleration Filter

Sin

function
function
function

function

Limit on command signal to
rudder
Filter applied to measured
yav rate
Filter applied to measured
acceleration feedback
Sin function applied to
measured roll attitude

| Aileron control loop gain and updater functions

NN

Nah

function

function

function

Subtracts Roll Attitudes from
Roll_Commands returning Roll_
Brror

Multiplies Roll Commands by

Roll Command Gains for

input to Aileron integrator
Multiplies Feedback Rates for

measured roll rate by

Feedback Rate Gains

for Fin_Deflections

| Rudder control loop gain and updater functions

Ngh

Mg

function

function

function

function

Multiplies Missile Accelera-
tions by Acceleration Gains
returns Pin Deflections for
proportional loop of int-
egral plus proportional gain

Multiplies Feedback Rates by
Rudder Cmd_Roll Rate Gains
returns Peedback Rates

Multiplies Gravitational
Accelerations by Trig Value
returns Gravitational
accelerations

Divides Gravitational
Accelerations by Velocities
returns Feedback Rates

Page 515

CAMP Software Detailed Design Document

3.3.4.2.9.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Objects for Aileron Control Loop

| Aileron_Cmd_Roll_

Feedback Rate Gains

I |
| Rate Gain | | in aileron command loop
| Aileron_Cmd_Yaw_ | Feedback Rate Gains | Gain on yaw rate feedback
Rate_ Gain™ | | in aileron command loop

I
Gain on roll rate feedback|
I
I
I
I

I

| Objects for rudder control loop
Rudder_Cmd Roll	Rudder Cmd_Roll_	Gain to roll rate feedback
Rate Gain	Rate Gains	in rudder command loop
Rudder Cmd Feedback_	Feedback Rate Gains	Gain to yaw rate feedback
		in rudder command loop

Rate Gain

3.3.4.2.9.2.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.6 PROCESSING

The following describes the processing performed by this part:
vith Signal Processing;

separate (Autopilot)

package body Lateral Directional Autopilot is

-- --Initial values for Aileron Control Loop

Aileron Cmd_Roll Rate_Gain : Feedback Rate Gains :=
Initial RoIl Rate Gain_For Aileron;
Aileron_Cmd_Yaw_Rate_Gain : Peedback_Rate_Gains t=

Initial Yav _Rate Gain_For_Aileron;
-- --Initial values for rudder control loop

Rudder Cmd_Roll Rate Gain : Rudder_Cmd_Roll Rate Gains :=
Initial Roll Rate | Gain For Rudder;

Rudder_Cmd_Feedback Rate Gain : Feedback Rate Gains t=
Initial_Yav_Rate_Gain_For_ Rudder;

-~ Packages for Aeliron control loop
package Aileron Cmd_Tustin_Integrator is new

Signal Processing.Tustin _Integrator With Limit
(Signals => Roll_Commands,

Page 516

CAMP Software Detailed Design Document Page 517

‘§;3 States => Fin_Deflections,
Gained_Signals => Fin Deflections,
Gains => Roll Command Gains,

Initial_Tustin_Gain => InitIal_Aileron_Integrator_Gain,
Initial_Signal Level 2> 0.0,
Initial Signal Limit => Initial Aileron_Integrator Limit);

package Aileron Cmd_Integral Plus_Proportional Gain is new
Integral _ Plus ProportionaI Gain

(Input_Signals ~ => Roll_Commands,

Gains => Roll Command Gains,

Integrated Sigrals => Pin Deflections,

Initial Proportional Gain => Initial Roll Command _Proportional Gain,
Tustin Integrate =) Aileron Cmd Tustin Integrator Integrate);

package Aileron_Loop renames Aileron Cmd_Integral Plus Proportional Gain;
-- Packages for rudder control loop

package Rudder Cmd Tustin Integrator is new
Signal Processing.Tustin_Integrator With_Limit

(Signals => Missile Accelerations,
States => Fin_Deflections,
Gained_Signals => Fin_Deflections,
Gains => Acceleration _Gains,
Initial Tustin Gain => Initial Rudder_ Integrator_ Gain,
; Initial™, Signal Level => 0.0,
‘? Initial_Signal Limit => Initial_Rudder_Integrator_Limit);

package Rudder Cmd_Integral Plus Proportional Gain is new
Integral _ Plus Proportional Galn

(Input_Signals => Missile Accelerations,

Gains~ => Acceleration _Gains,

Integrated_Signals => Fin Deflections,

Initial Proportional Gain => Initial Acceleration _Proportional Gain,
Tustin_Integrate a> Rudder Emd _Tustin Integrator Integrate);

package Rudder_Loop renames Rudder Cmd Integral Plus_Proportional Gain;

end Lateral Directional Autopilot;

3.3.4.2.9.2.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part:
1. Signal Processing

UTILIZATION OF EXTERNAL ELEMENTS:
Packages:

The folloving table summarizes the external packages required by this part:

CAMP Software Detailed Design Document Page 518

@

| Name | Type |Source| Description |

_________________________ U o e e e e o e e - -~ s = e i o 2
Tustin_Integrator_ | Generic 1. This package is required for
With Limit Package the integration function in

the integral plus proportional
packages. It is instantiated
for the roll command control
loop and for the acceleration
feedback control loop.

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Packages:

The following table summarizes the packages : :‘quired by this part but defined
elsevhere in the parent top level component:

| Name | Type | Source | Description |

Performs integrator
function on roll

Generic| Package i I
|
| command error and | e
I I
I I

Integral Plus Proportional
Package| Spec.

Gain

lateral accelera-

I
I
i
| tion feedback

Data types:

The following table summarizes the types required by this part and defined in
ancestral units:

| Name | Type | Source | Description |

Aileron_Rudder Commands	Record	Package Spec.	Defines record with
			components for rud-
			and aileron commands

3.3.4.2.9.2.8 LIMITATIONS

None.

3.3.4.2.9.2.9 LLCSC DESIGN

None. @

o

éﬁb‘

le

CAMP Software Detailed Design Document

3.3.4.2.9.2.10 UNIT DESIGN

3.3.4.2.9.2.10.1 INITIALIZE_LATERAL DIRECTIONAL AUTOPILOT UNIT DESIGN

Initializes state of integrator in lateral directional autopilot.

3.3.4.2.9.2.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064 (2).

3.3.4.2.9.2.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.1.3 INPUT/OUTPUT

GENERIC PARAMETERS:

Data types:

Page 519

The following table summarizes the generic formal types required by this part:

| Name Type Description

Fin _Deflections Generic Float Type for rudder and
aileron commands

Missile Accelerations| Generic Float Type for measured
lateral acceleration

Roll_Commands Generic Float Type for input commands
from user program

Feedback Rates Generic Float Type for measured roll
and yav rates

Velocities Generic Float Type for measured
missile velocity

Roll Attitudes Generic Float Type for measure missile

roll attitude

Subprograms:

The following table summarizes the generic

part:

formal subroutines required by this

CAMP Software Detailed Design Document Page 520

| For Aileron State Init1alization |
W function | Subtracts Roll_Attitudes from
Roll Commands returning Roll _
Error

Mk function | Multiplies Roll Commands by
Roll Command Gains for input
to Alleron integrator

M function | Multiplies Feedback Rates for
measured roll and yaw rates
by Feedback Rate Gains

for Fin_Deflections

| For Aileron State Initialization |

Mah function | Multiplies Gravitational
Accelerations by Trig Value
returns Gravitational
Accelerations

nyw function | Divides Gravitational Acceler-
ations by Velocities returns
Feedback Rates

N function | Multiplies Feedback _Rates by
Rudder Cmd Roll Rate _Gains
returns Feedback Rates

. function | Multiplies Missile Accelera-
tions by Acceleration Gains
returns Fin Deflections for
proportional loop of
integral plus proportional
gain

Mgt

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

CAMP Software Detailed Design Document Page 521

| Description

Initial Aileron_
Command
Initial Rudder_ Command

Gravitational _
Acceleration
Roll _Command
Roll Attitude
Roll Rate

Yaw_Rate

Fin Deflections
Fin Deflections

Gravitational _
Accelerations
Roll Commands
Roll Attitudes
Feedback Rates

Feedback Rates

Initial state for
aileron deflection

Initial state for rudder
deflection

Measured gravitational
acceleration from NAV

Initial roll command

Measured roll attitude

Measured roll rate feed-
back

Measured yaw rate feed-
back

Missile Velocity Velocities Measured velocity from
NAV
Lateral Acceleration Missile_Accel- Measured lateral accel-
erations from NAV

3.3.4.2.9.2.10.1.4 LOCAL DATA
Data objects:

. The folloving table describes the data objects maintained by this part:

| Description |

| Name | Type

Gained_Roll
Command SIgnal

| | Fin_Deflections| Input to integrator
| |
| Initial_Alleron_ |
I I
I I
I |

Fin Delfections| Initial state of integrator

State | for aileron
Initial Rudder_ Fin Deflections| Initial state of integrator
State for rudder
3.3.4.2.9.2.10.1.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.1.6 PROCESSING

The following describes the processing performed by this part:

Autopilot
in Fin_Deflections;
in Fin_Deflections;
in Gravitational Accelerations;

procedure Initialize Lateral Directional
(Initial Aileron_Command
Initial Rudder_Command
Gravitational Acceleration

Roll Command ~ in Roll Commands;

Roll Attitude in Roll Attitudes;
Roll Rate in Peedback Rates;
Yav_Rate in Feedback Rates;

CAMP Software Detailed Design Document Page 522

Missile Velocity : in Velocities;
Lateral Acceleration ¢ in Missile Accelerations) is

Gained_Roll Command_Signal : Fin_Deflections;

Initial Aileron_State : Fin Deflections;

Initial Rudder_State : Fin_Deflections;
begin

Gained_Roll Command Signal :=
(Roll Command - Roll Attitude) *
Initial Roll Command Proportional Gain;

Initial Aileron State :=
Initial Aileron Command -
Gained Roll Command _Signal +
Yav Rate * Aileron Cmd Yaw Rate Gain +
Roll Rate * Aileron Cmd_Yaw Rate Gain;

Initial Rudder_State :=
Initial Rudder_Command -
(Yaw_ Rate -
(Gravitational Acceleration * Sin (Roll Attitude)
/ Missile _Velocity) -
(Roll Rate * Rudder Cmd Roll Rate _Gain)
) * Rudder Cmd Feedback Rate Gain -
Lateral Acceleration * Initial Acceleration_Proportional Gain;

Aileron_Cmd Tustin Integrator.Reset
(Integrator_State => Initial Aileron State,
Signal => 0.0);

Rudder Cmd Tustin_Integrator.Reset
(Integrator_State => Initial Rudder_ State,
Signal => 0.0);

end Initialize Lateral Directional Autopilot;

3.3.4.2.9.2.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level component:

e

&

CAMP Software Detailed Design Document

| Type |

Source

Description |

Aileron _Cmd _Tustin_
Integrator

Rudder_Cmd_Tustin_
Integrator

Package| Package
| Body

Package| Package
| Body
I

Implements integrator |
for roll command |
loop |

Implements integrator |
for acceleration |
feedback loop |

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by

this part and defined elsevhere in the parent top level component:

Page 523

Name | Type | Source | Description |
Reset | Function | Aileron_Cmd_Tustin_ | Reinitializes state |
| | Integrator (Pack.)| of integrator |
Reset | Function | Rudder Cmd_Tustin_ | Reinitializes state |
| | Integrator (Pack.)| of integrator |

Data objects:

The following table summarizes the objects requirea by this part and defined
elsevhere in the parent top level component:

| Name | Type | Source| Description
Aileron Roll Command Gains | Body |Gain on input to aileron
Integrator_Gain command loop integrator
Aileron_Cmd_Roll_ Feedback Rate Gains| Body |Gain on roll rate feedback
Rate Gain in aileron command loop
Aileron_Cmd_Yaw_ Feedback Rate Gains| Body |Gain on yav rate feedback
Rate Gain~ in aileron command loop
Rudder Cmd Roll Rudder Cmd_Roll _ Body |Gain to roll rate feedback
Rate Gain Rate Gains in rudder command loop
Rudder Cmd_Feedback_| Feedback Rate Gains| Body |[Gain to yaw rate feedback
Rate Gain in rudder command loop
Acceleration _Propor-| Acceleration_Gains | Body |Proportional gain to
tional_ Gain acceleration feedback in
Rudder Integrator Acceleration_Gains | Body |Gain on acceleration input

Gain

to rudder command loop
integrator

3.3.4.2.9.2.10.1.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 524

3.3.4.2.9.2.10.2 COMPUTE_AILERON_RUDDER COMMANDS(FUNCTION BODY) UNIT DESIGN

Computes Aileron and Rudder commands based on roll command input and current
missile state.

3.3.4.2.9.2.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064 (3).

3.3.4.2.9.2.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.2.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table summarizes the external types required by this part:

| Name | Type | Description |
Roll Commands Generic Float Type for input commands
from user program
Roll _Attitudes Generic Float Type for measure missile
roll attitude
Feedback Rates Generic Float Type for measured roll
and yav rates
Missile Acclerations | Generic Float Type for measured
lateral acceleration
Fin_Deflectiuns Generic Float Type for rudder and
aileron commands
Velocities Generic Float Type for measured
missile velocity
Gravitational _ Generic Float Type for measured gravi-
Accelerations tationll acceleration
Subprograms:

The following table summarizes the generic formal subroutines required by this
part:

CAMP Software Detailed Design Document

Roll Error Limit |
Aileron Command_Limit |
|
|

Roll Command Filter

function
function

function

| Limiter for roll error |
| Limit on command signal to |
| aileron |
| Filter applied to input roll |
| command |

Rudder Command Limit
Sin
Yaw_Rate Filter

Acceleration_Filter

function
function
function

function

Limit on command signal to
rudder

Sin function applied to
measured roll attitude
Filter applied to measured
yav rate

Filter applied to measured
acceleration feedback

Nat

function

function

Subtracts Roll Attitudes from
Roll Commands returning Roll_
Error

Multiplies Feedback Rates for

measured roll and yav rate
by Feedback Rate Gains
for Fin_Deflections

| Rudder control loop gain

and updater functions |

L]

"/"

LML)

function

function

function

Multiplies Gravitational
Accelerations by Trig Value
returns Gravitational
Accelerations

Divides Gravitational Acceler-
ations by Velocities returns
Feedback _Rates

Multiplies Feedback Rates by
Rudder_Cmd _Roll Rate Gains
returns Feedback Rates

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

Page 525

CAMP Software Detailed Design Document

Roll Command
Roll Attitude
Roll_Rate

Yaw_Rate

Lateral Acceleration

Missile Velocity

Gravitational _
Acceleration

Roll Commands
Roll Attitudes
Feedback Rates

Feedback Rates
Missile Accel-

erations
Velocities

Acceleration

Gravitational_

Input roll command

Measured roll attitude

Measured roll rate feed-
back

Measured yav rate feed-
back

Measured
from Na»

Measured veiocity from
NAV

Measured gravitational

S acceleration from NAV

ral accel-

3.3.4.2.9.2.10.2.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

Type I

Despript{on

Filtered Roll_
Command
Roll Error

Aileron_Integral _
Output
Filtered_Yaw Rate

Filtered Lateral_
Acceleration
Rudder Integral_
Output
Fin_Command

Roll_Commands
Roll_Commands
Fin Deflections
Feedback _Rates
Missile Accel-
erations

Fin Deflections

Aileron_Rudder_
Commands

Input roll command after
filtering

-Filtered_Roll Command -
Roll_Attitude (Limited)

Output from aileron loop inte-
gral plus prop. gain

Yav rate feedback after
filtering

Acceleration feedback after
filtering

Output from rudder loop inte-
gral plus prop. gain

Contains aileron and rudder
command components

3.3.4.2.9.2.10.2.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.2.6 PROCESSING

The following describes the processing performed by this part:

function Compute Aileron Rudder_Commands
(Roll_Command
Roll Attitude
Roll Rate

¢ in Roll Commands;
¢ in Roll Attitudes;
: in Feedback Rates;

Page 526

CAMP Software Detailed Design Document Page 527

13
i
. Yav_Rate : in Feedback Rates;
Lateral Acceleration : in Missile Accelerations;
Missile Velocity : in Velocities;
Gravitational Acceleration : in Gravitational Accelerations)
return Aileron_Rudder_Commands is
Filtered_Roll_Command : Roll_Commands;
Roll Error : Roll Commands;
Aileron Integral _Output : Fin Deflections;
Filtered Yaw Rate : Feedback Rates;
Filtered Lateral _Acceleration: Missile Accelerations;
Rudder Integral Output G Fin_Deerctions;
Fin_Command : Aileron_Rudder_ Commands;
begin
- --Aileron command computations
Filtered Roll Command := Roll Command Filter (Roll_Command);
Roll Error := Filtered Roll Command - Roll_Attitude;
Roll Error := Roll Error_Limit (Roll_Error);
Aileron_Integral Output := Aileron_Loop.Integrate (Roll_Error);
C:T Filtered_Yav Rate := Yaw_Rate Filter (Yaw_Rate);

FPin Command.Aileron Command :=
Aileton Command Eimit (Aileron _Integral Output -
Filtered Yav Rate * Aileron Cmd Yav Rate Gain -
Roll Rate * Aileron_Cmd_Roll Rate Gain);™

-— --Rudder command computations

Filtered Lateral Acceleration :=
Acceleration_Filter (Lateral Acceleration);

Rudder_Integral Output := Rudder Loop.Integrate
(Filtered_Lateral Acceleration);

Fin_Command.Rudder Command :=
Rudder Command _ Limit

(Rudder_Integral Output +

(Filtered Yaw Rate -
(Gravitational Acceleration * sin (Roll Attitude) /

Missile Velocity) -

Roll Rate * Rudder Cmd_Roll Rate Gain) *
Rudder_Cmd_Feedback Rate_Gain

)s
return (Fin_Command);

%gb end Compute_Aileron Rudder Commands;

CAMP Software Detailed Design Document

3.3.4.2.9.2.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level component:

| Name | Type | Source | Description |
Aileron Cmd_Integral | Package| Package Implements integral
Plus Proportional _ Body plus proportional

Gain (renamed: gain for roll command

Aileron Loop)
Rudder Cmd _Integral Package| Package Implements integral

Plus Proportional Body plus proportional
Gain (renamed: gain for acceleration
Rudder_Loop) feedback

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top level component:

| Name | Type | Source | Description |
Integrate | Function | Aileron_Loop Performs integral
plus proportional
gain on roll error
Integrate | Function | Rudder Loop Performs integral
plus proportional
gain on accelera-
tion feedback

Data types:

The following table summarizes the types required by this part and defined in
ancestral units:

Name	Type	Source	Description
Aileron_Rudder Commands	Record	Package Spec.	Defines record with
I		components for rud-	
			and aileron commands

Page 528

CAMP Software Detailed Design Document Page 529

Data objects:

The following table summarizes the objects required by this part and defined
elsevhere in the parent top level component:

| Name | Type | Source| Description |
Aileron Cmd_Yaw_ Feedback Rate Gains| Body |Gain on yaw rate feedback
Rate_Gain in aileron command loop
Aileron Cmd_Roll _ Feedback Rate Gains| Body [Gain on roll rate feedback
Rate Gain in aileron command loop
Rudder Cmd_Roll _ Rudder_Cmd_Roll _ Body |Gain to roll rate feedback
Rate Gain Rate Gains in rudder command loop
Rudder Cmd_Feedback | Feedback Rate Gains| Body |Gain to yaw rate feedback
Rate Gain in rudder command loop

3.3.4.2.9.2.10.2.8 LIMITATIONS

None.

3.3.4.2.9.2.10.3 UPDATE_AILERON_INTEGRATOR GAIN UNIT DESIGN

Updates the current value of the Aileron Integrator Gain as controlled by the
Aileron Cmd_Tustin_Integrator.

3.3.4.2.9.2.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064.

3.3.4.2.9.2.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.3.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part: -

| Name | Type | Description |
| Aileron_Integrator_ | Generic Float | Gains applied to
| Gains | | roll commands |

CAMP Software Detailed Design Document

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

Name	Type	Description
New _Gain	Aileron_Integra-	New value for Gain applied
	tor_Gains	to roll commands

3.3.4.2.9.2.10.3.4 LOCAL DATA

None.

3.3.4.2.9.2.10.3.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.3.6 PROCESSING
The followving describes the processing performed by this part:

procedure Update Aileron Integrator Gain
(New_Gain: In Roll_Command Gains) is

begin
Aileron Cmd Tustin_Integrator.Update Gain (Newv_Gain => New Gain);

end Update_ Aileron_Integrator_Gain;

3.3.4.2.9.2.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:
Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level component:

| Name | Type | Source | Description |
| Aileron_Cmd Tustin_ | Package| Package | Implements integrator |
| Integrator | | Body | for roll command

I I I | loop |

Subprograms and task entries:

Page 530

Vst o

CAMP Software Detailed Design Document Page 531

The following table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top level component:

Name	Type	Source	Description
Update_	Procedure	Aileron_Cmd_Tustin_	Updates value of gain
Gain		Integrator (Pack.)	in integrator

3.3.4.2.9.2.10.3.8 LIMITATIONS

None.

3.3.4.2.9.2.10.4 UPDATE_AILERON_ INTEGRATOR LIMIT UNIT DESIGN

Updates the current value of the limit on output from the aileron control loop
integrator.

3.3.4.2.9.2.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064.

3.3.4.2.9.2.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.4.3 INPUT/OUTPUT
GENERIC PARAMETERS:

Data types:

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Fin_Deflections	Generic Float	Output from aileron
		control loop
		integrator

FGRMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

CAMP Software Detailed Design Document

Name [Type | Description |

I
| New_Limit | Fin_Deflections | New value for ljmit on |
| | | integrator output |

3.3.4.2.9.2.10.4.4 LOCAL DATA

None.

3.3.4.2.9.2.10.4.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.4.6 PROCESSING
The following describes the processing performed by this part:

procedure Update Aileron Integrator Limit

(New_Limit : in Fin_Deflections) is
begin

Aileron Cmd Tﬁstin_Integrator.Update_Linit
(New_Absolute Limit => New Limit);

end Update Aileron Integrator Limit;

3.3.4.2.9.2.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:
Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level component:

| Name | Type | Source | Description |

| Aileron Cmd Tustin_ | Package| Package | Implements integrator |

| Integrator | | Body | for roll command |
I I | loop

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsevhere in the parent top level component:

Page 532

CAMP Software Detailed Design Document Page 533

Name	Type	Source	Description
Update_	Procedure	Aileron Cmd_Tustin_	Updates value of
Limit		Integrator (Pack.)	1limit in integrator
3.3.4.2.9.2.10.4.8 LIMITATIONS

None.

3.3.4.2.9.2.10.5 UPDATE_ROLL_COMMAND PROPORTIONAL GAIN UNIT DESIGN

Updates the current value of the Roll Command Proportional Gain of of the
aileron control loop

3.3.4.2.9.2.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064.

3.3.4.2.9.2.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2,9.2.10.5.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |

| Roll_Gains | Generic Float | Proportional gains |
| | | to roll commands |

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

| Name | Type | Description |

| New_Gain | Roll _Gains | New value for proportional |
| | | gain to roll commands |

CAMP Software Detailed Design Document

3.3.4.2.9.2.10.5.4 LOCAL DATA

None.

3.3.4.2.9.2.10.5.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.5.6 PROCESSING
The following describes the processing performed by this part:

procedure Update Roll Command Proportional Gain
(Nev_Gain: in Roll_Command Galns) is

begin

Page 534

Aileron_Loop.Update_Proportional_Gain (New_Proportional_Gain => New Gain);

end Update Roll Command Proportional Gain;

3.3.4.2.9.2.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

Packages:

The following table summarizes the packages required by this part but defined

elsevhere in the parent top level component:

| Name | Type | Source | Description

| Aileron_Cmd_Integral | Package| Package | Implements integral
| Plus Proportional | | Body | plus proportional

| Gain = Aileron_Loop| | | gain for aileron loop

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by

this part and defined elsewhere in the parent top level component:

| Name | Type | Source | Description
| Update Pro-|Procedure| Aileron Loop | Updates value of

| tionmal | | | proportional gain
| Gain | | |

M

o

‘@l

CAMP Software Detailed Design Document Page 535

3.3.4.2.9.2.10.5.8 LIMITATIONS

None.

3.3.4.2.9.2.10.6 UPDATE_ROLL _RATE_GAIN_FOR_AILERON UNIT DESIGN

Updates the current value of the Aileron_Cmd_Roll Rate Gain of of the aileron
control loop

3.3.4.2.9.2.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RQ64.

3.3.4.2.9.2.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.6.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Feedback Rate Gains	Generic Float	Gains to roll rate
		feedback for aileron
I	commands	

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

Name	Type	Description
New_Gain	Feedback Rate_	New value for gain to roll
	Gains	rate feedback

3.3.4.2.9.2.10.6.4 LOCAL DATA

None.

CAMP Software Detailed Design Document Page 536

3.3.4.2.9.2.10.6.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.6.6 PROCESSING
The following describes the processing performed by this part:

procedure Update Roll Rate Gain For Aileron
(Nev_Gain : in Feedback Rate Gains) is

begin
Aileron_Cmd Roll Rate_Gain := New_Gain;

end Update Roll Rate Gain_For_Aileron;

3.3.4.2.9.2.10.6.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.4.2.9.2.10.6.8 LIMITATIONS

None. . ‘

3.3.4.2.9.2.10.7 UPDATE_YAW_RATE_GAIN_FOR_AILERON UNIT DESIGN

Updates the current value of the Aileron_Cmd Yaw_Rate Gain of of the aileron
control loop

3.3.4.2.9.2.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064.

3.3.4.2.9.2.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.7.3 INPUT/OUTPUT
GENERIC PARAMETERS:

Data types:

The following table summarizes the generic formal types required by this part:

CAMP Software Detailed Design Document

Name	Type	Description
Feedback Rate Gains	Generic Float	Gains to yav rate
		feedback for aileron
		commands

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

| Name | Type | Description]
| New_Gain | Feedback Rate | New value for gain to yaw |
| | Gains | rate feedback |

3.3.4.2.9.2.10.7.4 LOCAL DATA

None.

3.3.4.2.9.2.10.7.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.7.6 PROCESSING
The following describes the processing performed by this part:

procedure Update Yaw Rate Gain For_ Aileron
(New_Galn :7in Feedback Rate_Gains) is

begin
Aileron Cmd_Yaw Rate Gain := New_Gain;

end Update_Yav Rate_Gain_For_Aileron;

3.3.4.2.9.2.10.7.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.4.2.9.2.10.7.8 LIMITATIONS

None.

Page 537

CAMP Software Detailed Design Document Page 538

3.3.4.2.9.2.10.8 UPDATE_RUDDER_INTEGRATOR_GAIN UNIT DESIGN

Updates the current value of the Rudder_ Integrator_Gain for the integrator part
of the rudder control loop integral plus propctional gain.

3.3.4.2.9.2.10.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064.

3.3.4.2.9.2.10.8.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.8.3 INPUT/OUTPUT
GENERIC PARAMETERS:

Data types:

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Rudder_Iategrator_	Generic Float	Gains applied to accel-
Gains		ation feedback

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

Name	Type	Description
New_Gain	Rudder_integra-	New value for Gain applied
	tor_Gains	to acceleration

3.3.4.2.9.2.10.8.4 LOCAL DATA

None.

3.3.4.2.9.2.10.8.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document - Page 539

£
o 3.3.4.2.9.2.10.8.6 PROCESSING
The following describes the processing performed by this part:

procedure Update Rudder_ Integrator_Gain
(New GaIn : in Acceleration_Gains) is

begin
Rudder_Cmd_Tustin_Integrator.Update_Gain (New_Gain => New Gain);

end Update_ Rudder Integrator_Gain;

3.3.4.2.9.2.10.8.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:
Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level component:

| Name | Type | Source | Description 1

, | Rudder Cmd_Tustin_ | Package| Package | Implements tustin int- |
Gil | Integrator | | Body | egrator for rudder |
I | | loop |

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top level component:

[

Name	Type	Source	Description
Update_Gain	Procedure	Rudder Cmd_Tustin_	Updates value of
Integrator	integral gain		

3.3.4.2.9.2.10.8.8 LIMITATIONS

None.

3.3.4.2.9.2.10.9 UPDATE RUDDER_INTEGRATOR_LIMIT UNIT DESIGN

Updates the current value of the limit on output from the rudder control loop

585 integrator.

CAMP Software Detailed Design Document Page 540

3.3.4.2.9.2.10.9.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064.

3.3.4.2.9.2.10.9.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.9.3 INPUT/OUTPUT
GENERIC PARAMETERS:

Data types:

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Fin_Deflections	Generic Float	Output from rudder
[control loop	
o	integrator	

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

| Name | Type | Description |

| New Limit | Pin_Deflections | Nev value for limit on l
| | | integrator output |

3.3.4.2.9.2.10.9.4 LOCAL DATA

None.

3.3.4.2.9.2.10.9.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.9.6 PROCESSING
The following describes the processing performed by this part:

procedure Update Rudder_Integrator Limit
(Nev_Limit : in Fin Deflections) is

begin

CAMP Software Detailed Design Document Page ‘541

Rudder Cmd Tustin_Integrator.Update Limit
(New_Absolute Limit => New Limit);

end Update Rudder Integrator Limit;

3.3.4.2.9.2.10.9.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:
Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level component:

Name	Type	Source	Description
Rudder Cmd_Tustin_	Package	Package	Implements tustin int-
Integrator [Body	egrator for rudder	
I		loop I	

Subprograms and task entries:

The folloving table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top level component:

Name	Type	Source	Description
Update_	Procedure	Rudder Cmd Tustin_	Updates value of
Limit		Integrator	1limit on integrator
I I I | output I

3.3.4.2.9.2.10.9.8 LIMITATIONS

None.

3.3.4.2.9.2.10.10 UPDATE_FEEDBACK_RATE GAIN_FOR_RUDDER UNIT DESIGN

Updates the current value of the Rudder Cmd_Feedback Rate Gain of the yaw rate
for the rudder control loop

3.3.4.2.9.2.10.10.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064. .

J1v

CAMP Software Detailed Design Document Page 542

3.3.4.2.9.2.10.10.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.10.3 INPUT/OUTPUT
GENERIC PARAMETERS:

Data types:

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Feedback Rate Gains	Generic Float	Gains to yav rate
I	feedback for rudder	
		commands

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

Name	Type	Description
Nev _Gain	Feedback Rate_	New value for gain to yav
	Gains	rate feedback

3.3.4.2.9.2.10.10.4 LOCAL DATA

None.

3.3.4.2.9.2.10.10.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.10.6 PROCESSING
The following describes the processing performed by this part:

procedure Update Feedback Rate Gain For Rudder
(Nev_Gain : In Feedback Rate Gains) is

begin
Rudder_Cmd_Feedback Rate Gain := New_Gain;

end Update_Feedback Rate_Gain_For Rudder;

C
"

CAMP Software Detailed Design Document Page 543

3.3.4.2.9.2.10.10.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.4.2.9.2.10.10.8 LIMITATIONS

None.

3.3.4.2.9.2.10.11 UPDATE ROLL RATE_GAIN FOR RUDDER UNIT DESIGN

Updates the current value of the Rudder_Cmd_Roll Rate Gain for the rudder
control loop

3.3.4.2.9.2.10.11.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R064.

3.3.4.2.9.2.10.11.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.11.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Rudder Cmd_Roll Rate_	Generic Float	Gains to roll rate
Gains		feedback for rudder
		commands

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

Name	Type	Description
Nev_Gain	Feedback Rate_	New value for gain to roll
	Gains	rate feedback

CAMP Software Detailed Design Document

3.3.4.2.9.2.10.11.4 LOCAL DATA

None.

3.3.4.2.9.2.10.11.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.11.6 PROCESSING
The following describes the processing performed by this part:

procedure Update Roll Rate Gain_For_ Rudder
(New_Gain : in Rudder Cmd_Roll Rate Gains) is

begin
Rudder Cmd_Roll Rate Gain := New _Gain;

end Update Roll Rate Gain_For_Rudder;

3.3.4.2.9.2.10.11.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.4.2.9.2.10.11.8 LIMITATIONS

None.

3.3.4.2.9.2.10.12 UPDATE_ACCELERATION PROPORTIONAL GAIN UNIT DESIGN

Updates the current value of the Acceleration Proportional Gain of of the
rudder control loop

3.3.4.2.9.2.10.12.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO064.

3.3.4.2.9.2.10.12.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.2.10.12.3 INPUT/OUTPUT
GENERIC PARAMETERS:

Data types:

Page 544

i

CAMP Software Detailed Design Document Page 545

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Acceleration Gains	Generic Float	Proportional gains
		to acceleration
		feedback [

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

| Name | Type | Description |

| New_Gain | Roll Gains | New value for proportional |
| | | gain to acceleration |

3.3.4.2.9.2.10.12.4 LOCAL DATA

None.

3.3.4.2.9.2.10.12.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.2.10.12.6 PROCESSING
The following describes the processing performed by this part:

procedure Update_Acceleration_Proportional Gain
(Nev_Gain : in Acceleration Gains) is

begin
Rudder_Loop.Update_Proportional Gain (New_Proportional Gain => New_Gain);

end Update Acceleration_Proportional Gain;

3.3.4.2.9.2.10.12.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level component:

CAMP Software Detailed Design Document Page 546

Name	Type	Source	Description
Rudder Cmd_Integral	Package	Package	Implements integral
Plus_Proportional_		Body	plus proportional
Gain = Rudder Loop			gain for rudder loop

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top level component:

Name	Type	Source	Description
Update_Pro-	Procedure	Rudder_Loop	Updates value of
tional_			proportional gain
Gain	l I I		

3.3.4.2.9.2.10.12.8 LIMITATIONS

None.

3.3.4.2.9.3 PITCH AUTOPILOT PACKAGE DESIGN (CATALOG #P307-0)

This package body implements the Pitch Autopilot function. It contains the
instantiation of the Integral Plus Proportional Gain package for the integrator
loop of the Normal Acceleration error, as vell as subprogram bodies for
operations declared in the package specification.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.4.2.9.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R059.

3.3.4.2.9.3.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.3.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part:

CAMP Software Detailed Design Document

Normal Acceleration_
Commands

Acceleration_Command_
Gains

Acceleration_Gains

Fin Deflections

Pitch_Rate_Gains

Generic Float
Generic Float

Generic Float

Generic Float

Generic Float

Type for input commands

Gains used in Integral
Plus_Proportional Gain

Gains applied to
filtered acceleration
feedback

Type for Fin Deflection
command

Gains applied to
filtered pitch rate

Data objects:

The following table summarizes the generic formal objects required by this

part:

Initial_Integrator_
Gain

Initial Integrator_
Limit

Initial Acceleration_
Gain

Initial Pitch Rate_
- Gain

Acceleration
Command_Galns
Fin Deflections

Acceleration Gai

Pitch_Rate_Gains

Initial gain to
Tustin integrator
input

Initial limit on
Tustin integrator
output

Initial gain to
filtered accelera-
tion feedback

Initial gain to
filtered pitch
rate feedback

ns

Initial_Proportional | Acceleration Initial proportional
Gain Command_Gains gain for integral
loop
3.3.4.2.9.3.4 LOCAL DATA

Data objects:

The following table describes the data objects

maintained by this part:

| Name

| Type

| Description

| Pitch_Rate_Gain

| Acceleration Gain

Pitch _Rate_Gains

|
| Acceleration_Gains
I

gain
Accel. feedback
gain

Pitch rate feedback

CAMP Software Detailed Design Document Page 548

3.3.4.2.9.3.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.3.6 PROCESSING
The following describes the processing performed by this part:
vith Signal Processing;
separate (Autopilot)
package body Pitch Autopilot is
Acceleration _Gain : Acceleration_Gains := Initial_Acceleration_Gain;

Pitch Rate Gain : Pitch_Rate Gains := Initial Pitch_Rate_Gain;

package Tustin_Integrator is new
Signal Processing.Tustin_Integrator With Limit

(Signals => Normal Acceleration _Commands,
States => Fin Deflections,
Gained_Signals => Fin Deflections,

Gains =) Acceleration Command_Gains,

Initial Tustin Gain => Initial Integratot Gain,
Initial Signal Level => 0.0,
Initial™ Signal Limit => Initial Integrator Limit);

package Pitch Loop_Integral Plus Proportional Gain is new
Integral Plus Proportional_Galn

(Input Signals => Normal Acceleration Commands,

Gains™ => Acceleration_Command_Gains,

Integrated Signals => Fin Deflections,

Initial Proportional Gain => Initial Proportional _Gain, ‘
Tustin Integrate => Tustin fntegrator Integrate);

package Pitch_Loop renames Pitch_Loop_Integral Plus Proportional Gain;

end Pitch_Autopilot;

3.3.4.2.9.3.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part:
1. Signal Processing

UTILIZATION OF EXTERNAL ELEMENTS:
Packages:

The following table summarizes the external packages required by this part:

CAMP Software Detailed Design Document Page 549

Name	Type	Source	Description
Tustin_Integrator_	Generic	1.	Exports integrate function
With_Limit	Package]		~ for Integral Plus_Propor-

| | | | tional Gain Instantiation |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level component:

Name	Type	Source	Description
Integral Plus_Proportional	Generic	Package	Performs integrator
Gain	Package	Spec.	function on normal
			acceleration error

3.3.4.2.9.3.8 LIMITATIONS

None.

3.3.4.2.9.3.9 LLCSC DESIGN

None.

3.3.4.2.9.3.10 UNIT DESIGN
3.3.4.2.9.3.10.1 INITIALIZE PITCH_AUTOPILOT UNIT DESIGN

Inivializes state of integrator in pitch control loop.

3.3.4.2.9.3.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO53 (2).

3.3.4.2.9.3.10.1.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document

3.3.4.2.9.3.10.1.3 INPUT/OUTPUT

None.

3.3.4.2.9.3.10.1.4 LOCAL DATA

Data objects:

Page 550

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Gained_Signal | Fin_Deflections| Value of acceleration command

|
| after applying gain |
I

| Intitial_State | Fin_Deflections| Output state of integrator loop

—— —— —— — — - - - -

3.3.4.2.9.3.10.1.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.3.10.1.6 PROCESSING

The following describes the processing performed by this part:

procedure Initialize Pitch_Autopilot
(Normal Acceleration Command
Measured_Normal Acceleration
Measured Pitch Rate
Initial Elevator_Command

Gained_Signal : Fin_Deflections;
Initial_State : Fin Deflections;

begin

in Normal Acceleration_Commands;
in Accelerations;

in Pitch_Rates;

in Fin Deflections) is

Gained_Signal := (- Normal Acceleration Command +
Measured Normal Acceleration) *
Initial_Proportional Gain;

Initial State :=
Gained_Signal +

Measured _Normal Acceleration * Acceleration Gain -
Measured Pitch Rate * Pitch _Rate_Gain +

Initial Elevator _Command;

Tustin Integrator Reset (Integrator_State => Initial State,

Signal

=)

Normal Acceleration Commands (0.0));

end Initialize Pitch_Autopilot;

CAMP Software Detailed Design Document

3.3.4.2.9.3.10.1.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top level component:

| Name | Type | Source Description
Reset Procedure| Tustin_Integrator Resets state of
from package body integrator
tyn Function | Generic Package Spec| Adds acceleration cmd
and measured accel-
eration feedback
Mkt Function | Generic Package Spec| Times for applying
gain to accelera-
tion command
it Function | Generic Package Spec| Times for applying
gain to accelera-
tion feedback
Gt. Hk® - Function | Generic Package Spec| Times for applying
gain to pitch rate
feedback

Data types:

The following table summarizes the types required by this part and defined in
ancestral units:

| Name | Type | Source | Description |
Normal Accelera | Generic| Generic Pkg | Type for input acceleration
tion_Commands Float Spec command
Accelerations Generic| Generic Pkg | Type for acceleration
Float Spec feedbacks
Pitch _Rates Generic| Generic Pkg | Type for pitch rate
Float Spec feedback
Fin Deflections | Generic| Generic Pkg | Data type for state of
Float Spec integrator

Data objects:

The following table summarizes the objects required by this part and defined
elsevhere in the parent top level component:

B

Page 551

CAMP Software Detailed Design Document

| Name | Type | Source | Description

Initial Integrator| Acceleration_| Package| Gain applied to |
Gain | Command_Gains Body | acceleration error |
I

: :
| Acceleration Gain | Acceleration_| Package| Gain applied to

| | Gains | Body | acceleration feedback|
| Pitch Rate _Gain | Pitch_Rate_ | Package| Gain applied to pitch |
| | Gains | Body | rate feedback
3.3.4.2.9.3.10.1.8 LIMITATIONS

None.

3.3.4.2.9.3.10.2 COMPUTE_ELEVATOR COMMAND UNIT DESIGN

Computes elevator fin deflection command.

3.3.4.2.9.3.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R053 (2).

3.3.4.2.9.3.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.3.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The folloving table summarizes the formal parameters required by this part:

| Name | Type | Description |
Normal Acceleration_ | Normal Acceleration | Input command from
Command Commands guidance system
Measured Normal _ Accelerations Measured acceleration
Accelerations feedback
Measured Pitch Rate Pitch Rates Measured pitch rate
feedback
<{return value> Fin Deflection Elevator Command

3.3.4.2.9.3.10.2.4 LOCAL DATA

Data objects:

Page 552

CAMP Software Detailed Design Document

The following table describes the data objects maintained by this part:

Type | Description |

Filtered Normal | Accelerations Value of acceleration feedback
Acceleration after applying filter

Normal Accel- Difference between input accel-
eratTon_Error eration command and filtered
acceleration feedback

OQutput state of integrator loop

Value of pitch rate feedback

Normal Acceler-
ation_Commands

Fin Deflections

Integral Output »
Pitch_Rates

Filtered Pitch_

Rate after applying filter
Limited Elevator_| Fin Deflections| Output value from Compute_
Command Elevator_Command

3.3.4.2.9.3.10.2.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.3.10.2.6 PROCESSING
The folloving describes the processing performed by this part:

function Compute Elevator_ Command
(Normal Acceleration Command
Measured_Normal Acceleration
Measured Pitch Rate
return Fin Deflections is

in Normal Acceleration_Commands;
in Accelerations;
in Pitch_Rates)

Filtered Normal Acceleration
Normal Acceleration Error
Integral _Output

Filtered Pitch Rate
Limited_Elevator_Command

Accelerations;

Normal Acceleration_Commands;
Fin Deflections;

Pitch_Rates,
Fin_Deflections;

begin
Filtered Normal Acceleration := Acceleration Filter (Measured Normal Acceleration

Normal Acceleration Command -
Filtered Normal Acceleration;

Normal Acceleration_Error :=
Integral Output := Pitch_Loop.Integrate (Normal Acceleration Error);
Filtered Pitch_Rate := Pitch_Rate Filter (Measured Pit:h Rate);
Limited Elevator Command :
Limit (Integral _Output -
Filtered_Normal Acceleration * Acceleration_Gain +
Filtered Pitch_Rate * Pitch Rate_Gain);

return (Limited Elevator_ Coumand);

CAMP Software Detailed Design Document

end Compute Elevator Command;

3.3.4.2.9.3.10.2.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined

elsevhere in the parent top level component:

Packages:

The following table summarizes the packages required by this part but defined

elsevhere in the parent top level component:

Type |

Source

| Description |

Pitch_Loop Integral |
Plus Proportional |

Gain (renamed:

Pitch_Loop

)

Package| Package

| Body
I
I

| Implements integrator |
| loop fecr normal |
| acceleration error |
I I

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by

this part and defined elsewhere in the parent top level component:

| Name | Type Source Description |
Acceleration_| Function | Generic Pkg| Performs filter function on
Filter Spec Acceleration feedback
n_w Function | Generic Pkg| Minus for calculating
Spec normal acceleration error
in integral loop
Integrate Function | Pitch Loop | Performs integral plus
package proportional gain function
in body
Pitch Rate Function | Generic Pkg| Performs filter function on
Filter Spec pitch rate feedback
Limit Function | Generic Pkg| Performs Limiter function
Spec (e.g. R202)
Maen Function | Generic Pkg| Times for applying gain to
Spec acceleration feedback
Mkt Function | Generic Pkg| Times for applying gain to
Spec Pitch Rate feedback

Data types:

The following table summarizes the data types required by this part and defined
elsevhere in the parent top level component:

CAMP Software Detailed Design Document Page 555

| Name | Type | Source | Description |
Normal Acceleration_| Generic |Generic Type for input commands
Commands Float Pkg Spec

Accelerations Generic |Generic Type for acceleration
Float Pkg Spec feedbacks

Pitch Rates Generic |[Generic Type for pitch rate
Float Pkg Spec feedback

Fin Deflections Generic |Generic Type for Fin Deflection
Float Pkg Spec output

Data objects:

The following table summarizes the objects required by this part and defined
elsevhere in the parent top level component:

| Name | Type | Source | Description |
Acceleration_Gain | Acceleration_| Package| Gain applied to !
| Gains | Body | acceleration feedback]|
Pitch_Rate Gain | Pitch_Rate_ | Package| Gain applied to pitch |
| Gains | Body | rate feedback |

3.3.4.2.9.3.10.2.8 LIMITATIONS

None.

3.3.4.2.9.3.10.3 UPDATE_PITCH_RATE GAIN UNIT DESIGN

Updates the current value of the Pitch Rate Gain

3.3.4.2.9.3.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO53.

3.3.4.2.9.3.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.3.10.3.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part:

CAMP Softwvare Detailed Design Document

| Name | Type | Description |

| Pitch Rate_Gains | Generic Float | Gains applied to
| | | filtered pitch rate

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

Name	Type	Description
New_Gain	Pitch_Rate Gains	New value for Gain applied
		to filtered pitch rate

3.3.4.2.9.3.10.3.4 LOCAL DATA

None.

3.3.4.2.9.3.10.3.5 PRCCESS CONTROL

Not applicable.

3.3.4.2.9.3.10.3.6 PROCESSING
The following describes the processing performed by this part:
procedure Update Pitch Rate Gain (Nev_Gain: in Pitch_Rate Gains) is
begin
Pitch Rate Gain := New_Gain;

end Update_Pitch Rate Gain;

3.3.4.2.9.3.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data objects:

The following table summarizes the objects required by this part and defined
elsevhere in the parent top level component:

Page 556

CAMP Software Detailed Design Document

| Name | Type | Source | Description

| Pitch_Rate Gain | Pitch Rate_Gains| Package | Pitch rate feedback
| | | Body | gain

3.3.4.2.9.3.10.3.8 LIMITATIONS

None.

3.3.4.2.9.2.10.4 UPDATE_ACCELERATION GAIN UNIT DESIGN

Updates the current value of the Acceleration_Gain

3.3.4.2.9.3.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R053.

3.3.4.2.9.3.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.3.10.4.3 INPUT/OUTPUT
GENERIC PARAMETERS:

Data types:

Page 557

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |
| Acceleration Gains | Generic Float | Gains applied to

| | | filtered acceleration |
| | | feedback |

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

Name	Type	Description
New_Gain	Acceleration_	New value for Gain applied
	Gains	to filtered acceleration
		feedback

CAMP Software Detailed Design Document

3.3.4.2.9.3.10.4.4 LOCAL DATA

None.

3.3.4.2.9.3.10.4.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.3.10.4.6 PROCESSING
The following describes the processing performed by this part:
procedure Update Acceleration_Gain (Nev_Gain: in Acceleration_Gains) is
begin
Acceleration_Gain := New_Gain;

end Update_ Acceleration Gain;

3.3.4.2.9.3.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The folloving tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data objects:

The following table summarizes the objects required by this part and defined
elsewvhere in the parent top level component:

Name	Type	Source	Description
Acceleration_	Acceleration_	Package	Acceleration feedback
Gain	Gains	Body	gain

3.3.4.2.9.3.10.4.8 LIMITATIONS

None.

3.3.4.2.9.3.10.5 UPDATE_INTEGRATOR_GAIN UNIT DESIGN

Updates the current value of the Integrator_Gain

Page 558

‘\}I
N

o

%

CAMP Software Detailed Design Document Page 559

3.3.4.2.9.3.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO53.

3.3.4.2.9.3.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.3.10.5.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |
| Acceleration | Generic Float | Gains applied to
| Command_Gains | | acceleration commands |

FORMAL PARAMETERS:

The following table.sunmarizes the formal parameters required by this part:

Name	Type	Description
New_Gain	Acceleration	New value for Gain applied
	Command Galns	to acceleration commands

3.3.4.2.9.3.10.5.4 LOCAL DATA

None.

3.3.4.2.9.3.10.5.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.3.10.5.6 PROCESSING

The following describes the processing performed by this part:
procedure Update_Integrator_Gain (New_Gain: in Acceleration_Command Gains) is
begin

Tustin_Integrator.Update_Gain (New_Gain => New_Gain);

CAMP Software Detailed Design Document Page 560
end Update_Integrator Gain;

3.3.4.2.9.3.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level comporent:

| Name | Type | Source | Description |
| Tustin_Integrator | Package| Package | Implements integrator |
I
I

| Body | function in pitch |
| | | loop function |

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top level component:

| Name | Type | Source | Description |

| Update_Gain |Procedure | Pitch Loop | Updates integrator gain |
| | | package | in pitch loop function |
I I | in body | I

3.3.4.2.9.3.10.5.8 LIMITATIONS

None.

3.3.4.2.9.3.10.6 UPDATE_INTEGRATOR LIMIT UNIT DESIGN

Updates the current value of the Integrator Limit

3.3.4.2.9.3.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R053.

3.3.4.2.9.3.10.6.2 LOCAL ENTITIES DESIGN

None.

oY

h o

CAMP Software Detailed Design Document Page 561

3.3.4.2.9.3.10.6.3 INPUT/OUTPUT
GENERIC PARAMETERS:

Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |

| Fin_Deflections | Generic Float | Value for fin deflection|
| l | output from package |

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

| Name | Type | Description |

| New Limit | Pin_Deflections | New value for limit on |
| | | £in deflection output |

3.3.4.2.9.3.10.6.4 LOCAL DATA

None.

3.3.4.2.9.3.10.6.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.3.10.6.6 PROCESSING
The following describes the processing performed by this part:
procedure Update Integrator Limit (New_Limit: in Fin_Deflections) is
begin
Tustin_Integrator.Update Limit (New_Absolute Limit => New Limit);

end Update_Integrator_Limit;

3.3.4.2.9.3.10.6.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

CAMP Software Detailed Design Document Page 562

Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level component:

| Name | Type | Source | Description |
Tustin_Integrator | Package| Package | Implements integrator |

|
| | | Body | function in pitch |
| | | | loop function |

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsevhere in the parent top level component:

Name	Type	Source	Description
Update_Limit	Procedure	Pitch Loop	Updates integrator limit
		package	in pitch loop function
l I | in body | I
3.3.4.2.9.3.10.6.8 LIMITATIONS

None.

3.3.4.2.9.3.10.7 UPDATE_PROPORTIONAL GAIN UNIT DESIGN

Updates the current value of the Proporational Gain

3.3.4.2.9.3.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement ROS53.

3.3.4.2.9.3.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.4.2.9.3.10.7.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part:

CAMP Software Detailed Design Document Page 563

| Name | Type | Description |

| Acceleration_Command_ | Generic Float | Gains applied to normal |
| Gains | | acceleration commands |

FORMAL PARAMETERS:

The following table summarizes the formal parameters required by this part:

| Name | Type | Description

| New_Proportional| Acceleration | New value for Gain applied |
| _Gain | Command Galns | to Normal Acceleration_ |
| | | Commands [

3.3.4.2.9.3.10.7.4 LOCAL DATA

None.

3.3.4.2.9.3.10.7.5 PROCESS CONTROL

Not applicable.

3.3.4.2.9.3.10.7.6 PROCESSING
The following describes the processing performed by this part:

procedure Update Proportional Gain
(Nev_Proportional_GaIn : in Acceleration Command Gains) is

begin

Pitch_Loop.Update Proportional Gain
(New_Proportional_Gain => New_Proportional Gain);

end Update Proportional Gain;

3.3.4.2.9.3.10.7.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Packages:

The following table summarizes the packages required by this part but defined
elsevhere in the parent top level component:

CAMP Software Detailed Design Document

| Pitch_Loop Integral | Package| Package
| Plus_Proportional_ | | Body
| Gain = Pitch_Loop | |

| Description |

| Implements integral |
| plus proportional |
| gain in pitch loop |

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by

this part and defined elsevhere in the parent top level component:

Name	Type	Source	Description
Update_	Procedure	Pitch Loop	Updates proportional gain
Proportional_		package	in pitch loop function
Gain		in body	

3.3.4.2.9.3.10.7.8 LIMITATIONS

None.

3.3.4.2.10 UNIT DESIGN

None.

Page 564

o}

CAMP Software Detailed Design Document

package body Autopilot is
package body Integral Plus_Proportional Gain is separate;
package body Pitch_Autopilot is separate;
package body Lateral Directional Autopilot is separate;

end Autopilot;

Page

565

CAMP Software Detailed Design Document
separate (Autopilot)
package body Integral Plus Proportional Gain is
Proportional Gain: Gains := Initial_Proportional Gain;
pragma PAGE;
function Integrate (Signal: Input_Signals) return Integrated Signals is
begin
return (Tustin_Integrate (Signal) + Signal * Proportional Gain);

end Integrate;

pragma PAGE;
procedure Update_Proportional Gain (New_Proportional Gain : in Gains) is

begin
Proportional Gain := New_Proportional Gain;
end Update_Proportional Gain;

end Integral Plus Proportional Gain;

Page 566

CAMP Software Detailed Design Document Page 567

vith Signal Processing;
separate (Autopilot)
package body Lateral Directional Autopilot is

—— —<Initial vaules for Aileron Control Loop

Aileron_Cmd_Roll Rate_Gain : Feedback Rate Gains :=
Initial Roll Rate Gain_For_Aileron;
Aileron Cmd_Yaw Rate_ Gain : Feedback Rate Gains t=

Initial_Yaw_Rate_Gain_For_Aileron;
—-— —-Initial values for rudder control loop

Rudder Cmd_Roll Rate_Gain ¢ Rudder_Cmd_Roll Rate Gains :=
Initial Roll_Rate_Gain_For Rudder;
Rudder Cmd_Feedback Rate Gain : Feedback Rate_Gains :=
- Initial Yaw Rate_Gain_For_Rudder;

—— Packages for Aeliron control loop

package Aileron_Cmd_Tustin_Integrator is new
Signal Processing.Tustin _Integrator With Limit

(Signals => Roll Commands,
States => Pin_Deflections,
Gained_Signals => Fin Deflections,
Gains => Roll Command Gains,

Initial Tustin Gain => InitJal Aileron_Integrator_Gain,
Initial™: _Signal _ “Level > 0.0,
Initial™, Signal Limit => Initial Aileron Integrator_ Limit);

package Aileron Cmd_Integral Plus Proportional Gain is new
Integral Plus Proportional Gain

(Input Signals => Roll Commands,

Gains™ => Roll Command_Gains,

Integrated_Signals => Fin_Deflections,

Initial Proportional Gain => Initial Roll Command _Proportional Gain,
Tustin_fntegrate =) Aileron Cmd Tustin Integrator Integrate);

package Aileron_Loop renames Aileron Cmd_Integral Plus_Propoxrtional Gain;
-~ Packages for rudder control loop

package Rudder Cmd Tustin Integrator is new
Qignal Processing.Tustin _Integrator With Limit

(Signals => Missile Accelerations,
States => Fin _Deflections,
Gained_Signals => Fin Deflections,
Gains => Acceleration Gains,

Initial Tustin _Gain => Initial Rudder_Integrator Gain,
Initial™, Signal Level => 0.0,
Initial™ Signal Limit => Initial Rudder_Integrator_Limit);

package Rudder Cmd_Integral Plus Proportional Gain is new
Integral _ Plus Proportional Galn
(Input Signals => Missile Accelerations,
Gains™ => Acceleration_Gains,
Integrated_Signals => Fin_Deflections,

CAMP Software Detailed Design Document Page 568

Initial Proportional Gain => Initial Acceleration Proportional Gain,
Tustin_Integrate => Rudder_Cmd _Tustin_Integrator.Integrate);

package Rudder_Loop renames Rudder_Cmd_Integral Plus_Proportional _Gain;

pragma PAGE;

procedure Initialize Lateral Directional Autopilot

(InltiaI Aileron Command in Fin Deflections;

Initial_Rudder_Command in Fin Deflections;

Gravitational Acceleration : in Gravitational Accelerations;

Roll Command in Roll Commands;

Roll Attitude in Roll Attitudes;

Roll Rate in Feedback Rates;

Yaw_Rate in Feedback Rates;

Missile Velocity in Velocities;

Lateral Acceleration in Missile Accelerations) is

*e oo ea e oo se ee 4o oo

Gained Roll Command_Signal : Fin Deflections;
Initial Aileron_State : Fin_Deflections;

Initial Rudder State : Fin_Deflections;

begin

Gained Roll Command_Signal :=
(Roll Command - Roll _Attitude) *
Initial_Roll_Comnand_Ptoport10nal_§ain;

Initial Aileron State :=
Inital_Aileron Command -
Gained Roll Command Signal +
Yav Rate * Aileron Cmd Yaw Rate Gain +
Roll Rate * Aileron Cmd_Yaw Rate_Gain;

Initial Rudder State :=
Initial _Rudder_Command -
(Yaw_ Rate -
(Gravitational Acceleration * Sin (Roll_Attitude)
/ Missile Velocity) -
(Roll Rate * Rudder Cmd Roll Rate _Gain)
) * Rudder Cmd Feedback Rate Gain -
Lateral Acceleration * Tnitial _Acceleration_Proportional Gain;

Aileron Cmd_Tustin_Integrator.RESET
(Integrator State => Initial Aileron_State,
Signal => 0.0);

Rudder Cmd_Tustin_Integrator.RESET
(Integrator State => Initial Rudder_ State,
Signal => 0.0);
end Initialize Lateral Directional Autopilot;

pragma PAGE;
function Compute_Aileron_Rudder_ Commands

CAMP Software Detailed Design Document

(Roll _Command

Roll Attitude

Roll Rate

Yaw_Rate

Lateral Acceleration

Missile Velocity

Gravitational Acceleration
return Aileron_Rudder Commands is

Filtered_Roll Command

Roll Error

Aileron Integral _Output
Filtered Yaw Rate

Filtered Lateral _Acceleration

in
in
in
in
in
in
in

Roll Commands;

Roll Attitudes;

Feedback Rates;

Feedback Rates;

Missile Accelerations;
Velocities;

Gravitational Accelerations)

Roll Commands;

Roll Commands;

Fin Deflections;

: Feedback_Rates;
Missile Accelerations;

Rudder Integral Output : Fin Deflections;

Fin Command
begin

-=-Aileron command computations

Aileron_Rudder_Commands;

Filtered Roll Command := Roll Command Filter (Roll_Command);

Roll Error := Filtered Roll Command - Roll Attitude;

Roll_ErEor := Roll_Error_Limit (Roll_Error);

Aileron_Integral Output := Aileron_Loop.Integrate (Roll Error);

Filtered Yaw Rate := Yaw Rate Filter (Yav_Rate);

Fin Command.Aileron Command :

Aileron_Command ﬁimit (Aileron Integral Output -
Filterea Yaw Rate * Aileron Cmnd_Yaw Rate Gain -
Roll_Rate * Aileron_Cmd_Roll Rate Gain);~

-~ Rudder command compuztations

Filtered_Lateral Acceleration :=

Acceleration Filter (Lateral Acceleration);

Rudder_Integral Output := Rudder Loop.Integrate
(Filtered_Lateral Acceleration);

Fin Command.Rudder Command :=
Rudder_Command Limit

(Rudder Integral Output +
(Filtered Yaw Rate -
(Gravitational Acceleration * Sin (Roll _Attitude) /
Missile Velocity) -
Roll Rate * Rudder Cmd _Roll Rate Gain) *
Rudder_Cmd_Feedback Rate Gain

)3

return (Fin_Command);

end Compute_Aileron Rudder_ Commands;

Page 569

CAMP Software Detailed Design Document Page 570

pragma PAGE;
procedure Update_Aileron Integrator_Gain
(New_Gain: In Roll Command Gains) is
begin
Aileron Cmd_Tustin_Integrator.Update Gain (New_Gain => New Gain);

end Update_Aileron_Integrator_Gain;

pragma PAGE;
procedure Update Aileron_Integrator Limit
(Nev_Limit : in Fin Deflections) is
begin
Aileron Cmd Tustin_Integrator.Update Limit
(New Absolute Limit => New | Limit);
end Update_Aileron_ Integrator_Limit;
pragma PAGE;

procedure Update Roll Command Proportional Gain
(Nev_Gain: in Roll_Command Galns) is

begin
Aileron_Loop.Update_Proportional_Gain (Nev_Proportional Gain => New_Gain);

end Update Roll Command Proportional Gain;

pragma PAGE;
procedure Update Roll Rate Gain For Aileron
(New_Gain : in Peedback Rate Gains) is
begin
Aileron Cmd_Roll Rate Gain := New_Gain;
end Update_Roll Rate_Gain_For_Aileron;
pragma PAGE;

procedure Update Yaw Rate_Gain_For Aileron
(Nev_Galn : in Feedback Rate Gains) is

begin

Aileron Cmd_Yaw Rate Gain := New Gain;
end Update_Yaw_Rate_Gain_For_Aileron;

pragma PAGE;
procedure Update Rudder_Integrator_Gain
(New_Galn : in Acceleration_Gains) is

begin

Rudder Cmd_Tustin_Integrator.Update_Gain (New_Gain => New Gain);

CAMP Software Detailed Design Document Page 571

end Update Rudder Integrator Gain;
pragma PAGE;
procedure Update Rudder Integrator Limit
(New_ Limit : in Fin Deflectlons) is
begin

Rudder Cmd Tustin_Integrator.Update Limit
(New_Absolute Limit => New_Limit);

end Update Rudder Integrator Limit;
pragma PAGE;
procedure Update Feedback Rate Gain For Rudder
(New_Gain : In Feedback Rate Gains) is
begin
Rudder Cmd_Feedback Rate_Gain := New_Gain;
end Update_Feedback Rate Gain_For Rudder;
pragma PAGE;

procedure Update Roll Rate Gain For Rudder
Ll (New Gain : in Rudder Cmd Roll Rate Gains) is

begin

Rudder Cmd_Roll Rate Gain := New Gain;
end Update Roll Rate Gain_For_ Rudder;

pragma PAGE;
procedure Update_Acceleration_ Proportional Gain
(Nev Gain : in Acceleration Gains) is

begin

Rudder_Loop.Update_Proportional Gain (New_Proportional Gain => New_Gain);

end Update_Acceleration_Proportional Gain;

end Lateral Directional Autopilot;

CAMP Software Detailed Design Document Page 572
o)
vith Signal Processing;

separate (Autopilot)
package body Pitch Autopilot is

Acceleration_Gain : Acceleration_Gains := Initial_Acceleration_Gain;
Pitch Rate Gain : Pitch Rate Gains := Initial Pitch Rate_Gain;

package Tustin_Integrator is new
Signal Processing.Tustin_Integrator With Limit

(Signals => Normal Acceleration _Commands,
States => Fin_Deflections,
Gained_Signals => Fin_ _Deflections,
Gains => Acceleration Command_Gains,
Initial Tustin Gain > Initial Integrator Gain,
Initial Signal Level => 0.0,
Initial Signal Limit > Initial Integrator_Limit);

package Pitch Loop_Integral Plus Proportional Gain is new
Integral PIus Proportional_Gain
(Input Signals => Normal Accelaration Commands,
Gains™ => Acceleration Command _Gains,
Integrated Signals => Fin Deflections,
Initial Proportional Gain => Initial Proportional Gain,
Tustin_Integrate => Tustin_Integrator.Integrate);

package Pitch_Loop renames Pitch Loop Integral Plus Proportional Gain; - ‘

pragma PAGE;
procedure Initialize Pitch_Autopilot
(Normal_Acceleration Command : in Normal Acceleration Commands;
Measured Normal Acceleration : in Accelerations;
Measured Pitch Rate : in Pitch_Rates;
Initial Elevator_Command : in Fin_Deflections) is

Gained_Signal : Fin_Deflections;
Initial State : Fin Deflections;
begin

Gained_Signal := (- Normal Acceleration_Command +
Measured Normal Acceleration) *
Initial Proportional Gain;

Initial State :=
Gained_Signal +
Measured _Normal Acceleration * Acceleration Gain -
Measured Pitch Rate * Pitch _Rate Gain +
Initial Elevator_Command;

Tustin_Integrator.RESET (Integrator_State => Initial State,
Signal)
Normal Acceleration_Commands (0.0)); @

end Initialize Pitch_Autopilot;

B

2

CAMP Software Detailed Design Document

pragma PAGE;
function Compute Elevator Command
(Normal Acceleration Command : in Normal Acceleration_Commands;
Measured_Normal_Acceleration : in Accelerations;
Measured Pitch Rate : in Pitch_Rates)
return Fin_Deflections is

Accelerations;

Normal Acceleration_Commands;
Fin Deflections;

Pitch_Rates;

Fin Deflections;

Filtered Normal Acceleration
Normal Acceleration Error
Integral Output

Filtered Pitch Rate

Limited Elevator_Command

"2 oo s o0 e

begin

Filtered Normal Acceleration := Acceleration Filter (Measured Normal Acceleration

Normal Acceleration_Error := Normal Acceleration_Command -
Filtered Normal Acceleration;

Integral Output := Pitch_Loop.Integrate (Normal Acceleration_ Error);
Filtered Pitch Rate := Pitch_Rate Filter (Measured Pitch Rate);
Limited Elevator Command :
LimIt (Integral Output -
Piltered Normal Acceleration * Acceleration Gain +
Filtered Pitch Rate * Pitch_Rate_Gain);
return (Limited Elevator Command);

end Compute Elevator_Command;

pragma PAGE;
procedure Update Pitch Rate_Gain (New_Gain: im Pitch Rate_Gains) is

begin
Pitch Rate_Gain := New_Gain;

end Update Pitch Rate_Gain;

pragma PAGE;
procedure Update Acceleration Gain (New_Gain: in Acceleration_Gains) is

begin
Acceleration_Gain := New _Gain;
end Update Acceleration Gain;
pragma PAGE;
procedure Update_Integrator_Gain (New_Gain: in Acceleration_Command Gains) is

begin

Tustin_Integrator.Update_Gain (New_Gain => New_Gain);

Page 573

CAMP Software Detailed Design Document Page 574

ey

end Update_Integrator_Gain;
pragma PAGE;
procedure Update Integrator Limit (New_Limit: in Fin_Deflections) is
begin
Tustin_Integrator.Update Limit (New_Absolute_Limit => New Limit);
end Update Integrator Limit;
pragma PAGE;
procedure Update Proportional Gain
(Nevw_Proportional Gain : in Acceleration_Command_Gains) is
begin

Pitch_Loop.Update Proportional Gain
(New_Proportional Gain => New Proportional Gain);

end Update Proportional Gain;

end Pitch_Autopilot;

CAMP Software Detailed Design Document Page 575

R

3.3.5 NONGUIDANCE AND CONTROL

oF

CAMP Software Detailed Design Document

(This page intentionally left blank.)

Page 576

:Q"i

o)

CAMP Software Detailed Design Document ' Page 577

3.3.5.1 AIR DATA PARTS (PACKAGE BODY) TLCSC P671 (CATALOG #P316-0)

This TLCSC contains parts which can be used to monitor air conditions.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.5.1.1 REQUIREMENTS ALLOCATION

The following chart summarizes the allocation of CAMP requirements to this
part:

| Name | Requirements Allocation |
Compute_Outside Air Temperature R228
Compute_Pressure Ratio R229
Compute Mach

Compute Speed Of Sound R232

|
R230 |
|
Barometric_Altitude_Integration R233 |

| |
| |
| Compute Dynamic Pressure | R231
l |
| |

3.3.5.1.2 LOCAL ENTITIES DESIGN

None.

3.3.5.1.3 INPUT/OUTPUT

None.

3.3.5.1.4 LOCAL DATA

None.

3.3.5.1.5 PROCESS CONTROL

Not applicable.

3.3.5.1.6 PROCESSING
The following describes the processing performed by this part:
package body Air Data_Parts is
function Compute_Outside_ Air_Temperature
(Total Temperature : Temperatures;
Mach : Mach_Numbers)
return Temperatures is separate;

function Compute Pressure Ratio

CAMP Software Detailed Design Document

(Measured Static_Pressure : Pressures;
Impact_ Pressure : Pressures;
Free_ Stream Static_Pressure : Pressures)
return Ratios is separate;

function Compute_Mach
(Pressure Ratio : Ratios)
return Mach Numbers is separate;

function Compute Dynamic_Pressure
(Free Stream Static_Pressure : Pressures;
Mach™ : Mach_Numbers)
return Pressures is separate;

function Compute_Speed_of_Sound
(Air™ Temperature : Temperatures)
return Velocities is separate;

package body Barometric_Altitude Integration is separate;

end Air Data_Parts;

3.3.5.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.5.1.8 LIMITATIONS

None.

3.3.5.1.9 LLCSC DESIGN

Page 578

3.3.5.1.9.1 BAROMETRIC_ALTITUDE_INTEGRATION (PACKAGE BODY) PACKAGE DESIGN (CATALOG

#P322-0)

This unit is a generic package which computes barometric altitude by

integration of the atmospheric equation of state.

The decomposition for this part is the same as that shown in the Top-Level

Design Document.

3.3.5.1.9.1.1 REQUIREMENTS ALLOCATION

This parts meets CAMP requirement R233.

3.3.5.1.9.1.2 LOCAL ENTITIES DESIGN

None.

*
Ly

CAMP Software Detailed Design Document

3.3.5.1.9.1.3 INPUT/OQUTPUT
GENERIC PARAMETERS:
Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |

Temperatures | floating Describes air temperatures :
point type

Pressures floating Desciibes pressure (i.e. weight per
point type unit of area)

Distances floating Describes translational distances
point type | (e.g., Feet, Meters)

Molar _Gas_ floating Describes the type of the Gas Constant

Constants point type | needed

Data objects:

The following table describes the generic formal objects required by this part:

| Name | Type | Value | Description |
|Gas_Constant [Molar Gas_ | N/A |Constant which describes a |
[|Constants | | standard gas constant |

I I
Maximum_	Pressures	N/A	Maximum reasonable change
Pressure_		[expected in free stream static	
Change			pressure between two measurement
Subprograms:

The following table describes the generic formal subroutines required by this
part:

| Name | Type | Description |

| nAn | function

RIA | function

Multiplies the Gas Constant by a Pressure
yielding a Distance

Divides a Temperature by a Pressure,
yielding a Pressure

CAMP Software Detailed Design Document Page 580

3.3.5.1.9.1.4 LOCAL DATA

None.

3.3.5.1.9.1.5 PROCESS CONTROL

Not applicable.

3.3.5.1.9.1.6 PROCESSING
The following describes the processing performed by this part:
separate (Air_Data_Parts)
package body Barometric_Altitude_Integration is
Previous Free Stream Static Pressure : Pressures := Initial Free Stream Pressure;
Previous Outside Air Temperature : Temperatures := Initial Temperature;

Previous_Baro_Altitude Distances := Initial Baro_Altitude;

end Barometric_Altitude Integration;

3.3.5.1.9.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.5.1.9.1.8 LIMITATIONS

None.

3.3.5.1.9.1.9 LLCSC DESIGN

None.

3.3.5.1.9.1.10 UNIT DESIGN

3.3.5.1.9.1.10.1 COMPUTE_BAROMETRIC_ ALTITUDE UNIT DESIGN

This unit is a function which computes barometric altitude by integration of
the atmospheric equation of state.

3.3.5.1.9.1.10.1.1 REQUIREMENTS ALLOCATION

This parts meets CAMP requirement R233.

B

CAMP Software Detailed Design Document

3.3.5.1.9.1.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.5.1.9.1.10.1.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

StatIc_Pressure

Description

Name Type Mode
Outside_Air_ Temperatures| in
Temperature
Free Stream Pressures in

<returned value)|Distances out

Temperature of the air outside
the missile

Measured sta.ic pressure
corrected for errors

Altitude in feet based on the
barometric pressure of the
atmosphere

3.3.5.1.9.1.10.1.4 LOCAL DATA

None.

3.3.5.1.9.1.10.1.5 PROCESS CONTROL

Not applicable.

3.3.5.1.9.1.10.1.6 PROCESSING

The following describes the processing performed by this part:

function Compute_ Barometric_Altitude

(Outside Air Telperature
Free_ Stream Static Pressure

teturn

Pressure Change
Baro_AltItude

begin

Pressure_Change

Distances is

Pressures;
Distances;

Temperatures;
Pressures)

:= Free Stream Static_Pressure -
Previous_Free Stream Static_Pressure;

if (abs Pressure Change) > Maximum Pressure_Change then

Previous Free Stream Static Pressure := Free Stream Static_Pressure;

Baro_AltTtude := Previous Baro_Altitude;

Page 581

CAMP Software Detailed Design Document Page 582

s 3N

else
Baro_Altitude :=
Previous_Baro_Altitude -
(0.5 * Gas_Constant) *
(((Outside_Air Temperature / Free_Stream_Static_Pressure) +
(Previous Outside Air Temperature /
Previous Free Stream Static_Pressure)
) * Pressure Change),
Previous_Outside_Air Temperature := Outside_Air Temperature;
Previous Free Stream Static Pressure := Free Stream Static_Pressure;
Previous_Baro_Altitude := Baro_Altitude;
end if;
return Baro_Altitude;

end Compute Barometric_Altitude;

3.3.5.1.9.1.10.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.5.1.9.1.10.1.8 LIMITATIONS ‘

‘None.

3.3.5.1.10 UNIT DESIGN

3.3.5.1.10.1 COMPUTE_OUTSIDE_AIR_TEMPERATURE (FUNCTION BODY) UNIT DESIGN (CATALOG
#P317-0)

This nit is a generic function which computes air temperature outside of a
migssila.

3.3.5.1.10.1.1 REQUIREMENTS ALLOCATION

This parts meets CAMP Requirement R228

3.3.5.1.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.5.1.10.1.3 INPUT/OUTPUT
GENERIC PARAMETERS: q

-~

f;f

CAMP Software Detailed Design Document Page 583

Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |
Temperatures | floating Describes air temperatures
point type
Mach Numbers | floating Describes air speed as a ratio of the
point type | speed of sound
Real floating General floating point type
point type

Data objects:

The following table describes the generic formal objects required by this part:

| Name | Type | Value | Description
|Recovery Factor | Real | N/A | Constant for computing Air Temp|
Subprograms:

The folloving table describes the generic formal subroutines required by this
part: '

| Name | Type | Description |

Wi | function

WA |function

Multiplies a Real by a Mach Number, yielding
a Mach Number

Divides a Temperature by a Mach Number,
yielding a Temperature

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailed Design Document

of the speed of sound

<{returned value>|Temperatures| out |Temperature of the air outside
of the missile

Name Type Mode Description
Total _ Temperatures| in Air temperature measured by the
Temperature air data instruments
Mach Mach_Numbers| in Missile airspeed as a fraction

3.3.5.1.10.1.4 LOCAL DATA

None.

3.3.5.1.10.1.5 PROCESS CONTROL

Not applicable.

3.3.5.1.10.1.6 PROCESSING
The following describes the processing performed by this part:

separate (Air Data_Parts)

function Compute Outside Air Temperature
(Total_Temperature : Temperatures;
Mach : Mach_Numbers)
return Temperatures is

begin

return Total Temperature / (1.0 + 0.2 * Recovery_Factor * Mach * Mach);

end Compute Outside_Air Temperature;

3.3.5.1.10.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.5.1.10.1.8 LIMITATIONS

None.

Page 584

3.3.5.1.10.2 COMPUTE_PRESSURE_RATIO (FUNCTION BODY) UNIT DESIGN (CATALOG #P318-0)

This unit is a generic function which computes pressure ratio from measured
static pressure, measured impact pressure, and free stream static pressure.

CAMP Software Detailed Design Document Page 585

3.3.5.1.10.2.1 REQUIREMENTS ALLOCATION

This parts meets CAMP requirement R229

3.3.5.1.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.5.1.10.2.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |

floating Describes pressure (i.e. weight per

I | I I
| | point type | unit of area) |
| I | I
| Ratios | floating | A unitless floating point type descri-|
| | point type | ing ratio of one pressure to another |
Subprograms: .

The following table describes the generic formal subroutines required by this
part:

| Name | Type | Description |
(VA | function | Divides a Pressure by a Pressure, yielding a |
| | | ratio

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailéd Design Document

Name Type
Measured Static_|Pressures
Pressure
Impact Pressure |Pressures
|
Free_ Stream_ Pressures
Static_Pressure
{returned value>|Ratios

in

in

out

Description

Static pressure measured by the
air data system

Measured difference between totl
pressure and static pressure

Measured static pressure vhich
has been corrected for errors

Unitless quantity computed from
static and impact pressure

3.3.5.1.10.2.4 LOCAL DATA

None.

3.3.5.1.10.2.5 PROCESS CONTROL

Not applicable.

3.3.5.1.10.2.6 PROCESSING

The following describes the processing performed by this part:

separate (Air_Data Parts)
function Conpute Pressure Ratio

(Heasured Static Pressure

Impact_ Pressure

Free_ Stream Static Pressure

return Ratios i$

begin

: Pressures;
¢ Pressures;
: Pressures)

return (Measured Static Pressure + Impact_Pressure) /

Free_ Stream Static _Pressure;

end Compute Pressure Ratio;

3.3.5.1.10.2.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.5.1.10.2.8 LIMITATIONS

None.

Page 586

o

CAMP Software Detailed Design Document Page 587

3.3.5.1.10.3 COMPUTE_MACH (FUNCTION BODY) UNIT DESIGN (CATALOG #P319-0)

This unit is a generic function which computes missile mach given pressure
ratio.

3.3.5.1.10.3.1 REQUIREMENTS ALLOCATION

This parts meets CAMP requirement R230.

3.3.5.1.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.5.1.10.3.3 INPUT/QUTPUT
GENERIC PARAMETERS:
Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |
| Mach_Numbers | floating | Describes air speed as a ratio of the |
| | point type | speed of sound | -
I I I I
| Ratios | floating | A unitless floating point type descri-|
| | point type | ing ratio of one pressure to another |

Data objects:

The following table describes the generic formal objects required by this part:

| Name | Type | Value | Description |
jCco | Ratios | |Pirst curve fit parameter |
ICl I Ratios I | Second curve fit parameter I
ICZ I Ratios I |Third curve fit parameter I

Subprograms:

The following table describes the generic formal subroutines required by this
part:

CAMP Software Detailed Design Document

|Sqrt | function | Computes the square root of Ratio, yielding a |
| Mach Number |

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name Type Mode Description

Pressure_Ratio |Ratios in Unitless quantity computed from
static and impact pressures

<returned value>|Mach Numbers| out |Missile airspeed as a fraction
of the speed of sound

3.3.5.1.10.3.4 LOCAL DATA

None.

3.3.5.1.10.3.5 PROCESS CONTROL

Not applicable.

3.3.5.1.10.3.6 PROCESSING
The following describes the processing performed by this part:

¢

separate (Air_Data Parts)
function Compute_Mach (Pressure Ratio : Ratios) return Mach_Numbers is

begin
return Sqrt (CO + Pressure Ratio * (Cl + C2 * Pressure Ratio));

end Compute_Mach;

3.3.5.1.10.3.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.5.1.10.3.8 LIMITATIONS

None.

'\.\

l‘\{

ar

CAMP Software Detailed Design Document Page 589

3.3.5.1.10.4 COMPUTE_DYNAMIC PRESSURE (FUNCTION BODY) UNIT DESIGN (CATALOG
#P320-0)

This unit is a generic function which computes dynamic pressure from missile
mach number and free stream static pressure.

3.3.5.1.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP Requirement R231.

3.3.5.1.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.5.1.10.4.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table describes the generic formal types required by this part:

| Name |7 Type | . Description |

Pressures floating Describes pressure (i.e. weight per

| I I |
| | point type | unit of area) |
I | I I
| Mach_Numbers | floating | Describes air speed as a ratio of the |
| | point type | speed of sound |

Subprograms:

The following table describes the generic formal subroutines required by this
part:

| Name | Type | Description |

| A | function | Multiplies a Pressure by a Mach Number, |
| | | yielding a Pressure |

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailed Design Document

Name Type Mode | Description
Free Stream_ Pressures in Measured static pressure which
Static_Pressure has been corrected for errors
Mach Mach Numbers| in Missile airspeed as a fraction
of the speed of sound
<returned value>|Pressures out |Missile dynamic pressure

3.3.5.1.10.4.4 LOCAL DATA

None.

3.3.5.1.10.4.5 PROCESS CONTROL

Not applicable.

3.3.5.1.10.4.6 PROCESSING

The following describes the processing performed by this part:

separate (Air Data Parts)

function Compute Dynamic_Pressure
(Free_Stream Static_Pressure

Mach
return Pressures is

Pressures;
Mach_Numbers)

begin
return 0.7 * Free_Stream Static_Pressure * (Mach * Mach);

end Compute Dynamic_Pressure;

3.3.5.1.10.4.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.5.1.10.4.8 LIMITATIONS

None.

Page 590

3.3.5.1.10.5 COMPUTE_SPEED OF_SOUND (FUNCTION BODY) UNIT DESIGN (CATALOG #P321-0)

This unit is a generic function which computes the speed of sound given the

temperature of the air.

4

CAMP Software Detailed Design Document Page 591

3.3.5.1.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R232.

3.3.5.1.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.5.1.10.5.3 INPUT/OUTPUT
GENERIC PARAMETERS:
Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |
| Temperatures | floating | Describes air temperatures |
I } point type } l
| Velocities | floating | Describes air speed |
I | point type | |

Data objects:

The following table describes the generic formal objects required by this part:

| Name | Type | Value | Description |
|Speed_Of |Velocities | N/A |Standard speed of sound at |
| Sound _ | | |sea level

{Constant | | | |
Subprograms:

The following table describes the generic formal subroutines required by this
part:

| Name | Type | Description |

Multiplies a Velocity by a Temperature,

| H%n | function
yielding a Velocity

I I
I

| Sqrt | function

Computes the square root of a Temperature,
yielding a Temperature '

CAMP Software Detailed Design Document

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Description

I

lAir_Temperature | Temperatures| in | Temperature of the air
I
I

|<returned value>|Velocities | out

3.3.5.1.10.5.4 LOCAL DATA

None.

3.3.5.1.10.5.5 PROCESS CONTROL

Not applicable.

3.3.5.1.10.5.6 PROCESSING
The following describes the processing performed by this part:
separate (Air Data Parts)

function Compute_Speed of Sound (Air_ Temperature : Temperatures)
return Velocities is

begin
return Speed Of Sound Constant * Sqrt (Air_Temperature);

end Compute_Speed_of_ Sound;

3.3.5.1.10.5.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.5.1.10.5.8 LIMITATIONS

None.

Page 592

CAMP Software Detailed Design Document

&R

package body Air Data_Parts is

function Compute Qutside Air_Temperature
(Total Temperature : Temperatures;
Mach : Mach_Numbers)
return Temperatures is separate;

function Compute Pressure Ratio

(Measured_Static_Pressure : Pressures;
Pressures;
Pressures)

Impact_ Pressure
Free_ Stream Static_Pressure
return Ratios is separate;

function Compute_Mach
(Pressure_Ratio : Ratios)
return Mach_Numbers is separate;

function Compute Dynamic Pressure

(Free Stream Static_Pressure : Pressures;
Mach™ : Mach_Numbers)

return Pressures is separate;

function Compute_Speed 0f Sound
(Air™ Temperature : Temperatures)
return Velocities is separate;

L J
end Air Data_Parts;

Cﬂh package body Barometric_Altitude Integration is separate;

Page 593

CAMP Software Detailed Design Document Page 594

separate (Air Data Parts)
function Compute_Outside Air Temperature
(Total _Temperature : Temperatures;
Mach : Mach_Numbers)
return Temperatures is
begin
return Total Temperature / (1.0 + 0.2 * Recovery Factor * Mach * Mach);

end Compute Outside Air Temperature;

Vi

CAMP Software Detailed Design Document

separate (Air _Data Parts)

function Compute Pressure Ratio
(Measured_statlc_Pressure : Pressures;
Impact_Pressure : Pressures;
Free_ Stream Static _Pressure : Pressures)
return Ratios is

begin

return (Measured Static_Pressure + Impact_Pressure) /
Free Stream Static_Pressure;

end Compute_Pressure Ratio;

Page 595

CAMP Software Detailed Design Document Page 596

&
separate (Air Data Parts)
function Compute Mach (Pressure Ratio : Ratios) return Mach_Numbers is

begin
return Sqrt (CO + Pressure_Ratio * (Cl + C2 * Pressure_Ratio));

end Compute Mach;

L

CAMP Software Detailed Design Document

separate (Air Data_Parts)
function Compute Dynamic_Pressure
(Free_Stream Static_Pressure : Pressures;
Mach : Mach_Numbers)
return Pressures is
begin
return 0.7 * Free_Stream Static_Pressure * (Mach * Mach);

end Compute Dynamic_Pressure;

Page 597

CAMP Software Detailed Design Document Page 598

separate (Air_Data Parts)

function Compute_Speed Of Sound (Air Temperature : Temperatures)
return Velocities is

begin
return Speed (f Sound_Constant * Sqrt (Air_Temperature);

end Compute_Speed Of_ Sound;

CAMP Software Detailed Design Document Page 599

&
separate (Air_Data_Parts)
package body Barometric_Altitude_Integration is
Previous Free Stream Static Pressure : Pressures := Initia. Free Stream _Pressure;
Previous 0uts1de Air Temperature : Temperatures := Initial Temperature'
Previous Baro Altituae : Distances := Initial Baro _Altitude;
pragma PAGE;
function Compute_Barometric_Altitude
(Outside Aix Temperature : Temperatures;
Free_ Stream Static Pressure : Pressures)
return Distances is
Pressure Change : Pressures;
Baro_AltItude : Distances;
begin
Pressure_Change := Free Stream Static_Pressure -
Previous_Free Stream Static_Pressure;
if (abs Pressure_Change) > Maximum_Pressure Change then
Previous Free_Stream Static Pressure := Free_Stream Static Pressure;
Baro_AltItude := Previous_Baro_Altitude;
s 3" else
X J

Baro Altitude :=
Previous _Baro_Altitude -
(0.5 * Gas Constunt) *
(((Outside Air Temperature / Free Stream Static Pressure) +
(Previous Outside Alir Tenpereture /
Previous Free Stream Static_Pressure)
) * Pressure Change),

Previous_Outside_Air Temperature := Qutside_Air_Temperature;
Previous Free Stream Static Pressure := Free Stream Static_Pressure;
Previous Baro_Altitude := Baro_Altitude;

end if;

return Baro_Altitude;

end Compute Barometric_Altitude;

end Barometric_Altitude_ Integration;

CAMP Software Detailed Design Document Page 600

(This page left intentionally blank.)

CAMP Software Detailed Design Document Page 601

3.3.5.2 FUEL_CONTROL_PARTS TLCSC P672 (CATALOG #P1096-0)

This TLCSC contains parts which can be used to manage missile fuel consumption.
The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.5.2.1 REQUIREMENTS ALLOCATION

The following chart summarizes the allocation of CAMP requirements to this
part:

| Name | Requirements Allocation |

| Throttle Command Manager | R234 |

3.3.5.2.2 LOCAL ENTITIES DESIGN

None.

3.3.5.2.3 INPUT/OUTPUT

None.

3.3.5.2.4 LOCAL DATA

None.

3.3.5.2.5 PROCESS CONTROL

Not applicable.

3.3.5.2.6 PROCESSING
The following describes the processing performed by this part:

with Signal Processing;
with Autopilot;

package body Fuel Control Parts is

end Fuel Control Parts;

3.3.5.2.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part:
1. Signal Processing
2. Autopilot

CAMP Software Detailed Design Document Page 602

3.3.5.2.8 LIMITATIONS

None.

3.3.5.2.9 LLCSC DESIGN

3.3.5.2.9.1 THROTTLE_COMMAND MANAGER PACKAGE DESIGN

This LLCSC is a generic package which manages the throttle command.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.5.2.9.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP Requirement R234.

3.3.5.2.9.1.2 LOCAL ENTITIES DESIGN

Packages:

The packages Integral Plus Proportional Gain, Tustin Integrator With Limit,
Tustin_Integrator With Asymmetric_Limit, and Absolute Limiter are instantiated
inside the package body.

Subprograms:

This package contains a sequence of statements vhich are executed when this
part is elaborated. This code initializes the state of the throttle command
manager.

3.3.5.2.9.1.3 INPUT/OUTPUT

GENERIC PARAMETERS:

Data types:

The following table describes the generic formal types required by this part:

-~

| Name | Type | Description |

Mach_Numbers |floating Represents missile speed as a ratio of
point type |the speed of sound

Mach Number |floating Represents a gain vhich converts from

Gains point type |Mach Number to Throttle Command

Throttle floating Represents a command tc open/close

Commands point type |the throttle

R

‘®

CAMP Software Detailed Design Document

Data objects:

Page 603

The following table describes the generic formal objects required by this part:

| Name | Type |Mode| Description |
Initial _Mach_ Mach_ in |Mach Number of missile at
Command Numbers startup
Initial Mach_ Mach_ in |Mach Feedback from missile
Feedback Numbers at startup
Initial Mach_ Mach_ in |Limit of Mach Error
Error _Limit Numbers
Initial Mach_ Mach_ in |Gain to convert from mach
Error_Gain Number_Gain error to rav throttle command
Initial Mach_ Throttle_ |in |Limit for Mach Error Integral
Error_Integral_ |Commands at startup
Limit
Initial Throttle_ |Throttle_ |in |[Throttle Command at startup
Command Commands™
Initial Throttle |Throttle |in |Limit on Throttle Command Rate
Command_Rate_LimIt|Commands at startup
Initial Lower_ Throttle_ |in |Lower Limit of Throttle
Throttle_Command_ |Commands Command
Limit
Initial Upper_ Throttle_ |in |Upper Limit of Throttle
Throttle_Command_ |Commands Command
Limit
Initial Throttle_|Throttle_ |in |3 db bandwidth of the throttle
Bandwidth Commands command

Subprograms:

The following table desc. .. =s the generic formal subroutines required by this

part:

| Name | Type | Description

| e | function | Multiplies a Mach Number by a Mach Number Gain|

| yielding a ThrottIe Command

CAMP Software Detailed Design Document Page 604

ut
3.3.5.2.9.1.4 LOCAL DATA
Data objects:
The following table describes the data objects maintained by this part:
| Name | Type | Description |
Mach_Error Mach_ Difference between Measured Mach and
Numbers |requested Mach
Throttle_Command_ |Throttle_|Rate at which the throttle is being
Rate Commands |opened or closed
Stored_Throttle_ |Throttle_|Previous Throttle Command
Command Commands
Rav_Throttle_ Throttle_|Computed Throttle Command
Command Commands |(not limited)
Initial IPP_ Throttle |The initial state computed and sent
Integral Commands |to the Integral Plus Proporational
Gain package
3.3.5.2.9.1.5 PROCESS CONTROL . ‘

Not applicable.

3.3.5.2.9.1.6 PROCESSING
The following describes the processing performed by this part:
package body Throttle Command_ Manager is

Mach_Error : Mach_Numbers;

Throttle Command Rate : Throttle Commands;
Stored Throttle Command : Throttle Commands;
Rav_Throttle_Command : Throttle_Commands;
Initial_IPP Integral : Throttle_Commands;

package Mach Error Limiter is new Signal Processing.
Absolute Limiter
(Signal Type => Mach Numbers,
Initial Absolute_Limit => InitIal Mach Error_ Limit);

package Throttle Command Rate Limiter is new Signal Processing.
Absolute Limiter
(Signal Type => Throttle Commands, @
Initial Absolute Limit => Initial Throttle Command Rate Limit);

LN
t-:j;-

ok

CAMP Software Detailed Design Document

package IPP_Tustin is new Signal Processing.

(Signals =>
States =D
Gained_Signals =>
Gains =>

Initial Tustin Gain =>
Initial™ Signal Level =>
Initial State =)
Initial_ ignal Limit =>

Tustin _Integrator With Limit

Mach Numbers,

Throttle_Commands,

Throttle Commands,

Mach Number Gains,
Initial_Mach_Error Gain,

Initial Mach_Command,

Initial Throttle _Command,

Initial Mach_Error Integral Limit);

package IPP Gain is new Autopilot.Integral Plus Proportional Gain

(Input_Signals
Gains

Integrated Signals

=> Mach Numbers,
=> Mach Number _Gains,
=> Throttle Commands,

Initial Proportional Gain => Initial Mach Error _Gain,

Tustin Integrate

package Tustin is new Signal
Tustin

(Signals
States .
Gained_Signals
Gains
Initial Tustin Gain
Initial™ Signal Level
Initial State
Initial™; _Signal Lower

=> IPP Tustin Integrate);

Processing.
_Integrator With Asymmetric Limit
=> Throttle Commands,
=> Throttle_Commands,
=> Throttle Commands,
=> Throttle Commands,
=> Initial Throttle Bandwidth,
=> Initial Throttle Command,
=> Initial Throttle Command,
Limit =>

Initial Lover Throttle Command Limit,

Initial Signal Upper_

LimIt =>

Initial _Upper_Throttle Command Limit);

--begin processing for Throttle_

--Command_Manager package body

begin

Mach_Error := 0.0;

Mach_Error:= Mach _Error Limiter.Limit (Mach_Error);

Raw_Throttle_ Command := Initlal Throttle_Command;
Stored Throttle Command := 0.0;

Initial IPP Integral := Raw Throttle_ Command -
Mach_Error * Initial Mach_Error_Gain;

IPP_Tustin.Reset (Integrator_

Signal

end Throttle Command_Manager;

State => Initial IPP Integral,
=> Mach Error),

Page 605

CAMP Software Detailed Design Document Page 606

3.3.5.2.9.1.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part’s TLCSC:
1. Signal Processing
2. Autopilot

UTILIZATION OF EXTERNAL ELEMENTS:

Packages:

The following table summarizes the external packages required by this part:

| Name | Type | Source | Description |
Absolute Limiter | generic (1) Limits a value by an absolute
package value

Tustin_Integrator| generic (1) Performs a Tustin integration

_With Limit package of an independent variable and
performs an absolute limit of
the result

Tustin_Integrator| generic (1) Performs a Tustin integration

_VWith_Asymmetric_| package of an independent variable and
performs an upper/lower limit
of the result

Integral Plus_ generic (2) Performs an integral plus

Proportional_ﬁain package proportional gain computation
of a subject variable

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsewhere in the pareit top level component:

| Name | Type | Source | Description |

function |Mach Error_ |Limits the Mach Error
[Limiter |

I I

procedure |IPP Tustin |Initializes the Tustin
| |Integrator used by the
| |IPP Gain

Data types:

The folloving table summarizes the types required by this part and defined
elsevhere in the LLCSC Package Specification:

CAMP Software Detailed Design Document

Description |

Mach_Numbers
Mach_Number_
Gains

Throttle_
Commands

floating
point type

floating
point type

floating
point type

Represents missile speed as a ratio of
the speed of sound

Represents a gain which converts from
Mach Number to Throttle Command

Represents a command to open/close
the throttle

Data objects:

Page 607

The following table summarizes the objects required by this part and defined in
the LLCSC package body:

| Name | Type | Description |
Mach_Error Mach_ Difference between Measured Mach and
Numbers |requested Mach

Command

@A Rav_Throttle_
Command

Stored_Throttle_

Commands

Commands

Throttle |Previous Throttle Command

Throttle_|Computed Throttle Command

(not limited)

3.3.5.2.9.1.8 LIMITATIONS

None.

3.3.5.2.9.1.9 LLCSC DESIGN

None.

3.3.5.2.9.1.10

UNIT DESIGN

3.3.5.2.9.1.10.1 COMPUTE_THROTTLE_COMMAND UNIT DESIGN

This unit is a function which computes the new throttle command.

3.3.5.2.9.1.10.1.1 RFQUIREMENTS ALLOCATION

This part meets CAMP requirement R234.

CAMP Software Detailed Design Document Page 608

o
3.3.5.2.9.1.10.1.2 LOCAL ENTITIES DESIGN
None.
3.3.5.2.9.1.10.1.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
Mach_Command Mach _ in Vanted Missile mach
Numbers
Mach_Feedback Mach_ in Measured Missile mach
Numbers
<returned value>| Throttle_ | in Computed Throttle Command
Commands

3.3.5.2.9.1.10.1.4 LOCAL DATA

None. ' e

3.3.5.2.9.1.10.1.5 PROCESS CONTROL

Not applicable.

3.3.5.2.9.1.10.1.6 PROCESSING
The following describes the processing performed by this part:

function Compute Throttle_Command
(Mach_Command
Mach_Feedback
return Throttle Commands is

in Mach Numbers;
in Mach_Numbers)

begin
Mach_Error := Mach Command - Mach_Feedback;
Mach_Error:= Mach Error Limiter.Limit (Mach_Error);
Rav_Throttle_Command := IPP_Gain.Integrate (Signal => Mach_Error);

Throttle Command Rate := Rav_Throttle Command -
Stored_Throttle_Command;

Throttle_Command Rate := Throttle Command Rate Limiter.Limit @Bb
(Throttle_Command Rate);

THIS REPORT WAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELBASE
UNDER DOD DIRECTive 5200,20 AND
NO RESTRICTIONS ARE IMPOSED PN
(TS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELBASE;
DISTRIBUTION UNLIMITED,

CAMP Software Detailed Design Document Page 609
Stored Throttle Command := Tustin.Integrate
(Signal => Throttle Command_Rate);
return Stored Throttle Command;

end Compute_Throttle Command;

3.3.5.2.9.1.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The folloving tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The followving table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top level component:

| Name | Type | Source | Description |

Limit function |Mach Error_ |Limits the Mach Error
Limiter

Limit function |Throttle Limits the Throttle Command
Command_Rate|Rate
Limiter

Integrate function |IPP Gain Computes the Raw Throttle

Command

Integrate function |Tustin_ Computes the Final Throttle

Integrator |Command

Data types:

The folloving table summarizes the types required by this part and defined
elsevhere in the LLCSC Package Specification:

Name	Type	Description
Mach_Numbers	floating	Represents missile speed as a ratio of
	point type	the speed of sound

|
|Throttle_ |floating |Represents a command to open/close |
| Commands | point type |the throttle |

Data objects:

The following table summarizes the objects required by this part and defined in
the LLCSC package body:

CAMP Software Detailed Design Document

| Name | Type | Description |
Mach_Error Mach_ Difference between Measured Mach and
Numbers |requested Mach

Throttle Command_ |Throttle |Rate at which the throttle is being
Rate Commands |opened or closed

Stored Throttle_ |Throttle_|Previous Throttle Command
Command Commands

Rawv_Throttle Throttle_|Computed Throttle Command
Command Commands |(not limited)

3.3.5.2.9.1.10.1.8 LIMITATIONS

None.

3.3.5.2.9.1.10.2 UPDATE_MACH_ERROK_LIMIT UNIT DESIGN

This unit is a procedure which updates the mach error limit.

3.2.5.2.9.1.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R234.

3.3.5.2.9.1.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.5.2.9.1.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
|New Limit | Mach_ | in | New Mach Error limit |
| | Numbers | | [

3.3.5.2.9.1.10.2.4 LOCAL DATA

None.

Page 610

;

g™

%

CAMP Software Detailed Design Document

3.3.5.2.9.1.10.2.5 PROCESS CONTROL

Not applicable.

3.3.5.2.9.1.10.2.6 PROCESSING

The following describes the processing performed by this part:
procedure Update_Mach Error Limit (New _Limit : in Mach_Numbers) is
beg;:ch_Error_Limiter.Update_Limit (New_Absolute Limit => New Limit);
end Update Mach Error_Limit;

3.3.5.2.9.1.10.2.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsevhere in the parent top level component:

| Name | Type | Source | Description |

|Update_Limit | function |Mach_Error_ |Updates the mach error |
| |Limiter [limit |

Data types:

The following table summarizes the types required by this part and defined
elsevhere in the LLCSC Package Specification:

| Name | Type | Description |

|Mach_Numbers |floating |Represents missile speed as a ratio of |
| | point type |the speed of sound

3.3.5.2.9.1.10.2.8 LIMITATIONS

None.

3.3.5.2.9.1.10.3 UPDATE_MACH_ERROR INTEGRAL LIMIT UNIT DESIGN

This unit is a procedure which updates the mach error integral limit.

Page 611

CAMP Software Detailed Design Document Page 612

3.3.5.2.9.1.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R234.

3.3.5.2.9.1.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.5.2.9.1.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Nevw_Limit	Mach_	in	New Mach Error integral limit
	Numbers		

3.3.5.2.9.1.10.3.4 LOCAL DATA
None. %

3.3.5.2.9.1.10.3.5 PROCESS CONTROL

Not applicable.

3.3.5.2.9.1.10.3.6 PROCESSING
The following describes the processing performed by this part:
procedure Update_Mach Error_Integral Limit

(Nev_LImit : in Throttle_Commands) is
begin

IPP Tustin.Update_Limit (New Absolute Limit => New Limit);
end Update Mach Error Integral Limit;
3.3.5.2.9.1.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by ﬁ§§
this part and defined elsewhere in the parent top level component:

CAMP Software Detailed Design Document

|Update Limit | function |Mach_Error_ |Updates the mach error |
| | |Integral_~ |integral limit
| | [Limiter | |

Data types:

The following table summarizes the types required by this part and defined

elsevhere in the LLCSC Package Specification:

Name	Type	Description
Mach_Numbers	floating	Represents missile speed as a ratio of
	point type	the speed of sound

3.3.5.2.9.1.10.3.8 LIMITATIONS

None.

3.3.5.2.9.1.10.4 UPDATE_THROTTLE_RATE LIMIT UNIT DESIGN

This unit is a procedure which updates the throttle rate limit.

3.3.5.2.9.1.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R234.

3.3.5.2.9.1.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.5.2.9.1.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
New Limit	Throttle_	in	New Throttle Rate limit
	Commands		

Page 613

CAMP Software Detailed Design Document Page 614

3.3.5.2.9.1.10.4.4 LOCAL DATA

None.

3.3.5.2.9.1.10.4.5 PROCESS CONTROL

Not applicable.

3.3.5.2.9.1.10.4.6 PROCESSING
The following describes the processing performed by this part:

procedure Update Throttle Rate Limit(New Limit : in Throttle Commands) is

begin

Throttle_Command Rate Limiter.Update Limit
(New_Absolute_Limit => New_Limit);

end Update_Throttle Rate Limit;
3.3.5.2.9.1.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsevhere in the parent top level component:

Name	Type	Source	Description
Update_Limit	function	Throtf1e_	Updates the Throttle
		Command _Rate	Command Rate limit
		Limiter	

Data types:

The following table summarizes the types required by this part and defined
elsevhere in the LLCSC Package Specification:

Name	Type	Description
Throttle	floating	Represents a command to open/close
Commands	point type	the throttle

&

&

CAMP Software Detailed Design Document

3.3.5.2.9.1.10.4.8 LIMITATIONS

None.

3.3.5.2.9.1.10.5 UPDATE_THROTTLE COMMAND LIMITS UNIT DESIGN

This unit is a procedure which updates the throttle command limits.

3.3.5.2.9.1.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R234.

3.3.5.2.9.1.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.5.2.9.1.10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

'l Name | Type | Mode | Description |

|New_Lower Limit

|
|New_Upper Limit
I

Throttle | in
|

Commands Limit

|
Throttle | in
!

Commands Limit

Nev Lower Throttle Command

Nev Upper Throttle Command

3.3.5.2.9.1.10.5.4 LOCAL DATA

None.

3.3.5.2.9.1.10.5.5 PROCESS CONTROL

Not applicable.

303-5.2.9-1;10-5.6 PROCESSING'

The following describes the processing performed by this part:

procedure Update Throttle Command Limits
(New_Lower_Limit
Nev_Upper Limit
begin
Tustin.Update_Limits (New_Lower Limit =>
New_Upper Limit =>

: in Throttle Commands;
¢ in Throttle_Commands) is

Nev_Lower Limit,
Nev_Upper Limit);

Page 615

CAMP Software Detailed Design Document ' Page 616
end Update Throttle Command Limits;

3.3.5.2.9.1.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top level component:

| Name | Type | Source | Description |

|Update_Limit | function |Tustin |Updates the Throttle |
| | | |Command limits |

Data types:

The following table summarizes the types required by this part and defined
elsevhere in the LLCSC Package Specification:

Name	Type	Description
Throttle_	floating	Represents a command to open/close
Commands	point type	the throttle

3.3.5.2.9.1.10.5.8 LIMITATIONS ‘

None.

3.3.5.2.9.1.10.6 UPDATE_MACH_ERROR_GAIN UNIT DESIGN

This unit is a procedure which updates the mach error gain

3.3.5.2.9.1.10.6.1 REQUIREMENTS ALLOCATION
(

This part meets CAMP requirement R234.

3.3.5.2.9.1.10.6.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 617

3.3.5.2.9.1.10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Nev_Gain	Mach_	in	New Mach Error Gain
	Numbers		

3.3.5.2.9.1.10.6.4 LOCAL DATA

None.

3.3.5.2.9.1.10.6.5 PROCESS CONTROL

Not applicable.

3.3.5.2.9.1.10.6.6 PROCESSING

The following describes the processing performed by this part:
procedure Update Mach_Error Gain (New_Gain : in Mach Number_Gains) is
beg%gp Tustin.Update Gain (New Gain => New Gain);
end Update Mach Error Gain; -

3.3.5.2.9.1.10.6.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsewhere in the parent top level component:

| Name | Type | Source | Description |

Data types:

The following table summarizes the types required by this part and defined
elsevhere in the LLCSC Package Specification:

CAMP Software Detailed Design Document Page 618

|Mach_Numbers |floating |Represents missile speed as a ratio of |
| | point type |the speed of sound |

3.3.5.2.9.1.10.6.8 LIMITATIONS

None.

3.3.5.2.9.1.10.7 UPDATE_THROTTLE_ BANDWIDTH UNIT DESIGN

This unit is a procedure wvhich updates the 3 db throttle command bandwidth

3.3.5.2.9.1.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R234.

3.3.5.2.9.1.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.5.2.9.1.10.7.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

|[New_Bandwidth | Throttle | in | New Throttle Bandwidth |
| | Commands | | |

3.3.5.2.9.1.10.7.4 LOCAL DATA

None.

3.3.5.2.9.1.10.7.5 PROCESS CONTROL

Not applicable.

3.3.5.2.9.1.10.7.6 PROCESSING
[
The following describes the processing performed by this part: q

procedure Update _Throttle_Bandwidth

L 24

CAMP Software Detailed Design Document

(New_Bandwidth : in Throttle_Commands) is
begin
Tustin.Update Gain (New_Gain => New_Bandwidth);
end Update Throttle Bandwidth;
3.3.5.2.9.1.10.7.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined elsevhere in the parent top level component:

Name	Type	Source	Description
Update_Gain	procedure	Tustin	Updates the Gain (i.e.,
			throttle command bandwidth)

Data types:

The following table summarizes the types required by this part and defined
elsevhere in the LLCSC Package Specification:

Name	Type	Description
Throttle_	floating	Represents a command to open/close
Commands	point type	the throttle

3.3.5.2.9.1.10.7.8 LIMITATIONS

None.

3.3.5.2.10 UNIT DESIGN

None.

Page 619

CAMI Software Detailed Design Document

(This page left intentionally blanx.)

Page 620

&

[g o
b

®p

CAMP Software Detailed Design Document Page
with Signal Processing;
with Autopilot;
package body Fuel Control Parts is
pragma PAGE;

package body Throttle Command_Manager is

Mach_Numbers;

Throttle_Commands;
Throttle_Commands;
Throttle_Commands;
: Throttle_Commands;

Mach_Error

Throttle Command Rate
Stored_Throttle_Command
Rav_Throttle_Command
Initial _Ipp_ Integral

package Mach Error Limiter is new Signal Processing.
Absolute Limiter
(Signal Type => Mach Numbers,
Initial Absolute_Limit => InitIal Mach Error_Limit);

package Throttle Command Rate Limiter is nev Signal Processing.
Absolute Limiter

(Signal Type => Throttle Commands,

Initial Absolute Limit => Initial Throttle Command Rate Limit);

package Ipp Tustin is nev Signal Processing.
Tustin _Integrator With Limit

(Signals => Mach Nunbcrs,
States => Throttle_Commands,
Gained_Signals => Throttle Commands,
Gains => Mach Number Gains,

Initial Tustin_Gain => InitIal Mach_Error_Gain,

Initial Signal Level => Initial Mach Command,

Initial State => Initial Throttle_Command,
Initial_Signal Limit => Initial Mach_Error_Integral Limit);

package Ipp Gain is nev Autopilot.Integral Plus Proportional Gain
(Input_Signals => Mach_Numbers,
Gains™ => Mach_Number Gains,
Integrated_Signals => Throttle Commands,
Initial Proportional Gain => Initial Mach Error_Gain,
Tustin Tntegrate => Ipp Tustin.Integrate);

package Tustin is new Signal Processing.
Tustin™ _Integrator VWith Asymmetric Limit

(Signals => Throttle_Commands,

States => Throttle_Commands,
Gained_Signals => Throttle_Commands,

Gains => Throttle Commands,

Initial Tustin Gain => Initial Throttle Bandwidth,
Initial Signal Level => Initial Throttle Command,

Initial State ~ => Initial Throttle_Command,

621

CAMP Software Detailed Design Document Page 622
S
Initial Signal Lower Limit =>
Initial Lower _Throttle Command_Limit,
Initial _Signal Upper Limit =>
Initial _Upper_Throttle_Command Limit);
pragma PAGE;
function Compute Throttle Command
(MacE Command : in Mach_Numbers;
Mach_Feedback : in Mach_Numbers)
return Throttle Commands is
begin

Mach_Error := Mach_Command - Mach Feedback;
Mach_Error:= Mach_Error Limiter.Limit (Mach_Error);
Raw_Throttle Command := Ipp Gain.Integrate (Signal => Mach Error);

Throttle_Command Rate := Raw_Throttle Command -
Stored Throttle _Command ;

Throttle Command Rate := Throttle Command Rate Limiter.Limit
(Throttle Command Rate);

Stored_Throttle Command := Tustin.Integrate
(Signal => Throttle Command Rate);

return Stored_Throttle Command; ‘E

+ end Compute Throttle Command;
pragma PAGE;
procedure Update Mach Error Limit (Nev_Limit : in Mach_Numbers) is
begin
Mach Error Limiter.Update Limit (New_Absolute Limit => New Limit);
end Update Mach _Error_Limit;
pragma PAGE;
procedure Update Mach Error_ Integral Limit
(New_ Limit : in Throttle Commands) is
begin -
Ipp_Tustin.Update Limit (New Absolute Limit => New Limit);
end Update_Mach_Error_Integral Limit;
pragma PAGE;
procedure Update Throttle Rate Limit(New Limit : in Throttle Commands) is
begin
Throttle Command Rate Limiter.Update Limit
(New_ Absolute Limit => Nev_Limit);
end Update_Throttle Rate_Limit;
pragma PAGE;
procedure Update Throttle Command Limits
(New_Lower Limit : in Throttle_Commands;
New_Upper_Limit : in Throttle Commands) is
begin
Tustin.Update_Limits (New_Lower_Limit => New_Lower_ Limit,
New Upper Limit => New _Upper_ “Limit);
end Update Throttle Command Limits}

&,

pragma PAGE;
procedure Update Mach Error Gain (New_Gain : in Mach_Number Gains) is
begin

CAMP Software Detailed Design Document Page 623

s
NV
Ipp_Tustin.Update_Gain (New_Gain => New_Gain);
end Update Mach_ Error _Gain;
pragma PAGE;
procedure Update Throttle Bandwidth
(New Bandwidth : in Throttle Commands) is
begin
Tustin.Update Gain (New Gain => New_Bandwidth);
end Update_Throttle Bandwidth;
pragma PAGE;
-= —-begin processing for Throtile_
-- -~ Command Manager package body
begin
Mach_Error := 0.0;
Mach Error:= Mach Error Limiter.Limit (Mach_Error);
Raw Throttle Command := Initial Throttle Command;
Stored Throttle Command := 0.0;
Initial Ipp Integral := Rav Throttle Command -
Mach Error * Initial Mach Error Gain;
¢ Ipp_Tustin.RESET (Integrator State => Initial Ipp Integral,

Signal - => Mach_Error);
end Throttle_Command_Manager;

end Fuel Control Parts;

CAMP Software Detailed Design Document

(This page left intentionally blank.)

CAMP Software Detailed Design Document Page 625

3.3.6 MATHEMATICAL

CAMP Software Detailed Design Document Page 626

%

(This page intentionally left blank.)

CAMP Software Detailed Design Document Page 627

3.3.6.1 COORDINATE VECTOR MATRIX ALGEBRA (BODY) TLCSC P681 (CATALOG #P53-0)

This part consists of generic packages and functions which define and/or
operate on coordinate vectors and matrices. A coordinate vector is a
three-element array. A coordinate matrix is a 3 x 3 array. These arrays are
dimensioned with scalar types defined by the user.

WVARNING: The units in this part ASSUME the axes types used to dimension the
arrays have a length of 3. If they do not, the units will not function
properly. No length checks are performed by the units.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.6.1.1 REQUIREMENTS ALLOCATION

The following chart summarizes the allocation of CAMP requirements to this
TLCSC:

| Name | Type | Requirements Allocation |
Vector_Operations generic package RO24, RO50, RO51, RO52
Matrix Operations generic package RO70, RO71, RO60, RO67, RO72
RO78

Vector_Scalar Operations | generic package RO54, RO55
Matrix Scalar Operations | generic package RO56, RO57
Cross_Product generic function | RO53
Matrix Vector Multiply generic function | R049
Matrix Matrix Multiply generic function | R068

3.3.6.1.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.3 INPUT/OUTPUT

None.

3.3.6.1.4 LOCAL DATA

None.

3.3.6.1.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 628

3.3.6.1.6 PROCESSING
The following describes the processing performed by this part:

with General Purpose Math;
package body Coordinate Vector Matrix Algebra is

package body Matrix_Operations is separate;
package body Matrix Scalar Operations is separate;
function Cross_Product (Left : Left Vectors;

Right : Right Vectors)

return Result Vectors is separate;
function Matrix Vector_ Multiply (Matrix : Matrices;

Vector : Input _Vectors)
return Output Vectors is separate;

function Matrix Matrix Multiply (Matrixl : Left_Matrices;
Matrix2 : Right_Matrices)
return Result Matrices is separate;

end Coordinate_Vector Matrix Algebra;

3.3.6.1.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part:
1. General Purpose Math (GPMath)

3.3.6.1.8 LIMITATIONS

None.

3.3.6.1.9 LLCSC DESIGN
3.3.6.1.9.1 VECTOR OPERATIONS PACKAGE DESIGN (CATALOG #P54-0)

This part, vhich is a package body, provides general operations on
three-element, coordinate vectors.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.
3.3.6.1.9.1.1 REQUIREMENTS ALLOCATION

The following chart summarizes the allocation of CAMP requirements to this
LLCSC. :

CAMP Softwvare Detailed Design Document Page 629

Requirement
Name Type Allocation
MM function | R0O50
n_w function | R0O51
Dot_Product function | RO52
Length function | R208
Sparse Right _Z_ Add function | R205
Sparse_ Right "X Add function | R206
Sparse Right XY Subtract | function | R207
Set_to_ Zero Vector | function N/A

3.3.6.1.9.1.2 LOCAL ENTITIES DESIGN
Subprograms:

The following table describes the subprograms maintained local to this part:

Name	Type	Description
RSOS	function	Instantiated version of General Purpose_Math.General
		Operations.Root_Sum Of Squares; required by Length
	.	function

3.3.6.1.9.1.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously described when this part was
specified:

Data types:

The following table describes the generic formal types required by this part:

| Name | Type | Description |
| Axes | scalar type | Used to dimension the exported vector type|
| Elements | floating | Data type of elements in exported vector

I | point type | type I
| Elements_Squared | floating | Data type resulting from multiplying two |
| | point type | objects of type Elements |

Subprograms:

The following table describes the generic formal subroutines required by this
part:

CAMP Software Detailed Design Document Page 630

o8

-
| Name | Type | Description |
| """ | function | Multiplication operator defining the operation: |
| Elements * Elements := Elements_Squared |
| Sqrt | function | Square root operator |

3.3.6.1.9.1.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

X Axes Axes'FIRST Constant used to index first element
in vector

Y Axes Axes’SUCC(x) | Constant used to index second
element in vector

Z Axes Axes'’LAST Constant used to index last element
in vector

Zero_Vector | Vectors | 0.0 Contant vector whose elements have
all been set to 0.0

— . ‘i

3.3.6.1.9.1.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.1.6 PROCESSING
The following describes the processing performed by this part:

package body Vector Operations is

— -~-declaration section-

X ¢ constant Axes := Axes’FIRST;
y : constant Axes := Axes’SUCC(X);
b4 ¢ constant Axes := Axes’LAST;

Zero_Vector : constant Vectors := (others => 0.0);

- --local funciions-

function RSOS is new
General Purpose Math.Root_Sum_of Squares
(Real Type => Elements,

o

CAMP Software Detailed Design Document Page 631

Squared Type => Elements Squared,
Mt - => MEn -
Sqrt => Sqrt);

end Vector_Operations;

3.3.6.1.9.1.7 UTILIZATION OF OTHER ELEMENTS

The following library units were with’d by the Coordinate Vector Matrix Algebra
TLCSET General Purpose Math (GPMath)

UTILIZATION OF EXTERNAL ELEMENTS:

Subprograms and task entries:

The following table summarizes the external subroutines and task entries
required by this part:

Name	Type	Source	Description
Root_Sum Of	generic	GPMath -	Performs calculations necessary to
Squares	function		compute the length of a vector

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following data types were previously defined in the specification of this
part:

| Name | Type | Range | Description |

| Vectors | array | N/A | One-dimensional array of Elements |

3.3.6.1.9.1.8 LIMITATIONS

None.

3.3.6.1.9.1.9 LLCSC DESIGN

None.

CAMP Software Detailed Design Document

3.3.6.1.9.1.10 UNIT DESIGN
3.3.6.1.9.1.10.1 "+" UNIT DESIGN (CATALOG #P693-0)

This unit, which is a function, calculates the result of adding two vectors.

Each vector has components in the x-, y-, and z-axes of the Cartesian
coordinate system.

3.3.6.1.9.1.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement ROSO.

3.3.6.1.9.1.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.1.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Left	Vectors	In	Pirst vector to be added
Right	Vectors	In	Second vector to be added

3.3.6.1.9.1.10.1.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Answver | Vectors | Result of adding two input vectors |

3.3.6.1.9.1.10.1.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.1.10.1.6 PROCESSING
The following describes the processing performed by this part:

function "+" (Left : Vectors;
Right : Vectors) return Vectors is

Page 632

3

CAMP Software Detailed Design Document Page 633

begin
Ansver(X) := Left(X) + Right(X);
Ansver(Y) := Left(Y) + Right(Y);
Answver(2) := Left(Z) + Right(2);
return Ansver;

end "+";

3.3.6.1.9.1.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Coordinate Vector Matrix_Algebra.Vector -
Operations LLCSC:

Name	Type	Description
Axes	scalar type	Used to dimension the exported vector type
Elements	floating Data type of elements in exported vector	

| | point type type |

The following table summarizes the types required by this part and defined in
the package specification of the Coordinate Vector Matrix Algebra.Vector -
Operations LLCSC:

|] Name | Type | Range | Description |

| Vectors | array | N/A | One-dimensional array of Elements [

Data objects:

CAMP Software Detailed Design Document Page 634

&
The following table summarizes the objects required by this part and defined in
the package body of the Coordinate Vector Matrix Algebra.Vector Operations

LLCSC:

| Name | Type | Value | Description |

Constant used to index first element
in vector

Axes’'FIRST

| | | | |
| Y | Axes | Axes’SUCC(x) | Constant used to index second [
			element in vector
2	Axes	Axes’LAST	Constant used to index last element
			in vector
3.3.6.1.9.1.10.1.8 LIMITATIONS

None.

3.3.6.1.9.1.10.2 "-" UNIT DESIGN (CATALOG #P694-0)

This unit, which is a function, calculates the result of subtracting twon
vectors. Each vector has components in the x-, y-, and z-axes of the Cartesian
coordinate system.

3.3.6.1.9.1.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO51.

3.3.6.1.9.1.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.1.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
| Left | Vectors | In | Vector to be subtracted from
| Right | Vectors | In | Vector to be used as the subtrahend |

3.3.6.1.9.1.10.2.4 LOCAL DATA

Data objects:

®r

CAMP Software Detailed Design Document Page 635

The following table describes the data objects maintained by this part:

3.3.6.1.9.1.10.2.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.1.10.2.6 PROCESSING
The following describes the processing performed by this part:

function "-" (Left : Vectors;
Right : Vectors) return Vectors is

- --dec’aration section-

Ansver : Vectors;

- --function body-

begin
Ansver(X) := Left(X) - Right(X);
Answer(Y) := Left(Y) - Right(Y);
Ansver(Z) := Left(Z) - Right(2Z);
return Ansver;

end "-";

3.3.6.1.9.1.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The follawing tables describe the elements used by this part but defined
elsevhere in the top level component:

Data types:
The following table summarizes the types required by this part and defined as

generic formal parameters to the Coordinate Vector Matrix_Algebra.Vector -
Operations LLCSC:

CAMP Software Detailed Design Document Page 636

Name	Type	Description
Axes	scalar type	Used to dimension the exported vector type
Elements	floating	Data type of elements in exported vector

I | point type | type |

The following table summarizes the types required by this part and defined in
the package specification of the Coordinate Vector_ Matrix_Algebra.Vector -
Operations LLCSC:

| Name | Type | Range | Description |

| Vectors | array | N/A | One-dimensional array of Elements |

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of the Coordinate_Vector Matrix_Algebra.Vector_Operations
LLCSC:

| Name | Type | Value | Description |

Constant used to index first element
in vector

Axes’ FIRST

T =
Y	Axes	Axes’SUCC(x)	Constant used to index second
			element in vector
2	Axes	Axes’LAST	Constant used to index last element
			1in vector
3.3.6.1.9.1.10.2.8 LIMITATIONS

None.

3.3.6.1.9.1.10.3 VECTOR_LENGTH UNIT DESIGN (CATALOG #P55-0)
This unit, which is a function, calculates the length of a coordinate vector.

The vector has components in the x-, y-, and z-axes of a Cartesian coordinate
system.

3.3.6.1.9.1.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R208.

CAMP Software Detailed Design Document Page 637

3.3.6.1.9.1.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.1.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Vector | Vectors | In | Vector for which a length is to be calculated |

3.3.6.1.9.1.10.3.4 LOCAL DATA

None.

3.3.6.1.9.1.10.3.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.1.10.3.6 PROCESSING
The following describes the processing performed by this part:
function Vector Length (Vector : Vectors) return Elements is
begin
return RSOS(Vector(X), Vector(Y), Vector(2));

end Vector_Length;

3.3.6.1.9.1.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of the Coordinate Vector Matrix -
Algebra.Vector Operations LLCSC:

CAMP Software Detailed Design Document Page 638

| RS0S | function | Instantiated version of General Purpose_Math.General |
I I | Operations.Root Sum_Of Squares |

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Coordinate Vector Matrix_Algebra.Vector -
Operations LLCSC:

e e o e e o e = e oy o e o -—— - —— e et o o

ame ype escription

N	T	Descripti
Axes	scalar type	Used to dimension the exported vector type
Elements	floating	Data type of elements in exported vector

| | point type | type I

The following table summarizes the types required by this part and defined in
the package specification of the Coordinate Vector Matrix Algebra.Vector -
Operations LLCSC:

| Name | Type | Range | Description ' |

| Vectors | array | N/A | One-dimensional array of Elements |

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of the Coordinate Vector Matrix Algebra.Vector_Operations
LLCSC:

Name | Type | Value | Description |
X Axes Axes'’FIRST Constant used to index first element
in vector

element in vector
Constant used to index last element
in vector

I

I I I I I
= Y = Axes } Axes’ SUCC(x) = Constant used to index second }
i i i Axes’LAST i i

3.3.6.1.9.1.10.3.8 LIMITATIONS

None.

55

£

CAMP Software Detailed Design Document Page 639

3.3.6.1.9.1.10.4 DOT_PRODUCT UNIT DESIGN (CATALOG #P56-0)

This unit, which is a function, calculates the dot product of two vectors.
Each vector has components in the x-, y-, and z-axes of a Cartesian coordinate
system.

3.3.6.1.9.1.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO52.

3.3.6.1.9.1.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.1.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Vectorl	Vectors	In	First vector to be used for the dot product
			operation
Vector2	Vectors	In	Second vector to be used for the dot product
			operation

3.3.6.1.9.1.10.4.4 LOCAL DATA
Data objects: .

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Ansver | Elements | Result of performing a dot product operation |

3.3.6.1.9.1.10.4.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.1.10.4.6 PROCESSING
The following describes the processing performed by this part:

function Dot_Product (Vectorl : Vectors;
Vector2 : Vectors) return Elements_Squared is

CAMP Software Detailed Design Document Page 640

begin
Ansver := Vectorl(X) * Vector2(X) +
Vectorl(Y) * Vector2(Y) +
Vectorl(Z) * Vector2(2);
return Answver;

end Dot _Product;

3.3.6.1.9.1.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTIiIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The folloving tables describe the elements used by this part but defined
elsevhere in the top level component:

Data types:

The folloving table summarizes the types required by this part and defined as
generic formal parameters to the Coordinate Vector Matrix Algebra.Vector -
Operations LLCSC:

| Name | Type | Description |

scalar type | Used to dimension the exported vector type|

I I |

| Elements | floating | Data type of elements in exported vector |
I | point type | type I
| Elements_Squared | floating | Data type resulting from multiplying two |
| | point type | objects of type Elements

The following table summarizes the types required by this part and defined in
the package specification of the Coordinate_Vector Matrix Algebra.Vector -
Operations LLCSC:

| Name | Type | Range | Description |

| Vectors | array | N/A | One-dimensional array of Elements |

>

&

i

CAMP Softvare Detailed Design Document

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of the Coordinate Vector Matrix_Algebra.Vector_Operations
LLCSC:

| Name | Type | Value | Description |
X Axes Axes’ FIRST Constant used to index first element
in vector
Y

element in vector
Constant used to index last element
in vector

| | |
| Axes | Axes’SUCC(x) | Constant used to index second
| | |
| | Axes’LAST |
I l I

3.3.6.1.9.1.10.4.8 LIMITATIONS

None.

3.3.6.1.9.1.10.5 SPARSE RIGHT Z ADD UNIT DESIGN (CATALOG #P57-0)

This unit, wvhich is a function, calculates the addition of two vectors. Each
vector has components in the x-, y-, and z-axes of a Cartesian coordinate
system. The z-component of the second vector equals 0.

3.3.6.1.9.1.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R205.

3.3.6.1.9.1.10.5.2 LOCAL ENTITIES DESIGN ‘

None.

3.3.6.1.9.1.10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Left	Vectors	In	Pirst vector to be added
Right	Vector	In	‘Second vector to be added;

I

| | | | z-component equals 0

CAMP Software Detailed Design Document Page 642

3.3.6.1.9.1.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Ansver | Vectors | Result of adding two input vectors |

3.3.6.1.9.1.10.5.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.1.10.5.6 PROCESSING
The following describes the processing performed by this part:

function Sparse Right_Z _Add (Left : Vectors;
Right : Vectors) return Vectors is

_ --declaration section- ' e

Ansver : Vectors;

-— --function body-

begin
Ansver(X) := Left(X) + Right(X);
Ansver(Y) := Left(Y) + Right(Y);
Answver(Z) := Left(2);
return Ansver:

end Spérse_Right_L_Add;

3.3.6.1.9.1.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the top level component:

Data types: @

0t
e

L

CAMP Software Detailed Design Document Page 643

The following table summarizes the types required by this part and defined as
generic formal parameters to the Coordinate Vector Matrix Algebra.Vector -
Operations LLCSC:

Name	Type	Description
Axes	scalar type	Used to dimension the exported vector type]
Elements	floating	Data type of elements in exported vector

I | point type | type I

The following table summarizes the types required by this part and defined in
the package specification of the Coordinate Vector Matrix Algebra.Vector -
Operations LLCSC:

| Name | Type | Range | Description |

| Vectors | array | N/A | One-dimensional array of Elements |

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of the Coordinate Vector Matrix Algebra.Vector Operations
LLCSC:

element in vector
Constant used to index last element
in vector

Axes’LAST

Name	Type	Value	Description
X	Axes	Axes’FIRST	Constant used to index first element
			1in vector
Y	Axes	Axes’SUCC(x)	Constant used to index second
		I I	
I | | | I
I I I | I

3.3.6.1.9.1.10.5.8 LIMITATIONS

None.

3.3.6.1.9.1.10.6 SPARSE RIGHT X ADD UNIT DESIGN (CATALOG #P58-0)
This unit, which is a function, calculates the result of adding two vectors.

Each vector has components in the x-, y-, and z-axes of the Cartesian
coordinate system. The x-component of the second vector equals O.

3.3.6.1.9.1.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R206.

CAMP Software Detailed Design Document Page 644

3.3.6.1.9.1.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.1.10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Left	Vectors	In	First vector to be added
Right	Vectors	In	Second vector to be added; x-component
		equals O	

3.3.6.1.9.1.10.6.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Ansver | Vectors | Result of adding two input vectors |

3.3.6.1.9.1.10.6.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.1.10.6.6 PROCESSING
The following describes the processing performed by this part:

function Sparse Right X Add (Left : Vectors;
Right : Vectors) return Vectors is

— -~-declaration section-

- -~function body-

begin

“E

CAMP Software Detailed Design Document

Ansver(X) := Left(X);
Ansver(Y) := Left(Y) + Right(Y);
Ansver(Z) := Left(Z) + Right(Z);

return Ansver;

end Sparse Right X Add;

3.3.6.1.9.1.10.6.7 UTILIZATION OF OTHER

ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined

elsevhere in the top level component:

Data types:

The following table summarizes the types required by this part and defined as

generic formal parameters to the Coordinate Vector Matrix_Algebra.Vector -

Operations LLCSC:

Page 645

Name	Type	Description
Axes	scalar type	Used to dimension the exported vector type
Elements	floating	Data type of elements in exported vector
I

| point type | type

The following table summarizes the types required by this part and defined in

the package specification of the Coordinate Vector Matrix Algebra.Vector -

Operations LLCSC:

| Name | Type | Range | Descripti

on

| Vectors | array | N/A | One-dimens

ional array of Elements

Data objects:

The following table summarizes the objects required by this part and defined in

the package body of the Coordinate Vector
LLCSC:

_Matrix Algebra.Vector_Operations

in vector

Name	Type	Value	Description
X	Axes	Axes’FIRST	Constant used to index first element
			in vector
Y	Axes	Axes’SUCC(x)	Constant used to index second
			element in vector
} A i Axes { Axes’LAST i Constant used to index last element

CAMP Software Detailed Design Document Page 646

3.3.6.1.9.1.10.6.8 LIMITATIONS

None.

3.3.6.1.9.1.10.7 SPARSE RIGHT XY SUBTRACT UNIT DESIGN (CATALOG #P59-0)
This unit, which is a function, calculates the result of subtracting two

vectors. Each vector has components in the x-, y-, and z-axes of the Cartesian
coordinate system. The x- and y-components of the second vector equal O.

3.3.6.1.9.1.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R207.

3.3.6.1.9.1.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.1.10.7.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Left | Vectors | In | First vector to be used in subtra:tion |
| Right | Vectors | In | Second vector to be used in subtraction; x- |
I

and y- components equal 0 |

3.3.6.1.9.1.10.7.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Answer | Vectors | Result of subtracting two input vectors |

3.3.6.1.9.1.10.7.5 PROCESS CONTROL

Not applicable.

3

-

¥

CAMP Software Detailed Design Document Page 647

3.3.6.1.9.1.10.7.6 PROCESSING
The following describes the processing performed by this part:
function Sparse Right XY Subtract (Left : Vectors;

Right : Vectors) return Vectors is

- ~-declaration section-

Ansver : Vectors;

- --function body-

begin
Ansver(X) := Laft(X);
Ansver(Y) := Left(Y);
Ansver(Z) := Left(Z) - Right(Z);
return Ansver;

end Sparse Right XY Subtract;

3.3.6.1.9.1.10.7.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the top level component:

Data types:
The following table summarizes the types required by this part and defined as

generic formal parameters to the Coordinate Vector Matrix Algebra.Veclor -
Operations LLCSC:

| Name | Type | Description |

| Axes | scalar type | Used to dimension the exported vector type]|
| Elements | floating | Data type of elements in exported vector |

| | point type | type |

The following table summarizes the types required by this part and defined in
the package specification of the Coordinate Vector Matrix Algebra.Vector -
Operations LLCSC:

CAMP Software Detailed Design Document Page 648

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of the Coordinate Vector_Matrix_ Algebra.Vector Operations
LLCSC:

| Name | Type | Value | Description

Axes Axes’FIRST

I
| Constant used to index first element|
| 1in vector |
| Constant used to index second |
| element in vector [
I |
I |

Y
yA Axes Axes’LAST Constant used to index last element

|
Axes | Axes’SUCC(x)
|
|
I

in vector

3.3.6.1.9.1.10.7.8 LIMITATIONS

None.

3.3.6.1.9.1.10.8 SET_TO_ZERO_VECTOR UNIT DESIGN (CATALOG #P60-0)

This function returns a vector whose elements have all been set to 0.0.

3.3.6.1.9.1.10.8.1 REQUIREMENTS ALLOCATION
N/A
3.3.6.1.9.1.10.8.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.1.10.8.3 INPUT/OUTPUT

None.

3.3.6.1.9.1.10.8.4 LGCAL DATA

None.

CAMP Software Detailed Design Document Page 649

3.3.6.1.9.1.10.8.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.1.10.8.6 PROCESSING
The following describes the processing performed by this part:
function Set_to_Zero Vector return Vectors is
begin
return Zero Vector;

end Set_to_Zero Vector;

3.3.6.1.9.1.10.8.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Coordinate’ Vector Matrix_Algebra.Vector -
Operations LLCSC:

Name	Type	Description
Axes	scalar type	Used to dimension the exported vector type
Elements	floating	Data type of elements in exported vector

I | point type | type |

The following table summarizes the types required by this part and defined in
the package specification of the Coordinate Vector Matrix_Algabra.Vector -
Operations LLCSC:

| Name | Type | Range | Description |

| Vectors | array | N/A | One-dimensional array of Elements |

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of the Coordinate_Vector_Matrix Algebra.Vector_Operations
LLCSC:

[,, j)

CAMP Software Detailed Design Document Page 650

| Zero Vector | Vectors | 0.0 | Contant vector whose elements have |
| | | | all been set to 0.0 |

3.3.6.1.9.1.10.8.8 LIMITATIONS

None.

3.3.6.1.9.2 VECTOR_SCALAR OPERATIONS (BODY) PACKAGE DESIGN (CATALOG #P64-0)

This LLCSC provides the functions to allow multiplication or division of each
element of a vector by a scalar.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.6.1.9.2.1 REQUIREMENTS ALLOCATION

The following chart summarizes the allocation of requirements to this part:

Name	Requirement Allocation
Mam	RO54
Sparse_X Vector_Scalar Multiply	R209
"/n	ROS5

3.3.6.1.9.2.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.2.3 INPUT/OUTPUT

None.

3.3.6.1.9.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

B

CAMP Software Detailed Design Document Page 651

X | constant Axes | Used to index first element in vector |
| y | constant Axes | Used to index second element in vector |
z | constant Axes | Used to index last element in vector |

3.3.6.1.9.2.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.2.6 PROCESSING
The following describes the processing performed by this part:

package body Vector_ Scalar Operations is

== --declaration section-

X : constant Axes := Axes’FIRST;
y : constant Axes := Axes’SUCC(x);
2 : constant Axes := Axes’LAST;

end Vector_Scalar Operations;

3.3.6.1.9.2.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.6.1.9.2.8 LIMITATIONS

None.

3.3.6.1.9.2.9 LLCSC DESIGN

None.

3.3.6.1.9.2.10 UNIT DESIGN
3.3.6.1.9.2.10.1 "*" UNIT DESIGN (CATALOG #P700-0)
This unit, which is a function, multiples each element of a vector by a scalar.

The vector has 3 elements which are components in the x-, y-, and z-axes of a
Cartesian coordinate system.

CAMP Software Detailed Design Document

3.3.6.1.9.2.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R054.

3.3.6.1.9.2.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.2.10.1.3 INPUT/OUTPUT

FORMAL PARAMETERS:

fage 652

Name	Type	Mode	Description
Vector	Vectorsl	In	Vector to be scaled
Multiplier	Scalars	In	Value to be used when multiplying the

I

| | | | elements of the vector

3.3.6.1.,9.2.10.1.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Ansver | Vectors2 | Scaled vector as calculated by this part |

3.3.6.1.9.2.10.1.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.2.10.1.6 PROCESSING
The following describes the processing performed by this part:

function "*" (Vector : Vectorsl;
Multiplier : Scalars) return Vectors2 is

- --declaration section-

Ansver : Vectors2;

- --begin function "*"

&

r

CAMP Software Detailed Design Document

begin

Ansver(x) :
Ansver(y) :

Vector(x) * Multiplier;
Vector(y) * Multiplier;

Ansver(z) := Vector(z) * Multiplier;

return Answer;

end "*";

3.3.6.1.9.2.10.1.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined

elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined as generic parameters to the Coordinate Vector Matrix -

Algebra.Vector_Scalar_Operations LLCSC:

Page 653

| Name | Type

| Desériptién

| "An | function | Multiplication operator used to define the operation:

| Elementsl * Scalars := Elements2

Data types:

The following table summarizes *he types required by this part and defined as
generic parameters to the Coordinate Vector Matrix Algebra.Vector_ Scalar -

Operations LLCSC:

| Name | Type | Description |
Axes scalar type | Used to dimension imported vector types
Elementsl | floating Type of elements on Vectorsl
point type
Elements2 | floating Type of elements on Vectors2
point type
Scalars floating Data type of scale factors
point type

3.3.6.1.9.2.10.1.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 654

3.3.6.1.9.2.10.2 "/" UNIT DESIGN (CATALOG #P699-0)
This unit, which is a function, provides the capability to divide each element

of a vector by a scalar. The vector has three elements which are components in
the x-, y-, and z-axes of a Cartesian coordinate system.

3.3.6.1.9.2.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R055.

3.3.6.1.9.2.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.2.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
| Vector | Vector2 | In | Vector to be scaled
| Divisor | Scalars | | Value each element of the vector is to |

| | | | be divided by |

3.3.6.1.9.2.10.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Ansver | Vectorsl | Scaled vector as calculated by this part |

3.3.6.1.9.2.10.2.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.2.10.2.6 PROCESSING
The following describes the processing performed by this part:

function "/" (Vector : Vectors2;
Divisor : Scalars) return Vectorsl is

CAMP Software Detailed Design Document Page 655

Ansver : Vectorsl;

begin
Ansver(x) := Vector(x) / Divisor;
Ansver(y) := Vector(y) / Divisor;
Ansver(z) := Vector(z) / Divisor;
return Answer;

end "/";

3.3.6.1.9.2.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subbrograms and task entries:

The folloving table summarizes the subroutines and task entries required by
this part and defined as generic parameters to the Coordinate Vector Matrix -
Algebra.Vector_Scalar Operations LLCSC:

| Name | Type | Description |

A | function | Division operator used to define the operation: |
| | | Elements2 / Scalars := Elementsl |

Data types:

The following table summarizes the types required by this part and defined as
generic parameters to the Coordinate Vector Matrix_Algebra.Vector_Scalar -
Operations LLCSC:

CAMP Software Detailed Design Document Page 656

| Name | Type | Description
Axes scalar type | Used to dimension imported vector types
Elementsl | floating Type of elements on Vectorsl
point type
Elements2 | floating Type of elements on Vectors2
point type
Scalars floating Data type of scale factors
point type

3.3.6.1.9.2.10.2.8 LIMITATIONS

None.

3.3.6.1.9.2.10.3 SPARSE X VECTOR SCALAR MULTIPLY UNIT DESIGN (CATALOG #P65-0)
This unit, which is a function, provides the capability to multiply each
element of a vector by a scalar. The vector has 3 elements which are

components in the x-, y-, and z-axes of a Cartesian coordinate system. The
x-component of the vector equals O.

3.3.6.1.9.2.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R209.

3.3.6.1.9.2.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.2.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

multiplied by

Name	Type	Mode	Description
Vector	Vectorsl	In	Vector to be scaled; x-component
			equals O
Multiplier	Scalars	In	Value each vector element is
I I | l I

3.3.6.1.9.2.10.3.4 LOCAL DATA

Data objects:

R

CAMP Software Detailed Design Document

{ Name | Type | Deseription |
| Answer | Vectors2 | Scaled vector as calculated by this part |
3.3.6.1.9.2.10.3.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.2.10.3.6 PROCESSING
The following describes the processing performed by this part:

function Sparse X Vector_Scalar Multiply

(Vector : Vectorsl;
Multiplier : Scalars) return Vectors2 is

e --declaration section-

Ansver : Vectors2;

-- --begin function Sparse X Vector_ Scalar Multiply

begin
Ansver(X) := 0.0;
Ansver(Y) := Vector(Y) * Multiplier;
Ansver(Z) := Vector(Z) * Multiplier;
return Ansver;

end Sparse X Vector_Scalar_ Multiply;

3.3.6.1.9.2.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by

this part and defined as generic parameters to the Coordinate Vector Matrix_ -

Algebra.Vector_Scalar Operations LLCSC:

Page 657

CAMP Software Detailed Design Document

| Name | Type | Description

|t | function | Multiplication operator used to define the operation:
| | | Elementsl * Scalars := Elements2

Data types:

The following table summarizes the types required by this part and defined as
generic parameters to the Coordinate_Vector Matrix Algebra.Vector_Scalar -

Operations LLCSC:

| Name Type Description
Axes scalar type | Used to dimension imported vector types
Elementsl | floating Type of elements on Vectorsl
point type
Elements2 | floating Type of elements on Vectors2
point type
Scalars floating Data type of scale factors

point type

3.3.6.1.9.2.10.3.8 LIMITATIONS

None.

3.3.6.1.9.3 MATRIX OPERATIONS PACKAGE DESIGN (CATALOG #P61-0)

This package provides general operations on a two-dimensional coordinate

matrix.

The decomposition for this part is the same as that shown in the Top-Level

Design Document.

3.3.6.1.9.3.1 REQUIREMENTS ALLOCATION

The following chart summarizes the allocation of requirements to this part’s

units:

Requirement
Name Type Allocation
"4+" (matrices + matrices) function | RO70
"_" (matrices - matrices) function | RO71
"4" (matrices + elements) function | R060
"." (matrices - elements) function | RO67
Set_To_Identity Matrix function | R072
Set_To_Zero Matrix function | RO78

bt

CAMP Software Detailed Design Document

3.3.6.1.9.3.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.3.3 INPUT/OUTPUT

GENERIC PARAMETERS:

Previously described in package specification.

3.3.6.1.9.3.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description
X Axes Axes’FIRST Constant used to index first element
in matrix rov and/or column
y Axes Axes’SUCC(X) | Constant used to index second element
in matrix row and/or column
4 Axes Axes’ LAST Constant used to index last element
a in matrix row and/or column
Identity | Matrices Identity matrix with diagonal
Matrix elements set to 1.0 and all other
elements set to 0.0
Zero_ Matrices | 0.0 Constant zero matrix with all
Matrix elements set to 0.0

3.3.6.1.9.3.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.3.6 PROCESSING

The following describes the processing performed by this part:

separate (Coordinate Vector Matrix Algebra)

package body Matrix Operations is

¢ constant Axes
¢ constant Axes
: constant Axes

[B]

:= Axes’FIRST;
:= Axes’SUCC(X);
:= Axes’LAST;

-- --the diagonal elements of Identity Matrix will be set to 1.0 during

-- --package initialization

CAMP Software Detailed Design Document Page 660

Identity Matrix : Matrices := (others => (others => 0.0));

Zero_Matrix : constant Matrices := (others => (others => 0.0));

function Set_to_Identity Matrix return Matrices is separate;

function Set_to_Zero Matrix return Matrices is separate;

--begin package Matrix Operations-

begin

-- --initialize diagonal elements of Identity Matrix, remaining elements have
-- --already been set to 0.0

Identity Matrix(X,X)
Identity Matrix(Y,Y)
Jdentity Matrix(Z,2)

s
s =
900

end Matrix Operations; %

3.3.6.1.9.3.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.6.1.9.3.8 LIMITATIONS

None.

3.3.6.1.9.3.9 LLCSC DESIGN

None.

3.3.6.1.9.3.10 UNIT DESIGN
3.3.6.1.9.3.10.1 "+" (MATRICES + MATRICES) UNIT DESIGN (CATALOG #P695-0)

This unit, which is a function, provides the capability to calculated the
result of adding two matrices. Each matrix is a 3 x 3 matrix having 9 elements
which are components in the x-, y-, ai.d z-axes of a Cartesian coordinate

system.

ot

CAMP Software Detailed Design Document

3.3.6.1.9.3.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO70.

3.3.6.1.9.3.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.3.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Left	Matrices	In	First matrix to be added
Right	Matrices	In	Second vector to be added

3.3.6.1.9.3.10.1.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

Name | Type | Description |

Ansver | Matrices | Result of adding two input matrices |

3.3.6.1.9.3.10.1.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.3.10.1.6 PROCESSING
The following describes the processing performed by this part:
function "+" (Left : Matrices;

Right : Matrices) return Matrices is

= --declaration section-

Ansver : Matrices;

-- --begin function "+" (matrices + matrices)

Page 661

CAMP Software Detailed Design Document

begin

Answver (X, X)
Ansver(X,Y)

Answver(X,2) :

Answver(Y,X)
Ansver(Y,Y)
Ansver(Y,2)

Ansver(Z,X)
Ansver(Z,Y)
Answver(Z,2)

= Left(X.X)

return Answver;

end "+";

3.3.6.1.9.3.10.1.7 UTILIZATION OF OTHER ELEMENTS

None.

Left(X,Y)
Left(X,2)

Left(Y,X)
Left(Y,Y)
Left(Y,2)

Left(Z,X)
Left(Z,Y)
Left(Z,2)

+ 4+ o+

+

+

3.3.6.1.9.3.10.1.8 LIMITATIONS

None.

3.3.6.1.9.3.10.2

Right(X,X
Right(X,Y
Right(X,2

)

)

)
Right(Y,X);
Right(Y,Y);
Right(Y,2);
Right(Z,X);
Right(Z,Y);
Right(Z,2);

"_" (MATRICES - MATRICES) UNIT DESIGN (CATALOG #P696-0)

Page 662

This unit¢, which is a function, provides the capability to calculate the result
of subtraction two matrices.

system.

Each matrix is a 3 x 3 matrix having 9 elements
which are components in the x-, y-, and z-axes of a Cartesian coordinate

3.3.6.1.9.3.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO71.

3.3.6.1.9.3.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.3.10.2.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

{

(1

CAMP Software Detailed Design Document Page 663

Name	Type	Mode	Description
Left	Matrices	In	First matrix to be treated as the minuend
Right	Matrices	In	Second matrix to be treated as the subtrahend

3.3.6.1.9.3.10.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |
I I

3.3.6.1.9.3.10.2.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.3.10.2.6 PROCESSING
The following describes the processing performed by this part:

function "-" (Left : Matrices;
Right : Matrices) return Matrices is

== --declaration section-

Ansver : Matrices;

Ansver(Z,X) := Left(Z,X)
Ansver(Z,Y) := Left(2,Y) - Right(Z
Answver(Z,Z) := Left(Z,2)

t
-~
(oS

[]
-2
-~
~~
N

begin

Ansver(X,X) := Left(X,X) - Right(X,X);
Ansver(X,Y) := Left(X,Y) - Right(X,Y);
Ansver(X,2) := Left(X,2) - Right(X,2Z);
Answer(Y,X) := Left(Y,X) - Right(Y,X);
Ansver(Y,Y) := Left(Y,Y) - Right(Y,Y);
Answer(Y,Z) := Left(Y,2) - Right(Y,2);

X)

Y)

z)

|
=
[O8
(]
(=2
~t
~
o

CAMP Softwvare Detailed Design Document

return Answver;

end "-";

3.3.6.1.9.3.10.2.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.6.1.9.3.10.2.8 LIMITATIONS

None.

3.3.6.1.9.3.10.3 "+" (MATRICES + ELEMENTS) UNIT DESIGN (CATALOG #P697-0)
This unit, which is a function, provides the capability to add a scalar value
to each element of a m trix. The matrix is a 3 x 3 matrix having 9 elements
which are components in the x-, y-, and z-axes of a Cartesian coordinate
system.

3.3.6.1.9.3.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO60. .

3.3.6.1.9.3.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.3.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
| Matrix | Matrices | In | Matrix to be scaled

| Addend | Elements | In | Value to be added to each element of the |
I | | | matrix |

3.3.6.1.9.3.10.3.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

Page 664

CAMP Software Det

3.3.6.1.9.3.10.3.

Not applicable.

3.3.6.1.9.3.10.3.

The following describes the processing performed by this part:

function "+" (

- --declarati

ailed Design Document

5 PROCESS CONTROL

6 PROCESSING

Matrix : Matrices;
Addend : Elements) return Matrices is

on section-

Ansver : Matrices;

~-- --begin functi

on "+" (matrices + elements)-

begin

Ansver(X,X)
Ansver(X,Y)
Ansver(X,2)

Ansver(Y,X)
Ans. er(Y,Y)
Ansver(Y,2)

Ansver(Z,X)
Answver(Z,Y)
Ansver(2,2)

t= Matrix(X,X) + Addend;
t= Matrix(X,Y) + Addend;
t= Matrix(X,Z) + Addend;

= Matrix(Y,X) + Addend;
t= Matrix(Y,Y) + Addend;
= Matrix(Y,2) + Addend;

:= Matrix(Z,X) + Addend;
¢t= Matrix(Z,Y) + Addend;
t= Matrix(2,2) + Addend;

return Ansver;

end "+";

3.3.6.1.9.3.10.3.

None.

7 UTILIZATION OF OTHER ELEMENTS

Page 665

CAMP Software Detailed Design Document

3.3.6.1.9.3.10.3.8 LIMITATIONS

None.

3.3.6.1.9.3.10.4 "-" (MATRICES - ELEMENTS) UNIT DESIGN (CATALOG #P698-0)
This unit, which is a function, provides the capability to subtract a scalar
value from each element of a matrix. The matrix is a 3 x 3 matrix having 9

elements which are components in the x-, y-, and z-axes of a Cartesian
coordinate system.

3.3.6.1.9.3.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R067.

3.3.6.1.9.3.10.4.2 LCCAL ENTITIES DESIGN

None.

3.3.6.1.9.3.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 666

Name	Type	Mode	Description
Matrix	Matrices	In	Matrix to be scaled
Subtrahend	Elements	In	Value to be subtracted from each element

|

| | | | in the matrix

3.3.6.1.9.3.10.4.4 LOCAL DATA
Data objects:

The rollowing table describes the data objects maintained by this part:

| Name | Type | Description |

| Ansver | Matrices | Scaled matrix as calculated by this part |

3.3.6.1.9.3.10.4.5 PROCESS CONTROL

Not applicable.

ey
2

iy

CAMP Software Detailed Design Document

3.3.6.1.9.3.10.4.6 PROCESSING

The following describes the processing performed by this part:

function "-" (Matrix
Subtrahend :

- --declaration section-

Ansver : Matrices;

-- ~-function body-

: Matrices;
Elements) return Matrices is

Page 667

Subtrahend;
Subtrahend;
Subtrahend;

Subtrahend;
Subtrahend;
Subtrahend;

Subtrahend;

begin
Ansver(X,X) := Matrix(X,X) -
Ansver(X,Y) := Matrix(X,Y) -
Ansver(X,Z) := Matrix(X,2) -
Ansver(Y,X) := Matrix(Y,X) -
Ansver(Y,Y) := Matrix(Y,Y) -
Ansver(Y,2) := Matrix(Y,Z) -
Ansver(Z,X) :-.Hatrix(Z,X) -
Ansver(2,Y) := Matrix(Z,Y) -
Ansver(Z,Z2) := Matrix(Z,Z) -

return Ansver;

end "-";
3.3.6.1.9.3.10.4.7 UTILIZATION OF
None.

3.3.6.1.9.3.10.4.8 LIMITATIONS

None.

Subtrahend;
Subtrahend;

OTHER ELEMENTS

3.3.6.1.9.3.10.5 SET TO IDENTITY MATRIX UNIT DESIGN (CATALOG #P62-0)

This part, which is a function, provides the capability to initialize a matrix

to an identity matrix. The matrix

shall be a 3 x 3 matrix with 9 elements

which are components of the x-, y-, and z-axes of the Cartesian coordinate

system.

CAMP Software Detailed Design Document

3.3.6.1.9.3.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO72.

3.3.6.1.9.3.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.3.10.5.3 INPUT/OUTPUT

None.

3.3.6.1.9.3.10.5.4 LOCAL DATA

None.

3.3.6.1.9.3.10.5.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.3.10.5.6 PROCESSING
The folloving describes the processing performed by this part:

separate (Coordinate Vector Matrix Algebra.Matrix_Operations)
function Set_to_Identity Matrix return Matrices is

begin
return Identity Matrix;

end Set_to Identity Matrix;

3.3.6.1.9.3.10.5.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.6.1.9.3.10.5.8 LIMITATIONS

None.

3.3.6.1.9.3.10.6 SET TO ZERO MATRIX UNIT DESIGN (CATALOG #P63-0)

This unit, which is a function, provides the capability to initialize each
element of a matrix to zero. The matrix is a 3 x 3 matrix having 9 elements
wvhich are components of the x-, y-, and z-axes of the Cartesian coordinate

system.

Page 668

:

54

A =

CAMP Software Detailed Design Document

3.3.6.1.9.3.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO78.

3.3.6.1.9.3.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.3.10.6.3 INPUT/OUTPUT

None.

3.3.6.1.9.3.10.6.4 LOCAL DATA

None.

3.3.6.1.9.3.10.6.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.3.10.6.6 PROCESSING

The following describes the processing performed by this part:

separate (Coordinate Vector Matrix Algebra.Matrix Operations)
function Set_to_Zero_| “Matrix return Matrices is

begin
return Zero_Matrix;

end Set_to_Zero_Matrix;

3.3.6.1.9.3.10.6.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.6.1.9.3.10.6.8 LIMITATIONS

None.

3.3.6.1.9.4 MATRIX SCALAR OPERATIONS PACKAGE DESIGN (CATALOG #P66-0)

This LLCSC, which is a package body, provides the functions to allow
multiplication or division of each element of a matrix by a scalar.

The decomposition for this part is the same as that shown in the Top-Level

Design Document.

Page 669

CAMP Software Detailed Design Document Page 670

3.3.6.1.9.4.1 REQUIREMENTS ALLOCATION

The following chart summarizes the allocation of requirements to this part:

| Name | Requirement Allocation |
| mev pmoss |
YA | ROS7 |

3.3.6.1.9.4.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.4.3 INPUT/OUTPUT
GENERIC PARAMETERS:

Previously described in package specification.

3.3.6.1.9.4.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

Name	Type	Description
x	constant Axes	Used to index first element in matrix row and/or
		column
Y	constant Axes	Used to index second eler¢nt in matrix row and/or
		column
2	constant Axes	Used to index last element in matrix row and/or
		column

3.3.6.1.9.4.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.4.6 PROCESSING
The following describes the processing performed by this part:

separate (Coordinate Vector Matrix_Algebra)
package body Matrix_Scalar Operations is

-- --declaration section-

4

=

CAMP Software Detailed Design Document Page 671

Axes’FIRST;
Axes’SUCC(X);
Axes’ LAST;

X : constant Axes :
Y : constant Axes :
Z : constant Axes :

end Matrix_Scalar_Operations;

3.3.6.1.9.4.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.6.1.9.4.8 LIMITATIONS

None.

3.3.6.1.9.4.9 LLCSC DESIGN

None.

3.3.6.1.9.4.10 UNIT DESIGN

3.3.6.1.9.4.10.1 "*" UNIT DESIGN (CATALOG #P701-0)

This unit, which is a function, provides the capability of multiplying each
element of a matrix by a scalar. The matrix is a 3 x 3 matrix having 9

elements which are components in the x-, y-, and z-axes of a Cartesian
coordinate system.

3.3.6.1.9.4.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO56.

3.3.6.1.9.4.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.4.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following tab)~ describes this part’s formal parameters:

Name	Type	Mode	Description
Matrix	Matricesl	In	Matrix to be scaled
Multiplier	Scalars	In	Value used to multiply each element of
			the matrix

CAMP Software Detailed Design Document

3.3.6.1.9.4.10.1.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

Description

Name | Type | Value |

| Scaled matrix as calculated by this part

3.3.6.1.9.4.10.1.5 PROCESS CONTROL

Not applicable.

3.3.6.1.9.4.10.1.6 PROCESSING

The following describes the

function "*" (Matrix

--declaration section-

Ansver : Matrices2;

--begin function "#"-

begin
Answver(X,X) := Matrix(X,X) *
Ansver(X,Y) := Matrix(X,Y) *
Ansver(X,2) := Matrix(X,Z) *
Ansver(Y,X) := Matrix(Y,X) *
Ansver(Y,Y) :« Matrix(Y,Y) *
Answver(Y,Z) := Matrix(Y,Z) *
Ansver(Z,X) := Matrix(Z2,X) *
Answer(2,Y) := Matrix(Z,Y) *
Ansver(Z,Z) := Matrix(Z,Z) *

return Ansver;

end "x";

3.3.6.1.9.4.10.1.7 UTILIZATION OF

None.

processing performed by this part:

: Matricesl;
Multiplier : Scalars) return Matrices2 is

Multiplier;
Multiplier;
Multiplier;
Multiplier;
Multiplier;
Multiplier;
Multiplier;
Multiplier;
Multiplier;

OTHER ELEMENTS

CAMP Software Detailed Design Document Page 673

3.3.6.1.9.4.10.1.8 LIMITATIONS

None.

3.3.6.1.9.4.10.2 "/" UNIT DESIGN (CATALOG #P702-0)
This unit, which is a function, provides the capability of dividing each
element of a matrix by a scalar. The matrix is a 3 x 3 matrix having 9

elements which are components in the x-, y-, and z-axes of a Cartesian
coordinate system.

3.3.6.1.9.4.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R057.

3.3.6.1.9.4.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.9.4.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Matrix | Matrices2 | In | Matrix to be scaled
| Divisor | Scalars | | Value used to divide each element of |
| | | | the matrix |

3.3.6.1.9.4.10.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |

| Answer | Matricesl | Scaled matrix as calculated by this part |

3.3.6.1.9.4.10.2.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 674

3.3.6.1.9.4.10.2.6 PROCESSING
The following describes the processing performed by this part:
function "/" (Matrix : Matrices2;

Divisor : Scalars) return Matricesl is

--declaration section-

Answver : Matricesl;

--function body-

return Answver;

end "/";

3.3.6.1.9.4.10.2.7 UTILIZATION OF

None.

3.3.6.1.9.4.10.2.8 LIMITATIONS

None.

3.3.6.1.10 UNIT DESIGN

begin
Answver(X,X) := Matrix(X,X) / Divisor;
Ansver(X,Y) := Matrix(X,Y) / Divisor;
Ansver(X,Z) := Matrix(X,Z) / Divisor;
Ansver(Y,X) := Matrix(Y,X) / Divisor;
Ansver(Y,Y) := Matrix(Y,Y) / Divisor;
Ansver(Y,Z) := Matrix(Y,Z) / Divisor;
Answer(Z,X) := Matrix(Z,X) / Divisor;
Ansver(Z,Y) := Matrix(Z,Y) / Divisor;
Ansver(Z,2) := Matrix(Z,Z) / Divisor;

OTHER ELEMENTS

3.3.6.1.10.1 CROSS PRODUCT UNIT DESIGN (CATALOG #P67-0)

This LLCSC, which is a function, provides the capability of calculating the

cross product of two vectors.

Each vector has three elements which are

components in the x-, y-, and z-axes of a Cartesian coordinate system.

#

CAMP Software Detailed Design Document

3.3.6.1.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement RO53.

3.3.6.1.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.10.1.3 INPUT/OUTPUT

GENERIC PARAMETERS:

Previously described in package specification.

FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

The following table describes this part’s formal parameters:

Page 675

Name	Type	Mode	Description
Left	Left_Vectors	N/A	Matrix to be used on the left side of
			the cross-product operation
Right	Right_Vectors	N/A	Matrix to be used on the right side of
I I I I I

the cross-product operation

3.3.6.1.10.1.4 LOCAL DATA
Data objects:

"The following table describes the data objects maintained by this part:

operation on two input vectors

Name	Type	Description
x	constant Axes	Used to index first element in vector
y	constant Axes	Used to index second element in vector
2z	constant Axes	Used to index last element in vector
Answer	Result _Vectors	Vector resulting from cross product
I I I l

3.3.6.1.10.1.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 676

3.3.6.1.10.1.6 PROCESSING
The following describes tnhe processing performed by this part:
separate (Coordinate Vector Matrix Algebra)

function Cross_Product (Left : Left Vectors;
Right : Right Vectors) return Result Vectors is

¢t constant Axes := Axes’FIRST;
Y : constant Axes := Axes’SUCC(X);
¢ constant Axes := Axes’LAST;

Ansver : Result Vectors;

begin
Answer(X) := Left(Y) * Right(Z) - Left(Z) * Right(Y);
Ansver(Y) := Left(Z) * Right(X) - Left(X) * Right(2);
Ansver(Z) := Left(X) * Right(Y) - Left(Y) * Right(X); : i
return Ansver;

end Cross_Product;

3.3.6.1.10.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.6.1.10.1.8 LIMITATIONS

None.

3.3.6.1.10.2 MATRIX VECTOR MULTIPLY UNIT DESIGN (CATALOG #P68-0)

This LLCSC, which is a function, provides the capability to multiply a matrix
by a vector with the result being a vector. The matrix is a 3 x 3 matrix
having 9 elements. The vectors have 3 elements. The elements are components
in the x-, y-, and z-axes of a Cartesian coordinate system.

3.3.6.1.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R049. @

CAMP Software Detailed Design Document

3.3.6.1.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.10.2.3 INPUT/OUTPUT

GENERIC PARAMETERS:

Previously described in package specification.
FORMAL PARAMETERS:

The following table describes this part’s formil narameters:

Name	Type	Mode	Description
Matrix	Matrices	In	Matrix to be used in calculations
Vector	Input_Vectors	In	Vector to be used in calculations

3.3.6.1.10.2.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

Page 677

| Name | Type | Description |

X constant Axes Used to index first row/column in matrix
and first element in vectors

y constant Axes Used to index second row/column in matrix
and second element in vectors

z constant Axes Used to index last row/column in matrix
and last element in vectors

Ansver | OQutput _Vectors Vector resu.ting from multiplication
operation

3.3.6.1.10.2.5 PROCESS CONTROL

Not applicable.

3.3.6.1.10.2.6 PROCESSING
The following describes the processing performed by this part:

separate (Coordinate Vector Matrix Algebra)
function Matrix Vector_ MultIply
(Matrix : Matrices;
Vector : Input_Vectors) return Qutput_Vectors is

CAMP Software Detailed Design Document

X : constant Axes := Axes’FIRST;
Y : constant Axes := Axes’SUCC(X);
Z : constant Axes := Axes’LAST;

Ansver : Output Vectors;

--begin function Matrix Vector Multiply

begin

Ansver(X) := Matrix(X,X) * Vector(X) +
Matrix(X,Y) * Vector(Y) +
Matrix(X,Z) * Vector(2);

Ansver(Y) := Matrix(Y,X) * Vector(X) +
Matrix(Y,Y) * Vector(Y) +
Matrix(Y,2) * Vector(Z);

Ansver(2) :; Matrix(Z,X) * Vector(X) +
Matrix(Z,Y) * Vector(Y) +
Matrix(2,Z) * Vector(Z);

return Ansver;

end Matrix Vector Multiply;

3.3.6.1.10.2.7 UTILIZATION OF OTHER ELEMENTS

None.

$.3.6.1.10.2.8 LIMITATIONS

None.

3.3.6.1.10.3 MATRIX MATRIX MULTIPLY UNIT DESIGN (CATALOG #P69-0)
This LLCSC, which is a function, provides the capability to multiply two

matrices. Both matrices are a 3 x 3 matrix having 9 elements which are
components in the x-, y-, and z-axes of a Cartesian coordinate system.

3.3.6.1.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R068.

Page 678

o

CAMP Software Detailed Design Document Page 679

3.3.6.1.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.6.1.10.3.3 INPUT/OUTPUT

GENERIC PARAMETERS:

Previously described in package specification.
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Matrixl	Left Matrices	In	First matrix used for multiplication
			operation
Matrix2	Right_Matrices	In	Second matrix used for multiplication
			operation

3.3.6.1.10.3.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Description |
| = constant Axes Used to index first element in matrix row and/or
| column ,
| ¥ | constant Axes Used to index second element in matrix row
| and/or column
| z constant Axes Used to index last element in matrix row and/or
| column

Ansver | Result Matrices | Matrix resulting from multiplying two input

| matrices

3.3.6.1.10.3.5 PROCESS CONTROL

Not applicable.

3.3.6.1.10.3.6 PROCESSING
The following describes the processing performed by this part:
separate (Coordinate Vector Matrix Algebra)

function Matrix Matrix MultIply
(Matrixl : Left Matrices;

CAMP Software Detailed Design Document Page 680

Matrix2 : Right Matrices) return Result Matrices is

X : constant Axes := Axes’FIRST;
Y : constant Axes := Axes’SUCC(X);
YA : constant Axes := Axes’LAST;

answer : Result Matrices;

-~ --function body-

begin
- --first row
ansver(X,X) := Matrixl1(X,X) * Matrix2(X,X
Matrix1(X,Y) * Matrix2(Y,X
Matrix1(X,Z) * Matrix2(Z,X

) +
) +
)3
ansver(X,Y) := Matrix1(X,X) * Matrix2(X,Y) +
Matrix1(X,Y) * Matrix2(Y,Y) +
Matrix1(X,Z) * Matrix2(Z,Y);
ansver(X,2) := Matrixl(X,X) * Matrix2(X,Z) +
Matrix1(X,Y) * Matrix2(Y,2) +
Matrix1(X,Z) * Matrix2(2,2);

- --second row

ansver(Y,X) := Matrix1(Y,X) * Matrix2(X,X) +
Matrix1(Y,Y) * Matrix2(Y,X) +
Matrix1(Y,Z) * Matrix2(Z,X);

ansver(Y,Y) := Matrixl(Y,X) * Matrix2(X,Y) +
Matrix1(Y,Y) * Matrix2(Y,Y) +
Matrix1(Y,Z) * Matrix2(Z,Y);

ansver(Y,Z) := Matrix1(Y,X) * Matrix2(X,Z) +
Matrixl(Y,Y) * Matrix2(Y,Z) +
Matrix1(Y,Z) * Matrix2(Z,2);

- -~third row

ansver(Z2,X) := Matrix1(Z,X) * Matrix2(X,X) +
Matrix1(Z,Y) * Matrix2(Y,X) +
Matrix1(2Z,Z) * Matrix2(Z,X);

Matrix1(Z,X) * Matrix2(X,Y) +
Matrix1(Z,Y) * Matrix2(Y,Y) +
Matrix1(Z,2) * Matrix2(Z,Y);

ansver(2,Y)

ansver(2,2) := Matrix1(Z,X) * Matrix2(X,Z) +

CAMP Software Detailed Design Document Page 681

Matrix1(Z,Y) * Matrix2(Y,2) +
Matrix1(Z,Z) * Matrix2(2,2);

return answer;

end Matrix Matrix Multiply;

3.3.6.1.10.3.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.6.1.10.3.8 LIMITATIONS

None.

CAMP Softvare Detailed Design Document

(This page left intentionally blank.)

CAMP Software Detailed Design Document Page 683

vith General Purpose Math;
package body Coordinate Vector Matrix Algebra is

package body Matrix_Operations is separate;
package body Matrix Scalar Operations is separate;

function Cross_Product (Left : Left Vectors;
Right : Right Vectors)
return Result Vectors is separate;

function Matrix Vector Multiply (Matrix : Matrices;
Vector : Input_Vectors)
return Qutput_Vectors is separate;

function Matrix Matrix_Multiply (Matrixl : Left_Matrices;
Matrix2 : Right Matrices)
return Result Matrices is separate;

pragma PAGE;
package body Vector Operations is

—_ ~~declaration section-

e X : constant Axes := Axes’FIRST;
L Y : constant Axes := Axes’SUCC(X);
z : constant Axes := Axes’LAST;

constant Vectors := (others => 0.0);

Zero_Vector

-— ~=local functions-

function Rsos is new
General Purpose Math.Root_Sum Of Squares
(Real_Type => Elements,
Squared Type => Elements Squared,
UL - => k" =
Sqrt => Sqrt);

pragma PAGE;
function "+" (Left : Vectors;
Right : Vectors) return Vectors is

- --declaration section-

Ansver : Vectors;

@'\ :: ~- function body-

CAMP Software Detailed Design Document Page 684

begin

Ansver(X) := Left(X) + Right(X);
Ansver(Y) := Left(Y) + Right(Y);
Ansver(Z) := Left(Z) + Right(2);

return Ansver;
end "+";

pragma PAGE;
function "-" (Left : Vectors;
Right : Vectors) return Vectors is

- —-~—declaration section-

Ansver : Vectors;

- —- function body-

begin
Ansver(X) := Left(X) - Right(X); §
Ansver(Y) := Left(Y) - Right(Y);
Ansver(Z) := Left(2) - Right(2Z);
return Ansver;

end "-";

pragma PAGE;
function Vector_Length (Vector : Vectors) return Elements is

begin
return Ksos(Vector(X), Vector(Y), Vector(Z));

end Vector_Length;

pragma PAGE;
function Dot _Product (Vectorl : Vectors;
Vector2 : Vectors) return Elements_Squared is

- —~declaration section-

Ansver : Elements_Squared;

:: —= function body- &

CAMP Software Detailed Design Document Page 685

&

begin
Ansver := Vectorl(X) * Vector2(X) +
Vectorl(Y) * Vector2(Y) +
Vectorl(2) * Vector2(2);
return Ansver;

end Dot_Product;

pragma PAGE;
function Sparse Right Z Add (Left : Vectors;
Right : Vectors) return Vectors is
- -~ declaration section-
Ansver : Vectors;
- —- function body-
begin
S, Ansver(X) := Left(X) + Right(X);
(=] Answver(Y) := Left(Y) + Right(Y);
Ansver(Z) := Left(2);
return Ansver;
end Sparse Right Z Add;
pragma PAGE;
function Sparse Right X Add (Left : Vectors;
Right : Vectors) return Vectors is

- —~declaration section-

Ansver : Vectors;

- - function body-

begin
Ansver(X) := Left(X);
Ansver(Y) := Left(Y) + Right(Y);
Ansver(Z) := Left(Z) + Right(Z)*
3$b return Ansver;

end Sparse Right X Add;

CAMP Software Detailed Design Document Page 686

§

pragma PAGE;
function Sparse Right Xy Subtract (Left : Vectors;
Right : Vectors) return Vectors is

Answver : Vectors;

- -~ function body-

begin
Ansver(X) := Left(X);
Ansver(Y) := Left(Y);
Ansver(2) := Left(Z) - Right(2);
return Ansver;

end Sparse Right Xy Subtract;

pragma PAGE;
function Set_To_Zero_Vector return Vectors is ‘H

begin
return Zero_Vector;
end Set_To_Zero_Vector;

end Vector_Operations;

pragma PAGE;
package body Vector Scalar Operations is

- ~~=declaration section-

X : constant Axes := Axes’FIRST;
Y : constant Axes := Axes’SUCC(X);
Z : constant Axes := Axes’LAST;

pragma PAGE;
function "*" (Vector : Vectorsl;
Multiplier : Scalars) return Vectors2 is

- ——declaration section-

Answer : Vectors2;

CAMP Software Detailed Design Document

begin
Ansver(X) := Vector(X) * Multiplier;
Answer(Y) := Vector(Y) * Multiplier;
Ansver(2) := Vector(Z) * Multiplier;
return Answver;

end "*";

pragma PAGE;
function "/" (Vector : Vectors2;
Divisor : Scalars) return Vectorsl is

- ——declaration section-

Ansver : Vectorsl;

-- —- begin function "/"

begin :

Ansver(X) := Vector(X) / Divisor;
Ansver(Y) := Vector(Y) / Divisor;
Answer(2) := Vector(Z) / Divisor;

return Answver;
end "/";
pragma PAGE;
function Sparse X Vector_Scalar Multiply

(Vector ¢ Vectorsl;
Multiplier : Scalars) return Vectors2 is

— - declaration section-

Ansver : Vectors2;

- —— begin function Sparse X Vector Scalar Multiply

begin

Ansver(X) := 0.0;
Ansver(Y) := Vector(Y) * Multiplier;

Page 687

CAMP Software Detailed Design Document

Answer(Z) := Vector(Z) * Multiplier;
return Answver;
end Sparse X Vector_Scalar Multiply;
end Vector_Scalar Operations;

end Coordinate_Vector_Matrix Algebra;

Page 688

§

&

CAMP Software Detailed Design Document Page 689

separate (Coordinate Vector Matrix Algebra)
package body Matrix Operations is

X ¢ constant Axes ¢= Axes'’FIRST;
Y : constant Axes 1= Axes’SUCC(X);
Z : constant Axes t= Axes’LAST;

~- ——the diagonal elemenis of Identity Matrix will be set to 1.0 during
-~ -=package initialization
Identity Matrix : Matrices := (others => (others => 0.0));

Zero Matrix : constant Matrices := (others => (others => 0.0));

-— —=subroutine bodies-

function Set_To_Identity Matrix return Matrices is separate;

function Set_To_Zero Matrix return Matrices is separate;

pragma PAGE;
function "+" (Left : Matrices;
Right : Matrices) return Matrices is

-— —=declaration section-

Ansver : Matrices;

-— -=begin function "+" (matrices + matrices)

Ansver(X,X) := Left(X,X) + Right(X,X);
Answver(X,Y) := Left(X,Y) + Right(X,Y);
Ansver(X,2) := Left(X,2) + Right(X,2);
Ansver(Y,X) := Left(Y,X) + Right(Y,X);
Ansver(Y,Y) := Left(Y,Y) + Right(Y,Y);
Ansver(Y,Z) := Left(Y,Z) + Right(Y,2);
X)
Y)
2)

Answver(Z,X) := Left(Z,X) + Right(Z,

Ansver(Z,Y) := Left(Z,Y) + Right(Z,
Ansver(Z2,Z2) := Left(Z,2) + Right(Z,

return Ansver;

end 'l+";

CAMP Software Detailed Design Document Page 690

<
o
o
pragma PAGE;
function "-" (Left : Matrices;
Right : Matrices) return Matrices is

Ansver : Matrices;
—-- --~begin function "-" (mairices - matrices)
begin
Ansver(X,X) := Left(X,X) - Right(X,X);
Ansver(X,Y) := Left(X,Y) - Right(X,Y);
Ansver(X,Z) := Left(X,Z2) - Right(X,2);
Ansver(Y,X) := Left(Y,X) - Right(Y,X);
Ansver(Y,Y) := Left(Y,Y) - Right(Y,Y);
Ansver(Y,Z) := Left(Y,2) - Right(Y,2);
Ansver(Z,X) := Left(Z,X) - Right(Z,X);
Ansver(Z,Y) := Left(Z,Y) - Right(Z,Y); .
Answer(Z,2) := Left(Z2,2) - Right(2,Z); ‘a
return Ansver;
end "-";
pragma PAGE;
function "+" (Matrix : Matrices;

Addend : Elements) return Matrices is

—--declaration section-

Ansver : Matrices;

-~ begin function "+" (matrices + elements)-

begin
Ansver(X,X) := Matrix(X,X) + Addend;
Ansver(X,Y) := Matrix(X,Y) + Addend;
Ansver(X,Z) := Matrix(X,Z) + Addend;
Ansver(Y,X) := Matrix(Y,X) + Addend;
Ansver(Y,Y) := Matrix(Y,Y) + Addend;
Ansver(Y,Z) := Matrix(Y,Z) + Addend;
Ansver(Z,X) := Matrix(Z,X) + Addend;

CAMP Software Detailed Design Document Page 691
Ansver(Z,Y) := Matrix(Z,Y) + Addend;
Ansver(Z,Z) := Matrix(Z,Z) + Addend;
return Ansver;
end "+";
pragma PAGE;

function "-" (Matrix : Matrices;
Subtrahend : Elements) return Matrices is

- —=~declaration section-

begin

Ansver(X,X) := Matrix(X,X) - Subtrahend;
Ansver(X,Y) := Matrix(X,Y) - Subtrahend;
Ansver(X,2) := Matrix(X,Z) - Subtrahend;

Ansver(Y,X) := Matrix(Y,X) - Subtrahend;
Ansver(Y,Y) := Matrix(Y,Y) - Subtrahend;
Ansver(Y,2) := Matrix(Y,Z) - Subtrahend;

Ansver(Z,X) := Matrix(Z,X) - Subtrahend;
Ansver(Z,Y) := Matrix(2,Y) - Subtrahend;
Ansver(Z,Z) := Matrix(Z,Z) - Subtrahend;

return Ansver;

end "-";
pragma PAGE;
~-begin package Matrix Operations-
begin
-~ --initialize diagonal elemenis of Identity Matrix, remaining elements have
-~ --already been set 10 0.0
Identity Matrix(X,X) := 1.0;
Identity Matrix(Y,Y) := 1.0;
Identity Matrix(Z,Z) := 1.0;

end Matrix Operations;

CAMP Software Detailed Design Document Page 692
1%
f
separate (Coordinate Vector Matrix Algebra.Matrix Operations)
function Set_To Identlty Matrix return Matrices is

begin
return Identity Matrix;

end Set_To_Identity Matrix;

CAMP Software Detailed Design Document

separate (Coordinate Vector Matrix Algebra.Matrix Operations)
function Set_To_Zero Matrix return Matrices is
begin

return Zero Matrix;

end Set_To Zero Matrix;

Page 693

CAMP Software Detailed Design Document

separate (Coordinate Vector Matrix Algebra)
package body Matrix_ Scalar_ Operations is

X : constant Axes := Axes'’FIRST;
Y : constant Axes := Axes’SUCC(X);
Z : constant Axes := Axes’LAST;

pragma PAGE;

function "*" (Matrix : Matricesl;

Multiplier : Scalars) return Matrices2 is

- --declaration section-

Ansver : Matrices;

-- —-begin function "*"-

begin
Angswer(X,X) := Matrix(X,X) * Multiplier;
Ansver(X,Y) := Matrix(X,Y) * Multiplier;
Ansver(X,Z) := Matrix(X,2) * Multiplier;
Angver(Y,X) := Matrix(Y,X) * Multiplier;
Ansver(Y,Y) := Matrix(Y,Y) * Multiplier;
Ansver(Y,Z) := Matrix(Y,2Z) * Multiplier;
Ansver(Z,X) := Matrix(2,X) * Multiplier;
Ansver(Z2,Y) := Matrix(Z,Y) * Multiplier;
Ansver(2,2) := Matrix(2,2) * Multiplier;

return Ansver;

end "x";

pragma PAGE;
function "/" (Matrix : Matrices2;
Divisor : Scalars) return Matricesl is

--declaration section-

Ansver : Matricesl;

—= == funcrion body-

begin

Page 694

) 23

Answver(X,X) :

Ansver(X,Y)

Ansver(X,Z) :

Ansver(Y,X) :
Ansver(Y,Y) :

Ansver(Y,Z)

Ansver(Z,X)
Ansver(Z,Y)
Ansver(Z,Z)

e so oo
[|

return A--ver;

end "/";

Matrix(X,X)
Matrix(X,Y)
Matrix(X,Z)

Matrix(Y,X)
Matrix(Y,Y)
Matrix(Y,2)

Matrix(2,X)
Matrix(Z,Y)
Matrix(2,2)

end Matrix_Scalar_Operations;

CAMP Software Detailed Design Document

Divisor;
Divisor;
Divisor;

Divisor;
Divisor;
Divisor;

Divisor;
Divisor;
Divisor;

Page 695

CAMP Software Detailed Design Document Page 696

separate (Coordinate Vector Matrix Algebra)
function Cross_Product (Left : Left_Vectors;
Right : Right_Vectors) return Result Vectors is

: constant Axes := Axes’FIRST;
: constant Axes := Axes’SUCC(X);
: constant Axes := Axes’LAST;

N =< >4

Ansver : Result Vectors;

~=begin funciion Cross_Product

begin
Ansver(X) := Left(Y) * Right(Z) - Left(Z) * © ght(Y);
Ansver(Y) := Left(Z) * Right(X) - Left(X) * Rigzht(2);
Answer(Z) := Left(X) * Right(Y) - Left(Y) * Right(X);
return Ansver;

end Cross_Product; ‘

CAMP Software Detailed Design Document Page 697

separate (Coordinate Vector Matrix Algebra)
function Matrix_Vector_MultTply
(Matrix : Matrices;
Vector : Input Vectors) return Output_Vectors is

X : constant Axes := Axes’FIRST;
Y : constant Axes := Axes’SUCC(X);
Z : constant Axes := Axes’LAST;

Ansver : Output_Vectors;

—-begin function Matrix Vecior Multiply

begin

Ansver(X) := Matrix(X,X) * Vector(X) +
Matrix(X,Y) * Vector(Y) +
Matrix(X,Z) * Vector(2);

_ Ansver(Y) := Matrix(Y,X) * Vector(X) +
ﬁ?k . * Matrix(Y,Y) * Vector(Y) +
4 Matrix(Y,Z) * Vector(2);

»

Ansver(2) := Matrix(Z,X)
Matrix(2,Y)
Matrix(Z,2)

Vector(X) +
Vector(Y) +
Vector(Z);

* *

return Ansver;

end Matrix Vector Multiply;

CAMP Software Detailed Design Document

separate (Coordinate Vector Matrix_Algebra)
function Matrix Matrix Multiply

(Matrixl : Left_Matrices;
Matrix2 : Right_Matrices) return Result_Matrices is

: constant Axes
: constant Axes
¢ constant Axes

—-— ——function body-

begin

—- first row

Ansver(X,X)
Ansver(X,Y)
Ansver(X,2)

——second row

Ansver(Y,X)
Ansver(Y,Y)
Ansver(Y,Z)

——third row

Ansver(Z,X)

Ansver(Z,Y)

Ansver : Result Matrices;

Matrix1(X,X)
Matrixl(X,Y)
Matrix1(X,2)

Matrixl(X,X)
Matrixl(X,Y)
Matrixl1(X,2)

Matrix1(X,X)
Matrix1(X,Y)
Matrixl1(X,2)

Matrix1(Y,X)
Matrix1(Y,Y)
Matrixl(Y,2z)

Matrix1(Y,X)
Matrix1(Y,Y)
Matrix1(Y,2)

Matrix1(Y,X)
Matrixl(Y,Y)

Matrix1(Y,2)

Matrix1(Z,X)
Matrix1(2,Y)
Matrix1(Zz,2)

Matrix1(Z,X)
Matrix1(Z,Y)

* %

:= Axes’FIRST;
:= Axes’SUCC(X);
:= Axes’LAST;

Matrix2(X,X) +
) +

Matrix2(Y,X
Matrix2(Z,X);

Matrix2(X,Y) +
Matrix2(Y,Y) +

Matrix2(z,Y);

Matrix2(X,Z) +
Matrix2(Y,2) +

Matrix2(Z,Z);

Matrix2(X,X) +
Matrix2(Y,X) +

Matrix2(Z,X);

Matrix2(X,Y
Matrix2(Y,Y

Matrix2(X,2
Matrix2(Y,2
Matrix2(Z,2

Matrix2(X,X) +
Matrix2(Y,X) +

Matrix2(Z,X);

Matrix2(X,Y) +
Matrix2(Y,Y) +

) +
) +
Matrix2(Z,Y);
) +
) +
)3

Page 698

{

CAMP Software Detailed Design Document Page 699

N

‘P !

*”i Matrix1(Z,Z) * Matrix2(Z,Y);

Ansver(Z,2) := Matrix1(Z,X) * Matrix2(X,Z) +
Matrix1(Z,Y) * Matrix2(Y,2Z) +
Matrixl1(Z,2) * Matrix2(2,2);
return Answer;
end Matrix Matrix Multiply;
3-8
[]

CAMP Software Detailed Design Document Page 700

L

(This page left intentionally blank.)

' INFORMATION

REPLY TO

. ATTNOF:

SUBJECT:

TO:

DEPARTMENT OF THE AIR FORCE
WRIGHT LABORATORY (AFSC)
EGLIN AIR FORCE BASE, FLORIDA, 32542-5434

ERRATA. .
MNOT Aoe/Mﬁy/j 13 Feb 92

Removal of Distribution Statement and Export-Control Warning Notices

Defense Technical Information Center
ATTN: DTIC/HAR (Mr William Bush)
Bldg 5, Cameron Station

Alexandria, VA 22304-6145

1. The following technical reports have been approved for public release by
the local Public Affairs Office (copy attached).

Technical Report Number AD Number

{. 88-18-Vol-4 ADB 120 251
2.88-18-Vol-5 ADB 120 252
3. 88-18-Vol-6 ADB 120 253
4. 88-25-Vol-1 ADB 120 309
8. 88-25-Vol-2 ADB 120 310
. 88-62-Vol-1 ADB 129 568
9. 88-62-Vol-2 ADB 129 569
R. 88-62-Vol-3 ADB 129-570

9. 85-93-Vol-1 ADB 102-654 “—
10. 85-93-Vol-2 ADB 102-655

A, 85-93-Vol-3 ADB 102-656
A2, 88-18-Vol-1 ADB 120 248
18, 88-18-Vol-2 ADB 120 249
{4, 88-18-Vol-7 ADB 120 254
4S, 88-18-Vol-8 ADB 120 255
16, 88-18-Vol-9 ADB 120 256
{7, 88-18-Vol-10 ADB 120 257%
1%.88-18-Vol-11 ADB 120 258
19. 88-18-Vol-12 ADB 120 259

2. If you have any questions regarding this request call me at DSN 872-4620.

Chief, Scientific and Technical AFDIC/PA Ltr, dtd 30 Jan 92
Information Branch

ERRATA

REPLY TO
ATTN OF:

SUBJECT:

TO:

DEPARTMENT OF THE AIR FORCE
HEADQUARTERS AR FORCE DEVELOPMENT TEST CENTER (AFSC)
EGUIN AR FORCE BASE, FLORIDA 32842-5000

PA (Jim Swinson, 882-3931) 30 January 1992

Clearance for Public Release

WL/MNA

v
The following technical reports have been reviewed and are approved for
public release: AFATL-TR-88-18 (Volumes 1 & 2), AFATL~TR-88-18 (Volumes

4 thru 12), AFATL~TR-88-25 (Volumes 1 & 2), AFATL-TR-88-62 (Volumes 1 thru 3)
and AF. TR-85-93 (Volumes 1 thru 3).

m@éﬂfw PRIBYIA, Lt Col,

Chief of Public Affairs

AFDIC/PA 92-039

