UNCLASSIFIED

AD NUMBER

ADB092830

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; MAY 1985. Other requests shall be referred to Commander, Naval Air Systems Command, Attn: Code 8131, Washington, DC 20360.

AUTHORITY

Naval Air Development Center notice dtd 12 Aug 1986 REPORT NO. NADC-85061-60

AD-B092 830

HEAT STRESS EVALUATION OF ANTI-EXPOSURE FLIGHT GEAR

Jonathan Kaufman Aircraft and Crew Systems Technology Directorate (Code 60B1) NAVAL AIR DEVELOPMENT CENTER Warminster, PA 19974-5000

15 MAY 1985

FINAL REPORT Airtask No. A5315311,0012/4000000001 Work Unit No. A5311X 230M4

Distribution Authorized to U.S. Government Agencies and their Contractors; Critical Technology; 15 May 1985. Other requests for this document shall be referred to: COMNAVAIRDEVCEN (Code \$131)

Prepared for NAVAL AIR SYSTEMS COMMAND (A)R-5311) Department of the Navy Washington, CC 20360

6 7

033

85

· Ett

NOTICES

REPORT NUMBERING SYSTEM — The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteenth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

00	Commander, Naval Air Development Center
01	Technical Director, Naval Air Development Center
02	Comptreller
10	Directorate Command Projects
20	Systems Directorate
30	Sensors & Avionics Technology Directorate
40	Communication & Navigation Technology Directorate
50	Software Computer Directorate
60	Aircraft & Crew Systems Technology Directorate
70	Planning Assessment Resources
80	Engineering Support Group

OFFICE OR DIRECTORATE

PRODUCT ENDORSEMENT — The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY .S. XAVY

CODE

DATE: 31

Unclassified

REPORT DOCUMENTATION PAGE					
To ASSORT SECURITY CLASSIFICATION Unclassified	16. PESTRICTIVE N	N/A			
LA HELLATY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT			
IN/A	See Reverse Side				
- FERFORMING ORGANIZATION REPORT NUMBER	२(5)	5. MONITORING C	RGANIZATICH REI	PORT AUMBER	5)
NADC-85061-60			N/A		
Aircraft and Crew Systems Technology Directorate	60B1	7a, NAME OF MO	NITORING ORGAN	12A11QN	
Sc. ADDRESS (City, State, and ZIP Code)		76. ADDRESS (City	, State, and ZIP C	ode)	
Naval Air Development Center Warminster, PA 18974		N/A			
BL. NAME OF FUNDING / SPONSORING	25. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDE	NTIFICATION NU	IMBER
Naval Air Systems Command	AIR-5311		N/A		
Sr. ADDRESS (City, State, and ZIR Code)	1	10. SOURCE OF F	UNDING NUMBERS	5	
Department of the Navy		PROCRAM	PROJECT	TASK	WORK UNIT
Washington, DC 20360		ELEMENT NO.	REVERSE SIDE		SEE REVERSE
11 1113 linetuca Saeurinu Claeulieatuon)		L			
Heat Stress Evaluation of Anti-Ex	posure Flight Gear				
12. PERSONAL AUTHOR(S) Jonathan Kaufman					
Final FROM	OVERED TO	14. DATE OF REPO 1985 Ma	RT (Year, Month, C y 15	Day) 15. PAGE	16
IS SUPPLEMENTARY NOTATION	+ or-				
17 COSATI CODES	A 18. SUBJECT TERMS (Continue on revers	e if necessary and	l identify by blo	ick number)
HELD GROUP SUB-GROUP	Anti-exposure F Hypothermia Pro	lightwean stection,	Olefin Liner) PTFE Coverall	× (T5	inter
	Land and the bus below to				
Constant-wear anti-exposure suit ensembles, employing the CWU-62/P polytetrafluoroethylene (PTFE) coverall, were evaluated for their impact on aircrew performance under heat stress. Conditions were designed to simulate stresses experienced during aircraft operations over cold water; therefore, chamber temperatures were main- tained at dry bulb temperature = 34.0 ± 1.5 °C and wet bulb temperature = 23.9 ± 4.5 °C. Six males, aged 21-39, were studied twice in each of five configurations for maximum 180 minute exposures. The five configurations consisted of a standard flight suit (control), and four combinations of the PTFE coverall with different liners. Mean test duration for the control was 177 minutes, while for the other configurations, mean test durations were < 130 minutes. No significant differences were observed between the PTFE-based configurations. Total sweat rate (SRT), heat storage rate (ΔO), final heart rate (HR), and mean weighted skin temperatures (T_{sk}) indicated similar trends among the configurations. The results indicate that the liner has only a limited impact on the test results; therefore, the PTFE coverall appears to limit heat tolerance under those conditions. Aircrew wearing the CWU-62/P coverall cannot be expected to complete three hours of aircraft operations if a moderate workload is imposed under heat stress $O(T_{sk})$ is the fourt of a standard to be expected to complete three hours of aircraft operations if a moderate					
21 ASSTRACT SECURITY CLASSIFICATION					
ZUNCLASSIFIED LINUMITED I SAME AS	STE COTIC USERS	· 125 TELEF-CAE (215) 441-2	(Include Area Codi 565	e) 122 CFF (E 60B	571/20L
DOFORM 1073 14 MAR	APP edition may be used u	attlerasusted.	 (10	CL455-FC47 C4	1 C 5 76 7 32 65
(Del	All other editions are q	555C(+te.	<u></u>	Unclassifie	d
			• • . • . • • • •	· · · ·	

í.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

Block 3:

Ø,

Distribution Authorized to U.S. Government Agencies and Their Contractors; Critical Technology; 15 May 1985. Other Requests For This Document Shall be Referred to COMNAVAIRDEVCEN (Code 513).

Block 10: Task No. A3315311/0012/4000000001

Work Unit Accession No. A5311X230M4

storate invale in the tage to

TABLE OF CONTENTS

	Page
LIST OF TABLES	ii
LIST OF FIGURES	ii
INTRODUCTION	1
MATERIAL AND METHODS SUBJECTS METHODS AND PROCEDURES STATISTICAL ANALYSIS	1 1 1 4
RESULTS	4
DISCUSSION	9
CONCLUSIONS	14
ACKNOWLEDGEMENTS	14
REFERENCES	15

ì

LIST OF TABLES

LIST OF FIGURES

Page

Figure

1	Configuration vs. Duration
2	Configuration vs. Heat Storage
3	Configuration vs. Sweat Rate
4	Regression vs. Tro vs. Time
5	Regression: Mean Tal, vs. Time
6	Regression: T. us Time
•	regression i D vs. Time titte to the transmission of transmission of the transmission of transmission

INTRODUCTION

The nature of Naval operations and the range of current aircraft present to aircrews the problem of operating under widely varying thermal conditions during the course of a single mission. Since the use of anti-exposure garments is advised when operating over water at temperatures of $<15.6^{\circ}$ (60° F), aircrew may find themselves wearing anti-exposure protection while exposed to high internal cabin temperatures⁽¹⁾, especially during preflight⁽²⁾.

In an attempt to alleviate this problem, a new dry-type anti-exposure suit system, based on the CWU-62/P polytetrafluoroethylene (PTFE) coverall, has been introduced. It is claimed that the PTFE membrane will permit evaporative heat loss under normal conditions, while precluding the passage of water into the suit during immersion. To increase the insulation provided by the suit ensemble for added protection during cold water immersion, the CWU-72/P olefin liner has been proposed as an addition to the anti-exposure suit system.

The purpose of the evaluation reported herein was to determine the physiological effects of the CWU-62/P (with liner) suit system when worn in a hot environment. The evaluation consisted of exposing subjects to heat stress while performing a psychomotor tracking task, a physical work task, and with interspersed rest periods. The tasks were intended to simulate the general types of tasks performed by aircrew in both fixed-wing and rotary-wing aircraft. Test duration, which was a maximum of three hours, was based on average mission length for aircraft in which aircrew wear constant-wear anti-exposure suits^[11].

MATERIALS AND METHODS

Six healthy males (Table 1) volunteered to participate as subjects after being fully informed of the details of the experimental protocol and associated risks.

SUBJECTS

Weight was recorded prior to each test run and the mean calculated. Body surface area (BSA) was calculated⁽³⁾ from the mean weight and height of each subject. Percent body fat was determined from estimates of body density⁽⁴⁾, which were computed from skinfold measurements^(5,6) obtained with Lange Skinfold Calipers (Cambridge Scientific Ind., Cambridge, MD). Anatomical sites for the skinfold measures were the biceps, triceps, scapular margin, and suprailiac region.

Aerobic fitness was calculated in terms of the submaximal oxygen uptake test of Astrand and Rhyming 7^{-4} , employing a bicycle ergometer. Subjects were lightly clothed and had not engaged in physical activity at least 1 hour prior to testing. After adjusting the seat and hadlebars for the subject, the subject pedalled the bicycle ergometer at no load at 50 rpm for 5 minutes. The workload was then increased to a level sufficient to produce a sustained heart rate of 130-170 bpm, while maintaining a pedalling rate of 50 rpm. Heart rates were recorded after the 5th, 6th, and 7th minute following application of the increased work load, after which the test was completed. Predicted maximum VO: was obtained from the Astrand monogram $^{+6}$, based on the steady state neart rate attained during the test, weight, age, and sex of the subject.

METHODS AND PROCEDURES

All tests were performed in the morning to minimize the effects of temperature changes due to circadian rhythms. Each test simultaneously exposed two subjects to the experimental conditions, with the subject pairings and clothing configuration worn by each subject randomized. Minimum

frequency of exposure to test conditions for a given subject was two days, so that acclimation effects could be minimized.

Subjects reported to the laboratory on the morning of a test and were given physical examinations by the attending flight surgeon. After voiding, a urinanalysis was performed, and each subject's baseline weight was obtained on a scale accurate to $\pm 10g$ (Scale-Tronix, Wheaton, IL, model 6006SP). Thermocouples (type T) were then attached to the following body sites: (A) forehead; (B) upper chest; (C) scapular apex; (D) lateral upper arm; (E) dorsum of hand; (F) pad of index finger; (G) medial surface of thigh; (H) lateral surface of leg; (J) pad of great toe; (K) dorsum of foot; and (L) lower back. A rectal thermistor (YSI model 401) was inserted 8-10 cm anterior to the anal sphincter. ECG electrodes and a blood pressure were obtained at this time. Subjects were then dressed in the appropriate clothing configuration for that run (Table 2).

Upon completion of dressing, both subjects proceeded to the chamber. Testing was performed in chamber conditions of dry bulb temperature $(T_{db}) = 33.0 \pm 1.5^{\circ}C$ and wet bulb temperature $(T_{db}) = 33.0 \pm 4.5^{\circ}C$. The 20-minute test cycle consisted of a subject pedaling on a bicycle ergometer (work load = 30 W) for 5 minutes, which represents a moderate work load ^a, performing a tracking task (Combat-Jet FighterTM, Atari, Inc.) for 7 minutes (i.e., 3 game cycles), and resting for 7 minutes. This cycle was repeated 6 times during a test, for a total of 180 minutes, unless the test was terminated early due to rectal temperature (T_{re}) exceeding 39.0°C, heart rate exceeding 180 bpm, or the subject expressing the desire to terminate the particular test run ¹⁰.

At the beginning of each change of activity during the test run, subjects rated their sensation of comfort (scale 1-4), temperature (scale 1-7), and sweating (scale 1-4). Subject responses were recorded by the inside observer, as were ambient dry bulb and wet bulb temperatures. These results are reported as time to sweat sensation =7 (tTS=7), the comfort responses not being reported due to their highly inconsisent nature.

Mean weighted skin temperature (T_{sk}) was calculated using the equation:

(1)
$$T_{sk} = 0.7 (A) + 0.35 ((B+C+L)/3] + 0.14 (D) + 0.05 [(E+F)/2]+ 0.19 (G) + 0.13 (H) + 0.07 [(J+K)/2] (3C)$$

where the variables A = L are the measured skin temperatures⁽¹⁰⁾. Mean weighted body temperature (T_{D}) was calculated using the equation.

(2) $T_b = 0.33 T_{sk} = 0.87 T_{re}$ (°C)

where T_{sk} is the mean weighted skin temperature and T_{re} is the rectal temperature¹⁰. Reported changes in temperatures ($\Box T_{re}, \Box T_{sk}, \Box T_b$) and heart rate ($\Box HR$) represent the difference between final and baseline values.

The rate of heat storage (LQ) was calculated for each exposure using the equation:

where $\Box T_{re}$ is the change in rectal temperature (³C), Δt is the test run duration (minutes), 0.97 represents the specific heat of body tissue (Whr.kg³C), 80 converts hours to minutes, M_b is the

Subject ~	Age (yr)	Height (m)	Weight (Kg)	% Body Fat ~	Surface Area (m ²)	VO _{2max} (€/min)
1	32	1.73	95.4	26.5	2.07	1.9
 2	39	1.81	78.0	23.8	1.98	2.3
3	32	1.82	91.0	21.8	2.07	2.2
4	23	1.71	90.8	29.3	1.97	2.6
5	26	1.78	96.5	26.7	2.15	4.0
6	28	1.71	100.7	25.5	2.10	3.0

Table 1. Test Subject Profiles

Table 2. Flightgear Worn, All Configurations

- CWU-43/P,-44/P underwear
- CWU-27/P Flight coverall
- Wool socks (2 pairs), Flyer's boots
- HG-33 or SPH-3 helmet
- Torso harness
- Anti-G Suit

as above

1

2

5

Configurations

- CWU-62, Planti-exposure suit CWU-23, Plmesh liner
- 3 CWU-62.P CWU-72.P short-sleeved olefin liner
- 4 CWU-62: P L long-sleeved olefin liner

 - CWU-62.P

lean body mass (kg,)and BSA in the body surface area (m²)⁽¹¹⁾. Total sweat rate (SRT) was determined by the difference in weight calculated from the post-test value, corrected for fluid intake, and the baseline value. The reported SRT values are normalized by dividing the change in weight by BSA.

STATISTICAL ANALYSIS

Linear correlation coefficients were calculated for all reported variables in order to identify interactions^[12]. Calculation of linear correlation coefficients for ΔT_{re} , ΔT_{sk} , and ΔT_b vs. time was also performed^[12]. A two-way analysis of variance (ANOVA) was performed on all data, comparing clothing configuration and subject effects^[13]. A Duncan Multiple Range test was employed to identify significant differences between means when overall significant differences were indicated by previous analysis^[14]. Analysis of covariance (ANCOVA), using a 6x5 factorial design, was used to analyze the covariant effects of initial T_{re} , T_{sk} , T_b , HR, and urine specific gravity on the criterion test duration, ΔQ , SRT, tSS=4, tTS=7, and final values of T_{re} , T_{sk} , T_b , and HR⁽¹⁵⁾. Tests of the homogeneity of variance using Bartlett's method⁽¹²⁾ and of the hypothesis H: (regression coefficient = 0) in the analysis of covariance⁽¹³⁾ were used to affirm the validity of the statistical methods employed.

RESULTS

The results of the heat stress testing indicate that none of the configurations employing the CWU 62/P coverall produced mean test durations of greater than 127.9 minutes (Figure 1). This was significantly different (p<0.01) from the mean test duration of the control (configuration 1), which was 176.6 minutes. A two-way ANOVA showed this to be the result of configuration, and not subject effects.

Among the four PTFE-based configurations, no significant differences in test duration was observed. Linear correlation was observed between test duration and TSS#4 (r=0.799), and tTS#7 (r=0.865). The introduction of baseline values as covariants in an ANCOVA was inconclusive, since interaction, as defined by the statistical model⁽¹³⁾, could not ue shown.

The rate of heat storage (Table 3) was observed to be a function of both the configuration worn ($p \le 0.05$), and to a greater extent, to the particular subject ($p \le 0.01$). While an overall significant difference in ± 0 was detected among configurations, no individual configuration could be shown to be significantly different. Mean values demonstrate a trend, however, with configurations 3 and 4 (olefin liners) producing higher rates of heat storage (Figure 2). Linear correlation between ± 0 and T_0 was observed (r=0.878), while no linear correlation was detected among ± 0 and the other variables.

Total sweat rate (see Table 3) was strongly influenced by both configuration (p<0.01) and subject effects (p<0.01). No individual configuration was observed to be significantly different in SRT, despite the overall significant differences. An inspection of the means (Figure 3), nowever, indicates that the control (configuration () has produced a considerably lower SRT than the other configurations.

Initial urine specific gravity, when included in an ANCOVA of SRT as a covariant, reduced the configuration effects (p<0.05), while increasing the subject effect F-statistic. This appears to indicate that initial hydration of the subject influenced SRT, and that configuration effects are a lass important factor.

		SUIT 1	SUIT 2	SUIT 3	SUIT 4	SUIT 5
^T R,F	x	37.5	37.5	37.5	37.5	37.4
(°C)	s	0.4	0.42	0.46	0.31	0.35
∆ [†] R	x	0.59	0.52	0.71	0.57	0.56
(°C)	s	0.37	0.40	0.34	0.43	0.33
∆Q	x	6.50	8.70	12.90	11.60	8.63
(W/m ²)	s	4.09	7.94	7.09	7.76	5.23
т _{в,F}	x	3.73	37.5	37.4	37.5	37.5
(°С)	s	0.27	0.46	0.43	0.29	0.27
∆T _B	x	1.67	1.88	2.04	1.78	1.47
('C)	s	0.68	0.82	0.35	0.58	0.38
T _{sk}	x	36.9	37.5	37.1	37.4	37.5
(°C)	s	0.47	0.84	0.62	0.51	0.20
T _{sk}	x	3.84	4.60	4.71	4.21	3.30
(°C)	s	1.95	1.91	1.27	1.15	0.70
SRT	x	3.59	5.53	5.55	6.44	5.43
(gʻma, m²)	s	0.83	3.27	2.96	2.43	1.59
HR _F	x	113	128	135	140	128
(bpm)	s	25.7	19.3	25.2	26.4	22.0
Duration (mn)	x s	176.6 9.15	: 99.0 26.6	109.3 27.3	89.0 28.1	127.9 36.6
Index of Stra	in⁺ X S	1 72 0.57	2.17 0.31	2.58 0.71	2.55 0.48	2.17 0.33

Table 3. Test Results of Heat Stress Study.

 $I_{S} = \frac{HR}{100} + \frac{T_{re}}{T_{r}} + \frac{T_{WL}}{T_{r}}$

15

where

Index of Strain

HR + final Heart Rate (bpm)

∠Tre = change of rectal temperative (°C)

LWt = change of body weight (Kg)

Lt est duration (minutes)

Figure 3. Configuration vs. Sweat Rate

.....

NADC-85061-6-3

Final rectal temperature (Table 3) appears to be primarily influenced by subject effects (p<0.01), as configuration effects were not significant in an ANOVA. Initial T_{re} , when used as a covariant, demonstrated the effect of initial subject state on final values of T_{re} , as the +-statistic for subject effect on T_{re} increased in an ANCOVA.

Clothing configuration produced significant differences among final T_{sk} (p<0.05), while subject effects were not significant in an ANOVA. The control (configuration 1) resulted in a significantly lower T_{sk} than the CWU-62/P- based configurations (p<0.05). No significant difference was detected among those configurations.

Since a majority of the tests involving configurations 2,3,4, and 5 were terminated prior to the three hour limit without reaching the physiological safety thresholds, extrapolation of the data was required to predict T_{re} and T_{sk} for three hour exposures. Linear regression analysis of T_{re} vs. time indicated that final T_{re} of <39.0°C could be expected for all of the experimental configurations (Figure 4). A similar analysis of T_{sk} vs. time indicated that for configurations 2,3, and 5, T_{sk} would remain below T_{re} after a three hour exposure (Figure 5). Configuration 4 would produce a T_{sk} higher than T_{re} at three hours, on the basis of the linear regression lines (Figure 5). This is a situation in which heat illness is extremely likely to occur⁽¹⁶⁾.

A linear regression analysis was also performed on T_b vs. time, to obtain an approximation for the overall temperature state at the end of three hour exposures. The results of this analysis (Figure 6) indicated that long-sleeved liners (configurations 2 and 4) would produce a higher T_b at three hours. This appears to result from the greater body surface coverage of these liners, which produced a greater rate of change of T_b when compared to the other configurations (Figure 6).

Final heart rates (Table 3) have been determined by an ANOVA to be governed principally by subject effects (p<0.05) under the experimental conditions. However, when initial HR is considered in an ANCOVA, configuration effects become significant (p<0.05), while subject effects increase in significance (p<0.01). The observed differences in mean final HR between the control and experimental configurations was significant (p<0.05), while the other differences among configurations were not significant.

Results of the psychomotor task indicated the dominant factor in the results was training due to constant playing, therefore that data is not reported. Difficulty with instrumentation resulted in unreliable blood pressure data, thus their omission from this report. Aerobic fitness is reported as obtained prior to the start of the ensemble testing, with no change in aerobic fitness being detected over the ensemble testing period.

DISCUSSION

The intent of this study was to determine the physiological effects of the CWU-62/P PTFE constant-wear anti-exposure coverall, when worn with various liners, on subjects performing physical and mental tasks under heat stress conditions. The CWU-72/P olefin liner was one of the attendant liners, as it was considered likely to be included in the operational anti-exposure ensemble.

A diminution of tolerance to heat was observed in the tests with the PTFE-based configurations, as would be expected from the increase in clothing insulation and decrease in ventilation caused by the garments. This reduced tolerance is reflected in the results obtained for test duration, which clearly show the effects of wearing the CWU-62/P coverall. The significant difference in test duration between the control and the PTFE-based configurations implies that the CWU-62/P coverall is a limiting factor in heat tolerance.

10

.

Figure 4. Regression : Tre vs. Time

NADC-85061-60

The physiological basis for the test terminations is unclear, though it would seem likely that dehydration played a major role^(17.18.19.20). While the correlation coefficient between test duration and SRT is not high (r=0.461), the influence of other factors may tend to obscure this relationship⁽¹⁸⁾. One study⁽²⁰⁾ has shown that in chemical defense suits with neck, wrist, and ankle seals, thermal strain is produced by significant dehydration. In addition, it has been previously observed⁽¹⁹⁾ that excessive skin wetting during rising humidity depresses whole body sweating, thereby limiting effective body cooling.

Durations of less than three hours in this study might be explained by similar effects. Due to the presence of thermal underwear, which could absorb perspiration, as well as the passage of water vapor through the PTFE membrane, considerable sweating could occur before wetting of the skin surface began to depress sweating. Throughout the period in which unimpaired sweating occurred, an increase in T_{re} would be moderated by evaporative cooling^(18, 19, 21). Ultimately, however, depression of whole body sweating⁽¹⁹⁾ would reduce evaporative cooling, with a concomitant rise in T_{re} . Dehydration would be occurring simultaneously⁽²⁰⁾, which would exacerbate the thermal strain, while decreasing the physical work capability of the subject^(22, 23).

While all the aforementioned interactions were likely to be occurring, muscular fatigue was also probably occurring, due to the physical work performed by the subject. Complaints of fatigue were common at the termination of runs throughout the testing period. This fatigue was probably the result of both muscular fatigue and heat strain, and is reflected in the final HR⁽¹⁹⁾.

Subjective indices of thermal sensation suggested that the presence of a liner significantly increased the perceived thermal strain. Thermal sensation may play a major role in task performance^{1/2 15}, which is an important consideration for constant-wear garments. Therefore, use of a liner in conjunction with the CWU-62/P coverall may adversely affect flight performance. It clearly affected the test durations in this evalution, based on the correlation analysis.

While none of the PTFE-based configurations allow for three hours of use under the test conditions, it should be recognized that a significant physical workload was placed on the test subjects. Thus, while extrapolating the results for a reduced workload is difficult, it is logical to assume increased durations would occur for more sedentary aircrew^[20], (e.g. pilots). Flight operations up to three hours might be possible for these aircrewmen during normal operation when wearing configuration 5. However, for helicopter crewmen, the achieved test durations are likely to be representative of operational performance, due to the physical demands placed upon them^[20].

Increased workloads, as during a national emergency, would greatly increase the stress experienced by all aircrew members⁽²⁰⁾. Because of the quick turnaround times, short rest periods and lack of time to permit the body to cool would be expected⁽²⁰⁾. Under these conditions, performance while wearing any of the tested configurations would be greatly reduced. The test durations obtained in this evaluation probably represent maximum performance under these conditions.

These test results do not lend themselves to direct comparison with evaluations of other anti-exposure suits under heat stress⁽¹⁾. While an attempt was made to produce similar environmental stresses in this evaluation as were previously used⁽¹⁾, a comparison of the index of strain⁽²⁶⁾ (Table 3) for both experiments indicates that the present evaluation presented subjects with greater stress⁽¹⁾. It would seem that this may be related to both workload and ambient relative humidity differences, though relative humidity was not reported in the previous evaluation⁽¹⁾.

CONCLUSIONS

- The CWU-62/P coverall limits a wearer to less than three hours of operational duration, regardless of liner, under moderate workoads and simulated hot cabin conditions. This time could be expected to increase with less physical exertion, such that wearing the CWU-62/P coverall, with no liner, might permit three hours of operation for more sedentary aircrew (e.g. pilots).
- Thermal sensation has a direct effect on heat toleration in these tests. Use of the CWU-62/P coverall without a liner reduced perceived thermal strain; this would be a preferred configuration.
- Dehydration represents a potential hazard with the CWU-62/P under heat stress conditions. Adequate water supplies must be made available to aircrew wearing this garment to compensate for fluid losses.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to the personnel of Code 60B4 for volunteering to act as subjects and for the medical support they provided, and to Mr. L. SantaMaria, Mr. W. Soroka, Mr. G. Askew, and Mr. W. Daymon for tuchnical assistance. The author also thanks Ms. K. Dejneka and Dr. G. Chisum for assistance in statistical analyses.

REFERENCES

- Reeps, S. M., Johanson, D. C., and Santa Maria L. J. "Anti-Exposure Technology Identification for Mission Specific Operational Requirements." NADC Report NADC-81081-60.
- Nunneley, S.A., Stribley, R.C., Cohen, N.L., R.F., & Allen J.R. "Heat Stress in Front and Rear Cockpits of F-4 Aircraft." Aviat. Space Environ. Med. (1981) 52(5):287-290.
- DuBois, E.F. & DuBois, D. "Measurement of Surface Area of Man." Arch. Int. Med. (1915) 15:868.
- 4) Durnin, J.V.G.A. and Rahaman, M.M. "The Assessment of the Amount of Fat in the Human Body from Measurements of Skinfold Thickness." Br. J. Nutrit. (1967) 21:681.
- Steinkamp, R.C., Cohen, N.L., Siri, W.E., Sargent, T.W., Walsh, M.A. et. al. "Measures of Body Fat and Related Factors in Normal Adults — I. Introduction and Methodology." J. Chron. Dis. (1965) 18:1279.
- Steinkamp, et. al. "Measures of Body Fat and Related Factors in Normal Adults II. A Simple Clinical Method to Estimate Body Fat and Lean Body Mass". J. Chron. Dis. 18:1291 (1965).
- Astrand, P.O., and Ryhming, I. "A Nomograph for Calculation of Aerobic Capacity from Pulse Rate During Submaximal Work." J. Appl. Phys. (1954) 7:218-221.
- Kowal, D.M., Patton, J.F., and Vegel, J.A. "Phychological States and Aerobit Fitness of Male and Female Recruits Before and After Basic Training." Aviat. Space Environ. Med. (1978) 49(4):603-606.
- Sheard, C. "Temperature: Skin: Thermal Regulations" in Medical Physics, vol. 2 (Glasser, O., ed.). Chicago: Year Book Publ., 1950.
- Webb, P. "Work, Heat, and Oxygen Cost" in Bioastronautics Data Book, (Parker, J. F. and West, V. R., eds.). NASA SP-3006, 1972.
- 11 Kollka, M. A., Levine, L., Cadarette, B.S., Rock, P. B. Sawka, M. N., & Pandolf, K. B. "Effects of Heat Acclimation on Atropine-Impaired Thermoregulations." Aviat. Space Environ. Med. (1984) 55:1107-10.
- 12) Spiegel, M. R. Theory and Problems of Statistics. New York: McGraw-Hill, 1961.
- 13) Ostle, B. & Mensing, R. W. Statistics in Research, 3rd Ed. Ames: Iowa State Univ. Press, 1975.
- 14) Thiller, I. & Freund, J. E. Probability and Statistics for Engineers. 2nd Ed. Englewood Cliffs: Prentice-Hall, 1977.
- 15) Winer, B. J. Statistical Principles in Experimental Design, New York: McGraw-Hill, 1962.
- 16) Pandolf, K. B. 26d Goldman, R. F. "Convergence of Skin and Rectal Temperatures as a Criterion for Heat Tolerance." Aviat. Space Environ. Med. 1978; 49:1095-1101.
- 17) Sawka, M. N., Francesconi, R. P., Pimental, N. A., and Pandolf, K. B. "Hydration and Vascular Fluid Shifts During Exercise in Heat." J. Appl. Physiol. 1984; 56:91-96.

REFERENCES (Continued)

- Shwartz, E., Glick Z., and Magazanik, A. "Responses to Temperate, Cold, and Hot Environments and the Effects of Physical Training." Aviat. Space Environ. Med. 1977; 48:254-260.
- Gonzalez, R. R., Pandolf, K. B., and Gagge, A. P. "Heat Acclimation and Decline in Sweating During Humidity Transients." J. Appl. Physiol. 1974; 36.419-425.
- 20) Thornton R., Brown, G.A., and Radman, P. J. "The Effect of the UK Aircrew Chemical Defense Assembly on Thermal Strain." Aviat. Space Environ. Med. 1985; 56: 208-11.
- 21) Shwartz, E., Bhattacharya, A., Sperinde, S. J., Brock, P. J., Sciaraffa, D., and Van Beaumont, W. "Sweating Responses During Heat Acclimation and Moderate Conditioning." J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 1979; 46:675-680.
- 22) Allan, J. R., Gibson, T. M., and Green, R. G. "Effects of Induced Cyclic Changes of Deep Body Temperature on Task Performance." Aviat. Space Environ. Med. 1979; 50:585-9.
- 23) Blockley, W. V., Lyman, J. "Studies of Human Tolerance for Extreme Heat." AF Technical Report No. 6521, Wright Air Development Center, Ohio, 1951.

DISTRIBUTION LIST (Continued) REPORT NO. NADC-85061-60

Chief Bureau of Medicine and Surgery, Navy Dept, Washington, DC 20370	2
Defense Technical Information Center, Cameron Station, Alexandria, VA 22217	2
Commanding General, Marine Corps Development and Education Command, Quantico, VA 22134	2
Commanding Officer, US Army Aeromedical Research Lab, Fort Rucker, AL 36362	1
Commanding Officer, US Army Natick Laboratories, Natick, MA 01760	1
Commanding Officer, Army Aviation Systems Command, St. Louis, MO 63102	۱
Headquarters. ASD, Life Support Systems Program Office, Wright-Patterson AFB, OH 45433	1
Aerospace Medical Research Laboratory, Wright-Patterson, AFB OH 45433	1
Senior Naval Officer, National Aeronautics and Space Administration. Ames Research Canter, CA	1
Naval Coastal Systems Center, Panama City, FL 32421. Attn: M Lippitt	۱
US Coast Guard, Office of Research and Development. Washington, DC 20590	1
Air University Library, LSE-69-587. Maxwell AFB, AL 36112	۱
Commancing Officer, Headquarters TAC, Langely AFB, VA 23665	1
Commanding Officer, SAM. Brooks AFB, San Antonia, TX 79325	1
Commanding Officer, Naval Weapon Station. Yorktown, VA 23691	2
Commanding Officer, SAALC, Keily AFB, San Antonio, TX 78235	۱
Library of Congress, Washington, DC 20540	۱
Chief of Naval Research, 800 North Quincy Street. Arrington, VA 22217	1
Chief of Naval Operations, Washington, DC 20350	1
Commanding Officer, Pacific Missile Test Center, Naval Air Station, Point Mugu, CA 93042	۱
Naval Air Development Center, Warminster, PA 18974 13 for Code: 8131 Library) (26 for Code: 6081)	29

DISTRIBUTION LIST REPORT NO. NADC-85061-60 AIRTASK NO. AE3/5311/0012/4000000001

	No. of Copies
Commander, Naval Air Systems Command Headquarters, Washington, DC 20361	20
Commander Naval Air Force, US Atlantic Fleet, Norfelk, VA 23511	2
Commander Naval Air Force, US Pacific Fleet, Naval Air Station North Island, San Diego, CA 92135	2
Officer In Charge, Naval Clothing and Textile Research Facility, 21 Strathmore Road, Natick, MA 01760	1
Commanding General, Marine Air Force Pacific, San Francisce, CA 96601	2
Commanding General, Marine Air Force Pacific, Norfoik, VA 23511	2
Commanding Officer, Naval Aerospace and Regional Medical Lab, Det, Naw Orleans, LA 70146	2
Commanding Officer, Naval Aerospace and Regional Medical Lab, Naval Air Station, Pensacola, FL 32508	2
Commanding Officer, Naval Weapon Center, China Lake, CA 93555	1
Commanding Officer, Naval Air Engineering Center, Naval Air Station, Lakehurst, NJ 08733	2
Commanding Officer, Naval Training and Equipment Center, Orlando FL 32813	1
Commanding Office:, Naval Aerospace Medical Institute, Naval Air Station, Pensacola, FL 32503	1
Chief of Naval Education and Training, Navai Air Station, Pansacola, FL 32508	۱
Commander, Naval Safety Center, Naval Air Station, Norfolk, VA 23511	3
Chief of Naval Air Training, Naval Air Station. Corpus Christi, TX 78419	2
Commander, Naval Air Test Center, Patuxent River, MD 20670	2
Commanding Officer, Naval Aerospace and Segional Medical Center, Pensocola, FL 32512	1