UNCLASSIFIED

AD NUMBER

ADB073076

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; Test and Evaluation; Apr 1983. Other requests shall be referred to Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD 21010.

AUTHORITY

APG ltr, 10 Jun 1997

THIS PAGE IS UNCLASSIFIED

6

AD

REPORT DRXTH-TE-CR-83212

THERMAL PROCESS DEVELOPMENT

W. H. Mink, H. E. Carlton, D. W. Folsom, D. R. Hopper, J. J. McNeely, A. E. Weller

BATTELLE COLUMBUS LABORATORIES 505 KING AVENUE COLUMBUS, OHIO 43201

APRIL 8, 1983

PHASE I FINAL TECHNICAL REPORT FOR THE PERIOD 5 MAY 1982 TO 31 MARCH 1983

Distribution limited to U.S. Government agencies only because of test and evaluation; April 1983. Other requests for this document must be referred to: Commander, USATHAMA, Attn: DRXTH-ES, Aberdeen Proving Ground, Maryland, 21010.

Prepared for:

COP)

38

U.S. ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY **88** 05 02 010 ABERDEEN PROVING GROUND, MARYLAND 21010

DISCLAIMER

1.44

ľ

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documents.

The use of trade names in this report does not constitute an official endorsement or approval of use of such commercial hardware or software. This report may not be cited for purposes of advertising.

DEDOD	OF THIS PAGE (When Der T DOCUMENTATION	ى	READ INSTRUCTIONS
1. AEPOAT NUMBER	DOCUMENTATION	2. GOVT ACCESSION NO	BEFORE COMPLETING FORM
DRXTH-TE-CR-832	12	AD-B0:73	0766
4. TITLE (and Subtitie)			S. TYPE OF REPORT & PERIOD COVERED
THERMAL PROCESS	DEVELOPMENT		FINAL 82 MAY 05 - 83 APRIL 15 '
			6. PERFORMING ORG. REPORT NUMBER
		TON, JAMES J. MCNEELY	DAAK11-82-C-0055
BATTELLE COLUMB 505 KING AVENUE COLUMBUS, OHIO	JS LABORATORIES	18	10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS
CDR, ARRADCOM	NAME AND ADDRESS		12. REPORT DATE
CML/BALLISTIC P			83 APRIL 8
APG (EDGEWOOD A	•		497 18. SECURITY CLASS. (of this report)
			UNCLASSIFIED
			I IBA. DECLASSIFICATION/DOWNGBADING
	AND EVALUATION;	RXTh-ES	APG-md.
DISTRIBUTION LI BECAUSE OF TEST USATHM 17. DISTRIBUTION STATEM 18. SUPPLEMENTARY NOT 18. KEY WORDS (Continue or ACID DISSOLUTIO	MITED TO U.S. GOV AND EVALUATION; AND AND AND AND AND AND AND AND AND AND	APRIL 1983 TEXTE-ES d in Block 20; if different to and identify by block number REACTOR ROTARY K	ONLY MPG-MO. STR Report) ILN VACUUM FURNAC
DISTRIBUTION LI BECAUSE OF TEST USATHOM	MITED TO U.S. GOV AND EVALUATION; AND EVALUATI	APRIL 1983 TEXTL-ES d in Block 20, if different for REACTOR ROTARY K EACTOR SHAFT FUI THERMAL I UNDERGROU IDENTIFY THERMAN HEMICAL AGENT MUN GHT SELECTED AS BI	ONLY Magendo ILN VACUUM FURNACI RNACE DESTRUCTION JND DETONATION DESTRUCTION CONCEPTS ITIONS. FOURTY-FOUR PROCESS

columbus Laboratories an king Avenue Columbus, Ohio 1991 Telephane (01E-121-6421 Telex Protot

April 8, 1983

Commander U.S. Army Toxic and Hazardous Materials Agency Attn: DRXTH-TE-D/Lt. Ronald Fournier Building E-4585 Aberdeen Proving Ground 21010 Edgewood Area, Maryland

Dear Lt. Fournier:

Thermal Process Development Contract No. DAAK11-82-C-0055 Final Report BCL Project No. G8027

Enclosed are ten copies of Battelle's Final Phase I Report (Data Item A002 of the subject contract) on your Thermal Process Development program. This report incorporates your comments of March 9, 1983.

Very truly yours,

Willeam H. Alhik

William H. Mink Program Manager Hazardous Materials Program Office Energy and Chemical Processes Department

/pvh

.

.

- }

DRXTH-TE-D (10 copies) DRXTH-ESD (16 copies)

 $\left| \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right$

cc: DRDAR-PRB-R (letter only)

.

TABLE OF CONTENTS

		Page
SUMM	Υ	1
1.	NTRODUCTION	1
	.1 Thermal Destruction of Toxic Chemical Agents	3 4
2.	ISCUSSION	7
	1.1 Task 1. Planning and Baseline Review	7
	2.1.1 Main Demil Building 2.1.2 Manpower	10 11
	2.2 Task 2. Literature Search 2.3 Task 3. Industrial Surveyand 2.4 Task 4. Concept Formulation and	12 14
		14
	 2.4.1 Evaluation Criteria Factors 2.4.2 Feed Configurations 2.4.3 Concept Rating 2.4.4 Criteria Factor Weights 2.4.5 Process Concept Rating 	15 21 23 25 25
	2.5 Task 5. Engineering and Economic Evaluation and Reporting	29
	2.5.1 Engineering and Economic Evaluation of the Eight Concepts Selected in Task 4	30
	<pre>2.5.1.1 Acid Roaster 2.5.1.2 Rotary Kiln 2.5.1.3 Molten Metal 2.5.1.4 Fluidized-Bed 2.5.1.5 IR Vacuum Furnace 2.5.1.6 Shaft Furnace 2.5.1.7 Molten Salt 2.5.1.8 Underground Detonation</pre>	31 31 33 36 38 41 41 44
	2.5.2 Design Plan	44
3.	CONCLUSIONS	47
4.	ECOMMENDATIONS	49

TABLE OF CONTENTS (Continued)

E.

APPENDIX A

BIBLIOGRAPHY OF PERTINENT LITERATURE REFERENCES	A-1
APPENDIX B	
QUESTIONNAIRE USED IN INDUSTRIAL SURVEY	B-1
APPENDIX C	
THERMAL PROCESS DESCRIPTIONS	C-1
APPENDIX D	
ENGINEERING AND ECONOMIC ANALYSIS - ACID ROASTER	D-1
APPENDIX E	
ENGINEERING AND ECONOMIC ANALYSIS - ROTARY KILN	E-1
APPENDIX F	
ENGINEERING AND ECONOMIC ANALYSIS - MOLTEN METAL	F-1
APPENDIX G	
ENGINEERING AND ECONOMIC ANALYSIS - FLUIDIZED-BED	G-1
APPENDIX H	
ENGINEERING AND ECONOMIC ANALYSIS - IR VACUUM FURNACE	H-1
APPENDIX I	
ENGINEERING AND ECONOMIC ANALYSIS - SHAFT FURNACE	I-1
APPENDIX J	
ENGINEERING AND ECONOMIC ANALYSIS - MOLTEN SALT	J-1
APPENDIX K	
ENGINEERING AND ECONOMIC ANALYSIS - UNDERGROUND DETONATION	K-1

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

TABLE OF CONTENTS (Continued)

APPENDIX L

RAM A	NALYSIS		L-;	1
-------	---------	--	-----	---

LIST OF FIGURES

Figure	1A.	Flow Diagram of Baseline	8
Figure	18.	Flow Diagram of Baseline	9
Figure	2. 1	Methodology for Selection of Process Concepts	18
Figure	3.	Munition Feed Configurations	22
Figure	4.	Thermal Process Evaluation Sheat	24
Figure	5.	Averaged Concept Ratings	26
Figure	6.	Thermal Concepts Rated in Terms of Stanard Deviation Increments	28
Figure	7.	Acid Roaster Concept	32
Figure	8.	Acid Roaster Concept	32
Figure	9.	Large Rotary Kiln Concept	34
Figure	10.	Large Rotary Kiln Concept	34
Figure	11.	Proportional Rotary Kiln Concept	35
Figure	12.	Proportional Rotary Kiln Concept	35
Figure	13.	Molten Metal Concept	37
Figure	14.	Molten Metal Concept	37
Figure	15.	Fluidized-Bed Concept	39
Figure	16.	Fluidized-Bed Concept	3 9
Figure	17.	Fluidized-Bed Concept	40
Figure	18.	Fluidized-Bed Concept	40

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. D/

LIST OF FIGURES (Continued)

Page

Figure]	19.	Vacuum Furnace Concept	42
Figure 2	20.	Vacuum Furnace Concept	42
Figure 2	21.	Shaft Furnace Concept	43
Figure 2	22.	Shaft Furnace Concept	43
Figure 2	23.	Molten Salt Concept	45
Figure 2	24.	Molten Salt Concept	45

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCON.

SUMMARY

Experience with the Chemical Agent Munitions Disposal System (CANDS) prototype suggested the need for development of thermal destruction technology to support the design of larger scale disposal facilities. These larger scale facilities will be required to demilitarize existing chemical agent stockpiles. As a first step in this further development, this Thermal Process Development program was undertaken by Battelle for the Army.

The program began with a study of literature and industrial information on thermal destruction concepts which were at various stages of development. The concepts were evaluated by a team of engineers knowledgeable in the area of thermal processing. This was done by developing criteria and rating each of 44 process concepts identified. By this means, eight processes were identified as having promise for the thermal destruction portion of a chemical agent munitions disposal facility. These eight processes were then evaluated in depth to identify the most viable. The eight processes are listed in Table 1 in general order of engineering and economic preference together with a summary of the information developed during the analysis.

Four processes (Acid Roaster, Rotary Kiln, Molten Metal, and Fluidized Bed) were selected as having the greatest potential for success. It is recommended that these four processes be evaluated in detail in laboratory and pilot scale studies.

TABLE 1. SUMMARY OF THERMAL PROCESS ENGINEERING AND ECONOMIC EVALUATION (Processes Listed in General Order of Engineering and Economic Preference)

Process	Applicable Feed Configuration			Single Sit 400 lb/hr	e 1000 lb/hr	1000 lb/hr	Collocated 3000 lb/hr	5000 lb/hr	Remarks
Acid Roaster	1.	Separate whole munitions	23.6	21.0	31.1	87.2	104.6	134.3	Minimum front-end preparation; iow technical risk; pro- bably lowest total facility cost
Rotary Kiln	1.	cavity opened and energetic	62.7	36.0	30.2	66.4	38.4	36.1	Minimum technical rick; Simple system; high
	2.	material removed and cut Shredded munition	17.8	12.8	13.2	29.9	27.3	30.4	reuse potential; state- of-the-art technology; potential for "fast- track"
Molten Metal	1.	Munitions with agent cavity opened and energetic material removed and cut, or shredded munitions	18.9	15.0	18.6	37.4	40.9	48.7	Moderate technical risk; near state-of-the-art technology; optimum ultimate disposal and metal parts handling; high thermal inerta; low manpower requirements
Fluidized Bed	1.	Munitions with agent cavity opened and energetic material removed and cut	20.2	17.6	۲.1	39.2	32.3	35.1	Moderate technica) risk; near state-of-the-art
	2.		18.6	16.2	18.6	36.4	31.8	34.6	technology; high thermal inertia; more complex than molten metal
IR Vacuum Removal	1.	Whole munition, punctured and fuses removed	23.5	17.1	18.9	36.4	35.5	41.0	High technical risk; low thermal inertia
Shaft Furnace	1.	Cut or punched rockets, ton containers, bombs and spray tank, otherwise whole munitions	34.1	31.9	50.5	100.0	158.6	215.0	Very high technical risk
Molten Salt	1.	Shredded munitions	22.8	18.4	22.4	45.4	59.7	77.9	High degree of front end preparation re- quired; moderate risk; no advantages not inherent in molten metal
Underground Detonation	1.	Stored munitions (loaded pallets)				◄	- 393	>	Very high cost; high technical risk

DRAFT FINAL REPORT

.

. . . .

Ĩ

j

Contract No. DAAK11-82-C-0055

on

THERMAL PROCESS DEVELOPMENT

to

U.S. ARMY TOXIC & HAZARDOUS MATERIALS AGENCY Edgewood, Maryland

from

BATTELLE Columbus Laboratories

by

W. H. Mink, H. E. Carlton, D. W. Folsom D. R. Hopper, J. J. McNeely, and A. E. Weller

January 28, 1983

1.0 INTRODUCTION

As a result of environmental constraints and legislation, the methods used for disposing of military lethal agents such as GB, VX, and HD, have changed from land and sea burial to chemical neutralization and incineration. To study these processes, the Army developed a Chemical Agent Munitions Disposal (CAMDS) facility at the Army Depot at Tooele, Utah. This is a prototype for other lethal chemical demilitarization plants expected to be built in the future.

The CAMDS facility has provided much valuable information on chemical agent munitions disposal. It has been possible through its operation to identify several problem areas. For the chemical neutralization processes used with the nerve agents, these are:

- The chemical neutralization reaction is relatively slow, so that large reactors are needed to achieve reasonable throughput.
- The waste products are soluble, strongly alkaline, and toxic materials. The neutralization process consumes reagents. There is some chance of regeneration of agent from the neutralization products-at least for GB.
- The process is labor- and energy-intensive.

The specific incineration process selected for destroying the mustards at CAMDS was chosen in large part for its simplicity in handling the agent. However, simplicity in that area imposes significant disadvantages for the overall process. These disadvantages are:

- The process requires substantially more capital equipment than a more straightforward incineration process.
- The thermal parts of the process are complex and require complex controls.
- The process is energy-intensive and requires substantial fuel inputs to destroy an agent which itself has a fairly high fuel value.

Viewed as a total, CAMDS is a collection of independent processes with minimal interfaces, representing the available/ demonstrated technology.

In view of these deficiencies and disadvantages, the Army initiated a program to determine whether new technology or new combinations of technology could form the basis for the next generation of chemical agent demilitarization plants with improved characteristics. To this objective, three RFQ's were issued: one on mechanical processes (munition disassembly/downloading), one on new approaches to chemical destruction of chemical agents, and one addressing thermal destruction of the agents. This report addresses the results of the study of the last area: thermal destruction of the agents.

1.1 Thermal Destruction of Toxic Chemical Agents

Thermal destruction is the most generally accepted method of destroying toxic organic materials for all cases where the toxicity is associated with the totality of the molecule rather than with a specific loxic element incorporated in the molecule. Incineration is used to destroy chlorinated hydrocarbons, pesticides, and various other toxic organic materials. Incineration is potentially capable of destroying any primarily organic material by oxidizing its carbon and hydrogen to CO_2 and water, and possibly altering the oxidation state of other elements in the molecule. The choice of incineration as a preferred method can be based on estimates or determinations of the required incineration conditions and an appraisal of the requirement for downstream pollution control needed to limit emissions of undesirable products of complete combustion. Some molecules, for example highly chlorinated aromatic compounds, may be sufficiently resistant to pyrolysis and oxidation to require very severe conditions in the incinerator for their destruction. The incinerated material may also form intermediate species thermally and oxidatively stable such as polynuclear aromatic species, that themselves require severe incineration conditions for their destruction. The incinerated materials may also contain elements whose compounds or physical form (e.g., HC1, SO₂/SO₃, fine particulates from "ash") are considered pollutants in the normal sense and require downstream (stack) controls to meet existing or anticipated pollution-control regulations.

With respect to the chemical agents GB, VX, and HD, available information indicates that these materials are thermally destroyed under relatively easily achieved conditions and that their structure does not suggest any unusual tendency to form resistant intermediate products. These agents are quite reasonable as fuels and their heat content is sufficient to achieve high flame temperatures (2500 F) without the need for auxiliary fuels.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

These agents do, however, contain elements C1, F, P, and S, whose emission is legally controlled and/or undesirable. Thus, either downstream pollution control is needed, or the incineration process must be accomplished in such a way as to capture these elements within the process.

All in all, thermal destruction of these chemical agents would appear to be easily accomplished with a minimum requirement for auxiliary energy inputs. Although emission controls are required (unless control can be integrated with the incineration process), the needed controls are within the state of the art. Incineration is thus a prime contender as a destruction process for these chemical agents.

1.2 Approach

The Thermal Process Development program which is summarized in this report involved five tasks:

- Task 1. Planning and Baseline Review
- Task 2. Literature Search
- Task 3. Industrial Survey
- Task 4. Concept Formulation and Evaluation
- Task 5. Engineering and Economic Evaluation and Reporting.

In Task 1 the Army's baseline, a conceptualized system for thermal destruction of chemical agent munitions, was reviewed. Tasks 2 and 3 involved a review of literature and industry sources to identify technologies with potential for agent munitions destruction. In Task 4 an evaluation of these technologies was made and promising technologies were selected. In Task 5 an engineering and economic evaluation of the selected technologies was made and a Design Plan prepared outlining recommended further studies on four of the selected technologies.

Because of the volume of material presented in this report, generous use of appendices is made. For example, only a brief discussion of each of the processes evaluated in Task 5 is presented

() (

•

j.

1.

in the Discussion section. Detailed individual discussions of the processes are given in the appropriate appendix.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

2.0 DISCUSSION

2.1 Task 1. Planning and Baseline Review

Task 1 began with the organization of the project team, an initiation meeting with Army personnel and a visit to the Chemical Agent Munitions Disposal System (CAMDS) at Tooele, Utah. A conceptual facility based on the CAMDS facility and the proposed agent disposal facility for Johnston, Atoll was developed by the Army to provide a baseline against which technologies identified in the study could be compared. Figures 1A and 1B show in block-diagram form the four processing lines of the baseline concept.

The baseline concept was reviewed prior to its application in this program and a number of comments submitted to the Army.

The review team found it difficult to comment on the costs for buildings and equipment because the function and physical arrangement of equipment was not defined in the baseline. It was suggested that the information be presented in a different format to highlight the capacity (physical size and maximum munition processing rate for each munition), capital costs, and detailed operating costs for each of the major equipment items or areas within the two hypothetical facilities. This format would also facilitate use of the baseline in conducting process evaluations in subsequent tasks.

Several suggestions relative to the costs cited in the baseline were submitted during the first task. These suggestions/comments are summarized below.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

1.4

1.4.1 .2.2.5.

(?) []

/.) (`}

19

.

<u>2.1.1 Main Demil Building</u>. The Rockets/Mines/Dunnage/-Liquid Waste/Agent Explosive (R/M/D/Lw/A/E) Furnace Area, the Glove Box Area, and about 60 percent of the conveyor area should be built to resist explosions because the all-up munitions or segments processed in these areas are not inerted against accidental explosions. As a result, cost per square foot would increase from $90/ft^2$ to $400/ft^2$.

The control room, at $90/ft^2$, did not appear to include special fire suppression equipment (e.g., a Halon or other dry system) and low vibration floors. It was suggested that these costs be included in this area (see following Manpower Section).

The laboratory appeared adequately sized for the number of persons designed. However, laboratory space of approximately double this area would be required to compensate for a larger analytical staff.

The salt storage area appeared adequate for only the salts from the rocket based on about 2 pounds of salt produced in the scrubber for each pound of agent, the given destruction rate of M-55 rockets, and a salt bulk density estimate of 60 $1b/ft^3$. It was suggested that this storage area be enlarged to accomodate both additional salt storage for total operation and metal parts storage, preferably for a 90-day period. No provision was found in the baseline for any metal parts storage subsequent to demiliterization operations.

The R/M/D/Lw/A/E Furnace appeared to be a hybrid between the rotary kiln incinerator at Hawthorne AAP and the Deactivation Furnace (DEAC Furnace) at CAMDS. The unit size is at least 50 percent larger than the DEAC at CAMDS (the R/M/D/Lw/A/E will process 30 rockets/hour; the DEAC was designed for only 20/hour) but appeared to cost less than the DEAC Furnace. To process liquid waste, to burn the agent from the rockets and mines, and to burn dunnage would require more advanced feed systems and possibly a more advanced design. The \$4.6 million dollar cost cited in the baseline appeared to be low on this basis. The Bulk Item Furnace, as a direct analogue to the CAMDS Metal Parts Furnace, also appeared to be lower in cost than the CAMDS furnace.

Although the complexity of the R/M/D/Lw/A/E Furnace may be sufficient to prohibit a direct scale-up from the DEAC Furnace of CAMDS, there appeared to be no alternative. However, it was suggested that a scale factor of 0.6 not be used for this furnace due to the added complexity. The recommendation was made to scale the cost directly, based on furnace volume. The Bulk Item Furnace could be scaled from the CAMDS Metal Parts Furnace using the normal scale factor.

It was also suggested that the ultimate disposal costs be addressed in the baseline. This would make the baseline evaluations more useful on an actual cost basis.

2.1.2 Manpower. The glove box operation did not appear to be directly addressed in this analysis. Recommended labor could not be judged, other than by work involved. To process up to 75 munitions per hour by manual removal of fuzes or noseplugs would probably require 4 individuals, as these munitions have to be loaded, positioned, the nose plug or the fuze unscrewed, the explosive component removed, and the munition end plugged, all within a glove box.

The laboratory staff was thought to be understated. During the M34 demil operation at Rocky Mountain Arsenal, the lab was running at about 12 analytical persons per shift. CAMDS was 20 laboratory persons. Although 2/3 of these persons were to be involved in methods development, current practice requires all to be assigned to routine analysis since 4000 bubblers are analyzed weekly. It was recommended, therefore, that the laboratory staff be raised to at least 30 individuals.

As a result of these comments and comments from other contractors, the Army issued a revised baseline. The revised baseline was used to provide a standard for comparing processes in process evaluations and to provide technical data for preparation of cost estimates.

2.2 Task 2. Literature Search

12

Literature searches were carried out to identify technologies which might have application for thermal destruction of chemical agent munitions. The literature searches were: a. Computerized Literature Search. Sources: Chemical Abstracts Engineering Index Defense Technical Information Center Malessonal Technical Information and Air "claution Technical Information Center Search terms: destruction high temperature Incinerate (Truncated) **Pyrolysis** Thermal degradation b. BZ Program Files (Contract No. DAAK11-81-C-0081) Search terms: 8 agent BZ agent G agent GB agent Mustard agents V agents Vesicants VX agent c. Novel Processing Technology Files (Contract No. DAAK-11-81-C-0101) Sources: Engineering Index Chemical Abstracts Defense Technical Information Center National Technical Information Center Smithsonian Science Information Exchange Comprehensive Dessertation Index

Oil and Hazardous Materials Technical Assistance Data System Central Information Resarch Control Search Terms:

arsenic agents G agent GA agent GD agent Lethal agents Lewisite Mustard agents Nerve agents Nitrogen mustards V agent VE agent Vesicants VX agent

d. Others: Battelle staff members, manual searches of Battelle and The Ohio State University libraries and catalogs, conversations with Cincinnati EPA officials, examinations of publications from recent symposiums and conferences, and references listed in reports received.

The literature searches turned up nearly 2000 references. These were reviewed and reduced to 139 pertinent references. The complete bibliography of these pertinent references is contained in Appendix A. These references provided leads for industrial contacts in Task 3 (Industrial Survey) and information for Task 4, Concept Formulation and Evaluation.

ļ

Ŋ

3

,

;

2.3 Task 3. Industrial Survey

Identification of thermal destruction processes from industrial sources was carried out by a variety of means. These included:

- a. using industrial sources supplied by the Army
- b. by advertisements in Commerce Business Daily
- c. by news releases submitted to over 130 technical publications.

After reviewing the many responses received, a questionnarie was prepared and copies sent to industrial firms claiming to have applicable processes. A sample questionnaire will be found in Appendix B.

Some process information received was incomplete either because (a) the developer considered the process proprietary, (b) the process was in a preliminary state of development, or (c) the developer simply supplied limited information. In the first two cases little could be done except evaluate the process on the basis of the information available. In the later case the developer was subsequently contacted a sufficient number of times to obtain the required data.

To complete the information needed to evaluate certain processes, three plant visits were made. Plants visited were:

Rockwell International (Canoga Park, CA) Westinghouse R&D Center (Pittsburgh, PA) Pyro-Magnetics Corporation (Whitman, MA).

Process descriptions were prepared from data obtained in the industrial survey and from information developed in Task 3 (Literature Search). The processes are listed in the following sections and are described individually in Appendix C.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

¹ertet tetensteren sterne in det et die sterne die sterne eine det det ere ersterne ersterne in de tetensteren s

2.4 Task 4. Concept Formulation and Evaluation

The purpose of this task was to evaluate the thermal destruction processes identified in Tasks 2 and 3 and from this develop selected process concepts to be further evaluated in the Engineering and Economic evaluation portion of Task 5.

Forty-four concepts were developed in the previous tasks. These concepts are shown in Table 2 where they are listed according to the estimated development time (time for completion of required laboratory and pilot plant programs.)

The methodology used to evaluate the 44 concepts is shown in detail in Figure 2.

To begin the evaluation, the team was first familiarized with the criteria, the concepts, and the feed configurations. Applicable feed configurations for each process were then agreed on by the team. Next, each team member individually rated each process. After rating was complete, the team agreed on weighting factors for the criteria. The final rating for each process (and each applicable feed configuration) was then calculated.

2.4.1 Evaluation Criteria Factors

S

a

A list of pre-screening evaluation criteria supplied by the Army is given in Table 3. These criteria were slightly modified for use in theis evaluation. Two criteria identified by the Army, technical risk (I) and scalability (G), were combined into one criterion. A third criterion, process applicability (D) was eliminated because the method of evaluation used evaluated this factor separately.

The evaluation criteria used by the thermal process evaluations team members are given in Table 4. (The sub-criteria indicated in Table 3 by numbers were used in the evaluation although they are not shown in Table 4.)

TABLE 2. ESTIMATED DEVELOPMENT TIME

	LESS THAN 5 YEARS
1.	
3.	
	IR Furnace
	Fluidized-Bed
11.	Liquid Injection
12.	Cement Kiln
13.	Rotary Kiln
14.	Industrial Boiler
18.	Single-Stage Molten Salt
19.	Molten Salt/Metal Cleaning
20.	Thermal Plasma Systems
21.	Molten Metal
23.	Mashed-Munition Fluidized-Bed
25.	SUE Burner
	Fluidized-Bed/Fume Incinerator (Inactive)
28.	Sequential Fluidized-Bed (E ³ I)
29.	Plasma Arc Pyrolysis
30.	Molten Metal/Slag (Thermal Download)
31.	Rotary Kiln (Pyrolysis)
32.	Fluidized-Bed (Thermal Download)
33.	Resistance-Heated Fluidized-Bed (Pyrolysis)
35.	Underground Detonation
37.	Shaft Furnace/Scrap Cycle
41.	Acid Dissolution/Incineration
42.	Multi-Solid Fluidized-Bed
43.	Vacuum Furnace
44.	Induction Furnace

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

inter i de la compañía de la compañía

TABLE 2. (Continued)

5 TO 10 YEARS

- 2. Supercritical Fluid Download
- 4. Supercritical Oxidation
- 7. Spouted Bed

ە. 1."

13

3

Ì

1

.

- 9. UV Photolysis
- 10. Solar Zapper
- 15. Internal Combustion Engine
- 16. Wet-Air Oxidation
- 17. High-Temperature Fluid Wall
- 24. Swinging Molten Salt
- 26. Swinging Molten Metal
- 36. Very Large Enclosure
- 38. Steam Pyrolysis (SEGAS)
- 39. Insitu Pyrolysis/Open Cavity

MORE THAN 10 Years

- 6. Magneto Hydrodynamics
- 22. Geothermal (Subduction Zone Burial)
- 34. Plasma Arc Vaporizer
- 40. Insitu Pyrolysis/Closed Cavity

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

TABLE 3. ARMY PRE-SCREENING EVALUATION CRITERIA

A. <u>COST</u>

. بر از سست

17

-) (•)

-

ļ,

.

.

- 1. Facility Capital
- 2. Equipment Capital
- 3. Operating
- 4. Developmental
- B. <u>SAFETY</u>
- C. LIKELIHOOD OF DEVELOPMENT WITHIN 5 YEARS
- D. PROCESS APPLICABILITY
 - 1. Agent Destruction
 - 2. Explosive
 - 3. Metal Part Decontamination
 - 4. Dunnage
- E. <u>PRE-PROCRESSING REQUIREMENTS</u>
- F. POST TREATMENT REQUIREMENTS
- G. SCALABILITY TO 400-3000 POUNDS PER HOUR AGENT
- H. FINAL WASTE CHARACTERISTICS AND ULTIMATE DISPOSAL
- I. DEGREE OF TECHNICAL RISK
 - 1. Commercially Available (State of the Art)
 - 2. Pilot Scale
 - 3. Lab Scale
 - 4. Technology Gaps
- J. RAM FACTORS
 - 1. Reliability
 - 2. Availability
 - 3. Maintainability
- K. MATERIAL COMPATIBILITY PROBLEMS
- L. ENERGY REQUIREMENTS AND SOURCE
- M. EASE OF OPERATION
 - 1. Operability
 - 2. Flexibility
 - 3. Complexity

TABLE 4. MODIFIED EVALUATION FACTORS

- 1. SAFETY
- 2. LIKELIHOOD OF DEVELOPMENT WITHIN 5 YEARS
- 3. POST TREATMENT REQUIREMENTS
- 4. FINAL WASTE CHARACTERISTICS AND ULTIMATE DISPOSAL
- 5. DEGREE OF TECHNICAL RISK AND SCALABILITY
- 6. RAM FACTORS
- 7. MATERIAL COMPATIBILITY PROBLEMS
- 8. EASE OF OPERATION
- 9. ENERGY REQUIREMENTS AND SOURCE
- 10. COST

1. Sec. 1.

2.4.2 Feed Configurations

3

3

-

44

CALLER CONTRACT

Feed configuration has a major impact on process selection and will, of course, greatly affect the total facility cost.

Eight feed configurations were identified by the Army. These configurations, together with modifications added (underlined phases) by evaluation team members are given in Table 5. The feed configurations are also shown schematically in Figure 3.

TABLE 5. MUNITION FEED CONFIGURATIONS

- a. Stored munition configuration as is (i.e., loaded pallets).
- b. Separate whole munitions.
- c. Whole munition with limited modification (i.e., agent cavity and/or burster punctured).
- d. Whole munition with agent removed. <u>Explosive</u> <u>cavities open</u>.
- e. Whole munition with burster/explosive/propellant removed. Agent cavities open.
- f. Whole munition with agent and burster/explosive/propellant removed.
- g. Munition cut into distinct pieces, <u>at least some of</u> which exceed 6" in their maximum dimension.
- h. Mixture of agent/explosives and metal pieces (metal pieces would be in a range of 1 to 6 inches).

For evaluation purposes, each feed configuration was broken down further into one or more of the following classifications:

FIGURE 3. MUNITION FEED CONFIGURATIONS

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

- E Explosive (munitions containing explosive and/or download explosives and propellants)
- N Nonexplosive (munitions with or without agent, ton containers with or without agent, inert parts, dunnage)
- P Propulsive items (primarily rockets, but consideration given to all-up artillery rounds)
- A Downloaded agent.

2.4.3 Concept Rating

1

63

ι.,

(1)

23

; ()

, i

To develop a numerical rating for each process it was necessary to poll the thermal process development team on the various concepts.

An evaluation form was prepared (see Figure 4) with evaluation criteria listed at the left and feed configuration/ classification listed across the top.

Using the evaluation sheet, it was possible to evaluate each process (process, concept, or system) for each criterion for each of the possible applicable feed configuration/classification. (The applicable feed configuration/classifications were selected by consensus in meeting of project technical personnel.)

Evaluators were familiarized with the meanings of the terms involved (criteria, configurations, classifications) and were given written process descriptions for each of the 44 processes identified in Tasks 2 and 3. They were instructed to rate each process using a number from 0 to 10 for each criterion in the appropriate feed configuration/classification. A rating of 0 meant the process was most costly, least safe, highest technical risk, etc. A rating of 10 meant the opposite. When applicable, ratings were to be made comparative to the baseline, with a rating of 5 indicating the process was comparable to the baseline. When no comparison could be made because the baseline did not address that particular feed configuration/classification, a rating of 5 would be used to indicate an average value relative to all the systems.

FIGURE 4. THERMAL PROCESS EVALUATION SHEET

n provinský president provinské kristické kristické provinské kristické skriutské skriutské (kristické)

PROCESS FEED CONFIGURATION/CLASSIFICATION f C e WEIGHT NEE EIN PE E E N N P NP ENP E N 13.1 1. SAFETY 2. LIKELIHOOD OF DEVELOPMENT WITHIN 5 YEARS 8.9 3. POST TREATMENT REQUIREMENTS 11.0 4. FINAL WASTE CHARACTERISTICS & 13.0 ULTIMATE DISPOSAL 5. DEGREE OF TECHNICAL RISK/ 10.1 SCALABILITY 8.7 6. RAM FACTORS 6.4 7. MATERIAL COMPATIBILITY PROBLEMS 7.9 8. EASE OF OPERATION 5.4 9. ENERGY REQUIREMENTS & SOURCE 15.5 10. COST TOTAL/10 WEIGHTED TOTAL/100

EVALUATOR

2.4.4 Criteria Factor Weights

.....

٤Ĵ

ن

To obtain a numerical rating for each process, it was necessary to develop weighting factors for each criterion. Team members were individually asked to provide their estimate based on their engineering experience of the weight that should be assigned to each factor. These results were averaged and normalized so that they totaled 100. The following results were obtained:

Criteria <u>Number (see Table 5)</u>	Weight
1	13.1
2	8.9
3	11.0
4	13.0
5	10.1
6	8.7
7	6.4
8	7.9
. 9	5.4
10	15.5

2.4.5 Process Concept Rating

Using the rating sheets and the evaluation criteria weighting factors, a numerical rating was developed for each process concept for the applicable feed configuration/classification. Figure 5 gives the rating results rounded to two significant figures. From Figure 5 it is difficult to visually identify the processes with high ratings. Furthermore, the averaged values do not provide an indication of the statistical significance of the rating.

Therefore, the rating results were further analyzed on a statistical basis using a FORTRAN program executed on the Battelle Control Data Corporation CYBER computer system. Only five concepts

25

		Ļ			ΕE			NF	FIGURATION/CL						ASSIFIC				TÌ	NC	N	
NO.	PROCESS	h	a Tn		te	b T N		E	C	ĨP	Ē	Î	d P	Î Â	ľ	0 N	1	<u>†</u> N	A	N	Ē	<u>h</u> E
1	Aniary Kiln (cocurrent)/Molton Metal		T	1		1	+	1	1			-				5.0	r .s	5.4	5.9		5.0	1.1
1	Supercritical Fluid Download		╀	+				43		142	**	~5				t		f		1	+	+
)	Siugging Rotary Kiln (Ecorock)	1-	+	1-		-	1-	-		+		+	1	5.1			– '	1	5.		41	
4	Supercritical Oxidation	╢╴	\uparrow	+	T	1	\top	+	+	<u> </u>		+-	1	¥1			**		s.	-	-	1
٢	IA furnace	╢	1	1.	1	1-	+	-	54		1	56				5.4	+	1		5,4	47	-
1	Magneta Hydrodynemics	╢┈	1-	-	+		+	-		1-	\top			RO						<u> </u>	27	
1	Spouled Bed	╢─				1	1.		1	T	<u> </u>	1	1	41	80		*1		**		1	1.6
•	l'iuldiged-Bed	#-	+-	\uparrow	\uparrow	╀─	1		K/			~	11		0	~			1		<u> </u>	+
,	UV Photolysis	1	\uparrow	1	+	+	1	Ť	1	1		†	[w.5				1-	*.5	<u> </u>	† <u> </u>	
10	fuller Zapper	1-		+	+	+		1	\square	†	-	<u> </u>	-	41				1	11			we
11	Liquid Injection	╢──	+		┢	+	-	╀─		<u>†</u>		<u>†</u>		5.6					£ 6		†	+
12	Cement Kiln	1	†-	-	+		+		+	†			-	50	5.1	*7	51	512		 	وبر	5.0
11	Hatery Kiln		+	+					+	†						46				┫───		+
14	Industrial Boiler	 	\vdash	+	+		<u>+</u>	+	+					4.7					* 7	•	<u></u>	
15	Internal Combustion Engine	╟┈	╈─	+		-				┼╌━									43			-
16	wet-Air Gaidetion	╢		+	+	<u> </u>		+						43	13		11	-		80	36	«/
17	High-Tompersture Fluid Wall	╢──	+	┢╸╴	+	┢──	╧	┢━	+-	h				«I					*8			I
14	Single-Stäge Holten Salt	╟─	┼──			┼	–			 -		si P		5.2	-	477	~					0
19	Maiten Selt/Hetel Cleening	╢─		1-	+-		+	┢─				<u> </u>		7.4	34			5.2		3,0		
05	Thumal Plasma Systems	╢──	 		┼──	-		┝╌			┢──							50				
21	Holten Hetal	╢──	<u> </u>		┢		+	64	47	20	~	~	~1		<u>s</u> ,	"	S.J		**	5.0	~	
22	Geothermal (Subduction Zone Burie))			5.5	<u> </u>																	
2)	Nashed-Munision Fluidized-Bed	~											-	**	51	-	\$	_	~	r.	*/	**
24	Swinging Holton Salt		1				<u> </u>	43	47	82	**	50	43	s.d	-		÷	*1				
28	SUE Byrnar			<u> </u>			-							5.0					<u>.</u>			<u> </u>
24	Swinging Molton Metal				<u> </u>			4.5	K7	uv	4.6	K.P	¥.6	47	\$7	47	«?	**	4.7	46	**	47
,,	Fluidized-Bed/fume Incinerator (Inactive)			 				-	46			-			_					-		
20	Secuential Fluidiged-Bee (E ³ 1)		F			-		Ë			_			5.0	-+		e u		s.ø			#7
21	Plaina Arc Pyrolysis		\square					45	40	**	47	5.			+	¥. P	**	5.2	49	41	">	
10	Mollen Metal/Slay (Thermal Download)		†	-	1			q 3	46	4.0	46	51	46	4.5	18	*7		<u>s</u> ,	40	us	45	* 6
11	Rutdry Kfin (Pyrolysis)							45						*7		- 1						
12	Fluidized-Bed (Thermal Gownload)			-				45	40	45	40	50	×6	50	<u>s</u> /	410	<u>.</u>	د بر	50	K.p	5.P	49
33	Resistance-Heated Fluidiaed-Bed (Pyrolysis)				1			43	¥.#	-				-++								47
34	Plasma Arc Vaporizer		,		10	41	40		و.ب										+	-		
38	Underground Detonetion		62		-								-		-			-				
16	Yery Large Enclosure				15	uv	29	#5	N5		4.s	**	**	45	*5	*:1	-					
17	Shaft furnace/Scrap Cycle					4.5			**	_				-	-		-	-				-
	Steam Pyrolysis (SEGAS)									~		-			-+	-+		-	KJ-			
19	Inside Pyrolysis/Open Cavity							27	HI.	37		-	-	-+	+	-+				-+		-
	Insitu Fyralysis/Closed Cavity	e, 5°	3.6	35	35	36	35		-	·		+		-+	-+			ή	-+	-	-	-
	Acid Dissolution/incinenation	F			1.0							-+	-+	-+	-	•+	+	\dashv	-+		-†	
-+-	Huiti-salid Fluidized-Bed	-		-			3.0	~ · ·	чç	45		art	و بر	19	* A	K m	50	ç.9	50		<i>4.7</i>	¥ 7
			1		J Í			7.00	777		7.7	~ 1		<u> </u>	1							
43	Vácuum Furnáce		47		47	_	_	510	17	11			u	19	اور		1		va	2	.	اس

FIGURE 5. AVERAGED CONCEPT RATINGS

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

.

.

and the second second
were found to have ratings in excess of two standard deviations (σ) above five. (These are indicated by large black dots in Figure 6.)

As a final step in the selection of concepts, the team met to review the thinking that went into the evaluation process. In some instances, a low-rated concept had one reviewer who had rated it high. Conversely, in some instances, a high-rated concept had one reviewer who rated it low. It was felt that perhaps the reviewer who rated a concept lower or higher than the rest of the team knew of some significant disadvantage the concept had which the rest of the team was not aware of, or had conceived of some modification or attribute of the concept that would make it particularly attractive. In the final review meeting, each concept was discussed and comments elicited from low- and high-rating reviewers to insure that the concept should be accepted or rejected as indicated by the balloting. As a result of that meeting, the following concepts were selected for the Task 5 evaluation:

Process	Probable Feed Configuration
Underground Detonation	a
*Shaft Furnace	b/c
*Acid Roaster (acid dissolution)	b
Molten Metal	c/e or h
*IR Vacuum Furnace	С
Rotary Kiln	c/e or g/h
Fluidized-Bed	e or h
Molten Salt	h

. .

, , ,

1

1

. .

۰.

•

The above list contains three concepts, identified by asterisks, which were not rated high in the balloting (Shaft Furnace,

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

	PROCESS	1	8		EEI	b			C			0				0		Ŧ		1	1	Π
NO.		T	IN	P	E	,	P	E	· · · ·	P	E	T I	-	A	E		E	L.	A	N	E	
1	Rotary Kiln (accurrent)/Molton Notal	╢╴	+"	†÷	†	<u> </u>	<u> </u>	-	۳-	-	H					•	•		•			ť
,	Superentitiest Fluid Commissed	╢─	╉━╍					•	•	•	•	•	•	•	•	•	•	•	•	•	•	ŀ
	······································	-#	┝─	┝──		┣—		—	Ļ.	<u> </u>	Ľ		Ļ.	_	-	Ť.	ļ-	Ļ				╀
;	Slugging Molary Xiln (Ecorock)	-#	<u> </u>	┝╌			-				-			•			-		•	•	•	
4	Supererities) Oxidation			ļ	ļ	ļ								•	*		*		*			╞
•	IR furnee	╢	ļ						٠			•		•	٠	•	٠	٠	•	đ	*	
•	Nagnato Hydrudynamies													•	•		•		٠	•	ŀ	
,	Spouled Bed	╢												٠	٠		٠		٠		٠	
•	Fluidized-God							٠	¢	\$	•	٠	ø	4	¢	¢	٠	٠	8	٠	٠	
•	UV Photolysis	Т	Γ											•					•			Γ
10	Jolar Zappor	1	1-											•					•			Ī
11	Liquid Injection	1	1											٠					٠			ſ
17	Comunt Kiln	-#												\$	٠	٠	•	٠	\$	+	\$	ſ
13	Notary Kiln	-#	+	 				-				_		•	¢	•	•	\$	٠	\$	\$	t
14	Industrial deller	╢─	\vdash	-	\vdash									•					•			╀
		- -	┣						_		$\left - \right $								-			╀
18	Internal Combustion Engine	-	–-	 -													•		•	-	8	╀
14	Wet-Air Oxidetion	╢							_					•	•		-		_			Ł
17	High-Temperatura fluid Hall		<u> </u>											•					•			Ļ
18	Single-Stage Holton Salt	-∦	ļ		ļ							•		•	*	*	•	•	•	٠	*	ļ
19	Holton Salt/Hetal Cleaning	╨										\$						•				ļ
80	Thermal Plasma Systems													•					٠			
21	Holton Hetsi							•	•	٠	•	٠	٠		٠	*	٠	٠		٠	+	l
tt	Gesternal (Subduction Zone Burial)	•	٠	٠																		
23	Hashad-Munitton Fluidized-Bed			<u> </u>										÷	٠		٠		٠	٩	0	Ī
24	Swinging Holton Salt	1						٠	٠	٠	•	٠	•,	¢	٠	٠	٠	٠	٠	٠	٠	ľ
25	SUE Burner	╢												٠				-	٠			t
26	Suinging Holten Hetel	╢─						+	¢ :	٠	\$	٠	\$	•	٠	•	•	\$	•	•	٠	t
27	Fluidized-Med/fume Incinerator (Inactive)	╫╌	┢					•	•	•	•	\$	•	•	•	•	•	¢	•	÷	•	╋
	Sequential Fluidized-Bed (C ² 1)	╢╌	+						-	_			-	- ,	•		•		•		-	t
			┢					•	•	\$	•	•	•	•	\$	• •	•	•	•	•	•	ł
29	Plasme Are Pyrolysis		╂		┣						-						┝╼					┝
30	Polton Motel/Slag (Thermal Download)	-#						•	•	+	l°.	•	*	۰ •	•	•	•	•	* •	•		╋
31	Rotary Kiln (Pyrolysis)	╢┈	┣		 			۰	•	•	•	•	•		•	•	*	+		•	•	╀
38	Fluidized-Bed (Therma) Dounipad)	╢		┝	<u> </u>			*	•	\$	*	•	*	•		+		•	•	•	•	ļ
33	Resistance-Heated Fluidized-Bed (Pyralysis)			<u> </u>				•	•	•	•	•	*	•	•	•	٠	•	٠	*	*	
34	Plasma Are Yaporizer	-#	-		•	•	•	*	•	•	٠	•	¢	•	¢	•	ø	•	•	•	•	╞
35	Undergrownd Detenation	10			1					L			L	L					L			ļ
16	Yery Large Enclosure	<u></u>	•	•	٩	•	•	•	٥	٠	٠	4	٥	•	٥	\$				L		
37	Shaft Furnace/Scrag Cycle				¢	٥	•	•	a	٠											L_	
38	Steen Pyrolysis (SEGAS)													•					•			ſ
39	Insttu Pyralyşis/Open Cavity	Τ						٠	•	•												ſ
40	Insitu Pyrolysis/Closed Cavity	1.	•	1.	•	•	•	-														t
41	Acid Distolution/Incineration	╢	1	†-	٠	+	٠						<u>†</u> —			 					—	t
42	Multi-Saild Fluidiged-Bed	-	+	1	 - -	 		•	¢		•	•	•	•	•	•	•	•	•	•	•	t
43	Vacuum Furnaça	╢╌			•			0		•		ø		\$	•	•	•	•		-		t
		-#	+		<u> </u>				•	<u> </u>		•	- <u>-</u>	•	•	•	•	•	•	•	• •	╀
44	Induction furnece	H	1	r	1	1			F 🔻			*	I I	I *	۲ I	1	* ۱	₩	۲ ا	۲	1 *	1

(

00777777

1

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Acid Roaster, and IR Vacuum Furnace). These three concepts were added to the above list as a result of the team consensus after reviewing comments individual team members had on significant advanages of these processes. (None of the five concepts selected as a result of the statistical analysis were rejected in this meeting.) One of the significant reasons for including these additional three concepts was that each provided a basis for minimizing the degree of downloading.

It will be noted that in some cases in the list of concepts (Appendix C), there are several variations presented for an individual process. For example, concepts 7, 8, 23, 27, 28, 32, 33, and 42 are all fluidized-beds. Only concept 32 received an acceptably high rating. However, the significant features of all similar concepts were considered when developing a final concept for evaluation in Task 5. That is, all eight fluidized-bed concepts were reviewed by the team to develop a final optimum concept for Task 5. The final fluidized-bed concept is not exactly any one of the eight concepts but includes those features of all eight which the team believed to provide the best final concept. The same was done with the other final eight concepts where appropriate.

As noted in Table 2, all eight concepts selected were judged by the team to be capable of development within 5 years.

2.5 Task 5. Engineering and Economic Evaluation and Reporting

The purpose of Task 5 was to evaluate and select concepts to be recommended for further development in a pilot scale program.

Task 5 consisted of three activities:

- Engineering and economic evaluation of the eight concepts selected in Task 4.
- Preparation of a design plan for further laboratory studies of four of the concepts.
- Preparation of the final report.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

L'alex - in his internation of the lost of

29

-

; ; ; ; ; ;

() نت

ر. د

2.5.1 Engineering and Economic Evaluation of the Eight Concepts Selected in Task 4

The engineering evaluation of the eight concepts consisted of a process description and an analysis addressing several factors:

- Systems feed requirements
- Pollution abatement system
- Ultimate disposal
- System concept advantages
- System concept disadvantages
- System concept knowledge gaps
- Safety
- Likelihood of development within 5 years
- Scalability to 400-3000 pounds per hour of agent
- Degree of technical risk
- RAM factors
- Material Compatibility problems
- Energy requirements and source
- Ease of operation.

The economic analysis considered facility cost, capital equipment, operating cost, development cost, and operating time to develop a total life cycle cost. The analysis was carried out using techniques which were internally consistant and consistant with the baseline study, and was reviewed for accuracy by experienced personnel. Therefore, while the absolute value of the numbers generated may be subject to some question, the relative values are believed to be well within the range acceptable for preliminary estimates of this kind and are sufficient for making the currently required economic judgments.

Each of the factors for the engineering analysis and the economic analysis for each of the eight selected concepts is described in detail in the appropriate appendicies. Therefore, only brief discussions of the concepts with highlights of the engineering and economic evaluation follow:

To provide a pictorial comparison of the process, life cycle costs the cost to demilitarize the inventory at a single site or the cost to demilitarize the entire inventory (collocated site) are shown graphically.

2.5.1.1 Acid Roaster. In the acid roasting concept, whole munitions/items (feed configuration b) are placed in dissolution tanks where they are contacted with acid which dissolves the metal container and frees agent and degrades energetic materials. The resulting slurry is pumped to a roaster where agents (and their hydrolysis products) and degraded energetic materials are thermally destroyed. Acid gases recovered from the roaster are recycled to the dissolution tanks.

The acid reasting concept has several advantages over most other processes evaluated. No munitions downloading is required; no mechanical preparation or disassembly, other than possibly paint removal is necessary. Furthermore, all the processing steps following the dissolution step are commercially available technology.

Knowledge gaps are mainly those associated with the acid dissolution step. The effect of the acid environment on the energetic materials and the handling of those materials are the primary concern.

Total life cycle costs range from \$21.0 million to \$31.1 million for single site and from \$87.2 million to \$134.3 million for collocated site. Life cycle costs are presented in Figures 7 and 8.

A detailed engineering and economic analysis on the Acid Roaster process will be found in Appendix D.

2.5.1.2 Rotary Kiln. Two variations of the Rotary Kiln concept were evaluated. The first concept is based on a single size large kiln; the kiln size is independent of feed rate and is sufficiently large enough to handle the largest munition/items in the inventory (ton containers). The second concept is based on the

•

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

.

4, 4, 54

selection of a kiln size proportional to the feed rate and independent of munition/item size. This latter concept is called the proportional kiln concept.

The large rotary kiln is capable of handling burstered munitions with the explosive removed and agent cavity opened (configureaction e) and non-burstered munitions with agent cavity opened (configuration c). At the smaller sizes, the proportional kiln will handle only cut-up munitions (configurations g and h). At the 5000 lb/hr rate the proportional kiln is the same as the large kiln and can handle configuration e/c.

The large rotary kiln system is a simple system to operate because it consists of one major furnace and an afterburner that will handle all munitions in the appropriate feedstock configuration. The rotary kiln is a state-of-the-art device for incineration of hazardous wastes and rotary kilns of the size required for the demilitarization process have been built. There is thus a background of industrial experience which applys directly to the development of the rotory kiln for chemical agent/munition demilitarization and the technical risk is consequently minimized. The rotary kiln process is an excellent candidate for fast-track development.

Rotary kiln technology is probably the most advanced of any of the concepts studied. Knowledge gaps center around refractory life as affected by chemical attack and abraision from the munitions.

as affected by chemical attack and abraision from th For the large rotary kiln, total life cycl \$31.3 million to \$63.8 million for single site and f to \$67.5 million for collocated site. For the propo life cycle costs range from \$13.2 million to \$17.8 m site and from \$27.3 million to \$32.3 million for col Life cycle costs are presented in Figures 9 through A detailed engineering and economic analys kiln process will be found in Appendix E. <u>2.5.1.3 Molten Metal</u>. The molten metal c technology commonly used in the iron and steel indus For the large rotary kiln, total life cycle costs range from \$31.3 million to \$63.8 million for single site and from \$37.2 million to \$67.5 million for collocated site. For the proportional kiln total life cycle costs range from \$13.2 million to \$17.8 millin for single site and from \$27.3 million to \$32.3 million for collocated site. Life cycle costs are presented in Figures 9 through 12.

A detailed engineering and economic analysis on the rotary

2.5.1.3 Molten Metal. The molten metal concept is based on technology commonly used in the iron and steel industry. In this

ί.,

[.]

6

FIGURE 10. LARGE ROTARY KILN CONCEPT Life Cycle Cost Curves, Collocated Site, Feedstock c/e

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

34

S

¦.|

Ut 4

ſ

AND STREET

CONTRACT.

Č

process agent is volatilized in a voltalization chamber. The volatilized agent passes through a hot plasma air stream where it is pyrolized. Pyrolized agent and metal parts pass into a molten metal/slag chamber where metal is melted and removed. The gases pass out through an afterburner and scrubbing system.

This concept is designed to handle agent-only inventory in feed configuration c (agent cavity opened) and inventory containing energetic materials in feed configuration e (burster/propellant removed).

Aside from having the potential for extremely high agent destruction efficiencies, the molten metal concept uses state-of-theart components. The process is simple, versatile, and flexible. There are no liquid wastes.

Knowledge gaps center around materials compatibility considerations.

Total life cycle costs range from \$15.0 million to \$18.9 million for single site and from \$37.4 million to \$48.7 million for collocated site. Life cycle costs are presented in Figures 13 and 14.

A detailed engineering and economic analysis on the molten metal process will be found in Appendix F.

2.5.1.4 Fluidized-Bed. The fluidized-bed is capable of handling several classes of munitions feed. In the engineering and economic analysis the fluidized-bed was designed to handle munitions with the explosive removed and the agent cavity opened (configuration e) as well as feed from a munition shredder (configuration h). At low feed rates of configuration e, a volatilization chamber is recommended for volatilizing agent from ton containers and other large items. Removal of solids would be through the bottom of the bed with a moving bed system and a ram type shear.

Two of the major advantages of the concept are its ability to process munitions with minimal downloading relative to that required by the baseline and its low requirement for supplemental fuel. Furthermore, certainly for processing munitions of feedstock

(k) (k)

ان ریا

(

999779999

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

configuration h, the system is much simpler, has less mechanical parts, and will probably be more reliable than other systems studied.

Fluidized beds will also have advantages associated with their tolerance of fuel properties and short-term irregulaties in fuel feed rates, their ability to accept solid and unatomized liquid fuels (and thus be tolerant of suspended solids and polymerized agent remaining in certain munitions), and their ability to operate at relatively low peak temperatures.

If an active bed can be used to control emissions and/or if the freebroad can perform the function of an afterburner, the downstream processing will be greatly simplified.

Knowledge gaps center around metal removal from the bed, bed agglomeration, and heat transfer rates. The system is considered safe.

For feedstock e, total life cycle costs range from \$17.6 million to \$20.7 million for single site and from \$32.3 million to \$39.2 million for collocated site. Costs are \$2 to \$3 million lower for feed stock h. Life cycle costs are presented in Figures 15 through 18.

A detailed engineering and economic analysis on the fluidized-bed process will be found in Appendix G.

2.5.1.5 IR Vacuum Furnace. The IR (Infrared) vacuum furnace concept was devised primarily as a method of avoiding downloading of explosives from the munitions. In a vacuum, explosives burn rapidly rather than detonate. However, this is a complex mechanism and localized high pressure areas caused by partial containment or shielding could result in detonations. (This uncertainty and the technical risks involved were the primary factors in rejecting this concept from consideration for further development.)

In this process, munitions in configuration c are placed in a tray and passed into a vacuum oven. Here they are heated and decontaminated by pyrolysis. Vacuum is maintained by a liquid seal pump which also acts as a scrubber for the acid gases. The exhaust gases

. . .

5

(.) (.)

() ()

 $\left[\right]$

100000000 400000000 40000000 v mm

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

pass through an afterburner (to burn pyrolysis products) and a spray dryer (to dry salts generated in the liquid seal pump).

Knowledge gaps include the questions of detonation in a vacuum, action of the vacuum pump as a scrubber, and rate of decomposition of agent in vacuum.

Total life cycle costs range from \$17.1 million to \$23.5 million for single site and from \$35.5 million to \$41 million for collocated site. Life cycle costs are presented in Figures 19 and 20.

A detailed engineering and economic analysis on the IR vacuum furnace process will be found in Appendix H.

2.5.1.6 Shaft Furnace. In the shaft furnace concept, munitions are heated in a shaft furnace filled with metal scrap. The scrap serves as a buffer to shield the vessel walls, inlet and discharge from the fragments and blast wave from exploding/detonating munitions. The economic analysis of the shaft furnace concept indicated that it was probably an acceptable concept, at least for the collocation facility. However, the engineering analysis indicated that the technical risks associated with the shaft furnace concept were substantial.

Knowledge gaps include the question of blast wave loading on the shaft furnace walls. If the scrap charge transmits the impulse loading to the walls the process is probably not technically feasible. It could be very costly to determine this in a development program.

Total life cycle costs range from \$31.9 million to \$50.5 million for single site and from \$100.0 million to \$215.0 million for collocated site. Life cycle costs are presented in Figures 21 and 22. This concept was eliminated from further consideration.

A detailed engineering and economic analysis on the shaft furnace process will be found in Appendix I.

<u>2.5.1.7 Molten Salt</u>. The molten salt system handles a "mashed" or shredded feed (feed configuration h). The molten salt unit contains a bed of molten salt, which is maintained as a froth by the flue gas

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

. . الله

. .

3

91

Ì

ACCESSION CONTRACT MERICAN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

the flue gas stream, over a pool of molten metal. In concept, noxious gases are removed by the molten salt, however, it is likely that a downstream scrubbing system will be required to provide redundancy.

Knowledge gaps center around the fate of phosphorus and materials compatibility.

Total life cycle costs range from \$18.4 million to \$22.8 million for single site and from \$45.4 million to \$77.9 million for collocated site. Life cycle costs are presented in Figures 23 and 24. This concept was eliminated from further consideration.

A detailed engineering and economic analysis on the molten salt process will be found in Appendix J.

<u>2.5.1.8 Underground Detonation</u>. The underground detonation concept is a collocated operation designed to destroy the entire lethal agent inventory with one underground detonation. The applicable feed stock is configuration a.

This approach requires no mechanical preparation, no flue gas cleanup, and provides the most effective ultimate disposal scenario. However it would be a politically sensitive approach. Furthermore, testing would be extremely difficult. This concept was eliminated from further consideration.

It is estimated that total life cycle costs would exceed \$393 million.

Details on the underground detonation engineering and economic analysis will be found in Appendix K.

2.5.2 Design Plan

l

A Design Plan was prepared outlining laboratory studies on the four most promising concepts:

Acid Roaster Rotary Kiln Molten Metal

22

.]

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Fluidized-Bed.

These four concepts were selected based on an overall consideration of the engineering and economic evaluations and are believe to offer the greatest potential for efficient demiliarization of the chemical agent munitions stockpile. The technical approach to be used to develop these concepts can be found in the Design Plan issued January 31, 1983.

3.0 CONCLUSIONS

A large number of thermal processes for destruction of hazardous and toxic materials are developed or are under development in industry. Many of these processes could be applied to the destruction of chemical agents with little or no additional development. But when the destruction of chemical agents is coupled with the problems inherent in handling and rendering safe munitions containing fuses, bursters, and propellants, the selection of appropriate processes becomes much more difficult and limited.

Of 44 thermal processes identified in this study, 4 appear to have sufficient promise to be considered for further development in the laboratory. These processes are:

- Acid Roaster. A process in which separate whole munitions are eroded in an acid bath to free the chemical agents and energetic materials. The resultant slurry is roasted to destroy the agent and energetic materials and to recover acid gases which are recycled to the acid bath.
- Rotary Kiln. A process which uses a rotary kiln to incinerate feeds ranging from whole punctured munitions to cut munitions.
- 3. Molten Metal. A process which pyrolizes and incinerates agents and energetic materials yielding a molten metal and fused salt product. This process accepts punctured whole munitions or munitions cut into pieces.
- Fluidized-Bed. A process in which punctured whole munitions or munitions cut into pieces are incinerated in a fluidized-bed.

These processes have moderate to low technical risk, are at or near state-of-the-art technology, and have the potential of offering economic advantages when coupled with the required mechanical preparation.

47

. . 1

. . .

. . . .

3

្ប

<page-header><page-header><page-header><section-header><page-header><section-header><page-header><section-header><page-header><section-header>

APPENDIX A

ļ

BIBLIOGRAPHY OF PERTINENT LITERATURE REFERENCES

APPENDIX A

1

1

، نند

Š

. . .

10 10 10

BIBLIOGRAPHY OF PERTINENT LITERATURE REFERENCES

This bibliography is organized by type of document and accession number for quick retrieval of the document. The type of document is specified by B for book, R for report, J for journal article, PP for published paper, P for patents, ML for manufacturers' literature, and M for microfiche. Also included with each bibliographic listing are the thermal technologies that the document covers and if the document is not part of the project files, the individual at Battelle who has the document.

B-1

REFERENCE

Kiang, Yen Hsiung, and Metrey, A. A. <u>Hazardous Waste Processing Technology</u> Ann Arbor Science, Ann Arbor, Michigan(1982)

Battelle Circulation: Bert O'Connell

Technologies

Multiple Hearth, Fluidized Bed Liquid Injection, Fume Incinerator, Rotary Kiln, Multiple Chamber, Cyclonic, Auger Combustor Ship-Mounted, Catalytic, Oxygen, Pyrolysis, Calcination, Boilers, Wet-Air Oxidation, Distillation, Evaporation Molten Salt, Plasma Arc Microwave Discharge

B-2

Sittig, Marshall, <u>Incineration of Industrial</u> <u>Hazardous Wastes and Sludges</u>. Noyes Data Corporation. Park Ridge, New Jersey (1979).

Battelle Circulation: Bruce Rising

Technologies

Afterburners; Catalytic Incinerators, Cyclon Furnaces, Direct-Flame Thermal Incinerators, Electric Furnaces, Flares, Fluidized Beds, Liquid Waste Combustors, Molten Salt, Multip Chamber, Multiple Hearth, Open Burning, Pebb Bed Incinerators, Rotary Kiln, Seagoing, Wet-Air Oxidation Units.

A-3

ACCESSION NUMBER

÷

B-3

REFERENCE

Conway, R. A., Ross, R. D. <u>Handbock of</u> <u>Industrial Waste Disposal</u>. Van Nostrand Eheinhold Company, New York (1980).

OSU Libraries

<u>Technologies</u>

Multiple Chamber, Open-Pit, Cyclonic, Multiple Hearth, Fluidized-Bed, Botary Kiln, Rotary Hearth, Pyrolysis, Wet-Air Oxidation.

B-4

Pojasek, R. <u>Toxic and Hazardous Waste</u> <u>Disposal</u>, Volumes 1, 2, 3, 4. Ann Arbor Science Publishers, Ann Arbor, Michigan (1979).

Battelle Library

Technologies

Molten Salt, Ocean Incineration

B-5

Bonner, T., et al. "Engineering Handbook for Hazardous Waste Incineration", Draft. Prepared by Monsanto Research Corporation, Dayton, Ohio for U.S.EPA Office of Research and Development (November 1980).

Battelle Circulation: Bruce Vigon

<u>Technologies</u>

Rotary Kiln, Liquid Injection Fluidized Bed, Multiple Hearth, Coincineration

B-6

B-7

<u>REFERENCE</u>

American Society of Mechanical Engineers. 1982 National Waste Processing Conference: Meeting the Challenge. New York, New York (May 1982).

Battelle Circulation Also, Dick Engdahl

Technologies

Fluidized Beds, Cement Kilns, Industrial Boilers, EPA Mobile Incineration System.

Bell, J. M., ed. <u>Proceedings of the 36th</u> <u>Industrial Waste Conference</u>. Ann Arbor Science Publishers, Ann Arbor, Michigan (1982).

Battelle Circulation

Technologies

High Temperature Fluid-Wall Reactor, Plasma Pyrolysis.

B-8

Office of Technology Assessment. <u>Nonnu-</u> clear Industrial Hazardous Waste. (1981)

Battelle Circulation

<u>Other</u>

Classifications of Hazardous Wastes

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

B-9

:Xi

Î

8

6)

Ŀ

Î

adende - Caracterador - Colocologia - Production

CONTRACT STREETS STREETS

REFERENCE

Dillon, A. P., ed. <u>Pesticide Disposal and</u> <u>Detoxification Processes and Techniques</u>. Noyes Data Corporation, Park Ridge, New Jersey (1981).

Battelle Circulation Also, Ted Prociv

Technologies

Multiple Hearth, Rotary Kiln, Fluidized Bed, Liquid Injection, Multiple Chamber, Microwav Plasma, Wet-Air Oxidation, Photolysis, Ozona tion, Molten Salt, UV Irradiation.

Pierce and Vesilind, eds. <u>Hazardous</u> <u>Waste Management</u>. AnnArbor Science Publishers, Ann Arbor, MI. (1981).

Battelle Circulation

Technologies

Liquid Injection, Rotary Kiln

Hackman, E. E. <u>Toxic Organic Chemicals</u> <u>Destruction and Waste Treatment</u>. Noyes Data Corporation, Park Ridge, New Jersey (1978).

Battelle Circulation: Bruce Rising

Technologies

Wet Air Oxidation, Pyrolysis, High Energy Electrons, Gamma Radiation, Radiation

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM. The provide the second statement of the second statement of the second statement of the second statement of the

B-10

B-12

REFERENCE

"Conventional Ammunition Demilitarization and Disposal Technology Handbook". Prepared by the Joint Conventiona: Ammunition Program Coordinating Group (1976).

Battelle Circulation: Ted Prociv

Other

Munitions Destruction

American Defense Preparedness Association, Chemical Systems Division. "Proceedings of the Second Demilitarization and Disposal Technology Conference". (April 1979).

Battelle Circulation: Ted Prociv

Other

Munitions Destruction Technologies

Stockholm International Peace Research Institute. <u>Chemical Weapons: Destruction</u> <u>Conversion</u>. Crane, Russak and Company, Inc. New York (1980).

Battelle Circulation

Other

Overview of world-wide chemical-warfare agen: destruction programs

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-UOS5 with ARRADCOM.

8-13

REFERENCE ACCESSION NUMBER Process Design Manual for Sludge Treatment B-15 and Disposal, EPA 6251 1-74-006. Prepared by Black, Crow, and Eidsness, Gainesville, Florida for U.S. EPA Office of Technology Transfer (October 1974). Battelle Circulation: Dale Folsom Technologies Multiple Hearth, Fluidized Bed, Wet Air Oxidation, Pyrolysis, Cyclonic, Electric B-16 Shapira, N. I., et al. "State-of-the-Art Study: Demilitarization of Conventional Munitions", EPA-6001 2-78-012. Prepared by American Defense Preparedness Association for U.S. EPA Office of Research and Development (February 1978). Battelle Circulation: Ted Prociv Technologies Study of U.S. Demilitarization Processes Steam. Babcock and Wilcox Company, New B-17 York, New York (1972). Technology Cyclonic

الراجا الحارجان بحلو بحلو بحلو بحلو بحلو بحلو بحواجتها بحواجتها بحواجتها بحواجتها

A•7

REFERENCE

B-18 American Society of Mechanical Engineers. 1980 National Waste Processing Conference. New York, New York (1980). Property of Dick Engdahl Technologies Liquid, Fume, Fluidized Bed, Rotary Kiln, Cyclonic, Multiple Chamber, Catalytic Mutitiple Hearth B-19 American Society of Mechanical Engineers. 1978 National Waste Processing Conference. New York, New York (1978). Property of Dick Engdahl Technologies Rotary Kiln, Wet Oxidation, Fluid Bed, Pyrolysis Outterson, G. C., and Prociv, T. M., eds. "Proceedings of Toxic Substance Control: B-20 Decontamination Symposium". Columbus, Ohio (April 1980); Sponsored by U.S. Army Chemical Systems Laboratory, Physical Protection Division, Aberdeen Proving Ground, Maryland. Property of George Outterson Technology Laser Destruction

R-1

REFERENCE

Sharp, D. A., Gurklis, J. A., and Stenburg, R.L. "State of the Art of Hazardous Waste Disposal in the United States". Paper presented at the International Conference on Solid Wastes, Sludges and Residual Materials, Rome, Italy (June 1981).

Technologies

Rotary Kiln, Single Chamber (Liquid), Fluidized Bed

Wilkinson, R. R., Kelso, G. L., and Hopkins, F. C. <u>State-of-tne-Art Report: Pesticide</u> <u>Disposal Research</u>, EPA-600/2-78-183. Prepared by Midwest Research Institute for U.S. EPA Office of Research and Development, Municipal Environmental Research Laboratory, Cincinnati, Ohio (September 1978).

<u>Technologies</u>

Multiple Hearth, Rotary Kiln, Fluidized Bed, Liquid Injection, Multiple Chamber, Microwave Plasma, Molten Salt, Wet-Air Oxidation, Vortex, Portable Rotary Kiln

Hazardous Material Incinerator Design Criteria. Prepared by TRW, Inc., Redondo Beach, California for U.S. EPA Industrial Environmental Research Lab, Cincinnati, Ohio; NTIS, Springfield, Virginia, PB80-131964 (October 1979).

Property of Bruce Rising

Technologies

Liquid Injection, Fluidized Bed, Multiple Hearth, Rotary Kiln

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

R-2

R-3

REFERENCE

Johnson, R. J., Flynn, F. E., and Weller, P. J. "A Preliminary Feasibility Study for an Offshore Hazardous Waste Incineration Facility". Prepared by TRW Environmental Engineering Division for U.S. EPA Industrial Environmental Research Laboratory, Research Triangle Park, North Carolina (June 1980).

Property of Bruce Rising

Rotary Kiln (Offshore Platform)

Adams, J. W., et al. <u>Destroying Chemical</u> Wastes in Commercial Scale Incinerators. Facility Report No. 2 - Surface Combustion Division, Midland Ross Corporation. 530/SW-122C.2. Prepared by Arthur D. EPA/ Little, Inc. for U.S. EPA Office of Solid Waste, Washington, D.C. (November 1976).

Property of Bert O'Connell

Rotary Hearth Pyrolyzer/Incinerator

ACCESSION NUMBER
Software in a provision of a prov Ackerman, D., et al. <u>Destroying Chemical</u> Wastes in Commercial Scale Incinerators. Facility Report No. 6 - Rollins Environmental Service, Inc. Prepared by TRW Defense and Space Systems Group for U.S. EPA Office of Solid Waste Management Programs, Washington, D.C. (1977).

Property of Bert O'Connell

Rotary Kiln, Liquid Injection

Caller and the second second

Conservation of the

47 도구 문구

R-7

REFERENCE

DeFilippi, R. P., et al. <u>Supercritical</u> Fluid Regeneration of Activated Carbon for Adsorption of Pesticides, EPA-600/2-80-054. Prepared by Arthur D. Little, Inc. for U.S. EPA Office of Research and Development, Washington, D.C. (March 1980).

Property of Ted Prociv

<u>Technologies</u>

Supercritical Fluid

R-8

Bailin, L. J. <u>Microwave Plasma Detoxifica-</u> tion Process for Hazardous Wastes, EPA-600/2-78-080. Prepared by Lockheed Missiles and Space Company for U.S. EPA Office of Research and Development, Municipal Environmental Research Laboratory, Cincinnati, Ohio (June 1978).

Property of Ted Prociv

Technologies

Microwave Plasma

R-9

Bell, B. A., and Whitmore, F. C. <u>Kepone</u> <u>Incineration Test Program</u>, EPA-600/2-78-108. U.S. EPA Office of Research and Development, Municipal Environmental Research Laboratory, Cincinnati, Ohio (May 1978).

Property of Ted Prociv

Technologies

Rotary Kiln (Pyrolyzer), Incinerator (Afterburner)

R-10

Edwards, Barbara, Ph.D. "Fluidized Bed Combustion of Hazardous Waste", Draft. Prepared by Ebon Research Systems for U.S. EPA Municipal Environmental Research Laboratory, Cincinnati, Ohio (March 1980).

<u>Technologies</u>

Fluidized Bed

R-11

Castaldini, C., et al. "A Technical Overview of the Concept of Disposing of Hazardous Wastes in Industrial Boilers", Draft. Prepared by Acurex Corporation for U.S. EPA Industrial Environmental Research Laboratory, Cincinnati, Ohio (January 1981).

<u>Technologies</u>

Industrial Boilers

R-12

U.S. EPA Industrial Environmental Research Laboratory. "Proceedings of the Hazardous Waste Combustion Workshop", Draft, Cincinnati, Ohio (April 1981) Prepared by Battelle Memorial Institute (November 1981).

Technologies

Industrial Boilers

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

1-12

R-13

Yosim, S. J., Kellog, L. G., and Sudar, S. "Molten Salt Destruction of HCB and Chlordane", Draft. Prepared by Rockwell International Energy Systems Group for U.S. EPA Office of Research and Development, Industrial Environmental Research Laboratory, Cincinnati, Ohio (n.d.).

Technologies

Molten Salt

R-14

"Environmental Assessment for a Program to Demonstrate the Use of Recycled Fuels in Cement Plants". Prepared by the San Juan Cement Co. for U.S. EPA Industrial Environmental Research Laboratory, Cincinnati, Ohio (November 1980).

<u>Technologies</u>

Cement Kiln

R-15

Bennett, R. W., et al. "A Study of Equipment, Processes, and Systems for a Demilitarization Facility". Prepared by Battelle Memorial Institute for Naval Facilities Engineering Command, Western Division (January 31, 1975).

Property of Bert Weller

Technologies

Rotary Kiln

Other

Munitions and Explosives Preparation Technologies

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

A-13

1.11
R-16

REFERENCE

Brazhnikov, V. I., et al. <u>Furnace for</u> <u>Thermal Treatment of Liquid Industrial</u> <u>Waste Waters Containing Toxic Organic</u> <u>Impurities</u>. Army Foreign Science and Technology Center, Charlottesville, Virginia; NTIS AD-783 850 (September 6, 1972).

Technologies

Liquid Injection/Vertical Shaft

Shapira, N. I., et al. <u>State-of-the-Art</u> <u>Study: Demilitarization of Conventional</u> <u>Munitions</u>, EPA-600/2-78-012. Prepared by American Defense Preparedness Association for U.S. EPA Office of Research and Develop ment, Industrial Environmental Research Laboratory, Cincinnati, Ohio (February 1978).

Property of Ted Prociv

Technologies

Rotary Kiln, Wet Air Oxidation, Fluidized Bed, Closed Pit Incinerator, Batch Box Incinerator, Microwave, Air Curtain Incinerator

<u> Other</u>

Munitions Preparation Technologies

R-18

Leary, J. F. <u>Ultimate Disposal of Oil and</u> <u>Hazardous Materials</u>, CG-D-36-76. Prepared for United States Coast Guard Department of Transportation, Washington, D.C.; NTIS, Springfield, Virginia, AD-AO35 137 (October 1975).

Technologies

Municipal Incinerators, Portable Incinerators, Ship-Mounted Incinerators

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

R-17

A-15

ACCESSION NUMBER

R-19

REFERENCE

Lawless, E. W., Ferguson, T. L., and Meiners, A. F. <u>Guidelines for the Disposal</u> of <u>Small Quantities of Unused Pesticides</u>, EPA-670/2-75-057. Prepared by Midwest Research Institute for U.S. EPA Office of Research and Development, National Environmental Research Center, Cincinnati, Ohio; NTIS, Springfield, Virginia, PB-244-557 (June 1975).

Property of Ted Prociv

Technologies

Small-Scale Pesticide Disposal Techniques

R-20

Rosen, H. H. <u>Pesticide Pyrolysis Device</u>. Army Land Warfare Laboratory, Aberdeen Proving Ground, Maryland (June 1974); NTIS AD-784 553, Springfield, Virginia.

TACTEC

Technologies

Pyrolyzer

R-21

Bucci, R. J., and Meseke, E. L. <u>Process</u> <u>Description and Compendium of Chemical</u> <u>Agent Identification Sets Disposal Program</u> <u>Studies and Reports</u>, ARCSL-SP-81018. Chemical Systems Laboratory, Aberdeen Proving Ground, Maryland (November 1981).

TACTEC

Technologies

Molten Salt, Rotary Kiln, Rocky Mountain Arsenal Facilities

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

R-22

R-23

REFERENCE

Stearns-Roger Incorporated. <u>Final Process</u> <u>Design of the Agent Destruction System for</u> <u>CAMDS</u>. Prepared for Edgewood Arsenal, Aberdeen Proving Ground, Maryland; Defense Technical Information Center, Alexandria, Virginia (February 1977).

TACTEC

Technology

Chemical Neutralization Process

<u>Other</u>

Agent Detoxification Processes

Chem Demilitarization Install Restoration. "Demilitarization Plan Operation of the Chemical Agents Munition Disposal System (CAMDS)". Aberdeen Proving Ground, Maryland (March 1977).

TACTEC

Technologies

Deactivation Furnace, Metal Parts Furnace, Dunnage Incinerator

Other

Munitions Preparation Systems

 $\left(\begin{array}{c} 0\\ 0\\ 0 \end{array} \right)$

Ĩ

R-24

Meseke, E. L., and Herd, R. E. <u>Small-Scale</u> <u>Pilot Incineration Feasibility Study of</u> <u>Chemical Identification Sets</u>, ARCSL-TR-78069. Chemical Systems Laboratory, Aberdeen Proving Ground, Maryland (May 1979).

TACTEC

<u>Technologies</u>

Liquid Injection

R-25

Brankowitz, R. W. <u>Demilitarization of</u> <u>Mustard Agent (HD) at Fort McClellan</u>, <u>Alabama</u>, ARCSL-TR-77051. Chemical Systems Laboratory, Aberdeen Proving Ground, Maryland (April 1978).

TACTEC

<u>Technologies</u>

Chemical Neutralization

R-26

Scott, J., et al. <u>Engineering Study of the</u> <u>Incineration Facilities at Rocky Mountain</u> <u>Arsenal</u>. Department of the Army, Edgewood Arsenal, Aberdeen Proving Ground, Maryland; Defense Technical Information Center, Alexandria, Virginia (February 1977).

TACTEC

Technologies

Processes Used at Rocky Mountain Arsenal

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

A NAME AND A REPAIRED AND A DATA CARDED AND A REPAIRED AND A

R-27

REFERENCE

Midland-Ross Corporation, Surface Combustion Division. <u>Final Concept Design Report</u> <u>Deactivation Furnace</u>, DRCPM-DRD-CR-74042. Chemical Demilitarization and Installation Restoration, Aberdeen Proving Ground, Maryland; Defense Technical Information Center, Alexandria, Virginia (November 1974).

TACTEC

Technologies

Continuous Processing Rotary Retort Furnace

R-28

Valis, R. J., and Vigus, E. S. <u>Pyrolysis</u> of <u>Detoxified Agent Wastes II</u>, ARCSL-TR-77024. Chemical Systems Laboratory, Aberdeen Proving Ground, Maryland (September 1977).

TACTEC

Technologies

Experimental Pyrolysis Equipment

R-29

Santos, J., et al. <u>Design Guide for</u> <u>Propellant and Explosive Waste Incineration</u>. U.S. Army, Picatinny Arsenal, Dover, New Jersey (October 1973).

TACTEC

Technologies

Rotary Kiln, Vertical Induced Draft, Fluid Bed

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Ĩ

1

[•]

م به توغ مراسا و رود ما به توغ مراسا و رود

STREETER STER. IN OLD HUNDERS

R-30

REFERENCE

A-19

Cheselske, F. J., et al. Study of Catalytic and Thermal Decomposition of Toxic Agents. Department of the Army, Edgewood Arsenal, Maryland (October 1970). TACTEC

Other

Kinetic Studies

R-31

Sass, S., and Davis, P. M. <u>Laboratories</u> Studies on the Incineration of Mustard (HD), EATR 4516. Department of the Army, Edgewood Arsenal, Maryland (May 1971).

Other

Mustard Destruction Efficiency

R-32

Pugh, D. L., et al. Incineration of GB and Containment of Gaseous Products, EATR 4463. Department of the Army, Edgewood Arsenal, Maryland (October 1970).

Other

GB Destruction Efficiency

R-33

REFERENCE

Hildebrandt, H. F., Gervasoni, T. R., and Baker, J. A. <u>Incineration of VX and Con-</u> <u>tainment of Gaseous Products (U)</u>, EATR 4586. Department of the Army, Edgewood Arsenal, Maryland (March 1972).

<u>Other</u>

VX Destruction Efficiency

R-34

R-35

Molten Salt Coal Gasification Process Development, Phase 1 Final Report, PDU Operations, DOE/ET/10296-66. Prepared by Rockwell International Environmental and Energy Systems Division for U.S. Department of Energy (May 1980).

Technologies

Molten Salt Gasification

Molten Salt Coal Gasification Process Development Unit, Phase 1 Final Report, Commercial Plant Study, DOE/ET/10296-66. Prepared by Rockwell International for the U.S. Department of Energy (May 1980).

Technologies

Molten Salt

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

			A-21
ACCESSION	NUMBER	REFERENCE	
R-36		Reeves, A. M., and Kurtz, M. C. "T Decomposition of GB". Prepared by Chemical Center, Chemical and Radio logical Laboratories (August 31, 19	Army >-
		Other	
		Agent Chemistry	
R- 37		Lapp, R. R., and Schn eider, C. J.	"An
		Investigation of the Thermal Decomp of BIS (2,ethyl hexyl) Hydrogen Pho and Agent VX as Vapor at Elevated tures". Cornell Aeronautical Labor Inc. (May 31, 1962).	osition Sphite Tempera-
		<u>Other</u>	
		Agent Chemistry	
R-38	}	Runnion, K. N., and Wagner, Arnold. Incineration of VX and GB with Emph Phosphoric Acid Mist Rem: val, EM-TR Department of the Army, Edgewood Ar Aberdeen Proving Ground, Maryland (1975).	<u>asis on</u> -75037. senal,
		<u>Technologies</u>	
		Liquid Injection	
R-3	9	Data from Mustard Disposal Operatio (Project Eagle) at Rocky Mountain / (1972-1974). Provided by Mike Asso	Arsena1

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

ß

a startistication and

3

d T C BALLA

10 10 MAR

R-40

REFERENCE

Fradkin, L., and Barisas, S. Technologies for Treatment, Reuse, and Disposal of Polychlorinated Biphenyl Wastes, ANL/EES-TM-168. Argonne National Laboratory, Argonne, Illinois (January 1982).

Technologies

Rotary Kiln, Liquid Injection, Multiple Hearth, Fluidized Bed Multiple Chamber, Catalytic Combustion, Pyrolysis, Starved-Air Combustion, Molten Sait, Catalytic Afterburner, Mobile Incinerator, Controlled-Air Incinerator, Molten Iron, Diesel Engine, Incineration at Sea, High-Efficiency Boilers, Plasma-Arc, Catalyzed Wet Oxidation, Hydrothermal Dechlorination

Muralidhara, H. S., and Young, J. B. "Comparative Evaluation of Sumitomo Metals Coal Gasification Process". Report for Sumitomo Metal Industries Ltd. prepared by Battelle Columbus Laboratories (November 1981).

Technology

Molten Metal/Steel Furnace

Howes, J. E., O'Connell, W. L., and Riggin, R. M. "Measurement of Emissions from Burning PCBs in the Mobile Waste Processor". Report for Pyrotech Systems, Inc., prepared by Battelle Columbus Laboratories, Columbus, Ohio (May 6, 1982).

Technology

Mobile Liquid Injection/High-Temperature Oxygen Incineration

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

este de la gerie de la la secte de la s

R-41

R-42

R

يتده، والح

R-43

Schorr, J. Richard, et al. "Breakthrough Tcchnologies". Report to Mitsubishi Research Institute from Battelle Columbus Laboratories, Columbus, Ohio (January 1982).

REFERENCE

Technologies

Nuclear Fusion, Geothermal

	A-24
ACCESSION NUMBER	REFERENCE
J-1	Hitchcock, D. A. "Solid-Waste Disposal: Incineration". <u>Chemical Engineering</u> (May 21, 1979) pp. 185–194.
	Technologies
	Pyrolysis, Multiple Hearth, Fluidized Bed, Liquid Incinerator, Gas Incinerator, Rotary Kiln, Wet-Air Oxidation, Molten Salt, Multiple Chamber, Ship-Mounted Incinerators
J-2	Ross, R. D. "Burn, Hazardous Waste Burn". <u>ChemTech</u> (November, 1980) pp. 708-712.
	Technologies
	Conventional Forced Draft Burner, Cyclonic Incinerator, Rotary Kiln, Fluidized Bed, Multiple Hearth, Catalytic.
J-3	Pojasek, R. B. "Disposing of Hazardous Chemical Wastes". <u>Environmental Science</u> <u>and Technology</u> , Vol. 13, No. 7 (July 1979) pp. 810-814.
	Technologies
	Molten Salt, Ocean Incineration
J. 4	Fish, R. A. "Disposal Methods for Hazardo Wastes". <u>Journal of Oil Col. Chem. Assoc</u> . Vol. 60, No. 8 (1977) pp. 296-299.
	Technologies
	Rotary Kiln, Ocean Incineration
J-5	Berry, E. E. and MacDonald, L. P., "Exper mental Burning of Used Automotive Crankcas Oil in a Dry-Process Cement Kiln". Journa of Hazardous Materials, Vol. 1 (1975/1976) pp. 137-156.
	Technology
	Cement Kiln

J-6

J-7

J-8

.

(

(* * (* *

N)

•

Tenzer, R. et. al. "Characteristics of the Mobile Field Use System for the Detoxification/Incineration of Residuals from Oil and Hazardous Material Spill Clean-Up Operations". Journal of Hazardous Materials, Vol. 3 (1979) pp. 61-75.

Technology

Mobile Rotary Kiln

"EPA-Funded PCB Test Burns are Likely Success". <u>Chemical and Engineering News</u>, (July 19, 1982) pp. 29-30.

Technology

Two-Chamber, controlled Air Incinerator (conventional)

Basta, Nicholas. "Firms Avidly Seek New Hazardous Waste Treatment Process". <u>Chemical Engineering</u>, Vol. 89, No. 18 (September 6, 1982) pp. 53-57.

Technologies

Mobile Rotary Kiln, Wet-Air Oxidation, Supercritical Fluid

J-9

Yasui, Takaji and Matsuoka, Kyoshi. "Hydrothermal Decomposition of Polychlorinated Biphenyls". <u>Environmental</u> Science and Technology (1980) pp. 550-552.

Technology

Hydrothermal

ACCESSION NUMBER	REFERENCE
J-10	Modell, Michael, et al. "Supercritical Water". <u>Solid Waste Management</u> , Vol. 25, No. 8 (August 1982) pp. 26-76.
	Technology
	Supercritical Fluids
J-11	"Using Supercritical Water to Destroy Tough Wastes". <u>Chemical Week</u> , Vol. 130, No. 16 (April 21 <mark>, 1982) p. 26.</mark>
	Technology
	Supercritical Fluid
J-12	Flachseberg, Paul. "German Lime Kiln Developments Meet Quality Demands". <u>Rock</u> <u>Products</u> (July 1970) pp. 75-83.
	Technologies
	Cross-Flow Kilns, Double-Inclined Kiln, Annual Shaft Kiln, Rotary Kiln
J-13	Gribbin, Walter. "Vertical Shaft Kiln Present and Future". <u>Rock Products</u> (December 1970) pp. 68-70.
	Technology

Y

1

9

÷.

Vertical-Shaft Kiln

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARKADCOM.

PP-1

الع العلمي عام على عام على

REFERENCE

Baillod, R. C. et al. "Wet Oxidation of Toxic Organic Substances". Proceedings of the Industrial Waste Conference, 34th; Ann Arbor Science Publishers, Ann Arbor, Michigan (1980), pp. 206-213.

Technology

Wet-Air Oxidation

PP-2

Johnson, J. G. et al. "Destruction of Hazardous Wastes by the Molten Salt Destruction Process". Paper presented at the Environmental Protection Agency Seminar, Ft. Mitchell, Kentucky (March 1982).

Technology

Molten Salt

PP-3

Yosim, S. J. et al. "Destruction of Hazardous Wastes by Molten Salt Combustion". Toxic and Hazardous Waste Disposal, Volume 4; Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan (1979), pp. 227-243.

Technology

Molten Salt

PP-4

REFERENCE

Kenson, R. E. et al. "Development of Effective Incineration Processes for Toxic Organic Air Pollutants". Paper presented at the 70th Annual Meeting of the Air Pollution Control Association, Toronto, Ontario, Canada (June 1977).

<u>Other</u>

Incineration Operating Variables

PP-5

Hemsath, Dr. K. H., and Schultz, T. J. "Application of Advanced Combustion Technology for the Disposal of Toxic Waste". Prepared by Midland-Ross Corporation, Surface Division for presentation at the Wastern States Combustion Institute's Spring Meeting, Seattle Washington (April 1977).

Technologies

Midland-Ross' Explosives and Metal Parts Furnaces. Midland-Ross' Kepone Incineration Equipment. Rotary Kiln, Roller Hearth Furnace

PP-6

Barton, T. G., and Arsenault, G. P. "Toxic Waste Destruction by Plasma Pyrolysis". <u>Proceedings of the 36th</u> <u>Industrial Waste Conference</u>; Ann Arbor Science Publishers, Ann Arbor, Michigan (1982), pp. 177-183.

Technology

Plasma Pyrolysis

.

.....

PP-7

REFERENCE

Hornig, A. W. "Decomposition of Chlorinated Hydrocarbons Using a Novel High-Temperature Fluid Wall Reactor". Proceedings of the 36th Industrial Waste Conference; Ann Arbor Science Publishers, Ann Arbor, Michigan (1982), pp. 177-183.

Technology

High-Temperature Fluid Wall

PP-8

Freeman, H. M. "Review of Selective Innovative Thermal Hazardous Waste Destruction Processes". Paper to be presented at the American Institute of Chemical Engineers Conference, Cleveland, Ohio (September 1982).

Technologies

Fluidized Bed, High-Temperature Fluid Wall, Molten Salt, Cement Kiln, Mobile High-Temperature Incineration, Pyrolytic Incineration, Wet Air Oxidation

PP-9

Frankel, I., Sanders, N., Vogel, G. "Profile of the Hazardous Waste Incinerator Manufacturing Industry". Paper for presentation at the American Institute of Chemical Engineers Conference, Cleveland, Ohio (September 1982).

<u>Technologies</u>

Fixed Hearth, Liquid Injection Rotary Kiln, Fluidized Bed, Induction Heating, Pulse Hearth Reciprocating Grate, Infrared Heating

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

PP-10

REFERENCE

Baur, J. M., and Iwata, H. "Development of Slagging Coal Combustors for MHD Applications". TRW Systems and Energy Group, Redondo Beach, California (n.d.).

Technology

Rocket Combustor Injector/Magnetohydrodynamic Power Generation

PP-11

Cook, C. S., et al. "A Regeneratively Air Cooled Cyclone Coal Combustor for Utility Boiler Application". General Electric Company, Space Sciences Laboratory, King of Prussia, Pennsylvania (n.d.).

Technology

Cyclone Coal Combustor

PP-12

Rinker, T. L. "Regional Facilities for Hazardous Waste Disposal". The American Society of Mechanical Engineers, New York, New York (July 23, 1980).

Technologies

Fluidized Bed, Rotary Kiln

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

en al nel complete de la constante de la consta

ACCESSION_NUMBER	REFERENCE
P-1	Greenberg, Jacob, "Method of Catalytically Inducing Oxidation of Carbonaceous Materi- als by the Use of Molten Salts", U.S. Patent 3,647,358 (July 23, 1970).
	Technology_
	Molten Salt
P-2	Eck, J. C., "Furnace for Combined Incinera- tion of Rubbish, Garbage, and Sewage Sludge", U.S. Patent 3,777,680 (December 11, 1973).
r	Technology
	Multiple Hearth
P-3	Porter, S. M., Weiner, E. C., Shielder, H. W., "Solid Waste Disposal Method and Appara- tus", U.S. Patent 3,716,002 (February 13, 1973).
	Technology
	Rotary Kiln
P-4	Roberts, E. J., "Fluid Bed Incineration of Chloride Containing Waste Streams", U.S. Patent 3,864,458 (February 4, 1975).
	Technology
	Fluid Bed
P-5	Saitoh, Shigeru, et. al., "Moving Bottom Incinerator", U.S. Patent 3,861,331 (January 21, 1975).
	Technology
	Moving Bottom

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

ACCESSION NUMBER	REFERENCE
P-6	Yosim, S. J., "Non-Polluting Disposal of Explosives and Propellants", U.S. Patent 3,778,320 (December 11, 1973).
	Technology
	Molten Salt
P-7	Sharpe, P. S., "Thermal Oxidation of Wastes and Apparatus Therefor", U.S. Patent 3,892,190 (July 1, 1975).
	Technology
	Liquid Injection
P-8	Tsurata, H., Makiguchi, M., "Rotary Kiln Type-Solid Waste Incinerating System and Method", U.S. Patent 3,827,379 (August 6, 1974).
	Technology
	Rotary Kiln
P-9	Sargent, E. A., Doner, A. J., "Apparatus for Disposing of Solid Wastes", U.S. Patent 3,842,762 (October 22, 1974).
	Technology
	Rotary Kiln
P-10	Yosim, S. J., et. al., "Disposal of Organic Pesticides", U.S. Patent 3,845,190 (October 29, 1974).
	Technology
	Molten Salt

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAk11-82-C-0055 with ARRADCOM.

.

A-33

•

····

٠.

.

ACCESSION NUMBER	REFERENCE
P-11	Bolejack, W. J., Jr., Daniel, T. K., Rolison, D. E., "Incineration Process for Disposal of Waste Propellant and Explosives", U.S. Patent 3,848,548 (November 19, 1974).
	Technology
	Rotary Kiln
P-12	Santoleri, J. J., "Incinerator for Aqueous Waste Material", U.S. Patent 3,861,330 (January 21, 1975).
	Technology
	Liquid Injection
P-13	Monroe, E. S., Jr., "Cyclonic Incinerator", U.S. Patent 3,865,054 (February 11, 1975).
	Technology
	Cyclonic Incinerator
P-14	Gunn, N. I., "Electric Incinerator", U.S. Patent 3,877,399 (April 15, 1975).
	Technology
	Electric Furnace
P-15	Kishigami, K., Koybayashi, H., Oshima, S., "Incineration Method for Combustible Indus- trial Wastage and a Fluidized Bed Furnace Used Therefor", U.S. Patent 3,888,193 (June 10, 1975).
	Technology
	Fluidized Bed

and the second second

• • - •

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

the state of the second st

.

ACCESSION NUMBER	REFERENCE
P-16	Albrecht, E., et.al., "Fluidized Bed Furnace Having Coarse Particle Discharging Device", U.S. Patent 3,910,208 (October 7, 1975).
	Technology
	Fluidized Bed
P-17	Roberts, E. J., Angevine, A., "Fluid Bed Incineration of Wastes Containing Alkali Metal Chlorides", U.S. Patent 3,907,674 (September 23, 1975).
	Technology
	Fluidized Bed
P-18	Zetterström, K. A., "Device for the Purifica- tion of Process Wastes Gases", U.S. Patent 3,940,253 (February 24, 1976).
	Technology
	Pollution Control
P-19	Copeland, G. C., "Method for Oxidation of Sulfur-Containing Substances", U.S. Patent 3,949,684 (April 13, 1976).
	Technology
	Fluidized Bed
P-20	Bernaliner, M. N., et. al., "Process and Cyclone Reactor for Fine Decontamination of Industrial Waste Water Containing Organic and Refractory Mineral Impurities", U.S. Patent 3,974,021 (August 10, 1976).
	Technology
	Cyclonic Incinerator

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

.

	Ϋ́,		,
			A-35
		ACCESSION NUMBER	REFERENCE
	5.3 7-3 6-3	P-21	Greenberg, Jacob, "Solid-Liquid Waste Inciner- ator Utilizing Liquid Catalysts", U.S. Patent 3,974,784 (August 17, 1976).
			Technology
			Liquid Injection (Submerged Flame)
		P-22	Priestely, R. J., "Dilute Phase Waste Incinera- tor", U.S. Patent 4,021,184 (May 3, 1977).
			Technology
1 1 1 1 1	5.5		Fluidized Bed
		P-23	Barry, L. T., Czope, G. W., "Method and Apparatus for Treating Waste Material in a Counter-Current Incinerator", U.S. Patent 4,046,085 (September 6, 1977).
			Technology
			Multiple Hearth
		P-24	Dreasche, C. F., Jr., "Method and Apparatus for Incinerating Waste Material", U.S. Patent 4,050,389 (September 27, 1977).
			Technology
	يند (14)		Multiple Hearth
		P-25	Hara, S., Kato, T., "Method of Treating Sewage Sludge", U.S. Patent 4,050,390 (September 27, 1977).
			Technology
			Multiple Hearth
		lise, duplication, or disclosure is subject to resyr	ictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.
	• •	Use, auplication, or disclosure is subject to reser	

ACCESSION NUMBER	REFERENCE
P-26	Miller, S. T., Hardison, W. G., "Catalytic Abatement System", U.S. Patent 4,054,418 (October 18, 1977).
	Technology
	Pollution Control
P-27	Sowards, N. K., "Low Pollution of Solid Waste", U.S. Patent 4,075,953 (February 28, 1978).
	Technology
	Fluidized Bed (combined with cyclonic)
P-28	Kershner, Seymour, "Fibrous Filter Incinera- tor", U.S. Patent 4,085,689 (April 25, 1978).
	Technology
	Filter Incinerator
P-29	Lanier, John H. Jr., "High Temperature Oxy- gen Hazardous Waste Incinerator", U.S. Patent 4,338,870 (July 13, 1982).
	Technology
	Liquid Injection (injection into preheated oxygen chamber)
P-30	Vockinson Gondon H. "Combustion Approximation
r-30	Hoskinson, Gordon H., "Combustion Apparatus Utilizing an Auger Having an Integral Air Supply System", U.S. Patent 4,338,869 (July 13, 1982).
	Technology
	Auger Combustor

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

ACCESSION NUMBER	REFERENCE
P-31	Lientz, la Clede, "Refuse Burning Process and Apparatus", U.S. Patent 4,338,868 (July 13, 1982).
	Technology
	Rotary Furnace
P-32	Moore, Walter T., "Solar Powered Chemical Proces- sing Method and Apparatus", U.S. Patent 4,339,922 (July 13, 1982).
	Technology
	Solar Powered Chemical Processing Method and Apparatus
P-33	Van Loar, Jacobus, Felthuis, Jacob, and Kastelic, Wilhemus, "Shaft Furnace Having Cooling Plates", U.S. Patent 4,332,554 (June 1, 1982).
	Technology
	Shaft Furnace
P-34	Fitch, R. E. and Tyer, C., "Fuel Feed Technique for Auger Combustor", U.S. Patent 4,331,084 (May 25, 1982).
	Technology
	Auger Combustor
P-35	Gold, Louis, "Management of Chemical Toxic Waste", U.S. Patent 4,331,088 (May 25, 1982).
	Technology
	Coal Reactor (vertical shaft furnace)

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

÷

ACCESSION NUMBER	REFERENCES
P-36	Kranzl, Franz A.,and Springer, Helmut, "Walking Beam Furnace", U.S. Patent 4,330,262 (May 18, 1982).
	Technology
	Walking Beam
P-37	Burton, Robert E., "Burning System and Method", U.S. Patent 4,329,931 (May 18, 1982).
	T <u>echnology</u>
	Elongated Chamber - Hydraulic Ram
P-38	Hughes, David E., "Melting Glass with Reduced NO _X Emissions", U.S. Patent 4,328,020 (May 4, 1982).
	Technology
	Glass Melting Furnace

- · · ·

	A-39
CCESSION NUMBER	REFERENCE
ML'-1	Summary of the University of Tennessee's Magnetohydrodynamic Process for the Generation of Electricity.
	Technology
	Magnetohydrodynamic
ML-2	Summary of the Commenwealth Scientific and Industrial Research Organization's Fluidized Bed Combustor for Coal Washery Wastes.
	Technology
	Fluidized Bed
ML-3	Summary of Battelle's Spouted Bed Combustor
	Technology
	Spouted Bed
MI4	Summary of Energy Concepts Company's Fuel Gas Cleaning Process.
	Technology
	Molten Salt
ML-5	Trip Report: Review of Sumitomo Metals Cre- tive Gas and Steel Coal Gasification Process. Prepared by Battelle Coal Utilization Tech- nologies Study Group (June 1, 1982).
	Technology
	Molten Metal (Iron)
ML-6	"Process Description for the Thermal Destruc- tion of Toxic Waste Materials". Proposal prepared by the Franklin Research Center, Process Technology Division for Battelle Memori al Institute (July 21, 1982).
	Technology

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

ML-7

REFERENCE

Solar Zapper Process Description. Prepared by Focus Environmental Services (September 1981).

Technology

Solar

ML-8

Description of High-Temperature Fluid-Wall Reactor. Thagard Research Corporation, Irvine, California (n.d.).

Technology

High-Temperature Fluid Wall

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

M-1

REFERENCE

Wilkinson, R. R., Kelso, G. R., and Hopkins, F. C. <u>State-of-the-Art Report: Pesticide</u> Disposal Research, EPA-600/2-78-183. Prepared by Midwest Research Institute for U.S. EPA Office of Research and Development, Municipal Environmental Research Laboratory, Cincinnati, Ohio; NTIS PB 284 716 (September 1978).

Microfiche of report

Scurlock, A. C. Incineration in Hazardous Waste Management, EPA/530/SW-141. U.S. EPA Office of Solid Waste Management Programs, Washington, D.C.; NTIS PB 261 049 (1975).

Technology

Rotary Kiln, Multiple Hearth, Liquid Injection, Fluidized Bed, Molten Salt, Wet-Oxidation, Plasma Destruction, Multiple Chamber Gas Combustion. Pyrolysis

Gruber, G. I. <u>Assessment of Industrial</u> <u>Hazardous Waste Practices, Organic</u> Chemicals, Pesticides and Explosives Industries. Prepared by TRW Systems Group for U.S. EPA Office of Solid Waste Management Programs, Washington, D.C.; NTIS PB 251 307 (April 1975).

Technology

Rotary Kiln, Fluidized Bed, Liquid Injection

Other

Treatment and disposal technologies employed in the military explosives industry

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

ः -. . . . (

M-2

M-3

M-4

REFERENCE

Ottinger, R. S., et al. <u>Recommended</u> <u>Methods of Reduction. Neutralization.</u> <u>Recovery or Disposal of Hazardous</u> <u>Waste</u>, Volume III, EPA-570/2-73-053-C. Prepared by TRW Systems Group for U.S. EPA National Environmental Research Center, Cincinnati, Ohio; NTIS PB 224 582 (August 1973).

Technology

Fluidized Bed, Catalytic Incineration, Rotary Kiln, Liquid Injection, Open-Pit, Open Incineration, Multiple Chamber, Multiple Hearth, Flares

Other

Incineration Criteria, Selection of Incineration Systems

M-5

Papers to be presented at the American Institute of Chemical Engineers Conference. Cleveland, Ohio (September 1982).

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

APPENDIX B QUESTIONNAIRE USED IN INDUSTRIAL SURVEY

THERMAL PROCESS QUESTIONNAIRE

Company Name:

5

. 1

55.3

- A. <u>PROCESS DESCRIPTION</u>: A general conceptual description of the candidate process itemizing the major components is needed. A process flow diagram would be preferred.
- B. <u>STATUS OF TECHNOLOGY</u> (Check one):
 - (1) Commercially available_____ Pilot Plant_____ Bench Scale_____ Lab Scale_____ Conceptual_____
 - (2) Probability of successful development within 5 years?_____
 - (3) Expected scale-up accuracy?_____

Evaluation Criteria

To properly evaluate processes, answers to questions on the subjects described below are needed. A brief statement as to the source of the information (e.g., pilot plant data) would also be beneficial.

C. FEEDSTOCK REQUIREMENTS:

(1) What feedstocks can the process accept?

____Liquid Agents

- ____Combustible Solids
- Non-combustible Solids
- ____Contaminated Aqueous Alkaline Solutions
- Etc.
- (2) What is the maximum size of feedstock?
- (3) Are there other restrictions on physical form?

(4) What is the acceptable concentration range?

(5) What is the expected throughput?

(6) Can the process accept explosives and propellants? Yes _____ No _____

(7) Are there any other feedstock limitations or contraints?

(

Ľ

(1)	Type of energy? Fuel Electrical Etc
(2)	Amount of energy per unit of feed?
(3)	Amount of energy recovered for other purposes?
EFFLUENTS, BY-PRODUCTS, AND/OR WASTES:	
(1)	What are the post processing clean-up requirements?
(2)	What is the recommended methodology?
(3)	What are the alternate products?
(4)	Are there alternatives?
<u>The</u> f (1)	
	What is the projected destruction efficiencies? Agent Explosives
(1) (2)	What is the projected destruction efficiencies? Agent Explosives
(1) (2) <u>REL</u>	What is the projected destruction efficiencies? Agent Metal Parts What factors affect these?
(1) (2) <u>REL</u>	What is the projected destruction efficiencies? Agent Explosives Metal Parts What factors affect these? IABILITY: What are the probabilities of a system upset occurring?
(1) (2) <u>REL</u> (1)	What is the projected destruction efficiencies?

. .

1.5.5

.

۰. د

.

i

Н.	SAFETY:		
	(1)	Are any extraordinary safety precautions required?	
I.	COMPLEXITY:		
	(1)	What types of control and/or monitoring systems are required?	
	(2)	What are the skill level requirements of the operators?	
J.	CAPITAL COSTS:		
	(1)	What are the project costs of the required hardware?	
	(2)	What are the space and building construction requirements?	
K۰	OPER	ATING_COSTS:	
	(1)	Manpower Requirements	
	(2)	Maintenance	
	(3)	Utilities	
	(4)		

Please return questionnaire by September 27, 1982 to:

Mr. David R. Hopper Task Leader, Industrial Survey Battelle's Columbus Laboratories 505 King Avenue Columbus, OH 43201

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

APPENDIX C

THERMAL PROCESS DESCRIPTIONS

رد. در در در

1

PROCESS NO. 1

ROTARY KILN (COCURRENT)/MOLTEN METAL

DESCRIPTION: Sawed munitions and associated agent are fed into a cocurrent rotary kiln. Agent contained in ton containers can first be vaporized in volatile chamber. The flue gas and metal parts exiting the kiln are fed into a baffled molten metal furnace. A reactive slag can be used in the molten metal furnace in order to reduce pollution control requirements.

FLOW DIAGRAM:

S

نہ

1

> . مر

2

1

, ,

1.15

Ŋ

STATUS: Conceptual

ADVANTAGES: Reduced pollution control requirements. Slag and flue gases can be rendered 5X decontaminated. Large range of munitions can be processed.

DISADVANTAGES :

- Problems associated with typical rotary kilns, such as: • High capital cost
 - Low thermal efficiency
 - Problems maintaining seals at ends of kiln

High pressures required for flue gases to overcome pressure drop associated with metal bath.

REMARKS:

Worth further consideration

SUPERCRITICAL FLUID (THERMAL DOWNLOAD)

DESCRIPTION: Punched munitions (agent and explosive exposed) are fed to a supercritical fluid autoclave where agent is dissolved into solution and explosive destroyed. The solution is flashed into an incinerator. Solids (metal parts) and salts from a dry scrubber are then thermally decontaminated.

STATUS: Conceptual

ADVANTAGES: Supercritical fluid could possibly reduce agent to a less toxic form.

DISADVANTAGES: Danger of explosion when exposing munition to supercritical fluid. High operating cost associated with maintaining high pressures in autoclave.

REMARKS: Extensive development required
ن د

Ì

;•••

••••

ECOROCK

DESCRIPTION: High-temperature (2200 F) incineration or pyrolysis of waste and subsequent incorporation of solid residue in a high quality highway-paving aggregate. Wastes are dried and combusted in a rotary kiln (1800 F). Solid residue is slagged in a firebrick furnace (2200 F) and cooled to form a solidified melt. The solid is crushed and used in production of paving aggregate.

APPLICATIONS: Not yet applied to hazardous wastes

STATUS: Experimental to Pilot

ADVANTAGES: High temperatures lead to high desctuction efficiency. Residue sealed in a non-leaching end product. Major energy requirements can be supplied by feedstock. End product is marketable.

DISADVANTAGES: Potential materials compatability problems. Ash chemistry is unknown.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

SUPERCRITICAL FLUID

DESCRIPTION: Oxidation of waste material using water in the supercritical state as the process medium (374 C, 3200 psi).

FLOW DIAGRAM:

Û

MANUFACTURER:	MODAR Inc., Arthur D. Little
APPLICATIONS:	Various organic wastes (DDT, PCBs)
S1'ATUS:	Experimental to Pilot Scale
COST:	Modar 2500-25,000 gal/day- Operating - \$.10 to \$2.00/gal Capital - unknown
ADVANTAGES:	Advantages over wet-air oxidation include: - Less expensive capital cost due to the use of a tubular reactor instead of an autoclave - No need for additional processing of waste.
DISADVANTAGES:	High pressures and associated compression costs.

ELECTRIC FURNACE (INFRARED)

DESCRIPTION: A horizontal, rectangular, ceramic fiber blanket-lined, steel shell containing a moving horizontal woven-wire belt and radiant heating elements.

FLOW DIAGRAM:

ļ

*5

....

{ .

L

MANUFACTURER:	Shirco Inc., Midland-Ross
APPLICATIONS:	Toxic sludges, solids
STATUS:	Commercially available
COST:	50 M gal/day 20 percent solids: Capital - \$1.5M (without cleanup e.g.) Operating - cost of 50 hp
ADVANTAGES :	Low capital cost Low operation and maintenance costs (waste heated by radiation) No explosion danger Easy shutdown and start up (possible intermittent oper- ation)
DISADVANTAGES :	Large floor space requirement; gas clean up required; resistant heaters susceptible to frequent burnout; can only be used on slurries that contain at least 15 percent solids.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAk11-82-C-0055 with ARRADCOM.

MAGNETOHYDRODYNAMICS

DESCRIPTION: Combustion of coal at slagging temperatures (5000 F) and subsequent acceleration of flue gas through a nozzle into a magnetohydrodynamic generator.

FLOW DIAGRAM:

MANUFACTURERS: University of Tennessee, TRW

APPLICATION: No known hazardous waste treatment

- STATUS: Experimental
- ADVANTAGES: High potential for energy recovery

DISADVANTAGES: Highly likely to encounter materials compatability problems.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

SPOUTED BED

DESCRIPTION: Injection of gas at high velocity through a small central operature into a cylindrical vessel filled with coarse solid particles. A cyclical pattern of movement is formed as particles peak in center of cylinder and return to bottom along cylinder wall.

FLOW DIAGRAM:

言い

(| |

イオコスデデスタ まりとうりかいいいい

MANUFACTURER: Battelle Memorial Institute

APPLICATION: No known application to hazardous wastes

STATUS: **Experimental**

- **ADVANTAGES:** Low heating value fuels can be incinerated due to good heat recirculation; advantages over conventional fluidized beds: lower pressure drops, better mixing; higher residence time capability.
- High potential for gas short circuiting bed, primarily **DISADVANTAGES:** used to react on solids.

FLUIDIZED BED

DESCRIPTION: A vertically oriented vessel in which gases are blown up through a bed of inert granular material. The agitation of the bed creates a dense, well-mixed medium which behaves like a liquid. Wastes are injected into or just above the bed. An auxilliary fuel is used to preheat or maintain bed temperature.

FLOW DIAGRAM:

MANUFACTURERS: Lurgi, General Atomic Copeland Systems, Energy Inc., Scientific Design, Aerojet

APPLICATIONS: Primarily used for the destruction of sludges from municipal wastewater plants, oil refineries, and pulp and paper mills. Some work with organics such as PCBs, pharmaceutical wastes, phenolic wastes, and methyl methacrylate has been performed.

STATUS: Commercially available

C-9

FLUIDIZED BED (continued)

COSTS: Costs estimated by Energy Incorporated for 50 gal/hr unit:

Installed cost - \$1.3 million operating cost \$.25/pound of waste

Applicable for solid, liquid, and gaseous combustible

ADVANTAGES:

स

Ð

wastes. Simple design requiring no moving parts. Compact due to high heating rates, reduces capital cost. Low temperatures and excess air requirements, lower NO_x emissions which could reduce emission control costs. Gaseous emissions can be controlled by paper bed material selection

High combustion efficiencies.

DISADVANTAGES: Difficult to remove residual materials from the bed. Temperatures can not exceed softening point of the bed to avoid agglomeration. High operating cost.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM. An analytication and the decision of the state of the

UV DECOMPOSITION (PHOTOLYSIS)

DESCRIPTION: Degradation of wastes using ultraviolet light. Ultralight may be supplied by sunlight, lamps, or lasers. In addition, some processes involve the bubbling of ozone through waste for oxidation.

FLOW DIAGRAM:

MANUFACTURERS: Houston Research Westgate Research (ozonation) Southern Illinois University University of California (laser) FOCUS (solar) Atlantic Research Corporation QED (solar zapper)

APPLICATION: PCBs

ADVANTAGES: Potential for removing pollutants prior to final destruction.

DISADVANTAGES: Designed for liquids and many other toxic compounds

SOLAR ZAPPER

DESCRIPTION:

Solar Energy, Concentrated to 10,000 Times Ambient Levels, Is Used to Thermally and Photochemically Degrade Hydrocarbons. The Pyrolysis Products Are Subsequently Incinerated

FLOW DIAGRAM:

MANUFACTURERS: Focus Environmental Systems PREVIOUS APPLICATIONS: Destruction of PCBs STATUS: Pilot .'Lant ADVANTAGES: Low Operating Costs Utilizes Synergism of Thermal and Photochemical DISADVANTAGES: Technology Is Not Well Understood

EVALUATION: A UNIQUE COMBINATION OF MECHANISMS THAT HAS POTENTIAL FOR AGENT DESTRUCTION

LIQUID INJECTION

Description:

Incinerator which destroys liquids and slurries by atomizing the waste by atomizing the waste and mixing it with air. Atomization achieved either mechanically, using a rotary cap or pressure atomization systems, or via gasfluid nozzles which use high pressure air or steam. Incinerator can be oriented horizontally or vertically with injection along the central axis. In a specialized liquid injection combustor, the vortex, waste injected tangentially.

MANUFACTURERS: Air Resources, Bigelow-Liptak, Brule, C&H Combustion, Hirt Engineers, Inc., Midland-Ross, John Zinc, Met-Pro, Peabody International, Prenod, Trane Thermal

STATUS: Commercially available.

APPLICATIONS: PCBs, pesticides, herbicides, polymer wastes, phenols, still and reactor bottoms

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

LIQUID INJECTION (continued)

COST: 4500 metric tons/yr hexachlorocyclopentadiene Capital - \$1.63M Operating \$4.92/metric ton

Ę. Į

8

17

ADVANTAGES: Capable of incinerating a wide range of liquid wastes Low maintenance cost due to lack of moving parts Capable of fairly high turndown ratio

DISADVANTAGES: Only wastes that can be atomized through a burner nozzle can be incinerated. Burners susceptible to pluggage.

CEMENT KILN

DESCRIPTION: Integration of waste incineration with a process used in cement manufacture. Waste, limestone, and cement additives are fed to a rotary kiln and subjected to 2600 F temperatures and residence times of up to 10 seconds. End product is the solid clinker found in cement.

MANUFACTURERS: Alpha Portland Cement Co., General Portland Co., SCA Services, Inc. (Chem-Thol), St. Lawrence Cement Co., Marquette Cement Company.

STATUS: Commercially available technology.

COSTS: Possible savings in cement production costs if waste has significant heating value.

- APPLICATIONS: Hard to burn wastes have been successfully destroyed in test burns. Less hazardous materials such as waste solvents and still bottoms from solvent reclaiming operations have already been purchased and burned on a continuous basis by cement companies.
- ADVANTAGES: High temperatures and long residence times are wellsuited for hazardous waste destruction. Wastes may decrease production costs if they have fuel value. Chlorinated wastes neturalize alkaline clinkers.

.

間

[:]

(

;;;

The substance of the state of the second sec

CEMENT KILN (continued)

DISADVANTAGES: Increase in particulate matter in the waste stream. Lack of public support.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

.

ROTARY KILN

DESCRIPTION:

A cylindrical refractory-lined shell that is mounted at a slight incline from the horizontal. Rotation of the shell mixes waste with combustion air and transports the waste through the kiln. Handles liquids, solids, and gases.

- MANUFACTURERS: Midland Ross, Lurgi, Bigelow-Liptak, C&H Combustion, Met-Pro, Vulcan Iron Works, TRW Systems, Inc., C.E. Raymond, Franklin Research Center, Brown Engineering, Versar, Thermall, Ford, Bacon & Davis, Stock Equipment, Kyle Machine Works.
- APPLICATIONS: PCB wastes, munitions, chemical warfare agents, polyvinylchloride waste

STATUS: Commercially available.

COSTS: PCB wastes

5,000 metric tons/yr

Capital \$3,648,900

Operating \$741.00/metric ton (1978) dollars

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

C-17

; ;

3

[]

6

ROTARY KILN (continued)

ADVANTAGES: Able to incinerate wastes in any physical form. Capable of accepting wastes from a variety of feed mechanisms. Feed capability for drums and bulk containers. No moving parts inside kiln. Can operate at high temperatures (> 2500 F). DISADVANTAGES: High installation cost. Particulate matter entrained and carried out of reactor before complete combustion. Low thermal efficiency.

Problems arise maintaining seals at ends of the kiln.

INDUSTRIAL BOILERS

DESCRIPTION: Cocumbustion or use of waste as fuel in devices, whose primary purpose is energy production, such as industrial boilers and process heaters.

APPLICATIONS: PCB contaminated material, waste oil, wood-pulping waste, petroleum refining fuels.

STATUS: Commercially available.

والرجوا الحرار الجرار والمراجع وتجريبه والمراجع والمراجع المراجع والمراجع وتحريته وتحادث وتحادث وتحاري

ADVANTAGES: Use of existing facilities.

DISADVANTAGES: Previously used for high heat content wastes which are content wastes which are usually not considered hazardous. May shorten useful life of boiler

INTERNAL COMBUSTION ENGINE

- A Dorman 6-cylinder, 113 kw, tubocharged, 4-stroke DESCRIPTION: diesel engine.
- MANUFACTURER: D & D Group
- APPLICATIONS: PCB/TCB
- DESTRUCTION EFFICIENCY: 99.95 percent
- STATUS: Pilot to commercial
- ADVANTAGES: Possible to obtain both high temperature and high pressure, high potential for meaningful energy recovery.

DISADVANTAGES: Limited feedstock.

WET-AIR OXIDATION

DESCRIPTION: Aqueous phase oxidation of dissolved or suspended organic substances at elevated temperatures and pressures (350-650 F and 300-3000 psig). Catalysts are sometimes employed.

MANUFACTURERS: Zimpro Inc., Energy and Environmental Systems
APPLICATIONS: Municipal sludge, acrylonitrile, pulping liquor, explosives, pesticides, pharmaceutical wastes.
STATUS: Commercially available.
COSTS: Installed capital costs

1.6 M/10 gpm - 5.5 M/70 gpm

Operating

1.7 cents/gallon - 3.7 cents/gallon

Maintenance

1 - 2 percent of plant fixed capital investments
(1982)

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

WET-AIR OXIDATION (continued)

ADVANTAGES: Low operating cost Low heating value feedstocks can be used DISADVANTAGES: Limited to dilate solutions Extensive downstream processing may be required.

. .

Ċ

(:) . .

1 1 1

ļ.,

. . .

CALIFY CONTRACTOR

HIGH-TEMPERATURE FLUID WALL

DESCRIPTION: Finely ground (-20 mesh) or atomized wastes are destroyed via radiant energy. Wastes are fed downward into a porous, tubular core. The core is heated by electrodes which are located outside of the pourous core and an outer wall. A gas (transported to radiation) is injected into the pourous core radially to blanket walls and reduce contact between them and waste material.

- MANUFACTURER: Thagard Research Company
- APPLICATION: Hexachlorobenzene

STATUS: Pilot scale/commercial.

- COSTS: Thagard claims are comparable to conventional incineration.
- ADVANTAGES: Reduced need for downstream stack clean up devices. Longer life due to fluid wall.

DISADVANTAGES: Feed must be ground or atomized.

SINGLE STAGE MOLTEN SALT

DESCRIPTION:

(}

6

2.2.5

() []

TOXIC CHEMICALS AND CONTAMINATED MATERIAL ARE COMBUSTED AND DISSOLVED IN A MOLTEN SALT BATH AT 800 TO 1000°C. ACID GAS COMPONENTS ARE RETAINED IN THE SALT.

FLOW DIAGRAM:

MANUFACTURERS: ROCKWELL INTERNATIONAL, QUESTEX CORPORATION

PREVIOUS

APPLICATIONS: DISPOSAL OF EXPLOSIVES, WAR GASES, PESTICIDES, PCB'S AND OTHER INDUSTRIAL WASTES

STATUS: PILOT TO COMMERCIAL

DESTRUCTION EFFICIENCIES:

SIX NINES OR BETTER IN ROCKWELL BENCH SCALE TESTS WITH WAR GASES

COSTS: ROCKWELL ESTIMATED THE COST OF A COMPLETE PLANT TO PROCESS 1000 LB/HR OF NEUTRALIZED GB TO SODIUM PHOSPHATE FOR RESALE IN 1975 AS \$2MM ADVANTAGES:

HIGH DESTRUCTION EFFICIENCY, MINIMAL OFF-GAS CLEAN-UP REQUIREMENTS, LOW WASTE VOLUME, SPENT SALT HAS BEEN 5X DECONTAMINATED

DISADVANTAGES: COSTS MAY BE HIGH, BULK METAL FEED IS DEVELOPMENTAL AT BEST, P205 EMISSION IS LIKELY

MOLTEN SALT METAL CLEANING

DESCRIPTION:

()

5

PARTS ARE LOWERED FROM AN OVERHEAD CRANE INTO A MOLTEN SALT BATH AT 200 TO 550°C, ENCLOSED IN A FUME HOOD. PARTS ARE THOROUGHLY CLEANED BY OXIDIZING SALT WITH MINIMUM ATTACK OF THE METAL

FLOW DIAGRAM:

MANUFACTURER:

KOLENE CORPORATION

APPLICATIONS:

DESCALING, REMOVAL OF RAINT, TEFLON AND MOLYBDENUM DISULFIDE COATINGS

WIDELY USED IN INDUSTRY

MANUFACTUR PREVIOUS APPLICATIO STATUS: ADVANTEGES DISADVANTA ADVANTEGES: MAY PROVIDE MORE THOROUGH OR RAPID DECONTAMINATION AND REQUIRE LESS ENERGY THAN CONVENTIONAL FURNACE TREATMENT

DI SADVAN TAGE S: HAS NOT BEEN TESTED WITH HAZARDOUS MATERIALS

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM. المحارب والمربعين والمراجر والمحارض والمحارض والمترجة المتحد والمحتر متحملة جناحة فالمحت والمحته فالمحته المترا

THERMAL PLASMA SYSTEMS

DESCRIPTION: PLASMA TORCH CONVERTS ELECTRICAL ENERGY TO PROCESS HEAT VIA A RAPIDLY ROTATING ELECTRIC ARC. THIS SYSTEM CAN BE USED TO OXIDIZE OR PYROLYZE AT EXTREMELY HIGH TEMPERATURES (+2000°F), THE HYDROCARBONS ARE CONTAINED IN A GAS STREAM

- MANUFACTURERS: WESTINGHOUSE APPLIED ENERGETICS, PLASMA RESEARCH, INC.
- APPLICATIONS: Hydrocarbon Pyrolysis, Blast Furnaces
- STATUS: PILOT PLANT

PREVIOUS

- ADVANTAGES: HIGH DESTRUCTION EFFICIENCY LOW PRODUCT GAS VOLUME LOW CAPITAL COSTS
- DISADVANTAGES: HIGH OPERATING COSTS CAN'T PROCESS METAL PARTS PREDICTION OF PRODUCTS IS DIFFICULT
- EVALUATION: HIGH POTENTIAL FOR AGENT DESTRUCTION. May Be Incorporated as an Energy Source in an Overall Concept

lse, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

C-27

MOLTEN METAL

- DESCRIPTION: CONTAMINATED MATERIAL IS FED TO A BED OF MOLTEN METAL (IRON, SODIUM, ETC.). AGENT IS EITHER OXIDIZED OR PYROLYZED AND ASH FORMS A SLAG
- MANUFACTURERS: Pyromagnetic, Mine Safety Appliance

PREVIOUS

i i i

ġ

[]

(•-) •-•

(·) (·)

.

国際語なななの、「日本学校の意味」と国際国家の語言に、現在ななななる

APPLICATIONS: COAL GASIFICATION, MUNICIPAL WASTE DISPOSAL

STATUS: PILOT TO COMMERCIAL

ADVANTAGES: POTENTIAL FOR HIGH TEMPERATURE OPERATION SOLID RESIDUE IS 5X DECONTAMINATED POTENTIAL FOR CATALYSIS OR REACTIVE MEDIUM IN BED ACCEPTS A VARIETY OF FEEDSTOCKS

DISADVANTAGES: SHORT VESSEL LIFE High Operating Costs Slag Chemistry is Unknown May Require Top Feed

EVALUATION: HIGH POTENTIAL BUT LAB TESTING IS REQUIRED

GEOTHERMAL

CONCEPT: DEPOSIT HAZARDOUS WASTES ON THE OCEAN FLOOR IN A SUBDUCTION ZONE WHERE THEY WILL BE Cycled to the Earth's Core and Melted by Geothermal Process

DIAGRAM:

PRESENTLY BEING CONSIDERED FOR NUCLEAR WASTE DISPOSAL

EVALUATION: ACCEPTANCE UNLIKELY FOR POLITICAL REASONS

MASHED MUNITION FLUIDIZED-BED

DESCRIPTION:

1

*:]

 (\cdot)

 $\left[\right]$

. . 1

3

A fluidized-bed incinerator designed to process a "munition mass" consisting of projectile pieces (metal parts 1-6 inches), propellant/explosive pieces (1-6 inches), and chemical agent. The incinerator consists of a cylindrical vessel with a conical bottom connected to a bulk item conveying system. Inside the vessel, a spout tube would be suspended along the vertical axis of the vessel and would be placed about one foot above the cone exit and would extend to about one foot above the bed material near the top of the vessel.

The munition mash exiting a "munition masher" would enter the metal parts and explosive/propellant feed system. At this point, liquid agent would be collected and would drain into an agent surge tank. Make-up bed material would be added to the metal parts feed and the mixture would be fed into the incinerator and randomly distributed into the annular bed area by the conical distributor plate. Since the bed material is not static but is moving downward in the annulus, the metal parts and explosive/propellants work their way downward and are respectively decontaminated and deactivated by the bed material which is about 1600 F. As the pieces enter the conical discharge section, the large metal parts fall into the bulk item discharge conveyor where any adhering bed material is swept away by the jet of air which enters at the bottom. Explosive/propellant materials that are not entirely deactivated would be completely combusted by the jet of air. Therefore, only deconned metal parts exit at the bottom of the incinerator. The jet of air in addition to sweeping the metal parts would sweep bed material up into the spout tube where the chemical agent is injected. Complete combustion of the agent would occur within the spout tube and the acid product gases produced by the combustion process would react with the limestone providing for an in-situ scrubbing capability. The combustion product gases and bed material would pass up the spout tube where in the freeboard area the bed material would fall into the annular area (giving the annulus its moving bed feature) and the product gases would exit the incinerator for final flue gas treatment. The freeboard area also provides for additional residence time to insure complete destruction of the agents. The heat generated by the combustion process within the spout tube would be distributed throughout the bed by circulation of the bed material as well as by conduction through the spout tube.

MASHED MUNITION FLUIDIZED-BED (continued)

DIAGRAM:

STATUS: Conceptual

ADVANTAGES: Possibility of destroying agent, deactivating explosive/ propellants, deconning metal parts all in one unit

Some scrubbing of acid gases could be achieved when limestone added to bed material

DISADVANTAGES: Possible difficulty in achieving the proposed feed and metal parts removal scenarios

Proposed temperature of bed material is above softening point of common lime (approximately 1300 F) which may lead to agglomeration

Agglomeration may be enhanced by interaction between bed material and agent in the spout

SWINGING MOLTEN SALT

DESCRIPTION:

े. भ

50

A modification of molten salt incineration in which the volatilization, burnout, and incineration of munitions/ items is rotated between at least three molten salt units. Each unit alternately provides one of these three functions. The process would require minimum amounts of auxiliary fuel and effectively utilizes the agent heat of combustion for volatilization and burnout. Furthermore, the incineration unit provides for the in-situ scrubbing of the acid product gases and could also destroy spent decon solution which would help in controlling the incineration temperature.

Referring to Cycle I in the diagram, Unit 1 is in the volatilization mode. A tray of projectiles, TCs, or bombs is placed in the vessel and occupies the freeboard area above the molten salt bath. The temperature of the bath is about 1800 F and radiation from the bath to the munitions is the dominant mode of heat transfer. The agent is rapidly volatilized in an inert atmosphere and conveyed to the inciner-Calculations indicate that a 6-foot diameter ator, Unit 3. by 6-foot depth bath can volatilize the agent in 150 105 projectiles (placement density of 50 percent) with a decrease of only about 100 F in bath temperature. This would equal a destruction rate of approximately 1000 lbs/hr. Prior processing of the munitions would only require that the explosive/propellant be removed and that the agent cavity be accessed. Unit 2 is in the burnout phase wherein the final residual amounts of agent are removed and the metal parts decontaminated. The residual quantities of agent would also be conveyed to Unit 3 for incineration. Unit 3 is in the incineration mode receiving agent vapors as well as combustion air. At the end of this cycle, Unit 3 would be the hottest unit since it was the incinerator, followed by Unit 1 and Unit 2. In Cycle II, a new charge of munitions is placed in Unit 3, which now serves as the volatilizer; the metal parts in Unit 1 remain for burnout; and Unit 2 is thermally recharged and serves as the incinerator. Thus, the various functions of volatilization, burnout, and incineration are rotated among the three units to utilize efficiently the energy of combustion. The unsteady flow of agent to the incinerator would not pose a problem because of the large heat capacity of the beds; hence, control would not be a problem.

DIAGRAM:

(following page)

C-31

PROCESS NO. 24 SWINGING MOLTEN SALT

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

SWINGING MOLTEN SALT (continued)

STATUS: Conceptual

na sente a serie de la construction Na construction de la construction d

ł

> ំពុ ំពុ ភូមិខ្

ADVANTAGES: Heat of combustion of agent used for volatilization and burnout

Less auxiliary fuel required

In-situ scrubbing of acid gases

Incineration temperature could be controlled by destroying spent decon solution

DISADVANTAGES: Possible problems with valving network at high temperatures

SUE BURNER

DESCRIPTION: A fume and liquid incinerator similar to liquid injection incinerators. The burner is comprised of an inlet pipe connected to a large diameter combustion chamber by means of a flat plate. Fuel nozzles protruding from the plate inject wastes radially into the inlet air stream. Combustion occurs in a recirculation zone formed by the flat plate and combustion chamber wall.

BASIC SUE BURNER/INCINERATOR

STATUS: Commercial

DIAGRAM:

PREVIOUS APPLICATIONS: Chlorinated hydrocarbons

MANUFACTURER: Marguardt Company

ADVANTAGES: Extremely stable burner Turn down ratio of 10:1

DISADVANTAGES: Incapable of processing solids larger than 500 microns

REMARKS: Worth consideration as an afterburner

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

SWINGING MOLTEN METAL

DESCRIPTION:

j

12

Ú

Ę.

. "

The concept utilizes 3 molten metal baths to alternately volatilize, melt, and incinerate muntions/items containing lethal agents.

The sequence of events is as follows:

<u>Stage 1</u>. A muntion/item, with the agent and explosive cavities, punched and plugged, with a meltable plug is suspended above a molten metal bath. The radiant and convective heat vaporizes the agent and ignites the explosive. Volatiles are carried out with a nitrogen or air purge.

<u>Stage 2</u>. In Stage 2, the munition without its volatile components is dropped in to the molten metal bath for melting and hence 5X decon. Excess metal and slag are removed in this stage. Volatiles are removed via a purge flow.

<u>Stage 3</u>. Volatiles from the other two baths which are operating in Stages 1 and 2 enter the molten metal via a lance. Air also enters the lance causing the combustibles to burn as they bubble through the bed. An appropriate sorbent can also be fed to the bath to produce a molten slag which removes Cl, F, P, and S from the flue gas.

In the subsequent phases, the bath formerly used for incineration is used for volatilization since its temperature is the highest. The bath used to melt in the previous phase becomes the incineration chamber and the former volatilization becomes the melt bath.

PAGE 2

STATUS: Theoretical

ADVANTAGES: Efficient use of heat of combustion of agent by bath rotation.

Reduced pollution control requirements if pollutants can be captured in slag.

DISADVANTAGES: High capital cost associated with the number of baths and duplication of related equipment.

REMARKS: Worth further consideration

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

and a second second

FLUIDIZED BED/FUME INCINERATOR (INACTIVE)

DESCRIPTION: An adaptation of the Midland-Ross Fume Incinerator/Fluid Bed Heat Exchanger. Punched munitions are fed to the bottom of the unit by a ram injector. Falling bed material thermally downloads munitions and metal parts can be rendered 5X decontaminated. Vapors rise and are combusted as they pass through combustion zone. Burning agent and auxiliary fuel heats bed material which is recirculated.

DIAGRAM:

l.

STATUS: Adaptation of a commercially available process

ADVANTAGES: Capable of handling larger items than conventional systems Metal parts can be 5X decontaminated utilizing the heat generated by agent combustion

DISADVANTAGES: Possible difficulty with insuring 5X decontamination due to interaction of contaminated bed material with metal parts

COMMENTS: Worth further consideration

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM. The West of the second state of the state of the

SEQUENTIAL FLUID BED (E3I)

DESCRIPTION: A two-stage fluid bed proposed for the destruction of texins. Toxic waste materials and make-up catalyst are and to the first stage (a hot air fluidized bed). The toxic wastes are pyrolyzed and oxidized in the bed producing CO₂, HCl, and Cl₂. The chromia supported on alumina catalyst promotes the destruction of thermally stable toxic compounds and the oxidation of CO to CO₂. The exhaust gas from the first stage is used to fluidize the second stage. Limestone is added to the second stage to remove chlorine and chlorides from the exhaust stream.

DIAGRAM:

STATUS: Conceptual

PROPRIETOR: Energy and Environmental Engineering, Inc.

ADVANTAGES: The catalyst in first stage promotes the oxidation of stable toxic species and reduces the operating temperature required to induce oxidation.
SEQUENTIAL FLUID BED

ADVANTAGES:

(Con't) The second stage dry scrubbing system has the potential of removing corrosive gases from the exhaust. Solid and liquids can be fed to the system.

DISADVANTAGES: Possible formation of eutectics leading to bed agglomeration.

COMMENTS: Worth further consideration

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

PAGE 2

PLASMA ARC PYROLYSIS

DESCRIPTION: Containers of agent are placed in an air lock and are punched or rammed in order to release agent. The liquid agent is transferred to a reservoir and the container is dropped into a pyrolytic plasma chamber where it is melted. The liquid agent is pumped into the chamber at a fixed rate and pyrolyzed. Slag has potential for pollutant capture.

STATUS: Conceptual

ADVANTAGES: Possible reduced pollution control equipment requirements due to capture in a reactive slag.

Slag can be rendered 5X decontaminated.

DISADVANTAGES: Limited feedstock configurations High operating cost

REMARKS: Worth further consideration

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

C-40

MOLTEN METAL/SLAG THERMAL DOWNLOAD

DESCRIPTION: Punched munitions are fed to a volatile chamber where heat from the molten metal bath and auxiliary heater (plasma arc) volatilize the agent and explosive. The munition body can be melted and/or dropped into the molten metal for 5X decontamination. The volatiles are mixed with air and injected, through a lance, under the surface of the molten metal in the reaction chamber. Sorbent is added and forms a slag layer on the surface of the molten metal. The slag layer captures halogens phosphorous, and/or sulfur. The volatile chamber and reaction chamber are interconnected to permit the flow of metal and slag from the volatile chamber to the reaction chamber for removal. The molten metal may also reduce heating requirements in the volatile chamber by conductively transferring the heat generated in the reaction chamber.

STATUS: Conceptual

ADVANTAGES: Reduce pollution control requirements

5X decontamination of metal parts in metal bath

Heat generated in reaction chamber compliments auxiliary burner in volatilizing items

DISADVANTAGES: High gas pressures may be required to overcome pressure drop associated with the molten metal bath. Materials problems at temperatures high enough to melt munitions.

REMARKS:

DIAGRAM:

· · ·

т.,

.

i. Ni

3

j

Worth further consideration

ROTARY KILN (Pyrocal Process)

DESCRIPTION: Punched munitions enter the rotary kiln heat exchanger where the explosives and agent are volatilized and pyrolyzed. The pyrolysis gases enter a clean-up device where the halogens and perhaps sulfur and/or phosphorus are removed. The cleaned pyrolysis gas is then mixed with air and burned in the combustor before proceeding to the stack and any clean-up or heat recovery devices required. A portion of the hot combustion gases are recycled from the combustor to the rotary kiln/heat exchanger to provide the heat for this vessel.

DIAGRAM:

STATUS: ADVANTAGES: Modification of commercially-available process The volatilization/pyrolysis by the heat exchanger substantially reduces the duty on the halogen removal/clean-up

device.

Recycling the flue gas minimizes the auxiliary fuel requirements.

Pyrolysis products not easily predicted

DISADVANTAGES:

Possible difficulty in maintaining rotary kiln seal and seal at heat exchanger-kiln interface.

REMARKS: Worth further consideration

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM,

n and a second second second with a second secon

FLUID BED (THERMAL DOWNLOAD)

DESCRIPTION: A conventional fluidized bed coupled with two or more batch fluid bed volatile chambers. Agent and auxiliary fuel burning in the fluidized bed reactor heat the bed material which is circulated at a controlled rate to one of the volatile chambers. The hot bed material volatilizes agent and explosives from a punched munition in the volatile chamber. The volatilized materials enter the fluid bed reactor by flowing upward against the hot bed material entering the volatile chamber. After 5X decontamination, the appropriate knife values are closed and the second volatile chamber, containing fresh munition, is brought on line.

DIAGRAM:

ų V

<u>भ</u> स्त्र

: :1

j

, 1 , 1

5.44.972ZZ

SALE CARES

TERESTORY

STATUS: Conceptual

ADVANTAGES: Good waste heat utilization Ease of removal of metal parts

DISADVANTAGES: Possible to remove some contaminated bed material when removing metal parts

REMARKS: Worth further consideration

RESISTANCE-HEATED FLUIDIZED-BEDS

DESCRIPTION: A conventional fluid bed in which electrodes in the bed or wall supply energy to an electrically-conductive bed material. Temperatures of up to several degrees Celcius can be achieved with upper limits being primarily a result of materials of construction. Hazardous materials can be either pyrolyzed or oxidized.

DIAGRAM:

STATUS: Experimental

DEVELOPER: **Battelle**

ADVANTAGES :

High temperatures pyrolysis or oxidation Smaller size requirements than in conventional incineration Efficient energy usage (no energy wasted heating flue gases) Low gas throughput requires smaller pollution control equipment **DISADVANTAGES:** Materials compatibility problems (materials of

construction and bed material) due to high

temperatures

High operating costs

REMARKS:

Worthy of further consideration

PLASMA ARC VAPORIZER

Munitions/items are fed through an airlock system into a **DESCRIPTION:** plasma chamber (Stage I). Nitrogen is ionized to form a plasma with temperatures ranging between 4000 C and 5000 C.

The high temperatures vaporize the entire munition/item completely disassociating the contained agent. The metallic vapors (phospides, sulfides, chlorides, and fluorides) are condensed in Stage II as molten metals and metallic halides, phosphides, and sulphides. In Stage III, the remaining vapors are mixed with air and combusted to $\rm CO_2$ and $\rm H_2O$.

FLOW DIAGRAM:

: الد

1

· · '

<u>「</u>]

ij

l L

ار . سب

STATUS:	Theoretical/experimental
MANUFACTURER:	Westinghouse
ADVANTAGES:	Limited feedstock preparation Reduced air pollution control requirements
DISADVANTAGES:	Principle unproven (conceptual) High energy costs Technology needed to produce metallic halides not yet established Materials problems at high temperatures
REMARKS :	Extensive development required and high costs are likely

UNDERGROUND DETONATION

DESCRIPTION:

A cavity is mined at a suitable depth in a suitable formation, chosen such that no venting to the surface will occur when a large quantity of explosive is detonated in the cavity. The cavity is filled with a mixture of conventional (HE) munitions awaiting demilitarization, ammonium nitrate (AN), and chemical munitions with agent containers. The loading is such that a "layer" of conventional munitions and AN lines the cavity, and a mixture of conventional munitions, AN, and chemical munitions/items fills the remaining space.

After backfilling the entrance shaft, the material is detonated by charges located at multiple points in the layer free of agent. This forms an initial zone of hot, high-pressure gas that prevents undecomposed agent from being driven into the cavity walls.

The mixture of conventional munitions, AN, and chemical munitions items is chosen to yield a sufficiently high temperature to decompose the agent (and optionally, sufficient excess oxygen to burn the agent to a specified degree of completeness) and sufficient shock pressure to insure that all chemical munitions have been broken open and all explosives in such munitions detonated.

DIAGRAM:

C-46

C-47

UNDERGROUND DETUNATION (continued)

STATUS: Conceptual

ADVANTAGES: No munition preparation required

DISADVANTAGES: Munitions/items would need to be transported to a site with suitable underground structure Small-scale tests to determine feasibility or proper mixtures will be difficult to interpret The chemical munition/item density will be low requiring a large cavity volume per item Debris and decomposition products remain buried with no reasonable method of further processing

Worth further consideration

REMARKS:

· · ·

, ,

j

2

; ;

<u>.</u>

. 1

VERY LARGE ENCLOSURE

DESCRIPTION:

DIAGRAM:

••1

·..1

A fire is started in the enclosure. Packed munitions, agent containers, etc., are dropped into the fire through the air lock. Sufficient fuel value (agent, explosives, propellants, dunnage) is associated with the munitions and containers to maintain burning.

When accumulated scrap becomes excessive (possibly when the central pile becomes high enough to threaten the possibility of munitions rolling to the wall), munition/agent feed is terminated and burning is maintained by firing clean fuel for a period long enough to ensure explosion of any munition and vaporization or decomposition of any agent. After a cooling period, the locks are opened and scrap removed (possibly by a clam shell). The fire is then restarted and feed resumed. Scrap can be 5X decontaminated in a conventional furnace.

STATUS: Conceptual

ADVANTAGES: Capable of processing all-up munitions

DISADVANTAGES: Airlock and fragmentation shields are difficult to design Simultaneous processing of a large number of munitions increases hazards

REMARKS: Worth further consideration

SHAFT FURNACE/SCRAP CYCLE

DESCRIPTION:

> (، در) ار در ار د

; ; ;

6

3

U

5

Unpacked munitions are fed with recycled scrap to a shaft furnace. The feed is arranged to cause the munitions to be approximately at the shaft centerline. The munition is heated as it descends and eventually explodes as a result of increased internal pressure caused by agent volatilization or explosive detonation.

The surrounding scrap stops fragments and attenuates the blast wave, reducing the containment capability required of the wall. Released agent burns contributing heat. Scrap is discharged, cooled, screened for oversize and undersize, and recirculated. The scrap recirculation rate is high compared to the munition feed rate.

DIAGRAM:

STATUS:

Conventional

ADVANTAGES: Munitions explosions are acceptable

DISADVANTAGES:

Design requirements for vessel must be determined accounting for blast containment, static/dynamic overpressure containment, allowable wall temperature, internal refractory, feed and discharge locks, gas inlet and outlet locations, interaction between inlets and exits during surges and backflow

REMARKS:

Worth further consideration

STEAM PYROLYSIS (SEGAS)

DESCRIPTION: A continuous, non-catalytic stream reformation process in which steam is contacted with hydrocarbons at high temperatures (1227 C) over relatively long retention times. The reactor used (see diagram) is a pressure vessel with an array of tubes inserted in order to lengthen the reaction path. The reactants can be heated either electrically or by burning a portion of the product gas. Careful selection of the materials of construction of the reactor is necessary when the fuel is the product gas. Graphite or silicon carbide tubes are used as the heating elements in electrically-heated reactors.

ELECTRICALLY-HEATED SEGAS WASTE DESTRUCTION REACTOR

STATUS: Laboratory scale

PREVIOUS APPLICATIONS: PCB destruction

PROPRIETOR: A. L. Sandpiper Corporation

COST: Assuming a feed rate of 600 gal/hr of pure PCB, costs were estimated to be: Capital \$2.44 M Operating \$0.41/gallon of waste liquid feed

1.1

PAGE 2

STEAM PYROLYSIS

Simple reactor construction ADVANTAGES:

DISADVANTAGES: Possible materials compatibility problems

Limited application but worth further consideration **REMARKS:**

Use. duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

INSITU PYROLYSIS/OPEN CAVITY

DESCRIPTION:

Pyrolysis of agent within the munitions and bulk containers. The concept involves the placement of nonburstered/deburstered munitions into a heated chamber. The heating chamber would be sealed and purged with nitrogen, so that palleting materials would not burn. The chamber would be heated above the decomposition temperature of the agent and held at that tempcrature to insure agent destruction. In order to prevent agent cavities from rupturing due to the increase in internal pressure during heating, an expansion volume container is attached to the cavity. The container allows the gases to expand and not cause vessel rupturing. The concept would require munition unpacking and accessing of the agent cavity for those configurations which could not withstand the internal pressures (mines, rockets, bombs, spray tanks, mortars, and ton containers).

STATUS: Conceptual

ADVANTAGES: No pollution control required

DISADVANTAGES: Pallets may lose the ability to support munitions/items after pyrolysis

Munitions/items which could not withstand internal pressures would have to be unpacked

Enclosed explosives, fuzes, propeliants would have to be removed since high temperatures and pressures would lead to detonation

INSITU PYROLYSIS/CLOSED CAVITY

DESCRIPTION: Pyrolysis of agent within the munitions and bulk containers. The concept involves the placement of nonburstered/deburstered munitions into a heated chamber. The heating chamber would be sealed and purged with nitrogen, so that palleting materials would not burn. The chamber would be heated above the decomposition temperature to insure agent destruction. In order to prevent agent cavities from rupturing due to the increase in internal pressure during heating, the chamber pressure would be cycled to match the munitions' internal pressure as it is heated or cooled.

STATUS: Conceptual

信号

(22)

(N)

Ń

93

3

ĥ

ADVANTAGES: No pollution control required

Minimum feedstock preparation requirements

DISADVANTAGES: Pallets may lose the ability to support munitions/items after pyrolysis

May be difficult to match cavity and chamber pressures if cavity pressures are not monitored

Enclosed explosives, fuzes, propellants have to be removed since high temperatures and pressures would lead to detonation

After pyrolysis and cooling, the agent cavity would still be under pressure due to decomposition products C-53

ACID DISSOLUTION/INCINERATION

DESCRIPTION:

All-up munitions are placed in an acid-proof vat and acid solution is pumped over them, dissolving the metal. Resultant sludge is filtered and incinerated. When dissolution is "complete", residue (explosive, undissolved metal) is dredged from the vat and incinerated. Released agent is dissolved, hydrolyzed, and incinerated. Acid recovery may be practical. Incineration can be performed in a rotary kiln, molten salt bath, molten metal bath, or wet-air oxidation unit.

DIAGRAM:

STATUS: Conceptual

ADVANTAGES: Pollution control requirements can be reduced if acid can be recovered and molten salt bath, molten metal bath, or rotary kiln with limestone feed can be used for incineration step

DISADVANTAGES: Dissolution rate not known, and if slow, required vat size may be excessive If acid cannot be recovered, extensive waste treatment required

Effect on fuzes unknown

REMARKS: Worth further consideration

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM,

C-54

MULTI-SOLID FLUIDIZED BED (MSFB)

DESCRIPTION: Fluidized bed with the ability to fluidize coarse particles that are usually not fluidizable. Fluidization takes place in a flowing gas/solids suspension. With coarse particles fluidized, the backmixing of the fluidized bed and the collisions between the entrained solids in the gas/fine solids suspension and dense phase fluid-bed particles result in a greatly increased residence time for the entrained solids.

DIAGRAM:

創

i j

6.1

6

1

U

3

鼤

Ï

Î

67

j

SIMPLIFIED PROCESS FLOWSHEET -- HSFB WOOD GASIFICATION COMMERCIAL DESIGN

STATUS: Pilot scale/commercial

PROPRIETOR: Battelle

ADVANTAGES :

High fluid-bed density and vigorous mixing make the MSFB relatively insensitive to the properties of the feed material High rates of heat and mass transfer have been achieved Solids distribution is simplified because of high velocities and vigorous mixing High potential for waste heat utilization

C-55

Use, dublication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

High throughputs achievable

DISADVANTAGES: Complexity of oepration

REMARKS: Worth further consideration

VACUUM FURNACE

DESCRIPTION: A furnace run at an absolute pressure of approximately 0.1 atm and having 100 cu ft of volume per pound of explosive and propellant. The large volume and reduced pressure prevent chamber pressure from exceeding one atmosphere during rapid burning of the explosive. Enough air leaked into the chamber to burn agent as it evaporates out of munition. The furnace can be heated by either infrared or induction heaters. The walls of the chamber should be kept warm to prevent the condensation of agent or combustion products. Since the Nash Pump is a constant volume pump, the time in the afterburner should be independent of pressure and set by the afterburner volume and pump capacity rather than agent release rate. Steam ejectors can also be used as a vacuum source. STATUS: Conceptual ADVANTAGES: Explosives do not detonate under reduced pressure

The Nash pump can serve as a scrubber The agent cavity may not need to be opened since heating could evaporate agent and burst cavity

High potential for materials compatibility problems DISADVANTAGES:

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

Extensive development required REMARKS:

C-57

ß たいではないとと 6.53 Ē 個 Ş 2 8 $\left| \cdot \right|$

INDUCTION FURNACE

DESCRIPTION: A fume incinerator in which energy required to promote oxidation is supplied by preheated air instead of by combustion of an auxiliary fuel or ignition of the fume itself with a pilot. Air is preheated as it passes over induction coils before entering mixing chamber (fume incinerator).

STATUS: Experimental/bench-scale

DEVELOPER: Midland-Ross

ADVANTAGES:

Induction heating offers a means of rapid heating and possible increased production rates Less carbon dioxide generated reducing the salt generation in the scrubber

DISADVANTAGES: Energy conversion efficiency less than in an IR furnace Possible cold walls could lead to agent and/or tar condensation

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

The following are concepts or processes which were not included in the evaluation as separate items because they had no significant benefits over a concept evaluated or were included as part of a concept evaluated.

.

. . .

Multiple Hearth Furnace

Hearth furnaces are typically used to incinerate sludges and normally operate in a counter-current flow mode. An IR furnace that has been evaluated is a modified hearth furnace. Other hearth furnaces appear to offer no advantages over rotary kilns and typically have higher capital and operating costs.

Laser Systems

The present application of laser technology is as a UV photolysis process. This appears to be very expensive hardware to be used as a UV source and other utilization of the laser does not seem feasible.

Microwave Plasma

This technology is similar to plasma arc but is not as welldeveloped. There does not appear to be a significant benefit in using a microwave instead of an electric arc to generate the plasma.

Lime Kiln

Lime kilns all fall under the following categories: shaft furnaces, rotary kilns, rotary hearths, and fluidized-beds. These have been evaluated independently.

Glass-Melting Furnace

This technology is the same as molten salt and molten metal and is incorporated in those evaluations.

Detailed descriptions of these concepts follow.

MULTIPLE HEARTH

DESCRIPTION: A refractory-lined steel cylinder divided into smaller chambers by self-supporting refractor arches. A central shaft with horizontal arms plows waste along refractor arch to drop-opening where wastes fall into next chamber. The wastes fall through successive chambers and ash is removed at bottom of the furnace. Fuel and air are introduced through a port on the side of the furnace and combustion gas flow countercurrent to wastes. Liquid and gas wastes can be incinerated by injection through burner nozzles.

Sewage, sludges, tars, liquids, gases

0-60

MULTIPLE HEARTH (continued)

ADVANTAGES:

 $\left\{ \cdot \right\}$

1

.

Ĵ

•

High residence times Desired temperatures profiles can be maintained by addition of fuel burners to various hearths High fuel efficiency is achieved in the multizone configuration A wide variety of wastes can be incinerated Moving parts and associated maintenance and **DISADVANTAGES:** maintenance costs Susceptible to thermal shock resulting from feed interruptions High capital cost Possibility of partially-combusted materials to exit with ash High fuel and air consumption are typical Countercurrent flow

EVALUATION:

A secondary combustion chamber would be required for hazardous wastes Limited application

. . .

LASER

¢.,

٩,

DESCRIPTION:	The irradiation of wastes with ultraviolet light supplied by a laser.
DIAGRAM:	ENERGY MONITOR MONITOR 41 Nd YAS 248 or 268 nm IQ-50 mJ/SHOT
STATUS:	Experimental
PREVIOUS APPLICATIONS:	GB, VX
DEVELOPER:	Los Alamos Scientific Laboratory, University of Pittsburg
ADVANTAGES:	Light energy (photons) can be delivered at higher rate than with conventional processes, thus increasing the rate of hazardous chemical compound destruction or catalyzation. Range of wavelengths emitted can be limite to narrower regions if desired.
DISADVANTAGES:	High capital cost (higher than other means of UV irradi- ation) Higher operating cost due to inefficient energy conver- sion associated with laser
EVALUATION:	UV pyrolysis with the expensive laser as the source

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

MICROWAVE

DESCRIPTION:

留

8

0

3

(;) ;

8

E

. [.] Destruction of wastes in a thermal plasma energized by a microwave material (liquid, slurry, solution in water, compressed cake or pellet) is fed into reaction chamber (silica or quartz) with a carrier gas. The carrier gas is ionized and the microwave-induced electrons react with neutral organic molecules to form free radicals which ultimately dissociate or react with oxygen to form simple reaction products.

DIAGRAM:

MICROWAVE (continued)

STATUS:	Bench-scale/קrototype
PREVIOUS APPLICATIONS:	Pesticides, PCBs, nerve poisons, organometallic compounds
DEVELOPER:	Lockheed Missiles and Space Company
ADVANTAGES :	Low cost High destruction efficiencies predicted Metal fumes are less likely to cause problems than in other high-temperature processes
DISADVANTAGES:	Plasma reaction products are unpredictable and can be toxic Oxygen must be used as carrier gas to insure complete combustion of wastes and prevent the formation of additional toxins Extensive development required No known work being performed in the area at present time
EVALUATION:	Essentially plasma pyrolysis with a different energy source

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM,

.

. . .

, ·

.

LIME KILNS

DESCRIPTION:

そうないない

3

 \mathbf{C}_{i}

È

R

Ü

0

8

È

ŝ

The calcination process to produce lime has been performed in rotary kilns, vertical shaft kilns, rotary hearth furnaces, and fluidized-beds. The calcination process involves the burning of calcium carbonate to form lime:

$$caco_3 \rightleftharpoons cao + co_2$$

Vertical shaft kilns have been used to produce lump lime and rotary kilns have been used to produce fine lime. Highly-reactive lime has been produced in fluidized-beds and rotary hearths.

In vertical kilns, crushed limestone is dropped into the top of the kiln and is calcined as it falls. Vertical kilns are fired either by burning a mixed feed of coke and limestone or by burning oil or gas. The more sophisticated and higher capacity vertical shaft kilns are oilor gas-fired.

Rotary kilns used in lime calcination are commonly 150 feet long but have extended to lengths of up to 400 feet with 11 feet diameter.

In the rotary hearth calciner, limestone is dropped onto a slowly-rutating disk that serves as the furnace bottom. Combustion air and fuel are fired into the kiln tangent to the side walls and above the limestone bed. A vortex is formed as hot combustion gases move upward toward the stack. After one complete revolution, the waste is plowed off the disk and exits through a drop hole.

STATUS:

Commercial

ADVANTAGES: Capture of acidic pollutants by lime

DISADVANTAGES: Commercial units too large and have higher capital cost than necessary.

EVALUATION: Repeat of conventional technology plus a reactive medium

GLASS MELTING FURNACES

DESCRIPTION:

Small-scale manufacture of glass is performed by melting the raw materials in crucibles or pots containing from one to two tons of glass. The crucibles are heated batchwise in large furnaces. Large-scale manufacture is performed either batchwise or continuously in large, enclosed furnaces that are lined with refractory brick. The heat necessary for melting the glass can be supplied by burning fossil fuels over the surface of the glass, by electrodes which project from the furnace walls into the melt. or by a combination of the latter two techniques. In continuous processing, the raw materials are charged into the melting furnace and, after melting, pass through a narrow passage (throat) to the refining section where gases escape from the melt. Regenerative firing is commonly practiced when heat is supplied by combustion. In regenerative firing, the flow of combustion air and flue gases is reversed every 15 to 30 minutes to take advantage of sensible heat stored in brick lattices (checkers) and preheat intake air. The major raw materials are sand, soda ash, and limestone or lime. The following chemical reactions are involved:

 $Na_2CO_3 + aSiO_2 \rightarrow Na_2O \cdot aSiO_2 + CO_2$ $CaCO_3 + bSiO_2 + CaO \cdot bSiO_2 + CO_2$

DIAGRAM:

ふちょくし ビート・トット・トット

STATUS:	Commercial
ADVANTAGES:	Capture of pollutants in glass melt
DISADVANTAGES:	Commercial units may be too large and have high capital cost
EVALUATION:	Essentially a molten salt process

APPENDIX D

ENGINEERING AND ECONOMIC ANALYSIS -ACID ROASTER

8

E

()

.....

APPENDIX D

ENGINEERING AND ECONOMIC ANALYSIS - ACID ROASTER

Engineering Analysis

The state of the art technology for destroying hazardous liquids is liquid injection incineration. In the acid roaster process concept, the items/munitions in lethal agent inventory are converted to a feedstock suitable for liquid injection incineration by treating them with hydrochloric acid. The sequential processing steps are filustrated in Figure D-1 by a process flow chart. The thermal process equipment receives the munition and items from the mechanical preparation area as whole munitions/items separated from the non-metal dunnage (feedstock configuration b). The whole munition/items are placed in dissolution tanks where they are contacted with flowing hydrochloric acid which sequentially dissolves the munition body, washes out, mixes and possibly reacts with the agent, dissolves the fuze and burster well, and then degrades the energetic materials (explosives and rocket propellants). The acid and the products of dissolution are collected in the bottom of the tank (ground if necessary) and then pumped as a slurry to a liquid injection incinerator or roaster where the agents and/or their hydrolysis products are thermally destroyed, the degraded energetic materials combusted, the water and excess acid evaporated, and the metallic salts roasted. The separated dunnage is also fed to the roaster where it is combusted contributing to the heat duty of this unit. The solid residues leave the roaster in a 5X decontaminated form that is suitable for landfilling and has a high potential for reuse. The hot gas stream from the roaster passes through an afterburner which provides redundancy in agent destruction capability, and then enters an acid recovery unit similar to those used by the steel industry in steel pickling plants (1,2,3). The acid recovered in this unit is recycled to the dissolution tanks and the gaseous effluent is sent to a spray dry

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

()) []

ې بد

1

(f) (f)

のためまたで、

SUSTATION STRATES

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

scrubber and baghouse for final cleanup of the acid gases before being vented to the atmosphere through an induced draft fan. The concept and the required hardware are discussed in more detail below.

A. System Concept Description

E

The Acid Roaster Process is made up of the following four systems:

- Dissolution System
- Roaster/Afterburner System
- Acid Recovery System
- Pollution Abatement System.

A detailed description of each of these four systems as well as a detailed energy and material balance for a 400 lb/hour agent throughput are given below. Additional details associated with scaling the process for other agent throughputs can be found in the Economic Analysis section of this appendix.

<u>A-1. Acid Dissolution System</u>. Using acid to dissolve and provide entry into metallic bomb cases is the basis of acid trepanning, technology that has been in existence for several decades^(4,5) and is currently utilized by the Naval Explosive Ordnance Disposal Technology Center. In this concept, complete dissolution of the metal parts rather than simple entry of the explosive cavity is required. The magnitude of the demilitarization program instills the added desires to reduce the costs associated with both acid use and environmental cleanup. For these reasons, use of a hydrochloric acid is preferred over the nitric acid systems normally used in acid trepanning.

To determine the time required to dissolve the munition bodies, and thereby determine the needed size and quantity of dissolution tanks, it was first necessary to determine the rate at which hydrochloric acid will dissolve steel. A review of the available literature (6,7,8,9) indicates that a quiescent solution of

20 percent hydrochloric acid in water at a temperature of 85° C will penetrate steel at an average rate of 0.042 inch/hour. These sources also indicate that the dissolution rate of aluminum rocket bodies would be greater than steel. This rate data was used as the basis for the dissolution tank design. However, the literature also indicates that a flowing system and the presence of ferric chloride in the solution will markedly increase corrosion rates (9,10) Calcott reported a five-fold increase in the acid dissolution rate when the acid velocity was increased from 0 to 9 feet/minute. Since the munition bodies will be dissolved by a flowing hydrochloric acid system that also will contain dissolved ferric chloride, use of the available quiescent solution rate data would lead to a conservative design.

The second determinant of the dissolution time is the thickness of the metal being dissolved. Review of the munition/item descriptions⁽¹¹⁾ indicate that the thickest metal parts in the inventory are in the 8-inch projectile. At its thickest point, the casing for this munition is 0.95 inches thick with 90 percent of the casing less than 0.625 inches thick. The next thickest item (155-mm projectile) is only 0.625 inches at its thickest point. While initial dissolution of the items will take place only on the outer surfaces, once the cavity has been penetrated and the agent drains out, the inner surface will be subject to attack which could conceivably double the surface area available for dissolution.

Based on the above discussion, the following conservative assumptions were made during the design estimations:

- The munition/item casings are uniformly one inch thick
- The dissolution rate of steel in the acid stream is 0.042 inches/hour
- Once the munition has been penetrated exposing a greater surface area, a slight reduction in the acid concentration would be acceptable

The dissolution system was therefore designed on the basis that the munition bodies would dissolve in 20 hours.

D-4

Since grinding and pumping of slurried explosives is accepted practice in the munitions industry, the dissolution system is not being designed for blast containment. Experience in this industry indicates that as long as the liquid velocity and temperatures are maintained at levels adequate to prevent the settling or condensation of slurried or dissolved explosives propagation of an explosion through the piping is not possible.

Dissolution Tanks. The dissolution tanks will be rubberlined, carbon steel tanks similar to those used in electroplating. The tanks will be completely sealed with an access door in one end. The entire tank will be further enclosed within a ventilation hood to prevent hydrogen leakage. The number and size of tanks that are required by the concept is determined by the following consideration:

- Three equal batteries of tanks will be provided; one being loaded during each shift of operation while the other two are processing munitions.
- The required processing rate of munition/items needed to supply the desired agent throughput
- The maximum physical dimensions of the inventory items
- The need to assure uniform acid distribution
- The assumption that a fully loaded tank would have a void fraction of 50 percent with a 6-inch buffer space between the munition and the tank sides.

To assure that uniform acid distribution will be provided to the munition/items at all times, the dissolution tanks are limited to a depth of 6 feet. The minimum length of all tanks is fixed at 16 feet in order to accommodate the spray tanks. The minimum width of the dissolution tanks was fixed at 6 feet in order to hold two ton containers simultaneously. A maximum width of 16 feet was selected in order to limit the weight of munitions a reasonably constructed tank must support. The number of tanks required for a given agent throughput was then determined by these geometric restrictions and the volume of the various munition/items that would provide the agent capacity. For example, at a throughput of 400 lb/hr of agent, three 6-foot wide

••

5

3

. [• tanks are required while at 5000 lb/hr of agent, fifteen 16-foot wide tanks are utilized.

Acid Distribution System. The acid distribution system consists of the pumps, spray nozzles, and plumbing required to move the acid solution to its destinations. This system is constructed entirely of acid resistant materials such as plastics, graphite, and titanium. Each dissolution tank has two pumps in parallel, one in operation and one in standby. This arrangement permits maintenance or replacement without interrupting service. A second set of pumps, again with parallel redundancy, serves to pump a used acid stream to the incinerator/roaster for destruction of contained agent and energetic materials as well as reclamation of the acid. All acid pumps are specified as centrifugal types, constructed of palladium stabilized titanium to be corrosion resistant. From the pumps, the acid is transported to its destination in acid resistant plastic pipe. Acid which is recycled directly to the dissolution tank first passes through a graphite heat exchanger which removes the excess heat of dissolution from the stream. (It should be noted that dissolved explosives could plate out in this heat exchanger and blast containment might be required for this component.) The recycled acid mixes with a stream of reclaimed acid before entering the dissolution tank via acid resistant spray nozzles. The nozzles are designed to assure uniform distribution of the flowing acid stream across all munition items in the tank.

Ventilation System. The ventilation system is represented graphically in Figure D-2. The dissolution of steel munition items by acid will release hydrogen gas as a by-product. Operation of the tanks at 80°C will volatilize small quantities of agent, hydrochloric acid, and water vapor as well as gases from the possible decomposition of the energetic materials. Purging the tank with air at a negative pressure to safely eliminate these gases would markedly increase the acid carryout. Therefore, to remove these gases and avoid the hazards

D-6

. . . .

自己とうできょう

1

and a second a second a second and a second as a second second second second second second second second second

FIGURE D-2. DISSOLUTION TANK VENTILATION SYSTEM

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

of handling hydrogen, the dissolution tank will be allowed to fill with the gaseous products of dissolution and operate at near ambient pressure. To prevent the influx of air into the dissolution tank and to immediately remove and dilute any hydrogen containing gases that might leak out of the tank, the hood surrounding the dissolution tank will be reduced to -5 inches water pressure and purged with a high volume of air. The gases will then be withdrawn from the tank, diluted with air at a ratio of greater than 24/1, and transported to the roaster by an air eductor. The blower that evacuates the hood also provides the air that operates the eductor. The ventilation system will thus convey the gaseous products from the dissolution tank to the roaster for safe destruction. In this manner the air/hydrogen mixtures ratios are kept above the hydrogen/air explosion in the tanks and below this limit elsewhere.

<u>Roaster/Afterburner System</u>. While acid hydrolysis of some agents may occur in the dissolution system, the roaster/afterburner is the system that is ultimately responsible for agent destruction. This system consists of a roasting chamber and an afterburner chamber as serial parts of a single unit. It is a carbon steel unit lined with acid resistant fire brick. Conventional oil-fired burners provide temperature control of both chambers.

Roasting Chamber. Liquid injection incineration and conventional roasting differ only in the location in which the stream to be processed is injected. In roasting, the process stream is normally sprayed into the hot gases at the exit of the unit permitting counter current flow to dry and oxidize the salts. The operating temperature is kept low to reduce fuel costs and promote the growth of large oxide crystals. Liquid injection incineration utilizes concurrent flow. The liquid to be destroyed is injected directly into the flame frequently with or in place of the fuel promoting a well stirred reactor zone at the inlet. The downstream reaction zone is kept as a plug flow reactor in which the operating temperature and residence time are kept sufficiently high to assure complete combustion of the material being processed. Since agent dest .ction is the primary function of this unit, corrosion resistant nozzles will spray the process stream directly into the fuel oil flame near the bottom of the roaster and the unit will operate at downstream conditions that are severe enough to assume agent destruction (nominally 1600⁰F for 2 seconds). To permit additional residence time at temperature for the salts to roast as well as to serve as method to burn dunnage, a small stoker grate is incorporated in the bottom of this unit. The burning of the dunnage as well as the hydrogen gas vented from the dissolution system in the roaster substantially reduces the fuel oil requirements of this unit. The majority of iron salts that have been roasted and the ash from the combusted dunnage will exit the bottom of this unit. In steel pickling operations, this stream of iron oxide is pure enough to be used in magnetic tape production and in fact, competes favorably with oxides from other sources. While the incorporation of wood ash as well as iron salts of phosphorus, fluorine, and/or sulfur may preclude this market, the residue should meet RCRA standards for landfilling and could have a significant resale value.

Afterburner. The afterburner is simply an additional incineration chamber located directly above the roasting chamber. Its purpose is to provide temperature and residence time redundancy to prevent accidental release of agent. A smaller quantity of reclaimed acid is injected at the top of the afterburner to cool the flue gas to protect downstream process equipment. A small carbon steel cyclone is also attached to the flue gas outlet to remove entrained solids. This cyclone is externally heated to keep its walls above 300 C to prevent corrosion by condensed acid gases.

<u>Acid Regeneration System</u>. The acid regeneration system is adapted from the design of regeneration plants that have been commercially available from Dravo Engineers Incorporated for approximately 20 years⁽¹²⁾. The emphasis of the design of this equipment is the

D-9

i N

1944

• • • •

(:-) ::)

(C')

(r) (r)

;

production of a high concentration acid stream (20 percent) without regard to the quantity of acid gases in the effluent. It therefore represents a worst-case pollution abatement scenario for evaluating the acid roaster concept for demilitarization applications and as such, has been incorporated in the concept design It is anticipated that, when more is known about upstream processes, the concept can be refined to reduce the pollution abatement needs.

The gaseous effluents from the roaster/afterburner first pass through two heat exchangers of titanium construction where they are cooled to saturation temperatures. They then pass into an isothermal absorber constructed from graphite where acid gases are condensed in the presence of liquid water. The uncondensed gases leave the absorber and proceed to the bottom of an adiabatic scrubber. The liquid stream is mixed with makeup acid and pumped to the top of the adiabatic scrubber. In the scrubber, which is constructed of fiberglass materials, the rising gas stream from the absorber is brought back into contact with the acid stream from the absorber which strips most of the remaining acid from this gas. The regenerated acid stream leaving the adiabatic scrubber has an acid concentration of 20 percent and is then, with the exception of a small bleed stream to the afterburner, pumped back to the dissolution system for reuse. The gaseous effluents from the adiabatic scrubber are warmed in a pass through a final heat exchanger which warms the gases above the dewpoint before being vented to the pollution abatement system.

<u>Pollution Abatement System</u>. The pollution abatement system consists sequentially of a spray dry scrubber where remaining acid gases are removed by sodium hydroxide; a baghouse which removes any suspended particulates from the gas stream; an induced draft fan that maintains the entire process under negative pressure and assures the smooth flow of gases; and a stack through which the gaseous effluents are emitted to the atmosphere. Since the recovery unit effluent has been warmed above the downpoint, the scrubber can operate as a dry unit. As such, it is baseline technology and needs no further description.

D-10

Energy and Material Balance. The concept described in the above narrative, is represented graphically in Figure D-3 by a process flow diagram. An energy and material balance was performed by computer simulation around the major pieces of equipment in order to produce the listing of stream temperatures and compositions summarized the computer printout in Table D-1. This balance was based on the operating constraints discussed previously, the assumption that the processing rate would be 400 lb/hr of GB, and the Army guidelines concerning the quantities and, when appropriate, heats of combustion of the accompanying dunnage, metal, and explosives. Thermodynamic data available in the literature were used to compute the stream compositions in the HCl-H2O⁽¹³⁾, HF-H2O⁽¹³⁾, and HCL-FeCl2, H2O^(14,15) equilibrium systems.

D-11

B. System Feed Requirements

As stated previously, this concept is designed to process feedstock configuration b. In designing for this configuration, it was assumed that when the unpack area separated the item/munitions from their packing, they were cleaned which is assumed to include removal of grease and removal of paint from all items and, in addition, removal of the fiberglass sheath from the rockets. It was further assumed that the items were placed on reusable fiberglass pellets that permit the use of mechanical devices in loading the dissolution tanks (e.g., fork trucks).

C. Pollution Abatement System

There are no liquid effluents from this process. As dis cussed in the concept description, the only gaseous effluent is treated with the baseline spray dry scrubber technology. While the concentration of acid gases being removed from this stream is appreciably higher than the baseline, this is not expected to produce additional technical problems.

Use.

duplication.

or disclosure

is subject

g

restrictions stated

In Contract No.

DAAK11-82-C-0055 with ARRADCOM

FIGURE D-3. ACID ROASTING

TABLE D-1. ENERGY AND MATERIAL BALANCE - ACID ROASTER

BTREAM	1	2	2	4	5	6	7	9	9	10
TEMP DEB C	80,00	80.ÚO	B0.00	80,00	80.00	B0.00	80.00	80.00	90.00	80.0
PRESSURE PSIA	14,70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.2
ENTHALPY BTU	2032953.	12756095.	12881167.	2099220.	10734307.	2146861.	13506537.	13631609.	2099220.	11359674
HYDROCHLORIC AC	4459.67	19701, 87	18290.65	73.32	15242.21	3048.44	11234.54	9823.31	73,32	8196.0
NATER	10405.89	Ł0827.55	60505.99	321.55	50421.66	10084.33	58898.22	58576.67	321.55	48913.
FERROUS CHLORID	0.00	11627.73	13953.27	0.00	11627.73	2325.55	25581.00	27906.55	0.00	23255.
FERRIC CHLORIDE	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	٥.
IYDROBEN	0.00	0.00	0.00	36.99	0.00	0.00	0.00	0.00	36.99	٥.
NITROBEN	0.00		0.00	9311.71	0.00	0.00	0.00	0.00	9311.71	0.
ARBON DIOXIDE	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0,00	٥.
JXYREN	0.00		0.00	2018.36	0.00	0.00	0.00	0.00	2818,36	0.
ERRIC OXIDE	17.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	٥.
HOSPHORIC ACID	69.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	٥.
YDROFLUORIC AC	. 29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
GENT	0.00		1200.00	0.00	1000.00	200.00	2200.00	2400.00	0.00	
VEL OIL	0,00		0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.
)UNNABE	0.04		0.00	0.00	0.00	0.00	0.00		0,00	0.
XPLOSIVES	0.00		750.00	0.00	625.00	125.00	1375.00	1300.00	0.00	1250.
ODIUM HYDROXID	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
OTAL LB/HR	14953.37	93782.15	74699.92	12561.94	78916.59	15783.32	99288.75	100206.53	12531.94	83505.
TOTAL LB-HOL/HR	700.75	4916.91	3780,41	458.69	3317.00	663.40	3797.87	3761.36	458.69	3134
YDROGEN	1287.68	7445.59	7389.70	74.99	6158.08	1231.62	7110.25	7054.36	74.99	5878.
CARBON	0.00	539.02	646.83	0.00	539.02	107.80	1185,85	1293.66	0.00	1078.
XYBEN	9292.44	54597.71	54427.50	3103.94	45356.25	9071.25	33576.41	53406.20	3103.94	44505.
IULPHUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
ITROBEN	0.00	57.19	68.42	9311.71	57.19	11.44	125.81	137.25	9311.71	114.
HOSPHOROUS	22,11	221.10	265.32	0.00	221.10	44.22	486.42	530.64	0.00	442.
LUORINE	.27	135.60	162.72	0.00	135.50	27.12	298.32	325.44	0.00	271
CHLORINE	4336.58	25662.65	25591.29	71.30	21326.07	4265.21	25234.47	25163.11	71.30	20969.
IRON	12.29	5123.18	6147.91	0.00	5123.18	1024.64	11270.99	12295.62	0.00	10246.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

D-13

TABLE D-1, continued

STREAM	11	12	13	14	15	16	17	18	19	20
TEMP DEO C	80.00	80.00	20.00	20.00	20.00	80.00	800.00	750.00	320.00	320.00
PRESSURE PSIA	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70
ENTHALPY BTU	2271935.	4198439.	142312.	1052467.	68599.	9817241.	1164129.	43706100.	53537988.	36498.
HYDROCHLORIC AC	1637.22	146.65	0.00	0.00	0.00	21654.90	0.00	4459.62	26114.52	0.00
WATER	9762.73	643.11	0.00	0,00	0.00	50528.10	0.00	12463.85	62991.96	0,00
FERROUB CHLORID	4651.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FERRIC CHLORIDE	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
HYDROGEN	0.00	73.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NITROGEN	0,00	18623.42	0.00	6118.31	0.00	0.00	0.00	24764.68	24764.68	0.00
CARBON DIOXIDE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6057.34	6037.34	0.00
OXYGEN	0.00	5636.73	0.00	1916.27	0.00	0.00	0.00	677.55	677.55	0.00
FURRIC OXIDE	0.00	0.00	0.00	0.00	0.00	0.00	2754.06	175.79	175.79	158.21
PHOSPHORIC ACID	0.00	0.00	0.00	0.00	0.00	0.00	139.91	139.91	139.91	0.00
HYDROFLUORIC AC	0.00	0.00	0.00	0.00	0.00	0.00	54.27	2.86	2.86	2.57
AGENT	400.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FUEL OIL	0.00	0.00	1348.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DUNNAGE	0.00	0.00	0.00	0.00	450.00	0.00	65.00	0.00	0.00	0.00
EXPLOSIVEB	250.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SODIUM HYDROXID	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL LO/HR	16701.09	25123.88	1348.45	7934.58	650.00	72183.00	3013.24	48741.61	120924.62	150.78
TOTAL LB-MOL/HR	626.89	917.37	.00	275.17	4.01	3398.56	21.79	1859.66	5258.22	1.12
HYDROBEN	1175.73	149.99	167.21	0.00	36.40	6251.77	10.70	1522.26	7774.03	.13
CARBON	215.61	0.00	1175.85	0.00	260.13	0.00	26.01	1653.05	1633.05	0.00
OXYGEN	8901.03	6207.87	.54	1816.27	288.73	44874.00	948.12	16295-21	61169.21	47.56
SULPHUR	0.00	0.00	2.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NITROBEN	22.87	18623.42	.08	6118.31	0.00	0.00	0.00	24764.68	24764.68	0.00
PHOSPHOROUS	88.44	0.00	0.00	0.00	0.00	0.00	44.23	44.23	44.23	0.00
FLUORINE	54.24	0.00	0.00	0.00	0.00	0.00	51.54		2.71	2.44
CHLORINE	4193.85	142.60	0.00	0.00	0.00	21057.22	0.00	4336.54	25393.76	0.00
IRON	2049.27	0.00	0.00	0.00	0.00	0.00	1925.19	122.95	122.95	110.65

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

and the second second

TABLE D-1, continued

STREAN	21	22	23	24	25	26	27	28	29	20
5111210	* *	22	20	27	23	20	27	10	47	20
TEMP DEG C	320.00	113.00	20.00	20.00	80.00	80.00	80.00	75.00	75.00	40.00
PRESSURE PSIA	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70
ENTHALPY BTU	53501496.	13919142.	22759.	17017,	16319267.	4298666.	11850194.	5916484.	26692.	91125
HYDROCHLORIC AC	26114.52	26114.52	0.00	70.19	20947.77	5236.94	26114.57	70.14	68.04	0.00
WATER	62991.96	62991.96	632.20	280.75	30336.31	25568.60	60933.99	2970.92	0.00	1078.0
FERROUS CHLORID	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
FERRIC CHLORIDE			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
HYDROGEN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NITROBEN	24764.68	24764.68	0.00	0.00	24764.68	0.00	0.00	24764.68	0.00	0.0
CARBON DIOXIDE	6057.34	6057.34	0.00	0.00	6057.34	0.00	0.00	6057.34	0.00	0.00
DXYGEN	677.55	677.55	0.00	0.00	677.55	0.00	0.00	677.55	0.00	0.0
ERRIC OXIDE	17.58	17.58	0.00	0.00	0.00	17.58	17,58	0.00	0.00	0.0
PHOSPHORIC ACID	139.91		0.00	0.00	139.91	0.00	69.96	69.96	33.93	0.0
HYDROFLUORIC AC	. 29	.29	0.00	0.00	. 29	C.00	. 29	0.00	0.00	0.00
ABENT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FUEL OIL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DUNNABE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.04
EXPLOSIVES	0,00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00
SODIUM HYDROXID	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	116.19	119.7
TOTAL LB/HR		120763.84	632.20	350.94	90923.86	30823.12	87136.37	34610.59	218.16	1197.8
TOTAL LB-HOL/HR	5257.10	5257.10	32.09	17.51	3746.74	1562.96	4099.31	1210.39	5.12	62.83
HYDROBEN	7773.90	7773.90	70.74	33.35	4872.33	3005.67	7541.45	336.54	5.85	123.6
CARBON	1653.05	1653.05	0.00	0.00	1653.05	0.00	0,0^	1653.05	0.00	0.00
DXYSEN	61121.66	61121.66	561.46	249.34	39219.69	22712.76	54166.45	7766.00	68.64	1005.3
BULPHUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
NITROBEN	24764.68	24754.68	0.00	0.00	24764.68	0.00	0.00	24764.68	0.00	0.00
PHOSPHOROUS	44.23		J.00	0.00	44.23	0.00	22.11	22.11	10.72	0.0
FLUORINE	. 27	.27	0.00	0.00	. 27	0.00	. 27	0.00	0.00	0.00
CHLORINE .	25393.76	25393.76	0.00	68.25	20369.61	5092.40	25393.80	68.21	66.16	0.0
IRÓN	12.29	12.29	0.00	0.00	0.00	12.29	12.29	0.00	0.00	0.00

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

D-15

the set of the set

ß

-

TABLE D-1, continued

BTREAN	21	32	22	34	35	36	37	38	39	40
IEMP DEB C	70.00	70.00	70.00	70.00	7 0 0	70.00	70.00	70.00	70.00	70.00
RESSURE PSIA	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.70	14.7
INTHALPY BTU	6101767.	814.	6100954.	6100954.	6100954.	1874322.	1874322.	0.	0.	0
YDROCHLORIC AC	2.10	2.10	.00	.01		0.00	0.00	0.00	0.00	0.0
IATER	4048.99	0.00	4048.99	4048.79	4048.99	0.00	0.00	0.00	0.00	0.0
ERROUS CHLORID	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ERRIC CHLORIDE	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
IYDROBEN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ITROGEN	24754.68	0.00	24764.68	24764.68	24764.68	9311.71	9311.71	0.00	0.00	0.0
CARBON DIOXIDE	6057.34	0.00	6057.34	6057.34	6057.34	0.00	0.00	0.00	0.00	0.0
DXYSEN	677.55	0.00	677.55	677.55	677.55	2818.36	2918.36	0.00	0.00	0.0
FERRIC OXIDE	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.0
HOSPHORIC ACID	36.03	1.05	34.98	34.98	34.98	0.00	0.00	0.00	0.00	0.0
HYDROFLUORIC AC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
AGENT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
FUEL OIL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
DUNNAGE	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
EXPLOSIVES	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
BODIUM HYDROXID	3.59	3.57	.00	.04	.0\$	0,00	0.00	0.00	0.00	0.0
TOTAL LB/HR	35590.29	6.75	33583.54	35583.54	35583.54	12130.07	12130.07	0.00	0.00	0.0
TOTAL LB-MOL/HR	1268.11	.16	1267.95	1267.95	1267.95	420.48	420.48	0.00	0.00	0.0
HYDROBEN	454.34	.18	454.16	454.16	454.16	0.00	0.00	0.00	0.00	0.0
CARBON	1653.05	0.00	1653,05	1653.05	1653.05	0.00	0.00	0.00	0.00	0.0
OXYBEN	8702.71	2.12	8700.59	8700.59	8700.59	2818.36	2818.36	0.00	0.00	Q.(
SULPHUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
NITROBEN	24764.68	0.00	24754.68	24764.68	24764.68	9311.71	9311.71	0.00	0.00	0.0
PHOSPHOROUS	11.39	. 33	11.06	11.06	11.06	0.00	0.00	0.00	0.00	0.0
FLUORINE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
CHLORINE	2.05	2.05	.00	.01	.01	0.00	0.00	0.00	0.00	0.0
IRON	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

D-16

D. Ultimate Disposal

<u>_</u>___

The oxides and ash from the roaster should satisfy RCRA landfill criteria and could have a significant resale value. As designed, the quantities of NaCl produced by the pollution abatement system will be larger than the baseline. While in the baseline, such salts must be disposed of in a hazardous materials landfill, this potential problem is diminished in this concept by the following considerations:

- The quantities projected in the material balance represent a worst-case that could be markedly reduced by refinement of the concept
- The salts are not produced from or by agent and as such may be more readily certified agent free.

E. Concept Advantages

The key advantage of this concept is its ability to process feedstock configuration b eliminating the costly disassembly operations from the baseline. In addition, the process concept subjects all items and agents to the same processing steps. This produces a simple system without branching and, coupled with elimination of disassembly, removes the costly change over periods from the processing schedule. The final advantage is that commercially proven hardware is utilized. The agent destruction furnace design is based on liquid injection incineration which is state-of-the-art technology for disposal of hazardous liquids. The acid regeneration system is also adapated from state-of-the-art technology. Besides Dravo Engineers, Lurgi and Woodall-Duckham Ltd design and license acid recovery systems. Dravo Engineers have expressed a willingness to support the development effort for this concept.

F. Concept Disadvantages

The major disadvantages of this concept is the expensive materials of construction and lack of economy of scale do to the need for multiple units at high throughput. The combination of these two facts lead to escalation of the capital equipment costs for a collocated facility. The final disadvantage is the possible increased salt disposal problem discussed previously.

G. System Concept Knowledge Gaps

As related to agent destruction, the key knowledge gap is whether the agents and their decomposition products can be destroyed effectively under conditions conducive to roasting iron chlorides. Incompatibilities in these reactions which occur simultaneously could lead to reduced acid recovery and an increased pollution abatement demand. However, since the temperature and residence time requirements for both reactions are similar this is not anticipated to be a problem. In fact, it is anticipated that the presence of iron salts in the incinerator might even enhance agent destruction efficiencies.

The knowledge gaps most critical to successful implementation of the concept is the behavior of the explosives. There is evidence that acid solutions will decompose explosives (4,5). While documents suggest that the combination of hot nitric acid and iron salts in an oxidizing system has the potential to sensitize explosives to friction and impact, no such evidence exists for the hydrochloric acid/hydrogen system proposed here.

Based on the literature data, a conservative estimate was made of the rate at which acid will dissolve the metal parts. Confirmation of the dissolution rate with the actual acid stream composition is required. Rates slower than those predicted would require additional dissolution tanks and, while increasing the costs, would not significantly effect the viability of the concept. However,

D-18

if it can be shown that, as suspected, markedly faster rates can be achieved, then operating at lower acid concentrations and/or temperatures would be practice. These parameters can have major impact on the waste stream disposal and possibly the safety scenarios.

The final knowledge gap is one that all concepts have in common, materials compatibility problems. While commercial hydrochloric acid roasting units exist that have been in service for 20 years, none of these units contain acids of sulfur, phosphorous, and fluorine along with the hydrochloric acid. The fate and impact of these materials contributed by the agent destruction process must be determined.

H. Safety

.

33

33

Standard acid plant safety guidelines must be followed in the design and operation of this concept. This includes curbing the dissolution tank room to contain spills and the avoidance where possible of overhead acid lines. Hazards associated with the hydrogen vent stream have also been addressed in the design. In addition, the dissolution area is manned only during tank loading and operating personnel would not be exposed to detonation hazards should experimental work should prove that sensitization of explosives occurs during acid dissolution.

I. Likelihood of Development Within Five Years

The majority of the process steps use state-of-the-art technology. While several knowledge gaps have been identified, none appear to be a barrier to development of the concept. Even determination that the explosives are sensitized by the acid could be resolved technically. Introduction of a step for desensitizing the explosives could be included. Resolution of this issue could also be accomplished at the expense of process economics (e.g., reducing the size of the vats, imposition of quantity/distance requirements, and/or strengthening the tanks to contain a detonation).

J. Scalability to 400-3000 Pounds/Hour of Agent

At the agent rate of 400 lb/hr of agent, the roasting and acid reclamation systems are operating at near capacity. Consequently, scaling to higher rates soon requires installation of parallel systems. Therefore, while scaling to higher throughputs is technically feasible, no economy of scale is anticipated.

K. Degree of Technical Risk

As previously discussed, the major system components are commercially available. No technology gaps exist and the knowledge gaps that have been identified deal mostly with possible improvements of the concept design.

L. RAM Factors

A detailed analysis of the availability and maintainability of this concept can be found in Appendix L. It should be pointed out that built-in redundancy has been incorporated in the design and cost estimation for those equipment items that are considered most likely to have failures. However, following Army guidelines, the RAM analysis permits no credit for this redundancy. In fact, due to the increase in equipment items, strict adherence to the RAM analysis guidelines yields a system availability that is lower than would be determined if the redundancy was not present.

M. Materials Compatibility Problems

The state-of-the-art hardware is designed to be acid resistant. With the exception of attack of the roaster refractory by HF, no additional materials compatibility problems are anticipated.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

D-20

N. Energy Requirements and Source

The roasting process requires the high use of fuel oil to evaporate the acid and water. It is anticipated that a significant concept refinement effort would be focused on reducing the fuel demand by minimizing the quantity of acid being roasted. This could lead to a marked reduction in the operating costs for this concept.

O. Ease of Operation

1

ر ہے۔ است

As designed, this is one of the simplest concepts to operate. A minimum of moving parts exists and all agents and items/ munitions in the inventory are processed in the same manner, simply load the tanks and start the acid. There are no complex variables to control and no complex hardware to operate.

Economic Analysis

The design specifications received from Dravo Engineers Incorporated⁽¹²⁾ included a cost estimate of 7M (1981) for a turnkey operation. But, this estimate included hardware such as a tank farm that this concept does not require. It also included items beyond the scope of the thermal process (e.g., site improvements, utilities). Since Dravo considers the individual cost items proprietary, it was not possible to use their cost estimate directly. However, the equipment size specification supplied by Dravo was quite useful in producing the following estimation of the costs.

A. Facility Costs

Army guidelines were used for the costs of constructing the various buildings required by this concept. It was assumed that all operations downstream of the roaster were non-agent and the commercial practice of installation on pads could be utilized. The dissolution

tanks and the roaster were assumed to be agent containment facilities and were costed accordingly. While the tanks are not designed for blast containment, the facility costs for agent containment and blast containment are the same.

To determine the areas in each building category required for these types of facilities, plot plans were constructed for 400 lb/hr and 5000 lb/hr of agent based on the sizes of the identified equipment items. The areas determined from these plans were used to determine exponential scaling factors for each building category. These factors were then used to determine the building and pad areas for the other plant sizes. The estimated facility costs calculated in this manner are summarized in Tables D-2 (Single Site) and D-3 (Collocated).

B. Capital Equipment Costs

Costing Method. Detailed capital equipment cost estimates were generated on an item-by-item basis for a plant size capable of handling 400 lb/hr of agent. The equipment size specifications for the pickling liquor plant supplied by Dravo Engineering Inc were used to estimate the acid regeneration system equipment sizes. Each equipment item cost was then derived from standard relationships between the appropriate size parameter and cost which are documented in Guthrie (16), Peters and Timmerhaus (17) and others. Factors were used to convert the costs derived for carbon steel equipment computed from these relationships to corrected values for items constructed of corrosion resistant materials such as graphite, fiberglass-reinforced plastic (FRP), and palladium-stabilized titanium. These factors vary according to equipment item and they correct for both the cost of materials and the difficulty of fabrication. The Marshal and Swift installed equipment index was used to correct all costs for the 400 lb/hr facility to mid-1982 dollars.

Equipment costs for the other size plants were then computed based on exponential sizing factors derived from Guthrie or Peters and

TABLE D-2.	ACID	ROASTING	FACILITY	COSTS -	SINGLE	SITE
		NOUP LINE	IUATETII		91110LL	

Item	Agent Destruction Rate					
	100 Tb/hr	400 1b/hr	1000 Tb/hr			
Dissolution Area - Surety (1 floor) at \$400/ft ²	1320 ft ² \$528,000	1520 ft ² \$608,00 0	3400 ft2 \$1,360,000			
Furnace Area - Surety (50' high) at \$400/ft2	144 ft ² \$57,600	361 ft ² \$144,400	950 ft2 \$380,000			
Outside Pads - Acid Recovery Pollution Abatement Ore Handling & Storage Salt Handling Fuel Tank	200 ft2 180 ft2 1500 ft2 1000 ft2 1320 ft2	600 ft2 550 ft2 5000 ft2 2500 ft2 3460 ft2	1600 ft2 1500 ft2 12,000 ft2 4300 ft2 6000 ft2			
Total Pad Costs at \$2.50/ft2	\$10,500	\$30,275	\$63,500			
Total Facility	\$596,100	\$782,675	\$1,803,500			

D-23

1

NH

12

 $\mathbf{E}_{\mathbf{C}}^{\mathbf{C}}$

4775357555

Considerate a pression of the second second states

HAR SUPPLY States

Age	Agent Destruction Rate					
1000 1b/hr	3000 1b/hr	5000 lb/hr				
3400 ft2 \$1,360,000	9100 ft2 \$3,640,000	14,384 ft ² \$5,753,600				
950 ft ² \$380,000	3050 ft ² \$1,220,000	5208 ft ² \$2,083,200				
1600 ft2 2500 ft2 15,000 ft2 6000 ft2 6000 ft2	5500 ft2 8500 ft2 40,000 ft2 15,000 ft2 12,000 ft2	9500 ft2 15,000 ft2 60,000 ft2 20,000 ft2 16,000 ft2				
31,100 ft ²	81,000 ft ²	120,500 ft ²				
\$77,750	\$202,500	\$301,250				
\$1,817,750	\$5,062,500	\$8,138,050				
	1000 1b/hr 3400 ft ² \$1,360,000 950 ft ² \$380,000 1600 ft ² 2500 ft ² 15,000 ft ² 6000 ft ² 6000 ft ² 31,100 ft ² \$77,750	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

TABLE D-3. ACID ROASTING FACILITY COSTS - COLLOCATED SITE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Timmerhaus that could be applied to the 400 lb/hr agent case. The factors used were a characteristic of each type of chemical process equipment. In many cases the maximum or minimum equipment size limits were imposed by practical considerations. In these instances, we costing was based on the use of a minimum number of equal size items that could perform the function operating in parallel.

For each facility size the total plant equipment purchase costs were then summarized and additional capital equipment costs were calculated by applying the multiplication factors for installation, instrumentation, piping, electrical and design that are recommended on page 180 of Peters and Timmerhaus. Additional rationale behind the computation of the individual equipment items is discussed below.

Equipment Item Costs.

•

 \mathbb{Z}

• ; 1

1

「「「「「「「「」」」では、「「」」」では、「」」」では、「」」」」」

Vessels. The dissolution tanks, roaster cyclone, solids hopper, stack, and dry scrubber were considered to be pressure vessels. Vessel costs were based on the weight of steel using the following equations from Mulet(18)

> Vessel Cost = Exp (8.8 - 0.28885 lm (weight) + 0.04576 ln (weight)²)

Platform and Accessory Cost = $182.5 \text{ (diam. ft)}^{0.7396} \text{ (Height ft.)}^{0.70684}$

These costs are for the first quarter of 1979.

Insulation costs for the roaster cyclone are from Koenig $^{(19)}$ and are based on external surface area.

The dissolution tanks lining of either hard rubber or plastic was costed at $12.00/ft^{2(16)}$ The calculated cost of the dissolution tanks might be low because no correction was used to account for the complexity of a sealable, vertical 6' x 6' door.

The dry scrubber is constructed of FRP and a multiplier of 1.1 was used to correct for this material.

Fans and Blowers. The costs of the fans and blowers was derived from page 562 of Peters and Timmerhaus, and were based on capacity in cfm. The dissolution vent fans, furnace air fan, and induced draft (I.D.) fan were all sized as centrifugal blowers and the oxide blower sized as a rotary blower. The predicted costs of the furnace air fan and I.D. fan are probably high due to their lower pressure ratio. This factor is compensated in the dissolution vent fans by the need for a corrosion resistant lining. Otherwise, the fans and blowers are of standard construction. Motors are totally enclosed, fan-cooled.

Pumps. All pumps were costed as centrifugal, horizontal, in-line pumps. The costs used were derived as suggested on page 557 of Peters and Timmerhaus, and were based on capacity in gpm multiplied by head in psi. The following equations from Corripio⁽²⁰⁾ were used as an addition check and for sizing:

All pumps were considered to be palladium-stabilized titanium except the fuel oil pumps and the dry scrubber pumps. The multiplier for titanium construction of pumps is reported to be 9.7 by

Corripio⁽²⁰⁾ and 5.71 by Hall⁽²¹⁾. The lower number was used because Hall specifically claims to be current while corripio does not. The reason for the discrepancy may either be due to improved titanium fabrication techniques or to more widespread use of titanium pumps. The potential error in plant cost due to this difference in factors is about 4 percent.

Pump motors are totally enclosed, fan cooled. Provisions must be made to double seal and return seal flush liquid to the process in all pumps except the fuel oil pumps.

Heat Exchangers. Costing on heat exchangers was based on the required heat transfer surface area and on materials of construction. The dissolution coolers, isothermal absorber and adiabatic scrubber cooler are all of graphite construction, while the cyclone gas cooler and dry scrubber preheater are palladium-stabilized titanium. American Vicarb⁽²²⁾ quoted a price of $70/rt^2 \pm 15\%$ for small graphite heat exchangers and $75/ft^2 \pm 15\%$ at sizes larger than 2000 ft². This company produces heat exchangers that can operate with hydrochloric acid at temperatures up to 200° C and claims to have worked with Dravo.

The following equations from Corripio⁽²³⁾ were used to calculate first quarter 1979 costs for the titanium heat exchangers:

A = surface area in ft^2 .

Ð

33

5.53

Base Cost = Exp (8.551 - 0.30863 ln A + 0.06811 (lnA)²) Fixed Head Correction Factor = Exp (-1.1156 + 0.0906 lnA)

The costs for the two titanium heat exchangers calculated in this manner were 2.4 percent higher than those calculated using Peters and Timmerhaus.

Roaster-Afterburner. The cost for the roaster-afterburner was derived from charts presented by $Hall^{(21)}$ and were based on heat

utilization. The calculated cost assumes internal insulation and internal heat exchange tubes. The extra cost of the unnecessary heat exchange tubes were assumed to account for the cost of the afterburner, the titanium spray nozzles, and a slightly more expensive acid brick lining.

Adiabatic Scrubber. The cost of the adiabatic scrubber was obtained from charts to determine the vessel cost, connection, ladders, platforms, and packing costs given on pages 768-771 in Peters and Timmerhaus. Polypropylene, 1-inch intalox saddles were assumed to be the packing material. A multiplying factor of 1.1 was then used to convert carbon steel material cost to FRP material cost. The scrubber cost could be low, if the large diameter column that is specified requires the use of flow redistributions or high efficiency packing material.

Baghouse. The baghouse cost was calculated from the equation given by Vatavuk⁽²⁴⁾:

Cost = 5370 + 7.6 (Bag Area in ft²).

This cost is based on carbon steel construction and continuous operation at negative pressure. Polypropylene bags were used at $0.70/\text{ft}^2$.

Cooling Tower. The cost of the cooling tower was based on the required cooling water flow rate using Figure 13 in Guthrie. The 1968 cost was scaled to mid-1982 using the respective Marshall and Swift indices of 273.1 and 746.

Scale-up Methods.

1

Vessels. The dissolution tanks, roaster cyclone, solids hopper, stack, and dry scrubber costs were derived from the 400 lb/hr

agent equipment costs using the vessel weight ratios to the 0.7 power. The exponent is from Desai⁽²⁵⁾. Except for the dissolution tanks, the maximum single unit size was limited to a 13-ft diameter. As mentioned previously, the 6'x6'x16' size of the 400 lb-agent/hr dissolution tanks was taken to be the minimum size practical for material handling and the 6'x6'x16' size of the 1000 lb-agent/hr dissolution tanks was assumed to be the maximum allowable size. Two minimum size tanks were used in the 100 lb-agent/hr plant costing. The above constraints resulted in the number of units required for each plant size shown in Table D-4 below.

Plant Size (1b/hr Agent)	100	400	1000	3000	5000
Dissolution Tanks	2	3	3	6	15
Roaster Cyclones	1	1	2	4	6
Solids Hoppers	1	1	3	7	12
Stack	1	1	1	1	1
Dry Scrubbers	1	1	1	3	4

TABLE D-4. NUMBER OF VESSELS FOR EACH PLANT SIZE

Fans and Blowers. In all cases the fans and blowers were scaleable to each plant size using single units. The exponents used for relating relative costs to size was 0.65 for the fans and 0.75 for the oxides blower. These exponents were also given by Desai. The size parameter was capacity in standard cubic feet per minute.

Pumps. There were no size limitations on the pumps and in each plant size. The basis for scaling costs from the 400 lb/hr size to the other sizes was the ratio of pump capacities in gpm raised to the 0.6 power. This exponent is from Desai. Pump sparing was 100

D-29

1

囹

() |-|

percent for all pumps except the dissolution pumps in the 1000, 3000, and 5000 lb-agent/yr plant sizes. In these cases, each bank of dissolution tanks ,out of a total of three, is serviced by 3 half-size pumps to yield 9 total pumps per plant.

Heat Exchangers. Single unit heat exchanger sizes were limited to 20-foot tube lengths and 37-inch tube sheet diameter. The size constraints limited the size of the cyclone gas cooler in all cases except 100 lb/hr and limited the isothermal absorber only in the 5000 lb/hr plant size. Because definite costs were given for each square foot of graphite heat exchange surface, the size limitations only affected the cost of the titanium cyclone gas cooler. The exponent for scaling the titanium heat exchanger costs from the heat transfer, surface area was 0.6 from Desai.

Roaster-Afterburner. The roaster-afterburner was limited to a single unit size capable of processing 1000 lb/hr of agent. This occurs at a diameter of 20 feet. Larger diameters are likely to result in non-uniform reaction conditions in the vortexing flame. The cost sizing exponent used was 0.87 from Corripio.

Adiabatic Scrubber. The single unit absorber size was limited to 13 feet which corresponds to a maximum plant size of 1730 lb-agent/hr. The cost scaling was based on vessel weight ratios raised to the 0.7 power. this exponent was given by Desai. Although packing cost is proportional to the absorber volume, the absorber volume is in turn roughly proportional to the vessel weight raised to the 1.08 power. Thus, vessel weight is a good size parameter and was used to scale the cost scaling.

Baghouse. Baghouse costs are directly proportional to size. Consequently, there are no size limitations to scaling.

D-30

Cooling Tower. There were no size limitations to the cooling tower in the plant size ranges of interest. Costs were scaled by the water flowrate ratio raised to the 0.6 power. The exponent was given in Guthrie.

The total capital equipment costs estimated in this means for single site are summarized in Table D-5. The collocation capital equipment costs are summarized in Table D-6.

C. Operating Costs

TANK - TOTAL CONTRACTOR - GENERAL - BARADA - TOTAL

``**`**

To estimate the total life cycle operating costs, it was first necessary to determine the labor requirements as well as the other operating costs on a yearly basis. The inventory quantity, the item processing rate, and the system availability were then used to determine the years of production required for each category. Those numbers were then multipled by the operating costs to produce the life cycle operating costs.

<u>Labor Costs</u>. The system personnel requirements summarized in Table D-7 were estimated from the information supplied by Dravo.

<u>Other Direct Costs</u>. At the 400 lb/hr of agent throughput, the quantities of water, fuel oil, HCL makeup, and caustic used as well as the quantities of Fe₂O₃ and NaCl produced were gleaned from the material balance. The electricity requirements for this capacity were estimated from the size and quantity of electric motors. To determine the requirements for these items at other agent throughput rates, it was assumed that demand would scale linearly with throughput, a reasonable assumption for this process.

The Army guidelines were used for the charge rates for water, electricity, and fuel oil. Caustic and acid costs were determined from present market costs. Disposal costs for Fe₂O₃ were assumed to be only the trucking costs which were estimated at \$5/ton. As a worst case assumption, the NaCl salts were assumed to require

Agen 100 lb/hr		b/hr
\$ 56,000 4,549 9,140 <u>4,832</u> \$ 74,521	11,200 20 21,000 30 11,100 19	5,000),318 5,009 9,235 1,562
\$ 207,463 4,135 1,567 6,072 7,920 1,326 \$ 228,483	9,500 16 3,600 6 14,950 27 20,900 48 3,750 7	5,462 5,238 7,121 8,867 7,456
<pre>\$ 168,369 24,706 14,843 17,672 1,328 8,880 53,495 \$ 289,293</pre>	65,200 123 34,100 59 40,600 70 3,050 9 20,400 31 122,900 212	3,824 9,090 0,354 5,285 5,350 2,969
\$ 8,336 29,794 1,698 11,212 6,669 9,605 14,728 36,000 \$ 118,082	68,450 118 3,900 0 44,850 112 17,600 33 23,650 42 39,000 102 90,000 155	1,781 3,614 5,758 2,125 3,425 2,903 2,909 5,957 4,472
\$ 710,379 284,152 92,349 220,217 71,038 \$1,378,135 441,003	791,640 1,909 257,283 620 613,521 1,480 197,910 471 \$ 3,839,454 \$ 9,260 1,228,625 2,960	9,752 0,669 0,058 7,438 2,297 3,935
	100 1b/hr \$ 56,000 4,549 9,140 4,832 \$ 74,521 \$ 207,463 4,135 1,567 6,072 7,920 1,326 \$ 228,483 \$ 168,369 24,706 14,843 17,672 1,328 8,880 53,495 \$ 289,293 \$ 8,336 29,794 1,698 11,212 6,669 9,605 14,728 36,000 \$ 118,082 \$ 710,379 284,152 92,349 220,217 71,038 \$1,378,135	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE D-5. CAPITAL EQUIPMENT INSTALLED COSTS -SINGLE SITE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Item	Age	nt Destruction F	Rate
	1000 lb/hr	3000 Tb/hr	5000 lb/hr
Dissolution Area Dissolution Tanks Dissolution Vent Fants Dissolution Pumps Dissolution Coolers SUBTOTAL	\$ 196,000 20,318 36,009 19,235 \$ 271,562	\$ 590,859 41,496 69,619 <u>37,184</u> \$ 739,158	\$ 984,765 57,838 94,588 50,520 \$ 1,187,711
Furnace Area Roaster-Afterburner Roaster Feed Pumps Fuel Oil Pumps Furnace Air Fan Roaster Cyclone Oxide Blower SUBTOTAL	\$ 1,999,330 16,462 6,238 27,121 48,867 7,456 \$ 2,105,474	\$ 5,997,989 31,824 12,060 55,390 129,810 16,995 \$ 6,244,068	\$ 9,996,648 43,238 16,385 77,203 209,618 24,930 \$10,368,022
Acid Regeneration Area Cyclone-Gas Cooler Adiabatic Scrubber Absorber Feed Pump Absorber Bottom Pump Adiabatic Scrubber Cooler Isothermal Absorber Cooling Tower SUBTOTAL	\$ 1,276,000 123,824 59,090 70,354 5,285 35,350 212,969 \$ 1,782,872	\$ 3,615,037 328,927 114,233 136,007 10,217 68,339 411,707 \$ 4,684,467	\$ 5,950,211 531,155 155,203 184,787 13,882 122,515 559,368 \$ 7,517,121
Pollution Abatement Area Dry Scrubber Dry Scrubber Preheater Dry Scrubber Pumps Baghouse Stack I.D. Fan Fuel Tanks Solids Hopper SUBTOTAL	41,781 118,614 6,758 112,125 33,425 42,903 \$ 155,957 102,909 \$ 614,452	125,343 229,303 13,065 336,375 72,120 87,624 \$ 301,494 <u>286,709</u> \$ 1,452,033	195,379 311,544 17,750 560,625 103,122 122,130 \$ 409,127 481,207 \$ 2,207,384
Total Equipment Purchase Costs Installation (40%) Instrumentation (13%) Piping (31%) Electrical (10%) SUBTOTAL DESIGN (32%) Total Capital Equipment	\$ 4,774,380 1,909,752 620,669 1,480,058 477,438 \$ 9,262,297 2,963,935 \$12,226,232	\$13,119,726 5,247,890 1,705,564 4,067,115 1,311,973 \$24,452,268 8,144,726 \$33,596,994	\$21,280,238 8,512,045 2,766,431 6,596,874 2,128,024 \$41,283,662 13,210,772 \$44,494,433

CAPITAL EQUIPMENT INSTALLED COSTS - COLLOCATED SITE TABLE D-6.

司役

271 JE EE EE

Society - Address - Address - Address - Address - Address

DESERT PROPER AND ADDRESS

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

والمرجوع فروا

	Personnel/Shift Agent Rate							
Operator	100	400	1000	3000	5000			
Control Room	1	1	1	2	2			
Dissolution Tanks	2	2	4	6	8			
Pumps, Blowers, Roasters	1	1	2	3	3			
Outside	1	1	Ċ,	3	3			
Supervision	1	1	1	1	1			
General Maintenance Machining Inventory	1	1	2	3 1/3 1/3	5 1/3 1/3			
Analytical	1	1	1	2	2			
Instrumentation	1/3	1/3	2/3	1	1			
Total/Shift ·	8-1/3	8-1/3	13-2/3	21-2/3	25-2/3			
Shifts/Day	x3	x3	x3	x3	×3			
Person Years/Year	25	25	41	65	77			
Rate	x\$50,000	x\$50,000	x\$50,000	x\$50,000	x\$50,000			
Labor Costs/Year	\$1,250,000	\$1,250,000	\$2,050,000	\$3,250,000	\$3,850,000			

TABLE D-7. SYSTEM PERSONNEL REQUIREMENTS

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

/ · · N

disposal in a hazardous landfill operation which would cost $205/ton^{(26)}$. Annual spare parts costs were assumed to be 6 percent of the installed capital equipment costs. Summaries of the other operating cost estimates for single sites are shown in Table D-8 while collocation estimates can be found in Table D-9.

<u>Production Time</u>. Summaries of the single and collocated site production times required to dispose of the inventory categories can be found in Tables D-10 and D-11, respectively. Production years were determined in the same manner as the baseline.

Life Cycle Operating Costs. The production years for the inventory categories computed previously were used to compute the life cycle operating costs for each of three single site and three collocation site throughputs. The methodology outlined in the baseline was followed except that this concept does not require change outs and so the associated down time was deleted. The incurred single site life cycle operating costs are shown respectively in Tables D-12, D-13, and D-14 for 100, 400, and 1000 lb/hr of agent throughput. Collocation costs incurred at 1000, 3000 and 5000 lb/hr agent throughput rates are shown in Tables D-15, D-16, and D-17.

<u>Development Costs</u>. To fully develop this concept, it will be necessary to perform both bench-scale and pilot-scale experiments to resolve the knowledge gaps that have previously been identified. Estimates of the type and cost of the experimental and design studies that would be required are shown in Table D-18. These include the design, construction, and operation of 40 lb/hr of agent pilot plant operating on a single dissolution tank. The cost estimate for this facility was scaled directly from the previously operating plant estimates.

D-35

Ň

N

Item Usage Cost	Agent Feed Rate				
-	100 1b/hr	400 lb/hr	1000 lb/hr		
Water x106 gal/yr - \$0.53/1000 gal	81	325.8	815		
COST	\$42,930	\$172,674	\$431,950		
Electric x10 ⁶ kwh/yr - \$0.05/kwh	0.21	0.85	2.13		
Yearly Cost	\$10,500	\$42,500	\$106,500		
Fuel Oil - gal/year	258,000	1,032,000	2,580,000		
Cost/Year at \$1.20/gal	\$309,600	\$1,238,400	\$3,096,000		

3.91 \$9,775

0.28

\$42,000

0.41

\$42,025

0.89

\$15,525

\$109,148

\$581,552

15.64

\$39,100

1.1

\$165,000

1.62

\$166,050

3.56

\$62,300

\$304,085

\$2,190,108

39.10 \$97,750

2.8

\$420,000

4.05

\$415,125

8.90

\$155,750

\$733,574

\$5,456,649

Fe203 Disposal x 106 lb/yr at \$5/ton

Caustic (in 10 wt% sol.) x 100 lb/yr

20 wt% HCl Makeup x 106 lb/yr

Spare Parts (6% Capital Costs)

TOTAL OTHER DIRECT COSTS

NaCl Disposal (solid)

Cost \$300/ton

x 105 1b/yr

Cost \$205/ton

Cost \$35/ton

Use,	duplication, or	disclosure is	s subject to	restrictions	stated in	Contract No.	DAAK11-82-C-0055	with ARRADCOM,
							الاستثناء والمتعاقب المرداء	

D-36

Item Usage Cost	Agent Feed Rate 1000 lb/hr 3000 lb/hr 5000 lb/hr				
Water x 106 Gal/Yr	815	2445	4075		
Cost at \$0.53/1000 Gal	\$431,950	\$1,295,550	\$2,159,250		
Electric x 106 kwh/Yr	2.13	6.39	10.65		
Cost at 0.05 kwh	\$106,500	\$319,500	\$532,500		
Fuel Oil Gal/Yr	2,580,000	7,740,000	12,900,000		
Cost at \$1.20/gal	\$3,096,000	\$9,288,000	\$15,480,000		
Fe203 Disposal x 106 lb/yr	39.10	117.3	195.5		
	\$97,750	\$293,250	\$487,500		
Caustic x 106 lb/yr	2.8	8.25	13.75		
Cost at \$300/ton	\$420,000	\$1,237,500	\$2,062,500		
NaCl Disposal x 106 lb/yr	4.05	12.15	20.25		
Cost at \$205/ton	\$415,125	\$1,295,375	\$2,075,625		
HCl Makeup x 106 lb/yr	8.90	26.7	44.5		
Cost at \$35/ton	\$155,750	\$467,250	\$778,750		
Spare Parts (6% Capital)	\$733,574	\$2,015,820	\$3,269,666		
TOTAL OTHER DIRECT COSTS	\$5,456,645	\$16,212,295	\$26,845,791		

TABLE D-9. OTHER DIRECT COSTS - COLLOCATED SITE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

商用し

Ð

8

们

Munition	Munition		The	ough-put Per I	iour	System	4	Production Yea	rc	
Lategory	Category	Туре	Inventory	100 15/kr	400 lb/hr	1000 16/m	Availability	100 lb/hr	400 15/hr	1000 15/hr
A	N-55 Rockets	80,090	9.3	37.4	93.5	0.79	2.18	0.545	0.22	
	H-23 Hines	20,000	9.5	38.1	95.2	0.79	0.53	0.13	0.22	
	SUBTOTAL						2.71	0.67	0.27	
B/C	Hortars	50,000	16.7	66.7	166.7	0.79	0.75	0.18	0.076	
	105 🗰 Projectiles	50,000	62.5	250.0	625.0	0.79	0.21	0.054	0.022	
	155 m Projectiles	50,000	15.4	61.5	153.8	0.79	0.82	0.21	0.087	
	8" Projectiles	50,000	6.9	27.6	69.0	0.79	1.83	0.46	0.185	
	SUBTOTAL						3.61	0.91	0.37	
D	Bombs	800	0.4	1.8	4.6	0.79	0.50	0.11	9.044	
	Ton Containers/	200	0.1	0.3	0.7	0.79	0.50	0.16		
	Spray Tanks							U	0.076	
	SUBTOTAL						1.0	0.27	0.12	

TABLE D-10. THERMAL PROCESS OPERATING TIME - SINGLE SITE

5.8 K B

5

duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

٢,

						•			
		TA	BLE 0-11. THE	RMAL PROCESS (DPERATING TIME	- COLLOCATED SIT	E		
	Musition			eoush out Bon					
Munition Category	Munition Type	Inventory	1000 lb/hr	rough-put Per 3000 lb/hr	5000 16/hr	System Availability	1000 15/hr	Production Yea 3000 lb/hr	5000 1b/hr
A	N-55 Rockets N-23 Nines SUBTOTAL	800,000 200,000	93.5 95.2	285.4 285.7	467.3 476.2	0.79 0.7 5	2.17 	0.71 0.17 0.84	0.43 0.11 0.54
B/C	Mortars	500,000	166.7	500.0	. 833.3	0.75	0.76	0.25	0.15
	105 mm Projectiles 155 mm Projectiles 8" Projectiles	500,000 500,000 500,000	625.0 153.8 69.0	1875.0 465.5 206.9	3125.0 769.2 344.8	0.79 0.79 0.79	0.96 9.82 <u>1.83</u>	0.06 0.27 0.61	0.04 0.17 0.37
D	SUBTOTAL Bombs	8,000	4.6	13.6	22.7	0.79	- 4.37 0.44	1.19 0.15	0.73
b	Ton Containers/ Spray Tanks	2,000	0.7	2.0	3.3	0.79	0.72	0.25	0.15
	SUBTÕTAL						1.16	0.40	0.24
						-			
					•				
									D-39

.....

	Rate,						
Period	Labor \$/Yr	Other \$/Yr	Duration	Total Cost			
Eq Acceptance	\$ 416,667	\$ 193,851	0.50	\$ 305,259			
Fraining	1,250,000	290,776	0.50	770,388			
Inventory Item A	1,250,000	581,552	2.71	4,963,506			
Inventory Item B/C	1,250,000	581,552	3.61	6,611,903			
Inventory Item D	1,250,000	581,552	1.0	1,831,552			
Shutdown	416,667	193,851	0.50	305,259			
otal Duration Operatio	ns Costs			\$14,787,867			

.

•

TABLE D-12.	LIFE CY	CLE OPERATING	COSTS -	SINGLE SITE	
		(100 LB/HR)			

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

•	Rate,							
Period	Labor \$/Yr	Other \$/Yr	Duration	Total Cost				
Eq Acceptance	\$ 415,667	\$ 730,036	0.5	\$ 573,352				
Training	1,250,000	1,095,055	0.5	1,172,528				
Inventory Item A	1,250,000	2,190,109	0.67	2,308,803				
Inventory Item B/C	1,250,000	2,190,109	0.91	3,130,499				
Inventory Item D	1,250,000	2,190,109	0.27	928,829				
Shutdown	416,667	730,036	0.50	573,352				
Total Duration Operatio	ns Costs			\$ 8,683,433				

TABLE D-13. LIFE CYCLE OPERATING COSTS - SINGLE SITE (400 LB/HR)

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

N. SPECTORY, DECEMPTORY

SECONDER STOVERS

101120210 CM

3

Î

	Rate,							
Period	Labor \$/Yr	Other \$/Yr	Duration	Total Cost				
Eq Acceptance	\$ 683,333	\$1,828,883	0.50	\$ 1,256,108				
Training	2,050,000	2,743,325	0.50	2,396,663				
Inventory Item A	2,050,000	5,456,649	0.27	2,026,795				
Inventory Item B/C	2,050,000	5,456,649	0.37	2,777,460				
Inventory Item D	2,050,000	5,456,649	0.12	900,798				
Shutdown	683,333	1,828,883	0.50	1,256,108				
Total Duration Operatio	ns Costs			\$10,613,932				

TABLE D-14. LIFE CYCLE OPERATING COSTS - SINGLE SITE (1000 LB/HR)

D-42

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

1

• • • • • •

·. . 1
		Rate,			
Pertod	Labor \$/Yr	Other \$/Yr	Duration	Total Cost	
Eq Acceptance	\$ 683,333	\$1,828,883	0.5	\$ 1,256,108	
Training	2,050,000	2,743,325	0.5	2,396,663	
Inventory Item A	2,050,000	5,456,649	2.70	20,267,952	
Inventory Item B/C	2,050,000	5,456,649	4.37	32,804,056	
Inventory Item D	2,050,000	5,456,649	1.16	8,707,713	
Shutdown	683,333	1,828,883	0.5	1,256,108	
Total Duration Operation	ns Costs			\$66,688,600	

•

(11) (11)

3

63

5

LIFE CYCLE OPERATING COSTS - COLLOCATED SITE (1000 LB/HR) TABLE D-15.

		Rate,				
Period	Labor \$/Yr	Other \$/Yr	Duration.	Total Cost		
Eq Acceptance	\$1,083,333	\$5,404,082	0.5	\$ 3,243,707		
Training	3,250,000	8,106,123	0.5	5,678,061		
Inventory Item A	3,250,000	16,212,245	0.84	16,348,286		
Inventory Item B/C	3,250,000	16,212,245	1.19	23,160,072		
Inventory Item D	3,250,000	16,212,245	0.40	7,784,898		
Shutdown	1,083,333	5,404,082	0.5	3,243,707		
Total Duration Operatio	ns Costs			\$59,458,731		

TABLE D-16.LIFE CYCLE OPERATING COSTS - COLLOCATED SITE
(3000 LB/HR)

5

行いってたた

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

	Rate,				
Period	Labor \$/Yr	Other \$/Yr	Duration	Total Cost	
Eq Acceptance	\$ 283,333	\$8,948,597	0,5	\$ 5,115,965	
Training	3,850,000	13,422,922	0.5	8,636,461	
Inventory Item A	3,850,000	26,845,791	0.54	16,575,727	
Inventory Item B/C	3,830,000	26,845,791	0.73	22,407,927	
Inventory Item D	3,850,000	26,845,791	0.24	7,366,990	
Shutdown	1,283,333	8,948,597	0.5	5,115,965	
Total Duration Operatio	ns Costs			\$65,215,035	

TABLE D-17.LIFE CYCLE OPERATING COSTS - COLLOCATED SITE(5000 LB/HR)

1944 - 1944 - 1944 1944 - 1944 - 1944

<u>г</u>.

....

1

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

TABLE D-18. DEVELOPMENT COSTS

Phase II - Bench Scale	
Concept Refinement	\$_30,000
Acid Dissolution Studies	100,000
Acid Decomposition Studies	220,000
Roasting Studies	190,000
Environmental Studies	50,000
Design Criteria Development	120,000
Phase II Design Plan & Reporting	40,000
Contingencies	50,000
TOTAL PHASE II DEVELOPMENT COSTS	\$ 800,000
Phase III - Pilot Studies	
Pilot Plan Design	\$ 340,000
Test Plans and Operations Procedures	60,000
Pilot Plant Construction	1,356,000
Pilot Plant Startup	176,000
Operator Training	444,000
Pilot Plant Operation	1,057,000
Test Report	20,000
Process Development Program	600,000
30% Design Package	400,000
Subcontractors	250,000
Contingencies (20%)	940,000
TOTAL PHASE III DEVELOPMENT COSTS	\$5,693,000
TOTAL DEVELOPMENT COSTS	\$6,443,000

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

E. Total Costs

• 5

....

i...,

وتعكنك تعاقدته وتعاط

Defice Accession

كمالك للاسك للمسلمان والمالعان ولاحته بالملا

The total of the estimated costs for all three single site and all three collocated sites are summarized in Tables D-19 and D-20, respectively.

F. Optimum Process Flow Rate

From an operation standpoint, the full capacity of the major process elements is achieved at a throughput of approximately 400 pounds/hour of agent. This is not suprising since this rate produce an acid recycle rate that closely matches the Dravo spcifications. As anticipated from these observations, no economy of scale is observed. A further demonstration of this fact can be seen in the cost curves (Figures D-4 and D-5). Since a minimum collocated cost had not been observed at 1000 lb/hr throughput, life cycle costs for a 400 lb/hr were estimated in the following manner. The costs for processing each of the inventory categories for the 400 lb/hr single site summarized in Table D-13 were multiplied by 10 to represent the larger inventory and the single site and collocated site costs for startup, training, and shutdown were assumed to be the same. The life cycle operating costs for a 400 lb/hr collocated sit were so computed to be \$66,001,242. The capital equipment, Facility and development costs were assumed to be the same bringing the total costs to \$78,294,996. These numbers have been included in the cost curves and indicate that the optimum processing rate is approximately 400 lb/hr of agent whether single or collocated. This is not too surprising since this rate matches well the optimized processing rate of the Dravo estimate. It might further be noted that the estimated sum of the capital and facility costs for a 400 lb/hr facility (\$5,850,754) also compares favorably with the Dravo turnkey estimate.

These estimates of the total life cycle cost indicate that, processing at this optimum flow rate, it would cost \$20,977,187 to destroy a single site and \$78,294,996 to destroy a collocated site

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

	Agent Rate (1b/hr)				
Cost Item	100 lb/hr	400 lb/hr	1000 lb/hr		
Facility Costs	\$ 596,100	\$ 782,675	\$ 1,803,500		
Capital Equipment Costs	1,819,138	5,068,079	12,226,232		
Life Cycle Operations Costs	14,787,867	8,683,433	10,613,932		
Development Costs	6,443,000	6,443,000	6,443,000		
TOTAL COSTS	\$23,646,100	\$20,977,187	\$31,086,664		

TABLE D-19. TOTAL COST ESTIMATES - SINGLE SITE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-62-C-0055 with ARRADCOM.

	Agent Rate (1b/hr)			
Cost Item	1000 lb/hr	3000 lb/hr	5000 lb/hr	
Facility Costs	\$ 1,817,750	\$ 5,062,500	\$ 8,138,050	
Capital Equipment Costs	12,226,232	33,596,994	54,494,433	
Life Cycle Operations Costs	66,688,600	59,458,731	65,219,035	
Development Costs	6,443,000	6,443,000	6,443,000	
TOTAL COSTS	\$87,170,000	\$104,560,000	\$134,290,000	

TABLE D-20'. TOTAL COST ESTIMATES - COLLOCATED SITE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

D-49

同時

6

Ċ

AND A MANAGED - PARTICULAR - AREASAN - AREASAN

san annan ar anna annan annan annan annan

As has been previously predicated, blast containment has not been incorporated in this conceptual design. The dissolution system could easily be converted to blast containment by utilizing small blast containment spheres as dissolution tanks. At a processing rate of 400 lb of agent/hour, 40 such spheres could be required. This modification would add \$1.0M to the capital equipment costs, \$1.6M to the facility costs, and might require 20 additional materials handlers increasing the life cycle labor costs by \$10M. Such a modification therefore would only increase the total life cycle costs for a 400 lb/hour single site facility from \$20.98M to \$33.58 M.

While the munition unpack costs must still be added to the sums before they can be compared with the baseline costs of \$101,000,000 and \$355,000,000, it is obvious that implementation of this concept offers the opportunity for a significant cost savings.

G. Operating Time

The operating time required for each munition category was discussed previously while developing the operating costs. The total operating time required to destroy the inventory at the processing rates of interest are summarized in Table D-21. From this table it can be seen that, processing at the optimum throughput of 400 lb/hour it would require 3.35 years to demilitarize a single site and 20 years to demilitarize a collocated site.

Agent Rate 1b/hr	. Operating Year
,	<u>Single_Site</u>
100	8.82
400	3.35
1000	2.26
	Collocated Site
400	20
1000	9.73
3000	3.93
5000	3.01

TABLE D-21. OPERATING TIME

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

3

8]

RAD OLE BUT

William Million

TAN STATE OF TAXABLE A DEPARTMENT OF TAXABLE A

X, XXXXX, MUMMA

REFERENCES

- (1) U.S. Patent 3,502,432, "Reclamation of Spent Hydrochloric Acid", assigned Ross Engineering Co. (September 9, 1968).
- (2) U.S. Patent 3,495,995, "Apparatus for the Regeneration of Hydrochloric Acid From Spent Pickle Liquor and Like Solutions", assigned to Dravo Corporation (July 19, 1966).
- (3) U.S. Patent 3,440,004, "Processing of Spent Hydrochloric Acid Pickle Liquor", assigned to Arthur D. Little Inc. (July 19, 1966).
- (4) "Entry Methods to Deactivate Improvised Explosive Devices (IED's)", Contract DAAHO1-81-C-A277 to Naval Explosive Ordinance Disposal Technology Center, monitored by U.S. Army, Missile Command, Task Report NEOD 5-5 (September 1981), by Randall J. Avers, Battelle Columbus Laboratories.
- (5) "Investigation of Acid Trepanning as a Method for Entering Improvised Explosive Devices", Contract DAAHO1-81-C-A277 to Naval Explosive Ordnance Disposal Technology Center, monitored by U.S. Army Missile Command, Task Report NEOD 7-1 (December 1982), by Uma S. Nandi and Randall J. Avers, Battelle Columbus Laboratories.
- (6) J. T. Conroy, "The Rate of Dissolution of Iron in Hydrochloric Acid", J. Soc. Chem. Incl, <u>20</u>, pp 316-320 (1901).

- (7) W. S. Calcott and J. C. Whetzel, "Laboratory Corrosion Tests", Transaction of American Institute of Chemical Engineering, <u>20</u>, Part 1, 17, 1923.
- (8) William D. Richardson, "The Solution of Metals in Acids as Related to Corrosion", presented at the Thirty-eighth General Meeting of the American Electrochemical Society, Cleveland (September 30, 1920).
- (9) Frank N. Spells, <u>Corrosion Causes and Prevention</u>, McGraw-Hill Book Company, Third Edition (1981).
- (10) Mars G. Fontana and Norbert D. Greene, <u>Corrosion Engineering</u>, McGraw-Hill Book Company (1967).
- (11) "Operation of the Chemical Agent Munitions Disposal System (CAMDS) at Toole Army Depot, Utah", Department of the Army Office of the DA Project Manager for Chemical Demilitarization and Installation Restoration, Aberdeen Proving Ground, Maryland.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

(12) Dravo Engineers Inc., Pittsburgh, Pennsylvania, Submission to the BCL Thermal Demilitarization Program (December 29, 1982).

. . .

3

5

: بر

- (13) J. Chin Chu, Shu Lung Weng, S. L. Levy, <u>Vapor-Liquid Equilibrium</u> <u>Data</u>. Published by J. W. Edwards (1956).
- (14) E. C. Chen, G. McGuire, and H. Y. Lee, "Vapor-Liquid Equilibria of the Hydrochloric Acid - Ferrous Chloride - Water System", J. Chem Eng DAta, 15(2), 223 (1970).
- (15) M. V. Ionin and A. A. Kozhakong, "Phase Design and Physicochemical Properties of the System FeCl₂-HCl-H₂O, Zh. Prikl. Khim (Leningrad) 46(4), 816 (1973).
- (16) Guthrie, K. M., "Data and Techniques for Preliminary Capital Cost Estimating", Chemical Engineering, pp 114-142, March 24, 1963.
- (17) Peters, M. S. and Timmerhaus, K. D., <u>Plant Design and Economics</u> for <u>Chemical Engineers</u>, Third Edition, McGraw-Hill Book Co., New York, 1980.
- (18) Mulet, A., Corripio, A. B., and Evans, L. B., "Estimate Costs of Pressure Vessels via Correlations", pp 145-150, Chemical Engineering, October 5, 1981.
- (19) Koenig, A. R., "Choosing Economic Insulation Thickness", pp. 125-128, Chemical Engineering, September 8, 1980.
- (20) Corripio, A. B., Chrien, K. S., and Evans, L. B., "Estimate Costs of Centrifugal Pumps and Electrical Motors", pp. 115-118, Chemical Engineering, February 22, 1982.
- (21) Hall, R. S., Matley, J., and McNaughton, K. J., "Current Costs of Process Equipment", pp. 78-116, Chemical Engineering, April 5, 1982.
- (22) Personal communication from Richard Marion of American Vicarb, January 7, 1983.
- (23) Corripio, A. B., Chrien, K. S., and Evan, L. B., "Estimate Costs of Heat Exchanges and Storage Tanks via Correlations", Chemical Engineering, January 25, 1982.
- (24) Vatavuk, W. M. and Neveril, R. B., "Part XI: Estimate the Size and Cost of Baghouses", pp. 153-158, Chemical Engineering, March 22, 1982.
- (25) Desai, M. B., "Preliminary Cost Estimating of Process Plants", pp. 65-70, Chemical Engineering, July 27, 1981.

(26) "System Analysis Study of Waste Salt Disposal Methods", Contract DAA15-75-C-0154 to Chemical Systems Laboratory, U.S. Army Armament Reserch and Development Command, Contracts Report EM-CR-77033, by A. L. Farinacci, G. B. Bush, and H. W. Schuette, AAI Corporation (April 1977).

ŝ

APPENDIX E

STATE STREET, PRESS

. .

5

and the second

ENGINEERING AND ECONOMIC ANALYSIS - ROTARY KILN

.

APPENDIX E

ENGINEERING AND ECONOMIC ANALYSIS -ROTARY KILN

Appendix E contains two rotary kiln concepts. The first concept is a large rotary kiln and the second concept is a proportional rotary kiln. The two concepts are presented separately.

Engineering Analysis - Large Rotary Kiln

A. System Concept Description

Ň

The large rotary kiln concept consists of one large rotary kiln without lifting flites or auger that will incinerate all agents, explosives, and dunnage. The kiln is large enough to handle all metal parts and is sufficient in length to decontaminate the metal parts. The size is based on handling ton containers and spray tanks and will handle agent feed rates up to 5000 lb/hr.

All materials are fed to the rotary kiln at the burner end through an inclined feed chute equipped with an air lock. The decontaminated metal parts and residue are discharged into the base of the vertical afterburner chamber and are removed by a conveyor from the bottom of the liquid seal tank maintained at the bottom of the afterburner chamber.

The flow diagram of the system is shown in Figure E-1. The system is operated at negative pressure by an induced draft fan included in the baghouse portion of the flow diagram. Operation of the system at negative pressure eliminates possible leaks of chemical agent or vapors during their incineration.

The overall system mass balance is compiled in Table E-1 and the overall system heat balance is compiled in Table E-2.

FIGURE E-1. LARGE ROTARY KILN SYSTEM CONCEPT

	E-3		
	TABLE E-1. LARGE ROT	ADV KIN CYCTCM	
	MASS BALA	ARY KILN SYSTEM NCE AGENT FEED RATE	
	Material	lb/hr	
	IN		
	Wood	650	
3	GB	400	
	Explosive	250	
	Fuel 011 (486 gal)	3,506	
181. 191	. Air	145,260	
	Water	40,770	
	Metal	2,050	
	NaOH	686	
	TOTAL	193,572	
	OUT		
	Flue gas w/water	190,388	
	Salts and Particulate	1,134	
	Metal	2,050	
	TOTAL	193,572	
2.3			
Use, duplication, or	disclosure is subject to restrictions state	d in Contract No. DAAK11-82-C-005	5 with ARRADCOM.
	an a		

TABLE E-2.LARGE ROTARY KILN SYSTEM
HEAT BALANCE
400 LB/HR AGENT FEED RATE

	IN	- 	
<u>Material In</u>	HHV	-	Btu/hr
Wood	8,50	0	5,525,000
Explosive	5,40	0	1,350,000
GB	10,07	3	4,029,200
#2 Fuel 011	142,0 (per		69,012,000
TOTAL			79,916,200
	00T		
Material Out	<u>Cp</u>	ΔT,F	Btu/hr
Water in flue gas*	0.50	1,530	46,680,820
Flue gas	0.25	330	12,343,485
Metal	0.11	1,530	345,015
Salts & Particulate	0.25	330	80,850
Spent Salt*	0.25	1,730	370,080
Heat Losses	by di	fference	20,466,030
TOTAL			79,916,200

* Includes heat of vaporization or heat of fusion.

B. System Feed Requirements

() (

ni Ni

<u>____</u>

The requirements of the system for the burstered munitions are that the explosive be removed from the munition and the agent cavity open (feedstock e). For non-burstered munitions only the agent cavity must be opened (feedstock c). The dunnage may need some size reduction to permit feeding into the rotary kiln. Also, if there are any combustible items that have a cross-sectional area of much over 2 inches by 4 inches, these items may need size reduction to completely ashify the combustible during its residence time in the kiln.

C. Pollution Abatement System

The current plan is to use baseline technology for the pollution control system. This will consist of a spray dry scrubber followed by a baghouse, induced draft fan and stack. The particulate generated from this system will be collected in the baghouse and drummed and stored. The salts will be dry and will contain heavy metals. If the salts can be certified agent free there may be the possibility of disposal in a hazardous landfill.

D. Ultimate Disposal

The majority of the materials that remain to be disposed of after the incineration of the chemical agent and its related materials in the rotary kiln are as follows: decontaminated metal scrap, wood ash and dry salts generated in the pollution control system.

The metal scrap can be sold as scrap as has been done at CAMDS and RMA. It may need to be separated from wood ash and/or slag that it will be mixed with while being processed in the rotary kiln. This separation may only require a conveyor with a webbed belt that will allow the larger pieces of material, the metal scrap, to be transferred to its destination.

E-5

The wood ash will be collected in the liquid seal or the baghouse depending on the size of the ash particles and the gas velocities through the system. The larger particles that are not carried by the hot flue gases to the baghouse will fall from the discharge point of the rotary kiln and be collected in the liquid seal. Ash will settle to the bottom of the liquid seal vessel where it can be removed periodically and landfilled.

The dry salt and wood ash carryover to the baghouse will be drummed and stored as at CAMDS. If the salt can be certified agent free then the salts could be landfilled at an appropriate site.

E. System Concept Advantages

The large rotary kiln system is a simple system to operate because it consists of one furnace and an afterburner that will handle all munitions in the appropriate feedstock. The system is easy to operate as a result of few moving parts and has few items that require service.

The munitions do not need to be drained of agent because the kiln will thermally download the agent from the munitions after the agent cavities have been opened. The system also has potential for post demil application because rotary kilns are commonly used for waste disposal of liquids, sludges, and solids.

F. System Concept Disadvantages

Reducing the throughput of the large rotary kiln requires auxiliary fuel to maintain operating temperature. The size of the rotary kiln is fixed to allow for ton containers and spray tanks to be processed in the rotary kiln. This results in high gas throughputs through the entire system with little change due to a change in the feedrate of agent and related materials. Therefore, the system is better utilized at the higher agent throughput rates.

The rotary kiln system cannot handle detonations of munitions. This would result in equipment down time. The system can handle fuzes.

G. System Concept Knowledge Gaps

Major system knowledge gaps are refractory life due to chemical attack and abrasion from the munitions, and feeding and discharge systems required to handle ton containers, bombs, and spray tanks.

H. Safety

The rotary kiln system is safe. The system operates at negative pressure to eliminate leaks and the system operates cocurrently to maximize agent vapor exposure to the combustion conditions of the rotary kiln. The liquid seal provides a blast attenuation dampener in the event of an explosion and also acts as a pressure relief valve.

I. Likelihood of Developments Within Five Years

Rotary kilns have been used for years for the disposal of toxic and hazardous materials such as pesticides, herbicides, PCB's, and dioxins. They have also been used for demilitarization of explosives and conventional munitions. The development of a large kiln to handle chemical agents and related materials involves scale-up of the feed and discharge systems, determining the correct refractory and operating conditions. The likelihood of development of a rotary kiln system within 5 years is very great.

J. Scalability

The system is the same size up to an agent feedrate of 5000 pounds per hour due to restraints placed on the system to handle ton containers and spray tanks.

K. Degree of Technical Risk

The projected size of the rotary kiln is state of the art. However, the current feed and discharge systems will need to be changed to handle ton containers and spray tanks. The current feed systems handle 55 gallon drums. The changes for the bulk items are not envisioned to be large. The degree of technical risk for this system is very low.

L. RAM Factors

The calculations are attached in Appendix L. Availability factor used for the economic calculations was 0.859.

M. Materials Compatibility

The materials compatibility problems are similar to the baseline system. There are corrosive flue gases as a result of the incineration of the agents. One additional compatibility problem which the deactivation furnace does not have is the abrasion of the rotary kiln refractory due to the munition bodies in the kiln rolling against the refractory.

N. Energy Requirements and Source

Since the rotary kiln size is fixed so that ton containers and spray tanks can be processed it has a fixed heat load range that must be maintained by fuel or the materials being incinerated. Therefore, the fuel usage of the large rotary kiln is inversely proportional to the agent feed rate. The higher agent feed rates require less fuel oil to maintain the rotary kiln operating temperature due to the amount of heat released from the materials being incinerated.

Electrical power is needed to operate the kiln, feed and discharge systems and the pollution control system. The largest portion of the electrical power is needed for the pollution control system due to the large induced draft fan.

0. Ease of Operation

のできるようで

いたのでもなるな

团

B

(j)

B

園

R

Ŋ

Due to the fact that the thermal system consists of only one furnace system, the complexity of the thermal system is minimized. The furnace system has no complex moving parts and is an inherently simple system. One furnace system handling all munitions reduces the complexity of materials handling by minimizing possible handling routes.

The flexibility of the system is only limited by large detonable items which may result in equipment damage. The system also has applications after demilitarization for many types of wastes such as sludges, liquids, and solids. The operability is good because of its simplicity and flexibility.

E-10

Economic Analysis - Large Rotary Kiln

General Assumptions Made for Economic Analysis of Large Rotary Kiln

- Kiln size is constant
- Constant firing rate 80 MMBtu/Hr
- Feed configuration is e (explosive downloaded, agent cavity opened)
- Kiln will handle all material
- Used baseline costs where components remained the same
- System availability is based on thermal system only (thermal system includes ultimate disposal and pollution control equipment)

A. Single Site Facility Costs

<u>Kiln</u>. Constant size kiln results in constant size room 95' x 35' for all feed rates, which includes feed, kiln, afterburner. Cost is \$400/sq. ft. Total cost is \$1,330,000.

<u>Scrap Handling</u>. At a feed rate of 100 lb/hr agent produces 512.5 lb/hr metal scrap. Dunnage is 100 percent wood.

Scrap	<u>Agent Rate</u>
512	100 lb/hr
2050	400 1b/hr
5125	1000 1b/hr
15,400	3000 1b/hr
25,670	5000 1b/hr

Baseline cost at 400 lb/hr is \$133,200. Baseline cost at 3000 lb/hr is \$350,100.

133,200 $\left(\frac{100}{400}\right)^{-6} = $57,980$

133,200 $(\frac{1000}{400})^{-6} = $230,820$ 350,100 $(\frac{5000}{3000})^{-6} = $475,670.$

Salt and Drum Storage. Baseline \$150,880.

8⁴72303060307

Ø

R

B

3

For a single site the total salt storage should be the same if the same type of Pollution Control System (PCS) is used so for a single site the cost remains the same for varying rates. For collocated the cost is \$397,290.

> <u>APC Pad</u>. Baseline 2500 scfm capacity Space required 2500 ft² at 6250

For kiln system which will have a fairly constant fluegas flowrate regardless of the agent feed rate. The 80 MMBtu kiln PCS is rated for 57,000 SCMH (25,000 scfm).

 $(10)^{6} = (24,880)$

Bulk Item Furnace. Not needed in this system.

<u>Fuel Tank Pad</u>. Baseline fuel pad has 2 10'x25' (1963.5 ft³), 14700 gal tanks and 1320 ft² at \$3300.

The furnace is fixed at a rate of 80 MMBtu/hr. This requires 563 gallons per hour fuel oil at 142,000 Btu/gal (3,378,000 gal/year at 24 hours a day for 250 days a year).

However, the downtime must be factored in. Using the baseline of 0.65 availability reduces the oil usage to 2,195,700 gal/year. In addition the fuel oil usage will be reduced by the fuel value of the agent, dunnage and explosive.

#Fuel oil, 7.21 lb/gal

tion, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0088 with Appanent

E-11

E-12

At 100 lb/hr the fuel value of the material is

<u>lb/hr</u>	HHV	<u>Btu/hr</u>
100 GB	10,073 Btu/hr	1,007,300
62.5 Exp.	5,400	337,500
162.5 Wood	8,500	1,381,250

TOTAL	
-------	--

(2,726,050) $(\frac{1}{142,000})(0.65)(20)(250) = 62392$ gal/year reduction in oil

2,195,700 - 62392 = 2,133,308 gal/year needed for 100 lb/hr.

lb/hr	HHV	<u>Btu/hr</u>
(400) (250) (650)	(10073) (5400) (8500)	· ·
TOTAL		10,579,200 242,130 gal/yr

2,195,700 - 242,130 = 1,953,570 gal/year needed for 400 lb/hr.

<u>1b/hr</u>	HHV	Btu/hr
(1000) (625) (1625)	(10073) (5400) (8500)	
TOTAL		27,260,500

623,920 gal/yr reduction

2,726,050

2,195,700 - 623,920 = 1,571,780 gal/year needed at 1000 lb/hr.

<u>3000 lb/hr</u>. (3000)(10073) Total 75,759,000 Btu/hr (1900)(5400) 1,733,920 gal/hr (4900)(8500). 2,195,700 - 1,733,920 = 563,380 gal/hr needed. 4 tanks needed.

<u>5000 lb/hr</u>. (5000)(10073) Total 126,265,000 Btu/hr (3167)(5400) (8167)(8500) 2,889,867 gal/hr.

This is more than required. Will need oil for furnace heatup and will use

 $(4 \text{ hrs/day})(250 \text{ day/yr})(80 \times 10^6 \text{ Btu/hr})(142,000 \text{ Btu/gal})^{-1}$ 563,380 gal/hr.

This number is larger than for 3000 lb/hr. Will adjust for 3000 lb/hr also.

4 tanks needed.

S

B

SELECTION - 1 SELECTION OF

20.21.2. A.S.

DOGRAFY - HERERARD

The above calculations are summarized in Tables E-3 and E-4.

Each tank is estimated to hold 14,700 gal and baseline uses 64.4 gal/hr for a total of 322,000 gal/year.

(2) $\frac{2,138,143}{322000}$ 13 tanks needed on basis of same refilling frequency.

100) $\left(\frac{13}{2}\right)$ (\$3300) = \$21,450 400) $\left(\frac{12}{2}\right)$ (\$3300) = \$19,800 1000) $\left(\frac{10}{2}\right)$ (\$3300) = \$16,500 3000) $\left(\frac{4}{2}\right)$ (\$3300) = \$6,600 5000) $\left(\frac{4}{2}\right)$ (\$3300) = \$6,600.

B. Capital Equipment

<u>Kiln Furnace</u>. Ford, Bacon & Davis/BKMI verbal quote for 80 MMBtu unit 15' x 45' includes feed system, retort, afterburner, and pollution control system.

E-13

Facility	Baseline, \$	100 lb/hr	400 lb/hr	1000 lb/hr
Kiln Furnace Area	\$ 528,000	\$1,330,000	\$1,330,000	\$1,330,000
Scrap Handling	133,200	57,980	133,200	230,820
Salt and Drum Storage	150,880	150,880	150,880	150,880
APC Pad	6,250	24,880	24,880	24,880
Bulk Item Furnace Area	236,700	0	0	0
Fuel Tank Pad	3,300	21,450	19,800	16,500
TOTAL	\$1,058,330	\$1,585,190	\$1,658,760	\$1,753,080

TABLE E-3.SINGLE SITE FACILITY COSTS -
LARGE ROTARY KILN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Facility	Baseline, \$ 3000 lb/hr	1000 lb/hr	3000 1b/hr	5000 lb/hr
Kiln Furnace Room	\$1,384,000	\$1,330,000	\$1,330,000	\$1,330,000
Scrap Handling Area	350,100	230,820	350,100	475,670
Salt & Drum Stora ge	397,290	397,290	397,290	397,290
APC Pad	16,425	24,880	24,880	24,880
Bulk Furnace Area	622,800	0	0	0
Fuel Tank Pad	8,650	21,450	6,600	6,600
TOTAL	\$2,779,265	\$2,004,440	\$2,108,870	\$2,234,440

TABLE E-4. COLLOCATED SITE FACILITY COSTS -LARGE ROTARY KILN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Ø

. Υ

NAS S

3

Total \$12,000,000 Same system/unit used for all feedrates.

<u>Air Heat Exchanger</u>. Baseline 11,000 SCFM 800° T (842 lb/min)(60)(800° F)(.27 Btu/lb^oF) = 10,912,320 Btu/hr at \$200,000

Our case we need to remove 24MMBtu/hr from the room:

 $200,000(\frac{24}{11})^{-6} = 3319,400.$

Same for all feedrates.

E-6.

Bulk Furnace & Exchanger. Not needed.

Storage Forklift. Adjusted from baseline.

<u>Pollution Control</u>. The system provided by BKMI has a pollution control system similar to baseline. The cost is one-half of the total system stated under the heading Kiln Furnace, above. \$6,000,000.

Fuel Tanks. See Facility Costs.

2	tanks	cost \$36,000 - \$18,000	each.
	100	13 tanks	\$234,000
	400	12 tanks	\$216,000
	1000	10 tanks	\$180,000
	3000	4 tanks	\$ 72,000
	5000	4 tanks	\$ 72,000

Residue Truck. Adjusted from baseline.

The capital equipment costs are compiled in Tables E-5 and

a de la companya de l

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

TABLE E	E-5.	SINGLE	SITE	EQUIPMENT	COSTS	-
		LARGE	ROTARY	' KILN		

Equipment	Baseline, \$	100 lb/hr	400 lb/hr	1000 lb/hr
Kiln Furnace	\$ 7,000,000	\$ 6,000,000	\$ 6,000,000	\$ 6,000,000
Air Heat Exchanger	80,000	319,400	319,400	319,400
Bulk Furnace	9,000,000	0	0	0
Air Heat Exchanger	95,000	0	0	0
Storage Fork Lift	22,000	22,000	22,000	44,000
Kiln Scrubber	250,000	6,000,000	6,000,000	6,000,000
Bulk Scrubber	295,000	0	0	0
Ki'in Baghouse	130,000	0	0	0
Bulk Baghouse	170,000	0	0	0
Fuel Tanks	36,000	234,000	215,000	180,000
Residue Handling Truck	65,790	65,790	65,790	131,580
Subtotal	17,143,790	12,641,190	12,623,190	12,674,980
Design	25%	20%	20%	20%
Total Equipment	21,429,740	15,169,430	15,147,830	15,209,980
Total Capital	\$22,488,070	\$16,754,620	\$16,806,590	\$16,963,060

TABLE E-6. COLLOCATED SITE EQUIPMENT COSTS -LARGE ROTARY KILN

Equipment	Baseline, \$ 3000 lb/hr	1000 lb/hr	3000 lb/hr	5000 lb/hr
Kiln Furnace	\$15,743,000	\$ 6,000,000	\$ 6,000,000	\$ 6,000,000
Air Heat Exchanger	200,000	319,400	319,400	319,400
Bulk Furnace	20,241,000	0	0	0
Air Heat Exchanger	230,000	0	0	0
Storage Fork Lift	44,000	44,000	44,000	66,000
Kiln Scrubber	625,000	6,000,000	6,000,000	6,000,000
Bulk Scrubber	715,000	0	0	0
Kiln Baghouse	400,000	0	0	0
Bulk Baghouse	520,000	0	0	0
Fuel Tanks	90,000	180,000	72,000	72,000
Residue Handling Truck	173,000	131,580	173,000	288,300
Subtotal	38,981,000	12,674,980	12,608,400	12,745,700
Design	25%	20%	20%	20%
Total Equipment	48,726,250	15,209,980	15,130,080	15,294,840
Total Capital	\$51,505,515	\$17,214,420	\$17,238,950	\$17,529,280

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

والمراجع والم

E-18

٤.

ġ.

C. Operating Cost

Ĩ

ij

. نا

JELESERS & STRUCTURE - SERVICE

STATE STATE

<u>Personnel Requirements</u>. Kiln - Based on vendor information. Maintenance - Estimate. Control Room - Estimate. Pollution Abatement - Included under kiln. Ultimate Disposal - Scaled from baseline, based on same rates. Cost - \$E0,000/man year The labor costs are summarized in Tables E-7 and E-8.

Direct Costs.

Water. Baseline 9.5 M gal/yr for 11,000 scfm.

9.5 $(\frac{25,000}{11,000}) = 21.6 \text{ Mgal/yr}.$ Same for all feedrates.

Electric. Will cost the same regardless of feedrate for kiln, heat exchanger, and scrubber.

	Kiln	.18 MKwHr/yr	vendor information
	Heat Exchanger	.50	1.6x
	Scrubber	4.80	vendor information
	Salt Eq.	below	will be ratioed.
Baseline	.46 + 76 = 1.22	for 400 1b/hr.	
100	(100/400) (1.	22) = 0.31 + 5.4	8 = 5.79
400		1.22 + 5.4	8 = 6.70
1000	(1000/400) (1.	22) = 3.10 + 5.4	8 = 8,58

E-19

-	Personnel Requirements (men/shift)				
Area	Agent Rate 100 lb/hr	Agent Rate 400 lb/hr	Agent Rate 1000 lb/hr		
Kiln	2	2	2		
Maintenance	2	2	2		
Control Room	1	1	1		
Pollution Abatement	(Included under kiln)	1	1		
Ultimate Disposal	2	4	6		
Totaï/Shift	7	10	12		
Man years/year	21	30	36		
Labor cost \$/year at \$50,000/man yea:	1,050,000	1,500,000	1,800,000		

TABLE E-7.SINGLE SITE LABOR COSTS -
LARGE ROTARY KILN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

ともある

	Personnel Requirements (men/shift)			
Area	Agent Rate 1000 lb/hr	Agent Rate 3000 lb/hr	Agent Rate 5000 lb/hr	
Kiln	2	2	2	
Maintenance	2	2	2	
Control Room	1	1	1	
Pollution Abatement	1	2	3	
Ultimate Disposal	6	10	14	
Total/Shift	12	17	22	
Man years/year	36	51	66	
Labor cost \$/year at \$50,000/man year	1,800,000	2,550,000	3,300,000	

COLLOCATED SITE LABOR COSTS -TABLE E-8. LARGE ROTARY KILN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

周

Û

67

0

8
3000
 3.22 + 5.48 = 8.70

 5000
 (5000/3000) = 5.37 + 5.48 = 10.85

The direct costs are compiled in Tables E-9 and E-10.

<u>Changeout Costs</u>. During changeout the kiln will be shut down. This will result in air pollution control, salt equipment and scrap handling to be shut down.

> Water usage will be 0 Electric will be lighting only Fuel oil will be for startup and shutdown Spare parts and materials/supplies remain.

Assume startup takes 8 hours at 80 MMBtu/hr:

 $((80 \times 10^{6})(8)/142,000)(1.20) = $5,400$

. The startup fuel will be added to spare parts, materials/ supplies. Lighting will be neglected. The spare parts and materials/ supplies will be rated for the duration of the changeout. Will need electric and water during startup. Will use a cost of \$12 for electric and \$18 for water.

> Electric (30)(8)(0.05) = \$12. Water $[(21.6 \times 10^6)/(20)(250)]$ $(8)(\frac{.53}{1000}) = 18 .

Kiln refractory cost is \$350,000 (vendor information) Life expectancy is 2 years.

Will replace refractory at each changeout at the lower feedrates. Assumed at lowest feedrate the refractory life will be increased.

Changeout direct costs will be:

5400 + 18 + 12 + 350,000 = \$355,430.

	A	nnual Usage/Cos	st
Utility	Agent Rate	Agent Rate	Agent Rate
	100 lb/hr	400 lb/hr	1000 lb/hr
Water, 10 ⁶ gal/yr	21.6	21.6	21.6
(\$.53/1000 gal)	\$ 11,450	11,450	11,450
Electric, 10 ⁶ kwy/yr	5,79	6.70	8.58
(\$0.05/Kwh)	\$289,500	335,000	429,000
Fuel, gal/yr	2,138,143	1,953,570	1,620,130
(\$1.20/gal)	2,565,770	2,344,280	1,944,160
Spare Parts, 6% (Capital Equipment) w/Design	\$1,055,280	1,008,400	1,017,780
Materials/Supplies, 10% Other Operating	\$ 492,200	519,910	520,240
Total Direct Costs \$/yr	\$4,364,200	4,219,040	3,922,630

TABLE E-9. SINGLE SITE OPERATION COSTS -LARGE ROTARY KILN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

阁

問題

E

Ø

0.535934444

ويكري والمحاطية والمحاصية والمحاصي

and the second sec

	Annual Usage/Cost							
Utility	Agent Rate	Agent Rate	Agent Rate					
	1000 lb/hr	3000 lb/hr	5000 lb/hr					
Water, 10 ⁶ gal/yr	21.6	21.6	21.6					
(\$.53/1000 gal)	\$ 11,450	11,450	11,450					
Electric, 10 ⁶ kwy/yr	8,58	8,70	10.85					
(\$ 0.05/Kwh)	\$ 429,000	435,000	542,500					
Fuel, gal/yr	1,620,130	563,380	563,380					
(\$1.20/gal)	1,944,160	676,060	676,060					
Spare Parts, 6% (Capital Equipment) w/Design	\$ 912,600	907,800	917,690					
Materials/Supplies, 10% Other Operating	\$ 509,720	458,030	544,770					
Total Direct Costs \$/yr	\$3,806,930	2,488,340	2,692,470					

TABLE E-10. COLLOCATED SITE OPERATION COSTS - LARGE ROTARY KILN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

100	1b/hr	(.17)(1,005,280	+	492,200)	=	\$254,570
400	1b/hr	(.17)(1,008,400	+	519,910)		\$259,810
1000	1b/hr	(.17)(1,017,780	+	520,240)	-	\$261,460.

At <u>100 lb/hr</u> agent feed rate refractory will be changed during both changeouts.

254,570 + 355,430 = 610,000

1000 - 2 Refractory Changes/Repair 700,000 + 5430 + 241,790 = 947,220 (both) 3000 - 1 Refractory 350,000 + 5430 + 241,770 = 247,300 (1st) 597,200 (2nd) 5000 - 0 Refractory 5430 + 258,200 = 263,630 (both)

At <u>400 lb/hr</u> agent feed rate refractory will be changed only once during the second changeout.

1st changeout259,810 + 5430 =265,2402nd changeout259,810 + 5430 + 350,000 = 615,240.

At 1000 lb/hr no refractory charge/repair needed. Changeout 261,460 + 5430 = 266,890.

D. Development Costs

The development costs are listed in Table E-11.

E. Total Cost

 $\left\{ \cdot \right\}$

The total costs are compiled in Table E-12 through E-19. The plots of the cost curves are shown in Figures E-2 and E-3.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

E-26

1998-1999 (1999-1999) (1999-1999) 1999 - 1999 (1999-1999) (1999-1999)

TABLE E-11. DEVELOPMENT COSTS - LARGE ROTARY KILN

Phase II	Lab Studies		
	Concept Refinement	\$	15,000
	Volatilization and Operation Studies		100,000
	Refractory-Materials Compatibility Studies		100,000
	Environmental Studies		100,000
	Feed and Discharge Studies		100,000
	Seal Design		50,000
	Materials		150,000
	Subcontractors		150,000
	Contingency		50,000
	Preliminary Pilot Plant Design	•	60,000
	TOTAL PHASE II	\$	875,000
Phase II	Pilot Plant Studies		
	Pilot Plant Design	\$	200,000
	Test Plans, Operating Procedures		50,000
	Pilot Plant Construction	1	,105,000
	Pilot Plant Start-Up		145,000
	Operator Training		390,000
	Operation		869,000
	Test Reports		15,000
	Process Development		250,000
	30% Design Package		250,000
	Subcontractors		500,000
	Contingencies (20% of 3,774,000)		755,000
	TOTAL PHASE III	\$4	,529,000
TOTAL DE	VELOPMENT COSTS	\$5	,404,000

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0058 with ARRADCOM.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C

TABLE E-12.	SINGLE SITE TOTAL	OPERATING	COST	-	LARGE	ROTARY	KILN
	(10	10 LB/HR)					

TROPERSON TRADESING BRACE STREET TRADESING

striction:

DAAK11-82-C-0055 w1 ti

Carlos Carlos

Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	350,000	1,454,730	0.50	902,365
Training & Sys	1,050,000	2,182,100	0.50	1,616,050
A	1,050,000	4,364,200	2.49	13,481,360
Change Out	1,050,000	610,000	0.17	788,500
B/C	1,050,000	4,364,200	3.34	18,083,430
Change Out	1,050,000	610,000	0.17	788,500
D	1,050,000	4,364,200	0.94	5,089,350
Shutdown	350,000	1,454,730	0.50	902,365
Total Life Operating	Cost		8.61	\$41,651,920

E-27

matter 100

1000

.

TABLE E-13. SINGLE SITE TOTAL OPERATING COST - LARGE ROTARY KILN (400 LB/HR)

Use, dupitation, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARADCOM. Satisfy which with a subject with a subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARADCOM

500,000 1,500,000 1,500,000	1,406,350 2,109,520 4,219,040	0.50 0.50 0.62	
2 2			1,804,760
1,500,000	4,219,040	0.62	
		0.02	3,545,800
1,500,000	265,240	0.17	520,240
1,500,000	4,219,040	0.83	4,746,800
1,500,000	615,240	0.17	870,240
1,500,000	4,219,040	0.26	1,486,950
500,000	1,406,350	0.50	953,175
	1,500,000 1,500,000	1,500,000 615,240 1,500,000 4,219,040	1,500,000615,2400.171,500,0004,219,0400.26

•

			TABL	LE E-14	4. SI	NGLE S			PERATIN LB/HR)	g Cost	- LAR	GE ROT	ARY KI	LN			
	Per	riod		La	bor Co	st/Yea	r	Other	r Direc	t Cost/	/Yr	Dur	ation,	Yr	Tot	al Cos	;t
Eq	Acceptar				609	,000		<u></u>	1,307	,540	<u> </u>		0.50			953,77	0
Tr	aining &	Sys			1,800	,000			1,961	,315			0.50		î,	,880,66	0
	A				1,800	,000			3,922	,630			0.25		1,	,430,66	0
Ch	ange Out				1,800	,000			266	,890			0.17			572,89	0
	B/C				1,800	,000			3,922	,630			0.34		1,	945,69	0
Ch	ange Out				1,890	,000			265	,890			0.17			572,89	0
	D				1,800	,000			3,922	,630	•		0.11			629,49	0
Sh	utdown				600	,000			1,307	,540			0.50			953,77	0
Tota	1 Life Op	perating	g Cost										2.54		\$8,	,939,82	0

.

: 5

		Agent Feed Rate	
	100 1b/hr	400 lb/hr	1000 1b/hr
Capital	\$16,754,620	\$16,806,590	\$16,963,060
Operating	41,651,920	14,881,140	8,939,820
Development	5,404,000	5,404,000	5,404,000
Total Life Cycle Cost	\$63,810,540	\$37,091,730	\$31,306,880

TABLE	E-15.	SINGLE	E SITE	COSTS	-
		LARGE	ROTARY	KILN	

Use. duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-DO55 with ARRADCOM.

Ċ.

TARI F	E-16. COLLOCATED SIT	E TOTAL OPERATING COST - L	ARGE ROTARY KIIN	
	E-ID. COLLOCATED SIT	(1000 LB/HR)		
Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	600,000	1,268,980	0.50	934,490
Training & Sys	1,800,000	1,903,465	0.50	1,851,730
A	1,800,000	3,806,930	2.48	13,905,190
Change Out	1,800,000	947,220	0.17	1,253,220
B/C	1,800,000	3,806,930	3.34	18,727,150
Change Out	1,800,000	947,220	0.17	1,253,220
D	1,800,000	3,806,930	1.08	6,055,480
Shutdown	600,000	1,268,980	0.50	934,490
Total Life Operating Cost			8.74	\$44 ,914,970
for the operating bost				¥11,311,370
				

Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	850,000	829,450	0.50	839,720
Training & Sys	2,550,000	1,244,170	0.50	1,897,090
Α	2,550,000	2,488,340	0.82	4,131,440
Change Out	2,550,000	247,300	0.17	680,800
B/C	2,550,000	2,488,340	0.10	5,541,170
Change Out	2,550,000	597,200	0.17	1,030,700
D	2,550,000	2,488,340	0.37	1,864,190
Shutdown	850,000	829,450	0.50	839,720
otal Life Operating Co	ost		4.13	\$15,825,830

TABLE E-17. COLLOCATED SITE TOTAL OPERATING COST - LARGE ROTARY KILN (3000 LB/HR)

duplication.

disclosur

subject

ទ

restrictions stated

In Contract No. DAAK11-82-C-0055 with ARRADCOM.

			223	<u> </u>	CE.	E.	F		E	e G				CE:	6.3		15	E.C.			1
--	--	--	-----	----------	-----	----	----------	--	---	-----	--	--	--	-----	-----	--	----	------	--	--	---

7

180108U

01133

AK11-82-C-0055 with ARRADCOM

.

TABLE E-18. COLLOCATED SITE TOTAL OPERATING COST - LARGE ROTARY KILN (5000 LB/HR)

Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	1,100,000	897,490	0.50	998,750
Training & Sys	3,300,000	1,346,235	0.59	2,323,120
Α	3,300,000	2,692,470	0.50	2,996,230
Change Out	3,300,000	263,470	0.17	824,630
B/C	3,300,000	2,692,470	0.67	4,014,950
Change Out	3,300,000	263,630	0.17	824,630
D	3,300,000	2,692,470	0.22 ·	1,318,340
Shutdown	1,100,000	897,490	0.50	<u>998,750</u>
otal Life Operating Co	st		3.23	\$14,299,40

		Agent Feed Rate	
	1000 1b/hr	3000 1b/hr	5000 1b/hr
Capital	\$17,214,420	\$17,238,950	\$17,529,280
Operating	44,914,970	16,825,830	14,299,400
Development	5,404,000	5,404,000	5,404,000
Total Life Cycle Cost	\$67,533,390	\$39,468,780	\$37,232,680

TABLE E-19. COLLOCATED SITE COSTS -LARGE ROTARY KILN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

F. Optimum Process Flow Rate

Ŗ

[]

0

E

Ü

() () For single site operation the optimum process flowrate occurs at the highest agent feed rate, based on the total life cycle costs. The collocated site optimum process flowrate is at 5000 lb/hr which is the limiting process rate of the large rotary kiln. For a larger feed rate, a second kiln will be added which would raise costs. See Figures E-2 and E-3 for the cost curves.

G. Operating Time

The munition feed time will be based on the amount of agent per munition, thermal system availability, munition inventory, operation days and hours per year (20 hours a day and 250 days a year). Also for the thermal system, it is assumed that there is no difference between burstered and nonburstered munitions.

Munition	<pre>1b agent/munition</pre>
M55 Rockets	10.7 lb/rocket
105 mm	1.6
155 mm	6.5
8"	14.5
Bomb	220.0
Ton	1500.0
Mortars	6.0
Mines	10.5
Spray Tank	1356.0

 $\frac{\text{Throughput/hr}}{80,000 \text{ M55's}} (100 \text{ lb/hr})(\frac{1}{10.7} \text{lb/munition})$

(20 hr/day)(250 days/hr)(0.859)

100	1b/year	2.00	years
400	lb/year	0.50	years
1000	lb/year	0.20	years

True La Parte

The same steps were done for the other munitions on a programmable calculator. The calculations are compiled in Tables E-20 and E-21.

The Platest street

Same and

のないというたい

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

TABLE E-20. SINGLE SITE OPERATING TIME - LANGE ROTARY KILM nition Numition <u>Through-put Per Hour</u> System ⁴ <u>Production Years</u>	E II					2 🖂	C23 C23 (23 23		1 2 23 6	
Inition Hunition Through-put Per Hour System* Production Years tegory Type Inventory 100 lb/ler 400 lb/ler 1000 lb/ler Availability 100 lb/ler 400 lb/ler 1000 lb/ler A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 B/C Mortars 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.70 0.17 0.07 105 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.19 0.00 8 8" Projectiles 50,000 15.4 61.5 153.8 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 0.17 0.3 0.7 0.859 0.47 0.16 0.0							2				
Inition Hunition Through-put Per Hour System* Production Years tegory Type Inventory 100 lb/ler 400 lb/ler 1000 lb/ler Availability 100 lb/ler 400 lb/ler 1000 lb/ler A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 B/C Mortars 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.70 0.17 0.07 105 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.19 0.00 8 8" Projectiles 50,000 15.4 61.5 153.8 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 0.17 0.3 0.7 0.859 0.47 0.16 0.0							-				
Inition Hunition Through-put Per Hour System* Production Years tegory Type Inventory 100 lb/ler 400 lb/ler 1000 lb/ler Availability 100 lb/ler 400 lb/ler 1000 lb/ler A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 B/C Mortars 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.70 0.17 0.07 105 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.19 0.00 8 8" Projectiles 50,000 15.4 61.5 153.8 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 0.17 0.3 0.7 0.859 0.47 0.16 0.0											
Inition Hunition Through-put Per Hour System* Production Years tegory Type Inventory 100 lb/ler 400 lb/ler 1000 lb/ler Availability 100 lb/ler 400 lb/ler 1000 lb/ler A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 B/C Mortars 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.70 0.17 0.07 105 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.19 0.00 8 8" Projectiles 50,000 15.4 61.5 153.8 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 0.17 0.3 0.7 0.859 0.47 0.16 0.0											
Inition Hunition Through-put Per Hour System* Production Years tegory Type Investory 100 lb/hr 400 lb/hr 1000 lb/hr Availability 100 lb/hr 400 lb/hr 1000 lb/hr A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 N23 Wines 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.19 0.05 0.02 i55 mm Projectiles 50,000 16.7 66.7 166.7 0.859 0.19 0.05 0.02 i55 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 i55 mm Projectiles 50,000 6.9 27.6 69.0 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.4											
Inition Numition Through-put Per Hour System* Production Years tegory Type Inventory 100 lb/hr 400 lb/hr 1000 lb/hr Availability 100 lb/hr 400 lb/hr 1000 lb/hr A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 N23 Wines 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.19 0.05 0.07 105 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.08 155 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.08 8* Projectiles 50,000 6.9 27.6 69.0 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 </td <td></td>											
Inition Numition Through-part Per Hour System* Production Years tegory Type Inventory 100 lb/hr 400 lb/hr 1000 lb/hr Availability 100 lb/hr 400 lb/hr 1000 lb/hr A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 N23 Wines 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.19 0.01 0.07 105 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.00 10.8 8* Projectiles 50,000 6.9 27.6 69.0 0.859 1.69 0.42 0.17 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 0 Bombs 200 0.1 0.3 0.7 0.859 0.47 <td></td>											
Inition Numition Through-put Per Hour System* Production Years tegory Type Inventory 100 lb/hr 400 lb/hr 1000 lb/hr Availability 100 lb/hr 400 lb/hr 1000 lb/hr A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 N23 Wines 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.19 0.05 0.07 105 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.08 155 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.08 8* Projectiles 50,000 6.9 27.6 69.0 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-										
Inition Numition Through-put Per Hour System* Production Years tegory Type Investory 100 lb/hr 400 lb/hr 1000 lb/hr Availability 100 lb/hr 400 lb/hr 1000 lb/hr A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 A M55 Rockets 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.19 0.05 0.02 i55 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 i55 mm Projectiles 50,000 62.4 61.5 153.8 0.859 0.19 0.05 0.02 i55 mm Projectiles 50,000 6.9 27.6 69.0 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859											
Inition Hunition Through-put Per Hour System* Production Years tegory Type Inventory 100 lb/ler 400 lb/ler 1000 lb/ler Availability 100 lb/ler 400 lb/ler 1000 lb/ler A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 B/C Mortars 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.70 0.17 0.07 105 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.19 0.00 8 8" Projectiles 50,000 15.4 61.5 153.8 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 0.17 0.3 0.7 0.859 0.47 0.16 0.0											
Inition Hunition Through-put Per Hour System* Production Years tegory Type Inventory 100 lb/ler 400 lb/ler 1000 lb/ler Availability 100 lb/ler 400 lb/ler 1000 lb/ler A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 B/C Mortars 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.70 0.17 0.07 105 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.19 0.00 8 8" Projectiles 50,000 15.4 61.5 153.8 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 0.17 0.3 0.7 0.859 0.47 0.16 0.0											
Inition Hunition Through-put Per Hour System* Production Years tegory Type Inventory 100 lb/ler 400 lb/ler 1000 lb/ler Availability 100 lb/ler 400 lb/ler 1000 lb/ler A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 B/C Mortars 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.70 0.17 0.07 105 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.19 0.00 8 8" Projectiles 50,000 15.4 61.5 153.8 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 0.17 0.3 0.7 0.859 0.47 0.16 0.0											
Inition Hunition Through-put Per Hour System* Production Years tegory Type Inventory 100 lb/ler 400 lb/ler 1000 lb/ler Availability 100 lb/ler 400 lb/ler 1000 lb/ler A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 B/C Mortars 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.70 0.17 0.07 105 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.19 0.00 8 8" Projectiles 50,000 15.4 61.5 153.8 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 0.17 0.3 0.7 0.859 0.47 0.16 0.0			т	ABLE E-20. SI	NGLE SITE OPE	NATING TIME - L	ANGE ADTARY KILK				
tegory Type Inventory 100 lb/hr 400 lb/hr 1000 lb/hr Availability 100 lb/hr 400 lb/hr 1000 lb/hr A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 M23 Hines 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 8/C Mortars 50,000 16.7 66.7 166.7 0.859 0.19 0.05 0.02 105 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 105 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.76 0.19 0.08 8" Projectiles 50,000 6.9 27.6 69.0 0.859 1.69 0.42 0.17 0 Bombs 800 0.4 1.8 4.6 0.859 0.47 0.16 0.07			_								
tegory Type Inventory 100 lb/hr 400 lb/hr 400 lb/hr 1000 lb/hr A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 M23 Wines 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 8/C Mortars 50,000 16.7 66.7 166.7 0.859 0.19 0.05 0.02 105 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 105 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 168 m Projectiles 50,000 62.4 61.5 153.8 0.859 0.76 0.19 0.08 8" Projectiles 50,000 6.9 27.6 69.0 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.8 4.6 0.859 0.47 0.											
tegory Type Inventory 100 lb/hr 400 lb/hr 400 lb/hr 400 lb/hr 1000 lb/hr A M55 Rockets 80,000 9.3 37.4 93.5 0.859 2.00 0.50 0.20 M23 Wines 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.19 0.05 0.02 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.19 0.05 0.02 B/C Mortars 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 105 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.76 0.19 0.08 8" Projectiles 50,000 6.9 27.6 69.0 0.859 1.69 0.42 0.17 0 Bombs 800 0.4 1.2 4.6	unition	Nunition		The	Through-out Per Hour System* Production Years				Production Years		
A M55 Rockets M23 Mines 80,000 20,000 9.3 9.5 37.4 38.1 93.5 95.2 0.859 0.859 2.00 0.49 0.50 0.12 0.20 0.05 B/C Mortars 105 mm Projectiles 50,000 50,000 16.7 62.5 66.7 250.0 166.7 625.0 0.859 0.49 0.12 0.07 B/C Mortars 50,000 16.7 62.5 66.7 250.0 166.7 625.0 0.859 0.19 0.05 0.07 B/C Mortars 50,000 16.7 62.5 66.7 250.0 166.7 625.0 0.859 0.19 0.05 0.02 B/C Mortars 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 B/C Mortars 50,000 15.4 61.5 153.8 0.859 0.76 0.19 0.08 B'' Projectiles 50,000 6.9 27.6 69.0 0.859 0.47 0.16 0.04 D Bombs Ton Containers/ Spray Tanks 200 0.1 0.3 0.7 0.859 0.47 0.16	ategory		Inventory					100 lb/hr			
M23 Wines 20,000 9.5 38.1 95.2 0.859 0.49 0.12 0.05 B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.70 0.17 0.07 105 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 155 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.76 0.19 0.08 8" Projectiles 50,000 6.9 27.6 69.0 0.859 1.69 0.42 0.17 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 0 Bombs 200 0.1 0.3 0.7 0.859 0.47 0.16 0.07											
B/C Mortars 50,000 16.7 66.7 166.7 0.859 0.70 0.17 0.07 105 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 155 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.76 0.19 0.08 8" Projectiles 50,000 6.9 27.6 69.0 0.859 0.47 0.16 0.04 0 Bombs 800 0.4 1.8 4.6 0.859 0.47 0.16 0.04 0.70 Containers/ 200 0.1 0.3 0.7 0.859 0.47 0.16 0.07	A	M55 Rockets	80,000	9.3	37.4	93.5	0.859	2.00	0.50	0.20	
105 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 155 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.76 0.19 0.08 8" Projectiles 50,000 6.9 27.6 69.0 0.859 1.69 0.42 0.17 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 Ton Containers/ 200 0.1 0.3 0.7 0.859 0.47 0.16 0.07		N23 Hines	20,000	9.5	38.1	95. 2	0.859	0.49	0.12	0.05	
105 mm Projectiles 50,000 62.5 250.0 625.0 0.859 0.19 0.05 0.02 155 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.76 0.19 0.08 8" Projectiles 50,000 6.9 27.6 69.0 0.859 1.69 0.42 0.17 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 Ton Containers/ 200 0.1 0.3 0.7 0.859 0.47 0.16 0.07	R/C	Mort arc	50,000	16.7	66.7	166.7	0,859	0.70	0,17	0.07	
155 mm Projectiles 50,000 15.4 61.5 153.8 0.859 0.76 0.19 0.08 8" Projectiles 50,000 6.9 27.6 69.0 0.859 1.69 0.42 0.17 0 Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 Ton Containers/ 200 0.1 0.3 0.7 0.859 0.47 0.16 0.07	0/0	105 mm Projectiles	50,000	62.5	250.0	625.0	0.859	0.19		0.02	
8" Projectiles 50,000 6.9 27.6 69.0 0.859 1.69 0.42 0.17 D Bombs 800 0.4 1.2 4.6 0.859 0.47 0.16 0.04 Ton Containers/ Spray Tanks 200 0.1 0.3 0.7 0.859 0.47 0.16 0.07	-•-	i55 m Projectiles	50,000	15.4	61.5		0.859	0.76	0.19	0.06	
Ton Containers/ Spray Tanks 200 0.1 0.3 0.7 0.859 0.47 0.16 0.07			50,000	6.9	27.6	69.0	0.859	1.69	0.42	0.17	
Ton Containers/ Spray Tanks 200 0.1 0.3 0.7 0.859 0.47 0.16 0.07		8" Projectiles			1.8	4.6	0_859	0.47	0.1G	0.04	
		8" Projectiles	800	U.4							
Based on Thermal System only.		8ª Projectiles Bombs Ton Containers/									
Based on Thermal System only.		8ª Projectiles Bombs Ton Containers/			0.3	0.7	0.859	0.47	0.16	0.07	
		8ª Projectiles Bombs Ton Containers/			. 0.3	0.7	0.859	0.47	0.16	0 .0 7	
	0 	8" Projectiles Bombs Ton Containers/ Spray Tanks				0.7	0.859	0.47	0.16	0.07	
	0	8" Projectiles Bombs Ton Containers/ Spray Tanks			0.3	0.7	0.859	0.47	0.16	0.07	
	D 	8" Projectiles Bombs Ton Containers/ Spray Tanks			0.3	0.7	0.859	0.47	0.16	0.07	
	D 	8" Projectiles Bombs Ton Containers/ Spray Tanks			0.3	0.7	0.859	0.47	0.16	0.07	
	0 	8" Projectiles Bombs Ton Containers/ Spray Tanks				0.7	0.859	0.47	0.16	0.07	
	0	8" Projectiles Bombs Ton Containers/ Spray Tanks			0.3	0.7	0.859	0.47	0.16	0.07	
- -	D 	8" Projectiles Bombs Ton Containers/ Spray Tanks			0.3	0.7	0.859	0.47	0.16	0.07	
-	0 	8" Projectiles Bombs Ton Containers/ Spray Tanks			0.3	0.7	0.859	0.47	0.16	0.07	
	0 	8" Projectiles Bombs Ton Containers/ Spray Tanks			0.3	0.7	0.859	0.47	0.16	0.07	
	D 	8" Projectiles Bombs Ton Containers/ Spray Tanks			0.3	0.7	0.859	0.47	0.16	0.07	
	D 	8" Projectiles Bombs Ton Containers/ Spray Tanks			0.3	0.7	0.859	0.47	0.16	0.07	
	D 	8" Projectiles Bombs Ton Containers/ Spray Tanks			0.3	0.7	0.859	0.47	0.16	0.07	

Munition	' Musition		Through-put Per Hour			System*	Production Years			
Category	Туре	Inventory	1000 lb/hr	3000 lb/ar	5000 3 5/hr	Availability	1000 lb/hr	3000 1b/hr	5000 1b/m	
A	H55 Rockets H23 Hines	800,000 200,000	93.5 95.2	280.4 285.7	467.3 476.2	0.859	1.99 0.49	0.66 0.16	0.40 0.10	
B/C	Mortars 105 mm Projectiles 155 mm Projectiles 8ª Projectiles	500,000 509,000 500,000 500,000	166.7 625.0 153.8 69.0	500.0 1875.0 465.5 206.9	833.3 3125.0 769.2 314.8	0.859 0.859 0.859 0.859	0.70 0.19 0.76 1.69	0.23 0.06 0.25 0.56	0.14 0.04 0.15 0.34	
D	Bombs Ton Containers/ Spray Tanks	8,000 2,000	4.5 0.7	13.6 2.0	22.7 3.3	0.859 0.859	0.41 0.67	0.14 0.23	0.08 0.14	

TABLE E-21. COLLOCATED SITE OPERATING TIME - LANGE NOTARY KILN

-

:

.

* Based on Thermal System only.

.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

. . .

Engineering Analysis - Proportional Rotary Kiln

A. System Concept Description

1

The proportional rotary kiln concept consists of one rotary kiln with the kiln volume scaled to the feed rate. This single kiln will incinerate all agent, explosive and dunnage but requires the feed material to be liquid or small enough to be handled by the rotary kiln. The larger the kiln the larger the solid feed material can be. The kiln length will be sufficient to decontaminate the metal parts.

All materials are fed to the rotary kiln at the burner end through an inclined fuel chute equipped with an air lock. Any liquids could be pumped into the kiln through an injection nozzle located beside the burner. The decontaminated metal parts and any residues are discharged into the base of the vertical afterburner chamber and are removed by a conveyor from the bottom of the liquid seal tank that is maintained at the bottom of the afterburner chamber.

The process and general flow diagram of the system is shown in Figure E-4. The system is operated at negative pressure by an induced draft fan included in the baghouse portion of the flow diagram. Operation of the system at negative pressure eliminates possible leaks of agent or vapors during their incineration. The overall system mass balance is compiled in Table E-22 and the overall system heat balance is compiled in Table E-23.

B. System Feed Requirements

This system has been based on feed configuration h (mashed munitions - 6 inches or less). The advantage to feedstock h is that the rotary kiln size can be selected to match the feedrate instead of using a fixed size kiln to match the items being fed. This would result in more efficient fuel usage. At the higher feedrates the fundamental size can be increased to the limiting size of the rotary kiln. At a 5000-pounds per hour feedrate the kiln size is sufficient

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

PROPORTIONAL ROTARY KILN SYSTEM MASS BALANCE 400 LB/HR AGENT FEED RATE TABLE E-22.

		فتكافئ المراجع والكالا المناب المتحد والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	
	Material	lb/hr	
55 50		<u></u>	
	IN	-	
	Wood	650	
E	GB	400	
	Explosive	250	
8	Fuel 011 (486 gal)	55	
	Air	21,220 6,110	
E.	Water Metal	2,050	
	NaOH	<u>686</u>	
	TOTAL	31,421	
8	0UT		
40 <i>3</i>			
	Flue gas w/water	28,535	
	Salts and Particulate	836	
(3	Metal	2,050	
F.5	TOTAL	31,421	
<u>(</u> *)			
1513			
1765) 			
钧			
8			
Use, duplication, or			
	disclosure is subject to restrictions stated	In Contract No. DAAK11-82-C-0055 with	ARRADI

E-43

が自動に行いていた。

TABLE E	-23. PRO			KILN	SYSTEM
		Γ BALANCE			
	400	LB/HR AG	ENT FEED) RATE	

IN		
HHV	<u>-</u>	<u>Btu/hr</u>
8,500)	5,525,000
5,400)	1,350,000
-		4,029,200
142,00	00	1,093,400
		11,997,600
OUT		
<u>Cp</u>	ΔT,F	Btu/hr
0.50	1,530	6,996,600
0.25	330	2,354,140
0.11	1,530	345,015
0.25	330	68,970
0.11	1,530	345,015
by di	ference	2,232,875 11,997,600
	<u>HHV</u> 8,500 5,400 10,073 142,00 (per 9 0UT <u>Cp</u> 0.50 0.25 0.11 0.25 0.11	$ \begin{array}{r} HHV \\ 8,500 \\ 5,400 \\ 10,073 \\ 142,000 \\ (per gal) \\ \hline UT \\ \underline{OUT} \\ \underline{OT} \\ $

* Includes heat of vaporization or heat of fusion.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

to handle all bulk items. The size of the kiln at 400 pounds per hour should be sufficient to handle small projectile munitions in feedstock c for nonburstered and e for burstered (c - agent cavity open, e explosive downloaded, agent cavity open). Combustible items that have a cross-sectional area of greater than 2 inches by 4 inches may need size reduction to completely ashify the combustible during its resident time in the kiln or the residence time of all materials will be driven by the required residence time to ashify the combustible.

This system will also handle feedstock g if the sawed pieces are small enough for the rotary kiln to handle.

C. Pollution Abatement System

6 8

(13 /11 (11

Į.

> The current approach is to use baseline technology for the pollution control system. The baseline consists of a spray dry scrubber followed by a baghouse, induced draft fan and stack. The particulate generated from this system will be collected in the baghouse, drummed and stored. The salts will be dry and will contain heavy metals. If the salts can be certified agent free there may be the possibility of disposal in a hazardous landfill, otherwise, the salts must be stored. For the purpose of this study the salts were stored.

D. Ultimate Disposal

The majority of the materials that remain after the incineration of the chemical agent and its related materials in the rotary kiln are as follows: decontaminated metal scrap, wood ash and dry salts generated in the pollution control system.

The metal scrap can be sold as scrap as has been done at CAMDS and RMA. It may need to be separated from the wood ash and/or slag that it will be mixed with upon being discharged from the rotary kiln. This separation may only require a conveyor with a webbed belt that will allow the larger pieces of material, the metal scrap, to be

transferred to its destination. The material that falls through the conveyor will be collected and landfilled.

The wood ash will be collected in the liquid seal or the baghouse depending on the size of the ash particles and the gas velocities through the system. The larger particles that are not carried by the hot flue gases to the baghouse will fall from the discharge point of the rotary kiln and be collected in the liquid seal. Ash will settle to the bottom of the liquid seal vessel where it can be removed periodically and landfilled.

The dry salt and wood ash carry over to the baghouse will be drummed and stored as at CAMDS.

E. System Concept Advantages

The rotary kiln system is a simple system to operate because it consists of one furnace and an afterburner that will handle all munitions in feedstock g or h. The system is easy to operate as a result of few moving parts and has few items that require service.

As a result of feedstock size being small there is no large item handling system to feed the furnace or handle discharged materials. The system also has potential for post demil applications because rotary kilns commonly are used for waste disposal of liquids, sludges, and solids.

Since the system has few major knowledge gaps due to its state-of-the-art status, it might to be "fast-tracked" at only a minor increase in technical risk.

F. System Concept Disadvantages

The rotary kiln system as it is used in this system cannot handle detonations of items larger than fuzes. The feedstock requires a large amount of preparation.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

G. System Concept Knowledge Gaps

The major rotary kiln system knowledge gap is refractory life due to chemical attack and abrasion from the metal.

<u>H. Safety</u>

5

1

ų L

The rotary kiln system using feedstock g or h is very safe. The explosives are in small individual amounts and are not contained. Also the feed entering the kiln will enter at a uniform rate which will eliminates large surges of combustion gas leaving the kiln. The kiln will operate at negative pressure to eliminate system leaks. The system operates cocurrently to maximize agent vapor exposure to the combustion conditions of the rotary kiln. The liquid seal provides a blast attenuation damper in the event of an explosion.

I. Likelihoou of Development Within Five Years

Rotary kilns have been used for years for the disposal of toxic and hazardous materials such as pesticides, herbicides, PCB's, and dioxins. They have also been used for demilitarization of explosives and conventional munitions. The development of the rotary kiln to handle chemical agents and related materials involves determining the correct refractory and operating conditions.

J. Scalability

The rotary kiln system is very scalable. Rotary kilns of the size range needed for the 100 to 5000 pound per hour agent feedrates have been built in industry for other uses.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

K. Degree of Technical Risk

The technical risk for the rotary kiln system feeding cut or mashed munitions in small pieces, less than 10 inches is very low. There is much state-of-the-art experience with a multiplicity of feed materials in rotary kilns.

L. RAM Factors

The calculations are attached in Appendix L. The overall thermal system availability factor is 0.881.

M. Materials Compatibility

The materials compatibility problems are similar to the baseline system. One difference is that the rotary kiln has a refractory lining to keep the kiln wall at a low temperature and to protect the wall from the corrosive gases.

N. Energy Requirements and Source

The energy usage of the rotary kiln is dependent upon size of the kiln. The larger the unit the more fuel usage. The fuel usage is low during incineration of the agent because there is sufficient heating value in the feed material to maintain the operating temperature. A pilot flame may be all that is required during operation. During idling conditions the fuel usage will increase to keep the refractory temperature hot; the temperature is estimated at $1200^{\circ}F$.

Electrical power is needed to operate the kiln, feed and discharge systems and the pollution control system. The largest portion of the electrical power is needed for the pollution control system due to the large induced draft fan.

0. Ease of Operation

「「「「」

[]

3

(i) [i]

3

i Y

The complexity of the thermal system is minimized since it consists of only one furnace. The furnace system itself has no complex moving parts and is an inherently simple system.

The system can handle all but large detonable items. It can handle fuzes, giving it a high degree of flexibility.

The operability is good because of its simplicity and flexibility. The number of personnel required to operate the rotary is small. The system is easy to start up and shut down.

E-50

Economic Analysis - Proportional Rotary Kiln

General Assumptions

All munitions and related materials are Feedstock h or g.

A. Facility Costs

<u>Kiln</u>. The manufacturer uses a L/D ratio of 2 for the kiln size. The approximate kiln diameter is as follows:

100	lb/hr	3	Ft	Diameter	6	Ft	Length
400 1	lb/hr	5	Ft	Diameter			Length
1000	lb/hr	7	Ft	Diameter	14	Ft	Length
3000 1	1b/hr	12	Ft	Diameter	24	Ft	Length
5000	lb/hr	15	Ft	Diameter	30	Ft	Length

Will allow 5 feet each side of kiln, 10 feet for feed system, and 15 feet for AFB and scrap discharge.

<u>lb/hr</u>	Room Sizes		Cost
100	13' x 31	\$400/ft2	161,200
400	15' x 35	\$400/ft2	210,000
1000	17' x 39	\$400/ft2	265,200
3000	22' x 49	\$400/ft2	431,200
5000	25' x 55	\$400/ft2	550,000

Scrap Handling.

Baseline cost at 400 lb/hr is \$133,200. Baseline cost at 3000 lb/hr is \$350,100.

<u>1b/hr</u>		
100	58,000	(100/400) ^{.6} x 133,200
400 1000	133,200 181,100	(1000/3000) ^{.6} × 350,100
3000 5000	350,100 475,700	(5000/3000) ^{•6} × 350,100

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRAUCOM.

<u>Salt and Drum Storage</u>. Will use baseline ultimate disposal. Regardless of feed rate, the total salts generated should be appoximately the same at completion time.

> Single Site - \$150,880 Collocated Site - \$397,290

APC Pad.

Baseline 400 lb/hr 2500 ft² at \$2.5/ft² 3000 lb/hr 6570 ft² at \$2.5/ft² 6250 x $(\frac{100}{400})$.⁶ = \$2800 at 100 lb/hr 16425 x $(\frac{1000}{3000})$.⁶ = \$8500 at 1000 lb/hr

 $16425 \times (\frac{5}{3})^{-6} = $22,300 \text{ at } 5000 \text{ lb/hr}$

Bulk Item Furnace. Not needed in this system.

Fuel Tank Pad. Dependent on Fuel Usage.

Assumptions: 10 percent supplemented fuel usage during use (Example: kiln rated at 40 MMBtu will use 4 MMBtu/hr of fuel). Will fire kiln at this rate during 4-Hr period per day and weekends.

100 lb/hr. 3 MMBtu/hr Unit.

 $(\frac{300,000 \text{ Btu/hr}}{142,000 \text{ Btu/gal}})(24)(365) = 18,507 \text{ gal/yr}$

Each tank from baseline is estimated to hold 14,700 gal. Baseline uses 322,000 gal/year. Tanks are filled monthly. Will use one-half sized tank.

 $(\div \frac{5}{7})$ 1320 = 330 ft² - \$2.5/ft² \$900.

400 lb/hr. 11 MMBtu/hr Unit.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

(<u>1,100,000</u>)(24)(365) = 66,186 gal/yr. 0ne tank - 660 ft² - \$1650.

1000 lb/hr. 28 MMBtu/hr. 168,473 gal/yr. One tank per year - \$1650.

- 3000 lb/hr. 83 MMBtu/hr. 512,028 gal/year. Four tanks 2640 ft² \$6600.
- 5000 lb/hr. 137 MMBtu/Hr. 845,155 gal/yr. Six tanks 3960 ft² \$9900.

The numbers calculated above are summarized in Tables E-24 and E-25.

B. Capital Equipment

<u>Kiln</u>.

Agent Feed Rate	<u>Total Heat Release</u>	<u>Unit Cost, Millions*</u>
100	2.7 MMBtu/Hr	.7
400	10.9 MMBtu/Hr	1.0
1000	27.3 MMBtu/Hr	1.6
3000	82.1 MMBtu/Hr	3.1
5000	136.8 MMBTU/Hr	.5

* CE Raymond Costs

The cost is a total package base price, it includes:

Ram Feeder	Stack
Kiln	Emergency Stack
Liquid Firing Nozzles	Control Panel
Afterburner	Controls
Water Quench	Motor Control Center
Packed Tower	Sludge Lances
Neutralization System	Ash Řemoval
ID Fan	Refractory

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

Facility	100 1b/hr	400 lb/hr	1000 lb/hr
Kiln Furnace Area	\$161,200	\$210,000	\$265,200
Scrap Handling	58,000	133,200	181,100
Salt and Drum Storage	150,880	150,880	150,880
APC Pad	2,800	6,250	8,500
Fuel Tank Pad	900	1,650	1,650
TOTAL	\$373,780	\$501,980	\$607,330
Baseline: \$1,058,330			

SINGLE SITE FACILITY COSTS - PROPORTIONAL ROTARY KILN TABLE E-24.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Facility	1000 lb/hr	3000 ib/hr	5000 lb/hr
Kiln Furnace Area	\$ 265,200	\$ 431,200	\$ 550,000
Scrap Handling	181,100	350,100	475,700
Salt and Drum Storage	397,290	397,290	397,290
APC Pad	8,500	16,425	22,300
Fuel Tank pad	1,650	6,600	9,900
TOTAL	\$ 853,740	\$1,201,615	\$1,455,190
Baseline: \$2,779,265			

٩4

 TABLE E-25.
 COLLOCATED SITE FACILITY COSTS

 PROPORTIONAL ROTARY KILN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Will use a factor of 40 percent for installation of equipment. Will not remove cost for quench, packed tower, neutralization system, and emergency stack.

Kiln System Costs, Installed

<u>Lb/Hr</u>	Cost, Million Dollars
100 400	0.98 1.40
1000	2.24
3000	4.34
5000	6.30

Air Heat Exchanger. Will size based on maximum of 30% heat losses.

<u>1b/hr</u>	Heat Loss <u>Btu/hr</u>	\$
100	810,000	42,000
400	3,300,000	97,700
1000	8,400,000	171,100
3000	24,900,000	328,300
5000	41,100,000	443,500

Baseline 10,900,000 Btu/hr at 200,000.

 $(\frac{810,000}{10,900,000})^{-6} = 42,000.$

Bulk Furnace & Exchanger. Not needed.

Storage Fork Lift. Same as baseline. Will adjust for feed rate.

Pollution Control. Will scale from baseline from RMDLwE furnace system.

E-55

が合いていた。

	Baseline 400 lb/hr = (250,000 + 3000 lb/hr = (625,000 +	• •
100	$(\frac{100}{400})^{-6} \times 380,000 =$	\$165,400
400		380,000
1000	$(\frac{1000}{3000})^{-6} \times 1,025,000 =$	\$530,200
3000		1,025,000
5000	$\left(\frac{5000}{3000}\right)^{-6} \times 1,025,000 =$	1,392,600/

<u>Fuel Tanks</u>. See Facility Costs for number of tanks. Tank cost - \$18,000 each.

100	4	9,000
400	1	18,000
1000	1	18,000
3000	4	72,000
5000	6	108,000

The equipment costs are compiled in Tables E-26 and E-27.

C. Operating Cost

Personnel Requirements.

	<u>100</u>	400	1000	3000	5000
Kiln Maintenance Control Room Pollution Abatement Ultimate Totals	2 2 1 2 8	2 2 1 4 10	2/3 2 1 2 6 12/13	3 2 1 2 10 18	3 2 1 3 <u>14</u> 23

Based on vendor estimates and baseline numbers. The labor costs are compiled in Tables E-28 and E-29.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Equipment	100 lb/hr	400 lb/hr	1000 1b/hr
Kiln Furnace	\$ 980,000	\$1,400,000	\$2,240,000
Air Heat Exchanger	42,000	97,700	171,100
Storage Fork Lift	22,000	22,000	44,000
Kiln APC	165,400	380,000	530,200
Fuel Tanks	9,000	18,000	18,000
Residue Handling Truck	65,790	65,790	131,580
Subtotal	1,284,190	1,983,490	3,134,880
Design	20%	20%	20%
Total Equipment	1,541,030	2,380,190	3,761,860
Total Capital	\$1,914,810	\$2,882,170	\$4,369,190
Baseline: \$22,488,070			

SINGLE SITE EQUIPMENT COSTS - PROPORTIONAL ROTARY KILN TABLE E-26.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

;)

.

· · · ·
Equipment	1000 1b/hr	3000 1b/hr	5000 lb/hr
Kiln Furnace	\$2,240,000	\$4,340,000	\$6,300,000
Air Heat Exchanger	171,100	328,300	443,500
Storage Fork Lift	44,000	44,000	66,000
Kiln APC	530,200	1,025,000	1,392,600
Fuel Tanks	18,000	72,000	108,000
Residue Handling Truck	131,580	173,000	288,300
Subtotal	3,134,880	5,982,300	8,598,400
Design	20%	20%	20%
Total Equipment	3,761,860	7,178,760	10,318,080
Total Capital	\$4,615,600	\$8,380,375	\$11,773,270
Baseline: \$51,505,515			

Ì

TABLE E-27. COLLOCATED SITE EQUIPMENT COSTS -PROPORTIONAL ROTARY KILN

.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

TABLE E-28. SINGLE SITE LABOR COSTS PROPORTIONAL ROTARY KILN

Area	Personnel Agent Rate 100 lb/hr	Requirements Agent Rate 400 lb/hr	(men/shift) Agent Rate 1000 lb/hr
Kiln	2	2	2
Maintenance	2	2	2
Control Room	1	1	1 ·
Pollution Abatement	1	1	1
Ultimate Disposal	2	4	6
Total/Shift	8	10	12
Man Years/Year	24	30	36
Labor Cost \$/Year at \$50,000/man year	1,200,000	1,500,000	1,800,000

E-59

.

4

2.2.3

E.

<u>, 1</u>,

TABLE E-29. COLLOCATED SITE LABOR COSTS PROPORTIONAL ROTARY KILN

Area	Personnel Agent Rate 1000 lb/hr	Requirements (me Agent Rate 3000 lb/hr	n/shift) Agent Rate 5000 lb/hr
 Kiln	3	3	3
Maintenance	2	2	2
Control Room	1	1	1
Pollution Abatement	2	2	3
Ultimate Disposal	6	10	14
Total/Shift	14	18	23
Man Years/Year	42	54	69
Labor Cost \$/Year at \$50,000/man year	2,100,000	2,700,000	3,450,000

•

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

E-60

•

Direct Costs.

Water. The water is required to cool the flue gases. Will assume 50% of heat released will need to be cooled with water, 30% is heat loss, and the balance goes out the stack.

1054 Btu/lb x 8.33 lb/gal = 8780 Btu/gal

<u>1b/hr</u>	Heat	<u>MMgal/yr</u>	\$/yr
100	1.5 x 106 Btu/hr	0.85	450
400	5.5 x 106 Btu/hr	3.13	1660
1000	14.0 x 106 Btu/hr	7.97	4220
3000	41.5 x 106 Btu/hr	23.63	12520
5000	68.5 x 106 Btu/hr	39.01	20680

Assumed 20 hours/day, 250 days/year.

Electric. MKw hr/yr.

	100	400	1000	3000	5000
Kiln	0.10	.23	.40	.61	.83
Heat Exchanger	0.06	.15	.31	.51	.69
Scrubber	0.40	.92	1.59	2.42	3.29
Salt Eq	0.53	1.22	2.11	3.22	4.37
TOTAL	1.09	2.52	4.41	6.76	9.18

Used kiln power at 400 and 3000 lb/hr feed rate and scaled directly to other feed rates. Used .31 for heat exchanger at 1000 lb/hr, which was the same heat load as baseline and scaled accordingly. Added salt and scrubber power requirements for PBI and RMDLwE furnaces to get amounts for 400 and 3000 lb/hr and then scaled accordingly.

<u>100 lb/hr</u> .		
Kiln	$(\frac{100}{400})^{-6}$.23	= 0.10

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

<u>a de la completa de</u>

-1 ، اب

Heat Exchanger Scrubber Salt	$(\frac{.8}{10.9})^{.6}$.31 $(\frac{100}{400})^{.6}$.92 $(\frac{100}{400})^{.6}$ 1.22	
<u>400 lb/hr</u> . Heat Exchanger	$(\frac{3.3}{10.9})^{.6}$.31	= 0.15
<u>1000 lb/hr</u> .	1000. 6	
Kiln Heat Exchanger	***	= 0.51
Scrubber Salt	$(\frac{1000}{400})^{.6}$.92 $(\frac{1000}{400})^{.6}$ 1.22	
<u>3000 lb/hr</u> . Heat Exchanger	$(\frac{24.9}{10.9})^{.6}$.31	= 0.51
<u>5000 lb/hr</u> .		
Kiln	J.	= 0.83
Heat Exchanger	10.9	= 0.69
Scrubber	3.	= 3.29
Salt	$(\frac{5}{3})^{.6}$ 3.22	= 4.37

Fue1 011

See Fuel	Tank Pad Calculations	\$1.2/gallon
<u>lb/hr</u>	Fuel gal/yr	\$/yr
100 400 1000 3000 5000	18,507 66,186 168,473 512,028 845,155	22,200 79,400 202,200 614,400 1,014,200

E-62

<u>Spare Parts</u>. 6 percent capital equipment/year (includes design cost).

. د

, ,

ļ

.

್ರತ್

___}

لت

, v

1

Ϊ,

. ب

<u>Material/Supplies</u>. 10 percent other operating costs/year (includes personnel labor). The direct operating costs are compiled in Tables E-30 and E-31.

<u>Change Out Costs</u>. Assuming life of refractory in kiln is 2 years or greater depending on feedrate. Will change/replace refractory during change out if duration of operation has been greater than 2 years.

Refratory 4" ~ \$10.52/ft² (Guthrie) 1968 \$ M&S 273.1 1982 \$ M&S 746

 $(10.52)(\frac{746}{273.1}) = $28.74/ft^2$ (1982)

<u>Feedrate</u>	<u>Kiln Size</u> D x L	<u>Refractory Sq. Ft.</u>	Cost
100	3 x 6	57	\$ 1,630
400	5 x 10	157	4,510
1000	7 x 14	308	8,850
3000	12 x 24	905	26,000
5000	15 x 30	1414	40,630

During change out the kiln will be shut down. This will result in air pollution control, salt equipment, and scrap handling being idle. The only remaining costs will be spare parts and materials/supplies and some fuel during start-up. There will also be some electric and water costs during start-up but these costs are insignificant. Eight hours start-up time assumed for all systems.

	ΑΑ	nnual Usage/Cor	st
Utility	Agent Rate	Agent Rate	Agent Rate
	100 lb/hr	400 lb/hr	1000 lb/hr
Water, 10 ⁶ gal/yr	0.85	3.13	7.97
(\$.53/1000 gal)	450	1,660	4,220
Electric, 10 ⁶ KWH/Yr	1.09	2.52	4.41
(\$0.05/KWH)	54,500	126,000	220,50
Fuel Oil, Gal/yr	18,507	66,186	168,473
(\$1.20/gal)	22,200	79,400	202,200
Spare Parts, 6% Capital Equipment w/Design	92,460	142,810	225,710
Materials/Supplies, 10% Other Operating	136,960	184,990	245,260
Total Direct Costs \$/yr	306,570	534,860	897,890

TABLE E-30. SINGLE SITE OPERATION COSTS - PROPORTIONAL ROTARY KILM

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

	A	nnual Usage/Cos	st
Utility	Agent Rate	Agent Rate	Agent Rate
	1000 lb/hr	3000 lb/hr	5000 lb/hr
Water, 106 gal/yr	7.97	23.63	39.01
(\$.53/1000 gal)	4,220	12,520	20,680
Electric, 10 ⁶ KWH/Yr	4.41	6.76	9.18
(\$0.05/KWH)	54,500	126,000	220,50
Fuel Oil, Gal/yr	168,473	512,028	845,155
(\$1.20/gal)	202,200	614,400	1,014,200
Spare Parts, 6% Capital Equipment w/Design	225,710	430,730	619,080
Materials/Supplies, 10% Other Operating	260,260	409,560	556,300
Total Direct Costs \$/yr	912,890	1,805,210	2,669,260

,

(1) (1)

1. 1

اژن لک

TABLE E-31. COLLOCATED SITE OPERATION COSTS - PROPORTIONAL ROTARY KILN

E-66

100 1b/hr.

Refractory		\$ 1,630
Spare Parts	(C,17)(92,460)	15,718
Materials/Suppl	ies (0.17)(136,960) 000)/(142,000)(8)(1.2)	23,283
Fuel (270,	000)/(142,000)(8)(1.2)	18
TOTAL	40,650	

Will need refractory replacement/repair each change out.

400 1b/hr.

Refractory Spare Parts Materials/Supplies Fuel	(.17)(142,810) (.17)(184,990) (1.09 x 106)/142,000)(8)(1.2)	\$ 4,510 24,278 31,448 74 60,310 (2nd) 55,800 (1st)
		55,800 (1st)

<u>SS 1000 1b/hr</u>.

Refractory	not needed	\$ 8,850
Spare Parts	(.17)(225,710) (.17)(245,260) (2.73 x 10 ⁶)/142,000)(8)(1.2)	38,371
Materials/Supplies	(.17)(245,260)	41,694
Fuel	$(2.73 \times 106)/142.000)(8)(1.2)$	185
1461		80.250

<u>CS 1000 lb/hr</u>.

Refractory	needed each change out	\$ 8,850
Spare Parts	(.17)(225,710)	38,371
Materials/Supplies	(.17)(260,260)	44,244
Fuel	(2.73 x 106)/(142,000)(8)(1.2)	185
	•	91,650

<u>CS 3000 1b/hr</u>.

Refractory	needed second change out	\$ 26,000	
Spare Parts	(.17)(430,730)	73,224	
Materials/Supplies	(.17)(409,560)	69,625	
Fuel	(18.21 x 106)/142,000)(3)(1.2)	555	
ruei	(10.21 × 10°)/142,000/(0)(110)	169,400 143,400	(2nd) (1st)

CS 5000 1b/hr.

Refractory	not needed	\$ 40,630
Spare Parts	(.17)(619,080)	105,244
Materials/Supplies	(.17)(556,300)	94,571
Fuel	(13.68 x 106)/142,000)(8)(1.2)	925
		200,740

D. Development Costs

The developments costs are presented in Table E-32.

E. Total Cost

۱۵ ۱۵

[5] [5]

(j) |}

Ľ

N.

Karry and

VERSEAL INFORMATION

WERRAR . REALCONE

> Total life cycle costs are given in Tables E-33 through E-40. Figures E-5 and E-6 present the total life cycle cost curves.

F. Optimum Process Flow Rate

The optimum process feed rate for the single site operation occurs near 400 lb/hr agent feed rate and the optimum feed rate for the collocated site occurs near 3000 lb/hr. These optimums are based on total life cycle costs. See Figures E-5 and E-6 for cost curves.

G. Operating Time

Operating times are given in Tables E-41 and E-42.

TABLE E-32. DEVELOPMENT COSTS - PROPORTIONAL ROTARY KILN

Phase II	Lab Studies		
	Concept Refinement	\$	15,000
	Refractory-Materials Compatibility Studies		100,000
	Environmental Studies		100,000
	Materials		150,000
	Subcontractors		100,000
	Contingency		40,000
	Preliminary Pilot Plant Design	-	40,000
	TOTAL PHASE II	\$	545,000
Phase II	Pilot Plant Studies		
	Pilot Plant Design	\$	100,000
	Test Plans, Operating Procedures		50,000
	Pilot Plant Construction		1,105,000
	Pilot Plant Start-Up		145,000
	Operator Training		390,000
	Operation	•	869,000
	Test Reports		15,000
	Process Development		100,000
	30% Design Package		100,000
	Subcontractors		250,000
	Contingencies (20% Total)	-	625,000
	TOTAL PHASE III	\$	3,749,000
	TOTAL DEVELOPMENT COSTS	\$	4,294,000

TABLE E-33.	SINGLE SITE TOTAL	L OPERATING COST -	PROPORTIONAL	ROTARY KILN
		(100 LB/HR)		

i and end and she had the still that had she ind end the still be done the ind the ind in

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRACCM

Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	400,000	102,190	0.50	251,095
Training & Sys	1,200,000	153,280	0.50	676,640
A	1,200,000	306,570	2.43	3,660,970
Change Out	1,200,000	40,650	0.17	244,650
B/C	1,200,000	306,570	3.25	4,896,350
Change Out	1,200,000	40,650	0.17	244,650
D	1,200,000	306,570	0.90	1,355,910
Shutdown	400,000	102,190	0.50	251,095
Total Life Operating	Cost		8.42	\$11,581,360

TABLE E-34. SINGLE SITE TOTAL OPERATING COST - PROPORTIONAL ROTARY KILN (400 LB/HR)

۰**.** ۱

1 S. Land

Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	500,000	178,290	0.50	339,145
Training & Sys	1,500,000	267,430	0.50	883,715
Α	1,500,000	534,860	0.61	1,241,260
Change Out	1,500,000	55,800	0.17	310,800
B/C	1,500,000	534,860	0.81	1,648,240
Change Out	1,500,000	60,310	0.17	315,310
D	1,500,000	534,860	0.25	508,720
Shutdown	500,000	178,290	0.50	339,145

E-70

		٦	TABLE	E-35.	SING	LE SIT	E TOTA		ATING (LB/HR		PROPO	RTIONAL	ROTA	RY KIL	N		
								(1500	LUTIK	,							
=	Per	iod		L	abor (Cost/Ye	ar	Othe	r Dire	ct Cos	t/Yr	Du	ration	, Yr	Тс	otal Co	ost
-	Eq Acceptan	се			60	0,000	·	· · · · · ·	29	9,300			0.50			449,6	550
	Training &	Sys			1,80	0,000			44	8,940			0.50		1	,124,4	170
	Â				1,80	0,000			89	7,890			0.24			647,4	190
	Change Out				1,80	0,000			8	0,250			0.17			386,2	250
	B/C				1,80	0,000			89	7,890			0.32			863,3	320
	Change Out				1,80	0,000			8	0,250			0.17			386,2	250
	D				1,80	0,000			89	7,890			0.10			269,7	/90
	Shutdown				60	0,000			29	9,300			0.50			449,6	550
	Total Life (Operat	ing Co	ost									2.50		\$4	,576, 8	870
=				-			<u> </u>							· · · · · · · · · · · · · · · · · · ·			

	100 lb/hr	Agent Feed Rate 400 lb/hr	1000 1b/hr
Capital	\$ 1,914,810	\$ 2,882,170	\$ 4,369,190
Operating	11,581,360	5,586,335	4,576,870
Development	4,294,000	4,294,000	4,294,000
Total Life	\$17,790,170	\$12,762,505	\$13,240,060

TABLE E-36. SINGLE SITE COSTS -PROPORTIONAL ROTARY KILN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

					and the second						Anna Anna Carl And Anna Anna Anna Anna					1335 SOUTO ON 75				
		ZU,	925	<u>353</u>		(CC)	EI.			(III)	(E)		(TES)			Æ	CEE	22	233	Ē

•

.

Use. duplication. or disclosure is subject to restrictions stated in Contract No. DAMK11-82-C-0053 with ARADCOM.

TABLE E-37.	COLLOCATED SITE TOTAL	OPERATING COST	- PROPORTIONAL	ROTARY KILN
	[]	1000 LB/HR)		

Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Y r	Total Cost
Eq Acceptance	700,000	304,300	0.50	502,150
Training & Sys	2,100,000	456,440	0.50	1,278,220
A	2,100,000	912,890	2.42	7,291,190
Change Out	2,100,000	91,650	0.17	448,650
B/C	2,100,000	912,890	3.25	9,791,650
Change Out	2,100,000	91,650	0.17	448,650
D	2,100,000	912,890	1.04	3,133,410
Shutdown	700,000	304,300	0.50	502,150
tal Life Operating Co	ost		8.55	\$23,396,310

Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	900,000	601,740	0.50	750,870
Training & Sys	2,700,000	902,600	0.50	1,801,300
A	2,700,000	1,805,210	0.81	3,649,220
Change Out	2,700,000	143,400	0.17	602,400
B/C	2,700,000	1,805,210	1.08	4,865,630
Change Out	2,700,000	169,400	0.17	628,400
D.	2,700,000	1,805,210	0.36	1,621,880
Shutdown	900,000	601,740	0.50	750,870
otal Life Operating Co	ost		4.09	\$14,670,570

.

TABLE E-38. COLLOCATED SITE TOTAL OPERATING COST - PROPORTIONAL ROTARY KILN (3000 LB/HR)

ficiality a successful of the second

duplication

or disclosure

is subject to restrictions stated in Contract No

DAAK11-82-C-0055

with ARRADCOM

E-74

		Ţ	VBLE E-	39. CO	LOCATED S	ITE TO		RATING LB/HR)		- PRO	PORTION	IAL ROT	'ary Ki	i ln		
=	Pe	eriod			or Cost/Ye		Othe		ct Cost		 Dun	ration			tal Co	
_												··			<u></u>	
	Eq Accepta				1,150,000				9,750			0.50			,019,8	
	Training &	e SA2			3,450,000				4,630			0.50			,392,3	
	A Channe Out	_			3,450,000				9,260			0.49		2	,998,4	
	Change Out	•			3,450,000				0,740			0.17 0.66			787,2	
	B/C Change Out				3,450,000 3,450,000				9,260 0,740			0.17		4	,038,7 787,2	
	D	•			3,450,000				9,260			0.22		1	,346,2	
· ·	Shutdown				1,150,000				9,750			0.50			,019,8	
T	otal Life ()perati	ng Cost	:		•						3.21		\$14	,389,9	35
=																
																r / 5

	1000 1b/hr	Agent Feed Rate 3000 1b/hr	<u>5000 lb/hr</u>
Capital	\$ 4,615,600	\$ 8,380,380	\$11,773,270
Operating	23,396,310	14,670,570	14,389,935
Development	4,294,000	4,294,000	4,294,000
Total Life Cycle Cost	\$32,305,910	\$27,344,950	\$30,457,205

TABLE E-40. COLLOCATED SITE COSTS PROPORTIONAL ROTARY KILN

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

	222 (22) F E		र स्य					<u>.</u>	
						-			
		TARL	F FA1. STINC	E SITE OPERATE	IC THE _ PODE	ORTIONAL ROTARY K	TI M		
Munition	Munition		<u></u>	nough-put Per I	ker	System*		Production Ye	ars
Category	Туре	Investory	100 16/br	400 lb/hr	1000 \b/k r	Availability	100 1b/hr	400 lb/hr	1000 16
A	M55 Rockets	90,000	9.3	37.4	93.5	C.881	1.95	0.49	0.19
	M23 Mines	20,000	9.5	38.1	95.2	0.881	0.48	0.12	0.05
B/C	Mortars 105 mm Projectiles	59 ,000 53 ,000	16.7 62.5	66.7 250.0	166.7 625.0	0.881 0.881	0.68 0.18	0.17 0.05	0.07 0.02
	155 🛲 Projectiles	56,900	15.4	61.5	153.8	0.881	0.74	0.18	0.07
	8" Projectiles	50,000	6.9	27.6	69.0	0.881	1.65	0.41	0.16
Ð	Bombs Ton Containers/	800	0.4	1.8	4.6	0.881	0.45	0.10	0.04
	Spray Tanks	200	9.1	0.3	0.7	0.881	0.45	0.15	0.06
						•			
* Based #	on Thermal System only.	•							

Hunition	Munition		Through-put Per Hour			System*	Production Years			
Category	Туре	Inventory	1000 lb/hr	3000 15/hr	5000 1b/hr	Availability	1000 1b/hr	3000 1b/hr	5000 1b/hr	
A	N55 Rockets	800,000	93.5	280.4	467.3	0.881	1.94	0.65	0.39	
	H23 Hines	200,000	95. 2 ′	285.7	476.2	0.881	0.48	0.16	0.10	
B/ C	Nortars	500,000	166.7	500.0	833.3	0.881	0.68	0.23	0.14	
	105 mm Projectiles	500,000	625.0	1875.0	3125.0	0.881	0.18	0.96	0_04	
	155 mm Projectiles	500,000	153.8	465.5	769.2	0.881	0.74	0.24	0.15	
	8" Projectiles	500,000	69.0	206.9	344.8	0.881	1.65	0.55	0.33	
D	8ambs	8,000	4.6	13.6	22.7	0.881	0.39	0.13	0.06	
	Ton Containers/ Spray Tanks	2,000	0.7	2.0	3.3	0.881	0.65	0.23	0.14	

-

. .

.

TABLE E-42. COLLOCATED SITE OPERATING TIME - PROPORTIONAL NOTARY KILN

•

.

ST 1885

* Based on Thermal System only.

APPENDIX F

ß

8

APPENDIX F

ENGINEERING AND ECONOMIC ANALYSIS -MOLTEN METAL

Engineering Analysis

This concept takes advantage of technology commonly used in the iron and steel industry and applies it to destroy agent, agentcontaminated dunnage, and item/munition parts. Use of this state-ofthe-art technology produces a simple and relatively small system capable of extremely high destruction efficiencies that has the potential to be fully automated thereby minimizing the risk and expense associated with a large operating staff. The concept is designed to process those items in the inventory which contain agent only (spray tanks, ton containers, bombs, and most of the projectiles) in feed stock configuration "c" (agent cavity opened). The remaining inventory which contains energetic materials (propellants and/or explosives) must be in configuration "e" (burster/propellant removed and the surface exposed for burning or melting). The concept also is capable of processing the entire inventory in any of feed stock configurations f, g, or h.

A. System Concept Description

Ê

()

のうちょうない はたからんたか なかたたがいた はなからない

As illustrated in the conceptual drawing of the process shown in Figure F-1, the molten metal process is comprised of five integrated unit components, (1) an item/munition agent volatilization and explosive melt chamber, (2) a plasma torch agent destruction chamber, (3) a molten metal bath, (4) an afterburner, and (5) a pollution abatement system.

The first component, which interfaces with the mechanical preparation process, is the feed and volatilization chamber. This chamber consists of a tunnel, equipped with knife gate doors on

Use, duplication, or disclosure is subject to restriction: stated in Contract No. DAAK11-82-C-0055 with ARRADCOM,

F-1

FIGURE F-1. PLASMA ARC/MOLTEN METAL

F-2

either end, and a hot gas recirculation system. It is in this chamber that controlled heating is used to volatilize the agent from the items and munitions and melt explosive from the opened burster wells.

The second unit component is the plasma chamber, consisting of an electrically powered plasma torch and a pyrolysis chamber. It is in this chamber that the volatilized agent, upon contact with the hot air stream and ionized gases of the plasma is pyrolyzed. Experimental studies with PCBs in similar systems have indicated that 99.9999 percent destruction can be achieved without producing dioxins. (1,2,3)

The third component is the molten metal reactor which consists of a molten bath comprised of steel and other metals derived from the munition bodies as well as a slag layer comprised of salt residue returned from the scrubber and silica additives. Introduction of the scruber salts into this reactor incorporates the major advantages of molten salt processing without including operability problems normally associated with that concept. The reactor serves to melt all metal item/munition components introduced into it and destroy any residual agent or organic constitutents. It also serves to destroy will dunnage and decontaminite the scrubber salt residue to level 5X. Silica is added to the slag to vitrify the cooled salt reducing the leachability of the salt, thereby enabling it to qualify as a non-hazardous waste.

The fourth component is the afterburner that operates at 1600 F to assure that all combustible gases leaving the molten metal reactor are completely oxidized. The fifth component is the pollution abatement system which consists of a sodium hydroxide spray dry scrubber, a cyclone, and a baghouse.

<u>Materials Flow</u>. The flow of material through the molter metal process is represented by the process flow diagram shown in Figure F-2. The composition of the important streams, shown in Table F-1, is estimated on the assumption that 400 lb/hr of agent in stream A would be continuously accompanied by 2050 lb/hr of steel and

F-3

Ą

, **100**, 2000

10

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM, The state of the state

•

12010201

Sucies

CRICCION

AK11 -

Ith ARRADCOM

Stream	A	B	C	D	E	F	6	H	I	J
Operation Conditions										
Temperature (F)	70	572	1700	2500	1800	400	2500		70	70
Pressure (Psia)	14.7	14.6	14.6	14.6	14.6	14.7	14.6		20	20
Electric Energy (106 Btu)								2.0		
Agent	400	400								
Explosive	250	250								
Metal Parts	2050	2050	2050							
Dunnage										
Water										
Air									146	10,915
Fuel Oil			-							
Salts										
Tue Gases										
C02				2028	2244	1995				
02 [~]		•		1354	3060	3082			34	2587
NZ				9856	16,290	16,290			112	8326
H2O (vapor)				1404	1485	9198				
HĒ				57	57	-				
P205				202	° 202					
Pyrolysis Gases			1229							
Total Mass	2700	3133	3273	14,901	23,358	30,565	433		146	10,915
lemental Distribution										
Iron	2050	2050	2050							
Carbon	229	247	247	553	612	544	17.8			
Hydrogen	35	40	40	159	168	1022	5.1			
Oxygen	197	284	318	4191	6146	12,709	86.9		34	2589
Nitrogen	· 46	364	476	9856	16,290	15,290	31.8		112	8326
Flourine	54	56	54	54	54		1.9			
Phosphor	88	91	88	88	88		3.1			
Sodium										

TABLE F-1. ENERGY AND NETAL BALANCE BASED ON 400 Tb/hr of GB

Stream	ĸ	L	M	Ħ	0	P	Q	R	S	т	U	٧	W	X
peration Conditions		444												400
Temperature (F) Pressure (Psia)	70 14.7	400 20	70 20	200 14.6	2800 14.6	70 20	70 20	50 45	200 14.7		2800 14.7	200 14.6	70 14.7	14.6
lectric Energy (10 ⁶ Btu) Agent										1.03				
Explosive Metal Parts					2050	-			2050					
Dunnage Water	650						7483	731						
Air Fuel Oil			68			270							1112	
Salts							912				916			916
ue Gases														
CO2 02				. 1955		64							848	
02 N2 H2O (vapor) HF				6434		206							264	
H2O (vapor) HF														
P205 Pyrolysis Gases														
otal Mass	650	1186	68	8389	2050	270	8395	731	2050		1188	1843	1112	1188
lemental Distribution			·											
Iroa Carbon	306	68	59.3		2050				2050		68			68
Hydrogen	38		18.6				854	81			~	81		
Oxygen	306	245		1955		64	7017	650			454	914	264	454
Nitrogen		206		6434		206						848	848	
Flourine		54									54			54
Phosphor		88									88			88 529
Sodium		524					524				524			523

TABLE F-1. (Continued)

,

۰

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DRAX11-82-C-0055 with ARMADCOM Subjects Subjects Subjects Subject Subject to restrictions stated in Contract No. DRAX11-82-C-0055 with ARMADCOM

F-5a

250 lb/hr of TNT in that stream and 650 lb/hr of wood in stream K. In reality, the items or munition bodies that contain agent and, if appropriate, the separated explosives placed in a melt collection tray, are alternately fed to the volatilization chamber as separate items. The heat in stream G is utilized to melt the explosives and/or volatilize the agent. For the sake of simplicity, it is assumed that the explosive did not burn until reaching the molten metal reactor. Stream B, which contains the combination of stream G and A, is swept from the volatilization chamber into the plasma chamber where the volatilized agent gases are intimately mixed with the plasma heated gas stream producing a resultant mixed gas temperature at or above 1700 F. This temperature combined with the intense mixing and ionized gases produced by the plasma, pyrolyze the agent producing stream C which consists mainly of carbon, carbon monoxide, hydrogen, nitrogen and various byproducts peculiar to the agent being processed. While the information available at this time makes determining the composition of this stream difficult, the theoretically predicted composition of this gas stream is shown in Table F-2. This pyrolysis stream and the explosives then enter the molten metal reactor where they are joined by the wood dunnage and sufficient air to burn the combustibles. The combustion products interact with the slag layer and the item/munition bodies and the melt collection trays fall into the bath where they are melted and any residual agent or explosives are volatilized and combusted. This aspect of the concept effectively eliminates any problems with polymerized mustard. Molten metal and slag are continuously removed from this system for ultimate disposal. The vitrified slag and, when processing rockets, any molten aluminum exit via stream U and are cast into drums. The other molten metals exit via stream 0 which take it to a water quench where it solidifies and is removed to a scrap truck by a drag conveyor. The vapor from water evaporated to cool the metal (stream R) and an equal volume of air (stream Q) are removed from the gas above the quench tank by a hood and blown back into the molten metal reactor. This helps to reduce the reactor gas temperature and restricts the gaseous effluents from the process to a single stream.Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAk11-82-C-0055 with ARRADCOM.

3

·) .)

F-6

TABLE-2	2. PREC	DICTED GB
PYROLYSIS	STREAM	COMPOSITION

Compound	Weight Percent
HF	5.7
PF3	0.6
PH3	0.05
НСР	0.6
P2	2.3
P4	2.4
H ₂ 0	1.1
C02	0.3
CO	25.3
H ₂	30.3
N ₂	31.3
Other	0.05

The gases from the molten metal reactor (stream D) are drawn into the afterburner, to insure complete oxidation of pyrolysis products and total agent destruction. This unit also insures safe operation by providing redundancy in agent destruction capability. This burner operates on a small quantity of fuel oil (stream M) estimated at 10 percent of the total system heat input. A quantity of excess air (stream N) serves to keep the operating temperature down to 1800 F.

The afterburner flue gases then enter the pollution abatement system where remaining acid gases are removed by sodium hydroxide (stream Q) in a spray dry scrubber. Salts and other particulates are removed by a combination cyclone and baghouse and conveyed by air (stream P) to the molten metal reactor. The clean flue gases then pass through an induced draft fan that maintains the entire system at negative pressures before discharging to the atmosphere via a stack. A more detailed description of the hardware in each of these five systems including sizes and capacities for 400 lbs of agent throughput are given below.

Hardware Description.

Carterin and and a

ß

1

Ū

1

۱. ۱. ۱. ۱. ۱.

Plasma System. The plasma system is a state-of-the-art system commercially available by Westinghouse Electric Corporation and consists of the following three subsystems;

- Plasma Torch
- Power Supply

والأنبية المانية والمواقع وتساويته والمتراجعة والمترجع والمترجع والمترجع والمترجع والمترجع والمتحاط والمتحاط

• Controls and Instrumentation.

The plasma torch consists of a closely-spaced pair of tubuler, water cooled, copper electrodes which are spaced approximately 1 mm apart.

F-8

During operation, process air is passed through this gap and, when 4 kV or more of electric power is applied across the gap, an arc discharge is formed and immediately blown into an arc chamber where it is rotated at speeds of up to 3000 revolution per second by interaction of the arc current (up to 2000 amp) with a dc magnetic field set up by internally mounted selenoid coils. This unit is self-starting when energized and self-stabilizing during operation, eliminating spurious arc extinctions. Cooling water serves to remove excess heat from the gun to protect the electrode and prolong electrode life. Maintenance of the torch is generally restricted to electrode change after 2 weeks of operation.

Power supply characteristics must be closely matched to those of the plasma torch for optimum performance in an industrial environment. It must produce a voltage of at least 4 kV to provide spark over in the interelectrode gap in order to assure process continuity, but still handle the high negative impedance (i.e., arc voltage decreases with increasing arc current) associated with plasma. To permit the rapid heating of the hydrocarbon stream, an ac power supply is prefered. At 400 lbs/hr of agent, this supply must be capable of providing 1.5 megawatts of electrical power. State-of-theart technology utilizes air core inductors for impendance with shunt capacitors for power correction minimizing the large power losses commonly associated with past use of plasma system and producing an overall electrical efficiency of 80 percent.

The control instrumentation consists of a console that provides the hardware to, not only control the capacitor and power transformer settings and the flows of cooling water and process air, but also to provide data acquisition and system performance monitoring. The power supply is interlocked to assures proper startup and shut-down sequencing as well as to provide system protection in the event of equipment failure. In industrial applications, this control system is typically operated by computer.

Molten Metal System. The molten metal reactor is an adaptation of the Pyromagnetics SMT system. This system consists of a reactor and a control system and has been shown to be 80 percent enargy efficient when processing municipal sludges. The reactor consists of three sections, a gas reaction zone, a transition zone, and a molten metal zone. The gases enter the cylindrical gas reactor zone radially, are mixed with air, wood, dunnage, and salt. The pyrolysis products and the dunnage burn, but the combust ion products are allowed to interact with the molten salt layer. The volume of this zone is sufficient to allow a 1 second gas residince time at 2500 F. However, its minimum dimensions are also controlled by the need to allow ton containers (30 inches high) and spray tanks (15 feet long) to fall into the molten metal zone. Consequently, the 100 and 400 lb/hr reactors have the same gas reaction zone dimensions. This zone is lined with refractory capable of resisting attack by acid gases at the extremely high operating temperatures.

Besides providing a transition from the 16 foot diameter gas reaction zone to the 8 foot diameter molten metal zone, the transition zone also contains the slag layer. To minimize the attack by molten slag, Pyromagnetics Corporation lines by a patented process. The scrubber salts, aluminum, and ash from other components are completely outgased and melted in this zone by contact with the hot gases above and the molten iron below. The agitation provided to this layer by impingement of combustion air and by falling metal parts should provide a highly active slag layer capable of removing some acid gases from the process stream and vitritying the scrubber salts.

In the molten metal zone, metal parts are melted by electrical induction heating. The induction heater is sized by the quantity of metal being melted. Besides being considered the most efficient method of heating metal parts to these temperatures, induction heating provides a significant stirring action in the melt that provides a uniform temperature avoiding hot spots and assures complete outgassing of all metal prior to removal. Induction heating does limit the vessel diameter to one capable of processing 7.5 tons/hour

F-10

5

[]

of iron. However, this is only a factor at 5000 lbs/hour of agent processing rate and can be handled by simply inluding two metal baths connected to the transition zone.

The scrap removal system consists of a 1500 gallon water tank and a 25 foot long drag conveyor. The tank is completely enclosed by a hood which is equipped with an exhaust fan. A water system provides make-up water to the quench tank to replace the evaporative losses.

Afterburner. The afterburner system is a conventional shaft furnace and is included only to provide additional residence time at 1800 F for the flue gases from the molten metal reactor. While inclusion of this system in the process provides redundancy in agent destruction potential and provides an additional safety margin, if tests prove complete destruction of agent in the plasma, elimination of the afterburner from the design could be entertained. The air and fuel oil needed are supplied to this system through a conventional fuel oil burner.

Air Pollution Control System. Air pollution control is provided by a spray dry scrubber system which is baseline technology. This system also provides an induced draft fan. This fan is sized to be capable of removing the of flue gas produced by processing agent while maintaining a negative pressure of 5 inches of water in the feed system.

B. System Feed Requirements

This concept is designed for feedstock configuration c/e. That is, for items which contain only agent, disassembly only to feed stock configuration c (agent cavities opened) is required. However, due to the uncertainties and technical risks associated with melting explosives from fuzed items, the inventory which contains explosives must be further disassembled to essentially configuration e (whole munition with fuze removed and buster cavity opened). It is assumed
that this operation not only will expose sufficient explosive surface area to prevent detonations but will also render rockets and mortors non-propulsive. The concept is also capable of processing feedstocks in configurations f, g, and h. In addition, since the concept requires sources of high electrical energy, it is highly compatible with advanced devices such as plasma cutting torches that might be considered for mechanical prepartion. However, not enough is known about this type of device to recommend its inclusion in the thermal process design.

C. Pollution Abatement System

ALL STATES

國

 $\left\{ {} \right\}$

33

3

•

•

ACCESSION 188828

The flue gas from the afterburner is the only process stream that requires pollution abatement equipment. As stated previously, this equipment will consist of a spray dry scrubber, a baghouse, an induced draft fan, and a stack. While this is baseline technology, the Army has projected a development effort for this scrubber. If the spray dry scrubber should prove to be lacking in efficiency, this concept could be modified to incorporate a wet scrubber. By then injecting the scrubber brine into the hot gases in the molten metal reactor, the penalty of a liquid waste stream could be avoided. While it is anticipated that the molten salt layer will remove a quantity of acid gases in situ and reduce the duty on the pollution abatement system, no credit has been claimed.

D. Ultimate Disposal

The nongaseous process effluents from this concept requiring ultimate disposal are the slag and the solidified metal scrap. Due to the nature of the concept, these materials are rendered more innocuous than the effluents from any other concept considered. The molten metal bath has the potential of converting the munition bodies into scrap that is not only 5X decontaminated but also of high quality and in a form that can be easily handled. While no reuse credit has been claimed for this scrap, its market value should be appreciable.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

By reinjecting the scrubber salts into the process and melting them in the presence of scrap, the concept produces significant reductions in the ultimate disposal problem. If the salts are vitritied, they can meet RCRA requirements for non-hazardous land fills. Even if they do not, fuzed salts are estimated to have approximately twice the density of dry scrubber salts and therefore only would require half the storage or hazardous land fill volume. Another advantage is the certainty that no agent can be contained in these salts. Finally, fuzed salts do not produce the dusting problems that are associated with handling of dry salts.

E. System Concept Advantages

Aside from having the potential for extremely high agent destruction efficiences the molten metal concept has the following additional advantages:

- Comparatively low life-cycle cost
- Single line process generates a clean gaseous effluent and decontaminated salt/metal solid waste
- Solid vitrified wastes may qualify under RCRA as nonhazardous
- No liquid waste effluents
- Comparatively simple process, few moving parts
- Versatile and flexible
 - can accept a variety of feedstocks
 - has high process rate flexibility
 - potential for operation in either pyrolitic or combustion mode.

F. Concept Disadvantages

The potential disadvantages of this concept are:

 High use of electric energy for operation of the plasma gun

(2) Short opeating life of the refractory in the molten metal bath and the potential difficulty in securing compatible materials.

While the electrical energy usage of the concept is high, the overall energy consumption compares favorably with the baseline. The projected efficiencies of the plasma torch (80 percent) and the induction heater (75 percent) are quite high and, due to the high operating temperatures in these units, the fuel requirements for the afterburner will be minimal.

The short operating life of the refractory in the slag layer zone of the moltan metal reactor has been incorporated in the cost analysis. Pyromagnetics estimates that with the materials presently in use, repair/replacement will be required every 3 months. While use of new materials could improve the refractory operating life, these materials require testing.

G. System Knowledge Gaps

E.

2

Though the concept is based on state-of-the-art technology and its components have been proven effective in the incineration of PCBs and municipal sludges, the incorporation of the components into one process to destroy the lethal agent inventory is novel. As such, its feasibility for lethal agent destruction must be demonstrated and the component operating characteristics better understood in order to improve the operating costs and efficiencies. The knowledge gaps associated with this concept are listed below.

<u>High Temperature Pyrolysis of Agents</u>. Operation of the plazma in a pyrolysis mode, while not a necessity of this concept, offers the potential to reduce the flue gas volume, improve the insitu flue gas cleanup, and eliminate the need for an afterburner. However, the high temperature pyrolysis of agents is not well defined and requires additional study to better predict the pyrolysis products.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

<u>Slag Chemistry</u>. The chemistry of the molten slag layer is not well understood and needs further study. On the plus side, the slag has the capability of producing insitu flue gas cleanup as well as reducing the salt volume. It also offers the potential to vitrify the salts elimination hazardous materials designations. On the negative side, the slag could worsen the refractory problems in the reactor.

<u>Energy Utilization</u>. In the analysis of the concept, it was assumed that no interactions occurred between components and the energy requirements were the sum of those required by each component individually. In an integrated system, this would not be the case. A better determination of the energy consumptions is required.

<u>Feed System Efficiency</u>. The feed and volitalization system concept must be demonstrated to be efficient and trouble free. Poor heat transfer would result in materials flow problems and may require multiple feed chambers increasing both equipment and labor costs significantly.

<u>H. Safety</u>

<u>Component Safety</u>. Incorporation of state-of-the-art technology makes this an inherently safe concept. The plasma control system is completely interlocked preventing the improper sequence of equipment operation. Such interlocking also prevents personnel access to high voltage equipment while it is energized. Standard foundry safety measures, including a metal sump pit in case of a spill, are included with the molten metal reactor. The rest of the system is also state-of-the-art technology. In short, no heroic safety measures are required.

Agent Release. The entire system operates under negative pressure which prevents leakage of agent from the process to the

environment except through the stack. Incorporation of redundant thermal systems provide backup destruction capability in the event of a component failure. In addition, the high thermal mass of the molten metal provides destruction capability even if simultaneous failure of all three thermal destruction component should occur. The potential for agent release has therefore been effectively minimized.

I. Likelihood of Development Within 5 Years.

Again, one of the key advantages of this concept is use of proven commercially available components. Unly proof of principal and refinement of the integrated system is required. Accordingly, the required development program should not exceed 5 years duration.

J. Scalability to 400-3000 lbs/hr of Agent

Accurate scaling of the concept hardware should not be a problem. Plasma systems with power requirements far in excess of those required in this concept exists and are presently utilized in steel making operations.⁽⁵⁾ Further, plasma pyrolysis of hydrocarbons has been performed by Westinghouse at mass flow rates up to 3600 lbs/hrs.⁽⁶⁾

Pyromagnetics has designed molten metal reactors capable of melting up to 15,000 lbs/hr of metal. Use of two interconnected baths will permit operation at even 25,625 lbs/hr of steel (5000 pounds of agent/hour).

K. Degree of Technical Risk

5

The knowledge gaps discussed previously are associated mainly with the integration of the components into an operating system and with the projected refinements of the concept. Since the components use state-of-the-art technology and worst case assumptions were used for the evaluations, the degree of technical risks are minor

e, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

and should impact on the process operating costs, not the ability to destroy agent.

L. RAM Factors

Reliability and maintainability calculations are included in this report as a separate discussion in Appendix L. The system availability projected by these calculations is 86.2 percent of the operating time. However, this availability does not include scheduled down time for the repair of the refractory lining in the molten metal reactor. This time is included in the cost analysis and, based on vendors estimates, is assumed to require 5 to 6 days, depending on the reator size, every 3 months.

M. Material Compatability Problems

Due to the flourine content, incineration of GB is anticipated to provide materials compatability problems in any thermal process. In general this problem can be reduced by the use of high alumina refractories. However, such refractories are expensive and may not be compatible with the acid gases produced by other agents. While this problem may be expected to occur throughout this concept and will require testing, it is also inherent in the base line and is not considered a disadvantage. The incorporation of fluorine, phosphorous, chlorine, and/or sulfur in the slag layer is expected to be a more difficult problem. Pyromagnetics has refractory experience, including proprietary formulation, with the use of slags containing calcium flouride. This experience was incorporated in the estimated refractory life already addressed earlier.

N. Energy Requirements and Source

As stated earlier, one of the disadvantages of the concept is the heavy reliance on expensive electric energy. For example, at

400 lbs/hr of agent, 3×10^6 kilowatt hours/year is required by the plasma system and 2.3×10^6 kilowatt hours/year is required by the molten metal system. However, this is compensated for in part by only a minimal use of fuel oil. The overall energy costs are not excessive.

O. Ease of Operation

4

This single line process can either be controlled by a single operator in the control room, or fully automated for computer control. The plasma system is highly flexible and capable of processing a variety of feedstocks while operating in either a pyrolysis or oxidation mode. Operating temperatures ranging from 500 F to 4000 F are feasible with rapid response to changes in operating condition. Due to the use of electric energy, the process remains simple to control.

Economic Analysis

To permit the development of cost optimization curves, an economic analysis of the costs to destroy a single site inventory were developed for three processing rates, 100, 400, and 1000 lbs/hr of agent as well as the costs to destroy the collocated inventory of processing rates of 400, 1000, 3000, and 5000 lbs of agent/hour. In developing these costs, Army guidelines were followed when appropriate and any exceptions have been noted. Since most of the hardware required by this concept is commercially available, the preferred source of information on purchase costs, installation costs, and operating costs, as well as the space requirements of the components was the estimates supplied by the vendors. The baseline was also used as an information source for hardware, such as spray dry scrubbers, that have usage in common with the baseline. When these types of information were not available, Guthrie, (7) Peters and Timmerhaus⁽⁸⁾ or other appropriate engineering literature was used. These same

information sources were also consulted for exponential scaling factors. When none were available, a 0.6 factor was used. The estimates developed are presented below organized by category.

A. Facility Costs

In estimating the facility costs Army cost guidelines were followed and general facilities requirements such as utilities, security, laboratories, and site improvements were assumed to be parts of the mechanical preparation. It was assumed that all areas upstream of the afterburner were agent containment areas and, for the jest of the thermal process equipment, only nonagent floor space was required. Since a nondetonable feedstock has been specified, no explosive containment was required. When appropriate, equipment has been placed outside on pads reducing the facility cost. Since this concept requires usages of electricity and cooling water that might not be anticipated in mechanical preparation area design, extra pad space was allowed for including these utilities. Pad space was also provided for spent salt storage even though it is probable that it will not be required for this concept. Due to the size requirements of the ton container and spray tanks. the minimum reactor area was determined to be 2900 ft^2 (400 lb/hr of agent). The facility costs developed for single site operations can be found in Table F-3 and those for collocated site operations can be found in Table F-4.

B. Capital Equipment Costs

Purchase costs of the thermal plasma hardware, the molten metal reactor, the cooling tower, and the afterburner for all five capacities were supplied by the appropriate vendors. The installation costs were assumed to add 40 percent to the purchase costs. The metal quench tank and drag conveyor were estimated from engineering literature⁽⁷⁾ based on a 1500 gallon tank and a 98 inch wide, 25 foot

Item	100	Ager 1b/hr	nt Des 40	truction F D 1b/hr	Rate 1000 lb/hr 4600 ft2		
Reactor (Agent Area) ^(a)	2900) ft2	29	00 ft ²			
at \$400/ft2	\$ 1,160,000				\$ 1	,840,000	
Afterburner Area ^(b)	310	ft2	6	30 ft2	11	.00 ft2	
at \$90/ft2		27,900		56,700		99,000	
Metal Quench Area ^(b)	375	ft2	3	75 ft2	5	00 ft2	
at \$90/ft ²		33,250	\$		\$		
Pads							
Cooling water ^(a)	500	ft ²	7	50 ft ²	12	00 ft2	
Scrap handling	250) ft ²	25	500 ft2	2500 ft ²		
Salt Storage ^(C)	100	0 ft2	25	500 ft ²	43	800 ft ²	
Electrical yard (a)	115	0 ft ²	26	500 ft ²	45	500 ft ²	
Fuel Tanks ^(C)	33	<u>) ft</u> 2	ť	60 ft ²	1	<u>320 ft²</u>	
Total Pad Area	5480 ft ²		90)10 ft ²	13	820 ft ²	
Pad Costs at \$2.5/ft2	\$	13,700	\$	22,525	\$	34,550	
Total Facility Costs	\$ 1,2	35,000	\$ 1	,273,000	\$2	,019,000	

TABLE F-3. FACILITY COSTS - SINGLE SITE

Vendor supplied. Guthrie. (a) (b) (c)

Scaled from baseline.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

A STATE OF THE STATE ALL ROBERTS LATE

.

		Agent Destru	uction Rate			
Item	400 1b/hr	1000 1b/hr	3000 lb/hr	5000 1b/hr		
Reactor (Agent Area)	2900 ft ²	4600 ft ²	7800 ft ²	10,000 ft ²		
at 900/ft2(a)	\$1,160,000	\$1,840,000	\$3,120,000	\$4,000,000		
Afterburner Area(b)	630 ft ²	1100 ft ²	2752 ft ²	3952 ft ²		
at \$90/ft ²	\$ 56,700	\$ 99,000	\$ 247,680	\$ 355,680		
Metal Quench Area ^(b)	375 ft ²	500 ft ²	970 ft ²	1320 ft ²		
at \$90/ft ²	\$ 33,750	\$ 45,000	\$ 87,300	\$ 118,800		
Pads						
Cooling water ^(a)	750 ft ²	1200 ft ²	2300 ft ²	3200 ft ²		
Scrap handling	2500 ft ²	2500 ft ²	5000 ft ²	5000 ft ²		
Salt storage ^(c)	11,300 ft ²	11,300 ft ²	11,300 ft ²	11,300 ft ²		
Electrical yard ^(a)	2600 ft ²	4500 ft ²	8750 ft ²	12,000 ft ²		
Fuel tanks ^(C)	660 ft ²	1320 ft ²	2640 ft ²	3960 ft ²		
Total Pad Area	17,060 ft ²	19,620 ft ²	27,690 ft ²	32,260 ft ²		
Pad Costs at \$2.5/ft ²	\$ 44,525	\$ 52,050	\$ 74,975	\$ 88,650		
Total Facility Costs	\$1,295,000	\$2,036,000	\$3,530,000	\$4,563,000		

Vendor supplied. Guthrie. Scaled from baseline. (a) (b) (c)

long conveyor for 1000 lb/hr of agent. Other sizes were scaled from there. The hood and exhaust fan for this unit were costed similary based on the need to remove the water being evaporated. The remaining hardware was costed from the baseline. The spray dry scrubber and bag house costs were scaled based on flue gas volume. The heat exchanger scaled from BTU's in the system. Since state-of-the-art hardware is utilized, design costs of 25 percent were assumed. The single site costs are summarized in Table F-5. The collocation costs can be found in Table F-6.

C. Operating Costs

•

RN 19

Ň

.

 $\left\{ \cdot \right\}$

To estimate the life cycle operating costs it was first necessary to estimate labor costs and other operating costs on a yearly basis. The inventory volume, the processing rates, and the system availability were then used to determine the required number of production years. These numbers could then be combined to produce total life cycle operating costs.

Labor Costs. Do to the ease of operation, the majority of this system is automated. This results in very low labor requirements. The control room operating room requirements are based on information supplied by the vendor. Since molten metal bath waste stream handling is fully automated, the only labor requirement is for personnel to monitor the system and move the disposal bins and trucks when necessary. Mainteinance personnel have been added to the operating staff to monitor the equipment operations and to be available to effect repairs. It was assumed that additional skilled maintenance personnel would be available from the overall facility if needed. At higher throughput rates the major impact is on increased requirements for these maintenance personnel. Since the materials handling operation also increase in magnitude, operators were added here and an additional control room operator added to monitor the

Use. duplication. or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

TABLE F-5. CAPITAL EQUIPMENT COSTS SINGLE SITE - INSTALLED COSTS

Item	Ager 100 lb/hr	nt Destruction F 400 lb/hr	Rate 1000 1b/hr
Thermai Process Equipment Plasma System(a)			
Torch plus Reactor Controls and Instrumentation Electrical Source	\$ 100,800 105,000 182,000	\$ 231,000 280,000 412,000	\$ 365,000 329,000 651,000
Molten Metal System(a) Metal Quench Tank and Conveyor(b) Metal Quench Tank Exhaust Hood(b) Feed System Afterburner(a)	\$ 225,000 51,800 2,000 100,000 124,000	\$ 595,000 57,800 4,600 100,000 285,000	\$1,120,000 100,000 8,000 100,000 495,000
Fuel Tanks(C) Cooling Tower(a) Furnace Area Heat Exchanger(C)	5,000 20,000 35,000	9,000 28,000 80,000	18,000 35,000 140,000
SUBTOTAL-Thermal Process Equipment	\$ 986,600	2,081,400	3,361,000
Pollution Abatement Equipment(C) Spray Dry Scrubber Baghouse, I.D. Fan, Stack	81,000 203,000	177,000 307,000	368,000 578,000
SUBTOTAL-Abatement Equip Costs	284,000	484,000	946,000
Ultimate Disposal Fork Truck(C) Scrap Truck and Bins	22,000 40,000	22,000 60,000	44,000 100,000
SUBTOTAL-Ultimate Disposal	62,000	82,000	144,000
SUBTOTAL-Equipment Costs Design Cost (25%)	1,332,600 333,150	2,648,400 662,100	4,451,000 1,112,750
TOTAL-Capital Equipment Costs	\$1,665,750	\$3,310,500	\$5,563,750

(a) (b)

Vendor supplied Scaled from baseline.

TABLE F-6.	CAPITAL	EQUIPMENT INSTALLATION
	COSTS -	COLLOCATED SITE

•	-77			gent Destru		
Item	4(10 15/hr	<u>۲</u>	000 157hr	3000 lb/hr	5000 1b/hr
THERMAL PROCESS EQUIPMENT Plasma System(a) Tourch and Reactor Controls and Instrumentation Electrical Source	\$	231,000 280,000 412,000	\$	365,000 329,000 651,000	\$ 777,000 483,000 1,379,000	\$ 1,176,000 728,000 2,100,000
Molten Metal System(a)		595,000		1,120,000	3,010,000	5,110,000
Metal Quench Tank and Conveyor(b) Metal Tank Exhaust Hood(b) Feed System Afterburner		57,800 4,600 100,000 285,000		100,000 8,000 100,000 445,000	300,000 16,000 100,000 955,000	500,000 21,000 100,000 1,300,000
Fuel Tanks(c) Cooling Tower(c)		9,000 28,000		18,000 35,000	36,000 40,000	54,000 45,000
Furnace Area Heat Exchanger(C)		80,000		140,000	270,000	360,000
SUBTOTAL	\$2	,081,400	\$	3,361,000	\$ 7,365,200	\$11,194,000
Pollution Abatement Equipment(Spray Dry Scrubber Baghouse and I.D. Fan	c)	177,000 307,000		368,000 578,000	692,000 952,000	937,00 <u>1,288,00</u>
SUBTOTAL	\$	484,000	\$	946,000	\$ 1,644,000	\$ 2,225,000
Ultimate Disposal Fork Truck(C) Scrap Truck and Bins		22,000 60,000		44,000 100,000	88,000 150,000	132,000 200,000
SUBTOTAL	\$	82,000	\$	144,000	\$ 238,000	\$ 332,00
SUBTOTAL-Equipment Costs Design Costs (25%)	2	,648,400 662,100		4,451,000 1,112,750	9,247,200 2,311,800	13,751,00 3,437,75
TOTAL-Capital Costs	\$3	,310,500	\$	5,563,750	\$11,559,000	\$17,188,75

Vendor supplied estimate. Guthrie Scaled from baseline.

(a) (b) (c)

50 70

入り (1) (1)

3

2

[1] [1]

9

increased auxillary equipment. It was assumed that supervision for the overall operation would be supplied by the overall facility. The personnel requirements are summarized in Table F-7.

Other Direct Costs.

Electricity. Of the utilities, the electricity usage is the major item. Most of the electricity usage is estimated directly from vendor-supplied information. The pollution abatement charges are scaled from the baseline. A miscellaneous electrical usage category, costed at 10 percent of the total, was included to cover miscellaneous pumps and blowers.

Water. Water usage in the spray dryer and the metal quench are based on the water required to reduce the temperature of the feed streams to 400 F and 200 F respectively. The cooling water make up requirements were assumed to be 10 percent of the cooling water circulation rates that were specified by the thermal system vendors.

Fuel Oil. Since the afterburner would be idling most of the time, it was assumed that the fuel oil need would be equivalent to 10 percent of the total BTU's being put through the system.

Spare Parts. Since few moving parts exist in this system, it was assumed that spare parts requirements less than those of other concepts would be. Therefore, 4 percent of the capital equipment costs was used and adjusted to include vendor estimate for the cost plasma electrodes.

<u>Materials</u>. The baseline estimate for materials of 10 percent of the "other" costs was used. This was assumed to include caustic for the spray dryer.

The other direct costs are summarized below in Tables F-8 and F-9.

F-25

		Perso	nnel/Shift A	gent Rate	
	100	400	1000	3000	5000
Feed System	1	1	1	2	2
Control Room Furnace Systems Utilities & Others	1 1	1 1	1	1 1	1 2
Maintenance	2	2	3	3	4
Pollution Abatement	0.5	0.5	1	1.5	1.5
Ultimate Disposal	0.5	0.5	1	1.5	1.5
TOTAL/SUIFT	6	6	8	10	12
Shifts;Day	x3	×3	×3	×3	x3
Person Years/Year	18	18	24	30	36,000
Rate	×50,000	×50,000	×50,000	x50,000	x50,000
LABOR COSTS/YEAR	900,000	900,000	1,200,000	1,500,000	1,800,000

.

TABLE F-7. SYSTEM PERSONNEL REQUIREMENTS

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

F-26

は国

۱.J

e. U

问题

图

 $\prod_{i=1}^{n}$

(-) }

STATES CARACTERISTICS

· STEPHONE & CALIFORNIA - ERIST

Item Usage Cost	100 1b/hr	Agent Feed Rate 400 1b/hr	1000 1b/hr
Nater - x10 ⁶ gal/year - \$0.53/10	00 gal	<u>991 - 194 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 19</u>	
Spray Dryer(C) Cooling Tower Makeup(b) Metal Quench Losses(a) SUBTOTAL	0.82 3.00 <u>0.12</u> 3.94	3.29 5.85 <u>0.49</u> 9.63	8.22 8.55 <u>1.22</u> 17 .99
Cost/year at \$0.53/1000 gal	\$2,088	\$5,104	\$9, 535
lectric - x 10 ⁶ KwHr/Yr - \$0.05	/kwHr	•	
Thermal Plasma(b) Induction Furnace(b) Cooling Tower(b) Afterburner(C) Vaporizer Blower Heat Exchanger(C) Scap Quench SUBTOTAL Thermal System	1.08 0.58 0.05 0.07 0.01 0.05 0.01 1.85	4.33 2.30 0.07 0.16 0.05 0.11 0.05 7.07	10.8 5.75 0.11 0.36 0.12 0.19 0.12 17.45
Pollution Abatement Scrubber and I.D. Fan(C) Scrap Exhaust Hood SUBTOTAL Hiscellaneous Total Electrical Use Yearly Costs at \$0.05/KwH	0.22 0.03 0.26 0.20 2.31 \$115,500	0.59 0.07 0.63 0.7 8.40 \$420,000	0.85 0.12 0.97 1.8 20.22 \$1,011,000
Fuel Oil - Gallon/Year Cost/Year at \$1.20/Gal	11,750 <u>\$ 14,100</u>	47,000 <u>\$56,400</u>	117,500 <u>\$ 141,100</u>
pare Parts laterials (10% Other Costs)	73,170 <u>\$ 110,486</u>	161,430 <u>\$ 154,293</u>	263,47 \$ 262,50
TOTAL OTHER DIRECT COSTS \$/Yr	\$ 315,344	\$ 797,227	\$1,687,51

(a) (b) (c)

Calculated. Vendors estimate. Scaled from baseline.

F-27

TABLE F-8. OTHER DIRECT COSTS - SINGLE SITE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Item Usage Rate	Agent Feed Rate								
-	400 1b/hr	1000 lb/hr	3000 15/hr	5000 lb/hr					
Nater in 106 gaļlon/yr - \$0.55	B/gallon	•							
Spray Dryer(a) Cooling Tower Makeup(b)	3.29 5.85	8.22 8.55	24.68 14.10	41.13 18.15					
Metal Quench Losses(a)	0.49	1.22	3.66	6.10					
SUBTOTAL	9.63	17.99	42.44	65.38					
COST at \$0.53/gallon	\$5,104	\$9,535	\$22,493	\$34,651					
Electricity - 10 ⁶ KwH/yr - \$0	.05/KwH								
Thermal Systems Plasma(b)	4.33	10.8	32.5	54.1					
Induction Furnace(b)	2.3	5.75	17.26	28.76					
Cooling Tower(^b) Afterburner(^C)	.07 .16	.11 .36	0.18 0.57	0.25 0.94					
Vaporizer Blower	.05	.12	0.19	0.23					
Heat Exchanger(C)	0.11	0.19	0.37	0.50					
Scrap Quench SUBTOTAL	0.05	0.12	0.37	<u> </u>					
•	,	1/ 140	97944	03.4					
Poëlution Abatement Scrubber and I.D. Fan(C)	0.59	0.85	1.33	2.70					
Scrap Exhaust Hood	0.07	0.12	0.24	0.38					
SUBTOTAL	0.63	0.97	1.57	3.08					
discellaneous (10%)	.70	1.8	5.25	8.72					
Total Electrical Use	8.40	20.22	58.78	96.82					
Costs at \$.05/KwH	\$420,000	\$1,011,000	\$2,939,000	\$4,841,10					
uel 011 - Gallon/Year	47,000	117,500	352,500	587,50					
Spare Parts (6% of Capital Costs)	\$161,430	\$263,475	\$579,135	\$920,250					
Materials (10% of Other Costs)) <u>\$184,293</u>	\$262,501	<u>\$546,392</u>	\$830,100					
TOTAL OTHER DIRECT COSTS	\$827,227	\$1,687,511	\$4,510,321	\$7,331,10					

TABLE F-9. OTHER DIRECT COSTS - COLLOCATED SITE

. .

0

ا من روز

H.

Calculated. Vendors estimate. Scaled from baseline. (a) (b) (c)

Total Operating Costs

Production Time. Summaries of the single and collocated site production time estimates for each inventory item at the various processing rates can be found in Tables F-10 and F-11. Production years for each inventory item are determined by dividing the number of items in the inventory by the product of the hourly processing rate. the 5000 hr/yr operating schedule, and the system availability determined in the RAM analysis. Each inventory category subtotal was computed using Army guidelines. Scheduled maintenance time was then determined as follows. The molten metal vendor estimates that the slag zone refractory must be repaired or replaced every 3 months or four times per year. Their experience indicates that the refactory can be replaced and cured in 3 to 6 days depending on the size of the reactor. The total scheduled maintenance time was then computed as follows. The Inventory Category subtotals were added to determine the years of operation. The total number of scheduled refractory changes was then determined by multiplying the years of operation by four. The hours of down time was computed by multiplying the number of changes by the vendors estiante of the time required change. The years of scheduled maintenance was then determined by dividing the total hours by the 5000 hr/yr operating schedule.

Life Cycle Operating Costs. The production years per inventory category computed above were the used, following the Army guidelines, to compute the life cycle operating costs for demilitarizing the single site and collocated site inventories at each of the appropriate processing rates. The scheduled maintenance was assumed to have the same operating costs as the change over periods requiring full labor and 50 percent of the other operating cost.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0058 with ARRADCOM.

			TABLE F-10. TI	H erma l Process	OPERATING TIM	e – Single Site			
Munition Category	Munition Type	Inventory	Thr 100 lb/hr	rough-put Per 1 400 lb/hr	iour 1000 1b/hr	Syster Availability	100)b/hr	Production Year 400 1b/hr	rs 1000 1b/hr
A	N-55 Rockets N-23 Mines SUBTOTAL	80,000 20,000	9.3 9.5	37.4 38.1	93.5 95.2	0.862 0.862	2.00 0.49 2.49	0.50 0.12 0.62	0.20 0.05 0.25
B/C	Mortars 105 mm Projectiles 155 mm Projectiles 8" Projectiles SUBTOTAL	50,000 50,000 50,000 50,000 50,900	16.7 62.5 15.4 6.9	66.7 250.0 61.5 27.6	166.7 625.0 153.8 69.0	0.862 0.862 0.862 0.862 0.862	0.69 0.19 0.75 <u>1.68</u> 3.31	0.17 0.05 0.19 0.42 0.83	0.07 0.02 0.08 0.17 0.34
D	Bombs Ton Containers/ Spray Tanks SUBTOTAL	800 200	0.4 6.1	1.8 0.3	4.6 0.7	0.862 G.862	0.46 <u>0.46</u> 0.92	0.10 0.15 0.25	0.04 <u>0.07</u> 0.11
	Maintenance Changes Every 3 Month	s (5-6 days)					0.35	0.11	0.06
•									
				-					

F-30

	Munition			Throughpu	it per Hour		System			ion Years	
Category	. Туре	Inventory	400 lb/hr	1000 ib/hr	3000 lb/hr	5000 lb/hr	Availability	400 lb/hr	1000 1b/hr	3000 1b/hr	5000 1b/hr
•	N-55 Rockets N-23 Mines SUBTOTAL	800,000 200,000	37.4 38.1	93.5 95.2	280.4 285.7	467.3 476.2	0.862 0.862	4.96 1.22 6.18	1.98 0.487 2.47	0.648 0.162 0.81	0.397 9.057 0.49
B/C	Mortars 105 mm Projectiles 155 mm Projectiles 8" Projectiles SUBTOTAL	500,000 500,000 500,000 500,000	66.7 250.0 61.5 27.6	166.7 625.0 153.8 69.0	500.0 1875.0 465.5 206.9	833.3 3125.0 769.2 344.8	9.862 0.862 0.862 0.862 0.862	1.74 0.46 1.88 <u>4.20</u> 10.50	0.696 0.186 0.754 <u>1.68</u> 3.32	0.23 0.06 0.25 <u>0.56</u> 1.10	0.139 0.037 0.151 <u>0.336</u> 0.66
D	Bombs Ton Containers/ Spray Tank SUBTOTAL	8,000 2,000	1.8 0.3	4.6 0.7	13.6 2.0	22.7 3.3	0.862 0.862	1.03 1.55 	0.40 0.66	0.136 0.23 0.368	-0.082 0.141
	SUBTOTAL Maintenance y Changes Every 3 mon	iths (5-6 day	ysj)					2.58	0.548	0.368	0.22

TABLE F-11. THERMAL PROCESS GPERATING TIME - COLLOCATED SITE

BBBBB

.

.

Use,

duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

٠

CASESSIE MALESSIE SECTION

D, Development Costs

Ñ

63

Ŷ

(· ·)

THE PROPERTY A PARAMETER IN THE PROPERTY IN

Manage . Noverthe

STREET, STREET

To fully develop the concept, both bench scale and pilot scale studies are necessary. In the bench scale studies, pyrolysis of agent with a plazma arc should be deomonstrated and the products of pyrolysis identified. Additional molten metal studies are also required to determine the interaction between the slag layer and the flue gas. The aim of these studies would be to determine the feasibility of insitu clean up of the products of the plazma arc destruction step. Refractory compatability studies are also needed. After eliminating these and other knowledge gaps, a new conceptual design of the process should be completed. At this time, if the process is proven to be feasable, a 40 lb/hr pilot plant would be designed and built. A summary of the estimated development costs can be found in Table F-19. Estimates of the cost of designing, constructing, and operating the pilot plant were scaled directly from the 100 lb/hr estimates presented previously.

E. Total Costs

The total costs for each feed rate under consideration is simply the sum of the facility costs, the capital equipment costs, the life cycle operating costs, and the development costs. These costs are summarized in Tables F-20 and F-21.

F. Optimum Process Flow Rate

From an operational standpoint, the optimum flow rate for this process is probably determined by the mechanical preparation area or perhaps the feed system. The optimum flow rate from a cost

F-32

	Rate,									
Period	Labor \$/Yr		Other \$/Yr		Duration	Total Cost,				
Eq Acceptance	\$	300,000	\$	105,115	0.50	\$	202,557			
Training		900,000		157,672	0.50		528,836			
Inventory Item A		900,000		315,344	2.49		3,026,207			
Change Out		900,000		157,672	0.17		179,804			
Inventory Item B		900,000		315,344	3.31		4,022,789			
Change Out		900,000		157,672	0.17		179,804			
Inventory Item D		900,000		315,344	0.92	:	1,118,117			
Scheduled Maintenance		900,000		157,672	0.35		370,185			
Shutdown		300,000	wine	105,115	0.50		202,557			
Life Cycle Operations Costs	,					\$ 9	9,830,856			

TABLE F-12. LIFE CYCLE OPERATING COSTS - SINGLE SITE (100 LB/HR)

ÎV.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

والمراجع والمراجع والمراجع والمراجع

· . · .

1 4 1 4 M 1 4 T 1

	Rate,									
Period	Labor \$/Yr		Ot	her \$/Yr	Duration	Total Cost				
Eq Acceptance	\$	300,000	\$	265,742	0.5	\$	282,871			
Training		900,000		398,613	0.5		649,307			
Inventory Item A		900,000		797,227	0.62		1,052,281			
Change Out		900,000		398,613	0.17		220,784			
Inventory Item B/C		900,000		797,227	0.83		1,408,698			
Change Out		900,000		398,613	0.17		220,764			
Inventory Item D		900,000		797,227	0.25		424,307			
Scheduled Maintenance		900,000		398,613	0.11		142,847			
Shutdown	-	300,000		265,742	0.5		282,871			
Life Cycle Operations Costs						\$ 4	4,684,730			

TABLE F-13.LIFE CYCLE OPERATING COSTS - SINGLE SITE
(400 LB/HR)

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

0

Ô

RE C

-	Rate,					
Period	Labor \$/Yr	Other \$/Yr	Duration	Total Cost		
Eq Acceptance	\$ 400,000	\$ 562,504	0.5	\$ 481,252		
Training	1,200,000	843,755	0.5	1,021,878		
Inventory Item A	1,200,000	1,687,511	0.25	721,878		
Change Out	1,200,000	843,755	0.17	347,438		
Inventory Item B/C	1,200,000	1,687,511	0.34	981,753		
Change Out	1,200,000	843,755	0.17	347,438		
Inventory Item D	1,200,000	1,687,511	0.11	317,626		
Scheduled Maintenance	1,200,000	843,755	0.06	122,625		
Shutdown	400,000	562,504	0.5	481,252		
Life Cycle Operations Costs				\$ 4,823,140		

TABLE F-14.	LIFE	CYCLE OPERATING	COSTS	-	SINGLE	SITE
		(1000 LB/HR)				

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

5.5

会で

۰. بر ا

Hite

Ĩŗ.

F-36

當日

K.C.C.C.C.C.C.C.C.

STATE - S. - S.

E)

17.3

 $\langle n \rangle$

17

		Rate.						
Period	La	Labor \$/Yr		her \$/Yr	Duration	Total Cost		
Eq Acceptance	\$	300,000	\$	275,742	0.5	\$	287,871	
Training		900,000		413,613	0.5		656,807	
Inventory Item A		900,000		827,227	6.18	10	,674,263	
Change Out		900,000		413,613	0.17	•	223,314	
Inventory Item B/C		900,000		827,227	10.50	18	,135,884	
Change Out		900,000		413,613	0.17		223,314	
Inventory Item D		900,000		827,227	2.58	4	,456,246	
Scheduled Maintenance		900,000		413,613	1.04	1	,366,158	
Shutdown		300,000	-	275,742	0.5		287,871	
Life Cycle Operations Cost	:5					\$36	,311,728	

TABLE F-15. LIFE CYCLE OPERATING COSTS - COLLOCATED SITE (400 LB/HR)

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Contaction of the Contact of the <u>.</u>

	Rate,					
Period	Labor \$/Yr	Other \$/Yr	Duration	Total Cost		
Eq Acceptance	\$ 400,000	\$ 562,504	0.5	\$ 481,252		
Training	1,200,000	843,756	0.5	1,021,878		
Inventory Item A	1,200,000	1,657,511	2.47	7,132,152		
Change Out	1,200,000	843,756	0.17	347,438		
Inventory Item B/C	1,200,000	1,687,511	3.32	9,586,537		
Change Out	1,200,000	843,756	0.17	347,438		
Inventory Item D	1,200,000	1,687,511	1.05	3,060,762		
Scheduled Maintenance	1,200,000	843,756	0.548	1,119,978		
Shutdown	400,000	562,504		481,252		
Life Cycle Operations Cost	S			\$23,578,687		

TABLE F-16. LIFE CYCLE OPERATING COSTS - COLLOCATED SITE (1000 LB/HR)

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAk11-82-C-0055 with ARRADCOM.

ይሞዱ የሌ ሞሬ ምቆ የቤ ምሬ የሴት እና ምራች ም

DAN STR

Rate Period Labor \$/Yr Other \$/Yr Duration Total Cost \$ 500,000 \$1,503,440 0.5 \$ 1,001,720 Eq Acceptance 1,500,000 1,877,580 Training 2,255,161 0.5 1,500,000 Inventory Item A 4,510,321 0.81 4,868,360 1,500,000 2,255,161 0.17 638,377 Change Out 1,500,000 4,510,321 Inventory Item B/C 1.10 6,611,353 2,255,161 Change Out 1,500,000 0.17 638,377 1,500,000 Inventory Item D 4,510,321 0.368 2,211,798 Scheduled Maintenance 1,500,000 2,255,161 0.194 728,501 500,000 Shutdown 1,503,440 0.5 1,001,720 \$19,577,786 Life Cycle Operations Costs

Û

P

P

3

・それに、たんたいと

TABLE F-17. LIFE CYCLE UPERATING COSTS - COLLOCATED SITE (3000 LB/HR)

	Rate,					
Period	Labor \$/Yr	Other \$/Yr	Duration	Total Cost		
Eq Acceptance	\$ 600,000	\$2,443,700	0.5	\$ 1,521,850		
Training	1,800,000	3,665,551	0.5	2,738,331		
Inventory Item A	1,800,000	7,331,101	0.49	4,474,240		
Change Out	1,800,000	3,665,551	0.17	931,032		
Inventory Item B/C	1,800,000	7,331,101	0.66	6,026,527		
Change Out	1,800,000	3,665,551	0.17	931,032		
Inventory Item D	1,800,000	7,331,101	0.22	2,008,842		
Scheduled Maintenance	1,800,000	3,665,551	0.123	673 ,6 29		
Shutdown	600,000	2,443,700	0.5	1.521.850		
Life Cycle Operations Costs	6			\$20,827,333		

TABLE F-18. LIFE CYCLE OPERATING COSTS - COLLOCATED SITE (5000 LB/HR)

F-40

Ś

13

ß

Ľ

entre a la filme

1

語を行うためで

う う う か か う く う

CARGERIAN STREET

DEVELOPMENT COSTS TABLE F-19.

Phase II - Bench Scale	
Concept Refinement	\$ 15,000
Incineration Pyrolysis Studies	150,000
Refractory-Materials Compatibility Studies	150,000
Environmental Studies	160,000
Feasibility Studies	75,000
Conceptual Design Studies	50,000
Materials	150,000
Subcontractors	150,000
Contingencies	60,000
TOTAL PHASE II DEVELOPMENT COSTS	\$ 960,000
Phase III - Pilot Studies	
Pilot Plant Design	\$ 300,000
Test Plans and Operations Procedures	60,000
Pilot Plant Construction	1,395,000 -
Pilot Plant Startup	114;000
Operator Training	300,000
Pilot Plant Operation	682,000
Test Report	15,000
Process Development Program	600,000
30% Design Package	400,000
Subcontractors	500,000
Contingencies (20%)	873,000
TOTAL PHASE III DEVELOPMENT COSTS	\$5,239,000
TOTAL DEVELOPMENT COSTS	\$6,199,000

	Agent Rate (1b/hr) 100 lb/hr 400 lb/hr 1000 lb/hr					
Cost Item	100 1b/hr	400 1b/hr	1000 lb/hr			
Facility Costs	\$ 1,235,900	\$ 1,273,000	\$ 2,019,000			
Capital Equipment Costs	1,665,750	3,310,500	5,563,750			
Life Cycle Operations Costs	9,830,856	4,684,730	4,823,142			
Development Costs	6,199,000	6,199,000	6,199,000			
TOTAL COSTS	\$18,930,606	\$15,467,230	\$18,604,892			

TABLE F-20. TOTAL COST ESTIMATES - SINGLE SITE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

F-41

A CENTRE C

いたが見てい

11. Same

	Agent Rate (1b/hr)						
Cost Item	400 1b/hr	1000 lb/hr	3000 1b/hr	5000 lb/hr			
Facility Costs	\$ 1,295,000	\$ 2,036,000	\$ 3,530,000	\$ 4,563,000			
Capital Equipment Costs	3,310,500	5,563,750	11,559,000	17,188,750			
Life Cycle Operating Costs	36,311,728	23,578,687	19,577,787	20,827,332			
Development Costs	6,199,000	6,199,000	6,199,000	6,199,000			
TOTAL COSTS	\$47,116,228	\$37,377,437	\$40,867,787	\$48,739,255			

TABLE F-21. TOTAL COST ESTIMATES - COLLOCATED SITE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

F-42

國

) T

9

的

13

and the second second

and the second and the second and the second second

and the state of the substant states and the

standpoint can be seen in the thermal system cost curves (Figures F-3 and F-4). These curves indicate that the optimum single site processing rate is approximately 400 pounds per hour while the optimum collocation rate appears to be slightly greater than 1000 pounds per hour. At these rates, the estimated total costs of 15,467,230 and 33,377,437 appear to offer a decided advantage over the base line cost.

G. Operating Time

The operating times required for the various inventory categories were discussed previously. The total life cycle operating times for the various agent throughput rates are summarized in Table F-22.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

, . . .

7

[:]

f.,

i.

5

代表、著

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

ne renega renega de la presenta de la renega de la renega de la renega de la renega de la compañía de la compañ

Agent Rate lb/hr	Operating Year
	Single Site
100	8.91
400	3.65
1000	2.60
	Collocated Site
400	22.14
1000	9.25
3000	4.31
5000	3.33

OPERATING TIME TABLE F-22.

REFERENCES

- 1. M. G. Fey, T. N. Meyer, W. H. Read, and W. O. Philbrook of Westinghouse Applied Plasma Systems, "Thermal Plasma Systems for Industrial Processes", presented at The Industrial Energy Conservation Technology Conference, Houston, Texas (April 4-7, 1982).
- James R. Hollis of Applied Energetics, "Plasma Temperature Incineration", presented to the National Meeting of the American Institute of Chemical Engineers, New Orleans, LA (November 8-12, 1981).
- Dr. T. G. Barton of the Royal Military College of Canada, "Composite Waste Atomization by Plasma", presented at The Chemical Institute of Canada 65th Canadian Chemical Conference and Exhibition, Toronto, Canada (May 30 - June 2, 1982).
 4.
- 5. J. Harting, D. Neushutz, D. Reed, and H. Secleo of Krupp Research Institute "New Process Developments in Melting Scrap and Sponse Iron", published in Iron and Steel Engineer (February, 1982.
- "Advanced Thermal Demilitarization System Questionnaire Response

 Statement of Experience and Capabilities", submitted by
 Westinghouse Electric Corporation, Advanced Thermal Systems
 Division, to Battelle Columbus Laboratories (September, 1982).
- 7. K. M. Guthrie, "Data and Techniques for Preliminary Capital Cost Estimating", Chemical Engineering, pp 114-142, (March 24, 1963).
- 8. Peters and Timmerhaus, <u>Plant Design and Economics for Chemical</u> <u>Engineers</u>, McGraw Hill, Second Edition.

F-47
APPENDIX G

8 8

8

E

[:]

[]

ENGINEERING AND ECONOMIC ANALYSIS -FLUIDIZED-BED

APPENDIX G

ENGINEERING AND ECONOMIC ANALYSIS -FLUIDIZED-BED

Engineering Analysis - Fluidized-Bed

A. System Concept Description

6)

 $\left\{ \right\}$

0

Ø

E

р Ц

0

(1)

Eight fluidized-bed concepts are listed among the 44 concepts evaluated in the preliminary evaluation. Most of these eight concepts rated high. A composite engineering design is described here to show how a fluidized-bed can be effectively used to treat chemical munitions.

The fluidized-bed is capable of handling several classes of munition feed. The preliminary analysis indicated it was particularly adaptable to munitions with the explosive removed and the agent cavity opened, (configuration e) as well as for feed from a munition shredder (configuration h). However, some of the peripheral equipment requirements change with different feedstock. Costs associated with both feedstocks e and are presented later in this analysis.

Figures G-1 and G-2 are flow diagrams for three systems considered. Figure G-1 is for low feed rates (100, 400, and 1000 lb/hr) using feedstock e. Figure G-2 is for the same feedstock at rates of 3,000 and 5,000 lb/hr; Figure G-2 is also for feedstock h at all rates. The major difference between the two flow diagrams is the addition of a volatilization chamber in Figure G-1. Ton containers and other large items would be fed into this unit and the agent volatilized out. Projectiles would also be treated in the volatilization chamber when feeding 100 lb/hr of agent. The afterburner and spray dryer are similar to those used in the baseline and baseline costs are used. Material and heat balances are given in Tables G-1 and G-2.

Material	٦p
IN	
GB	400
Wood	650
Explosive-Propellent	250
Air	16,030
Water (liquid)	5,000
Metal	2,050
NaOH	686
TOTAL	25,066
OUT	
Flue gas	
0 ₂	1,867
CO2	1,983
N2	12,342
H20	5,843
Salts	
Na2HPO4	406
NaF	120
Na2C03	455
Metal	2050
TOTAL	25,066

TABLE G-1.MATERIAL BALANCE - FLUIDIZED-
BED (Basis 400 16 GB)

NOTE: Fuel used only on standby.

TABLE G-2.	HEAT BALANCE - FLUIDIZED-BED	
	(Basis 400 lb GB)	

Material	Heat of Combustion, Btu/lb	Temp. F	H, Btu
	IN		
GB	10,000	70	4,000,000
Wood .	8,500	70	5,525,000
Explosive	5,400	70	1,350,000
Air		70	
Water		70	
Metal		70	
NaOH		70	
Electric Energy			700,000
TOTAL			11,575,000
	OUT		
Flue gas	,	270	7,200,000
Metal		1,500	575,000
Salts		270	40,000
Heat losses (by difference)			3,760,000
TOTAL			11,575,000

NOTE: Fuel used only on standby. Heat of reaction to form salts from NaOH and acids neglected.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAKil-82-C-0055 with ARRADCOM.

の記 53 8. 民

Referring to Figure G-1, the inlet lock is a double valve which drops the feed material into the center of the bed through the freeboard. The munition fails into the bed. The agent burns, metal is heated and decontaminated, explosives burn, and dunnage burns. The metal parts are removed through a ram-type drain in the bottom. The ram is strong enough to shear any metal caught in it. The metal and bed material drain onto a screen, the metal and bed material are separated, and the bed material returned to the bed. The metal is sold for scrap or landfilled. The afterburner and scrubber are of the baseline design.

Figure G-3 shows the internals of the fluidized bed for feedstock h. The portion of the bed above the sparger tubes is fluidized and the bed below is a moving bed. The sparger tubes are spaced to allow passage of the munitions that are being fed to the fluidized bed. As deburstered munitions are fed to the fluidized bed they will sink to the interface between the fluidized bed and the moving bed. The agent will volatilize rapidly as the munition is slowly covered by the hot bed material. As decontaminated munitions and bed material is removed from the bottom of the moving bed by the ram-type drain, the recently fed munition is progressively moved down the moving bed. The residence time of the munition body is determined by the depth of the moving bed and the bed recirculation rate. The bed material in the fluidized bed is at 1500 F or hotter; the moving bed will cool down very little since it will be well insulated. This will ensure 5x decontamination of the metal parts if the residence time of the metal parts in the moving bed is greater than 15 minutes.

At the larger feedrates, where bulk items are to be fed to the fluidized bed, the sparger air tubes will be replaced by a ring of air jets located in the sloped portion of the fluidized bed. This is shown in Figure G-4. The operation of the fluidized will be the same as with the sparger tubes.

Table G-3 gives estimated bed size parameters for several agent rates.

G-6

3		G-9				
	TABLE G-3.	FLUIDIZED-B (3 ft/sec,	ED DESIGN 100% Exce	PARAMETE ss Air, 1	RS 500 F)	
	Agent Rate, 1b/hr	100	. 400	1000	3000	5000
3	Diameter, ft Height, ft	4.6 20	9.3 25	14.5 30	25.1 35	32.5 40
	Bed depth, ft Rating, MM Btu/hr Afterburner size, cu ft	4 2.5 100	5 10 400	5 25 1000	6 75 3000 ·	6 125 5000
	Air, SCFM	850	3400	8500	25,500	42,500
20 79						
81 194						
8						
44 9 9						

B. System Feed Requirements

The fluidized bed system is proposed for two different feedstocks, feedstock h, and feedstock e. Feedstock e consists of munitions with the explosives removed and the agent cavity opened. The explosive, dunnage, and agent containing munitions would all be fed into the bed, possibly together but not in an assembled munition. The fluidized-bed concept can handle munitions in this configuration and also accept the dunnage and explosives removed from these munitions. A more accurate description of the applicable feed stocks is shown in Table G-4.

In all cases, the rocket motor must be made nonpropulsive. In addition, single pieces fed into the bed should not be large compared with the bed dimensions. In general, a piece should not exceed a quarter of the bed diameter. Therefore, at the 100 lb/hr agent rate, the rockets would have to be cut into four or more pieces. At the 400 lb/hr agent rate, it would have to be cut in two pieces. Projectiles would have to have their fuses and bursters removed. The large items would have to be punched open. At the 3,000 and 5,000 lb/hr rates, they can be fed directly into the bed. At the lesser rates, a volatilization chamber is needed.

Rate, 1b/hr	100	400	1000	3000	5000
Rockets*	2	2	2	2	2
Mines	2	2	4	4	4
Projectiles	1	1	1 or 2	2	· 2
Ton Containers	3	3	3	3	3

TABLE G-4. DOWNLOAD NECESSARY FOR MUNITIONS FED TO FLUIDIZED-BED

*Rockets must be non-propulsive.

1 - Fuzes and bursters removed, agent cavity open.

2 - Fuzes removed, agent cavity open.

3 - Agent cavity open.

.

4 - No download required.

NOTE: A safety analysis beyond the scope of this study is needed to demonstrate that the fluid bed can withstand the detonation of bursters without damage or that the burster will not detonate. If this cannot be demonstrated, all amunitions with fuzes and/or bursters require download 1.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

C. Pollution Abatement System

The baseline pollution abatement system will be used. The dustloading will be increased slightly due to degradation of the bed material. However, the increased dust loading is not expected to require either design or cost modifications to the baseline system.

D. Ultimate Disposal

The agent combustion products will be captured in the spray dryer scrubber. Disposal will be same as baseline. The steel metal parts will be 5X decontaminated coming from the bed. They can be sold or landfilled, again the same as baseline. The aluminum metal parts will melt in the bed and agglomerate with the bed material. These agglomerates will be removed and landfilled. Since liquid aluminum has been known to detonate when in contact with water, the agglomerate handling system must not include a water quench. Otherwise, handling of the aluminum-bed agglomerates is not anticipated to be a problem.

The fluid bed, afterburner, and salt system will not be contaminated in the process and can be landfilled or sold after all munitions are treated.

E. System Concept Advantages

The major advantages of the system are in handling of material and in burning of agent and dunnage to reduce fuel usage. At higher rates, minimum downloading is used. As compared with baseline, only one thermal system is needed rather than the two systems.

Another advantage which might be applicable to the fluidized-bed systems but is not part of the system described is the use of a chemically-active bed to absorb the acidic products of agent combustion. The reasons for not including a chemically-active bed in this analysis is that it may agglomerate and cause operational problems. The residue from the active bed would probably be greater than

G-13

with the conventional scrubber, and 100 percent capture of the acidic components is not likely; thus, the conventional scrubber concept was not modified to include the active bed.

F. System Concept Disadvantages

The system appears to be applicable to demilitarizing munitions and should work. However, it probably will not handle munitions in a configuration less downloaded than e. A demonstration of safe demilitarization of fused munitions would be very difficult. If ton containers were treated without opening them, agent probably would be released at an excessive rate when the container burst. Also unopened ton containers may explode during treatment and the final metal shape would vary. Some shapes may be difficult to remove from the bed.

G. System Knowledge Gaps

Many knowledge gaps, which prevent a satisfactory design from being made at present, exist. Most can be eliminated by an engineering study and a few require experimental work to develop engineering parameters. Some of these knowledge gaps are:

- How can metal best be removed from the bed?
- What are effective methods of separation of metal and bed material?
- What is the effect of bed agglomeration as a result of aluminum metal?
- How can agglomeration as a result of reaction of bed material with agent combustion products be avoided?
- How much metal can be in bed before defluidizing it?
- How fast does metal heat in the bed?
- What is the agent release rate from punched ton containers?

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

(i) (i)

 $\left\{ \cdot \right\}$

; ; ن

E

For the sector

Some experimental work is needed on removal of metal parts from the bed. Since the metal parts are denser than the bed, they will sink to the bed bottom. By removing some bed from the bottom, the metal should be removed with the bed. The present conceputal method is to fill a pocket under the bed with metal and bed material. A ram would then push metal and bed material out. The top of the ram would be strong enough to shear through ton containers, projectiles, or other metal caught between it and the bottom of the bed. The pocket in the ram would be about 5 feet in diameter by 7 feet deep for the large-size beds, and perhaps about 4 feet in diameter by 4 feet deep for the smaller beds. Modeling is needed to determine how the metal is discharged from the bed, and engineering is needed to design a ram which will shear through heavy metal. With feedstock h, the pocket in the ram can be smaller.

The aluminum metal will form agglomerates with the bed material. A study is needed to determine how large these agglomerates will be and how many the bed can contain and still remain fluidized. This information is needed to determine the rate of rocket processing in a bed of a given size and thus impacts on the economic analysis presented later.

Some experimentation or engineering analysis is needed on methods of separation of the decontaminated metal and the bed material. Presumably, a screen or magnetics might be used for separation of the iron. Since aluminum melts below bed temperature, an agglomerate of aluminum and bed material will be discharged. Some method will have to be devised to solidify the aluminum and then separate the agglomerate from the bed material. Water spray cooling can not be used because, under some conditions, liquid aluminum-water mixtures detonate.

The effect of phosphoric and hydrofluoric acids on the bed material must be determined. Both form low melting eutectics with bed material candidates. At present, bauxite is thought to be satisfactory but this should be determined experimentally in a small fluidized-bed. Since the cost of bed material is small, this knowledge gap affects costs associated with downtime during operation.

Fluidized-beds defluidize when excessive amounts of solids are in them. The amount that can be in the bed must be determined to size the bed. Another factor in determining bed size is the time for the various munitions to heat to bed temperature. Since heat transfer in the bed depends upon many variables, an experimental determination is probably necessary. This will determine how long a munition item must remain in the bed to be decontaminated.

The last knowledge gap is the release rate of agent from munitions in the fluidized-bed. For example, with the fluidized-bed designed for 3,000 lb/hr of agent, the combustion rate is determined from combustion of a dunnage-explosive-agent mix. The corresponding rate for agent combustion without dunnage or explosive is 7,500 lb/hr. The bed is designed to operate at about 100 percent excess air but can operate stoichiometric for limited periods. Thus, the actual maximum agent rate is about 15,000 lb/hr. This is the equivalent of a ton container draining in 6 minutes. If the actual drainage rate is less, ton containers can be treated in beds designed for lower rates and the volatilization chamber would not be needed at those rates.

H. Safety

Ø

3

5

The fluidized-bed system does not pose specific safety problems over the baseline system. There is a large amount of thermal energy in a hot bed. However, this is typical of large fluidized-beds which operate safely in industry.

The baseline safety problems of handling agent and explosives and of hot surfaces are not changed by using a fluidized-bed.

I. Likelihood of Development Within 5 Years

Fluidized-beds are presently commercial in large sizes. The work needed before design is primarily associated with defining parameters and in determining a method of removing metal from bed. These problems appear to be solvable in much less than 5 years.

G-15

J. Scalability to 400-3,000 lb/hr of Agent

Fluidized-bed systems are used in applications considerably larger than needed for chemical agents. The problems of metal in a bed and agglomeration because of molten aluminum appear to be more severe with small beds than large. Because of these problems, in this concept, large munitions are not fed into the smaller beds but rather to a volatilization chamber. No special size problems are foreseen at the operating rates of interest.

K. Degree of Technical Risk

Fluidized-beds are commercially available from several vendors. In the size required, they would be field-erected. The technology gaps are those associated with the munitions; that is, the effect of large metal pieces in the bed, the effect of phosphoric and hydrofluoric acids on the bed materials and refractories. It is very unlikely that a fluidized-bed system could not be made to work.

L. Ram Factors

Total system availability for the fluidized-bea was calculated to be 0.866. Details on the calculation are given in Appendix L.

M. Materials Compatability Problems

The major portion of the actual fluidized-bed will be refractory-lined. Refractories are available which should take the environment expected. Some work is needed to define the bed material since the bed material must not agglomerate in the environment. Alumina (bauxite) is a prime candidate. Mullite, stabilized zirconia, zircon, and spinel are other possibilities. Silica-based materials would probably be attacked by hydrofluoric acid. The scrubber material of construction will be the same as baseline.

N. Energy Requirement and Source

8

83

Ś

A CALLER

STATE Non

A.

The major energy requirement is for fuel to keep the bed warm during standby periods of operation. Nearly any source can be used and fuel oil was assumed for the economic analysis. A fuel gas would be a little simpler to use, although a cost saving would not show up in an economic analysis of the type used here. The major fuel requirements are met by burning agent and dunnage. The heat released by this combustion is used in the spray dryer.

The other major power requirement is electrical. The fanpower for the fluidized-bed is greater than that of most other processes. In the smaller units, an electrically-heated volatilization chamber is assumed. This also uses a substantial amount of power.

O. Ease of Operation

Fluidized-bed systems can have very high operating rates. Large-cat cracking units typically run for over a year without shutdown. Large units shutdown and startup easily after a weekend. After a prolonged shutdown, a day may be needed for startup, to heat the bed slowly to prevent thermal damage to the refractories.

The fluidized-bed operation should be very flexible. Different munitions can be fed simultaneously or sequentially without interfering with bed operation. Dunnage and explosive similarly can be fed simultaneously or sequentially with munitions or with each other. The limiting factors will be a limiting heat release, and a limiting amount of tramp metal that is allowable in the bed. The maximum heat release can be double that of the rating for short periods (10-30 minutes). Feed interruptions for similar periods are not significant. Longer interruptions will require the use of auxiliary fuel. The bed is capable of operation at about one-third of design rate without the use of auxiliary fuel. One of the advantages of the fluid bed is its great flexibility.

G-17

The fluidized-bed is a reasonably simple system as presented here. The major complexities are in the removal of metal from the bed, the separation of metal from bed material, and the reinjection of bed material.

Economic Analysis - Fluidized-Bed

A. Facility Cost

The facility costs are presented in Table G-5 when using feedstock a. The costs are essentially identical when using feedstock h except that volatilization is not needed.

B. Equipment Cost

Equipment costs are also shown in Table G-5. The cost of the volatilizer was estimated by a vendor (Salem Furnace Company) for a furnace capable of supplying 100 KW to the work and measuring 25 feet long by 4 feet square. Their estimate was \$700,000 and \$500,000 for additional identical units. This size is required for 400 lb agent/hr. The same size is required at 100 lb/hr because the size is needed to treat a spray tank. At 1,000 lb/hr, a unit 2.5 times the 400 lb/hr unit was assumed.

The fluidized-bed cost was estimated from a General Atomics estimate of \$2,000,000 for a 26 MM Btu unit. This unit would treat about 1,000 lb/hr of agent. The other sizes were obtained by the 0.6 power factor. The screen cost was obtained from Peters and Timmerhouse. The other costs were obtained from the baseline.

C. Operating Costs

Non-labor operating costs are presented in Table G-6. Water usage is taken from baseline. The fuel cost is for 1,000 hours of operation at standby (one-third rate). No fuel is needed during

Tacility Volatilizer 58,500 650 58,500 650 72,000 800							-				
Igent Destruction Rate, 1b/hr 100 400 1000 3000 3000 5000 item: 5 ft2* 5 ft2* 5 ft2* 5 ft2* item: ************************************					-						
Igent Destruction Rate, 1b/hr 100 400 1000 3000 3000 5000 item: 5 ft2* 5 ft2* 5 ft2* 5 ft2* item: ************************************											
Igent Destruction Rate, 1b/hr 100 400 1000 3000 3000 5000 item: 5 ft2* 5 ft2* 5 ft2* 5 ft2* item: ************************************											
Igent Destruction Rate, 1b/hr 100 400 1000 3000 3000 5000 item: 5 ft2* 5 ft2* 5 ft2* 5 ft2* item: ************************************											
Igent Destruction Rate, 1b/hr 100 400 1000 3000 3000 5000 item: 5 ft2* 5 ft2* 5 ft2* 5 ft2* item: ************************************				•				•			
S FE24 S		TABL	E 6-5. F/	CILITY AND EQ	UIPHENT (cost – fluidiz	ED-BED				
S FE24 S	Acres Destaurables Defe 3b /					1000			<u></u>		
actility Volatilizer 58,500 650 58,500 650 72,000 800	Agent Destruction Rate, 10/	s <u>10</u>	ft2+		ft2#	<u> </u>	ft2*	<u> </u>	ft2*		ft2+
actility Volatilizer 58,500 650 58,500 650 72,000 800	Iten:			·					•		
Volatilizer 58,500 650 58,500 650 72,000 800	Facility										
Screen 9,000 100 9,000 100 27,000 300 45,000 563 63,000 700 Spray Dry Scrubber 3,125 1,250 6,250 2,500 9,900 3,950 17,100 6,840 21,900 8,830 Salt & Drum Storage 75,500 1,840 151,000 3,680 238,000 5,250 2,100 9,090 3,640 11,700 4,700 TOTAL 238,000 585,000 1,152,000 1,923,000 2,629,000 4,700 Springment Volatilizer 700,000 700,000 2,000,000 3,900,000 5,250,000 3,900,000 5,250,000 Spray Dry Scrubber 9,300 30,000 75,000 2,000,000 3,900,000 5,250,000 Screen 9,300 30,000 75,000 25,000 375,000 375,000 Spray Dry Scrubber 137,000 29,000 48,000 893,000 1,183,000 66,000 14,000 180,000 180,000 180,000 180,000	Volatilizer	58,500	650								
Spray Dry Scrubber 3,125 1,250 6,250 2,500 9,900 3,950 17,100 6,840 21,900 8,830 Sait & Drum Storage 75,500 1,840 151,000 3,680 238,000 5,800 412,000 10,000 532,000 12,900		90,000				800,000 27,000		1,440,000 45,000		2,000,000 63,000	
Fuel Tank Pad 1,650 660 3,300 1,320 5,256 2,100 9,090 3,640 11,700 4,700 TOTAL 238,000 588,000 1,152,000 1,923,000 2,629,000 iquipment Volatilizer 700,000 700,000 1,500,000 Fluidized-bed 500,000 1,150,000 2,000,000 3,900,000 5,250,000 Screen 9,300 30,600 75,000 225,000 375,000 Storage Forklift 6,300 14,500 25,000 48,500 66,000 Storage Forklift 65,000 36,000 72,000 144,000 180,000 Residue Handling Truck 65,000 170,000 323,000 700,000 1,000,000 SuBTOTAL 1,501,000 2,460,000 4,614,000 6,105,000 8,704,000 Design 25% 435,000 762,000 1,442,000 2,003,000 2,629,000	Spray Dry Scrubber	3,125	1,250	6,250	2,500	9,900	3,950	17,100		21,900	8,830
Equipment 700,000 700,000 1,500,000 - - Fluidized-bed 500,000 1,150,000 2,000,000 3,900,000 5,250,000 Screen 9,300 30,000 75,000 225,000 375,000 Spray Dry Scrubber 137,000 295,000 488,000 893,000 1,183,000 Storage Forklift 6,300 14,500 25,000 488,500 66,000 Fuel Tanks 18,000 36,000 72,000 144,000 180,000 Residue Handling Truck 65,000 170,000 323,000 700,000 1,000,000 SUBTOTAL 1,501,000 2,460,000 4,614,000 6,105,000 8,704,000 Design 25% 435,000 762,000 1,442,000 2,003,000 2,829,000 TOTAL CAPITAL 2,174,000 3,810,000 7,208,000 10,031,000 14,162,000	Salt & Drum Storage Fuel Tank Pad	/5,500 1,650		151,000 3,300			5,800 2,100	412,000 9, 0 90			4,700
Volatilizer 700,000 700,000 1,500,000 Fluidized-bed 500,000 1,150,000 2,000,000 3,900,000 5,250,000 Screen 9,300 30,000 75,000 225,000 375,000 Spray Dry Scrubber 137,000 295,000 488,000 893,000 1,183,000 Storage Forklift 6,300 14,500 25,000 48,500 66,000 Fuel Tanks 18,000 36,000 72,000 144,000 180,000 Residue Handling Truck 65,000 65,000 130,000 195,000 650,000 Baghouse 65,000 170,000 323,000 700,000 1,000,000 Substoral 1,501,000 2,460,000 4,614,000 6,105,000 8,704,000 Design 25% 435,000 762,000 1,442,000 2,003,000 2,829,000 TOTAL CAPITAL 2,174,000 3,810,000 7,208,000 10,031,000 14,162,000	TOTAL	238,000		586,000		1,152,000		1,923,000		2,629,000	
Fluidized-bed 500,000 1,150,000 2,000,000 3,900,000 5,250,000 Screen 9,300 30,000 75,000 225,000 375,000 Spray Dry Scrubber 137,000 295,000 488,000 893,000 1,183,000 Storage Fork1ift 6,300 14,500 25,000 48,500 66,000 Fuel Tanks 18,000 36,000 72,003 144,000 180,000 Residue Handling Truck 65,000 170,000 323,000 700,000 1,000,000 Subrotal 1,501,000 2,460,000 4,614,000 6,105,000 8,704,000 Subrotal 1,501,000 2,460,000 1,442,000 2,003,000 2,829,000 TOTAL CAPITAL 2,174,000 3,810,000 7,208,000 10,031,000 14,162,000	Equipment										
Screen 9,300 30,000 75,000 225,000 375,000 Spray Dry Scrubber 137,000 295,000 488,000 893,000 1,183,000 Storage Forklift 6,300 14,500 25,000 488,000 893,000 1,183,000 Fuel Tanks 18,000 36,000 72,000 144,000 180,000 Residue Handling Truck 65,000 65,000 130,000 195,000 650,000 Baghouse 65,000 170,000 323,000 700,000 1,000,000 SLIBTOTAL 1,501,000 2,460,000 4,614,000 6,105,000 8,704,000 Design 25% 435,000 762,000 1,442,000 2,003,000 2,829,000	Volatilizer	700,000									
Spray Dry Scrubber 137,000 295,000 488,000 893,000 1,183,000 Storage Forklift 6,300 14,500 25,000 48,500 66,000 Fuel Tanks 18,000 36,000 72,000 144,000 180,000 Residue Handling Truck 65,000 65,000 130,000 195,000 650,000 Baghouse 65,000 170,000 323,000 700,000 1,000,000 SLIBTOTAL 1,501,000 2,460,000 4,614,000 6,105,000 8,704,000 Design 25% 435,000 762,000 1,442,000 2,003,000 2,829,000		500,000						3,900,000		5,250,000	
Storage Forklift 6,300 14,500 25,000 48,500 66,000 Fuel Tanks 18,000 36,000 72,000 144,000 180,000 Residue Handling Truck 65,000 65,000 130,000 195,000 650,000 Baghouse 65,000 170,000 323,000 700,000 1,000,000 SUBTOTAL 1,501,000 2,460,000 4,614,000 6,105,000 8,704,000 Design 25% 435,000 762,000 1,442,000 2,003,000 2,829,000 TOTAL CAPITAL 2,174,000 3,810,000 7,208,000 10,031,000 14,162,000		137,000						893,000		1.183.000	
Residue Handling Truck 65,000 65,000 130,000 195,000 650,000 Baghouse 65,000 170,000 323,000 700,000 1,000,000 SUBTOTAL 1,501,000 2,460,000 4,614,000 6,105,000 8,704,000 Design 25% 435,000 762,000 1,442,000 2,003,000 2,829,000 TOTAL CAPITAL 2,174,000 3,810,000 7,208,000 10,031,000 14,162,000		6,300				25,000		48,500		66,000	
Baghcuse 65,000 170,000 323,000 709,000 1,000,000 SUBTOTAL 1,501,000 2,460,000 4,614,000 6,105,000 8,704,000 Design 25% 435,000 762,000 1,442,000 2,003,000 2,829,000 TOTAL CAPITAL 2,174,000 3,810,000 7,208,000 10,031,000 14,162,000		18,000		36,000		72,000					
SLIBTOTAL 1,501,000 2,460,000 4,614,000 6,105,000 8,704,000 Design 25% 435,000 762,000 1,442,000 2,003,000 2,829,000 TOTAL CAPITAL 2,174,000 3,810,000 7,208,000 10,031,000 14,162,000		65,000		65,000		130,000					
Design 25% 435,000 762,000 1,442,000 2,003,000 2,829,000 TOTAL CAPITAL 2,174,000 3,810,000 7,208,000 10,031,000 14,162,000	Dagnouse	05,000		170,000		323,000		700,000		1,000,000	
TOTAL CAPITAL 2,174,000 3,810,000 7,208,000 10,031,000 14,162,000		1,501,000									
	Design 25%	435,000		762,000		1,442,000		2,003,000		2,829,000	
Facility area.	TOTAL CAPITAL	2,174,000		3,810,000		7,208,000		10,031,000		14,162,000	
	*Facility area.				<u> </u>					; <u></u>	

1, ţ,

TABLE G-6. DIRECT COSTS - FLUIDIZED-BED \$/YEAR

Agent Rate, 1b/hr		100	400	1000	3000	5000
Water, 106 gal/year		6	12	19	31.0	40.0
\$0.53/1000 gal (Baseli	ine)	3,180	6,360	10,000	16,700	21,000
	(Feed e	0.86	2.13	4.74	11.04	17.7
Electric, 10 ⁶ KWH/year -	Feed h	0.61	1.9	4.14	11.04	17.7
\$0.05/KWH -	Feed e	43,000	106,500	237,000	552 ,000	883,000
	¹ Feed h	30,600	95,000	207,000	5552 ,000	883,000
Fuel, gal/year*		22,500	90,000	225,000	675,000	1,125,000
\$1.20/ga1		27,000	107,000	268,000	800,000	1,338,000
TOTAL	(Feed e	73,200	220,000	515,000	1,369,000	2,242,000
	Feed h	60,800	208,000	485,000	1,368,000	2,242,000
Other Direct Cost						
Spare parts, 6% Capita	al/vear	130,000	229,000	432,000	600,000	859,000
Material, 10% Other op		97,000	157,000	230,000	332,000	420,000
TOTAL Non-Labor Operating	j Cost					
	Feed e	300,000	606,000	1,117,000	2,301,000	3,512,000
	Feed h	288,000	594,000	1,147,000	2,301,000	3,512,000

*Fuel not needed for operation with normal mix. Fuel cost is based on operating standby for 1000 hr/year.

G-20

normal operation as the heat of combustion of agent, dunnage, and explosives is adequate to maintain bed temperature. The material and spare parts costs were taken as a percentage of capital and other operating costs as was done in the baseline.

The electric power costs are detailed in Table G-7. The fluidized-bed costs are for operating the forced and induced draft fans. They are proportional to feed rate since the air flow is proportional to feed rate. The volatilizer cost is to electrically heat the large items to 1,000 F. The heat of vaporization of the agent is expected to come from combustion of agent. At the 100 lb/hr rate, projectiles as well as ton containers are treated in the volatilizer. The salt equipment cost is taken from baseline.

Estimated labor requirements are presented in Table G-8. The cost of a man-year is taken as \$50,000. The personnel shown are only for the maintenance and operation of the thermal system. Overhead and mechanical preparation functions are not included.

Table G-9 is a summary of the operating costs. Operational time was taken assuming a RAM factor of 0.866. The other times were taken from baseline. The fractional decrease in operating costs during equipment acceptance, training, changeout, and shutdown were taken from baseline.

D. Development Cost

Ŋ

ANALY ANALY ANALY ANALY

ŝ

0

1. | | 1.1

An estimate of the developmental cost is presented in Table G-10.

E. Total Costs

The total cost for disposal of the inventory is present in Table G-11. These are the sums of the costs developed in Tables G-5, G-9, and G-10. The Thermal Systems Concept costs are shown in Figures G-5 through G-8.

G-21

TABLE	G-7.	ELECTRIC POWER	COSTS	-
		FLUIDIZED-BED		
		\$/YEAR		

Agent Rate, 1b/hr	100	400	1000	3000	5000
Fluidized bed	14,100	57,000	141,000	425,000	710,000
Volatilizer*	12,400	11,500	30,000	0	0
Salt equipment	16,500	38,000	66,000	127,000	173,000
Total, feedstock e	43,000	106,500	237,000	552,000	883,000
Total, feedstock h	30,600	95,000	207,000	552,000	883,000

*Feedstock e only.

η

G-2	23
-----	----

TABLE G-8. LABOR REQUIREMENTS - FLUIDIZED-BED

Agent Rate, lb/hr	100	400	1000	3000	5000
Fluidized- bed operator, men/shift	1	2	2	2	2
Maintenance, men/shift	1	1	2	2	2
Control room, men/shift	1	. 1	1	1	1
Pollution abatement, men/shift	1	1	1	2	2
Ultimate disposal, men/shift	2	4	6	6	6
Total/shift	6	9	12	13	13
Man-years/year	18	27	36	39	39
Labor cost, \$/year	900,000	1,350,000	1,800,000	1,950,000	1,950,000

34

.

. مد

Agent Rate, 1b/hr		100 lb/hr,	Single Site		400 lb/hr, Single Site				1000 lb/hr, Single Site			
	Buration year	Annual Labor Cost, \$/yr	Other Annual Cost, \$/yr	Total Cost, \$	Duration, year	Annual Labor Cost, \$/yr	Other Annual Cost, S/yr	Total Cost, \$	Duration, year	Annual Labor Cost, \$/yr	Other Annual Cost, S/yr	Total Cost, S
Equipment Acceptance	0.5	300,000	100,000	200,000	0.5	450,000	202,000	326,000	0.5	600,000	392,000	496,000
Training	0.5	900,000	150,000	525,000	0.5	1,350,000	303,000	827,000	0.5	1,800,000	589,000	1,194,000
Operation - Miners and rockets	2.48	900,000	300,000	2,976,000	0.61	1,350,000	606,000	1,193,000	0,22	1,800,000	1,177,000	744,000
Changeout	0.17	900,000	150,000	178,000	0.17	1,350,000	303,000	281,000	0.17	1,800,000	589,000	406,000
Operation - Projectiles	3.3	900,000	300,000	3,960,000	0.82	1,350,000	606,000	1,604,000	0.33	1,800,000	1,177,000	9,820,000
Changeout	0.17	900,000	150,000	178,000	0.17	1,350,000	303,000	281,000	0.17	1,800,000	589,000	406,000
Operation -	1.1	900,000	300,000	1,320,000	0.28	1,350,000	606,000	548,000	0.11	1,800,000	1,177,000	327,000
Shut down	0.5	300,000	100,000	200,000	0.5	450,000	202,000	326,090	0.5	600,000	392,000	496,000
Shut down TOTAL	8.72	·		9,537,000	.3.55			5,386,000	2.53			5,051,000

TABLE G-9. LIFE CYCLE OPERATING COSTS - FLUIDIZED-BED

.

.

Annual Labor Other Annual Cost, year Total Total Cost, S/yr Total Labor Other Annual Cost, S/yr Annual Labor Other Annual Cost, S/yr Annual Total Cost, S/yr Other Labor puration year Cost, S/yr Cost, S/yr Cost, S/yr Cost, S/yr Cost, S/yr Other Cost, S/yr Other Cost, S/yr Other Cost, S/yr Annual Cost, S/yr Other Cost, S/yr quipment Acceptance 0.5 600,000 392,000 496,000 0.5 650,000 767,000 708,000 0.5 650,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 3,528,000 0.5 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,950,000 1,756,000 630,000 hangeout 0.17 1,800,000 589,000 0.17 1,950,000 1,151,000 527,000 0.17 1,950,000 3,512,000 3,512,000 3,512,000 3,										F. C		979 I	
Agent Rate, 1b/hr 1000 [b/hr, Collocated 3000 [b/hr, Collocated 5000 [b/hr, Collocated Annual Other Other Annual Other Annual O													
Agent Rate, 1b/hr 1000 [b/hr, Collocated 3000 [b/hr, Collocated 5000 [b/hr, Collocated Annual Other Other Annual Other Annual O													
Agent Rate, 1b/hr 1000 [b/hr, Collocated 3000 [b/hr, Collocated 5000 [b/hr, Collocated Annual Other Other Annual Other Annual O													
Agent Rate, 1b/hr 1000 [b/hr, Collocated 3000 [b/hr, Collocated 5000 [b/hr, Collocated Annual Other Other Annual Other Annual O													
Jurnal Other (ast, baration, syst John Total (ast, baration, syst Other Annual (astr (ast, syst Annual (astr (ast, syst Other (ast, syst Annual (astr (ast, syst Annual (astr) Other (ast, syst Annual (astr) A							TABLE G-9, cont	inued					
Annual Duration Other Cost, Syr Total Cost, Syr Duration, Syr Annual Cost, Syr Other Cost, Syr Cost, Syr Duration, Syr Annual Cost, Syr Other Cost, Syr Cost, Syr Cost, Syr Duration, Syr Annual Cost, Syr Other Cost, Syr Cost, Syr Duration, Syr Duration, Syr <thduration, Syr Duration, Syr S</thduration, 	Agent Rate, 1b/hr	1000 lb/hr, Callocated				3000 lb/br Collocated				5000 ib/br follocated			
raining 0.5 1,800,000 589,000 1,194,000 0.5 1,950,000 1,151,000 1,551,000 0.5 1,950,000 1,756,000 1,853,000 peration - Niners and rockets 2.48 1,800,000 1,177,000 7,440,000 0.83 1,950,000 2,301,000 3,528,000 0.5 1,950,000 3,512,000 2,731,000 kangeout 0.17 1,800,000 589,000 406,000 0.17 1,950,000 1,151,000 527,000 0.67 1,950,000 1,756,000 630,000 peration - Projectiles 0.17 1,800,000 589,000 406,000 0.17 1,950,000 1,151,000 527,000 0.17 1,950,000 1,756,000 630,000 peration - hangeout 0.17 1,800,000 589,000 406,000 0.17 1,950,000 1,151,000 527,000 0.17 1,950,000 1,756,000 630,000 peration - Baik ttass 1.1 1,800,000 1,177,000 3,270,000 0.37 1,950,000 2,301,000 1,573,000 0.22 1,950,000 3,512,000 1,202,000 Stutdown 0.5 600,000 392,000 496,000 0.5 650,000 767,000 706,000 0.5 650,000 1,756,000 910,000 07AL 23,578,000 4.14 13,798,000 3.23 12,526,000			Annual Labor Cost,	Other Annual Cost,	Total Cost,		Labor Cost,	Annual Cost,	Cost,		Annual Labor Cost,	Other Annual Cost,	Total Cost,
peration - Niners and rockets 2.48 1,800,000 1,177,000 7,440,000 0.83 1,950,000 2,301,000 3,528,000 0.5 1,950,000 3,512,000 2,731,000 heration - 3.3 1,800,000 589,000 406,000 0.17 1,950,000 1,151,000 527,000 0.67 1,950,000 3,512,000 3,660,000 Projectiles 1.1 1,800,000 599,000 406,000 0.17 1,950,000 1,151,000 527,000 0.17 1,950,000 1,756,000 630,000 Beration - 5 1.1 1,800,000 1,177,000 3,270,000 0.37 1,950,000 2,301,000 1,573,000 0.22 1,950,000 3,512,000 1,202,000 Shutdown 0.5 600,000 392,000 496,000 0.5 650,000 767,000 708,000 0.5 650,000 1,756,000 910,000 DTAL 8.72 23,528,000 4.14 13,799,000 3.23 12,526,000 1,252,000	Equipment Acceptance	0.5	600,000	392,000	496,000	0.5	650,000	767,000	708,000	0.5	650,000	1,171,000	910,000
and rockets 2.48 1,800,000 1,177,000 7,440,000 0.83 1,950,000 2,301,000 3,528,000 0.5 1,950,000 3,512,000 2,731,000 kangeout 0.17 1,800,000 1,177,000 9,820,000 1.1 1,950,000 2,301,000 4,676,000 0.67 1,950,000 3,512,000 3,500,000 3,512,000 3,500,000 3,512,000 3,500,000 3,512,000 3,500,000 3,512,000 3,500,000 1,756,000 3,512,000 3,512,000 3,500,000 3,512,000 1,756,000 527,000 0.17 1,950,000 3,512,000 1,756,000 527,000 0.17 1,950,000 3,512,000 1,756,000 1,756,000 1,756,000 1,756,000 1,756,000 1,756,000 1,756,000 1,756,000 1,756,000 1,756,000 1,756,000	Training	0.5	1,800,000	589,000	1,194,000	0.5	1,950,000	1,151,000	1,551,000	0.5	1,950,000	1,756,000	1,853,000
kangeout 0.17 1,900,000 589,000 406,000 0.17 1,950,000 1,151,000 527,000 0.17 1,950,000 1,950,000 1,756,000 1,950,000 1,756,000 630,000 Projectiles 0.17 1,950,000 1,151,000 527,000 0.17 1,950,000 3,512,000 1,756,000 630,000 pration - - - 1,950,000 2,301,000 1,573,000 0.22 1,950,000 3,512,000 1,720,000 Shutdown 0.5 600,000 392,000 496,000 0.5 650,000 767,000 708,000 3.23 12,556,000 OTAL 8.72 23,528,000 4.14 13,798,000 3.23 12,556,000		2.48	1,800,000	1,177,000	7,440,000	0.83	1,950,000	2,301,000	3,528,000	0.5	1,950,000	3,512,000	2,731,000
Projectiles Interior Interiter Interior Interior	Citangeout		-										
hangeout 0.17 1,800,000 589,000 406,000 0.17 1,950,000 1,151,000 527,000 0.17 1,950,000 1,756,000 630,000 peration - Bulk items 1.1 1,800,000 3,270,000 0.37 1,950,000 2,301,000 1,573,000 0.22 1,950,000 3,512,000 1,202,000 Shutdown 0.5 600,000 392,000 496,000 0.5 650,000 767,000 708,000 0.5 650,000 1,756,000 910,000 TAL 8.72 23,528,000 4.14 13,799,000 3.23 12,526,000	Operation - Projectiles	3.3	1,800,000	1,177,000	9,820,000	1.1	1,950,000	2,301,090	4,676,000	0.67	1,950,000	3,512,000	3,660,000
Bulk items 1.1 1,900,000 1,177,000 3,270,000 0.37 1,950,000 2,301,000 1,573,000 0.22 1,950,000 3,512,000 1,202,000 Shutdown 0.5 600,000 392,000 496,000 0.5 650,000 767,000 708,000 0.5 650,000 1,756,000 910,000 DTAL 8.72 23,528,000 4.14 13,798,000 3.23 12,526,000	Changeout	0.17	1,800,000	589,000	406,000	0.17	. 1,950,000	1,151,000	527,000	0.17	1,950,000	1,756,000	630,000
Shutdown 0.5 600,000 392,000 496,000 0.5 650,000 767,000 708,000 0.5 650,000 1,756,000 910,000 DTAL 8.72 23,528,000 4.14 13,798,000 3.23 12,526,000	Operation -	1.1	1.800.000	1.177.000	3,270,000	0.37	1,950,000	2.301.000	1,573,000	0.22	1,950,000	3.512.000	1,202,000
8.72 23,528,000 4.14 13,798,000 3.23 12,526,000													
	TOTAL	8.72			23,528,000	4.14			13,798,000	3.23			12,526,000
، ۲ 25					• `								
ና በ የ የእ ፓ													
۰ ۲ ۲ 25													
፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡ ፡													
י ק אין ס ד						•							
י ק א ס 5													
G + N 5													1
													ធ
													N CI

	Feed e	Feed h
Lab Scale Test Program	\$	\$
Labor and Fee Materials Subcontractors Contingencies	600,000 150,000 150,000 60,000	600,000 150,000 150,000 60,000
TOTAL LAB SCALE	960,000	960,000
Pilot Plant Test Program		
Conceptual Design Test Plan Pilot Plant	250,000 40,000	250,000 40,000
Construction Startup	1,255,000	817,000
Training Operation (1 yr) Process Development	303,000 692,000 3,700,000	303,000 692,000 3,700,000
Subtotal Contingencies	6,240,000 1,248,000	5,802,000 1,160,000
TOTAL PILOT PLANT	7,488,000	6,962,000
TOTAL DEVELOPMENT COST	8,448,000	7,922,000

TABLE G-10. DEVELOPMENT COSTS - FLUIDIZED-BED

			TABLE G-11	. TOTAL COST S	iummary – Fi	LUIDIZED-BEC)	
			Single	Site 1000			Collocated	E000 11 7
		100 16/	hr 400 1b	/hr 1000 1	D/hr	1000 lb/hr	3000 1b/hr	5000 1b/hr
					Feedstoo	ck e		
Capita	a] , \$	2,174,0	00 3,810,	,000 7,208	,000	7,208,000	10,031,000	14,162,000
Operat	ting, \$	9,537,0	000 5,386,	,000 5,051	.,000	23,528,000	13,798,000	12,526,000
Develo	opment, \$	8,448,0	00 8,448,	.000 8,448	,000	8,448,000	8,449,000	8,448,000
TOTAL	E CYCLE,	\$ 20,159,0	17,644,	000 20,707	.000	39,184,000	32,277,000	35,136,000
- 1.1	- 010665		1790719		Feedstoo		,-,-,000	
Capita	a], \$	1,224,0	2,863,	000 5,636	,000	5,636,000	10,031,000	14,162,000
Operat	ting, \$	9,446,0	00 5,375,	000 5,032	,000 2	23,299,000	13,798,000	12 ,526,00 0
Develo	opment, \$	7,922,0	00 7,922,	.000 7,922	,000	7,922,000	7,922,000	7,922,000
TOTAL,	CYCLE \$	18,592,0	00 16,160,	000 18,590	.000 3	36,357,000	31,751,000	34,610,000
LIF	L LILLE N						,,	,,

G-29

•

: • • •

3

.

•

1

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM,

•

(ب (م)

.....

{ |-

F. Optimum Process Flow Rate

The cost of the thermal process has a broad minimum of about \$16 million at about 400 lb/hr for a single site inventory and about \$32 million at about 3,000 lb/hr for a collocated site inventory. Since the minimum is not sharp, the optimum processing rate will certainly be affected and possibly governed by non-thermal considerations.

G. Operating Time

The operating time for the various rates was presented in Table G-9. The optimum time for thermal processing is in the 3.5 to 4 year range. However, it should be noted that 1.84 years are assigned to scheduled downtime and thus the actual operating time is only about 2 years. Overheads not included in the thermal processing costs probably will make the optimum time somewhat less than indicated here.

APPENDIX H

57/10/2017/05

STOCKED STOCKED

WARGERS - AGENERATE - PROVADER - PROPERTY

. .

Ĵ,

, T

) Li

ENGINEERING AND ECONOMIC ANALYSIS -IR VACUUM FURNACE

APPENDIX H

ENGINEERING AND ECONOMIC ANALYSIS -IR VACUUM FURNACE

Engineering Analysis

A. System Concept Description

SCHARTER SOUTHERS

£3

The IR (Infrared) vacuum furnace concept was devised primarily as a method of minimizing downloading of explosives from the munitions. The deflagration to detonation transition is greatly reduced by vacuum operations. In this concept, munitions in configuration e, with agent and explosive cavities open and fuses and detonators removed, are placed on a tray and passed into a vacuum oven. The munition is heated and decontaminated. The agent pyrolyzes or evaporates, the propellants and explosives burn, and the metal is heated to the decontamination temperatue. Dunnage is heated and pyrolyzed.

Figure H-1 is a diagram of material flow through the vacuum furnace system. Before treatment, the munitions are downloaded to configuration c and placed on a tray. The tray is moved into the inlet lock (which is large enough to hold a spray tank). The lock is evacuated into the furnace, the furance door is opened, and the munition(s) is moved into the furance. The munition is heated, the agent is pyrolyzed or evaporated, and exhausted through a vacuum pump. Explosives deflagrate and the flue gas is exhausted through the vacuum pump. Dunnage is heated and pyrolyzed; the pyrolysis gases are exhausted through the vacuum pump. Solids leaving the furnace through the outlet lock have been heated to over 1000 F and therefore are decontaminated.

The vacuum pump acts as an effective scrubber for agent and acid gases. The caustic solution is cycled through the vacuum pump to absorb these gases.

H-2
The exhibit gas from the vacuum pump passes through an afterburner. The primary purpose of the afterburner is to burn the pyrolysis materials from the vacuum furnace. It will also act as a redundant system to assure that the agent is completely destroyed. The afterburner is a source of hot gas for the spray dryer.

The spray dryer acts to dry the salt solution bled from the vacuum pump. For costing, it is assumed to be the same as baseline. However, it should be simpler because in this concept the function of the spray dryer is to dry the salt rather than absorb acid gases.

Material and Energy Balance. Tables H-1 and H-2 present material and energy balances for a vacuum furnace system. The streams shown are keyed to Figure H-1. The energy losses shown were calculated by difference. These appear to be a little higher than would be expected. If the energy losses are, in fact, less than shown, the required temperature in the furnace could be maintained by reducing the electric heat, and the spray dryer temperature could be controlled by increasing the water to the salt system and therefore increasing the energy demand.

Design Parameters. Table H-3 is a list of the design parameters for the vacuum furnace system. A minimum of a 25-foot long furance is specified so that spray tanks can be treated. At the larger sizes, the unit is scaled up linearly to accommodate the larger throughput. The furnace would be in a vacuum chamber 8 feet in diameter. At the largest size, several parallel units might be used. However, this modification would not significantly alter costs.

The largest liquid seal vacuum pump has a capacity of about 1000 acfm. Smaller pumps were not considered because the pump must be sized for maximum flow rather than aveage flow, and with a small unit, individual munitions burning or pyrolyzing can substantially increase short-term flow rates over the average flow rate.

H-3

.

1

. .

•

. .

	<u> </u>	-			<u>Weight</u>	<u>in 16</u>					Ove	rall
Stream*	1	2	3	4	5	6	7	8	9	10	In	Out
laterial								-				
68	400										400	
Wood	650	•									650	
Explosive	250										250	
Metal	2,050		2,050								2,050	2,050
Charcoa 1			100									100
Nater liquid					3,519		3,600				3,519	
NaOH					347						347	
Na ₂ HPO4							406			406		406
NaF							120			120		120
HF				57								
P205				203								
CO				887		887						
H2				61		61						
N ₂		384		427		427		8,019	8,446		8,403	8,446
0 ₂		116		0		0		2,436	1,218		2,552	1,218
C3H6				65		65						
C0 ₂									1,598			1,596
H20									4,233			4,233
OTAL	3,350	500	2,150	1,700	3,866	1,440	4,126	10,455	15,495	526	18,171	18,171

TABLE H-1. MATERIAL FLON - IR VACUUM FURNACE SYSTEM Basis 400 1b GB

1

2 . . .

*Refer to Figure H-1.

シオ 雪

Use, duplication, or disclosure is subject to restrictions stated in Contract

₹

DAAK11-82-C-0055 with ARRADCOM

- • F

BBBBBBBB

12465444353

TABLE H-2. ENERGY FLOW - IR VACUUM FURNACE SYSTEM Basis 400 1b GB 10³ Btw

Stream* Temperature F	<u>-1</u> 70	2 70	<u>3</u> 1000	4	<u>5</u> 70	- <u>6</u> 170	7 170	8 70	<u>9</u> 470	<u>10</u> 470	<u> </u>	r <u>all</u> Out
8, heat of combustion	4,000										4,000	
lood, heat of combustion xplosive, heat of	5,525										5,525	
combustion	1,350										1,350	
etal, sensible heat	0		380								1,000	380
harcoal, sensible heat			50									50
harcoal, heat of combustio	n		1,400									1,400
later, sensible heat					0		360					
aziiPO4, sensible heat							20			80		80
aF, sensible heat							6			25		80 25
aOH, sensible heat					0							
F, sensible heat				20								
205, latent and sensible heat				50								
0, sensible heat				50		-						
0, heat of combustion				210		21						
2, sensible heat				3,850 20		3,850						
2, heat of combustion						2						
2, sensible heat		0		3,720 100		3,720 10		•	045			
2. sensible heat		ň		100		10		0	845 105			845
3H6, sensible heat		U		30		3		U	102			105
3H6, heat of combustion				1,365		1,365						
02, sensible heat				1,000		1,303			150			150
20, latent and sensible									1.00			150
heat			•						5,250			5,250
eat added				700		525**			-		1,225	
eat lost* (by difference)				380		533			2,902		12,100	3815

*Refer to Figure H-1.

duplication, or disclosure is subject

g

restrictions stated in Contract No.

DAAK11-82-C-0055 with ARRADCOM

**From energy to vacuum pump.

Process Rate, 1b/hr	100	400	1000	3000	5000
Furnace Size Length/KW	25/250	25/250	60/600	180/1800	300/3000
Vacuum Pump, 1000 cpm Number	1	2	3	9	15
Afterburner Diam. x length, ft	4 x 10	8 x 10	8 × 25	12 × 25	12 x 40

TABLE H-3. DESIGN PARAMETERS - IR VACUUM FURNACE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

. 1

Ļ

The afterburner is sized for 2 seconds residence time. This makes it adequate to assure agent destruction, although this function may not be necessary.

The spray dryer is assumed to be the same as baseline and was not resized.

B. System Feed Requirements

The vacuum furnace system is designed to accept feed configuration e. In feed configuration e, the agent and explosive cavities are open. Also, the fuses must be removed from the munitions and fed separately. The bursters themselves will still be in the munition. Under vacuum, without a fuse, the bursters should deflagrate rather than detonate. The agent cavity should also be open so that agent can escape from the munition without overpressurizing it. Rocket moters must be open so the rockets are not propelled in the furnace. The system is large enough to accommodate the large items. Trays will be used to hold the munitions as they pass through the furnace.

C. Pollution Abatement Equipment

No special pollution abatement equipment is required. For cost purposes, the baseline equipment is assumed. This is probably slightly more costly than the equipment acutally needed because, in this concept, the spray dryer is used only for drying and not for acid gas absorption. However, the difference in cost should not be significant.

D. Ultimate Disposal

Disposal will be similar to baseline. A little less salt may be produced and some charcoal is expected from the wood dunnage. In general, the baseline costs used in this analysis are probably a

little higher than actual cost. After processing the munitions, the equipment probably will need a decon treatment before disposal or reuse.

E. System Concept Advantages

The major advantage of the system is that explosions would not occur in the system, thus reducing the wear on the system. Another advantage is that only a minimum of downloading is necessary. Other important advantages are minimum caustic requirements and minimum salt generation.

Complete pollution control should be achieved in the vacuum pump and no further pollution control should be needed. Since no CO_2 is present at the vacuum pump, a minimum of caustic is needed. A spray dryer similar to that used in baseline will still be needed, but its function will be to dry salts rather than to scrub the flue gases.

F. System Concept Disadvantages

The major disadvantage of the system is that many of the elements are new and require demonstration of feasibility. If some unproven assumptions are false, the entire system may be impractical. These include:

- Defused bursters in the munition will not detonate in vacuum.
- Pyrolysis tars will not interfere with the vacuum pump operation.
- The liquid residue, which may contain tars, can be dried satisfactorily in the spray dryer.

In addition, the system is fairly complicated in that many vacuum pumps are needed. Vacuum locks are needed to enter and remove items from the furnace.

G. System Knowledge Gaps

Ë

2

3

As described in the disadvantages, this system has a number of untried processes. These knowledge gaps can be divided into two categories - fundamental assumptions and engineering data.

Fundamental Assumptions:

- No detonation in vacuum
- No agent in vacuum pump water
- No agent formed in drying
- No plugging of vacuum pump
- No plugging in vacuum pump liquid system.

Engineering Data:

- Treatment time of munitions and dunnage in vacuum
- Rate of decomposition of agent in vacuum
- Allowable salt concentration in vacuum pump water
- Combustion properties of gases from vacuum pump
- Evaporation properties of vacuum pump water.

H. Safety

With the exceptions of the possibility of explosions occuring in spite of the vacuum or as a result of loss of vacuum, the system is inherently safe. The degree to which vacuum would supress explosions needs to be determined experimentally.

I. Likelihood of Development in 5 Years.

If the system is practical, the development time should be about 5 years. A year or two is needed to demonstrate that the fundamental assumptions are correct. If they are proven reasonable, about another 2 or 3 years are needed to develop engineering data. The major elements in the system, vacuum pump, vacuum furnaces,

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

H-9

afterburners, and spray dryers are commercial equipment and therefore should not present major design or specification problems.

J. Scalability to 400-3.000 1/hr/Agent

The vacuum furnace can easily be made any size. The largest vacuum pumps available would be used and multiple units are necessary. Scale-down below 400 lb/hr is a minor problem in that the furnace must be large enough to treat a ton container or spray tank. A furnace of this size can treat about 400 lb/hr. Therefore, equipment cost savings is minimal below 400 lb/hr of agent.

K. Degree of Technical Risk

The possibility of vacuum suppressing an explosion of a burster in a munition has not been proven. However, detonations are in general suppressed by vacuum. The possibility of agent getting into the vacuum pump liquid is also substantial. Because of these factors, the technical risk is quite high. About 1 or 2 years of development work is necessary to prove possibility.

M. Material Capatibility Problems

There do not appear to be any significant material compatibility problems associated with this concept.

L. Ram Factors

Appendix L presents a list of the estimated amount of maintenance needed for the various parts of the system during normal operating hours. Maintenance during a normal shutdown or maintenance performed without shutdown is not included. From these estimates, the overall system is expected to have an availability of 0.885.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM, state is in the test of test of

N. Energy Requirement and Source

The major energy requirement is the electric power for the volatilizer and the vacuum pump. A modest amount of fuel oil is needed for the afterburner for startup and standby. As shown previously in Table H-2, most of the energy required is supplied by burning munitions and dunnage. Table H-7 in the section on economics lists the cost of fuel and electricity for this process.

0. Ease of Operation

3

(:)

This should be an easy system to operate. The electric 'heaters would be controlled by an SCR controller; the vacuum pumps would operate wide open without control; the bleedstream from the water circulating system could be on an automatic batch control. The spray dry scrubber is used to dry salt rather than to absorb gases. The munition would be fed through the system on trays, and a trayhandling system to empty the trays and return them for refilling would be necessary. The major complication is the vacuum lock system for feeding and discharging munitions. Overall, the system is very simple.

Economic Analysis

A. Facility Cost

Estimates of the facility and equipment costs are presented in Table H-4. The floor area of the facility is a Battelle estimate. The vacuum furnace is assumed to be in an explosion-resistant area, which is costed at $400/ft^2$ while the other equipment is in a conventional room costed at $90/ft^2$.

	TABLE	H-4. FA	ILITY AND EC	UIPHENT	COSTS - IR 1	iacuun fu	RNACE			
	100 1		400 15	<u>/</u>	Agent F 1000 H	eed Rate	3000 16		5000 16	/h=-
		ftZ	5	ft2	1000 1	ftZ	\$	ftZ	\$	ft
Facility Costs	· • • • • • • • • • • • • • • • • • • •				•					
Vacuum Furnace, at \$40	0/ft ² 280,000	700	280,000	700	680,000	1,700	2,040,000	5,100	2,400,000	8,5
Vacuum Pumps at \$90/f	t ² 9,000	100	14,000	150	18,000	200	54,000	600	90,000	1,0
Dryer	3,125	1,250	6,250	2,500	9,900	3,950	17,100	6,840	21,900	12,90
Salt storage Fuel tank fed	75,500 1,650		151,000 3,300	3,680 1,320	238,000 5,250	5,800 2,100	412,000 9,090	10,000 3,640	532,000 11,700	4,70 4,70
Afterburner		400	54,000	600	96,000	1,000	180,000	2,000	270,000	3,00
TOTAL	406,000	i	508,000		1,041,000		2,713,000		4,326,000	
Equipment Cost										
Furnace, \$	700,000		700,000		1,500,000		3,600,000		6,000,000	
Yacuum shell - locks Yacuum pumps	160,000 10,000		160,000 20,000		400,000 30,000		1,200,000 90,000		2,000,000 220,000	
Spray dryer	137,000	, !	295,000		488,000		893,000		1,183,000	
Forklift - truck	71,000		80,000		155,000		244,000		716,000	
Fuel tank Afterburner	18,000 15,000	 -	36,000 35,000		72,000 73,000		144,000 115,000		180,000 <u>170,000</u>	
TOTAL	1,111,000	I	1,326,000		2,718,000		6,286,000		10,469,000	
Design at 25%		•	459,000		940,000		2,250,000		3,699,000	
TOTAL CAPITAL	1,897,000		2,293,000		4,699,000		11,249,000		18,494,000	

TABLE H-4. FACILITY AND EQUIPMENT COSTS - IR VACUUM FURNACE

تنفته بالم

7

1:-12

B. Capital Equipment

語門

じ

R

The furnace was estimated from an estimate of 700,000 for a single furnace and 500,000 for additional furnaces by a vendor (Salem Furnace Company) for a 4-foot x 4-foot x 25-foot, 250 KW electric furnace. That size furnace is adequate for 400 lb/hr; a smaller furnace can not be used at lower feed rates. Battelle estimated the sizes of the furnaces at the other rates (Table H-3) and costed th furnaces at 200,000 + 20,000/ft of length.

The vacuum shell was estimated to be 8 feet in diameter with 1/2-inch thick walls, and 50 feet longer than the furnace to allow for locks. The shell was estimated to cost \$1.37/1b from Peters and Timmerhaus (page 574).

The vacuum pump cost was supplied by a vendor (Nash) for a 1000 cfm unit made of cast iron. The number of units was estimated by Battelle. The dryer, salt storage, and fuel tanks were estimated from baseline costs. The actual dryer would be somewhat simpler than the baseline scrubber-dryer because it does not have to scrub acid gases. However, the cost savings should be minimal. The afterburner was costed at \$100 per square foot of surface area. Design cost was estimated at 25 percent of the facility and equipment cost.

C. Operating Costs

The operating costs consist of labor costs, utility costs, and miscellaneous costs. An estimate of the labor required for the thermal part of the system is presented in Table H-5. Except for ultimate disposal, most of the manpower is used to monitor equipment and the manpower changes very little with rate.

The electric costs, which are a major part of the utility costs, are presented in Table H-6. The Battelle estimate of 'average power is shown along with the cost at \$0.05 per KWhr. Each vacuum pump is assumed to draw 75 KW. The caustic dryer is taken from baseline PBI salt equipment cost.

		1	gent Feed Rate, 1b/	hr	
	100	400	1000	3000	5000
Furnace	2	2	2	3	3
Vacuum Pump				<u>~-</u>	
Control Unit	1	1	1	1	1
Dryer	1	1	2	2	2
Ultimate Disposal	2	. 4	6	8	8
Maintenance TOTAL/SHIFT	<u> </u>	<u> </u>	<u> 2 </u>		$\frac{3}{17}$
Man years/year	24	30	39	51	51
COST/YEAR, \$	1,200,000	1,500,000	1,950,000	2,550,000	2,550,00

TABLE H-5. LABOR REQUIREMENT - IR VACUUM FURNACE (men/shift)

AND - CANADAR - SOLARS P

Agent Rate, 1b/hr	100	400	1000	3000	5000
Furnace, KW used	100	125	300	900	1,500
\$ for 6000 hr at \$0.05/KW hr	30,000	37,500	90,000	270,000	450,000
Vacuum Pump, KW used	75	150	225	675	1,125
\$ for 6000 hr at \$0.05/KW hr	22,500	45,000	67,000	202,500	338,000
Caustic Dryer, KW used	50	100	150	200	300
\$ for 6000 hr at \$0.05/KW hr	15,000	30,000	45,000	60,000	90,000
TOTAL	67,500	112,500	202,500	532,500	878,000

TABLE H-6. ELECTRIC COSTS - IR VACUUM FURNACE

TTE (22 MT 23 23 23 53 53 125 47 127 129 124 129 23 137 117 123 124 141 144 145 145 14

CONSERVING MANYON NEW CONSERVING TOTAL CONSTRAINTS TOTAL CONSTRAINTS

d1sc101

Subjec

striction

Other non-labor operating costs are presented in Table H-7. The water cost is nominal and taken from baseline. The fuel cost is for 1000 hours of operation of the afterburner on standby. No fuel is required for operation. Spare parts and supplies are taken as a percentage of capital or other operating costss as in the baseline.

The life cycle operating costs are presented in Table H-8. Equipment, training, changeout and shutdown times are taken from baseline. The operating times assume an availability of 0.865 and 5,000 hours per year of scheduled operating time.

D. Development Cost

An estimate of the development costs is presented in Table H-9.

E. Total Costs

The total life cycle costs are presented in Table H-10 and Figures H-3 and H-4. Costs range from \$17 million for single site to \$36 million for collocation.

F. Optimum Process Flow Rate

The lowest point on the curves are for operating at 400 lb/hr for the single site or 3000 lb/hr for a collocated site. Except for high costs for operating at 100 lb/hr, the costs are not particularly sensitive to operating rate, and the costs for other parts of the system may change the optimum operating rate.

G. Operating Cost

Operating times for the disposal of various agent categories are given in Table H-8.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

H-16

(7) () ()				1 330		E			£3.7	E cinija	Œ	6			7:3	6 -53	<u>e</u>	1 253	الملاجة المانية. وتكن المسارحة	
----------------	--	--	--	--------------	--	---	--	--	------	----------	---	---	--	--	-----	--------------	----------	--------------	-----------------------------------	--

DAAK11-82-C

0055 with ARRADO

TABLE H-7.OPERATING COST - IR VACUUM FUR (ACE
(Annual Usage/Cost, \$)

		ية.	gent Feed Rate, 1b	/nr	
	100	400	1000	3000	5000
Water (baseline)	· · · · · · · · · · · · · · · · · · ·				
10 ⁶ gal/year	6	. 12	19	31	40
Cost, \$/year	3,180	5,360	10,000	16,500	21,000
Electric, \$/year	67,500	112,500	202,500	532,500	873 ,00 0
Fuel, \$/year	12,000	48,000	120,000	360,000	600,000
Total Utilities	83 ,000	167,000	333,000	909,000	1,499,000
Spare parts 6% Capital, \$/year	114,000	138,000	282,000	675,000	1,110,000
Materials 10% Other Operating,					
\$/year	140,000	181,000	257,000	413,000	_516,000
TOTAL NONLABOR OPERATING COST, \$/year	337,000	486,000	872,000	1,997,000	3,125,000

Agent Rate, Ib/hr		100 lb/hr, S	ingle Site			400 1b/hr,	Single Site			1000 lb/mr,	Single Site	
- -	Duration year	Annual Labor Cost, \$/yr	Other Annual Cost, \$/yr	Total Cost, \$	Duration, year	Annual Labor Cost, \$/yr	Other Annual Cost, \$/yr	Total Cost, \$	Duration, year	Annual Labor Cost, \$/yr	Other Annual Cost, \$/yr	Total Cost, \$
Equipment Acceptance	0.5	400,000	112,000	256,000	0.5	500,000	162,000	331,000	0.5	650,000	291,000	471,000
Training	0.5	1,200,000	169,000	685,000	0.5	1,500,000	243,000	872,000	0.5	1,950,000	436,000	1,193,000
Operation - Miners and rockets	2.48	1,200,000	337,000	382,000	0.61	1,500,000	486,000	1,212,000	0.25	1,950,000	872,000	705 ,00 0
Chargeout	0.17	1,200,000	169,000	233,000	0.17	1,500,000	243,000	296,000	0.17	1,950,000	436,000	406,000
peration - Projectiles	3.3	1,200,000	337,000	5,072,000	. 0 .82	1,500,000	486,000	1,629,000	0.33	1,950,000	872,000	931 ,00 0
Chargeout	0.17	1,200,000	169,000	233,000	0.17	1,500,000	243,000	296,000	0.17	1,950,000	436,000	406,000
Decation - Bulk items	1.1	1,200,000	337,000	1,691,000	0.28	1,500,000	486,0 00	556,000	0.11	1,950,000	872,000	310 ,00 0
Shutdown	0.5	400,000	112,000	256,000	0.5	500,000	162,000	331,000	0.5	650,000	291,000	470,900
TOTAL	8.72			12,238,000	3.55			5,522,000	2.53			4,892,000

TABLE H-8. LIFE CYCLE OPERATING COSTS - IR VACUUM FURNACE

Use, duplication

١

- • •

Ξ						1 22-23	3					<u> </u>		E74	<u></u>	<u></u>			023
								TJ	ABLE H-8,	, continued	ì								
-				1000 ** ((-)?								<u> </u>
ł	Agent Rate, 1b/hr	Dur	ration year	1000 lb/yr Annual Labor Cost, \$/yr	r <u>, Collocat</u> Other Annual Cost, \$/yr	Tot Cos	st,	Duration,	Ann Lai 1 Con	1000 <u>1b/yr</u> mual abor ost, i/yr		her Mal st,	Total Cost, \$	Durati yea	ion,	5000 lb/y Annual Labor Cost, \$/yr	r, Colloca Other Annual Cost, \$/yr	Te Ce	iotal Cost, \$
 Eq	quipment Acceptan		0.5	650,000	291,000) 471	71,000	0.5			660	0,000	758,000	0.5	<u> </u>	850,000	1,042,0	100 5	946,000
	raining		0.5	1,950,000	436,000	۱,19.	93,000	0.5	2,5	550,000		0,000	1,775,000		; 2	2,550,000	1,563,0	100 2,6	056,000
	peration - Miners and rockets	· .	2.48	1,950,000	872,600	£ 004	99,000	0.83	3 6	550,000	1,997	1 000	3,774,000	0.5	•	2,550,000	3,125,0	100 2 2	838,000
	and rockets Chargeout			1,950,000	872,000 436,000		99,000 06,000	0.83		550,000 550,000	1,99/		3,774,000 699,000			2,550,000	3,123,0 1,563,0		699,000
	Peration - Projectiles			1,950,000	872 ,00 0		13,000	1.1		550 ,000	1,997		5,002,000			2,550,000	3,125,0		802,000
	Chargeout	1	0.17	1,950,000	436,000	1 4 0.	06,000	0.17	2,5	550,000	991	9,000	603,000	0.1	7 2	2,550,000	1,563,0	100 i	699,000
Op	peration - Bulk items	١	1.1	1,950,000	872,000	3 104	04,000	0.37	7 B	550,000	1,997	1.000	1,682,000	0.2	, ,	2,550,000	3,125,0	00 1 2	259,000
	Shutdown		0.5	650,000	291,000		70,000	0.5		550,000 850,000		6,000	758,000			850,000	1,042,0		946,000
TG	DTAL		8.72				92,000	4.14	- `				14,955,000				-19468(236,000
=					<u> </u>				<u> </u>						•	<u></u>			
																		-	Ţ
																		ċ	H-18a
																		i	2

TABLE H-9. DEVELOPMENT COSTS - IR VACUUM FURNACE

Lab Scale Program	
Labor & Fee . Materials Subcontractors Contingencies Total Lab Scale	600,000 150,000 150,000 <u>60,000</u> 960,000
Pilot Plant Test Program	
Conceptual Design Test Plan Pilot Plant	250,000 40,000
Construction Startup and Training Operation 1 year Process Development Subtotal Pilot Plant TOTAL DEVELOPMENT	1,897,000 941,000 1,537,000 <u>3,700,000</u> 8,365,000 9,325,000

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with AKRADCOM.

End And CASH <	5 CZ2
Single Site Collected Rate, lb/hr 100 400 1000 1000 3000 Capital, \$ 1,897,000 2,293,000 4,699,000 4,699,000 11,249,000 Operating, \$ 12,237,000 5,522,000 4,892,000 22,361,000 14,955,000 Development, \$ 9,325,000 9,325,000 9,325,000 9,325,000 9,325,000	 5
Single Site Collected Rate, lb/hr 100 400 1000 1000 3000 Capital, \$ 1,897,000 2,293,000 4,699,000 4,699,000 11,249,000 Operating, \$ 12,237,000 5,522,000 4,892,000 22,361,000 14,955,000 Development, \$ 9,325,000 9,325,000 9,325,000 9,325,000 9,325,000	5
Single Site Collected Rate, lb/hr 100 400 1000 1000 3000 Capital, \$ 1,897,000 2,293,000 4,699,000 4,699,000 11,249,000 Operating, \$ 12,237,000 5,522,000 4,892,000 22,361,000 14,955,000 Development, \$ 9,325,000 9,325,000 9,325,000 9,325,000 9,325,000	5
Single Site Collected Rate, lb/hr 100 400 1000 1000 3000 Capital, \$ 1,897,000 2,293,000 4,699,000 4,699,000 11,249,000 Operating, \$ 12,237,000 5,522,000 4,892,000 22,361,000 14,955,000 Development, \$ 9,325,000 9,325,000 9,325,000 9,325,000 9,325,000	 5
Single Site Collected Rate, lb/hr 100 400 1000 1000 3000 Capital, \$ 1,897,000 2,293,000 4,699,000 4,699,000 11,249,000 Operating, \$ 12,237,000 5,522,000 4,892,000 22,361,000 14,955,000 Development, \$ 9,325,000 9,325,000 9,325,000 9,325,000 9,325,000	 5
Single Site Collected Rate, lb/hr 100 400 1000 1000 3000 Capital, \$ 1,897,000 2,293,000 4,699,000 4,699,000 11,249,000 Operating, \$ 12,237,000 5,522,000 4,892,000 22,361,000 14,955,000 Development, \$ 9,325,000 9,325,000 9,325,000 9,325,000 9,325,000	5
Rate, lb/hr 100 400 1000 1000 3000 Capital, \$ 1,897,000 2,293,000 4,699,000 4,699,000 11,249,000 Operating, \$ 12,237,000 5,522,000 4,892,000 22,361,000 14,955,000 Development, \$ 9,325,600 9,325,000 9,325,000 9,325,000 9,325,000	 5
Rate, lb/hr 100 400 1000 1000 3000 Capital, \$ 1,897,000 2,293,000 4,699,000 4,699,000 11,249,000 Operating, \$ 12,237,000 5,522,000 4,892,000 22,361,000 14,955,000 Development, \$ 9,325,000 9,325,000 9,325,000 9,325,000 9,325,000	5
Capital, \$1,897,0002,293,0004,699,0004,699,00011,249,000Operating, \$12,237,0005,522,0004,892,00022,361,00014,955,000Development, \$9,325,0009,325,0009,325,0009,325,0009,325,000	3
Operating, \$12,237,0005,522,0004,892,00022,361,00014,955,000Development, \$9,325,0009,325,0009,325,0009,325,0009,325,000	
Development, \$ 9,325,000 9,325,000 9,325,000 9,325,000 9,325,000	18,494,
	13,235,
	9,325,
	41,054,
	,,
	_
	07 - U
	40
	H-20

TABLE H-10.	COST	SUMMARY	-	IR	VACUUM	FURNACE

		Single Site			Collected	-
Rate, 1b/hr	100	400	1000	1000	3000	5000
Capital , \$	1,897,000	2,293,000	4,699,000	4,699,000	11,249,000	18,494,000
Operating, \$	12,237,000	5,522,000	4,892,000	22,361,000	14,955,000	13,235,000
Development, \$	9,325,000	9,325,000	9,325,000	9,325,000	9,325,000	9,325,000
TOTAL	23,459,000	17,140,000	18,916,000	36,385,000	35,529,000	41,054,000

'

(``) {``)

APPENDIX I ENGINEERING AND ECONOMIC ANALYSIS -STAPT FURNACE Use, deditation, or statiouve is subject to restrictions stated in Contract No. DARII-82-C-0005 with APPOCOM

APPENDIX I

ENGINEERING AND ECONOMIC ANALYSIS -SHAFT FURANCE

Engineering Analysis

A. System Concept Description

3

1

L.

The shaft furnace system is proposed to handle feedstocks b and c. All items, including munitions with bursters comprised of up to 8 pounds of explosive and excluding rockets, ton containers, spray tanks, and bombs are fed to the system without special preparations. The system is illustrated in Figure I-1 and mass and heat balances are presented in Tables I-1 and I-2.

Items are dropped into the furance via a lock formed by two valves at the top of the furnace and fall into a bed of hot scrap metal (900 F) that is recycled continuously. The recycling scrap covers the munition and transfers to it the heat required to elevate its temperature to the point at which the explosive will detonate or the agent will burst open the cavity. The scrap also serves to prevent munition fragments from reaching the walls of the reactor and, while doing so, reduces the energy generated by a detonation. The released agent is combusted in the furnace and passes through an air pollution control system of baseline design (spray dry scrubber and baghouse). The metal parts pass with the scrap bed out through the bottom of the furnace first to screens, where oversized and undersized scrap are removed, and then on to bucket elevators which recycle the scrap to the top of the furnace. The screens and bucket elevator are enclosed and form a sealed unit with the furnace.

A scrap metal bed with a diameter of 20 ft is assumed to be sufficient to protect the walls of the furnace. The height of the shaft is determined by the process rate and time required for munition explosions. Munitions are fed so that the scrap between them measures

FIGURE I-1. SHAFT FURNACE

TABLE I-1. MATERIAL BALANCE SHAFT FURNACE (400 1b/hr Agent Feed Rate)

Material	lb/hr
<u>IN</u>	
GB Explosive-Propellant Wood Metal Fuel Oil Air Water NaOH TOTAL	400 250 650 2,050 274 30,452 8,547 <u>572</u> 43,195
<u>OUT</u>	
Flue Gas Salts Metal TOTAL	40,316 829 <u>2,050</u> 43,195

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

N

3

(†) (†)

Material	Heat of Combustion (Btu/lb)	Temperature, (f)	H, (Btu)
*** <u>**********************************</u>	IN		<u>, , , , , , , , , , , , , , , , , , , </u>
GB Explosive-Propellant Wood Metal Fuel Oil Air Water NaOH TOTAL	10,073 5,400 8,500 19,695	70 70 70 70 70 70 70	4,029,200 1,350,000 5,525,000 5,396,394
	OUT		
Flue Gas Salts Metal Heat Losses (by difference) TOTAL		300 300 900	11,886,264 47,668 204,180 <u>4,162,483</u> 16,300,594

TABLE I-2. HEAT BALANCE SHAFT FURNACE

NOTE: Heat of reaction to form salts from NaOH and acids neglected.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

at least three times the diameter of the munition. The distance between the munitions is assumed to prevent a chain reaction of explosions in the bed. The time required for munition detonation is assumed to be the time required to raise the temperature of the metal casing and agent to 300 C. Design parameters such as bed height, bed velocity, recycle rate, and explosion time for 105 mm projectes at an agent processing rate of 400 lb/hr are given in Table I-3. A bed height of 65 ft is taken to be the upper limit. At greater heights, required for higher throughputs, the recycle rates become impractical. As a result, multiple units are required for higher agent processing rates.

A metal parts furnace or heated discharge conveyor must also be used while processing some munitions since 5X decontamination within the furnace itself would require impractical bed heights for those munitions.

B. System Feed Requirements

<u>(</u>]

0

L . 1 N . 1

The shaft furnace is assumed to be capable of handling whole items containing up to 8 pounds of explosive (feedstock b). Rockets must be made nonpropulsive and ton containers, spray tanks, and bombs must be punched to prevent large gas surges and the production of large, irregular metal pieces resulting from bursting of the thinwalled containers (feedstock c).

C. Pollution Abatement System

The baseline pollution abatement system will be used. This will consist of a spray dry scrubber followed by a baghouse, induced draft fan and stack.

D. Ultimate Disposal

The ultimate disposal scenario will be similar to that of the baseline. The dried salts from the spray dryer scrubber and the

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

I-5

TABLE I-3. DESIGN PARAMETERS SHAFT FURNACE (400 lb/hr Agent Destruction Rate 105 mm Projectiles)

Furnace Diameter	20 ft
Munitions/hr	250
Detonation Time	.16 hr (9.6 minutes)
Distance Between Munition	1.4
Bed Depth Required for Processing Rate	66 ft (50 ft + 10 ft clearance at bottom of furance)
Scrap Recycle Rate (assumi	350 ft/hr 13,205 tons/hr ing steel scrap, .5 void fraction)
Furnace Operating Temperature	900 F
Excess Air Requirement	285 percent
Afterburner Operating Temperature	1600 F
Gas Residence Time (Afterburner)	2 seconds

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCON.

I-6

ł

particulates captured in the baghouse will be drummed and stored as at CAMDS. Decontaminated metal parts and bed can be sold as scrap. Wood ash not carried from the dunnage incinerator can be landfilled.

E. System Concept Advartages

~

. .

1

はのられ、見たらういい。

Advantages of the concept include:

- Ability to handle detonable items
- Low requirement for supplemental fuel and tolerance of short term irregularities in fuel feed rates due to large thermal inertia of the scrap bed
- Fewer problems handling aluminum rockets due to low operating temperature.

F. System Concept Disadvantages

Disadvantages of the concept are:

- High degree of technical risk
- Must operate at low temperatures
- Large recycle rates
- Metal will not always be 5X decontaminated within the shaft furnace.

G. System Concept Knowledge Gap

The most important knowledge gap associated with the process is whether the scrap bed can attenuate the blast wave and, if so, what size bed is required. The behaviour of the detonable items and times required for explosion or for the agent to burst the cavity are also unknown.

It may be noted that the diameter of the shaft has been chosen somewhat arbitrarily. Should tests indicate that a smaller diameter is satisfactory, process feasibility will be enhanced.

H. Safety

Several knowledge gaps must be resolved before the safety of the system can be determined. The primary concern is the ability of the scrap bed to reduce fragment velocities and attenuate the blast energy thus avoiding destruction of the reactor. Also, blast wave and/or gas surges must be attenuated in the duct leading to the afterburner.

I. Likelihood of Development Within 5 Years

The development of the shaft furnace would require extended bench and pilot-scale studies. The concept, although originally thought to be developable within 5 years, is now expected to require more than 5 years.

J. Scalability

Due to the large recycle rates and bed heights required for the concept, a single unit would not be capable of handling agent feed rates much in excess of 400 lb/hr. Multiple units are required at the higher feed rates.

K. Degree of Technical Risk

A high degree of technical risk is associated with the process since the degree with which large, continual detonations can be contained successfully is unproven.

L. RAM Factors

Performance information on equipment of this type was not available. Based on engineering judgement and experience in developing system availability factors for other processes, system availability for the shaft furnace was estimated at 0.8.

M. Materials Compatability Problems

ELL GAR

.

, 1 ,

5

ः देव

The major corrosion problem (due to the high temperature) will occur in the afterburner. This problem is common with the baseline process and thus can be considered resolved. Reaction of the halogens and phosphorous with the scrap may occur, causing the discharged scrap to be contaminated with these elements. This potential problem must be examined.

N. Energy Requirement and Source

The two major energy requirements are for fuel and electricity. Although additional fuel is not required in the furnace during ordinary operation, fuel is needed to operate the afterburner at the required temperature and to raise the temperature of scrap bed after shutdowns. The primary electrical requirement is for running the scrap conveyors (300 Hp motors).

O. Ease of Operation

The system may be difficult to operate due to problems associated to the large recycle rate requirement involving irregular scrap. Because the process releases agent in surges, the feed system locks must seal well and this may be troublesome. The shaft discharge mechanism, double screen and discharge lock appear to be potentially troublesome areas that are difficult to repair in event of failure or jamming.

Economic Analysis - Shaft Furnace

A. Facility Cost

The facility costs are presented in Tables I-4 and I-5. The main building includes the furnace, afterburner, conveyors, munition

Agent Rate	100 lb/hr (1 unit)	400 lb/hr (1 unit)	1000 lb/hr (3 units)
Main Building	\$1,560,000	\$1,560,000	\$4,680,000
APC Pad	\$ 2,720	\$ 6,250	\$ 8,496
Salt and Drum Storage	\$ 65,674	\$ 150,880	\$ 205,511
Fuel Tank Pad	<u>\$ 1,650</u>	<u>\$3,300</u>	<u>\$ 9,013</u>
TOTAL	\$1,630,000	\$1,720,430	\$4,903, 020

TABLE I-4.SINGLE SITE FACILITY COSTSSHAFT FURNACE

TABLE I-5. COLLOCATE SITE FACILITY COSTS SHAFT FURNACE

Agent Rate	1000 lb/hr (3 units)	3000 lb/hr (8 units)	5000 lb/hr (13 units)	
Main Building	\$4,680,000	\$12,500,000	\$20,300,000	
APC Pad	\$ 8,496	\$ 16,425	\$ 22,316	
Salt and Drum Storage	\$ 205,511	\$ 397,290	\$ 539,780	
Fuel Tank Pad	<u>\$ 9,013</u>	<u>\$ 24,766</u>	<u>\$ 48,440</u>	
TOTAL	\$4,903,020	\$12,938,481	\$20,910,563	

maw, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

elevator, and screens. The cost was calculated at $400/ft^2$. The APC Pad (spray dry scrubber and drumming), Salt and Storage, and Fuel Tank Pad were calculated by scaling from the Baseline Drum.

B. Equipment Costs

The capital equipment costs are listed in Tables I-6 and I-7. The furnace cost was calculated on a weight basis using a formula for pressure vessels (Peters and Timmerhaus, 1980). The installation cost (80 percent) was estimated. Due to the size of the vessel (20 ft x 75 ft) field erection would probably be required. The afterburner costs were scaled using the six-tenths-factor rule (Peters and Timmerhaus, 1980) on a volume basis of 329 ft³ for \$99,915 (verbal quote from Brulé). The 40 percent installation charge was estimated.

The scrap conveyors were costed using a quote from the Jervis B. Webb Co. for a single conveyor with a 2500 ton/hr capacity (300 Hp motors) for \$140,000/conveyor and \$560,000/conveyor for conveying the steel scrap at temperatures near 900 F. The 84 percent installation charge was taken from "Capital Cost Estimating" (Gutherie, 1969). The costs of the munition elevator and screens were also taken from the Gutherie reference.

The screen costs were based on the area required for screening. The screening area was estimated using the following approximation for vibrating screens

Capacity (tons/hour-ft²-mm screen opening) = .2-.8 (McCabe and Smith, 1976)

The scrap metal cost was estimated using prices listed in <u>Iron Age</u> and discussions with vendors as guidelines. The estimate may be low since the scrap used in the system is assumed to be spherically shaped to facilitate handling (screening and conveying).

Agent Rate	100 lb/hr (1 unit)	400 lb/hr (1 unit)	1000 lb/hr (3 units)
Furnace (80% installation)	\$ 257,000	407,264	1,222,793
After Burner (40% installation)	\$ 103,144	236,781	710,342
Scrap Conveyor (80% installation)	\$3,024,000	6,048,000	14,112,000
Munition Elevator	\$ 38,242	49,168	147,506
Screens (30% installation)	\$ 158,600	234,372	703,300
Scrap	\$ 92,128	250,000	750,000
Locks (25% installation)	\$ 15,000	15,000	45,000
Air Heat Exchanger	\$ 50,238	115,000	200,000
Residue Handling Track	\$ 65,790	65,790	130,000
Storage Forklift	\$ 22,000	2?,000	44,000
Scrubber and Baghouse	\$ 292,092	671,050	1,194,201
Subtotal	\$4,118,234	8,114,425	19,259,142
Design	20%	20%	20%
Total Equipment	\$4,941,880	9,737,310	23,110,970
Total Capital	\$6,572,880	11,457,774	28,013,990

TABLE	I-6.	SINGLE	SITE	EQUIPMENT	COSTS
		SHAFT	FURNAC	CE Î	

S

Agent Rate	1000 (3 units)	3000 (8 units)	5000 (13 units)
Furnace (80\$ installation)	\$ 1,221,793	3,258,112	5,294,443
Afterburner (40% installation)	\$710,342	1,894,248	3,078,153
Scrap Conveyor (80% installation)	\$14,112,000	48,838,400	78,642,000
Munition Elevator	\$ 147,506	393,350	639,184
Screens (30% installation)	\$ 903,300	1,874,600	3,047,200
Scrap	\$ 750,000	1,880,000	3,750,000
Locks (25% installation)	\$ 45,000	120,000	195,000
Air Heat Exchanger	\$ 200,000	386,636	525,000
Residue Handling Truck	\$ 130,000	195,000	650,000
Storage Forklift	\$ 44,000	44,000	44,000
Scrubber and Baghouse	\$ 1,194,201	2,308,609	3,137,604
Subtotal	\$19,259,142	61,192,955	98,985,584
Design	20%	20%	20%
Total Equipment	\$23,110,970	73,432,546	118,782,000
Total Capital	\$28,013,990	86,371,027	139,692,540

TABLE I-7. COLLOCATED EQUIPMENT COSTS SHAFT FURNACE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

.

The costs of the air heat exchanger, residue handling track, storage forklift, scrubber, and baghouse were determined by scaling from the baseline costs.

C. Operating Costs

The personnel requirements and costs for the single and collocated systems are presented in Tables I-8 and I-9. The requirements are estimates obtained using the baseline as a guideline.

The non-labor operating costs are listed in Table I-10 and I-11. The water and electrical (air heat exchanger, scrubber, salt equipment) requirements and costs were calculated by adjusting or scaling from the baseline. The major electrical expense was for running the conveyor motors (300 Hp each). The fuel is required to operate the afterburner at 1600 F.

The total life operating costs are listed in Tables I-12 and I-13 and inlcude both labor and nonlabor (labelled other direct) costs. Changeout periods were assumed to not be necessary since rockets, ton containers, and bombs could be processed first with similar preparations. Also, the furnace is not lined with a refractory.

D. Development Cost

The development costs are presented in Table I-14.

E. Total Cost

The total costs for single and collocated sites are presented in Table I-15. The life cycle cost curves for the single and collocated systems are presented in Figures I-2 and I-3.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM, Contract Market Architecture and the state of t
	Per	sonnel Requirem	ents
Agent Rate	100 1b/hr (1 unit)	400 lb/hr (1 unit)	1000 1b/hr (3 units)
Control Room	1	1	2
Munition Feed	1	1	3
Ultimate Disposal	2	4	6
Maintenance	2	4	6
Pollution Abatement Total/Shift Shift Man Years/Year Rate (\$50,000/Yr) Labor Cost/Year	$ \frac{1}{7} \frac{7}{15} \frac{15}{50} $750,000 $	1 9 <u>X 3</u> 27 <u>X 50</u> 1,350,000	$ \frac{2}{17} \\ \frac{17}{51} \\ \frac{17}{50} \\ \frac{17}{50$

SINGLE SITE LABOR COSTS . SHAFT FURNACE TABLE I-8.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

2

•••

200 C

green mensored management managementen 1 det 24g ogs det 11g ver 229 bed 303

のないのないの

	Per	sonnel Require	ments
Agent Rate	1000 lb/hr (3 units)	3000 lb/hr (8 units)	5000 lb/hr (13 units)
Control Room	2	3	5
Munition Feed	3	8	13
Ultimate Disposal	6	10	14
Maintenance		8	13
Total/Shift Shifts Man Years/Year Rate (\$50,000/Yr) Labor Cost/Year	$ \frac{2}{17} \frac{17}{17} \frac{3}{51} \frac{50}{$2,550,000} $	32 <u>X 3</u> 96 <u>X 50</u> 4,800,000	$ \begin{array}{r} 4 \\ 49 \\ X 3 \\ 137 \\ X 50 \\ 6,850,000 \end{array} $

TABLE	I-9.	COLLOCATED LABOR	COSTS
		SHAFT FURNACE	

-1

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

· •

× *,

Agent Rate		00 lb/hr 1 unit)	400 lb/hr (3 units)	1000 1b/hr (8 units)
Water, 10 ⁶ gal/yr (8.53/1000 gal)	\$	2.3 1,196	9.03 4,786	12.2 6,495
Electricity, 10 ⁶ kwh/hr (\$0.05/kwh)	\$	4.72 236,000	9.64 482,000	27.9 1,395,000
Fuel, gal/hr (\$1.20/gal)		83,856 46,628	117,360 140,832	335,520 402,624
Spare Parts 5% Capital Equipment (with design)	\$	296,513	584,239	1,386,658
Materials/Supplies 10% other operating	\$	133,034	256,186	574,078
Total Direct Costs	\$1	,463,370	2,818,043	6,314,855

SINGLE SITE OPERATING COSTS SHAFT FURNACE TABLE I-10.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Agent Rate	1000 lb/hr	3000 lb/hr	5000 lb/hr
	(3 units)	(8 units)	(13 units)
Water, 10 ⁶ gal/yr	12.2	36.8	6.13
(0.53/1000 gal)	\$ 6,495	19,485	32,548
Electricity, kwh/yr	27.9	70.7	113.6
(\$0.05/kwh)	\$1,395,000	3,535,000	5,680,000
Fuel, gal/hr	335,520	921,920	1,510,000
(\$1.20/gal)	\$ 402,624	1,106,304	1,820,000
Spare Parts 6% Capital Equipment (with design)	\$1,386,658	4,405,953	7,126,920
Materials/Supplies 10% other operating	\$ 574,078	1,386,674	2,150,947
Total Direct Costs	\$6,314,855	15,253,416	23,660,415

TABLE I-11. COLLOCATED SITE OPERATING COSTS SHAFT FURNACE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

an the second second

			I 62	933 (II	6 EE	839 B		22	1		TE Y	2 32
											-	
	-											
		T/	BLE I-12.	SINGLE SITE 1	TOTAL LIFE O	PERATING COS	t – Shaft	FURIACE				
		Labor Cost/Y		Othe	r Direct Cos	its/Ir	 D	wration			Total Cost	
Period	100	400	1000	100	r Direct Cos 400	1000	100	400	1060	100	400	1000
Eq Acceptance	250,000	450,900	850,000	487,790	939,348	2,104,952	0.5	0.5	0.5	368,895	694,674	1,477,47
Training and System	750,000	1,350,000	2,550,000	731,685	1,409,022	3,157,428	0.5	0.5	0.5	740,843	1,379,511	2,853,71
Á, B/C, D (No changeout)	750 ,00 0	1,350,000	2,550,000	1,463,370	2,818,043	6,314,855	7.26	1.83	0.75	16,069,066	7,627,519	6,648.64
Shutdown	250,000	450,000	850,000	487 ,790	939, 348	2,104,952	0.5	0.5	0.5	368,895	694,674	1,477,4
TOTAL										17,547,699	10,396,378	12,457,3
		<u> </u>										
•												
												-
						•						

•

.

		Labor Cost/Y			r Direct Cos			keration			Total Cost	
Per iod	1000	3600	5000	1060	3000	5000	1000	3030	5000	1000	3000	5000
Eq Acceptance	859,000	1,600,003	2,283,333	2,104,951	5,084,472	7,896,805	0.5	0.5	0.5	1,477,476	3,342,236	5,085,065
Training and System	2,550,600	4,800,009	6,850,000	3,157,428	7,626,708	11,830,206	0.5	0.5	0.5	2,853,714	6,213,354	9,340,10
A, B/C, D (No changeout)	2,550,000	4,800,600	6,850,000	6,314,855	15,253,416	23 ,660,4 15	6.34	2.45	1.5	56,203,61	49,3 31, 4 03	45,765,62
Shutdown	850,000	1,630,000	2,283,333	2,104,951	5,084,472	7,886,805	0.5	0.5	0.5	1,477,476	3,342,236	5,085,065
TOTAL										62,011,847	62,229,229	65,275,86

.

TABLE 1-13. COLLOCATED SITE TOTAL LIFE OPERATING COST - SHAFT FUREACE

· . . .

۲<u>۵۵٬۵۰٬۵</u>۲۰ معدمه م ۱۹۹۹ می مورد ۱۹۹۹ می و ۲۰ .

Phase II	Lab Studies
Concept Refinement	\$ 15,000
Blast Attenuation Studies (includes materials)	400,000
Detonation Rate Studies (includes materials)	400,000
Refractory-Materials Compatability Studies	150,000
Environmental Studies	100,000
Feasibility Studies	85,000
Conceptual Design Studies	60,000
Subcontractors	200,000
Contingencies	60,000
TOTAL	\$1,470,000
Phase III	<u>Pilot Studie</u>
Conceptual Design	\$ 250,000
Test Plant	40,000
Pilot Plant Construction	3,793,100
Operation (1 yr) (includes start-up and training)	1,406,448
Test Reports	15,000
Process Development	700,000
30% Design Package	400,000
Subcontractors	500,000
Subtetal	\$7,104,548
Contingencies (20%)	\$1,420,910
Total Phase III	\$8,525,458
TOTAL DEVELOPMENT COSTS	\$0,020,400

TABLE 1-14. DEVELOPMENT COSTS SHAFT FURNACE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

. . . .

e CS

1.22

i S

i . | .]

• •

I-21

Agent Rate	100 1b/hr (1 unit)	Single Site 400 lb/hr (1 unit)	1000 1b/hr (3 units)
Capital	\$ 6,572,880	11,457,774	28,013,990
Operating	\$ 17,547,699	10,396,378	12,457,307
Development TOTAL LIFE CYCLE	<u>\$ 10,000,000</u> \$ 34,120,579	10,000,000 31,854,152	<u>10,000,000</u> 50,471,297
	1000 1b/hr (3 units)	Collocated Site 3000 lb/hr (8 units)	5000 1b/hr (13 units)
Capital	\$ 28,013,990	86,371,027	139,692,540
Operating	\$ 62,011,847	62,229,229	65,275,865
Development TOTAL LIFE CYCLE	<u>\$ 10,000,000</u> \$100,025,840	$\frac{10,000,000}{158,600,260}$	<u> 10,000,000</u> 214,968,410

TABLE I-15. TOTAL LIFE CYCLE COSTS SHAFT FURNACE

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

F. Optimum Process Flow Rate

The life cycle cost curves indicate that a minimum total cost is achieved at a 400 lb/hr agent destruction rate.

G. Operating Time

3

(``.) {`.} The single and collocated operating times are listed in Tables I-16 and I-17. The operating time corresponding to the minimum total cost destruction rate (400 lb/hr) is 1.83 years.

Munition	Munition		Thr	Through-put Per Hour			Production Years			
Category	Туре	Inventory	100 lb/hr	400 lb/hr	1000 lb/hr	Availability	100 1b/hr	400 lb/hr	1000 1b/hr	
٨	M55 Rockets M23 Mines	80,000 20,000	9.3 9.5	37.4 38.1	93.5 95.2	0.8 0.8	2.15 0.53	0.54 0.13	0.21 0.05	
B/C	Mortars 105 mm Projectiles 155 mm Projectiles 8ª Projectiles	50,000 50,000 50,000 50,000	16.7 62.5 15.4 6.9	66.7 250.0 61.5 27.6	166.7 625.0 153.8 69.0	0.8 0.8 0.8 0.8 0.8	0.75 0.20 0.82 1.81	0.18 0.05 0.20 0.45	0.08 0.02 0.09 0.18	
D	Bombs Ton Containers/ Spray Tanks	800 200	0.4 0.1	1.8 0.3	4.6 0.7	0.8 0.8	0.50 0.50	0.11 0.17	0.04 0.06	
	TOTAL						7.26	1.83	0.75	

.

TABLE I-16. SINGLE SITE OPERATING TIME - SHAFT FURNACE

* Based on Thermal System only.

- - - - - - - -

.

1-26

Category Type Inventory 1000 lb/hr 3000 lb/hr 5000 lb/hr Availability 1000 lb/hr 3000 lb/hr 5000 lb/hr A M55 Bockets 800 000 93 5 280 A 467 3 0.8 2 14 0.71 0.43										
Hunition Hunition Through-put Per Hour System* Production Years Category Type Inventory 1000 lb/hr 3000 lb/hr 5000 lb/hr Availability 1000 lb/hr 3000 lb/hr 5000 lb/hr A M55 Rockets 800,000 93.5 280.4 467.3 0.8 2.14 0.71 0.43 N23 Mines 205,000 95.2 285.7 476.2 0.8 0.53 0.17 0.11 B/C Mortars 500,000 166.7 500.0 833.3 0.8 0.75 0.25 0.15 105 mn Projectiles 500,000 153.8 465.5 769.2 0.8 0.20 0.06 0.04 155 m Projectiles 500,000 59.0 206.9 344.8 0.8 0.74 0.60 0.37 D Bombs 8,000 4.5 13.6 22.7 0.8 0.44 0.15 0.09 Ton Containers/ Spray Tanks 2,000 0.7 2.0 3.3 0.8 <th></th>										
Hunition Hunition Through-put Per Hour System* Production Years Category Type Inventory 1000 lb/hr 3000 lb/hr 5000 lb/hr Availability 1000 lb/hr 3000 lb/hr 5000 lb/hr A M55 Rockets 800,000 93.5 280.4 467.3 0.8 2.14 0.71 0.43 N23 Mines 205,000 95.2 285.7 476.2 0.8 0.53 0.17 0.11 B/C Mortars 500,000 166.7 500.0 833.3 0.8 0.75 0.25 0.15 105 mn Projectiles 500,000 153.8 465.5 769.2 0.8 0.20 0.06 0.04 155 m Projectiles 500,000 59.0 206.9 344.8 0.8 0.74 0.60 0.37 D Bombs 8,000 4.5 13.6 22.7 0.8 0.44 0.15 0.09 Ton Containers/ Spray Tanks 2,000 0.7 2.0 3.3 0.8 <th></th>										
Hunition Hunition Through-put Per Hour System* Production Years Category Type Inventory 1000 lb/hr 3000 lb/hr 5000 lb/hr Availability 1000 lb/hr 3000 lb/hr 5000 lb/hr A M55 Rockets 800,000 93.5 280.4 467.3 0.8 2.14 0.71 0.43 N23 Mines 205,000 95.2 285.7 476.2 0.8 0.53 0.17 0.11 B/C Mortars 500,000 166.7 500.0 833.3 0.8 0.75 0.25 0.15 105 mn Projectiles 500,000 153.8 465.5 769.2 0.8 0.20 0.06 0.04 155 m Projectiles 500,000 59.0 206.9 344.8 0.8 0.74 0.60 0.37 D Bombs 8,000 4.5 13.6 22.7 0.8 0.44 0.15 0.09 Ton Containers/ Spray Tanks 2,000 0.7 2.0 3.3 0.8 <th></th>										
Category Type Inventory 1000 lb/hr 3000 lb/hr 5000 lb/hr Availability 1000 lb/hr 3000 lb/hr 5000 lb/hr A M55 Rockets 800,000 93.5 280.4 467.3 0.8 2.14 0.71 0.43 N23 Mines 205,000 95.2 285.7 476.2 0.8 0.53 0.17 0.11 8/C Mortars 500,000 166.7 500.0 833.3 0.8 0.75 0.25 0.15 105 ma Projectiles 500,000 625.0 1875.0 3125.0 0.8 0.20 0.06 0.94 155 m Projectiles 500,000 153.8 465.5 769.2 0.8 0.82 0.27 0.16 8" Projectiles 500,000 59.0 206.9 344.8 0.8 0.74 0.60 0.37 D Bombs 8,000 4.5 13.6 22.7 0.8 0.44 0.15 0.09 Ton Containers/ Spray Tanks 2,000 0.7<			1	TABLE I-17. CO	LLOCATED SITE	OPERATING TIN	e – Shaft Furilaci	E ·		
Category Type Inventory 1000 lb/hr 3000 lb/hr 5000 lb/hr Availability 1000 lb/hr 3000 lb/hr 5000 lb/hr A M55 Rockets 800,000 93.5 280.4 467.3 0.8 2.14 0.71 0.43 N23 Mines 205,000 95.2 285.7 476.2 0.8 0.53 0.17 0.11 8/C Mortars 500,000 166.7 500.0 833.3 0.8 0.75 0.25 0.15 105 ma Projectiles 500,000 625.0 1875.0 3125.0 0.8 0.20 0.06 0.94 155 m Projectiles 500,000 153.8 465.5 769.2 0.8 0.82 0.27 0.16 8" Projectiles 500,000 59.0 206.9 344.8 0.8 0.74 0.60 0.37 D Bombs 8,000 4.5 13.6 22.7 0.8 0.44 0.15 0.09 Ton Containers/ Spray Tanks 2,000 0.7<										
A M55 Rockets M23 Hines 800,000 93.5 95.2 280.4 285.7 467.3 476.2 0.8 2.14 0.53 0.71 0.17 0.43 0.17 B/C Mortars 500,000 166.7 500.0 833.3 0.8 0.75 0.25 0.15 B/C Mortars 500,000 166.7 500.0 833.3 0.8 0.75 0.25 0.15 105 ma Projectiles 500,000 625.0 1875.0 3125.0 0.8 0.20 0.06 0.04 i55 m Projectiles 500,000 153.8 465.5 769.2 0.8 0.82 0.27 0.16 8" Projectiles 500,000 59.0 206.9 344.8 0.8 0.44 0.15 0.09 D Bombs 8,000 4.5 13.6 22.7 '0.8 0.44 0.15 0.09 Ton Containers/ Spray Tanks 2,000 0.7 2.0 3.3 0.8 0.72 0.25 0.15	Munition Category		Inventory							
H23 Mines 206,000 95.2 285.7 476.2 0.8 0.53 0.17 0.11 B/C Mortars 500,000 166.7 500.0 833.3 0.8 0.75 0.25 0.15 105 ma Projectiles 500,000 625.0 1875.0 3125.0 0.8 0.20 0.066 0.04 155 m Projectiles 500,000 153.8 465.5 769.2 0.8 0.82 0.27 0.16 8" Projectiles 500,000 59.0 206.9 344.8 0.8 0.74 0.60 0.37 D Bombs 8,000 4.5 13.6 22.7 0.8 0.44 0.15 0.09 Ton Containers/ Spray Tanks 2,000 0.7 2.0 3.3 0.8 0.72 0.25 0.15					<u></u>					
105 ma Projectiles 500,000 625.0 1875.0 3125.0 0.8 0.20 0.06 0.04 155 mm Projectiles 500,000 153.8 465.5 769.2 0.8 0.82 0.27 0.16 8" Projectiles 500,000 59.0 206.9 344.8 0.8 0.74 0.60 0.37 D Bombs 8,000 4.5 13.6 22.7 0.8 0.44 0.15 0.09 Ton Containers/ 500 0.7 2.0 3.3 0.8 0.72 0.25 0.15	. ^	MD5 ROCKETS M23 Mines	205 ,00 6	93.5 95.2	280.4 285.7	467.3 476.2	0.8	2.14 0.53	0.71 0.17	
8" Projectiles 500,000 59.0 206.9 344.8 0.8 0.74 0.60 0.37 D Bombs 8,000 4.5 13.6 22.7 0.8 0.44 0.15 0.09 Ton Containers/ Spray Tanks 2,000 0.7 2.0 3.3 0.8 0.72 0.25 0.15	B/C	105 m Projectiles	500,000	625.0	1875.0	3125.0	0.8	0.20	0.06	0.04
Ton Containers/ Spray Tanks 2,000 0.7 2.0 3.3 0.8 0.72 0.25 0.15		155 m Projectiles 8* Projectiles	500,000 500,000	153.8 59.0	465.5			0.82 0.74	0.27 0 .6 0	0.16 0.37
	D		8,000	4.5	13.6	22.7		0.44	0.15	0.09
101AL 6.34 2.46 1.5		Spray Tanks	2,000	0.7	2.0	3.3	0.8	•		
		101AL				<u> </u>		6.34 	2.46	1.5

APPENDIX J

ENGINEERING AND ECONOMIC ANALYSIS - MOLTEN SALT

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

8

2

APPENDIX J

ENGINEERING AND ECONOMIC ANALYSIS -MOLTEN SALT

Engineering Analysis

A. System Concept Description

[:]

(،) ا

[]

ß

 $\binom{1}{2}$

3

 $\left(\cdot \right)$

The molten salt concept is shown in Figure J-1. A mash (chunk size 6 in. or less) including agent, explosives, metal and dunnage (feed configuration h) is fed to the molten salt combustors along with oxygen enriched air and make-up soda ash. The molten salt combustor contains a bed of molten salt at a nominal 1800 F and a pool of molten metal at 2600 F. The metal is melted and maintained in a molten state by an electrical induction furnace. Excess heat from the combustion of the agent, explosives and dunnage is removed by cooling air. The resultant combustion gases require cooling and collection of particulates in a bag-house before release to the atmosphere. Decontaminated molten salt and molten metal are drawn off at separate taps.

A detailed flow sheet of a bank of molten salt combustors operating in parallel is shown in Figure J-2. The maximum through-put for one unit is estimated at 500 pounds per hours of agent and related materials. Multiple units are required at higher agent feed rates. The overall system mass balance is shown in Table J-1 and the overall system heat balance is shown in Table J-2.

B. System Feed Requirements

The feed system required for this system is feedstock h, mashed munitions of 6 in. or less. The system could also accept feedstock g, cut, sawed or sheared munitions if they are 6 in. or less in size. The feedstock must be fed below the surface of the molten

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

•

FIGURE J-1. MOLTEN SALT SYSTEM CONCEPT

.

പ – 2

.

USING A BANK OF MOLJEN SALT UNITS

Material	1b/hr
_ <u>IN</u>	مىرىمىيە مەرىپى مەرىپىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرىمىيە بىرى تىرىمىيە بىرىمىيە بىر
Wood	650
GB	400
Explosive	250
Air	4,560
Water	2,400
Soda Ash	600
02 90%	1,760
Metal	2,050
TOTAL	12,770
Flue gas w/water	9,938
Metal	2,050
Particulate	206
Spent Salt	576
TOTAL	12,770

TABLE J-1. MOLTEN SALT MASS BALANCE 400 LB/HR AGENT FEED RATE

	IN		
Material In	нну		Btu/hr
Wood	8,50	0	5,525,000
GB	10,07	3	4,029,200
Explosive	5,40	0	1,350,000
Electrical			851,400
TOTAL			11,755,600
	OUT		
Material Out	Cp	<u> </u>	<u>Btu/hr</u>
Water in flue gas*	0.50	1,730	2,743,830
Flue gas	0.25	330	819,885
Metal*	0.11	2,730	851,400
Particulate	0.25	330	. 16,995
Spent Salt*	0.25	1,730	370,080
Heat Losses	by dif	ference	6,953,410
TOTAL			11,755,600

TABLE J-2.MOLTEN SALT HEAT BALANCE400LB/HR AGENT FEED RATE

J-5

* Includes heat of vaporization or heat of fusion.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

....

າ. ພັງພະກະປາພາກໄປ, ພັງພັງພະການ ກະໄຫຍັງການ ການພະກະການໃນການ ພະກະການປະມາດ ການການໃນ ທີ່ມີການການ ໃຫ້ເປັນໃຫຍ່ມີກັບການ

ß

{-``

salt to insure capture of the gaseous pollutants in the molten salt bath. This requires the feed to be such that the liquids in the feed material can be readily released and not result in pockets of high pressure that would result in unstable operation of the unit.

C. Pollution Abatement System

The molten salt bath is an insitu pollution control. The sodium carbonate in the melt reacts with the resultant off gases from the combustion of the agent, explosives and dunnage as they pass through the froth of molten salt. The SO2, HC1, P2O5 and HF react with the sodium carbonate to form the sodium salts. The remaining off-gas requires only cooling and collection of particulates in a baghouse before being released to the atmosphere.

D. Ultimate Disposal

The residues generated from the incineration of the agent and related materials are molten metal, molten salt and collected particulate. The molten metal and molten salt are drawn off at seperate taps. The molten metal can be cast or quenched in a water tank. The casting would form large blocks of metal that would require hours of cooling time. The quenching would form small balls of metal that could be handled easily. The quenching was the method assumed in this evaluation. The molten salt is cast into 55 gallon drums for cooling and storage in this evaluation. The collected particulates in the baghouse are the salts that have been carried off of the molten salt bath. The salt particulate is drummed and stored in this evaluation. The total volume of salt for this process is less than in some other processes because the casting of the molten salt achieves a greater density in the drums.

J-6

E. System Concept Advantages

3

Ĩ

Ê

K.

[]

, • • 1 • 1 1 • 1

. .

C. C. C. C. C. C.

The advantages to the molten salt process is that the gaseous emissions are cleaned of noxious gases in the molten salt bath at they pass through it. This eliminates the need for spraying a salt solution in the flue gas to scrub out noxious gases.

The casting of the molten salt from the process greatly reduces the volume of the salts generated. This reduces storage costs or landfill costs (if the salts can be landfilled).

The quenching of the molten metal generates a metal scrap that is easy to handle and has a higher bulk density than jagged, irregular-shaped metal scrap. This reduces handling costs of the decontaminated metal scrap.

F. System Concept Disadvantages

The system disadvantages include the fact that a water quench or spray dryer and baghouse are still required in the pollution control system so there is little savings of cost of the pollution control system. There is a slight reduction in the amount of flue gas from the use of oxygen in the molten salt unit, however, there is the additional oxygen handling equipment that is required. Most importantly there is the question of materials compatability because of the action of the salt on the refractory.

G. System Concept Knowledge Gaps

Knowledge gaps exist in several areas. The distribution of . phosphorus between the molten salt and off-gas is unknown and may depend on bed geometry. Excess P205 in the baghouse could result in caking. The compatibility of aluminum with the salt bath must be investigated. A thermite type reaction might occur.

J-7

Uncertainties include the effect of vaporization of salt at the metalsalt interface. There is also the uncertainty with materials compatibility at this interface.

H. Safety

The molten salt system is safe. The system operates at negative pressure to eliminate leaks. The feed is kept cool until it is fed below the surface of the molten salt bed. The combustion product must pass through a froth of molten salt that provides high heat transfer to the gases insuring rapid and complete destruction of the chemical agent before leaving the combustor.

I. Likelihood of Developments Within 5 Years

Molten salt systems without the molten metal part of the system have been used for pesticide destruction and coal gasification. The addition of the molten metal induction furnace to the molten salt system will result in increased development time but should not exceed 5 years. The likelihood of development of the molten salt concept system within 5 years is good.

J. Scalability

Capacity of the molten salt combustion is limited by superficial velocity of gas in the bath. Rockwell will not project beyond a 6 foot diameter beds with assurance of sufficient bed turbulence for complete agent destruction. Scaling is thus done by adding or removing units for various agent feed rates.

K. Degree of Technical Risk

The molten salt system has a moderate degree of technical risk. The major risk is the molten salt/molten metal interface. If

the interface cannot be achieved due to the temperature difference and/or reactions that may occur, the process will have to be modified to remove metal scrape from the molten salt bath by mechanical means. This would make the system more complex, involve high maintainence and require a seal system where the metal is removed.

L. RAM Factors

 $\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$

Ë

[...

 $\left[\cdot \right]$

[]

Ð

The overall thermal system availability factor used for the economic evaluation was 0.928. The factor was calculated similar to those in Appendix L.

M. Materials Compatibility

The major area of materials compatibility problems is the molten salt combustor. The molten metal portion operating at 2800 F itself is not a problem. There is much experience from the steel industry. The problem arises at the interface due to potential salt vapors and the 1000 F temperature difference. Furthermore, the slag chemistry at the salt/metal interface is unknown.

The rest of the materials compatibility problems are of less concern than in baseline due to the majority of the corrosive gases being captured in the molten salt combustor.

N. Energy Requirements and Source

The molten salt concept requires fuel oil and electricity. The fuel oil is needed during idle periods to maintain temperature in the molten salt bath. The fuel oil usage is estimated by Rockwell at 45 gallons per hour for a 500 pound per hour molten salt unit. This calculates to 6.4 MMBtu per hour which indicates to a high heat loss from the system. The system also requires electric power for the pollution control system, mainly the induced draft fan, and the metal

induction furnace. The metal induction furnace uses most of its power during operation when metal is being melted.

O. Ease of Operation

The complexity of the thermal system is minimized since the system consists of only one system. The furnace itself has no moving parts also reducing its complexity.

The flexibility of the system is limited. The feedstock size is restricted and detonable items such as fuzes may cause problems. After demilitarization operation the molten salt system would be limited in use or complicated because of the molten metal bath at the bottom of the molten salt bath.

The operability is good because of its simplicity. Start-up and shutdown for extended periods may be a problem. The salts and metal must be melted during startup and drained before shutdown.

J-11

Economic Analysis - Molten Salt

A. Facility Costs

[] (__)

 $\left(\cdot \right)$

í () Some equipment sizing and costing is included in this section because it is closely related to, and necessary for the determination of facility cost.

<u>Molten Sait Furnace</u>. The furnace design is based upon modular combustion vessels and auxiliary assemblies. A single combustion module is rated at 500 lb/hr agent and related material. This translates to 13.5 MMBtu/hr heat release. Each module and related hardware costs are \$2,700,000, based on a phone call to Rockwell December 22, 1982.

Agent Feed	# of	_
<u>Rate</u>	Units	Cost, 106
100	1	1.03
400	1	2.7
1000	2	5.4
3000	• 6	16.2
5000	10	27.0

Each module (full size) is 8 feet OD. An estimate of 8 feet clearance is used in determining the size of the room.

Agent Feed	Room	\$400/ft ²	<u> </u>
Rate	Dimensions	Sq. Ft	
100	20 x 20	400	160,000
400	25 x 25	625	250,000
1000	50 x 25	1250	500,000
3000	75 x 50	3750	1,500,000
5000	125 x 50	6250	2,500,000

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Molten Metal Handling Area.

<u>Agent Rate</u>	<u>Metal Rate</u>	
100	510	
400	2,050	
1000	5,130	
3000	15,400	
5000	25,650	

There are two approaches to handling the molten metal. The first is to cast the molten iron into pigs and the second is to pour the molten iron into a water vat to quench the steel. It is envisioned that the iron will form spheres of iron that can be removed from the bottom of the vat by a drag conveyor.

For the purposes of the economic analysis, the quench tank was assumed for all operations.

The vat would be a tank of water 8 feet deep and 5 feet square. The water temperature could be at 212 and not cause any problems. The amount of water used at steady-state conditions is estimated at

Agent Rate <u>lb/hr</u>	Metal Rate <u>lb/hr</u>	Water Rate gal/hr
100	510	25
400	2,050	100
1000	5,130	250
3000	15,400	740
5000	25,650	1,230

Heat Capacity of steel - 0.11 Btu/lb Heat of Fusion - 115 Btu/lb Melting Point - 2785°F (use 3000°F)

Q = (1)(.11)(3000-212)+115 = 422 Btu/lb of steel

8780 Btu/gal water = 0.048 gal water/lb steel

J-12

The vat should be able to handle up to 1000 lb/hr agent feed metal content of 5,130 lb/hr of steel. For higher feed rates will use two molten salt units feeding 1 water quench vat.

Area required for each vat is 10 ft x 20 ft. The metal is 5 x deconned and is piped into an adjoining room where it is quenched. The room cost is $$90/ft^2$.

<u>Agent Rate</u>	\$
100	18,000
400	18,000
1000	18,000
3000	54,000
5000	90,000

Molten Salt Handling Area. The molten salt will be piped to an adjoining room and cast into drums. Each module at full capacity will generate 750 lb/hr of salts.

sp.gr of Na₂CO₃ is 2.532.

3

1

R

E. T.

[]

(2.532)(8.33)(55) = 1160 lb/55 gallons if in solid crystalline form. This would require 1 drum per hour per module at full capacity based on 1.5 pound of salt produced per pound of agent destroyed. Assume one salt drumming station per module. Each salt drumming station will use an estimated 10 ft x 10 ft. Used $$90/ft^2$.

Agent Rate	ft2	\$
100	100	9,000
400	100	9.000
1000	200	18,000
3000	600	54,000
5000	1000	90,000

APC Pad. The APC consists of a water quench unit followed by a baghouse. The use of oxygen will reduce the flue gas flowrate by about 70 percent. The equipment will be very similar to baseline so baseline areas will be scaled from

	Baseline 400 lb/hr - 2500 ft2	at \$2.5/ft ² - \$6,260
	Baseline 3000 lb/hr - 6570 ft2	at \$2.5/ft ² - \$16,425
100	$(6250) (\frac{100}{400})(.3)^{.6} = 1320	(528 ft ²)
400	(6250)(.3) ^{.6} = \$3030	(1214 ft ²)
1000	(16425) $(\frac{1000}{3000})(.3)$ ^{.6} = \$4125	(1650 ft ²)
3000	(16425)(.3) ^{.6} = \$7980	(3190 ft ²)
5000	(16425) $(\frac{5}{3})(.3)$ = \$10840	(4335 ft ²)

Fuel and 0_2 Tank Pad. Fuel usage occurs during weekends and 4 hours a day at a rate of 45 gallons per hour. During this time 0_2 will not be used, air will be used.

Fuel usage will be:

(45)(4)(250) + (365-250)(24)(45) = 169,200 gal/yr One baseline tank (14,700 gal) filled once a month will handle each module unit.

<u>100 lb/hr</u>. Smaller than one unit will use half a 14,700 gal tank.

 $(\frac{.5}{2})$ 1320 = 330 ft² at \$2.5/ft² \$900

<u>400 lb/hr</u>. One tank. (¹₂)(1320) = 660 ft² \$1650

<u>1000 lb/hr</u>. Two tanks. 1320 ft² \$3300

<u>3000 lb/hr</u>. Six tanks. (3)(1320) = 3960 ft² \$9900

Oxygen usage is 1.5 lb/lb agent feed.

$(\frac{1.5}{32})(379) = 17.77 \text{ scf/lb agent}$

J-15

<u>Agent Rate</u>	02	02
100	1777 ft ³ /hr	30 scfm
400	7106 ft ³ /hr	118 scfm
1000	17,766 ft ³ /hr	296 scfm
3000	53,297 ft ³ /hr	888 scfm
5000	88,828 ft ³ /hr	1480 scfm

A 13,000 gal liquid gas tank with vaporizor rental cost in 1981 was \$1075/month.

 $1075(\frac{746}{721.3}) = $1200/month (rounded up)$

 $(13,000 \text{ gal})(7.13 \text{ lb/ft}^3)(0.13368055 \text{ ft}^3/\text{gal}) = 123,908 \text{ lbs} = 7,146,540 \text{ scf}$

Tank will occupy a 15' x 15' pad - 560. This tank will provide 3335 scfh for one month. Will scale from this number.

100 1b/hr.

 $\left(\frac{1777}{3335}\right) \cdot 6 560 = 380

400 1b/hr.

 $(\frac{7106}{3335}) \cdot 6 560 = 880

3 $\left[\right]$ 3 {·., () (

宫

1000 1b/hr.

 $\left(\frac{17,766}{3335}\right)^{.6}$ 560 = \$1530

3000 1b/hr.

 $(\frac{53,297}{3335})^{6}$ 560 = \$2950

5000 1b/hr.

 $\left(\frac{88,828}{3335}\right) \cdot 6 560 = 4010

Total Pad (Fuel and O2):

100	\$ 1,700
400	3,910
1000	5,660
3000	10,930
5000	14,850

<u>Salt and Drum Storage</u>. Baseline data is based on using NaOH and the amount of salts generated at CAMDS. The drums are 55 gallon drums and are loaded with the dry salts without packing or shaking. A bulk density of 40 lb/ft³ is assumed. (This value is for flyash, untapped). From calculations the amount of salt generated per pound of GB incinerated using a stoichiometric ratio of 2 amounts to 371 lb/lb GB agent incinerated. Molten salt has a salt makeup of 1.5 lb/lb GB and this is also assumed to be the amount of salts generated. Another difference that arises is that the salts generated from the molten salt process is cast/poured into the 55-gallon drums resulting in a reduction in barrel usage. The density of the molten salt is estimated at 1/2 of the crystalline density of the sodium salts that range from 2.0 to 2.5 (2.25)(.5) = 1.13

 $(1.13)(62.4) = 70 \ 1b/ft^3$

J-16

The difference in salt generation amounts to

$$\frac{(3.71)}{1.5}(\frac{70}{40}) = 4.33.$$

Will use a difference of 4 times the volume of salt generation.

Baseline at 400 lb/hr agent has a cost of \$150,800.

100 1b/hr.

[:]

E

i (j

 $\left(\frac{100}{400}\right)\left(\frac{1}{4}\right)^{-6}$ 150,800 = \$28,580

400 1b/hr.

$$(\frac{1}{4})^{\cdot 6}$$
 150,800 = \$65,640

1000 1b/hr.

 $(\frac{1000}{3000})(\frac{1}{4})$.⁶ 397,290 = \$89,450

3000 1b/hr.

$$(\frac{1}{4})^{.6}$$
 397,290 = \$172,930

5000 1b/hr.

 $\left(\frac{5000}{3000}\right)\left(\frac{1}{4}\right)$.6 397,290 = \$234,950

The above calculations are compiled in Tables J-3 and J-4.

Capital Equipment

Some equipment costs are presented in the above sections.

Molten Salt Furnace. See facility costs.

(*) Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM, North State of Alman Annual State of Alman Annual State of the State of the State of Alman Annual State of Alman A

Facility	100 lb/hr	400 lb/hr	1000 lb/hr
Molten Salt Furnace	\$160,000	\$250,000	\$500,000
Molten Metal Handling	18,000	18,000	18,000
Molten Salt Handling	9,000	9,000	18,000
APC Pad	1,320	3,030	4,130
Fuel and Oxygen Tank Pad	1,700	3,910	5,660
Salt and Drum Storage	28,580	65,640	89,450
TOTAL	\$218,600	\$349,580	\$635,240
Baseline: \$1,058,330			

TABLE J-3. SINGLE SITE FACILITY COSTS - MOLTEN SALT

Facility	1000 lb/hr	3000 lb/hr	5000 lb/hr
Molten Salt Furnace	\$500,000	\$1,500,000	\$2,500,000
Molten Metal Handling	18,000	54,000	90,000
Molten Salt Handling	18,000	54,000	90,000
APC Pad	4,130	7,980	10,840
Fuel Tank Pad	5,660	10,930	14,850
Salt and Drum Storage	89,450	172,930	234,950
TOTAL	\$635,240	\$1,799,840	\$2,940,640
Baseline: \$2,779,265			

TABLE J-4. COLLOCATED SITE FACILITY COSTS - MOLTEN SALT

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

38337-14862

S

<u>[</u>]

3

N

3

|--|

<u>Agent Rate</u>	Units	<u>\$ x 106</u>
100 400	1 1	1.03
1000	2	5.4
3000	6	16.2
5000	10	27.0

Molten Metal Handling Eq. For the cost of the vat will be based on a 1500 gallon tank and a 48-inch wide belt conveyor. The belt will be perforated and have peddles to remove water and carry the steel up the incline. Each tank will cost

 $(3,000 \times 1.96) \frac{746}{273.1} = $16,100$

(Guthrie, March 24, 1969, Chem. Eng., Figure 14)

The conveyor length will be 5 ft. plus 12 ft plus 8 ft. The runs correspond to the bottom of the tank, the rise, and an 8-foot horizontal run. The cost is

 $(\$750/ft)(25 ft)(1.64)(\frac{746}{273.1}) = \$84,000.$

Each unit will cost \$100,100.

	<u># Units</u>	Cost		Adjustment
100 400 1000 3000 5000	1 1 3 5	100,100 100,100 100,100 300,000 500,500	(.1).6 (.4).6 1 1 1	25,200 57,800 100,000 300,300 500,000

Molten Salt Drumming and Handling Eq. Each molten salt module is estimated to produce 1 55-gallon drum per hour of salts. This is a rate that will be done manually. The equipment will consist of a stainless steel line electrically heated to keep the salts molten. The line will provide two discharge points. There will be a

vent hood over the discharge points to remove heat and noxious fumes. The drums will be fill on carts that can be moved to the loading area for further cooling. Costs are estimated as follows:

Carts at \$500 each	\$	500
Ver, hood with blower	2	,000
Header System	_5	,000
Total for each molten salt module	\$7	,500

	<u># Units</u>	Cost
100	1	\$7,500
400	1	7,500
1000	2	15,000
3000	6	45,000
5000	10	75,000

<u>Water Quench</u>. With each 1b of GB agents, 0.63 1b of explosive and 1.63 pound of dunnage will be included. Each 1b of GB produces roughly 30 ft³ of flue gas when burned in O_2 . Each pound of wood will produce roughly 30 ft³ of flue gas when burned in O_2 . Explosives are self-sufficient for combustion. Each 1b of explosive is assumed to release 100 cu ft of gas. The total flue gas release per pound of agent and related material is

 $30 + 48.9 + 63 = 142 \text{ ft}^3/1\text{b}$

at

 $\left(\cdot \right)$

: :::

1.1

<u>lb/hr</u>	scfm	acfm at 1800 ⁰ F
100	600	2,600
400	2,300	10,000
1000	5,700	24,800
3000	17,100	74,400
5000	28,500	123,900

These flow rates will be used to cost the quench and baghouse. The cost equation is from Chem. Eng. Jan. 26, 1981 "Cost File" $(1977) = (0.22 \times ft^3/min) + 2,000.$

This does not include refractory and pump. 20 percent will be added to cover these costs.

100	\$15,200
400	18,100
1000	23,900
3000	43,200
5000	62,500

Baghouse. Baghouse costs will be scaled from baseline.

Baseline: (.6 factor)

and the second second

2200 scfm - \$13,000 11,000 - \$400,000

100	$(\frac{600}{2200})$. ⁶ 130,000	\$59,700
400	$\left(\frac{2300}{2200}\right) \cdot 6$ 130,000	\$133,600
1000	$(\frac{5700}{2200})$. ⁶ 130,000	\$230,200
3000	$\left(\frac{17,000}{11,000}\right)^{.6}$ 400,000	\$521,600
5000	$\left(\frac{28,500}{11,000}\right)^{-6}$ 400,000	\$708,200

Fuel Tank. See facility calculations for number of tanks at \$18,000 each.

	#	\$
100	.5	9,000
400	1	18,000
1000	2	36,000
3000	6	108,000
5000	10	180,000

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

والمرواني فتريج والمراجع والمروحي المراجع المروح والمروح والمروح والمروح والمروح والمروح والمروح والمروح

J-22
<u>Oxygen Tank</u>. Rental cost for 3 years is approximately the installation cost of the tank (36)(1200) = 43,200 assuming an installation cost of 40 percent gives at total cost of \$108,000 for a 3335 scfh tank.

100	$(\frac{1777}{3335})^{-6}$ 108,000	\$ 74,100
400	$\left(\frac{7106}{3335}\right) \cdot 6$ 108,000	\$170,100
1000	$(\frac{17,766}{3335})^{6}$ 108,000	\$294,700
3000	$(\frac{53,297}{3335})$. ⁶ 108,000	\$569,700
5000	$\left(\frac{88,828}{3335}\right)^{-6}$ 108,000	\$774 ,00 0

Fork Lift and Residue Handling. See Rotary Kiln costs, Appendix E.

The above calculations are summarized in Tables J-5 and J-6.

C. Operating Costs

<u>an</u> and and

Ĩ

្រា ថ្ងៃ

Electric 1.0 kwh/lb 5¢/kwh Salts 1.5 lb/lb GB \$120/ton O2 1.5 lb/lb 5¢/lb Feedstock h (assume dunnage included).

100 lb/hr Feed.

Electric - (100)(1.0)(24)(250) = 600,000 kWh/yr = \$30,000 Salts - (100(1.5)(20)(250)(120)/(2000) = \$45,000/yr 02 - (100)(1.5)(20)(250)(0.05) = \$37,500/yr.

400 1b/hr.

Electric - \$120,000

Equipment	100 lb/hr	400 lb/hr	1000 lb/hr
Molten Salt Furnace	\$1,030,000	\$2,700,000	\$5,400,000
Molten Metal Handling Eq	25,200	57,800	100,100
Molten Salt Drumming & Handling	7,500	7,500	15,000
Water Quench	15,200	18,100	23,900
Baghouse	59,700	133,600	230,200
Fuel Tanks	9,000	18,000	36,000
Oxygen Tank	71,100	170,100	294,700
Storage Fork Lift	22,000	22,000	44,000
Residue Handling Truck	65,790	65,790	131,580
Subtotal	1,308,490	3,192,890	6,275,480
Design	25%	25%	25%
Total Equipment	1,635,610	3,991,110	7,844,350
Total Capital	\$1,854,210	\$4,340,690	\$8,479,590

TABLE J-5. SINGLE SITE EQUIPMENT COSTS MOLTEN SALT

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

1000 1b/hr 3000 1b/hr 5000 lb/hr Equipment \$5,400,000 \$16,200,000 \$27,000,000 Molten Salt Furnace Molten Metal Handling Eq 100,100 300,300 500,000 Molten Salt Drumming & 45,000 75,000 15,000 Handling 43,200 62,500 23,900 Water Quench 230,200 521,300 708,200 Baghouse 108,000 180,000 Fuel Tanks 36,000 Oxygen Tank 294,700 569,700 774,000 Storage Fork Lift 44,000 44,000 66,000 **Residue Handling Truck** <u>131,580</u> 173,000 288,300 6,275,480 18,004,500 29,654,500 Subtotal 25% 25% Design 25% Total Equipment 7,844,350 22,505,620 37,068,120 \$8,479,590 \$40,008,760 \$24,305,460 Total Capital

TABLE J-6. COLLOCATED SITE EQUIPMENT COSTS - MOLTEN SALT

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

E

3

, |...

1. (

. C

Salts - \$180,000

0₂ - \$150,000.

1000 1b/hr.

Electric - \$300,000 Salts - \$450,000 02 - \$375,000.

3000 1b/hr.

Electric - \$900,000

Salts - \$1,350,000

02 - \$1,125,000.

5000 lb/hr.

Electric - \$1,500,000 Salts - \$2,250,000 O₂ - \$1,875,000.

Fuel 011.

100	45(<u>100</u>). ⁶ (4)(250) + (24)(115) = 64,420 gal/hr.
400	(45)(3760) = 160,200 gal/yr.
1000	(2)(45)(3760) = 338,400 gal/yr - \$406,080.
3000	(6)(45)(3760) = 1,014,200 gal/yr - \$1,218,240.
5000	(10)(45)(3760) = 1,692,000 gal/yr - \$2,030,400.

<u>Water</u>. Water use will be based on metal and gas quenching rates for metal quenching. Was calculated under facility.

100	metal - (25 gal/hr)(20)(250) = 125,000/yr	
	gas _ <u>(600)/(379)(29)(.</u> gal/yr. 8780	<u>26)(1800-400)</u> (20)(25 Btu/gal	0)(60) = 489,430
400	metal - 500,000	2,376,460 gal/yr	\$1,300
	gas - 1,876,500		
1000	metal - 1,250,000	5,900,000 gal/yr	\$3,260
	gas - 4,650,000		
<u>3000</u>	metal - 3,700,000	17,650,300 gal/yr	\$9,770
	gas - 13,950,300		
<u>5000</u>	metal - 6,150,000	8,009,840 gal/yr	\$32,560
	gas - 23,250,600	29,400,600	

<u>Change-Out Costs Molten Salt</u>. Rockwell provided a refractory life estimate of 5 years. This results in refractory needing replaced once for the single site plant operating at 100 lb/hr and the collocated site operating at 1000 lb/hr.

The refractory cost was calculated for the rotary kiln at $28.74/ft^2$ for 4-inch refractory. Due to higher operating temperatures, it is assumed that up to 8 inches will be used, resulting in a cost of

 $(28.74)(2)^{\cdot 6} = $43.56/ft^2$

at <u>100 lb/hr</u>. One small unit 4 ft in diameter by an estimated 10 feet deep results in 130 ft² of refractory - \$5,670.

<u>1000 lb/hr</u>. Two units, 8 ft diameter by 16 feet deep results in 810 ft² - \$35,300.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

ant and a large large large a large state of a second states and a two and a two and a second of a second second

.

8

()) () ()

[]

<u>100 1b/hr</u> .	(1st)	(2nd)
<u>100 10/11</u> .	Refractory16,690	
		5,670
Spare Parts (0.17)(98,140)	16,690	16,690
Materials/Supplies (0.17)(163,800)	•	27,850
	44,540	50,210
<u>400 lb/hr</u> .	0	0
Refractory Spare Parts (0.17)(239,470)	40,710	40,710
Materials/Supplies (0.17)(239,470)		<u>38,130</u>
Materials/Supplies (0.1/)(224,290)	78,840	78,840
	/0,0+0	/0,040
1000 lb/hr SS.	(1st)	(2nd)
Spare Parts ((0.17)(470,660)	80,010	80,010
Materials/Supplies (0.17)(365,260)	62,090	62,090
	142,100	142,100
1000 1b/hr CS.		
Refractory		35,300
Spare Parts (470,660)	80,010	80,010
Materials/Supplies (365,260)	62,090	62,090
	142,100	177,400
3000 1b/hr.		
Spare Parts (1,350,340)	229,560	229,560
Materials/Supplies (849,610)	144,430	144,430
	373,990	373,990
5000 1b/hr.		
Spare Parts (2,224,090)	378,100	378,100
Materials/Supplies (1,318,370)	224,120	224,120
	602,220	602,220

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

J-28

Ì

i. N The above labor and direct operating costs are summarized in Tables J-7 through J-10.

D. Development Costs

Development costs are presented in Table J-11.

E. Total Cost

Total costs are given in Tables J-12 through J-19 and Figure J-3 and J-4 present the life cycle cost curves. Total minimum life cycle cost for single site is \$18 million and for collocated is \$45 million.

F. Optimum Process Flow Rate

For single site the optimum process flow rate occurs around 400 lb/hr, based on total life cycle cost. For collocated site there was no topimum in the range covered. Lowest cost occurred at 1000 lb/hr. See Figures J-3 and J-4.

G. Operating Time

Operating times are given in Tables J-20 and J-21.

		el Requirements (me	
Area	Agent Rate 100 lb/hr	Agent Rate 400 lb/hr	Agent Rate 1000 lb/hr
Molten Salt Furnaces	2	2	3
Metal Handling	1	1	1
Salt Handling	1	1	2
Control Room	1	1	1
Pollution Abatement	1	1	1
Ultimate Disposal	1	1	1
Maintenance	2	2	2
Total/Shift	9	9	11
Man Years/Yr	27	27	33
Labor Cost \$/Year at \$50,000/man year	1,350,000	1,350,000	1,650,000

TABLE J-7. SINGLE SITE LABOR COSTS - MOLTEN SALT

1. -

TABLE J-8. SINGLE SITE OPERATION COSTS - MOLTEN SALT

	<i>µ</i>	Annual Usage/Cost			
Utility	Agent Rate	Agent Rate	Agent Rate		
	100 lb/hr	400 lb/hr	1000 lb/hr		
Water, 10 ⁶ gal/yr	0.61	2.38	5.90		
(\$.53/1000 gal)	325	1300	3260		
Electric, 10 ⁶ kwh/yr	0.6	2,4	6.0		
(\$.05/kwh)	30,000	120,000	300,000		
Fuel Oil, gal/yr	64,420	1 69,200	338,400		
(\$1.20/gal)	77,300	203,040	406,080		
Spare Parts, 6% Capital Equipment w/ Design	98,140	239,470	470,660		
0xygen, 1b/hr	750,000	3,000,000	7,500,000		
(0.05¢/1b)	37,500	150,000	375,000		
Salts, Ton/yr	375	1,500	3,750		
(\$120/ton	45,000	180,000	450,000		
Materials/Supplies 10% Other Operating	163,800	224,290	365,260		
Total Direct Costs \$/yr	452,070	1,118,100	2,370,260		

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

J-31

, L

. .

(; ;) (; ;

1420 AND AND AND

.

Area	Personne Agent Rate 1000 lb/hr	<u>l Requirements (</u> Agent Rate 3000 lb/hr	<u>men/shift)</u> Agent Rate 5000 lb/hr
Molten Salt Furnaces	3	4	6
Metal Handling	1	2	2
Salt Handling	2	4	6
Control Room	1	1	1
Pollution Abatement	1	1	1
Ultimate Disposal	1	1	3
Maintenance	2	2	2
Total/Shift	11	17	22
Man Years/Yr	33	51	66
Labor Cost \$/Yr at \$50,000/man years	1,650,000	2,550,000	3,300,000

TABLE J-9. COLLOCATED SITE LABOR COSTS - MOLTEN SALT

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Ľ

	. Annual Usage/Cost			
Utility	Agent Rate	Agent Rate	Agent Rate	
	1000 lb/hr	3000 lb/hr	5000 lb/hr	
Water, 10 ⁶ gal/yr	5.90	17.65	29.40	
(\$.53/1000 gal)	3,260	9,770	32,560	
Electric, 10 ⁶ kwh/yr	6.0	18.0	30.0	
(\$.05/kwh)	300,000	900,000	1,500,000	
Fuel 011, gal/yr	338,400	1,015,200	1,692,000	
(\$1.20/gal)	406,080	1,218,240	2,030,400	
Spare Parts, 6% Capital Equipment w/ Design	470,660	1,350,340	2,224,090	
0xygen, 1b/hr	7,500,000	22,500,000	37,500,000	
(0.05∉/1b)	375,000	1,125,000	1,875,000	
Salts, Ton/yr	3,750	11,250	18,750	
(\$120/ton	450,000	1,350,000	2,250,000	
Materials/Supplies 10% Other Operating	365,260	849,610	1,318,370	
Total Direct Costs \$/yr	2,370,260	6,802,960	11,230,420	

TABLE J-10. COLLOCATED SITE OPERATION COSTS - MOLTEN SALT

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

223 AVA 1923

-1) -]

•

BURNER TRACES TRACES

J-34

TABLE J-11. DEVELOPMENTAL COSTS - MOLTEN SALT

j,

	Studies	
	Concept Refinement	\$ 15,000
	Refractory - Materials Compatibility Studies	125,000
	Environmental Studies	100,000
	Molten Salt Studies	150,000
	Molten Metal Studies	150,000
	Materials	150,000
	Subcontractors	150,000
	Contingency	60,000
	Preliminary Pilot Plant	60,000
	TOTAL PHASE II	\$ 960,000
Phase III	Concentual Design	\$ 250,000
nase III	Conceptual Design Test Plan	\$ 250,000 40,000
	Pilot Plant	1,070,000
	Start-up	173,300
	Training	454,700
	Operating	1,040,000
	Development & Design Progr	
	BCL	1,000,000
	A&E	1,000,000
		-10001000
		500.000
	Subcontractors	-
	Subcontractors Other	500,000 <u>100,000</u> 5,628,000
	Subcontractors	-

TOTAL DEVELOPMENT COSTS - \$7,713,600.

	TABLE J-12. SINGLE SI	ITE TOTAL OPERATING COST -	MOLTEN SALT	
	INDEL U-12. SINUEL SI	(100 LB/HR)	NULIEN JALI	
Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	450,000	150,690	0.50	300,305
Training & Sys	1,350, 000	226,040	0.50	787 ,96 0
A	1,350,000	451,830	2.30	4,144,210
Change Out	1,350,000	44,540	0.17	274,040
B/C	1,350,000	451,830	3.08	5,549,040
Change Out	1,350,000	50,210	0.17	279,710
D	1,350,000	451,830	0.86	1,549,570
Shutdown	450,000	150,610	0.50	300,305
Total Life Operating	Cost		8.08	\$13,185,740
		ν.		

Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	450,000	372,380	ې 0.50	411,190
Training & Sys	1,350,000	558,580	0.50	954,290
A	1,350,000	1,117,150	0.57	1,406,280
Change Out	1,350,000	78,840	0.17	308,340
B/C	1,350,000	1,117,150	0.77	1,899,710
Change Out	1,350,000	78,840	0.17	308,349
D	1,350,000	1,117,150	0.24	592,120
Shutdown	450,000	372,380	0.50	411,190

TABLE J-13. SINGLE SITE TOTAL OPERATING COST - MOLTEN SALT (400 LB/HR)

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM - The Arrange Statement of the Arrange Statement of the Statement of the Arrange Statement of the Arrange Statem

J-36

			TABLE	∶ J-14.	, SIN	GLE SI	TTE TOTAL OPERATING COST - MOLTEN SALT (1000 LB/HR)										
	Period			.abor C	 Cost/¥+	ear	Othe	er Dire	ect Co:	st/Yr	Dı	uration	ı, Yr	T(otal Co	ost	=
Eq Acce	ptance		·	55	50,000			78	39,290	~		0.50			669,6	545	-
Trainin				1,65	50,000			1,18	33,930			0.50]	1,416,9) 60	
A				1,65	50,000			2,36	57,860			0.23			924,1	110	
Change (Out			1,65	50,000			14	2,100			0.17			422,6	500	
B/C	, ,			1,65	50,000			2,36	57,860			0.31		J	1,245,5	540	
Change	Out			1,65	50,000			14	12,100			0.17			422,6	500	
D			-	1,65	50,000			2,36	57,860			0.10			401,7	/90	
Shutdow	n			55	50,000			78	39,290			0.50		_	669,6	<u>j45</u>	
Total L	ife Opera.	ating (Cost									2.48		\$6	6,172,8	390	
											<u></u>						=

	100 lb/hr	Agent Feed Rate 400 lb/hr	1000 lb/hr
Capital	\$ 1,854,210	\$ 4,340,690	\$ 8,479,590
Operating	13,185,740	6,291,460	6,172,890
Development	7,713,600	7,713,600	7,713,600
Total Life Cycle Cost	\$22,750,000	\$18,350,000	\$22,350,000

TABLE J-15. SINGLE SITE COSTS - MOLTEN SALT

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

J-38

	TABLE J-16. COLLOCATED	SITE TOTAL OPERATING COST (1000 LB/HR)	- MOLTEN SALT	
	<u></u>	+ - ';'		
Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	550,000	789,290	0.50	669,645
Training & Sys	1,650,000	1,183,930	0.50	1,416,960
A	1,650,000	2,367,860	2.29	9,200,900
Change Out	1,650,000	142,100	0.17	422,600
B/C	1,650,000	1,267,860	3.08	12,375,010
Change Out	1,650,000	177,400	0.17	457,900
D	1,650,000	2,357,860	0.99	3,977,680
Shutdown	550,000	789,290	0.50	669,645
Total Life Operating	Cost		8.20	\$29,190,340
				ں 39 - 1

Period	Labor Cost/Year	Other Direct Cost/Yr	Duration, Yr	Total Cost
Eq Acceptance	850,000	2,265,250	0.50	1,557,625
Training & Sys	2,550,000	3,397,880	0.50	2,973,940
Α	2,550,000	6,795,750	0.76	7,102,770
Change Out	2,550,000	373,990	0.17	807,490
B/C	2,550,000	6,795,750	1.03	9,626,120
Change Out	2,550,000	373,990	0.17	807,490
D	2,550,000	6,795,750	0.35	3,271,010
Shutdown	850,000	2,265,250	0.50	1,557,625
Total Life Operating	-		3.98	\$27,704

, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM

۰,

•

.

.

TABLE J-17. COLLOCATED SITE TOTAL OPERATING COST - MOLTEN SALT (3000 LB/HR)

J-40

				1	<u>II</u>	k - 2	£73	EE	E]	Cô)				E.S.	227		وسلارك	E
					TABLE J	1-18.		CATED	SITE T	TAL O	PERATI	IG COST	T - M(1)	TEN S	NT			
				I		-10.	ULLU	GALLO) LB/H			1 - 1101	LILM J	W_ 1			
-					<u></u>					<u> </u>								
-			eriod			Labor C	Cost/Y	ear	Oth	er Dir	ect Cos	st/Yr	D	uration	1. Yr	т	otal C	ost
_																		
	Eq /	Accepta	ance			1,1(00,000			3,7	34,040			0.50			2,417,	020
		ining 8					00,000				01,060			0.50	*		4,450,	
		A	-				00,000				02,110			0.46	ī		6,670,	
	Char	nge Out	t				00,000				02,220			0.17	3		1,163,	
		B/C					00,000				02,110			0.61			8,846,	
		nge Out	t				00,000				02,220			0.17	ŧ		1,163,	
		D					00,000				02,110			0.21			3,045,	
	Shut	tdown					00,000				34,040			0.50			2,417,	
															• •			
	Tota	al Life	e Opera	ating /	Cost									3.12		\$3	0,173,	710

		Agent Feed Rate	
	1000 lb/hr	<u>3000 lb/hr</u>	<u>5000 lb/hr</u>
Capital	\$ 8,479,590	\$24,305,460	\$40,008,760
Operating	29,190,340	27,704,070	30,173,710
Development	7,713,600	7,713,600	7,713,600
Total Life Cycle Cost	\$45,400,000	\$59,700,000	\$77,900,000

TABLE J-19. COLLOCATED SITE COSTS - MOLTEN SALT

i,

ŝ

وترزيز والم

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

J-44

TABLE J-20. COLLOCATED SITE OPERATING TIME - MOLTEN SALT											
					e – Molten Salt	OPERATING TIM	LLOCATED SITE	TABLE J-20. C	,		
Munition Munition <u>Through-put Per Hour</u> System <u>Production Years</u> Category Type Inventory 1000 lb/hr 3000 lb/hr 5000 lb/hr Availability 1000 lb/hr 3000 lb/hr 5000	5000 1b/hr	n Years b/hr 5000 11	Production Yea hr 3000 1b/hr	1000 lb/hr	System Availability	our 5000 1b/hr	ough-put Per h 3000 lb/hr	Thr 1000 1b/hr	Inventory	Munition Type	Munition Category
A N55 Rockets 800,000 93.5 280.4 467.3 0.928 1.84 C.61 0 M23 Mines 200,000 95.2 285.7 476.2 0.928 0.45 0.15 0	0.37 0.09	1 0.3 5 0.0	C.61 0.15	1.84 0.45	0.928 0.928	467.3 475.2	280.4 285.7	93.5 95.2	800,000 200,000	Rockets Mines	A N
105 mm Projectiles 500,000 625.0 1975.0 3125.0 0.928 0.17 0.06 0 155 mm Projectiles 500,000 153.8 465.5 769.2 0.928 0.70 0.23	0.13 0.03 0.14 0.31	6 0.03 3 0.14	0.06 0.23	0.17 0.70	0.928 0.928	3125.0 769.2	1975.0 465.5	625.0 153.8	500,000 500,000	nn Projectiles nn Projectiles	1
D Bombs 8,000 4.6 13.6 22.7 0.928 0.37 0.13 (Ton Containers/ 2,000 0.7 2.0 3.3 0.928 0.62 0.22 (Spray Tanks	0.08 0.13	3 0.00 2 0.13	0.13 0.22			22.7 3.3		4.6 0.7	8,000 2,000	Containers/	1

Munition	Munition		Thr	ough-put Per H	iour	System	1	Production Yea	Production Years			
Category	Туре	Inventory	100 16/hr	400 lb/hr	1000 15/hr	Availability	100 1b/hr	400 16/hr	1000 1b/hr			
A	M55 Rockets	80,000	9.3	37.4	93.5	0.928	1.85	0.46	0.18			
	H23 Hines	20,000	9.5	38.1	95.2	0.928	0.45	0.11	0.05			
B/C	Hortars	50,000	16.7	66.7	166.7	0.928	0.65	0.16	0.06			
	105 mm Projectiles	50,000	62.5	250.0	625.0	0.928	0.17	0.04	0.02			
	155 mm Projectiles	50,000	15.4	61.5	153.8	0.928	0.70	0.18	0.07			
	8" Projectiles	50,000	6.9	27.6	69.0	0.928	1.56	0.39	0.16			
D	Bombs	800	0.4	1.8	4.6	0.923	0.43	0.10	0.04			
	Ton Containers/ Spray Tanks	200	0.1	0.3	0.7	0.928	C.43	0.14	0.06			

TABLE J-21. SINGLE SITE OPERATING TIME - HOLTEN SALT

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAK11-82-C-0055 with ARRADCOM.

J-46

APPENDIX K

ENGINEERING AND ECONOMIC ANALYSIS -UNDERGROUND DETONATION

37**4** - 757

.

.....

EAC DO

. ...

APPENDIX K

ENGINEERING AND ECONOMIC ANALYSIS -UNDERGROUND DETONATION

Engineering Analysis

A. System Concept Description

(;),

(S) (S)

() [•]

E C

Schulden - to service a second

The underground detonation concept is a collocated operation designed to destroy the entire lethal agent inventory with one underground detonation of 70 Kilotons (KT) of conventional high explosives and pyrotechnics. The first stage for successful implementation of the concept would be selection of a site which meets the following geological criteria:

- The host rock must contain the explosion and explosion residues
- Areas with major aquifers must be avoided
- Tectonically unstable areas must be avoided
- No valuable minerals (e.g., ores or oil reserves) can be contained within the site.

In addition, since the detonation will produce a shock wave severe enough to cause structure damage on the surface and may create a subsidence crater, the site must be geographically located in a zone of low population density. Once a site has been selected, the preliminary conceptual design of the facility requires that shafts be sunk to a depth of 2,000 ft and a destruction cavity mined out of salt, granite, or basalt. The cavity is sized such that it will hold the entire agent inventory, conventional high explosives, and pyrotechnics. Following the emplacement of the materials, the shafts will be backfilled and sealed and the explosives detonated to destroy the inventory.

Surface facilities will be located directly above the cavity and will serve to receive, inspect, and transfer the munitions,

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM. Teachtracements of a new subscreaments that the tracements of a state to be the teacher of the teacher of the te explosives, and pyrotechnics to the mined cavity. All surface facilities will be decommissioned and salvaged prior to detonation.

The underground detonation facility will have the following subsurface facilities, shafts. and surface facilities.

<u>Surface Facilities</u>. To support the activities of mining and loading the destruction cavity, the following surface facilities are required:

- Men and materials buildings to provide services for crews and mined materials movement.
- Ventilation supply and exhaust buildings to provide air to cavity and filter the exhaust air.
- Support service buildings for maintanence, wharehousing, and utilities.

- Mined material storage to minimize environmental impact of mining activities - material used to infill subsidence crater (if one develops)
- Buildings to receive, inspect, and transfer materials to the mine shaft.

<u>Shafts</u>. The following shafts must be sunk to the geological formation in which the cavity will be excavated in order to provide for ventilation and to permit the flow of men and materials to the cavity.

- Men and materials (small) access to cavity shafts,
 10 ft diameter.
- Munition, high explosives, pyrotechnic shafts, 14 to 32 ft diameter.
- Mined cavity ventilation shaft, 10 ft diameter.
- Mined materials transport shaft and ventilation exhaust, 14-32 ft diameter.

<u>Subsurface Facilities</u>. The concept requires that the following facilities be constructed in the selected geological formation.

- The destruction cavity
- Personnel and maintenance area
- Shaft underground facilities
- Utilities
- Materials handling equipment.

As previously mentioned, the destruction cavity must be large enough to contain the entire inventory and the needed energetic material. It is estimated that 70 KT of energetic material is required to rupture the munition cavities and provide sufficient temperature for successful agent destruction. These are categorized as follows:

- 10 KT H.E. as follows:
 - H.E. in promilitarized inventory, 2,824 tons
 - TNT, 7,176 tons to rupture or detonate the munition/items
- 60 KT pyrotechnics to provide heat
 - Ammonium Nitrate as an oxidizer
 - No. 2 fuel oil as a heat source.

Destruction Cavity. The size of cavity required to contain the inventory, the high explosives, and the pyrotechnic composition was estimated as follows:

Quantities Required:H. E.7,176 tonsPyrotechnic94.4% Ammonium Nitrate56,640 tons5.6% No. 2 fuel oil3,360 tons

Volumes of High Explosives and Pyrotechnics:
Ammonium Nitrate, = 1.725 g/cc
56,640 tons = 1.13×10^8 lb x $\frac{1}{107}$ lb/ft3
= 1.06 x 10 ⁶ ft ³ Ammonium Nitrate
+ 25% factor
Volume of Ammonium Nitrate = 1.32×10^6 ft ³
No. 2 fuel oil
$6.72 \times 10^{6} \text{ lbs } \times \frac{1}{58.81} \text{ lb/ft}^{3}$
= $1.25 \times 10^5 \text{ ft}^3$
+ 25% factor
Volume of No. 2 fuel oil = $1.56 \times 10^5 \text{ ft}^3$
Volume of High Explosives
TNT, = 1.56 g/cc
7,176 tons = 1.43×10^7 lbs x $\frac{1}{97.31}$ lbs/ft ³
$= 1.47 \times 10^5 \text{ ft}^3$
+ 25% factor
Volume of H.E. = $1.84 \times 10^5 \text{ ft}^3$
Volume of Cavity Required
Munitions Volume = $3.53 \times 10^6 \text{ ft}^3$
High Explosives = $1.84 \times 10^5 \text{ ft}^3$
No. 2 fuel oil = $1.56 \times 10^5 \text{ ft}^3$
Ammonium Nitrate = 1.32×10^6 ft ³
subtotal = $5.19 \times 10^6 \text{ ft}^3$
+ 25% factor = $1.3 \times 10^6 \text{ ft}^3$
Total = $6.49 \times 10^6 \text{ ft}^3$

B. System Feed Requirements

Ê

The concept is designed to process the entire inventory in feedstock configuration a. The inventory items can be processed in an as-stored condition eliminating the need for mechanical preparation.

C. Pollution Abatement System

While no effluents are expected from this concept, an extensive study of the environmental impact would be required. A review of the socio-economic impact should also be considered.

D. Ultimate Disposal

All waste products are retained in the detonation cavity and are 5X decontaminated. Suitable containment characteristics are a requirement of the selection of the appropriate geological formation.

E. System Concept Advantages

The concept offers the following advantages;

- No mechanical preparation is required
- No flue gas cleanup is required
- Provides the most effective ultimate disposal scenario.

F. System Concept Disadvantages

- It is politically sensitive
 - Public unwillingness to have program conducted in their region
- Testing and modeling is extremely difficult
- It is geologically site specific.

{
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOK.
 Subject No. DAAK11-82-

G. System Concept Knowledge Gaps

The major unknowns in this concept are as follows:

- The quantity and type of high explosives required to ensure destruction of all agent
- How the explosives must be placed to ensure rupture of all munition bodies
- The magnitude of the shock wave.

H. Safety

A number of very serious safety concerns are present in this concept. Successful implementation would require this to be the largest planned, non-nuclear explosion in history. It would also require the entire lethal agent inventory to be on a single site at one time. The accident scenarios associated with these two facts, although solvable, are expected to have a major impact on the concept economics. A more difficult safety consideration revolves around recovery from an unsuccessful operation. Recovery from such a situation would prove very difficult, if not impossible.

I. Likelihood of Development

In the preliminary evaluation, this concept was believed to be developable within five years. However, due to the knowledge gaps and political considerations identified in the engineering evaluation, it is now anticipated that this concept would take at least 10 years to develop. For this reason, the engineering evaluation was terminated at this point and cost estimation begun.

Economic Evaluation

A. Facility Costs

The requirements of the underground detonation conceptual design and those of a mined geologic nuclear waste repository are very similar. Both are basically cavities mined 2000 ft deep within the earth and the host rock must be groundwater free and have excellent containment characteristics. The primary differences between the two concepts are:

- (1) Nuclear waste repository is much larger
 - (a) 2,000 acres vs 9.95 acres
- (2) Basic purposes
 - (a) Nuclear waste storage vs destroying agent inventory with underground explosion.

Since the facilities required and the construction costs incurred are similar, staff members of the Office of Nuclear Waste Isolation were consulted and cost estimate documents were review (1,2,3,4). The estimated costs of construction and facilities included in this review are therefore, based on estimated costs of geologic nuclear waste repositories.

Shaft Emplacement and Surface Facility Costs. Costs for shaft emplacement are based on the following assumptions:

- Geologic conditions are ideal
- No special engineering problems encountered.

It must be further noted that the depth of the cavity (2000 ft) and the host rock types cited (salt, granite, basalt) in this review were chosen for cost estimation purposes only. These are the depths and host rock media chosen for the mined geologic nuclear waste repository concept. However, the rock types suited for nuclear waste storage have many of the characteristics required for underground detonation. Also, a cursory review of the effects of underground nuclear explosive devices detonated in granite, dolomite, and zeolitized tuff (Project Plowshare 6,7), reveals that salt, granite, and

E

Ņ

3

basalt may possibly contain a 70 KT explosion. The scaled depth of burial for the underground detonation of 70 KT at 2000 ft is 485 ft.* This scaled-depth-of-burial number indicates that the explosion would probably be contained. Further research is required to obtain the required information.

Contractor costs estimates for the construction of the facility include a 50 percent cost factor and were broken down as follows:

- 25 percent allowance of anticipated construction costs that would be detailed with further planning
- (2) is percent overhead and administration

¢

(3) percent profit and risk for contractor NOTE: Land and land rights is not factored by 50 percent.

On the basis described above, the \$217M cost estimate for shaft emplacement and surface facilities shown in Table K-1 was produced. Although many items remain to be costed, the sum of the partial costs that were estimated and are discussed below was great enough to indicate that more comprehensive costing was not necessary.

<u>Destruction Cavity Costs</u>. The costs estimated for cavity excavation could not be based on the actual material being mined. Estimation of the excavation costs were, therefore, based on the cost of mining granite at 1500 ft.⁽⁵⁾ Since the cost of mining salt costs less than granite and mining basalt costs more than mining granite, this is anticipated to be a median estimate. On this basis, the costs of excavating the destruction cavity were estimated to be \$46M.

The shaft emplacement and surface facility costs (\$217M) combined with the cavity excavation costs (\$46M) bring the estimated total facility costs to \$263M.

*Scaled-depth-of-burial is a means of comparing underground nuclear tests of different yields emplaced at different depths. This is the depth for an equivalent 1 KT detonation.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

Item	Cost ($$ \times 10^6$)
Land & Land Rights	13.255
Drill String & Geophysical Survey	14.325
Drill Rig Including Hole Survey	7.050
General Site Work	42.932
Mine Development - Area Ventilation	1.583
Hplding Pond	2.044
Mine Waste Storage	13.249
Cavity Excavation	46.213
Shafts (2) 10 ft Dia.	50.096
Shafts (2) 14 ft - 32 ft Dia.	72.00
Engineering Lab	0.600
TOTAL	263.347

TABLE K-1. ITEMIZED FACILITY COST

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

(*) (*)

 $\left\{ \cdot \right\}$

3

. L

B. Capital Costs

Little capital equipment would be required for this concept and no estimation of these items was made. Equipment that would be required would include:

- Fork trucks and other materials handling equipment
- Air compressors to supply air to the underground cavity
- Air conditioning for the underground facility.

<u>C. Operating Costs</u>

The only operating costs estimated were those for the cost of explosives and pyrotechnics. These are as follows:

•	High Explosives:	
	7,176 tons x $$2,880^{(8)}$ /ton	= \$20,666,880
•	Ammonium Nitrate	

56, 640 tons x $$145^{(3)}/ton = $8,212,800$ • No. 2 Fuel 0il 932,038 gallons x $$1.20^{(10)}/gal = $1.118,447$ Total Estimated Materials Cost = \$29,998,000

Additional operating costs which were not estimated would include:

- Labor for filling the cavity with the inventory and the required explosives
- Shaft backfilling and sealing
- Testing to certify agent destruction
- Decommisioning and removal of surface structures.

It is anticipated that the costs of these listed items would be high.

K-10

D. Development Costs

E

Ø

(*) (*)

Sector Constant

SARATE ASS - AND DODDAY A DARKED - A SARATED

19632005 accrete seconds applicant accession

Implementation of this concent could only be accomplished by conducting an extensive development program. Some of the tasks of this program would be

- Engineering studies to determine:
 - Acceptable rock media for detonation and
 - containment of explosion residues
 - Required depth o burial
 - Chemistry of explosion residues
 - Process modeling and testing
- Agent destruction proof tests
- Site selection and exploration
- Development of recovery methods for process failures
- Public relations and political lobbying.

While comprehensive costs for this development effort were not produced, site selection and exploration has the potential to overwhelm the other costs. On-site characterization of any candidate site selected by the known geology of the region requires that a number of 6 inch diameter holes be drilled to a depth of 3000-4000 feet. Each of these test holes cost \$1 million to \$5 million depending on the geologic conditions. If the site still looks promising, a 10 ft diameter shaft is sunk to a depth of 2000 feet at a cost of \$24 million. Horizontal geophysical studies would then be conducted at a cost of \$7 million bringing the costs for evaluating a single site to at least \$37 million. If at any point a site is found unacceptable, the on-site characterization process would have to be repeated at another site.

A further indication of the magnitude of these costs can be found in the fact that the Office of Nuclear Waste Isolation, while looking at salt only as the host rock, spends approximately \$32 million per year on site selection and exploration. It is therefore estimated that the development costs would be at least \$50M and could be \$200M or more.
REFERENCES

- J. D. Forster, <u>The Economics of Mined Geologic Repositories</u>, ONWI-93 (81-04-0617), TRW Energy Systems Planning Division, December, 1979.
- Office of Nuclear Waste Isolation, <u>Projected Costs for Deep</u> <u>Geologic Repositories for Spent Fuel Disposal</u>, Technical Report, ONWI-191 (80-11-2262), Battelle Memorial Institute, October, 1980.
- Stearns-Roger Engineering Company, Kaiser Engineers, <u>National</u> <u>Waste Terminal Storage Repositories 1 and 2, Cost Estimate</u> <u>Reconciliation Study</u>, Vols I and II, ONWI-76, Office of Nuclear Waste Isolation, Battelle Memorial Institute, August, 1979.
- 4. U.S. Department of Energy, <u>Final Environmental Impact Statement</u>, <u>Management of Commercially Generated Radioactive Waste</u>, DOE/EIS-0046F, October, 1980.
- 5. Public Service Electric and Gas Company, <u>An Assessment of Energy</u> <u>Storage Systems Suitable for Use by Electric Utilities</u>, Final Report, EM-264, July 1976.
- 6. The American Nuclear Society, the United States Atomic Energy Commission, <u>Engineering with Nuclear Explosives</u>, Symposium Proceedings, May, 1970.
- E. Teller, W. Talley, G. Higgins, and G. Johnson, <u>The</u> <u>Constructive Uses of Nuclear Explosives</u>. McGraw-Hill, Inc., 1968.
- 8. Eramo Enterprises, Inc.
- 9. W. R. Grace & Co.

10. U.S. Government quoted price.

APPENDIX L RAM ANALYSIS

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

(~_) |*! (*!

(---) (---)

معلا

5

E

í.

APPENDIX L

[:]

; (;;

Ē

Г. (

[]

í I

university and the second provided provided all the second strategies and the second second second second second

RAM ANALYSIS

System availability for the various demilitarization system concepts was estimated from the availability of the components making up the system. Two major sources of component availability were used: (1) the government-Industry Data Exchange Program (L-1), and (2) "Equipment Availability Fossil Component Cause Code Summary Report, 1973", EEI Publication No. 74-57 (L-2). A number of other possible sources were examined (L-3-5) but were rejected because the information was not usable in the form presented (e.g., probability of operation on demand or mean time between failures without an associated mean time to repair) or because the availabilities seemed unrealistically high, or a combination of these factors. For system components for which no appropriate data were found, engineering estimates were made based on the failure considered most likely and the estimated time to repair. Table L-1 presents the basic component availabilities used to estimate the system availabilities. For applications that were considered significantly more severe than those pertaining to the data base, the basic unavailability was multiplied by a factor of two or four. Where a choice of values was available for similar components, the less favorable (higher) unavailability was chosen. Reported or estimated MTTR or unavailability was doubled where the repair would require the maintenance personnel to wear DPEs.

The power plant component availability data of Reference L-2 was adjusted to an operating hour basis and averaged for all plant size categories. It should be noted that these data are largely on a per-plant basis, and may include several parallel devices. No information is available to correct for this effect, if and where present.

System availabilities were calculated from the component availabilities assuming no common failures and no redundancy. Failure of any one of paralleled components was assumed to force system shutdown.

Tables L-2 through L-6 present the availability calculations for the four selected demilitarization processes. For the Acid Roaster process, the calculated availabilities are for full plant capacity. The availability

of partial capacity ranges from slightly greater than for full capacity to significantly greater than for full capacity depending on process capacity.

3
3
8

L		3
-	_	~

TABLE L-1. COMPONENT UNAVAILABILITY

Component	MTBF	MTTR	UAx10 ⁵¹	Source ²
Air lock door	5405	6.8	126	
Hydraulic cylinder	3425	5.2	152	A A
Hydraulic power supply	3408	7.5	220	Ä
Conveyor	1000	3.6	360	A
Fedder(3)	1000	3.6	360	
Elevator(3)	1000	3.6	360	•
Hydraulic motor	2857	10	350	- C B
Scrap chute	6000	3	50	Ċ
Heat exchanger	•	-	80	
Instrument, temperature,	6061	2.8	46	Α
pressure, level, flow				
Fan, blower	-	-	48	B
Fuel supply	-	-	7	В
Burner ⁴	365	2	594	Ċ
Refractory ⁵	8760	200	2283	Ċ
Spray drier ⁶	168		2381	Ċ
Bag house 7	730	4	274	Č
Plasma jet head	•	-	1000	Ď
Electrical power supply	-	-	100	č
Induction heater coil	-	-	10	Č
Metal tap	-	-	500	Ċ
Slag tap	-	-	500	č
Quench tower8	-	-	1190	č
Pump	-	-	20	B
Valves and piping	•	- ,	25	Ē
Duct. stack	-		8	8 8 C C C C D C C C C B B B B
Switch gear	-	-	12	B
Central control	•	-	746	-
Controller	(5000)	(2.8)	(56)	Α
Display	(463)	(3,2)	(690)	A A C
Room, doors	•	,	200	Ċ

NOTES:

- 1. MTBF = Mean Time Between Failures: MTTR Mean Time to Repair: UA = unavailability, hr/hr.
- 2. A, Reference (L-1): B, Reference (L-2): C, Engineering estimate: D, Quote from Westinghouse Electric Company
- 3. Assumed to be the same as conveyors.

. . *

- 4. Most probable failure is failure of flame detector. MTBF of 365 hr, MTTR (replace detector or clean optics) of 2 hrs plus an additional 4 hr per year.
- 5. Severe duty, replacement once per year, 10 days, 20 hrs per day repair time.
- Most probable failure is nozzle plugging. MTBF is 168 hr, MTTR (replace nozzles) is 4 hr.
- Most probable failure is bag failure. MTBF is 730 hr MTTR (replace one bag) is 2 hr.

8. Quench tower UA taken as 1/2 the UA of a sprav drier.

. . .

. .

.

4.14.14.14.14.1

		Unavailability, hr/hrx10	
Equipment Item	No. in System	Equipment Item	System
<u>(11n</u>			
Elevator	1	720 1	720
Ram feeder	1	360	360
Ram Surner	1	152	152
Combustion air fan	1	594 48	594 48
Fuel supply	i	142	14
Seal air fan	1	48	48
Locks	1	152	152
Instrumentation Refractory	6 1	46 45663	276
Rotation system	1	135	4566 135
fterburner			
Burner	1	594	594
Combustion air fan]	48	48
Scrap discharge conveyor Scrap discharge chute	1	7204 50	720 50
Fuel supply	i i	142	14
Pump	i	20	20
Instrumentation	4	46	184
Duct Refractory	1	8	
crubber			
Spray Drier Pump	1	2381 406	2381
Discharge Conveyor	1	360	30 360
Valves and piping	ż	507	100
Chemical feeder	2 1 2 1 6	360	360
Instrumentation Duct	6 1	46	276
ag House	ŀ	8	8
Bag house	1	274	274
Discharge conveyor	i	360	360
ID fan	1	48	48
Duct, stack	1	8	3
<u>eneral</u>			
Switch gear	1	12	12
Central control	1	746	746
Hydraulic power	1	220	220
Room, doors	**	200	200
Total System Unavailabilii	ty	14	4,136x10-5
Total System Availability	• 1 -0.1	$41 = 0.859^8$	

TABLE L-2. AVAILABILITY OF THE ROTARY KILN SYSTEM

.

NOTES :

Value for conveyor x 2 for more complex operation. 1.

Power plant value x 2: power plant value considered 2. unrealistically low. Nominal value x 2 for severe mechanical service.

3.

- Nominal value x 2 for severe service. 4.
- 5. Included with refractory in kiln.

6.

Nominal value x 2 for severe service (chemical solution). Fominal value x 2 for severe service (chemical solution). 7. 9.

For feedstock h, this value becomes 0.881, as a result

of reduced severity of refractory service (see Note 3).

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

TABLE L-3. AVAILABILITY OF THE FLUIDIZED BED SYSTEM

	N., J.	Unavaliabili	Unavaliability, hr/hrx10 ⁵		
	No. in <u>System</u>	Equipment Item	System		
Juidized Bed					
Ram feeder	1	360	360		
Ram	i	152	152		
Burner	1	504	594		
Fuel supply	1	141	14		
Combustion air fan	1	48	48		
Locks	2	152	304		
Bed make-up system	1	3602	360		
Bed recycle system	1 1	3602 14403	360		
Discharge system	1	152	1440 152		
Ram	i	7204	720		
Scrap separator Scrap chute	1	50	50		
Instrumentation	s	46	368		
Fuel supply		145	14		
Pneumatic transport fan	1	48	48		
Duct	1	8	8		
Refractory	1	2283	2283		
Afterburner					
Burner	1	594	594		
Compustion air fan	1	48	48		
Fuel supply	1	141	14		
Instrumentation	4	46	104		
Duct Refractory		8	- ⁸ 5		
Scrubber					
Spray drier	1	2381	2381		
Pump	2	405	80		
Discharge conveyor	2 1 2 6	360	360		
Valves and piping	2	507	100		
Instrumentation	6	46	276		
Chemical feeder Duct	1	360 8	360 8		
Bag House					
Bag house	1	274	274		
Discharge conveyor	i	360	360		
ID fan	1	48	48		
Duct, stack	1	8	8		
<u>General</u>					
Switch gear	1	12	12		
Central control	1	746	746		
Hydraulic power	1	220	220		
Room, doors		200	200		
Total System Unavailability			13,404x10 -5		
Total System Availability					

NOTES:

5

{:

 $\{\cdot\}$

- 1

6

 Nominal value x 2. Nominal value for power plants considered unrealistically low.
Considered equivalent to a conveyor.
Value for conveyor x 4 for severe service.
Value for conveyor x 2 for severe service.
Included with refractory in fluidized bed.
Nominal value x 2 for severe service (chemical solution).
Nominal value x 2 for severe service (chemical solution). L-5

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

	. .	Unavailability, hr/hr		
Equipment Item	No. in <u>System</u>	Equipment Item	System	
Plasma Furnace				
Input Conveyor Chamber conveyor Locks Plasma gun Plasma gun Induction heater coil Induction heater power supply Air supply fan Refractory Slag tap and disposal Metal tap and disposal	1 2 1 1 1 1 1 1	360 7202 152 1000 100 100 48 10003 500 500	360 720 304 1000 100 100 43 1000 500 500	
Instrumentation Duct	12	46	552	
Scrubber ⁴	I	8	8	
Scrubber tower Pump Valves and piping Chemical feeder Instrumentation Duct	1 2 1 6 1	2381 ⁵ 406 507 360 46 8	2381 80 100 360 276 8	
Afterburner (Pyrolysis Products)	Burner)	-	•	
Burner Combustion air fan Fuel supply Instrumentation Refractory Duct	1 1 4 1	594 48 148 46 11829 8	594 48 14 184 1182 8	
Quench Tower			-	
Quench tower Pump Valves and piping Instrumentation Duct	1 2 6 1	1165 ¹⁰ 20 25 46 8	1165 40 50 276 8	
Bag House				
Bag house Discharge conveyor ID fan Duct, stack	1 1 1 1	274 360 48 8	274 360 48 8	
<u>General</u>				
Switch gear Central control Hydraulic power Room, doors	1 1 1	12 746 220 200	12 746 220 200	
Total System Unavailability Total System Availability = 1-0	0.138 = 0		844x10 ⁻⁵	

TABLE L-4. AVAILABILITY OF THE PLASMA/MOLTEN METAL PROCESS

ī

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

12

5

ļ

TABLE L-4 (continued)

NOTES:

Sector a strike of

A RUCESO

Constant and the second

ないたいというか

PRESERVED INTERVENT A LOGICIES

A ALACADA MANA

1.	This assessment was made for a process configuration
	involving scrubbing of pyrolysis products with molten salt
	prior to pyrolysis product incineration. Other process
	configurations are being considered.
2.	Nominal value x 2 for severe service (hot environment).

- 3.
- The vendor guotes a planned unavailability of about 1000-2000x10-5 hr/hr for refractory repair. A value of 1000×10^{-5} for unplanned unavailability has been adopted as a reasonable estimate.
- 4. The molten salt scrubber is not well defined at this time. In the absence of other information, it has been treated essentially as a spray drier scrubber.
- 5.
- Value for a spray drier scrubber. Nominal value x 2 for severe service (chemical solution). б.
- Nominal value x 2 for severe service (chemical solution). 7.
- Nominal value x 2. Nominal value for power plants considered 8. unrealistically low.
- 9. Nominal value x 1/2 for less severe duty (pollutants removed upstream).
- 10. Nominal value for spray drier scrubber x 1/2 for less severe duty (clean water feed).

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

		U <u>nevailabili</u>	ty, hr/hrx10 ⁵
Equipment Item	No. in System	Equipment Item	System
Dissolution Chamber			
Munitions loader Dissolution chamber Chamber closure Vent fan Dissolution pumps Acid cooler Valves and piping Duct Chamber unloader Instrumentation	3 3 1 34 3 3 3 3 18	360 ¹ 1002 152 963 405 1606 507 168 360 ¹ 46	1080 300 456 96 120 480 150 48 1080 028
Roaster/Afterburner			
Burner Combustion air blower Fuel supply Spray nozzles Refractory Solids discharge Roaster feed pumps Cyclone Oxide blower Duct Instrumentation	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	594 48 149 2381 114110 360 405 36011 48 168 46	1188 96 2381 1141 360 40 360 48 16 368
Acid Regeneration			
Cyclone gas cooler Isothermal absorber Bottoms pump Cooler Acid makeup pump Adiabatic absorber Cooler Valve and piping Duct Instrumentation	2 14 14 14 1 4 1	1606 119012 405 1606 405 11902 1606 50 168 46	320 1190 40 160 40 1190 160 200 16 506
Pollution Control			
Dry scrubber preheater Dry scrubber Discharge conveyor Chemical feeder Pump Valves and piping Duct Bag house Discharge conveyor Duct, stack ID fan Instrumentation	1 1 2 2 1 1 1 1 6	80, 2381 360 4012 507 8 274 360 8 48 46	80 2381 360 80 100 8 274 360 8 48 276

.

L-9

		Unavailabi	lity, hr/hrx10 ⁵
Equipment Item	No. in System	Equipment [tem	System
<u>General</u>			
Switch gear Hydraulic power Central control Cooling tower Cooling water pump Room, doors	1 1 1 2	12 220 746 59513 48 200	12 220 746 595 48 400
Total System Unavailability		i	20,842×10 ⁻⁵
Total System Availability = 1	-0.208 =	. 792 ¹⁴	

NOTES:

 (\cdot)

なったちのもう

12. Control 6.

いいいしょうしょう

100

ġ $\left\{ \cdot \right\}$

- 1. Assumed equivalent to a conveyor.
- 2. Arbitrary value.
- Nominal value x 2 for severe service (acid fumes). 3.
- 4. The acid regeneration plant vendor nominally installs 33-100 percent redundancy.
- 5. Nominal value x 2 for severe service (aqueous acid).
- 6. Nominal value x 2 for severe service (aqueous acid).
- 7. Nominal value x 2 for severe service (aqueous acid).
- 8. Nominal value x 2 for severe service (acid fumes).
- 9. Nominal value x 2. Power plant value considered unrealistically low.
- Acid regeneration plant vendor indicates 20 year refractory life. Nominal value x 1/2 to allow for more severe conditions than in standard acid regeneration plant. 10.
- 11. Plugging of solids discharge most common failure. Value for conveyors used.
- 12. Spray nozzle clogging most likely failure. Value of 1/2 that for a dry scrubber used, as sprayed solution is clean.
- Nozzle plugging most likely failure. Taken as 1/4 the value for a dry scrubber to account for clean water, much larger nozzles.
- 14. Availability of full plant capacity. Due to parallel operation of the dissolution process, the availability of 2/3 capacity will be somewhat higher.

TABLE L-6. ACID ROASTER SYSTEM, 5000 LB/HR

-

なないのない

and the second

Section Section 18

η.

	No. 21	Unavailabil	ity, hr/hrx10 ⁵
Equipment Item	No. in System	Equipment Item	System
Dissolution Chamber			
Munitions loader	15	360	5400
Dissolution chamber Chamber closure	15 15	1002 152	1500 2280
Vent fan	1	963	96
Dissolution pumps	64	405	240
Acid cooler Valves and piping	3 6	1606 507	480 300
Duct	15	168	240
Chamber unloader	15	360	5400
Instrumentation	90	46	4140
oaster/Afterburner			
Burner	2 2	594	1188
Combustion air blower Fuel supply	2	48 149	96 28
Spray nozzles	2 1 set	2381	2381
Refractory	j	114110	1141
Solids discharge Roaster feed pumps	1 2	360 405	360 80
Cyclone	1	36011	360
Oxide blower	1	48	48
Duct Instrumentation	1	168 46	16 368
id Regeneration		-U	300
Cyclone gas cooler Isothermal absorber	20	160 ⁶ 119012	3200
Bottoms pump	2 2	405	2381 80
Cooler	1	1606	160
Acid makeup pump	1	405	40
Adiabatic absorber Cooler	1	119012 1606	1190 160
Valves and piping	4	507	. 200
Duct	1	168	16
Instrumentation	19	46	374
<u>ollution Control</u>			
Dry scrubber preheater	!	80	80
Dry scrubber Discharge conveyor	1	2381	2381 360
Chemical feeder	i	260	360
Pump	2	4012	80
Duct	1	8	8
Bag house Discharge conversion	1	274	274
Discharge converyor Duct, stack	1	360 8	360 8
ID fan	2	48	96
Instrumentation	6	46	276

L-10

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM. .

		Unavailabili	ty, hr/hrx10 ⁵	
Equipment Item	No. in System	Equipment [tem	System	L-1
<u>eneral</u>				
Switch Gear Hydraulic power Central control Cooling tower Cooling water pump Room, doors	1 5 1 1 6	12 220 746 59513 20 200	12 1100 746 595 20 1200	
Total System Unavailabili	ty	42	,499×10 ⁻⁵	
Total System Availability	= 1-0.4	$124 = 0.576^{14}$		

TABLE L-6. (continued)

NOTES:

8

۱. ۱

|

いちからのとう

1 (HOLDER) STORE STORE

- 1. Assumed equivalent to a conveyor.
- 2. Arbitrary value.
- 3. Nominal value x 2 for severe service (acid fumes).
- 4. The acid regeneration plant vendor normally installs 33-100 percent redundancy.
- 5. Nominal value x 2 for severe service (aqueous acid).
- 6. Nominal value x 2 for severe service (aqueous acid).
- 7. Nominal value x 2 for severe service (aqueous acid).
- 8. Nominal value x 2 for severe service (acid fumes).
- 9. Nominal value x 2. Power plant value considered unrealistically low.
- Acid regeneration plant vendor indicates 20-year refractory life. Nominal value x 1/2 to allow for more severe conditions than in standard acid regeneration plant.
- Plugging of solids discharge most common failure. Value for conveyors used.
- 12. Spray nozzle clogging most likely failure. Value of 1/2 that for a dry scrubber used, as sprayed solution is clean.
- Nozzle plugging most likely failure. Taken as 1/4 the value for a dry scrubber to account for clean water, much larger nozzles.
- Availability of full plant capacity. Due to parallel operation of the dissolution process, the availability of part capacity will be substantially higher.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

		<u>Unavailabil</u>	<u>Unavailability, hr/hr x 10⁵</u>		
Equipment Item	No. in System	Equipment Item	System		
Vacuum Furnace					
Locks	4	250	1000		
Furnace Shell Furnace Heater	1	100 100	100 100		
Furnace Power Supply	1	100	100		
Refractory	1	1141	1141		
P, T Instrumentation	8	46	368		
Duct Feed Conveyor	1	8 3 6 0	8 360		
Discharge Conveyor	1	360	360		
Furnace Conveyor	i	7201	720		
Vacuum Pump					
Vacuum Pump	2	1205	240		
Separator	2 2 1	360	720		
Pipes, Valves Chemical Feeder	1	502 360	50 360		
Pump	i	2403	240		
P, T level. Flow Instrumentation	16	46	736		
Afterburner					
Afterburner Refractory	1	1141	1141		
Combustion Air Blower	1	48	48		
Burner	1	5 9 4 144	594 14		
Fuel Supply P. T Instrumentation	6	46	275		
Duct, stack	ĩ	8	8		
Dryer					
Dryer	1	2381	2381		
Burner	1	794	794		
Combustion Air Blower Fuel Supply	1	48 144	48 14		
Pipe, Valves	i	504	50		
P. T. Flow Instrumentation	5	66	330		
Duct, Stack	1	8	8		
<u>General</u>					
Switch Gear	1	12	12		
Hydraulic Power	1	220 746	220 7 4 6		
Central Control Room, Doors	-	200	200		
Total System Unavailability			,487×10-5		
• -	145 4 455	()			
Total System Availability = 1	-,135 = 0.865				

NOTES:

Ľ

1.

2.

3.

Nominal value x 2 for severe service - conveyor Nominal value x 2 for severe service - pipe Nominal value x 2 for severe service - pump Nominal value x 2. Nominal value for power plants considered unrealistically low. Severe service because of gas composition. 4.

5.

Use, duplication, or disclosure is subject to restrictions stated in Contract No. DAAK11-82-C-0055 with ARRADCOM.

REFERENCES

L-13

[

6 ĺ.

. .

1

ネートの大大大力で、 おうできたがた

المواجد الم الله الله الله الله

المراجع الم

- L-1. Government-Industry Data Exchange Program (computer search of data base).
- "Equipment Availability Fossil Component Cause Code Summary Report 1973", EEI Publication No. 74-57, Equipment Availa-L-2. bility Task Force, Edison Electric Institute, no publication date.
- "Reactor Safety Study, Appendix III Failure Data", United L-3. States Atomic Energy Commission, WASH-1400, August 1974.
- "Nonelectronic Parts Reliability Data", Rome Air Development L-4. Center, Reliability Analysis Center, NPRD-2, Summer, 1981.
- L-5. Proceedings of the Annual Reliability and Maintainability Symposia, IEEE Catalog No. 68C 33-R, 69C 8-R, 70C 2-R, 73CH0714-6R and 74CH0820-IRQC.

DISTRIBUTION LIST

ତ

K)

S

r@

сŇ

C i

Ľ ()

13

Defense Technical Information Center, Cameron Station, Alexandria, Virginia, 12 copies 1. 22314 2. Defense Logistics Studies Information 2 copies Exchange U.S. Army Logistics Management Center Ft. Lee, Virginia 23801 3. USATHAMA Aberdeen Proving Ground, Maryland 21010 2 copies Attn: DRXTH-ES 10 copies DRXTH-TE Attn:

ana ana amin'ny tanàna mandritry amin'ny tanàna dia 2008–2014. Ilay kaominina dia kaominina mandritry dia kaomi