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SUMMARY

This report describes a combined theoretical and experimental program of

research in the aerodynamics of supersonic lifting bodies. Perturbation

techniques are used to study the supersonic flow past slightly elliptical

cones, cones whose cross-sectihn deviates slightly but arbitrarily from that

of a right circular cone, cones of s.iall longitudinal curvature, and right

circular cones undergoing small harmonic pitching and/or plunging motions.

These studies all involve perturbations of the well-known solution for

supersonic flow past a right circular cone. Closed-form analytical results

are achieved through the use of an approximation that accurately predicts

results over the entire range of the hypersonic similarity parameter. These

results give hypersonic limiting solutions that agree well with other

-independent analyses and, at the same time, agree exactly with linearized

theory in the linear theory limit. Comparisons with experiment, where

possible, also show good agreement.

An inverse method is used to study the hypersonic flow past slender

lifting bodies with slightly blunted noses. Again, the body cross-section is

assumed to deviate slightly from a circle and a perturbation technique is used

to develop explicit closed-form solutions that demonstrate the effects of nose

bluntness on the aerodynamic .characteristics of the lifting body. Explicit

re:cIilts are obtained for power-law shock waves.

The perturbed right circular cone solutions are then used to develop a

new class of supersonic lifting bodies known as waverlders. Making use of the

principle that any streamsurface of an inviscid flow can be taken to be a

boundary of the flow, the approximate streamsurfaces for supersonic flow past

a circular cone at angle of attack and a slightly elliptical cone at angle of

attack are used to generate a Camnily of new waveriders. The well-known caret

waverider solution, developed from the supersonic wedge flow solution, is then

i



Fused to fashion vertLcal stabilizer-likh control surfaces.

Wind tunnel studies of two such waveriiers, one generated from the

circular cone at angle of attack solution and the other from the elliptical

cone at angle of attack solution, and an elliptic cone with 1.87 major-minor

axis ratio were conducted in the Mach number ranqe 3 to 5 and unit Reynolls

number range I to 2 million per foot. Six-component force and moment data are

I presented over the angle of attack andI sLieslip range of ±200. Schljeren data

for the waverider shock wave positions are also presented along with results

P of surface oil flow data. Maximum lift-to-drag ratios of the waveriders are

found to be 2.S times greater than that For the elliptic cone. Normal-force
II+

and rolling-moment coefficients, along with the list-to-drag ratios, are found

to decrease for the waveriders as M.. increases. Complementary surface

pressure measurements were also conducted. Comparisons of the surface

pressure measurements with theory for the on-deslqn condition showed good

agreement.

The various sections of this report harve been written so as to be

essentially independent of each other. Thus, vi;ividuals interested in only

one portion of the work can proceed directly to the section of interest.

=L
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I JTRofli !C TION

Increasingly demanding air vehicle maneuverability requirements in the

high supersonic, low hypersonic Mach number range have focused attention on

the-need for aerodynamic prediction capahilities -for-vehicle geometries of

practical interest. Of particular importance in this regard is the identifi-

cation of high-lift configurations with low draa and good control effective-

ness. The likely range of. Mach numbers (1.2 to 5+) and angles of attack (0 to

70 degrees) require vehicle configurations that efficiently integrate

the volumetric storage, lifting, and propulsive components of the vehicle in

order to minimize adverse heating effects and maximize the lift-to-drag ratio.

Traditional linear aerodynamic theories are not adequate to the task of

analyzing flows past such vehicles. Finite strenqth shock waves and large

cl-ances in the thermodynamic state of the medium require a nonlinear flowfield

description. Typical vehicle configurations being considered for this high

sLlpers~onic, low hvorscnic Mach number range al:;.o exhibit considerable

geometrical complexity. Existing methods for analyzing flows past complex

Sirtinq shades -- w'.; are 1-:7n.1 .. ther ltnearized aerodynamics and use

t'-! -iperpositior princi:lle or on elaborate, expensive computer codes which do

n eastily accornmioiate realistic gjeom'etries -- cannot be relied upon for

de.sign nurposes. -.-Yalytical results arQ generally not available to describe

the FI-w past rnost lifting bodly shapes of interest.

"-+he nonlinear are of high stners:);iic, low hypersonic Mach number flows

has .nujd,_ tho Few knmwn :•xa't snlutimns '>r -lows past elementary geometries

extre-iely important. The solutions for the sunersonic flows past a

t-4'i--9: nsi.na- •'o e i:-. a riahtr.-i ir h:w, nave heen particularly



valuable not only as models of wing leading edges and vehicle noses, but also

as the building blocks for flows pa~t more complex geometries. The wedge

solution has been used by Nonweiler (Reference 1), Kuchemann (Reference 2), i
Kuchemann and Weber (Reference 3), and others to describe supersonic flows

past caret-shaped lifting bodies. In a similar fashion, Jones (Reference 4)

and others have used the right circular cone solution to describe exactly the

flow past a delta wing with a half-cone underbody. These so-called waverider

configurations all derive from the general principle that any streamsurface of

an inviscid flow can be viewed as part of a solid boundary of the flow. The

variety of waverider configurations available is, therefore, limited by the

number of flowfield solutions for which the streamline geometry can be deter-

mined. Until recently (Reference 5), the two-dimensional wedge and right

circular cone flows were the only flowfields for which this waverider notion

had been pursued.

The otherwise uniform supersonic flow past a two-dimensional wedge or

right circular cone are examples of conical flows--flowfields which are

independent of distance along a ray emanating from a vertex. Conical bodies

are defined as shapes generated by a semi-infinite line, one end of which is

fixed at a point called the vertex of the body. A conical body is generated

by moving any point in the line through a closed curve. Provided the bow

shock wave is attached, the flowfield generated by a uniform supersonic flow

past a conical body is also conical. The analysis of conical flows is

somewhat easier than that for more general shapes, and the results have been

extremely valuable as building blocks for more complex situations and as

guides to the nature of supersonic flow.

With few exceptions, the analysis of supersonic flows past conical shapes

has been done numerically. The numerical methods used include the theory of

2



characteristics (Reference 6), Lterative finite difference schemes (References

7 and R), the method of lines (Reference 9), the method of integral relations

(Reference 10), and others. Numerical solutions, while proviuding accuracy and

a certain generality, do not as readily lend themselves to understanding and

easy use as do explicit analytical results. Explicit analytical answers, on

the other hand, inevitably employ approximations which can reduce the accuracy

and/or generality of the results. Van Dyke's analysis of supersonic flow past

elliptic cones (Reference 11) uses linearized theory (through second order)

and gives surprisingly useful results over a wide range of conditions. Van

Dyke's results, however, are not valid in the nonlinear hypersonic limit and

thus do not possess the generality that miqht he desired. Chapkis (Reference

12,, using a perturbation scheme orqinally suggested by Ferri, Ness, and

KaplitR (Reference 13,, studied supersonic flow past conical bodies whose

cross-sectlons deviate slightly from that of a right circular cone. To

proceed analytically, Chapkis, influenced by Lees CReference 14), employed an

approximate result for the hypersonic flow past a riqht circular cone at zero

angle of attack, a result that incorrectly assumes the solution can be

expanded in a Taylor series about the cone surface conditions. In addition,

the eyptessions obtained by Chapkis Ao not reduce to the linearized theory

results in the linear theory limit.

The present work concerns itself with the development of analytical

methods that describe the flow past hodies that deviate slightly from that of

stealy supersonic flnw paSL a riciht ciruilar cone at zero angle of attack.

The deviations can result from, anqqo of attack, cross-sectional elliptic

eccentricity, lona1-itHirnal c.irvatare, nitchinq and plunging motions, and nose

bluntness. The methods employed are nore accurate than those used by Chapkis

anl., in additi.on, reluce exactly to the linearlzed f.ow theory results in the

apropriato limit.

I



This analytical work is the basis iron which a novel class )f supersonic

lifting bodies is developed. These lifting hodies, called waveriders, give

"configurations with attractive aerodynamic performance characteristics that

efficiently integrate the lifting, propulsive, and volumetric requirements for

highly maneuverable, supersonic vehicles.

A series of wind tunnel tests have been conducted to both guidie and

verify this analytical work. Six componont force aid rorne:it measurements wer-e

made. Schlieren and surface oil-flow visual .ata were recorded allong witI

surface pressure mpasurements. These pxperimenrti results confirm the basic

theoretical work on waveriders and provi e data over a variety of off-design

conditions.

The report ends with a summary of conclusions anc9 saqgestions for futisre

research directions.

I
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N~t PE~r N I ~ i

This section deals wit~h analytic-i ;tu-Iles of supersonic an'i hypersnnifc

flow nast hodies _,hich ieviAte sli-yhtl' fron, a rizTht circular cone. in t',-is

way cA', be studied the effects o$ elliptical eccentrizity anti other

cross-sectional .ieviationn fro.m. a c-ircle, ang!.e of attac-k, longitudinal

2orV~orenitchino andi -)uriq~n mot~io')s, ardi -he. effects ),F nose butes

1. FLLIDTICAL CONE

F'or supersonic. flows -ais- ax~ wt't ial. symmetry', t)e elli~ptical

c'~ne i.q a basic be'.,' sham-. its -u -- rt,-te cirz-.,.ar -one, is a b-asic

aKx sv-nmet ric body shapp wit- flow'tlil Tnrý)?ertimes tlat are extensively

tK'ata'i. 1'' t'k t --2 1.,t Eo :_;r,.u~ar cone at qmail ;In& e'- of

attAc'- is extensi'.-elv. a' Ž an.! fat~rIv wel'. -indierstono On the oth~er

h~ard, Ithe properties of .~esoo-erso(,i,- fl--wfiell past an olliptic cone are not

ex~ni.el ah~ taat 'teass :rs wi't~ ci-r ular )~~ f

att-~cl. 1 Cl_-rIIqh~-Cd In.Arers; 1'-*r--!-i s~ed towarl supersonic flow!:

Or~st -lijr~ti( r7ofes, :>-;r zvoalt.3 ýa'e he prfiand, no general or

coir'ee~sve f~w~ .?'~uat .'.-.sa- 1-~on set fn)rti. The purpose of this

-i to na rl-i 111v re~qeciv t;hi Rs it i a t.o an, to nrýsnt an approximate

-jnal1.'t ic sol ot :,)- t',asý ~ilý,s -_ra to,; r-. 0 r flowield features of

lrr) c '*I,, *r3_t -I if io wi smpill1 eccen.t r i rtv

Ir n-. -r Clo1-w I'-~ ~ arbiSrsiry crruss sections can 1e

~~~~' -'-u'h)~ery I ef erence 15, and

v~~trtze-ýr i~o>'*a '2 i t' r f-' R- -nce 11) to account

-,. at 1:()r We _ -l ' . j: - -c * r :1 1--wce'er aro FrPernitent lv



vii

not appropriate for the hypersonic Mach numbers ini flow deflections of

practical concern.

Another approach to the problem deals with flows that deviate slightly

from the basic axisymmetric flow past a circ:ular cone. The so-called schene

of linearized characteristics wai appli.ed (Reference 13) to several conical

bodies with non-axisymmetric cross sections. This method is subject to a

number of criticisms for cross-section areas that Aeviate significantly frno

circles (Reference 16), an- thus a mod.ilication of the linearized

characteristics method was applied to elliptic cones at angle of attack by

Martellucci (Reference 17). In the above use of the linearized

characteristics method, the perturbation enuaticins were solved numerically.

Chapkis (Reference 12), applyin• the linearizer characteristics method, used

hypersonic approximations for the basic cone flow to obtain relatively simple

specific results for an elliptic oue.

nesides the above methods of Com)u':atiCon, there are numerical schernes For

integrating the complete gover-Iing gas iynanic euuations. Two notable schemes

applied to elliptic cones are those of Stocker an, Mauger (Reference 18) an•i

Babenko, et. al. (Reference 7). There 4re ilso se-mi-empirical methods for

dealing with certain features of supersonic flo4s past elliptic cones, such as

tangent-cone methods, equivalent circ-lar-cone methcds, and the method of

Kaattari (Reference 19). Whichever method has been utilize. to date, the

general features of the s.nners:)nic flowfield rast an elliptic cone, showing

effects of Mach number, cone aiqle, an(! ellincne occentricifty on the shocl

shape, tbe shock-layer structure, ani the si:rFace conditions, have not been

delineated.

Thia onl'lertaking starts 4i..h thie 'ial. J-oertjrhdtiorl oqunations for

pert,|rbedi flow past a basJi cir-uIar :0,>(2 A, 7Pe-1 an,'110 of attack and tikes



the approach of Chapkis (Reference 12) for the elliptic cone. Improved

approximations shall be used for the hasric cone flow (References 20 and 21)

and approximate analytical solutiong for the perturbation equations shall he

obtained. The analysis is analogous to that of Doty (Reference 22) and Doty

and Rasmussen (Reference 23) for obtaining approximations for hypersonic flow

past.circular cones at small angles of attack, w] ch was shown to be very

accurate. The analysis is cast in the "orn of hypersonic similarity theory,

and the results are presented in appropriate similarity form.

The perturbation expansions involve a small parameter for the angle of

attack and for the measkire of the eccentricity of the ellipse cross section.

These expansions are not uniformly vaalii in a thin vortical layer adjacent to

the cone surface. It can be shown (References 24 and 25), however, that at

least the pressure and azimuthal velocity component are valid across the

vortical layer. Since these two variables are of most importance, further

conriilerition of the vortical layer will not he onlertaken.

-. Tnyawed Ellintic Cone Body and Shock Geometry

In rectangular ,'artesian cooriinateq, as shown in Fiqure 1, the unyawed

ellintic ,one hodv is repnresentei by

x2 + v_ = 1 ,(1)
X22 _

a zI.

-ta an n -i'i taI L,"he t-inaents if the .semivertex angles of

t-e *•:ii.ninor anl seri~-ajor .eý :)f t'he ellintic cone. In terms of spherical

" "riinae~s, a'-o s "'• 1 ;i'- 1, Dpat jor (1) can hP rew"ritten as

tan t - an * (2)

1 - e cns 2D

L i i7
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where

tan Om v ab = b/ -- e a/--e (3a)

= /ab (1-e 2 )1 /4

e b2 - a 2  (3b)

The parameter e is 8 measure of the eecentricity nf the elliptic cone.

The first three terms of the F'olrier-series representation of Equ%'.

(2) are given by

tan @ = tan 0, [A0 + A- cns 20 + A4 cos 40 +. (4)

where

40 2 K(k) (5a)
IT

A2  - 4 ((2-k 2 ) K(k) - 2E(k)) (Sb)

,k2 /-Tl

A4  A- 2 A- A2  (5c)
3 3e

-<2 2e (Sd)

a e!I

11/2
F(k) -: • /I-k2 sln~u lu (5e)

S/2 "lu
K(ý) (5f)

are the co)mplete elliptic integrals . thf, firsit an-i second kinds. For small

vall'.es o-f thIe eccentri;'itV, e, th :ur ,••oe•Ftcient-9 can be expan.led is



A0 = 1 + 3 e2 
+ 0(e 4 ) (6a)

16

A2 -- - 1 + 15 e 2 + O(e 4 )] (6b)
2 32

A4 = 3 e 2 [1 + 35 e2 + 0(e 4 )] (6c)
16 48

When the eccentricity, e, is small the ',ic,'.ssive Fourier coefficients become

smaller and smaller. For sufficiently small e, the Fourier coefficients for

the higher harmonics can be neglected.

Equation (4) can be expanded for 9 in a Fourier expansion and give for

small eccentricities

6 = 6 - 'E2 cts 21 + 0(C 2
2 ) (7)

where

Stan (A0 tAn Amn) - i s 'n 4i

- m + e2 (3 -2 sin2o 1 sin 20m Di0e4) (a

32

i 2-C A21A0tan•8tn@ [1-(A? 24 A) si?0 LA24 (1+3A02) sin4em + 0(e4),]

-e [1 ÷ e? ;15 - 5 sin29 4- .1 .. i:41 , 4 O(e4)1. sin 2 a, (.b)
4 72 8 4

The parameter E2 is a new meaz;ire of the eccentricity anA In the appropriate

parameter to be use3] in the stibsequent anrk!-'si.•. Vie s ihscript 2 on E: is

introduced here for later conve!nience. The parameter 6 313ecifies the

semivertex angle of the basic -:irrular -one ahout which a pertuarbation

analysiA is t- b'e perforne1 ,.

Comparison of the twi-term approxi -,i:in Ec,,ation (7), with the exact

Equation (2) for the ellir,nti -7r i = :' i 1iour.- 2. When a = 0.2595 and

I F



a:0.2555

b= 0. 3562

K ec 0.320

z 0.2256

b =0. 4034

e z0.523



_'1

b - 0.3562, such that e - 0.320 and Om - 16.30 degrees, the two-term

approximlation gives a good representation of the actudl ellipse. When a

0.2256 and b - 0.4034, such that e = 0.523 and Om = 15.56 degrees, the

representation is not as good but is still a reasonable approximation when

precise accuracy is not paramount.

The conical shock wave attached to the elliptic cone is assumed to have

the form (for a = 0)

as 29- 2 cos 23 + )(c 2 ) , (9)

which is analogous to Equation (7) for the body shape. Here 8 is the

semivertex angle of the basic circular shock corresponding to the basic body

with semivertex angle 6. The factor 92 is to he determined from the

perturbation analysis. It, in effect, represents the deviation of the shock

eccentricity from the body eccentricity.

Ry means of vector analysis, the outward unit normal on the shock is

given by

n. = ea - 2E2 92 sin 2ý et + O(C 2
2 ) (10)

sin 8

This result is needed to establish the shock jump conditions.

b. Soundary Conditions

Let the velocity vectnr For cnnicAl flow be represented in spherical

coordinates by

V = u(8,'4)er + V(:, )e' t w(.,;)ee . (11)

The Fourier representation for the body ani slhock shapes suggest that the

velocity components, oressure, and density 7an he expanled in the following

forms, valid outside the vorti,-al !ayer Aijic.'•-t t>, the body surface (for

a- 0)

12
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u(6,€) U 0 (1) + .-2 U2 (1) Cos 20 + 0(E22) (12a)

v(e,#) v 0 (•) + *2 V2 (3) cos 2 0(- 2
2 ) (12h)

w(84) - c 2W2 (6) sin 2+ 0(C 2
2 ) (12c,

P(6,0 = p 0 (e) + C2 P 2 (e) Cos 2t + 0( 2
2 ) (12dj

P •(8,6) - P0(O) + c 2 R2 (e) cos 2+ 0(+ 2
2 ) (12e)

The lowest-order terms, with the subscript nauqht, pertain to the basic

circular-cone solution, which is presumed known.

The free stream velocity in spherical coordinates is given by

V. Vw[cos e er - s..n 0 -@J (13)

At the sho,-X, -= 8 - E2g2 cos 2ý, it is necessary to first order from

cos (C292 coo 2 0) = 1, sin (c 2g 2 cos 2g) = E29 2 coo 2ý

V= V=r0cos 6 + c2q2 sin r cos 2ý} er

- fsin a - c 2 g 2 cos 5 cns 21} ee + 0(C 2
2 )" (14)

Using •q uation (10), the normal velocity at the shock is found to b6, to

f rst o Mer,

V0 'ns = -Vwsin + c.79 2Q'. cos a cos 2¢ + 0(E 2
2 ) (15)

The shock jump conliitions qive for the pressure ratio across the shock

1= + 21 (Mn2 - 1) (16)

for A thermally ani calirially perfect gas. Here y .s the ratio of specific

hts, Y £cp/cv, an) M' -s the nornal ,nrponent of the free stream Mach

numhter. Substittiting (15) nnto (16) yikl'if

a• = 1 + 2Y (Ks 2 - 1 j - c2 4y KX2 g 2 cot 3 cos 20 + 0(E 2 ) (17)

where KS - M. sin 3.

13
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Equation (12d) for the pressure evaluAted at the shock reaAq

P(Os' - Pf•(as) * c2P2(9s) cos 2÷ 0(c 2 ) (18)

Transferring this value to the basic unperturbed shock by means of a Taylor

expansion yields, to first order,

P(69,0) - PO(O) + E2[ - gP-U) 92 + P 2 (B)1 cos 2* 4 0(c 2
2 ) (1+,

Sde

Identifying the first-order perturbation terms Ln (7) and (9) leads to the

shock boundary conditions for the perturbation pressure

PL(I) = - _L- g2 ',17 cot B + .22 (! ) (20)
pw y+1 P. dO B

For the undisturbed conical flow, the pressure qradient can be evaluated in

terms of the velocity qradient. Hence,

/dea = san ÷ iv dvQ
PMV4 sin 6 ,Co (21)dO dO t

Th•us, alternatively, the pressure boundary condition can be written

P2(8) 09g2V (y B (o9 f• -3 + 1(dvn) /V. cos B" (22,
Y+1 d5

The derivative (dvo./de). can ho #3vaiuatp(l in terms oF the dpn.qity ratio

across the shock, as shown below.

The density ratio across the shock is qiven by

(y-1) M M2 4 2 . (23,

Expanding this expression analogously to that for the pressure, the shock

density, to first order, is obtained:

t__ + r 2r2 c" 2¢ + 0(c2) , (24a)
Ps

14



where

Pa = (),-1)K2 +2 (24b) :1
P()(B (y+1) K8

2

E2 "2q cot 8 [CO -- 1 (24C)
Y+1

An explicit expression for R2 (S) 4s not needed. It can be shown from the

. basic cone solution that

(dvn) -- v os C ! 2, - - '01 (25j
(10 y+1

The velocity components immediately downstream of the shock are obtained

from the governinq conditions on the normal and tangential components. The

normal components of the velocity are qoverned by the mass conservation

equation: "

(V'n)g = a_, (Vo'n), (26)

Ps

The riqht side is determined ta f~irst order by means of (15) and (24): J
(V.*n), Z= -•V sin 3 + E2V- (r0q2 cos r 2 sin 9) cos 20 + 0(E22ý (27)

The left side of Equation (261 is determined to forst order from (10), (11)

aid (12) a3:

(V'n), '- '00(s + E2V2(0s1 cos 2ý + O(E 2
2 , (281

Ta, ,ti-;errlng thi's jaiue to tlie a*nperturbý-,i shock yieldis

v0 (a) + c 2 (V 2 (3• a c2 (dv__ ) cos 2¢ + 0(C 2
2) (29)

d ee

!omparinc •.quatLons ý27) and (2c) l-ads t) the FollowiLng results:

VO(a) = -'o = i (30)

34. +' O (dvn) ( 31a)

151



Utilizing (24c) for E2 now gives

V2($) g2-{2r(.y - %0ý V. cos + ÷ (dvn) ] (31b)
y+, d9

The other two velocity components at the shock are determined from

conservation of the tangential components:

+ A +

V= n 5 V x n (32)

iSubstitution of the First-order expansions and transfer of the conditions to

the basic unperturbed shock yields

un(B) -V= Cos (33)

U2 (8) a 92V- sin (I-FO) (34)

W2(a) - -2g 2 V-(1-'Ol (35)

The needed boundary conditions at the shock have now been specified.

At the body surface, 0 O " cos 2*, the normal velocity must

vanish:

(Vnc 0 (36)

By means of vector analysis, the unit outwari normal vector on the elliptic

cone surface is found to be, to first order,

nc . e6 - 2E2 sin 2¢2 eý + 0(r 2 ) (37)
sin 5

Substituting th..s expression and the velocity expansit'ns into (3.25) and

transferring the boundary conlitions ti the basic circular cone surface leads

to the surface boundary conditions

v( = 0 (38)

V6)= (dv0, (39)
a9 6

Equation (38), of course, is the tanqency cod.tiLon for the basic cone

16



iivv
problem, and Ecuation (39) is th-e -,orlcae hoiin~arv condlition for theIfirqt-:-5rder pertiirhat ion. Ri qnroiiý1IyV, Fo1at i on ( 3 c ) !hrnul have h(,(n obta ined

by matcLchiqb thte oute-r t-xnansirrn wil), ai inner eXjpansirJn ror the vortical LayerA

adjacent to the cone sturface. Such an analysis shows that Equation (39) is

indeed proper (References 24 andi 21;).

C. Perturbation Eqruations

The pressure, density, anM valocitv are qovernid Iny the- equiations of

chanqe for mass, momentum, anil enerqy, plus appropriate eauations )f state.

H~ere the assumption is that the Flow iS inviscid, nonconductinq, steady, and

behaves as a thermally ani caloricAlly ivercect gjas. The task is first to

obtain Pxpressions for the pressure ani -ený3itv* perturbations In terms of the

velocitios, and then FLnallv to )hta;., i qirtile Pciuation for only onie of the

nerturbation velocity 7nmpnenni-s.

vor stealy Fl)w the oteru'., e-jaai.On can hrt xnresse-i in terms --f the

entr-ony, S, as

V* _ -(40)

Thus. <ý*e Flow on ei'rside: -)F t-he shýnc'< is isentropic, that is, the entrooy

almi:t a atreamJl-.p i. a3 const-art. *--f con -,r uniform flow upstream of the

~ -' i hmenropc ince -he. e-ntr)n~v i!n t'-e sa.r'A on~ every streamline before

i Assceg thrcunh t>. shock. il t~e.trc- iq Pxrnan.ied in thp form

= .(3 *co ~ .( 2 ) (41)

then :-p)rlo F-v joatio-. (d le cals t~tersitthat sn is a constant ard

(;~2 :q -r) ;ka@ntn.T's -- lb-r flow mast the basic cone is

)r'<njr own-t-oam olý ''-e sh-. is a i.onstant, thp first-ordler

-itrornv !iprturhatl oc 9enenils onn> -)r. -a;ivtial ul tsi . This result is A

'! -1il nn t1-P h:7zi rr .ca~ ~~ ~d i~rfaceP 1. a s~trearl qurface



that has a constant entropy, since arvl. is a vector that is perpendicular to

the surface s(0,0) = constant and is Ils- ;nernendiciilar to the velocity, which

itself is tanqent to the boly surface. Thus expansion (41) is not valid in a

thin laver, called the vortical laver, aliaaent to the boly surface. Only the

pressure and azimuthal velocitv are ,vii'F,-rmllv valil across the vortical laver.

I'rom the thermodynamic state relation for a perfect aas

ds = an - , !o (42)

it is deduced that the First-order pressure ani density nerturbation satisfy

the relation

y- ¥ R = -.2. = cont.nt (43)
pq(9) pO(e) cv,

Another relation between the presmir,- an! lensity perturbation can he

found from enerqy considerations. Sin-e t¾ip unicorm flow upstream of the

shock is homenerqic (constant t-tal 5!tlai•v• ana I-or-nernic across the shock,

it is also homener(ic lownstream o, t'be •¾.',. Thus for a perfect qas,

y 2 = -y n. + %12 = constant (44)
y- 1 a y-1 -

Suhstitutliqg the perturbation forns (12) into this emiation anI extracting

the first-order perturbation vields

P)(9) - R)(9) = - Y-1 __ , n u/),'2 +v.VV 2 ) (45)
rO(,) of)( ) Y D 0

This is a relation between the ;,ressore anr, riensitv perturbations in terms of

the velocity perturbation.

EYuations (13) and (4z) can he solv:,' snparately for the pressure and

dens'ty perturhations.



= - r~( 0 F 2 (47)

where AL)2 ( 0) E 'yp0 /pO is the srpeel of 'u~il sciuared .n tlhe basic Unperturhed.

f low, an(I

r2 -constant (48R)

The pressure anI density Per r)-ationns are thUR leterMinedi in terms of the

v'elocity mzrtijrhaticnns. The ronsta-y --2 ca be obt-ainedi fromr the shock

boundary conditions

F2 P~~ +112"~()r,() -'m('3) V2 (a);,

-hc nornentu-' erripi-iorn fo-r irxigCýil steady flow' ±8

-Vx 'p (50)

wh ereP

+V (51a)

~~ per t ir t )n t'ý ecpa1 'i S a.- A ti7' iritýý F.-uatir'n ( 5')) , the

first~-ordtkr nprt;-rb,,-tion ermlatirnr-a ~ e i-v-.ei, andi it is

c ~2,t) tu) x .; -7(-p2-~ ~ cus 2ý (52)

-~ .'~ - --~.-, .--. 4



The first-order vorticity nerriirhatior. has the components

Q2r =sin 2 [ ('[ N sin 1) + 2V2' (53a)
r sin 8 10

S2=" sin 2 2U2 + "2 sin 8• (53b)
r sin 6

= cos 2. -_2  (53c)*

r

In addition,

V 0 x 02 = er(vOS12.) - e8(ufl26) + e.(uO0129 - v0•%r) (54)

From Equation (S2) it can be leterminea that

wo x 2',))*e, -

It follows from (;4) that ',I) ( (1, andi hence that (

7• ( /56)

-98

Thus Fquation (54) reduces to

%0 x a2 = e (*InQ? - v• '2 P

The $-component of Riatton (52) can ;'e writte,i as

uOQ2e- vO2r -2 [L_ untr2 + vnV 2 . sin 2ý (57)
,fn r sin 6

The pressure perturbation P 2 can hb#e iminate-I -v yleans of Eauation (47), an'i

results in

"uQ9 - vn)22r = -2an 2F7 sin 2. (58)
"r sin 0

20



where an 2 (8) E ypo/p0 and F 2 is a constant given by (49). By means of

(53 a,b) Equation (58) can be further rewritten as

v0d__ (2U 2 + W2 sin 8] + u0 [(2J2 + W2 sin 8] _2F, a 0
2 (8) (59)

do y

Introducing the integration factor

8
1(8) -exp J (2a) de] , (60)

8 V0

allows integration of Equation (59) and provides

8
2r12 + W2 sin - 2F, an2I dO (61)

y I 8 v0

The constant of integration vanishes by virtue of the shock boundary

conditions (34) and (35). Equations (56) and (61) give V2 and W2 in terms of

U2 . It remains to find a single equation for U2 .

Mass conservation is aescribed by the continuity equation

4

div(pV) - 0 (62)

When the perturbation expansions are substituted into this equation and the

first-order perturbation extracted, the result is

4 4

div (R 2 cos 25 to + P)V 2 ) = 0 (63)

ith the basic mass conservation equation accounted for, this equation can be

rearranged to read

+ 4

div V2 = -vO-V (Rj cos 20) - VZ , 7cO (64)
PO PO

Tf it were assumed that the density varies so slowly that it is approximately

a constant, then the riqht side of Equation (64) can be set equal to zero as

21

•' - •'I I • ' I I II I I • I I • l••



+

an approximation, and a relatively sirnnle ecauation for V2 ensues. Note that

the ritTht side does, in fact, vanish at the hody surface, 9 = d. This

so-called constant-density approximation leads to remarkably accurate results

for the basic-flow solution and for the flow past a circular cone at angle of

attack (References 22, 21). These constant-density approximations were

justified a posteriori by comparison with extensive numerical tabulated

results. Such comparisons are not so available for the elliptic-cone problem

of present interest, and hence more attention must he devoted to the terms on

the right side of Fuation (P4).

Now eliminate R2 (8) in Equation (A4) by means of Eauation (46) and

utilize the followinq basic-flow results:

a dP1 dan 2  1 d Mn2 + vn 2 ) (65)
pOd O ( d3 y-1 19 d0 2

EQuation (64) can now be expanded and written in the form

[1-A] dV2 + cot 0 (1[-]V2 + (2 - 4 - C)! = - 2(2I + W? sin 9) (66)
9sir-0 sin O

where

A(O) v 2 (67a)

R(O) tan 8 (u0 v + 4) {2 + (y-1) v 21 (67b)
an 110 an'-

C(8) v (i + (y- 1) (U " vn)' (67c)
1in7

The factors A, q, and r in Feviation !6) arp variable coefficient3, an! they

stem from the riqht side of Fluatinn (64). I! the cone surface 9 , the

fActors A, A, and r all vanish since vyli) 1n. At the 'pck surface =,

the factors A, A, an '7 take t')e ',lu'eq

22
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Lg

(Y+1) - ýO(Y-1)

4 (6Rb)
(Y+1) - •nWy-1)

C(B) n - 2(y-1/y+1) cot 2 S , (68c)
(y+1) - ýr(Y-1)

where the undisturbed shock len';itv ratio, %, is qiven hy (24h). In the

hymersonic limit, K• S and A(S) takes the value (y-1)/2y. Thus for y = 7/5,

A(8) - 1/7 for K8 X . Fror hYpersonic flow it is thus safe to neglect A(9)

compared to unity. Since A(6) = 0, it is thus reasonable to neglect A(O)

always except perhaps very near sonic ronditions, for which A(8) - I when

Ký=1. Likewise r(6) is small comparel to (2 - 4 csc2 •) in the coefficient of

H2 for all values of K(. Thus C(O) should he negliqihle in general since it

alsý v*anislien at 9 .T'n factoýr n(ý) v.aries Inet-ween (Y+I)/y for Xp= an!

2 for Ka = 1, an.i thus apparently should not he neglected compared to unitv.

moreover, the factor (1-R) changes sign between the shock and the body. On

thp otlier "and, if A, P, and ,T are all nealeý7tedi, tlie resulting differential

eauatlon still behaves properly at th: : orv surface since A, R, ani ,2 ,anish

there ank,wa~v. in adlition, the req..l-1tia ieconl-or~ler lifferential equation

mu satisfy the two boonAarv conlition- I-)r "2(3) and %2 (3) at the shock.

Thiu';, even t'oiqh :,, ', anI fie ne.l~teA, the resulting solution shoulA

a-, i,.-e roerlv at b(th si ien of te shnck layer, and presumably also in

between. Ns mentionel earlier, neqle:-ti- ;a, B, and c( yields good results for

tie cir-zular cone ao a-olp o: atta-ck.

r"ve: thou•ih it i.q inteniel e:entiillv to nbtain an approximate solution

h, ne4lecting r, q, and r, the reqs n- ::an he justified still further by

recastina the iiffero:ntial e';uatitn -i in inteora' equation. qenlacino VT2 by

(i6) and 1ý7- w (i ;, en,7~'rittar. as

2)3



U2" + cot 112' + (2 - 4 csc-9)'12 = - 4 H + H2(0) (69) 'i
Y sin8-e

where
e~I!!
0f" "10 a-2 I M9 "70a)18B vn. .".A

1 2 ( ) At 2 " + n cot 0 r,21 + CUT2  (70b)

When H0 and H2 vanish, a solution to ecuation (Ac) i. Tr2 = csc 2 T. This

suggests the substitution

U2 = ((O) csc 2 0 (71)

Equation (69) can now he written

X' )' 4F H9) + H-(8) (72)
s-n " y sin79 sin 0

Two integrations yield

0
X(O) - X(S) + X'(S) J sin3 9 4.0 (73)

- i4F9  [sin3 e H (6) dlý 113 + J sin'40 J 7(9) de] C39Y ýqi 8 sin 9y 8 B Rin•f B sn

where

X(S) UP(S) sin2 I

= q2 V= sin3 8 (I - %) (74a)

X'( )= 2  in 2 8 [(4y - co '.', c-s 8 + (.jv) (74b)

.hen X(O) is known, the velnr'i' ornntq are determined by

U2(8) =(75a)

"2(• C',t / s"n51 73



W2 (6) = (-2U2 (:) + 2F 1 o HO()/sin 0 (75c)
Y

The shock eccentricity factor g 2 's 4etermined by satisfying the surface

boundary condition (39) anA then soivinq for q2 " Equation (73) is an integral

equation because the unknown function X(3) also appears in the function H2 (o).

d. Approximate Solution for Hypersonic Plow

For hypersonic flow in the limit %¶ + and sin 9 + 0 such that the

combination K Z M, sin 9 remains finite, the basic cone flow can be

approximated accurately by (References 20 and 21)

un(0) - 1 - sin2 6[sin2 e/sin2 6 + 2Zn ((sin B/sin 0))J/2 (76a)
VW

Sn)= -sin 0 HI - sin2 .5 (76b)

and the relation between the shock and hody anqles is given by

sin y+1 (76c)
sin 5 / 2 (MZ n sin

Now restrict computations to small angles Auch that sin a e and neglect

4econd-order terms in (76,. The resultq are

2 "z 1  (77a)
VW

- - 2) (77b)

(77c)
3 = .+1÷+ 1

where K6 7 K.5 is the hypersonic 9imilarity parameter.



With the approximations (77a,h), the int~qratinq Factor I becomes

I - ((R2 - 52)/(82 - 52)) (78)

In the evaluation of the function H'n(e) given bv (Ina), the speed of sound

squared &02(e) varies only by a few percent across the shock layer. Replace

it by a 0
2 (8), and the function Hn(O) becomes

Ho(O) = a (1- (79)v= ,v

Thus are attained

9

(8 14 "') 19 ,2 0' z ' (5 62 52)
(Hfl)

_4__ (cos-1 $S - cos-1 6) + 82 4-2 - 923
~[

26V $-6

The first approximation solution for the intearal eaJuation (4.35) is

obtaines.. by neglecting the intparal involvina Ii2,(a), which is the same as

omitting the factors A, R, anI C in the oriqinal 'iifferntial ecmiation. The

results are

U2 (e) = X(O) + X'() (34 _ B)) + r [ (5 -
=8 aT 2 V' 31 62 387

+ 82 (cos-1 - cos- 1 6) + S2 + 62 - 11 (92)
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V2(o 2X(R) + X'(a) (~+ 6 + f2 1 (1 + 62
672 07 a, 623=

+ 0 (coS&1 '5 -Co,-l 6) -82 -62 ( 83)
-- 6=8 30

W() 2X(S) -X'(B) (04~ -$4) - ¶2- f)7-- 7- 1 2

+ (COS- 1 'S-coS1 5) + __2 + 62 (84)
a~ 6 6-0' 3=0

where

f2E- 2F~an 2 (a) = 2c 2VOO sini a cOs 63(l -0

x- 2g 2 VW.e(l - ý,2(85)

X(B) = -2 kS 3 (l - C)(86a)

X uB 2 8
2 [( jj - 311-) V. + (dvn) ) (86b)

tv2 g2 V-0 2 [(y-1) - 4(Y+1)'j (86c)

Exprrtssion (86c) 1-3 thie approximatir-,'- cn,!siqtent wit'i f-he velocity

at,, .O)imation (77b) , tnat is,

(d~) -V.,,j + 52) (87a)

V. 0 (87b)

1 52 (97c)
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The shock eccentricity factor, q2 , can now be determined from the

boundary condition

V2 (6) = (dvn) - 2VO (88)
dO 6

Solving for 92 from Fquation (83) yields

(-8 { B cos- 1 (6/a) - a- } + (1 - 03)( _

4 ~g2  3
2

+ 1 -_} (6 + B3 ) (8)

2 Y+.1 ýq 5

Denoting the basic-cone shock-body ratio by

a B y41 1 , (90)I V 2 2

one obtains

2 ( 3 cos-1 (1/a) + 6 (;6 + (2) + 3a4 - a2_ 5 (91)

g2 603

The shock eccentricity factor, q 2 , is plotted in Figure 3 as a function

of K6 for y a 7/5. For KS - 0, which corresponds to the limit of linearized

theory, the eccentricity factor tends to zero, g 2 + 0 that is, the shock

tends to a circular Mach cone. Wor the limiting hypersonic flow, K6 + -, 92

approaches the asymptote g2 - 0.955, and the shock tends to embrace the

elliptic cone body. The shock, however, is always less eccentric than the

body. When Kd + - and y + 1, then B 1 6 and 9, + 1, and the shock embraces

the body, in agreement with hypersoni.c Newtonian theory. The angle-of-attack

shock eccentricity factor, g 0 , obtained later, is also shown it, Figure 3 for

cuir, rison.

The f..rst approximation for the velo'city U2 , given by Equation (82), is

plotted in Figure 4. The hyper3onlic similarity form gives U2 /V=6 as a



I
K'

hO

I II
I
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function of 9/6, Kx, and y. Because the thickness of the shock layer varies

as a function of K6, the shock layer is normalized by means of the variable

8' 69-6 (92)

The body surface corresponds to 6' = 0 ani the shock surface to e' - 1. At

the body surface U2 /V.6 is insensitive to variations in K6, having

approximately the value unity. At the shock surface, U2 /V-S is quite

sensitive to variations in K6. In the hypersonic limit K5 =, UJ2 /VI&

increases only slightly from the shock to the body.

The velocity perturbation V2 /Vm is shown in Figure 5 as a function of 9',

y = 1.4, and various values of K5. The variation of V2/V, across the shock

layer is analogous to the variation of Ti2 /V05, except that V2 /VM is equal to

-2 at 8' = 0 as imposed by the hounlary con.dition, Equation (88).

The azimuthal velocity perturbation w2 /V- is shown in Figure 6 as a

function of 9', y = 1.4, anI various values of X6. At the shock surface,

W2 /Vm increases as K6 increases. For K6  2, the variation of W2 /V. across

the shock layer is very slight. At the lir;%y sur'ace,W2 /V. decreases as K5

increas s. This is shown also in Ficnirr -. When Y6 + 0, W2 (S)/V- + -2 which

is in agreement with linearized theory. In the hypersonic limit KS ,

W2(6)/V. becomes asymptotic -) the value ).A59 for y = 1.4. The correspor.ding

angle-of-attack contribution, 4(•)/VSa, discusser! in Section 2, is shown in

Figure 7 for comparison.

e. Evaluation of the Approximate Analysis

Let the first approximation for the inteqral Erquation (73) be denoted by

U2(0), which is given by Equation (82). "in h integral Equation (73) can

be written, for small anqles, as

30
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U2  ti2(
0 ) +. 'J 2 (c) ,(93)

where

U2 (c)(6 1 sin3 a E2(6) d9)1
sin 9 sin 8

1 J3 W~ ( t2(9) dO) d8 (94b).

Consiler now an approximate evaluation of the correction function U2 (C).

Towards this end we utilize the well-known convergent iteration procedure for

Voltera-type integral equations. The f.:rst step is to substitute the first

approximation U2 (
0 1 into H2 (

0) and the" evaluate rJ2 (ý'). Expression (92p fo~r

U2(
0) is fairly complicated and does not lend itself to a sim~ple analytical

evaluation Of U2(c). Figure 4 shows, however, that IJ2(
0)(8) can be

approximated by the simple formula

7()=(6)2 G(8,K6 j (96&)
VWS 0

where G(e,K6, is a sliowly varyinq function nO 6 and KS, beina approximately

unity. It now follow~s approximately that

U;10 ___7_0 -2 (5)3 C, (96b)

U2"(0)_ = 'SS- (96c)

since 0 is nearly a constant. Again it- may he verified that expression (96b)

jives a reisornahle ipproximaritin to Piqure 5.



Substitution of expression (96) into (95) and then (94b) yields

0

u 2 (c)(e) = U2 (0 )(9) J 3 ( J [ 6A - 2B + C I d6) de (97)

In the evaluatiotn of A, B, and C, given by Equation (67), set a 0
2 (e) = a 0

2 (S)

since a0
2 (8) varies .by only a .ew percent over the shock layer. With the

approximations (77a,b) the result, for small angles and with z 3 9/6, is

A = Nz 2 (1 - 1 )2 (98a)

SB 2 N (1 - 1 [2 + (y-1) Nz2 (1 - 1 )2) (9gb)

C = - (y-1) N2 Z2 (1 - 1 )2 (98c)

where

N r V. 2 62  2a2  (99)

where a /6, given by (90). With the formulas (98), the integral in (97)

can be evaluated, and the following expressions result. -

u (c)(8) -4 in (a) + (o 2 -z 2 ) (3 + 5
NU2

0 ) (6) z 2 3az

+ (0 4-z 4 ) (- 3 + 1 - 5 )

+ (y-1)N [2 in (a) - (a 2 -z 2 ) (1 + 7

z 4 j7O

+ (0 4 -z 4 ) ( 3 - I + 7 - 1 - 1 )I (100)
A 7 2 -27,7 RJ 1-639 6a- z4

At the shock, z a t, the correction vanishes, U2 (c)(S) - 0. The largest

correction occurs at the body surface, z = 1, so that

UO(0)26) = -4 in a + (a 2 -1) (3 + 13 + 7 - 5 )

NU 2 U(u)() 4 =a -3 a

+ (Y-1) N [2 in - (o' 2 -1b (3 + 31 + 7 - 11 + 1 )j (101)
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The correction factor U2 (c)(6)/U2 (0)(6) is shown in Figure 8 as a

function of K6 and y 0 1.4. In the hypersonic limit, KS =, the correction

factor is approximately -0.0073, and thus the error in the first approximation

is about one percent or less. As KS decreases, the correction becomes

slightly more negative, being approximately -0.015 at K6 - 1.7. As K6

A
decreases further, the correction factor increases from the minimum negative

value and becomes zero at K6 m 1. Further decreases in K6 give a rapid

increase in the correction factor, becoming 0.75 in the limit K = 0 which

corresponds to linearized theory.

In the hypersonic flow range, the first approximation, obtained by

neglecting u 2 (c), is expected to be very accurate. In fact, this is true when

KS6 ) 1. When KS < 1, the first approximation is less accurate. Note,

however, that the correct limiting results for X6 0, which correspond to the

limiting case of linearized theory, are recovered. This is true because the

perturbation U2 itself vanishes when 6 + 0 and also because the surface

boundary condition V2 (6) = -2V, is enforced on the first approximation itself

(which produces the first approximation for g2 ). The surface boundary

condition is always exactly enforced. Thus, although the linearized limit K6

Z 0 is recovered, the approach to the linearized limit is in error. Because

the results are correct at K6 - 0 and very nearly correct at X6 1 1, the error

in the range 0 < KS < 1, while greater than for K6 > 1, is less than that

inlicated in Fig ire 8.

The a'nove observations are born out by the results of Doty and Rasmussen

(Reference 23) for hypersonic flow past a circular cone at angle of attack.

Their approximate analysis oas analogous to the present analysis, but the

results could be comparel extensively with well-known tabulated results. The

agreement was very goo0(. Thus, whereas extensive tabulated results for the
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elliptic cone do not exist as they io for the circular cone at angle of

attack, the above error analysis an-i the experience of Doty and Rasmussen

justify confidence in the present analysis.

f. Surface Pressure on the Elliptic Cone, Comparison with Experiment

The pressure on the surface of the cone is given by (for a - 0)

p(Bc,#) - p0 (8c) * CP 2 (ec) cos 20 + 0(C 2
2 1 (102)

where

8= - Cos 20 + 0(C 2
2 ) (103)

Transferring the expression (102) to the basic cone gives

p(ec,o) - po( 6 ) + c2[P 2 (6) - (1 2 cos 2* + 0(e 2 ) (104)
d 6

At the cone surface, the gradient of the basic pressure, Po, vanishes since

v 0 (6) = 0; that is,

(2En) = -PO(S) v0(6) ru0 - dZ) = 0 (105)

dO 6 dO 6

Hence

p(Pc,O•- p(6) + CP2 (5) cos 20 + 0(E 2 ) (106)

The pressure coefficient, C., is defined by

Cp = (Ppp) (107)
(y/2) M2

Thus it can be w-itten

CP c= po r 2 Cp 2 cos 2ý + 0(C 2 ) (108)

where

CPO •(109a)

2

r-2 2P (5) (109b)

39



T'e pressure perturbation is given by Equation (47), and since v0 (d) - 0, the

result is

P 2 (6) - -P0( 6 ) u0 (6) U2 (6) + po( 6 ) F2  (110)

Using the previous results for the first approximation, obtain the hypersonic

similarity form

C 2N4 pn(6) -a
2(a) t>(tS)(1)K-- D p aO2 (•) V•6

where

pn( 6 ) + 1 K6 2 (c) (112)
PC* 2

and N is given by (99). From an analysis of the basic cone flow (References

21,22,23) are the expressions

(y-1) 92  !n C2 +1 -1

a 2(6) + 1 , (113a)
(02-1)a(2a' + y + 1)

( 1 + 02 ln 02 (113b)

Figure 9 shows Cp2 /6 plotted as as function of K5 for y 1.4. For K6

0, the result is Cp2 /6 = -2, in agreement with linearized theory. In the

hypersonic limit, K6 -, Cp2/6 approaches the value -3.811. Thus in the

hypersonic limit, the surface pressure coefficient approaches the form

C = 2.094 - 3.811 ia cos 2ý + O2) (114)
6

Surface pressures were measured on two different elliptic cone models,

each at free stream Mach numbers 3.09 and 6.0, by Zakkay and Visich (Reference

26). The geometric properties of these mtodels were as follows:

40



-- 44

I

3

C
P2

• 2 55 
p 17 . 0 .

K.

i .uTUr - 2. " (- ,t•:~-,: ""t , t7 e BOd' Iu rfac e



b•1

Model I Model II

a - 0.2555 a = 0.2256

b - 0.3562 b = 0.4034

- 0.320 e = 0.523

Om = 16.36* em = 15.56Q

I2/5 - 0.155 C2/6 u 0.266

- 16.640 = 0.2904 rad 6 16.28* 0.2841 red

These two models have the same cross-sectional areas for the same station

along the elliptic cone axis. 4 circular cone with the same cross-sectional

area has a semivertex angle of 16.79 degrees. The experimental data are

compared with the results of the present analysis and also with the analysis

of Martellucci (Reference 17). Martellucci used an extension of the so-called

linearized characteristics method. This method essentially uses the

first-order perturbation equations utilizia in the present analysis, but takes

a finite number of terms in a Fourier series expansion to represent the shape

of this surface. Martellucci used the first six terms. (In view of the fact

that the Fourier coefficients for an ellipse decrease ii magnitude like powers

of the eccentricity, e, as seen in Equation (6), it would seem that a

higher-order theory should be utilized to accommodate the higher-order Fourier

coefficients. In this sense, the linearized-characteristic. method does not

seem to be entirely rational, at least for the ellipse.) The perturbation

equations were integrated numerically by Martellucci, but the general results

corresponding to the present analysis were not obtained.

Figure 10 shows the pressure distribution on one quadrant of model I for

the elliptic cone for Mo = 6.0, which cr)rresponds to K6 - 1.747. The present

results agree very well with the data rn the major and minor rays (• 90 and

180 degrees), but give pressures that are too large in between. The overall

42



agreement is good considering that the perturbation theory should be strictly

valid when £2 « 6, and this condition is met only marginally. The results of

Martellucci give slightly better agreement with the data, but probably not

enough to justify the numerical computational effort.

Figure 11 shows pressure-distribution data on model II for Me* - 6.0,

which corresponds to KS = 1.724. This model is substantially more eccentric.

than model I, and the condition C2 << 5 is certainly not satisfied.

Nevertheless, fairly good agreement with the present analysis definitely

represents the overall trends of the data. The results of Martellucci do not

appear to give substantially better overall agreement with the data.

Figure 12 shows the pressure-distribution data on model I for the smaller

Mach number, M% = 3.09, for which K6 = 0.900. Again the present results give

good agreement with the data on the semimajor ray, but the data are lower

otherwise. The overall agreement does not seem to be quite as good as for the

higher Mach number M. = 6.0, which might be partially expected on the grounds

that the approximate analysis is less accurate at K6 = 0.900 than for K6

1.747. The results of Martellucci give a little better agreement with the

data between the major and minor rays.

Figure 13 shows the pressure-distribution data on model II for M = 3.09,

for which K6 = 0.998. The agreement with the present analyses is fairly good

no*-: the major and minor rays, but poor in between. Again, for this large

value of eccentricity, higher-orler perturbation terms are probably required.

The linearized-characteristics method used by Martellucci picks up

hicher-orier harmonics in -ourier representation of the ellipse and thus shows

somewhat better agreenent w:itl the data between the major and minor rays. In

view of the large value oEr 2 , however, there are probably higher-order
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perturbation terms that are of the same order of magnitude as the higher-order

Fourier harmonics.

The pressure force on a finite-length elliptic cone is given by

F = - Jj p(O,) n dS (115)
S

where S is the area of the slant face, and

ac - E2 cos 2ý + 0(C 2 ) (116a)

n = ee - 2cp sin 24 eý • 0(c 2 ) (116b)

sin

dS = r sin Oc dr df + 0(E 2
2 ) (116c)

p(ec) = PO( 6 ) + CP2(6) cos 2ý + 0(c2) (116d)

When the integration is carried out in the range 0 ( p < 27 and 0 < z 4 H,

where H is the length of the cone axis, the result for the cone drag !q

F'ez po0 ()A 0(E 2
2 ) , (117)

where

A = r42 tan2 6 (118)

is the base area of the basic cone of semivertex angle 6. Thus the drag on

the elliptic cone, ignoring terms of order c22, is the same as the drag on the

basic cone of semivertex angle 6 having the same length.

g. Elliptic Cone at Angle of Attack, Comparisn with Experiment

Let the freestream wind be inclined to the axis of the elliptic cone such

that the incination angle, a, is measured in the x-z plan', shown in Figure 1.

Let the coordinate system remain fixed to the body so That the z-axis is the

axis of the cone. The surface boundary conditions iimain unchanged. The

shock shape can now be represented hy (Reference 22)

as = 0 + a00 cos € - C29 2 cos 2ý + 0(a 2 , E2,C 2
2 ) (119)

where g0 is the eccentricity factor associated with angle of attack. Assume



Sand £2 to be small and of the same r•"ler of naqnitude. Since the

first-order perturbation eauatinns and hounlary conditions are linear, the

angle of attack problem for the circular cone can be superposed with the

elliptic-cone solution at zero angle of aLtack, The subsequent results for

the circular-cone angle of attack problem were obtained by Doty (Reference 22)

and Doty and Rasmassen (Reference 23) by an analysis very similar to the

foregoing analysis for the elliptic cone. The angle-of-attack shock

eccentricity factor was found to have tihe form
-I3 -- 2a2 [3 - 4(1+y2)3 - [o,~ 2 -I)I' in 1u + (02-1)1/23

go = f +1 (120)

5 2{1-I 2 )rI + 402* - ,:(. 2 _j)1/ 2 - in lo + (02-1)1/2i

Y+1

where a is given by (90) as before. This function is shown in Figure 3.

The first-order expansion for the flow variables outside the vortical

layer can be written a.;

u(0,0) u0(3) + acU0 (3) cos p + c 2 U2(6) coS 20 (121a)

v(+,ý vo(l) + 1'3(0) cos c 1 c 2 V2 (9) cos 2ý (121b)

w('3,5) ) sin + 4 2';2(4) sin 2ý '121c)

p(0,•) ~~ ~ ~ CO = 29 ý()c• Z,()cs• (121d)

p(9 €) P9 (' + . f; (. c s 2.. -- , 2(: o• 2 t (121e)

Thr upper case variahles wit"> t>' suhsc.int zero notation pertain to the

iut on f,:r flow at 2nole • -A"Ac :c - i cir::ular cone.

The pressure on t-e h,),y :fýc;. g given by

+ ?-., c--s r F2P 2 (") COS 20 (122)

) -p (5) !V " *( pO(,O) F0  (123)

i
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isiU - -2 + 4C5_s + o3 a+ _na /37- (125)

2 Y'=C--2-

which is analogous to expression (110). In terms of the pressure coefficient,

Cp = CpO CpO Cos + ÷2Cp2 cos 2ý (126)

where _

C 2N p p(0) PO(W) - a 2(a) Un(V) (127)

In the calculations presented in References 22 and 23, the ratios p0(W)/p0(8)

and a 0
2 (0)/a 0

2 (6) were set equal to unity consistent with their

"constant-d~nsity" approximation.

The angle of attack perturbation ,ressure coefficient given by (127) is

shown in Figure 14. When K6 , 0, the limiting result of linearized theory is

recovered, ()p/6 - -4. When K S , the limiting hypersonic value is CD0/=

-4.0936. Near K6 - 1, there is a small lip in the curve. As K6 approaches

zero, there is a small overshoot in the curve which does not occur in the

exact theory. Over the range of K6 , the value of Cp0/6 does not differ

greatly from -4. in the hynersonic limit, K5 =, it is possible to write

C 2.094 - 4.084 (a) ccos 1 - 2.811 (._2) cos 20 (128)

correct to first orler in a and r. Expreýision (128) indicates that a/6 and

E2/6 should be qufficiently small in orler f:r the perturbation analysis to be

valid.

The present results for surface rr.osure at MS = 6 and angles of attack

of a, - 5 and 10 deqrees ,re shown in Fiqlir.-s 11i a-H 16 for models I and Ii.

The results of Martellucc- are shown f,'r comnartw•n together with the

enperimental data of Zakkay ari Viqich f)r a- 10 degree';, which is a large

enou:gh ingle •-- atta;k t: -) r d irisa '2 -• nri . The present
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results agree well with Martelluccl for both models for a 5 degrees, the

worst agreement being on the leeward ray, • - 0 degrees. For a - 10 degrees, I

the two results are in fair agreement for the small-eccentricity ellipse, I
model I in Figure 15, except near the leeward ray of the elliptic cone. For

the large-eccentricity ellipse at a - 10 degrees , model II in Figure 16,

agreement between the two results is good only near the windward ray. For i

model II at a - 10 degrees , the combined large values of a/6 - 0.607 and C2/6

0.270 render the first-order perturbation theory invalid, especially near

the leeward ray where the separate perturbations are additive.

The normal-force on the cone is found to be

F'ex =CNa q n M 2pmA + 0(a2,C 2
2 ,aE 2 ) (129)

2

where the force F Is defined by (115), A - fH2 tan26 is the base area of the

basic cone of semivertex anqle 6, and

--O 1 fa(130)

is the a-derivative of the normal-force coefficient.

The moment about the cone vertex is

NM - -. JJ p(6.) r x ncds (131)
S

Evaluation of this integral gives

M - eyrCMa a y M•2p+HA O + ( 2 , 2
2 ,F-2,O) (132)

2

where

CM= 2cN - 1 Spa (133)

3 36

is the a-derivative of the moment coefficient.

For conpleteness, the drag on the illiptic cone, (117), can be rewritten

in terms of the axial-force coefficient. If the base pressure is reckoned as
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7 po then

F.eZ CA M ?,. 2 Pa,•A + (a2,E22,.2 (134)
2

where

CA. C 0  ( ) 2 (135)

and Cpo is given by (113b).

The ratios Cp0/6 and cpo/6 2 depend only on X6 and y. They are

insensitive to K6 when K6 is large. Thus when K6 is large, that is, for

hypersonic flow, the main effect of the cone cross-section shape is determined

from 6. For slender cones (small 9m), take from (3a) and (8a) the alternative

forms

6 = Yab [1 + 0(e 2 ), (136)

S = b ,1-e [1 + 0(e2i

The cross-section area of an ellipse is proportional to the product ab. Hence

when the cross-section area is held fixed, the force coefficients are

independent of the ef-centricity e when terms of orier e2 are neglected.

On the other hand, when b is hel4 fixed, then 5 varies with the

eccentricity to the first power. The normal force and moment are independent

of 6 when X6 is large, but CA decreases with increasing e when b is held

fiYvd. Thus the lift-drag ratio increases when b is held fixed and e

increases.

h. Concluding Remar~'s

General flowfield results for tIe h%,'ersonic flow past an elliptic cone

have been obtained. Tne results are valtl for large Mach nmbers and small

strean deflections such that the hypersonic cimilarity parameter, K6 I M.6, is

fixei in the limitinc4 proce.:;. The results are more accurate for large K6 (K6

) 1), but the proper linearized theory result is recovered when K6 S 0. The
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eccentricity factor, e, in the analysis must be small in the strict sense that

C2/6 "( 1. Comparison with experimental results indicates that C2/6 need not

be very much less than unity, but merely moderately less than unity, for

acceptable engineering results. In addition, the angle of attack should be

such that a/6 << 1 in the strict perturbation sense. An important feature of

the analysis is that the basic circular cone angle, 6, has been well Aefined b
in terms of the geometric properties of the elliptic cone.

The methodology of this analysis can he extended to other cross-section

shapes. Each term in a Fourier expansion of the cross-section shape can be

handled in an analogous manner and accurate, approximate analytic results

obtained. Strictly speaking, however, the cross-section shapes should deviate

only slightly from a circular cone in order for the perturbation analysis to

be valid. Moreover, successive Fourier coefficients should not decrease in

powers of the basic expansion parameter, for then corresponding terms of

higher-order perturbations become equally important.

2. ARBITRARY CROSS-SECTIONS

Here more general conical bodies are considered, whose cross-sections

deviate by a small, but arbitrary, amount from a circle. The cross-section is

expressed in terms of a Fourier series for the polar angle of the conical

body, ec, as a function of the azimuthal angle 4,

8c= + en cos (n(t- tn) (137)
n=1

Here 6 represents the half-angle of the basic circular cone and the en are

parameters that describe the leviation of the cross-sectional shape from a

circle. For example, E2 measures the elliptical eccentricity. This

perturbation scheme assumes the body deviates slightly from a circular cone at

zero angle of attack and thus the £n are presumed _c be small compared with 6.
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The angles *n describe the relative phase of the various Fourier components.

in what follows, the governing equations and boundary conditions for

these conical flows are first derived. Next using the "linearized

characteristics method of Ferri et al. (Reference 13), the small disturbance

equations and the simplified form of the boundary conditions are derived. A

"weak polar crossflow" approximate solution to these equations is then

obtained. Further results are found using the hypersonic small disturbances

approximation. Comparisons of these results with experiment are then given.

The stream surfaces and possible waverider geometries that derive from these

stream surfaces are then discussed. The section ends with some concluding

remarks.

a. Governing Equations and Boundary Conditions

The equations expressing conservation of mass, Newton's second law, and

the first law of thermodynamics (in both entropy and total enthalpy form) for

an inviscid, adiabatic, steady flow are
+

7 (PV) = 0 (138)

p 7V = -Vp (139)

V Vs =-0 (140)

V * 7 (h + V2 /2) = 0 (141)

Take the state equations to be of the form

p = D (p,s) (142a)

h = h (p,p, (142b)

Equation (141) can be integralt-, to give the result that the total enthalpy

h+V 2 /2 is constant along streamlines. Since the freest.eam conditions are

assumed to be uniform, the total enthalpy is zonstant everywhere. If the

pressure and density are eliminated frDin the continuity and momentum

equations, then



0 = v -v (V V) (143)

(Dh) + .

1 (•) Vs 1 V (V2 ) + + I V ? VV (144)
p 39 p (3h) 2 (3h) a

ap p -FP p

It is convenient to adopt a spherical polar coordinate system (r,e,ý)

aligned with the basic circular -one with origin at the cone vertex (Figure

17). In this case, Equations (141), (143), and (144) become, assuming conical

flow (e.g. a/3r = 0),

a2 = y-1 (VM2 
- u2- v2 

- w2 ) (145)
2

0 u(2 - V2 + w2 ) + V cot 8 + (I - v2 ) ay (146)
a- a7 38

+ (I -w 2 ) 1 aw -vw( I av + aw)
a7 sin 8 Tý aT

0 =V au + w au v 2 - w 2  (147)
ae sin 8 a¢

a 2 9s = u - w w w av + uv - w2 cot 8 (148)
YR DO TO T0 sin 9 T

a 2 2s = -u vu - vy + v sin 9 aw -' uw sin 6
"YR B30 • a¢a

+ v w cos 0 (149)

Here VM is the maximum attainable velocity for the given total enthalpy h0 ,

VM = v2•, and a is the sound speed. Squations (145) through (147) also

assume a perfect gas model for which Equations (142) reduce to

p = p (p)Y exp (s-s_ ) (150)

PM cv

h y R (151)
y-1 p
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The boundary conditions for this problem include the shock Jump relations

and the condition of zero mass flux through the body -- the so-called tangency

condition. The shock jump conditions can be written

pava lie PsVs n. m (152)

mfVo + pns = mVs + psn. (153)

m (ho + V002 ) m (hs + V 2) (134)
2

Here the subscript s again refers to conditions just downstream of the shock

wave and ne is the unit normal to the shock (Figure 17). The freestream

conditions are taken to be constant with velocity Vw at angle of attack a in a

plane at angle " to the X-Z plane,

A AVm - Vo [cos a e, + sin a cos *Oex + sin a sin On ey1 (155)

The tangency condition on the body can be written

V I nc = 0 on body (156)

Here nc is the unit normal to the conical body.

The component of the freestream Mach number normal to the shock wave,

M~n, is given by
+ + + (157)

M~n = M. 'is ; MV = V__
aca

For a calorically perfect gas, the shock jump conditions can be rewritten

4

V.onf= = (y+1) M..n2 (158)
÷ Poo (Y-1) Mon

2 
+ 2

Vs'n.

Vw x n. = Vs x ns (159)

a= 1 + 21 (Mýon2 - 1) (160)
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As in ((2y Mn 2 
- (y-l)) ((y-1)MMa 2 + 2) ' (161)

Cv y4l (y+1) -n2I

. For conical flows, take the equations describing the shock wave and body

as

shock wave: 0 = Os (#) (162)

Ebodyt *6 .8c . (163)

In the direct problem being considered, 9,(€) is given and 0,(0) is to be

determined. The angles € and • are introduced so that

ns Cos ee - sin C eo (164)

n,. cos e - sin , e. (165)

where

tarn I d- , tan • 1 d . (166)
sin s dS se ir. ac da

The expression for the normal component of the freestream Mach number can then

be rewritten

Rmn = r-•• Cos a sin& " C. : (167)

: sin : cos 6 cos cos (0 - os

+ sin a sin C -,in t• • )

Equations (158) and (1,9) can he solved for the three velocity components

dow>.,nstream of the shock wave in the following form

11,,= COS CLCOS co + sii .X Sin, -3 Cns (.
v= ( 168 )

va -Cos a sin e Sin .a Cos -ý C-s •-.
V•~( 169 )

- 2 (1 - I )-[Cos2ý(-cos . s;-.", + sin a cos 3 Cos ( -0)

+ --OS ; Sin • Sin a* sin (€-$0)"



yA -sin a sin (0-00) (170)
VC0

+ 2 (1 - 1 )[cos ; sin • (-cos a sin B + sin a cos 0 cos(•-• 0 ))
y+1

+ sin2 ý sin a sin (€-t0)"

Here 8 is to be evaluated at es•f). The tangency condition on the body

becomes

0 v 2 cos - w2 sin • (171)

with 0 evaluated at Oc(O).

Equations (146) through (149) give four nonlinear partial differential

equations for the four unknowns, u, v, w, and s. Equations (161) and (168)

through (171) give five boundary conditions. Thus the un1nown shock shape

0s(ý) can also be determined. Once the velocity an! entropy are known, the

pressure coefficient, C.,

Cp =e 1'p_ I2)

2

can be determined from

Cp = 2 ((V 2 V V2 ) y-1 exp (- s-s_ ) - 1} (173)
YMM' VM R

It is convenient to introduce tCe following normalized variables,

+

VI D S• -p= , S - sM , P = P_ , a = a__ (1-74) 1
vat CVO0 cv pW VW

Dropping the bars for simplicity, Squations (146) through (149) can be

rewritten as,

0 u (2 - v 2 + w2 ) + v cot 9 + (i - v 2 ) av + (1 -w 2 )

1 1 3w - vw 1 3v + aw) (1'5)

sin e Tt a' Zin 5 ? 30

0 V au + w - V2 w (176)ae sin 3 3¢



r4

a2  8e -u au -au w aw w av + uv - w2 cot e (177)

Y(Y-1) a a 7e sin e To

e12 Do = -u au - 3v + v sin e aw + uw sin e vw cos 0 (178)

Y(Y-I) 30 3 T

where a 2 is given by

a2 .- 1 (VM2 
- V2 ) , M- 1 + 2 (179)

2 (y-lj M2

The boundary conditions on the velocity are still given in Equations (169,

through (171) with the left-hand side of Equations (169) and (1701 replaced by

u, v, and w, respectively. The boundary condition for the entropy s becomes

_ Y
s In {(2y M.n 2-(Y-1i) H 2 2 at 9 -8 (10)

y+1 (Y+1, Mwan i at0 8 (1)

b. Linearization About Cone at Zero Angle of Attack

Assume that the Flov'field is coni.cil a~id deviates slightly from that for

flow past a right circular cone at zero angle of attack (Figure 18).

Furthermore, expand the flowfiell variables in a Fourier series in the

azimuthal angle €,

u u 0 + a U0(R) cOs(ý-0 0 ) + ' .n tyn (e) col (n(O-$) (181)
i-I

v v0 + a 'VO00 1 cos('ý-Oc + ZE n Vn COS cos (0(-¢n)) (182ý

n~ 1

w = o W0 (9g sin(1I-¢0j 7 r.n W, (9)n sin (n(T-On)) 11831
n=1

S S -+ a S0 (01 cqs(ý-P) - F n Sn (9) cos (n(ý-ýn)) (184)

n-1
costt-t1

Si

I I I I Iinl
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Lower case quantities with a subscript zero refer to the basic flow at zero

angle of attack past the circular cone. The deviation from this flow due to

angle of attack a and deviations of the cross-section from a circle (cn) are

described by the U's, V's, W's, and S's which are functions of the polar angle

6 and remain to be determined.

Substituting these expansions into the governing equations and boundary

condition, and equating coefficients of powers of a, en to zero, provides a

hierarchy of problems, the first being that for flow past a right circular

cone at zero angle of attack. The governing equations for that problem are

2 u 0 + cot I v0 + dVn = (yL)2 (u 0 + jvA) ý186)
dO a 0  do

0 = vn dun - V 0
2  (187)

dO

a d - u0 dun -+- u 0 v 0  (188)

y(y-1) d8 de

with

a.2 0  -1 (VM 2 
- a 0 2 -v02) (189)

2

The assoctated boundary conditions are

e= ; un - coe (190)

v, ' -Io2 2  0)

sin 9

or) in [(2y M,2 sin2O-'+1)((y-1) M.2 sin2 O+2) 1 (191)
Y+1 Y+1

0-6: v (192)

The nuattonnn f•r the first r'jr1•r (e.q. of .,rler a, c,,) problem are"

"I r the -4H4t n-0 correspon I.,i , i I I- i .' , ,, re•4n he Lny at anoIe of attack a,
*;• * slv , i i,. by fE iat|,,n ( • ) , |.,,•r, ii fhA the term n2  Wn csr"

t,,' , , van i w •,l•, rtn•4 •' l w t ),,:i,,no•: "r,.)•i .



2tUn + cot 6Vn + V + n2W ncsce ( 193)
de

- y 2 [U~ - 2 + -

a0  a0  do a0 do

+ 2 Vn dlnvn] + (ya)[2 MnVn]
do an a0

Oin du dU - 2 voVn

do do (194)

-an
2  4S,-uo (V.1-dU11.) (195)

Y(Y-1) do do

an & 2  Sn - U0 Un +- VO Vn V0 sin 9 W (196)

y(y-2) do

+n(un sin 8 + v 0 coo 8

iZ) ... l4 (197)

a0  2 n An an ao

The associated boundary conditio~ns are

8: a0 -o (dun~ + sin 0) + sin 8

VO- go(dv +4 v 0 cot 6 .2 -(-)M 2 sif 2 o
do 2 + (Y-1) t4. snz

+*v cot 9 2 - (1-1) M 2 in 2 oI2 + (y-1) .w simZ8 (198)

so-q 0g (4sh - 4y(y-.1j(M,2 sin2O..1) 2 cot 0 ) (199)
do (2yMa. 2 DiV0-(y-1))((Y-1)M 2 Siflz6+2)

- AAH)Mm2 sin2g_1)2 _cot e
(2YMoj~vn'S-'y-1l)((y-lMm2 sin28+2)

in 0 9n (du + sin 0))

-n -9n (Ita + vi "t 0 7 - ty- K.2 in 2 e) (200)
10 +R n



Wn I n_2 (1
Y+1 ;ia2 sin2 0

Sn =-qn (dsn- 4y(Y-1)(Mw2 sin 2 e-1) 2 cot 0
dO (2yM.sinO.-(y-1))((y-l) M.2 sinz6+2)

6=: v 0 0 (201)

Vn 2u 0  (202)

Equations (194) and (195) can be used to show that Sn is constant and that Vn

equals dUn/dO. The result that Sn is constant is not valid on the body

surface. The body surface is a streamsurface and the entropy must be constant

there. The perturbation approach gives s = s0 + aS0 (cos 10-h0) + E En Sn Cos

(n(ý-On)) which is not constant on the body surface. As a consequence there

is a thin payer near the body surface, the so-called vortical layer, where the

results of the regular perturbation scheme are not valid. Munson (Reference

27), Melnik (Reference 25), and others have studied conditions in the vortical

layer and have shown that the resalts ohtained for the pressure and azimuthal

velocity by means of the regular perturbation approach are valid in the

vortical layer, while the results for the radial and polar velocities and

entropy are not valid there. The methods of singlar perturbation theory

allow correction of the i nadecua7ieq of the regular perturbation approach near

the body and thereby provide i uni.-ormly valid solutioa. No attempt is made

her- to deal with the vortical layer a- Lt 41il1 not affect the results of

i "mFreit in this report

Eauation (196) can now be vewrittsn

" an2 n - d__ (Jn + Wnn 3" + 2a (Un + W sin 0) (203)
"f(y-1 )v 0  d6

4, -. 1 r. ho f rina' .y i' i f o4xa r '1i- t!) i

1/2 1

r n ( 204i -)

-,n



e y-1
I an do

oos v 0 (-v 0 sin8 )Ii'

"- -Fn (0)

noting that (U11 + Wn sin 9) vanishes at a = 8. Eliminating Vn and Wn from

Equation (193), results in*

d2 U + cot 6 dGU + Un (2-n 2 csc 2 6) n2 Fn(8) csc20 (205)

.2 a uu + (y)2 [U, + d 2 uL . 2(uo ÷ d + 2 v d 'I

a) 2 ~__n_+_2 __a va2uo+_vwA

a0 ao do ao dd a 0  v 0 do

with boundary conditions

8 - 0" Un - -go dun + (1-g 0 ) sin 8, n - 0
do

" "gnd ( + m in , n > 0 (206)
do

dUA" -"go (dva + (1-go) vo cot 6 2 - (y-,) M.2sin2e ,n-0 (207)

do de 2 + (y-2) m.2sinie

""2gn (dvn + v cot 2 (y-I) _Mw2sLin2e), n > 04A
do 2 ÷(Y-2) Mwlsinze

0 - 61 d = 0 , n a 0 (208)
do

S2u, n > 0

Once r~n is determineA, Wn follows from Equation (204) and Vn follows frnm

vn .. dun (209)

The disturbance sound speed an can be ovaluAtf.4 from Ejuation (W9). The

constant fin is given by Equation (199).

*AY ain, on the casi n-0, the term r12,fjf.,?( Ifn hcJ (,1 c,.9,7.r) ff, and the term
n 11n asr,20 becomus r" c,,.20.
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The pressure coefficient Cp con al3o be expressed as a Fourier series

expansion. Substituting for V and s in Equation (45), provides

Cp - Cp cos (-0) + CnCpn cOs (n(-n)) (210)
n-i

where

CpO 2 f(VM2 -un 2 -vn 2 ) exp (-sn) -11 (211)
YpO Z VM - 1 Y-1

Cpn = -(CpO + 2 ) { L +V (212)T: Y-1 v- VMZ-un -voz

c. Weak Polar Crossflow Approximation

An approximation introduced earlier by Rasmussen (Reference 21) that

allows closed-form analytical results to be obtained is exploited here. These

approximate results are surprisingly accurate over a wide range of conditions

and are particularly simple to use. The approximation invoked is the

"weak polar croesflow approximation" corresponding to the limit v0 /a 0410. The

term (vo/ao) 2 varies from its maximum value at the shock to zero on the body,

0 C ( 2 )2 (v)2 - (0-1) M1
2 sin2 9 + 2 (213)

a 0  a5f shok 2y M1
2 Sin2 e - y + 1

For M. gin 8 large, the upper bound to (v 0 /a 0 ) 2 becomes (y-1)/2y (- 1/7 if y -

1.4). Ignoring terms of orler vW/ra) in the governing equations reducep the

eq-,K'olons to forms that can be solved analytically in terms of known

f .i-tionq.

Ignoring ternis ,r order fVO/ad) 2 in Equation (187), the mquations

4o)verni.nq flow pasi. a right. cirniilar como at ;.nro angles of attack and yaw,

Equht ,ons (197) t'iroJgh (110), ,-an •hP r^-iucP,1 t-

12U + Cot 0 1u + 2ur, - 0 (214)

V() . 1un (21S)
10



a02 1: (VM2 
- u 0

2 
- v 0

2 ) (216)

2

sn in ((2yMn2sin 2 8 -y+1)((Y-!)Mj 2sin 2 S+2) Y (217)
(y+1) (y+l)Mw2sin20

with boundary conditions

e u0  cos 0 (218)

dun- - (Vm 2 
- cos 2 0)

de Y+1 sin l

e 6: dun 0 (219)
de

Equation (214) is Legendre's equation whose solution can be written

u0 = AoP(UJ) + BoQI(u) (220)

(P - cos 0). Here P. and Qn are the Legendre functions of the first and

second kind, respectively. In particular,

PI(P) - ) , QI(tj L in (1+1) - 1 (221)
2 1-P

The boundary conditions, Squatiorts (218), allow the constants A0 and BO to be

evaluated. The results are

DO 1 + r(I-0 2 )Q1 (U) (I - V 2 2)]
Y+l 1"lz P We

(222)

Eo u(1-u 2 ) (1 - .- v 2  - U2 )1
Y+l1 * I 7 #- j IJ O

Here • cos The cone angle ( osI Ub) follows from

, - y 1 - (223)

y+1 1- U l

Now apply this weak crosaflow approximation to the perturbation problem,

Equation (205). Eqtiatinn (205) contaii•, terms o.l the right-hand side that are

order (Oi 0vo/a 0
2 ) and (vo/ad)' rPlatlv, *-.) terms on the left-hand qide. The

terms of order (v 0 /a 0 ) 2 on the riqjht-hanrl qtL( are %gniformly --411 compared to

like terms retained on thi, lnft-han I n In il tfhie weak polar cro-atflow



approximation. This is not the case, however, for the term of order

(u 0 v 0 /a 0
2 ). Specifically, comparison of the term 2u 0 v0 /a 0

2 du 0 /dO on the

right-hand side with the term cot 6 dUn/dO on the left-hand side, demonstrates

that their ratio varies from a maximum at the shock to zero on the body. The

value of the ratio at the shock is given by

2 (uaa)(v.) = (y÷I)[ - (y11) 2 (l + 2 )] (224)
cot-- ao ao -8s - Y+1 (y+1)M..Zsin76

which is not small compared to unity. Nonetheless, the term 2(u 0 v 0 /a 0
2 )

du 0 /dO on the right-hand side shall be ignored for the following reasons.

First, this term is relatively important only near the shock. On the body it

is identically zero. Second, although the resulting governing ecquation is

some.-hat inaccurate near the shock, the solution Un is still required to

satisfy exactly the boundary conditions given by Equations (206,207). The

r•e•ults obtained by ignoring this term compared well with experiment and other

more accurate numerical solutions.

Thus, in the weak crosseflow limit, Equation (205) reduces to*

d 2 U + cot e dU_ (2 - n 2 csc 2 0) in = n2 csc 2 0 rn (0) (225)

The boundary conlitions remain unchaigel and. are given by Equations

(266,207,20R). Equation (225) ig formally the nonhomogeneous associated

Legqnire equation of order one and degre.e n. If it is noted that Qln(8) is a

s-,!. tion of the homogeneous A.qiation*, where

n/2

Q~n - (-,I)n (,-, 2 ) , cos (226)

thern the nolution of (225) can he writt.nn as

*Again, when n-0, tho term n2 c(c 2 0 Un hcomus c-c20 U0 and the term n2 csc 2 8
Fn becomes coc 2  r0 v

-ri-'e riinctkin sin 9 iM alq'4 A f,'ple'n,*.,r/ s, 'hution for the came n 1.

"69



Un(e) n 2 Q1 n (a) i de' J Fn (6") co
V- Q,1 1 (01) sin ' el 0

Qln (cos e") d6" + AnQ 1 n(e) f dO'
6 On 2(e') sin 0'

+ B. Qln (8) (227)

The boundary conditions, Equations (206,207), allow the constants An and Bn to

be evaluated as

Ar (sin d n - sin 0 Qgn dUj (22A)
dO dO 8-8

B n Un (229)
QIn 9-8

Equation (208) allows determination of the ratio gn of the shock displacement

to the body perturbation.

The integrations reqaired to evaluate Equation (227) for Un(O) cannot be

carried out in closed form. For this reason it is useful to consider a

further approximation and to restrict attention to slender bodies. in this

way, explicit results can be obtained which are quite useful.

d. Hypersonic Small Disturbance Approximation; Comparison with

Experiment

I
Consider now slender bodies for which, +, n O in order to retain the

essentially nonlinear character of supersonic-hypersonlc flow, also require Ma.

to be large so that

Ke Mw sin 9 (230)

is finite. The limit 0 * 0, M, b sucli thAt K9 - M. sin 0 is finite is the

hypersonic small dtstujrhance aprfroximntion limit.

In the hypersonic qmall rint.,rhanc,. approcienation, the solution for flow

past a right circular cone at inro an,jl-q of attack and yaw reduce to

F7



Equations (76). These results allow eviluation of the function Fn(B) that

appears in Equation (204). Ignoring the varia'.ion of ft across the shock

layer in comparison with the variation of vo, jrovides

1/2
Fn = -8G [D - (KA2-Kh) 1 (1-g 0 ) , n 0 (231)

s Kb

1/2
OG [1 - (Ka 2 -Kh 2 ) ] gn , > ) 0 (232)

KS2-Kb 2._

where

G (Ke2-I) 2  ( + r-1 Kb2 (2- K)) (233)
Ksd (2y Ksi-Y+1)((y-1) Ks2+2) 2

In this hypersonic small disturbance theory limit, Eauation (225)

becomes*
d2U + 1 du- - n2 U, - n2 Fn(@) (234)

with boundary conditions given by Eouations (206,207,208),

0-0: Un ' -g0 62 + @ , n = 0 (235)

g 52 , n > 0 (236)

dU +g 0 (1 + S2). (I -g 0 )(1 -2) 2 , n - 0 (237)

do 57-72+ (y-1) Koa

- i g (1 + 2) (- 2) 2- (y-l) K2 , n > 0 (238)
9" 0" 2- (y-1) XK

8-61 dUn - 0 (239)
dO

M - 2 (240)
a 0

Equation (234) has been int.eqratel expliSotly for n 0, 11 2, 3, 4. While

tho integrations 1ro somewhat lahoriugs, there is mo particular impediment to

,-)n',1ev.ration of larqer i•. The result:; for the first five values of n are

givo1 r-1 Co.

'Again, when n 0, the ternn n2 11n /02 an•1 r,2 Fn/0 2 h•,oie P0 /8
2 and F0 /9 2 ,

reietively.
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I -

1/2 /
1o - -OG(1-gO)[-1 + + + 3 (92-62) + 282 + 62 in (0+(02-62)

4- 4 02-S48(Bz-Zz)1+ )

4" A0 8-1 + (241)

1/2 (2_2)1/2)
U, 8 Gg1l-1 + 8 + 3 (e2-62) + 282 + 62 (0+(2-62)48 4 4 9c 82-5:") 1fZ8 (S . ) /

+ A 16-
1 + B10 (242)

.... 5/2

U2 - 8 (@ 82 - 4- e4($262) + 2 (e2-62) + 04

0 26 2a262 5 2(62-.62)T77 6 2

3/2 1/2
-2 (302+262) (e2-62) 3 - 2+262 (82-62)

156' (67-862)1-2 6

94/2 1/2 a
- 84 _ _ (tan- 1  (82-62) / tan- 1  (82.52) )-2 6 (OZ-6z) r/7 -67--

+ A2 -2 + B2 82  
(243)

U3 " •0_G (93 - 06 + 30 (2-262) 1/22) 2 2(262) 224)

e3  -2-6T 2 - 7 767 3 12

1/2
+ 3 64 in (8 + (62-62) 1/
"76 (Bz--.2)127 8 26 (9 17z2) 1/ e

+ A3 e" 3 + 303 (244)

le4 3/2

U4 G 0 - 4(302 + 2S2) (02-62) es 8

15 6 = 46$

- _ tan-1 (02-62) 1/2 + 2(0 2 -6 2 ) ((02-62) + 2(02-82) + 62)

d/2 3 8

- 1 (92-62) ((12-6.2) + 16 2 (92-6 2 ) + 0264)1

4W =- 7 0

+ A4 894  !1404 (245)
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The constants of integration An aivl Bn are given by

An _ (u0  0 60dU) , n = 0

2 dO

$n ("n - dU , n > 0 (246a)
2 n dO 0=

Bn I (U0 + 0 -dU) n= 0

28 do0=

B -n (Un + 8 dUn) ,n > 0 (246b)

2 n dO

Having determined the U , one can then compute V W n, A , C pn, and gnn ' n ' n n pn-

from Equations (194), (204) , (197), (212) , and (240), respectively. Cf

particular interest is the shock--body shape relation g, surface pressure

coefficient (C '0), and flow' streamsurfaces. TVe first two quantities canpn

be easily measured while the latter quantity is useful in developing

wavericer geometries.

Differentiating Equations (241)through (245) with respect to 0, results

in expressions for V0 , V1 , V2 , V3 , and V4 . Evaluating these expressions at 8

= 6, allows determination of the ratiý) mf the body perturbation to the shock

nerturbation, gn. The result9 are

1 1 + G 1- 02 + in (o + (u2-1)1/2)
-- 7- -

+ 12-1 04-1 2-(y-I) K.2  (247a)
4 4 97 2 (y -I 1 S

1 = I (247b)

g1  1-9ge

1 " G[- 0(0 2 +2) - ,' tan"1 ((02-1)1/ 2 )] (247c)
9 2 gL 2 ( a Z - I) 'I /

+ J4-1 + ,14+1 .2+1 + 02-1 2-(y-,) KC 2

174 a,' 2+(y-1) K, 2

".,'

mU + !



1 3[-304 -9 02 -9 %1/ ln(0+(o2-1)1/2).
73- 4 16 72- Y2 (a2_1) 7"

+ 3 06 -1 + 06+1 (o2+1 + U2_1 2-(--) X.2) (247d)E o-a- • o-T2+(y-1) ,s

are ~ 4 a :i7:~;¶ 2 as a

1_. G + [ 0* 3 - 2U5 + U_7_ + 9(02-1) (1303 - u5 + 23a)

g 2a' 2 2 8• 16 15

+ a tan"1 ((oF2-1)I/2)] + 08 _1

+ o8+1 (a2+1 + C2_1 2-(y-1) K.2) (247e)4 =a =a= 2 + (y - 1 ) Ks

where a is again the ratio of the shock angle to the cone angle for the

unperturbed right circular cone, a / and is given by Equation (77) as a

function of K6. Typical results ol-rained from E~quations (247) are shown in

Figure 19 for y - 1.4. "<ote that the linearized thieory result an =0is

obtained for X6 = 0. Also as Ký increi'ses, the relative distortion of the shock

shape decreases. Other nwnerical results, r~ot shown here, show that these

results are not very sensitive to changes in y for y in the range of 9/7 to

5/3.

Equations (216) through (212) can be used to evaluate the surface

pressure coefficient. Rewriting these results in the hypersonic small

disturbance theory similarity form,

C - C +) + Cos COO (n(ý-n,) (248)

provides, on the surface of the body,

ý N I (Y ÷ 1 ) K A2 + 2 i n ( =+ 1 + I ) (2 4 'a)

(y-l) X6
2 + 2 2

= - I( + 2 ) gn{ 4(K R2 "I) 2  (24%b)

.4 [Jn(f) ;'K. 2

• 1 + yl-- K•; (t÷21n c)

2

7, 1
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respectively. Also, for the angle of attack cas~e (n-0), gn in this equation

becomes -(g 0 -1). The radlial component 11n of the perturbation velocity is

given on the body surface by

Utn() - aG{ol - 3 (ai - 1 in (o (02-1)1/2))

0 2+1 -(02-1)2 2-(y-1)X1.
2  (250a)

2 2= "• (y-I)Ksa

I__ TJ() U(6) (250b)

6gl 6(go-1)

2  ,5 aoG (0
2-1 + (02+1)(02-1)2 02(o2-1) + (02-1)2

Sg2 2 02 2 10

- (1 2 -1)(30 2 +2) + (a2-1) - 022

30 2" I (250c)

1 1 tan-
1  ((02_1)1/2-i

2 (7- -/) T77

-0'4+ 1 - 04- 1 ((12 + I + (02- 1) 2-(, n-y ]2

24-(y-1)Kg.

ZI =L ac, (03 - I - C6-1 + ,' (U 2 -1)(C 2 - 3)

Sg3  23 2 4

- (q - 1 In (i + (,2-1)1/2,

- .6, 1 (J6- 1 ( 2_-1 +(12 -1 ) 2 - (y- I1) K ,2 ) ,( 5 )

2 •-'T- 6,Y''-T 2-+(yf- 1) "K.•

4 (,j2-I)(3o2+2)- u8-I (,,2-1) 2  H

6415 4,32 4

2-i + 3) + 2(c'2-1) (((1.2-1)2 + 2(o2-1) + 1)
7 7 5 3

1 1 2 1 "' +1

~--7
jN I (,12 ÷ 1 •,12_1) ;,-_.•-I)K 2)(2 •e

aq ' ~2• •- K.
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i :Typical results for the surface pressure coefficient are shown in Figure 20

Ifor y - 1.4. As Cp0 is equal to the negative of Cpl, only the latter bas been I

plotted. These results achieve a hyper'gonic limiting value as KS + - which

agrees well with other known solutions. For example, for n - 1, the result

CP1 /S taxes on the value 4.046 which is to be compared with 4.088 obtained by

Cheng (Reference 24) in a separate analysis. The linearized limit, KS + 0, of

Equation (250) yields

C + 4 as K6 +0 , n ) 1 (251)S-n

This result agrees exactly with the linearized theory result of Mascitti

(Reference 15).

Figure 21 shows a comparison of thie present theory with the experimental

results obtained by Chan (Reference 2P) for flow past a right circular cone of

half angle 6 - 15 degrees and freertrea.- Mach number M. = 10.4 and various

angles of attack. Provided the angle of attack is small compared to 6, this

flow corresponds to a shock wave whose shape deviates from a circle (in

cross-section) by an amount proportional to cos 0. Figure 21 compares results

from the present theory for the surface pressure coeFficient for n - 0 wi-h

ex:,.erimental results for a/6 = 0, 0.2, 0.4. The comparison is quite good,

althiough the error ines qrow as ca/6 increaise, narticilarly nar the symmetry

The I)r"-gent resultg For n - 2 are [ienticAl with those of Section 11.1

and thus the comparison of the thepry with experimnenf nhall not be repeated

here. w•hile the present analysis A0oul¶ allow inclusion of the -ontribution of

t"e c 4 cos(4(#-•4)) term to the solitinr, such a procedure would not be wholly

systematic as it wdoull ignore the equally important (asymptotically as C2+0)

2cintrihution of the second orier terms proportional to ' 2D . The C4

contribition does give a slight improve'neit in the comparison between the
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experiments of Reference 26, and the theory of Section 1I.I. This comparison

does, however, suggest that the secovid order terms proportional to 2 ust be

included if a useful improvement is to be obtained.

e. Streamsurfaces and Waverider leomotries

The streamsurfaces of the flowEieli aro surfaces composed of streamlines

which, in turn, are the field lines of the velocity vector. The streamlines

of a given velocity field can be Aetermined from the solution of
+~ +

cr x V = (252)

where r is a vector giving position aloqg the streamline. In spherical polar

coordinates Equation (252) can be: reduced to

dr - r d5 = r sin 8 d (253)
1.1 v w

It is convenient in the prese.it analysis to introduce a new polar coordinate

X, definei as

A -(254)

Then X varies from zero on th7e boly to ,3nity at the shock. Now

dO = (9s - ec) [dX 4- ( 3' + X 0,' - 9h') d• (255)
as

9  
s s - b

For geometries which deviate slightly from that of a right circular cone,

6c W 6 + O(Cn) and S = 6 + 0(!,cn). Tn this case, Fquation (255) reduces to

19 = (ý-6) dX + 0 (3',n) (256)

and Equation (253) becomes

dr - r(S-6) d% = r sin ((6-6) A) de (257)
u v w

with errors of order (arn). The velocLty field is given by Equations

(182 through 184)

u - u0 ÷- arJ0 (O) cos(-,,0 ) + Z c, Un(e) cos(n(O-On))

in



v = v0 + av 0 (e) cos(p-1 0 ) Z-En Vn(a) cos(n('-ýn))

W = aWO(e) sin(t-$O) + 7 En n Wn(6) sin(n(O-On)) (258)
n

Thus, to lowest order, Equations (257) becomes

dr = (8-6) un dA + 0 (a,cn) (2S9)
r v0

(8-6) dA - d__+ O(3,Cn) (260)
aW0 sin(ý-ý0 ) + Z En n Wn sin(n($-On)

v0 sin ((6-6) X) n

Equation (259) can he integrated to give

x

r = ri exp ((8-6) J u_ dX) (261)
Ni V0

where ri and Xi are constants of integri. an, correspond to the streamline

passing through the point r Int .tion of Equation (260) in closed

form is impossible, in general. However, for geometries that can be"

represented by a single2 rourier co:nponent in t, a rather simple resu]tý can be

obtained,

x

tan(n (ý-ýn)) = tan(n (Oi-tn)) exP[Cnn 2 (8-6) Wn d ] (262)
2 2 Xi v 0 sin((8-6)X)

Using the hypersonic small iisturbance theory approximation, the integrals

that appear in Equations (261) and (262) can be evaluated approximately.

TýP- results

r 2 - 621/2
r = ( "2 - 52; (263)

n2c " (F '-u ) b

252
tan(n (i-4n)) = tan(n (($i-ýn))(9 2  n 2 62) (264)

2 2

Re--ritten here are the results in terms of L cather than X. ?Also, in carrying

cut the integration in Equation (262), (Fn - un) has been approximated by its

value -n t'he boy.

'1



Typical results from Equation (264, are shown in Fiqures 22 through 25

for n - 1,2,3,4, respectively. These results give the projection of the

streamlines on the unit sphere. These projections are referred to as the

"crossflow streamlines." For a given n, the number of crossflow stagnation

points is 2n. One-half of the stagnation points are of the saddle point

variety while the other half are of the improper node type.

These crossflow streamline results can be used to develop a series of new

waverider geometries. That is, since the streamlines of any inviscid flow can

be interpreted as a solid boundary, these streamlines can be used to generate

new lifting body shapes. While the generation of the new lifting body shapes

will he the subject of a subsequent section, vigure 26 shows some possible

results.

f. Concluding Remarks

The results obtained should be particularly useful because of their

simplicity and ease of utility. The determination of the pressure acting on

a body has been reduced to rather simple formulas. The dependence of the

pressure force on the body shape, free-stream conditions, and ratio of

specific heats is explicitly demonstrated. In addition, the associated

streamsurfaces allow new classes of lifting bodies to be developed by means of

the waverider notion. In this way, practical lifting geometries can be

developed which avoid shape corners, wings of zero thickness, and other

unrealistic features.

3. LONGITUDINAL CURVATURE

In this section is developed an approximate analytical solution that

illustrates the general features of a supersonic flow past a pointed body that

differs from a right circular cone as a result of small longitudinal

curvature. When combined with the earlier resultq for the effects of angle of

82



Fl - -.

I
I I

- I-

I

I
'1

I

) - - I .- �-______



/

/

I/

-, = 1.4~

t2 : 'l r 2KIj- 4 :t- )



I
- I

I
(

I;

1.*

-, 1.4



M•=I.I

S=1. 50
1~.4

0n

Fique 2. Cossfow tremlins, os



�fli� ,1

*1U
V
5'

i

1'11



attack and deviations of the cross-section from a circle, these results allow

the supersonic flow past rather general body shapes to be described.

Others have investigated zhe problem of supersonic Clow past a body with

longitudinal curvature. Hayes and Probstein (Reference 29) describe the well

known empirical tangent cone method. The shock expansion method of Epstein

(Reference 30) has also been used to analyze such flows. Van Dyke (Reference

31), using the nonlinear hypersonic sirall disturbance theory, has analyzed the

flow past ogival-shaped bodies. However, none of these earlier approaches are

completely analytical. They all require numerical integration or the use of

tables. In contrast, the present work yields results which are given

explicitly in closed form. As a conseTience, these results are easy to use

and lend themselves more readily to preliminary design applications.

a. Governing Equations and Boundary Conditions

In spherical cc:ordinates, as show-ý in "igure 27, the pointel

axisymmetrical body at zero angle of attack that has slight longitudinal

curvature is represented by

9c = 5 - rf(r) (265)

where 6 is the semivertex angle of the basi- riqht circular cone ani C is a

small parameter. The curvature function f(r) is an arbitrary function of the

radial distance r and depends upon tht- given shape of the ho.ly. For C small,

the curvature is given by E(2f' + rf"). The shape of the associated shock

wave is represented in a similar way

9s = - cg(r) (266)

where a is ncj).e of the shock wave of the basic cone an, g(r) is a function to

be deterrained.

Since the longitudinal curvature is proportional to the parameter £,

which is assumed small, tho various flow field variahis are expanded in
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powers of c,

u(r,f) = uo(O) + cU(r,B) + 0(E 2 )

v(r,8) - vo(e) + CV(r,8) + O(C 2 )

(267)
p(r,e) - po(e) + OP(r,f) + o(C 2 )

p(r,O) -p(G) + CR(r,O) + 0(C 2 )

The variables Uo, Vo, Po, and PO are the two components of the velocity, the

pressure, and the density, respectively, of the basic right circular cone

flow. They are functions of the polar angle 9 only because steady, supersonic

flow past a sufficiently slender right circular cone at zero angle of attack

is a conical flow. The terms cU, £V, eP, and CR are the first order

correction terms due to small longitidinal curvature. They depend on r and 0

but are independent of the meridian Angle 0 because the perturbed flow is

still axisymmetric.

The velocity, pressure, and density arI governed by the eauations

expressing conservation of mass, Newton's second law, the first law of

thermodynamics, and the various equations of state. 4ere, it is assumed that

the flow is inviscid, adiabatic, And steAdy and that the gas is calorically

perfect. The equations expressing conservation of mass, Newton's second law,

and the first law of t.hermodynamics can then be written

V'{pV) - 0 (268)

O[V(V 2 ) - V x (V x V)] - -Vp (269)
2

+ Y * constant (270)
2 Y-1 Y

s = S(p,r) (271)

Using these governing equationq anA th- expanston expressions for the

perturbed flow field variables, derive the equations qoverning the zeroth

order and the first order flows for sta-idy, homenergic Flow of a perfect gas.



I7
The expansion of the energy equation, Equation (270), by means of

Equation (267) leads to

un 2 + Vn 2 + _ Ea- constant (272a)

2 y-1 P0

and
P 0 (Y-1)(u 0 U + v 0 V) + YP - Ra0

2  (272b)

Here a0 (e) - (Yp0/o 0 ) 1 / 2 is the speed of sound in the basic unperturbed flow.

It is apparent that the zeroth-order equation is exactly the same as that of

the unperturbed flow. The first-order equation can be interpreted as an.

equation giving the density perturbation in t~rms of pressure and velocity

perturbations.

The momentum equation, '/uatlon (269), can be expanded to give

po[V(vn'vn) - v 0 x curl v0o -Vp 0  (273a)
2

and

p0 (7(v 0 "v) - v 0 x curl V - V x curl v0 ]

+ R[v(vn'vn) - v0 x curl vfl - -VP (273b)
2

The velocity vector V is expanded as vj + £V. From the zeroth-order momentum

equation, it is known that the unperturbed flow is irruta'iondl1 that is,

curl v, = 0•

The first order equatioln them becomes,

0 0 (V(v 0 .V) - v0 x curl V1 + RV(vnAvn) -VP (274)

2

Rewritinq tllii result in spherical polar coorlinates, obtains

Po a (u 0or " v 0 V) - Piv0 (V + 3V - 1 3u) 9 - aP (275a)
Dr r r 7 r

Po0 1 (uotl 1 voV) • 4Puo(V 3 aV - 1 3)U) + R 1 d (un 2 + vn 2 ) 9 V 3p

(275b,



Using the teroth order equation, (275) can be rewritten as,
Pa !L (uoL + v0 v) + pouo(v + 3v - 1 3U) - R _ -2 1 P (276)

r 38 r ar r ae r P0 do r a5

( The energy equation (272h) and the two momentum equations (275a) and

(276) are three relations between the first-order perturbation variables, U,

V, P, and R. Eliminating R in (276) by means of (272b) yields

.. Po 1 a (uoT +vVoV) + pouo(V + ýU_- 1 au)
r ae r 3r r ae

- A2A (Y-l)(uoU + rVo) - _ _ - -_i ap (277)
r d1 PO d0  r r To

Substituting for the term

(V +_av - 1 )U)

r ar r To

in (277) from (275a), provides a first order partial differential equation

for the quantity L - PO0 u0 U + P0 0VV + PI

u0 LL + vn LL + .1 v 2 (u0 +Vd)L 0 (278)
ar r a8 r a0 dO

This partial differential equation for L(r,O) can be solved by the method of

characteristics using

dr - dO - dL
r v0 /u 0  Y v " (I + u0 dvn)

a 0  d

and appropriate boundary conditions for L(r,O).

Here it can be sa n that when v0
2 /a 0

2 << 1, L(r,O) is constant along the

streamlines of the unperturbed flow. This can be written in vector notation

as aee

V0 * 7L - 0 when v 0
2 /a 0

2 << I

The basic right circular cone flow is -:oni-all that is, the flowfield

quantities depend only on the angie 0. As a consequence, the perturbation

equations for the first-order quantities are equic4imensional in r and possess
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solutions that are proportional to any power of r, say rm for any number m.

Since the perturbation equations and boundary conditions are linear, it is

possible to express the first-order quantities in the form of a series in ri

CU(r,8) - E CmrmUm(B)

cV(r,O) - I emrtvm(e)

I -(279)

cP(r,O) - Z cmrmpm(o)

CR(r,O) - E emrmRmlO)

where here the sums are taken over all possible values of m.

The partial differential equation for I(r,O) then becomes an ordinary

differential equation for L,(O).

(mUo + Y va 2 (uo d+yv)} L + vo 0  - 0 (280)
a07 de d

where

Lm(3) - PoUotm + POVOVm + Pm (281)

This equation can be inteqrhted to glve

Lm(V) - Lm(B) exp [mu + (vn 2 /a&n2 )(un + vn') de] (282)
e v0

where the constant Lm(O) is to be obtained later from the boundary conditions.

Now that LM(O) is a known function, the flow variables can be expressed

in nerms of Lm(e). From Equation (291)

Pm " Lm " Pr-U0UM " POv0VM (283)

The radial momentum equation, (275a&, givfes

mPO(UOUM + VOVM) - OOVO[(Mr+1-VM - Um'] -. MPm

-:Il.rwinating Pm by means of (283), results in

Vm() a- M I Lm + I dU (284)

m+l POVO m+1 de
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Use the energy equation to determine the density function RM,

Rm(e) I - i fP0Utm + a dU - (y - m Lm) (285)
SM+1 dO m -I

Equations (283) through (285) give the pressure Pm, tangential velocity

Vm, and density Rm in terms of the radial velocity Um and the known variable

Lm. To obtain Um, use the continuity equation.

The continuity equation (268) is expanded to first order by using

expressions (267) and (279) to give, in spherical coordinates,

2u0 + v 0 cot 0 + dvn + v -dpn - 0 (285a)
do po do

and

(m+2)(P0Um + uORm) + (P0Vm + vORm) cot 0 (285b)

+ d (PoV, + vD.Rm) - 0
dO

Eliminating Vm and Rm by means of (284) and (285), results in a single linear,

second-order ordinary differential equation for Um(O),

Ur"1- !4•)
a0.

+ Um' (cot 6 - ya [!! cot 6 + (2m+3) Ia]
a 0  ao a 0

+ (I - 2) d Zn + 2 v 2 (A an - d In vn)}
an-- dan, de do

+ Um(m+l)U(m+ 2 )(l - 24) - (cot S *
a02 an,

~ 1-(2-Y) u v }- v 2 (1 - (2-y) u2)] (286)
V0  a 0  a a0-

(m+_) Lm M L (muO + v 0 ' - v 0 cot 6)
PoVo M+ 1 v0
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V(Un + vn' + v_ y m {d n (v2/an
m+1 a- aa 0 2 ' -n+ dO

- cot 0 - ua (m+2, - v. I + mun + l (u0 .,-4+ -. ,O'
v)V 0  V0  a0-

where Lm is given by (282). To obtain (2R6), the known results of the

zeroth-order equations, (272a), (273a), and (285a), are used.

Equation (286) is a linear, nonhomogeneous, second-order ordinary

differential equation with variable coefficients. While numerical soltitions

can be readily obtained, explicit analytical solutions do not appear possible.

Consequently, an approximate analytical solution is sought.

b. Weak Polar Crossflow Approximation, Hypersonic Small Disturbance

Limit

Now adopt the weak polar crossfLow approximation for slender bodies. The

term (v 0/a 0 ) 2 varies from the maximum value at the shock to zero on the body.

For M. san 3 large, the upper bound t,) (v 0
2 /a 0

2 ) becomes (y-1)2y (- 1/7 if y -

1.4). Ns shall he seen, ignoring termnu oF order (v 0 /a•) in the governing

equation for U.(0 ) reduces the eniation to a form that can be solved

analiticalty in terms of known fuinctLons. ks shown in paraqraph 2 for

sapersgnic flow past a cone of small f.ross-sepcrinal elLipticity, the

approxinate regolt -,hta-ied by ignoring tprms oF order vo/a 2 gives a result

which i1- accurate over the ertire ranqe :)f valup' of the hypersonic small

di'.irbhance parameter M., especiaLLy for values of M.6 greater than unity.

The speed of sotind a0 andI the lenisty 0 of the basic cone fiow vary

smoothly and siightly across the shock "Liyer. 'len:e, with little loss of

acc,'ICa-:y, they can he roplaced by a.3:•P an1 o{(3). TI the terms or order

(v,'a, an.I tie terms pr•pirtl.nal t- ,)'d• an: 1,a 0 /dO cerms in Equation

(2;16 are ilnorek' Equation (286) r•du,.-!'; t-)

+ ".n O I -, 2 'I HmU) (287,
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where

~n+) tm4-) -- ~u 2}

a0

!n IM mn [(n+2'),.iO + 2 dn

In the hypersonic~ small 'list'irb-tnctý t'leory limit., Yw + and sin ~

such that combinatimon Ks- Ko* sin S re',ia;ic Finite, thie basic circular cone

f low can be accurately approximat-ý hy E.-nat ionrs (76) Now assufme tie sleander

body approximatirin such Oa~t -:i-i 0 =0 n neŽqlant Se~conA order terms in

Fquations (76). The zer.311h-or.1er iol-ition t'hen r'iAuceýs to Equations (77).

In this hyners,3nic- jmall (tr~t~L:f1 2R7) becomes

61 d2 U + '0 djIT + :)2 r-'2 1m= 92 %q(9

where

Whn r.2 2 nA M,, -)0te

Thi i te am9?eqato- a " c or s-mnnrs.va: flow pau3t i right

cicuAr-,ewhnthe -1 1r, -' rny v-vPt inn s'mi~ The Bolattoin in this

case Is

IV(A ) D Z-1

ýC ~ -b tile)1 -Aqr 'n itn -! t,) i, iiv:ir. than the fi rst

term herause in the hvner+-)-4'.;ia- j!' ~,~npii'i, V 2 /_A, 2 is large when



Mw is large. It is then possible to write that

Cm2 82 - -m(m+1) V. 2 e2 - -m(m+¶) a.2 K2  (290)
0 0

where K02 - MH2 e2. In this case, the homogeneous solution of (288) is

U (homo() - A3 I0(CmG) + A4 KO(Cm8) (291)

Here 10 and KO are modified Bessel functions of the first and second kind of

zeroth order. Using the method of variation of parameters, the nonhomogeneous

solution of (288) is obtained in the form

Urn(6) - A3 10(Cm6 ) + A4 KO(CmO)

8

- Io(C.e) j 8 Ko(Cme) H-m(6) do
8

8* Ke(Cm8 ) J 6 Ie(Cm6 ) Hm(8) dO (292)

8

The indicated integrations in this result can be carried out by using

Lm(O) -- v dL(6) , vo dun
mu0 do dO

to obtain, after much algebra,

8

J 0 Ko(Cm6)H(O()d8 - 2 Ko(CmB)Lm(e)(l - (m+1) v. 2 )

e- (m;2) a07

+ M K1 (Cme) Lm(O)]

m e
8

1 e2 KO (Cm)L,,(O) + c,9 Ki(Cm8)Lm(e)] (293,

j 0O0(CmO) lfm(O)dO

0 2 02 I0(CmO) Lm(O)(1 - (m+l) y.1
(m+2) aO

- CT9 11 (CmO) Lm(O)J
m 8
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02 Io(CmB) Lm(O) - £MU I1(CmO) Ln(O)] (294)

9-6' e

The constants A3 , A4 and Lm(O) in the solution for Um(e) will he

determined later from the associated boundary conditions. The other flowfield

variables Pm, Vm, and R, can then be obtained by using Equations (283) through

(285),

c. Boundary Conditions and Flow Variables

The boundary conditions for this problem are the shock j-,p relations and

the condition of zero mass flux through the body -- the so-called tangency

condition. The shock jump conditions can be written

P=VOO ns ý PsVs • n. - I (295)

mV• ns +p= mV 5 • n. (296)

+

V.cOxn. = 11,x n. (297)

Here, again, the subscripts and s refer to conditions upstream and

downstream of the shock wave and n. is the unit normal to the shock (Figure

28). The free stream conditions are taken to be constant with

Va - Va[cos 0 er - sin 0 e@] (298)

Since it is assumed that the first order auantities have the forms given by

(279), the variables downstream of the shock are written as

Vs U0 + CM'r m + 0(c 2 )Ier

+ (V0 r cmrm Vm + 0(0 2 )]e 8

(299)

Ps P0 Z cmrM Pm + 0(E 2 )

P s  00 + Z rmix Rm + 0( 2 )

ý)8
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The above representation for the perturbed flow variables suggests that the

body and shock shape given in (265) and (266) should be rewritten as

ec - Cmrm

$s E m £ Gmrm (300)

In cylindrical polar coordinates, the expression for the body shape is

PC z tan Ob (301)

where R. is radius of the cross-section of the cone. Using the relation

r z sec 6 + 0(c)

supplies

Ob 6 - e m(Z sec 6)m + 0(e 2 )

Equation (301) can also be rewritten as

Rc = z tan 6 - Z e,(sec 6 )m+2 m+1 -, 0(E 2 ) (302)

Thus, Rc = z tan 6 represents the basic circular cone and

E E,(sec 6 )m,2 zm.l = Z em zm+1

represents the perturbation terms arising f-,'m the small longitudinal

curvature. The expression for the body shape, (300), can thus be re-expressed

in cylindrical polar coordinates or vice versa. Also for slender bodies, the

expression can be written

Cm = ,n (3C3)

These results will he useful later when these calculations are compared with

experiment.

Using the expressions for the flow quantities upstream of the shock,

(298), and downstream of the shock, (299), ana the expression for shock angle,

(300) with the approximation

cos (Z erm G,) I
sin (Z cm (m) = Cmrn (3

1flE.• lot,



4

1*t iq founl ti a(20 *i"; lowest ir i.-

0 8: pV • -O. sin 3.

and to first order

8 - 8" V0 Rm + PoV• P. •Vm cos B(1 - _ m+1 Gr + (p0ovo)G, (304)paD d9

Here, a Taylor series egpansion was used to transfer the boundary conditions I
to the unperturbed shock location.

Again the hypersonic small listarhance approximation expressed in (77)

was adopted and po constant was assa'ned. In addition to (77) is the

relation

Then, (304) can be written in simpler forin as
I

6 = B: vORm + p = - (

Using the same procelure, the no)r-al momentam jump cond-,.n, (296),

becomes to lowest order,
*.!

8 8: pwVw2 sjn-j ÷ - = v02 +i-

ani to First orler,

+ 3: P p, +- pov, -p"0 V_2 3(1 - 62 )(,n+I1) 62 Gm (306)

The tangential vel.•c:ty condition at the shock, (297), becomes to zeroth

or ler,

9 = 3: un c zos 3

ani to First order

S3: 7 ( 1) 2 (307)

•he necessary bouniary con.litionz at the shock have now been specified.

,or later use also note that

3 = : = *T' U= . , (308)

1)1
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. poVW2  64'• (r-ei) G

after Equations (306) and (307).

The tangency condition can he written
4*

V " c = 0 on the body (309)

AI
Here n is the unit normal vector on the body surface, ec 6 Z Eme" Using

(299) and the hypersonic small listurbance lknit, the tangency condition can

be written as

VM(S) -V•(mi+2) (310)

The boon3ary conditions neede. to letermlne the constants 01, r2, D3, )4

and I,($) of the solution for *,3(0) are now speciFied. T1sing the two boundary

conditions (307) and (310) the relation between V, anl U,, (294), and Ira(a),

(308), the constant; can be deternined as

r,= 6V. 52 CO 2S.V Zn

D2 -25 V

D3 1 {KS(Cm )tJ',3) + (m+l)F(S) Kn(C.S)
0alsp Cm

- 'm+1)(fr+2) V. K((CmS)} (311)

Cm

D4 = I {I 1 (CYS)Ur(8) - (m+1)F(6) In(CmS)
0 316" Cm

+ (M+I)(*n+2) 'Ica In(CraB)}
Cm

where

F(O) 54 Cmi Gm V. { mi2  1906P + Cm1 1016M}

and whlere has been introduced tl: nnt itin

n Ian(2r)Ki(2m:) + "(,( ,-,In,) (312)

mannM Im(Cm,-)Kn.(,") -R ,(r:.1'I(Cm
3 )

1 ):72



Thus

OS16P - Io(CmO)K1((Cm58) + XO(CO1 )7,(Cm6)

ie08- 2Z1(CcOKo(cm) + xt(Cme)i,(CmB)

191814 -Ii(CmO)Ki(CMO) -Kj(Cme)Ij(CMS)

*The results for Um then becomle

m -01 UO(q) _(S 62 ;O -26 In 6) Vm (313a)

m *0; tiM(O) - L(8 + (mn+1)(m+2) 1 O8OeM Oy.
POVM CMs 0816P

+ 62 Gm(m+l) f0016p + C1m.a 62 ( 101.M
700B16P - 0016P

+ 0006M - 0816p)) Oy. (313b)

When CM8 + 0, the asymptotic expansions of the modified B3essel functions can

be used, they are

K0 (CM3) =-In C ..8 K, (CMB) 1
2 9

rO(Cme) 2f1 ,II(Cma) 0

Then

1616M =Q

3i31SP /6

081BP 1/CmE

and the solution for tUni(O) becomes

tUm(e) = L, (0) - (rr+l)(m+2) in 9 V.6

+ 62 GM(.+I )(¶ - 62) aV. (315)

when C.9 + 0. It is intp~resting that (315) for the case m 0 is identical

with ii0(9) givien by (313a).

103



Vm(O) can now be determined by using Equation (284). The results are

m - 01 Vo(O) - -2 V. 6 (316a)

,, M O Vm(e) 62 Gm Vn Cra8 (18151 + 62 Cm8 (316b)

(1l18m- - 181-M 0819P) (m+2)V. o016P
0016P O016P

When CmO 0, the asymptotic forms for the modified Bessel functions give

151sm = 0

1slam U 0

O0s18ap 1/Cma

and Vm(O) then becomes

Vm(e) - -(M+2) V. S , C;nO + 0

This result for m - 0 is identical to V0 (O) given by (316a).

The remaining constant G.1, the ratin of the perturbations of the shock

and the body angle, is calculated by using the boundary conditions, (305) and

(285). The result is

(1 - 02 V. 2 D2 ) Vml

Gm = _ an-_ (317a)
(rt2) Sd + (m+1)8z V.2 (1- S7) 65 (1- y 6•) v (1- 82 V.2 D)

=& -7 -7 &07

where Vml and Vm2 are defined from the '•ounlary condition at 8 8 $ as

Vml + Vm2 Gm = VM(•$)

V=

and D - (1 - 62/62). After calculating V,(B) from (316), the result is

Vo l  -2 62 (317b)

Vo2 0

4 - (n+2) Va (317c)
CM( 3) (00(16SF)
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VM2 Cm0 62 (1 - 62) 1016M

-07 0018P

L Since Vw 2 02 /a 0
2 can be expressed in terms of y and K6 as

4 ( +I)KA2 + 2]2

a0  2[(y-1)K61 + 21(yKSZ + 1]

It is seen that Gm is a function of 0/6, KS, Y and m. When m- 0, the

"equation for Go can be rewritten after some manipulation as

'G0 2 ( _+ -)X 2 ]

6 (3y + 1)KSP+

These results for Gm are plotted in Figures 29 and 30 as functions of K6, y

and m. G. has the correct limiting value of linearized theory (e.g. Gm - 0)

when KS + 0. Also, as K6  -*, a hypersonic limiting value is achieved. In

the Newtonian limit (K5 -P and y - 1), the result is Gm-1, as expected.

It is important to understand that these limits are obtained correctly in

the present theory because the weak polar-cross flow approximation is applied

only to the governing equation for U. and not to the boundary conditions. The

boundary conditions are satisfied exactly, within the framework of the small

perturbation approximation. As a consequence, the solution achieves both the

hypersonic (X6 4 1) and linear (K6 + 0) limits correctly and, in general,

gives a good approximation over the entire range of the similarity parameter

A comparison is given in Figure (31) between the present result for G1

and the initial ratio of shock to body curvature, £, calculated numerically by

Van Dyke (Reference 31) for an ogive/body using the nonlinear hypersonic small

'isturbance theory. The quantity X is lefined such that the body and shock

Are given by /

f Rb - 8(bz + 1 cz 2 )
1 2

Ra - 8(z + 1 cz z 2 )
2
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It can be shown that £ is identicAl to of the present theory by using (302)

and (303). Figure (31) shows that the comparison between the present results

and those of Van Dyke is very good, especially when K6 is greater than unity.

The pressure and density can now he determined by using

Pm(e) - Lm(O) - pOV=Om(9) + o0 Vm G(I - 62) Vm(e)

Rm(O) (Y-1) Lm(6)+ Pm(O)

which follow from the definition of L,(0) and the energy equation. UrM(O) and

Vm(8) are given by (313) ands (316). The flow variables Um, Vm, Pm and Rm are

shown as function of e' - (0-6)1(8-6) for various values of m and K6 in

Figur- (12) through (35) for y - 1.4.

d. Surface Perturbation Pressure Coefficient

The pressure on the surface of the cone is given by

p(r,Ob) p0 0(eb) + Z cmrJ rm(O) + O(C2) (318)

where

Ob 6 - E Emrm

TransFerring the expression (318) to the basic cone gives

p(r,6b) - p0 (6) + E EmrmPm( 6 ) - (A2) + 0(C 2 ) (319)
de 6

5ince v,0 vanishes at the cone sirface, the gradient of the zerotlh-ordrer

pressgre (dp 0 /da) vanishes there ali.ji that is,

(ýEn) - -p 0 (6)v 0 (5)(u 0  + 4-,_n) - 0 (320)
48 6 dO

Hence

p(r,Oh) - p0 (S) * Z o.jrmrm(A) + 0(C 2 ) (321)

The !r-ssur&. coefficient Cr is defined hy

C

M1W3
2
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Thus the surface pressure coefficient, Cpc, can be written as

Cpc U Cp0 (S) + E cmrm Cpm( 6 ) + 0(E 2 ) (322)

where

CPO(S) (RaLL -)/C- M2)

POO 2

Cpm(s) - Pm(6)/l M2

2

-poVVUm( 6 )/(l M, 2 )

2

The velocity perturbation Um(S) can be calculated from (313), and p0(S)

is known from the unperturbed flow results. Using the relation

M.j2 = V.ý2 pM/ypm

the expression for the perturbation pressure coefficient Cp, as can be written

as
m = 0; Cpm [4 n(6'/B) - 2 6 Gn]S

(1 - 62) 8

m • 0; C = - 26 (m(+1)( (71+2 1 0806M
(1 - 62) Cm 6 0816P

+ 6 Gm(m+1) (0616P + Cm8 62 (118M 0606M - 0610P)}J

60616P OBl6P

These results can be shown to agree exactly with linearized theory in the

limit K6 + 0 and with the modified Newtonian theory (e.g. Newtonian plus

Bussmann correction) in the double limit KS + *, y * 1. Figure 36 shows a

comparison of the results of the present theory with those of other methods

for the initial pressure gradient orn the ogive body represented by

Rc = R0 'z + 1 Rr" z 2 + I R0 ''' z3 + ..

2

The value of -Cpi/25, which gives the initial pressure gradient at the tip of

the ogive, is plotted versus to K for y = 1.405. The present results agree
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well with the numerical calculation of Van Dyke (Reference 31) based on the

nonlinear hypersonic small disturbance theory when K6 > 1. Also, the results

in Figure 37 show that the present theory goes to the limit of modified

Newtonian theory when K6 * and y ÷ 1.

Figure 38 shows a comparison of the surface pressure coefficient

calculated by means of the present theory with experimental data (Reference

32) for an ogival shape given by

d.R= 6(1-z)
dR I

This expression can he used along with (302) to obtain

c= 6(1 - r)I

Figure 38 shows that the present theory works well provided the correction

(here 6r/2) is small compared to basic cone angle (here 6); that is, if j
r/2<<I. The results show that this condition is satisfied if r<0.2.

An improved comparison of theory and experiment can be obtained using an

empirical "secant cone" method. This result is obtained by taking the I
perturbation solution

'-c p 0 2
Cpc = c(K6,y) + 6 r Cpl(K6,Y)2

and replacing 5 with the local secant angle given by,

8=6(1 - r)

2

at every station x along the axis of the ogive.

The comparison between theory and experiment is shown in Figure 39 and

is now remarkably good. The well known tangent-cone result is also included

in Figure 39 for comparison. in t>. c7.pirical tangent cone method, the

pressure coefficient is assumed to be given by

16 if
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Cpc = 62 Cp0(Key)_

where the local inclination 6 is given by

8 5 (1-r)

While the comparison between theory and experiment is better than that for the

regular perturbation scheme, it is not as good as that for the secant cone

method.

e. Concluding Remarks

Approximate flowfield results for the supersonic flow past an

axisymmetric body which has slightly longitudinal curvature have been obtained

explicitly in closed form. The results appear to be accurate when the

perturbation of the body angle is less than ten percent of the body angle of

the basic right circular cone. The range of accuracy for the pressure

coefficient can be enlarged by using the empirical secant cone method. The

present results are useful over the entire range of K6 from the linearized

theory limit (K 6 + 0) to the hypersonic limit (KS + ®). The results are

especially accurate for Ks > 1. Further comparisons of the results of the

present theory with experimental data would be desirable as the basis for more

carefully delineating the accuracy of the present calculations.

4. UNSTEADY MOTIONS

In the design and analysis of missiles and aircraft undergoing dynamical

motions in supersonic and hypersonic flight, the time-varying behavior of the

flowfield, shock-wave shape, ani forces and moments are of paramount

interest. The methods for dealing with these factors on an approximate and

relatively simple, but accurate, basis, however, seem to be in a primitive

state. It is safe to say ',at approximate methods of analysis for unsteady

supersonic flows are nov ir as hroad or as useful as the myriad of

12)
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analytical methods available for related steady flows. The general usage of

digital computers has obviited this need somewhat, but the insight and

practical utility of approximate analytical results are still needed. j
For hypersonic flow the simplest method for calculating the forces and

moments on a body is that of Newtonian theory. Stability derivatives for

combinations of cones, cone frustums, and'1emispheres are given by Fisher

(Reference 33). Newtonian theory, however, is valid strictly when streamline

curvature is negligible and In the M1ouble limit Mw + • and Y 1 1. Because of

these shortcomings, various modifications, such as that of Ericsson (Reference

34), have been devised. Such methods, by their nature, are subject to

significant error, as pointed out by Hahoud and Hui (Reference 35). Other

methods have also been devised, such as those of Khalid and East (References

36,37) which make use of shock-expansion concepts to generate closed-form

formulas for stability derivatives for certain missile shapes. These results,

however, are not valid in the limit M,. + -. The aforementioned methods

calculate results for body forces and moments and are not useful for

predicting flowfields and shock shapes. They are used because they are simple

, and because there is a laqck of anything better that does not involve lengthy

computer calculations. Thus there appears to he a need for rational

approximate analyses, even for simple shapes, that consider the entire

fl.wfield in addition to the forces ani moments.

Unsteady supersonic two-dimensional flows appear to be more amenable to

analysis than flows past axisymmetric bodies. Vor oscillating wodges and

airfoils, the works of Mclntosh (Reference 3R), Barron (Reference 3Q), Barron

and mandl (Reference 40), and Fleeter and Riffel (Reference 41), as well as

others, are noteworthy. On the other hand, the analogoug unsteady-flow

problem for oscillating cones seems to be much more difficult. The use of
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potential theory by Tobak and Wehrend (Reference 42) and such methods as

piston theory by Zartarian, Hsu, and Ashley (Reference 43) have not led to

accurate results when the Mach number is high enough that nonlinear effects

are important, which is generally the case. As mentioned previously, the

shock-expansion results of Khalid anA Fas (Reference 37) for dynamic

X stability derivatives of sharp cones are invalid when Mw÷0, Likewise, pure

numerical methods, such as the method of characteristics hy Kawamura and

Tsien (Reference 44) are cumbersome and are not useful for Parametric

studies.

Another method of attack for the Problem of an oscillatinq cone has been

by means of perturbation of the steady axisymmetric flow past a circular cone.

Bv such means Rrona (Reference 45,46) and Hsu (Reference 47) dealt with the

full perturbation problem, and McIntosh (Reference 48) utilized the methods of

hypersonic small-disturbance theori. Althouqh these methods lead to sets of

ordinary differential eauations to solve, their solutions were obtained by

numerical methods on digital computers. As a result, a good deal of useful

information was obtained, and yet the cohesiveness and utility of analytic

representations were still missing. in part, Orlik-Ruckemann (Reference 49)

overcame some of these deficiencies by devisinq empirical formulas to

represent the results of McIntosh. The results were then more readily

applicable to other problems, such as in the analysis by Orlik-Ruckemann

(Reference 50) of an oscillatinc cone in viscous hynersonic flow.

The motivation for the present work is to obtain approximate analytic

results, on some sort of rational basis, that describe the shock shape,

flowfield structore, and forces and moments on a harmonically pitching and

plunging cone. Such results are thus more useful for various purposes, such

as parametric studies and possibly also for investigations of unsteady motions
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of other bodies, for instance cone-derived waveriders (Reference 51). It has

been found that steady flows past conicil bodies qenerated by perturbation oF

the basic axisymmetric flow past a circular cone can be handled accurately by

approximate analytic methods when the basic cone flow is described by the

approximate formulas of Rasmussen (Reference 21). In this way aucurate

approximate analytic results were obtained for steady flows past inclined

cones (Reference 23), elliptic cones (Reference 52), and arhitrary cones

(Reference 53). In this study, it is planned to apply this method of analysis

to obtain approximate analytic results for the harmonicallv pitching and

plunging cone.

a. roordinate Systems

To describe the unsteady motion of a body, two coordinate systems, a

bonv-fixed coordinate system (x,y,z) and an inertial coordinate system (X,Y,7)

are utilized. The unsteady motion is regarAnd as a small iarturbatsln about a

basic steady motion in which the body (a circular qpne) is aliqned with a

uniform free stream flowing past it. The basic freestream velocity Vo is

aliqned with the Z axis of the inertial coordinate system, that is,

V= - VG e7

In the steady, basic, unperturbed motion, the body-fixed coordinate system is

coincident with the inertial coordinate system. NOW the body is allowed to

.:nderqo a small unsteaiy motion such that the unsteady disturbances in the

flow produced by this motion are retarded as small. The unsteady motion of

the br•y is comprised of! two partst a rotational motion about a point z 0 on

the z axii of the bolv in the X-7 plane of the inertial system, represented bv

the anqle i(t) which is reoqarr9e as small, and a rectilinear motion of the

hodv-fixed point z0 in the X direction of X-7 inertial plane, represented by

the displacement

123



h u h(t)ex

which is also regar.ed ae appropriately small. The confiquratlon of the body

and the coordinate systems are shown in riqure 40. Spherical coordinates are

shown in Piqure 41. The rotational motion is referred to as a pitohinq motion

and the rectilinear motion is referred to as a pluraqinq motion. The mations

are indicated in Fiqures 42 and 43.

The angle *(t) is the angle measured from the inertial Z-axis to the

body-fixed z axis. The Angular velocity vector for the rotational rate is

thus

W M -(t) Oy , (325)

and the angular velocity about the inertial Y-azis is

The relative wind seen hy an observer fixed at zA Mn the body is
+ 0

Vr - Ve67 - h(t) ex. (326)

Thus the angle of attack measureA from the relative wind to the body t axis

is

i(t) - O(t) - h(t) (327)
V,,

where h/Vm is assumed small. It thus follows that

VI.

- -(I + •) , (32A)

The relation between the nosition vector r measured from the origin of

the inertial system tO A f1tll point Anil the posJtion vector rh measured from

the ouiqin of the hody-fixed system to the same field point in

.0 A +

r - zA P, + h PX I- z ez rh (329)
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Prom geometrical considerations, it is easily seen that the orthonornmal

Cartesian basis vectors in the body-fixed system are related to their

counterparts in the inertial coordinate system by

ox coo eX + sin eZ

a , (330)

ez -- sin eX + cos eZ •

Equations (330) together with Equation (329)'are enough to establish relations

between the pairs of Cartesian coordinates (x,y,z) and (X,Y,Z). It is more

useful, however, to develop relations between spherical coordinates in the two

systems. Towards this end, therefore, write

X - r sin 8 cos * , x - rb sin eb c06 b '

Y - r sin 0 sin 0 , y- rb sin 0 b min Ob ' (331;

Z - r Q3a a , z - rbcos 8 b

The spherical coordinates (r,e,0) thus describe a field point in the inertial

coordinate system, and the spherical coordinates (rb,Ob,Ob) describe the same

field point an reckoned in the body-fixed system. The geometrical description

of the spherical coordinates is shown in Figure 41. When 9, ý, and h are all

regArded as Rmall, the !oiro4ing relationA can be obtained between the two

systims of coordinates to lowest order,

rb = r(1 - TZn + h 0 cos *] , (33 2 a)
r

b ÷+ - z+ h) con , (332b)
r

b -fP -~zn + hl sin~j~ (332c)
r 0

The perturbation term3 in rquation (332a) for rb are actually negliqible since

they involve products of p, h, and 8. When z0 and h are nonzero, these
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relations are singular at the ori<-4-: 0 and rb- 0.

It is also useful to have relatinns for the velocity components between

the two coordinate systems. Let (u,v,w) denote the soherical velocity

comonents in the inertial (r,O,4) directions, and let (ubvb,wb) denote the

body-fixed components in the (rbdh,b) directions. Then for small 8, i, and

h, it can be established that, to lowest order,

aub U - Vzj) +_h (v cos • - w sin , (333a)
r

vb = v + jzj u cos • - (- 'Pzn + h) w sin • (333b)
r r

wb w - Pzo+ h u sin -zn + h) v sin * (333c)
r r

Thus when the velocity components are known in the inertial system, they can

he obtained immediately in the body-fixed system.

The problem as it has thus been formulated corresponds to the motion

observed in a wind tunnel of a model immersed in a uniform stream undergoinq

combined pitchinq and plungina motions in a plane.

b. jurface Roundary Conditions

A conical bodv is described in the hody-fixed coordinates by an ecuation

of the form

Ob = Oc() (334)

Equation (332b) can be !ised to describe the same body in the inertial

coordinate system:

a - Pc - [•(t) - '(t)zi + h(t)j cos t

r

or

w~rg,•t) % 6 8(-!) !0[•t) - 2(t)zO + h(t)) Cos =0 (33S)

r

For this problem, the body iq Rimpiv a riaht circular cone of semivertex angle
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S. Thus Oc 6, and the surface fonction F is

F(r,O,O,t) H 9 - 6 ( [J(t) - P(t)zn + •(t)W cos , = C. (336)

r

The surface tangency condition for unsteady inviscid flow is

* + V.V = 0 on P = 0 . (337)

For the spherical velocity components (u,v,w), this surface boundary condition

become s

""-zn + hi cos 0 + u yzo + h cos + v
r re r

-w[• - *zn + h) sin__ = 0 on F = 0 . (338)
r rO

hen the small parameters • and h are set ecaual to zero, the basic flow is

recovered, which is steady axisymmetric Flow past the cone of semivertex angle

S. The basic axisymmetric flow is lenotea by uy O0 = n(), v = v 0 (O), an3

w = w0 (6) - 0. ,The perturbed velocity comrponents are denoted by

u' (r,O,,',t), v' t), and w'(r,9,t.t), which are of the order of smallness

oF ý and h, that is,

u = uO() * u' (r,9,P,t)

v = vo(9) + v'(r,9,¢,t) , (339)

0 + w'(r,),ý,t)

-t is f-;rther necessary in the perturbation process to transfer the boundary

conrlition to the basic-cone surface by ieans of a Taylor series expansion:

,.09)= C(•)- (d.vn) '¢ -~ i- co

rdO 6 S

+ hihe'r-order terms, on r = 1. (340)

The surface boundary conditi .is for the hasic cone and the first-order

perturbation then become
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v = 0 , (341a)

v'(r,6,t,t)- [-ri + iP(dvn) ] cos
dO 5

+ [fz 0 + h- 4zn + h {uo(6) + (dvn) } cos * (341h)
r me 6

+ higher-order terms.

The surface boundary condition (341b) for the first-order 0-velocity

perturbation suggests the functional form for the dependency on r, e,,t, and

t. It also suggests that the problem can he decomposed into two parts. The

terms in the first set of brackets on the right side of Equation (341b)

describe pure pitching motion about the vertex of the cone, that is, the

motion for z0 Z 0 and h 2 0, The terms in the second set of brackets on the

right side of that equation occur in the combination of ýpzn + h. If , were

zero, this would describe pure plunging motion. When z0 * 0, pitching about a

point along the z-axis thus leads to an additional Pitching contribution that

has the same form as a pure plunging rotion. There are thus two basic

probleme to be solved: (1) a pure Ditching motion about the vertex, and (2) a

pure plunging motion. If ý(t) has the same form as h(t), then the pitching

contribution for zo * 0 can he obtainnA from the pure plunging motion.

co Decomposition of the Prohlenm

The boundary condition, Fxcuation (341b), suggests not only that small

contributions of nitching anl plunaing can be separated, but also that the

independent variables can be partially separated. Assume that the pitching

occurs at a freauency w and the plunqinq occurs at a frequency w. such that

ijtW(t) U • e

i u It + i 2
h(t) h0 e (342)

where *n and hr are constants, th:e small )erturbations of pitching and
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plunging, and n is some constant phase angle. The complex notation in

Equations (342) indicates that either the real or imaginary part is to be

taken in obtaining the final results.

It is now enlightening to write the boundary condition in nondimensional

form by intro&dcing three nondimensional small narameters:

Cn

iz -inzn , (343)
V..

ep -iwhheih
VQD

The boundary condition (341b) can now be expressed in nondimensional form as

v'(rS,ý,t) - c 0 [-(ir) + 1 (dv0) ]eiWt cos €

V06 V. Vw d8 6

-1

"+ z[1 - (iwr) 1ieiwt cos *
V0.

-1 iWIt
"* Cp(I - (iwr) Cle cos 4 (344)

V.,

where

1 (u:(_ ) + (dvn)

The three small parameters CO, CZ' and Cp are linearly independent with regard

to %0, zo, and hf. Thus any one of these contributions could be represented

F•,paratelv by the form

v'(r,SO,t) - ef(r) eicjt cos 4) , (345)

where c represents any one of co, -z, or c and f(r) is the corresponding

coefficient that depends on r only. Likewise the freauencv, w or W1.

separates out along with the depeniencv on t and 0. It can also be pointed

out thýi- the plunging motion coulM be renresented in a different plane from

the pitching motion by replacing cos 4) by cos (t - to) in the coefficient of

P., where 4 = represents the plane of plunqinq motion.
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As can be seen from Equation (344) the function f(r) is the same for both

z and C., that is, for the contribution of pitching about zn * 0 and for

plunging. Thus there are only two independent problems to be solved: one for

pure pitching about the vertex, e - co, and the other for pure plunging, £ -

Vp. When the pure plunging problem is Rolvei, the pitching contrihution about

20 * 0, that is, for z -z, can then be obtained by a suitable change in

notation. The general solution is a linear combination of the three solutions

for the three reduced problems.

d. Shock Conditions

It is assumed that a shock wave is attached to the vertex of the

oscillating cone. The shape of the cone surface, given by Equations (335) or

(336), and the surface boundary condition (345) suggest that the shock-wave

surface should have the form

= e - - q(r)eiwit con , (346a)

or
G(r,8,5,t) - B - +q(r)eiwt cos • . , (346b)

for the first-order pertuxrbation problem. Here B is the semivertex angle of

the basic axisymmetric conical shock, and c ii e0, £e, or cP for any of the

reduced motions corresponding to the reduced boundary condition (345). The

function g(r) is to be determined as part of the analysis.

The unsteady shock jump conditions for mass, normal momentum, tangential

momentum, and energy can be written in terms of the shock-shape function

G 0 as

p.(DG) Ps(DG) , (347a)

2 2 2
p.(VG) 2 + p,.(DG) = ps(VG) + ps(DG) , (347b)

Dt fDts

4 +

V x IV( V' , (347c)
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2 2 2 2
h.,(VG) + I (DG) ha h(VG) + 1(DG) ,(347d)

2Dt. 21ta

where p, p, h, and V denote the density, pressure, specific enthalpy, and

velocity. The subscripts a and s again denote the values on the two ides of

4 the shock discontinuity surface. The material derivative is defined as D/Dt

3/3t + VIV. In addition it is assuwed that the gas is thermally and

calorically perfect such that

_ Qha (347e)
p=D pmhw

In spherical components the freestream velocity is given byI+
V. = V.(cos e er - sin 8 6e1. (348)

Assume that downstream of the shock the spherical velocity components,

density, pressure, and specific enthalpy, have the following first-order

forms:

u(re,O,t) - u0 (O) + cul(r,O)eiwt Cos ,

v(r,6,ý,t) - v0(O) + evl(r,B)eiwt Cos ý

w(r,0,4,t) - ewl(r,B)eiwt sin ,

p(r,6,4,t) a p 0(6)[l + cpl(r,6)eiwt cos *:,

p(r,O,4,t) - p0 (9)(l + cpl(r,O)eiwt cos *),

h(r,O,¢,t) - ho(e)Il + £hl(r,O)eiwt cos *]. (349)

Further, it is part of the perturbation process to transfer the shock

conditions to the basic conical shock. Thus for any variable Q(9)

Q(6) - Q(O, - E(,Q) g(rjeLwtcos 4, on G - 0. (350)
dO a

Substitution of Equations (349), (349,, and (350) into the shock

conditions (347) and sorting out the zeroth and first-order problems lead,
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after a lengthy analysis, to the following results

Basic C~onical Shock -V 0 inB p()()

pg. + pc*V.02 sino pB = + p0(O)v0
2(o)

ho + 1Vg.2sin2a ho(B) + 1. v0
2(8) J

2 2

____a n() -() -P n (351)I

pM. pa hg.

First-order Perturbation

ul(r,S) - (V=. sin 6 + v0 (Ofl(q + rQr'),

v1 (r,O) -(Voo COs O(q + rq' ) + iwrgj E2(y-1) to

-iwrg - uo($)rq' + (dvn) g

si~n 0

pl(r,O) 4y_ vAjS (V0. cos B(g +4 rg') + iwrql
y+l a B

p1 (r,O) - 2 [Va co CS (g + rg' )+4 iwrg] [&o ]L-
V0( B) Y+l.

hl(r,a) - pl(r,O) -p 1 (r,S) .(352)

These definitions have been usedi

a02(8) y p0(S)/p 0(B)

Y CP(' (353)
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The basic conical shock conditions (351) are the usual shock jump conditions

across an oblique shock. The first-order perturbation relations (352) are

the boundary conditions the first-order Perturbation variables must satisfy at

e. Perturbation Equations

The qoverning equations for inviscid, nonconductinq, unsteady flow are -

mass:
+p +

a_ + V Vp + p div V 0 , (354a)
at

momentiim:

p(aV + V(V2 ) - V x curl V) -Vp
Ft 2 (354b)

energy:

a +v• V)(•) =0
-t (35 4c)

Tn writing the energy equation (3S4c) a thermally and calorically perfect gas

has been assumed. Although Fquations (354) form a closed set, it is useful in

the ensuing analysis to replace one of them hy the eauation for total

enthalpv:
+

PC 3 + V * V)(h + V2)

,t - t a (355)

Now assume for the basic flow and the oerturbation variables the forms

Sen by Equations (349). After these eKpressions are substituted into the

aoverning equations, the basic-flow pr-blem and the perturbation problem can

he sorted out. The qoverning ecuations For the basic flow are

vO dfn + t PO2un + dvn cot 0 vn] 0 (356a)

Po(un dun + v 0 dval - , (356b)
do dt ,19

v( =un •, (356c)

139,



po - constant (homentropic) * (356d)

1307 -1

In addition, Equation (355) yields for the basic flow

ho + un 2 + Vn2 
- ha + V02 - constant . (3S7)

2 2

To express the equations for the first-order perturbation variables, it

is useful to utilize the operator

D iwr + u0r + v 0 ---
3r 85 (358)

which represents r times the lowest-order material derivative to produce

mass:

Dpj + 2u, + r au, + [d Ln Pn + cot O]vI + avl + w, csc 8 - 0 , (359a)
Rr do aO

r-mom:

)u1 - vov 1  - a:2 r a24, (359b)

*-mom r

sin 8 Dw1 + (u 0 sin 8 + v,) cos e)wI an2 P , (359c)
Y

total-enthalpy:

Dfa.22 (PI"Pl) + Unul + vov! an2 iuJr n, (359d)
y-1 y

energy:

,(rI - YPI) m 0 , (359e)

where use has been made of the results

h, p, - Pl ,(360a)

a 0
2  YPO/0O , (360b)

h0 = an 2 /(y-I). (360c)

Equation (360a) follows from the thermal eauation of state

p. = p(361)
P0 POhO

The solution for the basic axigvmmetric flow past a cone will he

considered as known since a very accurate approximate solution for slender
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cones is available. Now direct attenti'n to the solution of the fIrst-order

perturbation equations (359) by means of series expansions.

f. Solution by Series Expansion

The appearance of the radial coordinate r and its derivative in the

equidimensional combination r(a/3r) suggests that any one oC the perturbation

functions Pi(r,e), pi(r,8), ul(r,e), vl(r,8), w 1(r,-O), for instance Q(r..), -

can be expanded in the form

,Q(ra) (i__r)n On(O), (362)

n--I V.

where the functions Qn( 8 ) depend only on e. Here it has been anticipated that

the first term in the series may start with n - -1 since the boundary

condition (344) includes a term proportional to r-l. Further, since the

angular frequence w appears in the combination iwr in the perturbation

equations, it is useful to use the combination iwr/Va as a nondimenslonal

representation of r. it can now be seen that

r ýR E ; n(iwr)n Qn( 6 ) , (363a)
Dr n--l VM

. Z' (ianr)n On (e) ,(363b)

al n--I VT

DO • (iwr)"l [-u 0 Q_1 + v 0Q'.lj + VmQ.- + v 0 Q0 '
V06

+ Z (iwr)n[V-Qn. 1 4 nu0Qn + voQn'J (363c)
n-l V.

With these results in mind, assume the following expansionst

u(RLLe) - Z (iwr)n tn(e),
V.. n--i Va

..• r.L-o. - r (Iw__)n Vn(6),

V= n--i V.
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-r (iwr)n W, 1(8),
V. n--i VM

pl(rO) - £ (iwr)n Vn(O),

p1 (r,O) E E (Iwr)n n(e). (364)

The functions Un, Vn, Wn, P., and Rn are All iimensionlesse Setter approxima-

tions for the sum of the series can be anticipated as the value of the

dimensionless combi~nation, wr/Ve, beoomes smaller.

Zxpanslons (364) can be substituted Into the perturbation equations

(359), and the coefficients of like powers of (iwr/V.) can then be collected

and collectively set to zero for each power. These can be expressed as

a set of equations for n w -1, n - 0, and n ý i. vor n - -1I

-+ R.. + n R. U-1 + Io ÷ on + cot 9]V! + V..i + W.- Coe e of , (36)
V, VO dO

" "uU-I + v0U- 1' - v0 Vj !a,_ P-1 - 0 , (36%b)
yv.

vo (in 0 - jnl P.1 - 0 (3659)
yV.

""u0J-O + v0j.-, W , (365d)

""Uo(P-l "y 4.) + vo(P- - .- yft')- 0 , (1650)

where

J-1 -- . (P-. - R-,) + !! U_1 + vn V,1  . (365f)

5-77 V.. Va

The defined function J-1 represents a perturbation of the total enthalpy, The

governing equations (365) are homogeneous.

For n - 0,
ynRO' + 2U0 + (jdp + cot 6]V0 +- + W1 eac e - -R. 1  , (366a)

V40 de

volJO, - Vol - -V..U.i , (366b)
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sin voW* + (un gin I + v 0 C+ v)o -OO 2P. -V sin 0 W.-1 (366c)
yV..

vo0 0  - ao P.1 - V.J.,1  , (366d)
Vat

vO(-O' " YRO') A -V.(P.. 1 - YR- 1 ) , (366e)
where

Jo 1 a & (P - 4o ) + Rayt1 + yA Vn (366f)(y_-1)V,.' . V.. - V."

The terms on the right side of thege eauatinns deponi on the leadinq functiona

in the series expansion*, U'-, V. 1 , W.1 , P.1, and R. 1 , vhich are to be

determined from the homoqaneoue• •.uationn (365).

Correspon4inqly, ths sot of equations for n > 1 is qiven by

n 1,

nunRn + YARn' + (2+n)Jn ÷ (ILa + c't 0)Vn # Vn' + W IC 0 - -n.l, (367a)
V. V4 le

n u n vrU+ ' - veVn fa: n P. a "V.Un-I (367b)
TV.

v0 (sin 6 Wn)' + (n+1) u0 sin 0 Wn

-. 2 Pn a -V. sin 0 wn. 1  (367c)
yV,

n UMl ,n + VO in, * &A-2 pn-1 - V, ,n-1 , (3671)

yV40

n u(On - YRn) + vn(?n' - yRn') - V(Pn.1 .. Y•n-1) , (367e)

3n 2n (Pn - R1,) + U-* Un + = Vn (367f)
(7-1)v.,2  V. V40

Again, theOS RaiatIOn8 Ar4 inhomnqennojs, and the riqht nides of the equations

for the On variables depen,1 on the On-1 variahles.

ror the cave o' pure pitrhtnq motton Ahmit the vertax, the perturhation

pArameter is £ c and Fauntion (343) becomes
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v"r,.) -1(va)- (iwr) . (368)
Va V, dO 8 V=

In terme of the sories variables, thus Are obtained

V *l(d) a 0 , (369a)

V (S) - I (riVn) , (369b)

V1 (6) - -. , (369c)

vn(6) * 0 , . ) • . (369d)

Since the met of rouations (365) that qoverne the Q-1 variables is

homoqoneous, the boundary condition (369a) leads to the conclusion that all

the p-1 variables are zero for the redluced problem of pure pitching about the

vartex. Hence U.1 - V..-1 n W P- 1 = R-1 - 0 for this reduced problem. As

shall he seen, the shock condition iL thus sa t isfied correspondingly by

9-1=O.

The lowest-order problem in thus the Ant of eOattionq (366), which nCr4 becomae

homogeneous, with the boundary cnndition (36gb).

For pure plunqing motion it is :onveniont to choose the perturbation

parameter c as the nondimensional form C i Whoeill/V.. The surface boundary

condition (344) now becomes

v 1 (r,S) - -(iwr)" [u!(6)+ I_ (dv.) I + 1 (370)
Ve V0  Va V ' 15

In terms of the series variahlen,

V..j- - [()0F3) + (Avn) I,(371a)
V. ti 6

V0 (5) - I , (371b)

Vn(6) - 0 , n ;P (371c)

The contribution for pitchiinq motion about the point z 0 $ 0 is obtained

by choosing the perturbation parameter is F iWp 0z/Vo. The surface boundary

conditions are thus the name as Rquations (333) andi (334), and the results of

the pure plunqinq problem can hli utilizerl Mirpctly. The results for the total

14nf



pitchinq and plunqinq problem will thus he a linear combination of the three

reduced problems.

The series expansions (364) suggest that the function g(r) in the

shock-shape equation (346a) can he expanded in the form

q(r) - (iwr)n g~n (372)
Sn--i I 7

where the parameters gn are constants to be determined.

For the caqe of pure pitching about the vertex, r: - ' and all the Q.-1

variables are zero. It follnws that a-, - 0. Prom Equations (352) are

obtained for n 0:

110 (8) - g0 [gin A + v (fW)] . (373a)
VM

VO(S) qr[(2(y-1) - En) cos B ÷ I (dvy) 1 (373h)
y+1 V. '18 .

W0 (8) - - + 3) , (373c)
Va sin 8

P 0 (S) g0 (52V V VA(8) cos n + ( (373dl

y+J a0
2 (S) po(P) do 8

R0 (8) g0 [2V. cos 8 (r.0 - y-11 + 1 (d_.) J . (373e)
vO(8) y+1 P")$ ,1 9

For n • 1, are ohtainel

(U11) [sin 3 + vn(3)](1+n)gn (374a)
V.

Vn(6) = fcos 3(+n)q, 4- qn-1 (2(y- 1)
Y+1

"qn-1 + r-n cos 3 4- 1 (dvn) gn , (374b)

W n(B) -qn . v0 ((.) J (3 7 4c)
V. in 9

Pn(4)y= 4_ Vv( !cos (3,l+n)a, + qn-'1 " (d.lfl) • (374d)
y+1 a0 z(g) O (S)
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Rn(B) 2V. [cos B(1+n)gn + qn_ 1 • [t0 - 1-11 + (dpa) g . (374e)
vn(B) y+1 d9 a o0(B)

Note for all case. t'at

sin q Wn(a + UZ43) = n , n . nl (375)
nt 1

For pure plunging motion, the perturbation parameter is qiven by c

iwhoeil/Voo. From Equations 0352) and (372) there exists for n -1:

_ ( ,(376a)

[cos 3 ' 1 (dv_) :-i , (376hl

1.4 1 (ý) = -[1 + v. () ( '. a-I, (3 7 6c)
V. sin

_ = (,Inn) C 1 (376,1)

- (dPn) g-1 (3 7 6e)
C3 0 p0 P •3)

The resclts for n P 0 are the qarme as iYJ 'en bv n:'inationq 374)

Some integrations o Euatiorc '3.-7) nor n > 0 can he ac;:o-plishel when

the basic-flow velocities u 0o() ana v)(0) are regarieA as known. Now is

introduced the factor

Ie) -exp [J 'j(e)'d7 , ('77)

where it is noted that T(6) = I. The ener ly eqttation (36 7 e) can now be

integrated by means of an inteqrating fictor, and give!

9
P1 - - - -In (Pn-i - YRn-)dO , (378)

IIn n • V.'.

where Sn(B) Pn(B) - YRn(B).

The function .'n(3) is thi nth-or.Aer entropy function evaluated at the

basic shock. To see this) note fm, a thermallv and calorically perfect
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V

gas that

a-an tnd.p (p)-Y ,
Cv Po PO (379)

Now if the notation is written

S-q I C . (i;.._r)nSn(e)]ei•tco ,
Cv n=-I V 0  , (380)

then with the use of Equations (349) and (364) it is found that

Sn(O) - Pn(S) - y%(9) • (381)

With the aid of the shock conditions (374d,e)

S= 2yV~va(6) 1 2 + a 2(g) (y-1 - c0)'E[(1+n)gn Cos 8 + gn-1 1 
* (382a)

a 0 2(2(B) y+1 y+1

By means of the basic-flow shock relations (251), this can be simplified to

the form

Sn(S) -- - V.'y(y-1)(1-&n) 2 sin 3 [(1÷n)gn cos 8 + gn- 1] (382b)
a 0.(,B)

The total-enthalpy equation (367d) can be integrated similarly and

gives
0

in"o) - L) V_ L [a Pn-1 -V (383,

in In Bv yV

where Jn(5) is defined by (367f). From the shock conditions (3741 and (351)

it can be established that

Jn() -(1-)sin 3 gn-1 ,

-UnI(P)/n , n * 0 • (384)

Equations (378) and (383) can be regarded as two -quations fnir Pn and

Rn. ,:limination of Rn hetween these two equations yields

an_ (6)p = -12A Un + It VnJ + L [Jn($) -S_(B)af 2(e)_
yV• 2  VM V_ In y (y- 1 )VG 2

e
L _1 n (uOfjnI + vOVn_1)da * (385)
In 5 v0

When the identity
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'.. . uDIn Un_ _ [IU_1--in U'n. (386)

V0  n* nO

is substituted into the integral in Equation (385), one integration can be

perfor'ned, and the equation can he rewritten with the lise of (384) to read

an2(6)P (0) - Un + Y-a Vn + -Sn(O)an2(E)

-yV. V.0 VOO n y(y-1)V.,2In

+ 1 In[U, - Vn-. 1]d . (387)

This equation qives the pressure perturbation Pn as a function of the velocity

per .urbations Un and Vn. Thus when the velocity 7s known the pressure can he

determined.

The density function -;s found to be

a= V + -U-) - -S,(LaNý(.)
V VW VW n (y-1 V.2 IT,

+ 1 j InJ1 _ _,f -vn- 1 + a 2  (Pn-1 - YRn,)'dO (388)
S5 n "%,V.v9

When the pressure equation (3971 is substitujted into the r-momentum

equation (367b), the result is
0

v0 [Un' - (1+n)Vr,] = nSn(O)an 2 (9, - nV., In U - Vn_1]d) , (389)
y'Y )•• In n

This equatinn givps a relati,-n bctween the velocity components 11n and Vn. At
the cone Suface-P .r 1, L-' 1,, (.) 2,crid -. TuS. . .... . .. .. z .. .... ad an,, v..,0 5 0. 71hus

when r > 1, Un' at the cone sirFace not analytic. Thns feature must be

accounted for properiy in the analysis, especially in any numerical

computation.

Wher, Vn is 'olved for from Fu.t-Wr (1kW and substituted into Equation

(387) for thp prpssure, tho c, -ip-)tatin reqults in

a 2 (9)p (q ý ~~an - - - ,-n -- -ý -[ (H Un YD I_] ' -+ L nA' - S- ~a,12(4)
YVo""- - Voý VC0 1+;, n (1+n)y(j-1)Vo.2In



+ J In (u~. - . (390)In

(1+n)In B n

This expression gives the pressure in terms of the velocity component tT. only.

After the pressure equation (390) is substituted into the 0-momentIim

equation (367c), the outcome is

v 0 [sin e Wn + U _' + (1+n)u 0 fsin 8 Wn + -

1+n

- VC(Wn._ sin 9 + 0._ - Si(A)an
2 (O)

n (1+n) y(y-1 )VdIn

e

+ V. J In i - Vn 1)de . (391)
(1+n)In B n

An inteqrating factor for this equation is It+n/v 0 , and a straightforward

integration thus gives

9
sin 0 W + U - V. I r+n [sin 9 Wn_1 + U.-. dO

1+n I n vn n

8

- _$ni8) J I aft2 (9) de
1 1+n) Y(Y -1 )VIn+l I v0

0 9
+ v= I J I (I 1 n(Z!--- Vn-.)dOlad . (392)

(l+n)IIn V()0  B n

The shock condition (375) was taken into account. This equation gives the

azimuthal velocity w. as a function of the radial velocity UJ.

When the fun,-tion I,, is known, al. of the other functions can be

determined in terms f it. It thus remains to establish the governinq

eriuation Foc Tn. •y means of Eaoation (367e), first eliminate the density in

favor of the pressure in the contlnuitv equation (367a):

n a Pm + v: P,' + (2+r.)Tl + (d In p, + cot B'Vn

+ "no + Wn csc 0 -P-l/Y (393)

Now note the identity
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n u P V~P, ~ - 9. a 2 )'1(& 0
2 p') + vn2 (a2P)I 7

an" a,1 an7

(394)

The combination a02In is given in terms of Un by Equation (310), and V. and Wn

are given In terms of Un by I.quations 1389) and (392). When the necessary

operations are performed and sabstitutel into Equation (373), a single

differential equation for T1n results. To simplify the Form of this acuation,4
note the followina results obtainerý frnm tl-e homentropiý- basic flow:

(Xn a02)~ (y-,) fLn po)' - y-1 (tn r.) C-) (u,) + vo'). (35

Usinq these results, it is no' nossible to obtain

(I v 2 )U " + [cot e v f 2nun + (-0 -vo 0 )(2 + (y-l) v 2 11U' +
__; n Z7Y-D7- n
an- an-a

(1+n)[2 + nMi - u 2) - cs2o v 2 f,+Hn-uOv'j' (396~)

an ~ a. an'
1+n

The inhomoqeneoas term, Tn, for the right-hanl side i- ciit-en by

Tn _=- 1+n Pn- 1  1+n rni + v 2 2 k"I D + v0 )oUn.
y n a '- ,A.

"1+n Vfl v U'n-1 (ZL ,= - Vn..i)(fl + V 2)

" -nS,(6) a2 :vn cot * y vo_,2 (uo + vo') - no 0 - Vo']

e

[nv 0 cot V 2 (un + v 0 )\n - (l-1) V 2 , - n 2u0 ] V I naO• - 2 nn

V')- Vn..i)dG + csc 2 O [ S,,(B) ] • d

+ (1+n)Vm I 1 1+n (Tin a 'n-1 + rn O

I T +7 v-r ý I

1. 17 I. rTi( _ _ .V_)O~3 7

The inhomogenenis term, lt, de•ends nn toi- nrevioirI',v nhtainei functions On-1

and the entrcinv "':,nctinn at t9# •'oc, k -.( P " ti& (lq ) is a linear
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differential equation with variable coefficients. Now these equations are to

be solved by approximate methods.

g. Approximate Solution for the Basic Plow

For the basic axlsymmetric flow past a slender cone, the approximate

solution developed in Reference 21, which has proven successful in the

analysis of steady-flow problems (Reference 22,52,53) similar in nature to the

present unsteady-flow problem, shall be utlilized. It shall be assumed that

the cone is slender such that sin e 0. In addition it shall be assumed that

the freestream Mach number Mm is large such that when M, * . and 8 + 0, the

combination M=8 remains finite. The pertinent parameter in this hypersonic

small-disturbance limit is the similarity parameter K6 E MKO. Thus the

basic-flow velocity components are approximated by

u0 (e) = V.[i - 52 {02 , gn(82)}, (398a)

vo(e) _ _V.8 (1 - 62) •(398b)

The basic-flow shock anqle is determined by

a = • - [y+1 + I 1 /2 •(399)

The temperature and pressure in the shock layer increase only a small

amount from the shock to the cone surface. Hence it is possible to establish

the following formulas:

Too a2 2 6 _0

S-=a 1 + Y K62 ('I + 02 (1 + Xn(3)2 - (6)2)] •(400b)

Pam 2 0 0

Also avaiihle are the formulaq
4

V0) - -V,,(1 + 2 (40i'a)

a0-
(En pa.'' Y(kfl PO) -ý~n+V
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- yvm2  62 (1- 62),

0 ) 0 57 (401b)

PO(a) =9 (401c)

h. Approximate Solution for the Plunging Cone (n--l)

The approximate solution to Equations (365) for n - -1 can now be

obtained when the basic-flow solution is known. Then - -1 order of

perturbation amounts to a shift in the origin of coordinates along the

inertial X axis. With this taken into account, the velocity perturbations can

be obtained from Equations (333) when the transformation (332b) is taken into

account (with • 0). This produces

UI10) = 0 ,

V_1(6) _. 62,

~ 2

W-(),6 (402)
7 1!

The scalar perturbation variables can also be determined by the translation of

the origin, and gives H

2 62(l - 62)

R_1(8) = V2 6 2 (l - 62)

J-,(O) = 0 (403)

These results satisfy Equations (365b,c,d,e) exactly. Equation (365a) is also

satisfied approximately to within the accuracy of the basic-flow

approximation. The surface boundary condition (371a), V- 1 (6) - 1, is

,atisfied, and the snock-boundary ::onditLons (375) are satisfied when

9-1

which provides the perturbed shock shape.

i. Approximate Solution for the Pure Pitohirq Problem for n 0
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For the pure pitching problem the n = -1 variables are all zero, and the

inhomogeneous terms in Ecuations (366) for n 0 vanish. The surface boundary

condition is Equation '369b), which becomes

Vo(M) - -2 * (405)

The shock boundary conditions, at 8 B, are given by Equations (375).

The pressure and density functions are given by the appropriate forms of

Eauations (387) and (388): I

- P 0 (O) V- luaUo + v0 v 0 ] - Sn(O)
a0  (Y-1) ,(406a)

R(O) =-V u (u0U0 + v 0V0 ] - sa(S)
aoy- , (406b)

where

So(s) = -V=2 y(y-l)(l-&0) 2 Sg 0 /a 0
2 (8) (407)

is determined from Equation (382b). The velocity components V0 and W0 are

determined from Eauations (389), or (366b) and (392):

V0(e) U0 (8) (408)

e
o0e) =-u -U0  SAn(S) 1 L 2 de

y(y-I)V. I B v0  (409)

The governing equation for U0 is given by (356), which for small angles is

given by n( - x•O)" + [I - _n(un + v ')(2 (Y-1)v -}]J 0 '

ao• .7 - A0•a

+ (2 - 1 - v {2 fl + (y-1) UN(un vn 1) U0 - T0 , (410a)
a 0- a 0 2

where
6

To - 1 Sn(3) j Ian 2 d8 (410b)
0- y(y-l)VI vo

Now the variable coefficients of "O, fi0 , and U0  are considered. The

combination va/a 0 vanishes at the body and, for large values of K•,is small at

the shock. It -.4 thus reasonable to neqlect v0 /a 0 compared to unity where it

appears on the leFt side of Eouation (410). This is tantamount to a
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constant-density approximation, and it has been found to yield excellent

results for all values oF '6 (References 23, 52, 53). Consistent with this

approximation is the assumption that I/a is larae compared to unity. Finally,

since a 0
2 (9) varies very slowly across the shock layer, it is replaced by its

value at the shock. Thus the problem (410) is approximated by

0 ÷t + - 1 !J = To , (411a)

where

To z1 s.(fan2(j ) TI de
0 Y(Y-I)v=l "vo

The complementary solutions to Equation (411a) are 6 and 8-1, and thus it is

easy to establish, since V0 = U0 that the general solution that satisfies

the shock conditions for U0 and V0 is

0n(e) -- rn(S) a + 1 -V a !r 4 re - aI

9 ToUA - -2 To dO d (412)

2 R• 20

The soluticn cAn 1".e completed bv t')e evaluation of I (Fouation (377)) and

the quadratures of TO. Sy means ,F u, ý V. and vn -WVa(I-5 2 ), are obtari'ed

I(9) = [6 2 _62 1 1/2

(413)

an-

T0 (O) Sn( )an -1 .l (414)
y(y-1)V2 /

When the aua.lratures on Ta are evaiiiated ann, the shoctr conditions (373a,b),

(407b), and (40lc) utilized, the velOr-itv Un can he written in terms of z

0/6 and a =- 8/6 as

1 .•



UO(") g (Z - 1 4 + )(z - a2)

- 1 {-1 + a + 3 z_=- + 222+1 fn'o+io-I ]}J . (415)

4z z C''-, +/z 7

The velocIty V0 in determined by V0 a U0 ':

V0 (e) g q0 [1 - I ( 4 + I )(1 + 02)

a - + I 7 + 2-'2-12,- I n . (416)

4P 7 z V =a-' -• z z2 V=(,-'_ 1 z + /7-71

The shock-shape factor go is letermined by imposing the surface boundary

condition V0 (') - -2. Solving for gn then gives

1 - - 3 + a2+1 + I + WO + */• I (417)

q0  8 a+ 4 Cy7-

The shock-shape factor q0 is thus given as a function of a and y, or,

alternatively, as a function of 6 and y by means of (399). The factor gn is

shown in Firure 44, which will he discussed later.

The pressure can he obtained from rquation (4n6a) and is

an 2 (9)Pn(0) = q0[- I + 1 ( 4 + 1 )(W - 202 02)

yvA6 = 2z y+1 77--'7

+ 1 {2- c + z 1- (2 + 1
47' 77 iZ7

in( 3 + /a

+ (4 - 1) z + vfz=- I + 1 (aM2 (G)- 1))* (41A)z" z-' -37 a"25()

The results for n -" 0 cnrrespond to the results of steady flow at an

angle, : ttak '. ".,&,, these results are enuivalent to the results of )oty

anrd Rasmussen (Reference 23).
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j. Approximate Solution for the nare Ptichinq Problem for n - 1.

?or n a 1, the problem is governel by the inhomogeneous equations,

"Euation (367). The surface boundary condition is V1 (8) - -1, as given by

Equation (369c), and the shock boundary conditiona are qiven by Equations

(374). The pressure and density integrals are given in terms of the velocity

by Equations (387) and (388);

an2()p3(6) - -[2a1 U, + yZ V1 + U0] - S(S)aA2 (8) , (419)
yV.2 V. V® y(Y-1)V"2i

an2(0)RI(e) - -[2a U1 + y_ V, + U0 ] - SI(a)an2 (a)VO. 2 V. V-0 (Y-I)VLýI

8
+ I an 2 (PO - YR0b) . (420)
yvI B v0

The velocity components V, and U1 are related by Equation (389)1

v0 [UI' - 2VI] = SI(B)an 2 (8) . (421)
y(y-1) V.1

The azimuthal velocity component Is determined by

a
20Wi + -l 2Vo if 2 (8w0+UOd 4de

8
- s 1 (a) J Ian 2 de . (422)

y(y-l)VI• B vO

Finally, the velocity function U1 is governed by Eauation (396):

(1 - + fi y7 (2un + WO 4- vo0 )(2 + (1 n-lU 1

a 0  8 0
2 a

a 0 0
213 -U- " "2 - 1 - 2v {1 + (y-1) u (U0÷V0'))]Ul TI, (423a)

where

1•3



-j Z Po + 2VO(~.g + v2 (Y-1)(u +

2Vt 2...~A en2 L -( . )(un + Vol]

0
+ I S (a) jlan2 d9

+ 2V. f 2 (Own + 1J0)dfl, (423b)

b:ciuation (421) shows tla T" i,3 .qinTular at 0 5 qince vo( 6) 0. it

iR 'iieFul to introduco a new variable T?1*(8), whicbi is not sinqular, to

r~pl.ACP TI11(9). Ns R~uqqestf-,i by EciuAtin-) (421), -4rite

,J~)- 2U1'(0') + SI3 an 2 (9) djo (424a)

-i.2! Lhat

V 1 (S)= ~ 3) ,(424h)

in Aqrpeefent with Feluatinn (421). Substitiution of Eciuation (424a) into

Equation (423a) gives

(1 T* + IV D {un + (uO + vol)(2 + (y-1) V 24)1Ui*t +
Ya0

2L3 -U~ 2 + Cy (-IU (11n. + vo'} rj1* =Tj* , (42 3a)
a07 2 07 an

where

Till - +4. fun + v2(Y-l)(Iu0 + v011rJ1, + Vn V 0v
S a0  An a0 2

s1(L [ - u 2 V 1 ~ un(ti + vo'))) an~ O

Y(6-1 T~-1V 29T

+ I 81S(s) I T a,2 da + 2v,, J L2- (5Wn +. t1)dO] (2b
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The singular behavior has been removed from the inhomogeneous term.

An approximate solution to Equation (425a) is obtained by a process

analogous to the previous analysis for Uo. To begin, the ratio v0 /a 0 on the

left side of Equation (423a) is ignored since it vanishes at the body and is

small at the shock at least for large K6. In the coefficient of U1 *, however,

the ratio u 0
2 /a 0

2 is not small for large M4*. Since u0  V* and a(, a 0 (S),

the result is

u 2(8) z V.2  2 , (426a)

where
21C6

2 (1 + y+1 K6 2 )

C2 i 2 (426b)
(1 + YKv2)(1 + =I Kv 2 )

2

Use was made of expression (400a). Consistent with the hypersonic

small-disturbance approximations, it can be seen that the factor u 0 /a 0
2

should be retained since it is of order 1162 when KS is hall fixed. Thus

Equation (425a) is approximated by the ecruation

UI*" + 1 UI*1 - (K2 + I )UI* - Tj- (427)

Before dealinq with this equation, an alternative form for the

inhomonqeneous term T1 * is obtained

When a 0
2 (O) t a 0

2 (6) is treated as a constant in the integrals in

E-:lation (425b) for TI*, and Equation (4n9) is used to evaluate the integral

with 6W0 + U0 , the results are

T* - ?.a * V- (u0o 0  v0 V0 ] + V v (y-1)(u 0 + v 0 ')U 0
Y a ( a0o

+ S1(B) 11 + aa2 f-3 + V2 (1 + (y-l) uO(up + v0 '))}(1 - 1)]
V7 a -7-I

y(Y-1) a a

+ 1 a 0
2 (a) (S I (B) 2-1 - S0 (,3) (1-1) 2 ] (428)

292 Y(Y)V.2 17-
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The tenti a0 2 /Vc, 2 is of order 52 when KS is fixed and can be neglected in the

coefficient of SI(8). Further, tht second term on the right side of Eqkuation

(428) can be replaced by means of (406a), and Tj* can he approximated by the

hypersonic-similarity form

T1  Z - _2P_ + V 2 (y-)(uo vO')UO
a 0

+ S, S) - Sn(s)
y(y-1)

+ 1 a 2 (5) r[$ (B) 12 -I -$S 0 () (I-1) 2  ] , (429)
2--1 y (y-1l)v• 2  I2 II

It can be established that Tj* is of order 1/6.

Now return to rouation (427) which, by defining the new variable

-z (430)

can be rewritten in the form

d2  U1* + I dU1 * - (I + I )UI* = 62 T,* (431)

This is the inhomogeneous form of the eauation for the modified Bessel

functiona of the first and second kind.n, 11(o) an, KI1 f). The solution that

setisfies the initial shock conditiors Tl1*(8 = 3) = I !Ti(S) and TJ*'(B 8)2
Vi(8) is

Y1*(6) = A 11(0) + B Kj(€)

+ 62 1i1(0) J *Kj(t)T1j d.* - K•i() J ýIl(f)TI* dý] , (432)

U *1' (t9) F- VI(9) ic (A T1'(W + 1; .i'(W)

+ ý XII (l) J *KI(*)TI1 do - Kj'(0) $I 1 ()Tj* dC] , (433)

where

A - VI(a) Kj(icO) - <aUj*(8)KI'(<a) (434a)

-) ( ) - .V 1 .3) )(4341)

15.1

1 EJ3



and the Wronskian is

Kj(o) 11'(t) - 11(t) K1 '(ý) I/i . (435)

The shock boundary conditions, from Equations (374a,b', are

U1 "(O) " I ut(B) = 6,, (436a)
2 a

V1 (8) - g- + 1 1 + got- 4 + 1 ] * (436bj

Further, the entropy functions are, from Equation (382b),

- Kt2 go • (437a)
y(y-1) 25

Sl(a) - - 2 (2gi + 0 ) . (437b)
Y(y-I) 26-

The shock-shape parameter g, is determined by imposing the surface boundary

condition V1 (6) = -I. Equation (433) then gives

-I = [AIj'(S) + BK,I(K)]

+ 6 [ 1'(S) j #K 1(4)Tl*d3 - K1
1 (IC) J *Il(0)Tl'd]•

K KO Ica (438,

The factor g, = gl(K6 'Y) can be factored out and solved for explicitly in

terms of quadratures, but the quadratures must be evaluated numerically.

Figure 44 shows g, as a function of K6, which will be discussed later. With

g, determined, the flow variables describing the shock-layer structure can

then he obtained in terms of quadratures which must be evaluated numerically.

Th ýse results will also be d..scussed later.

k. Approximate Solution for the Pure Plunging Problem for n - 0.

For the pure plunging problem, the n -l variables given by Equations

(402, and (403, constitute the i-nhomogeneous terms in Equations (366) for the

n = 0 variables. Equation (366e) yields thŽ integral

P- YR0 = S0 P(B) , Po0() - yR0 (3)

2- 2 Y(y-I) (g0 + q-I) (439)
267-
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Here recall thait .t_,= -1. The total enthalpy equation (366d) becomes

"r • , (440)

which has the integral

j 0 (8) -J 0 P(8) + 2( - 1) , (441)

Here it was determined that J 0 P(M) has t, ,- iue as prescribed by Equation

(384);

JoP(s) - _ q- 1  A . (442)
0 0

Equations (439) and (441) allow the pressure and densit.y functions to be

determined in terms of the velocities. Thus are obtained

PO(e) V - V .a2Y + vn V0 -L62) - SnP(O) , (443)

V00 VM 3 y-1

R0 (9)- v 2  [ U + _ % 2 -_Sp(a) . (444)
a0 V( ) V 8 y- 1

Since tI-1 0, 7quation (366a) yields the same result as for the pure

pitching problem:

, U (445)

With this result, Equation (366c) can be dealt with analogously to the pure

pitchinq prohblm, .and th.r;I is obtaincd

3
own + U0  - snP(B) J Jrn2 dO (446)

Y(Y-l)V!I ý vo

The previous results can now he suhstituted into the continuity eauation

(366a) to obtain a single Piuatirn For TInt

J - v 2fl, + V(u + ) v 2 + (-) v2] U.

a0 an an

1 - ( - "• 1 I r-1) ,/jii_•L _+• vn )'T( "T'P , (447)
0 7 , a0



where

ToP= -L_*- 62 V,.vo C 1 ) + 1 Snp~ )" 2 19

y - Y(Y-1)V.I a vo

- 2V. 2 62 (1 - 62)1 - v (u 0 + v 0 ')] + SnP(8) Inan2 de

-a0 _ 2 a0  Y(-1)V0  8Vh - - 2V. 2 52 ( - 6 2 )[1 - y1: V. 2 8 2 (1 - 62)1 + 1 SnP(a) d 6

ao 2 &=6Y(Y-1)V~ 0 v0

(448)

This equation has the same form as the pure pitching case, but the

Inhomogeneous function TOP is different.

The same approximations for the left siMe of Equation (447) can he made

as for the pure pitchinq problem, and the approximatinq equation is thus

T +0" + I UO' - I U0 - TnP . (449)
6

The solution to this erination that satisfies the shock conditions for 7)o and H

VI has the same form as F,•uation (412):

•.10(o) L to(8) 6 + 1 [WvO(O) " Un(S)] [_ - 81
8 2 I• e

+ 0 TOP 18 - 1 ,0 2TOP 1 (450)

28 20 3

Tne Whock. ho.. ~ary :ond1itinns frnrm Frauatinns C374a,h) are

II70(a) 6 q0 /o , (451)

Vr,(A) - -(q 0n + 71 + 1 g4 . (452)

Pecalling that- 7I- -1, eval-lwt,, the integrals in r.iuatton (410) and 4

t 0(8) - •(q 0 -1)[i. -I C 4 + 1 )(z - 2)
'1 f/ ! 1 g" 7

•'~ ~ -__ ___ __ -



- 1 (-1 + a + 3 72 7 + 2z 2 + I In (0 + '"- }+

4 z (a- I z +/z

+ 6 + K26 t{(z 2+1) In a + i+02 (z2_02))

z 2 z z 2C z

- C K2 {(z2+2) In a + z (2o4 + 402 - 1)

4 z z

+ I (I - 2a2 -04) - ¶ 1 , (453)

The polar velocity is given by

Vo(8) U0'(9) (go-)t - 1 ( 4 + 1 )(1 + 02)
T+_ _3 _Z

S3 I

a 1 -0 + I 7-7f-• + 2z2_1 in (a + /a=-l I

z 2 a=- I z + VZ2-1

-1 + K2 ((z 2 _1 tin + (a2 -1)_ ( 2 z2 )

- -1 K2 {z 2 -2 in a - z 2 +2 + 1 (2U4 + 4a2 - 1)

- 1 (1 - 2a2 - + 3 }) * (454)
20=z-4-z 4

The shock-shape factor Is determined by impositIon of the surface boundary

condition VO(6) - 1. .olving Eor g0 gives

-3 + a2+1+ 1 + in[ r+ ev'2 _-1

1-q0  I-K (;_) : ZFU a + jjZ-a) 0;+!L
4 2oa 4 4a (455)

which Ix written In a form analogouR to formula (417) for the pure pitohing

problem. Vie fActer q0 for the pure plungtnq problem is ahown ýn Fiqure 45,

anti Lt iL11 h" Mimqrtj••d Intl-"r.
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-With U0 and V0 known, the pressure can be obtained from Equation (443).

The solution is

a P_(9) (2o-l) - 1 + 1 (4 + 1)(1 - 202 + 02)

+ 1 (20 a + 7-1 (2 + 1)
40 z PT _'o* 7

Zn(C + (=(--1

+ (4_- 1) z_+ +- 1_, 2 + <2 (1-3z? In a
_ Tj _ 2 _z Z

+ (a 2 -z 2 )(2V 2 z 2 -O2+l) - <- c2 {2-5z 2 In a
202"z3  4 7- z

+ (o 2 _z 2 )(2o 4 z 2 (2z 2 _j) z2 + 02(Sz2_3)]}]
4oy4 z'

+ !an~2(e) - 1, 46+ (g-1) a0(456)

Numerical results for these functions will be discussed later.

1. Approximate Solution for the Pure Plunging Problem for n = 1.

The equations fqr n - 1 for pure plunging take the same form as the

equations in Section I1-41 for pure pitching about the vertex, only with S 0 (O)

replaced by S 0 P(S) and the inhomogeneous n - 0 terms evaluated by the

appropriate plunginq Functions. The appropriate equation for Ult(O), defineA

by Equation (424a), is rquation (431), which is rewritten here:

d,2U + 1d" - (1 + l)tl" -62TlP

where

- .n V.f (y-v )(u 0 + v 0 I) 0 + V,, 2 62

"SO$(.) - •nR')
i(y-l)
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7E

I
+÷ a !2_(8) jS1  I2_ I- 0 P(a) (I-l) 2 ] (458)2- y Y(7-71) V.7 •I

The solution to this problem that satisfies the shock conditions, which P q

the same as Equations (436a,b), is qiven in terms o! the modified Bessel

functions by Equations (432) and (433), with TI* replaced by Tl*P.

The surface boundary condition for the n - I pure plunging problem is

given by Equation (3 7 1c): VI(d) - 0. This condition is different from the

corresponding pure pitching case. Thus the condition that determines the

shock shape parameter gl should he written

0 - K(AIl'(K) + BKI' ()]

6

< K
+ j6(I'(K) J oKl(O)Tl*P do - KI'(K) J *II(4)Tl*P do). (459)

K '0 <0C

This equation is analogous to Equation (438) with the left side replaced by

zero. The factor gl(K6 ,Y) is shown in Figure 45. All the other var.ables can

now be computed.

im. Results for the Shock Layer

Figure 44 shows g0 and gl as functions of KX for y - 1.4 for pure

pitching about the vertex. Tho function go is computed from Equation (417)

and C1 from rcuation (438). The function go is equivalent to that obtained

for the steady-flow inclined cone by Doty and Rasmussen (Reference 23). As

Vý goes to infinity, go tends Asymptotically to qn - 1.057. The function g,

is neqative ani has a minimum near K6 = 1.

For pure plunqing motion, the shock parameter g-i has the value g-i -1.

iqrurtq 45 shows qI and ql for pure plhnginq as functions of K6 for y = 1.4.

The functions gn ard qj are compute1 by means of Equations (455) and (459).

For pirre Plunging the Factor qr is positive for small X6 and tends to go -

-0.016 as K6 tends to infinity. The Function q, is negative for small values

163



Of K6, being g, 0.5 at K6  0, becomes zero at v, 6 1.27, and tends to aH
positive asymptote gl 2 0.075 as K6 goes to infinity.

: 1 The shock shape in the inertial coordinate system is given by Equation

(346a), which is written here as

•; 0s = B - [*0 Z (iw---r)n n+ z (iw-.-)n np

n-0 V00 n--i VW4

Ca

+ ÷ E (iwr)n gnpeit cos * (460)
nw-1 V.-

where

Siw• zn , (461a)
VW

cp 1wihn ei. , (461b)

V40

and gnP represents gn for the pure plunging problem. Note that e = t0 denotes

the contribution from pure pitching ahouz the vertex (z 0 - 0), ez denotes the

contribution from pitchina about zn * 0, and Ci denotes the contribution from

pure plunging. This representation is singular at r = 0 owing to the terms nI -i arising from pitching about z0 * 0 and plunging.

The transformation to the body-fixeM system ia done by means of Equation

(332b):

eb - 0 + [8 0 - (ez + Cp)(i.wr)-Iei~t cos . (462)
V06

Substituting Equation (460) into rquation (462) evaluateA at the shock, the

result is that the r-I torma cancel out since q-1 - -1, leaving

Ohs - [* 0 {(go-1) + (iwr)gl +

VC0

+ Cz (g0P + (ir) glP +
V10

+ C {10P + (i_.r) qiP + ... })eiwt C o (463)
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Thus the shock shape represented in the body-fixed system is not singular at r 4.•

- 0. Since C. ant d are proportional to i 'ei•/2, it can be seen that there

is a 90 degree time phase shift associated with pitching about z0 * 0 and with

plunging, relative to pure pitching about the vertex. When wr/V. is

sufficiently small, it can be expected that the higher-order terms in the

series expansions will be negligible.

The flow variables Qn(O) have been computed in an inertial coordinate

system. The series representation in this system is singular as r + 0 owing

to the terms for n - -1. It is thus useful to describe the flow in the

body-fixed system which ia not si.ngular as r " 0 for pitching about z0 o 0 and

plunging.

Denote variables described in a body-fixed system with a

subscript b. Then for any scalar variable write

Qb( 3 b) - Q(8)

- Q(Bb + ( 8-6b)) • (464)

Since ( 0 - 8 b) is small according to rquation (462), it is possible to use the

first term of a T;Aylor-series expansion and obtain

Qb(Ob) - Q(9b) - (2.2) PO0 - (cz " £p)(iwrr)-leiwt cos 4 . (465)

This transformation, when applied to both the scalar and vector variables, is

tan"Imount to removing the n - -1 terms froim the series description iat the

h )dy-fixed coordinates. In addition, however, the n - 0 term for pure

pitching about the vertex is affected, as Equation (465) shows. This can also

be seen in the expression (464) for the shock shape. Thus for the pressure

for pure pitching about the vertex, write

%bO(eb) - P0(b) - (d Xn pn,
19 8b

" 0(Ob) + 1.9 ((u0 + v0'•j
a0 b
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I

- PO((b) + yV. 2 (1 -62 (466)
-@b2

For the velocity conponents, first use Equations (333) before applying

the transformAti-on (465). For the radial velocity, then, the result for the

case of pure pitching about the vertex is

UbO - UO(eb) - vA(6h)
VO

UO(Ob) + 8b (I - 62 ) , (467a)

VbO(eb) = VO(Ob) - vn'(Gh)
V"

- VO(Ob) + (I + 62 ) , (467b)

WbO(6b) - WO(Ob) - vA(,h)

- WO(Bb) - (I - 62 ) (467c)

For n ) 1, the first order perturbation problem is Qbn(eb) - QO(n). Thus in

the body-fixed coordinates the functions for n -1 are not present, and only

the n - 0 functions for pure pitching about the vertex are altered, as shown

above.

To illustrate the variation of the velocity and pressure functions

between the shock and the body is introduced the normalized angle variable

' e@ - 6 , (468a7
5-6

such that e' - 0 at the body and e' - 1 at the shock. Pquation (468a)

represents the inertial coordinate system. For body-fixed coordinates, the

corresponding variable Js

Ob' 6h(468b)
- 6

The two variables differ by the order of c.
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Figures 46, 47, and 48 show the variation of U0/6, V0 , and W0 , for

pure pitching about z 0 - 0, across the shock layer with different values of K6

taken as a parameter and for y - 1.4. These representations are for inertial

coordinates. The function U0/S is positive and decreases from the body to the

shock. The function V0 is negative and increases from the body to the shock.

The azimuthal velocity W0 , however, is negative and increases from the body to

the shock for small values of K6 but decreases from the body to the shock for

larger values of K6. For K6 of about 2, W0 is nearly uniform.

Figures 49a, b, and c show the corresponding variations of UbO/ 6 , VbO, and

WbO for pure pitching about zo = 0 in body-fixed coordinates. These are

essentially the same as could be calculated from Doty and Rasmussen (Reference

231. Por Uob/6 and WhO, the values at the body, @b' - 0, are the same as for

these corresponding variables evaluated at the body in the inertial coordinate

systems. Comparison of the rcsults in the two different coordinate systems

qhnwq the ALfferent aprearance the Funct'mns take in the different

representations.

?igure 50 shows the pressure function a 0
2 (0)P 0 (6)/yV®2 6 for pure

plunging about the vertex as it varies across the shock layer, with K6 as a

parameter Arid y = 1.4. The pressure perturbation P0 is negative ýad decreases

a small Amoint from the holy to the shock for large val'es of K6 . For small

values of K6, P6 decreases, reaches a -inimum, and then increases. ri!ule f 1

qi 'n the corresponding pressure function for body-fixed cooriinates, Pob'

T,Pe pressure Pob shown lhe same tren-is as P 0 , but the values increase from the

bo('dy ti Elith ;hock mroo i=iy

The reanon the two preis iro perturbhtinn ftinctions In the two coordinate

systems ,ire not the sa-nt: s; asq9oiatel with the transferral of the actual

, and ody, iocah w ', th- lo;al inn of the basic -9hock and basic cone.
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For instance, the pressure at the shock in the two systems can be written to

the first order of perturbation as

p(69)- P0()( + (22a) (0.-0) + Cp0 P0 (8) eiwt Cos * (469a)
dO B

p(Obs)- PO() + (d2n) (Obs-S) CPO PbO( 8 ) eiWt Cos * (469b)

de s
The actual pressure perturbations are given by the second two terms on the

right. These two terms must be taken in combination, in either coordinate

system, to determine the correct total perturbation.

The variations of U0 /6, V0 , and 1'10 across the shock layer for pure

plunging are shown in Figures 52, 53, and 54. These functions are the same

for both the inertial and body-fixed coordinate system representations. In

these computations the terms arising from the variation of a 0
2 across the

shock layer, proportional to (y-l) in Equations (449), (453), (454), i455),

and (456), were neglected. The velocity U0 is negative at the body and

increases toward the shock. For large values of X6, U0 is negative at the

shock also, but it is positive for smaller values of K6 . The velocity

function VI is positive and decreases from the body to the shock. The

azimuthal velocity w0 increases from the body to the shock when K6 is large,

but decreases from the body to the shock when K6 is small.

The pressure function a 0
2 (9)P 0 (0)/yV. 26 for pure plunginq is shown as it

varies across the shock layer in Figure 55 for y = 1.4 and various values of

K6. The perturbation PO is positive and decreases from the body to the shock.

For pure pitchinq about the vertex, the velocity functions U1!6, V1, and

W1 are shown in Digures 56, 57, and 58 as functions of -,'. Again various values

of KS are shown and y = 1.4. Tn thesý computations the second term in

Equation (429) for Tl*, mroportional t- (y-1), is neqliqile since it arises

out of variations of an2 and i .iall. ror larae values of '6, 1I1 is negative
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at the body and increases to positive values at the shock. For -K6 about 2,

U, varies only slightly across the shock layer. The nolar velocity

perturbation V, decreases from the body to the shock. wor small values of K6,

V, is negative at the shock, being positive otherwise. For large values of

K6, the azimuthal velocity perturbation W1 is negative and increases from the

body to the shock. -or small values of KS, W, decreases from a positive value

at the body to a negative value at the shock. The functions are the same in

both inertial and body-fixed coordinate descriptions.

F or pure pitching about the vertex, the variation of a 0
2 (8)P 1 (8)/yV. 2 S

across the shock layer is shown in Figure 59. The pressure perturbation P, is

positive on the body su. face and decreases toward the shock, becoming negative

for small values of X6.

For pure plunging motions, the velocity perturbations tIT/6, V1 , and W,

are shown in Figures 60, 61, and 62 as functions (cf 3. In these

computations the second term in Fanati.)n (458) for T1 *P, proportional to

(y-1), is negligible si'ice it arises from the small variation of a 0
2 across

shock layer. The velocity perturbation T'1 is positive at the body and

increases toward the -lhock for large values of X5. -or small values of K6, it

is positive at the body and decreases to negative values at the shock. The

polar velocity Derturbation V1 decreases from zero at the body to negative

values at the shock. The azimuthal velocity W, increases from negative values

at the body, becoming positive at the shock for small K6 .

Fur pure p~unginq, the variation of a 0
2 (e)P 1 (0)/yV, 2 6 across the shock

layer is shown in Figýure 63. The pressure perturbation P1 is posit±re at the

body and decreases to negative values at the shock for all K6 .

n. Forces

For inviscid flow, the forces on a body arise From the pressures exeite 1

)• ,_~~ ~ ~~~ n|L' . . . ., -': '
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on the body surface by the flow. Omitting the force contribution frorm the

base pressure, the force is qiven by

+
r' - pJ n d, (470)

where S is the slant surface of the cone and n is the outward unit normal on

t he surface. The force is easy to reckon in body-fixed coordinates. In this

case

n dS - e0b(e - 6) sin 6 r dr do

M(on 6 co C ex + cos 6 sin o ey - sin 6 ez)sin 6 r dr ad . (471)

Owing to symmetry, there will be no side forces in the y direction, and thus

for a cone of axial length L,

+ 2n L sec A I
[ t-cos 8 sin 6 J I p cos r dr do) ex

2r L sec 6 A

+ [sin2 6 I j p r dr do] ez (472)
0 0

To first order in C, the axial force in the z direction will arise only from

the basic cone pressure on. The main concern is now with the component of

force in the x-direction, which is called the normal force:

2,m L sec 6
rX = -cos 6 sin 6 J J p( 6 ) cos 0 r dr do . (473)

0 n

In body-fixeA coordinates, the surface pressure can he written

p(6) - po( 6 )(' + *'P' o0(S) + (i..r) Pbl(S) + . }

+ (z + Cp)(PboPP b lP(() + }]e COB , (474)

where pb0P and ,h'P represent NbO and Pbl calculated for the pure plunging

problem. The normal force can now he written

1 8R



-x -" (L tan 6)2 cot 6 p-()[OpbO(6) + (Cz + £p)PbOp(6)
2

+ 2 sec 6 (iwL) {*Pbl( 6 ) + (Cz + Cp)PblP(6))

VVa

Now Sb v(L tan 6)2 can be recoqnized as the base area of the cone and

Ii • the normal force coefficient can be Aefine,, as

CN: F
i: lP-V,2Sb

2 (476)n
The result is then

CN - -cot S pn(!) an!) 0 aPbO() + (C2  P e) Pb0p(d)

+ 2 sec 6 (iwL) 40 Pbl( 6 ) + (Cz + Cp) Pb1P( 6S)
3 V6

+ 0((wL) 2 ))] eit, (477)
V,,

This expression is exact and becomes approximate to the extent that the

Ib
functions Pb0, Pp 0 b, Pbl, and Pblp are approximate.

Now recall that

y s J0oeiWt ,

h = h 0 eI~t + in

then rquation (477) can also be written as

CN--cot 6 pZ(6) a 2(6) tiP pb( 6) ~ +_

pm VC V L VA

M yv. vo v
+ 2 sec 6 (LL %i(6) + qzn + hL )Pb1'(S) 1

3W V.- _

+ 1 sec 2 6 L,2 Pb2(S) + (z + hL2 ) Pb2p(S)) + ' .1 * (478)
2 va



The last terms involvinq Pb2( 6 ) and Pb 2P(6) illustrate the nature of the next

terms in the series that have not been evaluated.

When the higher-order terms proportional to Pb2(6) and Pb2P( 6 ) are

ignored in Equation (478), the normal-force coefficient depends on four

independent terms. These terms are proportional to the pressure perturbations

Pb0(S), PbOP(6), Pbl( 6 ), and Pb1P(6). It is useful to delineate these effects

by expressing the normal-force coefficient as a linear combination of the

effects due to W, W, h, and h. Thus write CN as

-ZN CN*ý + C..h (izn+ h

+ CMPO + CNh (*inL hL ) ,(479)

where the highier-order terms in the series have been ignored and where

Po Y% 2  
, (450a)

CN •-cot 6 P(D( a (n PbOP(6 )

P. -yV2 ,(480b)

-2 cot 6 sec 6 pn( 6 ) !n 2 (6) Pbl(6) (480c)
3 P. 7

CNh - cot 6 sec 6 (6a 2a ) Pblp(6) (480d)
3 ý Yv2•

The coefficients defined by Eauations (480) are called stability derivatives.

The stability derivatives CN4 and CNp arise from pure pitching about the

vertex, and the stability derivatives C" and CNh arise from pure plunging.

The coefficient CN* is a static derivative since it depends upon the

instantaneous inclination of the cone and not upon its time rate of chanqe.

The other stability derivatives, CNV, C", and CNh are dynamic stability

derivatives since they depend upon the time rates of chanae of 4P and h.

190



Although the form of Equation (479) follows directly from the analysis,

it is not in the form more appropriate for describing the dynamical motion of

a missile. The reason is that the analysis was performed in an inertial

coordinate system and Equation (479) follows directly from that analysis. The

forces acting on a missile undergoing a general dynamical motion are more

appropriately perceived from an observer in a body-fixed coordinate system.

The forces acting on a mi.sile are more appropriately described in terms of

the orientation of the wind relative to the body; thus the angle of attack, a,

is more appropriate than the rotation angle ý, which is essentially an ruler

angle. Thus the primary variables (pi,h, 1 ) are changed to a new set of

primary variables (oL,* q, h) by means of the transformations (325), (327),

and (328):

(t) - a(t) + h(t)/V. ,

h(t) = -[q(t) + a(t)) • (481)
4

Equation (479) can thus be written

CN - CNc 0 - CNh (.q_) + (CNO ' CNh)(h)

- CNq (EL) + CNal'UL) (482)
V VO V.

where definitions have been made

SCNp , (483a)

(483b)

CNa CNP C"h (483c)

or

(N* • CNq ÷CN

These definitions may differ with those of other authors. Since there seems
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to be no definite uniformity, care should be taken when comparinq the present

results with others.

The static normal-force coefficient CN, -CN is shown in Figures 64, 65,

and 66 and compared with other results. The static coefficient CN. is the

same coefficient that is obtained for steady flow past an inclined cone. if

( the density ratio p(S)/p(O) were set equal to unity, the present result would

* - be the same as that obtained-by Doty and Rasmussen (Reference 23). The

Newtonian result (Reference 33), valid strictly for K6 & • and y + 1, is

CNI/COs 2 6 - 2. Figure 64 shows a comparison with the exact numerical results

of Sims (Reference 54) and the empirical curve of Orlik-Ruckeman (Reference

49). The present result shows a characteristic dip in the curve nea

For K6 > 1, the agreement with Sims is very good, becoming better as

accordance with the underlying requirements of hypersoni' small-Aisturbance

theory. As X6 + 0, the present result overshoots the correct linearized value

CNa - 2 by a small amount before it actually obtains the correct result at KS

- 0. The empirical values of Orlik-Ruckemann are slightly too large for large

K6 and do not tend to the correct behavior 3 K6 + 0. Figure 65 shown a

comparison of the present results with McIntosh (Reference 48) and again with

Orlik-Ruckemann. The hypersonic smakl-disturbance results of McIntosh, which

are numerical and limited to the range K6 ( 4 are very accurate and agree well

with the present results when K6 > 1; the disagreement when XS < 1 is less

than S percent. Figure 66 shows a comparison of the present results with the

numerical results of Brong (References 45, 46). Agreement is good for large

K6, and the deviation from the results of small-disturbance theory owing to

finite cone angles is illiistrated.

The dynamic stability derivative CNh, which arises from plunging, is

shown in Figure 67 as a function of K6. It has nearly the same shar-z: as LNa,
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although of opposite sign, but does not tend to quite as large a value as KS

C o. Again there is a characteristic dip in the curve near KX - 1.

Figure 68 shows the dynamic stability derivative CN, ' -Cgh, which arises

fr')m plunging, as a function of K6. A comparison with the results of McIntosh

(Reference 48) and Orlik-Ruckemann (Reference 4q) are also shCAIn. The

Newtonian result (Reference 33) is Ca - 0. The present results agree well

with the hypersonic small-disturbance results of McIntosh, which were limited

to the range K6 • 2. The correct limit of linearized theory, CNa - 2/,3, is

obtained when K6 4 0, and the preseot results are only slightly smaller than

those of McIntosh when 1 4 K6 < 2. The empirical c'irve of Orlik-Ruckemann

produces values that are slightly larger than the other two results, and it

does :iot behave quite correctly as vS + 0. A h''aracteristic dip near K6 = I

is shown in all three results. riqure 69 compares the results of Brong

(References 45, 46) with the present results, as well as those of McIntosh.

The results of Brong show the same trends as the present results, but are

somewhat larger.

rigure 70 shows the dynamic 'erivative CNý rNo + Cu as a function of

K6 when compared with the results of McIntosh and Orlik-Ruckemann. The

,Jewtonian result (Reference 33) is CN? 4/3, and the linearized-theory

result, valid for KS -* , is CNp = 8/3. The present results show the same

trend as the numerical small-distrubance results of McIntosh, agreeing with

the correct linv'arized-theory result at K6 - 0 and beinq slightly larger than

Mclntosh for 0.R 4 X6 < 2. The empirical results of Orlik-Ruckemann are too

large for small X6 and sliqhtly smaller than the present results for large K6.

rigure 71 shows a comparison with McIntnsh and with Tobak and Wehrend

(Reference 42) on a different scale foi The present results agree will

with the potential-thteory results of Tobak and Wehrend when K66 + 0. rigure
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72 snows fotrther compari-,-n of the priecenrt regolt' wtth1 nrona (References 49,

46) as well as with McIntosh (Referen(ze 4q) again. The results olý nronq show

good overall aqreement with the present results, esnecially for large K6.

Figure 73 shows a comparison of the dynamic stability derivative CNq

S(CN, -C(), reckoned about the vertex, with .the results or McIntosh and nrong.

The prpesent results tend tr the correct limit of linearized theory, N7, 2,

as K6 + 0, but otherwise they are larger than both the results of McIntosh And

Rronq. "The differences between the present res;ults are not qreat. A1

characteristic dip at K5 1 1 is shown in all three results;

o. Moment About the Vertex

The moment about any point zI on the cone axis is given hy

+4

Ml -"j (r " zlez) x p n ds

W o - zlez x r

= M0 - oL .V.2 Sb zl rý ev (4R4)
2

where

,%1 -J] (r x pn) 1S
(4q5)

is the moment about the vertex of the cone. !Nlen M0 is expandol out, the

result is

4i

= -] p et r 1S

2n L sec S
= -sin6 1  J P'cos * v'Y * sin P exlr2 ar dC

2n. L sec 5
- [-sind] j '- co c r 2 *r .10' ev (4R6)
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Thus by symmetry there Is only a moment about the y axis.

A moment c>efficient is Aefined by

CMO (M• (487)

2

An analogous means to obtaining the normal-force coefficient provides

CM0 CM* ~C4h (A!!A + h)

+ CMP + 4- +

v.. = (488)

where the higher-order te- i the series have been neglected, and where

CM 2 sec 2 6 CN, , (489a)
3

Ch 2 sec 2 6 CNh $ (489b)
3

CM 2 3 sec 2 6 CNý , (489c)
4

CMh -F 3 sec2 8 CNh ( 489d)

In terms of the variables •, a, q, and h, the results are

CM,0  CMa a - CMh ( +z•) ÷ (CMa + CMh)(_)

-CMq (-9L) + C~.ia (aL + aal(490)
V00

where

CMa CMN , (491a)

CMa- -C~n (491b)

CMq CMj, + CMh

Oi•

CMp CMq + CMa (491c)
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The moment coefficients are proportional to the normal-force coefficients, as

can be seen from Eauitions (489).

Unsteady supersonic flow oast a circular cone undergoing harmonic

pitching and plunginq motions in a planr has been analyzed. The goal was to

obtain approximate analytic results that are accurate and useful in a wide

range of practical and theoretical applications. The results were cast in the

similarity form of hypersonic small-disturbance theory. Whereas the first

terms in the perturbations series (U 0 , V0 , W0 , P0 ) were obtained in relatively

simple analytic form, the second terms (TIJ, VI, Wl, Pl) involved quadratures

of Ressel functions which, while being in analytic form, reouired numerical

evaluation of the quadratures. From comparisons with other related works

involving numerical integrations of the governinq differential eouations, the

present results showed all the proper trends when 1% <6 .5 was varied. •or

the static and dynamic stability derivatives, the correct lin^^arized-theory

results were recovered when X• ÷ 0, and a characteristic dip in the curves was

shown near K6 - 1. While being more accurate for large X6, a qood

approximation is given over the whole ranqe of K6. This is in accordance with

results obtained previouqly for steady flows by means of the same

methodology.

5. EFFECTS OF BLUNTNESS

The desirs for increa3ed maneuverability in the high supersonic, low

hypersonic Mach number regime has led to a renewed interest in the

aerodynamics of nonsymmetric lifting bodies (References 55, 56). For example,

lift-to-drag ratios near unity can he achieved with slender bodies possessing

elliptical cross-sections whose major-to-minor axis ratio is of the order of

two or more. Ctircular cross-sections, in contrast, achieve maximum

lift-to-drag ratios well below unity. Sicnificantlv higher lift-to-drag



ratios can be achieved at hypersonic conditions with so-called waverider

configurations (References 57, 58). Recent work has shown that rather attractive

waverider vehicles can be developed from the conical flow solutions for

supersonic flow past cones whose cross-section deviates slightly from a circle

(see riqure 74). These vehicles efficiently integrate volumetric storage and

lifting requirements, can achieve lift-to-drag ratios of three or more at Mach

nr..bers ranging from three to five, and behave surprisingly well-at-off-design-

conditions. .

Because these new waverider configurations are derived from conical flow

solutions, they all have sharply pointed noses. These pointed noses invite

serious heating problems at higher Mach numbers. One approach to alleviating

these heat transfer problems is to mlightly blunt the nose of the vehicle.

The effects of nose bluntness on supersonic and hypersonic flow past

axisymmetric vehicles was studied extensively in the 1960's. Numerical work

by Sychev (Reference "9) and Guiraud (Reference 60) as well as analytical work

by Yakura, riorino, and Schneider (References 61,A2, and 63, respectively)

using both direct and inverse methods showed that slight blunting of the nose

of a slender vehicle in a hypersonic flow can significantly change the forces

on the vehicle. In particular, the fluid wettinq the body passes through the

normal portion of the how shock wave at the nose of the vehicle and, as a

rr-,gequence, will have- a higher entropy and lower density than the fluid which

passes through the more oblique portions of the shock wave. The use of the

hypersonic small, disturbance equations to calculate the flow past a slender

body overestimates the entropy near the body and thus overestimates the

surface pressure. Yakura (Reference 61), using the method of matched

asyTnpt.otic expansions, and Fiorino (Reference 62), usinq /-n inverse method,

have shown how to eliminate this error that results from using the small
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4

disturbance equations for the case of axisymmetrIc flows.

This section deals with the effects of nose bluntness on hypersonic flow

past nonsymmetric vehicles such as might arise for flow past a slender body at

angle of attack or a body with an elliptical cross-section. To allow

analytical progress, this work is restricted to slender bodies whose

cross-section deviates slightly from that of a circle and employs a regular

perturbation technique. By adopting an inverse approach in which the shock

wave is specified and the associated body is determined, analytical results

are obtained that are easily interpreted. The approach is a generalization of

that of Fiorino and Rasmussen (Reference 64) for axisymmetric shapes.

The governing equations and boundary conditions for inviscid, hypersonic

flow past a slender body, using the equivalence principle of Hayes (Reference

65) are developed in the following paragraphs. Using a regular perturbation

scheme, equations are derived to describe the effects of small nonsymmetries.

These equations are solved and explicit results are obtained for infinite Mach

numbers and power law shock shapes. The section ends with a discussion of the

results and suggestions for future work.

a. Formulation of the Governing Equations

Consider the steady, hypersonic flow of an otherwise uniform stream past

a slender, nonsymmetric body with a blunted nose such as that shown in Figure

75a. Later, the assumption shall be that the asymmetric cross-section deviates

slightly from a circle. The z-axis of the rectangular coordlnatesy~stem in

Figure 7Sa -;a Aligned with the freestream velocity vector. The cr s-flow

plane is then defined by a constant value of z. Hayes (Reference 65) has

shown that the steady, three-dimensional, hypersonic flow past a slender body

q epquivalont* to an unsteady, two-dimensional flow in the cross-flow plane

-jto within an error of the order of the square of the slenderness ratio.
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normal to the freestream velocity vector as shown in Figure 75b. The

equivalent two-dimensional, unsteady flow is thus in the x-y plane and can be

viewed as being due to a two-dimensional piston, whose shape at any time t is

that of the original slender body at the axial position z = Vt, propaqatinq

into an atmosphere at rest.

Now derive the integzal form of the conservation equations for an

arbitrary sector of the cross-flow plane defined by the angle *0 as shown in

Figure 76. Assume that the body and the resulting flowfield are symmetric

with respect to the y-axis. The volume v, shown in Figure 76, is defined as

being of unit depth in the z-direction and bounded by the body, a cylindrical

surface Z lying o'itside the shock wave and or. which the velocity vanishes, and

the sector of extent €.

When applied to the volume V, the equations expressing conservation of

mass, Newton'z second law, and the jirst itw of tliermodynamics become

, !'( 0 P V •n ds - n (492)
(it V S()

'-!are thea' mtini ~ invisc-i~l adiabatic. flow without bcrdy forces.Th

closed surface S boun.-Is tli-' Volume V an.-I has an outwardI miit normal. n. The

ii:IjaS oIV dv 4J ',VV. n'iS= - JJ p ndS d 49S

-)per. surface Sn is a pl ant, i Of Lit ienth at anqle on and extends from the body

(r = rb,(ý,t))o the .;h3,:' wave (r =r ( , ) .

'?efcre ,roceedin-i .•rther wit-i t.'e Ipvelolwnent of these eauations, it is

use$ul to discuss the basic structure of the flowfiel-. Tn this way, the

various a~r'roimations that: will be mnade cubseauent'v c-an be -notivatec'.
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While the hypersonic flow past blunt-nosed lifting bodies will eventually be con-

• ,_ sidered, it is instructive to first consider the axisymmetric case.

If, except for the region near the nose, the body is slender and the free-

stream Mach number is sufficiently large that M rb' is of order unity or larger,

the shock layer between the body and bow shock wave is thin and consists of a

region of high density near the shock wave in which most of the shock layer mass

is concentrated and a low density, high entropy region adjacent to the body.

This high entropy layer near the body arises from the nose bluntness since the

streamlines wetting the surface must pass thrcugh the normal or nearly normal

portions of the bow shock wave near the nose. Because the pressure does not

vary significantly outside the high density region near the bow shock wave, the

high entrophy near the body implies a relatively low density there. The pressure

variation across the shock layer occurs primarily in the high density region

near the shock wave. The pressure at the edge of the high density region is

approximately equal to the value given by the shock jump relations plus a cen-

tripetal correction, first described by Busemann (Reference 66). The radial velocity

varies smoothly and weakly from the given value at the body to that just down-

stream of the bow shock wave. Figure 77 shows, qualitatively, the variations

of the density p, the pressure p, and the radial velocity u across the shock

layer for this axisymmetric case. Tiorino (?efercnce 62) has obtained useful

ani tical results for this problem with an inverse approach by assuming the

d nsity is negligibly small outside the high density layer near the shock.

With this approximation, the pressure is constant outside the high density

region. The results obtained are quite like the results of modified Newtonian

theory except that the effects of nose bluntness are retained.

T*.e chock layer structure for a slightly nons=mmetric body is expected to
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be quite similar except" for the nonzero crosaflow velocity v in the

O-direction. Of course, for a symmetric body, v is identically zero. The

shock wave associated with a nonsymmetric body will also be nonsymmetric

although the degree of nonsymmetry is typically different from that of the

body. Consequently, the croseflow velocity is expected to vary across the

shock layer. rigure 78 illustrates the qualitative behavior of the radial

shock layer profiles for the nonsymmetric case.

Approximate forms of the integral conservation equations for the case of a

nonsymmetric body are developed in the following paraqraphs. Por this case,

assume that the shock layer is divided into a high density zone of thickness n

near the shock wave and a relatively low density, reqion in the remaining part

of the shock layer between the high density zone and the bolv. Assume also

that the pressure does not vary radially outside the high density zone and

ignore any radial variations of the radial velocity u. Finally, use a linear

variation across the shock layer for the azimuthal vel.ocity v. These assumed

profiles are shown in Figure 79.

To proceed, first integrate the mass conservation equation, Equation

(492), with respect to time to obtain

tJJJ~ V - ; t aJ~ s + P. %1" (495)
Vs 0 S0

Hrr- pa is the freestream density and Vw is the volume of unit depth hounded

by the shock wave and the sector of extent on,

V. r 2 L de (496)

0 2

Alan, Vs is the volume of unit, depth h.-unded by the shock wave, the body, anI

the sector of extent on. The volum. V. is bounded by the surface So. Making

use of the assumed radial variation of the velocity v and density p, it is

possible to rewrite the mass conservation equation as
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=-f-4

{(Ppb)n r.+ b (r,. 2 -r, 2 ) - PsPb) r " p. r.2.2  do (497)
0 2 2 2 ,

- -J ((Ps-Pb)vsfl + ob(rs-rb) (v÷+vv) + (pa-pb) (v,-v) 2) dt
0 2 2(re-rb)

The subscript s refers to conditions J-:t downstream of the shock, b refers to

. . .conditions on .the body, and - refers to the freestream-conditions. If the bow "

shock wave is assumed to be sufficiently strong that ps/pa, is large and n is

small compared to (rs-rb), it is possible to ignore terms of order n2 and to

obtain

J {(s-Pb)n rs + 0 b (r, 2 -rh 2 ) - p. r 2 ) do (498)
0 2 2

t
=-{(Ps-Pb) vs n + Pb (rsrb) (v+vh)} dt

0 2 o,=o0

An even simpler result is obtained if Pb compared to Ps is ignored ,where the

two are directly compared,

f 02 n r. - P.., r.) do - {P2 vs n + Pb(rs-rb) (V*h) dt (499)
0 2 0 2

Newton's second law, Equation (493), contains an intearal giving the net

pressure force acting on the surface S. This expression for the net pressure

force can be rewritten as

-p.pn ds J r- . n do - J pn drl (500)
S 0 ~rb €=

- J pn drl + J Pb nb rb do
rb 0=00 0

where here no is the outward unit normal to the body. Also, use has been made

of the fact that the pressure p is ecual to the constant freestream value p'.

ahead of the shock wave. Using Green's theorem in the plane, Equation (500)

2 1P



can be rewritten as

- JJ p n dS I (Pbo-P-)n rb dt I (pb-Pbo)nb rb dt
S 0 0

r s rs a A-

- J (p-pb)n drl - ] (p-pb)n drt (501)
rb 0=0 rb

. r .- ... .. r5  - ..

- I (pb-pr)n drl - I (pb-pm)n dri
rb 0-0 rh

where pb0 is a reference value of the surface pressure that will be specified

more precisely later. Since (pb0-pw) is a constant, Green's theorem can be

used to obtain

Onl rb rb
J (pbo-p-)nb rb dO = - J (pbo-p.)n drI - J (pbO-pm)n drl (502)
0 0 =o 0

Thus, the expression for the net pressure force becomes

- JJ p dS = J (pb-Pb0) nb rb do (503)
S 0

A

" (pbO-p.)n r.1 -(pbo-Pe) n r.1

r rs
- (p-pb.o)n drI - j (p-pbo)n drl

rb O-O rb

V41-ng the profiles shown in Figure 79, the integrals on the left-hand side of

Eciuation (493) can be evaluated and thus produce the following form of

Newton's second law,

'I J;2[Oh rV2 -rh 2  (Ps-Pb)rs n) + eo(vb-vs)Pb (r.+.r.) (rg-rb)} dO
dt 0; 2 6

+ {Pb(rs-rb)[er us v ÷ eo v=2 + _v. vh + 3 V2]

2 3
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+ (Ps-Ph) [V8 (VTn + v+ v. n_2 ) + eo (vhbv n)(van + (Vb-vs nf2 ))]}
rs-rh 2 rs-rb=

00

U J (pb-pbo)nhrb df (504)
0 '

- {(PbO-lp)rsn + (p-pbo)(rs-rb)n}

- {(Pbo-pm)rsn + (P-PbO)(r Arb)n

Here the terms of order n2 have been ignored when they are directly compared

with terms of order n. Also, p .represents the radially averaged value of the

pressure in the shock layer.

In order to eliminate the internal energy e as a variable, the following

discussion is restricted to calorically perfect gases for which

pe - _P_ (SOS)
fS - (55

In this case, the energy ectuatimn , Wiiation (494), can be rewritten

SJJJ (L4-. 0V 2 ) dV + pJ L.+. I V 2 )V n ds
dt V Y-1 2 so Y-1 2

- JJ pV - n dR ('0,)

S

Since V'n vanishes on € - 0, because of symmetry there, as well as on

because V vanishes on r, Equation (506) can be rewritten as

SJJj,, (-.-+ 1 pV 2 )dV + JJ 1 v2 V.n dS

dt V y-1 2 s02

On + * r
" P J t, V de - , .Y pv drl (507)

0 %r y-1 0=€0

Since the prossure p equals p% on r, then

JJj__ =,2_ JJJ ÷V JJJ, M dV (508)
V Y-l y-1 v-vs vs y-1

or
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"j dV [V 1 r. 2 d*j (509)
VY-1 y-1 0 2

+ J r.2 _ri, 2 d# + Jj dV

0 y-1 2 Vs Y-I

Makinq use of the profiles shown in Figure 79, evaluate the inteqrals

on the left-hand side of Equation (W7) and thus obtain the followinq form of

the energy equation,

J { -rj + r02"0b)rV_&2 rs n - v.(vi-v.) re re 13

dt 0 y-1 2 2 2 (r.-rb) f(rg-rb)

+ 0pmj r.2-2. + v,(vl-v.) (2rh+rs)(rs-rb) + (vw-v.) 2 (rs+3rb)(rs-rb),}dý
2 2 6 24

S(1. b (us2 V,+v1 + V. 3 vvhv. 2 +v%2v.+vh 3 l (rs-rb)
2 2 4

1" (P2"Pb)rvw~s 9 ( .6~ n) ,n (u,2•+3v,•)+(IZ ) e

2 rs-rb 2 rx-rb

rs-rb 4 0'-#

J pb Vb'nb rh d0 + _ d J•1 r.2 do (510)
0 y-1 dt r, 2

"- -I. (b� v, (rs-rh) p (p-p3)vIsn)
y-1 2

at VMY-1

In aldition to satisfyinq thh•m nservation equations, the flow quantities

must also satisPy the shock jump relations. vor a three-dimensional steady

flow, these jump relations are

Pa VM.'n,, - .f V .n. - In (511)

m Va 4 p= nMn - m VA + pn nA (512)

m (h,, + it 2) n• moh+ V 2 ) (13)

2 2
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V

Here h is the enthalpy per unit masm inl n• 1R a unit vector normal to the

shock wave. For a calorically perfect qas,

h a 1 (514)
'y-1 0

In this case, the shock jump rolatinns cAn be manipulated to yield

P-" (Y+I) Mn- (515)

Po (Y-1) Mn2 + 2

where-Mn is the normal component of the freastream Mach number,

Mn " @n. (516)

a..

- M• z

The sound speed a is related to the pressure and density by

a 2 - Y (517)

Using equation (515), it is possible to solvo for the normal component of the

velocity downstream of the shock wave an
+

V - y-1 + 2 (518)
+- y+1 A A

Vapn. (y+1)M 2 (n 5 'Az)2

while Equation (512) can be used to show that the tangentidl component of

velocity is conserved across the nbock wave,

V. x n. A Va , (x)

In the steady, three-dimenaional flow, the : hovk wave is represented by r

re(*,z). Here (r,O,z) are orthqqonal cylindrical polar coordinates. The

velocity just downstream of the shock, V., is then expressed in these

cylindrical polar coordinates as

fig- u er + vA 00 + wo ez (ý20)

and the outward unit normal to the shock wava is qiven by

"Or - a 4n r. oo - ar. ez
"ne ______-)z (521)

2 2 1/2
(I + (3 In r,) + * s
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Equations (518) and (519) can then be used to determine the jump relations

for the three components of the velocity; the results are

2 2

1 + (Q In r.). (ar.) 2 2

- 2 L [1 -11 az I / +1 + (3 In r.) + (r.) ] (522)
Va Y+1 3 z 2 at azM.2 (3r.)

3z

2 2
I + (3 In r-) (atr) 2 2

- 2 3r n 1az - / 30 + (3 In r.) + Or I
V.4 y+1 az 30 2 3B az

r.2 ( 3,)
az

(523)

2 2

2 2 1 + (3 _n r,) ( r.r)
- (1 + (3 I r) + O3r (Y- + 2 a: 3z

V7m a• a)Z yr1 y+1 2YM.2 (_dr )

az

2 2
+ 11 + (3 Zn r.) + (r.) ] (524)

a3z

Also, the density ratio can be expressed as

PA- ( (y+l) -M 2 (ar,/)z)2  y / -(_-I) M.2 (.r. /az)2 + 2] (525)
pw I + ( In r.)z+(3r,)z 1 + (a-In r-)n+,(ar,)2

In the hypereonic small ,disturbance theory limit, corresponding to Mw + - and

r,*/az + 0 suTh that the product ,Iw ar s /hz is finite, exists

S- 2 ar El - 1 1 (526)
V0, Y+1 3z (M. ar,), )

az
-- 2 • [ -- r (527)

VO y+1 az ao (M. qrs)"
az

1- (528)
V.

p= - (y+1)(Mc ar3/a3z) 2  (529)

pw (y-1)(M0 , 3rs/17)z + 2
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neglecting terms of order (ars/aZ) 2 . Because flows past bodies which are only

slightly nonsymmetrio are considered -iter, terms of order (3 £n rs/a$) 2 have

also been neglected. In the Hayes equivalence principle, one replaces z

everywhere it appears in these shock relations with Vmt.

b. The Axisymmetric Problem

It is instr-uctive to see how the developed equations reduce to the

axisymmetric case considered earlier by Piorino (Reference 62). In this case,

all scalar physical quantities are independent of 0 and v vanishes

identically. Equations (491), (504), and (510) then- reduce to

(Ps-Pb)n rs + Pb r. 2 -rh 2 = p A r-2  (530)
2 2

_pw u. r ] ere d•] = .- (pb-Pw)rs[(eý'e) - (eo'e) 1 (531)
2 0

whretemsr-rh- 4- r-. J=~ ý - -ZL Pb u: r: b2
Ft Y-1 2 2 2 y-1 dt 2

where terms of relative order n hiave been ignored, as unimportant. Also,

the e-comrponent of the momentum equation has been taken, where e is any

constant unit vector. Since

€0 . .. .. .A

I er'e d4 = eý.e) - eee)

Equation (531) can be rewritten

ad (p. us ) = (Pb-Po) rs (533)
dt 2

Provided the shock trajectory rs(t) is known, the body trajectory rb(t) and

pressure pb(t) can be calculated exactly and explicitly from these equations.

Fbtrino (Reference 62) was the 5irst to solve this inverse problem. The

resulting solution is

Ph = P" + 1 d (p0 u ) (534)
rs dt 2
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S.LL_

-1/y t y
rh2 =Pb {IO + J Pb [y-1 d (p. u, 2 r. 2 ) + a (s d (p®usrs 2 ))2dt}

n 2y dt dt 2y dt

(535•)

where

us 2 dr, [1 - (a./d_ ) 2 ] (536)
y+1 dt (t

The constant of integration I0 is determined by the initial conditions at t-0 I
and can be viewed as being cue to the effects of nose hilurtness. That is,

examination of Equation (535) for the case of a power law shock (e.g. rs - Zm)

shows that the integral term gives a result that is identical t3 that obtained

assuming a self-similar solution (e.g., rb - zm). The first term in Equation

(535) gives a contribution for power law shocks that grows like z 1 / 2 Y, the

same result obtained by Yakura (Reference 6:) and Sychev (Reference 59) in

their studies of the effects of nose bhuntness. This bluntness term can be

interpreted as giving the differenci between the actual body shape and the

body shape given by the self-similar solution, for a given shock shape.

Pecause the small-disturbance equations nver-stimata the surface entropy and

this underestimate the surface density, the actual body radius is greater than

that liven by the se't-similar solution alone. In this sense, the bluntness

ter is ermin. as aivinj a neuative entropy dispnlacement effect. •eP'aluse

o• the ,se or the slender bo3y a3pproximation and the equivalence principle,

ese results are not strictly valid in the nose reqion where ,irs/dt is of the

order of V. or larger. As a con'-quence, the constant of integratiun In,

which determines the relative contribution of nose h]untness, must be

specifiel or determined from considerations that lie outside the prebloe

theory. Fiorino (Reference 62) obtained results that comparedi well witi. other

calculations by determining In from the condlition that the shock radius rs and

body ralius rb are equal (to within the accuracy of t-le theory) when the shock
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drs/dt equals Vw. This is equivalent to a "patching" procedure (not a 1
"matching" condition in the sense of the theory of matched asymptotic

expansions) in which the small disturbance solution valid downstream of the

nose region is patched to a rather crude nose region solution at a point that

corresponds roughly to the boundary to the two regions.

!Note that Equations (534) and (535) do not contain Pb" Thus, these

results are valid for nonzero Pb, although terms of relative order n have been

neglected. The density on the body, 0 b, for a blunt-nosed body can be

estimated from the normal shock relations and the state equation. The entropy

on the body streamline follows from the normal shock relations,

"h- " * I in en - in 9a I

=b-a 1 in 2InC p Y PO Poo

SIgn (2)2L2 - y÷,] - in ((y+1) M.,2

- y+1 (y-I)-.ZT 2

The density on the body follows from the state equation as

I/I

-h - (12b) exp (- s .•-.s)
P POO Cp

Substituting for the body pressure and entropy, gives

r1/ 2) 1y.
S-(1 + Ld (u r.2)) ((+1)H. 2 )(2y6 2-y+1)

Po r d- z a (Y-1)M..,+2 y+1

Hence it can be seen that, in the hypersonic small disturbance theory limit,

Pb is quite small for blunt-nosed bodies (viz. pb/p. - M.-2/y).

c. Perturbation Expanston

To study the effects of slight asymmetries in the body shape, expand the

various flow quantities in Fourier cosine series (the nine terms are absent

because of the presumed symmetry about $=0),

rb(O,t) - rbo(t) + T Cnrhn(t) cos nf (537a)
n21
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r s (O,t) - r 50 (t) + E enrsn(t) Cos no (537b)
n-1

p(,t)= P0 (t) + Z En Pn(t) cos no (537c)
n-1

p(0,t) = p0 (t) + Z Cn Pn(t) coS nf (537d)
n=1

-n(,t) n0 (o) + r e. nn(t) cos no (537e)

u(O,t) = U0 (t) + Z En un(t) COs no (537f)
n= ¶

v(O,t) -Z en Vn(t) sin no (537g)
n=1 n

Here the subscript zero refers to the axisymmetric solution. The en are small

parameters that characterize the contributions of the various Fourier

components. Provided the En are small, n=1 gives the effects of angle of

attack while n-2 corresponds to a slightly elliptical cross-section.

Before proceeding to the derivation of the equations governing those

perturbation quantities, it is useful to rewrite the momentum equation,

Equation (504), in the following form

! (erA + eoA)dO + (erC + eOD) = 0 (538)
0 0

where

A Eusfu r rh 2  (Ps-Pb)rsq)] - (b-b0rb (539a)

It 2

9 d [vs(Pb r 0
2 -rh2. + (0 -0b)rsn) + Pb(Vb-vs) r.+2r (rs-rb)] (539b)

dt 2 6

C = 0p(rs-rb) us (V,+Vh) + (ps-Pb)n us(vs + .hhv n) (539c)
2 rs-rb 2

D - Pb(rs-rb) vas2vvh+bvh 2 + (ps-pb)%Tvs (vs + vb-vý n)

3 rs-rb 2

(psp) vh-v n2 (vq + vt'-v q) (S39d)
rs-rb, rs-rb 3

+ (Pb0°Pm)rs + (p -Pbo)(rs-rb)

227



Here use has been made of the fact that nb O r to within an error of order

eno Since

de! -er , z eo

Equation (538) can be rewritten as

(Or ( A A + dC,- D] + e4 [S + dD + C * • 0 (540)

0

The assumed Fourier expansions given by Equations (537) imply the following

forms for the expansions of A, R, C, and D,

A - A0 + r fnAn con no (541a)
n

B a E nBnn fin n. (541h)
n n

-n- n SCin n (541c)
n n

n 0D 4. Z CnDn cos no (541d)
n

where

A0 - d_ (usO(PbO r.n 2 -rln 2 + (Ps 0 -Pb0)rs 0 no)] (542a)
dt 2

Do - (pbo-p.)rso + (ýo-pbo)(rso-rb0) (542b)

An - d_ (Usn(Pb0 r.A 2 -rE 2 + (PsO-PbO)rso no)
dt 2

+ U0(Pbn r +2-rb2 + Pb0(r.,rtfi-rb0rbn) (542c)
2

+ (Psn-Pbn)rso no + (PsO-PbO)(rnn0 ÷+ rg0on))) - PbnrbO

Bn = dVan(Pbo r0 2-rhn 2 +(Pbo-PbO)r0onn))+PbO(Vbn-vsn)(r -+2r1n)(rsn"rbo)
dt 2 6

(542d)

Cn = Pb 0 (rs 0 -rb 0 ) us 0 _______ + (pso-p)ho•o us0(vsn F Výh.v., Ma) (542e)
2 rs0-rbo 2

Dn ' (pb0-"3- ran + Pn (r;0-rbj) + tfpo-pbp)(rfn-rbn) (542f)
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ignoring all terms of order en

To proceed, substitute these Fourier expansions into the governing

equations and collect the coefficients of the various ens In this way, a

sequence of equations is obtained, the lowest order of which vern the

axisymmetric problem and are identical to the axisymmetric case considered,,

earlier provided (po-Pbo)(rso-rbO) oompared to (pbO-pw)rso is ignored.

Prom Equation (508), the first-order mass conservation equation is

written as

(Pn-Pbn)no r5O * (OO-PbO)(lnn rso + no ran)

+ Pb rn 2 - rhn. + PbO(rsorsn - rborbn) - p- r5O rsn (543)
2

t
- -J ((Ps 0-P0 )n0 von + PbO(rso-rb0) 1 ]via,.dt

0 2

9ubstituting Equations (541) into Equation (540), gives

(A0-D0 ) J Or do + E cn(An + Cn - Dn) I Or cog no do (544)
0 n 0

40
+ F_ jM(Bn - n2Dn + Cn) J o sin do do - 0

nn 0

To lowest order, k0 - Lo, which is identical to the axisymmetric momentum

equation, Equation (533) is used. Since 00 is arbitrary, the first-order

aentum equations are obtained as

An + Cn - Dn - 0 (545a)

and

Rn - n2 Dt + Cn - 0 (345b)

or

d [uen(0bO rin2-ri.,n 2 + (osO-0b0)rsono)
dt 2
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+ ugO(pbn rs2tM * Ob0(r50ren - rhrnrl) + (Pan-Pbn~rfOfO +
2

(POPO)rn + rs50 n)l]

+ pb(r 80..r1,)us 0 van+vhyq + (PsO-Pb0)fl UsO(ven + vhmfla)

Pbn rb - (pbo0pm)rmn (546)

and

dL (Vsn(Pbo rpn2 _rhn2 + (PsO-PbO)r9OnO)1+ PbOtvbn"'ven' (?.n+2rtmn (r.0-rb() --
dt 2 6

- l2(pbo0pw)rsn

+ PbO(rsO-rbO)usO van+vhn + (PsO0PbO)no usO(Vsn + vhnV-v. lu 0
2 rsBO-rbo 2

(r,47)

The first-order energy equation can be obtained from F~quation (510) as

ci ( r~n-rw .+ (r~ljrgO-rbflrbO) + 6'sn-bn) Usof rsg0')0
dt '(-1 2 Yv-1 2

*(Ps0-PbO)(Usfluan rsoio + u~ 2 rinnfO + uADL2 runnn
2 2

2__ (r. 2-r. 2) ______or

"~ Pbn 2a&_ ______a- + PbO(usOugfl r~n2 -r)n 2 + u~ 2 (rnorn-rborbn))J
2 2 2 2

* 2. 0boms02 n (ran-rbo)+ l(PxO-DOb)(usO2VunnO + vX,,.Xsn Mdn! on~2

2 2 2 rs0-rbfl 2

-Pbn rbo drhn + pbo d_ (rbo-rbn) (548)
dt (it

+ d- (reornn) Y ..L. y==ba (rno-rbo)
y-1 dt Y-l 2

ignoring terms of order p,,(r,3o-rbO) compared to (pbo-pin)rsnn

rquations (543), (546) ani (547) are validi for either pointed or

blunt-nooed bodien. As interest in this work is with the effects of bluntness

in hypeisonic flow, this 'liscussion is restricted to this case and

consideration of the limit pbO Taking ph to zero, produces a simplified

form of the first-order equations,
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d (Pnnorso + psonnro + Psonorn- p-rsorsn) + PsOn0vsn - 0 (549)
dt

d.. (psOrgOnOU 5 n 4 Psnrsouso + PsOrsOnnUsO + Pgorsnan.OUsO) (550)
dt

+ psonoUsO (vsn + vhn-v-- 2a) - PbnrbO - (pbO-p.)rsn - 0
rsO-rbo 2

d.. (psOrs.OUsn) - n 2 (PbO-Pm)rsn + PsOnOUsO(Vsn + vXb-U.. 1)4) - " (551)
dt rso-rbo 2 ....

d_ En r.n 2 -rvn 2 + &a (rsnrso-rbnrbO) +Psn u-O2 rgOnO
dt y-1 2 Y-1 2

+ Pso (UsOusnrsono + Z rsnnO + -aQ2 rsOnn)]
2 2

+ . oo uso2 no (van + vhn,, M_)l- Pbnrbo drh4n (552)
2 rso-rbo 2 dt

"- PbO d_ (rborbn) - P ! d (rsorsn) + y PbO(rso-rbO) va,+v•, - 0

dt Y-1 dt Y-1 2

d. Solution to the Inverse Problem

Equations (549) through (552) can be solved exactly and explicitly if the

shock trajectory rtn(t) is known. In this inverse approach in which the shock

trajectory is given and the body trajectory rbn(t) is calculated, all shock

quantitls are known in terms of ron,

Usn ' 2 (1 + &=2/;O2) dr., (553)
y+1 dt

van 2 n2 Y (1 - a2/;sO2)rsn (554)
Y+1 rgO

Pan - Po 2(y+l)r.n (I - (Y-1)r.n 2  ) d (555)

(y-1) s.O2 + 2a. 2  (y-1)r 5o2  + 2a8 2  dt

Here the dot over r9O is a short-hand notation for drso/dt. Thus, integrating

the mass conservation equation, Equation (549,, gives
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i

Psors()n= pir 3 0 rsnr - psonorrn Pannnrso

t
" J PsOnovsndt +Jn (556)

0

where Jn is a constant of integration. Specification of the shock trajectory

ran and knowledge of the zeroth-order, axisymmetric solution allows

explicit evaluation of the right-hand side of Equation (556), once the initial

-value of nn is known. Subtracting Equation (551) from Equation (550)

eliminates vbn and allows determination of the pressure on the body, Pbn" The

result is

PI)n =(n 2 -1) rAn (-D - -) (557)
rbO

+ 1 d (Psorsono(usn-Vsn) + psouso(rsnno+rsonn)+psnrsonouso)
rbo dt

Either of the momentum ecuations can then be solved for the Pzimuthal velocity

in the body, Vbn. - The result is

Vbn ' van - 2(r.n-rhn) {Vsn + I (d (Psors0o•.aVn) - n 2 (pbn-pm)rsn)}

no Pss0 us 0 n0  at
(558)

Having determined nn, Pbn, and Vbn, the energy equition can now be used to

evaluate the body shape rbn. To this PnA, it is convenient to rewrite

Equation (552) as

yPb0 d_ (rborbrn) + rbrbn j
dt dt

d _Pbn (!aD.tbO.: + pborsn , (1-) Psnus02 rsonO
dt 2 2

+ (Y-1)ps 0 (us0u5 nrs0n 0 + u~n2 rsnr) + u rs0n))
2 2 (559)

(7-1) %OUs 2 flr,(Van + V)"-ver a) + (Y-1)Pbnrrhn jr 1 ,

2 rsO-rho 2 (t

- _ d (rsorsn) + Ynbo(rso-rbO) v-,+vhn
dt 2

Gn(t)
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where Gn(t) is known from the given shook trajectory rsn(t) and the solutions

for nn, Pbn, and Vbn. Solving Equation (559) for rhn, furnishes

tzt *1

( (In + J pbo Gn(t')dtl} (560)
rbn 1/y 0

rbOPbO)

where In is. the constant of integration. As with the zeroth-order,

axisymmetric solution, the constant In is identified with the effects of

bluntness. With reference to the equivalent three-dimensional (steady) flow,

the slender body formulation becomes invalid for a blunt body near z - 0 where

the local shock and body inclinations are not small. The effects of this

localized bluntness manifest themselves in the constant In which gives the

value of rbn near z = 0, e.g., near the blunt nose. To complete the solition,

this constant of integration must be specified because its determisation

depends upon the details of conditions near the nose reqion where the small

iisturbance apnroximation is not valid. This question shall be answered later

when power law shock trajectories are considered.

e. Lift and Drag rorces, Pitching Moment

Pesults for the pressure and body trajectory allow estimation of the

forces and moments acting on a vehicle. General expr4s3iins for the force F

and moment M can be written as

- - JPb nh dS (561)
Sb

+ A

M - Jj Pb rb x nh IE (562)
sb

Recall, the three-dimensional body is given by r rb(ý,z). Thus the

,,.1-warl unit normal to the body, nb, is given by

A er - (a3 n rh) eý - (Orh) ez

nh, 3_--_ _ _ _z (563)
{1 +(3 Ln rh)z + (2r
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Also, if the pitching moment about the nose is computed,

rb - r er + 2 ez

Because of symmetry with respect to the y-axis (Figure 75), the force has

only drag and lift components while the only nonzero component of the moment

is the pitching moment.

T -• =e + L esy (564)

M M ex (565)

Substituting the expressions for the body shape rb and body pressure Pb given

by Equations (537a) and (537c) into Equations (561) and (562), provides, after

sose manipulation in which terms of order c are ignored,

D - 2f f Pb0 rb0 drbj dz (566)
0 dz

L - n ei J Pbl rbo dz (567)
0

M - -W Cj J (PbarbO(rbo drAi + 2rbl drAh)
dz dz

(568)
+ pbl(z rb 0 + rb 0

2 A ba))dz
dz

Here A is the length of tne body. Equations (566, 567, 568) give the forces

and moments due to the pressure acting on the forebodyl base pressure effects

are ignored. The expressions for the drag given by Equation (566) can be

rewritten by making use of the lowest-order energy equation, F4uation (532).

There results

D - 71 (rs02 -'rb02 )(po. + Ve _ d (pDus 0 r.n 2 )) + ff rs 0
2 PUs 0

2 - ff rbO2 pe
7-1 r 3 0 dz 2 2 y-1

(569)

Similarly, making use oE the solution for the pressure perturbation given In
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Equation (557), the expression for the lift, L, can he rewritten as I
L * wVevc(p 5Or5 OnO(usl-v 51 ) + p5 lusoro 0Vi + psOusorsof 1 + PsOu5 folrsl} ])

(570)
f. Power Law flhonk Waves

Power law shock waves are rather attractive to study in that the

"4
resulting formulas are easy L- obtain and interpret. In the absence of nose

bluntness effects, hypersonic small disturbance theory can be used to show

that axisymmetric power law shocks give rise to similar power law bodies.

Thus, the effects of nose bluntness are rather easy to identify in this case.

In addition, the results of other authors are available for comparison in the

case of power law shocks. Thus, assume

r.0 - AD tm (571a)

rsn w An t(S71b)

In the equivalent three-dimensional steady flow, write

rso- a0 ZM (572a)

r. , an Z'"' (572b)

where, because of the equivalence principle, a0 a A0 V..m and a. An V40m' 1

Equations (534), (535) and (536) and the shock jump relations then allow

the zeroth-order, axisymmetric solution to he determined in the hypersonic

limit NO +~ ) as

pw.v=2 m(3m-1) (aOzm- 1 ) (573a)
y+ 1 7+I

2
rbh 2  10 Z2(1"m)/Y + I2m-1)15y+1)m-y-1) (aozm) (S73b)

(Y+1)(3m-1)((y+i)m-1)

uso - 2 V.aomzni¶ (573c)

Y+1

- y+1 D. (573d)
y-1

.1 " j*! a0 zm" (573e)
2 y+l
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where to is a constant proportional to-T and which gives the effects of nose

bluntness. If Fiorino (Reference 62) in followed and rb - rs 0 at z - Z0

(where drs 0 /dt - Vw) is assumed, the result is

rb0 2 - a02z2m((1-C)(z ) + C(L.) 2[ 573f)

To- Zo '

where

( 2m-1)((sy+1)m-y-1ý (573g)
(y+1)(3m-1)((y+1)m-1)

Z0 (a 0 m) (573h)

In the equivalent two-dimensional unsteady flow, z - Vit. Sychev (Reference

59) and others have shown that the bluntness term makes a significant

contribution to the body shape if m is in the range

1 m < y+1 (574)

2 2y+1

For m loes than 1/2, the self-slmllar term becomes negative and the basic

axisymmetric solution is physically unrealistic. For m greater than

(y+1)/(2y+1), but less than unity, the displacement effect of the entropy

layer is of smaller orier than the errors introduced by the small disturbance

equations.

In the hypersonic limit (M= + -), this po-uz law shock assumption reduces

the inverse solution to the perturbation problem to

Usn - 2V_. an m#zM''1 (575a)
y+1

Van - 2Vv ann 2 m zm''l (575b)
Y+1

Pan ' 0 (575c)

nn y-_L1 (fazm (1- 2n 2 m ) + j z-m) (575d)
y+1 2 Y+1 m'+m Pooa0
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Pbn - PMV-2 aoanzm'+m- 2 m{(n 2 -1)(3m-1) + ran (2m+m'-1)(2-n 2 ÷ ni' - 2n 2 m)
y+1 rbo y+1 n*n'

+ pGV02 saa (m-i) in Z-2 (575el

rbO PC

Vbn f Vn 2 an zm' 1 (2_m - 4(y=1)(I - r.h)(2_m +-m'-m)} (575f)
y71 Y-1 rsO y+1

1-Y
n/Y z y

"rbn rbn(zO) rhn(zn) pn(zn) + I I Pbo On dz (575g)
- rbO . Pb.O 1/y zo

rbOPbO

where

Gn d [fhn (r,0 2 -r1 F0
2 ) + (Pbo-Pw) rsorsn + pw(Y+1)(Usnrs0n0Usn

dz 2

+ 24al rs0rfn + ÷ rsnnO))
2 2

+ Is. u02 r.0 (Y,, + 1 n. vhn-v..) + (y-1)PbnrbO drhf
4 V" 2 rs0-rb0 V0  dz

+ YM-n E..n- r.o. (575g)

VW 2

and rhn/rsrf is given by Equation (573f) as a function of z. The quadrature

that appears in the expression for rbn apparently cannot be evaluated

analytically in closed form and thaq must he computed numerically.

Typical flo,.,Cieli results for power law shocks are shown in Pigures 80

through 85 where the flowfield solutions ArA ;,.:tched for various m and m'

with y equal to 1.4 and MNt equal to 1. rigures AO, 81, and 92 give results

- n - 1 corresponding to in axisymmetric body at small angle of attack.

Figures 83,84, anAi 85 give results for n = 2, correspondinq to a holy with a

slightly elliptical cross-section. The range of values of m an, v' in vigures

80 through q5 corresponds to the limits given by Equation (S74), for y = 1.4.

Also, in all 7ises an = 1 has been taken. Because of the linearity of the

pertuchation problem, the results for ,other values of a. follow directly by

.niltiplying the results in Figures 80 throuqh 85 by an.
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Some general observations can be made from these results. First, rbn

always is greater than rbo, even though rso and rsn are equal. That is, the

relative body shape perturbation (e.g., rbn/rsn) is greater than the basic

axisymmetric result (eog., rbo/rso). Because the basic axisymmetric flowfield

7: has a very low density near the body, a relatively large perturbation in the

* body shape is required to achieve a given shock shape perturbation.

Second, in spite of some small numerical differences, the axisymmetric

and perturbation body pressures -- Pbo and pM, respectively -- have very

similar distributions along the body. A rather rapid expansion takes place

just downstream of the nose and the surface pressure decreases rapidly.

Third, the croseflow induced by the nonsymmetric cross-section can be

rather strong compared to the radial velocity perturbation, especially near

the body. That is, vbrn is typically several times usn.

Figures 86, 87, and 88 give results for the drag coefficient, the lift

coefficient, and moment coefficient, respectively, as functions of the body

length 1. In all cases, M.. = , y = 1.4, so - aI - 1, and Jn - 0.

The drag coefficient is unaffected by perturbations of the sort

considered here and thus depends only on the basic axlsymmetric solution. The

results presented in Figure 86 are identical to those obtained earlier by

Fiorino; they show that the decreasing pressure downstream of the nose

contributes less and less to the drag as the body length is increased and the

base area increases.

The lift torce L is proportional t, cl, the angle of attack. Figure 87

shows that the c)efficient of proportionality depends weakly on m. As with

the drag coefficient, the lift coefficient decreases with increaoing body

length because the base area used in the definition of the lift coefficient

increases and the pressure decreases.
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ThesFinally, rigure s 8 gives results for the pitching moment coefficient.

These numerical results show that a relative maximum is achieved near t equal

to unity. The pitching moment coefficient then decreases and at some value of i

4 begins to Increaie again. The value of t at which the relative minimum is j

achieved depends up,), ,i, the power law exponent. i

g. Concluding Remarks

'"he effect of nose bluntness on hypersonic flow past slightly

nonsymmetric bodies has been studied by means of a perturbation approximation

within the framework of an integ..ral method. These results, which are a

generalization of the axisymmetric results obtained by Piorino and Rasmussen

(Reference 64), have been applied in an inverse approach to the study of power

law shock waves. Results >.ve been obtained for the flowfield variables and

the force and moment coefficients.

Further work remains to he lone on this problem. cirst, the results

obtained herein should be compared with other calculations and/or experiment.

Second, results should be obtained for hyperbolic shock shapes. knilyio-3 by

Yakura and Fiorino (References 61 and 62) for axisymmetric bodies show that

such shocks are associated with blunted cones, a shape of practical interest.

Third, it .ould be of interest to more carefully and rigorously match the

asymptotic solutions obtained herein with solutions valil in t i( *ise region.

The methods of matched asymptotic expansions offer i useful nmethodology with

which to carry out such a calculation.
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SECTION III

LIFTING BODIES DERIVED FROM

SUPERSONIC FLOWS PAST INCLINED CIRCULAR

AND ELLIPTIC CONES

1. INTRODUCTION

The design of an aircraft for high supersonic flight that achieves

desirable aerodynamic behavior and still accomodates such demands as

propulsion, structures, materials, and operations is a very challenging task.

A discussion of the requirements of hypersonic aircraft is given in References

2 and 3. When the Mach numbers are sufficiently high that the flow

disturbances are intrinsically nonlinear, a treatment of the problem by means

of linearized theory is not appropriate. A generalized study of the problem

by means of numerical solutions of the nonlinear governing equations of fluid

mechanics is very formidable indeed. For this reason the few known exact

solutions for flows past elementary geometries are extremely important. These

basic exact solutions provide insight and a knowledge of fundamental physical

features associated with high-speed flow. In addition, they can also be used

as building blocks for flows past more complex geometries.

A basic scheme for deriving exact solutions for three-dimensional lifting
I

oodies by means of gimple two-dimensional wedge flows was set forth in

R. erence 1. These results were elaborated upon by Venn and Flower (Reference

67), Nardo (Referenue 68), and others. The simplest configurations thus

derived are called caret wings, or caret waveriders, because of their caret

shape. Because these aerodynamic shapes are derived from basic

two-dimensional flows, they generally involve flat surfaces and concomitant

sharp corners where these surfaces intersect. These sharp corners may be

undesirable when factors such as viscous and heating effects are taken into

account.
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Corresponding to the flat surfaces generated by the basic wedge-shock

flow, curved surfaces can be generated by utilization of the stream surfaces

associated with the axisymmetric supersonic flow past a circular cone. Sich

surfaces were devised by Jones and Woods (References 5 and 69). 7'%ese

constructions generate curved surfaces and curved shocks that are attached to

5' sharp leading edges. The flows for both the cone-generated surfaces and the

wedge-generated surfaces can be classified as conical flows.

Besides the axisymmetrical conical flows, there are also conical flows

associated with inclined circular cones and with non-circular cones. These

flows generate stream surfaces that could be attractive for construction of

lifting bodies with curved surfaces. The analytical description of these

flows, as contrasted with a nwnerical description, generally involves a

perturbation analysis, which is not uniformly valid in all the variables but

falls in a vortical layer adjacent to the body surface. The pressure and

azimuthal velocity, however, are uniformly valid across the vortical Inyer

(References 24, 25, 28). This is very important because the aximuthal

perturbation velocity is pertinent in determining the flow stream surfaces and

the pressure is important in determining the relevant forces on the surface-.

Thus the first-order straight forwarl perturbation expansion, while being

suspect at first glance, is thus pertinent in determining the stream surfaces

and related forces on waverider configurations generated by the perturbation

results. The object of this investigation Is to generate various waverider

configurations by means of angle-of-attack and cross-section eccentricity

perturb4tions of the basic axlsynmetric cone flow.

The present study rests heavily on the fact that approximate analytical

expressions are available for the perturbed fLows past circular (Reference 22,
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23) and elliptical (Reference 52) cones at small angles of attack. These

results allow for an analytical, as opposed to a numerical, investigation to

be performed that leads to results that are sirAple and easily understood. The

effects of free-stream Mach number, pertinent cone anqle, angle of attack,

cross-section eccentricity, and ratio of specific heats an the shock shape,

shock-layer structures stream-surface shape, and surface conditions can be

readily established. Although the results are approximate, they are accurate

enough for the parametric and design considerations that are of primary

concern here. When the trends and concepts have become clear, more precise

and elaborate schemes of analysis can be undertaken for numerical accuracy.

The main concern of this section is the generation of stream surfaces

that can be used as solid surfaces in lifting-body waverider configurations.

How the pressure distrihutions can be obtained is outlined, but no actual

lift, draq, or moment results are presented here. Such results, and ither

results of interest such as reported by Squire (Reference 70), will be the

subject of further research.

2. FUNDAMENTAL WFDGE-DERIVED WAVERIDER

The fundamental welge-derived waverider, sometimes called the caret

waverider, is derived from the basic exact flowfield produced by supersonic

fiow through a plane oblique shock wave, as shown in Figures 89 and 90. The

f' is lefiected by the angle A when passing through the shock. The plane

shock wave is inclined at angle 6 with the freestream flow. Let the line

formed by the common intersection of the planes parallel and perpendicular to

the freestream flow with the plane of the shock denote the leading edge of a

solid wedge. The upper surface of the wedge Is parallel to the freestream

flow;and the lower surface of the wedge, Inclined downward at an angle 6 with

the upper surface, is the stream surf3ce of the flow that has passed through
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the shock at the common-line itntersection denoting the leading edge of the

wedge. The flowfield between the lower surface of the wedge and the shock

wave is parallel and uniform and has properties obtainable from the

oblique-shock relations.

The oblique-shock relations are well known and can be expressed in ,
z12

analytical form exactly for a thermally and calorically perfect gas. Owing to

the intrinsic interaction of the variables, however, the shock angle, 8,

cannot be obtained ecplicitily as a function of the deflection angle, A. It

is thus useful to utilize the approximate results of hypersonic small

disturbance theory, valid for large freestream Mach numbers, MK, and small

deflection and shock angles. This shock-angle relation originally obtained by

Linneli (Reference 7 1) is

•in 8-Y+l+ V TY+=, 1
sin A 4 4 (M.sifA) ) , (576)

The corresponding relation for the pressure coefficient is

C, -

2.

c -Y+l - 'T--+ 4 • '577,
Asi 2 2 M

In inviscid steady flow, any stream surfaoe can be utilized as a solid

surface since no flrw crcsses a stream surface. To viejalize further stream

su faces in Figure S9 and utilize them as solid surfaces in a new

configuration, rark out the axis AB aligned with the freestream flow and lying

in the top surface of tne we'ige. The no•rmal project!rin of the axis 4B onto

the lower sirface of the weiqe i- denoted by AC. Any plane passing through

the axis AS is aiiqned with the freestrpai flow, and any plane passing through

the skis AC is aligned with the shock deflected flow. Now salect the points 0

and V on the sl.3ck surface, positioned syrn.. ' - cally (but not neceruarily) on
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either side of the axes AB and AC. The two plane surfaces passing through the

pair of three points ACD and ACE are stream surfaces in tho shock deflected

flow. The two plane surfaces passing through the pairs of three points ABD

and ABE are stream surfaces in the freestream flow. If these four new stream

surfaces are chosen as the relevant solid surfaces of an aerodynamic body,

then the new configuration appears as shown in Figure 90. This aerodynamic

configuration Is called a caret waver' '- since it appears to ride on the-

plane shock wave attached to its under surface. The upper surface ia parallel

to the freestream and hence at freestream conditions. The under surface of

the caret shape is at a uniform pressure given by formula (577), and the shock

stand-off angle is given by formula (576). For given caret waverider

configuration, the shock wave will be attached as shown in Figure 90 only for

the particular Mach number determined from Equation(576) with S and A given.

The caret waverlder is a lifting aerodynamic shape since the pressure is

higher on the under surface.

3. GENERAL CONSIDERATIONS FOR CONICAL FLOWS

To determine the stream surfaces of conical flows past slender elliptic

cones at small angles 9f attack, use spherical coordinates in a body-fixed

system as shown in Fiquri 91. Let a ! tan 9a and b h tan Ob be the semivertex

angles of the semiminor and eimimAjor axes of the elliptic cone. Then the

elliptic cone is described by

tan . - tan

'i~e r~ ,(578,

where

tail ~ h -
7 - 'a 1'

/7-74 7  ,'ab (L-, 2 ,1/ 4  
, (579ai
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2-.A2

-e b 2 -a 2

(579b)

The paramet a e is a measure of the eccentricity of the elliptic cone. For

small eccentricities, expand Equation (578) in a Fourier series, the first

two terms of which are

ec 6 - coB 2ý + 0(E 2 ) , (580)

where

6 em + e2 (3 - 2 sin2 em] sin 2 em + 0(e 4 ) , (581a)
32

£2 •_e (1 + e 2 {15 - 20 sin2 em + 8 sin 4 em} + 0(e 4 )1 sin

4 32 (581b)

The parameter C2 is a new measure of the eccentricity and is the appropriate

small parameter in a perturbation procedure. The parameter 6 specifies the

simivertex angle of the basic circular cone about which the perturbation

expansion is performed.

The conical shock wave attached to the elliptic cone has the form

(Reference 52) small a and £2,

08 + 0 cOS 2 - 2 2 cos 2ý , (582)

where

8/6 _(.y+l + 1 11/2

2 5 (583,

and K16 M 6 is the hypersonic similarity parameter. The parameters go and g2

are the shock eccentricity factors associated with angle of attack and

elliptic cone eccentricity. They are functions of KX and are shown in Figure

g2.

Let u, v, and w denote the r, I.. and 6 spherical components of velocity,

and let 1) denote the pressurm. Outnile the sutface vortical layer and the

viscous boundary layer, the variables have the follrvwing expansions for small

a and i :,
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:u( 5, ) uo (9) + a Uo(6) cos $ + e2U 2 (8 ) co S 2$

v(6,0) - vO(e) + aVO(e) Cos * + c 2 V2 ( e) cos 2$

w(8,4 ) - ctwo(O) sin $ + E2w2 (0) sin 2$ (584) I

The lower case terms in the expansions, with the subscript zero, pertain to -j

the basic-cone solution. The first-orler, capitalized terms with the sub-

script zero notation pertain to the angle-of-attack perturbation, and thecapitalized termsg with the subscripts pertain to the elliptic-cone eccentri- I

city perturbation. The pressure and the aximuthal velocity components, W0 (O)

and W2 (86, are uniformly valid across the vortical layer.

As calculated by Doty and Rasmussen (Reference 23), the angle-of-attack

velocity perturbations U0 /(VmS), V0 /V., and W0 /V. are functions of 8 and K6

within the fabrication of hypersonic small-disturbance theory. Correct to the

first order expansion of interest, the shock-layer structure can be normalized

by the variable

8-6 
(585)

At the cone surface, e' - 0, and at the shock, el - 1. The angle-of-attack

velocity components are shown in Vigure 93 as a function of 8' and various

values of K6. The corresponding elliptic eccentricity velocity components

[Section 11.1] are shmwn in Figure 94. The body-surface values of the

aximuthal velocity components, WO(Oc) and W2(9c), are shown in Figure 95 as a

functlon of KS. The body surface perturbation precsure coefficients, CP 0 and

Cp2, are shown in Figure 96 as a function of KS.

4. CONICAL STREAM .URFACES

The vector equatinn for a "etrearmline, V x do - 0, can be written in

spherical coorlinates as

dr rdO -r a n tdA

7 ,T) v ( ,¢ "w0 ,0 (S'36
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The conical stream surfaces are determined by the last two terms of Equation

(586). For small angles and to lowest order,

d6 d4
0v0 (e) aw0 (G) sin * + c 2w2 (8) sin 2$ (587)

To lowest order, only the zeroth-order polar velocity, v0 (B), for the basic

cone and the uniformly valid azimuthal perturbaton velocities, W0(e)_and

SW2 (6), enter the analysis. Even though these velocity functions are known, it

doea not appear possible to obtain an integral of Equation (587) analytically.

In the cases when a or £2 vanish separately, the variables in Equation (587)

can be separated, and integration can then be obtained at least by

quadratures. Formulas for the basic-cone flow and the perturbed flow are

given in Section 11.1.

5. WAVERIDERS DERIVED FROM INCLINED CIRCULAR CONES

a. Stream Surfaces

First consider the case when C2 - 0, that is, a circular cone at angle of

attack. When £2-0, the variables in Equation (587) can be separated and the

integration on 0 can be performed. The following results can be obtained

6
J wn OW ln In tan 0/2 1 ( 588)

Vw. as* tan *,/2

whB + 04O cos 08 , (589)

,nd t, is the azimuthal angle where the stream surface intersects the shock.

The function Wn(8) is known (Reference r2) and shown In Pigure 43, and thus

the quadrature in expression ('Am, can he evaluatsd numerically. Whon e

proceeds to the cone aurface, 0 + 6, the quadrature on the left side of (588)

-iiver.Ien, and the left aide of (5881 tends to tero. Thus all the stream

surfaces become tanqent to the Iwdy aurfeco at 0-0, the leeward ray on the

cone.
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b. Approximate Integration

Inspection of the function Wn(6) in Figure 93 suggests that W0 can be

approximated by the relation

Wo(8) n A + 8B (590a)

where

A i OWn(O) -Wn(S W (590b)

a-B c(Wn(S - WI jj,(9c

and a S 0/6. When this approximation is substituted into the integral in

Equation (588) and the integral evaluated, the result is

ki in (e-_ I + k2 In (6+5) - (k, + k2) in 8__1 - i an[,#/2] (591)

where -s 
as 

es tan #0/2

2 6 Va,

k2 c - ( +a)Wn(d) - 20Wn($) (592b)

6 2(a-I)V.

Equation (591) can also be written as

kI k2

AL' (2+ 0*] - tan 0~/2 (593)
8s*-6 e es-+6 8 tan #8/2

Expression (593) gives a relation between 8/e and 0, with fs, a/&, and XS

as parameters. (Recall that a -0/ is given by Equation (553).) The

parameter kI is always positive since Wo(6) is negative when a is positive,

and vice versa. The dependehay of kI on Ka can be determined with the aid of

Figire 94. The parameter k 2 changes sign as K6 varies, as might be

anticipateA from Pirpira 93. It can be shown that (References 22,23) a
n() - =(o0 - qo4/C• (S94j
VW,

Thus k 2 can be written as
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k2 a (o) {W2(a

2 2(z)/-1)4 -o~~)(9)1

The dependency of k 2 on KS is shown in Figure 97. At K6 - 0 and K6  0.9, the

parameter k2 is zero. It is positive when 0CK(O.9 and negative when KON0.9.

Several typical stream surfaces (plotted as Z tan 0 vursus *, with Z -

constant and tan 6 f 0; that is, projections on a plane perpendicular to the

cone axis) are shown in Figure 98 for K6 - 1.3, a/6 b 0.2, and y - 1.4.

c. Lip Angle!

The portion of a stream surface adjacent to the shock is referred to as

the lip of t', stream surface. The acitte angle between the lip of a stream

surface a, -he plane surface passing through the lip and the axis of the body

cone is referred to as the lip angle, denoted by )0. If 0 - *08) denotes

the functional form for a stream surface, then the unit normal vector to a

£tream surface is given by

n eo -sinl do/de *A
1/2 (596)

[1 + sin
2 G(do/de)

2 7

where e. and ee are the azimuthal and polar spherical unit basis vectors. The

lip angle is determined by cos A0 - es * n, and, for small angles 8,

tan A0 0" * (do/dO)s * (597)

From Equation (593) it is determined that

es- (do/dO) s - Wn(B) in. - - ! 001a sin (598)
V0(a) 'V., 77- -1

Utilizing Equation (594) the lip angle is determined to be

tan A0 2" sin s (599)

The dependency of AU on KS is shown in Figure 99. The ratio

(tan AO0 )csc2 * 5 /(u/6) increases from zero to the axymptotic value 5.5 as K6

increases from zero to infinity. The lip angle thus becomes thicker as a/!

and K6 increase separately, and At in a maximum when - 90 degrees.
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d. Spacing of the Stream Surfaces

In Equations (588) or (593), the value of *s designates a particular

stream surface, and a stream surface can be represented functionally by fe -

constant. How closely the stream surfaces are spaced as 8 is varied

outward from the cone surface, for a fixed azimuthal angle *, can be evaluated

by the derivative (3#s/3) with * held constant. From Equation ý588) is

obtained

(~j~ = -Wn(6) sin
a8 8vo(e)

at Wn(8 ) sn . (600)

SV.

In terms of the normalized shock-layer variable 9' defined by exprefrion

(585),

a WA(•KA) sin (601)
V .V 9'(2+(o-1)r')

This derivative ireases when a increases and goes to infinity when e' goes

to zeoo (0 8 6), and the stream surfaces become more closely spaced

correspcndinqly. As seen from Figure 93, the derivative is insensitive to

variation-; in K6 when e' is about 0.7. When 8' is less than 0.7, the

derivatiw. denreases as K1ý increases, and vice versa when 0' is greater Lhan

0.7, but to a lesser degrao.

e. Waverillers with a Freestream Upper Surface

Any stream surface just described can be utilized as a solid surface, but

a complementary surface remains to be described in order to fashion a closed

aerodynamic body. Here such surfaces are chosen to be parallel to the

froestrram. First demarcate the axis passing through the vertex that is

aligned with the freestream. This axis is inclined by an angle a with the

cone axis. Any plane passing through this freestream axis is parallel to the

frecutream. Select pairs of these freestream planes that pass through the
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lip-shock intersection of the conical stream surfaces, and a closed

aerodynamic body is thus formed. The upper surfaces are pairs of freestream

planes passing through the Ereestream vertex axis, and the lower surface is a

stream surface of the inclined circular-cone flowfield. These surfaces join

together at the lip-shook intersection. An example ts shown in Figure 100 for

which the lip-shock intersection occurs at - 90 deqrees.

There are an infinite number of such aerodynamic waveriders, depending on

how the freestream planes are selected. As a step towards distinguishing

between the different configurations, determine the lip angle, X~w, between

the freestream planes and the conical stream surfaces. The normal unit vector

to a freestream plane intersecting the shock at 0s is, for small angles

n-to - (a/6)(1-qn) cos o ] e, - (a/6) sin *._e (602)

/[ - (a/S)(1-gO) cos + (a/')' sin2$e

The lip angle, Xow, is determined by the condition

coo XOw - n. n / (603)

where n is the unit normal vector of the conical stream surface evaluated at

the shock, given by Equation (596). For small ratios a/6 << 1,

tan A0w 0 2 [ c 2 -gn - 1 1 sin 0. . (604)
SO(OZ-1) a - M/6 (1-gO) Cos ts

If the waverider lip angle is ever to be a cusp, then Now-0 is necessary.

The right side of Equation (604) can vanish only when sin 0. - 0 or when

acos a * (605)
0 _90

The right-hand side of Equation (605) vanishes when K6 + 0 and increases to

0.87 when K6 + c. When X6 - 0.5 and a/6 - 0.5, then Equation (605) yields *s
- 0, and a cusp can occur only at - 0. When X6 Is larger than 0.5 and a/6

is less than 0.5 a cusp cannot occur except at *s - 0 or 180 degrees. These

are generally conditions of interest and, as such, the possibility of a cusp
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is of no concern.

From structural or heating considerations, the condition where the lip

angle l0w is a maximum Is of interest. Setting the derLvative of kow with

respect to 0. equal to zero yields, for small u/6,

Cos 08 a2_1 a (606)
a 6

- When the right-hand side is less. than minus unity, no relative-maximum occurs.-

When the right-hand side is small, the result is

@s w + o2 -1 a
2 a • , (607) 1

which illustrates that the maximum value of A)w occurs when 0. > w/2. When X6

- 1.3, y - 1.4, and a/6 - 0.2, low - 8.6 degrees is a maximum when fs - 96.8

degrees. This particular waverider is similar in shape to that shown in

Figure 100, for which 0s - 90 degrees and l0w = 8.57 degrees. The upper

surfaces in these cases appear to have positive dihedral angle.

Another waverider can be formed in which the two upper freestream planes

are parallel, that is, the upper surface is flat. hn example is shown in

Figure 101. From geometrical considerations, this situation occurs when, for

small a/6,

con (a/6)
a . (608)

Ka 1.3, y = 1.4, and a/6 - 0.2 results in *s - 81.4 degrees and l0w 8.2

degrees. This waverider is akin to the waverider formed from a halt cone at

zero angle of attack with a symmetry plane through the cone axis identified as

a flat, zero-thickness delta wing. The waverider shown in Figure 101,

however, while having a flat upper surface, has a faired under surface with a

"wing" of finite thickness. This waverider can be said to have zero dihedral

angle.

Other waveriders in this family can be formed that have negative dihedral
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angles. These eKist when 08 is less than the value given by Equation (608).

An example is shown in Figure 102 for Os - 7n degreee and XOw - 7.6 degrees.

All of the waveriders in this section are lifting bodies since the lower

conical surface is at a higher pressure than the upper freestream surfaces.

f. Waverieers with a ComplementAry Wedge Surface

Another means of deriving a closed aerodynamic shape in conjunction with

a conical stream surface is to use plane surfaces- passing through the cone .. .

axis. In these cases the freestream flow must be deflected by the angle a.

Thus the formulas for the fundamental wedge-derived waverider obtained in

Section 111.2 can be used, setting A = a. Let the angle between the two

cone-axis plane surfaces be denoted by 2ý, where 1P is the dihedral anqle, as

shown in Figure 103. The plane (or wedge) shock wave across the top of the

waverider is oriented at an angle Bw with the freestream, and it is related

to the cone shock by the relation

Bw - a = * Cos

= go cos €4 ) Cos (609)

Note that now n n - 4s and that &w is given by Equation (576), with sin 8 ÷+w

and sin A + a. Pquation (609) is rewritten as

a [•+ + (y+1)2 + 1 (02 a go cos 4' cos 4. (610)

64 /4 Ca

Recalling that a /6 is given by Equation (i83), note that Equation (610) -

provides a relation between a/5, K6 , and '. Solving for a/6, obtains

BO Cos aP± (~ CoBs (y1-
a 4 _ 4 (611)

4

where
2: go - C0 cos ' . (612)

4
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Figure 104 shows */6 plotted as a function of KY for various vqlues of the

dihedral angle * an,1 for y = 1.4. Observe that a/5 is double valued for fixed

values of X6 and *, but this Is only apparent for i 75 degrees since the

curves are plotted for only the realistic values of a/S < 1. The condition

(1/6 = 0 corresponds to zero flow deflection over the upper surfacel the

dihedral angle-* Is such-that a plane Mach surface sats on the lip of the-

waverider, and the tips extend to the cone surface as a pair of

infinitesimally thin delta wings.

The lift on the waveriders in this section may be positive or negative

depending on the value of a/6. The pressure in the conical flow fiald is

given by

C(,L= + a Cpn(8J. COS 1 + 0(a2) (C13)

and the pressure in the wedge flowfield is given by (from Equation (577p)

C Y+l (ax)2(++C y (+ 1 4-4(o,)2 (614)

2 /2 =

The minimum pressure on the conical stream surface occurs at the symmetry

plane, 9 6 and € 0. The minimum lifting pressure differential is thus

alven by
'ý (6,0, C

(615i)

Also note (References 20,21,and 22, that

=1 + 02 1n 02 (616)

Purther, from Figure 96, note that Cp0'S)/6 z -4. A lower bound for the value

of a/6 corresponding to zero lift can now be found by setting AC = 0:

1 +02 In 32 - 4(a) - y+1 (az- - (f +4 (a)= 0 . (617)
02- 26 2 5 K

This relation provides a/6 for zero lift as a function of X6 and is shown in

Figure 103. The waveri'ers described by cicditions below this line are lifting
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when the conical surface is underneat', and the waverirers described by

conditions above the line are lifting when the wedge surface is underneath.

hpproximately, the zero lift conditions occur when a/6 u 0.4 for X6 > 1.

N systematic variation of the cone-wedge waverider cross section

geometries is shown in FigureR 1n5 through 110 for a/6 - 0.1, 0.2, 0.3, 0.4,

0.5, 0.6. For each value of a/6, dihedral angles of 4 - 45 , S0 , 70 , 75

Sn degrees are shown along with their corresponding values of KX as determined

from Equations (612) or (S13). wor ri/5 = 0.1, n.2, 0.3, the bodies are

lifting when the conical surface is inierneath. At V6 0.4, the bodv is

nearly at zero lift. Vor a/6 - 0.5 and n.6, the bodies are lifting when the

wedge surface is underneath. The shock lies closer to the body when KS is

larger, and hence when ', is larger. The ntandarl conditions K5 = 1.3, Y =

1.4, and a/6 = 0.2 are represented in Figure 1n3, in which case 4 = 57 degrees

and X0w = 15 degrees.

6. WAVERIDERS DERIVED FROM EL1IPTIC CONES

a. Stream Surfaces

The case when a = 0, that is, an elliptic cone at zero angle of attack is

consilere1l. When a 0, serirate the variables in Fquation (537), perform the

integration on e, and ihtain

-• () ni = in rtan ]
s ec tan 4 , (618)

whece

S - ,c22 cos 2t, (619)

ani where S that anpears in Equatinn (5q() has been replaced by 9c, the

elliptic c-ne angle,

0c - C2 cos 2ý . (620)

The variation of .• that occurs in '1( is to he i1nored in the integration.
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These operations are consistent in present-first-order accuracy. The

azimuthal velocity W2 (8) is known (Equation (84)] and is illustrated in Figure

94. The quadrature thus can be evaluated numerically. When 9 proceeds to the

cone surface, e * 8c, the quadrature on the left side of Equation (618)

diverges, and the right side tends to minus infinity. Correspondingly, when

Sthe shock location of the streanm surface, 0., is less than 90 degree, the

angle * tends to zero. When *s is greater than 90 degree, the angle tends to

180 degrees. Thus the stream surfaces that begin at the shock for 0e < 90

degrees become tangent to the cone surface at * 0, and the stream surfaces .

that begin at the shock for *s > 90 degrees become tangent to the cone at .

180 degrees. The stream surface 0s = 90 degree is a symmetry plane that is

perpendicular to the body at % 90 degree. Examples of stream srufaces are

shown in Figure 111.

b. Approximate Integration

Figure 94 suggests that W2 (8) can be approximated by the relation

W2 (6) A A + O-

8 , (621a)
where

O'wO,(8.) -w1(16)

a' - 1 , (621b)

a' - 1 (621c)

where a' - 8 /6c a + 0(c), es - + ÷ 0(c), and c- + 0(c). The errors of

order c in Equations (621) will subsequently be neglected. When this

approximation is used to evaluate the integral in Equation (618), the result

is

k3 In (0 + k4 in [8 + .) - (k 3 + k4 ) in [ 0 1 - in [tan * ]
7-Ve5 -a c sa +6c 08 tan ,' (622)

where
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6 Vm (623a)

k 4 " " (0-tl)Wi(S) - 2OW2(0)

6 (0-1) Ve • (623b)

Equation (622) can also be written as

k(3 1k4
ce- 8,, + ~i c . tan

S 8 9*s+Oc 8 tan *s (624)

Expression (624) is a relation between 0/6 andI fs, with e/, £16, and KS

as parameters. The parameter k3 is always positive since W2 (6) is negative

when c is positive, and vice versa. rigure 95 illustrates the dependency of

k3 on K6. The parameter k4 changes sign as X6 varies, which is suggested by

the behavior of W2 (8) shown in Pigure 94. It can be shown that (Equation

(84)]

WI =S _ 2g/CF2
VWO (625)

Now 'k4 can be written as

k4 = - La 4g + c(o+l) (wi(6)/V.}

6 o(C-l) (626)

Figure 112 shows how k4 depends on K5. The parameter k4 vanishes at XS = 1.9.

In the range n ( K6 4 l.9, k2 is positive, and it is negative when K6 ) 1.9.

c. Lip Angle

The lip angle is AefineA by cos A2 = eo.n, and for the elliptic conical

surfaces is determined by

tan X coi - 1

6 VW

6. (627)

Figure 113 shows the dependency of X2 on K. The ratio (tan A7 )(coc 25s)/

(E2/6) increases from zero to the asymptotic value A.7 as X6 increases from

zero to infinity. The lip angle becomes thicker as X6 and c/6 increase
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separately. The lip angle is a miximum when fs 45 and 13S degrees, and it

is zero at the symmetry planes 4s 0 and Q0 degrees.

d. Waveriders with a Freestream Tipper Surface

The axis of the elliptic cone at zero angle of attack is parallel to the

freestream, and any plane that passes through the cone axis is parallel to the

freestream. Pairs of plane surfaces that pass through the cone axis and 1 •

intersect the shock at the lips of a conical stream surface were chosen. When

the plane surfaces are the upper surfaces and the conical surface is the lower

surface, a lifting aerodynamic waverider is formed. Two examples are shown in

Figure 114 for K6 - 1.3, E/6 - 0.1, and ) = 1.4. These configurations

correspond to lip positions of s = l1fl and ln degrees. The respective lip

angles are found to be IX21 - 2.2 and 4.0 degrees. 1hese elliptic-cone ahapes

are similar in form to the circular cone shape shown in Figure 102. The

elliptic cone shapes are flatter on the bottom and have thinner lip angles.

The pressure coefficient OTn the undersurface is given by

- c, (e) + () C)() cos 2" (62R)

When Ecuation (624) is used to determine e as d function of *, the surface

pressure as a function of * can be determined.

I. WAVERIDERS DERIVED FROM INCLINEn ELLIPTIC CONES

a. Stream Surfaces

The general stream-surface structure for flow past an inclined elliptic

cone can be studied by rewriting Equation (587) in the form

(awn + 2EIW!) d9 =

V - c 2 ) (l-11)(ks~k6.) (629)

where

11 cos p (630a)

ks aWn(.5)

.IW0(9)+2E2W2 (6) (630b)
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k6
W0()÷02C2 W2 (O) . (630c)

The difficulty with the integration of Equation (62q) comes from the'

combination

w (8,0) k 5 + k6w (631)

which may vanish in the shock layer. The azimuthal velocity vanishes between

the shock and the body when w* 0. The azimuthal location €0 where w

vanishes is determined by

coo a Wn(O)
2C2 w2 (8) (632)

The surface for w* 0 (dashed curve) is shown in Fiqure 115 for KS 1.3, y =

1.4, /uS - 0.2, and c 2 /5 = 0.1. The position where this surface intersects

the body surface is denoted by €0 = *Oc and is determined by

coB ýrc = - Wn(8)
2E2 W2 (ec)

2C2 W2 (5) • (633)

For the conditions in Figure 115 there is Onc " 1270. The surface for w* = 0
*

lieq on the windward side of the body. setween the body and the surface w=

0 the azimuthal velocity is positive, ano it is negative between the w = 0

surface and the shock. For other conditions, cos (0c can he calculated with

the use of Figure 116 which shows the ratio W2(6)/w 0 (S) as a function of X6

f, y = 1.4. Also shown is the ratio at the shock, W2 (8)/W 0 (8). Lor a

given value of K6 , the ratio W2 (6)/W 0 (O) increases from the shock value to

the surface value.

A straightforwari approximate integration of Fquation (629) is obtained

by treating kS and kS as coriqtants. Exnerience shows that the best values to

use for these constants are the values at the body. vor this choice, the body

surface conditions are correctly given , which is especially important for
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the position of the intersection of the windward-leeward dividing stream'

surface with the body, denoted by Oc"

With the left side of Equation (629) evaluated as for the previous cases,

the approximate integral of Equation (629) is determined to be
10- 0r . t• k +k 8 + 8-, - _8

I4~~~ee~~~ _Zk4.3 6 I,. .J: 1k2 +k4,e "'- ec e ee +8c -

itan jklk, o. c 0+ k3SO:
2 kI cgc 06+ k3 c-ot ýs

r 2an I.1 (634)

where

k7 -kl/(kI-k3) (635a)

ka kl/(kl-k3) (635b)

o. - c2cos 2 (635c)

es- agoCOs *s - E292 coo 2ý, • (635d)

Equation (634) reduces to Equation (593) or (594) in the separate limits C2 +

0 and a + 0. If the conditions are such that kl - k3, then the appropriate

limit must be taken on the right-hand side of Equation (634), which

corresponds to setting k5 - k6 in the original differential equation, Equation

(629).

Figure 115 shows stream surfaces generated by Equation (634) for the

conditions KS - 1.3, y - 1.4, a/6 u 0.2, and E2/6 - 0.1. The dividing stream

surface which separates the flow that proceeds toward the leeward ray from the

flow that proceeds toward the windward ray occ-rs at 09 a 127 degrees . This

dividing surface is a plane surface in this approximation. The actual stream

surfaces should appear slightly different near the dividing stream surface and

toward the windward ray. In this region the actual stream surfaces have a

negative value of azimuthal velocity at the shock and hence should slope

towards the leeward direction before curvina into the radial d4.rection at the
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surface wV - 0 and then curving furt:her towards the windward ray as shown.

The elope (ao/af),s should actually be positive in the windward region whereas

the &pproximation (634) yields a sliotly negative slope. Because the details

of the azimuthal velocity field have not been taken into account, the dividing

stream surface and its intersection with the body surface are not precisely

described by the plane surface shown, even though the location of the body.

intersection is correct. Both the actual slopes and the approximation slopes

at the shock are small in the windward region, and hence the description shown

In Figure 115 is qualitatively valid except for the aforementioned

discrepancies.

b. Maximum-tntropy Surface

Outside the vortical and viscous boundary layers, the entropy has the

expansioti

004) - s9(0) + aS0 cos 0 + C2S2 cos 20 , (636)

where S0 and 62 are constants associated with the angle-of-attack and

eccentritcty perturbations. Let

S1 - cia/S 0 cos ý, + P292 cos 20, (637)

denote the entropy perturbation at the shock. It can be shown (References 22

and 52) that

191 -y(y-l)8(l-C0 ) 2  V.2  [I(i-gq0  coS 03 + c 2 g2 coo 2•s] ,
cv j25) (638)

""Ineo &0 - pa/p 0 U() and a 0
2 (0) - yp0o(S/p 0 (P). The maximum entropy

perturbation at the shock occurq where the derivative with respect to 0M of

9quatLon (638) vanishes. This occurs where

cos -a!l-qn) •

4r 2 g 2  (639)

If the value of the right side is less than or equal to minus unity, the

maxiimum ocr,urs at the windward ray, Is - 180 degrees. For the conditions of
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Figure 115 (Ka 1.3, y - 1.4, a/6 - 0.2, C2/6 a 0o1), the maximum-entropy

stream surface originates at the shock at - 133 degrees . This is on the

windward side of the dividing stream surface which is located in Figure 115 at

- 127 degrees. Thus the maximum-entropy stream surface does not wet the

body surface but lies in the windward part of the shock layer. That the body

surface and maximum-entropy surface are not necessarily identical is also true

for hypersonic blunt-body flows (see Hayes and Probstein Reference 29 , page

399). Melnik (Reference 25) on the other hand, in his analysis of conical

flows assumed that the body was a maximum entropy surface. The conical

results hold. for all values of K6 . The ratio of cos *sm and cos 00c, given

by Equation (633) is

Cos Ornm 0 1-9n~~ 5

cos *Oc 292 wl( 6 ) • (640)

For y - 1.4 this ratio in greater than unity for X6 > 0, and hence the

conclusion is that *sm > 00c for K6 > 0.

c. Lip Angle

Corresponding to Equations (599) and (627), the lip angle, A*, for the

shock-stream surface intersection for an inclined elliptic cone is deternilned

to be qiven by

tan A* - tan A0 + tan A2

= C 02 sin $s + E2 2T2• sin 2 9 (641)
aiazc-l) c-)

When the angles are small, the lip angle for an inclined elliptic-cone stream

surface is equal to the sum of the lip angles for the corresponding inclined

circular-cone stream surface and the aligned elliptic-cone stream surface.

d. Waveriders with Freestream Upper Surfaces

A3 before, waveriter configurations can be formed by utilizing freestream

plane surfaces that pass through the vertex along an axis inclined at an angle
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a with the cone axis, and intersect the shock at the lUps of an underneath

conical stream surface. The conditions shown in Figure 115 with the lip

located *e - 90 degrees were chosen as an example. The waverider formed is

shown in Figure 117. The freestream surface intersecting the shock at *s has

a unit normal vector given by

[a - (a)(J-g0 ) cos . (c) g2c0s 2ýS] eý - e sin 4s en

/ [0- (Q)(l-g 0 ) cos - ( 2 cos 209]1 + (a) 2 sin;Os (642)
6 6 6

The waverider lip angle, >-, is determined by the condition cos w. no . n,

where n is given by Equation (596). %or small a/6, the result is

*a

tan Xw z tan* - 6sin 0,
a - (a)(l-g0 ) cos - (c) q cog 2 .• (643)S~6

The waverider lip angle in Figure 117 is found to be Aw = 8.9 degrees. This

waverider has a positive dihedral and is analogous to the circular cone

waverider shown in Figure 100. The elliptic-cone waverider in Figure 117 is

shallower and flatter on the bottom than its circular-cone counterpart in

Figure 100. It also has a slightly greater span since the attached shock is

broader for the ellipse. The pressure on the windward ray of the

elliptic-cone waverider is less than that of its circular-cone counterpart,

b,, the pressure at the lips is greater owing to the greater inclination of

.a shock. There are also elliptic cone waveriders with zero and negative

dehidral, correspondinq to the circular-cone waveriders shown in Figures 101

and 102, but these will not he discusseM here.

e. Further Remarks

Elliptic waveriders with wedge-shock upper surfaces can also be

constructed, such as was done for the circular cone configuration shown in

Figure 1n3. Because there is an additional parameter, E2/6, involved in

2cgg
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fitting the wedge-shock to the waverider, the analysis is very involved and

will not be considered here.

Other characteristics of interest for the families of waveriders

presented here are lift, drag, and stability. The pressure coefficient on the

conical stream surface can be obtained from the equation

.. - C (e,6)- _Cn(o) cos 0-+ a C'J(6) cos 20, ...
6 6 6 (644)

which is in hypersonic similarity form and can be regarded as known (Reference

52). The lift and drag characteristics can thus be determined without great

difficulty. The pitching moment can also be determined, but general stability

characteristics re ui:.• a knowledge of off-design flow conditions. These

considerations are fruitful subjects for further research.

R. SOME CONSIDERATIONS REGARDINC CONTROL SURFACES

a. Control Flaps

For controlled flight, control surfaces are necessary for changing and

maintaining pitching, yawing, and rolling motions as well as for aerodynamic

trim. The waverider configurations that have been derived so far generally

have horizontal nr nearly horizontal surfaces where flaps can be placed to

produce nearly vertical forces by their leflections. If enough dihedrnal is

"present, it may be possible that the flaps could produce the behavior of a vee

t, 1 and thus obviate the need of a vertical fin. In general, "however, the

*esign of controlled flight necessitates the consideration of vertical control

surfaces. In this section is formulated the analysis of vertical fins that

are themselves waverider configurations.

b. Vertical-F3i. Control Surfaces

7onsider a wedge-shock caret waverider, such as shown in Figures R9 and

90, but that is nonsymmetric, that is, the polar angles describing the

freestream surfaces are unequal. A typical configuration that shall be
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utilized as a vertical fin is shown in Figure 118. Let one freestream surface

be denoted by tan 6,,, Os. (for small angles) to represent the angle between

a freestream cone axis and the corresponding cone shock. The other freestream

surface which shall represent the left half of a vertical fin is denoted by

the conical angle Of. The flow deflection angle is denoted by A and the shock

angle is denoted by Ow. All these polar angles are regarded as small and are

shown as projections on a fixed Z plane. The dihedral angle between the two

freestream surfaces is denoted by Jm.

From geometrical considerations, the law of cosines yields

6s02 - 2es"Of Cos *. + ef 2 = [(es.2 - k,2)1/2 + (el2 8w2)1/212. (645)

Expanding this equation and solving for Of yields

Z6 cos sin± sin . [(pe)2 -111/2

Of Bw (646)

Since Osw/Of is always positive the plus sign must be chosen when > > 90

degrees since cos 0. is then neqative. For a continuous variation, a change

in sign occurs when the radical vanishes. This does not occur since s./8w >1

1. Hence the plus sign is to be selected in Equation (646).

Equation (646) follows from the geometry of the configuration. The shock

conditions of gas dynamics, however, require that S. be determined by the flow

deflection A and the freestream Mach number as given by Equation (576). Thus

Equation (646) can be rewritten as

0.,- cos 4, + sin 4. f(e)2 (_6)2 1 1)1/2

Of 6 8. (647)

and 6 1/w can be determined from

6 = K6 = - +K6 (A) + (=1)2 K 6W (A)z + 1]
S4 6 / 4 ( .648)

Thus (Of/ 6 ) is a function of Ks,/6, E6, y, cos *, and A/6, where 6 is taken as

the characteristic angle of the cone flow. ,4hen 6 - 0, Ow takes the Mach

angle as its minimum value, and Of takei a ninimum value given by
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= -cos 46 + sin 4, [(G(0.) 2 V82 -11/2

efmin (649i

c. Vertical Fin for the ElliptIc-Cone Waverider

The elliptic-cone waveriders considered are those shown in Figure 114

with the conditions K6 - 143, y - 1.4, and C2/6 - 0.1. In this case the

freestream upper surfaces of the cone waverider are matched with the

freestream surface of the half-fin analyzed in Section 7b. Thus j, = C is

set and -. (

as- - es C 292 cos 2f, . (650) i

For the lip at ýs 100 degrees, the outcomes for various values of A/6 are ]
0 1.06
0.1 1.21
0.2 1.40

Since the freestream surfaces are matched, the vertical fin can start at

the cone vertex, or at some other position. The configuration for which the

fin starts at the vertex is shown in Figure 119 for 4/6 - 0.2. In this case

the fin shock is attached to the conical lip. The case where the fin begins

half-way back on the elliptic-cone undersurface is shown in Figure 120 for A/6

- 0.2. Tn a real flow, owing to viscous boundary-layer shock interaction, the

flow would not be as well behaved as illustrated here.

d. Vertical Fin for the Inclined-Cone Waveriders

When the basic conical waverider surfaces are derived from cones at

angle-of-attack, the freestream surfaces are Inclined at an angle a with the

geometric cone axis. The formulas in paragraph 7b must be adapted to these

situations by the appropriate evaluation of ý, and 8Bo. The unit normal

vector to the freestream surface passing through lip shock and the freestream

cone axis is given by nri, defined by Equation (642,. if e y denotes the unit
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normal vector to the vertical plane, then ipw from the condition cos -n.

e is obtained

COS 40 COSc)l-0  con 92 CO) 2g2  cos $O + a si2t

S( - (a)(l-g0) cos - 2. g 2 cos 2ý] s+ (a);' sin' ýs

(651)

When a = 0, this reduces to the result f = w S There is no discrepancy

in this result compared to Section TIT if it is realizem that the windwari ray

was taken as • m 0 for the inclined-cone waveriders, whereas the noninclinea

elliptic-cone waveriier utilized ýs > .-r/2 for the conical surface.

From geometrical considerations also comes

[ 2+ - 29 • o 1/2 (652)

where

8 = + ag co. 0, - 25q cos 2.• (653)

No further calculations are considered here.

9. CONCLUD ING REMARKS

Ry means of stream surfaces obtained from angle-of-attack and

cross-section eccentricity perturbations of the basic supersonic axisymmetric

flow past a circular cone, aerodynamic liltinq-body confiqurations have been

2rived. The emphasis has been on a systemati- parametric 3tuidy of the

various confiqurations tliat can he obtained. The configurations have attached

shocks on sharp leading edges and thus can be described as conical waveriders.

Uitilization of welqe-shock caret-waveriier result.- leads to a cnmbination of

configurations anI to ,ertical-fin control sdaraý-ts. Generalization of the

pertirbed flow past a circular gone to a'low for generalizel noicircular cross

sections (Reference 5R) can lead to further aer:idyriamic combinations.
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The analysis has proceeded within the framework of hypersonic

small-disturbance theory, and approximate analytic formulas have been derived

that apply over a wide range of conditions. Although pressure distributinns

have not been calculated, the pertinent formulas have been presented. Further

calculations by interested investigators can be performed readily.

The lifting-body configurations that have been presented appear

attractive in terms of high liFt-drag ratio requirements. Further work is

required to account for other aerodynamic factors. Some of these are

(1) lift, drag, and moment characteristics,

(2) boundary-layer growth and related viscous effects,

(3) off-design effects,

(4) details of flaps and other control surfaces.
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SECTION IV

EXPERIMFNTAhL STUDIES

1. INTRODUCTION

In this section extensive experimental results are presented for the

forces, moments, and surface pressure distributions on two fundamental

cone-derived waveriders. These two waverider configurations were selected

from examples illustrated and discussed in Section Ill. To provide a basis

for comparison, experiments were also conducted on two other basic

configurations: an elliptic cone with a major-minor axis ratio of 1.87, and

this same elliptic cone with thin delta winglets attached on the major-axis

plane. Six component force and moment data and surface pressure data were

obtained for a variation of ±20 degrees in angle of attack and sideslip over a

Mach number range of 3 to 5. Schlieren and surface oil-flow visual data were

also obtained.

2. OESCRIPTION OF MODELS

Figure 121 illustrates the model configurations that were tested. All

the models were constructed of stainless steel and had the same length, L - 60

cm x 23.62 inches, measured along the basic cone-axis from which they were

derived. The other dimengions are indicated in Figure 121 and given in inches

in --ble 1, along with the base area, Ab, in square inches.

T'ABLE ) .:2•2E._' r.14I•SIONS (INCHES)

L W T R Ah 11.2

Circular Cone
Waverider 23.r2 21.9P 7.96 4.46 103.60

Elliptic Cone
Waverider 23.62 21.50 7.11 4.62 75.83

Elliptic Cone 23.62 22.68 12.16 6.0P 216.60
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The position of the body-fixed (or stri.,g) coordinate system, to which the six

force and moment components are referred, is also shown (note that this

coordinate system differs from that usee1 in the previous analysisy here the

freaestream direction is given by the x-axis). The jagged carves in Figure 121

indicate the theoretical position of. the shock wave at the design oondition,

The model shown in Figure 121a was derived from the flow past a circular

cone at angle of attack, as explained in Section 11. It is referred to as

the circular-cone waverider. The flow in the shock layer is the same as the

flow on the leeward side of an inclined circular cone. The shape of the

curved surface, which is a stream surface in the inclined-cone flow, has been

approximated by the method of analysis in Section III and is given in

spherical coordi.nate,; by

B - I + 0.34 [tan(r - t)112.5
S 2 2 , (654)

where e is the polar anqle measured from the basic-cone axis (parallel to the

x axis but passing through the vertex., and € is the azimuthal angle measured

around the basic-cone axis such that € - ' in the z direction. The

seml-verteax anglA for the basic cone ii lenoteM by S, which for this model is

S - lq.62 degrees. The dtngl. of attack defining this waverider configuration

wa:: jelected as a/6 - 0.2, or a - 3.72 degrees, which determined the anqle

burgeen the haoic-con aixis and the symmetry ray of the upper surface.

The modei ihown in Figure 121b wag lerived from the flow past an elliptic

conod at zero angqls of attack anil L- referred to as the elliptic-cone

daverider. The uhap~e of the curved surFacn, which is a stream surface for the

ellLptic-cone fiow, is given approximately by

I - 1 - 0.1 coo 2ý + (0.19 + 0.1 coe 2gjftan(,-#}]7069
2.75 , (655)
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The basic-cone angle for this model was also selected as 8 - 18.62 degrees.

The eccentricity as defined by the Fourier series representation of Section I;

was selected such that C2/5 a 0.1.

The design Mach number for these waverider models is MO = 4. Thus the

pertinent hypersonic similarity parameter is K6 = M6 - 1.3. According to

Section III the circular-cone waverlder, model a, is sald to have a positive

dihedral, and the elliptLc-cone waverider, model b, is said to have a negative

dihedral. A photograph of the underside of the elliptic-cone waverider is

shon in Pigure 122.

For the design condition, the theoretical shock shape for model a is

- 1.34 - 0.04 cos o
6, (656)

and for model b the shock shape is

es - 1.34 - 0.06 coo 20
S. (657)

These shocks are attached to the waverider lips at 0 - 90 degrees for model a

and at * - llf degrees for model b.

Fiqure 121c shows the elliptic cone model with winglets attached on the

plane of the major axis. The equation for the elliptic cone in xpherLcal

coordinates is
tan - tanem

/•+ cos 2a (6558)

with em -17.79 degrees and e - 0.5534. These values correspond to a

major-minor axis ratio of 1.87. According to the perturbation analysis of

Section 1I the corresponding basic-cone angle is 18.6a degrees , which i.

nearly the sa-,e as for the two waverider models. The pertinent hypersoni',

similarity parameter is thus al.so abot KA - 1.3 for Mw - 4. The perturbation

analysis of Section 11 yieldr •coentrIcity factor of E2 / 6 - 0.478. This

elliptic cone is thus much more eccentric than t'is elliptic rone from which
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waverider b was derived. The delta winglets that could be attached on the

major-axis plane were wedge-shaped with a five degree included angle at the

sharp leading edge, and they were 1.46 inches wide at the base. The winglets

were designed to extend out to the shock position that would exist at Ma 4

without the winglets. Tests were run with and without winglets attached.

3. EXPERIMENTAL CONDITIONS

The tests were run in wind tunnel A of the von Karman Facility at the

USAF Arnold Engineering Development Center. Tunnel A is a continuous,

closed-circuit, variable-density wind tunnel with an automatically driven

flexible-plate-type nozzle and a 40-inch by 40-inch test section. The tunnel

is equipped with a model injection system which allows removal of the model

from the test section while the tunnel remains in operation. A complete

description of the tunnel and airflow calibration information may be found in

Reference 72.

The experiments were conducted at Mach numbers 3.0, 3.5, 4.0, 4.5, and

5.0. On-design conditions for the waveriders were at Mw - 4.0 and a - -3.72

degrees for the circular-cone waverider and a - 0 for the elliptic-cone

waverider, both with zero sideslip. All other conditions were off-design

conditions. Six components of force and moment data were recorded for angles

of attack and sideslip in the range of ±20 degrees. visual Schlieren data

were recorded during these tests from which shock-wave positions could be

measured and flow patterns observed. Oil-flow tests were conducted

separately.

The nominal unit Reynolds number for the tests was 2 million per foot.

Tests were also conducted at a unit Reynolds number of 1 million per foot on

the circular cone waverider Mach numbers of 3.0, 3.5, 4.0, and 4.5. Because

there was no noticeable effect of unit Reynolds number in this range, all the
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remaining tests were conducted at the nominal unit Reynolds number of 2

million per foot. A complete summary of the test conditions is given in

Reference /3.

4. FORCES AND MOMENTS

The data For the forces and moments are presented in three comparative

groups. First, the six components of force and moment coefficients are

presented in body-fixed coordinates for Mw = 4, comparing the four aerodynamic

configurations. The second aroup compares the corresponding lift and drag

coefficients of the four configurations at M. - 4. The third group is

concerned with the effects of variation in freestream Mach num~ber. The forces

and moment are all for the forebody contribution only.

The discussion of these results is facilitated by the use of simple

Sapproximate formulas for the normal force and axial force coefficients of th,,e

cone-derived waveriders at the design conditions, referred to the axis of the

basic cone. These formulas, which are derived in Appendix A, are

(C_) 2'5 q cos A
6 17 1+ 2A

T ,(65q)

CA = (C ) )24 . 660)

These coefficients are normalized with the base area of the waveriders and

w-re obtained under the assumption of small deviations from an axisymmetric

basic-cone flow, consistent with the analysis of Section III. The semivertex

anqle of the basic co.ne iq 6, and Co is an average pressure coefficient which

can be taken as the pressure coeFFicient: on the hasic cone, C c. .

Accorlinq to hVperqonic small dist.irbance theory, the ratio C /62 is a

function of the similarity parameter X6. The ratio of the basic shock angle

to the hasic-cone angle, a 8/6, is also) a function of K6 as given in
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Appendix A. The angle A Is a basic dihedral angle, the angle measured from

the horizontal plane through the basic-cone axis to the plane passing through

the basic-cone axim and the waverlder Ilp intersection with the shock. For

the present circular-cone waverlder, A - 0, whereas for the elliptic-cone

waverider, A - -20 degrees. For the present on-design conditions, K 6 - 1.3,

a a 1.34, CP0 /6 2 - 2.32, and 8 - 18.6 degrees. The approximate formulas (659)

and (660) suggest how the present results can be extended to other conditions

and configurations.

Figures 123 and 124 show the normal-force and axial-force coefficients

for the different models at Ma - 4 as a function of angle of attack and at

unit Reynolds number of 2 million per foot and zero sideslip angle. The

on-design conditions for the circular-cone waverider is a - -3.72 degrees, and

for the elliptic-cone waverider the on-design condition is a - 0. At these

conditions the shocks are attached as indicated in Pigure 121a and b.

Increasing the angle of attack amounts to a positive rotation of the bodies

about the y axes. The force and moment coefficients were normalized with the

individual base areas of the models, and this should be kept in m.Lnd when

comparing the actual forces on the models. The elliptic-cone waverider

produces the largest normal-force coefficient at a a 20 degrees and also the

largest negative value at a - -20 degrees . The CN versus a curve in nearly

linear over this angle of attack range and also has the largest slope, CN.

The normal-force coefficient for the circular-cone wdverider is nearly

bAilinear, that Is, the slope CNc has one value for positive a and another

value for negative a. Even when the larger reference base area of the

c.ýrcular-cone wavarlder is taken into account, the elliptic-cone waverider

produces a larger normal f-rce than the circular-cone waveriLer for on-design
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conditions and positive angles of attack. 'ýauation (659) qives a slightly low

value for CN for the on-design elliptic-cone waverider (a - 0) and a slightly

high value for the on-desiqn circular-cone waverider ( -3.72 degrees).
J

hS a basis fckr comparison, Figure 123 also shows the normal-force

coefficients for the elliptic cone. When the cross flow is perpendicular to

the minor axis of the elliptic cone,,the orientation is referred to as the

trAns aree condition (tran ). Without this restriction th" cross flow is

understood to be perpendicular to the major axis. The slope of the

normal-force curve for fnon-transverse conlition is approximately 2.2s times

greater than tne transverse conditinn. -he winqlets attached to the elliptic

cone produce about a 14 percent increase in the slope of the normal-force

curve over the elliptic cone without winalets. The. effects of the winglets

are found to be small compared to the differences between the other

Confiqurat!.-)nq.

At a 20 degrees the value of %N for the elliptic cone is only 10

percent larger than for the on-desugn (a - 0) condition for the elliptic-cone

wavertider. The actual normal force for the elliptic cone, however, is

significantly tar,4sr since its base area is .8.6 times greater than that of

the elliptic con, waverider. At a u 20 degrees the rN for the elliptic-cone

waverider is 1.1% timens greater than for the elliptic cone, and 1.49 times

o ,iater than for tii idr'.ular-cone waverlder. The qllintic-cone waverider

proMuces the .a~rqaet i•tual normal P.3rca. The anqln of zero normal force

occur% at rA - -8.4 deqr.ise for the elliptic-cono waveriler And at CL -11.2

decirlies for th.o (fl.rr:u1.sr-cnrn. wiveriler.

The axial-f',.e oeFrrAientq Are shown In 1i.3ttc 124. The bdase drag has

been tiihtracted From the force contribution on the models. The elliptic-cone

waveriltir has the 1arqmt valuoR of 1:A fo: positive angles of attack. At a -
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0, all the configurations have about the same value of CA 0.266, which is

consistent with Equation (660) since KS and 6 are nearly the same for all.

The theoretical value of Ch from Equation (660) is R percent lower than the

experimental value. The axial force on the waveriders vanishes when a M -20

degrees. The effect of the winglets on CA for the elliptic cone is very small

and thus is not shown.

..... Figure 125 shows the side-force coefficients for Ma. 4 as a function of

side-slip angle, f, for a = 0. (A negative side-slip angle corresponds to a

positive rotation about the z-axis.) '4ecause the models are all symmetric

about the x-z plane, only values for negative P. are sOown. The data for the

circular-cone waverider illustrate the negligible change when unit Reynolds

number is varied between I and 2 million per foot. The side-force

coefficients are nearly linear with 6. The side-force coe'ficients for the

circular-cone waverider are the largest, and the smallest For the

elliptic-cone waverider, with transverse flow past the elliptic cone in

between. The actual side force for the transverse elliptic cone is really the

largest of the three shown since it has a reference base area 2.09 times

greater than that of the circular-cone waveriMer.

Figures 126, 127, and 128 show the moment coefficients CE, Cm, and Cn for

the moments about the x, y, and z axes For M. - 4. rigure 126 shows the

rolling moment coefficient Ct as a function of side-slip angle (with a = 0).

The circular-cone waverider illustrates negligible change with unit Reynolds

numbers in tle ranqe I to 2 million per foot. The rolling moments are noarly

linnar with P., with %£ for the circular-cone waverider beine about 1.1 times

greater than that For the tilliptic-cone waverider. The rolling moments for

cross flows perpendicular to the a.jor - -inor axes of the elliptic cone are

Zero) owtirI (
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Figure 127 shows the pitchinq-moment coefficients as a function of angle

of attack (with n a f), reckoncd about the y axes located on the bases of the

models. The pitching-moment curves are similar in appearance to the

normal-force curves in Figure 123. The ratios Cm/CN yield the center of

pressure for pitching rotations, measured in percent of L from the base.

Since the curves are nearly linear, the elliptic-cone waverider has an average

center-of-pressure over the range a - t20 degrees of about Cm/CN a 0.32, and
the circular-cone waverider has an average value Of Cm/CN N 0.33 for the

elliptic cone, the correspondinq values are Cm/CN Z 0.29 and Cm/CN 2 0.1P for

the transverse orientation. The center-of-pressure for pitching is thus more

towards the vertex for the waveriders than for the elliptic cones. The

center-of-pressure for the basic cone in Cm/CN - 1 -(2/3) oe, 26 - 0.26.

The yawing-moment coefficients, corresponding to moments about the z

axis, are shown i.n Viqure 12A as a function of side-slip angle (with u -a).

The curves for the waveriders are nearly linear. The center-of-pressure

position for yawing motion is given by the ratio Cn/Cy, measured in percent of

L from the base. For the elliptic-cone waverider, the center-of-pressure is

Cn/Cy 0.24, and for the circular-cone waveriler the value is C 0.25.

The curve for the transverse elliptic-cone is not so linear as for the

elliptic-cone waverider, starting off above the elliptic-cone waverider for

,nall 6 and ending slightly below it for large By the average value of Cn/Cy

is about n.1R.

Fiqures 129, 130,and 131 show the lift coefficients, the irag

coefficients, and the L/n ratios as functions of angle of attack. The curves

for CL in Figure 121 are similar to the correrponding curves for CN, but are

noticeably nonlinear as should he expected from the geometrically related

definitions. The elliptic-cone waveriler shows the qreatest lifting ability

32S



I
I
jI
I

I

I

I1' <C $
1 -�

V

H IJ� II-S

U

-Aeq - -

U
- "-4

4'-

- 4'.'

C-,
L

� � 'i� 4'o �
�; 0 0 0 it

U IF, C'
-,

'( C,.) C..v � � I '-4- - -
�- �. fr-

Ii

- -� -� -� "-4

oo�o

i: '�



0

U,

-J

I I

0

z V

- j..
L

C -

(q� 0 0 U,
p. r� � II -
�, -. a � I

� 0 0

I,- � �-
II

g.� -�
-- -

G0�0



rzz

-/-1

2I

4.

328



of the four models. The values of CL CN at on-desiqn conditions are

approximated by Equation (659) for the waveri.ers. The drdg coefficients

shown in Figure 130 are decidely nonlinear, varying approximately as a squared

about the angle of zero lift, which is -8.5 degrees for the elliptic-cone

waverider and -11.2 degrees for the circular-cone waverider. The drag

coefficients are approximately the same for all the models at a • 0, in

accordance with Equation (660). At design conditions, the circular-cone

waverider drag coefficient is less than the elliptic-cone waverider drag

coefficient, but the actual drags are nearly the same when the differences in

base areas are taken into account. The drags for the on-design waveriders are

much less than those for the elliptic cone generating the same lift.

Figure 131 shows the L/D ratios, which are an important measure of

aerodynamic efficiency, especially with regard to range. The L/D ratios are

independent of the base areas of reference for the lifferent models. The

waverider models achieve their maximum value of L/D) at their design

orientations, with the elliptic-cone waverider having the largest value. The

maximum value of L/D for the elliptic-cone waverider (at a - 0) is 2.5 times

greater than the maximum value of L/D for the elliptic cone (at a - 15 degrees).

The waverider models also have negative values of L/D which occur at negative

angles of attack, the minimum L/D values have nearly the same absolute values as

"on-design conditions. The ratio of Equations ,659) and (660) gives a good

approximation for the maxinum L/D for the waveriders:

(C )x 2: 2 a cos A
CD 76 1 + 2A

ii (661)

Equation (661) shows simply how 6, 0, and A affect the maximum L/D ratios for

the waveriders on-design. smaller values of 6, that is, more slender bodies,

increase the value of t/n, and negative dihedral tends also to increase L/D.
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Fiqures 132, 133, and 134 illustrate the effects of Mach number changes

from 3 to 5 for the waveriders. The Mach numher effects for the elliptic

cones were much smaller, and thus only their results for Ma - 4 are shown for

comparison purposes. For example, for the elliptic cone at a - 20 degrees, CN

decreased from 0.90 to 0.%5 as Mm increased from 3 to 9, but the maximum value

"of L/D did not vary signi~icantly from 1.2. The largest effects of changes ofI
* _ Mach number for the waverider configurations were-on the normal-force ....

coefficients and the rolling-moment coefficients. The variation of CN with

Mach number is shown in Figure 132 for the circular-cone waverider and in

Figure 133 for the elliptic-cone waverider. As Ma increases from 3 to 5, the

absolute value of CN decreases. The waveriders have a higher CN for Mach

numbers smaller than the design value. The axial-force coefficients (not

shown) show much smaller variations with Mach number. ror the elliptic-cone

waverider at a - 0, L/D decreased from 3.2 to 2.90 as Mw increased from 3 to

5. Figure 134 shows the effect of Mach number changes on the rolling moment

coefficients CX for the waveriders. Tncreasing the Mach number causes the

rolling moment to decrease.

5. SHOCK-WAVE CONFIGURATIONS

Some of the features of the flowfield and shock-wave configurations were

determined from Schlieren photography. 9chlieren photoqraphs were taken at

selected angles of attack and sideslip angles during the force and moment

measurements. In addition, nhotcgraphs were taken at 10 degre-. in roll about

the x axis. !xamples of these Schlieren data are shown in Wigure 135 for the

elliptic-cone waverider at a - 0, for roll angles of 0 and 90 degrees and for

Mach numbers of 3, 3.5, 4, 4.5, and S. The first column of these photographs

shows the side view of the waverider (zero roll). The lower part of the shock

wave can be seen and measuted. ror the upper part of the glow, no shock
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disturbance can be seen. This is in accordance with the on-design condition

of the waverider at M.. - 4 since the flow is aliqned with the upper surface,

and the entire flow disturbance is meant to he contained in the attached shock

layer beneath the waverider. Por the off-design conditions MW 3 and 3 .5; in

the first two photographs of the second column showing the planform

configuration at 90 degrees roll, the shock wave is seen to he detached from

the lip. Since there is no upper shock wave seen in the correspondinq side

views, the detached conical shock degenerates to a Mach wave at the upper ray

in the symmetry plane. At the upper off-design conditions M.0 - 4.5 and 5, the

lower planform views in the second column show the shock-wave to be attached

to the waverilder.

The data from the Schlieren photographs in Figure 135 can be used to

infer the shock shapes in the y-z plane as shown in Figure 136. The attached

shock underneath the waverider is the theoretical on-design shock shape for M?4

= 4 computed from Equation (657). The actual shock angle at the lower ray for

M .- 4 measured from the photograph is slightly greater than the theoretical

result; in fact, the actual shock at Mm - 4 appears very slightly detached

from the body. For the higher Mach numbers 4.5 and 5, the shock waves are

attached underneath the body, and the lower ray comes closer to the body as M.

increases. ror the lower '4acn rumbers I and 3.5 t2,e conical shock wave is

d. . hed, (except at the vertex) and the Faired shock-curves through the data

.3ints in Figure 136 are inferred. The data points for the top ray ($ 0)

are the theoretical Mach angles extending from the vertex since no disturbance

was observed from the Schlieren photographs. The dashed curve above the

waveriler is the theoretical mach --irface for the on-design condition M. - 4.

Similar Ma-h surfaces also exist for Mw = 4.5 and 5, but they are not shown.

The shock waves above the waveriler approach the Mach surface as M. approaches

A from below.
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Similar results were found for the circular-cone wavqrider. The shock

was found to be very slightly detached from the lip at Mm.- 4, and attached as

for the elliptic cone waveriier for the higher Mach numbers.

From the Schlieren photographs it was determined for the elliptic cone at

Mw - 4 that the shock stood off from the base at the body 2.27 inches from the

major axis ind 4.40 inches from the minor axis. The original intention in the

design of the winglets was for them to extend out to the shock at M. - 4. The

base dimension of the 1.96 inches for the winglet was determined on the basis

of a numerical calculation which now seems to have been in error since the

actual standoff distance of 2.27 inches is somewhat larger. The shock

position shown in Figure 121c thus reflects the anticipated shock position and

not the actual one determined from the Schlieren photographs.

6. OIL FLOW RESULTS

Oil-flow visualization data were obtained on each model configuration at

K. - 3.5, 4, and 4.5 and at a unit Reynolds number of 2 million per foot. The

top and bottom surfaces of the models were photographed simultaneously at

angles of attack of -10, -3.7, 10, and 11.5 degrees with zero sideslip and at

a sideslip angle of -10 degrees for zero angle of attack. Prom these

photographs the boundary layer always appeared to be a laminar flow, and no

transition to turbulence was observed. No separation of the boundary layer

was observed on the waverider models. A kind of cleaning of the oil from the

surface near sharp corners occurred, and distinctive patterns of oil flow

occurred on the curved surfaces near the nose, apparently owing to viscous

shear effects. The flow overall appeared very clean and did not deviate from

what was expected from a purely conical inviscid flow outside the boundary

layer. Representative oil-flow photographs for the circular cone waverider at

Mae - 4, a - 10 degrees, and Re - 2 million per foot are shown in Figure 137.
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a. Top vie-. M=4 a - 100 R e 2 x 10 6/fte

b. Bottom view .M=4 C 10'"

Figure 137. Oil-Flow. Pattern on Circular-Cone waverider at M . 4
L il", -ind P = 2 million per foot
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7. SURFACE PRESSURE DISTRISUTIONS

After the force and moment tests, Schlieren photoygraphy, and oil flow

studies were completed, two waveriders and the elliptic" cone models were

tapped and instrumented with 43 to 48 flush-mounted pressure tubes. The

location and designation of each surface pressure and base pressure orifice

-o ; for each model tested are shown in Figures 138 through 147. For these

pressure tests, the elliptical cone with winglets was not tested as it was

impossible to place pressure ports in the winglets because of the thinness of

I the winglet. Prior to the pressure tests, several orifices at the most

forward model station of the two waverider locations were found to be leaking.

These orifices could not he reached for repair because of the manner in which

they had been fabricated due to the restricted space available internally at

this model station.

All of the pressure tests were conductecl at a fIxed Reynolds nmber of 2

x 106 per foot. The experiments were conducted at Mach numbers of 3.0, 3.5,

4.0, 4.5, and 5.0. Model orientations were varied from +20 to -20 degrees

sideslip angle at zero angle of attack. A complete description of the tunnel

and airflow calibtration information is given in Reference 73.

Figures 142, 143, and 144 show results for the surface pressure

coeFFicient at a freestream Mach riuhber of 4.0 or at various angles of attack

f -on -20 to +20 degrees at zero sides~ip angle. These pressure coefficient

d-tta are plotted a.onq rays throual, the vertex of the model. ror example,

porti 2, 6, 11, ?1, 3n, and 31 all ie ilonc a ray at € * 22; degrees through

the vertex of the cir-cular-cor. w v;,eri ler.

Dresenting the ineaqjremen1- i this manner provides a useful chec' of the

basic conical flow assumption that: is pact of the theory used to derive these

waveriler shapes. Tf the Flow is in Fact conical, there should be no
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variation of the surface pressure coefficient along a ray through the vertex

of the model. The data given in Figures 142, 143, and 144, as well as other

data obtained in the tests but not presented here, show that the conical flow

assumption holds quite well.

Pigures 145, 146, and 147 conpare the measured surface pressures on the

-elliptical cone with those -computed from the theoretical analysis in Section

II. The results of Section II can be written

-� c + a cos •Z + 08 2c

Here Cp0/ 6 , CpO/5, and Cp 2 /6 are functions of the hypersonic small disturbance

parameter K6 and the ratio of specific heats Y. With M. given and 6 - 18.68

degrees, the hypersonic similarity parameter can be calculated. Also, the

eccentricity factor £216 = 0.478, a value sufticiently large that the

perturbation scheme of section II Ls likely to yield significant errors.

As the results of Figures 145, 146, and '47 show, the contribution of

second-order terms proportional to £22, aC2, ann] a 'e significant and must

be included if reasonable agreement is to be achieved between theory and

experiment.

Figure 148 compares the measured surface pressure coefficient at K, = 4

on the circular 7,one waverider with the the',retical results obtained ucing the

?e.<ts given in Section II. Rec.ill that M. = 4, the waverider models are on

t .,;r iesign conAltinns. Thne theoretical results predict the trends observed

in the measurements quite well on the compression side of the circular cone

daverider. The theorAetical result For the upper surface of this waverider,

namely zero pressure coefficient also agrees ,,ery well with the measure ents

on that surface.

Figure 149 compares the meaaaired surface pressure coefficient at M. = 4

on the elliptic cone waverider dith the theOreticnl results obtained in
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Section II. Again, the observed trinds in the experimental data are

reproduced by the theory. The measured upper and lower surface pressure

.. coefficients agree quite well with the theoretical estimates.

Figures 150 through 161 present off-desIgn surface pressure coefficient

data for the circular cone waverider for freestream Mach nambers of 3, 4, and

5, respectively. The data for M. = 3.5, 4.5 do not show any important

differences with the data presented here. Figures 150, 154, and 158 give

cown4ression surface data for various angles of attack from -20 to +20 degrees

at zero sideslip angle. Figures 151, 155, and 159 give the corresponding

upper surface data. Data for sideslip angles from 0 to -20 degrees at zero

angle of attack are given in Figures 152, 156, and 160 for the compression

surface while Figures 153, 157, and 161 give corresponding upper surface

results. In all. of these figures, the actual data points are plotted as solid

symbols. In order to be able to connect the data points with solid lines in a

fashion that would preserve the symmetry in the zero sideslip data, these data

points were reflected about * - 180 degrees to give the open data points in

Figures 151 through 161. Thus the open data points in these figures do not

represent actual measurements; they are obtained by assuming symmetry about

= iRO degrees. Sxamination of Figures 150 through 161 shows that effects of

mach number variations from 3 to 5 nave ýittle effect on the coefficient

Ii. ribution, although the maximum pressure coefficient does decrease as MW

increases. Also, these data show no evidence of strong secondary shock waves

for otf-design c-nditions. As yet there are no theoretical techniques

ava!Lab>,, for ca7cultLnu the oFf-deiqn hehav.,,, )f these waverider

confL.liratinno. Therp aro nsr thinreti,-al re&{ijlrq in PFqures i1,0 through 161

for compar '.,on.
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L7

Figures 162 thourgh 173 give analogous results for the surface pressure

coefficient on the elliptic cone waverider. hgain, the effects of Mach number

variations in the range 3 to 5 are small. In addition, these data show no

evidence of strong secondary shock waves for off-desLgn conditions.

The data in these figures show that as the angle of attack a is increased

through positive values, the pressure coefficient on the windward symmetry

line increases almost linearly with a while the pressure coefficient on the

leeward surface decreases with a, again almost linearly. Similarly, there is

a nearly linear increase in the maximum surface pressure coefficient as the

sideslip angle 8 increases.

8. DISCUSSION AND CONCLUSIONS

A comprehensive set of data for the forces, moments, and surface pressure

coefficients on two cone-derived waveriders has been presented together with a

corresponding comparative set for for an elliptic cone. The waverider modelq

are taken from a fundamental generic class of lifting bodies. The on-design

condition for these bodies is accurately described by the perturbation theory

of Reference 5. The data substantiate the accuracy of the theory for the

on-design conditions and show the deviations resulting from changes Jn bcth

orientations and Mach nambers. The waveriders produce significantly larger

lift forces than the comparative elliptic cones. The winglets on the elliptic

cone, which were meant to fashion a pseudo-waverlder configuration, produced

only modest L-mprovements in lift over the elliptic cone without the winglets.

The lift over drag rati, representing a measure of aerodynamic efficiency was

2.5 times greater for the on-design elliptic-cone waverider than for the

maximrr' ,,/r) for the elliptic cone. The forces and moment-4 'Mn the w7,(.rL1iPr'4

decreas•i as the Mach ,r-, no-- increaqed from 3 to r. The Schlleren data

together with the qurface oil-flow resaIte provided information that the flows
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were always conical and clean, without strong secondary shocks or separations

over the entire range .of testing conditions. These tests taken-with the

supporting theoretical background make the cone-derived waveriders very

attractive and viable contenders for future hypersonic missile and aircraft
.!q u•

S• oonfiqurations 0

3h

II
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SECTION V

CONCLUDING REMARKS

The results of a combined theoretical and experimental research program,

pertaintng to a new claro of supersonic lifting bodies, have been presented.

The theoretical program is based on a perturbation analysis of the basic

axisymmetric steady flow past a cone. Approximate analytic results are

obtalned and cast within the framework of hypersonic small-disturbance theory.

The results are particularly appropriate for parametric studies. The

experimental program verified the theoretical analyses of two waverider

configurations for the on-design condition. Moreover, it provided information

for off-design conditions for which no theoretical method of calculation is

presently available. The combined results indicate that the new waverider

configurations are strong contenders for modern missile design technology

requiring hig L/D ratios, good volumetric storage, high maneuverability, and

low radar signatures.

The experimental program for the contract period of this report also

contained windtunnel tects on the two waverider models at Mw - a for forces

and moments, cchlieren data, and oil-flow data. The results of these tests

were obtained too late to be included in this report, but some of the results

are reported elsewhere (Reference 74). The complete results of these tests

will be described in the final report for the succeeding contract period of

this research program.

Future work pertaining to the aerodynamics of cone-derived waveriders

will be undertaken in a follow-on research program. This program will include

confiquration optimization, blended inlets, boundary-layer development, and

static and dynamic stability performance.
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APPENDIX h

SIMPLE APPROXIMATIONS FOR THE WAVERIDERS

The pressure coefficient on the shock layer of the on-design waveriders

U has the form

c p(et,) - cpo(8) + a Cp 0 (e) COS + C2 Cp 2 (86 cos 20 (A-1)

J Where cp0 is for the basic circular cone, cp0 is the angle-of-attack

perturbation of the basic cone and Cp2 the eccentricity perturbation of the

basic cone. Integration of the pressure over the surface leads to the forces

and moments on the waveriders, for which no simple general expression can be

obtained. A simple approximation, however, can be obtained in the following

way.

Consider axisymmetric supersonic flow past a circular cone of semivertex

angle 5 with a conical shock of semivertex angle 8. Any plane passing through

the cone axis is a stream surface in the shock layer. Choose any two axiil

planes oriented with an angle A from a horizontal axial plane. Select the

portion of these planes between the body and shock as infinitesimal-thickness

delta wings, and construct the ideal conical waverider shown in Figure A-I.

The angle A is called the dihedral angle. The area of the base for slender

cones is Ab - lL2 62 (1+2A/n)/2, and the planform area projected on the

horizontal plane is L26 cos A. If the pressure in the shock layer is taken as

a constant, then Equations (659) and (660) for the normal-force and

axial-force coefficients can be easily derived.

Por the circular-cone and elliptic-cone waveriders depicted in Figure 121

an average value of C from Equation (A-I) and a suitabIle modification of the

base area and shock angle could be used. The simplest approximation occurs

when the basic-cone results are used:

3%6
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