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SECTIOM 1 

GOALS AND MAJOR FINDINGS 

1.1 Introduction 

This interim report documents the Theory of Design Methods conducted 
in partial fulfillment of the Actively Controlled Structures Theory Study.* 
The objective of the studies in Volume 1 has been to analyze the theoretical 
aspects of selected constant-gain linear feedback design methods viewed as 
candidates for application to active vibration control of large space struc- 
tures (LSS). Primary emphasis is placed upon; 

(1) Research on constant-gain linear feedback methods applicable to 
active vibration control of large space structures. 

(2) Evaluation of the suitability of this class of design methods 
to LSS controller design through application to a common test 
example. 

(3) Identification of new extensions to these design methods which 
improve their applicability to LSS controller design. 

(4) Identification of suitable directions for future efforts in 
developing theory and methods specifically applicable to the 
control of large flexible structures. 

This volume contains preliminary studies on five of these design methods« 
The report on each of these methods includes: a brief Introduction of the 
main ideas and underlying theory; an outline of the design method and/or the 
algorithm; a summary of assumptions made (or implied) and subtle techniques 
used: discussions on the strengths, weaknesses, maturity, and applicability to 
vibration control of large flexible space structures; Illustration by a common 
test problem including answers to eight specific questions; and recommendations 
for improvement or further investigation. 

1.2 Scope 

The preliminary research conducted and presented in this volume concerns 
linear velocity output feedback methodologies: 

(1) Modal Decoupling (Canavin). 

(2) Pole Assignment (Davison-Wang). 

(3) Optimal Output Feedback (Levine-Athans). 

Application of Design Methods is given In Volume 2. 

1-1 

iiiaw^^'Bwgfjffjppi ii»^-V^r^>- JM 



(4) Suboptimal Output Feedback (Kosut) 

(5) Stochastic Optimal Output Feedback (Johnson). 

These design methodologies cover the state-of-the-art In linear output feedback. 

Section 2 provides an overview of these methods in perspective, and the 
general framework used in reporting our preliminary results. Two different 
viewpoints are provided for visualizing the close relationships between the 
methods. The general framework consists of generic mathematical models of large 
flexible space structures, the general format for presentation, and an illustra- 
tive test example with eight points of Interest to be addressed. 

Section 3 concentrates on Canavln's method of modal decoupling. We 
examined the underlying theory, formulated those conditions which were impli- 
citly assumed, completed a proof of a general stability theorem initially 
stated by Canavln, and provided another useful general stability theorem and its 
proof. Our evaluation is that this method has many desirable properties without 
major theoretical or computational problems. 

Section 4 concentrates on Davlson and Wang's method of pole assignment. 
We examined, analyzed, and Integrated the scattered pieces of the underlying 
theory, clarified and organized the design procedure, uncovered a potential 
pitfall in closed-loop stability, discovered the insufficiency of using only 
velocity sensors in assigning all the desired closed-loop poles, studied previous 
applications of this method to attitude control of spacecraft with flexible 
appendages, and formulated several modifications for removing its serious 
theoretical and computational weaknesses. Our evaluation is that this method 
has many advantages and can be a very viable tool for preliminary or prototype 
design of active control systems for large flexible space structures, but it 
is not yet mature and requires extensive further research in order to be a 
feasible tool for LSS controller design. 

Section 5 concentrates on Levlne and Athans* method of optimal output 
feedback control. We examined the basic problems, considerations, and techni- 
ques for applying this method to vibration control of large flexible space 
structures, performed an extensive literature search on this method and previous 
applications of it, set up the rudiments of a technique for attacking the prob- 
lems which result from the necessity of having a very good Initial estimate of 
the controller gain matrix, suggested alternatives for reducing its computational 
difficulties, and showed by the test example that closed-loop stability is not 
guaranteed. Our evaluation is that computational difficulties in applying 
this method can overshadow its potential benefits. 

Section 6 concentrates on Kosut's approximation of optimal output feed- 
back control. We have carefully examined Kosut's two approximation methods 
and made significant theoretic extensions that make these methods applicable 
to arbitrary sensor configurations on large space structures. We demonstrated 
by the test example that the effects of control spillover can be significantly 
alleviated and that damping of the residual mode can be adjusted at will. 
Our evaluation is that these methods (in the currently published form) can 
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yield nearly the same optimal solutions as the Levine-Athans method, whereas 
the computational efforts required are significantly reduced. The extended 
versions can give significantly better performance. 

Section 7 concentrates on Johnson's method of stochastic optimal output 
feedback control. We explored a stochastic formulation of the control problem 
with large flexible space structures for dealing with modal truncation and spill- 
over (e.g., by treating control spillover as plant noise and observation spill- 
over as measurement noise), developed an algorithm for stochastic optimal 
output feadback control, explored the idea of coupling residual modes with 
critical modes (by properly synthesizing measurement and control signals) to 
make the residual modes inherit some of the closed-loop stability properties 
of the critical modes, and demonstrated the feasibility of these new ideas. 
Our evaluation is that this method has many desirable features (some are unique) 
for application to active control of large flexible space structures, but it is 
too early to assess the complexity of the computational procedure at its current 
development stage. 

Section 8 contains an overall comparison of the five methods reported 
using the numerical results obtained from applications of these methods to a 
common test problem. Recommendations for near-term research efforts are given. 

Appendix A contains discussions on two common model-reduction approaches 
as applied to large flexible space structures, and on methods for comparing 
the relative importance of the vibration modes. A comment on the direct appli- 
cation of the conventional frequency-response method to undamped systems of 
harmonic oscillators is also given. 

For direct regulation of modal responses of a large flexible space 
structure, or for alteration of its modes of response, the critical modes must 
be made completely controllable and completely observable if these modes are 
to be actively controlled. Appendix B presents necessary and sufficient condi- 
tions for selecting the location and number of actuators and sensors to  guarantee 
complete controllability and observability. An algorithm is also presented. 

Linear quadratic state-feedback regulators, as used in the (so-called) 
modern modal control systems, may not have robustness against modal truncation 
errors if they are used with Luenberger observers or Kaiman filters. Appendix C 
summarizes recent results on the robustness of such regulators. 

1.3 Recommendations 

Eased on the in-depth studies of the individual methods in Sections 3 
through 7 and the performance comparisons for the test designs in Section 8, 
recommendations for near-term future research are briefly as follows: 

(1) Discontinue further work on the Davison-Wang method for the present. 

(2) Pursue specific theoretical studies to explore the possibility 
of extending the Canavin and the Levine-Athans nethods so as to 
improve the design performance by exerting some Influence over 
the residual modes. 
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(3) Coatliwe theoretical development atid initiate simulations of 
high-order Systeme using the Kosut and Johnson methods. This 
pairs a low-risk, moderate payoff approach with a high-risk, 
high-payoff approach. 
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SECTION 2 

DESIGN METHODS FOR CONSTANT-GAIN FEEDBACK CONTROL SYSTEMS: 
INTRODUCTION AND OVERVIEW 

2.1 Introduction 

There are many modern methods for designing control systems for vari- 
ous applications. We chose the following seven methods to start our search 
for appropriate control strategies for large flexible space structures: 

(1) State Feedback Control with a Luenberger Observer via Linear- 
Quadratic Regulation. 

(2) State Feedback Control with a Luenberger Observer via Slmon-Mitter 
Method of Pole Assignment. 

(3) Output Feedback Control via Canavin Method of Modal Decoupling. 

(4) Output Feedback Control via Davison-Wang Method of Pole Assign- 
ment. 

(5) Optimal Output Feedback Control via Levine-Athans Method. 

(6) Suboptimal Output. Feedback Control via Kosut Approximation. 

(7) Stochastic Optimal Output Feedback Control via Johnson Method. 

This choice centers on the following theme: automatic constant-gain linear 
feedback control. The reasons are as follows. Linear automatic constant- 
gain feedback control systems as a class are much simpler to design, to imple- 
ment, and to operate than other classes. If simple controllers designed by 
some of these methods are feasible and satisfactory for active vibration con- 
trol of large flexible structures in space, why should one design and imple- 
ment complex control systems: (I) that are not automatic and hence require 
constant human attention, or (2) that require on-line computation or genera- 
tion of time-dependent gains, or (3) that require nonlinear control devices 
or schemes? On the other hand, understanding the weaknesses of simpler 
methods will offer useful insights as to what to look for in the search for 
suitable new methods. 

Critical investigations into their underlying theories and their applica- 
bility to active vibration control of large flexible space structures are 
being conducted at CSDL on these methods. For the time being, however, we 
report only preliminary results on methods 3 through 7 (in Sections 3 through 
7). Method 1 has become a standard approach to control system design; 
studies on its application to large flexible structures have been previously 
reported in References 6-7. Recent numerical experiments with a typical large 
flexible space structure are being covered in Volume 2 of this report, and a 
brief summary of recent developments on the sensitivity problem with this 
method is given in Appendix C of this Volume (also in Appendix B of Volume 2). 
Studies on method 2 will be continued and reported later. 
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Section 8 contains some preliminary conclusions from an overall com- 
parison of Methods 3 through 7, and some preliminary recommendations. Com- 
prehensive comparisons of all the seven methods will be conducted and reported 
later. 

The purpose of the present section is to provide the reader an overview 
of these seven methods in perspective, and the general framework used in re- 
porting our preliminary results. Two different viewpoints are provided in 
Section 2.3 for visualizing the close relationships between the seven methods. 
The general framework consists of generic mathematical models of large flexi- 
ble space structures (Section 2.2), the general format for presentation 
(Section 2.4), and an illustrative test example with eight points of interest 
to be addressed (Section 2.5). 

2.2 Mathematical Models of Large Flexible Space Structures 

In order to minimize semantics and facilitate discussions of the various 
vibration suppression techniques for achieving modal control, the following 
model definitions are depicted in Figure 2-1. Large Space Structures are an- 
propriately represented as distributed parameter systems (DPS) which require 
infinite-dimensional mathematical models.  It is often more convenient to gen- 
erate a physical model for a DPS by finite element methods; this results in a 
finite-dimensional modal representation. From this physical model, a reduced 
order evaluation model is selected such that the necessary model fidelity (a 
matter of engineering judgement) is maintained. Since this evaluation model 
may itself be sufficiently large so as to make the control of all modes in- 
feasible, a design model is determined as a subset of the evaluation model. 
The design model must Include those modes which degrade system performance be- 
yond mission requirements. 

The definitions of critical modes, residual modes, observation spill- 
over, and control spillover, as defined by Balas [6] are adopted. 

Critical modes, x , are those modes of the design model which are chosen 
to be explicitly controlled in order to assure stability and achieve 
performance requirements for the system. 

Residual modes, x-, are those modes which exist in the Infinite dimen- 
sional system that are not "critical" in the sense defined above. 

Observation spillover, is the contamination of the sensor outputs by the 
residual modes. 

Control spillover is the excitation of the residual mode dynamics due to 
the control. 

Recently, some new design approaches to the vibration control problem 
have resulted in misinterpretations. This confusion has motivated an addition- 
al clarification. Residual modes can be subdivided into the following cate- 
gories: 

We have adopted the term "critical", in place of the term "controlled" [6], 
to refer to those modes chosen to be explicitly controlled. 
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Design residual modeg, x^_, are those residual modes which are Included 
in the controller design process (and thus in the design model), but are 
not explicitly controlled. 

Evaluation residual modes, x™, are those residual modes which are in- 
cluded in the evaluation model but not in the design model. 

Physical residual modes, x^,,, are those residual modes which are in- 
adel. eluded in the physical model, but not in the evaluation model. 

Unmodeled residual modes, x. , are those residual modes which exist, but 
are not included in any finite-dimensional model of the system under 
study. 

2.2.1 Finite-Element Discrete Dynamic Model (Physical Model) 

The dynamics of a large flexible space structure can be approximated 
by the finite-element method using a computer program like NASTRAN as follows; 

Mq + Kq (2-1) 

where q = (q.,..., qL) is a vector of L generalized coordinates, f i (f......, 

f ) is a vector of L generalized external forces, M = [M..] is a real sym- 

metric positive definite matrix of LxL mass coefficients, K = [K. ] is a real 

symmetric positive semi-definite matrix of LxL stiffness coefficients. The 
finite integer L is usually very large. 

Forces or torques are applied through m actuators to control the struc- 
ture: 

V (2-2) 

where u =  (u^..., u^) denotes an m-vector of inputs to the actuators, and B 

is an Lxm matrix of Influence coefficients. 

Observations are made through I velocity or position sensors; 

y   '    Cpq + (^q (2-3) 

where y = (y.,..., y£) denotes an A-vector of outputs from the sensors, Cp is 

an JUL matrix of position coefficients and (L. is an l*L matrix of velocity 

coefficients. If the £ sensors consist of i   velocity sensors and £ posi- 

tion sensors, separately located, the coefficient matrices C and C,. take the 
p    V 

following special forms: 
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Equations (2-1) and (2-3) constitute a finite-element discrete 
dynamic model of a generic large flexible space structure. 

2.2.2 Finite-Element Modal Dynamic Model 

In terms of vibration modes {u., (|>. H , of the large flexible space 

structure, where w, denotes the natural frequencies (in rad/s) of vibration 

and ij». denotes the mode shapes, the above discrete dynamic model can be re- 

written as follows: 

••2     T 
n + ß n = $ B u (2-4) 

y = Cp*Ti + Cv$ri (2-5) 

where n = (ri-,..., nT) is an L-vector of modal coordinates, Q = dlag 
?     2,       L 

{ 1' ., (i) } Is an LxL diagonal matrix of natural frequencies squared, and 

i = [<()-,,..., <))T ] is an LxL matrix of mode shapes. The superscript "T" denotes 

transpose. The matrix $ possesses the following properties: 

.2 
$ M$ - I, *TK$ = Ü 

The relationship between the generalized coordinates (q,,..., q ) and 

the modal coordinates (n,,..., n,) is given by the following vector equation: 

$T1 (2-6) 

2.2.3 Fundamental Modal Design Model 

The order L of model (2-4) and (2-5) is in general too large for de- 
signing and implementing a control system on the large space structure. The 
order must be reduced to a practical level. On the other hand, the L vibra- 
tion modes are not equally important. Some possible ways for determining 
the relative importance of the vibration modes are discussed in Appendix A. 
Figure 2-1 illustrates a useful partition of the L modes modeled by Eq. (2-4) 

Let {a>Cj, <frC:j}. j 1,..., N, denote the critical modes, and 

}, k ■ 1,..., M, denote the remainder of the L modeled modes, where 
^Rk* TRk 
N is the number of critical modes and M » L - N is the number of modeled 
residual modes.  Then the finite-element modal dynamic model (2-4) and (2-5) 
can be partitioned into critical and modeled residual parts as follows: 

2-5 
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"c + nc nc ' *c V (2-7) 

^R + Qi ^R 
T 4 B u *R A 

y    "    «WC + CV*C;'C) + (CPVR + CV*R;iR) 

(2-8) 

(2-9) 

Where 

'C 

\ 

J2. 

(n, ,) 'CN' 

2      2 

Cl  

diag {ut^,..., <J»CN} 

Cl' •» w 
(nRl ^ 

J^  / 2     ' 2 , diag {uj^,..., u^} 

l*Rl V 

A most common approach in reducing a large mathematical model is to 
completely Ignore the existence of those modes which are not dominant [1]. 
Following this approach, the large model (2-7) and (2-9) is simplified to the 
following fundamental design model which contains only critical modes: 

«C+ncnC    "    *CBAU 

SVc+ Vc\ 

(2-10) 

(2-11) 

It is not really necessary to completely ignore all the non-dominant 
modes. The steady state of some residual modes may also be incorporated into 
the reduced design model to better approximate the steady-state response [2]. 
Some discussions on th& reduced models thereby obtained are given in Appendix A. 
Nontheless, the reduced model (2-10) and (2-11) is the most cosnon approach, 
and Is appropriate for the purpose of studying these seven design methods. 

2.2.4 Fundamental State-Space Design Model 

Modern control methods, such as the seven design methods, are based on 
the following general state-space representation of the system to be con- 
trolled: 

2-6 



■ Ax + Bu 

y » Cx 

(2-12) 

(2-13) 

where x i (xj,..., xn) denotes a vector of a state variables, ,u = (u,,..., um) 

a vector of m control Inputs, and y = (y.,..., y.) a vector of i observation 

outputs. A, B, and C are constant matrices of dimension nxn, n*m, and it*n, 
respectively. Integers n, m, and £ denote the dimension of the state space, 
input space, and output space, respectively. 

A convenient state-space representation of the fundamental modal 
design model (2-10) and (2-11) is given by 

(2-14) 

(2-15) 

where 

x = A cx + V 
y = ccx 

Ac = 
' 0 

k 
i" 

0 
'  BC = 

' 0 " 
T 

*CBA 
» cc * tCP*C' w 

Some Remarks on the Mathematical Models 2.2.5 

The following are some important factors explicitly or implicitly 
affecting the applicability of the design methods to large flexible space 
structures. 

2.2.5.1 Controllability and Observability of Critical Modes 

The design of a feedback controller for the fundamental state-space 
design model (2-14) and (2-15), assumes that the critical modes are completely 
controllable and completely observable. Conttollabillty and observability of 
critical modes, however, does not occur automatically. Improper location, 
or an improper number, of actuators used on the structure will make some 
critical modes uncontrollable. Similarly, Improper location or an Improper 
number of sensors used will also make some critical modes unobservable. 
See Appendix B for detailed discussions. 

2.2.5.2 Rank of Matrices B-, C- 

Some design methods also assume that the n*m matrix B of system (2-12) 
and (2-13) has rank m and the i*n matrix C has rank Ä. (If B has rank n, then 
m-n actuators are redundant. Similarly, if C has rank n, then £-n sensors 
are redundant.) For the 2N*m matrix B of system (2-14) and (2-15) to have 
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rank m, it is necessary that m <. N because N rows are always zero. This im- 
plies that the number of independent actuators must not exceed the number of 
modes to be controlled. Otherwise, it is necessary to eliminate or combine 
some of the actuators. Similarly, for the £*2N matrix C to have rank I when 

all sensors are velocity sensors or all are position sensors, it is necessary 
that £ <: N. Otherwise, it is also necessary to eliminate or combine some of 
the sensors. 

2.2.5.3 Control and Observation Spillover 

In practice, controllers for a very large system, say model (2-7) 
through (2-9), are designed using its reduced-order model, say model (2-10) 
and (2-11). This essentially assumes, in the specific case of (2-7) through 

T 
(2-9), that the matrices *RBA, ü_* , and CL* are zero or negligibly small. 

However, such assumptions do not always hold for large flexible space 
structures. 

If *_B. is not negligibly small, energy supplied for active control of 

fundamental modes may spill over to residual modes (unless vector u is such 
T 

that $-BAu(t) = 0) and excite them according to the dynamics (2-8). The 

control of critical modes will not be affected by control spillover provided 
no sensor outputs are fed back, i.e., provided only open-loop control is applied. 

On the other hand, if either €_♦_ orCV*R is not negligibly small, 

excited residual modes of vibration may "spill" over to the sensors and conta- 
minate the observation of critical modes. Open-loop control of critical 
modes will again not be affected; feedback control of critical modes, how- 
ever, will be affected, and the performance may become uncertain. Nonetheless, 
observation spillover without control spillover will not further excite the 
residual modes, and hence will not further degrade the feedback control of 
critical modes. 

Simultaneous existence of both control and observation spillover is 
likely in large flexible space structures. Since feedback control of large 
flexible structures is considered, control and observation spillover combined 
may make the structure unstable. However, simultaneous existence of control 
and observation spillover need not be disastrous; it may be properly utilized 
to improve closed-loop stability (see Section 4.3.3., or Section 7). 

2.3 An Overview of the Design Methods 

2.3.1 Two Different Viewpoints 

These methods can be looked at from two different viewpoints: state 
feedback vs. output feedback, and regulation of responses vs. alteration of 
modes of response. Since most are state-space methods, the following brief 
introduction will primarily refer to the general state-space representation 
(2-12) and (2-13). 
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2.3.1.1 State Feadbaek vs. Output Feedback 

State feedback control of system (2-12) and (2-13) Involves determining 
the control Inputs u. as functions of state variables x, 

Fx (2-16) 

where F is an m*n matrix of constant gains. Methods 1 through 3 compute the 
state-feedback gain matrix F in different ways. 

Since state variables are usually not directly available for feedback 
purposes (such is particularly the case for large flexible space structures), 
an estimator must be used to provide the state-feedback controller with on- 

, y.. Methods 1 line estimates of the state from observation outputs y.. V 
and 2 use a dynamic state estimator, namely, a Luenberger observer, while 
Method 3 uses a static state estimator. A state estimator can be considered 
as the dual of the corresponding state feedback controller. Thus, each method 
designs a state estimator in a similar but "dualized" manner as it designs a 
state-feedback controller. Method 1 usually bears the label of "modern 
control" though all other six methods are also modem control methods. 

Output feedback control Involves determining the control inputs 

m as functions of observation outputs y.,. 

u ■ Gy (2-17) 

where G is an mx£ matrix of constant gains. Methods 3 through 7 compute the 
output-feedback gain matrix G in different ways. 

The absence of dynamic state estimators is characteristic of Methods 3 
through 7. Method 3 uses a static state estimator more for deriving a part of 
the gain matrix G than for actually estimating the state. These methods are 
extensions and modernizations of the classical concept of feedback controllers 
for single-input single-output linear time-invariant systems. 

2.3.1.2 Regulation of Responses vs. Alteration of Modes of Response 

Active control of structural vibration can be done by directly regula- 
ting the state vector whose components are modal responses r\.{t)  and their 

derivatives n^vt). Methods 1, 5, 6, and 7 fall into this category. What 
■i 

these methodf. attempt to do is to minimize a quadratic performance index on 
the magnitude of the state vector. Methods 1, 5, and 6 also Include the 
magnitude of control input in the quadratic performance index as a tradeoff 
between regulation accuracy achievable and control energy required. All these 
methods have essentially evolved from Kaiman*s contributions to the theory of 
optimal control, especially those dealing with linear-quadratic regulators [3]. 

Due to the questionable adequacy of summarizing the engineering 
specifications required of a large-scale system in a single quadratic 
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performance Index, and the Insurmountable computational problem with the 
solution of the associated matrix Riccati equation, Rosenbrock suggested the 
use of "modal control" as a design aid. Modal control of a multivariable 
system like (2-10) and (2-11), or system (2-12) and (2-13) in general, is by 
definition [4] to alter the modes of system response to achieve the desired 
control objectives. Since the modes of the system response are characterized 
by system poles, appropriate feedback (from state or output variables) is 
introduced to make the closed-loop system have the desired modes of response. 
Methods 2, 3, and 4 fall into this category. These methods have evolved 
mainly from Wonham's contribution to the theory of pole assignment [5]. 

2.3.2 Design Method 1; State Feedback Control with a Luenberger Observer 
via Linear-Quadratic Regulation. 

The state-feedback control for system (2-12) and (2-13) is to be de- 
signed so that an infinite-time quadratic performance index 

-/ 
(xTQx + uTRu)dt 

on the state vector x and input vector u is minimized. The approach is to ob- 
tain the state-feedback gain matrix F by solving the associated nonlinear nxn 
matrix algebraic equation of Riccati type. By shifting the eigenvalues of the 
system matrix A in the Riccati equation by a negative real number, the result- 
ant closed-loop system will have all its poles lie to the left of this number. 
The stability margin is thus increased. 

A Luenberger observer is used to reconstruct the state and hence pro- 
vide the state-feedback controller with on-line estimates of the state. Since 
the dual of a Luenberger observer is also a state-feedback controller, the 
approach is to design the required observer by solving the corresponding 
Riccati equation. 

This method has a sensitivity problem: the resultant closed-loop 
system is sensitive to model errors and parameter variations. This method 
also has the problem of choosing proper matrices Q and R to satisfy performance 
specifications. 

2,3.3 Design Method 2; State Feedback Control with a Luenberger Observer 
via the Simon-Mitter Method of Pole Assignment. 

The objective of state-feedback control of system (2-12) and (2-13) is 
to make the closed-loop system have desired modes of response. The approach 
is to compute the state-feedback gain matrix F using the Simon-Mitter or 
Crossley-Porter method of pole assignment. The gain matrix is a dyadic pro- 
duct of two vectors. 

A Luenberger observer is used to provide the scate-feedback controller 
with on-line estimates of the state. The approach is to design the required 

2-10 

f.-v-.«irKflw. 



observer by assigning desired closed-loop poles to the dual of system (2-12) 
and (2-13) again using the Simon-Hitter or Crossley-Porter method. 

This method has the high-gain problem because of the imposed dyadic 
form of the gain matrix. The resultant closed-loop system is also sensitive 
to model errors and parameter variations. 

2.3.4 Design Method 3; Output Feedback Control via the Canavin Method of 
Modal Decoupling. 

This method is specifically developed for Independently damping each 
critical mode of the underlying structure. It is an output-feedback method as 
well as a state-feedback method (with static state estimation). First of all, 
substituting (2-17) in (2-10) and (2-11) yields 

^c " WVc^c + (nc " ^PV^C " 0 (2-18) 

It is easily seen that negative feedback from velocity-sensor outputs will 
tend to add damping to the 'flexible structure. Canavin*s method of modal 
decoupling uses only velocity sensors and computes a gain matrix 6 such 
that the resultant damping matrix (~*£BJ&yO is diagonal and positive defi- 

nite. In other words, Eq. (2-18) with C- - 0 is to be decoupled in the modal 

coordinates as follows: 

HCj + 2CCj UCJ ^Cj + "cj ncj " 0 

where c,. is the desired damping ratio on the Jth critical mode. 

The output-feedback contro.' is a combination of state-feedback control 

u • Fnc 

and static estimation 

nc - Hy 

where n denotes an estimate of derivative n* • (rL,».••• nu».). Therefore 

G FH 

The approach is to compute the matrices F and H by solving the following 
matrix algebraic equations: 

*CBAF " dia8 {-2Vci -2CCNWCN} 

Cy^H   -    I 
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This method requires a sufficiently large number of actuators and velocity 
sensors. The feedback gains may be high. 

2.3.5 Desigu Method 4; 
Pole Assignment. 

Output Feedback Control via the Davison-Wang Method of 

Conceptually, Canavin's method of output feedback control is a special 
method of pole assignment. It assigns N new complex-conjugate pairs of closed- 
loop poles to the fundamental state-space design model (2-14) and (2-15). The 
general method of pole assignment for system (2-12) and (2-13) does not require 
that the desired closed-loop poles preserve the same open-loop natural frequen- 
cies. The closed-loop poles can be freely chosen so as to meet other specified 
performance requirements. 

In the Davlson-Wang method of pole assigniggnt, one systematically com- 
putes the output-feedback gain matrix G required for assigning as many as 
min {mH-l,n} desired closed-loop poles to system (2-12) and (2-13). This 
method is different from the Siraon-Mitter and Crossley-Porter methods, but 
the same technical approach is ural: to compute the gain matrix G as a dyadic 
product of two vectors. This is achieved by converting a multivariable sys- 
tem either to a single-input system or to a single-output system. The compu- 
tational procedure is therefore conceptually quite simple. 

v.. 
This specific method of pole assignment has its inherent weaknesses, 

such as high gains and hidden Instability. The general method of pole assign- 
ment, if it eventually becomes practical, should not have such weaknesses, but 
would be much more complicated. 

2.3.6 Design Method 5; 
Method. 

Optimal Output Feedback Control via the Levine-Athans 

As with the linear-quadratic regulation of Method 1, the approach is 
to design an output feedback control so that the same quadratic performance 
index on state and control input is optimized. Uncertainty in the initial 
state is considered. No state estimators are required, however, since out- 
puts are fed directly back to the system. In the method, one computes the 
feedback gain matrix G by recursively solving a linear n*n matrix algebraic 
equation of Lyapunov type and a nonlinear nxn matrix algebraic equation of 
Rlccatl type. 

These matrix equations represent only first-order necessary conditions 
for optimaltty, and are highly coupled. Recursive computations are complex 
and their convergence is not guaranteed. Stability of the resultant closed- 
loop system is not guaranteed either. 

2.3.7 Design Method 6; 
Approximation. 

Suboptimal Output Feedback Control via the Kosut 

The same optimal output leedback control problem as in Method 5 is 
considered, but in this method one avoids the computational difficulties by 
seeking approximations of the optimal output feedback gains. Two different 
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ways öf approximation are proposed: 
nornj. 

minlmuin error excitation and minimuu. 

l  ■ 

In the minimum-error-excltation approximation, one minimizes a quad- 
ratic performance index on the error of the postulated output-feedback 
control inputs from the optimal. Only a linear nxn matrix algebraic equation 
of Lyapunov type needs to be solved for the suboptimal output-feedback gain 
matrix. 

In the minimum-norm approximation, one minimizes the Euclidean norm of 
the error in the postulated feedback gain matrix from the optimal. The sub- 
optimal output-feedback gain matrix is directly xiomputable by matrix Inversion 
and multiplication. 

These approximately optimal output-feedback gain matrices are simple 
to compute, but the optlmality of the design may be questionable. The stabi- 
lity of the resultant closed-loop system is not assured. 

2.3.8 Design Method 7; 
Johnson Method. 

Stochastic Optimal Output Feedback Control via the 

This method is still in the research and development stage. Gaussian 
white noise in the dynamics (2-12) and the observation (2-13) is considered. 
The output-feedback control optimizes an asymptotic mean-square measure of 
the state. This method in some respect is similar to Method 5, but it is more 
general and advanced in the sense that uncertainties in the dynamics and the 
observation (instead of only the uncertainty in the initial state) are taken 
Into account. The output-feedback gain matrix G is to be obtained by recursive- 
ly solving a linear n*n matrix algebraic equation of Lyapunov type and a non- 
linear nxn matrix algebraic equation of Riccati type. The concept of "control 
projection" and "observation projection" Is Introduced to simplify the compu- 
tations. Nonetheless, these matrix equations and recursive computations are 
much more complex than those of Method 5. An efficient numerical algorithm 
is currently being developed. 

Its application to large flexible space structures is desirable, since 
the effects of control and observacion spillover can be treated as stochastic 
disturbances instead of being ignored as usual. Furthermore, the method pro- 
poses that residual modes be coupled to critical modes by properly combin- 
ing redundant actuators and sensors to make positive use of spillover so as to 
enhance closed-loop stability. Stability of the critical modes can then be 
Inherited by the residual modes. Such an idea of utilizing control and obser- 
vation spillover has been successfully tested on the two-mode mass-spring 
example (see Section 2.5). No general combination procedure is available yet. 
Such a procedure is desirable but Is expected to be rather complex, since it 
will involve a large finite-element model (2-1) through (2-3) or (2-4) through 
(2-6). 

2.4 General format for Individual Reporting of the Design Method«. 

The reporting of individual studies on Methods 3 through 7  uses 
the general format outlined in the following. 
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The general format consists of five main parts: Background, Discus- 
sions, Illustration, Conclusions, and References. Appendices may be included 
if necessary. The following is an outline of the four main parts. 

Part I: Background 

1. Brief introduction of the main ideas and' underlying theory of 
the individual method. 

2. Outline of the design method and/or the algorithm. 

3. Summary of assumptions made and technical tricks used. 

Part II: Discussions 

1. Strengths. 

2. Weaknesses (including theoretical limitations, numerical diffi- 
culties, and potential pitfalls). 

3. Maturity (including improvements made or re^üiTed). 

4. Applicability to vibration control of large flexible space 
structures (including closed-loop stability, robustness to model 
errors and parameter variations, control and observation spillover, 
and special problems). 

Part III: Illustration 

Apply the individual method to the simple test problem given in Section 
2.5 and address the eight points of interest listed therewith. 

Part IV: Conclusions 

1. Summary of advantages. 

2. Summary of disadvantages. 

3. Final comments (including recommendations for improvement or further 
investigation). 

Part V: Appendices 

(optional) 

Part VI: References 

2.5 A Simple Test Problem and Eight Points of Interest 

The following example is simple and hand-calculable, but it is contrived 
(in the spirit of Reference 8) to capture many features and fundamental control 
problems of large flexible space structures. 
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Since the mass-spring system of the example was initially used by 
Henderson and Canavln in Reference 9 to demonstrate passive control by mem- 
ber dampers (i.e., dashpots) this example should serve as a good common 
basis for comparing various active control methods. 

It is hoped that by working out this example with various methods, 
many useful theoretical and practical insights into the control of large 
flexible space structures can be generated. 

An undamped mass-spring system whose axial (vertical) vibration is to 
be controlled is shown in Figure 2-2. The system has two modes: 

f, = 0.087 Hz, f» = 0.412 Hz. To capture fundamental features (and problems) 

in the control of large flexible space structures, imagine that this four- 
dimensional system is too large and that the controller design must be based 
only on a reduced-order model. Furthermore, only modal control is considered. 
Therefore, assume that Mode 2 is critical, and must be controlled so that it 
has at least 10% of critical damping (i.e., has damping ratio c >^ 0.1). (In 
general, critical modes of a large space structure need  not be ones with 
lower frequencies.) 

The following is a summary of the data and the mathematical models 
useful as a convenient common reference. 

Critical mode (to be controlled):  f» = 0.412 Hz, (Ju = 

ü)2 = 2.589 rad/s 

-0.857 

0.365 

Residual mode (to be ignored): 
^ = 0.087 Hz, ^ 

üi1  " 0.546 rad/s 

Finite-element discrete dynamic model 

"Ml 0 " "V 
+ 

0 M?_ 
• * 

-q2. 

Kl+K2  -K2 

-K, 

Lq2j 

(2-19) 

(2-20) 

Plots of the open loop time responses to initial conditions and to a 
periodic disturbance, referred to both physical and modal coordinates, 
are shown in Figures 2-3 through 2-6. 
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LULU 

1 

ui 

CONTROL 
SYSTEM 

Vl 

V2 

M1 

Vi 

1 Kg, M2 = 2 Kg. ^ * 1 N/m, K2 - 4 N/m 

displacement of mass i 

output from velocity sensor i 

input to force actuator i 

Figure 2-2. A mass-spring system. 
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Fundamental aodal design model 

^2 + (ü2n2 

(2-21) 

(2-22) 

(2-23) 

" ^2 

Fundamental state-space design model 
0   1 

2  A -u.2  0 

0 

.T 

[0 *2] 

(2-24) 

(2-25) 

(2-26) 

First, design such a feedback controller using the specific method 
under study and the reduced-order model (2-23) and (2-24), or (2-25) and (2-26), 
having only the critical mode (f« ■ 0.412 Hz). One force actuator and one 

velocity sensor are to be attached to each mass, as shown in the figure, re- 
spectively, by u and y.. Assume the actuators and sensors have no dynamics 

or noise.  Then address the following points of interest. 

1. Briefly demonstrate how the feedback gain matrix is computed. 

2. With such a controller connected to the system, is the closed-loop 
system asymptotically stable? How much damping does each of the 
modes actually have? 
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3. What are the specific effects of control spillover and observa- 
tion spillover with such a feedback controller? Note that Hode 1 
Is a residual mode. 

4. 

5. 

6. 

7. 

Suppose mass 2 alone Is subject to an Initial disturbance: 
qAO)  - 0, q2(0) * 1 m, q.(0) - 0, 1 " 1,2. Describe the behavior 

of the closed-loop system, say in terms of the peak magnitude, 5% 
settling time, and steady-state response for qj^). (The open- 

loop responses are shown in Figures 2-3 and 2-4 for comparison.) 

Suppose mass 2 alone is subject to a persistent disturbance of 
f2(t) - sin 3t Newton, with q.(0) - qAO)  - 0, 1 - 1,2. How does 

the controller help suppress the vibration q2(t) ? Specifically, 

compare the steady-state response q» (t) of the closed-loop sys- 

tem with that of the original, open-loop system. (The open-loop 
responses are shown in Figures 2-5 and 2-6.) 

Can the damping of all the modes (the residual as well as the 
critical) be further increased simultaneously by this method? 
Why? Is there any limitation? 

How? 

Can the number of actuators and sensors be reduced? What is the 
minimum required by this method? 

8. How would it affect the vibration control by this method if 
position (displacement) sensors were used instead? 
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SECTION 3 

OUTPUT FEEDBACK CONTROL VIA CANAVIN METHOD OF MODAL DECOUPLING 

3.1  Background 

3.1.1 Introduction 

The decoupled-controller design technique [3] is an output feedback 
control scheme with no dynamic compensation and is used to achieve modal 
damping in a large space structure (LSS). 

The decoupled-controller design technique presumes that the dynamics 
of large space structures can be represented by the finite-element model of 
Eq. (2-1). Futhermore, the modal dynamic model of Eq. (or system) (2-1) and 
its associated sensor output vector can be represented by Eqs. (2-7) through 
(2-9), which are repeated as follows: 

\ + ncnc *CBAU (2-7) 

nR + VR 
T 

* B u 
R A 

y " (C
PVC 

+ VcV + (CPVR 
+ VRV 

(2-8) 

(2-9) 

where all symbols have been defined in Section 2. 

The main idea of the decoupled-controller design Is to choose a 
constant matrix G satisfying Eq. (2-17), i.e.. 

Gy (2-17) 

f •% 

such that Eq. (2-7) becomes 

nc + Vc -[Xncv]*( 
where the diagonal matrix is 

2VV 

^Cl^Cl 

2?C2UC2 

* "CN^CN 
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If these Ideas can be Implemented, the dynamics of critical modes be- 
come decoupled and the amount of damping for each critical mode can be speci- 
fied by choosing a desired value for £ . 

Canavln [3] proposed a method to implement these ideas and to guarantee 
the stability of the overall controlled structure. This section presents an 
evaluation of Canavln's method [3] with respect to the vibration control of 
large space structures. 

The section is organized as follows: An outline of the design method 
and its assumptions is given in Section 3.1. A discussion of the design 
method is presented in Section 3.2. Section 3.3 presents the application of 
the method to a two mode example. It is ended with a conclusions/recommendation 
section. 

The fundamental theories used in the development of the decoupled- 
controller design scheme include the generalized (or pseudo) inverse of a 
matrix [1] and the direct method of Llapunov [2]. Section 3.5 contains a 
summary of these theories to the extent necessary for the discussion of the 
decoupled-controller design in this section. 

3.1.2 Outline of the Design Method (the Decoupled-Controller) 

It is assumed that for the design of a decoupled-controller a design 
model in modal coordinates (i.e., Eq. (2-7)) is given and the required damping 
for each mode of the design model is also specified. The design method can 
then be summarized in the following steps: 

(1) Choose only velocity sensors for measurements and force actuators 
for control. Form sensor/actuator pairs—each pair must be colo- 
cated. The number of sensor/actuator pairs must be greater than 
or equal to the number of modes in the design model. 

(2) Refer to Figure 3-1. The constant outout feedback gain is computed 
as the product of the static estimator gain (S ) and the control 
gain (r ): 

a. The static estimator gain Is equal to the pseudo inverse of 
(Cv ♦c), i.e.. 

" (Vc)# k   (s*c)Tcv2*c ' {Vcf 



FORCE 
ACTUATORS 

VELOCITY 
SENSORS 

v-Cv2Mc + S*R'R 

K
B
A)
#
^(*C

T
BA)

T
[*J8ACJBA,TJ-I 

s^^K^'s^c]"1^*/ 
BA " Cj. 

i-» 

Figure 3-1. The design »cthod. 

where C^ is the velocity output natrlx defined In Section 
2  2.2.1 and « is the natrlx whose coluans are 

the open-loop systen eigenvectors corresponding 
to nodes In the design nodel. 

b. The control gain ts equal to the product of two natrices, i.e.. 

where       ,     | .T 

the 
influence natrlx. 
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Moreover, I 2« Ö  I is a diagonal matrix and each diagonal 

element is chosen to be a constant ^-.o»-,, with 5C1 and as-. 

representing the required damping ratio and the modal -fre- 
quency, respectively, of the 1th critical mode. 

The constant output feedback gain G is then 

G - r s 
V V 

Ignoring the modal velocity of residual modes (i.e., O in the sensor 

outputs and considering only the design model (i.e., Eq. (2-7)), the governing 
equation for the critical modes, therefore, becomes 

^c + ncnc 
T ♦ B u 
C A *cBAGy 

- WvVVVc f2VcJ*( 
where the estimated modal velocity nc is the output of a static least-square 

estimator (see Figure 3-1 and Section 3.5.2). That is 

C    v^ C 0 
•  ♦ 

Thus Canavin's method [3], due to the nonavailability of rL. uses n0 to 

obtain damping. Also the decoupling mechanism, i.e.. 

*Xr - - 
C A v 'Vc -] 

is, in general, an approximate expression (see Section 3.5.2). Furthermore, 
sensor outputs often contain nR» and the actual damping ratio for each criti- 

cal mode of the controlled structure is not in general identical to what is 
specified (i.e., Ccl). Detailed discussions are given in Section 3.2. 

3.1.3 Summary of Assmaptions 

To ensure that the design method outlined in Section 3.1.2 is a viable 
approach for structural vibration suppression, the following assumptions were 
made: 
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a. The stiffness matrix In the finite element model is symetric and 
positive definite: i.e., rigid-body modes are not included in the 
dynamic finite element model. When the finite element model con- 
tains rigid-body modes, the stiffness matrix is symmetric and 
positive serai-definite. Then it is assumed that there is no strain 
energy with the rigid-body modes and that there are no control 
forces acting on these modes. 

b. Sensor/actuator pairs can be colocated on the structure. 

c« The number of sensor/actuator pairs is greater than or equal to 
that of controlled modes. 

d. The design model and the required damping for each mode to be 
controlled are given. 

3.1.4 Summary of Technical Techniques 

Consider that the dynamics of the'Structure is represented by the de- 
sign model. When the estimator gain is chosen as the pseudo inverse of C„»# , 

the output of the estimator is the best estimate (ft ) of the controlled model 

velocity (nr) vector In the least-square-error sense. The second pseudo in- 
T  # 

verse matrix (*CBA) provides a decoupling mechanism with minimum control 

energy such that each controlled mode is damped by the feedback of its modal 
velocity as estimated by the estimator (see Section 3.5.2 for the meaning of 
these two pseudo inverse matrices). Furthermore, since only velocity sensors 
are used and sensor/actuator pairs are colocated, the system becomes energy 
dissipative, resulting in a stable overall system. 

3.2 Discussion 

3.2,1 Strengths 

i. ^W 

The decoupled-controller gain can be computed off-line. The computa- 
tions Involve only straightforward matrix multiplications and matrix inver- 
sions. Standard computer programs are available to carry out these tasks. 

If only the design model is considered, the damping of the ith con- 
trolled mode (i.e., tri)  can be arbitrarily set in theory, by adjusting the •Ci 
corresponding values of the nonzero elements of the diagonal matrix I "^C,,«, C"C^J' 
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The practical upper limit« for achieving these damping ratios are determined 
by the power supply limitations and the saturation characteristics of the 
controller and actuators. 

The decoupler-controller design also yields an overall stable system 
even in the presence of control and observation spillover. Furthermore, ro- 
bustness of stability against model parameter errors or variations can also 
be demonstrated. These two properties (i.e., stability and robustness of 
stability) were originally obtained by Canavin [3j for structural vibration 
control where a general constant output feedback control design scheae is 
adopted, and the control force consists of both velocity and position output 
feedback, i.e., 

Mq + Kq -Ccq - Kcq (3-1) 

where the matrix C- represents a general velocity feedback gain and K- 

represents a general position feedback gain. It is noted that in the special 
case of the decoupled-control design, C and K- take the following particular 
forms: 

c_ £ B.r s c., 
C    A v v V, 

and 

- B, (*cV [*JV»cVr [Vc] [<vc'Vc]'1 (tv y\ 
(3-2) 

K, (3-3) 

In Section 3.5.4 the stability and the robustness of stability results 
are rederived, in a rigorous manner, for the general constant velocity 
and position output feedback control scheme so that some more insight can be 
obtained. However, these results can equally be applied to the special case 
of the decoupled-controller design, as specified by Eqs. (3-2) and (3-3). 

A new stability result for the system (3-1) is given in Section 3.5.3, 
which is stronger than the theorem in Section 3.5.4. In essence, the new re- 
suit (in Section 3.5.3) states that if M and (K+Kc) are symmetric and positive 

definite and Cr  is positive semi-definite, then the system (3-1) is asympto- 

tically stable if and only if M (K+K ) and C„ are an observable pair. This 

result is particularly useful in the application of the decoupled-controller 
design approach to structural vibration control, since in this case Cc is 

always positive semi-definite and asymptotic stability of system (3-1) is either 
desirable or required. 
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3.2.2 Weaknesses 

Since the decoupled-controller design method allows an increase in the 
modal damping of each critical mode, the overall system performance require- 
ments must be translated into modal damping requirements. If this cannot be 
done, control design iterations are required. Even when this can be done, the 
actual damping of the critical modes may vary when control and observation 
spillover are present. Furthermore, parameter errors or variations will change 
the degree of decoupling and estimation via $ in the pseudo inverse of the 

T 
matrices (*CBA) and (CO. Although stability may be retained, system per- 

formance may be degraded to an unacceptable level in the presence of param- 
eter errors or variations. 

Currently, the system stability requirement can be satisfied only if 
each sensor/actuator pair is colocated. This may impose unreasonable restric- 
tions on the actual sensor/actuator placement due to physical constraints of 
the structure or practical implementation of the hardware. 

Since the number of sensor/actuator pairs must be greater than or 
equal to that of the critical modes., it is expensive and complicated to im- 
plement the decoupled-controller with a large number of sensor/actuator pairs 
for structures that require a large number of modes to be controlled. In 
addition, the chance of hardware failure may become significant and its impact 
on the use of the decoupled-controller design may have to be reassessed. 

3.2.3 Maturity 

In 1976, Quartararo [4] proposed a modal controx concept that is 
based on two coordinate transformations. The first coordinate transformation 
is responsible for transforming from the discrete coordinate to the modal 
coordinate, identical to the process from Eq. (2-1) to Eq. (2-4) as discussed 
previously. The second coordinate transformation is specifically introduced 
to achieve independent actuation of the modal equations and actuators are 
used in such a way as to produce a generalized force in any given mode 
without forcing the other modes[4]. Instead of using pseudo inverse matrices, 
Quartararo considered the case where the number of actuators equals the number 
of the critical modes and hence only a normal matrix inversion is needed. 
Similarly, a normal matrix inversion is used for state estimation because the 
number of sensors is equal to the number of critical modes. 

Canavin [3] extended Quartararo*s concept to include tue use of pseudo 
Inverse for matrices (see Background section) and obtained the stability and 
the robustness of stability results (see Section 3.5.4). Moreover, 
Canavin [3] proposed the velocity-only feedback design scheme as a special 
case that satisfied the stability criteria and thus provided an approach to 
achieve desired modal damping, stability and robustness of stability. How- 
ever, large values in the velocity feedback gain matrix were reported in a 
numerical example to achieve ten percent of critical damping for the critical 
modes [3]. 
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3.2.4 Applicability to Vibration Control of LSS 

Theoretically, the decoupled controller design technique is suitable 
for LSS vibration control applications. As discussed in Section 3.2.1, a 
decoupled-controller with only velocity feedback yields a stable closed-loop 
system, which is robust against model error. Control and observation spill** 
over may degrade the system performance but cannot destabilize the system. 

Associated with the decoupled-controller design approach, however, there 
remain Issues to be resolved before its practical applicability to LSS 
vibration control can be completely assessed. These issues will be discussed 
in the Conclusions given in Section 3.4. 

3.3 Illustration (The Example) 

The model for the example system is repeated in the following for con- 
venience : 

(3-4) 

Therefore, the mass matrix M and the stiffness matrix K take the form: 

1 o" "V 
+ 

'5 -4" V 
0 2 L^J -4 4 

.q2. 

M 

-4 

-4 

Two velocity sensors and two actuators are employed in this system in 
such a manner that the measurement y takes the form 

v 

(3-5) 

and the control force takes the form 

It is noted that 

C    q    - 
V2 

1 

0 

0 

1 

ql 

.q2. 

form 

"l o" V 
BAu    - 

0 1 .V 

'l     c 

1 

0     1 

(3-6) 
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and that 

-0.857 

0.365 
, and *, 

0.516 

0.606 

Furthermore, 

a^ " 0.5465 rad/s and u  = 2.59 rad/s 

The eight questions posed in Section 2.5 are answered in the 
sequel. 

3.3.1. Gain Computations 

rv = (*CBA)T ^BA($CBA)T]  ' (2?2(ü2) = 

-0.98769814 

0.42066491 * (2C2a,2) 

-.-1 

\*c>   'Vc) (Cv $c)
1 - [(-0.98769814)(0.42066491)] 

where C2 is the damping ratio for the second (i.e., critical) mode. In 

theory, 5» can be set to an arbitrary value. However, in this illustration 

C2 is set to 0.1. 

3.3.2 Stability and Actual Damping 

First consider the design model with control. The closed-loop equation 
for the design model is then 

n2 + (*2
B
ArvSv

cv2*2
);,2 + (ü,2)2r,2 0 

: "* where 

4„B r s c * 
*20A v v V2 2 

[(-0.875) (0.365)] • (2^) 

( 0.97554762)(-0.41548995)1 

(-0.41548995)( 0.17695397) 

-0.857 

0.365 

2i;2u2    -    2 •   (0.1)  •  (2.58867)    -    0.517734 



» 
It is apparent that if the design model Is considered, the closed-loop system 
Is asymptotically stable and the damping Is equal to 10 percent of critical. 

Next, consider the evaluation model with control. The closed-loop sys- 
tem equations become 

n2 + 2c2ü)2n2 + (ü)2)
2

TI2 + (2?2ü)2) • (-0.2511)^ - 0      (3-7) 

OBSERVATION SPILLOVER 

^ + (2^) • (0.06307)^ + (ai1)
2n1 + U?^) • (-0.2511)n2 = 0 (3-8) 

CONTROL & OBSERVATION CONTROL SPILLOVER 
SPILLOVER 

With ?2 chosen to be 0.1 and therefore 2C2ü)2 equal to 0.517734, the actual 

damping for n, is found to be 0.0306, and the actual damping for n7 is 0.10006. 

It is noted that the damping for n-. is positive and the damping for n* is 

only slightly different from the chosen value (i.e., 0.1). 

The stability of the system (3-7) and (3-8) is indicated , because the 
poles of the system have non-positive real parts: 

Pl' P2 " -0.016751 ±j0.546779 (3-9) 

P3, P4 = -0.258690 ±j2.572255 (3-10) 

3.3.3 Control and Observation Spillover Effects 

Consider Eqs. (3-7) and (3-8) in which control and observation spill- 
over are Identified. One of the observation spillover effects is to couple 
the dynamics of ru with that of n- (see Eq. (3-7)). Moreover, one of the 

conurol spillover effects is to drive the dynamics of ru with f|_ (see Eq (3-8)) 

The combined effects of control and observation spillover, however, intro- 
duce a positive damping term in Eq. (3-8) which is partially responsible for 
having nonpositive real parts of the system poles of Eqs. (3-7) and (3-8). 

3.3.4 The Behavior of the Controlled System with an Initial Disturbance 

The dynamics of the controlled system can be represented by the follow- 
ing equation: 

For this example, all conditions required for the theorem in Section 3.5.3 
to hold are satisfied and therefore asymptotic stability is in fact assured. 
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"i    o' 

0      2 

+ 
"5    -4' 

-4       4 

V f = - 

0.50507463  -0.21511347 

.-0.21511347   0.09161776. LqoJ 

(3-11) 

Solutions (i.e., q,(t) and q„(t)) to Eq. (3-11) are obtained via simulation and 

are plotted against time in Figure 3-2. From this result, it is seen that q2 
Is initially displaced by 1 meter which is its maximum displacement. 

In general, q» exhibits a behavior of decaying oscillations. Similarly, q, 

is initially at rest and subsequently also exhibits a behavior of decaying 
oscillations. However, the first peak displacement of q. is the maximum 

displacement of q.. throughout the simulation period. It is noted that system 

poles of Eq. (3-10) correspond to a faster decaying rate than that of Eq. (3-9). 
Therfore, both q. and q„ of Figure 3-2 exhibit an oscillation frequency of 

about 0.547 rad/s. From Eq. (3-9), the dominant time constant of the system 
is approximately 60 seconds. Therfore, the 5% settling time of the system is 
about 300 seconds. However, at steady-state, both q, and q« should approach 

zero since the closed-loop poles of the system (see Eqs. (3-9) and (3-10)) have 
negative real parts. 

3.3.5 System Performance under Persistent Disturbance 

System performance under a.persistent sinusoidal disturbance is simu- 
lated with and without the decoupled-controller. The time-history of q, and 

q. in either case are plotted in Figure 3-3 and Figure 3-4. In tie case where 

no control is employed, both q, and q2 exhibit vibratory motions of no damping. 

The vibrations have three frequency components, i.e., the system natural fre- 
quencies and the frequency of disturbance. The magnitude of vibrations could 
reach about 0.4 meters for both q, and q«. However, in the controlled case, 

the magnitude of the vibrations is reduced in both transient and steady-states. 
In particular, at steady-state the magnitude of the suppressed vibtation is 
about 0.1 meter and the vibration consists only one frequency, i.e., that of 
the disturbance. 

3.3.6 Simultaneous Increase in Damping of Both Modes 

The closed-loop system equations (3-7) and (3-8) can be expressed in 
vector form: 

a b" "^2 
r 2 
"2 0 ' n2" 

A. 
+ 

c d. A. 
f 

0 2 
.nl. 

(3-12) 
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where 

*2*2 

b   »   c    •   ^2^2 '  ("0'25:,L1^ 

d    =    2i;2ü»2  •  (0.06307) 

and ^2 is the only free design parameter.    The actual damping of each 

mode is a function of C»«    Numerical plots of the poles of Eq.   (3-12) 

for several values of Cj are given in Figure 3.5, which clearly shows 

that the damping of mode 2 (the critical mode)  can theoretically be in- 
creased without bound by increasing the value of ?2'    However,  the 

achievable damping of mode 1 (the residual mode) has a finite maximum 
value of about 0.3 and after reaching this maximum damping the damping 
of mode 1 drops in spite of the increase in Co-    Nevertheless,  the system 

(3-12)  can be proved by the Routh-Hurwitz theorem to be asymptotically 
stable as long as 0 < C- < co• 

- b 

r 
\ 

-3.00 .50 
_H  
-2.00 t.50 

-H  
-I.CM -0.50 Oi® 0.50 I 00 

(Contributed by Capt. D.C. Herrick) 

Figure 3-5. Root locus of the closed loop example system as a function 
of the design parameter £.. 
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j.3.7. Reduct:lon In the Number of Sensor/Actuator Pairs 

To take the decoupled-controller design approach, the minimum number 
of sensor/actuator pairs is one in order to design a controller for a design 
model with one mode. The design procedure in this case would have been simi- 
lar to that discussed in the two mode example except that regular matrix in- 
version, rather than pseudo inverse of matrices, would be used. 

3.3.8. Position Sensors 

If only position sensors are used, the closed-loop system equation 
can be expressed in discrete (physical) coordinates as follows 

Mq + (K4Kc)q (3-13) 

where Kc is the position feedback matrix. If K- is symmetric, Eq. (3-13) 

represents a system of oscillatory nature and the frequencies of the con- 
trolled modes may be changed. 

3.4 Conclusions/Recommendations 

3.4.1 Summary of Advantages 

(1) Control gain computations are easy and straightforward; computa- 
tion software is available. 

(2) Damping of each critical mode can be arbitrarily set. . 

(3) Stability is guaranteed. 

(4) Stability is retained in the presence of model errors. 

3.4.2 Summary of Disadvantages 

(1) System performance requirements must be translated into modal 
damping requirements. 

(2) Modal damping requirements may not be satisfied in the presence 
of model errors. 

(i) Sensor/actuator pairs must be colocated. 

(4) The number of sensor/actuator pairs must be greater than or equal 
to the number of modes in the design model. 

3.4.3 Recommeridations 

In light of the disadvantages of the decoupled-controller design ap- 
proach, areas for further research include: 

3-16 

.-s4*ö^tes&i..* 



b. 

To relax the requirement of sensor/actuator colocation—this re- 
quirement was established in [3J to guarantee the positive serai- 
definiteness of C- (see Eq. (3-2)), and therefore the stability of 

T 
the system. However, the choice of B. " Cv is only a sufficient 

condition to guarantee such a C- matrix. A more general condition 

may relax the requirement of sensor/actuator colocation (i.e., 
BA-C?2

)- 
To reduce the number of sensor/actuator pairg—the relationship 
between the number of sensor/actuator pairs and the system perform- 
ance was not established in Reference [3J. The number of sensor/ 
actuator pairs may be reduced to less than the number of critical 
modes at the expense of a dynamic feedback controller. The trade- 
off between the number of sensor/actuator pairs and the system per- 
formance should be investigated. 

er. "T6 perform sfenslglvity analysi&—ln the presence of model parameiter 
errors or sensor/actuator failure, the actual damping of the 
critical modes inay be different from the desired value, the extent 
of resulting system performance degradation should be determined. 

d. To evaluate practical applicability of the method—In Reference [3], 
it was found that high gain was required when the decoupled-controller 
design approach was applied to a large space structure to achieve 
about 10% of critical damping for 12 critical modes. It would 
be desirable to determine if this high gain result was caused by 
the approach itself or by the placement of sensors and actuators. 
The sensor and actuator dynamics were completely Ignored in Refer- 
ence [3]. But in practical applications, sensor and actuator 
dynamics should be considered and therefore the overall system must 
be reevaluated. 

3.4.4 Final Remarks 

Since complex large space structures are considered, finite-element 
models of LSS may often be used.    If constant output feedback control 
techniques are employed for structural vibration suppression,  the overall 
controlled structure can be represented by Eq.  (3-1) 

Mq + Kq - Ccq - Kcq (3-1) 

For positive definite M, (K+K ) and C-, asymptotic stability of system (3-1) 

has been rigorously proven (see Section 3.5.4). This stability result can be 
applied to structures with decoupled-controllers as well as other general 
controlled systems represented by Eq. (3-1). 
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However, due to the high dimensionality of the vector q, matrix C- is 
seldom positive definite; instead it is often positive serai-definite. Trie new 
stability result given in Section 3.5.3 provides a necessary and sufficient 
condition for system (3-1) to have asymptotic stability when Cc is only posi- 

tive semi-definite. This result is also general and can be applied to any 
system represented by Eq. (3-1). 

New Insights Into the robustness of stability properties of system (3-1) 
lead to some interesting interpretations. There are four matrices in Eq. (3-1) 
that could change or could be in error. But the basic sufficieaL conditions 
for stability of Eq. (3-1) are that 

(1) M and (K+K ) are positive definite. 

(2) Cc is positive semi-definite. 

Thus, for robustness, M Is free to change since M remains positive definite, 
whereas (K-HO Is constrained and must remain positive definite. For example, 

when iC = 0 (i.e., no position feedback), K could not become positive semi- 

definite. Similarly, there may be changes in Cc or K-, but C must stay posi- 

tive semi-definite. However, K- may become evpn negative definite in theory 

and the system still retains stability, provided (K+O remains positive 
definite. 

Again, robustness of stability results are general and applicable to 
all systems represented by Eq, (3-1). 

If the decoupled-controller approach is used for LSS vibration suppres- 
sion, the damping of residual modes may have a finite upper bound, as indicated 
in the Illustrative example, whereas damping of critical modes could be increased 
to Infinity in theory. 

3.5 Appendices 

3.5.1 Stability by Liapunov's Second Method 

In this appendix, the main stability theorem of Llapunov is given only 
to the extent necessary to facilitate the discussion of the decoupled con-   "V. 
troller design technique. The material in the following is taken from 
Reference [5] where detailed discussions of Llapunov methods can be found. 

Definitions 

Consider systems governed by the vector differential equation 

~ • f(x,u(t),t), — < t < + » (3-14) 
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where vector x is the state of the system (3-14) and vector u(t) is the control 
function of Eq. (3-14). If the system (3-14) is free (i.e., unforced), then 
u(t) = 0 for all t and 

dt = f(x.t) (3-15) 

Assume that there exists a unique vector function x(t;x ,t ), differ- 
o o 

entiable in t, such that for any fixed x , t 

(a) x(t ; x , t ) = x 
o* o  o     o 

(b) I7 (t; x , t ) -   f(x(t; x , t ),t) 
dt    o  o O  o 

in some interval f^-t | < a(t ). The function is called a solution of 
/ i  o  =   o, 

Eq. (3-15).     / 

A state x of a free dynamic system (3-15) is an equilibrium state if 

f(x ; t) =0 for all t 
e 

or, equivalently 

x(t; x , 0) = x for all t 

i * 

An equilibrium state x of a free dynamic system is stable if for every 

real number e > 0 there exists a real number <S(e, t ) > 0 such that 

I|x - x 11 < 6 Implies 

|x(t; x , t ) - x 11 < e for all t > t 1 v ' o  o   e1 ' = = c 

An equilibrium state x of a free dynamic system is asymptotically 
stable if: 

(a) It is stable. 

(b) Every motion starting sufficiently near xe converges to x as 

t -♦• 00. In other words, there is some real constant r(t ) > 0 

and to every real number y > 0 there corresponds a real number 
T(y, xo, to) such that | [x^xj | < r(to) implies 

I|x(t; x , t ) - xJI < y for all t > t + T 11oo    e11« =0 

^:rmv^k 



Consider Eq. (3-15) where f(0,t) " 0; namely, there is an equilibrium 
at the origin. 

Theorem 1. If there exists a scalar function V(x,t), with continuous first 
partial derivatives, satisfying the following conditions: 

(a) V(x,t) > 0 for all x ^ 0 and all t; V(0,t) = 0 for all t 

(b) V(x,t) _< 0 for all x ^ 0 and all t; V(0,t) = 0 for all t, 

then the origin of the system (3-15) is stable. 

Theorem 2. If there exists a scalar function V(x,t) with continuous first 
partial derivatives, satisfying the following conditions: 

(a) V(x,t) > 0 for all K f 0  and all t; V(0,t) = 0 for all t 

(b) V(x,t) < 0 for all x ^ 0 and all t; V(0,t) = 0 for all t 

(c) V(x(t; x , t ),t) does not vanish identically in t >_ t for 

any t and any x ^ 0, 

then the origin of the system (3-15) is asymptotically stable. 

3.5.2 The Generalized Inverse of a Matrix 

Theorem 3. If A is an mxn matrix (m>n) of rank n, then the solution of the 
equation Ax = b, where x is an nxl vector and b is an mxl vector, that mini- 
mizes the sum of squares of residuals S * rTr, where r = b - Ax, is given by 

T    T 
x « (A^)  Ab 

where superscript "I" denotes the transpose and superscript "-1" denotes the 
inverse. 

Theorem 4. If A is an mxn matrix (m<n) of rank m, then the solution of 
equation Ax = b, where x is an nxl vector and b is an mxl vector, that mini- 

mizes x x is given by 

T  T 
A (AA ) b 

The proofs of Theorems 2 and 3 can be found in Reference 1. 

3.5.3 A New Stability Theorem (Contributed by Dr. James E. Potter of CSDL) 

Consider a finite-element model for a large space structure as follows; 

Mq + Kq » f 
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where q is an n*l vector and M and K are mass and stiffness matrices re- 
spectively. Assume that the force f applied to the structure can be expressed 
mathematically as 

f = -Ccq 

where CQ is an n*n symmetric positive semi-definite matrix, and that M and K 

are both symmetric and positive definite. 

Theorem. Denote F Then the following system 

Mq + Ccq + Kq = 0 (3-16) 

where M > 0, K > 0, and Cc ^ 0, Is asymptotically stable if and only if 

(P, C-) is an observable pair, i.e., if and only if the matrix 

Q
1
 ^ [cJ:(ccP

2)T;...;(ccP
n'1)T] 

has rank n. 

Proof. 

(1) To prove that the observability pair (P, Cr)  implies the 

asymptotic stability of system (3-16), suppose (3-16) is not 
asymptotically stable. Then there exist solutions to system 
(3-16) in the following form 

q » b cos ut, b J4 0 (3-17) 

where b is an n*l real constant vector, since 

A „T •   T 
L - q Mq + q Kq 

is a Liapunov function for system (3-16) and (3-16) must be stable. 
Substituting Eq. (3-17) Into (3-16), the following equation results! 

(-Ü) 
2M+K)b • cos cut - w • Cr • b • sin wt - 0, t > 0 (3-18) 

If u - 0, then equation (3-18) implies that 

Kb 

which contradicts the assumption that K is positive definite. Thus 
« # 0. With (i> # 0 and the orthogonality of sin wt and cos wt, Eq. 
(3-18) implies that 
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(-ArHC)b - 0 

0 CCb 

and 

(3-19) 

(3-20) 

(3-21) b = -^-Pb 
0) 

Substituting equations (3-21) into equation (3-20) repeatedly, we have 

C^b - 0, i = 1, 2,... 

Therefore 

Qb = 0. 

2 
However, Q is an n xn matrix and thus must have rank less than n since it has 
a right null vector b. Thus (P, Cc) is not observable. 

(2) To prove that asymptotic stability of (3-16) implies observability 
of (P, Cc), suppose that (P, O is not observable. Then there 

exists a nonzero vector b such that 

Qb - 0 

that is 

CCP b = 0 for i - 0, 1 n-1 (3-22) 

By the Cayley-Hamilton theorem and Eq. (3-18), we also have 

CcPb - 0 for i - n, n+1,... (3-23) 

Recall that M and K are symmetric and positive definite and that 

P » M~ K. Therefore there exists a transformation $ such that 

* K* " diag <*! * ),  A.  X > 0 ■,-     n   i     n 

i diag (XJ,    i - i n 
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Thus 

M 

K 

.TV1 
9      * 

*"T diagCA^^)*"1 

Therefore 

A ..-1. T -T -1 -1 p s M "K = *$a* i diag<A1)*"
X = * diag (A^f" 

Now, define an (n-l)-th degree polynomial a(x) as follows 

where 

k=i -k ^k' 

(3-24) 

Then 

Define 

a Ax)    %     n   (x-XJ *k 
j-l 
j^k 

r 

a(Ai) »^T, i = 1 n 

G - $ diagi/x^f1 

From Eq. (3-25), G can be expressed in the following form 

G = *{diag [a(Ai)]}* 
-1 

-1 
- *{a[diag(Ai)]}* 

- «[♦ diag(Ai)*"1] - a(P) 

(3-25) 

(3-26) 

where the last equality is obtained from equation (3-24). From 
the definition of a(x) and equation (3-26), there are coefficients 
a0 an_1 such that 
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n-1 

G • E  ^ * P 

G  = P 

q = cos(Gt) • b 

1-3. » _G2q = -pq = -M"1^ 

dtZ 

or, equlvalently, 

Mq + Kq - 0 

Furthermore, Eqs. (3-27) and (3-23) Imply that 

and 

Let 

then 

CcG
2ib = C^b = 0, i 0, 1, 2,., 

Therefore 

Ccq = - CCG sin(Gt) • b 

Combining this equation with equation (3-25) yields 

Mq + Ccq + Kq » 0 

(3-27a) 

(3-27b) 

(3-28) 

(3-29) 

(3-30) 

But the solution to this equation, which is given in Eq. (3-28) 
does not approach 0 as time t approaches infinity. Thus the 
system (3-30), which is identical to Eq. (3-16), is not 
asymptotically stable. 

3.5.4 Stability and Robustness of the Controlled Structure 

3.5.4.1 Stability 

Consider the closed-loop system equation of the following form 

Mq + Kq - -Ccq - Kcq (3-31) 
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which is equivalent to 

Mq + Ccq + (K+Kc)q » 0 (3-32) 

Sufficient conditions for stability of the closed-loop system can be estab- 
lished by applying the Liapunov direct method to Eq. (3-32); stability condi- 
tions can be stated as follows: 

Theorem. Consider Eq. (3-32) where M and (K+lO are symmetric and positive 

definite. Then, if Cc is positive semi-definite, the system (3-32) is stable 

in the sense of Liapunov. If Cc is positive definite, the system 3-32 is 
asymptotically stable. 

Proof. Consider a Liapunov testing function (L) with the following form 

L = |4TMq + |qT(K+Kc)q (3-33) 

which is positive for qj'O and q^O. 

Then the rate of change of the Liapunov testing function is 

L = qTMq + qT(K+Kc)q 

= qT[Mq + (K+Kc)q] (3-34) 

From Eq, (3-32), Eq. (3-34) can be simplified as 

L = -q Ccq (3-35) 

Equations (3-33) and (3-35) show that L is indeed a Liapunov function [5] for 
system (3-32), if Cr is positive semi-definite. I 

Section 3.5.5, stability of system (3-32) follows. 

system (3-32), if C_ is positive semi-definite. Therefore, from Theorem 1 in 

To prove the asymptotic stability result with Eqs. (3-33) and (3-35) 
when Cc is positive definite, Theorem 2 in Section 3.5.1 will be used. 

First from Eqs. (3-33) and (3-35), it is apparent that 

(1) L(q,q) > 0 for all q j« 0 and q jt 0 

(2) L(q,q) - " q C q » 0 for all q and q. 

To verify that L(q,q) " L(q) does net vanish identically in t - t for any t 

and any q(t ) ^ 0 and q(t ) j« 0, a proof by contradiction is given. Assume 
o o 

that for some t and some q(t ) f 0 and q(t ) y* 0: 
O O \J 

L(q,q) - L(q) = 0 for t - t (3-36) 
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Then Eq. (3-35) implies that 

q = 0 for t - t since C„ is positive definite 
o     c 

(3-37) 

Equation (3-37), however, implies that 

q = 0 for t > t 1 o 

From the system Eq. (3-32) then, 

(K+K_)q = 0 for t > t 
t> o 

However, since (K+IO is also positive definite, it is concluded that 

0 for t > t (3-38) 

which together with (3-37)  implies q(to) = q(to) = 0 contradicting the assump- 

tion that. q(to)  ^ 0 and q(t )  ^ 0.    Consequently the conditions of Theorem 2 

in Section 3.5.1 are satisfied and asymptotic stability is therefore assured. 

3.5.4.2 Robustness 

Given a constant gain feedback control law as specified in Eq. (3-31), 
it is interesting to investigate the requirement of the control law to have 
stability robustness against model parameter errors. Consider the following 
system 

Mq + Kq (3-39) 

where M represents a new mass matrix and K a new stiffness matrix. However, f 
remains the same as given in Eq. (3-31). 

To establish sufficient stability criteria, the direct method of 
Liapunov can again be applied to Eq. (3-39) with a new Liapunov testing func- 
tion L defined as 

L - ^q'Mq + ^'(K+K^q 

which is positive for q ^ 0 and q # 0, if M and (K+K ) are positive definite. 

The time derivative of L along trajectories governed by Eq. (3-39) is 

x 
L -qCcq 

if (K+K-) and M are symmetric. 
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In general, M is sjonmetrlc and positive definite whereas K is syvmetric 
and positive semi-definite. Therefore, robustness of stability against param- 
eter errors can be assured if controller gains are such that 

(a) (K+K-) is symmetric and positive definite. 

(b) C- is positive definite or positive semi-definite. 

It should be noted that these are only sufficient conditions for robustness. 
Furthermore, for a general position feedback gain matrix K , condition (a) 
above constrains the degree of tolerable parameter errors In K and therefore 
no absolute robustness can be stated. However, if Kr is symmetric and positive 

Li 

definite, then absolute robustness of the controlled system is obtained such 
that the system remains stable regardless of what parameter errors might be 
in the mass and stiffness matrices. For systems without rigid-body modes 
(i.e., the stiffness matrix is symmetric and positive definite), absolute 
robustness can also be obtained if K ■ is symmetric and positive semi-definite. 

This result is applicable to the case when only velocity feedback (i.e., K- = 

0) is employed for the control of systems without rigid-body modes. 

2. LaSalle, J., and S. Lefschetz, Stability by Liapunov's Direct Method with 
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SECTION 4 

OUTPUT FEEDBACK CONTROL VIA DAVISON-WANG 
METHOD OF POLE ASSIGNMENT 

4.1   Background 

4.1.1 Brief Introduction of the Main Ideas 

The objective of the Davlson-Wang method is to find a constant output- 
feedback gain matrix G for system (2-12) - (2-13) that assigns p A min 
{n, m + £ - 1} closed-loop poles to p desired locations in the complex plane. 
In algebraic terms, the objective is to find a matrix G such that the closed- 
loop system matrix of (2-12) - (2-13) has p desired eigenvalues. Nothing can 
be said about the remaining n-p poles. 

If max {m, £} = min {n, m + £ - 1}, then p desired closed-loop poles are 
assigned in one step using Davison's construction algorithm. On the other 
hand, if max {m, Z} < min {n, a + £ - 1}, then p desired closed-loop poles 
are assigned in three steps: first assign p^ ^ max {m, £} desired closed- 
loop poles using Davison's construction algorithm, "seal" all but one of those 
assigned by making them unobservable (or uncontrollable), and then assign the 
remaining P2 ^ min {n, m+£-l}-p2 + l desired closed-loop poles again 
using Davison's construction algorithm. 

Note that when m + £ _> n + 1, the Davison-Wang method can assign all 
n/closed-loop poles of the system. 

Davison's construction algorithm is formulated for multiple-input 
multiple-output systems, but makes explicit use of the simplicity in single- 
Input systems. In a single-input system, the coefficients of the character- 
istic equation are linear functions of the feedback gains used for amplifying 
and combining the outputs. Thus, the feedback gains required for implementing 
the assignment of desired closed-loop poles can be found by solving a set of 
simultaneous linear algebraic equations. A multiple-input system will lose 
such simplicity (i.e., the linearity) unless it is simplified to a single- 
input system. Davison's construction algorithm starts by converting a multiple- 
input system to a slngle-anput system. 

For a system with £ ^m (i.e., more outputs than inputs), m inputs are 
reduced to one input, and £ outputs are fed back through the single input. 
Then as many as £ desired closed-loop poles can be assigned by the Davlson 
construction algorithm. On the other hand, for a system with m ^ £ (i.e., 
more Inputs than outputs), a dual approach is used. Namely, £ outputs are 
reduced to one output and fed back through the m inputs. As many as m desired 
closed-loop poles are then assignable: by Davison's construction algorithm. 
To summarize, the m x £ gain matrjh» G in either case is  considered to be a 
dyadic product of two vectors, G * ög^" where 9 is an m-vector, g is an £-vector, 
and superscript "T" denotes transpose. 

Distinct eigenvalues of a diagonal (or dlagonalized) system matrix 
are made unobservable from the outputs fed back by making the corresponding 
columns of the observation matrix zero. Desired system poles can thereby be 
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frozen, I.e., protected from unwanted alteration. Output feedback with any 
arbitrary full matrix of constant gains is Introduced to make the resultant 
closed-loop system have dlsMnct eigenvalues. 

4.1.2 Brief Introduction of the Underlying Theory 

4,1.2.1 Davison's Theorem 

If the system (2-12) - (2-13) Is completely controllable. If the eigen- 
values of the system matrix A are distinct, or are repeated but no two Jordan 
blocks correspond to a common eigenvalue, and if the observation matrix C has 
rank & ± n,  then Davlson fl] showed that a feedback of the outputs in the 
form 

u = Gy (4-1) 

where G is a constant gain matrix can always be found so that i eigenvalues of 
the closed-loop system matrix A+BGC are arbitrarily close (but not necessarily 
equal) to i  pre-asslgned (or desired) complex-conjugate values. 

An algorithm for constructing the feedback gain matrix G was proposed. 

4.1.2.2 Davison and Chatterjee's Theorem 

The purpose of the above assumption or. the eigenvalues of the system 
matrix A was to make a system which is completely controllable from multiple 
inputs also completely controllable from a single input. Using a theorem of 
Brasch and Pearson [5], Davison and Chatterjee [2] then modified Davison's 
original theorem as follows. If the system is both completely controllable and 
completely observable, and if the control matrix B has rank m £ n and the ob- 
servation matrix C has rank Z <_ n,  then a linear constant-gain feedback of the 
outputs in the form (4-1) can always be found so that max {m, £} eigenvalues of 
the closed-loop system matrix A+BGC are arbitrarily close (but not necessarily 
equal) to max (m, I)  pre-asslgned complex-conjugate valu-'s. 

The theorem of Brasch and Pearson says that if a system is both 
completely controllable and completely observable, then there exists a constant 
gain matrix K such that the closed-loop system Is both completely controllable 
from a single input and completely observable from a single output. So, 
introducing an additional output feedback will make a system completely single- 
input controllable and completely single-output observable, if it is initially 
not so, 

4.1.2.3 Davison and Wang's Theorem on Simple Poles 

If a system has no multiple poles (i.e., If its system matrix has no 
repeated eigenvalues), then whenever It is completely (multiple-input) control- 
lable it is also completely single-input controllable, and similarly, whenever 
it is completely (multiple-output) observable it is also completely single- 
output observable. Davison and Wang [6] showed that if a system is both 
completely controllable and completely observable, then almost any constant- 
gain output feedback will make the ciosed-loop system matrix have distinct 
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eigenvalues. Davlson and Chow [3] used these facts In stmpllfylag Davlson's 
original construction algorithm. 

4.1.2.4 Davison and Wang's Theorem on Pole Assignment 

Davison's theorem was extended by Davlson and Wang [4] as follows. 
Given any system satisfying the assumptions in Davison and Chatteriee's 
theorem (see Section 4.1.2.1, or [2]), there exists, for almost all (B,C) pairs, 
a constant gain feedback of the outputs in the form Eq. (4-1) such that the 
closed-loop system matrix A+BGC has min {n,m + 1-1}  eigenvalues assigned 
arbitrarily close to min {n,m + £-1} specified complex-conjugate values. 
This implies that almost all linear time-invariant multivariable systems can 
be stabilized by using only output feedback with constant gains, provided 
that m + £ >_ n + 1. 

An algorithm, similar to what Topaloglu and Seborg [7J proposed 
earlier, was also given in [4] for finding the gain matrix for assigning 
min {n,m + £-1} closed-loop poles. For the case £ ^ m and m + £ £ n + 1, 
Topaloglu and Seborg's algorithm involves three steps: assignment of £ poles, 
"protection" of m-1 poles by making them uncontrollable, and assignment of 
£ additional poles. The method for assigning the £ poles is the same for both 
the first and the last steps, and is essentially the same as Davison's con- 
struction algorithm. For the same case, the Davison and Wang algorithm also 
involves three steps: assignment of £ poles, "protection" of £-1 poles by 
making them unobservable, and assignment of m poles. The difference lies in 
the second and the third steps. 

4.1.3 Outline of the Design Method 

4.1.3.1 Davison's Construction Algorithm for the Assignment of max {m,£} Poles 

For notational convenience, assume £ ^ m (more outputs than inputs), so 
that £ * max (m, £}. Assume also that the eigenvalues of the system matrix A are 
distinct; otherwise, introduce an arbitrary constant-gain output feedback to 
make them all distinct (see Section 4.1.2.3 above). 

4.1.3.1.1 Consider Single Inputs - Suppose that the m inputs u1, 

generated by a siugle Input v, and the £ outputs 

combined to produce the single input v. That is 

u are 
m 

generated by a siugle Input v, and the £ outputs y. y are simplified and 

9v, v 
T 

g y (4-2) 

where 6 ■ (6.,..., 6 ) is an m-vector (of amplifier gains), and g ■ (g.f-tg.) 

is an £-vector (of amplifier gains). Both 9 and g are to be determined. Then, 
from (4-1) and (4-2), the m x £ matrix of output feedback gains is given by 
the dyadic product of vectors 6 and g, namely 

eg (4-3) 

Therefore, the construction of the gain matrix G for desired pole assignment 
reduces to the construction of an m-vector 6 and an £-vector g. 
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4.1.3,1.2 Construct an a-vector 6— Using a similarity transformation T and 
input (4-2), the state Eq. (2-12) becomes 

z " Az +  BOv (4-4) 

where 

A = T  AT, a diagonal matrix 

B « T-1 B 

Determine numbers 8. 6 such that each of the n components of the n-vector 

C A 36 is nonzero. With any such m-vector 9, the state equation (2-12) 
becomes 

x = Ax + bv 

where (4-5) 

b - BS 

Such a single-input system is completely controllable from the single input v. 

4.1.3.1.3 Transform Matrix A to Companion Form - For constructing an 
£-vector g for pole assignment, it is convenient to transform matrix A to 
companion form 

A 

"0 1 
0 0 

0 

• 1 

Lal V" anJ 

where a-,••..a are the coefficients of the characteristic equation 

X - a. + a-A + + a X 
n 

n-1 
(4-6) 

These coefficients are to be determined as follows. By the Cayley-Hamilton 
Theorem 

A ■ a.I ■*• a.A + + a A 
n 

n-1 

Post-multiplying b Ä B9 yields 

k\ - a.b + a-Ab + • • • + a An"Lo - Q 
i. 4 n 
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where 

Q - [btAb,...,A
n~:Lb]. (4-7) 

the matrix Q is the controllability matrix of the single-input system (4-5) 
Since it is invertible, we thus get 

n J 

.-1 Q-Vb 
(4-8) 

where 
The matrix for transforming A to A is given by the matrix product QQ, 

-a2 -a3 • • *       "fl. n 
« 

i • 

-a„ -a. • * •       • 
J 4 * 

• 

-a4 • • 
• • • • • • 

• •   • 
-a n 1 

1  0 (4-9) 

-1, 
Let b A (QQ) b = ,  C A CQQ 

Then by setting x ■ QQz, with z.,...,z   being the new coordinates, the 

single-input system (4-5) becomes 

z ■ Az + bv 

y ■ Cz (4-10) 

4.1.3.1.4 Derive The Closed-Loop Characteristic Equation - Wifh the output 
feedback (4-2), the system matrix of the closed-loop system (4-Jö> is given by 

A + bg C » 

0 
0 

1    0  . 
0   1 • 

0  * 

al + 5l a2 + 52 
• • ♦ a +6 

n   n (4-11) 

where [«Sj,.. ..«J - g CQQ. 
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Since It is also In the companion form, its characteristic equation is 
similarly given by 

Xn = (a1 + 6^ + (a2 + Ö^A
1 + ■•• + (an + 6n)X ^ 

(4-12) 

Rewriting it we have 

Consequently 

^-V"1" - -V-3! 
= 6, + 6^X + ••• + 6 A 
12 n 

n-1 

= f6!'6?'*"'ön^ 

.n-1 

= gTCQQ 

.n-1 

A(X) = g^CQQhCA) (4-13) 

where 

A(X) = Xn - a^11"1 •-. - a2X - a1 

h(X) = (IjA,...^11"1) 

4.1.3.1.5 Construct PTX  Jl-Vector for Assignment of Desired Closed-Loop Poles 
Let X.,...^ denote the £ desired closed-loop poles. The £-vector of gains 

required for implementing the pole assignment is to be found from (4-13) by 
substituting in these eigenvalues. 

Substituting Xi in (4-13) yields 

Ai = g
iCQQhi i = 1,...,«. 

(4-14) 

where 

n-1 MA(v = x;-vr -Vi-ai 
h1 A h(Xi) = (l.Xi,X^...,X^"1) 

(4-15) 

(4-16) 
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If A is the r  repeat of X., then differentiating (4-13) r times and sub- 

stituting in X gives 

4:A(X ) =gTCQQ-4h(X ). 
dXr dXr 

Thus, the number A. and the vector h, in (4-X4) should be redefined as 
J j 

A, »-S-ACX.) 
2    dxr  1 

,r 
h. = 

dX 
- h(xi) 

(4-15') 

(4-16') 

to increase the number of Independent equations in (4-14). Consequently, we 
have 

A = g^CQQH (4-17) 

where 

A = [A..,...,A ], a row vector of i  components r 
H = [tu,...,!! ], an n x £ matrix of i  n-vectors. 

1' 

Therefore, the desired vector g of feedback gains can be solved from (4-17) as 

gT = A(CQQH)'1 
(4-18) 

provided that the matrix S = CQQH is invertible. 

4.1.3.1.6 Sunnnary of the Algorithm for the Case i > m 

Step 1; Compute the eigenvalues and eigenvectors of matrix A. 

Step 2; Define the orthogonal transformation T by the normalized 

eigenvectors. Compute the inverse T . 

Step 3: Compute matrix B » T~.B. 

Step 4; Determine an m-vector 9 so that each component of vector M 
is nonzero. 

Step 5; Compute vector b = Bö. 

Step 6: Compute matrix Q defined by (4-7), and the inverse Q" . 
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Step 7; Compute coefficients a.,...,a using (4-8). 

Step 8: Compute matrix CQQ with Q defined by (4-9). 

* 
Step 9; Compute numbers A. and vectors h. by substituting desired closed- 

loop poles A^-.-.A^ into (4-15) - (4-16), and (4-15') - (4-16') 

for repeated values. Form the row vector A and.the matrix H. 

Step 10: Compute the matrix CQQH and its inverse (CQQH)  . 

T      ä
 -1 Step 11; Compute the row vector g = A(CQQH)  . 

T Step 12; Compute the gain matrix G = eg . 

4.1.3.1.7 Extension to the Case £ <. m. To assign m = max {m,£} closed-loop poles 
for this case, the preceeding algorithm (for the case Ä ^ m) can be applied 
directly if the duality between control and observation is employed. Specif1- 

T cally, (1) replace matrix B in the algorithm by the transpose C , matrix C by 
T T 

the transpose C , and matrix A by its transpose A . Consequently, the numbers 
£ and m should also be interchanged.  (2) Follow the algorithm and obtain an 
£ * m gain matrix G required for assignment of m desired closed-loop poles to 
the dual system 

by "output feedback" 

-x, = A Xj + C u. 

T 
yd = B Xd 

ud= Vd 

(3) The desired output-feedback gain matrix for the origlnal system is given 
I 

G = G4 

4.1.3.2 Davison-Wang Algorithm for the Assignment of min {n, m + £ - 1} Poles  _^ . -  ~  ^ J 

Assume that max {m,£} desired closed-loop poles have been assigned 
ilng Davison's construction algorithm. Let G^ denote the required gain 
trix. If max {m,£} = min {n,m + £-1}, then stop, since no more poles 
assigned. can 

I   I 
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Consider the case max {mt£} < min {n,m + £-1}. To assign more desired 
closed-loop poles while retaining the assigned and the desired, it is 
rocessary to "seal" the latter. Assume that £ >. m again for notational con- 
venience, and that £ >_ 2 for nontriviallty. Assume that all the eigenvalues 
are distinct; otherwise, add any output feedback to make them distinct. 
Apply a coordinate transformation T such that the system matrix A+BGjC is 
diagonalized 

T"
1
(A+BG;LC)T = 

D1 0 

0  D 2 J 

where D = diag {A ,...,X } and D = diag {X  ,...,A }. In terms of the new 

coordinates C.,...,? , the system becomes 
±    n 

• 
i = 

>! 0 

5 + 
"Bl  " 

I2. 
0 D2. 

(4-19) 

y = [c, : c2] 5 

x = T5 

where B^ and B are of dimension t x m and (n-t) x m, respectively, such that 

R 
I n^-l = T    B 

R.. L 2J 
C. and C- are of dimension £ x t and £ x (n-t), respectively, such that 

[C^] = CT. 

Assume that 

rank (B-) ■ min {m,n-t}, and (4-20) 

rank (C ,d ) » rank (C ) + 1, j = l,...,n-t 

.th 

(4-21) 

where d, denotes the j  column of matrix C_. Then choose an £-vector 6 such 

that 

and 

eCla0 (4-22) 

6 d i« 0, j = l,...,n-t 

4-9 

(4-23) 
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System (4-19) is thus converted to a single-output system as follows 

'Dl 0 

£ + 
V 

0 
\ 

y = [o| d]£ 

-   T ~   T— 
where y & e y is a scalar, and d = 6 C„ is a row vector of nonzero components. 

It is not difficult to see that D1 is the unobservable part of the system. 

Hence eigenvalues X..,...,* cannot be altered by feedback control using output 

y. On the other hand, by assumption (4-20) and condition (4-23), the 
subsystem 

'2 2  - 
5 = D25 + B2u 

^ =^2 (4-24) 

is both completely controllable and completely observable. Notice that this 
is the case where there are more inputs than output's. Apply Davlson's con- 
struction algorithm for this case (see Section 4.1.3.1.7) to subsystem (4-24) 
and get the output feedback 

u " gy A geTy 

for assigning mln {m,n-t} desired closed-loop poles to subsystem (4-24). 
Equivalently, this feedback control assigns these closed-loop poles to the 
completely observable part, namely D_, of system (4-19). The required gain 
matrix is thus given as 

(Ä-25) 

G2 - ge
1 

To summarize, the sum of the two gain matrices, 

G - G1 + G2 

is the required feedback gain matrix for assigning totally t + min {m,n-t} = 
mln {m + t, n} = min {m + £-1, n} desired closed-loop poles to system (2-12) - (2-13). 

In case m j> £ and m j^ 2, apply the above procedure to the dual system 
first. Then the transpose of the gain matrix obtained is the desired matrix 
for this case. 
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4.1.4 Sunanary of Assumptions Made 

(1) The system (2-12) - (2-13) is completely controllable and completely 
observable. 

(2) The matrix B has rank m <^ n. 

(3) The matrix C has rank Ä. <. n. 

(4) The set of desired closed-loop poles to be assigned is complex 
conjugate: any complex numbers appear in complex conjugate pairs. 

(5) The (n-Ä, + 1) x m matrix B« has full rank - see assumption (4-20). 

(6) No column of the i  x (n-£ + 1) matrix C0 is a linear combination 

of the columns of the £ x (£-1) matrix C. - see assumption (4-21). 

4.1.5 Summary of Technical Tricks Used 

(1) Conversion of a multiple-input multiple-output system to either 
a single-input multiple-output system or a multiple-input single- 
output system. 

(2) Restriction of the m x £ feedback gain matrix G to be a dyadic 
product of an m-vector 6 and an £-vector g: G = Sg . 

(3) "Saving" of desired system poles by making them unobservable from 
some scalarized output. 

4.2 Discussion 

4.2.1 Strengths 

(1) By definition, the objective of modal control is to control cer- 
tain modes of the system response by altering them with feedback. 
Decay rates and vibration frequencies of the system response are 
determined by the location of the system poles. Output feedback 
control by the Davison-Wang method enables the designer to assign 
a set of desired closed-loop poles and hence to have direct con- 
trol over the nodes of the system response. 

(2) The method is an extension of classical frequency-domain design 
techniques to multivariable systems. However, the approach is 
modern, analytical, and systematic; the concept is simple and the 
algorithm is straightforward. 

(3) The dyadic form of the output-feedback gain matrix G is simpler 
to implement than the general form. Figure 4-1 shows a typical 
Davison output-feedback controller, whose gain matrix is in 
dyadic form, whereas Figure 4-2 shows a general form of output- 
feedback controller. The simplicity of the former is evident. 

4-11 

«v^»^ 



I I 

i ir- 
1 u1 0. 

1 
"l 

• 
• 
• 

1 
1 

um 
m 

-l 
Vl 

f 

v. I 
«   ■ I 

L_ _______ _2iJ1™T^!EElA^!Lc°!ÜJR£l:LH  _ _  _ _J 

T Figure 4-1. Dyadic form of output feedback control, u = eg y. 

Mr ,—, 
• ^ Vl ♦ ♦ 

v8   I 

L _ _ — ,_?4I!UÜEI£.BA£!5 ^.NIS9Li!.R I 

Figure 4-2. General form of output feedback control, u » Gy. 

3 

I 
. i 

4-12 

''z^mmm00*mm-!r*v~- SIüSu^üaESEB '■itmsm . -- ■ 



% 

i 

(4) The size of the computer memory and the amount of processing time 
required in the design process are much lower than the correspond- 
ing requirements for solving n x n matrix Riccati equations in the 
design of linear-quadratic regulators and observers. 

(5) Like other output-feedback controllers, Davison-Wang output- 
feedback controllers are implementable by electronic or electro- 
mechanical hardware. Moreover, no dynamic state estimators are 
required in the feedback loops and the associated disadvantages 
are avoided.  Note that a dynamic state estimator requires a 
(hardware or software) simulation of the system model. The 
addition of a dynamic state estimator increases the sensitivity 
of the closed-loop system to model errors and the order of the 
closed-loop system. Moreover, the reliance upon on-line computa- 
tion is increased if the estimator is implemented by computer 
software. 

4.2.2 Weaknesses 

4.2.2.1 Theoretical Limitations 

(1) At most mln {m + Jl-1, n} desired closed-loop poles are arbi- 
trarily assignable by the Davison-Wang method.    This means that 
if m + A j< n,  then not all n poles of the system (2-12)  - (2-13) 
can be replaced by desired ones. 

(2) However, not all n-diroensional systems can have as many as min 
{m + £-1, n} poles replaced by desired ones. The reason is that 
assumptions (4-20) and (4-21) on the matrices^ B and C may not be 

either the (n-Jl + 1) x m matrix B- does not have full satisfied 

rank, or some column of the I  x (n-£ + 1) matrix (L is a linear 

combination of the columns of the £ x (£-1) matrix (L . 

The existence of a vector 9 satisfying conditions (4-22) - (4-23) 
is based on assumption (4-21). For many spacecraft systems, it 
Is impossible to determine such a vector 9 [8]. When no such 
vector 9 exists, the desired system poles will not be protected 
from change during the third step of pole assignment using the 
Davison-Wang algorithm, and the maximum number of closed-loop 
poles assignable will be max {m,£}. 

(3) The closed-loop poles actually assigned may not be exactly equal 
to, but only arbitrarily close to, the desired poles. The reason 
is that the £ x £ matrix product CQOH in (4-17) may not be invert- 
ible. Davison suggested that the closed-loop poles to be assigned 
be varied slightly so that the matrix product becomes nonsingu- 
lar [1]. Alternately, the pseudo-inverse of this matrix product, 
in case it is not invertible, may be used. With such a procedure, 
the assigned closed-loop poles would be an approximation to the 
desired poles. 
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4,2.2.2 Numerical Difficulties 

Numerical difficulties may arise In calculating the coefficients 
a ,...,a by Eq. (4-8) and also in solving (4-17) for the gains g-,...^ . This 

Is because the controllability matrix Q defined by (4-7) may be highly 111 
conditioned (even though it is nonslngular) when the dimension n of the system 
is large. Davison and Chow [3] suggested that a different time scale x = t/y 

be used so that ||b||~|| y"- An" bj|; i.e.. the first and the last columns of 
the new controllability matrix, with A replaced by yA,  have approximately 
the same magnitude. 

The time scaling was successful for an example of a 41-dlmen8ional system 
[3]. But, according to Mahn's experience with spacecraft systems [8], In no 
case did this suggestion Improve the assignment of the poles, and in some 
cases it significantly affected the assignment adversely. 

4.2.2.3 A Pitfall 

In assigning max {m,Ä,} or mln {m + £-l,n} closed-loop poles, nothing 
can be said about the remaining poles [1]. In the course of this study, it 
was discovered that the real parts of the remaining poles may turn out to be 
positive while desired values are assigned to replace other less desirable 
poles by an output feedback control.  (For an illustration, see Section 4.3.8.) 
A pitfall may exist, particularly when the remaining poles were considered 
desirable in the open-loop system and therefore left alone: potential 
instability of the closed-loop system may be left unnoticed. 

Blind application of this design method may allow hidden instability 
to exist in the closed-loop system. 

4.2.2.4 Other Weaknesses 

(1) The m x £ gain matrix G is restricted to have rank at most one 
(because of the assumed dyadic form). Design freedom is thus 
greatly reduced, since the general m x £ gain matrix can have 
rank mln {m,£}, which is usually much larger than 1. 

(2) As a consequence of the dyadic form, the required feedback gains 
G  are usually very high, and the closed-loop system modes are 
highly coupled. 

(3) The design may be quite non-optimal since no performance index 
on accuracy, control energy, or control time Is ever considered 
for optimization in the design process. 
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4.2.3 M*S,uritx 

As a wbole, methods tor designing output feedback controllers by pole 
assignmentV haVe wt yet reached maturity. Various modifications or extensions 
keep eppeating in the  literature; see for example Reference» [9] to [17]. 
None have yts;, significantly advanced the  state of the science, however. 

Specific improvfement on the Davison-Wang method is also required. In 
the course of this study, it was found tht'.t wit.h some appropriate modifications 
on this method: 

(1) It is possible to predict, before actkiallj computing the output- 
feedback gain matrix for assignment of desired closed-loop poles, 
whether hidden instability in the resultant, closed-loop system 
may exist; i.e., it is possible to predict whether real parts of 
the remaining poles may become positive; 

(2) It Is possible, under certain conditions, to assign the n closed- • 
loop poles with a given number i  of outputs, and these conditions 
can be checked by the computer before proceeding to compute the 
required gain matrix; and 

(3) It is possible to compute the characteristic coefficients 
a. ,a without using Eq. (4-8) and hence to avoid the 

numerical difficulties with the matrix Q and its inverse Q 
-1 

The details of these new findings and other possible improvements will 
be reported later. 

4.2.4 Applicability to Large Flexible Space Structures 

Since the fundamental modal design model (2-10) - (2-11) of a large 
flexible space structure has N modes, its state-space representation (2-14) - 
(2-15) has 2N poles (i.e., n " 2N). As mentioned in Section 2.2.5.2, for the 
2N x m matrix B„ " 

T 
L*C A-J 

to have rank m, it is necessary that m < N. 

Similarly, for the £ x 2N matrix Cc = [0, C *„] to have rank I  when only 

velocity sensors are used, or for the £ x 2N matrix Cf [Cp*c,0] to have 

rank £ when only position sensors are used, it is necessary that £ £ N. 
Consequently, 

min {m + £-l,n} - min {m + £~1,2N} - m + £-1 < 2N-1. 

This means that it is never possible to assign desired values to all 2N 
closed-loop poles by the Davison-Wang method, if only velocity sensors, or 
only position sensors, are used. Then, at least one pole will always have 
to be left alone. This limits the designer's ability to actually alter all 
the fundamental characteristics of the structure as desired. For an illus- 
tration, see Section 4.3.1. 
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Moreover, hidden instability may exist in the closed-loop system, 
since the real parts of the remaining poles may turn out to be positive. ^ 
For a discussion on the pitfall, see Section 4.2.2.3; for an illustration, 
see Section 4.3.8. 

r 
For all 2N closed-loop pd^es of the fundamental state-space design model 

(2-14) - (2-15) to be assignable by the Davison-Wang method, the i, sensors 
must Include at least one velocity sensor and at least one positioir sensor.        i 
The total number of velocity and position sensors required for assigning all       j 
2N poles by the Davison-Wang method must be at least 2N-m + 1. Locating posi- 
tion sensors away from velocity sensors makes it easy for the £ * 2N matrix j 
CC = ^cP$r'Cv$r-' t0 have rank at -'•east N + i- 1 

For the Davison-Wang method to be applicable to a large space struc- 
ture, the location and the number of actuators placed on the structure must be 
chosen so that the critical modes are completely controllable. Similarly, 
the location and the number of sensors placed on the structure must make the 
critical modes completely observable. See Appendix B for discussions on 
complete controllability and complete observability of critical modes and 
an algorithm for determining the proper location and proper number of actuators 
and sensors. 

As mentioned in Section 4.2.2.3, the Davison-Wang method does not 
guarantee the closed-loop stability even of the (reduced-order) model on which 
the design of output-feedback controller is based.  (For an illustration, see 
Section 4.3 8.) The closed-loop stability of the large finite-element model 
(2-4) - (2-5) with a feedback controller based on a reduced-order design model 
(2-10) - (2-11) is even more questionable, let alone the closed-loop stability 
of the actual Infinite-dimensional distrlbuted-parameter flexible structure. 

The relative simplicity in the design and Implementation of an output- 
feedback controller, compared with the combination ot a state-feedback con- 
troller and an observer, may permit more than the critical modes to be 
included in the design model. However, with a large flexible space structure, 
which is infinite-dimensional in nature, there are still many modes that 
cannot be included. Model errors due to truncation as well as roundoff are 
inevitable. So far, the Davison-Wang method has no provision for guaranteeing 
robustness against model errors, parameter variations, control spillover, or 
observation spillover. 

Control spillover and observation spillover in an output feedback 
loop do not necessarily destabilize the large structure, though closed-loop 
performance of the output-feedback controller may be drastically degraded 
thereby.. For an Illustration, see Section 4.3.3. 

The Davison-Wang method was recently applied to two idealized space- 
craft with flexible appendages [8], [17]. It was concluded that, although 
it still required extensive investigation in order to resolve many practical 
difficulties, the Davison-Wang pole assignment process could be a viable 
preliminary control design tool [17]. 
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A.3 Illustration 

The simple test problem described in Section 2.5 is taken as an example 
for illustration of the Davison-Wang method of pole assignment. The eight 
points of interest (questions) listed also in Section 2.5.3 are addressed as 
follows. 

4.3.1 Question 1 

The Davison-Wang method is not applicable to the fundamental state-space 
design model (2-25)-(2-26) as is, since it is Impossible to satisfy the assump- 
tion that the 2x2 matrices 

B = ~Y and C = [O-^al. with $2 

have rank 2. Note that N = 1, m = J, = 2, as is. 

[-0,8571 

0.365J 

The number of independent actuators and of independent velocity 
sensors must be reduced so that, for the new numbers m and H, the resultant 
2N x m matrix B has rank m and the £ x 2N matrix C has rank I. This can be 
achieved by combining the actuator inputs and sensor outputs, respectively. 
The following special combination is considered in this illustration: only 
actuator 2 and sensor 2 are used. Therefore, the fundamental state-space design 
model (2-25) - (2-26) becomes 

X2 

0 1 xi 0 

6.702 0 X2_ 
+ 

0.365 

ya = [0 

"2 

0.365] xi 

X2 

(4-26) 

(4-27) 

From here on, m"l, £«l,n"2; 

" 0      1" 

-6.702   0 

xl 

X2 

12 

712. 

0 

0.365 
C = [0, 0.365| 

Since p * min {m + £ - 1, n} * 1, at most one desired closed-loop pole can be 
assigned by the Davison-Wang method. Furthermore, since max {m,£} = 1 = min 
{m + £ - 1, n}, this closed-loop pole is to be assigned in one step, using 
Davison's construction algorithm. Note that the system (4-26)-(4-27) has two 
poles, but only one of them can be re-assigned. 

Davison's construction algorithm, as summarized In Section 4.1.3.1.6, ts 
now used to assign one desired closed-loop pole to system (4-26)-(4-27). 
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Steps 1-5; Since the system is already a single-input system, steps 1-3 can 
be skipped. The number 9 in step 4 and the vector b in step 5 are given by 

9 = 1, b = B - 0 
0.365 

Step 6; 

Q = [b, Ab] 0      0.365 

0.365   0 

Consequently, 

0.365 

0 1. 

1 0 

Step 7; \ai 

a2 - Q'Vb «= Q'Vb 

Step 8; Q - "a2   1 

.1    Oj 

QQ - 0.365 
1   0 

0   1 

Therefore, 

CQQ - [0, 0.3652] 

-6.702 

0 

0 1 

1 0 

Step 9; Let the desired closed-loop pole be denoted by parameter X., which 

must be negative-valued, and postpone the discussion on its value. Sub- 
stituting ^  in (6-15)-(6-16) yields 

A - Aj - Xf + 6.702 

H • hj *ri "1" 
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Step 10; CQQH » [0 0.3652] 1 

(CQQH) 
]. 

= 0.365 X, 

] 
0.365^    0.133X 

-1 
Step 11; g - A (CQQH)  « (A* + 6.702)/0.133X1 

Step 12; G 

therefore 

= eg 
T = T  XT + 6.702 

g *  0.133X! 

UA — rn „ 2 - ^ y2 Xf + 6.702 
O.mXj  y2 

(4-28) 

(4-29) 

This test problom calls for at least 10% of critical damping on mode 2. 
Substituting (6-29) into the fundamental state-space design model (6-26)-(6-27) 
yields the following closed-loop system 

(4-30) 
XI 0 1 *! 

. ^2. 
-6.702 X? + 6.702 _x2 

The closed-loop poles are 

6.702 
V 

I * 

Note that one of the closed-loop poles is exactly given by the parameter X,, 

while the other is inversely proportional to X  .    Figure 4-3 shows the position 

and variation of these two poles as |X | increases until X = -2.588. In con- 

trast. Figure 4-4 shows the position and variation as |x,j decreases until 

X- - -2.588. It is not difficult to conclude that the system (4-30) is criti- 

cally damped if and only if X. » -2.588, but overdamped if and only if X1 # 

-2.588. In other words, according to the fundamental design model (2-23)-(2-24), 
or equivalently (4-26)-(4-27), mode 2 will never be underdamped with feedback 
control given by (4-29). 

Since all damping will be more than 10C% of critical damping, it is 
desirable to choose 

for critical damping of mode 2, 

\1    - -2.588 

Consequently, from (4-23) and (4-29), 

4-lQ 
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I AS IX! I INCREASES 

6702 

-2.588 

Figure 4-3. Position and variation of the two poles for -2.588 < A1 < 0. 

AS IX, | DECREASES  ' 

6702 

-2.588 

' I 

figure 4-4. Position and variation of the two poles for ^ <_ -2 .588. 
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^ = 0. 

G = -38.917 

u. = -38.917 y 
?. 

(4-32) 

(4-33) 

4.3.2 Question 2 

With control given by (4-33), the closed-loop system of the finite- 
element modal dynamic model (2-21)-(2-22) is 

ni 

12 

14.292 

8.608 

8.608] Ul 
^ 

5.185 [ri2 

0.298   0 

0   6.702 

11 

12 

=0 (4-34) 

The closed-loop poles are 

-0.021 
-0.041 ±j2.240 
-19.356 

Since all these four poles have strictly negative real parts! 
system is asymptotically stable. 

the closed-loop 

Figure 4-5 shows the configuration of the 
poles. The closed-loop poles no longer have the 
the open-loop poles; the identity of the modes is 
the pair -0.041 ± J2.240 of closed-loop poles may 
shifted mode 2 because of its proximity to the pa 
poles, which corresponds to mode 2. Consequently 
-19.356, may be identified as the shifted mode 1. 
it is then possible to answer the second question 
have damping ratios 

r = 1535% 

open-loop and closed-loop 
same natural frequencies as 
thus lost. Nevertheless, 
be identified as the 
ir ±j2.589 of open-loop 

the other pair, -0.021 and 
With such identification, 
posed. The two modes now 

1.822% 

respectively. 

Note that mode 2 was designed to have 100% of critical damping, but now 
it actually has only 1.822%, 5.5 times less the minimum required. 

4.3.3 Question 3 

Rewrite Eq. (4-34) In component form: 
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Figure A-5. Configuration of the poles, open-loop poles (X): +J0.546, 
J2.589, closed-loop poles (OD ): -0.021, -19.356, 
-0.041 ± 12.240. 
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n. + 14.292 n   + 0.298 ^ +8.608 n2 = 0        (4-35) 

c.s«, o«s« c*s* 

n, + 5.185 n2 + 6.702 n2     +8.608 ^ = 0        (4-36) 

The term 8.608 n, in (4-36) results from observation spillover. It causes 

the designed control performance on the critical mode (mode 2) to degrade. 
In particular, the designer! 100% of critical damping on mode 2 is thereby 
reduced to only 1.822%, as computed in Section 4.3.2. 

The term 8.608 ru in (4-35) results from control spillover. It excites 

the residual mode (mode 1) whenever the critical mode (mode 2) is in motion. 
This indirectly degrades the designed control performance on the entire system. 

Finally, the term 14.292 n, is a product of two factors which charac- 
terize both control spillover and observation spillover, respectively. It 
gives extremely heavy and unexpected damping to the residual mode. As computed 
in Section 4.3.2, the damping on the residual mode is Increased from null to 
1535% of critical damping. No such strong damping would exist if either con- 
trol spillover or observation spillover were completely eliminated. 

4-23 

Observe that if there were no observation spillover but control spill- I 
over, mode 2 would have the designed critical damping, but mode 1 would have | 
no damping at all and would vibrate forever once it is excited because of con- j 
trol spillover or any other disturbance. j 

1 a 
Observe also that if there were no control spillover but observation | 

spillover, designed control performance on mode 2 would be degraded, and | 
mode 1 would still have no damping (as planned) and would not be excited due j 
to control spillover. Mode 1 still might vibrate forever if it were excited f 
by other disturbances, 1 

4,3.«♦ Question 4 

Figure 4-6 shows the time responses q,(t) and q?(t). The peak magni- 

tude of q„(t) is equal to 1 meter at t = 0. The 5% settling time of q2(t) is 

approximately 140 seconds. The steady state of q-(t) is zero. Similar 

characterization can be made of the time response q^t). The output-feedback 

controller designed by the Davison-Wang method does suppress the vibration 
in both masses. 
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4.3.5 Question 5 

Figure 4-7 shows the closed-loop time responses q^t) and q„(t). The 

peak magnitude of q-(t) is approximately 0.017, compared with 0.4 in the 

open-loop case as shown in Figure 2-5. In fact, mass 2 remains vibrating in 
the steady state, but with amplitude only approximately 0.008, a reduction of 
50 times. 

4.3.6 Question 6 

Note that the feedback control (4-33) is a special case of the follow- 
ing parametric form 

ul = 0. u2 = -k ^2 (4-37) 

Substituting it in the finite-element discrete dynamic model (2-19)-(2-20) 
yields 

qj + Sq! + 4q2 = 0 (4-38) s 

(2q2 + kq2 + 4q2 + 4q1 = 0 (4-39) j 
I 

An analysis of the root locus for system (4-38), (4-39) answers ehe above I 
questions. First of all, the characteristic equation is j 

I 
i 

2slt + ks3 + 14s2 + 5ks + 4 = 0 1 
I 

Hence I 
| 
! 

ks(s2 + 5) I 1 + 20^; 7s2 i 2)= 0 «-'v ] 
I 

The open-loop poles and zeros associated with Eq. (4-40) are | 

poles: ±j0.546, ±j2.589 

zeros: 0, ±j2.236 

A sketch of the root locus as k increases from zero to infinity is shown 
by Figure 4-8. Observe that as k increasss from zero to infinity, the damping 
ratio of mode 1 also Increases from zero to infinity but that of mode 2 in- 
creases from zero to some value corresponding to k* then decreases to zero. 
An obvious answer to the question is: the damping of both modes may be 
simultaneously increased, but there are limitations. If k* <^ -G * 38.917 as 
given by (4-32), then the answer to the first question is no, that is, damping 
on both modes cannot be further increased. 
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Since the Daviscn gain is given by (4-28), the parameter k 

is accordingly given by k =lA.. + 6.7021/-X.. for A.. <^ 0. Note first that as 

IX-J increases from zero to infinity, k decreases from infinity to k = 38.917 

at \.  =  -2.588, then increases to infinily. This means that using a value for 

X other than -2.588 may further increase damping on both modes, provided that 

k* > 38.917. 

4.3.7 Question 7 

For the Davison-Wang method to be applicable, the number of actuators 
has been reduced from two to one, and so has the number of velocity sensors. 
See Section 4.3.1. The number cannot be further reduced. The minimum is one 
actuator and one sensor. 

4.3.8 Question 8 

With position sensors instead of velocity sensors, Eq. (2-20) should be 
replaced by 

I^J   L^J 
Equations (2-22), (2-24), and (2-26) should all be appropriately replaced. 
Specifically, (2-26) should be replaced by 

C]"[*20!E1 (4-41) 

Using the same arguments as in Section 4.3.1, only actuator 2 and only position 
sensor 2 are used. The corresponding fundamental state-space design model is, 
from (2-25) and (4-41) 

0 

-6.702 

1 

0 

v + 
"o 

x? 0.365 
L           . 

(4-42) 

y2 - [0.365 0] (4-43) 

Equations (4-42) - (4-43) are the same as (4-26) - (4-27) except that now 
C = [0.365, 0]. 
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Following the same steps as In Section 4.3.1, one obtains at the end 
of step 12 the following output feedback control 

Xj + 6.702 

0Tl33 

(4-44) 

Note that only one pole, X., can be assigned. Also recall that nothing can 

be said about the remaining pole. 

Substituting (4-44) into (4-42) and (4-43) yields the following closed- 
loop system: 

1 

0 

(4-42) 

The closed poles are: X and -X1. Note that -X, denotes the remaining 

pole, which becomes strictly positive when X. is assigned a strictly negative 

value. The closed-loop system of model (4-42)-(4-43) is unstable! The remain- 
ing pole, about which nothing can be said by the Davison-Wang method, causes 
the instability. 

4.4 Conclusions 

4.4.1 Summary of Advantages 

(1) The method enables the designer to have direct control over the 
modes of system response. 

(2) The approach is modern, analytical, and systematic; its concept 
is simple; and its algorithm is straightforward. 

(3) The dyadic form of the output-feedback gain matrix is simple to 
implement. 

(4) The size of the computer memory and the amount of processing time 
required in the design process are much less than that required 
for the solution of Riccati equations. 

(5) The controller can be implemented by electronic or electromechanical 
hardware, as well as computer software. 

(6) The controller is much more robust to model errors and parameter 
variations than a corresponding controller using a dynamic estimator. 
No reliance on onboard computer is necessary. 
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4.4.2 Summary of Disadvantages 

(1) There -re theoretical limitations: not all system poles can be 
replaced by desired poles; the closed-loop poles actually assigned 
may not be exactly what are desired. 

(2) Thrre are numerical difficulties: the calculation of character- 
istic coefficients and the solution of feedback gains have 
numerical difficulties due to ill-conditioning of the control- 
ability matrix Q. 

(3) A pitfall exists: blind application of this method may allow 
hidden instability to exist in the closed-loop system. 

• 

(4) There are other weaknesses: design freedom is lost because of i 
the restriction to a dyadic form of gain matrix; the required ; 
feedback gains are usually high; closed-loop system modes are 
highly coupled; the design may be quite nonoptimal with respect 
to a performance index on accuracy, control energy, or control 
time. 

(5) The method is not yet mature: various modifications or extensions 
keep appearing in the literature; several possible improvementc have 
been found during this study. i 

4.4.3 Final Comments 

(1) Large flexible space structures have some special problems in the \ 
application of this method, as listed and explained in Section 4.2.4. 
These problems are not very serious or  extraordinary, but do require 
attention. 

(2) The use of the test problem given in Section 2.5 has given many 
valuable insights into the application of this method to the con- 
trol of large flexible structures. However, tests on typical large 
flexible space structures are still needed for making realistic 
assessment. 

(3) The Davison-Wang method can be a viable tool for preliminary or 
prototype design of active control systems for large flexible 
space structures, but it requires extensive further research to 
realize its many advantages over other methods. Preliminary 
findings, as outlined in Section 4.2.3, show that many of its 
disadvantages can be eliminated or reduced without compromising 
it advantages. 
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SECTION 5 

OPTIMAL OUTPUT FEEDBACK CONTROL 
VIA LEVINE-ATHANS METHOD 

5.1 Introductlop 

This section discusses the optimal output feedback control algorithm 
developed by Levine, Athans, and Johnson [1,2] and its application to design- 
ing vibration controllers for large space structures (LSS). 

i 
The problem studied by Levine, Athans, and Johnson is the following. 

One is given a continuous, linear plant which is modelled in state vector form 

x(t) = Ax(t) + Bu(t) 

i^V = X 
-o 

(5-1) 

(5-2) 

^(t) Cx(t) (5-3) 

where x(t)eR , u(t)eRm, and x(t)eRf. The symbols A, B, and C designate mat- 
rices, of appropriate dimensions, whose elements are time-invariant and known. 
^(t) is the output vector; that is, the plant is assumed to include a sensing 
system which measures %(t).    The assumptions are made thati (1) r < n, and (2) 
the r*n matrix C has full rank. The plant is to be regulated using constant 
gain output feedback 

u(t) -P£(t) (5-4) 

}% 

The problem is to determine values for the elements of the m*r time-invariant 
gain matrix F. 

The technique investigated by Levine, Athans,  and Johnson seeks to 
establish F optimally using the usual infinite-time quadratic loss function 

OD 

'(F)    -   JJ     [xT(t)(&(t) + puT(t)Nu(t)]dt (5-5) 

T T where Q-Q^O, N-N    >0, and p > 0 

The optimization problem posed by equations  (5-1)  to  (5-5) differs from 
the standard infinite-time linear quadratic  (LQ) one solely in that the above 
-Bjgbltia makes the realistic assumption that only the output vector ^(t)  is 
awnilable. for feedback.     In the standard LQ problem, the  (usually) unrealistic 
assumption is made that the full state vector x(t) is available for use by the 
controller;  that  is,  in the standard LQ problem,  equation  (5-4)  is replaced by 
u(t) - -¥x(t),    In order to implement a controller which assumes full state 
feedback,  it usually is necessary to add into the control loop an observer 
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which will use the measurement data ^(t) to generate an estimate, x(t), of 
the true state response x(t). This approach is very cotmnon. With such a 
technique, design of the controller (i.e., determination of F) and of the 
observer is relatively easy because of the well-known principle of separation 
between estimation and control [3]. The optimal output feedback technique of 
Levlne, Athans, and Johnson does not employ an observer; hence it requires less 
on-line computations. However, it is much more difficult to determine the 
optimal gains F In the Levlne-Athans-Johnson problem than it is in the standard 
LQ problem; that is, the off-line computation requirements are greater, and 
successful results are less certain. Also, in general, the Levine-Athans- 
Johnson method will yield a larger value for the cost than is achievable with 
state feedback and hence, in principle at least, poorer dynamic performance. 

Some restrictions on A, B, C, and Q in addition to the above-noted ones 
that r < n and rank C = r are required in order to be certain that the design 
problem specified by equations (5-1) to (5-5) is solvable. Analogous require- 
ments in the LQ state feedback problem are: (1) that (A,B) be stabillzable, and 
(2) that (A,D) be detectable. Conditions (1) and (2) are sufficient for the 
existence of a unique stable solution to the state feedback problem [3]. The 
matrix D in condition (2) can be any matrix such that there exists a matrix 

T T 
M =» M > 0 which yields Q ■ D MD. Condition (2) is more-commonly stated as 
the requirement that (A, »^) be detectable; this requirement is satisfied 
automatically if Q is selected to be positive definite. 

For the optimal output feedback problem, condition (1) above must be 
modified to the necessary requirement that (A,B,C) be stabillzable by output 
feedback. This requires that A, B, C are sr.ch that there exist matrices F 
which yield (A-BFC) asymptotically stable. It is known [A] that a necessary 
condition for stabilizabillty by output feedback is that all uncontrollable 
modes of (A,B) and all unobservable modes of (A,C) be stable. A sufficiency 
condition for stabilizabillty by output feedback has been reported by Li [4] 
and by Denham [5]. 

Derivation of the Levine-Athans-Johnson algorithm is straightforward 
and well-documented in readily-accessible literature [1,2]. Hence, a deriva- 
tion will not be presented here. One point in the work should be mentioned, 
however. When one attempts to minimize J of equation (5-5), the gain F turns 
out to be a function of the initial state x . (This does not occur in the 
standard state feedback LQ problem.) Use o? an F which is a function of x 
is usually neither possible nor desirable. Levlne, Athans, and Johnson 
circumvented this difficulty by regarding x as a random vector and setting 
up an algorithm for minimizing the expected value EJ rather than J itself, 
a result, F-natrices obtained by their algorithm can only be optimal on the 
average. 

As 

The basic equations which were obtained by Levlne, Athans, and Johnson 
are as follows 

KIA - BFC] + [A - BFC]TK + Q + pCTFTNFC - 0 

LtA - BFC] -MA - BFC]L + X 

(5-6) 

(5-7) 
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-^|~   «=    pNFCLC1 - BTiCLCT (S-g) 

(They did not actually Indicate equation (5-8)  explicitly in  [1]  or [2].)    The 
new terms above are EJ,  X , K, and L.    The scalar EJ is the expected value of 
J when x   is treated as a random vector.    The nxn matrix X   is the covarlance 
of J^. "l&E- is assumed to be 0.)    The matrices K and L bo?h are symmetric 
and nxn.    The matrix K was developed by manipulating equations (5-1) to (5-5) 
to produce: 

EJ    =   Y trace KX (5-9) 

where 

00 00 

-
BFC]TT

   [Q + PCVNFC]   etA-BFC^dT (5-10) 

Equation  (5-6)  is equivalent to equation (5-10)  if the integral exists.    The 
matrix L develops when EJ is differentiated to form 3(EJ)/9F.    The basic 
definition of L is 

00 

^BFC]x x e[A-BFC]Tx dT 

0 

Equation  (5-7)  is equivalent to equation  (5-11) when the Integral exists. 

When utilizing the Levine-Athans-Johnson approach, the problem is to 
utilize equations (5-6)  to  (5-8) to find the F which minimizes EJ in equation 
(5-9).    The technique considered by Levine, Athans, and Johnson utilized the 
necessary condition 9(EJ)/3F ■ 0.    Assuming that equation  (5-8) can be solved 
for F 

1  -1  T       T T -1 
F    =    i«    B KLC  (CLC ) (5-12) 

However, the values of the elements of K and L are not known a priori. Hence, 
K and L must be calculated in conjunction with the calculation of F. Thus, 
the Levine-Athans-Johnson algorithm involves employing equations (5-6), (5-7), 
and (5-12) in an iterative procedure.  In the remainder of this section, the 
term "Levine-Athans-Johnson algorithm" will be used to refer solely to this 
specific technique - the iterative use of equations (5-6), (5-7), and (5-12). 

Other approaches to the solution of equations (5-6) to (5-8) have been 1 
described in the literature, and these will be summarized later. These methods        j 
generally Involve rewriting F as a vector and employing one of the standard 
function minimization algorithms. In the remainder of this section, such 
algorithms will be referred to as mathematical programming algorithms. 
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Most of the approaches which have been reported in the literature involve 
a direct solution of equations (5-6) and (5-7) for K and L respectively. These 
are Lyapunov-type equations for which numerous solution algorithms are available. 

Experience has indicated that solution of equations (5-6), (5-7), (5-12) 
(or, alternatively, (5-6), (5-7), (5-8)) is not easy. There are no known 
methods which guarantee convergence. Also, use of a very good initial estimate 
for F sometimes is necessary to guarantee that if convergence does occur it 
will be to the global minimum of J rather than merely to a non-minimum sta- 
tionary point. 

5.2 Discussion 

5.2.1    Strengths and Weaknesses of the Levine-Athans-Johnson Algorithm 

The general strengths are the following. 

(1) Controllers designed using the algorithm have relatively simple 
on-board or on-line implementation requirements since they 
basically involve only constant gain feedback. 

(2) The gains which are computed by the algorithm are optimal 
according to an infinite time quadratic criteria. 

(3) The algorithm is relatively mature, having been the subject of 
numerous investigations over the past 7-8 years. 

(4) The algorithm Is certain to yield a stable system (assuming that 
the conditions on (A,B,C,Q) are met) except for difficulties 
which can arise due to imperfections in the design model, of the 
plant. 

The general weaknesses are the following. 

(1) Computing the optimal gains can be difficult, unfeasible, or 
impossible. Convergence and the necessity of obtaining a good 
initial guess for the gains are the main problems. 

(2) The computed gains are optimal only in a stochastic sense. That 
is, they are based on an average value of the Initial condition 

(3) Few, if any, of the studies reported in the literature have 
considered realistic or really difficult controller design 
problems. 

(4) The Levine-Athans-Johnson algorithm cannot handle constraints 
on or among the controller gains. (Mathematical programming 
algorithms, however, can handle such constraints.) 

* 
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(5)   Apparently little is known or can be said In general about the 
robustness of systems designed by this technique, or sensitivity 
to noise. 

The question of strengths and weaknesses of the algorithm will be discussed 
again later In this section when considering its specific application to the 
LSS problem. 

5.2.2 Literature Search Summary 

The first study, by Levine and Athans, of the optimal constant gain 
output feedback design problem was published In 1970. Since tl«at time numerous 
Investigations of the problem and of the algorithm proposed by Leyine and Athans 
have been presented in the literature. The following paragraphs attempt to 
summarize this material. It is not claimed that the articles noted below 
constitute a complete listing of the relevant published work. 

The text by Anderson and Moore [6] includes a section on the optimal 
output feedback control problem. Equations equivalent to those (equations 
(5-6), (5-7,;, (5-12)) of Levine, Athans, and Johnson are presented. Two 
possible arrangements of these equations for iterative solution are listed 
and discussed. The authors stress that convergence cannot be guaranteed with 
either arrangement. 

Knapp and Basuthakur [7] rederlved the equations in [1,2] using an 
approach which the authors claimed to be mechanically simpler. 

Choi and Slrisena [8] performed a computer study in which they com- 
pared the Levlne-Athans-Johnson algorithms (equations (5-6), (5-7), (5-12)) 
with a method that used equations (5-6), (5-7), (5-8) (F represented as a 
vector); this second method employed the Davldon-Fletcher-Powell function 
minimization algorithm. A simple fourth order plant with two controls and 
three outputs was studied. The authors claimed enthusiastically that their 
work showed the Davldon-Fletcher-Powell method requires considerably less 
computation, that it appeared to ensure convergence, and that it should there- 
fore make the design of optimal output feedback algorithms more viable. The 
authors noted that the class of problems that were being considered exhibit 
local minima and therefore the problem should be run several times using 
different initial values of F. They also claimed that their work Indicates 
that if one starts with an initial value of F which yields (A-BFC) stable 
then it Is not really necessary to test for stability of (A-BFC) on subsequent 
iterations. 

The work of Bingulac, Cuk, and Calovic [9] Indicated that the Levlne- 
Athans-Johnson algorithm cannot guarantee satisfactory results, particularly 
when the number of outputs Is much smaller than the order of the system. 
The problem, they claimed, is due to the Inability of finding an adequate 
initial guess for F. They proposed to circumvent this difficulty by a tech- 
nique which starts by solving the full state regulator problem (which does 
not require an Initial guess of F) and then reducing the number of measure- 
ments in steps (with a new F being computed at each step) until the actual 
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desired output order r is attained. Their «ork assumed that x is transformed 
such that C * [I |0}. They modified the basic equations of Levine, Athans, 

and Johnson Into a significantly different form which they claimed to be 
computationally more convenient.  (The motivation for this modification was 
not apparent.) A complete algorithm was developed. However, the details were 
not all presented in [9], nor did the authors Indicate whether they had 
implemented and tested their algorithm in a computer program. No numerical 
results were presented. 

Petkovski and Rakic [10] concurred that the Levine-Athans-Johngon 
algorithm cannot guarantee satisfactory results when the order of the system 
greatly exceeds the number of outputs and that the problem is due to the 
difficulty in obtaining an adequate initial guess of F. They proposed to 
surmount the problem by obtaining the initial guess of F through use of Kosut's 
minimum error excitation method [11]. Their work Included a partial verifica- 
tion of their scheme by means of a very simple sample problem. In this prob- 
lem, the dimension of JC was four, and there were three inputs and three out- 
puts. Convergence was achieved in nine passes. 

Soderstrom [12] pointed out that there are (at least) two ways of solving 
the Levine-Athans-Johnson algorithm (equations (5-6), (5-7), (5-12)) iteratively. 
The techniques considered by Soderstrom are as follows; 

Method 1 

(1) Determine an Initial K; 

fK2) Solve the nonlinear equations (5-7) and (5-12) for L and F; 

(3) Solve the linear equation (5-6) for K; 

l-(4) Repeat as necessary. 

Method 2 

(1) Determine an initial F; 

i».(2) Solve the linear equations (5-6) and (5-7) for K and L; 

(3) Compute F from equation (5-12); 

•—(A) Repeat as necessary. 

(These are the two arrangements noted in the Anderson and Moore text [6]; they 
also were noted in the Levine-Athans-Johnson papers.) Soderstrom was con- 
cerned with the stability of these two methods. He considered a trivial ex- 
ample with n - 2 and m • r ■ 1. The example was sufficiently simple that 
difference equations for the scalar gain f for each of the two methods could 
be derived 

fk+l * h(fk> 
1,2,... 
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Soderström was able to show analytically that Method 1 was convergent; 
Method 2,  however, was locally-divergent for some X and q values. Sö'derström 
wisely did not attempt to draw general conclusions libout the usual performance 
of the two methods from this single example. 

Knox and McCarty [13] studied the problem of computing optimal output 
gains for aircraft flight control systans. In comparison to most of the other 
references examined in the present literature search, the work of Knox and 
McCarty wa? quite extensive and applications-oriented; it was the only study 
that considered sample problems that are in any way realistic. The work 
utilized equations equivalent to thoäe ((5-6), (5-7), (5-8)) developed by 
Levine, Athens, and Johnson. However, it did not employ the solution-approach 
(equations (5-6, (5-7), (5-12)) which Levine et al proposed. Instead, Knox 
and McCarty considered only mathematical programming methods. Two techniques 
were developed and tested against the well known Daviden-Fletcher-Powell method. 
The problem which was considered involved the hypothetical design of a con- 
troller for the lateral-directional dynamics of the C-141 aircraft. The systan 
was fourth order with two controls and three outputs. Q and N were chosen 
diagonal and positive definite. Good convergence results were achieved. In 
a second portion of the study, an algorithm which enables equality constraints 
to be placed en the elements of F was developed.  (As noted earlier, the 
Levine-Athans-Johnson algorithm cannot include constraints on F.) This algor- 
ithm was tested in a problem in which the constraints were used to provide a 
system that would yield proper turn coordination. Again good results were 
obtained. The authors conceded, however, that their methods could be tvoubled 
by the local minima phenomena and that rerunning the problem using several 
sets of initial gains could sometimes prove necessary. 

5.2.3 Applicability to Vibration Control of LSS 

The general features, strengths, and weaknesses of the Levine-Athans- 
Johnson algorithm were noted in the preceding sections. The present section 
notes some additional considerations which are pertinent to the application 
of the algorithm to the specific problem of designing vibration controllers 
for LSS. 

5.2.3.1 Strengths 

1. The main strength of the algorithm In the LSS application Is that 
it appears to have the potential to design controllers which can improve the 
damping of a large number of modes with a much smaller number of actuators 
and/or sensors. That Is, the algorithm does not limit the designer to some 
prefixed and ironclad relation between the number of modes, actuators, and 
sensors. 

2. The weighting terms Q, p. and N in the algoilths are selected by the 
designer. A wide variety of performance characteristics can be obtained de- 
pending on. the choice of these terms. 

3. The algorithm provides an approach for dealing with the residual 
modes which is not provided by the other output feedback controller design 
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1 
techniques; namely, it Includes in the design model (via A, B, C) as many 
modes as practical , but reduces the influence of the modes that one does 
not wish to control by weighting them only lightly, or not at all, in Q. 

5.2.3.2 Weaknesses 

1. Determining the optimal gain matrix F in LSS applications is usually 
a big problem; is usually a difficult problem; and may, in some applications, 
be an unfeasible or impossible problem. One of the difficulties is the size 
of the matrices which are involved. For example, a system with 32 actuators 
and 32 sensors would yield an F which is 32x32; In this case there would be 
1024 gains to be determined. A computer program for determining this many 
gains is certain to be cumbersome, slow running, and expensive - possibly 
impractlcally so. Thus, there are limits (possibly undesirably low ones in 
LSS applications) on the size of the problems (i.e., on the values of m, n, r) 
to which the Levine-Atbans-Johnson algorithm is amenable. 

2. The studies reported in the literature Indicate that obtaining a 
sufficiently accurate initial estimate of F can be a major difficulty and that 
the difficulty increases as the number of modes is Increased relative to the 
number of sensors. This phenomena appears likely to limit the number of modes 
which can be included in the design model for a given number of sensors and 
actuators - thereby curtailing some of the potential advantages of the 
algorithm. 

3. The fact that the Levine-Athans-Johnson algorithm cannot Include 
constraints on F is regarded as a significant drawback of the technique in the 
LSS application.  (It was noted earlier that such constraints can be included 
if mathematical programming methods are used to solve the equations.) For 
example, if the actuators and sensors are colocated, a controller with a 
diagonal F may be the best and most practical design in some LSS problems; 
the Levlne-Athans-Johnson algorithm, however, cannot compute a diagonal F. 

4. Apparently, little is known in general about the robustness which 
can be expected from controllers designed using the Levine-Athans-Johnson 
algorithia. Thus, in the LSS application, it is not possible at present to 
determine the extent to which controller performance can be degraded by modelling 
errors or by control and observation spillover. 

5.2.3.3 Implementation Techniques and Considerations 

1. With the exception of [9], the algorithms listed in the literature 
for solving the optimal output teedback equations (equations (5-6), (5-7), 
(5-8), or (5-6), (5-7), (5-12)) depend heavily on obtaining a numerical 
solution to equations (5-6) and (5-7). These are Lyapunov-type aquations. 
Solving them numerically is not a ttivial operation. Numerous algorithms for 
their solution, however, are available. Smith's method [14] appears capable 
of solving these equations in the LSS application if Smith's claims about the 
performance of his algorithm can be believed; a detailed study or literature 
search of I^apunov-equatlon solving algorithms, however, was not performed in 
the present LSS work. In the LSS application, the matrices L and K must be 
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computed nwerous times in each run. iBoth are »xnj this, therefore, is one 
of the factors chat will place a practical upper limit on the dimension (n) 
of the State vector £ which can be included in the design model when using the 
Levine-Athans-Johnson algorithm. When solving Lyapunoy equations oonvargence 
tends to beconts «ore difficult if the damping is low [14]. Since dan^tog 
normally will be small or nonexistent in LSS problems, this is one more factor 
which may increase the difficulties in applying the Levine-Athans-Johnson 
algorithm to LSS. 

2. When solving any optimal output feedback problem, one -oust first 
choose values for the weighting terms Q, N, and P. One choice for Q is to se- 

T 
lect it such that x (^x is proportional to a weighted sum of the mechanical 
energies in each vibration mode. It can be shown that this can be accomplished 
by defining Q as follows 

Q - 
r o 

o r 

In/2 0 

where ß  - Diag. [CD. . . . u /,] 

F - Diag. [Yj^ . . . Yn/2] 

In the above expressions the u's are the natural frequencies of the structural 
vibration modes, and the y's  are positive weighting factors assigned to each 

T 
mode, x Qx will be proportional to the system vibratory energy if the Y'S 
are made unity. The above relation assumes that the state vector x is chosen 

T   •T T 
as x " (jn fü ) where the conponents of n are the inscaataneous values of the 
structural modes. Inclusion of sensor or actuator dynamics in x necessitates 
only minor modifications to v:he above expression. 

The most-readily apparent technique for selecting N is to use 

N « diag. (w. 
•wm3 

where the w*s are positive weighting factors assigned to each actuator. 
One'might make all w's unity, unless there is a specific reason for doing 
otherwise. 

Determining p a priori is more difficult. The usual procedure is to 
generate several controller designs, each obtained with a different p, and 
thai to choose the controller whose performance is Judged to be best. 

3. When setting up a program for implementing the Levine-Athans- 
Johnson algorithm, it appears a practical necessity to include: (1) a routine 
to determine if (A-BFC) Is asymptotically stable, and (2) a course of action 
to be followed if it is not. 
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4. The work to date iadlcbtes that the special features often encouatered 
in LSS problens (zero structural denuding, velocity sensing only, colocated 
sensors end actuators, negligible sensor and actuator dynaoics) provide, at 
best, very limited potential for reducing the computational burden, or other- 
wise alleviating the difficulties, when establishing controller giains by the 
Levine-Athans-Johnson algorithm. 

5. The studies reported in the literature have proven that use of a 
very good initial estimate, F , of F is crucial for successful application of 
the Levine-Athans-Johnson algSrithra.    The rudiments of a scheme for attacking 
this F   problem is proposed below.    This scheme is a blend of the sequential 
technique of Bingulac, Cuk, and Calovic (without their modification of the 
Levine-Athans-Johnson equations) and the single shot method proposed by 
Petkovskl and Rakic which uses Kosut's minimum error criteria. 

The steps are as follows: 

(1)       Add q  .j " (n - r) rows to C(r x n) to yield a C (nxn) which add o 
is nonsingular. 

(2) 

(3) 

-(4) 

(5) 

(6) 

i-i+1 

Solve the optimal state feedback problem, using C , to obtain 
an F (mxn). o 

Set i - 1. 

Choose q. 
(qi-l % < q add °) 

Delete the last q    rows from C    to obtain CMr.xn) where 

Ti - n-qi. 

Use Kosut's minimum error method to obtain ^MJC'"''1*) 

[A-BFi_1C1_1]L + LfA-^i.iCi.iJ    + X
0 " 0    <8olve ior LJ» 

INI ^l-l^i^1 

Use the Levine-Athans-Johnson algorithm to compute F.(mxr.) 

(a) F, INi 

r*<b)    K[A-BFiCiJ  + [A-BFiC1lTK + Q + PCJFJNF^J    -    0 

YES 

(solve for K) 

(c)pL{A-BF1Ci]T + lA-BFiCi]L + Xo 

1    -1 T      T T -1 „F,    -    - N XB KLCnC.LC.1] 
1 p ill. 

«live iteratively 
for F^L 
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(d)    Continue Levine-\thans-Johnson computations in this pass? 

/NO 

(7) 

NO 

YES  CONTINUE 
I 

4ad<r YES  >   OUT 

COMPUTATIONS? 

NO 

OUT 

A tilde is used with L in step 5 above to indicate that this is not 
numerically the same matrix L that is computed in step 6.    When using the 
above algorithm,  it is likely to be eöavenient and computationally efficient 
to perform an a priori transformation on x to yield C ■  [I ;0].    When adding 

rows to C to form C    in step 1, one then can merely use rows which each contain 

all O's except for a single 1 in the proper place to produce C    ■■ I .    The 

Levine-Athans-Johnson algorithm shown in step 6 is the so-called Method 1 which 
was defined earlier when describing Suderström's paper; Suderstrom's results 
provide some indication that this approach is more stable than Method 2. 

5.3    Application of Optimal Output Feedback to Simple Spring-Mass Problem 

This section describes the results which were obtained when the optimal 
output feedback controller design technique was applied to the two degree of 
freedom spring-mass problem being considered with .ill the output feedback 
design methods discussed in this report. 

The plant and its parameters and variables have been described in 
Section 2.    The present work will consider cnly the case where actuators are 
mounted on both masses.    The Levine-Athans-Johnson algorithm is, however, 
applicable also to the two cases where only one actuator is used. 

The plant equations of motion in physical coordinates q are 

MJI + K£   "    u 

where 

M 

»1      0 

«2 

k 4k -k Kl    2 2 

-k. 

(5-13) 

(5-14) 

m. 1      i!^ 2      k.  " I k2 -4 

and      u,, u, are the actuator forces 
1       £ 
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Transforming equations (5-13) and (5-14) to normal mode coordinates ji yields 

where *   »    [jMol    " 

r R 
1 

+ n2n •   ft i 

*ii   hi ".51549S -.856890' 

*21    *22 ..605912 .364512. 

]54632 0 
at 

0 2.5892, 

(5-15) 

CD, 

2 

ami the vectors u  and £ are related through 

i - ♦ 1 

Transforming the modal equation into state vector form produces 

(5-16) 

^r  *  VT + BTü 

where 

.2- 

^   " 

-n 

o . 

^r  " 

r Ti 

.0  J 

The superscript T above denotes transposition and the subscript T denotes "total", 

#It is assumed that the plant possesses sensors which measure either 
q. or q«.    (Preliminary study showed that the Levine-Athans-Jotmson algorithm 

cannot be applied if both q. and q« are saised because then C does not have it ^ 
full rank» and the matrix CLC   in equation (5-12) hence cannot be inverted. ) 
The equation for the sensor output y therefore Is 

  y • ^i ■ VT 

New results reported in Section 6.2.3 may allow this restriction to be 
lifted. 
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where 

CjTl u.,* 11-12 0 0}% 

The subscript 1 above equals either 1 or 2 to indicate which sensor Is being 
employed. 

The equation for the controller will be 

u    -   -fy 

As discussed in Section 2, the goals of this study are:  (1) to design a 
controller assuming the lower frequency mode (mode 1) to be nonexistent, and 
then (2) to evaluate the performance of the overall system which Includes 
mode 1, mode 2, and the controller. 

become 
When mode 1 is deleted, the pertinent equations on the preceding page 

where 

x ■ Ax + Bu 

T 
c x 

u - -fy 

T     •     T 
x - {X2»x4^  " tn2, r^) 

0 "w2 

1          0 
L 

.T ■ * 
i2 ♦l2 *22 

0T_ 0 0 

U12 . 0} 

(5-17) 

(5-18) 

(5-19) 

(5-20) 

(5-21) 

(5-22) 

(5-23) 

In the present application, the equations given  earlier for the optimal 
output feedback algorithm can be written in the form 

A « A - Bfc* 

Q - Q + pcfTNfcT 

(5-24) 

(5-25) 
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KA + A K + Q = 0 

AL + LAT + X  «0 
o 

(5-26) 

(5-27) 

i - ^t^rV^^c (5-28) 

The above equations must be solved for the 2x1 gain vector f. First, however, 
it is necessary to choose the elements of the 2x2 weighting matrices Q and N 
and of the 2x2 initial state covariance matrix X . The following 

were selected 

(5-29) 

(5-30) 

-2 
Ü2J 

(5-31) 

Initially, the scalars 3 and p are carried along as unspecified parameters. 

T The rationale for the choice of Q above is that it makes x Qx proportional to 
the mechanical energy of the controlled mode. The selected matrix N causes 
the two control forces u. and u, to be weighted equally in the loss function 

J. The choice of X was based on the hypothesis that insnediately prior to 

activating the regulator, r^ is in undamped oscillation (n2(t) - oiZ    fifi 

sin Ujt)  and that the regulator Is actuated at a completely random point in 
this oscillation. 

The equations which specify f are derived in the following paragraphs. 
Substituting equations (5-22), (5-23), and (5-30) into (5-28) produces 

Lf2, 

(k11l11 + kl2l12) 

Plll*i2 

"12 

L*22J 

(5-32) 

where 1.. and k.. are the ij-th elements of L and K respectively.    (The pre- 

sent work constrains K and L to be synanetric.)    Equation (5-32) shows that f. 
and f. are related through 
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m f 
*22  2 

<5^33) 

Equation (5-33) provides a constraint between f and £„; it is an Important result. 

The next task Is to determine an equation for f». Substituting equa- 
tions (5-21) through (5-23) into (5-24) yields      Z 

a 11 

1 

-0), 

where 

(5-34) 

all = -*i2tfl*12+f2*221 (5-35) 

Similarly,  substituting equations (5-29),   (5-23), and  (5-30)  into  (5-25)  produces 

Q    - 
^1 

(5-36) 

where 

'll 1 + P^ffJ + f*] (5-37) 

Subsequent work is restricted to the case where f. and f, are related as in 

equation (5-33). Then, equations (5-35) and (5-37) reduce to 

lll 
*12  2    2 

(S^S1) 

^11 l + **lA2 + *2
22
]i22 (5-37») 

* 22 

Substituting equations (5-34) and (5-36) into equation (5-26) yields a 
set of equations which can be solved for the elements of K. The results for 
k.. and k-^ are 

-U + q11] 

ll (5-38) 
2a 11 

v12 (5-39) 
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Similarly, substituting equations (5-34) and (5-31) into (5-27) yields a set of 
equations which can be solved for the elements of L. The results for 1 1 and 
112 are 

11 
(5-40) 

äll 

'■12 
2(ü, 

(5-41) 

Substituting equations (5-38) through (5-41) into the bottom scalar equation in 

(5-32)  yields 
^[2^(1 + ^) -j^l 

4*i2pällül2 

(5-42) 

Substituting equations (5-35') and  (S-}?*)  into (5-42) and rearranging produces 

4a,2*22    =    f2*i2(*12 + *222)(2püi2 + *12 + 4) 

which can be solved for f» 

±20.^22 

*^[(^, + *l0)i2pv2
2 + t*0 + *2„)]in 

(5-43) 
fi2l^12 f22' 12 '22' 

Equations (5-33) and  (5-43) are the basic equations for the controller gains 
f.  and f,.    It has not yet been verified, however,  that the regulator will be 

stable for either or both of the sign conditions in equation (5-43).    The 
material in the following paragraph, as a sidelight,  enables this question to 
be answered. 

In equation (5-43), the gain f» is specified as a function of the control 

energy weighting gain p.    Since p is actually of little intrinsic value,  it 
would be convenient if p, or f- itself, could be expressed as a function of 

the damping ratio c, of the regulator.    This can be accomplished through use 

of the closed loop system characteristic equation 

det r8l2 - A] - 0 (5-44) 

Substituting equation (5-34) into (5-44) yields 

a11s + a,. 
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Hence 

-a 11 
2üI„ 

(5-45) 

Substituting equation (5-35*) into (5-45) yields a relation between f2 and ?;c 

f2 " 
^2*22^ 

2    2 
♦i2l412 + *221 

(5-46) 

A relation between c   and p can be obtained by inserting equation (5-43) into 

equation (5-46) and solving for p 

(* + *222> 

2a)' fe-) 

(5-47) 

Use of equation (5-46) directly will produce the same value of f- as would be 

obtained by use of equations (5-47) and (5-43). The former procedure, however, 
tends to violate the spirit of the optimal output feedback design procedure. 

Recall, from equation (5-15), that ^ > 0. Equation (5-46) thus shows 

that the regulator will be stable (at least for the one-mode plant being con- 
sidered in the design) if and only if f2 and ({i., have the same sign. This in- 

dicates that the positive sign in equation (5-43) must be chosen for both 1=1 
and 1-2. 

In summary, the final equations for the regulator design are equations 
(5-47), (5-43), and (5-33). The numerical values of the plant parameters are 
listed in equations (5-15) and (5-16). The value of ? must be chosen a priori. 

Selecting the c of 0.1 which was specified in the problem statement yields 

the results shown in Table 5-1. 

Table 5-1: Optimal output feedback gains 
for sample problem. 

i P fl f2 

1 

2 

6.404 

6.404 

0.597 

-1.404 

-0.254 

0.597 

The reader is reminded that 1 > 1 signifies the system in which the velocity 
sensor is mounted on mass 1, while i <■ 2 signifies the system in which this 
sensor Is mounted on mass 2. 
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The remaining work in this section consists of an investigation of the 
performance of the two control systems specified above on the full two degree 
of freedom plant. That is, the effect of the residual mode (mode 1) which 
was neglected when designing the control system will be studied. In particular, 
we wish to address the same questions which are being addressed in the other 
sections of this report where the other output feedback controller design 
techniques are applied to the sample problem. 

The first task is to determine whether or not the residual mode destab- 
ilizes either or both of the control systems indicated on Table 5-1. For 
generality, the approach which will be used consists of:  (1) determining the 
regions of stability and instability in an f^ - f» gain space (where f, and 

fj  are independent), and (2) checking in which region the regulators in 

Table 5-1 lie. 

For the immediate purposes, it will be convenient to employ the physical 
variables q. Consider first the case (1 = 1) where the sensor is mounted on 
mass 1. Then 

-Hi (5-48) 

Inserting equation  (5-48)  into  (5-13) and taking the Laplace transform yields 

m,s    + f.s + k. + k. 

f2s - k2 

-k„ 

m28    + k2 

q^s)! 

iq2(8) 

h(8) 

where h(s)  is a function of the initial conditions.    The characteristic equa- 
tion is the determinant of the matrix on tha left, set to 0.    Expanding this 
determinant yields 

m^s4 + m^s3 + tmjkj + «^l + V1^ + k2(fl + f2)s + klk2    "    0    (5"49) 

Substituting the values of m., au, k-, and k-  into equation (5-49) produces 

s4 + fj^s3 + 782 + 2(f1 + f2)8 + 2-0 (5-50) 

When Routh's criteria is applied to equation (5-50), the terms in the 
first column turn out to be 

,           -4[f. + 0.8508f1l (f, - 2.3508^] 
1. f^ ^[5^-2^1, 2— 

(5^ - 2f2) 

from which necessary and sufficient conditions for stability for i « 1 can be 
determined to be 
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fl > 0 

-0.8508 f1 < f2 < 2.3508 ^ 

Siallarly, when the sensor is on mass 2 (i - 2) we have 

u = fq2 

which yields the characteristic equation 

det 
V    + *! + 4 

-k„ 

fl8-k2 

m- s   + f - s + k- 

4 3 2 m nus    + m.f-s   +  [m.k- + m^C^i + k2)Is 

+ s[f2(k1 + k2) + f1k2]  + k^ (5-51) 

Substituting numerical values into equation  (5-51) provides 

s4 + 0.5f2s3 + 7s2 + [2f1 + 2.5f2]s +2-0 (5-52) 

Applying Routh's criteria to equation (5-52) yields the following terns in 
column 1 

1, 0.5f2, j- [f2 - 2f1], Jf—rjf-J tf2 + O-8508^!!^ - 2.3508f1]. 2 

from which necessary and sufficient conditions for stability for i ■ 2 can be 
determined to be 

f2    >-   0 

f2    >    2.3508 f1 

f2    <    -0.8508 {1 

The f.  - f, stability regions determined above for cases 1 • 1 and 1 " 2 

are plotted on Figure 5-1.    The figure also shows the optlirdl output feedback 
controllers indicated previously in Table 5-1.    It is seen that the optimal gains 
yield a stable system for the 1 « 1 case and an unstable one for the 1*2 
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case. The Instability for 1 « 2 Is due to the residual mode which was 
omitted whan designing the controller. 

The derivation given earlier In this section Indicated that the control 
weighting matrix (N = O chosen for this problem yielded the constraint 

f2 * ^12^*22^2 between fi and f2* A plot of this llne ls included on figure 5-1. 

The sole effect of p, X0, and Q Is to determine the precise point on this line 

where the optimal gains f^ and f2 lie. It is concluded from Figure 5-1 and 

equation (5-43) that with the selected X. and Q there is no choice of p > 0 

that would make the 1=1 case unstable nor the i = 2 case stable. The nega- 
tive sign for 1=2 shows, immediately that the system is unstable as predicted 
by the preceding Routh's ^criteria analysis. 

Substituting the f. and f- values from Table 5-1 into equations (5-50) and 

(5-52) produces the following characteristic equations for the optimal regulator: 

1 = 1 : s4 + 0.597s3 + 7s2 + 0.686s +2=0 

1 = 2 s4 + 0.2985s3 + 7s2 - 1.3155s + 2 = 

The damping factors ? and natural frequencies to of the regulator can be obtained 
by factoring the above expressions. The results are 

1 "l h "2 ?2 

1 

2 

0.5481 

0.5417 

0.07805 

-0.1985 

2.5804 

2.6109 

0.1002 

0.09836 

Comparison of the w's above with the open loop plant values Indicated earlier 
shows that the controller has produced almost no effect on the system natural 
frequencies. The proximity of the ?_ results shown above to the design goal 

of C = 0.1 is surprising, since mode 1 was completely disregarded in the design. 

The remainder of this section will not consider further the unstable 
system, 1=2. Instead, the work henceforth will be limited to the stable case 
1 ■ 1, in which the velocity sensor is mounted on mass 1. 

The next portion of this section will be devoted to setting up transfer 
functions for the purpose of determining the frequency response and transient 
response requested In the problem statement. To obtain these, we first combine 
equations (5-13), (5-14), and (5-48) into the form: 
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Vi vl " fl^l " ^kl + k2)ql + k2q2 

^2 f2ql + k2ql " k2q2 

The terms v. and v« above are disturbance forces which have been added to the 

model. The equations assume that the velocity sensor is mounted on mass 1. 
However, they do not assume that the controller gains f. and f- are estab- 

lished optimally. The signal flow diagram shown as Figure 5-2 can be obtained 
easily from the equations. Transfer functions between any desired input and 
output variables on the diagram can be obtained by use of Mason's rule. The 
two transfer functions which are of current interest are 

q2(s) m.s + f s + (k, + k2) 

Den ~"  "~~ 

q2(s) m^lm^   + fjS + (kj + k2)] 
___ ___  Den     -~~~ 

where 

Den m m2s + m2f1s
3 + ^(^ + k2) + m^] s + ^(^ + f2)8 + k^ 

Note that q^C8) above is the Laplace transformed variable, while qoW i8 the 

initial condition. The  denominator Den Is identical to the characteristic 
equation result given earlier as equation (5-49). 

Substituting the numerical values for the m's and k's into the above 
expressions yields 

q2Cs) O.Sts4 + fjS + 5] 

Den 

q2(8) 
q^W 

s(s + fjS + 5] 

where 

Den sH +  f18
J + 7s' + 2[f1 + f2)8 + 2 

If f, and f2 are constrained by the relation f, ■ -2.3508 f2, which was an 
intermediate result when deriving the optimal output feedback controller, 
the above expressions become 
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q2(s) 0.5ts^ - 2.3508f2s + 5] 
_____    Den   ~—f- 

where 

q2(s) 

qo(0) 
s[s    - 2.3508f s + 5] 

Den 

Den    «    s'' - 2.3508f2s3 + 7s2 - 2.7016f2s + 2 

The final transfer functions for the optimal controller for i * 1 are obtained 
by substituting f2 ■ -0.254 from Table 5-1 into the above equations.    After 
factoring Den,  the result is 

q2(s) 

v2(s) 
0.5[s    + 2 * 0.1335 x 2.?^ 4. 2.2362] 

^ST  

~77X   -   ■S[s2^2 x0-n3-> x 2.236s + 2.2^2, 
42vu' Den (5-53) 

Den 
2 

(s + 2 x 0.1002 x 2.5804s + 2.58042) 

•(s2 + 2 x 0.07805 x 0.54818 + 0.54812) 

Figure 5-3 is a frequency response plot of q^/v,. This plot was obtained 

using the transfer functions developed above.  Figure 5-4 gives the response 
of the uncontrolled plant (f- - f„ » 0). The work shows that at w » 3 there 

is negligible difference in the q. amplitude for the two conditions. See also 

Figure 5-5, which shows the transient response to the w » 3 input. 

The next topic to be considered is the time response of q2(t) due to an 

initial condition q.(0) - 0, q2(0) * 1>® wt>en the optimal output feedback 

regulator is used. One way to proceed is by taking the inverse Laplace 
transform of Eq. (5-53). The result is 

q2(t) -C,w,t 
^(ÖT   -    0.7408«        1 cos[/l - c

2
Wit + 4.175oj 

-CnU,t 
+ 0.26470e '2 2k

C08(>/i-T-X 8> 2w2t + 8.979 J (5-54) 
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where the c's and u's have the values Indicated earlier. Equation (5-54) 
is plotted as In Figure 5-6, The peak magnitude of q„(t) is seen to occur 

at t » 0. The steady state error is zero. The 5% settling time is approx- 
imately 59 seconds. 

The final topics to be investigated In this section concern system ro- 
bustness and the variation of the closed loop poles as p is varied throughout 
its full range: pe(0,<»). The work still will be limited to the case 1-1. 
The gains f^ and f« still will be constrained by equation (5-33). For the 
present work, it is slightly more convenient to employ f, rather than f„. 

Equation (5-43) and the numerical data given earlier indicate that (when the 
optimal output feedback design technique is used and X-, N, and Q are selected 

as Indicated in equations (5-29) to (5-31)) the upper and lower limits of f, are 

1MIN 

1MAX 

0 (p ■> ») 

2Cü„ 
2 

2    2 
*12 + *22 

= 5.97  (p -► 0) 

The application of equation (5-33) to eliminate either f, or f« from 

the mathematics is useful because the system then can be studied using stand- 
ard classical techniques (open loop frequency response plots or root locus 
plots with the sole design variable being a single gain). After equation (5-33) 
is used to eliminate f2, the basic signal flow diagram given earlier as 

Figure 5-2 can be rearranged into the standard unity negative feedback one 
shown as Figure 5-7. This figure also includes an analogous signal flow 
diagram for the one-mode plant model which was used in designing the regulator. 
This second diagram can be obtained through use of equations (5-17) through 
(5-23) and (5-33). 

The open loop transfer functions c/e can be obtained readily from 
Figure 5-7. They are 

One Mode Plant Model 

c ^ m
2

u 
+ 43 

e 

K 

s2 + 

0. 

2 
^2 

36713 fjs 

(8 + 12 .589)(s - 12 589) (5-55) 
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Two Mode Plant Model 

e 

flS s nu + k2 (-Ä) 
s m.m- + s [mA« + m-Ck. + k«) ] + ^jk« 

fjSls^ + 1.1492] 

s4 + 7s2 + 2 (5-56) 

f^fs + il.0720] [s - il.0720] 

(s + i2.589)(s - i2.589)(s + i0.5463)(s - 10.5463) 

The poles in the above expressions are the natural frequencies of the plant. 

Some quick frequency response sketches of equations (5-55) and (5-56) 
indicate immediately that in both cases the system possesses 90° phase margin 
and Infinite gain margin. This is an overly-optimistic conclusion. It is 
a result of the fact that the plant models are idealized ones which do not 
include actuator or sensor lags. 

Root locus plots of equations (5-55) and (5-56) are of some interest. 
Figure 5-8, which can be obtained easily from equation (5-55), shows the re- 
sult for the one-mode plant model upon which the controller design was based. 
This plot indicates that the controller does not alter the natural frequency 
u2- It also indicates that (with the selected matrices Q and N) the upper 

limit on £ which is achievable with optimal output feedback is unity. 

Figure 5-9 is the root locus plot which was obtained from equation 
(5-56). The figure is in concurrence with previous conclusions that a stable 
system is obtained, for all values of p, even in the presence of this residual 
mode. As f, is increased, the pole-pair of this residual mode travels from 

the open loop values toward the open loop zero-pair of c/e. The pole-pair 
of the critical mode follows the same basic type of locus as in the one-mode 
condition shown previously in Figure 5-8. However, there are some differences. 
In particular, the breakaway point on the real axis is significantly different 
in the two cases. Also, on Figure 5-8 the upper limit of ^(5.97) was just 

sufficient to drive to locus to  the real-axis breakaway point. On Figure 5-9 
an f. of 5.97 1* seen to carry the system considerably beyond this point. 

Figure 5-9 indicates that the maximum achievable damping coefficient of the 
residual node is approximately c - 0.59; this is achieved at the real-axis 
breakaway point of the critical mode. 
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5.4   Summary and Conclusions 

The advantages of the Levine-Athans-Johnson method for vibration con- 
troller design in the LSS application are suomarlzed as follows. 

1. It has some potential for designing controllers which can Improve 
the damping of a large number of modes with a much smaller numbsr of actuators 
and sensors. 

2. A wide variety of performance characteristics can be achieved by 
selection of the weighting terms In the cost function J. 

3. The technique is fairly well understood, since it has been the 
subject of numerous studies since its Inception. 

4. The technique yields a controller which, at least in a mathematical 
sense. Is optimal. 

The weaknesses are summarized as follows. 

1. Determining optimal gains In the LSS applications generally is a 
very difficult problem. The main difficulties are: 

(a) the size of the matrices which are Involved 

(b) convergence 

(c) local minima 

Successful results depend on use of a very accurate initial estimate of the 
gain matrix F. The difficulty In obtaining a successful result Increases as 
the ratio (number of modes)/(number of outputs) Increases. 

2. None of the studies reported In the literature considered problems 
nearly as large as those which normally will be encountered In LSS applications. 

3. Controllers designed by the approach apparently have no known, 
guaranteed, robustness properties. The simple design example indicated that 
spillover has the potential for making such controllers unstable. 

4. The Levine-Athans-Johnson algorithm cannot include constraints on 
the elements of F. Such constraints can, however, be incorporated if mathe- 
matical programming solution techniques are used. 

Some final comments are 

1. If the technique is implemented in a computer program, it should 
Include at least one mathematical programming algorithm in place ot, or in 
addition to, the solution-technique developed by Levlne, Athans, and Johnson. 
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2. Au Impleraentation which performs successfully evidently will Re- 
quire soiae specific technique, such as that outlined earlier in this section, 
to provide an adequate initial estimate of F, 

3. If the technique is implemented, considerable effort should be ex- 
pended to find an adequate algorithm for solving the Liapunov-type equations. 
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SECTION 6 

SüBOPTIMAL OUTPUT FEEDBACK CONTROL 
VIA KOSUT APPROXIMATION 

6.1 Background 

6.1.1 Overview 

One of the principal results that is known about the optimal regula- 
tion of linear dynamic systems with quadratic cost criteria [1] is that the 
optimal closed loop control is expressible as a linear function of the system 
state vector. No a priori constraints on the control vector are imposed in 
the development of this result. To implement this feedback control law in an 
actual control system would require either: measurements of the full system 
state, which is seldom possible; deterministic state reconstruction (Luenberger 
observer [2]); or stochastic state estimation (Kaiman filter [3]). A desire 
to avoid the need for state reconstruction or estimation with systems in which 
full state measurements are not available has motivated studies of optimal 
output feedback [4], which constrains the feedback control law to be a linear 
function of the available measurements. Section 5 discussed such methods in 
detail. With such an a priori control structure constraint, the variatlonal 
problem may be reduced, to a parameter optimization problem. Necessary con- 
ditions consist of a system of coupled nonlinear algebraic equations for a 
cost matrix, an adjoint multiplier matrix, and a feedback gain matrix. Unfor- 
tunately, these algebraic necessary conditions cannot in general be solved in 
closed form; moreover, serious convergence difficulties have plagued attempts to 
develop algorithms for solution by Iteration [4], [5J. A principal objective 
of the Kosut approacn to the output feedback problem [6] is to develop design 
methods which avoid the need for an iterative solution of the necessary con- 
ditions. This objective is achieved, although strict optimality, based on 
absolute system performance and assurance of system stability, is sacrificed. 
Instead several suboptimal design procedures are developed, each based on 
minimizing the distance in some metric from the solution of a reference optimal 
problem. Two classes of control structure constraints are treated: (1) cen- 
tralized output feedback, in which each control component is constrained to be 
a linear function of all of the output variables, and (2) decentralized output 
feedback, in which each control component is constrained to be a linear func- 
tion of a prespecifled, and possibly distinct, subset of the output variables. 
When the relative cost in the suboptimal problem is a quadratic functional, 
the algebraic necessary conditions that result, although still nonlinear and 
coupled, can be solved in closed form. 

The essential features of the Kosut design methods are outlined in the 
remainder of Section 6.1. A careful analysis of the Kosut design approaches 
is given in Section 6.2. The key observation in this section is that certain 
assumptions relating to the sensor configuration upon which the published 
methods are based makes the methods inapplicable to most problems of large 
structure contro]. Motivated by this observation, extensions of the Kosut 
methods are developed which enable them to be used with arbitrary sensor 
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;onfIgurations. The Kosut methods, as extended, are successfully applied to 
the design of a vibration controller for a simple two body oscillator. 
Details of a nominal design, together with possible design alternatives, are 
outlined in Section 6.3. Conclusions, including recommendations for further 
study, are given in Section 6.4. 

6.1.2 The Design Methods 

6.1.2.1 Common Features 

Each of the suboptimal design methods have certain features in common: 
one of several types of constraints are imposed a priori on the control law 
structure, and some optimal control problem for the plant of interest whose 
solution Is known a priori is chosen as a reference. 

Two classes of control structure constraints ar^ considered. The first, 
centralized output feedback', requires that elements of the controller output 
vector u(t) to the plant be constant linear combinations of elements of the 
plant output vector y(t) 

u(t) - G7(t) G: m * £ (6-1) 

each of which are physically measurable constant linear combinations of 
elements of the plant state vector x(t) 

y(t) » Cx(t) C: i x n, ä < n (6-2) 

The feedback system structure is shown in Figure 6-1. The second, decen- 
tralized output feedback', allows each component u.(t), i«l,...,m of the 

controller output vector to be a constant linear combination of possibly 
distinct subgrouplngs y.(t), 1"1 m of the plant output vector 

ui(t) « g1 yi(t), g1: 

yi(t) « Ci x(t), C^: £ x n 
^ n* 1"1,...,m (6-3) 

The feedback system structure, shown in Figure 6-2, generalizes the central- 
ized case by allowing each control channel to have a different Information 
structure. 

In addition, an optimal control problem Is formulated relative to the 
plant and initial conditions of Interest 

x(t) - Ax(t) + Bu(t), t > 0, x(0) (6-4) 

For descriptive purposes, the Identifying labels used here differ from 
those used by Kosut. 
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and then solved for an optimal pair (x*, u*) to be used as a referenc». for 
subsequent suboptlinal design. The nature of the cost criterion in this 
reference problem is free to be chosen by the designer. Whatever this choice 
may be, however, it is assumed that the optimal control is a constant linear 
combination of the optimal plant state 

u*(t) - F*x*(t) F*: m x n (6-5) 

however, it is not assumed that F* has a structure consistent with the control 
structure constraints above. Moreover, the optimal system is assumed to be 
asymptotically stable. As' an example, the linear-quadratic problem for a time 
invariant plant satisfies these assumptions; in particular, the feedback 
matrix F* in general is not consistent with the types of output feedback 
discussed. 

The suboptimal design methods are distinguished by the way in which 
the controller gains are computed. Formulas for the gains are obtained from 
necessary conditions for a minimum in the suboptimal problem. The distinction 
between the two methods arises from different ways of penalising the variation 
between controller gains in the suboptimal problem and those in the optimal 
reference problem. This variation can never be exactly zero,  since the con- 
troller in the optimal reference problem is not required to satisfy control 
structure constraints. 

6.1.2.2 Suboptimal Design by Minimum Error Excitation 

The suboptimal system plant is described by Eq. (6-4), with each 
admissible control constrained to the form of Eq. (6-5) 

u(t) - Fx(t) Fr ra >« n (6-6) 

and such that the gain matrix F satisfies control structure constraints 
implied either by Eqs. (6-1) and (6-2), or by Eq. (6-3). It follows that 
each suboptimal trajectory xO) corresponds to an error vector 

e(t) - x(t) - x*(t) 

which satisfies the initial value problem 

e(t) » (A+BF) e(t) + B(F-F*)x*(t), t > 0; e(0) - 0 

(6-7) 

(6-8) 

The suboptinal cost measure is e quadratic functional weighting the forcing 
term in Eq. (6-8) with a positive definite matrix R 

.+<» 
IE(F) /  x*I(t)(F-F*)T R(F-F*) x*(t) dt (6-9) 
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The variational probiem of «inimiaing IE(F) vmder the constraiats 

described Is converted to a mathestatical programalng probleei by using in 
Eq. (6-9) the explicit solution form for x*(*) obtainable from Eqs. (6^4) 
and (6-5). Since the optimal reference system is asymptotically Stable, an 
integration by parts shows [7; p. 179J that minimizing Eq. (6-9) is equivalent 
to minimizing, owr those gain matrices F that satisfy a control structure 
constraint, the expression 

IE<,F) « XQVXQ (6-10) 

where V satisfies the matrix equation 

(A+BF*)TV + V(A+BF*) + (F-F*)TR(F-F*) - 0 (6-11) 

In order to obtain results independent of the system initial state, the cost 
expression (6-10) is replaced by 

IE(F,V) S Trace (V) (6-12) 

Under appropriate assumptions on the distribution of x. as a random variable, 

expressions (6-10) and (6-12) differ by a constant multiple [4]. 

Using standard mathematical programming techniques', necessary condi- 
tions for a minimi^ are obtained, consisting of Eq. (6-11), a Lyapunov-type 
equation for the multiplier matrix P associated with the constraint Eq. (6-11) 

(A+BF*)P + P(A+BF*) +1-0 (6-13) 

and explicit expressions for the suboptimal gain matrix, F. For the case 
of centralized output feedback: F ■ GC, with 

G - F*[PrT(CPCT)'1) (6-14a) 

For the case of decentralized output feedback: F ■ col(F, ^.^F ), and each 
. l    m 

row vector F. ■ g.C. is characterized by 
J   j j 

8J " ^Pc/CCjPCjV1], j-l,...,m 

where F. is the j  row vector of the matrix F*. 
i 

(6-14b) 

Development of these and subsequent necessary conditions are greatly facili- 
tated by using seveial properties of the trace operator; these have been 
collected in Section 6.5.1. 
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Since F* Is known in advance, Eqs. (6-13), (6-14), and (6-11) caa be 
solved in succession for P, F, and V, respectively, Instead of having to be 
solved by iteration. This was a major goal of the suboptimal design. Some 
further observations are also worth noting. First, since F* corresponds to 
an asymptotically stable closed loop optimal system, the matrix P obtained 
from Eq. (6-13) is positive definite [7; p. 254]. Thia is not sufficient, 

T 
however, to guarantee invertibllity of CPC , as required by Eqs. (6-14), 
without certain assumptions on the sensor matrix C. Kosut makes certain 

T 
restrictive assumptions which guarantee invertibllity of CPC , but does not 
discuss the general case. This topic is explored in depth in Section 6.2.3. 
Second, the expression (6-14b) depends on the assumption that the error 
excitation weighting matrix R in Eq. (6-9) is diagonal. This dependence is 
obscured since the elements of R do not appear in Eq. (6-14b); without such 
an assumption, Eq. (6-14b) must be replaced by the more general system 

S. , gTc. PC? - F*PC,T  r., = 0, k=l,...,m 
1=1 [ J J  k   J  kJ Jk 

which involves the elements of R explicitly. In contrast, Eq. (6-14a) does 
not depend on such an assumption. 

6.1.2.3 Suboptimal Design by Minimum Norm 

The plant description and control constraints for this method are the 
same as those for the minimum error excitation approach. The suboptimal 
cost measure is the Euclidean distance between the equivalent state-feedback 
gain matrices in the suboptimal system [Eq. (6-6)] and the optimal reference 
system [Eq. (6-5)] 

A L-, m   n 
iN(F) ^ i! F-F* || -=JEixl Zjal (f^ - f V (6-15) 

Minimization of L, over matrices satisfying control structure con- 

straints is a simple mathematical programming problem. It can be cast in terms 
of the trace operator, since, for any mxn matrix T 

||r||2 = Trace (rTr) 

Necessary conditions for a solution consist simply of explicit 
expressions for the suboptimal gain matrix, F. For the case of centralized 
output feedback: F = GC, with 

G - F*[CT(CCT)"1] (6-16a) 
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For th« case of decentralized output feedback: F = col(F,,,..,F ), and each 

row vector F = (g ) C. is characterized by 

0*r„ Ty„ „  T.-l, 
li  = Fj[cj (cjcj ) ^^  J=1»"-»m (6-16b) 

6.2 Discussion 

6.2.1 Advantages 

The Kosut design methods are appealing for at least three reasons: 
(1) they are simple, (2) they are noniterative, thereby avoiding convergence 
difficulties, and (3) they can be used in conjunction with Iterative optimal 
output feedback methods to improve convergence. 

These methods share the simplicity inherent in all output feedback 
methods; i.e., by constraining the control law tu be a function only of 

^     system variables that can be measured, the need for reconstruction or estima- 
tion of the full state is avoided. This keeps the order of the overall closed 
loop system relatively small, reduces the complexity of the analysis and design 
problems, and alleviates the computational difficulties (e.g., phasing and 
transport lag) associated with implementation in a real control system. In 
these methods, simplicity is further enhanced by constraining the output- 
control relation to be linear and time invariant, consistent with the corre- 
sponding nature of the plant considered. 

A major goal achieved by the design methods is the development of 
explicit expressions for the controller gains (assuming the existence of 
inverses for certain matrices). The algebraic Eqs. (6-11), (6-13), and 
(6-14) that arise in the minimum error excitation method are similar in 
structure to those that occur in studies of optimal output feedback [4]; 
however in the latter problem, the equations do not in general admit a closed 
form solution'. Moreover, algorithms proposed for Iterative solution do not 
guarantee convergence to a solution [4]; in fact, experience with them has 
shown that in system   ose order is much larger than the number of available 
outputs, satisfactory convergence is not obtained [5]. This situation is 
largely due to a lack of knowledge as to where to start the iteration. Con- 
vergence questions do not arise in direct application of the Kosut methods. 

It has recently been observed that the Kosut method of minimum error 
excitation can assist the designer interested in an optimal output feedback 
approach [4].  By using the explicit solutions of Eqs. (6-11), (6-13) and 
(6-14) as aa initial point for starting the iterative solution of the corre- 
sponding oytimura output feedback equations, good convergence has been 
demonstrated [8]. 

6.2.2 Disadvantages 

The Kosut design methods have at least three clear weaknesses:  (1) no 
information on closed loop stability is available; (2) the results, as 
published, cannot be used when certain matrix products involving the sensor 
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matrix C [Eq. (6-2)] are not invertible; and (3) controller designs are 
not assured to have the desired "mlnlmum-dist'.mce" property relative to the 
optimal reference problem chosen. 

The most serious deficiency of the design methods is the lack r f 
assurance that the controller gains obtained will lead to a stable closed 
loop system. This is immediately evident by observing that neither of the 
suboptimal cost measures [Eq. (6-9) or (6-15)] involve trajectories of the sub- 
optimal system. In contrast, the Levine-Athans optimal output feedback 
method [4] does guarantee stability of the closed loop system, although, as 
noted above, iterative solution for the controller gains is usually required. 
We have observed that there is a direct connection between the achievement 
of a noniterative solution for the controller gains and the lack of stability 
information in Kosut's minimum error excitation method. In fact, his develop- 
ment can be modified in a natural way so as to obtain corresponding results 
which do contain stability information; however, the controller gain equations 
that result require iterative solution in general, and so little would be 
gained by using such an alternate approach. This alternate development of 
minimum error excitation is outlined in Section 6.5.2. 

Each of the expressions for the controller gains, Eqs. (6-14) or 
(6-16), assumes the invertibility of certain matrix products, all of which 

T 
have the general form CTTC , where C is a sensor matrix with at least as many 
columns as rows, and TT is positive definite'. Such a matrix product is 
invertible if and only if C has maximum rank [Section 6.2.3.2; Theorem 6-1]. 
Kosut makes the assumption, which will be seen to be unduly restrictive, that 
the system outputs are a subset of the physically measurable system states. 
Hence, the sensor matrix C is such that, by rearrangement of columns, it takes 
the form [I j 0], and thus has maximum rank. This assumption is not always 

satisfied for certain systems of Interest: in particular, for reduced order 
models of large space structures [Section 6.2.4]. For such systems, the 
Kosut design methods, in their present form, simply cannot be used. 

The familiar, but subtle, logic used in the development of the design 
methods should be carefully noted. The equations which identify the controller 
gains and related variables are first order necessary conditions based on the 
assumption of a minimum in the mathematical programming problem that is used 
as a representation of one of the suboptimal variational problems. It is 
worth observing that these necessary conditions have unique solutions when- 
ever they are well definedt. However, such solutions represent only stationary 
interior points of the domain of the augmented cost function. There is no 
assurance that they correspond to a minimum in the suboptimal problem. If 
they do not (e.g., if they correspond to a maximum), poor alignment with the 
optimal reference problem, and unsatisfactory system performance using the 
associated controller design, may result. 

t, Since A+BF* has been assumed to be asymptotically stable, positive definite- 
ness of the matrix P in Eq. (6-14) and uniqueness of solutions for V and P 
in Eqs. (6-11) and (6-13), respectively, follow from the properties of the 
Lyapunov Eq. (6-13). 
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6.2.3 Extensions 

6.2.3.1 Motivation. In each of the Kosut design methods, formulas for 
calculating the suboptimal controller gain matrix assume Implicitly that 

T 
matrix products öf the form CtrC , where tr is positive definite and C is a 
sensor matrix, are invertible. Conditions for Invertlbllity are not given; 
moreover, there is no discussion of possible alternative approaches for deter- 
mining an appropriate controller gain matrix when the published formulas are 
inapplicable. Sensor configurations which do not have this invertlbllity 
property occur frequently [Section 6.2.4]. The control designer then faces two 
alternatives: either change the sensor configuration such that the required 
invertlbllity property is attained, or abandon the Kosut methods altogether. 
This is a serious drawback to the Kosut methods as published. 

In this section we show that the Kosut methods can be extended so as 
to be usable with sensor configurations lacking invertlbllity. In each such 
case, a family of controller gain matrices can be found which satisfy the 
first order necessary conditions in the suboptimal problem. This gives the 
designer increased flexibility which can be utilized to improve the system 
performance. 

6.2.3.2 Theoretical Results 

In each Kosut design approach, the underlying necessary condition for 
suboptimality (not stated explicitly by Kosut) which generates an appropriate 
controller gain matrix is a linear matrix equation of the form 

XA = B (6-17) 

The matrices A and B are products, known a priori, with the special structure 

A = CTTC B = F*irC (6-18) 

where ircvxv is positive definite, C:Xxv is a sensor matrix and F*:yxv is 
unrestricted. We study solutions of Eq. (6-17) when the product matrix repre- 
sented by A is not invertible. 

First, conditions for invertlbllity of A are stated. 

+ T 
Theorem 6-1. Assume that IT is positive definite'. The matrix product CrrC 
is invertible if and only if rank (C) ^ X. 

This result clarifies the conditions under which the Kosut methods, 
in their present form, are applicable; namely, the appropriate sensor matrix 
(either of a single channel in a decentralized system, or the full sensor 

An assumption of invertlbllity for n Is not strong enough. Consider 

0 1 

1 0 
[0 1] 
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matrix of a centralized system) must be of maximum rank. It is recognized 
that a sensor configuration for which rank (C) < A can always be treated by 
reducing the number of output measurements (i.e., effectively reducing the 
number of sensors) so that the resulting sensor matrix C is of maximum rank, 
with rank (C) = rank (C). However, such an approach will in general lead to 
a deterioration in system performance which may be intolerable. It is there- 
fore desirable to be able to work with arbitrary sensor configurations. 
Theorem 6-1 is a special case of the following more general result. 

Theorem 6-2. Assume that TT is positive definite. Then 

rank (CTTC ) = rank (C) 

This result connects the deficiency in rank of the matrix A in the 
controller gain matrix Eq. (6-17) with the deficiency in rank of the sensor 
matrix. It will be seen below that the rank deficiency of the former deter- 
mines the number of free parameters in a solution for the controller gain 
matrix. Theorem 6-2 is proved in Section 6.5.3. 

Next, the general structure of solutions for matrix equations of the 
form Eq. (6-17) is briefly reviewed. The results to be stated can be deduced 
from corresponding results for the more general equation AX - XB = C [9; 
Chapter 8], However, results and proofs take a much simpler form for the 
special Eq. (6-17); they reduce to well-known results for the case when X 
and B are row vectors. Proofs are briefly outlined in Section 6.5.3. 

Structure for solutions of the homogeneous equation XA - 0 is given 
by Theorem 6-3. At least one solution, the zero matrix, always exists. 

Theorem 6-3. Let Ai\*v,  X :yxA be matrices. Denote r * rank (A). Then: 

0 *  0 
(1) X satisfies the homogeneous equation XA = 0 if and only if X is 

a proauct of the form PS, where T =   [01   P'] is a yxA matrix whose 
first r columns are zero, and whose last X-r columns are arbitrary, 
and S is a nonsingular XxX matrix such that SA is in row-echelon 
form; and 

(2) The zero solution X = 0 is unique If and only if rank (A) = X. 

This result shows that when r = rank (A) < A, there are y(A-r) 
arbitrary parameters in the general solution. Solutions of the nonhomo- 
geneous equation XA » B, if any exist, have the structure given by 
Theorem 6-4. 

Theorem 6-4. Let A:A*v, B:p>«v, and X :yxA be matrices. Then: 

(1) X satisfies the equation XA = B If and only if it is a sum of 
the form X + X , where X satisfies XA » B and X satisfies 

p   c*      p c 
XA = 0; and 

(2) Equation XA = B has at most one solution if and only if 
rank (A) = A. 
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This result makes no assertion about existence of solutions. Existence 
criteria are given by Theorem 6-5. 

Theorem 6-5. Let A:Xxv, B:pxv be matrices. Then the equation XA « B has a 

solution if and only if rank j-|- = rank A. 

The main result of this section is Theorem 6-6, which establishes that 
conditions for existence of solutions are always satisfied by the controller 
gain matrix Eqs. (6-17), (6-18) that underlie the Kosut methods. 

Theorem 6-6. Let THVXV, C:X*V,  F*:yxv be matrices with TT positive definite. 
Then: 

rank I- fee1! 
LF\C

T
J 

= rank (CrrC ) 

Proof of this result is given in Section 6.5.3. 

6.2.3.3 Implications 

The theoretical results have the following implications for the control 
system designer. 

(1) The Kosut suboptimal design methods, as extended, are applicable 
for all sensor configurations. 

(2) If a sensor matrix C' has maximum rank, then the matrix CTTC1 is 
invertible [Theorem 6-1], and the equation 

G (CirCT) » F^TTC1 (6-19) 

0      T   T -1 
has the unique solution G - F*nC (CTTC )  [Theorem 6-4] for the 
controller gain matrix. 

(3) If a sensor matrix C^ has rank p less than full rank (A), then 
T 

the matrix CTTC has the same rank deficiency, X - p [Theorem 6-2], 
Nevertheless, Eq. (6-19) is algebraically consistent [Theorems 

6-5, 6-6], so one particular solution G exists. The general 
solution to Eq. (6-19) has the form 

G - G + rs (6-20) 

C:Axv, A < v. 
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I 
where T ~  [0 : r'] has the first p columns zero, with T' a matrix 
of ii(A-p) arbitrary parameters, and S is a nonsingular matrix 

T 
(nonunique) for which S^CTTC ) is in row-echelon form [Theorems 
6-3, 6-4]. 

(4) As stated earlier, Eq. (6-19) is a necessary condition for 
obtaining a "closenesö" in some suboptimal sense to an optimal 
reference problem with state feedback gain F*. The free param- 
eters appearing in the solution (6-20) for the controller gain 
matrix give the control designer extra flexibility which may be 
used to improve performance in some specific way (e.g., increase 
damping of one or more modes), or decrease side effects of the 
design (e.g., alleviate control spillover related to a reduced 
order controller design). This shows in a general way a con- 
nection between an increase in the number of sensors (decreased 
rank of a sensor matrix) and improved performance based on design 
by the Kosut methods. These properties are illustrated in detail 
in the example of Section 6.3. 

(5) Equations of the form (6-19) also arise In the study of optimal 
constant gain output feedback [4], both as part of a set of 
coupled necessary conditions for optimality, and as part of an 
algorithm for numerical solution of the necessary conditions. 
The results reported here shed additional light on the existence 
and properties of solutions for these coupled systems. 

6.2.4 Applicability to Large Space Structure Control 

Design of controllers for real large space structures almost inevitably 
requires use of a relatively lo^ order structural model (design model) in the 
preliminary design process, with evaluation of the design model against a 
higher order, but still finite-dimensional model (evaluation model), as dis- 
cussed in Section 2.2.3. We make several important observations regarding 
the use of the Kosut design methods with a reduced order structural model: 
(1) sensor matrices In the design model do not, in general, have maximum 
rank; (2) formulas for calculating the composite gain connecting the plant 
state and controller output with the design model cannot be used In tue 
evaluation model. 

As noted earlier [Section 6.2.2], the Kosut methods effectively require 
the system sensor matrix (or the sensor matrices in each control channel, in 
the decentralized case) to have maximum rank. We show here why such a con- 
dition cannot be expected to hold in a reduced order structural model. Con- 
sider a finite dimensional structural model (e.g., via finite elements) in 
terms of physical coordinates q with sensor matrix C:£x2n, Jl < 2n 

Mq + Kq V (6-21) 

m (6-22) 
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Accepting Kosut's assumption here that each output element y. is one of the 

components of the state vector (q,q), the matrix C has maximum rank £; in 
fact, C is a column permutation of the matrix I • 01. Transformation of 

Eqs. (6-21), (6-22) to modal coordinates via the nonsingular matrix $ (i.e., 
q = $n) leads to the system 

••2    T n + ü n ^ * F.u, 

y = C 
[ ol J 

c$ (6-23) 

which still preserves the rank of the new sensor matrix cl. After selection 
of the critical modes to be included in a design model, the modal state 
vector (n>n) may be reordered by a (nonsingular) row interchange matrix S 

B] ■ I (6-24) 

where x :v*l  is the desired state vector for the design model, 

matrix C =  C$S~ = [C : C_] relative to the state (x ,xD) R' 

m -  Ccxc + CRXR 

The sensor 

(6-25) 

retains maximum rank. However, the sensor matrix C relative to the reduced c 
state x in the design model is simply the submatrix consisting of the first v 

columns of 6, and therefore, in general 

rank (C ) ± rank (C) (6-26) 

Since there is, in general, no relationship between the Indices that tag the 
critical elements of the modal state (n,n) and those that tag the i  linearly 
independent columns of the matrix C$, inequality [Eq. (6-26)] may well be strict, 
as in the example below [Section 6.3]. 

The next observation, though self evident, is worth pointing out. The 
Kosut design methods give explicit expressions for the plant state to con- 
troller output gain matrix F [Eq. (6-6)], rather than for the plant output 
to controller output matrix G [Eq. (6-1) for the centralized case]. Having 
designed the controller with a reduced order design model, Eq. (6-6) may be 
written 

u(t) - Fcxc(t) (6-27) 
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Any expression of the form 

u(t) » [F iv[J| (6-28) 

for use In the evaluation model, where F_ Is unspecified. Is consistent with 

Eq. (6-27). One appropriate choice for FR can be made by noting that 

Eq. (6-27) has the equivalent form (centralized case) 

u(t) = [GCc] xc(t) = G[CcXc(t)] (6-29) 

and then adjusting Eq. (6-29) so as to apply the matrix G to the actual system 
output 

u(t) G[Ccxc(t) + CRxR(t)] = G y(t) (6-30) 

Other choices for FR could certainly be made; however any systematic selection 

procedure would be essentially equivalent to Including the variables x~  in the 

design model, which runs counter to their definition as variables excluded 
from the design model. 

One additional brief comment: as noted above, the Kosut methods do not 
guarantee stability for the controller in the design model. However, even if 
a reduced order controller turns out to be stable, nothing can be concluded 
a priori about the stability of the evaluation model driven by such a 
controller. 
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6.3 Example 

Kpsut's method of minimum error excitation is used to design a second 
order controller for the fourth order spring mass system example, which is 
described along with numerical data for parameters in Section 2. A cen- 
tralized output feedback structure is imposed upon the controller. The prin- 
cipal design objective is to achieve a damping ratio of 0.1 in the critical 
mode corresponding to out-of-phase vibration of the two-mass system. The 
optimal reference system is of linear-quadratic type. 

6.3.1 Controller Design for the Optimal Reference System 

Choice of an optimal reference system for use with Kosut's suboptimal 
methods is at the discretion of the control system designer. A linear quad- 
ratic optimal control system with full state feedback is chosen because of its 
simplicity and the availability of closed form solutions.  State vector dif- 
ferential equations for the critical mode in the form of a general second 
order system with two control inputs"'" may be written in the form [Eq. (6-4)] 

(6-31) 

0 1 Xl 
+ 

'o   o' Ul 

2 
~2h\ .X2. f1  *2. _U2_ 

where üU and ^ (=0) are the natural frequency and damping ratio, respectively, 

of the mode to be controlled. The cost functional to be minimized is 

J(u) = | / [xT(t)Q x (t) + uT(t)Ru(t)] dt       (6-32) 

with R positive definite, Q positive semi-definite, and x=col(x1,x„), u=col 
f"h        "^ 

(u-,u ). The solution to this problem for a general n  order system, assuming 

(Ac, Bc) is completely controllable, is well known [1; Ch. 9). The optioel 

control is a linear function of the state [Eq. (6-5)] 

u*(t) = 
-1 T 

-R B K :j x*(t) = F* x*(t ) (6-33) 

where K is the (unique) positive definite solution of the algebraic Rlccati 
equation: 

KB R"1BTK-ATK-KA -Q-O 
c    c     c      c (6-34) 

"'"Appearance of two control inputs for a single second order system arises due to 
the truncation of the full modal system to form the second order design model. 
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Moreover, the closed loop optimal system Is stable. Relationships between the 
natural frequency, w*, and the damping ratio, C*, of the second order closed 
loop optimal system and the parameters (A .B ; Q,R) of the open loop optimiza- 

c + tion problem are also well known [12], [13].  They are obtained by finding 
the coefficients of the closed loop characteristic equation 

det (A + B F* - AI) = 0 (6-35) 

and may be expressed in the form (modified for the case of two inputs) 

q11 / R"1* » (ü)*)4 - a)2
4 (6-36) 

4 ^22 * R ^ (.*)2 [a*)2 - f] + <*2
2  [c2

2 - i]       (6-37) 

1 
where Q = [^^3. and ty    is the non-zero row vector of B in Eq. (6-31). For 

the purpose of achieving prescribed values for co* and c*, there Is no loss of 
generality in assuming Q to be diagonal and R to be the identity. Denoting by 
?2D the deslred imping ratio (=0.1) for the controlled mode in the firal 

reduced order design, the following characteristics are prescribed for the 
optimal reference system. 

(ü* - (1 + a)ü)2, a - 0.005 

2D (fe) 

(6-38)++ 

(6-39)' 

Based on these prescriptions, the corresponding diagonal elements of Q are 
computed from Eqs. (6-36) and (6-37) 

Q = 
'u   0 1.0436469          0 

0 ^ 0         0.15959926 

''"Docuraented relationships assume a single input — single output second order 
Systran. Modification to apply to the dual input situation here is trivial. 

T,The form of Eq. (6-38) is an arbitrary choice, with OJ*^-, that satisfies the 

requirement that q,^O. The form of Eq. (6-39) ensures that U«?;,.» will hold 
11— i    2D 

exactly in the final design. 
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Equation (6-34) for the symmetric matrix K = [k*A  reduces to the system 

hi    ^  + 2k12 w22 ■ ^11 "  0 

k12 k22 ^ + hi*!2  " kn ' 0 

k22
2 (*T*) - 2k12 - q22 = o 

The positive definite solution of this system is: 

t  ^2    2 

kll k12 

1 
a        T 

(f   #) 

25*(ü)*)3 

k12 k22 
/   *N2              2 

2C*Iü* 

4.0767481   0.07/477583 

0.077477583 C.60229008 

The state-feedback gain matrix F* defined by Eq. (6-33) is then 

F* 

^2*1    k22*l 

k12*2   hih 

•y     f 
0 066389774  0.51609641 

-0.028241581 -0.21954252 

(6-40) 

One may verify that with this solution for F*, Eq. (6-35) has the form 

X2 + 2?*u)*X + (u*)2 - 0 

6.3.2 Suboptimal Controller Design by Minimum Error Excitation 

The structure of the suboptimal controller chosen for the second order 
design mod^l Eq. (6-31) is centralized output feedback [Fig. 6-1]. First, we 
observe that with the specified two sensor configuration, the sensor matrix C 

for the design model has a rank deficiency of one; we trace the related dis- 
cussion of Section 6.2.4. Referred to the physical variables q - col (q^q,), 

the full system sensor matrix C [Eq, (6-22)] for pure velocity sensing is 
[OJI-l. Since mode 2 Is the mode to be controlled, the row interchange matrix 

reordering the modal state vector (n.n) into the critical-residual state vector 
partition (x .Xj^) [Eq. (6-24)] is: 
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o 1 o o' 
oooi 
10 0 0 

ooio 

The full system sensor matrix C referred t0 (W ^'   (6-25)] is 

C = 
0 i>. 

0 1|), 

0 ^1 

o o. 
fc : c " L C • 'R 

Hence [Eq. (6-26)] 

rank (C) = 1 < 2 = r ank (C) 

The extension of Kosut's method developed in Section 6.2.3 allows the sub- 
optimal design to continue In spite of this rank deficiency. 

Next, we solve the necessary conditions for the suboptimal method of 
minimum error excitation. Using the known expression (6-40) for F*, system 
(6-13) for the (symmetric) multiplier matrix P = fp<4] reduces to 

2 p12 - -1 

-^*) P,, - 2?^*?,,+ 

.2 

12 r '22 

-2M) p12 - H***  p22 - -i 
The solution is: 

(^ + „«.,„.„/(„.,*  .. -,      rll37w2  _o_3 

L i 
2 ^*t**)j       [    -0.5   7t4375655 

(6-41) 

J 
where  h(c*,w*) ■ il+(u*) J/4c*w*. The gain equation (6-14a; must be replaced 
by its antecedent equation [Eq. (6-19)] 
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G (C PC T) - F*PC T c     c c 

Consistent with Theorem 6-6, we find that F*PC T - -a[C PC £],  -«Ae-e c      c c 

(6-42) 

k12 P12 + k22 P22 _ 2C*(ü* ^ (1 * b'2 )  _ n  eft„0,„ A .0 
P22 K/1*   [1 + (u*)2] 

- 0.59708155 « a (6-43) 

System Eq. (6-42) reduces to the homogeneous equation 

(G + o I_) C PC T - 0 (6-44) 
w  c  c 

Consistent with Theorem 6-3, system Eq. (6-44) has the following general solution 

G(e,6) 

- o + e h/h 

-6 

-€ 

-0 + 6 h/*2 

(6-45) 

(6-46) 

where e and 6 are arbitrary parameters. 

A brief look at the closed loop dynamics for the design model revealR 

the following:  (1) the overall gain matrix F ■ GC is independent of the free 

parameters e and 6 

0 .oh 

0 -o*, 

(2) the characteristic polynomial det(A< + B F - XI) is 

2 T       2 X + a0|) ip)X + ai. 

which shows that the system is stable, with the same natural frequency u« as 

the open loop design model, and with damping ratio c « 0.1 as desired 
[Eq. (6-39)] 

2td. ■s- - Con = 0.1 
"2 [l + (a,*)2]   2D 
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This shows that the desired performance in the reduced order sufaoptimal 
design is a function of the parameter a alone, and therefore [Eq. (6-43)] is 
achievable by judicious specification of parameters (?*,(*)*) in the optimal 
reference problem. The free parameters have no influence upon the dynamics 
of the reduced order model In isolation; they may therefore be chosen so as 
to improve the system performance when the reduced order controller is con- 
nected to the full system. 

6.3.3 Performance Evaluation of the Controller Design 

6.3.3.1 Stability Analysis 

The reduced order controller is correctly connected to the full system 
[Sec. 6.2.4] through the relation [Eq. (6-25)] 

u(t) = G(e,6) y(t) = G(e,ö)C 
xjt) 

xR(t) 

In general, stability of the full fourth order system matrix A+B[G(e,'5)C] ' can 
be investigated using the Routh-Hurwitz criteria; however, the cubic poly- 
nomials in tb" pair (e,5) which appear limit the insight that can be obtained 
analytically. The stability analysis can be simplified considerably by con- 
straining one ol the available degrees of freedom. The differential equation 
for the critical mode ru in the full closed loop system is 

T       2        T 
n2 + aC* *)fi2 + u2 T]2 * -[ait  *) + (ö-e) det*]^ (6-47) 

The difference 6-e may be chosen so that the coefficient of the modal cross- 
coupling term in Eq. (6-47) vanishes 

6-e = 
a(-^T0) 
det$ 

0.18649694 (6-48) 

Enforcing this relationship makes the critical mode dynamics independent of 
excitations of the residual mode.  In particular, the critical mode dynamics 
become identical to those in the reduced-order design. It also enables the 
full system equations to be expressed in closed form as a product of quadratic 
factors: 

''"The matrices A and B appearing here are the matrices of the full system 
written in the form of Eq. (6-4), with rows arranged consistent with the 
decomposition x = col (x • x_) of the state vector. 
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det(A + B[G(5-e)C] - XI)'- 

2 
{X2 + a(A)X + a)2

2}{X2 + [aC^2 + 2**)  + e(^^~]A + a,^}   (6-49) 

By employing the weighted orthogonality properties of the modal transforma- 

tion *, the region of closed loop stability in the e-o parameter plane may 
be expressed simply by the conditions [Fig. 6-3] 

a > 0 

e > -H-tyAty a  = -0.62469504 a 
(6-50) 

The remaining degree of freedom (choice of e) may be used to adjust the damping 
in the residual mode ru • The differential equation for this mode in the full 

closed loop system is: 

T *1 \ + [a(* $) + (frp 
^1 2 T 

£-—) det$]  n. +  w^i.   = -[ö($ *)]n9 ^l 111 2 
(6-51) 

♦ e 

^ 
^ 

A m 

STABLE REGION 

* DESIGN POINT 

^ 

^ 

Figure 6-3. Region of stability for closed loop two-mass system. 

+tTM* - I. 
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Incorporating the constraint relation [Eq. (6-48)], this reduces to 

2 . „. 2X .   det2$, .  .  2    r ,,T. 
n^ + [oC^    + 2*2 ) - e(l^j] ^ + -L r^ - -[a(* ^)]n2 (6-52) 

One may verify that the coefficient of fL in Eq. (6-52) is positive for all 

pairs (a,e) satisfying the stability conditions [Eq. (6-50)]. We choose e so as 

A 1/ 
to obtain "optimal" damping £.. = c1r) = 'JT" 

2a), (-*,)* 

of the residual mode 

e0«K l>'2vl    d 
Kl/r2 

1D      ^^      det2$ 

= 0.10963135 (6-53) 

The design point corresponding to the parameters a ,e ,<S fixed by Eqs. ($-43), 
(6-48), (6-53) is depicted on Figure 6-3; the corresponding gain matrix 

G(e0,60) [Eq. (6-45)] is 

G(e
0,60) 

6.3.3.2 Spilxover Effects 

-0.64371769 -0.10963135" 

-0.29612829 -1.2932143 

Controller design using the Kosut methods does not eliminate control or 
observation spillover associated with a reduced order design. However, the 
constraint (6-48) Imposed on the two free design parameters in this example 
prevents the residual node dynamics from feeding back into the critical mode 
dynamics. This is clearly seen from the system equations (6-47) and (6-51), 

vhich reduce, at the design point (a ,e  ,6 ),  to 

fi2 + 2(0.1)a)2f)2 + diy n2 = 0 

n + 2(^)0)^11 
^  2 

1+ wl nl ■[aV-^R 

(6-54) 

(6-55) 

External disturbances which initially perturb only the residual mode will be 

damped "optimally" (C^-y/T^ without exciting the critical mode at all 

[Fig. 6-4], External disturbances which perturb the critical mode will be 
damped slowly (5?»0.1); these disturbances cause residual mode excitation, 

but such excitation does not affect subsequent critical mode dynamics 
(Fig. 6-5], Such partial decoupling of the modal dynamics significantly 
alleviates the usual concern over control spillover. As a specific example, 
residual mode response in the system £q. (6-54), Eq. (6-55) to an initial 
disturbance is a damped oscillation of form: 
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-(Lt      ifi t    -d2t      llß.t 
nAt)  = e    Re fa e   } + e    Re (ct-e   } (6-56) 

where the a. are complex functions of the initial conditions and 

X --d,±ifi. are the system eigenvalues, J-1,2. The modal response to an 

Initial perturbation in the residual mode (n-, (0)=1, f\-,(0)-0,  n;)(0)=ny)(0)=0) 

is shown In Figure 6-4. The apparent excitation of the critical mode shown 
is due to numerical roundoff error associated with the transformation from 
physical to modal coordinates. The modal response to an Initial perturbation 
in the critical mode (11,(0)= f| (0)=0, ruCJ)3*!, ruW-O) is shown in 

Figure 6-5. It is recognized that initial conditions would normally be 
specified in terms of physical, rather than modal, coordinates. The use of 
"modal" initial conditions here is for the purpose of demonstrating specific 
spillover effects. 

Observation spillover terms contaminate the measurements whenever 
fi^O. As car. be seen from the foregoing remarks, this condition is, in a 

practical sense, quite short lived, and the effects on the system are rela- 
tively benign. 

6.3.3.3 Specific Response Characteristics. When referred to the physical 
coordinates q. and q , the system response to nonzero initial conditions has 

the same general form as the modal response (6-56).  Simulated response to 
the initial conditions q1(0)=q (0)=0, q2(0)=l, q2(0)=0 is shown in 

Figure 6-6. The response indicates quite satisfactory speed of response, 
acceptable overshoot, and an asymptotic approach to zero for each physical 
coordinate. Modal characteristics of the same response are shown in 
Figure 6-7. 

Response to a periodic disturbance e   in either physical coordinate 

q. is characterized by a "steady state" response of form A.(ü))e  ; i.e., the 

difference q.(t) - Re (A ((i))e  } decays to zero in the manner of Eq. (6-56). 

Evaluated at the design point, the complex amplitude function A-(ü)) is 

A2(ü)) 
0.5 (JJ^T + 0.32185884 (ja)) 4- 2.5 Q2(jw) 

F2(ja))  (ju)A + 1.2903248 (ju>3 +  7.4 (ju)2 + 5.3319905 (j 03) + 2 

where CL^) and F?(s) are the Laplace transforms of the coordinate q_ and the 

disturbance force f« on maas 2, respectively. Plots of A?((ij) are shown in 

Figure 6-8. 
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(v ü)2 < 3), plots of the time response In For the specific frequency tü=3 

physical coordinates to a periodic disturbance applied to mass 2 are shown 
in Figure 6-9. Rapid convergence to the steady state condition occurs. 

6.3.4 Design Alternatives 

The control system designer may wish to consider one or more of the 
following alternatives within the scope of constant gain output feedback: 
(1) using a different method of computing the feedback gains, (2) restricting 
the sensor information available to the control channels, (3) adju&ting 
the modal damping, (4) changing the number of sensors and actuators used, or 
(5) changing the type of sensors used. Each of these alternatives Is briefly 
discussed. 

Without appealing to fundamentally different approaches to constant 
gain output feedback, such as discussed in other sections of this report, the 
Kosut method of minimum norm [Section 6.1.2.3] may also be used to compute the 
gains. A comparison of the two approaches has been made for this example — 
no significant qualitative or quantitative difference in the overall system 
dynamic characteristics was observed. 

Restricting the Information structure by the use of decentralized 
output feedback [Fig. 6-2] was not investigated for this example. We would 
expect that this restriction would result in fewer free parameters in the 
design with the specified sensor configuration. 

Adjustment of the amount of damping in both the critical and residual 
mode is readily accomplished; such adjustment may be in either direction 
except that the damping ratio in each mode must be positive to ensure 
stability. Damping for the critical mode is determined by the suboptimal 
design parameter o [Eq. (6-47)] whose value can be adjusted by specifying 
different values for the dynamic parameters C*.üJ* of the optimal reference 
system [Eq. (6-43)]. Implementation of this change is accomplished by a 
corresponding selection of the nonzero elements of the state weighting matrix 
Q [Eq. (6-36), (6-37)]. Damping for the residual mode is determined by the 

f 
parameter e , whose value can be selected as any positive number i^ 

[Eq. (6-53)]. However, modal damping cannot be arbitrarily increased without 
penalty. Expressions (6-43), (6-48), (6-49), and (6-53) show that Increasing 
the desired values t..^,  C- for damping in modes 1 or 2, respectively, 

necessitates increasing the design values for at least one or more of the gain 
matrix parameters a, 6,  and e. Since ^1<0<i|;2, this results in a monotonic 

increase in value for the elements of the gain matrix [Eq. (6-45)], which may 
result in intolerable amplification of unmodeled noise. 

"^It is assumed here that the constraint relation [Eq. (6-48)] between the free 
parameters S and t  is maintained. 
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The possibility of reducing the number of actuators has not been 
investigated to date. However, several important observations have been made 
regarding reduction in the number of sensors. First, a control design using 
a single velocity sensor and which stabilizes the full system can be realized 
only if the sensor is located on the smaller mass (number 1). With the 
single sensor on the larger mass (number 2), Kosut's methods produce a stable 
controller for the design model, but the full system cannot be stabilized 
with any such controller; the source of the instability is observation 
spillover. Second, the sensor matrix C [Eq. (6-25)] for the design model 

has maximum rank, and hence there is a unique solution for the gain matrix G 
[Eq. (6-42)]. Therefore, there is no mechanism (free parameters) for 
accomplishing partial modal decoupling or adjusting residual mode damping 
as in the two-sensor configuration. The stable single-sensor configuration 
shows a noticeable performance loss relative to the two-sensor configuration 
[Figs. 6-10 through 6-15], This is principally due to tl.e much slower 
damping of the residual mode (approximately one-tenth of the damping ratio 
obtainable with the nominal two-sensor design). This effect is strikingly 
shown In the frequency response plot [Fig. 6-14]: the amplitude peak 
occurring at the residual mode frequency did not appear in the two-sensor 
design; moreover, for the single sensor configuration, the phase angle decay 
in the vicinity of the residual mode frequency is much larger. 

Details of the design for each single sensor configuration parallel 
the development of Section 6,3.2 for the two-sensor configuration. Th3y are 
briefly outlined in Section 6.5.4. 

A design based on the use of position sensors only, instead of velocity 
sensors, Is totally ineffective for the purpose of vibration control. For the 
sensor configuration consisting of one position sensor only on each mass, 
there is no mechanism for incorporating damping into a reduced order design 
model; application of Kosut's methods merely change the natural frequency of 
the open loop undamped reduced order model. The full system with such a 
controller is either stable but undamped (ail eigenvalues with zero real part) 
or is unstable. Details of this unsuccessful design are briefly outlined in 
Section 6.5.4. 

6.4 Conclusions 

6.4.1 Principal Results 

The methods of suboptlroal output feedback introduced by Kosut [6] have 
been carefully evaluated for their potential as design tools for use in 
developing reducad order controllers for large space structures. Although the 
work is not regarded as complete [Section 6.4.2], significant progress has 
been made. 

Weaknesses of the Kosut methods especially pertinent to reduced order 
controller design have been identified [Section 6.2.2]. Most significant are 
the lack of a stability guarantee, and the inapplicability of the methods 
when the sensor matrix (in the design <aodel) has a rank deficiency. Theoretical 
extensions of Kosut's methods have been developed in this report [Section 6.2.3] 
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to address the latter problem; as modified, the Kosut methods can be applied 
with arbitrary sensor configurations. The implications of this extension are 
significant, and have been clearly demonstrated in the context of a simple two- 
mode example [Sections 6.3.3, 6.3.4]. When the extended methods are applied 
employing sensor matrices with rank deficiency, solution for the feedback gain 
matrix contains free parameters (proportional in number to the rank deficiency 
of the sensor matrix). These parameters may be chosen in such a way as to Im- 
prove the system performance significantly, relative to a corresponding design 
obtained by adjusting the sensor configuration to eliminate the rank deficiency 
and then applying the (unextended) Kosut methods.  In the example studied, a 
partial decoupling of the closed loop modal equations was realized.  This 
alleviated the problem of control spillover by eliminating all residual mode 
excitation of the critical mode. In addition, damping of the residual mode 
could be adjusted at will.  In short, the extension to the Kosut methods devel- 
oped herein provides a mechanism for using the information available from extra 
sensors (in addition to the number necessary to ensure stability) to improve 
the system performance. 

6.4.2 Recommendations for Future Work 

Initial experience in applying Kosut's design methods, incorporating 
extensions developed in this report, to a low order vibration control problem 
has been encouraging. Before making final recommendatians regarding the value 
of these methods for structural vibration control, several additional topics 
should be treated in future work: 

(1) The effects upon control system performance of  restricting 
the information available to each control channel (i.e., of 
a decentralized output feedback structure) should be 
determined. 

(2) Sensitivity of the control design to modelling errors 
associated with either lack of fidelity of the evaluation 
model to the real system, or truncation of the evaluation 
model to the design model, should be investigated. 

(3) The methods should be applied to a more realistic (higher 
order) structural model. 

(4) The methods should be tested against several objective 
criteria (e.g. [14]) available for determining the 
degree of suboptimality. 



6.5 Appendices 

6.5.1 Properties of the Trace Operator 

The trace of a square matrix (denoted by Tr (•)) is the sum of its 
diagonal elements. The algebraic properties listed below are found In most 
standard texts on linear algebra (e.g. [7]). The calculus properties listed, 
together with many others, have been documented by Athans [11]. All proofs are elementary. 

Fact 1; Algebraic Properties 

(1) Given nxn matrices A, B, P with P nonslngular, and a scalar a: 

(a) Tr(A + B) = Tr(A) + Tr(B) 

(b) Tr(aA) = aTr(A) 

(c) Tr(AT) = Tr(A) 

(d) Trtf^AP) = Tr(A) 

(2) Given blcompatible matrices A, B, with AB and BA square: 

Tr(BA) = Tr(AB) 

Fact 2; Differential Calculus Properties 

Given matrices A, B and variable matrix X of appropriate sizes: 

(1) 8/3X Tr(X) = I 

(2) 3/3X Tr(XTA) = A 

(3)  3/9X Tr(XTAXB) - ATXBT + AXB 

6.5.2 Suboptimal Design by Modified Minimum Error Excitation 

Since the suboptimal system and the optimal reference system satisfy 
Eq. (6-4), with controllers defined by Eqs. (6-6) and (6-5), respectively, 
the error vector (6-7) satisfies the relation: 

e(t) - Ae(t) + [BF x (t) - BF*x*(t)] (6-57) 

To obtain Eq. (6-8), Kosut expressed the bracketed term in Eq. (6-57) In the equivalent form: 

BFe(t) + B(F-F*)x*(t) 
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Alternatively, the bracketed term may be written as 

B(F~F*)x(t) + BF*e(t) 

so that e(t) satisfies [replacing Eq. (6-8)] 

e(t) = (A+BF*)e(t) + B(F-F*)x(t), t > 0; e(0) « 0 

The error excitation cost measure [replacing Eq. (6-9)] is 

+00 

I^(F) ä   f      xT(t)(F-F*)TR(F-F*)x(t)dt 

(6-58) 

(6-59) 

Assume A+BF is asymptotically stable. Then integral (6-59) can be reduced to 
the form of Eq. (6-10) with V satisfying [in place of Eq. (6-11)] 

(A+BF)TV + V(A+BF) + (F-F*)TR(F-F*) = 0 (6-60) 

The suboptimal problem is to minimize the initial-value-free functional 

^(F.V) = Trace (V) 

subject to constraint Eq. (6-60) and control structure constraints on F. 
Necessary conditions for a solution of this problem, in addition to 
Eq. (6-60), consist of a multiplier equation [replacing Eq. (6-13)] 

(A+BF)P + P(A+BF) + I = 0 (6-61) 

and equations for the controller gains. For the case of centralized output 
feedback (F = GC) 

G » (F* - R"1BTV)[PCT(CPCT)":L
] (6-62a) 

For the case of decentralized output feedback (F. ■ g C.,j ■ 1,...,IB) 

(F.-ibJvH^peJr1!. J-i. .m (6-62b) 

where r is the j  row element of the diagonal matrix R, and b is the j 

column vector of B. (These equations replace Eq. (6-14)). 

To use these results as a design tool, one attempts to solve 
Eqs. (6-60) through (6-62) for the matrices V, P, and F. Ihe suboptlmal sys- 
tem is stable if and only if the Llapunov Eq. (6-61) has a positive definite 
solution P [ 7;p. 254]. Availability of this stability Information is due to the 
inclusion of the suboptimal system trajectories in the cost measure Eq. (6-59). 
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Unfortunately, there Is no general method for finding a closed form solution 
of Eqs. (6-60) through (6-62) - they must be solved by Iteration. In fact, 
if F* is set to zero, these equations reduce to the Levlne-Athans necessary 
conditions for constant gain optimal output feedback [4]. 

6.5.3 Proofs of Theoretical Results 

The following well-known property of matrices is useful when questions 
about rank arise. It will be used several times below. 

Lemma 1 [10; p. 103] Let A:  Axv be a matrix with rank p. 
Then there exist nonsingular matrices S: AxX and Q: vxv such that 

I 
p 

0 

0 0 
SAQ 

where I is the pxp identity matrix. Moreover, S may be chosen so that SA is 

in row-echelon form. 

Since Theorem 6-1 is a special case of Theorem 6-2, only the latter is 
proved. 

Proof of Theorem 6-2. Denote p - rank (C).  If p ■ 0, both matrices are zero, 
and hence have the same rank. Otherwise [Lemma 1], there exist nonsingular 

matrices S: XxA, Q: vxv such that SCQ 

Since matrix rank is unchanged by nonsingular matrix multiplication 
Lo I oj 

=■ C.    Denote ir «= Q    Tr(Q    )   . 

rank(CTrCT) - rank(s"1CTr$T(ST)"1) - rank(CirCT) 

^ÄT 
But CTTC 

\l | Q1 
 — , 
. 0 I OJ 

where w.. Is the upper left PxP submatrix of it. 

Since IT is positive definite, so is *; hence [7; p. 75], det TT.. > 0. Thus 

rank (Ctrc ) ■ p. 

Proof of Theorem 6-3. Denote r • rank (A). 

Part (1). If r " 0, then A ■ 0, so any matrix is a solution. Otherwise 
[Lemma 1], there exist nonsingular matrices St  XxA, Q: vxv such that 

SAQ m ■ A.    Suppose X : yxv satisfies X A <■ 0.    Denote 

r - xV1 » [Fj | r2], with ly wxr.    Then 0 - 1$ - [r I 0], so ^ - 0 and T2 

is arbitrary. 
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Thus X • FS « lOj r.jS. Conversely, suppose X - FS' with the structure 

specified in the theorem; then S' may be used in the reduction of A: A « S'AQ*. 

Then X^Q' = 1$ = [0| F']^ " 0.  Since Q' is nonslngular: X0A - 0, 

Part (2). If r » A, the matrix T  of part (1) Is the zero matrix: X * FS = 0. 
Conversely, if r < X, part (1) shows that nonzero solutions exist. 

The proofs of Theorems 6-4 and 6-5 do not differ significantly from the 
standard proofs [10] for the case that X is a row vector; they are therefore 
omitted. 

The proof of Theorem 6-6 is facilitated by the following lemma. 

Lemma 2.  If pe|l,...,A| such that rank(C) < p, then rank -— - < p 

Proof of Lemma 2. If p =1, then both matrices are zero and so each has 
A ("C T T 

rank 0 < p. Otherwise, denote E = —_ T, and consider the product EC . 

b*J 
Choose integers !<!. <...< i < X + p, l<j1<...<j <X, and form the pxp 

submatrix EC [1 ,...,1 jj. j ], consisting of rows I.,...,! and columns 

j ,...,j of EC . With the same notation, note that this can be represented as 

a product of submatrices: 

ECT[l1,...,ip|j1,...,jp] - E[i1,...,ip|l,...,v]CT[l,...,n|j1,...jp] 

T 
If p > v, then rank EC [i, 1 |j, j ] < v < p, so its determinant 

1    PI 1    P 
vanishes. Otherwise, using the determinant expansion for products of rect- 
angular matrices [10; p. 127]: 

det ECT[i1,...,ip|J1,...,jp] -J^det E[i1,..., ip j^ £p]. 

det C 
> 

1 < JL <;,..<£ < v 
— 1     p — 

••'
£
P|
J
X V 

T Since rank(C) < p, each of the pxp determinants in the sum derived from C 

T T vanishes. Hence, each pxp minor of EC vanishes, and so rank(EC ) < p. 

Proof of Theorem 6-6. Use the symbol E defined in the proof of Lemma 2 above. 

Opart). The rank of a matrix is equal to the number of its linearly inde- 

pendent rows. Hence, rank(C7rC ) < rank(EC ). 
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Ci part). Suppose rank (CirCT) < rank(ECT). Set p » rank(EC ). Using 
Theorem 6-2, it follows that rank(C) < p. Then Lemoa 2 Implies that 

T T 
rank(EC ) < p, which contradicts the definition of p. Hence, rank(EC ) <_ 

T 
rank(CTrC ). 

6.5.4 Suboptimal Design for Alternate Sensor Configurations 

The multiplier matrix P associated with the method of minimum error 
excitation is determined by the optimal reference system [Eq. (6-13)] 
independent of the sensor configuration. Hence, each of the subsections to 
follow use the same matrix P as computed for the nominal sensor configuration 
[Eq. (6-41)]. 

6.5.4.1 Configuration I; Single Velocity Sensor (Mass 1) 

The sensor matrix C [Eq. (6-25)] is 

A 
C = [0 ^(0 ^J = [Cc|CR]; 

hence the matrix C used in the control design has maximum rank. However, 

in this case, C PCT is iiivertible, so Eq. (6-42) has the unique solution 
c c 

G = F*Pc5(C PC1)"1 
c c c 

1— "■ 

-0 

-a *2 

(6-63) 

where a is as defined by Eq. (6-43). The overall gain matrix F * GCC Is 
Identical with Eq. (6-46), hence the closed loop design model has the same 
dynamic characteristics as the corresponding design model for the two-sensor 
configuration (u"«.; ?■ 0.1). 

The characteristic equation of the full system incorporating the con- 
troller generated by Eq. (6-63) cannot be factored analytically 

det (A+B[GC] - XI) 

- [X2 + a(*T«)X + a)2][A2 + o(*T«)^X + WJ] - o
2(#T«)(Ä) ^ X2 

However, It is easily shown using the Routh-Hurwltz criteria that the full 
system is stable for all o > 0. The dynamic characteristics of the system 
evaluated for the design value of o [Eq. (6-43)] are: 
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Mode 2 (critical):  ^ - 2.5803842 (-0.9967 a,,,) 

C2c " 0.10024986 (»1.0025 r    ) 

Mode 1 (residual):  ^ = 0.54806316 (=1.003 u^) 

Clc - 0.072724483 (-0.1028 ^ i l/io x,^ 

6'5.4.2 Configuration II: Single Velocity Sensor (Mass 2) 

The sensor matrix C [Eq. (6-25)] is 

C = [o *2|o ^2] - [ccicR] 

so C has maximum rank. Hence, Eq. (6-42) has a unique solution 

G - F*PCT(C PC1)"1 
c c c 

*2 
(6-64) 

L-   J 
where a is as defined in Eq. (6-43). The gain matrix F = GC is Identical 

with Eq. (6-46); hence the closed loop design model is stable with the same 
dynamic characteristics as the corresponding design model for the two sensor 
configuration (CD-OJ»; ?"0.1). 

The characteristic equation for the full system incorporating the con- 
troller generated by Eq. (6-64) is 

det  (A+B[G^]  - AI) 
(6-65) 

- rr + a(/*)A + tyw1 + O(/^)~A -top- O^VKOor*)^ 

3 Expareion of Eq. (6-65) in powers of A reveals that the coefficients of A 
and A1 have coefficients of the form QUO and a 0, respectively, where a and 

a- are constants (depending on system parameters) satisfying a < 0 < ou. 

Hence it is not possible to stabilize the system with this design method for 
any real 0. The dynamic characteristics of the system evaluated for the 
design value of o [Eq. (6-43)] are: 
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Mode 2 (critical): a2c  - 2.6109331 (-1.0086 us2) 

C2c - 0.098330464 (»0.9833 ?2D) 

Mode 1 (residual): m      = 0.54165065 ('0.9915 m^ 

?. = -0.19840072 < 0 
1c 

The fundamental source of this instability is observation spillover. This is 
seen by writing the differential equation for mode 1 in the full system 

n^ + o((ti «lO-r-r^ + (D^ = -o(4> ^yf\2 

The coefficient of n, is negative for all o > 0; this coefficient drives the 

instability and is Introduced Into the equation by taking into account the 
contribution to the sensor measurements (Ignored in the reduced order design) 
due to excitation of the residual mode. 

6.5.4.3 Configuration III; One Position Sensor on Each Mass 

The sensor matrix C [Eq.   (6-25)] is 

A 
C 

1'1 o 
*2o 

V0 
*2 0 ^

Cc|V 

so C has a rank deficiency of 1; hence [Theorem 6-2], rank (C PC ) = 1. The 
c c c 

gain Eq. (6-42) has multiple solutions [Theorem 6-6] of the form 

G(e,6) 
+ *2 -T + e— 

*1 

-T + 6 
*, 

(6-66) 

where e and 6 are arbitrary parameters, and T is given by [cf. Eq. (6-43)] 

k12pll"l"k22P12 

Pll (Ä) 
(ü)*)2[l-l-(it)*)

2] 

,i+(a)*ni+4(c*r] 2,   2 ] -0.18729075 

The closed loop design model has the overall gain matrix F ■ GC 

■T^ 0" 

-T*2 Oj 
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independent of the free parameters, e and 6. The characteristic polynomial 
det (A +B F-AI) has the form 

c c 

X2 + [ü)2 + T(I(»
T
I|0] 

hence the design model is undamped with a natural frequency slightly less than 
the critical mode natural frequency. 

The characteristic polynomial of the full system incorporating the con- 
troller generated by Eq. (6-66) is 

det(A+B[CC]-XI) = 

22T     22T*2<')1 T      T 
[A +tü +T(* i>)]   [A +0) +T(f (j)H{6—-e—-) det$] - T(<|. ij») [T(<|)>)+(6-e) det*] 

z. i 1^2  V-i 

2 
which is quadratic in A . Hence, roots of the fourth order polynomial may be 
written in the form 

iei/2     1(6^2 + 10    ie2/2  _ i(e2/2 + ir) 
A = VP~e    , Vf^e       ; y/p^e , Vp^e 

with p. > 0, 0 < 6. < 2ir, j = 1,2.  It follows that either all roots lie on the 

imaginary axis, or at least one root lies in the right half plane. Hence the 
full system cannot be made asymptotically stable, regardless of how the design 
parameters T, e, and d are chosen. 
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SECTION 7 

STOCHASTIC OPTIMAL OUTPUT FEEDBACK CONTROL 

7.1 Background 

7.1.1 Introduction; Main Ideas and Underlying Theory 

The flexure dynamics of a large space structure in orbit are approxi- 
mated by a high-order system of linear differential equations, which are 
excited primarily by force and torque perturbations due to the operation of 
equipment on the structure. The problem of using feedback controls to actively 
reduce the line-of-sight errors Induced by these disturbances is considered 
here. It is assumed tl^at a finite number of sensors and actuators have 
been placed on the structure and that the feedback compensation is constrained 
to be linear and of zero dynamic order, i.e., that each actuator input signal 
Is to be synthesized directly as a linear combination of the sensor output 
signals at each instant of time. 

The stochastic output feedback control (SOFC) method Is one approach 
proposed for the determination of output-feedback gains. The basic idea is to 
approximate the disturbances by stationary second-order random processes; the 
statistics of the deflections and deflection rates for any set of feedback 
gains can then be derived. Significant responses such as stresses, accelera- 
tions, critical vibration mode deflections and rates, and particularly line- 
of-sight errors are expressed as linear combinations of the deflections and 
deflection rates; thus the response statistics can be computed. The "best" 
set of gains is taken to be that which minimizes a nonnegative linear combi- 
nation of the mean-square responses. The principal design parameters are the 
relative weightings given to the significant responses. The key technical 
contribution of the method described here is a procedure for computing the 
best gains. 

The potential advantages of the stochastic output feedback control 
problem formulation are: 

(1) Relatively few design parameters; freedom from unpredictable errors 
in designer judgment which can occur in pole-placement approaches. 

(2) Robustness (e.g., gain and phase margins) of the optimal gains, 
which is due to the stochastic conceptualization of the problem. 

(3) Ability to make a tradeoff between fast regulation on the one hand, 
and sensitivity to disturbances and the effects of unmodelled re- 

sidual modes on the other. 

The last point is particularly worth noting: an increase In feedback gains, 
generally, will tend to reduce mean-square responses but at the same time will 
use more control energy and make the system more sensitive to sensor noise 
and residual mode effects—a stochastic formulation of the problem incorpo- 
rates the tradeoff between these favorable and unfavorable effects, yielding 
optimal gains which are bounded. 
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While the method is in many respects a culmination of the state-of-the- 
art in optimal multivarlable compensator design theory, and hence benefits 
from a good deal of "vicarious escperience," the detailed properties of the 
specific algorithms presented herein have only been explored in the context of 
the two-mode example reported in Section 7.3. The results of this example 
appear to be promising. 

The key ideas for this approach to stochastic control of infinite- 
dimensional systems have been described in Reference 1. The conceptual back- 
ground for the particular problem formulation reported here may be traced to 
the mean-square error methods for single-input, single-output plants developed 
In the early text by Newton, Gould, and Kaiser [2], and in the early paper by 
Axsäter [3]. The subsequent development of ideas may be followed through a 
sequence of papers by Levine, Johnson and Athens [4], Platzman and Johnson [5], 
Blanvillain and Johnson 16,7], and Nalje and Bosgra [8], as well as references 
cited therein. 

In the remainder of Section 7.1, the technical highlights of the SOFC 
approach are outlined and the assumptions are summarized. In Section 7.2, the 
relative strengths and weaknesses are conpared with other methods; Section 7.3 
is devoted to the example. Section 7.4 contains nn overview, summary and 
conclusions. 

7.1.2 Outline of the Design Method and Algorithm 

A solution of the problem is developed in three phases: 

(1) A number of synthetic sensor and actuator signals, each equal to 
the number of critical modes, is formed by taking linear combina- 
tions of the physical sensor outputs and actuator inputs which 
are available. 

(2) The magnitudes of the open-loop effects of the residual mode 
signals on the critical mode dynamics and synthetic sensor outputs 
are estimated, and the estimates are used to determine the magni- 
tudes of statistically-equivalent random disturbances and sensor 
errors (in addition to the direct effects of physical disturbances 
and inherent sensor noise). The SOFC problem for a truncated 
model of the structure containing only critical mode dynamics can 
then be stated. 

(3) The best feedback gains for the truncated model are determined 
using a recently-developed algorithm for solving the SOFC problem. 
Stability, In general, must be verified through a simulation 
involving the residual modes which are available. 

Phases (2) and (3) may be iterated, if necessary, to improve closed-loop 
properties; the relative weightings on the mean-square response errors can also 
be adjusted during the design procedure. 

■ 

4 
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7,1.2.1 atatement of the General Problem 

A very high-order finite-element model of the linearized flexure 
dynamics is assumed to be available in the form 

Mq + Kq = F (7-1) 

where 

q = vector of physical deflection or hybrid-deflection variables. 

F = vector of total external forces or torques, including control and 
disturbance inputs. 

M = generalized mass matrix. 

K = generalized stiffness matrix. 

It is assumed that static deformations and forces have been eliminated in 
defining the variables in Eq. (7-1). The odel (7-1) is also assumed to be 
sufficiently refined that the effect of still higher order dynamics is truly 
insignificant, and that these modes.may thus be oafely ignored.* Through an 
eigenvalue analysis, a solution of 

M ma2; $TM$ 
2       2        2 

where n = diag [w,, . . . , in ]  and I = diag [1, 1, .... 1] is assumed to 

be availa'jle. Through definition of the modal coordinates 

q = $TI 

the system is brought into modal form 

••   2   T 
n + n n = * F (7-2). 

In Ü  , suppose that the modes have been ordered so that 

,2 a 

• 9 n 
a  o 
c 

o sr 

where the number of critical modes, n . (dimension of Q ).  is of the order that 
<- c 

can be retained for purposes of design and/or numerical computations. Typical 
values might be n - 1000, n ~ 30. 

Furthermore, suppose that in (7-2) 

See, however, suggestions for further research. 
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F = F + F 
a   e 

B u + F 
a    e 

where F are actuator forces (linearly related to the control input signals, u), 
cx 

and F represents external disturbance forces. The measurements are assumed to 
be 

y = C q + e J        sH 

where e represents inherent physical measurement noise. 

In this analysis, it is assumed that only deflection rates can be 
measured; the more general case can also be carried through. It is further 
assumed that u and y both have dimensions greater than n ; again, this stipula- 

tion can be removed. 

The control problem is to find a set of output-feedback gains, G, such 
that for 

-) I 

u = -Gy 

the closed-loop system 

n + I^B GC fri + fi n - $TF
   " ^z Ge 

as e a (7-3) 

is asymptotically stable. By partitioning n into critical and residual modes, 

, it is readily apparent from Eq. (7-3) that feedback in general as n « 

LrirJ 
will produce coupling between critical and residual modes, which has been 
termed "control and observation" spillover. Define the damping matrix to be 

D  D 
cc or 

D  D 
re rr 

= $ B GC $. The responses of the system, in gene-al, can be s,    s 

approximated by linear combinations of the mode deflections and deflection 
rates 

r » Hn + Ln (7-4) 

For example, r might represent (linearized) llne-of-sight error, or critical 
mode deflections. 

To apply the stochastic output feedback control approach, F and e are 

approximated as stationary white noise processes; then for any stabilizing set 
of gains, G, n(t) becomes a stationary second-order process as t ->■ *•,  and r(t) 
also becomes a random process. Assuming that stabilizing gains exist, we seek 
an optimum set of gains, G*, which minimizes the weighted asymptotic covari- 
ance of the response, denoted by 
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J(G) = 11m E |rT(t) Q r(t)| (7-5) 

where Q is a positive definite design matrix which can be used to represent 

the relative importance of different responses. For instance, if Q = I, 

H = [1:0], and L = [0:0], then G will be chosen to minimize the sum of the 
mean-square critical mode deflections. 

The algorithm presented in Section 7.1.2.4 can be used to address this 
large-scale problem directly, but it is of much greater practical interest to 
impose a constraint that only critical mode dynamics be employed In the final 
design calculations. Prior knowledge of residual mode shapes and frequencies 
is assumed to be available for purposes of model truncation, however. The 
next two subsections are devoted to the treatment of this important constraint. 

7.1.2.2 Model Truncation 

Only a limited number of variables can be retained for purposes of 
control design; In this case, a subset of the open-loop modes, termed the 
critical modes, is retained. We shall describe a procedure for truncating 
the remaining (residual) modes from the design model. Truncation can be viewed 
as a fonn of model aggregation; while it is not necessarily optimum, it has 
been selected here because it is practical and easy to comprehend. It is 
reasonable to assume, in doing so, that the (key) responses are correspondingly 
truncated to Include only critical mode components (in effect, this consti- 
tutes one definition of a critical mode); beyond stabilizing the residual 
modes so that the limit in Eq. (7-5) exists, all interest in detailed control 
of the residual modes Is thus given up. 

The proposed method for achieving this is through combined sensor and 
actuator signals. Let 

u = [Ac] ü    y - [Sc]y (7-6) 

where u, y are of dimension n (recall that u and y had dimensions of say, 

n , n , greater than n ,by assumption). Furthermore, suppose that B and C ö  s c äs 
are conformably partitioned as 

^B 
B 
a 

c 
B 

C - [C C ] 
s   c r 

Truncated control-gains M will be in the form of a feedback from u to y 

u " M y 
c 
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Define the transformed actuator and sensor matrices as 

B = $ B = 
a 

and C = C $ = [C C ] 
s    c r 

Then the closed-loop damping matrix (In modal coordinates) will be 

D = 
rB A M S C 

c c c c c 

B A M S C recce 

B A M S C - c c c c r 

B A M S C r c c c r 

rD     D ce    cr 

D      D re    rr 

(7-7) 

The rank of D cannot be greater than n , the number of critical modes (without 

the constraint Eq. (7-6), it cannot be greater than the minimum of n and n ); 
a    s 

thus it is only possible to exercise "independent" control over the damping of 
at most a set of n modes. However, when n is strictly less than n and/or n , 

C C £1 S 

there are additional free parameters in A , S which can be used to couple the 

critical and residual modes In such a way that the stable properties of the 
critical modes are "inherited" oy the residual modes. 

A general procedure for choosing A and S is not yet available; the 

output-feedback problem offers considerably less flexibility in this regard 
than in the dynamic compensation case. The objectives of the procedure, in 
order of Importance, appear to be 

(1) Make D  = M . 
cc   c 

(2) Guarantee stability of Eq. (7-3), for any M which stabilizes the 

critical modes, and at least for the value of M to be determined 
later. 

< I 

(3) Attempt to symmetrize and bloek-diagonallze D by making the off- 
diagonal terms (D ,0 ) as small as possible, subject to the 

stability requirement (2). 

Preliminary work, indicates that 

i 1 

(1) If n ■ n = n , it is best to colocate sensors and actuators 
C   s   a   —1       - -1 

and to chooss A = B   and S ■ C 
c   c      c   c 

(2) When n ~ n    ■ n, the objectives are attainable. 

(3)  The objectives may be generically attainable for n and n 
approximately equal to 2n . s    a 

W     The objectives were attained in the example of Section 7.3. 
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A problem of this essential character must be solved in any output- 
feedback approach, if the design model is to be based only on critical mode 
dynamics. Further research is required on this problem. 

The remaining steps of the procedure are illustrated, assuming that A 

and S have been determined and that D  = M . The critical modes are then 
c cc   c 

governed by (see Eq.(7-3)) 

n   + M   n   + n2 n   = [$T F   - BA M s e]   - D    n      (7-8) 
c        cc        cc e cccc        err 

and the residual modes are governed by 

n+D     n+n2n= l$TF   - BA M s e] - D    fi (7-9) r        rr    r        r    r      l      e c c c  Jr       re    c 

The synthetic measurements are 

y = Sy = S    Cn    +SC    ii    +Se (7-10) 
cccccrrc 

Equations (7-8) - (7-10) are the equations from which a truncated model is 
derived. 

7.1.2.3 Estimation of Stochastic Effects 

The truncated control problem takes the form* 

n+nri=u + c c        r c c 

Ü *■• -Mcy (7-11) 

y = n    + v '        c        c 

where ' 

C    i  [*TFa] c eJc 

v   i S (£   n   + e) I c        c    r    r 
i 
I 

are to be approximately represented as "equivalent" white noise processes. j 
For this purpose, an estimate of il n n is required; this is based on Eq. (7-9) 

Ignoring critical-mode coupling, i.e. 

*We have taken (ÜA M ] « M and S C - I in Eq. (7-8) through (7-10); in Eq. 
c c c   *     ^ *■ 

(7-8), Dcr is given by Eq. 

eliminated from Eq. (7-8). 

(7-8), D  is given by Eq. (7-7). In writing Eq. (7-11), no terms have been 
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fi + fi2 n = f$TF ] (7-12) r   r r     er 

or 

nr + Drr nr + fir
2nr = [*\]r - l™*^], (7-13) 

While Eq. (7-12) is more crude, it does not require prior knowledge of the j 

gains M and allows the residual mode velocities to be estimated individually. i 

Appropriate estimation procedures are well-known for the cases when the I 

disturbance F is specified as a correlated noise process, or when initial * I 

condition statistics on n (0) are specified. The reader is referred to Section I 

I         7.3 for an example of how these procedures may be carried out. It should be I 

observed that in Eq. (7-11), £ and v will in general be correlated equivalent J 

noise processes since they are both derived from F (and also since a term 

involving n has been dropped from Eq. (/-12)); in the following subsection 

■        they are taken to be independent white noise processes mainly to simplify the j 

|         exposition of ideas - in some circumstances, such an approximation can be j 

I        justified. The truncated model is only of order n , the number of critical I i                                                                              c' I 
I        modes, but its parameters depend on prior estimates of residual mode shapes I 
*                                                  2 1 

(through $ in Eq. (7-7)) and frequencies (through Q in Eq. (7-12)). This is i r | 
the practical constraint Imposed on the design procedure. j 

7.1.2.4 Determination of Optimum Gains j 

The truncated control problem may be stated as follows: Given a -i 
truncated model in state-space form j 

x = Ax + Bu + v I 
(7-14) i j 

y * Cx J- w t 

where v and w are independent white noise processes, with 

T '' E {v(t) v (T)} = V 6(t-T)     (assumed positive seraidefiuite) 

T E {w(t) w (T)} ■ W 6(t-T)     (assumed positive definite) 

find the output-feedback gains In the control law 

Ü » My (7-15) 

so as to mlninlze the asymptotic mean-square response measure 
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J(M) » 11m E {x^t) Q x(t)} (7-16) 

It is assumed that B and C are of full rank, and that (A,B,C) is 
output-feedback stabilizable in Eq. (7-14). 

The necessarv conditions for this problem take the form 

(7-17) 

where 

T  -1 T 
Kg = (B PB)  B P 

T -1 
Kc = XC W 

and the matrices P, X are solutions of 

»B
TPVC 

+ ^C^B^^B = Q + PA + A1? (7-18) 

and 

with 

and 

(I-TrB)KcWKc
T(I-irB)

T - -V + K^WK,.1 + AX + XAT c c 

r- - BK_ and TT » K C. B   B    c   c 

(7-19) 

The algorithm proposed for solving Eq. (7-18) - (7-19) Is as 
follows: 

(1) Find positive semideflnlte symmetric matrices P , X and evaluate 

Tt- , it- from Eq. (7-19), so that (A ~ ^D ¥c ) is strictly stable. 

Set 1-0. 

(2) Solve the Lyapunov equations 

„1+1 ,.    11.,,.    1 l.T^l+l   _ P   (A - nB irc ) + (A - Trg Trc ) P   - -Q 

(A - Wg irc )X        + X (A - IT- TIC )    » - V - ITB Trc    W Trc    TrB 

7-9 



with W = CT(CCTI 1 W (CG1)"1 C, for Pi+1, X1+1. Evaluate IT 
i+1 

1+1 
from Eq. (7-19), set i =• i+1 and repeat. 

B 

Through partitioning, the P    equation may be reduced to a Lyapunov equation 

and the X    equation may be reduced to a Riccati equation. 

Any least-squares performance measure for the output-feedback problem 
will yield necessary conditions which are comparable to Eq. {7-17)-(7-19). These 
equations are analogous, respectively, to the equations for the state-feedback 
gains, the control, and the filtering Riccati equation of the steady-state 
linear-quadratic - Gaussian problem. The present problem is also of the LQG 
class; it is a stochastic control problem where the class of admissible control 
laws is parameterized by M. The unusual feature of the present formulation 
is that it suggests the structure of the solution for the necessary conditions 
via the projection operators IT , n . 

B  C 
An understanding of the structure of 

solutions to this problem is absolutely essential if one is to avoid the many 
shallow local minima which characterize output-feedback problems. The idea 
is to parameterize the solution set {X,P} in such a way that the sequence of 

solutions {X  , P  } will converge to a global minimum from a prescribed 

initial guess {X(0), P(0)}. 

Finally, the parameters of Eq. (7-14) through (7-16) are related to 
those of the truncated problem Eq. (7-5), (7-11). The following associations 
can be made 

i 

x = 
rir 

0        I 0 ' 
C ,A = 

-Q2    0 c 
,B = 

I 
.C -  [0    I]   ,M -M 

c      c 

.V 

w   - v /llv   I!    ,W 

0    lit 

V2] 
where | C !i. liv || are estimates of the magnitudes of C . v defined in Eq. (7-11); 

c    c c  c 
the appropriate means of estimating these variables depends on the specifica- 

tion of the plant disturbances and sensor and activator accuracy (see the 

examples. Section 7.3). 
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If we choose the llne-of-slght error due to the critical modes as the 
response variable, then In Eq. (7-4) 

r * H n  and Q 
c   c c     H 

T 
H H 
c c 

0 

in the truncated problem. Alternatively, If the critical mode deflections 
themselves are taken as responses, choose H * I above. 

The design procedure may be iterated to yield improved performance. 

If M* is the first set of gains produced by the algorithm, one can return 

to Section 7.1.2.2, Improve the truncated model (now M Is known in Eq. (7-7)), 

perform the estimation of the noise covarlances (using Eq. (7-13)), and recom- 

pute a new set of gains M ** using the Improved parameters. At present, the 

convergence of this iterative procedure can only be conjectured; it is 

plausible that the procedure will converge because the effects of the 

residual modes were over-estimated (from Eq. (7-12)) in the first Iteration, 

causing the gains to be somewhat larger than necessary—in succeeding stages, 

the effects of residual modes and the gains should be gradually reduced. 

This then, completes the outline of the general SOFC method applied to the 

large space structure control problem. 

7.1.3 Sutmnary of Assumptions and Technical Innovations 

The key assumptions of the SOFC method have been stated at appro- 
priate places in the previous subsection; only the key assumptions are 
restated here: 

(1) The high-order model of the structure is sufficiently accurate 
that the effects of unmodelled residual modes can be Ignored. 

(2) The number of available actuators and sensors (n , n ) is 
a  s 

sufficiently large relative to the number of cTitlcal modes 

that the structure can be stabilized using synthetic outputs 

and inputs. Roughly, this requires n « n a 2n , where n 
a   s   c       c 

is the number of critical modes. Alternatively, one can 

require that the number of modes controllable by output feed- 

back be of the order of 1/2 min {n , n }, if n , n are 
at   8        AS 

prespecifled. 
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(3) Deflection rate measurements (as opposed to measurements of 
deflection itself) are available.  (This assumption is removable.) 

(4) A characterization of the external disturbance forces, F , on the 

structure is available, along with the modal transformation 

matrix, $ of the high-order model and the sensor errors, e. 

It is preferable, but not essential, that F and e be character- 

ized in terms of their statistics. 

(5) The local convergence of an algorithm for computing optimal 
gains which satisfy Eq. (7-17) through (7-19) can be established. 

The key technical invovatlons of the SOFC method applied to the large 
space structure problem are the procedures for computing a truncated model 
and the method of computing optimum gains for the truncated model. The 
method is such that if stabilizing output-feedback gains exist, then the 
optimum gains will be bounded and will stabilize the truncated model, and 
the performance will be robust to modelling and truncation errors and the 
presence of sensor noise. 

7.2 Discussion 

In this section, some remarks which may be of use in comparing ehe 
stochastic output feedback control method with alternative methods are col- 
lected. Discussion is restricted to the procedures describsd explicitly in 
Section 7.1; however some fundamental improvements are proposed in Section 7.4.3, 
and these possibilities should also be taken Into account in assessing the 
poten.ial of this approach. 

7,2.1 Strengths 

The strengths of the SOFC method are perceived to be: 

(1) The method is explicit and complete. The procedure of going from 
performance specifications to optimal gains is fully-specified. At 
those points where the judgement of the designer Is required, the 
criteria by which decisions are to be evaluated are clear. The 
algorithmic requirements ot the method are clear. 

(2) The method is flexible.  It is readily extended to take into 
account additional design requirements such as: 

fa) Incorporation of sensor, actuator and disturbance dynamics. 

(b) Different selections of critical modes, or choices of sensor 
and actuator complements. 

«I 
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(c) Sensor signals which include mode deflections as well as 
velocities can be incorporated. 

(d) Changes in performance criteria. 

(e) Generalization to design of low-order compensator dynamics. 

(3) The method is robust to modelling errors and stochastic effects, 
though it can be "tuned" to provide the best performance, e.g., 
when the key performance objectives are very clear, or when the 
disturbance models are very accurately known. The method can be 
expected to yield reasonable values of feedback gains, which are 
not highly sensitive to the parameters of the truncated model. 

(4) The method is "state-of-the-theory." It incorporates some of the 
most recent advances in thinking about multivariable control 
problems by theoreticians. It takes into account, in at least an 
approximate way, issues such as model aggregation, modal spillover, 
robustness and uncertainty, the algebraic complexity of the 
output-feedback problem, and the physics of flexible vehicles. 

(5) The method provides qualitative Insights which are useful to the 
designer. For instance, it can be seen from Eq. (7-7) that 
Independent control of all critical and residual modes is not 
generally possible. Coupling of critical and residual modes may 
actually enhance stability, but it may in general be asymmetric and 
will tend to make the designers' task more difficult by destroying 
the identity of the critical modes in the closed-loop system. 
Approximate decoupling, on the other hand, will require a number 
of sensors and actuators roughly equal to twice the number of 
critical modes, and will be enhanced by colocation of sensors 
and actuators. A number of other insights are provided. 

7 ?.2 Weaknesses 

The weaknesses of the method (aside from immaturity, as discussed in the 
next subsection), are perceived to be: 

(1) Computational requirements. The computational requirements of the 
algorithm [following Eq. (7-19)] are considered to be reasonable. 
However, the computational requirements for the model truncation 
procedure (in particular, finding Ac and Sr so that the closed-loop 
damping matrix Eq. (7-7) has the desired properties) may be heavy. 
At worst, this procedure would Involve the solution of a  numerical 
optimization problem in nc [(ng-nc) + (na-nc)] parameters involv- 
ing the solution of a 2n-th order eigenvalue problem at each 
iteration, where n is the total number of critical and residual 
modes, nc is the number of critical modes, ns is the number of 
sensors and na is the number of actuators. Typical values might 
be n « 100 to 1000, nc » 30, ng * na * 60. The best case for this 
truncation calculation Is not yet known. 
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(2) No prior guarantee of closed-loop stability. Because of the 
approximations involved in determining a reduced-order model, 
closed-loop stability of all modes cannot be absolutely guaranteed: 
the design values must be Implemented and tested on a high order 
model to test stability. The predicted damping Imparted to the 
critical modes of the design model will be fairly accurate, but the 
behavior of the residual modes is not completely predictable. The 
optimal gains, whenever they exist, are guaranteed to stabilize 
the truncated model. 

(3) No prior guarantee of existence of optimum gains. The algorithm 
proposed for determination of optimum gains is not guaranteed to 
converge; however, it is possible that a convergence proof can be 
developed. 

(4) No prior guarantee of traditional design specifications. The SOFC 
method does directly minimize mean-square line-of-sight error. 
However, it is not guaranteed to yield closed-loop pole positions 
which conform to  the preconceived notion of the designer, nor to 
traditional design specifications such as gain margins, phase 
margins, or settling times. It is not guaranteed to meet control 
energy constraints either. Methods are available to Incorporate 
these objectives as "soft" constraints, but ultimately the gains 
produced must be tested on a system model to see if "hard" 
requirements are met. 

7.2.3 Maturity 

The procedure described in Section 7.1 has not been fully implemented, 
except for the example of the following Section; therefore it must be 
regarded as immature. It is possible, judging from previous experience on 
similar problems, that unforeseen pitfalls may be encountered. On the other 
hand, the method does benefit from the "state-of-the-theorv" which is experi- 
ence of a vicarious sort. On the basis of current information, it can only be 
said that the method is expected to be computationally feasible, and that the 
potential benefits appear to be quite substantial. 

7.2.4 Applicability to Control of Large Space Structures 

The model truncation procedure has been developed specifically for 
application to large space structure control problems, and it exploits the 
properties of the physical equations of motion for such structures. The 
procedure for computing gains has been developed specifically for design of 
low-order compensators (in the present case, zero-order compensation) for 
high-dimensional systems. The particular attributes of the physical equations 
have been carried through the calculations of the next section, but not 
through the general procedure of Section 7.1; preliminary derivations indicate 
that substantial simplifications of the necessary conditions Eq. (7-17) through 
(7-19) can be made in this case. It can be concluded that the method, by design, 
is suitable for control of large-space structures. 

The reader is referred to Section 7.4 for concluding remarks. 
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7.3 Illustration! Application of the Stochastic Output Feedback Control 
(SOFC) Method to Control of a Two-Mode System 

7.3.1 Introduction 

A two-iaode system for evaluation of candidate large-space-structure 
design methods is presented in Section 2.5. The purpose of this subsection is 
to describe the application of the candidate method to this example. The 
essential idea of the SOFC method is to determine feedback gains to minimize 
steady-state mean-square error responses of the closed-loop stochastic system. 
In order to formulate the example problem in this manner, two preliminary 
calculations were performed. First, a model truncation procedure was carried 
out in order that dynamic calculations need be based only on the critical mode 
and not on the detailed behavior of the unmodelled residual mode. While this 
procedure normally would not be applied to a low-order example, it must be 
applied in the large-scale problem because of the need to guarantee stability 
of residual modes in the controlled system. Secondly, the effects of the 
specified disturbances and residual modes were represented as white noise in 
the stochastic model. Finally, the SOFC method was applied to determine a 
single output feedback gain (critical mode damping) of the aggregated model. 

7.3.2 Model Aggregation 

An implied constraint on the problem is that the dynamic analysis of the 
design procedure be based only on the critical modes. However, prior knowledge 
of the residual mode parameters (e.g., frequencies, eigenfunctlons - in this 
case fj. ifj) may be assumed. It should be remarked that In general this is 
a very severe constraint, and it is doubtful whether absolute prior guarantees 
of stability are possible for any design method, short of actually working 
out the closed-loop eigenvalues of the full system. However, it is reasonable 
to seek design methods which "acknowledge" the presence of the residual modes, 
are robust to their effects, and provide design parameters whereby an Initial 
design may be tuned-up. 

The "aggregate model" presented here, as with many alternative schemes, 
is based on retaining the open-loop critical mode dynamics. However, we have 
available, then, two inputs (F^, Fj) and two outputs (qj., ^ to control one 
mode. In the present case it can be shown that there is naver any advantage to 
using more than one input and one output to control a single critical mode.* 
Hence we synthesize a combined actuator signal, u , such that 

(7-21) 
** 

*This is due to the particular structure of the modal equations - in general, 
a second order system would require no more than one input and output. 

** 
Eq. (7-20) has been deleted. 
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and a combined sensor signal, y . such that 

^ [h h] 
^2 

(7-22) 

The weighting factors (o^, a2, Z^  ß2) are viewed as design parameters. They 

may be chosen on the basis of prior knowledge of the residual modes. Their 
choice will affect the extent to which residual mode disturbances must be 
accounted for in the critical-mode design model, and also the degree to which 
the critical modes will couple into the residual modes. 

Usually the coupling of the residual and critical modes in the closed- 
loop system is viewed as being undesirable; however in this case it must be 
exploited: with only one (combined) input and output, it can be shown that we 
only have independent control, in effect, of one (combined) mode. The idea 
is to couple the critical and residual modes in such a way that stabilization 
of the critical mode will also guarantee stabilization of the residual mode. 
In the present example, this can be accomplished directly using Routh's 
criterion; in the general case, more sophisticated procedures would be required 
(e.g., minimizing the spectral norm of the closed-loop system matrix with 
respect to the weighting parameters). In the present example, it is readily 
verified that there are some choices of the weighting factors for which no 
choice of feedback gain is stabilizing (see Section 7.5.2); hence this proce- 
dure is quite critical and must be performed witn care. 

Now the calculations are carried out. Suppose that the feedback law is 

-Mc y (7-23) 

where M Is the feedback gain (positive-valued) to be determined later. Then 
the closed-loop bystem defined by Eq. (7-2) and (7-21) through (7-23) is given 

by 

-   n2n - *T Mc tßj ß2] * n -fi n - Dn 

The damping matrix, D, is then explicitly 

^llal + *21a2) Mc (*1161 + *21ß2) (*llal + *21a2) Mc (*12ßl + *22ß2> 

(*12al + *22a2) Mc(*llßl + *21ß2) (*12al + *22a2) Mc ^12ßl + *22ß2) 

M (i.e., the desired We want to choose the o's and ß's so that: (1) D». « 

critical mode damping), and (2) the closed-loop system is stable. 
From (1), we find that 
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' 

r1 
hi (i 

ß. 

*12 etl) 

.-1 
(7-24) 

(1 - $1 *12) *22 

From (2) we find that, in view of Eq. (7-24), 

D '11 *21 ^22 2 + (*11 " *21 *12 *22) al Mc *22 *21 + (*11 " ♦n *21 fllf 

«1  + C2 ai) Mc (C1 + C2 ßl) 

where C. ■ 1.6603, C- » 1.9389 are known. Proceeding further, we find that 
D12 " Cl + C2 "l and D21 " ^Cl + C2 H^'    Further examination of the damping 
matrix, D, reveals that it has rank 1 (as claimed above), but that the 
residual mode damping with coupling Ignored, DJJ, can be made positive by at 
least some choices of ot^» ßl (precisely, for ai and ßi  both less or both 
greater than -0.856). Furthermore, when 

(c, + c2ai) (^  +  c2 ep (7-25) 

the damping matrix will be symmetric, which implies that the "essential 
character" of the open-loop modes will be retained in the closed loop system. 
Working out the closed-loop system matrix under the assumptions of Eq. (7-24) 
and! (7-25), we find 

a 

0 

0 

2 -u. 

0 

0 

0 

2 

where u.  . « 2ir f. -. The Routh array is 

1 

Mc (Y2 f 1) 

2 
"2 + Y2 2 

"l 

(Y2 '    + 1) 

1 

0 

-MCY^ 

-MCY 

0 

1 

~MC Y 

-M c _ 

(4+ 4) 
c ^2 Y   "'l' 

2 2 
03,   ü)2 

2 2 
^2 

Mc (Y + 1) Y (U2 + (Y - 1) "j <»>2 + Wj) 

(- 
2^2 
2 + Y M 

2J 
2 2 
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a»^ 

We did not optimize y. but observed that even though D is singular, there are 
some values of y which guarantee closed-loop stability for anjr choice of 
Mc > 0. In particular, this is true for y " 1, which is the value we use 
subsequently. 

A very significant observation should be made at this pointJ The 
value y « 0 completely decouples the residual modes in the closed-loop system, 
but by the same token (as is apparent from the fourth row of the Routh array!) 
it does not guarantee strict stability, because (obviously) the residual modes 
are assumed to have no datiping. Thus, although modal control (of mode 2) is 
our stated objective, it would be entirely incorrect to pick y » 0 for the 
purpose of achieving "perfect" modal control and "perfect" decoupling! The re- 
sulting controller would be very highly sensitive to any disturbances of the 
residual modes (even assuming that $ and ft* were perfectly known - which thpy 
are not), and would exhibit very undesirable responses (e.g., to F-(t) = sin 3t), 
This is a very easy trap to fall Into. 

yields 
The more appropriate value, y = 1, guarantees closed-loop stability and 

a = ß = -0.3407 

a2 - S2 - 1.9398 
(7-26) 

with 

M. 
1 

u 
To summarize, the problem is now to design M for the system 

-0), 

-U) 
2 
2. 

nl + 
■I 

u    + 
0.606 

kJ i 0.365 
F2(t) 

y - [1 1] 

(7-27) 

7.3.3 Modelling of Noises and Disturbances 

Starting from Eq. (7-27), we can extract the critical «ode equation 

n2 - -«^2 
n2 ' Mc y + 0-365 F2Ct) 

(7-28) 
y - ng + ij. 
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< 

,  » 

The  two disturbances are 

(1) An initial condition q2(0) - 1, which implies 

ro- 
n(0) 

'1.21 " 

» n 
.0.729. 

(0) - 

LoJ (7-29) 

and   (2) A steady disturbance 

F2(t) sin 3t 

In Eq. (7-28), we are not permitted to make an explicit model of the output 
disturbance f|.. 

Our very crude approach is to approximate F»^) and ^(t) in Eq. 

(7-28) by white noise processes. The intensity of these processes is based 
on the disturbances (1), (2), and the behavior of the uncontrolled system. 
Thus, the design model will take the form 

* - Ax + Bu + v 

y » Cx + w 
(7-30) 

where 

[V 
"     t u « u 

0    l' 

-to2    0 
B • 10  1] 

and v, w are independent white noise processes with (formally) 

£ 

E 

E v(t) VT(T) 

E w(t) WT(T) 

V«(t - T) 

W«(t - T) 

In choosing V, W, we would normally Jook at whether disturbance (1) or 
(2) were worse and use either a worst-case or average value based on the 
disturbance magnitudes. In the present case, (2) was judged to be more signi- 
ficant than (1), though precise estimates of the relative importance of the 
effects were not computed. In the first equation of (7-28), we estimate 
lF2(t)| - 1 and thus tsHe 

0 

0 
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with 

V22 = (0.365)
2 |F2(t)| = (0.365)

2 

and in the second equation of (7-28) the steady-^ate driven response to 

^ = - ü)2 r^ + (0.606) sin 3t 

takes the form 

with 

Thus 

A - (0.606)/(uj - 9) 

fi  - 3A cos 3t 

n-jCt) = A sin 3t 

and   Kl ^ |3 (0.606) f (u)1 - 9) | = 0.2089. Thus we took W - 0.0436 = 

(0.2089) , These approximations are so crude that evidently different esti- 
mates could be made. In the results of the next section, V22 and W are carried 
as parameters so that the effects of different choices can be evaluated. Note 
that we have already guaranteed stability for any (positive) value of Mc. 

7.3.4 Application of the Stochastic Output Feedback Approach 

The stochastic formulation of the output feedback problem captures an 
essential idea of classical control design: if the gain Mg is chosen too 
small, the effects of the plant disturbances, v, will be significant; if Mc 
is too large, the output disturbances, w, will create problems - thus the best 
value of Mc will represent a compromise between these two extremes. 

More specifically, WO seek Mc such that 

J(Mc) - lim E  |xT (t) Q x(t)l 
(7-31) 

is ninimized (for some positive definite symmetric matrix Q) subject to the 
dynamic equation (7-30). Notice that if Q • K^HC, then Eq. (7-31) represents 
the sum of the nean-square values of the responses r * HgX. We chose Q in the 
form 

1   0 

0   q 
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The necessary cotiltlon» for this problea are <cf. Eq. (7-17) through (7-19)) 

m 

T   -1  T 
Kg - (B^B) X Bl? (7-32) 

T -1 Kc « XC W 
x 

where the 2x2 symmetric positive semldeflnlte matrices P and X are solutions 
of 

IT i 
ffBT?VC + ^C^B^B - Q + PA + ATP (7-33) 

and 

and 

(I-irB) K^WiJ  (I-ifB)
T - -V + KCWKC

T + AX + XAT 

TTj - BKg and ^ - KCC. (7-34) 

Letting 

pn P12 
.  x • 

'Xll X12 

[p12 p22. *12 X22 

it is possible to show algebraically that 

P12 x12 
p22    *22 

«here 

x  ■ 0 x12  u 

x99 " vV-Tw  (independent of q) *22  v '22 

and thus 

M  - /V 2/W - 1.7480 

Evidentlyt this Incorporates the essential aspects of the tradeoff «entioned 
earlier In this section. 
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The predicted damping ratio for the critical mode is  then 

M 
1.748 

2ü)2  4IT(0.412) 
0.338 

Finally, we also used the same methods to work out another test case where 
o. •= g. = 0, a. » ß « 1 are not optimally determined but are stabiltzable 

and correspond to a "common sense" approach to the choice of weightings for 
the given disturbances, i.e., we control and measure q» because the distur- 

bances act on it. These results are given in Section 7.5.1. 

7.3.5 Conclusions 

First we answer the specific questions posed in Section 2.5: 

(1) The computation of the gain matrix is described in Section 7.3.4. 
The SOFC method itself involves the solution of Eq. (7-32) through 
(7-34), which can be carried out analytically for the present example. 

(2) The method guarantees stability of the residual modes via Routh's 
criterion. For the choice of parameters used here, the residual 
and critical mode damping ratios are predicted to be about 1.6 and 
0.338 respectively. The actual transient responses are shown on the 
accompanying illustrations. 

(3) Control and observation spillover are essential to achieving 
stability when combined sensor and actuator signals are employed, 
as in Section 7.3.2. These effects are accounted for both in the 
truncation and stochastic modelling. 

(4),(5) These questions are answered by the accompanying plots (Figures 7-1, 
7-2). The response to initial conditions, (4), was not explicitly 
designed for, although a more refined estimation of the stochastic 
terms might have improved this response somewhat. 

(6) There are limitations on the damping of all modes which are 
imposed primarily by the use of combined sensors and actuators 
rather than the SOFC method itself. By appropriate choice of 
noise statistics V,«, W, any desired damping can be achieved for 

the design model involving only the critical mode. However, this 
will not be the actual damping in the full closed-loop system. 
The "identity" of the modes is preserved under the type of 
feedback proposed here, whereas it may not be with other types 
of feedback. 

(7) A variation of the method can be applied (see Section 7.5.1) «n long 
as the number of velocity sensors and force actuators is not Iterfg 
than the number of critical modes. 
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(8) In principle, the proposed approach can be carried through for 
any combination of position and velocity sensors. 

We conclude with a few remarks about the possible relative merits of 
the proposed approach. The approach Involves several approximations and 
probably can be Improved, even In the context of the present example; under 
the Imposed design constraints It Is doubtful whether there exists any pro- 
cedure which Is truly "optimal" In the absence of complete knowledge of all 
of the residual modes. However, the methodology does generalize to the case 
of a large number of critical and residual modes and would probably yield 
results qualitatively similar to those obtained in the present case. 

The aspects of the example which require further investigation are: 

(1) The algorithm for computing optimum sensor and actuator 
combinations. 

(2) The modelling of disturbances due to residual modes in the design 
model. 

(3) Proposed computational algorithms to solve the SOFC equations for 
higher order systems need to be coded and tested. 

None of these tasks is currently expected to be Insurmountable, though 
undoubtedly additional issues will arise. 

7.4 Conclusions 

7.4.1 Summary of Advantages (see Section 7.2) 

(1) Explicit and complete. 

(2) Flexible. 

(3) Robust. 

(4) Incorporates recent theoretical advances. 

(5) Qualitative Insights. 

(6) Well-suited to large-space-structure control problem. 

7.4.2 Summary of Disadvantages (see Section 7.2) 

(1) Computational requirements might be heavy. 

(2) No prior guarantee of closed-loop stability. 

(3) No prior guarantee of existence of optimum gains. 

(4) No prior guarantee of meeting traditional design specifications. 

(5) Immature. 
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7.4.3 Final Conments 

Naturally, one must ask whether the disadvantages are insumountable, 
and if not, whether they outweigh the advantages. We are Inclined to answer 
these questions both in the negative. The disadvantage 7.4.2(1) of heavy 
computational requirements is likely to be surmountable, although no radical 
innovations are apparent. A likely possibility is to apply available techniques 
for estimating the eigenvalue of a large matrix having the largest real part. 
The estimation can be used with the guidelines of Section 7.1.2.2 to yield an 
accuarate initial guess for the sensor and actuator combinations A , ! 
that the large eigenvalue problem c 

so 

det 
XI - lu 

+ Ü  XI + D 
- 0 

need only be solved once or twice. The disadvantages 7.4.2 (2), (4) are felt to 
be inherent to the SOFC method described in Section 7.1, but they are not fatal; 
the designed gains must simply be tested on the full model to determine tran- 
sient response and disturbance rejection properties. A procedure for itera- 
tive improvement of the initial gain estimates has been described. Disadvan- 
tage 7.4.2(3) may or may not be inherent to the method; however, a feasible 
numerical algorithm is  almost surely guaranteed in some cases; the design 
example yielded re- .-onable results. Note that the truncated problem is 
generically stab^ zable. The only solution to the problem of immaturity is 
to gain some practical experience. 

The potential advantages, by contrast, are substantial. These have 
been adequately described in Sections 7.1 and 7.2. Many of the advantages, more- 
over, cover the pitfalls of alternative methods. Thus, although there is a 
risk of misallocating resources by pursuing the SOFC method, there is also a 
possibility of covering unforeseen diradvantages of alternative methods. 

As a final remark, it must be noted that there are several potential 
ways of changing and improving the SOFC method presented in Section 7.1 which 
would merit further investigation. The two most basi- areas for improvement 
are the possibility of a rigorous approach to model aggregation (to replace 
the ad hoc truncation procedure), the incorporation of control-energy penalties 
in the performance index, and the extensions to include more general sensor 
and actuator models. These are all considered to be feasible. The biggest 
potential payoff lies in the area of model aggregation - this holds forth the 
possibility of prior determination of closed-loop stabilizability, and requires 
a fundamentally new development based on asymptotic properties of finite- 
element approximations as the model order approaches infinity. The other 
areas of potential improvement merely require extensions of technical details. 
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7.5   Appendices 

7-5.1    SOFC Method Applied ^hejCase^-^ , n a .3 =1 

and 7.3!5! TttS IL^J-HU*11™ v^y "■" find the equations 

2      n  ' Uj      0 
\ 0.606 0.606] 

0    -ml 
>. 

+ 
0.365 

ü + 
0.365 

used In Sections 7.3.4 

F2(t) 

y = f0.606  0.365] 

Proceeding as In Section 7.3.4. we find a design 

x » Ax + Bu + v 

y » Cx + w 

model 

with 

A = 

■                            • 
1-         ■, 

0    1 

-ÜJ2    0 
, B - 

0 

0.365 
. C » [0, 0.365] 

and 

n2 1     0' 

n2 
L   . 

. Q - 
0      q 

• 

E{v(t)} = 0, E{v(t) VT(T)} 
0    0 

6(t-T) 
0 (0.365) 

H(w(t)} .= 0. E{w(t)w
T(T)} - (0.606)2(0.0436) 6(t-T) . 0.016 6(t.T) - w 

«(t-T) 
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The expressions for calculating M are exactly the same as In Eq. (7-32) throagh 

(7-34). Working through the algebra, It again turns out that 

* 
M    = 

c 
1 
W 

"p12X12    IL 

[   P22           X22j 

X] 

r            Si 

2'° 

•\ ^22 W 

^22 0.365 

so that 

M* = (0.365)"1 
c hz^ = -2.8845 

Responses to the two disturbances are shown in Figures 7-3 and 7-4. It is seen 
that the transient response is quite fast, but that the response to the sinu- 
soidal disturbance, while less than the open-loop response, is relatively 
large. The closed-loop system is stable. 
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7.5.2  A Sensor/Actuator Comblnaticn Which Destroys Output-Feedback 

Stabiltzablllty of the Example 

In the course of solving the two-node example, we came across some 
values of (ou, o«, ß1, ß«) which destroyed stabilizability by introducing a 

destabilizing coupling of critical and residual modes. Consider 

(o1, ar  ß1, ß2) = (-0.584, 1.37, -2.033, -2.033) 

Corresponding to the differential equation following Eq. (7-23) In Section 
7.3.2, we find 

-(0.546)' 

-(2.59)' 

0.454 M  -0.199 M 
c       c 

2.28 M   -1.0 M 
c       c 

\ 

-n -D 

The characteristic polynomial is 

s4 + 0.5463 M s3 + 7.006 s2 - 2.745 M s + 2.0 

The Routh array is 

1 7 .006 2 0 

0.5463 Mc -2 .745 M^ c 0 0 

12.03 2 0 0 

-2.83 M c 0 0 0 

2.0 0 0 0 

Consequently, no value of M can achieve stability (i.e., whatever value M 
c ^ 

assumes, there will be sign changes in the first column of the array). In 
this case the stabilizability hypothesis is violated and no output feedback 

solution exists. 

7-31 

• i.t,-,-«Smm^¥z. 

, -NCTHC..W««»—~- 



References 

1. Johnson, T.L., "Minimum-Variance Fixed-Form Compensation of Linear 
Systems," Proc. 18th IEEE Conference on Decision and Control, San Diego, 
California, January 1979. 

2. Newton, G.C., L.A. Gould, and J.F. Kaiser, Analytical Design of Feedback 
Controls, New York, J. Wiley & Sons, 1961. 

3. Axsäter, S., "Suboptimal Time-Variable Feedback Control of Linear 
Dynamic Systems with Random Inputs," Int. J. Control, Vol. 4, No. 6, 
pp. 549-566, 1966. 

4. Levine, W.S., T.L. Johnson, and M. Athans, "Optimal Limited-State- 
Variable Feedback Controllers for Linear Systems," IEEE Trans. Automatic 
Control. Vol. AC-17, No. 6, pp. 785-793, December 1971. 

5. Plataman, L.K. and T.L. Johnson, "A LQG Control Problem with Innovations- 
Feedthrough Solution," IEEE Trans. Automatic Control, Vol. AC-21, No. 5, 
pp. 721-725, October 19/6. 

6. Blanvillain, P.J. and T.L. Johnson, "Invariants of Optimal Minimal-Order 
Observer-Based Compensators," IEEE Trans. Automatic Control, Vol. AC-23, 
No, 3, pp. 473-474, June 1978. 

7. Blanvillain, P.J. and T.L. Johnson, "Specific-Optimal Control With a 
Dual Minimal-Order Observer-Based Compensator," Int. J. Control. Vol. 
28, No. 2, pp. 277-294, 1978. 

8. Naelje. W.J. and O.H. Bosgra, "The Design of Compensators for Linear 
Multivariable Systems," Proc. 4th IFAC Symposium on Multivariable 
Technological Systems, Fredrickton, NB, Canada, July 1977. 

7-32 



SECTION 8 

CONCLUSIONS 

8.1 Purpose 

Preceding sections (3 through 7) of this Volume contain in-depth studies 
of the five output-feedback methods selected for evaluation (Section 2) as 
candidates for controller design tools with large space structures. Each 
study includes a discussion of strong and weak points, one or more designs 
with a specific (common) example, and reconmendations for further work. We 

v     deliberately eschew a pedantic restatement in this section of advantages, 
disadvantages, and "conclusions" already given for the individual methods. 
The purpose of this section is to identify some specific directions in which 
it seems advisable to concentrate future research efforts. In order to do 

A     this, we focus on a comparison of the performance of the individual designs 
against the common test example, and interpret the findings in the light of 
our general insight into each method obtained by the studies in Sections 3 
through 7. This approach exposes certain features of the Individual design 
methods which tend to be overlooked when the methods are studied in isolation. 
Although evaluation against a single test example cannot render a definitive 
scientific Judgment on the relative merits of these design methods, it does 
assist in making a rational decision as to where near-term research efforts 
should be concentrated. 

8.2 Performance Comparisons 

8,2.1 Data Base 

Seven specific stable controller designs for the test example have been 
reported in previous sections. Including two each for the methods of Kosut 
(Section 6) and Johnson (Section 7). The prinlcpal parameters of the closed- 

*     loop system for the test example incorporating these designs are summarized 
In Table 8-1; corresponding characteristics of the open-loop system are also 
shown. Other reported controller designs which produced an unstable closed- 
loop system are not discussed further. 

Some important features of the closed-loop system response to initial 
conditions for these designs, together with associated data for the open-loop 
system, are summarized in Table 8-2. The particular initial condition assoc- 
iated with this table is a positive unit displacement of the outer mass of the 
two-mass system, with all other system states held at zero. (Time response 
plots in the physical coordinates have been shown in earlier sections.) Re- 
sponses to initial conditions on the modal coordinates were also studied for 
each design, mainly to investigate spillover effects. Such initial conditions, 
although physically realizable, are, in a physical sense, somewhat contrived. 
Henre, similar tabular summaries for such Initial conditions are not shown, 
altuough the results were qualitatively used in formulating conclusions. 
(Typical responses to modal initial conditions for the two stable Kosut designs 
are shown in Figures 6-10, 6-11, and 6-4, 6-5, respectively.) 
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Finally, key features of the frequency response of the closed-loop 
system for each of the designs are summarized in Table 8-3. Data shown for 
the specific frequency w »= 3 radians/second allow these tabular data to be 
related to the time response plots obtained for the disturbance input sin 3t 
that were shown in earlier sections. 

8.2.2 Test Design Results 

The modal decoupling method (Canavin) permits free selections of the 
damping ratio for each critical mode, but has no influence upon the damping 
ratio for residual modes. This fact dominates the test design, which exhibits 
the desired damping ratio for the critical mode, but has the lowest value for 
residual mode damping of all the test designs. As a result, the settling 
time of the physical coordinates in response to initial conditions exceeds 
that for any of the other test designs. Moreover, the respou»« to a periodic 
disturbance exhibits the highest steady-state gain in the vicinity of the 
open-loop residual mode frequency, and the smallest phase margin, of any of 
the test designs. The discussion in Section 3 emphasizes the guarantee of 
stability with this method. In contrast, the relatively poor performance 
exhibited by the test design largely oversuadows the fact that the system is 
stable over a large range of possible parameter variations, since none of 
these variations has any significant influence over the residual mode damping 
ratio. 

The pole assignment method (Davison-Wang) does not in general permit 
placement of all system poles as desired, even for the design model, let 
alone poles corresponding to residual modes. The Implications of these facts 
upon performance is clearly illustrated by the relatively poor performance of 
the test design in the time domain. The modal characteristics contrast sharply 
with those of the Canavin design: not even 1/5 of the desired damping for 
the critical mode is achieved, whereas the residual mode Is extremely over- 
damped. These two properties combine to produce excessive settling times for 
the physical coordinates in response to initial conditions—nearly as long as 
for the Canavin design, and more than twice that of any of the other designs. 
In addition, the excessively high gains used result in much higher peak 
amplitudes than for the other designs. The frequency response, however, is 
quite good, exhibiting no resonance regions and the largest phase margin of 
all of the designs. Overall, however, the design must be Judged unsatisfactory, 
since the primary design objective (?- _> 0.1) is not attained.-^ 

Performance of the optimal output feedback (Levine-Athans) design is 
somewhat improved over, but qualitatively similar to, that of the Canavin design. 
The principal difference is that in the Levine-Athans design, the residual 
mode damping is substantially larger, although still small in absolute terms. 
The lack of performance relative to designs yet to be discussed is attributable 
largely to the inability of the method to influence the damping of residual 
nodes. 

In fairness, it should be noted that the low order of the design model tends 
to place the results by this method in an unfavorable light. In a higher 
order design model, a higher percentage of the poles can be assigned (e.g., 
3 of 4; rather than 1 of 2, as in this case), possibly leading to better 
performance than exhibited here. 
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The similarity of the suboptimal output feedback (Kosut) method of 
minimum error excitation, as published, to the Levine-Athans method is re- 
flected in the fact that the test design by the Kosut method for the stable 
single sensor configuration Is virtually identical to the Levine-Athans de- 
sign (which used the same sensor configuration). Marked performance improve- 
ment is exhibited by the design» applied to the two sensor configuration, 
which is made possible by the extensiions to the Kosut method developed in 
this volume. The additional sensor gives rise to free design parameters which 
are used to eliminate residual mode excitation of the critical mode dynamics, 
and to set at will the value of the residual mode damping ratio; for demon- 
stration purposes, "optimal" damping for the residual mode is chosen. Settling 
time of the physical (as well as the modal) coordinates in response to initial 
conditions is the shortest of all the test designs. In response to a periodic 
disturbance, the steady-state gain resonance peak at the residual mode fre- 
quency is completely eliminated, and the phase margin is Increased by an order 
of magnitude, relative to the single sensor design. 

The two designs using the stochastic optimal output feedback (Johnson) 
method are distinguished by the choice of the weighting factors used to pro- 
duce synthetic sensor and actuator signals (Section 7.3.2). Both designs 
exhibit performance which is slightly degraded in the time domain, and slightly 
improved in the frequency domain, relative to the Kosut two-sensor design. 
In contrast to the other design methods, this method deliberately enforces 
coupling between the residual and critical modes in order to stabilize the 
residual modes. As with the extended Kosut method, the relatively good 
performance of these designs stems largely from the existence of design param- 
eters which can substantially Influence the dynamics of (a finite number of) 
residual modes. 

Of the design methods studied, only the Canavin and Levine-Athans methods 
guarantee stability in the closed-loop design model. The test design compar- 
isons show that the assurance of design model stability, although necessary 
for satisfactory performance, is by no means sufficient to assure a desired 
level of system performance as evaluated by several classical time-domain 
and frequency-domain criteria. 

8.3  Recommendat Ions 

The theoretical studies of Sections 3 through 7 together with the test 
design comparisons discussed in this section provide a rational basis for 
deciding where to concentrate research efforts in the near future. Specific 
recommendations regarding such efforts are briefly outlined below. 

8.3.1 Discontinuations 

The unsatisfactory test design produced by the pole assignment (Davison- 
Wang) method on such a simple example suggest that major theoretical advances 
in this method are required to make it uitable for LSS controller design. 
It is felt that the probability of success in such an effort is neither high 
enough, nor of sufficient value to the LSS control problem, to warrant con- 
tinued study. We therefore propose discontinuing study of this method for the 
present. 
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8.3.2 Theoretical Studies Only 

The marginal performance of the modal decoupling (Canavln) and the 
optimal output feedback (Levine-Athans) methodf Is principally due to a lack 
of influence of the methods upoa residual mode dynamics. It Is felt that 
theoretical study focused on an attempt to extend these methods so as to en- 
able the designer to Influence residual mode dynamics is warranted. In 
particular, the similarity between the Levine-Athans method and the Kosut 
method of minimum error excitation, together with the extensions to the Kosut 
methods developed in this volume (Section 6.2.3), lead us to expect that rapid 
and significant progress could be made with the Levine-Athans method. No 
large simulations with these methods are recommended at present. 

8.3.3 Theoretical Development and Simulation 

The excellent performance of the test designs using the suboptimal out- 
put feedback (Kosut) method, as extended, and the stochastic optimal output 
feedback (Johnson) method, suggest that a major effort In two (essentially 
parallel) directions should be undertaken: 

(1)   Significant theoretical develcpmentr already reported should be 
continued and refined. Particular focal points of interest 
would Include, but not be limited to: 

(a) Systematic guidelines for choosing free design parameters 
associated with redundant sensors so as to Improve system 
performance. 

(b) Effects of a decentralized Information structure. 

(c) Development of efficient computational algorithms 
(Johnson). 

(2)   Simulations of much larger dimensional systems using these 
controller design methods should be undertaken. 

It should be observed that- these rtcommendations relative to the Johnson 
method Involve relatively high risk, because of the complexity of the method, 
but promise quite high payoff, because of the broad scope of the method. In 
contrast, the recommendations relative to the Kosut methods Inolve relatively 
low risk, because of the simplicity of the method, but promise somewhat lower 
payoff, because the method has narrower scope—in particular, it does not 
treat stochastic effects. 



APPENDIX A 

FUNDAMENTAL MODAL DYNAMIC MODELS 
OF LARGE FLEXIBLE SPACE STRUCTURES 

A.l Introduction 

A flexible space structure is physically an infinite-dimensional dis- 
tributed parameter system. In order that the finite-dimensional mathematical 
model (2-1) can satisfactorily approximate the actual structure under study, 
a large number (L) of generalized coordinates is required, and a large number 
of modes of vibration must be modeled. Theoretically if one wishes to control 
the vibration of such a structure, one should control all of the vibration 
modes. However, various practical reasons (e.g., limitations on the total 
weight of actuators, sensors, and control equipment, limitations on the number^ 
and type of actuators used, and limitations on the capability of onboard com- 
puters and memory) will prevent one from doing so. Feasible design of vib- 
ration control for a large flexible space structure must, therefore, be based 
on a finite-dimensional model of permissibly low order. On the other hand, 
not all vibration modes may be of equal importance to the performance of the 
structure, and not all modes will be equally excited. Among the excited modes, 
some may be of critical importance, while others have only secondary effect. 

Two approaches for simplifying the finite-element model [Eq. (2-4) to 
(2-6)] are discussed in Sections A.2 to A.4. Methods for determining the 
relative Importance of the vibration modes are outlined in Sections A.5 and 
A.6. Section A.7 contains a comment on the direct applicability of the con- 
ventional frequency-response method to large flexible space structures. 

A.2 A Reduced-Order Model 

Critical modes are usually of low natural frequencies, but not necessarily 
of the lowest ones. In the frequency spectrum, critical modes may be inter- 
spersedwith residual modes. Let i^r^t^r^U  J"l N, denote the critical 

modes, and t^nkf^oiJ» k"l»...,M, denote the remainder of the L modeled modes. 

Then the finite-element modal dynamic model [Eq. (2-4) to (2-6)] can be 
partitioned into two parts [like Eq. (2-7) to (2-9)] as follows 

\ + ncnc * B.u 
C A 

\ + VR ♦RV (A-l) 

y  '   C
PVC 

+ cvVc + C
PVR 

+ SV'R 
q  "  *cnc + VR 

A-l 



A first and the most common approach in reducing the large model (A-l) 
is to completely Ignore all the residual modes by assuming T) (t) = 0. What 
is left is the following fundamental modal design model   '& 

'^■^C = $JBAU 

y = cp$cnc + Vcnc (A-2) 

^ z    *CnC 

The design of control systems is then based on such a reduced model of dimen- 
sion N « L. 

T 
The assumption that riD(t) = 0 may not be justified; since $„8. may 

K R A 
not be Identically zero, control may spill over to residual modes and signifi- 
cantly excite them. Thus, the control systems designed need to be evaluated 
first with the presence of some residual modes. For further evaluation, 
successful designs may then be Implemented or simulated in the large- 
dimensional finite-element model in the presence of all modeled residual 
modes. See Figure 2-1. 

A.3 Another Reduced-Order Model 

Since flexible space structures are coupled distributed-parameter sys- 
tems, the applied forces and torques may desirably influence the critical modes, 
but may also undesirably influence the residual modes. Among the residual 
modes, there may be some that, if ignored, might hamper the performance of the 
control systems thus designed, but, if taken into account in the design or op- 
timization, might assist the performance. This subset of the design residual 
modes may, for example, include those residual modes on which undesirable in- 
fluence (i.e., spillover) from the acturators is inevitable. 

A second approach in reducing the large model (A-l) is to completely 
ignore all the residual modes except the subset described above, and to Ignore 
only the dynamics of the latter by assuming that nnTj(t) = 0, where subscript 

DRV 

"DR" denotes the Indicated subset of design residual modes. 

Implies nDR(t)        "'2-T 

Since riDR(t) 0 

'SR^DRV
1
^' 

Eq' (A"1) reduces to 

\ + ^c *CBAU 

y    =    SVc + SVC ' SVÄV (A-3) 

^   :   Vc - *DRÄR
B

A
U 
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Note that the fundamental modal design model remains the same as 
before, but vectors q and y are augmented with terms containing the input u. 
The design/optimization of control systems is then based on such a reduced 
model. The validity of assuming nni>(t) = 0 and ignoring all other residual 

modes is open to question. Thus, the control system design still needs to be 
evaluated first with the presence of design residual modes, and then the 
evaluation residual modes. Successful designs may be implemented into the 
large finite-element model for further evaluation. Again see Figure 2-1. 

A.4 Comments on the Reduced-Order Models 

The first reduced-order model, Eq. (A-2), was used in References 1 
,-     and 2. It is similar in principle to Davison's reduced model [3], fl3j. 

Thus, it may also suffer from having large steady-state errors in the q 
coordinates while providing small errors in the dynamic behavior of the 

&    critical modes, according to the historic disputes between Chidambara and 
i ., Davison, [4] through [8]. 

Special forms of the second reduced-order model, Eq. (A-3), were con- 
sidered in References 9 and 10; this model is in principle similar to 
Chidambara's second model [6], [14]. Thus, it may also suffer from having 
far different dynamic behavior in the q-coordinate while providing correct 
steady-state response to a specific input, according to Davison [7], [8]. 
Without sufficient damping on the design residual modes, such a reduced-order 
model cannot be developed on the basis of singular-perturbation theory as 
commonly understood [11], [12]. 

Both models will have more problems with large flexible space structures 
because of light damping in the systems. Moreover, the following two basic 
questions common to both reduced models have not been addressed bsfore. How 
shall the number and the location of the actuators on the struct», re be selected 
so that all the critical modes are controllable? How shall the location of 
the actuators on the structure be selected so that control spillover to resid- 

! i uai modes can be minimized? These two questions (with the equivalent ones 
for the sensors) must be properly answered before effective design of control 
systems based on either of the reduced models can be made. 

A.5 Magnitude of Individual Modal Responses 

The relative Importance of the L vibration modes can be deterailntd by 
comparing the relative magnitude of their response to expected ej.citations. 
Rewriting the discrete model (2-1) in terms of the vibration modes and modal 
coordinates 

^ + Q2n = ^f (A-4) 

and taking the Laplace transform yields 

H(s) = diagj 2 
1 2 ,...,  2 

1 2}rTF(s) + Sn(0) + 'n{0)i       (A"5) 
(s + c^     s + ^) ( ) 

1 A-3 
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where H(s) and F(8) are the Laplace transforns of the tliae functions n(t) and 
f(t), respectively. 

A.5.1 Free Vibration ' 

With F(s) = 0, Eq. (A-5) can be rewritten in terms of initial conditions 
q(0) and 4(0) as follows 

H(s)    =    diag|-2 
1    2 ,...,    2 

1    AUTMrsq(0) + q(0)] 
lS  + ^        S  + ÜL   • 

This equation is useful for analyzing free vibration of the structure subject 
to various initial conditions.  By varying the vectors q(0) and 4(0) in the 
equation over an expected class of initial conditions at expected locations on 
the structure, one can determine what modes of vibration are seriously excited 
most often, and hence require active control. 

To a generic initial condition (q(0), q(0)), the Laplace transform of the 
jth modal response n.(t) is 

Hi(8) * "T^'T *MS<1^ + 9(0)1 
J       s-4 + ajf J L J 

i 
The time-domain response is thus given by 

T T •   1 n.(t) « «J^Mq^) cos üj.t + (t>.Mq(0) —sin u.t 

It describes a sinusoidal function with rms (root-mean-square) magnitude given 
by 

.yOT/UjMq«))]2 + [^Mq(0)/a)J2 jrms     -  -y.Tj-".-..     .rj.-iw/.wj 

Comparison of the rms magnitude of the L modal responses 

^rms' ^rms \riM 

will determine what modes are seriously excited by the given initial excitation 
(q(0), q(0)). Note that with everything else being unchanged, rms magnitude 
n.   increases as natural frequency u. decreases, jrms ^   J    j 

A.5.2 Forcea Vibration 

With q(0) - q(0) - 0, Eq. (A-5) becomes 

H(8) diag 
) 2 ^ 
{8    + 0) 

2  2 ^ 24 *
lF(s) 

A-4 
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This equation is useful for analyzing forced motions of the structure subject 
to various external disturbances. Onboard equipment, the space environment, 
and maneuvers (e.g., slew) may introduce persistent, intermittent, impulsive, 
or random disturbances to the space structure, and hence cause it to vibrate. 
By varying F(8) in the equation over an expected class of disturbance forces 
at expected locations on the structure, one can also determine what modes are 
seriously excited most often, and hence require active control. 

For example, consider the sinusoidal disturbances caused by onboard 
equipment at various locations with possibly different frequencies of vib- 
ration. A generic sinusoidal disturbance force with frequency 13, at location 
k can be expressed as 

f(t) = b\(t) (A-6) 

! i 

rr -i 
uk(t) =  / ak + 1 sin (3kt + tan  ak) (A-7) 

k    k     k 
with b = (b.,..., b ) denoting the influence vector. Let U. (s) dencte the 

Laplace transform of the sinusoidal disturbance input u, (t). Then 

'     1 1  ) .T. H(s) diag< 
2 , 2 ''' *' 2 ^ 2 

S  + 0). S  + ÜL 

rbV (s) 

Obviously, any mode (say mode j) whose frequency is equal, or sufficiently 
close, to some of the disturbance frequencies (say $. ) will undoubtedly be 

critically excited, unless the disturbance has no influence to mode j (namely, 
T k T k unless $ b = 0). Any such mode, with $ b ^ 0, must be considered a critical 

mode. * ^ 

Consider the case where none of the natural frequencies u, is close 

to any of the disturbance frequencies 3. . The Laplace transform of response 
n (t) is 

Hj(s) ' TT" 2 *jb TTX (A-8) 
s  + (JJ 

.1 s + ß, 

By partial-fraction expansion, it becomes 

Hjte) 
*jb 

-ßk + u. 

V + \ s  +  $, 

2        2 
8    +ßk 8

2 + 
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Hence, the Clawä-doraaln response ri.(t) is 
•J 

n.(t) = vk-r; lUi+1 sin fV + tan":L \] 

'7?+ ßk/ü)j8in ^+ tan''1 (vj/ßk)] I     (A'9) 

The rms magnitude of this periodic function is 

J  -3, + w, ^ J 

K    i 
*^ 

Similarly, comparison of these rms magnitudes determines what modes are ser-     *^* 
iously excited by the sinusoidal vibration of the onboard equipment at loca- 

T If 
tlon k. Note that, with influence jiji.b | being the same for all modes, the 

rms magnitude TI.   Increases as the natural frequency ü). approaches the 
■J J 

disturbance frequency 3,» or as the natural frequency decreases. 

It is worth mentioning that if one followed the usual frequency- 
response method [15]-[20] for undamped systems, one would erroneously obtain 
the rms magnitude as 

^jrms -    0.707\*y--2±~2\J^Vl (A-ll) 
-\ + ^ 

2        2    2 
missing the term a + 3,/u. under the radical sign. See Eq. (A-20) of Section 

A. 7.1. The difference * 

J^'^^rJ^ 
can result in a significant error in the comparison of the L rms magnitudes, 
since it varies with the vibration modes. Moreover, if one assesses the 
effect of the disturbance by actually measuring the rms magnitude of response 
n. (t), one may over-assess the effect, because the measurements correspond 

to Eq. (A-10), rather than Eq. (A-ll) as conventionally used. 

A.6 Individual Contributions to Line-of-Sight Error 

The relative importance of the vibration modes can also be determined 
by comparing their individual contributions to a given performance index on 
the attitude or shape of the structure, such as the line-of-sight error. The 
Laplace transform Q(s) of the response q(t) can be obtained from Eq. (A-5) as 

A-6 



Q(s) = *H(8) 

L 

^;2T7*j{*jTF(s>+sn1(0) + n1(0): (A-12) 

A'6.1 Free Vibration 

With F(s) =0, Eq. (A-12) becomes 

Q(s) = V!^L^^, 
j=l S  + ü) 

This equation is useful for analyzing the effect on the attitude and shape of 
the structure when a specific class of vibration modes is initially excited. 
Given a performance index, the relative importance of these modes can then 
be assessed. 

For example, consider the line-of-sight error which is expressed as a 
linear combination of the generalized coordinates as follows 

T    A e = C q = c^ + ... + c 
L^L (A-13) 

tra^fo™ i^;;;^!^^^1'-"6^^ 0f COnstant coefficients.    Its Laplace 

E(8)  =  CTQ(s) 

j=i 

T 3^(0) + nAO) 

s2 + Wj
2 

Consequently, the rms magnitude of the line-of-sight error is 8lven by 

L         

«rms ' o.yoy^lc^l/^^^r^T 
J=l J      J 

where the term 

>ms " ^^l^jiy^W + n^O)/.2 

represents the rms contribution from mode j. Comparison of the individual rms 
contributions eirjns» • • • »eT,-— determines what modes of vibration are critical 
to the line-of-sight accuracy. 



A.6.2 Forced Vibration 

With q(0) = q(0) =0, Eq. (A-12) becomes 

Q(s) = 

j=l 
s2. 

"2 ^^(s) 

This equation is useful for analyzing the effect on the attitude and shape of 
the structure caused by various disturbances (e.g., onboard equipment, the 
space environment, structural maneuvers) and by the vibration modes thereby 
excited. Given a performance index, the relative importance of the natural 
modes and the necessity of compensating the disturbance can be assessed. 

Consider again the llne-of-sight error defined by Eq. (A-13). Assume 
onboard equipment at location k produces a sinusoidal disturbance with fre- 

quency P and phase angle tan" a. , as expressed by Eq. (A-6) and (A-7). 

Then, the Laplace transform of the llne-of-sight error Is 

ot, s + ß, 
E(s) = cTQ(s) = V —J— c^ Äk ^ 1 

*-f sl + u.        J J   s^ + 0, 
(A-14) 

Again, any mode (say mode j) whose natural frequency is equal, or sufficiently 
close, to the disturbance frequency ß. will be critically excited. Such a 

natural mode, and such a sinusoidal disturbance, will be critical to the 
llne-of-sight accuracy, unless it contributes nothing to the line-of-slght 

T  T k 
error (namely, unless c (|».# b = 0). 

Now, assume no u. is close to 0 . As with Eq. (A-9) - (A-10), the 
J K 

time-domain llne-of-sight error and its rms magnitude are given by 

A-8 



;  { 

e(t) " £c"*40' 
j"l 

T        T 

~J\+ ßk/wj8in 'v+ tw1 (Vj/V1} 

" L 
V^ T    T k      i       r^  
l^C *J*Jb      fi2+   2   A + 1 8in IV + tan"1 a. ] 
.j-l "ßk     wj 

■§lcTv^k^7^/:R^■)-'«] 

eraiD    -    0.707 tins 2>V>k-^ 
j-i       -si;+ »j 

(A-15) 

<\ + 1> 

J-i L 

12 

rr   „2. 2 
-ßk+ «jj 

(^^/^l 1/2 
(A-16) 

Notice the presence of the terns 

5 . 
jnns 0.707 T      T k 

J J   < * -3
2 

J' \ + i^] • J    -    1 L (A-17) 

Each of these terms represents the rms contribution from an individual natural 
mode of vibration to the overall line-of-sight error. Comparison of these 
contributions e,   ,..., e.  will determine what modes of vibration are Irms      Lrms 
important to the line-of-sight accuracy. 

Notice also that the contribution from the disturbance to the line- 
of-sight error [Eq. (A-16)] is the absolute value of tha  ai»«.K^-*- —- 
terms e absolute value of the algebraic sum of L 

j-1 -^+ "j 
y <*> 
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This contribution may be large or small, depending on whether these.L terjc? 
actually add up or cancel themselves out. Its comparison with the^ individual 
contributions e 

'Irms 
eI   from the natural vibration modes will determine Lrms 

whether or not the disturbance is important enough to require compensation. 

Again, for such an undamped system, if one followed the conventional 
frequencv-resoonse method ([15] through [20]), or equivalently, the phasor 
method ([17],[18], [20]), one would have erroneously obtained the rms line- 
of~sight error as 

e   = 0.707 
rms 

j=l 

c W - 
2   2 J\ +  1 (A-18) 

(see Eq. (A-21) of Section A.7.1.) The L terms representing the contribution 
from the vibration modes would have been missed. As a result, the line-of-sight 
error would be significantly underestimated. 

^•^ Steady-State Sinusoidal Response 

A.7.1 Frequency-Response Method; Phasor Method 

The approach, known as the frequency-response method ([15] through [19]) 
or the phasor method ([17], [18], and [20]), is a convenient tool for finding 
the steady-Ptate response to sinusoidal Inputs. Given the transfer function 
T(8) between the response Y(s) and the input IKS), and a sinusoidal input u(t) 
with frequency w, the amplitude of the steady-state response y(t) is given by 

amp |T(ia))|u amp 

where T(iw)| denotes the absolute value of the transfer function T(s), with 
Hence, the s replaced by iu, and where u   denotes the amplitude of u(t). 

rms magnitude of the response y(t) is given by 

rms 
iTdüOlu 

rms (A-19) 

where u   denotes the rms magnitude of input u(t). 

Consider, for example, the modal response nAt)  to the sinusoidal dis- 

turbance input uk(t) described by Eq. (A-7). The transfer function T(s) can be 

obtained from Eq. (A-8) as 

T(s) ys^iys) 
2 . ■ S  + U) 

-2>y 
j 
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Setting s - iak yields 

T(IM 
-eC + u 

T k1 

where ß. Is ths disturbance input frequency. Hie rms magnitude of the dis- 

turbance Input u^t) is 0.707 /o^ + 1. Therefore, by Eq. (A-19), the rms 

magnitude of the modal response r\.(t)  is given by 

jrms 
-ßk + ^ 

T k 
2*/ 0.707 ß + 1 (A-20) 

as was given in Section A.5.2 as Eq. (A-ll). 

Consider for another example the line-of-sight error due to the same 
sinusoidal input. From Eq. (A-14), the transfer function T(s) is obtained 
as 

T(s)    -    E(s)/Uk(s)    -    E(8), 
/akS + ek 

V*        1 TA   .T, k 
" Z.T77cVjb 

j-i s   wj 

Consequently, the rms magnitude of the llne-of-slftht error is given by 

L 

rms 
T. .T.k .n 

+ 0) 
2 c *j*jb a. + 1 A (A-21) 

j-1 ^ ■ "j 

as was given in Section A.6.2 as Eq. (A-18). 

A.7.2 Coiwnentary 

The frequency-response method (equivalently, the phasor method) is 
actually valid only when the steady-state response is a sinusoidal function 
having exactly the same frequency as the input. It requires that each of 
the system modes die out after a sufficient amount of time has elapsed. This 
method has been very successful and useful in the past because most engineering 
systems encountered in practice have sufficient damping on all modes. However, 
it may not be directly applicable to future large flexible space structure!., 
which will have very little damping, and which ire modeled (and simulated by 
the computer) as undamped systems c2  harmonic oscillators. Vibration modes of 

A-ll 



such structures will never die out once excited; they all become parts of the 
steady-state response. Thus, special care oust be taken In ordier to avoid 
drawing Incorrect conclusions from the steady-state response of undsnped systems. 

undamped systems traditionally have been used to illustrate various 
principles of system analysis and synthesis. Nevertheless, they were not as 
carefully studied as systems with damping, because they are not realistic 
systems. Some conclusions on system design may be wrong in the context of undamped systems. 

A-12 
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APPENDIX B 

CONTROLLABILITY AND OBSERVABILITY OF 
VIBRATION MODES 

E.l Introduction 

Consider the problem of controlling the vibration modes of an undamped 
large flexible space structure [1], [2]. The dynamics of such a structure 
are usually approximated by the method of finite elements (using computer 
programs such as NASTRÄN, STRDYNE) as system (2.1). Combining with equations 
(2-2) and (2-3) for control inputs and measurement outputs yield 

Mq + Kq = B u 

y = Cpq + C q 
(B-l) 

Expressed in terms of natural modes {IDJ, <(i.} of vibration and modal 
coordinates n., it becomes J 

fi + n2n = $TBAu A 

y = Cp^n + C «tri 

q = $n 

(B-2) 

See Section 2.2.2 for a description of the notations. It follows from system 
(B-2) that for mode (CD , ^ ) to be controllable by input u, the location of 

J   J -r 
the actuators must be such that the jth row of the influence matrix $ B is 

T 
nonzero; i.e., <|) B ^ 0. For a - ., (w , $ ) and (u. , <|). ), to be control- 

jA Jj T        T 
lable, one would expect the same; namely, that both row vectors q>.B. and $.B. 

are nonzero. It is not obvious, however, that one should require more on 
the location and the number of actuators if two or more modes have a common 
natural frequency.. The phenomenon of common frequencies Is not unusual in 
the case of symmetric struccures. 

The situation regarding the location and number of sensors required 
for observability of critical modes is similar, as expected by the duality 
between observation and control. 

Section B.2 first describes two different directions from which the 
design of structural vibration control systems can be approached, then gives 
a brief review of the notion of controllability and observability. Because 
of duality, subsequent discussions concentrate on controllability. Sections 
B.3 through B.7 spell out various necessary and sufficient conditions for 
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complete controllability of critical modes under various circumstances. An 
algorithm embracing all these controllability conditions is proposed In 
Section B.8 for systematically determining the proper location and minimum 
number of actuators required for ensuring at least complete controllability 
of critical modes. 

B.2 Alteration of Modes of Response, Regulation of Modal Responses; 
Complete Controllability, Complete Observability 

The design of control systems for suppressing structural vibration can 
be approached from two different directions: alteration of modes of response 
in the spirit of frequency-domain modal control theory and regulation of modal 
responses in the spirit of time-domain state (or output) control theory. 

B.2.1 Alteration of Modes of Response 

Modal control of a multivariable linear time-invariant system is, by 
definition [3] - [5], to alter the modes of system response to achieve the 
desired control objectives.  The modes of the system response are character- 
ized by the poles of the system. Without redesigning the given system, a 
common approach is to introduce appropriate feedback so that the closed-loop 
system has the desired poles, hence the desired modes of response. However, 
one can only alter the characteristics of the completely controllable and 
completely observable part [5] of the open-loop system. Therefore, the loca- 
tion of the actuators should be such that all those response modes which one 
wishes to alter are controllable. Similarly, the location of the sensors 
should be such that all modes to be measured are observable. 

A large flexible space structure generally has a large number of vibra- 
tion modes [1], [2], while the feasible number of sensors and especially that 
of actuators placed on the structure for effecting the desired alteration are 
relatively small. Moreover, because of practical limitations on the design 
of feedback loops, one can actually alter a very limited number of vibration 
modes. Consequently, one must concentrate on those vibration modes that are 
fundamentally important to the performance of the structure. See Appendix A 
for discussions of critical modes of vibration and their determination. 

Partitioned into the critical and the modeled residual parts, the modal 
model (B-2) becomes 

2    T 
'R  R'R  R A 

y * cp*cnc + cv^c + cpVR + VRnR 

(B-3) 

q " Vc + *RnR 

See Section 2.2.3 for a description of the notation.    A corresponding state- 
space representation of system {B-3) is 
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(B-4) 

where I denotes the Identity matrix of appropriate dimension. The 2L-vector 
(nc, nc, nR» nR) represents the state of the 2-L dimensional linear system 

(B-4). To be able to alter the critical modes of the system response, one 
must make the following part: 

L«CJ A 
l' V 0 

0 * 
LncJ 

+ 
T 

y = [Cp*c C„*J 

■v [:;] 
(B-5) 

completely controllable and completely observable. Since this fundamental 
system (B-5) has 2N poles (i.e., N pairs of conjugate imaginary poles), for 
altering the modes of its response, a set of 2H desired closed-loop poles 
may be chosen to replace them. See Section B.2.4. 

B.2.2 Regulation of Modal Responses 

The modal model (Eq. (B-2)) can be recast Into the following state- 
variable form 

-Q 

y - tCp* Cv4 

I n 0 

0 • n 
+ 

[*\. 

[:] 
B-3 

(B-6) 
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with rip ..., nL, rip ..•» nL denoting the 2L state variables. Regulation 

is, by definition [6], [7], to reduce modal response from any initial state 
(n(0), n(0)) to zero directly, and to maintain an optimally small total error, 
in contrast to the alteration of response modes, A feedback regulator usually 
requires a state regulator with a state estimator (a Luenberger observer or a 
Kaiman filter). Alternatively, an output feedback controller with or without 
dynamic compensators [8] may be required. 

However, the regulation of modal responses of a large space structure, 
like the alteration of modes of structural response, should concentrate on 
fundamentally important modes of vibration. Partitioned in terms of critical 
and modeled residual modes, system (B-6) can be rewritten as system (B-4), 
whose fundamental subsystem is given by (B-5). One should therefore concen- 
trate on regulating the 2N-dimenslonal state vector (nc, nc) of system (B-5), 

since N«L. Complete controllability and complete observability of the system 
to be regulated are prerequisite to satisfactory regulation. 

B.2.3 Complete Controllability and Complete Observability; Duality 

Before defining the controllability and observability of critical modes 
in Section B.3, recall the definition of controllability and observability of 
state [9]. To do so, consider the following standard state-space representa- 
tion of linear time-invariant systems 

x = Ax + Bu 

y = Cx 
(B-7} 

where x = (x., .... x ) denotes a vector of n state variables, 

u 5 (uj u ) a vector of m inputs, and y s (y , ..., y ) a vector of 

£ outputs. 

An initial state x is said to be controllable if it can be transferred 
to a zero state in a finite length of time by some control Input u(t). 
If every initial state is controllable, the systan (B-7) Is said to be 
completely controllable. An initial state x0 is said to be observable if 
it can be determined from the knowledge of zero-input observation output 
y(t) for a finite length of time. If every initial state is observable, 
the system is said to be completely observable. See References 6, and 
9 through 11. 

The following are well known criteria for complete controllability 
and complete observability of st&te [5], [10], [11]. System (B-7) 
is completely controllable if and only if the n>«mn matrix 
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Q*[B, AB, .... A^B] (B-8) 

has rank n. It is completely observable if and only if the £nxn matrix 

p m 

C 
AC 

A^C 

(B-9) 

has rank n. 

The following alternative definition and interpretation given in Refer- 
ence 5 is useful in understanding why complete controllability and complete 
observability are related to the possibility of altering system characteris- 
tics (i.e., modes of response) by feedback loops. 

System (B-7) is said to be completely controllable if it is not 
algebraically equivalent, for all t > 0, to a systan of the type 

' .1  .11 1 ^ .12 2 ^ _1 
x «A x +A x +Bu 

.2 
x 

.22 2 
A x (B-10) 

J- 1 L „2 2 y « C x + C x 

1    2 
where x and x are vectors of n. and n- * n - n. components, respectively. 

In other words, it is not possible to find a coordinate system in which the 
state variables x = (x. x ) are separated into two groups, 

5)    si       n       n    7       2 
(x^ x ), such that the second group x = (x,, ..., x ) and x 

1      nl 
is not affected by either the first group or by the inputs to the system. 

Similarly, system (B-7) is said to be completely observable if it is 
not algebraically equivalent, for all t < 0, to a system of the type 

.1  .11 1 j. nl x »A x + B u 

.2  .21 1 ^ .22 2 _,_ „2 
x -Ax+Ax+Bu 

y ■ C x 

(B-ll) 

1 2 
where x is an n,-vector and x an (n - n.)-vector. In other words, it is 

not possible to find a coordinate system in which the state variables are 
separated into two groups, such that the second group does not affect either 
the first group or the outputs of the system. 
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It Is now well known (e.g., see [5], [91, [11], [12]) that for 
every conclusion concerning controllability, there is a corresponding one 
concerning observability, and vice versa,  "herefore, subsequent discussions 
are focused on the controllability of critical modes. 

1 A strong relationship between complete controllability of an open- 
loop system and the possibility that the system has desired closed-loop 
poles by means of feedback was given by Wonham [13] as follows. System (B-7) 
is completely controllable if and only if, for every choice of n real or 
complex-conjugate numbers, there is a feedback matrix F such that the 
closed-loop system matrix A+BF has these n numbers for its eigenvalues. 

B.3 Controllability of Critical Modes 

In the sequel, we say that the N critical modes of structural vibration 
are completely controllable if and only if the (open-loop) fundamental system 
(B-5) is completely controllable. It follows from the best known control- 
lability criterion (Eq. (B-8)) that the N critical modes ar« completely con- 
trollable if and only if the 2Nx(2mN) matrix 

Q2N '  tV 

has rank 2N, where 

w •• "' Ac    Bc ] 

0        I 0 

-i 0. •Bc- T 
4  B 

. C A . 

(B-12) 

(B-13) 

After some matrix manipulations, a simplified form of this criterion can 
be given. 

Theorem 1: The N critical modes are completely controllable if and 
only if the Nx(inN) matrix 

% - t*cTV -«A ^c^cV (B-14) 

I 

has rank N. 

Proof; By induction, it is easy to show that 

A21« ÄCBC 
<^>i *\ A2i+1T. .    Ar      Br 

^c'HV 
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for i «0, 1, 2  The matrix Q2N therefore becomes 

'2N 

0  B 2C 0   -ßCB2C 

B2C  0  -flCB2C 

^"^''^C 

(^)-B2C   0 

i 

t 

where B, denotes $rB . Rearranging the coltonns, an equivalent form of 

Q2N is given by 

^2N 
%     0 

0  Q N 

,.♦ ? 
where QN is as defined by Eq. (B-14). Matrix Q2N has rank 2N if and only if 

matrix Q has rank N. This proves the theorem. 

A statement similar to Theorem 1 was given in Reference 1 for the class 
of flexible structures descrlbable by a generalized wave equation. A simple 
and direct consequence of Theorem 1 Is the following sufficient condition. 

Corollary 1: For the N critical modes to be completely controllable, 
T 

it is sufficient that the influence matrix $ B have rank N. 
C A 

To satisfy this sufficient condition requires a large number of specially 
placed actuators. First of all, for the Nxm influence matrix to have rank N, 
It is a prerequisite that m ^ N; namely, that there are at least as many 
actuators on the structure as there are critical modes of vibration. Secondly, 
these actuators must be so located (and distributed) that the N row vectors 
T        T 
^n^A' ***' ^rN^A are not on^y nonzero but also linearly Independent. This 

means that each one of the N critical modes is controlled independently of any 
other critical mode by at least one actuator. It Is just a sufficient condi- 
tion, but a very restrictive one. In some cases, it may be enough to use only 
one actuator, as was also observed in Reference 1. The following states pre- 
cisely the necessary and sufficient conditions for using only one actuator. 

Theorem 2: Assume only one actuator Is used (i.e., m = 1). Let b. 

denote its N-dlraensional Influence vector (i.e., B. " b.). Thai the N critical 

modes are completely controllable by a single actuator if and only if 

(1) All natural frequencies of the critical modes are distinct. 

(2) The influence vector b. is not orthogonal to any of the critical 

mode shapes; i.e., 

^,b. j« 0 for all j » 1, ..., N. 

B-7 
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to 
Proof: Since *LbA are scalars' the matrix % of Theorein 1  simplifies 1 

% = 
N 

1 -0) 

1 --« 

Cl 

2 
CN 

, 2 ,N-1 

• 

, : 2 .N-l 

where b = <l> .bA. The second square matrix on the right-hand side is a 

Vandermonde matrix, whose determinant is nonzero if and only if "pi.--«. 

ü)  are distinct. Therefore, matrix QM has rank N if and only if both 
CN N 
conditions (1) and (2) are satisfied. In view of Theorem 1, this theorem 
is now proved. 

Condition (2) is evident from Eq. (B-2), at least intuitively, since 
the actuator must have nonzero influence on each of the critical modes to be 
able to control all of them. But it is not as obvious that condition (2) by 
itself is not sufficient. Condition (i) implies that, in general, one 
actuator is not enough, specifically when two or more critical mod«" have 
identical or nearly identical natural frequencies. 

r^ \ 

B.4 Controllability of Critical Modes Having Identical Natural Frequeucies 

To apply Theorem 1, it is convenient to recognize that the matrix Q, 

is exactly the controllability matrix of the following hypothetical* 
N-dimensional dynamic system 

:N 

-ü2
cz  f $JBAU (B-15) 

It follows from Theorem 1 that complete controllability of the N critical 
modes can be interpreted as complete controllability of the hypothetical system 
(B-15), and vice versa. The "conveniences" are the diagonal system matrix 
and the real eigenvalues. The system has only pure exponential decay modes. 
Moreover, the system matrix is already in the Jordan canonical form with all 
Jordan blocks being 1x1. Consequently, there are as many identical Jordan 
blocks as there are Identical natural frequencies among the critical modes. 
With the aid of this simple hypothetical system (B-15) and the decomposition 
(B-10), the following results are obtained. 

Theorem 3; The N critical modes are completely controllable if and 
only if 

(1) Each row of the influence matrix $-BA is nonzero. 
C A 

(2)   All those rows of matrix S^B. which correspond to a repeated 

natural frequency are linearly independent. 

System (B-15) is not a legitimate dynamic subsystem of (B-5) by definition, 
and does not really exist.       g_g 

..fammtM-- 
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Proofs Direct proof by algebraic manipulattons on the matrix QN of 

Theorem 1 is not difficult, but the following is more intuitively appealing. 
The necessity of condition (1) is trivial. To prove that the addition of 
condition (2) to condition (1) is necessary, assume that the natural frequency 
a)-, is repeated r times among the fundamental modes. Let $ , <!>..,, .... ♦.. 

denote the corresponding mode shapes. Then the corresponding equations In 
system (B-15) are 

f   zj - -u,c
2
j2j + *jBAu 

'j+1 = ""CjVl + *J+1BAU 

(B-16) 

2       T 
- zj+r   Cj j+r  9j+r A 

T    T 
Now suppose on the contrary that the corresponding rows «1»^, "K+j^» •••! 

<f    B. of matrix * B. are not linearly independent. Then 
JTIT AC" 

CA + Vl+lBA+-+Cr+l*j
T
+rBA-0 

for some constants c , c , .... c  , not all zero. Making the corresponding 

combination of the r + 1 equations in system (B-16) yields 

'Jc ' ""cVjc (B-17) 

where 

Zjc " ClZj + C2ZJ+1 "* + Cr+lZj+r 

denotes a combined state variable. Replacing the last equation in system 
(B-16) by Eq. (B-17), the form of system (B-10) is reached. By the alterna- 
tive definition of complete controllability given there, these r + 1 critical 
«»des are not completely controllable. Therefore, the necessity of condition 
(2) is proven. The arguments for the sufficiency of conditions (1) and (2) 
combined are similar, but converse, to those for their necessity. With both 
conditions (1) and (2) satisfied, system (B-15) cannot be decomposed or trans- 
formed to contain any equation of the form of (B-17), and hence is completely 
controllable. 

The following are two simple, but useful, corollaries of Theorem 3. 
Corollary 2 id essentially the same as Theorem 2 while Corollary 3 Is just 
the opposite. 
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Corollary 2; If all natural frequencies of the critical modes are 
T 

distinct and if the influence matrix $ B has at least one coJumn whole N 

elements are all nonzero, then the N critical modes are completely controllable. 

Corollary 3; For the N critical modes to be completely controllable, 
the number of actuators used on the structure must be at least equal to the 
maximum multiplicity of the natural frequencies over the critical modes. In 
other words, if y(ü)r.) denotes the number of critical modes having the same 

frequency u ., then it is necessary that 

m > max y (wr .) . 
" l<j<N   C;, 

Corollary 3 means that whenever there are two or more critical modes 
having identical natural frequencies, a single input cannot control all the 
critical modes. In other words, relocation of the single actuator will not 
work; nor will any combination of the multiple actuators on the structure if 
all of them are still driven by a common input, 

B. 5 Controllability of Critical Modes Having Natural frequencies 
Identical to Residual Modes 

If some critical modes and some residual modes have a common natural 
frequency, the preceding conclusions must be modified except for a very 
special case. 

Consider the special case first. This occurs when all those resldurl 
modes having natural frequencies identical to some critical modes are not 

T 
influenced by the actuators (i.e., ^RkB = 0). Then, all the preceding con- 

clusions (Theorems 1-3, Corollaries 1-3) are valid without modification. In 
other words, such residual modes are still as ignorable as the others. 

Now consider the general case. Call a residual mode (t^u*  ^«t,) an 

associated residual mode it its natural frequency is identical to some critical 

mode and if it has nonzero influence from the actuators (i.e., ^ou8» ^ 0)« 

Associated residual modes are not ignorable so far as the complete controll- 
ability of the critical modes is concerned. The number and location of the 
actuators required may thereby be affected. 

Let matrices Qp and *„ be augmented to include all the associated 

residual modes as if they were additional critical modes. Let Q , and *ci 

denote the augmented matrices, and N' denote the total number of critical 
2 

modes and associated residual modes. Note that N* > N and that Ü %  and l> t 

have dimension N'xN' and L^N* respectively. The preceding conclusions are 
modified as follows. 



Theorem 1'; The N critical modes are completely controllable if and 
only if the N'xdnN') augmented matrix 

V 
T      2 T N-l T 

•C'-C'-A' 'C'-A' 

has rank N', 

Corollary 1'; For the N critical modes to be completely controllable, 
T 

if. is sufficient that the augmented influence matrix *riB has rank N'. 

only if 
Theorem 3'; The N critical modes are completely controllable if and 

(1) Each row of the influence matrix * B is nonzero. 
v* A 

T 
(2) All the rows of the augmented influence matrix *riBA which t#  A 

correspond to a repeated natural frequency are linearly 
independent. 

Corollary 3'; For the N critical modes to be completely controllable. 

the number of actuators used must be at least equal to 
l<j<N 

, y(ü)c.), where 

yCu-.) denotes the number of critical and associated residual modes having 

the same natural frequency u cr 
B.6 Magnitude of Control Influence 

From the modal Eq. (B-2) it is clear that for applying a given amount 
of generalized force on mode j, the magnitude ||u|| of required control input 

is smaller if the magnitude I^AI of the control influence on mode j is 

larger. Therefore, for controlling node J, it is desirable (by adjusting 
the location of the actuators on the structure) to make the control influence 
on mode j not only nonzero, but also large in magnitude. 

Moreover, making the magnitude of control influence on each critical 
mode as large as possible can avoid requiring excessive input energy or 
excessively high feedback gains. 

B.7 Controllability of Critical Modes Having Nearly Identical 
Natural Frequencies 

Suppose two critical modes C^rit^r^) and C&Wf^rv) ^ave ne«lrly identical 

natural frequencies, i.e., &>„. s w-,., but h)-. # tu-.. Naturally, one could 

treat them as having two different natural frequencies, as they are not iden- 
tical. But it is desirable to ignore the difference. 
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Assume that both row vectors *C,BA and t^B^are  nonzero, tmt not lin- 

early independent. Then 

VcA+ ck4BA -o 

for some nonzero constants c. and c, . Similarly, combining the corresponding 
J    K 

equations in system (B-2), yields 

^cj + Vck + \ici\i + "ckVck = 0 (B-18) 

Define a combined coordinate 

^c " ^a + Vck 

Then Eq. (B-18) can be rewritten as 

\  + Vj^c = ^^Cj^Ck^k 

/ 2 2 , 1 r^ sin(ü)ckT)^ckBAu(t-T)dT 

+ "ck^^ck cos Wckt + \k(0) sin "Ck' ■1 
Since u     z  tück, the coefficient ck(ü)  - m^)/a)  is negliglbl> small. Com- 

plete controllability of these critical modas is weak and excessive energy is 
required. Thus, it is better to consider these two modes as having identical 
frequencies, and to readjust the location of the actuators so that at least 
T       T 
^C^A an^ ^CiBA are linear^y independent. 

Furthermore, since computational errors are inevitable in natural 
frequencies, uig.  and u . might in fact have been identical. Thus, it is 

desirable that these two modes be treated as having repeated natural frequtn- 
cles.. Condition (2) of Theorem 3 then applies to these two modes, together 
with any other critical modes having natural frequencies identical or nearly 
identical to a)_, or üL,.. 

B«8 Number and Location of Actuators 

B.8.1 Determination of Proper Location and Minimum Number 

As can ba seen from the foregoing analysis, the locrtion and number of 
the actuators placed on the structure determine whether or not all the critical 

B-12 



modes are controllable. Moreover, improper location may require more actua- 
tors than uecessary. If the location and the number of the actuators on the 
structure are adjustable, the following algorithm Is proposed for ensuring 
at least complete controllability of the N critical modes. 

/f 

Step 1; Initially lay out N actuators. Set m = N. 

Step 2; Adjust the location of the m actuators so that each critical mode 
T 

has nontrivlal influence from the actuators; namely, A^.B. t  0 for 
Cj A 

all j = 1, .... N. 

Step 3; Readjust the location, if necessary, so that if oi. is any repeated 

critical natural frequency with multiplicity y >^ 2, then the 
T ■' 

corresponding y rows of matrix * B. are linearly independent. 

Otherwise, go back to Step 2. 

Step 4; Readjust the location, without violating the criteria in Steps 2 
and 3 to Increase the magnitudes of control influence on the critical 
modes: 

■♦ciV2' «*CT2BA"2  8*CTNBA«2- 

Step 5; Readjust the location, without violating the criteria in Steps 2 to 4, 
to decrease the number of associated residual modes. 

Step 6; (If there are no associated residual modes): 

If m " max IJ(W .), stop; 
KKN   3 

Otherwise, set m ■ max u(<»>Ci) and go to Step 7. 
l<j<N   J 

(If there are associated residual modes): 

If m ■ max p(((>_.), stop; 
Kj^'  ^ 

Otherwise, set n - mux y(ur.)» and go to Step 7. 

KKN1 Cj' 

Step 7; Retain only m actuators, and go back to Step 2. 
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B.8.2 Decumpositlon of Modal Modes of Symmetric Structures 

Symmetric structures usually exhibit groups of repeated natural frequen- 
cies. Structural symmetry is useful to resolve complications with repeated 
natural frequencies. The mode shapes and modal coordinates may be redefined 
in such a way that the system (B-2) of aodal equations is decomposed into iden- 
tical (or essentially identical) systems according to the structural symmetry 
(or the multiplicities in the critical natural frequencies). Each subsystem 
may be considered as a separate unit, and therefore controlled independently. 

The total number of actuators required may remain the same, but the 
order of complexity in the design of structural control systems may be greatly 
reduced. The order of each subsystem is much smaller than the overall system, 
and the control systems designed for one subsystem may be duplicated for the 
others. Furthermore, since each actuator may concentrate on fewer critical 
modes (within each subsystem), feedback gains may also be greatly reduced in 
magnitude. 

■*.f 
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APPENDIX C 

STATE FEEDBACK CONTROL WITH A 
LUENBERGER OBSERVER VIA LINEAR-QUADRATIC REGULATION 

C.l Introduction 

The objective of this section is to summarize recent results on the 
robustness of Linear Quadratic Static Feedback (LQSF) regulators. A review of 
the LQSF regulator design methodology was given in a previous report 
fl; Sec. 4.2] and is also contained in Appendix B to Volume 2 of this report. 

In Section C.2, the scope of the summary is specified and recent results 
are subsequently presented. Some comments are given in Section C.3. 

C.2 Robustness of LQSF Regulators 

C.2.1 Scope 

The robustness of LQSF regulators as discussed in this section, spe- 
cifically refers to the ability of the LQSF regulators to retain 
stability in the presence of perturbations of the open-loop dynamics. These 
perturbations include model irrors and parameter variations and they may be 
characterized by nonlinear time-vurying changes in the open-loop dynamics. 

There has been a considerable amount of published work in the open 
literature related to the robustness of LQSF regulators [see References 2-7], 
This section, is intended to be a summary of these recent results. The po- 
tential application of the robustness results for LQSF regulators to the 
control of large space structures will be evaluated in the future. 

C.2.2 Gain and Phase Margin of LQSF Regulators 

Regarding the robustness properties specific to LQSF regulators, the 
first significant result is due to Anderson and Moore [2]. They show that 
single-input LQSF regulators have ±60° phase margin, infinite gain margin, 
and 50 percent gain reduction tolerance. 

Safonov and Athans [3] consider the robustness of a general LQSF 
regulator: 

= Ax + Bu, x(0) 

mln J(x,u) 
u / 

Q = Q 0, R 

C-l 

^0 

txTQx + uTRu]  dt (C-l) 

T 
R      > 0 
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The optimal feedback gain H is given by 

-1 T 
H = R B K (C-2) 

where K = K > 0 satisfies an algebraic Riccati equation [1; Sec. 4.2.1]. 
The class of systems considered in reference [3] are perturbed versions of the 
optimally controlled system. I.e. 

dt = Ax + (Bnu), x(0) = ' xo| 

u = -Hx (C-3) 

where A, B, x , and H are the same as in Eq. (C-l) and (C-2) and n is assumed 
to be a finite-gain nonanticipative operator with n(0) = 0. The perturbed 
LQSF regulator is depicted in the following: 

s 

!?(•) 

PERTURBATION 

±> (si - A)"^ 

H = R'1BTK ^ 

» 

For nC*) being a memoryless, time-varying nonlinear operator, a sufficient 
condition is obtained for the stability of the perturbed LQSF regulator 
Eq. (C-3). Similarly, a second sufficient stability criterion can be given for 
r)(')  being a finite-gain, linear time-Invariant operator. However, more inter- 
esting results are obtained when special cases are considered. 

In particular, consider Eqs. (C-l), (C-2), and (C-3) but specify that 

Q > 0 

a diagonal matrix > 0 



and that the perturbation n satisfies 

nu 

Vi 

n u 
m m 

so that the perturbations in the various feedback loops are noninteractlng. 
This particular perturbation is illustrated in the following figure: 

Under these conditions, the perturbed system remains asymptotically stable 
in the large, if each of the perturbations ru is memoryless with (IKU )(t) - 
fi(ui(t),t)f and if for some k < «, some 3 >^ 0, and all t c [O,») 

^(0,0 - 0 

k   L   ~ ^(u-t) > -^y-i, for all Uj ^ 0 

In particular, this result implies that either of the following changes 
leaves an LQSF regulator asymptotically stable in the large: 

(1) A phase shift of less than or equal to 60° in the respective 
feedback loops of each of the controls u.. 

(2) The Insertion of linear constant gains (a ) with a. >_ 1/2 Into 
the feedback loops of the respective controls u . 

C.2.3 Robustness of LQSF with a Prescribed Degree of Stability 

Patel et al [4] consider the robustness of LQSF regulators with a 
prescribed degree of stability [I, Sec. 4.2.7.3; 2] and, by Lyapunov's method. 
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establish quantitative bounds on perturbations in the system such that the 
closed-loop system remains stable. These bounds are obtained for the general 
case of nonlinear, time-varying perturbations and are determined by the pre- 
scribed degree of stability (a),  and the maximum and the minimum eigenvalues 
of two symmetric matrices. Since these two symmetric matrices consist of 
weighting matrices in the performance index, a designer can select appropriate 
weighting matrices to attain a robust design. 

C.2.4 Gain and Phase Margin of LQSF with Kaiman Filter 

The robustness properties of LQSF regulators obtained by Safonov and 
Athans (see Section C.2) hold independent of plant dynamics or performance 
index selection. They are global and guaranteed. However, recently, Doyle [5] 
showed by a counterexample that a standard two-state LQG control design results 
in a closed-loop regulator that has arbitrarily small gain margin. There- 
fore, there is no guaranteed gain margin for LQSF regulators with Kaiman 
filters. 

Similarly, it has been stated that no guaranteed properties hold for 
LQSF regulators with observers [6]. 

It is important to note, however, that there may exist approaches to 
improve the robustness of LQSF regulators with either a Kaiman filter or 
Luenburger observer, even though they do not have guaranteed robustness 
properties. 

C.2.5 Improving the Robustness of LQSF Regulators with 
either Kaiman Filter or Luenburger Observer 

The robustness properties of LQSF regulators with filters or observers 
need to be separately evaluated for each design, since no guaranteed robust- 
ness properties hold in these cases. Doyle and Stein [6] present a design 
adjustment procedure to Improve the robustness of such systems. They show 
that in general the approach of "speeding-up" filter or observer dynamics 
will not work. To increase the robustness, their procedures are to drive 
some filter or observer poles toward stable plant zeros and the rest toward 
infinity. When the procedures are applied to an illustrative example of an 
LQSF regulator with a Kaiman filter, they are equivalent to a method of trad- 
ing off between noise rejection and margin recovery. It is stated [6] that 
full-state robustness (see Section C.2) can be recovered asymptotically, if 
the plant is minimum phase and correct procedures are followed. 

\  « 

C.2.6 Robustness of Discrete-Time LQSF Regulators 

Safonov [7] considers the robustness of discrete-time LQSF regulators 
and obtains the following results: discrete-time LQSF regulators have neither 
the 6-dB gain reduction, nor the +» dB gain increase, nor the +S00 phase 
uncertainty tolerance of their continuous-time counter parts. Instead, the 
gains (a.) in each control channel must lie between the following limits 

l< 1 + bl " 
ai ^ l-b1 - 

(b. 1) 
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and phase uncertainties (^.) oust be bounded by 

-1 bi ♦j. < 2 sin   -—  < 60° 

Detailed expressions for these discrete gain and phase margins as well as 
tolerance bounds for more general types of nonlinear, time-varying, and dynamic 
uncertainties can be found in [7]. 

C.3 Comments 

The robustness properties of LQSF regulators (Section C.Z)  were dis- 
cussed with respect to perturbations such as parameter errors, parameter 
variations and gain variations.  It should be noted that throughout the dis- 
cussions of this section the order of the model of the open-loop system was 
assumed to be correct. In particular, the robustness of LQSF regulators 
against model truncation errors should be of Interest to the control of large 
space structures.  v 

The results presented in Reference [8] appear to imply that LQSF reg- 
ulators without filters or observers are robust against model truncation errors 
due to the absence of observation spillover. LQSF regulators with filters or 
observers do not seem to have robustness against model truncation errors due 
tc both observation and control spillover. Design procedures in Reference [5] 
should be evaluated for the potential application in improving the robustness 
of LQSF regulators with filters or observers against truncation errors. 
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