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SECTION 1

GOALS AND MAJOR FINDINGS

1.1 Introduction

This interim report documents the Theory of Design Methods conducted
in partial fulfillment of the Actively Controlled Structures Theory Study.*
The objective of the studies in Volume 1 has been to analyze the theoretical
aspects of selected constant-gain linear feedback design methods viewed as
candidaces for application to active vibration control of large space struc-
tures (LSS). Primary emphasis is placed upon:

(1) Research on constant-gain linear feedback methods applicable to
active vibratjon control of large space structures.
(2) Evaluation of the

suitability of this class of design methods
to LSS controller design through application to a common test
example, '

(3) Identification of new extensions to these design mathods which
improve their applicability to LSS controller design.

(4) Identification of suitable directions for future efforts in
developing theory and methods specifically applicable to the
control of large flexible structures.

This volume contains preliminary studies on five of these design methods.
The report on each of these methods includes: a brief iantroduction of the
main ideas and underlying theory; an outline of the design method and/or the
algorithm; a summary of assumptions made (or implied) and subtle techniques
used; discussions on the strengths, weaknesses, maturity, and applicability to
vibration control of large flexible space structures; illustration by a common
test problem including aunswers to eight specific questions; and recommendations
for improvement or further investigation.

1.2 Scope

The preliminary research conducted and presented in this volume concerns
linear velocity output feedbark methodologies:

(1) Modal Decoupling (Canavin).
(2) Pole Assignment (Davison-Wang).

{3) Optimal Output Feedback (Levine-Athans).

o =

Application of Design Methods is given in Volume 2.

®
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(4) Suboptimal Output Feedback (Kosut)
(5) Stochastic Optimal Output Feedback (Johnson). |
These design methodologies cover the state-of-the-art in linear output feedback.

Section 2 provides an overview of these methods in perspective, and the
general framework used in reporting our preliminary results. Two different
viewpoints are provided for visualizing the close relationships between the
methods. The general framework consists of generic mathematical models of large
flexible space structures, the general format for presentation, and an illustra- #

")

tive test example with eight points of interest to be addressed.

Section 3 concentrates on Canavin's method of modal decoupling. We ~
examined the underlying theory, formulated those conditions which were impli-
citly assumed, completed a proof of a general stability theorem initially
stated by Canavin, and provided another useful general stability theorem and its by
proof. Our evaluation is that this method has many desirable properties without
major theoretical or computational problems.

Section 4 concentrates on Davison and Wang's method of pole assignment.
We examined, analyzed, and integrated the scattered pieces of the underlying
theory, clarified and organized the design procedure, uncovered a potential
pitfall in closed-loop stability, discovered the insufficiency of using only
velocity sensors in assigning all the desired closed-loop poles, studied previous
applications of this method to attitude control of spacecraft with flexible
appendages, aad formulated several modificatiorns for removing its serious
theoretical and computational weaknesses. Our evaluation is that this method
has many advantages and can be a very viable tool for preliminary or prototype
design of active control systems for large flexible space structures, but it
is not yet mature and requires extensive further research in order to be a
feagible tool for LSS controller design.

b

Section 5 concentrates on Levine and Athans' method of optimal output
feedback control. We examined the basic problems, considerations, and techni-
ques for applying this method to vibration control of large flexible space
structures, performed an extensive literature search on this method and previous 5

. applications of it, set up the rudiments of a technique for attacking the prob- ’

lems which result from the necessity of having a very good initial estimate of
the controller gain matrix, suggested alternatives for reducing its computational
difficulties, and showed by the test example that closed-loop stability is not
guaranteed. Our evaluation is that computational difficulties in applying

this method can overshadow its potential benefits.

Section 6 concentrates on Kosut's approximation of optimal output feed-
back control. We have carefully examined Kosut's two approximation methods
and made significant theoretic- extensions that make these wmethods applicable
to arbitrary sensor configurations on large space structures. We demonstrated
by the test example that the effects of control spillcover can be significantly
alleviated and that damping of the residual mode can be adjusted at will.

Our evaluation is that these methods (in the currently published form) can

1-2




yield nearly. the same optimal solutions . as the Levine~Athans method, whereas
the computational efforts rejuired are significantly reduced. The extended
versions can give significantly better performance.

Section 7 concentrates on Johnson's method of stochastic optimal output
feedback control., We explored a stochastic formulation of the control problom
with large flexible space structures for dealing with modal truncation and spill-
over (e.g., by treating control spillover as plant noise and observation spill-
over as measurement noise), developed an algorithm for stochastic optimal
output feadback control, explored the idea of coupling residual modes with
critical modes (by properly synthesizing measurement and control signals) to
make the residual modes inherit some of the closed-loop stability properties
of the critical modes, and demonstrated the feasibility of these new ideas.

Our evaluation is that this method has many desirable features (some are unique)
for application to active control of large flexible space structures, but it is

too early to assess the complexity of the computational procedure at its current
development stage.

Section 8 contains an overall comparison of the five methods reported
using the numerical results obtained from applications of these methods to a
common test problem. Recommendations for near-term research efforts are given.

Appendix A contains discussions on two common model-reduction approaches
as applied to large flexible space structures, and on methods for comparing
the relative importance of the vibration modes. A comment on the direct apwli-
cation of the conventional frequency-response method to undamped systems of
harmonic oscillators is also given.

For direct regulation of modal responses of a large flexible space
structure, or for alteration of its modes of response, the critical modes must
be made completely controllable and completely observable if these modes are
to he actively controlled. Appendix B presents necessary and sufficient condi-
tions for selecting the location and number of actuators and sensors t: guarantec
complete controllability and observability. An algorithm is also presented.

Linear quadratic state-feedback regulators, as used in the (so-called)
modern modal control systems, may not have robustness against modal truncation
errors if they are used with Luenberger observers or Kalman filters., Appendix C
summarizes recent results on the robustness of such regulators.,

1.3 Recommendations

Based on the in-depth studies of the individual methods in Sections 3
through 7 and the performance comparisons for the test designs in Section 8,
recommendations for near-term future reszarch are briefly as follows:

(1) Discontinue further work on the Davison-Wang method for the present.
(2) Pursue specific theoretical studies to explore the possibility
of extending the Canavin and the Levine-Athans nethods go as to

improve the design performance by exerting some influence over
the residual modes.

1-3
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- (3) Continue theoretical development and initiate simulations of

: ~ high-order systems using the Kosut and Johnson methods, This

pairs a low-risk, moderate payoff approach with a high=-risk,
high-payoff approach.




SECTION 2

'DESiGN METHODS FOR CONSTANT-GAIN FEEDBACK£CGNTROL SYSTEMS :
INTRODUCTION AND OVERVIEW

2.1 Introduction .

There are many modern methods for désigning confrol systems for vari-
ous applications. We chose the following seven methods to start our search
for appropriate control strategies for large flexible space structures:

(1) State Feedback Control with a Luenberger Observer via Linear-
Quadratic Regulation.

(2) State Feedback Control with a Luenberger Observer via Simon-Mitter
Method of Pole Assignment.

(3) Output Feedback Control via Canavin Method of Modal Decoupling.

(4) Output Feedback Control via Davison-Wang Method of Pole Assign-
ment L]

(5) Optimal Output Feedback Control via Levine-Athans Method.
(6) Suboptimal Output Feedback Control via Kosut Approximation.
(7) Stochastic Optimal Output Feedback Control via Johnson Method.

This choice centers on the following theme: automatic constant-gain linear
feedback control. The reasons are as follows. Linear automatic constant-
gain feedback control systems as a class are much simpler to design, to imple-
ment, and to operate than other classes. If simple controllers designed by
some of these methods are feasible and satisfactory for active vibration con-
trol of large flexible structures in space, why should one design and imple-
ment complex control systems: (1) that are not automatic and hence require
constant human attention, or (2) that require on-line computation or genera-
tion of time-dependent gains, or (3) that require nonlinear control devices
or schemes? On the other hand, understanding the weaknesses of simpler
methods will offer useful insights as to what to look for in the search for
suitable new methods.

Critical investigations into their underlying theories and their applica-
bility to active vibration control of large flexible space structures are
being conducted at CSDL on these methods. For the time being, however, we
report only preliminary results on methods 3 through 7 (in Sections 3 through
7). Method 1 has become a standard approach to control system design;
studies on its application to large flexible structures have been previously
reported in References 6-7. Recent numerical experiments with a typical large
flexible space structure are being covered in Volume 2 of this report, and a
brief summary of recent developments on the sensitivity problem with this
method is given in Appendix C of this Volume (also in Appendix B of Volume 2).
Studies on method 2 will be continued and reported later.

2-1
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Section 8 contains some preliminary conclusions from an overall com-
parison of Methods 3 through 7, and some preliminary recommendations. Com-
prehensive comparisons of all the seven methods will be conducted and reported
later.

The purpose of the present section is to provide the reader an overview
of these seven methods in perspective, and the general framework used in re-
porting our preliminary results. Two different viewpoints are provided in
Section 2.3 for visualizing the close relationships between the seven methods.
The general framework consists of generic mathematical models of large flexi-
ble space structures (Section 2.2), the general format for presentation
(Section 2.4), and an illustrative test example with eight points of interest
to be addressed (Section 2.5).

2,2 Mathematical Models of Large Flexible Space Structures

In order to minimize semantics and facilitate discussions of the various

vibration suppression techniques for achieving modal control, the following 2,

model definitions are depicted in Figure 2-1. Large Space Structures are ap-
propriately represented as distributed parameter systems (DPS) which require
infinite-dimensional mathematical models. It is often more convenient to gen-
erate a physical model for a DPS by finite element methods; this results in a
finite-dimensional modal representation. From this physical model, a reduced
order evaluation model is selected such that the necessary model fidelity (a
matter of engineering judgement) is maintained. Since this evaluation model
may itself be sufficiently large so as to make the control of all modes in-
feasible, a design model is determined as a subset of the evaluation model.
The design model must include those modes which degrade system performance be-
yond mission requirements.

The definitions of critical+ modes, residual modes, observation spill-
over, and control spillover, as defined by Balas [6] are adopted.

Critical modes, x., are those modes of the design model which are chosen
to be explicitly cControlled in order to assure stability and achieve

performance requirements for the system. ”

Residual modes, x,, are those modes which exist in the infinite dimen-
sional system that are not "critical" in the sense defined above.

Ao i

Observation spillover, is the contamination of the sensor outputs by the .

residual modes.

Control spillover is the excitation of the residual mode dynamics due to
the control.

Recently, some new design approaches to the vibration control problem
have resulted in misinterpretations. This confusion has motivated an addition-
al clarification., Residual modes can be subdivided into the following cate-
gories:

tWe have adopted the term "critical, in place of the term "controlled" [6],
to refer to thos¢ modes chosen to be explicitly controlled.

s R
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Design residual modes, , are those residual modes which are included
in the controller design process (and thus in the design model), but are
not explicitly controlled.

Evaluation residual modes, Xpps are those residual modes which are in-
cluded in the evaluation model but not in the design model.

Physical residual modes, X , are those residual modes which are in~
cluded in the physical mode?,,but not in the evaluation model.

Unmodeled residual modes, xgg, are those residual modes which exist, but
are not included in any finite-dimensional model of the system under
study.

2.2.1 Finite-Element Discrete Dynamic Model (Physical Model)

The dynamics of a large flexible space structure can be approximated
by the finite-element method using a computer program like NASTRAN as follows:

Mj+Kq = f° (2-1)

where q = (ql""’ qL) is a vector of L generalized coordinates, f = (fl,...,

fL) is a vector of L generalized external forces, M = [Mij] is a real sym-
metric positive definite matrix of LxL mass coefficients, K = [Kij] is a real
symmetric positive semi-~definite matrix of LxL stiffness coefficients. The
finite integer L is usually very large.

Forces or torques are applied through m actuators to control the struc-
ture:

f = BAp (2-2)

where u = (ul,..., um) denotes an m-vector of inputs to the actuators, and BA

is an Lxm matrix of influence coefficients.

Observations are made through £ velocity or position sensors:
y = Cuq+ Cyq (2-3)

where y 2 (yl,..., yz) denotes an f-vector of outputs from the sensors, CP is

an 2xL matrix of position coefficients and Cv is an %xL matrix of velocity
coefficients. If the % sensors consist of 2v velocity sensors and zp posi-

tion sensors, separately located, the coefficient matrices CP and C . take the

v

following special forms:

2-4
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_Equations (2-1) and (2-3) constitute a finite-element discrete
dynamic model of a generic large flexible space structure.

2.2.2 Finite-Element Modal Dynamic Model

" In terms of vibration modes {wj, ¢j}§:i of the large flexible space
structure, where mj denotes the natural frequencies (in rad/s) of vibration
g and ¢j denotes the mode shapes, the above discrete dynamic model can be re-

written as follows:

-, n+ an = @TBAu (2-4)

y = Cpon + C on (2-5)

v

where n = (nl,..., nL) is an L-vector of modal coordinates, 92 = diag

{wi,..., wi} is an LXL diagonal matrix of natural frequencies squared, and

¢ = [¢1,..., ¢L] is an LxL matrix of mode shapes. The superscript "T" denotes
transpose. The matrix ¢ possesses the following properties:

@TMé' = I, @TK¢ = Qz.

SR On Rl Y

The relationship between the generalized coordinates (ql,..., qL) and
the modal coordinates (nl,..., nL) is given by the following vector equation:

q = ¢on (2-6)

2.2.3 Fundamental Modal Design Model

The order L of model (2-4) and (2-5) is in general too large for de-
signing and implementing a control system on the large space structure. The
order must be reduced to a practical level. On the other hand, the L vibra-
tion modes are not equally important. Some possible ways for determining
the relative importance of the vibration modes are discussed in Appendix A.
Figure 2-1 illustrates a useful partition of the L modes modeled by Eq. (2-4).

Let {ij’ ¢Cj}’ j=1,..., N, denote the critical modes, and

} {ka, ¢Rk}’ k=1,..., M, denote the remainder of the L modeled modes, where
; N is the number of critical modes and M 4 L - N is the number of modeled

3 residual modes. Then the finite-element modal dynamic model (2-4) and (2-5)
: can be partitioned into critical and modeled residual parts as follows:

i i e




g + 02 g - g Bu | | (2-7)
ng + ni fal = ¢§ B,u (2-8)
y = (Gpecng + Cybene) + (Cpepny + Copic) (2-9)
where
ne = (ngpseees ey’
Qg' = diag {wgl,..., wéu}
b = [Bgpeees by
ng = (ggseees o)
e

9% = diag {mgl,..I; bRM}
¢R = [¢R1""’ ¢m]

A most common approach in reducing a large mathematical model is to
completely ignore the existence of those modes which are not dominant [1].
Following this approach, the large model (2-7) and (2-9) is simplified to the
following fundamental design model which contains only critical modes:

- 2 - oF : -
hc + nCnC OC BAp (2-10)
y = CPOCnc + CvﬂbcnC (2-11)

It is not really necessary to completely ignore all the non-dominant
modes. The steady state of some residual modes may also be incorporated into
the reduced design model to better approximate the steady-state response [2].
Some discussions on th¢ reduced models thereby obtained are given in Appendix A.
Nontheless, the reduced model (2-10) and (2-11) is the most common approach,
and is appropriate for the purpose of studying these seven design methods.

2.2.4 Fundamental State-Space Design Model

Modern control methods, such as the seven design methods, are based on
the following general state-space representation of the system to be con-
trolled:
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X = Ax +Bu R (2-12)°

y = Cx p , , X : (2_1'3):

where x = (xl,..., xn) denotes a vector of n state variables, u

10

a vector of m control inputs, and y = (yl,..., yz) a vector of 2 observation

outputs. A, B, and C are constant matrices of dimension nxn, nxm, and QXn,
respectively. Integers n, m, and { denote the dimension of tiie state space,
input space, and output space, respectively. '

A convenient stafe-space repregsentation of the fundamental modal
design model (2-10) and (2-11) 1is given by

X = Acx + Bcu g (2-14)
y = Cx (2-15)

where

0 I 0
A = » By =T |, C, = [cye., C.é.].
c ‘9?; 0 C  |ocB, c p’c’ S

2.2.5 Some Remarks on the Mathematical Models

The following are some important factors explicitly or implicitly
affecting the applicability of the design methods to large flexible apace
structures.

2.2.5.1 Controllability and Observability of Critical Modes

The design of a feedback controller for the fundamental state-space
design model (2-14) and (2-15), assumes that the critical modes are completely
controllable and completely observable. Controllability and observability of
critical modes, however, does not occur automatically. Improper location,
or an improper rumber, of actuators used on the structure will make some
critical modes uncontrollable. Similarly, improper location or an improper
number of sensors used will also make some critical modes unobservable.

See Appendix B for detailed discussions.

2.2.5.2 Rank of Matrices B., C

c’ °C

Some design methods also assume that the nxm matrix B of system (2-12)
and (2-13) has rank m and the £xn matrix C has rank &. (If B has rank n, then
m-n actuators are redundant. Similarly, if C has rank n, then £~n sensors
are redundant.) For the 2Nxm matrix BC of system (2-14) and (2-15) to have

2-7
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' rank m, it is necessary that m < N because N rows are always zero. This im-

plies that the number of independent actuators must not exceed the number of
modes to be controlled. Otherwise, it is necessary to eliminate or combine
some of the actuators. Similarly, for the x2N matrix CC to have rank £ when

all sensors are velocity sensors or all are position sensors,lit is necessary
that ¢ < N. Otherwise, it is also necessary to eliminate or combine some of
the sensors.

2.2.5.3 Control and Observation Spillover

In practice, controllers for a very large system, say model (2-7)
through (2-9), are designed using its reduced-order model, say model (2-10)
and (2-11). This essentially assumes, in the specific case of (2-7) through

T -
(2-9), that the matrices °RBA’ °P°R' and CVQR are zero or negligibly small.

However, such assumptions do not always hold for large flexible space
structures.

If ¢§BA is not negligibly small, energy supplied for active control of
fundamental modes may spill over to residual modes (unless vector u is such
that °§BA“(t) £ 0) and excite them according to the dynamics (2-8). The

control of critical modes will not be affected by control spillover provided
no sensor outputs are fed back, i.e., provided only open-loop control is applied.

On the other hand, if either CPOR or CVOR is not negligibly small,

excited residual modes of vibration may "spill" over to the sensors and conta-
minate the observation of critical modes. Open-loop control of critical

modes will again not be affected; feedback control of éritical modes, how-
ever, will be affected, and the performance may become uncertain. Nonetheless,
observation spillover without control spillover will not further excite the
residual modes, and hence will not further degrade the feedback control of
critical modes.

Simultaneous existence of both control and observation spillover is
likely in large flexible space structures. Since feedback control of large
flexible structures is considered, control and observation spillover combined
may make the structure unstable. However, simultaneous existence of control
and observation spillover need not be disastrous; it may be properly utilized
to improve closed-loop stability (see Section 4.3.3., or Section 7).

2.3 An Overview of the Design Methods

2.5.1 Two Different Viewpoints

These methods can be looked at from two different viewpoints: state
feedback vs. output feedback, and regulation of responses vs. alteration of
wodes of respunse. Since most are state-space methods, the following brief

introduction will primarily refer to the general state-space representation
(2-12) and (2-13).
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2.3.1.1 State Fezdback vs. Output Feedback

State feedback control of system (2-12) and (2-13) involves determining

the control inputs Upseees U a8 functions of state variables Xpseees X8

u = Fx (2-16)

where F is an mxn matrix of constant gains. Methods 1 through 3 compute the
state-feedback gain matrix F in different ways.

Since state variables are usually not directly available for feedback
purposes (such is particularly the case for large flexible space structures),
an estimator must be used to provide the state-feedback controller with on-
line estimates of the state from observation outputs Yyeers Ygo Methods 1

and 2 use a dynamic state estimator, namely, a Luenberger observer, while
Method 3 uses a static state estimator. A state estimator can be considered
as the dual of the corresponding state feedback controller. Thus, each method
designs a state ebtimator in a similar but '"dualized" manner as it designs a
state-feedback controller. Method 1 usually bears the label of "modern
control" though all other six methods are also modern contrcl methods.

Output feedback contrcl involves determining the control inputs
ul,..., um as functions of observation outputs Yyeeees yl

u = Gy (2-17)

where G is an mxf matrix of constant gains. Methods 3 through 7 compute the
output-feedback gain matrix G in different ways.

The absence of dynamic state estimators is characteristic of Methods 3
through 7. Method 3 uses a static state estimator more for deriving a part of
the gain matrix G than for actually estimating the state. These methods are
extensions and modernizations of the classical concept of feedback controllers
for single-input single-output linear time-invariant systems.

2.3.1.2 Regulation of Responses vs. Alteration of Modes of Respomse

Active centrol of structural vibration can be done by directly reguia-
ting the state vector whose components are wodal responses nj(t) and their

derivatives ﬁ*{t). Methods 1, 5, 6, and 7 fall into this category. What
3]

these methods attempt to do is to minimize a quadratic performance index on
the magnitude of the state vector. Methods 1, 5, and 6 also include the
magnitude of control input in the quadratic performance index as a tradeoff
between regulation accuracy achievable and control energy required. All these
methods have essentially evolved from Kalman's contributions to the theory of
optimal control, especially those dealing with linear-quadratic regulators [3].

Due to the questionable adequacy of summarizing the engineering
specifications required of a large-scale syatem in a single quadratic

2-9
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performance index, and the insursmountable computational problem with the
solution of the associated matrix Riccati equation, Rosenbrock suggested the
use of "modal control" as a design aid. Modal control of a multivariable
system like (2-10) and (2-11), or system (2-12) and (2-13) in general, is by
definiticn [4] to alter the modes of =ystem response to achieve the desired
control objectives. Since the modes of the system response are characterized
by system poles, appropriate feedback (from state or output varlsbles) is
introduced to make the closed-loop system have the desired modes of response.
Methods 2, %, amd 4 f4ll into this cdtegory. These methods have evolved
mainly from Wonham's contribution to the theory of pole assignment [5].

2.3.2 Design Method 1: State Feedback Control with a Luenberger Observer
via Linear-Quadratic Regulation.

The state-feedback control for system (2-12) and (2-13) is to be de-
signed so that an infinite-time quadratic performance index

J = / (xTQx-i-uTRu)dt
0

on the state vector x and input vector u is minimized. The approach is to ob-
tain the state-feedback gain matrix F by solving the associated nonlinear nxn
matrix algebraic equation of Riccati type. By shifting the eigenvalues of the
system matrix A in the Riccati equation by a negative real number, the result-

ant closed-loop system will have all its poles lie to the left of this number.
The stability margin is thus increased.

A Luenberger observer is used to recomstruct the state and hence pro-
vide the state-feedback controller with on-line estimates of the state. Since
the dual of a Luenberger observer is also a state-feedback controller, the
approach is to design the required observer by solving the corresponding
Riccati equation.

This method has a sensitivity problem: the resultant closed-loop
system is sensitive to model errors and parameter variations. This method

also has the problem of choosing proper matrices Q and R to satisfy performance
specifications.

2,3.3 Design Method 2: State Feedback Control with a Luenberger Observer
via the Simon-Mitter Method of Pole Assignment.

The objective of state-feedback control of system (2-12) and (2-13) is
to make the closed-loop system have desired modes of response. The approach
is to compute the state-feedback gain matrix F using the Simon-Mitter or
Crosgley-Porter method of pole assignment. The gain matrix is a dyadic pro-
duct of two vectors.

A Luenberger observer is used to provide the state-feedback controller
with on-line estimates of the state. The approach is to design the required

2-10
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observer by assigning desired closed-loop poles to the dual of system (2-12)
and (2-13) again using the Simon-Mitter or Crossley-Porter method.

This method has the high-gain problea because of the imposed dyadic
form of the gain matrix. The resultant closed-loop system is also sensitive
to model errors and parameter variations.

2.3.4 Design Method 3: Output Feedback Control via the Canavin Method of
Modal Decoupling. -

This method is specifically developed for independently damping each
critical mode of the underlying structure. It is an output-feedback method as
well as a state-feedback method (with static state estimation). First of all,
substituting (2-17) in (2-10) and (2-11) yields

2
C C- 30 BAQCV¢CnC + (QC C AQCPOC)n 0 (2-18)
It is easily seen that negative feedback from velocity-sensor outputs will
tend to add damping to the /flexible structure. Canavin's method of wodal

decoupling uses only velocity sensota and computes a gain matrix G such
that the resultant dewping matrix (- 0 cho ) is diagonal and positive defi-

nite. In other words, Eq. (2-18) with CP = 0 is to be decoupled in the modal
coordinates as follows:
" . 2
Mey * ey Yoy Mes T ¥y g T O
where ‘Cj is the desired damping ratio on the jth critical mode.
The output-feedback contro' is a combination of state-feedback control
u = Fnc

and static estimation

nc = Hy

where nc denotes an eatimate of derivative "C = (ECI""’ ﬁcn). Therefore

G = FH
The approach is to compute the mairices F and H by solving the following
mAatrix algebraic equations:

T
OCBAF = diag {-2(01uc1,..., 'z‘cu“cu}

CVOCH = I

2-11
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This method requires a sufficiently large number of actuators and velocity
sensors. The feedback gains may be high.

2.3.5 Design Method 4: Output Feedback Controi via the Davison-Wang Method of

Pole Assignment.

Conceptually, Canavin's method of output feedback control is a special
method of pole assignment. It assigns N new complex-conjugate pairs of closed-
loop poles to the fundamental state-space design model (2-14) and (2-15). The
general method of pole assignment for system (2-12) and (2-13) does not require
that the desired closed-loop poles preserve the same open-loop natural frequen-
cles. The closed-loop poles can be freely chosen so as to meet other specified
performance requirements.

&

In the Davison-Wang method of pole assignmgnt, one systematically com-
putes the output-feedback gain matrix G required for assigning as many as
min {m+2-1,n} desired closed-loop poles to system (2-12) and (2-13). This
method is different from the Simon-Mitter and Crossley-Porter methods, but
the same technical approach is uggd: to compute the gain matrix G as a dyadic
product of two vectors. This is achieved by converting a multivariable sys-
tem either to a single-input system or to a single-output system. The compu-
tational procedure is therefore conceptually quite simple.

\. .
This specific method of pole assignment has its inhereant weaknesses,

such as high gains and hidden instability. The general method of pole assign-
ment, if it eventually becomes practical, should not have such weaknesses, but

would be much more complicated.

2.3.6 Design Method 5: Optimal Output Feedback Control via the Levine-Athans
Method.

As with the linear-quadratic regulation of Method 1, the approach is
to design an output feedback control so that the same quadratic performance
index on state and control input is optimized. Uncertainty in the initial
state is considered. No state estimators are required, however, since out-
puts are fed directly back to the system. In the method, one computes the
feedback gain matrix G by recursively solving a linear n*n matrix algebraic
equation of Lyapunov type and a nonlinear nxn matrix algebraic equation of
Riccati type.

These matrix equations represent only first-order necessary conditions
for optimality, and are highly coupled. Recursive computations are complex
and their convergance is not guaranteed. Stability of the resultant closed-
loop system is not guaranteed either.

2.3.7 Design Method 6: Suboptimal Output Feedback Control via the Kosut
Approximation.
The same optimal output icedback control problem as in Method 5 is

considered, but in this method one avoids the computational difficulties by
seeking approximations of the optimal output feedback gains. Two different
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ways of approximation are proposed: minimum error excitation and minimma
norm..

In the minimuﬁ-error-excitation approximation, one minimizes a quad-
ratic performance index on the exror of the postulated output-feedback
control inputs from the optimal. Only a linear nxn matrix algebraic equation

of Lyapunov type needs to be solved for the suboptimal output-feedback gain
matrix.

In the minimum—norm approximation, one minimizes the Euclidean norm of
the error in the postulated feedback gain matrix from the optimal. The sub-

optimal output-feedback gain matrix is directly computable by matrix inversion
and multiplication.

These approximately optimal output-feedback gain matrices are simple
to cimpute, but the optimality of the design may be questionable. The stabi-
lity of the resultant closed-loop system is not assured.

2.3.8 Design Method 7: Stochastic Optimal Output Feedback Control via the
Johnson Method.

This metnod is still in the research and development stage. Gaussian
white noise in the dynamics (2-12) and the observation (2-13) is considered.
The output-feedback control optimizes an asymptotic mean-square measure of
the state. This method in some respect is similar to Method 5, but it is more
general and advanced in the sense that uncertainties in the dynamics and the
observation (instead of only the uncertainty in the initial state) are taken
into account. The output-feedback gain matrix G is to be obtained by recursive-
ly solving & linear nxn matrix algebraic equation of Lyapunov type and a non-
linear nxn matrix algebraic equation of Riccati type. The concept of "control
projection" and "observation projection" is introduced to simplify the compu-
tations, Nonetheless, these matrix equations and recursive computations are

much more complex than those of Method 5. An efficient numerical algorithm
is currently being developed.

Its application to large flexible space structures is desirable, since
the effects of control and observacion spillover can be treated as stochastic
disturbances instead of being ignored as usual. Furthermore, the method pro-
poses that residual modes be coupled to critical modes by properly combin-
ing redundant actuators and sensors to make positive use of gpillover so as to
enhance closed-loop stability. Stability of the critical modes can then be
inherited by the residual modes. Such an idea of utilizing control and obser-
vation spillover has been successfully tested on the two-mode mass-spring
example (see Section 2.5). No general combination procedure is available yet.
Such a procedure is desirable but is expected to be rather complex, since it

will involve a large finite~element model (2-1) through (2-3) or (2-4) through
(2-6).

2.4 General Format for Individual Reporting of the Design Methods.

The reporting of individual studies on Methods 3 through 7 uses
the general format outlined in the following.

=13

u

Pl ]

T

i

b e




The general format consists of five main parts: Background, Discus-
sions, Illustration, Conclusions, and References. Appendices may be included
if necessary. The following is an outline of the four main parts.

Part I: Background

1. Brief introduction of the main ideas and underlying theory of
the individual method.

2. OQutline of the design method and/or the algorithm.

3. Summary of assumptions made and technical tricks used.
Part ﬁI: Discussions

1. Strengths.

2. Weaknesses (including theoretical limitations, numerical diffi-
culties, and potential pitfalls).

3. Maturity (including improvements made or rejuired).

4, Applicability to vibration control of large flexible space
structures (including closed-loop stability, robustness to model
errors and parameter variations, control and observation spillover,
and special problems).

Part II1: 1Illustration

Apply the individual method to the simple test problem given in Section
2.5 and address the eight points of interest listed therewith.

Part IV: Conclusions
1, Summary of advantages.

2. Summary of disadvantages.

3. Final comments (including recommendations for improvement or further
investigation).

Part V: Appendices
(optional)

Part VI: References

2.5 A Simple Test Problem and Eight Points of Interest

The following example is simple and hand-calculable, but it is contrived
(in the spirit of Reference 8) to capture many features and fundamental control
problems of large flexible gpace structures.

2-14
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It is hoped that by working out this example ﬁith various methods, -
many useful theoretical and practical insights into the control of large
flexible space structures can be generated. 7

An undamped mass-spring system whoge axial (vertical) vibration is to
be controlled is shown in Figure 2-2, The system has two modes:

fl = 0.087 Hz, f2 = 0.412 Hz. To capture fundamental features (and problems)

in the control of large flexible space Structures, imagine that this four-
dimensional system is too large and that the controller design must be baged .
only on a reduced-order model. Furthermore, only modal control is considered.
Therefore, assume that Mode 2 is critical, and must be controlled so that it
has at least 10% of critical damping (i.e., has damping ratio £>0.1). (In
general, critical modes of a large space structure need not be ones with
lower frequencies.)

The following is a summary of the data and the mathematical models
useful as a convenient common reference.

Y

- -0.857]
Critical mode (to be controlled): f2 = 0.412 Hz, ¢2 = [
. Lo.365j
w, = 2.589 rad/s
_ 0.516 ]
Residual mode (to be ignored): fl = 0.087 Hz, ¢1 =
0.606
W = 0.546 rad/s
Finite-element discrete dynamic mode]
Ml 0 ql K1+K2 -KZ q1 u1
Lt = (2-19)
© M9 o K]y u |
451 9
= . (2-20)
Y2 9

Plots of the open loop time responses to initial conditions and to a
periodic disturbance, referred to both physical and modal coordinates,
are shown in Figures 2-3 through 2-6.
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q; = displacement of mass i
Y; = output from velocity sensor i
u; = input to force actuator i !

Figure 2-2., A mass-spring system.
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Finite-element modai dynawic model (Evaluation Model)

iy w O Hn o |%
T 2 - 9 | (2-21)
n, 0 w, 11 My B '
yl “1 :
=0 | (2-22)
Y2 Ny
9 " o
. q, n, .

Fundamental modal design model

“
R, +un, = 4 (2-23)
2 272 2
u
2
b ]
Rl 710} _ (2-24)
Y2
Fundamental state-space design model
= + (2-25)
“ . 2 . T
n, —w, 0} In, $1 1y,
y n
- 1 2
= [0 4,01, (2-26)
¥p n,

i First, design such a feedback controller using the specific method
| under study and the reduced-order model (2-23) and (2-24), or (2-25) and (2-26),
having only the critical mode (f2 = 0.412 Hz). One force actuator and one

velocity sensor are to be attached to each mass, as shown in the figure, re-
spectively, by u and Yy Assume the actuators and sensors have no dyramics

or noise. Then address the following points of interest.

1. Briefly demonstrate how the feedback gain matrix is computed.

2. With such a controller connected to the system, is the closed-loop
: system asymptotically stable? How much damping does each of the
: modes actually have?
| 2-21
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What are the specific effects of control spillover and observa-
tion spillover with such a feedback controller? Note that Mode 1
is a residusl mode.

Suppose mass 2 alone is subject to an initial disturbance:
ql(O) =0, qZ(O) =1m, qi(O) = 0, 1 = 1,2, Describe the behavior

of the closed-locp system, say in terms of the peak magnitude, 52
settling time, and steady-state response for qz(t). (The open-

loop responses are shown in Figures 2-3 and 2-4 for comparison.)
Suppose mass 2 alone is subject to a persistent disturbance of
fz(t) = sin 3t Newton, with qi(O) = qi(O) =0, i{=1,2. How does
the controller help suppress the vibration qz(t) ? Specifically,
compare the steady-state response qZSs(t) of the closed-loop sys-
tem with that of the original, open~loop system. (The open-loop

responses are shown in Figures 2-5 and 2-6.)

Can the damping of all the modes (the residual as well as the
critical) be further increased simultaneously by this method? How?
Why? 1Is there any limitation?

Can the number of actuators and sensors be reduced? What is the
minimum required by this method?

How would it affect the vibration control by this method if
position (displacement) sensors were used instead?

2-22
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SECTION 3

OUTPUT FEEDBACK CONTROL VIA CANAVIN METHOD OF MODAL DECOUPLING

3.1 Background

3.1.1 Introduction

The decoupled-controller design technique [3] is an output feedback
control scheme with no dynamic compensation and is used to achieve modal
damping in a large space structure (LSS).

The decoupled-controller design technique presumes that the dynamics
of large space structures can be represented by the finite-element model of
Eq. (2-1). Futhermore, the modal dynamic model of Eq. (or system) (2-1) and
its associated sensor output vector can be represented by Eqs. (2-7) through
(2-9), which are repeated as follows:

. 2 T

e + anc OCBAP (2-7)

- 2 T

" + QR"R QRBAu : (2-8)
y = (CP¢CnC + Cv¢cnc) + (CP¢RnR + CVORnR) (2-9)

where all symbols have been defined in Section 2.

The main idea of the decoupled-controller design is to choose a
constant matrix G satisfying Eq. (2-17), i.e.,

u = Gy (2-17)

such that Eq. (2-7) becomes

. 2 .
+ - §
ne * B¢ * [\zacpc \]"c

where the diagonal matrix is

2014

2c . Q = 2z

c'c c2c2

Y . 2Centcn)




If these ideas can be implemented, the dynamics of critical modes be-~
come decoupled and the amount of damping for each critical mode can be speci-
fied by choosing a desired value for ;C.

Canavin [3] proposed a method to implement these ideas and to guarantee
the stability of the overall controlled structure. This section presents an
evaluation of Canavin's method [3] with respect to the vibration control of
large space structures.

The section is organized as follows: An outline of the design method
and its assumptions is given in Section 3.1. A discussion of the design
method is presented in Section 3.2. Section 3.3 presents the application of
the method to a two mode example. It is ended with a conciusions/recommendation
section.

The fundamental theories used in the development of the decoupled-
controller design scheme include the generalized (or pseudo) inverse of a
matrix {1] and the direct method of Liapunov [2]. Section 3.5 contains a
summary of these theories to the extent necessary for the discussion of the
decoupled~controller design in this section.

3.1.2 Qutline of the Design Method (the Decoupled-Controller)

It is assumed that for the design of a decoupled-controller a design
model in modal coordinates (i.e., Eq. (2-7)) is given and the required damping
for each mode of the design model is also specified. The design method can
then be summarized in the following steps:

(1) Choose only velocity sensors for measurements and force actuators
for control. Form sensor/actuator pairs—each pair must be colo-
cated. The number of sensor/actuator pairs must be greater than
or equal to the number of wodes in the design model.

(2) Refer to Figure 3-1. The constant outout feedback gain is computed
as the product of the static estimator gain {Sv) and the control
gain (Pv):

a. The static estimator gain is equal to the pseudo inverse of

(cvzoc), i.e.,

Sy = (°v2°c)' 4 [(cvz"c)T °v2°c]-

1

T
c, ¢
By
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Figure 3-1. The design wethod.
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Moreover, | 27 0 is a diagonal matrix and each diagonal
c e

element is chosen to be a constant 2;01 o1’ with 8ot and o ci
teptesenting the required damping ratio and the modal fre~
quency, respectively, of the ith critical mode.

¢. The constant output feedback géin G is then

G = TS$
vV

Ignoring the modal velocity of residual modes ({.e., ﬁR) in the sensor
outputs and considering only the design model (i.e., Eq. (2~7)), the governing
equation for the critical modes, therefore, becomes

“ 2 T T
"¢ + anc = OCBAu QCBAQy

g ¢CBAFVSVCVQC c = [ ZCCQC\Jn

where the estimated modal velocity ﬁc is the output of a static least-square
estimator (see Figure 3-1 and Section 3.5.2). That is '

e = S.%%cc ) ~

Thus Canavin's method [3], due to the nonavailability of nc, uses nc to
obtain damping. Also the decoupling mechanism, i.e.,

T -
OCBAPv [ ZCCQC_J
is, in general, an approximate expression (see Section 3.5.2). Furthermore,

sensor outputs often contain Ng* and the actual damping ratio for each criti-

cal mode of the contrclled structure is not in general identical to what is
specified ({i.e., c01). Detailed discussions are given in Section 3.2,

3.1.3 Summary of Assumptions

To ensure that the design method outlined in Section 3.1.2 is a viable
approach for structural vibration suppression, the following assumptions were
made:




A Y,
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a. The stiffness matrix in the finite element model is symmetric and
positive definite; i.e., rigid-body modes are not included in the
dynamic finite element model. When the finite element model con-
tains rigid-body modes, the stiffness matrix is symmetric and
positive semi~definite. Then it is assumed that there is no strain
energy with the rigid-bedy modes and that there are no control
forces acting on these modes.

b. Sensor/actuator pairs can be colocated on the structure.

c. The number of gensor/actuator pairs is greater than or equal to
that of controlled modes.

d. The design model and the required damping for each mode to be
controlled are given.

3.1.4 Summary of Technical Techniques

Consider that the dynamics of the:structure is represented by the de-
sign model. When the estimator gain is chosen as the pseudo inverse of CVZQC’

the output of the estimator is the best estimate (ﬁc) of the controlled model

velocity (ﬁc) vector in the least-square-error sense. The second pseudo in-
verse matrix (°2BA)# provides a decoupling mechanism with minimum control
energy such that each controlled mode is damped by the feedback of its modal
velocity as estimated by the estimator (see Section 3.5.2 for the meaning of
these two pseudo inverse matrices). Furthermore, since only velocity sensors
are used and sensor/actuator pairs are colocated, the system becomes energy
dissipative, resulting in a stable overall system.

3.2 Discussion

3.2.1 Strengths

The decoupled-controller gain can be computed off-line. The computa-
tions involve only straightforward matrix multiplications and matrix inver-
slons. Standard computer programs are available to carry out these tasks.

If only the design model is considered, the damping of the ith con-
trolled mode (i.e., CCi) can be arbitrarily set in theory, by adjusting the

1

corresponding values of the nonzero elements of the diagonal matrix [‘2ccnc J.

S
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The practical upper limits for achieving these damping ratios are determined
by the power supply limitatioms and the aaturation characteristics of the
controller and actuators. :

The decoupled-controller design also yields an overall stable system
even in the presence of control and observation spillover. Furthermore, ro-
bustness of stability against model parameter errors or variations can also
be demonstrated. These two properties (i.e., stability and robustness of
stability) were originally obtained by Canavin [3] for structural vibration
control where a general constant output feedback control design scheme is

adopted, and the control force consists of both velocity and position output
feedback, i.e.,

Mi+Kq = £ = -ccé - K. (3-1)

where the matrix CC represents a general velocity feedback gain and Kc .

represents &8 general position feedback gain. It is noted that in the special

case of the decoupled-control design, CC and K take the following particular
forms:

4
CC BArvstV

2
- 5,657 [ 0% )7 1l s « -1 T
A%coa {“c a(cB ] [2;6 J AL o °c] A ,
(3-2)
and
K, = 0 (3f3) .

In Section 3.5.4 the stability and the robustness of stability results
are rederived, in a rigorous manner, for the general constant velocity
and position output feedback control scheme so that some more insight can be ’
obtained. However, these results can equally be applied to the special case
of the Zecoupled-controller design, as specified by Eqs. (3-2) and (3-3).

A new stability result for the system (3-1) is given in Sectiom 3.5.3,
which is stronger than the theorem in Section 3.5.4. In essence, the new re-
sult (in Section 3.5.3) states that if M and (K+KC) are symmetric and positive

definite and CC is positive semi-definite, then the system (3-1) is asympto-
tically stable if and only if M.l(K+KC) and CC are an observable pair. This

result is particularly useful in the application of the decoupled-controller.
design approach to structural vibration control, since in this case CC is

always positive semi-definite and asymptotic stability of system (3-1) is either
desirable or required.

|
i
;
i
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3.2.2 Weaknesses

Since the decoupled-controller design method allows an increase in the
modal damping of each critical mode, the overall system performance require-
ments must be translated into modal damping requirements. If this cannot be
done, control design iterations are required. Even when this can be done, the
actual damping of the critical modes may vary when control and observation
spillover are present. Furthermore, parameter errors or variations will change
the degree of decoupling and estimation via °C in the pseudo inverse of the

matrices (QgBA) and (CVQC). Although stability may be retained, system per-

formance may be degraded to an unacceptable level in the presence of param-
eter errors or variationms.

Currently, the system stability requirement can be satisfied only if
each sensor/actuator pair is colocated. This may impose unreasonable restric-
tions on the actual sensor/actuator placement due to physical constraints of
the structure or practical implementation of the hardware.

Since the number of sensor/actuator pairs must be greater than or
equal to that of the critical mode:, it is expensive and complicated to im-
plement the decoupled-controller with a large number of sensor/actuator pairs
for structures that require a large number of modes to be controlled. In
addition, the chance of hardware failure may become significant and its impact
on the use of the decoupled-controller design may have to be reassessed.

3.2.3 Maturity

In 1976, Quartararo [4] proposed a modal contro: concept that is-
based on two coordinate transformations. The first coordinate transformation
is responsible for transforming from the discrete coordinate to the modal
coordinate, identical to the process from Eq. (2-1) to Eq. (2-4) as discussed
previously. The second coordinate transformation is specifically introduced
to achieve independent actuation of the modal equations and actuators are
used in such a way as to produce a generalized force in any given mode
without forcing the other modes[4]. Instead of using pseudo inverse matrices,
Quartararo considered the case where the number of actuators equals the number
of the critical modes and hence only a normal matrix inversion is needed.
Similarly, a normal matrix inversion is used for state estimation because the
number of sensors is equal to the number of critical modes.

Canavin [3] extended Quartararo's concept to include the use of pseudo
inverse for matrices (see Background section) and obtained the stability and
the robustness of stability results (see Section 3.5.4). Moreover,

Canavin [3] proposed the velocity-only feedback design scheme as a special
case that satisfied the stability rriteria and thus provided an approach to
achieve desired modal damping, stability and robustness of stability. How-
ever, large values in the velocity feedback gain matrix were reported in a
numerical example to achieve ten percent of critical damping for the critical
modes [3].

i
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3.2.4 Applicability to Vibration Control of LSS

Theoretically, the decoupled comtroller design technique is suitable
for LSS vibration control applications. As discussed in Section 3,2.1, a
decoupled-controller with only velocity feedback yields a stable closed~loop
system, which is robust against model error. Control and observation spill-
over may degrade the system performance but camnot destabilize the system.

Associated with the decoupled-controller design approach, however, there
remain issues to be resolved before its practical applicability to LSS .
vibration control can be completely assessed. These issues will be discussed
in the Conclusions given in Section 3.4.

3.3 Illustration (The Example)

The model for the example system is repeated in the following for con-
venience:

+ = f (3~4)

Ei2 9

Therefore, the mass matrix M and the stiffness matrix K take the form:

Two velocity sensors and two actuators are employed in this system in
such a manner that the measurement Yy takes the form

1 0 ql ’
i
} yV = qu = . (3"5)
2 0 1 q,
and the control force takes the form
1 0 ul
f = Bu = (3-6)
A 0 1 u2
It is noted that ;
1 0
T
C = B =
V2 & 0 1
3-8
3

R e T




and that _ _
~0.857 0.516

~+ |, and &, = @ -
0.365 R 1 0.606
Furthermore,

w o= 0.5465 rad/s and w, = 2.59 rad/s

The eight questions posed in Section 2.5 are answered in the
sequel. '

3.3.1. Gain Computations

1 -0.98769814

. o (o T 12T oTo \ Ty . - .
T, = (ecB) 9B, (2B)7] - (2w, RN T
:' T _1 T
é s, = [}cVZQC) (cv2¢ci] (CVZQC) = [(-0.98769814) (0.42066491)]

é where CZ is the damping ratio for the second (i.e., critical) mode. 1In

theory, cz can be set to an arbitrary value. However, in this illustration
Ly is set to 0.1.

3.3.2 Stability and Actual Damping

First consider the design model with control. The closed-loop equation
for the design model is then

) T ; 2
ny + (°2BArvstv2°2)"2 + (w))"n, g

i
{
i where
i

T 2
d = = S .

( 0.97554762) (-0.41548995) | [-0.857

(-0.41548995) ( 0.17695397) || 0.365

= 2;2m2 = 2+ (0.1) + (2.58867) = 0.517734

3-9




It is apparent that if the design model is considered, the closed-loop system
is asymptotically stable and the damping is equal to 10 percent of critical.

Next, consider the evaluation model with control. The closed-loop sys-~
tem equations become

. . 2 5
Ay + 200,05 + ()0, + (20,0,) + (-0.2511)n; = 0 (3-7)

OBSERVATION SPILLOVER

Ry + (20j0,) ¢ (0.06307)n, + () ’n) + (2L,0)) + (-0.251)n, = 0 (3-8)
CONTROL & OBSERVATION CONTROL SPILLOVER
SPILLOVER
With ;2 chosen to be 0.1 and therefore Zczmz equal to 0.517734, the actual
damping for " is found to be 0.0306, and the actual damping for n, is 0.10006.
It is noted that the damping for Ny is positive and the damping for Ny is
only slightly different from the chosen value (i.e., 0.1).

*
The stability of the system (3-7) and (3-8) is indicated , because the
poles of the system have non-positive real parts:

T P2 = -0.016751 +30.546779 (3-9)

P., P, = -0.258690 £j2.572255 (3-10)

3’ 74

3.3.3 Control and Observation Spillover Effects

Consider Eqs. (3-7) and (3~8) in which control and observation spill-
over are identified. One of the observation spillover effects is to couple
the dynamics of n, with that of ﬁl (see Eq. (3-7)). Moreover, one of the

control spillover effects is to drive the dynamics of n, with n. (see Eq (3-8)).
1 2

The combined effects of control and observation spillover, however, intro-
duce a positive damping term in Eq. (3-8) which is partially responsible for
having nonpositive real parts of the system poles of Eqs. (3-7) and (3-8).

3.3.4 The Behavior of the Controlled System with an Initial Disturbance

The dynamics of the controlled system can be represented by the follow-
ing equation:

*
For this example, all conditions required for the theorem in Section 3.5.3

to hold are satisfied and therefore asymptotic stability is in fact assured.

3-10

H\



0.50507463  =0.21511347 ‘.11

+
"
a2}
]
1

o 2fl5,] |+ 4]lg -0.21511347  0.09161776]{q,

(3-11)

Solutions (i.e., ql(t) and qz(t)) to Eq. (3-11) are obtained via simulation and

are plotted against time in Figure 3-Z. From this result, it is seen that 9,
1s initially displaced by 1 meter which is its maximum displacement.

In generel, 9, exhibits a behavior of decaying oscillations. Similarly, 9,
is initially at rest and subsequently also exhibits a behavior of decaying

oscillations. However, the first peak displacement of 4y is the maximum

displacement of qq throughout the simulation period. It is noted that system

poles of Eq. (3-10) correspond to a faster decaying rate than that of Eq. (3-9).
Therfore, both 9y and 4, of Figure 3-2 exhibit an oscillation frequency of

about 0.547 rad/s. From Eq. (3-9), the dominant time constant of the system
is approximately 60 seconds. Therfore, the 57 settling time of the system is
about 300 seconds. However, at steady-state, both qq and q, should approach

-

zero since the closed-loop poles of the system (see Eqs. (3-9) and (3-10)) have
negative real parts.

3.3.5 System Performance under Persistent Disturbance

L System performance under a.persistent sinusoidal disturbance is simu-
L lated with and without the decoupled-controller. The time-history of 9y and

4, in either case are plotted in Figure 3-3 and Figure 3-4, In tle case where
no control is employed, both 9, and 9, exhibit vibratory motions of no damping.

" The vibrations have three frequency components, i.e., the system natural fre-
quencies and the frequency of disturbance. The magnitude of vibrations could
reach about 0.4 meters for both qq and dy- However, in the controlled case,

i the magnitude of the vibrations is reduced in both transient and steady-states.

' In particular, at steady-state the magnitude of the suppressed vibration is
about 0.1 meter and the vibration consists only one frequency, i.e., that of
the disturbance.

3.3.6 Simultaneous Increase in Damping of Both Modes

The closed-loop system equations (3-7) and (3-8) can be expressed in
vector form:

: - . 2
: "2 a b n2 wz 0 n2
; + + = 0 (3-12)
i n d , ¢ wz n
L ¢ 1 1 1
3-11
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where

a = 2,0,

-
4

c = 2;2m2 « (-0.2511)
d = 2§202 « (0.06307)

and Z, 1s the only free design parameter. The actual damping of each
mode is a function of %, Numerical plots of the poles of Eq. (3-12)
for several values of g, are given in Figure 3.5, which clearly shows

that the damping of mode 2 (the critical mode) can theoretically be in-
creased without bound by increasing the value of %y However, the

achizvable dawping of mode 1 (the residual mode) has a finite maximum
value of about 0.3 and after reaching this maximum damping the damping
of mode 1 drops in spite of the increase in %y Nevertheless, the system

(3-12) can be proved by the Routh-Hurwitz theorem to be asymptotically
stable as long as 0 < ;2 < o,

. Ju

i so 2.00

1.00

f/‘“\

c.se

Do
1
-1

-3.00 -2.50 -2.00 1.50 -1.00 -0.5C 0.

(Contributed by Capt. D.C. Herrick)

Figure 3-5. Root locus of the closed loop example system as a function
of the design parameter 7%
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3.3.7. Reduction in the Number of Sensor/Actuator Pairs . |

To take the decoupled~controller design approach, the minimum number
of sensor/actuator pairs is one in order to design a controller for a design
model with one mode. The design procedure ir this case would have been simi-
lar to that discussed in the two mode example except that regular matrix in-
version, rather than pseudo inverse of matrices, would be used.

3.3.8. Position Sensors

If only position sensors are used, the closed~loop system equatiom
can be expressed in discrete (physical) coordinates as follows

Mg + (K+K)q = 0 (3-13) *

where KC is the position feedback matrix. If KC is symmetric, Eq. (3-13)

represents a system of oscillatory nature and the frequencies of the con-
trolled modes may be changed.

3.4 Conclusions/Recommendations

3.4.1 Summary of Advantages

: (1) Control gain computations are easy and straightforward; computa-
] ' tion software is available.

(2)1 Damping of each critical mode can be arbitrarily set. ,

(3) Stability is guaranteed.
(4) Stability is retained in the presence of model errors.

i 3.4.2 Summary of Disadvantages

| (1) System performance requirements must be translated into modal
i . damping requirements.

(2) Modal damping requirements may not be satisfied in the presence '?
of model errors. :

(3) Sensor/actuator pairs must be colocated.

(4) The number of sensor/actuator pairs must be greater than or equal
to the number of modes in the design model.

3.4.3 Recommendations

In light of the disadvantages of the decoupled-controller design ap-
proach, areas for further ressacch include:

3-16




a. To relax the requirement of sensor/actuator colocatiomr—this re-~
quirement was established in [3] to guarantee the positive semi-
definiteneas of C. (see Eq. (3-2)), and therefore tne stability of

the system, However, the choice of B, = C£ is only a sufficient

] A i
] condition to guarantee such a CC matrix. A more general condition

may relax the requirement of sensor/actuator colocation (i.e.,

BA-C"I'] ).

2

b. To reduce the number of sensor/actuator pairs—the relationship
between the number of sensor/actuator pairs and the system perform-
ance was not established in Reference [3)}. The number of sensor/
actuator pairs may be reduced to less than the number of critical
modes at the expense of a dynamic feedback controller. The trade-~
off between the number of sensor/actuator pairs and the system per-
formance should be investigated.

-

~ ‘ , .

. "T6 perform sénsitivity analysis—in the presence of model parameter
exrors or sensor/actuator failure, the actual damping of the
critital modes may be different from the desired value. the extent
of resulting system performance degradation should be determined.

d. To evaluate practical applicability of the method—in Reference [3],
it was found that high gain was required when the dccoupled-controller
design approach was applied to a large space structure to achieve
about 10X of critical damping for 12 critical modes. It would
be desirable to determine if this high gain result was caused by
the approach itself or by the placement of sensors and actuators.

The sensor and actuator dynamics were completely ignored in Refer-
ence [3]. But in practical applications, sensor and actuator
dynamics should be considered and therefore the overall system must
be reevaluated.

3.4.4 Final Remarks

;1 Since complex large space structures are considered, finite-element
models of LSS may often be used. If constant cutput feedback control
techniques are employed for structural vibration suppression, the overall
controlled structure can be represented by Eq. (3-1)

Mg +Kq = -C

For positive definite M, (K*KC) and CC’ asymptotic stability of system (3-1)

has been rigorously proven (see Section 3.5.4). This stability result can be
applied to structures with decoupled-controllers as well as other general
controlled systems represented by Eg. (3-1).

s T E——
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However, due to the high dimensionality of the vector q, wmatrix C, is
seldom positive definite; instead it is often positive semi-definite. Tge new
stability result given in Section 3.5.3 provides a necessary and sufficient
condition for system (3-1) to have asymptotic stability when CC is only posi-

tive semi-definite.‘ This result is also general and can be applied to any
system represented by Eq. (3-1).

% New insights into the robustness of stability properties of system (3-1)

g lead to some interesting interpretations. There are four matrices in Eq. (3-1)
that could change or could be in error. But the basic sufficiczui conditions
for stability of Eq. (3-1) are that

(1) M and (K+KC) are positive definite. .

(2) CC is positive semi-definite.

Thus, for robustness, M is free to change since M remains positive definite,
whereas (K*KC) is constraaned and must remain positive definite. For example,

when KC 20 (i.e., no position feedback), K could not become positive semi-~

definite. Similarly, there may be changes in CC or KC, but CC must stay posi~-
tive semi-definite. However, KC may become evern negative definite in theory |
and the system still retains stability, provided (K+Kc) remains positive
definite.

Again, robustness of stability results are general and applicable to
all systems represented by Eq, (3~1).

i If the decoupled-controller approach is used for LSS vibration suppres-
sion, the damping of residual modes may have a finite upper bound, as indicated
in the illustrative example, whereas damping of critical modes could be increased
to infinity in theory.

3.5 Appendices

3.5.1 Stability by Liapunov's Second Method

In this appendix, the main stability theorem of Liapunov is given only
to the extent necessary to facilitate the discussion of the decoupled con- .
troller design technique. The material in the following is taken from
Reference [5] where detailed discussions of Liapunov methods can be found.

Definitions

Consider systems governed by the vector differential equation

'd"E' = f(x,u(t),t), > <t <+ (3-14)

E 3-18
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where vector x-is the state of the system (3-14) and vector u(t) ‘is the control

function of Eq. (3-14). If the system (3-14) is free (i.e., unforced), then
u(t) = 0 for all t and

%% = f(x,t) (3-15)

Assume that there exists a unique vector function x(t;xo,to), differ-

entiable in t, such that for any fixed X to

(a) .x(to; X s to) = x
B Ftx, t) = £xlts x, £),0

in some interva{/{i—tol < a(to). The function is called a solution of
| =
Eq. (3-15). / '

/
.

A state x, of a free dynamic system (3-15) is an equilibrium state if

f(xe; t) = :0 for all t

or, equivalently
x(t; X, 0) = X, for all t
An equilibrium state X, of a free dynamic system is stable if for every

real number £ > 0 there exists a real number (e, to) > 0 such that

leo - erI s § implies

xes x, €) - x || e forall £t

An equilibrium state X, of a free dynamic system is asymptotically
stable if:

(a) 1t is stable.

(b) Every motion starting sufficiently near x, converges to x, as
t + =, In other words, there is some real constant r(to) >0

and to every real number u > 0 there corresponds a real number
T(u, x_, t ) such that ]Ixo-xell < r(t)) implies

Hx(ts x» ) - x| cuforalle>e +7T
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Consider Eq. (3-15) where £(0,t) = 0; namely, there is an equilibrium
at the origin. -

Theorem 1. If there exists a scalar function V(x,t), with continuous first
partial derivatives, satisfying the following conditions:

(a) V(x,t) > 0 for all x # 0 and all t; V(0,t) = 0 for all t
(b) V(x,t) < 0 for all x # 0 and all t; V(0,t) = O for all t,
then the origin of the system (3-15) is stable.

Theorem 2. If there exists a scalar function V(x,t) with continuous first
partial derivatives, satisfying the following conditions:

(a) V(x,t) >0 for all x # 0 and all t; V(O,t) = 0 for all t
(b) ﬁ(x,t) < 0 for all x # 0 and all t;.@(O,t) = (0 for all t
(c) ﬁ(x(t; X s to),t) does not vanish identically in t Z_to for
any t_ and any X ¢ 0,
then the origin of the system (3-15) is asymptotically stable.

3.5.2 The Generalized Inverse of a Matrix

Theorem 3. If A is an mxn matrix (w>n) of rank n, then the solution of the
equation Ax = b, where x is an nxl1 vector and b is an mxl vector, that mini-
mizes the sum of squares of residuals S = tTr, where r = b - Ax, is given by

-1
x = (ATa) AT
where superscript "T" denotes the transpose and superscript "-1" denotes the ’
inverse.

Theorem 4. If A is an mxn matrix (m<n) of rank m, then the solution of
equation Ax = b, where x is an nxl vector and b i{s an mxl vector, that mini-

mizes xTx is given by
. =1
x = AT(AAT) b

The proofs of Theorems 2 and 3 can be found in Reference 1.

3.5.3 A New Stability Theorem (Contributed by Dr. James E. Potter of CSDL)

Consider a finite-element model for a large space structure as follows:

Mq+Kq = f
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where q 1s an nxl vector and M and K are mass and stiffness matrices re-
spectively. Assume that the force f applied to the structure can be expressed
mathgmatically as
£ = -Cq

where dC is an n*n symmetric positive semi-definite matrix, and that M and K -
are both symmetric and positive definite.
Theorem. Denote P e MflK. Then the following system 7

Mg + CcdtKg = 0O (3-16)
where M > 0, K > 0, and CC > 0, is asymptotically stable if and only if
(P, CC) is an observable pair, i.e., if and only if the matrix

T & (oTeer p23Te o p0=1,T

has rank n.
Proof.

(1) To prove that the observability pair (P, CC) implies the

agsymptotic stability of system (3-16), suppose (3-16) is not
asymptotically stable. Then there exist solutions to system
(3-16) in the following form

q = bcosuwt, b# 0 (3-17)
where b is an nxl real constant vector, since
L 2 g™+ q'ke

is a Liapunov function for system (3-16) and (3-16) must be stable.
Substituting Eq. (3-17) into (3-16), the following equation results:

(-m2M+K)b e co8 Wt - w CC *besinwt = 0,t>0 (3-18)

If w = 0, then equation (3-18) implies that

Kb = 0

which contradicts the assumption that K is positive definite. Thus
w$ 0. With w ¥ 0 and the orthogonality of sin wt and cos wt, Eq.
(3-18) implies that

3-21




i (b = 0 (3-19) ;
{ Ccb = 0 (3-20) |

and

1
b = 5 (3-21)
w : .
Substituting equations (3-21) into equation (3-20) repeatedly, we have
i
CCP b = 0,1i = 1, 2,...

Therefore

Q = 0.

However, Q 1is an nZXn matrix and thus must have rank less than n since it has
a right null vector b. Thus (P, CC) is not observable.

(2) To prove that asymptotic stability of (3-16) implies observability
of (P, CC), suppose that (P, CC) is not observable. Then there

s S

exists a nonzero vector b such that
b = 0

that is
CCPib = Ofori = 0,1,..., n-1 (3-22)

By the Cayley-Hamilton theorem ané Eq. (3-18), we also have

cCPib = 0fori = n, ntl,... (3-23)
Recall that M and K are symmetric and positive definite and that
P= M-lk. Therefore there exists a transformation $ such that

¢TM¢ = I

)

diag (Al,..., An), Al,..., An >0

diag (Ai), i = 1,...,n




Thus

M - Tl
K = ¢ 1 diag(xi)¢'1

Therefore

P & wlk - ge%T diag(A Do = ¢ diag (et (3-24)

Now, define an (n-1)-th degree polynomial a(x) as follows

n /) a (%)
sy & Y kCk
k=1 % )
where
A n
ak(X) = T (x-lj)
j=1
j#k
Then
a(r) = /i;, i = 1,..., n (3-25)
Define
G = 9 diag(/i;)¢-1

From Eq. (3-25), G can be expressed in the following form

G = ¢{diag (a(xi)]}cb'1
-1
= @(a(diag(xi)]}¢

- alo diag(li)¢-1] - a(P) (3-26)

where the last equality is obtained from equation (3-24). From
the definition of a(x) and equation (3-26), therc are coefficients

8 5004, & such that

(o} n-1




|
n-], !
i i
G = Z a, * P (3-27a) !
i=o
and
) .
G = P . (3-27b)
Let
q 2 cosGt) + b (3-28)
then &
d2a 2~ -~ 1
—-—% = G q = -Pq = M Kq .
dt
or, equivalently,
M+Kq = 0 (3-29)

Furthermore, Eqs. (3-27) and (3-23) imply that

CCGzib - CCPib = 0,1 = 0,1, 2,...

Therefore

ch = - CCG sin(Gt) - b = 0

Combining this equation with equation (3-25) yields

Mq + ccé'i +Kj = 0 (3-30)

But the solution to this equation, which is given in Ec. (3-28) «
- does not approach 0 as time t approaches infinity. Thus the

B system (3-30), which is identical to Fq. (3-16), is not

' asymptotically stable.

a
7§ 3.5.4 Stability and Robustness of the Controlled Structure
%
! 3.5.4.1 Stability

Consider the closed-loop system equation of the following form




which is equivalent to
Mg + ccc] + (K¥)q = 0 , (3-32)

Sufficient conditions for stability of the closed-loop system can be estab-
lished by applying the Liapunov direct method to Eq. (3-32); stability condi-
tions can be stated as follows:
Theorem. Consider Eq. (3-32) where M and (K+KC) are symmetric and positive
definite. Then, if CC is positive semi-definite, the system (3-32) is stable
in the sense of Liapunov. If CC is positive definite, the system 3-32 is

% asymptotically stable.
Proof. Consider a Liapunov testing function (L) with the following form

v " . .
' o %qTMq + %‘-qT(KH(C)q (3-33) |

which is positive for q#0 and q#0.

Then the rate of change of the Liapunov testing function is

L

«T . «T
QMg +gq (K+Kc)q

womr——
]

a3 + (KK )q] (3-34)

From Ea. (3-32), Eq. (3-34) can be simplified as

% -E,ch& (3-35)

Equations (3-33) and (3-35) show that L is indeed a Liapunov function [5] for
system (3-32), if CC is positive semi-definite. Therefore, from Theorem 1 in

Section 3.5.5, stability of system (3-32) follows.

To prove the asymptotic stability result with Eqs. (3-33) and (3-35)

when CC is positive definite, Theorem 2 in Section 3.5.1 will be used.

First from Eqs. (3-33) and (3-35), it is apparent that

(1) L(q,q) > 0 for all q # 0 and q # 0

A AL S R R T A S e T e

(2) ﬁ(q,i) - - &TCC& = 0 for all q and &.

To verify that i(q,&) = ﬁ(&) does nct vanish identically in t 4 t, for any t
and any q(t ) # 0 and i(to) ¥ 0, a proof by contradiction is given. Assume
0

i
i
i
H
!
i

that for some t_ and some q(to) $ 0 and &(to) # 0:

i(q,q) = L(Q)) = O for t = t, (3-36)
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Then Eq. (3-35) implies that

& = 0fort = to since Cc is positive definite (3-37)

Equation (3-37), however, implies that

q = 0 for t > t,

From the system Eq. (3-32) then,

(K+Kc)q = O for t > tO
However, since (K+KC) is also positive definite, it is concluded that
q = 0fort> t, (3-38)

which together with (3-37) implies q(to) = é(to) = 0 contradicting the assump-
tion that q(to) # 0 and é(to) # 0. Consequently the conditions of Theorem 2
in Section 3.5.1 are satisfied and asymptotic stability is therefore assured.

3.5.4.2 Robustness

Given a constant gain feedback control law as specified in Eq. (3-31),
it is interesting to investigate the requirement of the control law to have
stability robustness against model parameter errors. Consider the following
system

Mi+Rq = f (3-39)

where M represents a new mass matrix and K a new stiffness matrix. However, f
remains the same as given in Eq. (3-31).

To establish sufficient stability criteria, the direct method of
Liapunov can again be applied to Eq. (3-39) with a new Liapunov testing func-
tion L defined as

~ 1. L] -
L = EqTMq + %qT(K+KC)q

which is positive for é # 0 and q ¥ 0, if ﬁ and (ﬁ+KC) are positive definite.
The time derivative of L along trajectories governed by Eq. (3-39) is

1 .T_ .
L = -gq ch

if (ﬁ+KC) and M are symmetric.
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In general, M is symmetric and positive definite whereas K is symmetric
and positive semi-definite. Therefore, robustness of stability against param-
eter errors can be assured if controller gains are such that

(a) (ﬁ+KC) is symmetric and positive definite.

(b) CC is positive definite or positive semi-definite.

It should be noted that these are only sufficient conditions for robustness..
Furthermore, for a general positicn feedback gain matrix K., condition (a)
above constrains the degree of tolerable parameter errors gn K and therefore

no absolute robustness can be stated. However, if KC is symmetric and positive

definite, then absolute robustness of the controlled system is obtained such
that the system remains stable regardless of what parameter errors might be
in the mass and stiffness matrices. For systems without rigid-body modes
(i.e., the stiffness matrix is symmetric and positive definite), absolute

robustness can also be obtained if Ké is symmetric and positive semi-definite.

This result is applicable to the case when only velocity feedback (i.e., KC =

0) is employed for the control of systems without rigid-body modes.
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SECTION 4
OUTPUT FEEDBACK CONTROL VIA DAVISON-WANG
METHOD OF POLE ASSIGNMENT

4.1 Background

4.1.1 Brief Introduction of the Main Ideas

The objective of the Davison-Wang method 1s to find a constant output-
feedback gain matrix G for system (2-12) - (2-13) that assigns p A min
{n, m + & - 1} closed-loop poles to p desired locations in the complex plane.
In algebraic terms, the objective is to find a matrix G such that the closed-
loop system matrix of (2-12) - (2-13) has p desired eigenvalues. Nothing can
be saild about the remaining n-p poles.

if max {m, £} = min {n, m + & - 1}, then p desired closed-loop poles are
assigned in one step using Davison's construction algorithm. On the other
hand, if max {m, £} < min {n, m + £ - 1}, then p desired closed-loop poles
are assigned in three steps: first assign p; Q max {m, 2} desired closed-
loop poles using Davison's construction algorithm, "seal" all but one of those
assigned by making them unobservable (or uncontrollable), and then assign the

remaining py £ A min {n, m+ & - 1} - p; + 1 desired closed-loop poles again
using Davison's construction algorithm.

Note that when m + 2 > n + 1, the Davison-Wang method can assign all.

n closed—loop poles of the system.

Davison's construction algorithm is formulated for multiple-input
multiple-output systems, but makes explicit use of the simplicity in single-
input systems. In a single-input system, the coefficients of the character-
istic equation are linear functions of the feedback gains used for amplifying
and combining the outputs. Thus, the feedback gains required for implementing
the assignment of desired closed-loop poles can be found by solving a set of
simultaneous linear algebraic equations., A multiple-input system will lose
such simplicity (i.e., the linearity) unless it is simplified to a single-
input system, Davison's construction algorithm starts by converting a multiple-
input system to a single-input system.

For a system with £ > m (i.e., more outputs than inputs), m inputs are
reduced to one input, and % outputs are fed back through the single input.
Then as many as & desired closed-loop poles can be assigned by the Davison

. construction algorithm. On the other hand, for a system with m > 2 (i.e.,

more inputs than outputs), a dual approach is used. Namely, £ outputs are
reduced to one output and fed back through the m inputs. As many as m desired
closed-loop poles are then assignable by Davison's construction algorithm.

To summarize, the m x % gain matrii G in either case is considered to be a
dyadic product of two vectors, ¢ = 6gl where 6 is an m-vector, g is an &-vector,
and superscript "T" denotes transpose.

Distiact eigenvalues of a diagonal (or diagonalized) system matrix
are made unobservable from the outputs fed back by making the corresponding
columns of the observation matrix zero. Desired system poles can thereby be

4-1
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frozen, i.e., protected from unwanted alteration. Output feedback with any
arbitrary full matrix of constant gains is introduced to make the resultant
closed~-loop system have distinct eigenvalues.,

o A R B Ak

4,1.2 Brief Introduction of the Underlying Theory

A ey i

4,1.2.1 Davison's Theorem

1f the system (2-12) - (2-13) is completely controllable, if the eigen-
values of the system matrix A are distinct, or are repeated but no two Jordan
blocks correspond to a commen eigenvalue, and if the observation matrix C has

rank £ < n, then Davison [1] showed that a feedback of the outputs in the
form

u = Gy (4-1)

where G is a constant gain matrix can always be found so that % eigenvalues of
] the closed-loop system matrix A+BGC are arbitrarily close (but not necessarily
F equal) to & pre-assigned (or desired) complex-conjugate values.

An algorithm for constructing the feedback gain matrix G was proposed.

4.1.2.5 Davison and Chatterjee's Theorem

The purpose of the above assumption on the eigenvalues of the system
matrix A was to make a system which is completely controllable from multiple
inputs also completely controllable from a single input. Using a theorem of
Brasch and Pearson [5], Davison and Chatterjee [2] then modified Davison's
original theorem as follows. If the system is both completely controllable and
completely observable, and if the control matrix B has rank m < n and the ob-

! servatiosn matrix C has rank £ < n, then a linear constant-gain feedback of the
4 outputs in the form (4-1) can always be found so that max {m, L} eigenvalues of
N , the closed-loop system matrix A+BGC are arbitrarily close (but not necessarily
: equal) to max {m, L} pre-assigned complex-conjugate valu~s.

§ The theorem of Brasch and Pearson says that if a system is both
: completely controllable and completely cbservable, then there exists a constant
gain matrix K such that the closed-loop system is both completely controllable P
from a single input and completely observable from a single output. So,
introducing an additional output feedback will make a system completely single-
input controllable and completely single-output observable, if it is initially
not so,

1
:
b
H
i

4.1.2,3 Davison and Wang's Theorem on Simple Poles

If a system has no multiple poles (i.e., if its system matrix has no
repeated eigenvalues), then whenever it is completely (multiple-input) control-
lable it is also completely single-input controllable, and similarly, whenever
it is completely (multiple-output) observable it is also completely single-
output observable. Davison and Wang [6] showed that if a system is both
completely controllable and completely observable, then almost any constant-
gain output feedback will make the ciosed-loop system matrix have distinct

1
%E

“-n......._,,,.,_ ’ i e ey
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eigenvalues, Davison and Chow [3] used these facts in gimplifying Davison's
original counstruction algorithm, -

4,1.2.4 Davison and Wang's Theorem on Pole Assignment

Davison's theorem was extended by Davison and Wang [4] as follows.
Given any system satisfying the assumptions in Davison and Chatterjee's
theorem (see Section 4.1.2.1, or [2]), there exists, for almost all (B,C) pairs,
a constant gain feedback of the outputs in the form Eq. (4-1) such that the
closed-loop system matrix A+BGC has min {n,m + 2-1} eigenvalues assigned
arbitrarily close to min {n,m + 2-1} specified complex-conjugate values.
This implies that almost all linear time-invariant multivariable systems can

be stabilized by using only output feedback with constant gains, provided
that m+ £ > n + 1,

An algorithm, similar to what Topaloglu and Seborg [7] proposed |
earlier, was also given in [4] for finding the gain matrix for assigning
min {n,m + 2-1} closed-loop poles. For the case £ >mand m + 2 < n + 1,
Topaloglu and Seborg's algorithm involves three steps: assignment of % poles,
"protection" of m-1 poles by making them uncontrollable, and assignment of
2 additional poles. The method for assigning the % poles is the same for both
the first and the last steps, and is essentially the same as Davison's con-
struction algorithm. For the same case, the Davison and Wang algorithm also 3
; involves three steps: assignment of % poles, "protection" of 2-1 poles by
making them unobservable, and assignment of m poles. The difference lies in !
the second and the third steps. 3

4,1.3 Outline of the Design Method

4.1.3.1 Davison's Construction Algorithm for the Assignment of max {m,2} Poles

R,

g : For notational convenience, assume % > m (more outputs than inputs), so

: § that £ = max {m, 2}. Assume also that the eigenvalues of the system matrix A are
distinct; otherwise, introduce an arbitrary constant-gain output feedback to
make them all distinct (see Section 4.1.2.3 above).

4.1.3.1.1 Consider Single Inputs - Suppose that the m inputs Ups eey U are

* generated by a siugle input v, and the 2 outputs Yy voeo Yy are simplified and
combined to produce the single input v. That is

)

T
u=6v, v=gy. (4=2)

where 6 = (61,...,6m) is an m-vector (of amplifier gains), and g = (gl,...,gz)

is an %-vector (of amplifier gains). Both 6 and g are to be determined. Then,
from (4-1) and (4-2), the m x % matrix of output feedback gains is given by
the dyadic product of vectors 6 and g, namely

G = eér (4-3)

Therefore, the constructior. of the gain matrix G for desired pole assignment
reduces to the construction @f an m~vector 6 and an 2-vector g.

4-3




4,1.3.1.2 Consgtruct an m~vector 6 - Using a similarity transformation T and
input (4-2), the state Eq. (2-12) becomes

: = Az + Bov (4-4)

where

A= T-l AT, a diagonal matrix
B=T B
Determine numbers 61,...,9m such that each of the n components of the n-vector
g4 B is nonzero. With any such m-vector 9, the state equation (2-12)
becomes .
x = Ax + bv
where (4-5)
b = B6
Such a single-input system is completely controllable from the single input v.
4.1.3.1.3 Transform Matrix A to Companion Form - For constructing an

f-vector g for pole assignment, it is convenient to transform matrix A to
companion form

0 1 essQ
0 0 .
A- ° . .
. 1

| 3y 8" 8 |

where al.---.an are the coefficients of the characteristic equation

A" - g +aA+---+anAn-1

1 2 (4-6)

These coefficients are to be determined as follows. By the Cayley-Hamilton
Theorem

n 1l

n-
L
A-811+82A+ + a A

Post-multiplying b 4 B6 yields

n-1,
A" ajb +adb+ o +aA"H =Q

1




o ke

where.

Q = [b,Ab,...,A%"T

bl.

(4-7)

The matrix Q is the controllability matrix of the single-input system (4 -5).
Since it is invertible, we thus get

where

Let b A (QQ)‘lb =

- OeeeO

o>

A ¢

The matrix for transforming A

@

(4-8)

to A is given by the matrix product QQ,

(4-9)

Then by setting x = QQz, with ZyseeeaZ being the new coordinates, the
single-input system (4-5) becomes

z = Az + bv

y = Cz

(4-10)

4.1.3.1.4 Derive The Closed-Loop Characteristic Equation - With the output
feedback (4-2), the system matrix of the closed~loop system (4-10) is given by

A +bgiC

T ~
where [61,...,6n] = g°CQQ.

4+ 0 s OO

0
1 .
0

.o

0

1

sec a + 8§
n n

-

-

(4-11)




Since it is also in the companion form, its characteristic eéﬁation is
similarly given by . ;

n 1 o n-1 :
N . (al + 61) + (32 + GZ)A 4+ eee + (én + Gn)l (4-12)
Rewriting it we have
n n~1 .
A - anl - ses - azk - al
= . . n-l
61 + GZA + + an
= [61,62,.. ,Gn] i 1
A T ~|2
. = g CQQ E
An-l An-l
Consequently
-
AQ) = g"cQQh(}) (4-13)
where
iy _ 40 n~-1 _ _
AD) =2 - ank e azk al
hO) = (L,A,...,2% |

4.1.3.1.5 Construct »n &~Vector for Assignment of Desired Closed-Loop Poles

Tet Al,...,kl denote the % desired closed-loop poles. The f~vector of gains

required for implementing the pole assignment is to be found from (4-13) by
substituting in these cigenvalues.

Substituting li in (4-13) yields

T. = _
Ai g CQth i l,0..5% (4-14)
where
A AANG,) =20 -a Lo _aa -a i
i*= i i ni 21 1 (4-15)
2 n~1
hi é h(>\i) = (1,>\1)Ai,...,>\i ) (4_16)

N e e b . e
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If Aj is the :th repeat of"xi, then differentiating (4-13) r times and sub-

stituting in Ai gives

r . af
—d-; A = Q0 i; hQL).
dx di
Thus, the number Aj and the vector hj in (4-14) should be redefined as
dr
A, = — A(X) (4-15")
h] dlr i
R
h, = — h(li) (4-16")
oot

to increase the number of independent equations in (4-14). Consequently, we
have

A = g cQQH (4-17)

where

=
|

= [A,...,A ], a row vector of L components
1 L

f==]
|

= [hl""’hll’ an n x { matrix of £ n-vectors.
Therefore, the desired vector g of feedback gains can be solved from (4-17) as

T ~ -1
g = A(CQQH) (4-18)

provided that the matrix S = CQQH is invertible.

4.1.3.1.6 Summary of the Algorithm for the Case £ > m

Step 1: Compute the eigenvalues and eigenvectors of matrix A.

Step 2: Define the orthogonal transformation T by the normalized
eigenvectors. Compute the inverse 7L,

Step 3: Compute matrix B = B,

Step 4: Determine an m-vector 6 so that each component of vector B8
is nonzero.

Step 5: Compute vector b = B6,

Step 6: Compute matrix Q defined by (4-7), and the inverse Q-l.

4-7
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Step 7: Compute coefficients al,...,an using (4-8).

Step 8: Compute matrix CQQ with Q defined by (4-9).

Step 9: Compute numbers Ai and vectors hi by substituting desired closed- ‘
loop poles )\1,..-,)\2 into (4~15) - (4~16), and (4-15') - (4-16") é

S

for repeated values. Form the row vector A and the matrix H,

Step 10: Compute the matrix CQQH and its inverse (CQQH)-I.

Step 11: Compute the row vector gT = A(CQéH)-l.
. T »
Step 12: Compute the galn matrix G = 9g~,

4.1.3.1.7 Extension to the Case 2 < m. To assign m = max {m,2} closed-loop poles
for this case, the Preceeding algorithm (for the case § > m) can be applied
directly if the duality between control and observation is employed. Specifi- {

cally, (1) replace matrix B in the algorithm by the transpose.CT, matrix C by

the transpose BT, and matrix A by its transpose AT. Consequently, the numbers
£ and m should also be interchanged. (2) Follow the algorithm and obtain an

2 X m gain matrix Gd required for assignment of m desired closed-loop poles to
the dual system

«+ _ T T
-xd = A xd +C ud
T
yd B xd
by "output feedback"
»
Ya = CgYq

N i o

4.1.3.2 Davison-Wang Algorithm for the Assignment of min {n, m+ 2 - 1} Poles

Assume that max {m,2} desired closed-loop poles have been assigned ;
using Davison's construction algorithm, Let G; denote the required gain :
matrix. If max {m,2} = min {n,m + 2-1}, then stop, since no more poles can
be assigned.

4-8




Consider the case max {m,2} < min {n,m + 2-1}. To assign more desired.

closed-loop poles while retaining the assigned and the desired, it is
rocessary to ""seal" the latter. Assume that £ > m again for notational con-
venience, and that £ > 2 for nontriviality. Assume that all the eigenvalues
are distinct; otherwise, add any output feedback to make them distinct.
Apply a coordinate transformation T such that the system matrix A+BGiC is
diagonalized

D. O
T e, 0T = | L
1 0 D ‘
2
where D, = diag {Al,...,At} and D, = diag {At+l"" An}. In terms of the new

coordinates El,...,gn; the system becomes

(4-19)

«
]

Tg

»
[]

where‘ﬁ-1 and Eé are of dimension t x m and (n-t) x m, respectively, such that

B

=)

2
Ei and Eé are of dimension £ x t and ¢ x (n-t), respectivelf, such that
[015551 = CT,
Assume that

rank (32) = min {m,n-t}, and (4-20)

rank (Cl’dj) = rank (Cl) +1,j=1,...,n-t (4=21)

where dj denotes the jth column of matrix'ﬁz. Then choose an f-vector 8 such
that

8°C, =0 (4-22)

and

8Td. $0, § =1,...,nt (4-23)




System (4-19) is thus converted to a single-output system as follows

e
[=4

&
[\%)

y = [0]d)e

where y A eTy is a scalar, and d = eTC2 is a row vector of nonzero components.
It is not difficult to see that D1 is the unobservable part of the system.
Hence eigenvalues Al,...,xt cannot be altered by feedback control using output

Y. On the other hand, by assumption (4-20) and condition (4-23), the
subsystem

(4-24)

is both completely controllable and completely observable, Notice that this
is the case where there are more inputs than outputs. Apply Davison's con-
struction algorithm for this case (see Section 4,1,3.1.7) to subsystem (4-24)
and get the output feedback

S~ T
u=gydgoy (4-25)
for assigning min {m,n-t} desired closed-loop poles to subsystem (4-24).
Equivalently, this feedback control assigns these closed-loop poles to the

completely observable part, namely D2, of system (4-19). The required gain
matrix is thus given as

T
G2 g0

To summarize, the sum of the two gain matrices,

G = G1 + G2

is the required feedback gain matrix for assigning totally t + min {m,n-t}

win {m + t, n} = min {m + 2-1, n} desired closed~loop poles to system (2-12) -

In case m 2% and m > 2, apply the above procedure to the dual system
first. Then the transpose of the gain matrix obtained is the desired matrix
for this case.
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4.1.4 Summary of Assumptions Made

L

(2)
(3)
(4)

(5)

(6)

The system (2-12) - (2-13) is completely controllable and completely
observable.

The matrix B has rank m < n.
The matrix C has rank £ < n.

The set of desired closed-loop poles to be assigned is complex
conjugate: any complex numbers appear in complex conjugate pairs.

The (n-2 + 1) x m matrix B2 has full rank - see assumption (4-20).

No column of the £ x (n-% + 1) matrix C, is a linear combination

of the columns of the £ x (2-1) matrix Ei - see assumption (4-21).

4.1.5 Summary of Technical Tricks Used

(1)

(2)

(3)

Conversion of a multiple-input multiple-output system to either |
a single~input multiple-output system or a multiple-input single-

output system,

Restriction of the m X £ feedback gain matrix G to ¥e a dyadic
product of an m-vector 6 and an f-vector g: G = 6g .

"Saving" of desired system poles by making them unobservable from
some scalarized output.

4.2 Discussion

4.2.1 Strengths

(1)

(2)

(3)

A AL

By definition, the objective of modal control is to control cer-

tain modes of the system response by altering them with feedbsack.
Decay rates and vibration frequercies of the system response are

determined by the location of the system poles. Output feedback

control by the Davison-Wang method enables the designer to assign
a set of desired closed-loop poles and hence to have direct con-

trol over the modes of the system response.

The method is an extension of classical frequency-domain design
techniques to multivariable systems. However, the approach is
modern, analytical, and systematic; the concept is simple and the
algorithm is straightforward.

The dyadic form of the output-feedback gain matrix G is simpler
to implement than the general form. Figure 4-1 shows a typical
Davison output-feedback controller, whose gain matrix is in
dyadic form, whereas Figure 4-2 shows a general form of output-
feedback controller. The simplicity of the former is evident.

4-11




Figure 4-2,

General form of output feedback control, u = Gy.
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The size of the computer memory and the amount of processing time
required in the design process are much lower than the correspond-
ing requirements for solving n x n matrix Riccati equations in the
design of linear-quadratic regulators and observers.

Like other output-feedback controllers, Davison-Wang output-
feedback controllers are implementable by electronic or clectro-
mechanical hardware. Moreover, no dynamic state estimators are
required in the feedback loops and the associated disadvantages
are avolded, Note that a dynamic state estimator requires a
(hardware or software) simulation of the system model. The
addition of a dynamic state estimator increases the sensitivity
of the closed-loop system to model errors and the order of the
closed-loop system. Moreover, the reliance upon on-line computa-
tion is increased 1f the estimator is implemented by computer
software.

4.2.2 Weaknesses

4.2.2.1 Theoretical Limitations

69

(2)

(3)

At most min {m + 2-1, n} desired closed-loop poles are arbi-
trarily assignable by the Davison-Wang method. This means that
if m + £ < n, then not all n poles of the system (2-12) -~ (2-13)
can be replaced by desired ones.

However, not all n~dimensional systems can have as many as min

{m + 2-1, n} poles replaced by desired ones. The reason is that
assumptions (4-20) and (4-21) on the matrices B and C may not be
satisfied: either the (n~-2 + 1) x m matrix B2 does not have full
rank, or some column of the 2 x (n-f£ + 1) matrix Eé is a linear
combination of the columns of the £ x (2~1) matrix Ei.
The existence of a vector § satisfying conditions (4-22) - (4-23)
is based on assumption (4-21). For many spacecraft systems, it
is impossible to determine such a vector 8 [8]. When no such
vector 6 exists, the desired system poles will not be protected
from change during the third step of pole assignment using the
Davison~-Wang algorithm, and the maximum number of closed-loop
poles assignable will be max {m,2}.

The closed-loop poles actually assigned may not be exactly equal
to, but only arbitrarily close to, the desired poles. The reason
is that the & x & matrix product CQQH in (4-17) may not be invert-
ible. Davison suggested that the'closed-loop poles to be assigned
be varied slightly so that the matrix product becomes nonsingu-
lar [1]. Alternately, the pseudo-inverse of this matrix product,
in case 1t 1is not invertible, may be used. With such a procedure,
the assigned closed-~loop poles would be an approximation to the
desired poles.
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4,2,2,2 Numerical Difficulties

Numerical difficulties may arise in calculating the coefficients
al,...,an by Eq. (4-8) and also in solving (4-17) for the gains gl,...,gz. This

is because the controllability matrix Q defined by (4~7) may be highly i11
conditioned (even though it is nonsingular) when the dimension n of the system
is large. Davison and Chow [3] suggested that a different time scale t = t/y

be used so that [|bz|| Yn-lAn-lb”; i.e., the first and the last columns of

the new controllability matrix, with A replaced by yA, have approximately
the same magnitude.

The time scaling was successful for an example of a 41-dimensional system
[3]. But, according to Mahn's experience with spacecraft systems [8], in no
case did thig suggestion improve the assignment of the poles, and in some
cases it significantly affected the assignment adversely,

4.2.2,3 A Pitfall

In assigning max {m,%} or min {m + g-1,n} closed-loop poles, nothing
can be said about the remaining poles [1]. In the course of this study, it

Positive while degired values are assigned to replace other less desirable
poles by an output feedback control. (For an illustration, see Section 4.3.,8.)

Blind application of this design method may allow hidden instability
to exist in the closed-loop system.

4.2.2.4 Other Weaknesses

(1) The m x g gain matrix G is restricted to have rank at most one
(because of the assumed dyadic form). Design freedom is thug
greatly reduced, since the general m x g gain matrix can have
rank min {m,2}, which is usually much larger than 1.

(2) As a consequence of the dyadic form, the required feedback gaing
GiJ are usually very high, and the closed-loop system modes are

highly coupled.

(3) The design may be quite non-optimal since no performance index
on accuracy, control énergy, or control time is ever considered
for optimization in the design process.
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4.2.3 Maturity

As a whole, methods tor designing output feedback controllers by pole
assignmenv have vt yet reached maturity, Various modifications or extensions
keep zppearing.in the literature; see for example References [9] to [17].

None have ye! signif{icantly advanced the state of the science, however.
. \

Specific improvement on the Davison-Wang method is also required. Tn

the course of this Qtudy. it was found thet with some appropriate modifications

on this method:

1
1

(1) It is possible to predict, before acbuallr computing the output-
feedback gain matrix for assignment of desired closed-loop poles,
whether hidden instability in the resuitant closed-lcop svstem
may exist; i.e., it is possible to Jpredict whether real parts of
the remaining poles may become positive;

(2) It is possible, under certain conditions, to assign the u closed-
loop poles with a given number 2 of outputs, and these conditions
can be checked by the computer before proceeding to compute the
required gain matrix; and

(3) 1t is possible to compute the characteristic coefficients
a13eeesd without using Eq. (4-8) and hence to avoid the

numerical difficulties with the matrix Q and its inverse Q-l.

The details of these new findings and other possible improvements will
be reported later.

4.2.4 Applicability to Large Flexible Space Structures

Since the fundamental modal design model (2-10) -~ (2-11) of a large
flexible space structure has N modes, its state-space representation (2-14) -
(2-15) has 2N poles (i.e., n = 2N). As mentioned in Section 2.2.5.2, for the

2N x m matrix B, = [0 to have rank m, it is necessary that m < N.

T

QC BA
Similarly, for the £ x 2N matrix Co = (o, Cv¢c] to have rank £ when only
velocity sensors are used, or for the £ x 2N matrix C [CP C,0] to have

rank £ when only position sensors are used, it is necessary that 2 < N,
Consequently,

min {m + 2-1,n} = min {m + 2~1,2N} = m + 2-1 < 2N-1.

This means that it is never possible to assign desired values to all 2N
closed-loop poles by the Davison-Wang method, if only velocity sensors, or
only position sensors, are used., Then, at least one pole will always have
to be left alone. This limits the designer's ability to actually alter all

the fundamental characteristics of the structure as desired. For an 1illus-
tration, see Section 4.3.1.
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Moreover, hidden instability may exist in the closed-loop system,
since the real parts of the remaining poles may turn out to be positive.
For a discussion on the pitfall, see Section 4.2.2.3; for an illustration,
see Section 4.3.8.

For all 2N closed-loop ines of the fundamental state-space design model
(2-14) - (2-15) to be assignable by the Davison-Wang method, the % sensors
must include at least one velocity sensor and at least one position sensor.
The total number of velocity and position sensors required for assigning all
2N poles by the Davison-Wang method must be at least ZN-m + 1. Locating posi-
tion sensors away from velocity sensors makes it easy for the 2 x 2N matrix

CC = [CP¢C,CV¢C] to have rank at least N + 1.

For the Davison-Wang method to be applicable to a large space struc-
ture, the location and the number of actuators placed on the structure must be
chosen so that the critical modes are completely controllable. Similarly,
the location and the number of sensors placed on the structure must make the
critical modes completely observable. See Appendix B for discussions on
complete controllability and complete observability of critical modes and

an algorithm for determining the proper location and proper number of actuators
and sensors.

As mentioned in Sectioa 4.2.2.3, the Davison-Wang method does not
guarantee the closed-loop stzbility even of the (reduced-order) model on which
the design of output-feedback controller is based. (For an illustration, see
Section 4,3.8,) The closed-loop stability of the large finite-element model
(2-4) - (2-5) with a feedback controller based on a reduced-order design model
(2-10) - (2-11) is even more questionable, let alone the closed-loop stability
of the actual Infinite-dimensional distributed-parameter flexible structure,

The relative simplicity in the design and impiementation of an output-
feedback controller, compared with the combination ot & state-feedback con-
troller and an observer, may permit more than the cricical modes to be
included in the design model. However, with a large flexible space structure.
which is infinite-dimensional in nature, there are still many modes that
cannot be included. Model errors due to truncaticn as well as roundoff are
inevitable. So far, the Davison-Wang method has no provision for guaranteeing
robustness against model errors, parameter variations, control spilliover, or
observation spillover.

Control spillover and observation spillover in an output feedback
loop do nct necessarily destabilize the large structure, though closed-loop
performance of the output-feedback controller may be drastically degraded
thereby. For an illustration, se« Section 4.3.3,

The Davison-Wang method was recently applied to two idealized space-
craft with flexible aopendages [8], [17]. It was concluded that, although
it still required extensive investigation in order to resolve many practical
difficulties, the Davison-Wang pole assignment process could be a viable
preliminary control design tool [17].
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4.3 Illgstration '

The simple test problem described in Section 2.5 is taken as an example
for illustration of the Davison-Wang method of pole assignment. The eight
points of interest (questions) listed also in Section 2.5.3 are addressed as

follows.

4.3.1 Question 1

The Davison-Wang method is not applicable to the fundamental state-space
design model (2-25)-(2-26) as is, since it is impossible to satisfy the assump-

tion that the 2 x 2 matrices

0 5 -0,857
B = [TT] and C = [0:¢7], with ¢ = [ ]
¢ 0.365

2
have rank 2. Note that N=1, m = ¢ = 2, as is.

The number of independent actuators and of independent velocity
sensors must be reduced so that, for the new numbers m and £, the resultant
2N x m matrix B has rank m and the & x 2N matrix C has rank 2. This can be
achieved by combining the actuator inputs and sensor outputs, respectively.
The following special combination is considered in this illustration: only
actuator 2 and sensor 2 are used. Therefore, the fundamental state-space design

model (2-25) - (2-26) becomes

il 0 1 X11 0
x| [-6.702 0 x2J+ 0.365 | U2 (4-26)
y2 = [0 0.365] [x;] (4=-27
X3
From here on, m = 1, =1, n= 2;
X] na 0 1 0
=l [, A= , B= » C=1[0, 0.365]
X2 ne -6.702 0 0.365

Since p 4 min {m+ £ - 1, n} = 1, at most one desired closed-loop pole can be
assigned by the Davison-Wang method. Furthermore, since max {m,2} =1 = min
{m + 2 - 1, n}, this closed-loop pole is to be assigned in one step, using

Davison's constructjon algorithm. Note that the system (4-26)-(4-27) has two

poles, but only one of them can be re-assigned.

Davison's construction algorithm, as summarized in Section 4.1.3.1.6, is
row used to assign one desired closed-loop pole to system (4-26)-(4-27).




Steps 1-5: Since the system is already a single-input system, steps 1-3 can
be skipped. The number 6 in step 4 and the vector b in step 5 are given by

d }
0 =1, b=B= |0 _
0.365 ' '
Step 6:
Q = [b, Ab] = [0 0.365]
0.365 0 ' ’
Consequently,

QQ = 0.365 [

Therefore,

cQQ = [0, 0.3652]

Step 9: Let the desired closed-loop pole be denotad by parameter Xl, which

must be negative-valued, and postpone the discussion on its value. Sub-
stituting Al in (6-15)-(6-16) yields

A=Ay =22+ 6.702 %

H=h =[1
A




Step 10: CQQH = [0 0.3652] [ 1 J = 0.365” A,

i

Ay
A1y "1 1 - 3
(CQQH) 0.3652A1 0.133x

Step 11: g' = A (CQQu)™' = (A2 + 6.702)/0.133);

2
Step 12: G = egT = gT Sp s G0 (4-28)
e 0.133);
therefore
Uy =Gy, =22 + 6,702 (6-29)
0.133%, 72

This test problem calls for at least 10% of critical damping on mode 2.
Substituting (6-29) into the fundamental state-space design model (6-26)-(6-27)
vields the following closed-loop system

X1 0 1 X1
x2| | -6.702 %+ 6.702(] x, (4-30)
A

The closed-loop poles are

6.702

A,, —7T—
1 Al

Note that one of the closed-loop poles is exactly given by the parameter Al,

while the other 1s inversely proportional to ) Figure 4-3 shows the position

and variation of these two poles as |X1| incre;ses until X, = -2.588. In con-

trast, Figure 4-4 shows the position and variation as Ikll decreases until

Al = ~2.588. It 1is not difficult to conclude that the system (4-30) is criti-
L - -2.588, but overdamped if and only 1if Al #

cally damped if and only 1if )

-2.588. In other words, according to the fundamental design model (2-23)-(2-24),
or equivalently (4-26)-(4-27), mode 2 will never be underdamped with feedback
control given by (4-29).

Since all damping will be more than 10CX of critical cdamping, it 1s
desivable to choose

Al = -2.588 (4-31)

for critical damping of mode 2. Consequently, from (4-23) and (4-29),
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G = -38.917 (4-32)

u, = 0, u f -38.917 Yy (4-33)

4.3.2 Question 2

With control given by (4-33), the closed-loop system of the finite-~
element modal dynamic model (2-21)-(2- 22) is

n 146,292  8.608 n 0.298 0f|mn
o+ R =0
an 8.608 5.185 N2 0 6.702 N2>

(4-34)

The closed-loop poles are

-0.021
-0.041 +32.240
-19.356

Since all these four poles have strictly negative real parts, the closed-loop
system is asymptotically stable.

Figure 4-5 shows the configuration of the open-loop and closed-loop
poles. The closed-loop poles no longer have the same natural frequencies as
the open-loop poles; the identity of the modes is thus lost. Nevertheless,
the pair ~0.041 + j2.240 of closed-loop poles may be identified as the
shifted mode 2 because of its proximity to the pair +j2.589 of open-~loop
poles, which corresponds to mode 2. Consequently, the other pair, -0.021 and
~19.356, may be identified as the shifted mode 1. With such identification,
it 1is then possible to answer the second question posed. The two modes now
have damping ratios

1535%
1.822%

e Cad
i} ]

respectively.

Note that mode 2 was designed to have 100% of critical damping, but now
it_actually has only 1.822%, 5.5 times less the minimum required.

4.3.3 Question 3

Rewrite Eq. (4-34) in component form:

4-21




; jw
g »
X
¢
X
! x ‘:
X

Figure 4-5. Configuration of the poles, open-loop poles (X): +j0.546,

j2.589, closed-loop poles (): -0.021, -19.356,
~N,041 + 12.240,
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" + 14,292 " + 0.298 ny +8.608 n, = 0 (4-35)

W
c.s., 0.S. C.s.
ny + 5.185 n, + 6.702 Ny +8.608 n = 0 (4-36)
0.s.

The term 8,608 ﬁl in (4~36) results from observation spillover. It causes

the designed control performance on the critical mode (mode 2) to degrade.
In particular, the designed 100% of critical damping on mode 2 is thereby
reduced to only 1.822%, as computed in Section 4.3.2.

The term 8.608 62 in (4-35) results from control spillover. It excites

the residual mode (mode 1) whenever the critical mode (mode 2) is in motion.
This indirectly degrades the designed control performance on the entire system.

: Finally, the term 14.292 ﬁ is a product of two. factors which charac-

s terize both control spillover and observation spillover, respectively. It

; gives extremely heavy and unexpected damping to the residual mode. As computed
in Section 4.3.2, the damping on the residual mode is increased from null to
1535% of critical damping. No such strong damping would exist if either con-
trol spillover or observation spillover were completely eliminated.

Observe that if there were no cbservation spillover but control spill-
over, mode 2 would have the designed critical damping, but mode 1 would have
no damping at all and would vibrate forever once it is excited because of con-
trol spillover or any other disturbance.

Observe also that if there were no contrecl spillover but observation
spillover, designed control performance on mode 2 would be degraded, and
mode 1 would still have no damping (as planned) and would not be excited due
| to control spillover. Mode 1 stiil might vibrate forever if it were excited
: by other disturbances.

4,3.4 Question 4

Figure 4-6 shows the time responses ql(t) and qz(t). The peak magni-
tude of qz(t) is equal to 1 meter at t = 0, The 5% settling time of qz(t) is
approximztely 140 seconds. The steady state of qz(t) is zero. Similar

characterization can be made of the time response ql(t). The output-feedback

controller designed by the Davison-Wang method does suppress the vibration
in both masses.
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4.3.5 Question 5

Figure 4-7 shows the closed-loop time responses ql(t) and qz(t). The
peak magnitude of qz(t) is approximately 0.017, compared with 0.4 in the

open-loop case as shown in Figure 2-5. In fact, mass 2 remains vibrating in
the steady state, but with amplitude only approximately 0.008, a reduction of
50 times.

4.3.6 Question 6

Note that the feedback control (4-33) is a special case of the follow-
ing parametric form

up =0, u, =-kyp (4-37)

Substituting it in the finite-element discrete dynamic model (2419)-(2-20)
yields

qp +5qp + 49, =0 (4-38)

2&2 + k&z + qu + 4‘11 =0 (4-—39)

An analysis of the root locus for system (4-38), (4-39) answers the above
questions. First of all, the characteristic equation is

2s% + ks3 + 1452 + 5ks + 4 = 0

Hence

ks(s® +5)
2(s" + 752 + 2)

1+ 0 (4-40)

The open-loop poles and zeros associated with Eq. (4-40) are
poles: +j0.546, *+j2.589
zeros: 0, +j2.236

A sketch of the root locus as k increases from zero to infinity is shown
by Figure 4-8, Observe that as k increasss from zero to infinity, the damping
ratio of mode 1 also increases from zero to infinity but that of mode 2 in-
creases from zero to some value corresponding to k* then decreases to zero.

An obvious answer to the question 1s: the damping of both modes may be
simultaneously increased, but there are limitations. If k* < -G = 38.917 as
given by (4-32), then the answer to the first question is no, that is, damping
on both modes cannot be further increased.
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Since the Daviscn gain is given by (4-28), the parameter k

is accordingly given by k =(A§'_ + 6.70%/4‘1 for Al < 0. Note first that as

]Ai] increases from zero to infinity, k lecreases from infinity to k = 38.917
at Al = -2,588, then increases to infiniiy. This means that using a value for
Al other than -2.588 may further increase damping on both modes, provided that’

k* > 38,917.

4.3.7 Question 7

For the Davison-Wang method to be applicable, the number of actuators
has been reduced from two to one, and so has the number of velocity sensors.
See Section 4.3.1. The rumber cannot be further reduced. The minimum is one
actuator and one sensor.

4.3.8 Question 8

With position sensors instead of velocity sensors, Eq. (2-20) should be

replaced by
¥1 [ql
va| La2

Equations (2-22), (2-24), and (2-26) should all be appropriately replaced.
Specifically, (2-26) should be replaced by

1 n2
= . 4‘41)

Using the same arguments as in Section 4.3.1, only actuator 2 and only position
sensor 2 are used. The corresponding fundamental state-space design model is,
from (2-25) and (4-41)

X 0 1 X 0
1] . o u, (4=42)
X, -6.702 0 X, 0.365
%
y, = [0.365 0] (6-43)
)

Equations (4-42) - (4-43) are the same as (4-26) - (4-27) except that now
C = [0.365, 0].
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Following the same steps as in Section 4.3.1, one obtains at the end
of step 12 the following output feedback control

2

: Y9 T TT0.133 Yy

Note that only one pole, Al’ can be assigned. Also recall that nothing can
be said about the remaining pole. '

Substituting (4-44) into (4-42) and (4-43) yields the following closed-
loop system:

= N I B Y (4-42)
* 2 ’
X, kl 0 X,

The closed poles are: Al and -Al. Note that -Al denotes the remaining

pole, which becomes strictly positive when Al is assigned a strictly negative

value. The closed-loop system of model (4-42)-(4-43) 1is unstable! The remain-

ing pole, about which nothing can be said by the Davison-Wang method, causes
the instability.

4.4 Conclusions

4.4.1 Summary of Advantages

(1) The method enables the designer to have direct control over the
modes of system response.

(2) The approach is modern, analytical, and systematic; its concept
is simple; and its algorithm is straightforward.

(3) The dyadic form of the output-feedback gain matrix is simple to
implement.

(4) The size of the computer memory and the amount of processing time
required in the design process are much less than that required
for the solution of Riccati equationms.

(5) The controller can be implemented by electronic or electromechanical
hardware, as well as computer software.

(6) The confroller is much more robus: to model errors and parameter

variati.as than a corresponding controller using a dynamic estimator.

No reliance on onboard computer is necessary.
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. 4.4.2 Summary of Disadvantages

4.4.3

(1)

(2)

(3)

(4)

(5)

There ore theoretical limitations: not all system poles can be
replaced by desired poles; the closed-loop poles actually assigned
may not be exactly what are desired.

Thrre are numerical difficulties: the calculation of character-
istic coefficients and the solution of feedback gains have
numerical difficulties dues to ill-conditioning of the control-
ability matrix Q.

A pitfall exists: blind application of this method may allow
hidden instability to exist in the closed-loop system,

There are other weaknesses: design freedom is lost because of
the restriction to a dyadic form of gain matrix; the required
feedback gains are usually high; closed-loop system modes are
highly coupled; the design may be quite nonoptimal with respect
to a performance index on accuracy, control energy, or control
time,

The method is not yet mature: various modifications or extensions

keep appearing in the literature; several possible improvementc have

been found during this study.

Final Comments

1)

(2)

(3)

Large flexible space structures have some special problems in the

application of this method, as listed and explained in Section 4.2.4.
These problems are not very serious or extraordinary, but do require

attention.

The use of the test problem given in Section 2.5 has given many
valuable insights into the application of this method to the con-
trol of large flexible structures. However, tests on typical large
flexible space structures are still needed for making realistic
assessment,

The Davison-Wang method can be a viable tool for preliminary or
prototype design of active control systems for large flexible
space structures, but it requires extensive further research to
realize its many advantages over other methods. Preliminary
findings, as outlined in Section 4.2.3, show that many of its
disadvantages can be eliminated or reduced without compromising
it advantages.
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SECTION 5

OPTIMAL OUTPUT FEEDBACK CONTROL
VIA LEVINE-ATHANS METHOD

5.1 Introduction

This section discusses the optimal output feedback control aigorithm
developed by Levine, Athans, and Johnson [1,2] and its application to design~
ing vibration controllers for large space structures (LSS).

The problem studied by Levine, Athans, and Johnson is the following.
One is given a continuous, linear plant which is modelled in state vectcr form

x(t) = Ax(t) + Bu(t) (5-1)
x(t) = x (5-2)
y(t) = Cx(t) (5-3)

where g(t)eRn,_g(t)eRm, and zﬂt)eRr. The symbols 4, B, and C designate mat-

rices, of appropriate dimensions, whose elements are time-invariant and known.
y(t) is the output vector; that is, the plant is assumed to include a sensing
system which measures y(t). The assumptions are made that: (1) r <n, and (2)

the rxn matrix C has full rank. The plant is to be regulated using constant
gain output feedback

u(t) = -Fy(t) (5-4)

The problem is to determine values for the elements of the mxr time-invariant
gain matrix F.

The technique investigated by Levine, Athans, and Johnson seeks to
establish F optimally using the usual infinite-time quadratic loss function

J(F) = %f [_X_T(‘.‘)Oé(t) + p_u_T(t)NE(t)]dt (5-5)
t
o

where ( = QT‘l O, N= NT >0, and p > O

The optimization problem posed by equations (5-1) to (5-5) differs from
the standard infinite-time linear quadratic (LQ) one solely in that the above
blem makes the realistic assumption that only the output vector y(t) is
avillable for feedback. In the standard LQ problem, the (usually) unrealistic
assumption is made that the full state vector x(t) is available for use by the
controller; that is, in the standard LQ problem, equation (5-4) is replaced by
u(t) = -Fx(t). In order to implement a controlier which assumes full state
feedback, it usually is necessary to add into the control loop an observer
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which will use the measurement deta y(t) to generate an estimate, Q(t), of

the true state response x(t). This approach is very common. With such a
technique, design of the controller {i.e., determination of F) and of the
observer is relatively easy because of the well-known principle of separation,
between estimation and control ([3]. The optimal output feedback technique of
Levine, Athans, and Johnson does not employ an observer; hence it requires less
on-line computations. However, it is much more difficult to determine the
optimal gains F in the Levine-Athans-Johnson problem than it is in the standard
LQ problem; that is, the off-line computation requirements are greater, and
successful results are less certain. Also, in general, the Levine-Athans-
Johnson method will yield a larger value for the cost than is achievable with
state feedback and hence, in principle at least, poorer dynamic performance.

Some restrictions on A, B, C, and Q in addition to the above~-noted ones
that r < n and rank C = r are required in order to be certain that the design
problem specified by equations (5-1) to (5-5) is solvable, Analogous require-
ments in the LQ state feedback problem are: (1) that (A,B) be stabilizable, and
(2) that (A,D) be detectable. Conditions (1) and (2) are sufficient for the
existence of a unique stable solution to the state feedback problem [3]). The
matrix D in condition (2) can be any matrix such that there exists a matrix

M= M: > 0 which yields Q = DTMD. Condition (2) is more-commonly stated as

the requirement that (A, YQ) be detectable; this requirement is satisfied
automatically if Q is selected to be positive definite.

For the optimal output feedback problem, condition (1) above must be
modified to the necessary requirement that (A,B,C) be stabilizable by output
feedback. This requires that A, B, C are such that there exist matrices F
which yield (A-BFC) asymptotically stable. It is known [4) that a necessary
condition for stabilizability by output feedback is that all uncontrollable
modes of (A,B) and all unobservable modes of (A,C) be stable. A sufficiency
condition for stabilizability by output feedback has been reported by Li (4]
and by Denham (5].

Derivation of the Levine-Athans-Johnson algorithm is straightforward
and well-documented in readily~accessible literature (1,2}, Hence, a deriva-
tion will not be presented here, One point in the work should be mentioned,
however. When one attempts to minimize J of equation (5-5), the gain F turns
out to be a function of the initial state x . (This does not occur in the
standard state feedback LQ problem.) Use of an F which is a function of x
is usually neither possible nor desirable. Levine, Athans, and Johnson
circumvented this difficulty by regarding x as a random vector and setting
up an algorithm for min'mizing the expecteﬁ"value EJ rather than J itself, As
a result, F-matrices obtained by their algorithm can only be optimal on the
average.

The basic equations which were obtained by Levine, Athang, and Johnson
are as follows

KA - BFC] + [A - BFC)TK + Q + pC'F'NFC = 0 (5-6)

L[A - BFC)T + [A - BFC]L + X = 0 (5-7)
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_?ngi). = oNFCLCT - BIRLCT (5-8).
(They did not actually indicate equation (5-8) explicitly in {1] or [2].) The
new terms above are EJ, X , K, and L. The scalar EJ is the expected value of

J when X 1is treated as a random vector. The nxn matrix X is the covariance

of X . “{Ex_ is assumed to be 0.) The matrices K and L boPh are symmetric

and 3xn. The matrix K was developed by manipulating equations (5-1) to (5-5)

to produce: ' "o

- L
El = 7 trace KXO (5-9)
where
a [A-BFC] 't T.T (A-BFC
kK & / e [Q + oC F'NFC) e 1741 (5-10)

0

Equation (5-6) is equivalent to equation (5-10) if the integral exists. The
matrix L develops when EJ is differentiated to form 3(EJ)/3F. The basic
definition of L is

(-3

T
L g ‘/‘e[A-BFC].r X e[A-BFC] T dr (5-11)
o
0
Equation (5-7) is equivalent to equation (5-11) when the integral exists.

When utilizing the Levine-Athans-Johnscn approach, the problem is to .
utilize equations (5-6) to (5~8) to find the F which minimizes EJ in equation
(5-9). The technique considered by Levine, Athans, and Johnson utilized the
necessary condition 3(EJ)/3F = 0. Assuming that equation (5-8) can be solved
for F

1

F = %N’ BTkLcT (cLet) ! (5-12)

However, the values of the elements of K and L are not known a priori. Hence,
K and L must be calculated in conjunction with the calculation of F. Thus,
the Levine-Athans-Johnson algorithm involves employing equations (5-6), (5-7),
and (5-12) in an iterative procedure. In the remainder of this section, the
term '"Levine-Athans-Johnson algorithm" will be used to refer solely to this
specific technique - the iterative use of equations (5-6), (5~7), and (5-12).

Other app_oaches to the solution of equations (5-6) to (5~8) have been
described in the literature, and these will be summarized later. These methods
generally involve rewriting F as a vector and employing one of the standard
function minimization algorithms. In the remainder of this section, such
algorithms will be referred to as mathematical programming algorithms.




s A NI v v e £ i et <o

Most of the approaches which have been reported in the literature involve
a direct solution of equations (5~6) and (5-7) for K and L respectively. These
are Lyapunov-type equations for which numerous solution algorithms are available.

Experience has indicated that solution of equations (5-6), (5-7), (5-12)
(or, alternatively, (5-6), (5~7), (5-8)) is not easy. There are no known
methods which guarantee convergence. Also, use of a very good initial estimate
for F sometimes is necessary to guarantee that if convergence does occur it

will be to the global minimum of J rather than merely to a non-minimum sta-
tionary point.

5.2 Discussion

5.2.1 Strengths and Weaknesses of the Levine-Athans~-Johnson Algorithm

The general strengths are the following.

1) Controllers designed using the algorithm have relatively simple
on~board or on~line implementation requirements since they
basically involve only constant gain feedback.,

(2) The gains which are computed by the algorithm are optimal
according to an infinite time quadratic criteria.

(3) The algorithm is relatively mature, having been the subject of
numerous investigations over the past 7-8 years.

(4) The algorithm is certain to yield a stable system (assuming that
the conditions on (A,B,C,Q) are met) except for difficulties
which can arise due to imperfections in the design model. of the
plant.

The general weaknecses are the following.

(1) Computing the optimal gains can be difficult, unfeasible, or
impossible. Convergence and the necessity of obtaining a good
initial guess for the gains are the main problems.

2) The computed gains are optimal only in a stochastic sense. That
is, they are based on an average value of the initial condition
x L]

~o
(3) Few, if any, of the studies reported in the literature have

considered realistic or really difficult controller design
problems.

4) The Levine-Athans-Johnson algorithm cannot handle constraints
on or among the controller gains. (Mathematical programming
algorithms, however, can handle such constraints.)




(5)-  Apparently little is -known or can be said in genmeral about the

robustness of systems designed by this technique, or sensitivity
to noise.

The question of strengths and weaknesses of the algorithm will be discussed

again later in this section when considering its specific application to the
LSS problem. "

5.2.2 Literature Search Summary

The first study, by Levine and Athans, of the optimal constant gain
output feedback design problem was published in 1970. Since that time numerous
investigations of the problem and of the algorithm proposed by Levine and Athans
have been .presented in the literature. The following paragraphs attempt to
summarize this material. It is not claimed that the articles noted below
constitute a complete listing of the relevant published work.

The text by Anderson and Moore [6] includes a section on the optimal
output feedback control problem. Equations equivalent to those (equations
(5-6), (5-7;, (5-12)) of Levine, Athans, and Johnson are presented, Two
possible arrangements of these equations for iterative solution are listed
and discussed. The authors stress that convergence cannot be guaranteed with
either arrangement.

Knapp and Basuthakur [7] rederived the equations in [1,2] using an
approach which the authors claimed to be mechanically simpler.

Choi and Sirisena [8] performed a computer study in which they com
pared the Levine-Athans-Johnson algorithms (equations (5-6), (5-7), (5-12))
with a method that used equations (5-6), (5-7), (5-8) (F represented as a
vector); this second method employed the Davidon-Fletcher-Powell function
minimization algorithm. A simple fourth order plant with two controls and
three outputs was studied. The authors claimed enthusiastically that their
work showed the Davidon-Fletcher-Powell method requires considerably less
computation, that it appeared to ensure convergence, and that it should there-
fore make the design of optimal output feedback algorithms more viable. The
authors noted that the class of problems that were being considered exhibit
local minima and therefore the problem should be run several times using
different initial values of F. They also claimed that their work indicates
that if one starts with an initial value of F which yields (A-BFC) stable
then it is not really necessary to test for stability of (A-BFC) on subsequent
iterat ions.

The work of Bingulac, Cuk, and Calovic [9] indicated that the Levine-
Athans-Johnson algorithm cannot guarantee satisfactory results, particularly
when the number of outputs is much smaller than the order of the system,

The problem, they claimed, is due to the inability of finding an adequate
initial guess for F. They proposed to circumvent this difficulty by a tech-
nique which starts by solving the full state regulator problem (which does
not require an initial guess of F) and then reducing the number of measure-
ments in steps (with a new F being cowputed at each step) until the actual
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desired output order r is attained. -Their work assumed that x is transformed
such that C = [Ir|0]. They modified the basic equations of Levine, Athans,

and Johnson into a significantly different form which they claimed to be
computationally more convenient. (The motivation for this modification was
not apparent,) A complete algorithm was developed. However, the details were
not all presented in [9], nor did the authors indicate whether they had
implemented and tested their algorithm in a computer program. No numerical
results were presented.

Petkovski and Rakic [10] concurred that the Levine-Athans-Johnson
algorithm cannot guarantee satisfactory results when the order of the system
greatly exceeds the number of outputs and that the problem is due to the
difficulty in obtaining an adequate initial guess of F. They proposed to (3
surmount the problem by obtaining the initial guess of F through use of Kosut's
minimum error excitation method [11}. Their work included a partial verifica-
tion of their scheme by means of a very simple sample problem. In this prob-
lem, the dimension of x was four, and there were three inputs and three out- .
puts. Convergence was achieved in nine passes.

Séderstrom [12] pointed out that there are (at least) two ways of solving
the Levine-Athans-Johnson algorithm (equations (5-6), (5-7), (5-12)) iteratively.
The techniques considered by Soderstrom are as follows:

A AT AR e mete e e

Method 1
1) Determine an initial K;

t 2) Solve the nonlinear equations (5-7) and (5-12) for L and F;

(3) Sslve the linear equation (5-6) for K;
4) Repeat as necessary.

Method 2 '

(1) Determline an initial F;

(2) Solve the linear equations (5-6) and (5-7) for K and L; .

(3) Compute F from equation (5-12);

4) Repeat as necessary.

|
i
:

(These are the two arrangements noted in the Anderson and Moore text [6]; they
also were noted in the Levine-Athans-Johnson papers.) Soderstrom was ccn-
cerned with the stability of these two methods. He considered a trivial ex-

| ample withn = 2 and m = r = 1, The example was sufficiently simple that

; difference equations for the scalar gain f for each of the two methods could
be derived

fk+l = h(fk) » k = 1,2,...
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Sdderstrom was able to show analytically that Method 1 was convergent;

Method 2, however, was locally-divergent for some X and q values. S&derstrom
wisely did not attempt to draw general conclusions 8bout the usual performance
of the two methods from this single example.

Knox and McCarty [13] studied the problem of computing optimal output
gains for aircraft flight control systems. In comparison to most of the other
references examined in the present literature search, the work of Knox and
McCarty wae quite extensive and applications-oriented; it was the only study
that considered sample problems that are in any way realistic. The work
utilized equations equivalent to thozse ((5-6), (5-7), (5-8)) developed by
Levine, Athans, and Johnson. However, it did not employ the solution-approach
(equations (5-6, (5-7), (5-12)) which Levine et al proposed. Instead, Knox
and McCarty considered only mathematical programming methods. Two techniques
were developed and tested against the well known Davidon-Fletcher~Powell method.
The problem which was considered involved the hypothetical design of a con-
troller for the lateral-directional dynamics of the C-141 aircraft. The system
was fourth order with two controls and three outputs. Q and N were chosen
diagonal and positive definite, Good convergence results were achieved. In
a second portion of the study, an algorithm which enables equality constraints
to be placed cn the elements of F was developed.. (As noted eaviier, the
Levine~-Athans-Johnson algorithm cannot include constraints on F.) This algor-
ithm was tested in a problem in which the constraints were used to provide a
system that would yield proper turn coordination. Again good resvlts were
obtained. The authors conceded, however, that their methods could be tvoubled ‘
by the local minima phenomena and rhat rerunning the problem using several !
sets of initial gains could sometimes prove necessary.

5.2.3 Applicability to Vibration Control of LSS

The general features, stvengths, and weaknesses of the Levine-Athans-
Jolmson algorithm were noted in the preceding sections, The presert section
notes some additional considerations which are pertinent to the application
of the algorithm to the specific problem of designing vibration controllers
for LSS. :

5.2.3.1 Strengths

1. The main strength of the algorithm in the LSS application is that
it appears to have the potential to design controllers which can improve the
damping of a large number of modes with a much smaller number of actuators
and/or sensors. That is, the algorithm does not limit the designer to some
prefixed and ironclad relation between the number of modes, actuators, and
Sensors.

2. The weighting terms Q, ¢, and N in the algoxithm are selected by the
designer. A wide variety of performance characteristics can be obtained de-
pending on the choice of these terms.

3. The algorithm provides an approach for dealing with the residual
modes which is not provided by the other output feedback controller design
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techniques; namely, it includes in the design model (via A, B, C) as many
modes as practical , but reduces the influence of the modes that one does
not wish to control by weighting them only lightly, or not at all, in Q.

5.2.3.2 Weaknesses

1. Determining the optimal gain matrix F in LSS applications is usually
a big problem; is usually a difficult problem; and may, in some applications,
be an unfeasible or impossible problem., One of the difficulties is the size
of the matrices which are involved. For example, a system with 32 actuators
and 32 sensors would yield an F which is 32x22; in this case there would be
1024 gains to be determined., A computer program for determining this many
gains is certain to be cumbersome, slow running, and expensive - possibly
impractically so. Thus, there are limits (possibly undesirably low ones in
LSS applications) on the size of the problems (i.e., on the values of m, n, r)
to which the Levine-Athans-Johnson algorithm is amenable.
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2, The studies reported in the literature indicate that obtaining a
sufficiently accurate initial estimrate of ¥ can be a major difficulty and that
'S ; the difficulty increases as the number of modes is increased relative to the
: number of sensors. This phenomena appears likeiy to limit the number of modes
which can be included in the design model for a given number of sensors and
actuators - thereby curtailing some of the potential advantages of the |
algoritim,

3. The fact that the Levine~Athans-Johnson algorithm cannot include
constraints on F is regarded as a significant drawback of the technique in the
LSS application. (It was noted earlier that such constraints can be included
1f mathematical programming methods are used to solve the equations.) For
example, if the actuators and sensors are colocated, a controller with a
diagonal F may be the best and most practical design in some LSS problems;
the Levine~Athans-Johnson algorithm, however, cannot compute a diagonal F,

4, Apparently, little is known in general about the robustness which
can be expected from controllers designed using the Levine-Athans-Johnson
algorithm. Thus, in the LSS application, it is not possible at present to
determine the extent to which controller performance can be degraded by modelling
errors or by control and observation spillover.

5.2.3.3 Implementation Techniques and Cunsidera:ions

1. With the excepticn of [9], the algorichms listed in the literature
for solving the optimal output reedback equations (equations (5-6), (5-7),
(5-8), or (5-6), (5-7), (5-12)) depend heavily on obtaining a numerical i
solution to equations (5-6) and (5-7). These are Lyapunov-type 2quations.
Solving them numerically is not a tirivial operation, Numerous algorithms for
their solution, however, are available. Smith's method [14] appears capable
of solving these equations in the LSS application if Smith's claims about the
performance of his algorithm can be believed; a detailed study or literature
search of Ivapunov-equation solving algorithms, however, was not performed in
the present LSS work. In the LSS application, the matrices L and K must be
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computed numerous times. in each run. Both are nxn; this, therefore, is one
of the factors chat will place a practical upper limit on the dimension (n)

of the state vector x which can be included in the design model when using the .

Levine-Atnans-Johnson algorithm. When solving Lyapunov equations convargence-
tends to become more difficult if the damping is low [14]. Since damping

normally will be small or nonexistent in LSS problems, this is one more f&ctor'~:

which may increase the difficulties in applying the Levine-Athans-johnson
algorithm to LSS. :

2. When solving any optimal output feedback problem, one aust first

choose values for the weighting terms Q, N, and P. One choice for Q is to se- ..

lect it such that !?Qi is proportional to a weighted sum of the tmechanical
energies in each vibration mode. It can be shown that thnis can be accomplished

by defining Q as follows
r o In/2 0
Q = 2
o Trjlo Q
2

where Q° = Diag. [wl « o n/2]

r = Diag. [Yl .« 9 L) Yn/2]

In the above expressions the w's are the natural frequencies of the structural
vibration modes, and the y's are positive weighting factors assigned to each

mode, E?Qg will be proportional to the system vibratory emergy if the v's
are made unity. The above relation assumes that the state vector x is chosen

as ET = {_r'lT._qT} where the components of n are the inscauntaneous valves of the

structural modes. Inclusion of sensor or actuator dynamics in x necessitates
only minor modifications to \he above expression.

The most-readily apparent technique for selecting N is to use

N = diag. {w) o . ow]

where the w's are positive weighting factors assigned to each actuator.
One might make all w's unity, unless there is a specific reason for doing

othervise.

Determining ¢ a priori is more difficult., The usual procedure is to
generate several controller designs, each obtained withk a different o, and
then to choose the controller whose performance is judged to be best.

3. VWhen setting up a program for implementing the Levine-Athans-
Johnson aigorithm, it appears a practical necessity to include: (1) a routine
to determine if (A-BFC) is asymptoti.ally stable, and (2) a course of action
to be followed if it is not.

5-9




4. The work to date ‘indicutes that the specisl features often encountered
in LSS problems (zero structural damping, velocity sensing only, colocated
sensors and actuators, negligible sensor and actuator dynamics) provide, at
best, very limited potential for reducing the computationsl burden, or other=
wise alleviating the difficulties, when establishing controller zains by the
Levine-Athans-Johnson algorithm, : : R

5. The studies reported in the literature have proven that use of a
very good initial estimate, F , of F is crucial for succeesful application of
the Levine-Athans~Johnson alggrithm. The rudiments of a scheme for attacking
this Fo problem is proposed below. This scheme is a blend of the sequential
technique of Bingulac, Cuk, and Calovic (without their modification of the
Levine-Athans-Jcimson equations) and the single shot method proposed by ’
Petkovski and Rakic which uses Kosut's minimum error criteria. .

e o o o O Cr S

The steps are as follows:

1) Add 9 ad
is nonsingular.

= (n -r) rows to C(r x n) to yield a Co(nxn) which

(2) Solve the optimal state feedback problem, using Co’ to obtain
an Fo(mxn).

(3) Set 1 =1,

(%)  Choose q; (43 <9 £ 9y » 9, =0)
Delete the last q, rovws from Co to obtain Ci(ran) where

*, = nq,

(5) Use Kosut's minimum error method to obtain F (thi)

INi

| [A-BF 11 + L{A-BF +X =0 (solve for L),

T
1-1%31!

gy A o ) |
Lci[CILcil

1-1%4-1

e ™ FiaCia

(6) Use the Levine-Athans-Johnson algorithm to compute Fi(nxri)

=i+l @ F ° Ty

b) KIA-BFC.) + [A—BFicilTK +Q+pClFNFC, = O

171174
(solve for K)

(c) »L{A-BF C ]T + {A-BF,C,]JL+ X = 0 ] solve iteratively
i1 ii 0]
S I for Fi,L
1 .17, T T =1
Fi = 5 N B KLCilciLcil

e ——r

s
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L—- (d) Continue Levine-Athans-Johnson computations in this pass?

/No

@) Qy 2 Q447 — YES —> OUT
NO
|
YES  CONTINUE
COMPUTATIONS?
NO
|
ouUT

A tilde is used with L in step 5 above to indicate that this is not
numerically the same matrix L that is computed in step 6. When using the
above algorithm, it is likely to be comvenient and computationaily efficient
to perform an a priori transformation on x to yield C = [IrEOI. When 'adding

rows to C to fom Co in step 1, one then can merely use rows which each contain
all 0's except for a single 1 in the proper place to produce C° = Iﬂ. The

Levine-Athans-Johnson algorithm shown in step 6 is the so-called Method 1 which
was defined earlier when describing Siderstrom's paper; SUderstrom's results
provide some indication that this approach is more stable than Method 2.

5.3 Application of Optimal Output Feedback to Simple Spring-Mass Problem

This section describes the results which were obtained when the optimal
output feedback controller design technique was applied to the two degrze of
freedom spring-mass problem being considered with 31l the output feedback
design methods discussed in this report.

The plant and its parameters and variables have been described in
Section 2. The present work will consicder cnly the case where actuators are
mounted on both masses. The Levine-Athans-Johnson algorithm is, however,
applicable also to the two cases where only one actuator is used.

The plant equations of motion in physical coordinates q are

Mg +Kg = u (5-13)

where -
L 0 k1+k2 kz
M = K = (5-14)
-kz kz

o m

m=1l m- 2 k- 1 k2 =4

and ups u2 are the actuator forces

5-11

RNy P ey -] _ :




Transforming equations (5-13) and (5-14) to normal mode coordinates n yields

n+afn = oy
%1 %2 515499  -.856890
vhere & = [ ¢,] = = (5-15)
by 9y .605912 364512
wi 0 .5463% 0
Q2 - - ) (5-16)
0 2 0 2.589
)

and the vectors n and g are related thrcugh

4 = %n

Transforming the wodal equation into state vector form produces
Xp = Agty +Bu
where

. . 'r
X = {“1'“2'“1'“2}
- 2

0 -Q
AT-
_12 0
-@T
B.r-
LO

The superscript T above denotes transposition and the subscript T denotes "total",

. ,It is assumed that the plant possesses sensors which measure either
q, or q,. (Preliminary study showed that the Levine-Athans-Johnson algorithm

cannot be applied if both il and az are sensed because then C does not have

full rank, and the matrix CLCT in equation (5-12) hence cannot be 1nverted.+)
The equation for the sensor output y therefore is

. T

AR
*

New results reported in Section 6.2.3 may allow this restriction to be
lifted.

=12

S




where
T ow 0 0}
Sy = 195,45, 0 0ix,

The subscript i above equals either 1 or 2 to indicate which sensor is being
employed. :

The equation for the controller will be

u = -fy

: controller assuming the lower frequency mode (mode 1) to be nonexistent, and
then (2) to evaluate the performance of the overall system which includes
mode 1, mode 2, and the controller.

$ When mode 1 is deleced, the pertinent equations on the preceding page
become
X = Ax + Bu (5-17)
{
H
; y = cx (5-18)
u = ~fy {5-19}
where
T .
1 - {x2’x4} L {n2) nz} (5"‘20)
0 W,
A = “ (5"21)
1 0
-
T
[2 $ $
0 0 0
T
e = {95, 0) (5-23)

In the present application, the cquations given earlier for the optimal
output feedback algorithm can be written in the form

M s <

s A = A-Bfc (5-24)
. Q = Q+ pcfiNgcT (5-25)
5-13
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As discussed in Section 2, the goals of this study are: (1) to design a
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KA+AK+Q = 0 (5-26)

AL + 1aT + X =0 (5-27)

1

f = %[_QTL_Q]-IN_ BTKL£ (5-28)

The above equations must be solved for the 2x1 gain vector f. First, however,
it is necessary to choose the elements of the 2x2 welghting matrices Q and N
and of the 2x2 initial state covariance matrix Xb. The following were selected

M1 0
Q = 2 (5-29)
_0 Wy
B 0
N = (5-30)
0 1
1 0
Xo = B -2 (5-31)
0 w,

Initially, the scalars 8 and o are carried along as unspecified parameters.

The rationale for the choice of Q above is that it makes gng pProport ional to
the mechanical energy of the controlled mode. The selected matrix N causes
the two control forces uy and u, to be weighted equally in the loss function
J. The choice of X.0 was based on the hypothesis that immediately prior to
activating the regulator, N, 1s in undamped oscillation (nz(t) = w;1 /28

sin wzt) and that the regulator is actuated at a completely random point in

this oscillation.

The equations which specify f are derived in the following paragraphs.
Substituting equations (5-22), (5-23), and (5-30) into (5~-28) produces

(]
ut k12112) 12

Plyy8y, .
2 22

1 Gyl

(5-32)
f

where 1ij and kij are the ij-th elements of L and K respectively. (The pre-

sent work constrains X and L to be symmetric.) Equation (5-32) shows that f

and fz are related through L

5«14
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Equation (5-33) provides a constraint between £, and f,; it is an important result,

The next task is to determine an equation for f Substituting equa=

tions (5-21) through (5-23) into (5-24) yields 2
' a 2
PO et 2 -
1 0
where
811 = TO5plfy01 * £y0, (5-35)

Similarly, substituting equations (5-29), (5-23), and (5-30) into (5-25) produces
Q = 2 (5-36)
where

- 2 .2 2

Subsequent work is restricted to the case where fl and f2 are related as in
equation (5-33). Then, equations (5-35) and (5-37) reduce to

- %9

o 2 .
a5 3. L1 * 6lf, (3-35%)
22
> 2 2 . 2.2 .
9y = LHed, e, +ey,lf, (5-37")
2
%22

Substituting equations (5-34) and (5-36) into equation (5-26) yields a
set of equations which can be solved for the elements of K. The results for

kll and k12 are

-1l + q,,]
k - -—-———1—1—- (5"38)
11 ”
a1
1
5-15




Similarly, substituting equations (5-34) and (5-31) into (5-27) yields a set of
equations which can be golved for the elements of L. The results for 111 and

112 are
B
1. = - e (5-40)
11 511
1 = .-...g_.. 541
12 = 2 (" )
2w2

Substituting equations (5-38) through (5-41) into the bottom scalar equation in

(5-32) yields ) ) .
e - . 99p[20;(1 + qp) - apy]
2

(5-42)
49 pa wz
12791172

Substituting equations (5-35') and (5-37') into (5-42) and rearranging produces

2.2 22 2 .2 2. 2 2.
hugboy = 38520079 + 4590 (20uy + 67, + 4500

which can be solved for f2

+20,¢
2722
f = (5-43)
2 g1l + a2 pul + o2+ o2 011/

Equations (5-33) and (5-43) are the basic equations for the controller gains
fl and f2. 1t has not yet been verified, however, that the regulator will be

stable for either or both of the sign conditions in equation (5-43). The
material in the following paragraph, as a sidelight, enables this question to
be answered.

In equation (5-43), the gain f2 is specified as a function of the control '

energy weighting gain p, Since p is actually of little intrinsic value, it
would be convenlent if p, or f2 itself, could be expressed as a function of

the damping ratio %o of the regulator. This can be accomplished through use

of the closed loop system characteristic equation

detfsI, - A) = O (5-44)

2
Substituting equation (5-34) into (5-44) yields

2 - 2
s alls + Wy 0

5-16
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Hence

-~

-a

- 11
c ‘ 2w2

g (5-45)

Substituting equatidn (5-35') into (5-45) yields a relation between fz_and'cc

. 2 $ 4 . :
fz - 2222 c > _ (5-46)
9520015 + 655l

[

A relation between cc and p can be obtained by inserting equation (5-43) into
equation (5-46) and solving for p

$ | | (¢i2 v ¢§2) 1
p o 222 (7 -1 (5-47)
2w2 Cc

Use of equation (5-46) directly will produce the same value of f2 as would be

obtained by use of equations (5-47) and (5-43). The former procedure, however,
tends to violate the spirit of the optimal output feedback design procedure.

Recall, from equation (5-15), that ¢22 > 0. Equation (5-46) thus shows

that the regulator will be stable (at least for the one-mode plant being con-
sidered in the design) if ard only if f2 and ¢12 have the same sign. This in-

dicates that the positive sign in equation (5-43) must be chosen for both i =1
and { = 2,

[NV

In summary, the final equations for the regulator design are equations
Y (5-47), (5-43), and (5-33). The numerical values of the plant parameters are
listed in equations (5-15) and (5-16). The value of g must be chosen a priori.

Sélecting the [ of 0.1 which was specified in the problem statement yields
G the results shown in Table 5-1,

Table 5-1: Optimal output feedback gains
for sample problem.

i p fl fz
[ 1 6.404 0.597 -0.254
2 6.404 -1.404 0.597

1 The reader is reminded that i = 1 signifies the system in which the velocity
sensor is mounted on mass 1, while { = 2 gignifies the system in which this
sengor is mounted on mass 2,
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The remaining work in this section consists of an investigation of the
performance of the two control systems specified above on the full two degree
of freedom plant., That is, the effect of the residual mode (mode 1) which
was neglected when designing the control system will be studied. In particular,
we wish to address the same questions which are being addressed in the other
sections of this report where the other output feedback controller design
techniques are applied to the sample problem.

The first task is to determine whether or not the residual mode destab-
ilizes either or both of the control systems indicated on Table 5-1. For
generality, the approach which will be used consists of: (1) determining the
regions of stability and instability in an fl - f2 gain space (where f1 and

f, are independent), and (2) checking in which region the regulators in ¢
Table 5-1 lie.

For the immediate purposes, it will be conveniént to employ the physical
variables q. Consider first the case (i = 1) where the sensor is mounted on
mass 1, Then

o~

u = -_f_;ll (5-48)

Inserting equation (5-48) into (5-13) and taking the Laplace transform yields

2
ms” + fls + kl + k2 -k2 q, (s)
2 = h(s)
fzs - k2 m,8 + k2 qz(s)

where h(s) 1s a function of the initial conditions. The characteristic equa-
tion is the determinant of the matrix on tha left, set to 0, Expanding this
determinan. yields

. :
+m (k1 + kz)]s + kz(f1 + fz)s + k. k 0 (5-49)

4 3
s +n,f.8 + [m 1%2

L) ) 2°1 1%2

Substituting the values of s Wy, kl’ and k2 into equation (5-49) produces

2
P f1s3 +7s° 4 2F +E)s 42 = 0 (5-50)

When Routh's criteria is applied to equation (5-50), the terms in the
first column turn out to be

: -4[f2 + 0.8508f1][f2 - 2.3508f1]
27 (5f1 - 2f2) ?

1, - 2f

1
e (5f

]
45

1

from which necessary and sufficient conditions for stability for i = 1 can be
determined to be
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f1 > 0

-0,8508 £, < £, < 2.3508 £
Similarly, when the sensor is on mass 2 (i = 2) we have : ' .
T u o= E&Z

which yields the characteristic equation

5 . mlsz + k1 + k2 fls - k2
det : . ' o N
. 9 b
. k2 m,8 +~fzs + kz :
2 nist Him £, 80 [ ke B (ke ke |
1™2 1%2 172 T Hy TR
+ s[fz(k1 + kz) + flkzl + klkz = 0 (5-51)
i Substituting numerical values into equation (5-51) provides
4 3 2 '
s +0'5fzs 4+ 7s” + [2f1+2.5f2]s+z = 0 (5-52)
Applying Routh's criteria to equation (5-52) yields the following terms in
column 1
2 2
1, 0.5f2, fz [f2 - 2f1], T?;":—E?IT [f2 + 0.8508f1][f2 - 2.3508f1], 2
" from which necessary and sufficient conditions for stability for i = 2 can be
determined to be
. £, > 0
f2 > 2,3508 f1 %
f2 < =0,8508 f1
The f1 - f2 stability regions determined above for cases i = 1 and 1 = 2

i are plotted on Figure 5-1. The figure also shows the optiral output feedback
| controllers indicated previously in Table 5-1. It is seen that the optimal gains
yield a stable system for the i = 1 case and an unstable one for the i = 2

5-19




case. The instability for {1 = 2 {5 due to the residual mode which was
omitted when designing the controller.

The derivation given earlier in this section indicated that the control
weighting matrix (N = 12) chosen for this problem yielded the constraint

f2 = (¢12/¢22)f2 between f1 and f2. A plot of this line is included on Figure 5~1.
The sole effect of p, XO‘ and Q is to determine the precise point on this line

! where the optimal gains fl and f2 lie, It is concluded from Figure 5-1 and
equation (5-43) that with the selected Xo and Q there is no choice of p > 0

that would make the i = 1 case unstable nor the i = 2 case stable, The nega-
tive sign for i = 2 shows immediately that the system is unstable as predicted &
by the preceding Routh's eriteria amalysis.

i

A, AR A e

Substituting the fl and f2 values from Table 5-1 into equations (5-50) and
(5-52) produces the following characteristic equations for the optimal regulator: ’
o 4 ! ,',

t=1:  s*+0.5978° + 762

25y b

+0.686s+2 = 0

2

4 3 4782 - 1.3155s + 2 = 0

i=2:¢ s  + 0.2985s

The damping factors § and natural frequencies w of the regulator can be obtained
by factoring the above expressions. The results are

% i wy % ) )
1 0.5481 0.07805 2. 5804 0. 1002
2 0.5417 -0.1985 2.6109 0.09836

Comparison of the w's above with the open loop plant values indicated earlier
shows that the controller has produced almost no effect on the system natural ’
frequencies, The proximity of the CZ results shown above to the design goal

of ;2 = 0,1 is surprising, since mode 1 was completely disregarded in the design.

The remainder of this section will not consider further the unstable
system, i = 2. Instead, the work henceforth will be limited to the stable case
i = 1, in which the velocity sensor is mounted on mass 1.

The next portion of this section will be devoted to setting up transfer
functions for the purpose of determining the frequency response and transient
response requested in the problem statement, To obtain these, we first combine
equations (5-13), (5-14), and (5-48) into the form:
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vy - B9 - (ky +ky)ay + kog,

29 ~

v +\k k

2~ £9 2%

The terms vy and vy above are disturbance forces which have been added to the

model. The equations assume that the velocity sensor is mounted on mass 1,
However, they do not assume that the controller gains f1 and f2 are estab-

lished optimally. The signal flow diagram shown as Figure 5-2 can be obtained
easily from the equations. Transfer functions betwe~n any desired input and
output variables on the diagram can be obtained by use of Mason's rule. The
two transfer functions which are of current interest are

2
qz(s) } mls + fls + (k1 + kz)
VZ(S) Den
q.(s) m,s[m s2 + f.s + (k, + k,)]
A M 1 1”2
q,(0) Den

where

4 3 2
Den = mm,s + m,£,8 + [mz(k1 + k) +mk,)s” + ky(f, + fz)s + kK,

Note that q2(8) above is the Laplace transformed variable, while qz(O) is the
initial condition. The denominator Den is identical to the characteristic
equation result given earlier as eguation (5-49).

Substituting the numerical values for the m's and k's into the above
expressions yields

ae) 05187 + ¢
vz(S) Den

ls + 5]

qz(s) ) s[s2 + fls + 51

qz(O) Den

where

Den = s*+ fls3 +7s% + 206, + £,)8 + 2

If fl and f2 are constrained by the relation f1 = -2,3508 fz, which was an

intermediate result when deriving the optimal output feedback controller,
the above expressions become
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109 0.51s” - 2.3508¢,5 + 5

vz(s) Den _ L -

qz(s) 8[52 —.2.3508fés + 5]

qZ(o) Den

where

Den = s“ - 2,3508f. 3 4 782 - 2.7016f2s +2

2 ¥ i
The final transfer functions for the optimal controller for { = ] are obtained
by substituting f2 = -0.254 from Table 5-1 into the above equations. After
factoring Den, the result is “e
29 0.508% + 2 x 0.1335 « 2.2360 4 2.236%)
vz(s) o Den
29 s1s% 4 2 x 0.1335 x 2.2369 4 2.236%) =5

Den = (s 4+ 2 x 0.1002 x 2.5804s + 2.58042)

*(s + 2 x 0.07805 x 0.5481¢ + 0.5481%)

Figure 5-3 is a frequency response plot of q2/v2. This plot was obtained

using the transfer functions developed above, Figure 5-4 gives the response P
of the uncontrolled plant (f1 = f2 = 0). The work shows that at w = 3 there

is negligible difference in the 9, amplitude for the two conditions. See also
Figure 5-5, which shows the transient response to the y = 3 input.

The next topic to be considered is the time response of qz(t) due to an
initial condition ql(O) = 0, q2(0) = 1.0 when the optimal output feedback

regulator is used. One way to proceed is by taking the inverse Laplace
transform of Eq. (5-53). The result is

q,(¢) Gt 3
E;?BT = 0.7408e cos (vl - ;lwlt + 4,175°)

=L W, t —3
+ 0.26470e 272 cos[\/l - szzt + 8.979°] (5-54)
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where the ¢'s and w's have the values indicated earlier. Equation (5-54)
is plotted as in Figure 5-6. The peak magnitude of qz(t) is seen to occur

at t = 0. The steady state error is zero. The 5% settling time is approx-
imately 59 seconds. '

The final .opics to be investigated in this cection concern system ro-
bustness and the varjiation of the closed loop poles as p is varied throughout

- its full range: pe(0,»). The work still will be limited to the case i = 1,

The gaine f, and f, still will be constrained by equation (5-33). For the

present work, it 1§ slightly more convenient to employ f1 rather than fz.

Equation (5-43) and the numerical data given earlier indicate that (when the
optimal output feedback design technique is used and Xo, N, and Q are selected

- as indicated in equations (5-29) to (5-31)) the upper and lower limits of f, are

fpuy = 0 ()
2w2
fmax = 2 L2 5.97 (p > 0)
912 ¥ 920

The application of equation (5-33) to eliminate either fl or f2 from

the mathematics is useful because the system then can be studied using stand-
ard classical techniques (open loop frequency response plots or root locus
plots with the sole design variable being a single gain). After equation (5-33)
is used to elim:inate f2, the basic signal flow diagram given earlier as

Figure 5-2 can be rearranged into the standard unity negative feedback one
shown as Figure 5-7. This figure also includes an analogous signal flow
diagram for the one-mode plant model which was used in designing the regulator.
This second diagram can be obtained through use of equations (5-17) through
(5-23) and (5-33).

The open loop transfer functions c/e can be obtained readily from
Figure 5-7. They are

One Mode Plant Model

2 2
¢ | Dlegy + 6yl
€ 82 +w§
0.86713 f,s
(s + 12.589)(s - 12.589) (5-55)
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Two Mode Plant Model

' ¢
2 22
flsSm2+k2(1+¢ )
< 12
= mm + 8limk. + m(k, + k)] +kk
1™2 152 T BplKy T Ky 12
2
fls[s + 1.1492)
BEREY: (5-56)

fls[s + 11.0720) (s - 11.0720]
(s + 12.589)(s - 12.589) (s + 10.5463) (s - 10.5463)

The poles in the above expressions are the natural frequencies of the plant,.

Some quick frequency response sketches of equations (5-55) and (5-56)
indicate immediately that in both cases the system possesses 90° phase margin
and infinite gain margin. This is an overly-optimistic conclusion. It is

a result of the fact that the plant models are idealized ones which do not
include actuator or sensor lags.

Root locus plots of equations (5-55) and (5-56) are of some interest.
Figure 5-8, which can be obtained easily from equation (5-55), shows the re-
sult for the one-mode plant model upon which the controller design was based.
This plot indicates that the controller does not alter the natural frequency
W It also indicates that (with the selected matrices Q and N) the upper

limit on g which is achievable with optimal output feedback is unity.

Figure 5-9 is the root locus plot which was obtained from equation
(5-56). The figure is in concurrence with previous conclusions that a stable
system is obtained, for all values of p, even in the presence of this residual
mode. As f1 is increased, the pole-pair of this residual mode travels from

the open loop values toward the open loop zero-pair of c/e. The pole-pair

of the critical mode follows the same basic type of locus as in the one-mode
condition shown previously in Figure 5-8. However, there are some differences.
In particular, the breakaway point on the real axis is significantly different
in the two cases. Also, on Figure 5-8 the upper limit of f1(5.97) was just

sufficient to drive to locus tu the real-axis breakaway roint. On Figure 5-9
an f1 of 5.97 is seen to carry the system considerably beyond this point.

Figure 5-9 indicates that the maximum achievable damping coefficient of the
residual mode is approximately f = 0.59; this is achieved at the real-axis
breakaway point of the critical mode.
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5.4 Summary and Conclusions

The advantages of the Levine-Athans-Johnson method for vibration con-~
troller design in the LSS application are summarized as follows,

1. It has some potential for designing controllers which can improve

the damping of a large number of modes with a much smaller numbz2r of actuators
and sensors.

2. A wide variety of performance characteristics can be achieved by
selection of the weighting terms in the cost function J.

3. The technique is fairly well understood, since it has been the
subject of numerous studies since its inception.

4, The technique yields a controller which, at least in a mathematical
sense, is optimal.

The weaknesses are summarized as follows.

1. Determining optimal gains in the LSS applications generally is a
very difficult problem., The main difficulties are:

(a) the sjze of the matrices which are involved

(b) convergence

(c) local minima
Successful results depend on use of a very accurate initial estimate of the
gain matrix F. The difficulty in obtaining a successful result increases as

the ratio (number of modes)/(number of outputs) increases.

2. None of the studies reported in the literature considered problems »
nearly as large as those which normally will be encountered in LSS applications.

3. Controllers designed by the approach apparently have no known,
guaranteed, robustness properties, The simple design example indicated that -
spillover has the potential for making such controllers unstable.

4. The Levine-Athans-Johnson algorithm cannot include constraints on
the elements of F. Such constraints can, however, be incorporated if mathe-
matical programming solution techniques are used.

Some final comments are

1. If the technique is implemented in a computer proaram, it should
include at least one mathematical programming algorithm in place ot, or in
addition to, the solution-technique developed by Levine, Athans, and Johnson.
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2. Au implementation which performs successfully evidently will ze-
quire some specific technique, such as that outlined earlier in: this section,
to provide an adequate initial estimate of F. '

3. If the technique is implemented, considerable effort should be ex-
pended to find an adequate algorithm for solving the Liapunov-type equations.

References
1. Levine, W.S., and M. Athans, "On the Determination of the Optimal

Constant Output Feedback Gains for Linear Multivariable Systems",
TEEE Trans. Automatic Control, Vol. AC-15, pp. 44-48, February 1970.

2. Levine, W.S8., T.L. Johnson, and M.'Athans, "Optimal Limited State
Variable Feedback Controls for lLinear Systems", IEEE Trans. Automatic
Control, Vol. AC-16, pp. 785-793, December 1971.

3. Kwakernaak, H., and R. Sivan, Linear Ontimal Control Systems, Wiley-
Interscience, New York, 1972.

4, Li, M.T., "On the Output Feedbaci Stabilizability cf Linear Systems",
IEEE Trans. Automatic Control, Vol. AC-17, pp. 408-410, June 1972,

5. Denham, M.J., "Stabilization of Linear Multivariable Systems by Output
Feedback", 1EEE Trans. Automatic Control, Vol. AC-18, pp. 62-63,
February 1973.

6. Anderson, B.D.0., and J.B. Moore, Linear Optimal Control, Prentice-
Hall, Englewood Cliffs, New Jersey, 1971.

7. Knapp, C.H., and S. Basuthakur, "On Optimal Output Feedback", IEEE
Trans. Automati: Control, Vol. AC-17, pp. 823-825, December 1972.

8. Choi, S.S., and J.R. Sirisena, "Computation of Optimal Output Feedback
Gains for Linear Multivariable Systems'", IEEE Trans. Automatic Control,
Vol., AC-19, pp. 257-258, June 1974,

9. Bingulac, S.P., N.M. Cuk, and M.S. Calovic, "Calculation of Optimum !
Feedback Gains for Output-Constrained Regulators", IEEE Trans. Automatic ;
E Control, Vol. AC-20, pp. 164-166, February 1975. ‘

10. Petkovski, DJ.B., and M. Rakic, '"On the Calculation of Optimum Feed-
back Gains for Output-Constrained Regulators", IEEE Trans. Automatic
Control, Vol. AC-23, p. 760, August 1978.

11. Kosut, R.L., "Suboptimal Control of Linear Time-Invariant Systems
Subject to Control Structure Constraints", IEEE Trans. Automatic Control,
Vol. AC--15, pp. 557-563, Octcber 1970,

3 1z, S5derstrom, T., "On Some Algorithms for Design of Optimal Constrained
Regulators", IEEE Trans. Automatic Control, Vol. AC-23, pp. 1100-1101,
December 1978,

5-35

|
|
|




13,

14,

‘Knox, J.R., and J.M, McCarty, "Algorithms for Computation of Optimal

Constrained Output Feedback for Linear Multivgriable Flight Control
Systems", AIAA paper 78-1290, : S,

Smith, P., "Numerical Solutions of the Matrix Equation AX + xal + B = Q"
1EEE Trans. Automatic Control, Vol, AC-16, pp. 278-279, June 1971,

5-36




)

SECTION 6

SUBOPTIMAL OUTPUT FEEDBACK CONTROL
VIA KOSUT APPROXIMATION

\
6.1 Background

6.1.1 Overview

One of the principal results that is known about the optimal regula-
tion of linear dynamic systems with quadratic cost criteria [1] is that the
optimal closed loop control is expressible as a linear function of the system
state vector. No a priori coustraints on the control vector are imposed in
the development of this result. To implement this feedback control law in an
actual control system would require either: measurements of the full system
state, which is seldom possible; deterministic state reconstruction {(Luenberger
observer [2]); or stochastic state estimation (Kalman filter [3]). A desire
to avoid the need for state reconstruction or estimation with systems in which
full state measurements are not available has motivated studies of optimal
output feedback [4], which constrains the feedback control law to be a linear
function of the available measurements. Section 5 discussed such methods in
detail. With such an a_priori control structure constraint, the variational
problem may be reduced to a parameter optimization problem. Necessary con-
ditions consist of a system of coupled nonlinear algebraic equations for a
cost matrix, an adjoint multiplier matrix, and a feedback gain matrix. Unfor-
tunately, these algebraic necessary conditions cannot in general be solved in
closed form; moreover, serious convergence difficulties have plagued attempts to
develop algorithms for solution by iteration [4], [5]. A principal objective
of the Kosut approacn to the output feedback problem [6] is to develop design
methods which avoid the need for an iterative solution of the necessary con-
ditions. This objective is achieved, although strict optimality, based on
absolute system performance and assurance of system stability, is sacrificed.
Instead several suboptimal design procedures are developed, each based on
minimizing the distance in some metric from the solution of a reference optimal
problem. Two classes of control structure constraints are treated: (1) cen-
tralized output feedback, in which each control component is constrained to be
a linear function of all of the output variables, and (2) decentralized output
feedback, in which each control componeat is constrained to be a linear func-
tion of a prespecified, and possibly distinct, subset of the output variables.
When the reletive cost in the suboptimal problem is a quadratic functional,
the algebraic necessary conditions that result, although still nonlinear and
coupled, can be solved in closed form.

The essential features of the Kosut design methods are outiined in the
remainder of Section 6.1. A careful analysis of the Kosut design approaches
is given in Section 6.2. The key observation in this section is that certain
assumptions relating to the sensor configuration upon which the published
methods are based makes the methods inapplicable to most problems of large
structure control. Motivated by this observation, extensions of the Kosut
methods are developed which enable them to be used with arbitrary sensor




configurations. The Kosut methods, as extended, are successfully applied to
the design of a vibration controller for a simple two body oscillator.
Details of a nominal design, together with possible design alternatives, are

outlined in Section 6.3. Conclusions, including recommendations for further
study, are given in Section 6.4.

6.1.2 The Design Methods

6.1.2.1 Common Features

Each of the suboptimal design methods have certain features in common:
one of several types of constraints are imposed a priori on the control law

structure, and some optimal control prcoblem for the plant of interest whose
solution is knowr a priori is chosen as a reference.

Two classes of control structure constraints are considered. The first,
centralized output feedback*, requires that elements of the controller output

vector u(t) to the plant be constant linear combinations of elements of the
plant output vector y(t)

. u(t) = Gy(t) , G:mx ¢

(6-1)
each of which are physically measurable constant linear combinations of
elements of the plant state vector x(t)

y(t) = Cx(t) , C: 2xmn, 2 <n (6-2)

The feedback system structure is shown in Figure 6-1., The second, decen-
tralized output feedbackT, allows each component ui(t), i=l,...,m of the

controller output vector to be a constant linear combination of possibly
distinct subgroupings yi(t), i=1,...,m of the plant output vector

T . ,
u (8) = g, vy, (8), g by <1

Zi <n; i=1,...,m (6-3)
yi(t) =C, x(t), C;8 4 *

The feedback system structure, shown in Figure 6-2, generalizes the central-

ized case by allowing each control channel to have a different information
structure.

In addition, an optimal control problem is formulated relative to the
plant and initial conditinns of interest

x(t) = Ax(t) + Bu(t), t > 0, x(0) = X, (6-4)

For descriptive purposes, the identifying labels used here differ from
those used by Kosut.
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Figure 6-1. Centralized output feedback structure.
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and then solved for an optimal pair (x*, u*) to be used as a referenca for
subsequent suboptimal design. The nature of the cost criterion in this
reference problem is free to be chosen by the designer. Whatever this choice
may be, however, it is assumed that the optimal control is a constant linear
combination of the optimal plant state

uk(t) = Fex*(t) , Fr:mxn (6-5)

however, it is not assumed that F* has a structure consistent with the control
structure constraints above. Moreover, the optimal system is assumed to be
asymptotically stable. As' an example, the linear-quadratic problem for a time
invariant plant satisfies these assumptions; in particular, the feedback

matrix F* in general is not consistent with the types of output feedback

discussed. o

The suboptimal design methods are distinguished by the way in which
the controller gains are computed. Formulas for the gains are obtained from
necessary conditions for a minimum in the suboptimal problem. The distinction
between the two methods arises from different ways of penalizing the variation
between controller gains in the suboptimal problem and those in the optimal
reference problem. This variation can never be exactly zero, since the con-

troller in the optimal reference problem is not required to satisfy control
gstructure constraints.

6.1.2.2 Suboptimal Design by Minimum Error Excitation

The suboptimal system plant is descvibed by Eq. (6-4), with eazh
admigsible control constrained to the form of Eq. (6-5)

u(t) = Fx(t) , F:mxn : (6-6)
and such that the zain matrix F satisfies control structure constraints
implied either by Eqs. (6-1) and (6-2), or by Eq. (6-3). It follows that
each suboptimal trajectory x(*) corresponds to an error vector

e(t) & x(t) - x*(t) (6-7)
which satisfies the initial value problem

e(t) = (A+BF) e(t) + B(F-F*)x*(t), t > 0; e(0) = 0 (6-8)

The suboptimal cost measure !s a quadratic Iunctional weighting the forcing
term in Eq. (6-8) with a positive definite matrix R

+ o
® & [ T E-mT RE-F) k() dt (6-9)
0




— .
P

~ The variational problem of winimizing I (F) under the constraints

described is converted to a mathematical programming'problem by using in
Eq. (6~9) the explicit solution form for x*(+) obtainable from Eqs. (6~4)
and (6~5). Since the optimal reference system is asymptotically stable, an

integration by parts shows [7; p. 179] that minimizing Eq. (6~9) is eqﬁivaleqt
to minimizing, ovir those gain matrices F that satisfy a control structure
constraint, the expression

. T
IE(F) = xOon , (6-10)
where V satisfies the matrix equation

(A+BF*) IV + V(A+BF*) + (F-F¥*)IR(F-F#) = 0 (6-11)

In order to obtain results independent of the system initial state, the cost
expression (6-10) is replaced by

iE(F,V) & Trace (v) (6-12)

Under appropriate assumptions on the distcibution of X, as a random variable,

expressions (6-10) and (6-12) differ by a constant multiple [4].
Using standard mathematical programming techniques*, necessary condi-

tions for a minimun are obtained, consisting of Ey. (6-11), a Lyapunov-type
equation for the multiplier matrix P associzted with the constraint Eq. (6-11)

(A+BF*)P + P A+BF*) +1I=0 (6-13)

and explicit expressions for the suboptimal gain matrix, F., For the case
of centralized output feedback: F = GC, with

¢ = Frprf(cecTy L (6-14a)

For the case of decentralized output f{eedback: F = col(Fl,...ﬁFm), and each

row vector F, = gTC is characterized oy

3 33
T * T .
= F PC c Pc Py -1. ev ey 6-1Ab
8 j[ 3 ( 48C4 Ty, m ( )
where F* is the jth tow vector of the matrix F*,

b

fDevelopment of these and subsequent necessary conditions are greatly facili-

tated by using several properties of the trace operator; these have been
collected in Section 6.5.1.
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Since F* is known in advance, Eqs. (6~13), (6-14), and (6-11) caa be
solved in succession for P, F, and V, respectively, instead of having to be
solved by iteration. This was a major goal of the suboptimal design. Some .
further observations are also worth noting. First, since F* corresponds to .
an asymptotically stable closed loop optimal system, the matrix P obtained
from Eq. (6-13) is positive definite [7; p. 254]. This is not sufficient,

however, to guarantee invertibility of CPCT, as required by Eqs. (6-14),
without certain assumptions on the sensor matrix C. Kosut makes certain

restrictive assumptions which guarantee iwvertibility of CPCT, but does not
discuss the general case. This topic is explored in depth in Section 6.2.3.
Second, the expression (6-14b) depends on the assumption that the error
excication weighting matrix R in Eq. (6-9) is diagonai. This dependence is
obscured since the elements of R do not appear in Eq. (6-14b); without such
an assumption, Eq. (6~14b) must be replaced by the more general system

m
T, 5T %o T o
Zj=1 [8,'] Cj Pck - Fj Pck] rjk = 0, k 1,-..,m

which involves the elements of R explicitly. In contrast, Eg. (6-14a) does
not depend on such an assumption.

6.1.2.3 Suboptimal Design by Minimum Norm

The plant description and control constraints for this method are the
same as those for the minimum error excitation approach. The suboptimal
cost measure is the Euclidean distance between the equivalent state-feedback
gain matrices in the suboptimal system [Eq. (6-6)] and the optimal reference
system [Eq. (6-5)]

2

A ~ m n *
(EL= | 7-F=* || =\/Ei=1 stl (fij - £ (6-15)

3

Minimization of IN over matrices satisfying control structure con-

straints is a simple mathematical programming problem. It can be cast in terms
of the trace operator, since, for any mxn matrix T

HP]IZ = Trace (I'T)

Necessary conditions for a solution consist simply of explicit
expressions for the suboptimal gain matrix, F. ¥For the case of centralized
output feedback: F = GC, with

¢ = Fr[ct(ccT) ™1 (6-16a)

s
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For the case of decentralized output feedback: F C°1(Fl"“’Fm)’ and each

row vector Fj = (gj)ch is characterized by

-1 .
g = F}‘[CJ.T(C cJ.T) 1, =1, vom (6-16b)

3

6.2 Discussion

6.2.1 Advantages

The Kosut design methods are appealing for at least three reasons:
(1) they are simple, (2) they are noniterative, thereby avoiding convergence
difficulties, and (3) they can be used in conjunction with iterative optimal
output feedback methods to improve convergence.

These methods share the simplicity inherent in all output feedback
methods; i.e., by constraining the control law to be a function only of
system variables that can be measured, the need for reconstruction or estima-
tion of the full state is avoided. This keeps the order of the overall closed
loop system relatively small, reduces the complexity of the analysis and design
problems, and alleviates the computational difficulties (e.g., phasing and
transport lag) associated with implementation in a real control system. In
these methods, simplicity is further enhanced by constraining the output-
control relation to be linear and time invariant, consistent with the corre-
sponding nature of the plant considered.

A major goal achieved by the design methods is the development of
explicit expressions for the controller gains (assuming the existence of
inverses for certain matrices). The algebraic Eqs. (6-11), (6-13), and
(6-14) that arise in the minimum error excitation method are similar in
structure to those that occur in studies of optimal output feedback [4];
however in the latter problem, the equations do not in general admit a closed
form solution. Moreover, algorithms proposed for iterative solution do not
guarantee convergence to a solution [4]; in fact, experience with them has
shown that in svstem ose order is much larger than the number of available
outputs, satisfactory convergence is not obtained [5]. This situation is
largely due to a lack of knowledge as to where to start the iteration. Con-
vergence questions do not arise in direct application of the Kosut methods.

It has recently been observed that the Kosut method of minimum error
excitation can assist the designer interested in an optimal output feedback
approach [4). By using the explicit solutions of Eqs. (6-11), (6-13) and
(6-14) as au initial point for starting the iterative solution of the corre-
sponding ontimum output feedback equations, good convergence has been
demonstrated [8].

6.2.2 Disadvantages

The Kosut design methods have at least three clear weaknesses: (1) no
information on closed loop stability is available; (2) the results, as
nublished, cannot te used when certain matrix products involving the sensor

6-7
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matrix C {Eq. (6=2)] are not invertible; and (3) controller designs are i
not assured to have the desired "minimum-distunce" property relative to the
optimal reference problem chosen.

: The most serious deficiency of the design methods is the lack rf
assurance that the controller gains obtained will lead to a stable closed

loop system. This is immediately evident by observing that neither of the
suboptimal cost measures [Eq. (6-9) or (6-15)] involve trajectories of the sub-
optimal system. In contrast, the Levine-Athans optimal output feedback
method [4] does guarantee stability of the closed loop system, although, as
noted above, iterative solution for the controller gains is usually required.
We have observed that there is a direct connection between the achievement

of a noniterative solution for the controller gains and the lack of stability
information in Kosut's minimum error excitation method. In fact, his develop-
ment can be modified in a natural way so as to obtain corresponding results
which do contain stability information; however, the controller gain equations
that result require iterative solution in general, and so little would be
galned by using such an alternate approach. This alternate development of

minimum error excitation is outlined in Section 6.5.2. ‘?ﬁ
Each of the expressions for the controller gains, Eqs. (6-14) or

(6-16), assumes the invertibility of certain matrix products, all of which

have the general form CnCT, where C is a senzor matrix with at least as many i

columns as rows, and 7 is positive definite!. Such a matrix product is
invertible if and only if C has maximum rank [Section 6.2.3.2; Theorem 6-1].
Kosut makes the assumption, which will be seen to be unduly restrictive, that
the system outputs are a subset of the physically measurable system states.
Hence, the sensor matrix C is such that, by rearrangement of columns, it takes
the form [IZE 0], and thus has maximum rank, This assumption is not always

satisfied for certain systems of interest: in particular, for reduced order
models of large space structures [Section 6.2.4]. For such systems, the
Kosut design methods, in their present form, simply cannot be used.

The familiar, but subtle, logic used in the development of the design
methods should be carefully noted. The equations which identify the controller
gains and related variables are first order necessary conditions based on the
assump.ion of a mirnimum in the mathematical programming problem that is used
as a representation of one of the suboptimal variational problems. It is
worth observing that these necessary conditions have unique solutions when-
ever tney are well defined. However, such solutions represent only stationary
interior points of the domain of the augmented cost function. There is no
assurance that they correspond to a minimum in the suboptimal problem. If
they do not (e.g., if they correspond to a maximum), poor alignment with the
optimal reference problem, and unsatisfactory system performance using the
associated controller design, may result.

*Since A+BF* has been assumed to be asymptotically stable, positive definite-
ness of the matrix P in Eq. (6-14) and uniqueness of solutions for V and P
in ¥qs. (6-11) and (6-13), respectively, follow from the properties of the
Lyapunov Eq. (6-13),
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6.2.3 Extensions

6.2.3.1 Motivation. In each of the Kosut design methods, formulas for
calculating the suboptimal controller gain matrix assume implicitly that

matrix products of the form CWCT, where m 18 positive definite and C is a
sensor matrix, are invertible. Conditions for invertibility are not givenj;
moreover, there is no discussion of possible alternative approaches for deter~
mining an appropriate controller gain matrix when the published formnlas are
inapplicable. Sensor configurations which do not have this invertibility
property occur frequently [Secticn 6.2.4]. The control designer then faces two
alternatives: either change the sensor configuration such that the required
invertibility property is attained, or abandon the Kosut methods altogether.
This is a serious drawback to the Kosut methods as published.

In this section we show that the Kosut methods can be extended so as
to be usable with sensor configurations lacking invertibility. In each such
case, a family of controller gain matrices can be found which satisfy the
first order necessary conditions in the suboptimal problem. This gives the
designer increased flexibility which can be utilized to improve the system

performance.

6.2.3.2 Theoretical Results

In each Kosut design approach, the underlying necessary condition for
suboptimality (not stated explicitly by Kosut) which generates an appropriate
controller gain matrix is a linear matrix equation of the form

XA =8 (6-17)

The matrices A and B are products, known a priori, with the special structure

A=CrCl , B = Fncl (6-18)

where m:vxv 1s positive definite, C:Axv is a sensor matrix and F*:uxv is
unrestricted. We study solutions of Eq. (6-17) when the product matrix repre-
sented by A is not invertible.

First, conditions for invertibility of A are stated.

Theorem 6-1. Assume that 7 is positive definitef. The matrix product CﬂCT
is invertible if and only if rank (C) = ).

This result clarifies the conditions under which the Kosut methods,
in their present form, are applicable; namely, the appropriate sensor matrix
(either of a single channel in a decentralized system, or the full sensor

fAn assumption of invertibility for =n is not strong enough. Consider

01
ﬂ.lo,c-[Ol]
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matrix of a centralized system) must be of maximum rank., It is recognized
that a sensor configuration for which rank (C) < X can always be treated by
reducing the number of output measurements (i.e., effectively reducing the
number of sensors) so that the resulting sensor matrix C' is of maximum rank,
with rank (C') = rank (C). However, such an approach will in general lead to
a deterioration in system performance which may be intolerable. It is there-
fore desirable to be able to work with arbitrary sensor configurations.
Theorem 6~1 is a special case of the following more general result.

Theorem 6-2. Assume that 7 is positive definite. Then

rank (CnCT) = rank (C)

This result connects the deficiency in rank of the matrix A in the
controller gain matrix Eq. (6-17) with the deficiency in rank of the sensor
matrix. It will be seen below that the rank deficiency of the former deter-
mines the number of free parameters in a solution for the controller gain .
matrix. Theorem 6-2 is proved in Section 6.5.3. '3

Next, the general structure of solutions for matrix equations of the
form Eq. (6-17) is briefly reviewed. The results to be stated can be deduced
from corresponding results for the more general equation AX - XB = C [9;
Chapter 8]. However, results and proofs take a much simpler form for the
special Eq. (6-17); they reduce to well-known results for the case when X
and B are row vectors. Proofs are briefly outlined in Section 6.5.3.

Structure for solutions of the homogeneous equation XA = 0 is given
by Theorem 6-3. At least one solution, the zero matrix, always exists.

Theorem 6-3. Let A:lxv, XO:uXA be matrices. Denote r g rank (A). Then:

1) Xo satisfies the homogeneous equation XA = 0 if and only if Xo is
a prouuct of the form TS, where I = [0f{ T'] is a ux\ matrix whose
first r columns are zero, and whose last A-r columns are arbitrary,

and S is a nonsingular AxA matrix such that SA is in row=~-echelon
form; and

(2) The zero solution Xo = 0 is unique if and only if rank (A) = X, $

This result shows that when r = rank (A) < A, there are u(i-r)
arbitrary parameters in the general solution. Solutions of the nonhomo-
geneous equation XA = B, if any exist, have the structure given by
Theorem 6-4.

Theorem 6-4. Let A:\xv, B:uxv, and XO:uXA be matrices. Then:

(1) Xo satisfies the equation XA = B if and only if it is a sum of
the form Xp + XC, where Xp satisfies XA = B and Xc satisfies

XA = 0; and

(2) Equation XA = B has at most one solution if and only if
rank (A) = A,

6-10
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‘This result makes no assertion about existence of solutions. Existence
criteria are given by Theorem 6-5.

Theorem 6~5. Let A:Axv, B:uxv be matrices. Then the equation XA = B has a

solution if and only if rank [%} = rank A.

The main result of this section is Theorem 6~6, which establishes that
conditions for existence of solutions are always satisfied by the contvroller
gain matrix Eqs. (6-17), (6~18) that underlie the Kosut methods.

Theorem 6-6. Let m:vxv, C:Axv, Fk:uxv be matrices with m positive definite.

Then:

T
rank [—C—" gi‘] = rank (CnCT)

Proof of this result is given in Section 6.5.3,

6.2.3.3 Implications

The theoretical results have the following implications for the control
system designer.

(1) The Kosut suboptimal design methods, as extended, are applicable
for all sensor configurations.

(2) If a sensor matrix CT has maximum rank, then the matrix C'nCT is
invertible [Theorem 6~1), and the equation
T N
G (CnC™) = F¥nC (6~19)

0

has the unique solution G = I?‘*'nCT(C'nCT)-'1 [Theorem 6-4] for the

controller gain matrix.
(3) 1If a sensor matrix ¢! has rank p less than full rank (), then

the matrix C'nCT has the same rank deficiency, A - p [Theorem 6-~2].
Nevertheless, Eq. (6~19) is algebraically consistent [Theorems

6-5, 6~6], so one particular solution G0 exists. The general
solution to Eq. (6-19) has the form

6=¢%+rs (6-20)

foraxy, A < v,
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where T' = [0: T'] has the first p colummns zero, with I'' a matrix
of u(l—p) arbitrary parameters, and S is a nonsingular matrix

(nonunique) for which S(CnC ) is in row-echelon form [Theorems
6-3, 6-4]. :

(4) As stated earlier, Eq. (6-19) is a necessary coudition for
obtaining a "closeness" in some suboptimal sense to an optimal
reference problem with state feedback gain F*. The free param-
eters appearing in the solution (6-20) for the controller gain
matrix give the coatrol designer extra flexibility which may be
used to improve performance in some specific way (e.g., increase
damping of one or more modes), or decrease side effects of the
design (e.g., alleviate control spillover related to a reduced
order controller design). This shows in a general way a con-
nection between an increase in the number of sensors (decreased
rank of a sensor matrix) and improved performance based on design
by the Kosut methods. These properties are illustrated in detail
in the example of Section 6.3.

(5) Equations of the form (6-19) also arise in the study of optimal
constant gain output feedback [4], both as part of a set of
coupled necessary conditions for optimality, and as part of an
algoritlm for numerical solution of the necessary conditions.
The results reported here shed additional light on the existence
and properties of solutions for these coupled systems.

6.2.4 Appiicability to Large Space Structure Control

Design of controllers for real large space structures almost inevitably
requires use of a relatively low order structural model (design model) in the
preliminary design process, with evaluation of the design model against a
higher order, but still finite-dimensional model (evaluation model), as dis-
cussed in Section 2.2.3. We make several important observations regarding
the use of the Kosut design methods with a reduced order structural model:

(1) sensor matrices in the design model do not, in general, have maximum
rank; (2) formulas for calculating the composite gain connecting the plant
state and controller output with the design model cannot be used in the
evaluation model.

As noted earlier [Section 6.2.2], the Kosut methods effectively require
the system sensor matrix (or the sensor matrices in each contrnl channel, in
the decentralized case) to have maximum rank. We show here why such a con-
dition cannot be expected to hold in a reduced order structural model. Con-
sider a finite dimensional structural wmodel (e.g., via finite elements) in
terms of physical coordinates q with sensor matrix C:2x2n, % < 2n

Mg + Kq = F,u (6-21)

-
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Accepting7Kosut's assumption here that each output element Yi is one of the

components of the state vector (q,q), the matrix C has maximum rank £; in

fact, C i8 a column permutation of the matrix [IE: 0]. Transformation of

EQs. (6-21), (6~22) to modal coordinates via the nonsingular matrix ¢ (i.e.,
q = ¢n) leads to the system

ﬁ + 92 n= ¢TFAu, :

y = [i"_f_‘.’][.’.‘_] = cé l".l (6-23)
0. d{in n

which still preserves the rank of the new sensor matrix C$. After selection
of the critical modes to be included in a design model, the modal state
vector (n,n) may be reordered by a (nonsingular) row interchange matrix S

X
f-F
n R

where xc:le is the desired state vector for the design model. The sensor

1

f = cag L = . 1
matrix C = C9S ~ = [Cc: CR] relative to the state (xc,xR)

X
Aalc
y=2¢C [;E] = chc + CRXR (6-25)

retains maximum rank. However, the sensor matrix CC relative to the reduced

state X, in the design model is simply the submatrix consisting of the first v

i columns of €, and therefore, in general

rank (C) < rank (C) (6-26)

K Since there is, in general, no relationsbip between the indices that tag the

: critical elements of the modal state (n,n) ard those that tag the & linearly
independent columns of the matrix C$, inequality [Eq. (6-26)] may well be strict,
as in che example below [Section 6.3].

§ The next observation, though self evident, is worth pointing out. The
. } Kosut design methods give explicit expressions for the plant state to con-
] ’ troller output gain matrix F [Eq. (6~6)]), rather than for the plant output

to controller output matrix G [Eq. (6-1) for the centralized case]. Having
designed the controller with a reduced order design model, Eq. (6-6) may be !
written !

é
|

R

u(t) = chc(t) (6-27)




Any expression of the form

] xc(t) ' o
u(t) = [FC | FR] (0 (6-28)

for use in the evaluation model, where FR is unspecified, is consistent with
Eq. (6-27). One appropriate choice for FR can be made by noting that
Eq. (6-27) has the equivalent form (centralized case)

u(t) = [GCC] xc(t) = G[chc(t)] (6-29)

and then adjusting Eq. (6-29) so as to apply the matrix G to the actuél system
output ’

u(t) = G[chc(t) + CRxR(t)] = G y(t) (6-30)

Other choices for FR could certainly be made; however any systematic selection
procedure would be essentially equivalent to including the variables xR in the

design model, which runs counter to their definition as variables excluded
from the design model.

One additional brief comment: as noted above, the Kosut methods do not
guarantee stability for the controller in the design model. However, even if
a reduced order controller turans out to be stable, nothing can be concluded

a_priori about the stability of the evaluation model driven by such a
controller.

6-14
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6.3 Example

Kosut's method of minimum error excitatijon is used to design a second
order controller for the fourth order spring mass system example, which is
described along with numerical data for parameters in Section 2. A cen-
tralized output feedback structure is imposed upon the controller. The prin-
cipal design objective is to achieve a damping ratio of 0.1 in the critical
mode correspornding to out-of-phase vibration of the two-mass system. The
optimal reference system is of linear-quadratic type.

6.3.1 Controller Design for the Optimal Reference System

Choice of an optimal reference system for use with Kosut's suboptimal
methods is at the discretion of the control system designer. A linear quad-
ratic optimal control system with ful: state feedback is chosen because of its
simplicity and the availability of closed form solutions. State vector dif-
ferential equations for the critical mode in the form of a general second
order system with two control inputst may be written in the form [Eq. (6-4)]

x1 0 1 xl 0 0 u1
= + . (6-31)
. 2
1 192 =259 %2 %1 Y2 |“2
N, g’ ()
A B
[ (M

where Wy and &y (=0) are the natural frequency and damping ratio, respectively,
of the mode to be controlled. The cost functionmal to be minimized is

_‘_m ~
J(u) Q% / [xT(t)Q x (t) + uT(t)Ru(t)] dt (6-32)
0

with R positive definite, Q positive semi-definite, and xEcol(xl,xz), uzcol
(ul,uz). The solution to this problem for a general nth order system, assuming
(Ac, Bc) is completely controllable, is well known [1; Ch. 9]. The optimel
control is a linear function of the state [Eq. (6-5)]

T
u*(t) = [—R—IBC K] xk(t) = F* x*(t) (6-33)

where K is the (unique) positive definite solution of the algebraic Riccati
equation:
-1 T

T
KBc R Bc K - Ac K - KAc -Q=0 (6-34)

+Appearance of two control inputs for a single second order system arises due to
the truncation of the full modal system to form the second order design model.

6-15




Moreover, the closed loop optimal system is stable. Relationships between :he
natural frequency, w*, and the damping ratio, r*, of the second order closed
loop optimal system and the parameters (A B ; Q,R) of the cpen loop optimiza-

tion problem are also well known [12], [13] i They are obtained by firding
the coefficients of the closed loop characteristic equation

det (Ac + BcF* -A)=0 (6-35)

and may be expressed in the form (modified for the case of two inputs)

T -1 4 4
qll vV R Y= (u*) - Wz (6-36)

Lq, vl = wo?[en? - ] 402 [,2 - 4 (6-37)

where Q = [qij]’ and wT is the non-zero row vector of Bc in Eq. (6-31). For

the jurpose of achieving prescribed values for w* and f*, there is no loss of
generality in assuming Q to be diagonal and R to be the identity. Denoting by
Zap the desired damping ratio (20.1) for the controlled mode in the firal

reduced order design, the following characteristics are prescribed for the
optimal reference system.

Wt~

wt 2 (1 + a)uy, o = 0.005 (6-38)M*
w ( *\2\
r* Q C 2 LL&L_ (6-39)4‘""
2D fw? 2
1+ w2

Based on these prescriptions, the corresponding diagonal elements of Q are
computed from Eqs. (6-36) and (6-37)

g O 1.0436469 0
Q= =
0 95, 0 0.15959926
*Docunented relationships assume a single input — single output second order

system, Modification to apply to the dual input situation here is trivial.
he form of Eq. (6-28) is an arbitrary choice, with w*#mz, that satisfies the

requirement that qllzp. The form of Eq. (6-39) ensures that 9™%5p will hold
exactly in the final design.
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Equation (6-34) for the symmetric matrix K = [kij] reduces to the system

2 T 2
b2 (W) + 2k, wy tqpy =0

T 2 ]
kg kgp (W¥) + kjpuy - kg = 0

2 T
kyg (W¥) - 2Ky - gy, = 0

The positive definite solution of this system 1is:
P [ arwn®  wh? - 02| |e.oremssr  0.077477583
11 12 2 * *
] : +
k= (X)) |
2 2
*x)4 o *
Lklz kzz_j _Sm ) w, 20 k% i _0.077477583 0.60229008_‘ ,

The state-feedback gain matrix F* defined by Eq. (6-33) is then

klzwl k22¢1 0 066389774 0.51609641

F* o= - - (6-40)

O PRSP

k

-0.028241581 -0.21954252:

k1% k22| |

i
E One may verify that with this solution for F*, Eq. (6-35) has the form

Xz + 2rkuk) + (m*)2 = )

’ 6.3.2 Suboptimal Controller Design by Minimum Error Excitation

The structure of the suboptimal controller chosen for the second order
design mod2l Eq. (6-31) is centralized output feedback [Fig. 6-1]. First, we
observe that with the specified two sensor configuration, the sensor matrix Cc

A A S 30 T

for the design model has a rank deficiency of one; we trace the related dis-
cussion of Section 6.2.4. Referred to the physical variables q = col (ql,qz).

1 .

; the full system sensor matrix C [Eq. (6-22)] fur pure velocity scasing is
8 [0'12]. Since mode 2 is the mode to be contrulled, the row interchange matrix

reordering the modal state vector (n,ﬁ) into the critical-resfdual state vector
partition (xc,xR) [Eq. (6-24)] is:

YRR sy e -
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q
[0 1 0 o
0 0.0
3= 0 0
[0 0 1 o]

The full system sensor matrix C referred to (xc,xR) [Eq. (6- 25)] is

A LTI N ; J
C = . SC:‘
. e R
0 ¢2 : 0 ¢2

Hence [Eq. (6-26)]

rank (Cc) =1< 2= pank (c)

Next, we solve
minimum error excitation.

(6-13) for the (symmetric) mul
2 plZ = -]
2
- % - AT ) -
Wty = 2 Plat Py =0

2?5 ) - dgrun Pyy = -1

The solution ig:

(oo + h(g*,u%))/ ()2 - 3 1 Tiamse 0.5 |
P = - (6-41)
-1 h(g*, u*) = 0.5  7.4375655
e 2 J 3 -

where h(r*,u*) & {1+(w*)2]/4c*m*. The gain equation (6~14a, mus

t be replaced
by its antecedent Squation [Eq. (6-19))
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= % - i
G (C PC.) .F PC, (6 ,.,42) %
Consistent with Theorem 6-6, we find that F*PCCT - —o[CcPCcT], where ;
Ry, Pyy+ kD @+ 0’ : |
Rk !
o~-1212_ 22 22 200 2 = 0.59708155 & o° (6-43) |
P22 VY (14 (wh)7)
System Eq. (6-42) reduces to the homogeneous equation
G+oI1)C PC = 0 (6-44)
27 "¢ ¢

Consistent with Theorem 6-3, system Eq.(6-44) has the following general solution

r -y
-0+ € wZ/wI -€

G(e,8) = ' (6-45)

-5 - o+ 8§ Y1V

where ¢ and 4§ are arbitrary parameters.

A brief look at the closed loop dynsmics for the design model reveals

the following: (1) the overall gain matrix F 4 GCc is independent of the free
parameters ¢ and &
F= 10 -owl
] (6-46)
0 -owz

(2) the characteristic polyromial det(Ac + BcF - AIL) is

22 4 ol + mzz

vhich shows that the system is stable, with the same natural frequency w, as

; the open loop design model, and with damping ratio { = 0.1 as desired

o
E ; T lQ+aw 2)
H c-M-g*ﬂt-—- zznc = 0.1
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This shows that the desired performance in the reduced order suboptimal
design is a function of the parameter ¢ alcne, and therefore [Eq. (6-43)] is
achievable by judicious specification of rarameters (Z*,w*) in the optimal
reference problem. The free parameters have no influeuce upon the dynamics
of the reduced order model in isolation; they may therefore be chosen so as
to improve the system performance when the reduced order controller is con-
nected to the full system.

6.3.3 Performance Evaluation of the Controller Design

6.3.3.1 Stability Analysis

The reduced order ccntroller is correctly connected to the full system i
[Sec. 6.2.4] through the relation [Eq. (6-25)]

~
(nJ

|
¥

u(t) = 6(e,8) y(t) = G(e,8)C |-mmSrmem
*r

In general, stahility of the full fourth order system matrix A+B[G(e,5)C]+ can
be investigated using the Routh-Hurwitz criteria; however, the cubic poly-
nomials in tt~ pair (e,8) which appear limit the insight that can be obtained
5 analytically. The stability analysis can be simplified considerably by con-

3 ] straining one oi the available degrees of freedom. The differential equation
: for the critical mode Ny in the full closed loop system is

fiy + oW, + wyn, = ~[0(6T) + (6-¢) detoliy (6-47)

The difference §-¢ may be chosen so that thc coefficient of the modal cross-
coupling term in Eq. (6-47) vanishes

T £

=g = Eég%sil ~ 0.18649694 (6-48)

Enforcing this relationship makes the critical mode dynamics independent of
excitations of the vesidual mode. In particular, the critical mode dynamics
; become identical to those in the reduced-order design. It also enables the

full system equations to be expressed in closed form as a product of quadratic
factors:

s IR TIRETTR

TThe matrices A and B appearing here are the matrices ¢f the full system
written in the form of Eq. (6-4), with rows arranged consistent with the
decomposition x = col (xc : xR) of the stat: vector.
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det (A + B[G(8-€)C] - AI) =

2
2 T 2,,,2 2 2 det”? 2
%+ c@ A + w0, HAT + [o(éy + 2¢, ) + E(m"‘h)“’z“ + w7} (6-49)

By employing the weighted orthogonality properties of the modal transforma-

tion ¢,+ the region of closed loop stability in the €-0 parameter plane may
be expressed simply by the conditions [Fig. 6-3]

>0
(6-50)

€ > -2(-w1)w20 = -0.62469504 o

The remaining degree of freedom (choice of €) may be used to adjust the damping
in the residual mode ng - The differential equation for this mode in the full

closed loop system is:

"+[(T>+(a¢—2-¢1>dt¢1'+ 20 = —[o( W) (6-51)
Ny o(¢ ¢ “’2 eﬁ e ny wlnl— a(e v n,
A €
Z
< STABLE REGION
7
A
A
7
A
Z
“ » DESIGN POINT
; P
1> o
f%
2>
2
o
2 € = 2kl
s
>

Figure 6-3. Region of stability for closed loop two-mass system.

ToTmp = 1.
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Incorporating the constraint relation [Eq. (6-48)], this reduces to

9
. 2 2 det“%, . 2 T ...
iy + [6(¢1 + 2¢2 ) + E(:$IT$;] By +w Ty = 0 W)]nz (6-52)

One may verify that the coefficient of ﬁl in Eq. (6-52) is positive for all
pairs (o,e) satisfying the stability conditions [Eq. (6~50)]. We choose € so as

to obtain "optimal" damping ;= Ly 5 l{JE’of the residual mode
2o, (=9 )y
& = [ch - 5%—] -—1-——§L——3 = 0,10963135 (6-53)
1 det™ ¢

The design point corresponding to the parameters 00,50,60 fixed by Eqs. (4-43),
(6-48), (6-53) is depicted on Figure 6~3; the corresponding gain matrix

c(e2,8%) [Eq. (6-43)] is

0 0 ~0.64371769 -0.10963135
G(e ,§) =
~0.29612829 -1,2932143

6.3.3.2 Spiliover Effects

Controller design using the Kosut methods does not eliminate control or
observation spillover associated with a reduced order design. However, the
constraint (6-48) imposed on the two free design parameters in this example
prevents the residual mode dynamics from feeding back into the critical mode
dynamics. This is clearly seen from the system equations (6-47) and (6-51),

which reduce, at the design point (00,60,50), to

. . 2
iy + Z(O.l)mzn2 + wy n, = 0 (6-54)

: Lo, 2 0,.T ...
hl + Z(Vf)“’lr'l + Wy = -[o (¢ lb)lnz (6-55)

External disturbances which initially perturb only the residual mode will be
damped "optimally" (Cl=%?33 without exciting the critical mode at all

(Fig. 6-4]. External disturbances which perturb the critical mode will be
damped slowly (c2=0.1); these disturbances cause residual mode excitation,

but such excitation does not affect subsequent critical mode dynamics
[Fig. 6-3]. Such partial decoupling of the modal dynamics significantly
alleviates the usual concern over control spillover., As a specific example,
residual mode response in the system Eq. (6-54), Eq. (6-55) to an initial
disturbance is a damped oscillation of form:
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nl(t) = e 1 Re {ale } + e Re {aze 2 } (6-56)

where the aj are complex functions of the initial conditions and

X =-djiin are the system eigenvalues, j=1,2. The modal response to an

k|
initial perturbation in the residual mode (nl(0)=1, ﬁ1(0)=0, n2(0)=62(0)=0)

is shown in Figure 6-4. The apparent excitation of the critical mode shown
is due to numerical roundoff error associated with the transformation from
physical to modal coordinates. The modal response to an initial perturbation
in the critical mode (n1(0)= ﬁl(0)=0, n2(0)=1, ﬁ2(0)=0) is shown in

Figure 6-5. 1t is recognized that initial conditions would normally be
specified in terms of physical, ratker than modal, coordinates. The use of
"modal" initial conditions here is for the purpose of demonstrating specific
spillover effects.

Observation spillover terms contaminate the measurements whenever
ﬁl#O. As can be seen from the foregoing remarks, this condition is, in a
practical sense, quite short lived, and the effects on the system are rela-
tively benign.

6.3.3.3 Specific Response Characteristics. When referred to the physical
coordinates 94 and Ay the system response to nonzero initial conditions has

the same general form as the @odal response (6—§6). Simulated response to
the initial conditions ql(0)=ql(0)=0, q2(0)=l, q2(0)=0 is shown in

Figure 6-6. The response indicates quite satisfactory speed of response,
acceptable overshoot, and an asymptotic approach to zero for each physical
coordinate. Modal characteristics of the same response are shown in
Figure 6-7.

Response to a periodic disturbance eiwt in either physical coordinate

qj is characterized by a "steady state" response of form A,(w)eiwt; i.e., the
difference qj(t) - Re {A (w)eiwt} decays to zero in the manner of Eq. (6-56).

3
Evaluated at the design point, the complex amplitude function Az(w) is

Qy(j0) 0.5 (19> + 0.32185884 (fu) + 2.5

P00 (G0 +1.2903248 (30 + 7.4 G0? + 5.3519905 (Gu) + 2

Ay(w) =

where Q2(s) and F2(s) are the Laplace transforms of the coordinate 4, and the
disturbance force f2 on mass 2, respectively. Plots of Az(w) are shown in
Figure 6-8.
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For the specific frequency w=3 (w1< w, < 3), plots of the time response in

physical coordinates to a periodic disturbance applied to mass 2 are shown
in Figure 6-9. Rapid convergence to the steady state condition occurs.

6.3.4 Design Alternatives

The control system designer may wish to consider one or more of the
following alternatives within the scope of constant gain output feedback:
(1) using a different method of computing the feedback gains, (2) restricting
the sensor information available to the control channels, (3) adjusting
the modal damping, (4) changing the number of sensors and actuators used, or
(5) changing the type of sensors used. Each of these alternatives is briefly
discussed.

Without appealing to fundamentally different approaches to constant
gain output feedback, such as discussed in other sections of this report, the
Kosut method of minimum norm [Section 6.1.2.3] may also be used to compute the
gains. A comparison of the two approaches has been made for this example -
no significant qualitative or quantitative difference in the overall system
dynamic characteristics was observed.

Restricting the information structure by the use of decentralized
output feedback [Fig. 6-2] was not investigated for rhis example. We would
expect that this restriction would result in fewer free parameters in the
design with the specified sensor configuration.

Adjustment of the amount of damping in both the critical and residual
mode is readily accomplished; such adjustment may be in either direction
except that the damping ratio in each mode must be positive to ensure
stability. Damping for the critical mode is determined by the suboptimal
design parameter o [Eq. (6-47)] whose value can be adjusted by specifying
different values for the dynamic parameters Z*,u* of the optimal reference
cystem [Eq. (6-43)]. Impilementation of this change i1s accomplished by a
corresponding selection of the nonzero elements of the state weighting matrix
Q [Eq. (6-36), (6-37)]. Damping for the residual mode is determined by the

parameter e+, whose value can be selected as any positive number ClD

[Eq. (6-53)]. However, modal damping cannot be arbitrarily increased without
penalty. Expressions (6-43), (6-48), (6~49), and (6-53) show that increasing
the desired values 210 ap for damping in mocdes 1 or 2, respectively,

necessitates increasing the design values for at least one or more of the gain
matrix parameters o, 6§, and £, Since wl< 0<w2, this results in a monotonic

increase in value for the elements of the gain matrix [Eq. (6-45)], which may
resul: in intolerable amplification of unmodeled noise.

t1t is assumed here that the constraint relation [Eq. (6-48)] between the free
parameters § and ¢ is maintained.
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The possibility of reducing the number of actuators has not been
investigated to date. However, several important observations have been made
regarding reduction in the number of sensors. First, a control design using
a single velocity sensor and which stabilizes the full system can be realized
only if the sensor is located on the smaller mass (number 1). With the
single sensor on the larger mass (number 2), Kosut's methods produce a stable
controller for the design model, but the full system cannot be stabilized
with any such controller; the source of the instability is observation
spillover. Second, the sensor matrix C. [Eq. (6-25)] for the design model

has maximum rank, and hence there is a unique solution for the gain matrix G
[Eq. (6-42)]. Therefore, there is no mechanism (free parameters) for
accomplishing partial modal decoupling or adjusting residual mode damping

as in the two-sensor configuration. The stable single-sensor configuration
shows a noticeable performance loss relative to the two-sensor configuration
[Figs. 6~10 through 6~15]. This is principally due to ti.e much slower
damping of the residual mode (approximately one-tenth of the damping ratio
obtainable with the nominal two-sensor design). This effect is strikingly
shown in the frequency response plot [Fig. 6-14]: the amplitude peak
occurring at the residual mode frequency did not appear in the two-sensor
design; morecver, for the single sensor configuration, the phase angle decay
in the vicinity of the residual mode frequency is much larger.

Details of the design for each single sensor configuration parallel
the development of Section 6.3,2 for the two-sensor configuration. Th2y are
briefly outlined in Section 6.5.4.

A design based on the use of position sensors only, instead of velocity
sensors, is totally ineffective for the purpose of vibration control., For the
sensor configuration consisting of one position sensor only on each mass,
there is no mechanism for incorporating damping into a reduced order design
model; application of Kosut's methods merely change the natural frequency of
the open loop undamped reduced order model. The full system with such a
controller is either stable but undamped (all eigenvalues with zero real part)
or 1s unstable. Details of this unsuccessful design are briefly outlined in
Section 6.5.4.

6.4 Conclusions

6.4.1 Principal Results

The methods of suboptimal output feedback introduced by Kosut [6] have
been carefullv evaluated for their potential as design tools for use in
developing reducad order controllers for large space structures. Although the
work is not regarded as complete [Section 6.4.2], significant progress has
been made.

Weaknesses of the Kosut methods especially pertinent to reduced order
controller design have been identified [Section 6.2.2]). Most significant are
the lack of a stability guarantee, and the inapplicability of the methods

when the sensor matrix (in the design wmodel) has a rank deficiency. Theoretical
extensions of Kosut's methods have been developed in this report [Section 6.2.3]
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to address the latter problem; as modified, the Kosut methods can be applied
with arbitrary sensor configurations. The implications of this extension are
significant, and have been clearly demonstrated in the context of a simple two-
mode example [Sections 6.3.3, 6.3.4]. When the extended methods are applied
employing sensor matrices with rank deficiency, solution for the feedback gain
matrix contains free parameters (proportional in number to the rank deficiency
of the sensor matrix). These parameters may be chosen in such a way as to im-
prove the system performance significantly, relative to a corresponding design
obtained by adjusting the sensor configuration to eliminate the rank deficiency
and then applying the (unextended) Kosut methods. 1In the example studied, a
partial decoupling of the closed loop modal equations was realized. This
alleviated the problem of control spillover by eliminating all residual mode
excitation of the critical mode. In addition, damping of the residual mode
could be adjusted at will., In short, the extension to the Kosut methods devel-
oped herein provides a mechanism for using the information available from extra
sensors (in addition to the number necessary to ensure stability) to improve
the system performance.

6.4.2 Recommendations for Future Work

Initial experience in applying Kosut's design methods, incorporating
extensions developed in this report, to a low order vibration control problem
has been encouraging. Before making final recommendaticns regarding the value
of these methods for structural vibration control, several additional topics

should be treated in future work:

(1) The effects upon confrol system performance of restricting
the information available to each control channel (i.e., of
a decentralized output feedback structure) should be
determined.

(2) Sensitivity of the control design to modelling errors
associated with either lack of fidelity of the evaluation
model to the real system, or truncation of the evaluation
model to the design model, should be investigated.

(3) The methods should be applied to a more realistic (higher
order) stcuctural model.

(4) The methods should be tested against several objective
criteria (e.g. [14]) available for determining the
degree of suboptimality.
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6.5 Appendices

6.5.1 Properties of the Trace Operator

The trace of a Square matrix (denoted by Tr (+)) is the sum of its
diagonal elements, The algebraic Properties listed below are found in most
Standard texts on linear algebra (e.g. [7]). The calculus properties listed,

together with many others, have been documented by Athans [11]. A11 proofs
are elementary.

Fact 1: Algebraic Properties

(1) Given nXn matrices A, B, P with P nonsingulaf, and a scalar qo:

(a) 7Tr(a + B) = Tr(aA) + Tr(B)

(b) Tr(aa) aTr (A)

(c) Traly

Tr(A)

(@) Trp~lap) - Tr(A)
(2) Given bicompatible matrices A, B, with AB and BA square:
Tr(BA) = Tr(aB)

Fact 2: Differential Calculus Properties

Given matriceg A, B and variable matrix X of appropriate sizes:
(1) 3/3x Tr(X) = 1
(2) 3/3X Tr(xTa) = a
o fy L T,. T
(3) a/3x Tr(X"AXB) = A'xB" + AXB

6.5.2 Suboptimal Design by Modified Minimum Error Excitation

Since the suboptimal System and the optimal reference system satisfy
Eq. (6-4), witt controllers defined by Eqs. (6-6) and (6-5), respectively,
the error vector (6-7) satisfies the relation;

é(t) = Ae(t) + [BF x (t) - BF*x*(t)] (6-57)

To obtain Eq. (6-8), Kosut éxpressed the bracketed term in Eq. (6~57) in the
equivalent form:

BFe(t) + B(F-F*)x*(t)

e e et




Alternatively, the bracketed term may be written as
B(F-F*)x(t) + BF*e(t)

so that e(t) satisfies [replacing Eq. (6-8)]

é(t) = (A+BF*)e(t) + B(F-F*)x(t), t > 0; e(0) = 0 (6-58)
The error excitation cost measure [replacing Eq. (6-9)} is

e T T
1 (F) & f x (t) (F-F*) "R(F-F*)x(t)dt (6-59)

0

Assume A+BF is asymptotically stable. Then integral (6-59) can be reduced to
the form of Eq. (6-10) with V satisfying [in place of Eq. (6-11)]

(A+BF) TV + V(A+BF) + (F-F%) R(F-F*) = 0 (6-60)

The suboptimal problem is to minimize the initial-value-free functional
% s,m 4
E(F,V) 2 Trace (V)

subject to constraint Eq. (6-60) and control structure constraints on F.
Necessary conditions for a solution of this problem, in addition to
Eq. (6-60), consist of a multiplier equation [replacing Eq. (6-13)]

(A+BF)P + P(A+BF). + I = 0 (6-61)

and equations for the controller gains., For the case of centralized output
feedback (F = GC)

¢ = (F* - ® 18Ty [pcT (crc™) 1) (6-62a)
For the case of decentralized output feedback (Fj = g§ Cj,j = 1,...,0@)

T 1

T -
rj )

: L= (6-62b)

T T
ij)[PCj(CjPC

where rj is the jth row element of the diagonal matrix R, and bj is the jth
column vector of B. (These equations replace Eq. (6-14)).

To use these results as a design tool, one attempts to solve
Eqs. (6-60) through (6-62) for the matrices V, P, and F. The suboptimal sys-
tem is stable if and only if the Liapunov Eq. (6-61) has a positive definite
solution P [ 7;p. 254]. Availabilityof this stability information is due to the
inclusion of the suboptimal system trajectories in the cost measure Eq. (6-59).
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Unfortunately, there is no general method for finding a closed form solution
of Eqs. (6-60) through (6-62) - they must be solved by iteration. In fact,
if F* is set to zero, these equations reduce to the Levine-Athans necessary
conditions for constant gain optimal output feedback [4].

6.5.3 Proofs of Theoretical Results

The following well-known property of matrices is useful when questions
about rank arise. It will be used several times below.

Lemma 1 [10; p. 103] Let A: Aixv be a matrix with rank p.
Then there exist nonsingular matrices S: AxA and Q: vxv such that

1 ]o
i SAQ = | -2
b 010

where Ip is the pxp identity matrix. Moreover, S may be chosen so that SA is

in row-echelon form.

Since Theorem 6~1 is a special case of Theorem 6-2, only the latter is
proved.

Proof of Theorem 6-2. Denote p & rank (C). If p = 0, both matrices are zero,
and hence have the same rank. Otherwise [Lemma l], there exist nonsingular

matrices S: AxA, Q: vxv such that SCQ = [?—*——] C. Denote 7 & Q-ln(Q-l)T.
010

Since matrix rank is unchanged by nonsingular matrix multiplication

AAA
rank(CnC ) = rank(S lC#CT(ST) 1) = rank(CﬂCT)

m 0
But 6#6T = [ 1 ] » where ™1 is the upper left pxp submatrix of 2.
010

Since v is positive definite, so is Q; hence [7; p. 75], det "1 > 0. Thus
rank (6¢8I) =0,

Proof of Theorem 6-3. Denote r é rank (A).

Part (J). If r = 0, then A = 0, 80 any matrix is a solution. Otherwise
[Lemma 1], there exist nonsingular matrices S: AxA, Q: vxv such that

I.]10
SAQ = r 4 ﬁ. Suppcse x°: uxv gatisfies on = (). Denote
otlo :
A 0,-1

F e -A- -
X'p = [rl| FZ], with ll. uxr. Then O = TA = [T | 0], so Pl 0 and Fz

is arbitrary.
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Thus Xo =8 = [0' I‘2]S. Conversely, suppose Xo = I'S’ with the structure

specified in the theorem; then §' may be used in the reduction of A: ﬁ = §'AQ’.
A

Then XOAQ' = FQ =[0] ')A = 0. Since Q' is nonsingular: XOA =0,

Part (2). If r = ), the matrix T of part (1) is the zero matrix: Xo =[S =0,
Conversely, if r < A, part (1) shows that nonzero solutions exist.

The proofs of Theorems 6-4 and 6-5 do not differ significantly from the
standard proofs [10] for the case that X is 2 row vector; they are therefore
omitted. .

The proof of Theorem 6-6 is facilitated by the following lemma.

T,
Lemma 2, If 95{1“--:)\} such that rank(C) < p, then rank [—-——C"C ]< p
F#*nC

Proof of Lemma 2. If p =1, then both matrices are zerc and so each has

rank 0 < p, Otherwise, denote E 2 [fi] 7, and consider the product ECT.

F*
Choose integers 1<:f.l <eao< ip< A+ oy, 1<_-]1<...< jp< A, and form the pxp

submatrix ECT[ﬁ}""’ip,jl""’jp]’ consisting of rows il,...,ip and columns
jl,...,jp of EC*. With the same notation, note that this can be represented as

a product of submatrices:

T T
EC [11,...,ip'j1,...,jp] - E[il,...,ipll,...,v]C CYPRIN. E R

If p > v, then rank ECT[il,...,ipljl,...,jp] <V <p, 80 its determinant

vanishes. Otherwise, using the determinant expansion for products of rect-
angular matrices [10; p. 127]:

T
det EC [il,...,ipljl,...,jp] -Edet E[il,...,iplzl,...,zp]-

1< 4 <...<2p‘1 v

T
det C [zl,...,np|31,...,3p]

Since rank(C) < p, each of the pxp detetminants in the sum derived from CT
vanishes. Hence, each pxp minor of ECT vanishes, and so rank(ECT) < p.

Proof of Theorem 6-6. Use the symbol E defined in the proof of Lemma 2 above.

(>2part). The rank of a matrix is equal to the number of itg linearly inde-
pendent rows. Hence, rank(CnCT) < rank(ECT).
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(< part). Suppose rank (CwCT) < rank(ECT). Set p 2 rank(ECT). Using
Theorem 6-2, it follows that rank(C) < p. Then Lemma 2 implies that

rank(EC ) < p, which contradicts the definitiou of p. Hence, rank(ECT).i
rank(CnC ).

6.5.4 Suboptimal Design for Alternate Sensor Configurations

The multiplier matrix P associated with the method of minimum error
excitation is determined by the optimal reference system [Eq. (6-13)]
independent of the sensor configuration. Hence, each of the subsections to

follow use the same matrix P as computed for the nominal sensor configuration
[Eq. (6-41)].

6.5.4.1 Configuration I: Single Velocity Sensor (Mass 1)

The sensor matrix 6 {Eq. (6-25)] is
. ;
C = [0y, [0 ¢;] = [C |cp);

hence the matrix Cc used in the control design has maximum rank. However,
in this case, CCPCE is invertible, so Eq. (6-42) has the unique solution

— -
-0
¢ = FAPC(C PCY)™! = (6-63)
(o4 cC ¢
. b,
-U ——
] ¥
| 1

where o is as defined by Eq. (6-43). The overall gain matrix F & GC. is
identical with Eq. (6-46), hence the closed loop design model has the same

dynamic characteristics as the corresponding design model for the two-sensor
confizuration (w-mz; z=0.1).

The characteristic equation of the full system incorporating the con-
troller generated by Eq. (6-63) cannot be factored analytically

det (a+B[GC] - AD)
4 2
- [X + a(y ¢)k +w ][A + o(é W) X + wll -0 (0 W)(W W) 1

However, it is easily shown using the Routh-Hurwitz criteria that the full
system is stable for all ¢ > 0. The dynamic characteristics of the system
evaluated for the design value of ¢ [Eq. (6-43)] are:
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Mode 2 (critical): Wy, = 2.5803842 (=0.9967 mz)

C2c = 0.10024986 (=1.0025 CZD)
Mode 1 (residual): 0. = 0.54806316 (=1.003 wl)
Clc = 0,072724483 (=0.1028 ch = 1/10 ClD’

6.5.4.2 Configuration II: Single Velocity Sensor (Mass 2)

A
The sensor matrix C [Eq. (6-25)] is

A = .
C=10vy,[04,] = [C.:Cpl

so Cc has maximum rank. Hence, Eq. (6-42) has a unique solution

6 = Frec(c pcTy~! .
C [od [o]

where ¢ is as defined in Eq. (6-43). The gain matrix r &

GCc is identical
with Eq. (6-46); hence the closed loop design model is stable with the same
dynamic characteristics ag the corresponding design mode] for the two sensor
configuration (w=u. : £=0,1),

The characteristic equation for th

e full system incorporating the con-~
troller generated by Eq. (6-64) is

det (a+B[G8) - A1)

¢ 6
=%+ 0T + W22 4 0 (8T0)-2 +u2]- o2 (6T0) (v Ty)-2)2
2 v, 7,
Expargion of Eq. (6-65

) in powers of ) reveals
and A* have coefficien

ts of the form 30 and qo
04 are constants (depending on system

that the coefficients of A3

m with this design method for
any real ¢. The dynamic characteristice of the system evaluated for the
design value of ¢ [Eq. (6~43)] are:

(6-64)




Mode 2 (eritical): Wy, = 2.6109331 (=1.0086 wz)
, c2c = (,098330464 (=0.9833 CZD)
Mode 1 (residual): ©l. = 0.54165065 (=0.9915 ml)
4 = ~0.19840072 < 0
1c

The fundamental source of this instability is observation spillover. This is
seen by writing the differential equation for mode 1 in the full system

¢,
- + a(¢ ‘#)—-—n i n, = -o(¢Tw)ﬁ2
2

The coefficient of ﬁl is negative for all o > 0; this coefficient drives the

instability and is introduced into the equation by taking into account the
contribution to the sensor measurements (ignored in the reduced order design)
due to excitation of the residual mode.

6.5.4.3 Configuration III: One Position Sensor on Each Mass

A
The sensor matrix C [Eq. (6-25)] is

v, 01¢, O

¢
4, 0

= [Cc ICR]

S0 Cc has a rank deficiency of 1; hence [Theorem 6-2], rank (CCPCE) = 1., The

gain Eq. (6-42) has multiple solutions [Theorem 6-6] of the form
- wz 1
-1 + e§r~ -€ ,
s G(e,8) = 1 (6-66)
: v
5 -8 -1 + 5%
& = 2

where ¢ and § are arbitrary parameters, and T is given by [cf. Eq. (6-43)]

k
T =

12P11 0Py 1 [ @)1+t )

2
- w = -(,18729075
P11 W | en?isen?) 2]

The closed loop design modei has the overall gain matrix F = GC,

-twl 0
F =
-Twz 0
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independent of the free parameters, € and 6. The characteristic polynomial
det (AC+BCF—AI) has the form

SRR Ry

hence the design model is undamped with a natural frequency slightly less than
the critical mode natural frequency.

The characteristic polynomial of the full system incorporating the con-
troller generated by Eq. (6-66) is

det (A+B[CR]-AT) =

6, o
(%40, 4t ] D @ e - b detol - 1(6TH) (1T (E—e) dets]
2 1

which is quadratic in Az. Hence, roots of the fourth order polynomial may be
written in the form

16, /2 1(8,/2+m) 10,/2 /o 1(8,/2 + 1)

A= \/ple \/—e ;i V pye

0,e ,

with pj 20, 0< ej < 2m, 3 =1,2. 1t follows that either all roots lie on the

imaginary axis, or at least one root lies in the right half plane. Hence the
full system cannot be made asymptotically stable, regardless of how the design
parameters 1v, £, and ¢ are chosen.
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SECTION 7

STOCHASTIC OPTIMAL OUTPUT FEEDBACK CONTROL

7.1 Background

7.1.1 Introduction: Main Ideas and Underlying Theory

The flexure dynamics of a large space structure in orbit are approxi-
mated by a high-order system of linear differential equations, which are
excited primarily by force and torque perturbations due to the operation of
equipment on the structure. The problem of using feedback controls to actively
reduce the line-of-sight errors induced by these disturbances is considered
here. It is assumed that a finite number of sensors and actuators have
been placed on the structure and that the feedback compensation is constrained
to be linear and of zero dynamic order, i.e., that each actuator input signal

is to be synthesized directly as a linear combination of the sensor output
signals at each instant of time.

The stochastic output feedback control (SOFC) method is ome approach
proposed for the determination of output~feedback gains. The basic idea is to
approximate the disturbances by stationary second-order random processes; the
statistics of the deflections and deflection rates for any set of feedback
gains can then be derived. Significant responses such as stresses, accelera-
tions, critical vibration mode deflections and rates, and particularly line-~
of~sight errors are expressed as linear combinations of the deflections and
deflection rates; thus the response statistics can be computed. The '"best”
set of gains is taken to be that which minimizes a nonnegative linear combi-
nation of the mean-square responses. The principal design parameters are the
relative weightings given to the significant responses. The key technical

contribution of the method described here is a procedure for computing the
best gains.

The potential advantages of the stochastic output feedback control
problem formulation are:

(1) Relatively few design parameters; freedom from unpredictable errors
in designer judgment which can occur in pole-placement approaches.

(2) Robustness (e.g., gain and phase margins) of the optimal gains,
which is due to the stochastic conceptualization of the problem.

(3) Ability to make a tradeoff between fast regulation on the one hand,
and sensitivity to disturbances and the effects of unmodelled re-
sidual modes on the other. .

The last point is particularly worth noting: an increase in feedback gains,

generally, will tend to reduce mean~square responses but at the same time will

use more control energy and make the system more sensitive to sensor noise

and residual mode effects—a stochastic formulation of the problem incorpo-~

rates the tradeoff between these favorable and unfavorable effects, vielding

optimal gains which are bounded.

7-1
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While the method is in many respects a culmination of the state-of-the-
art in optimal multivariable compensator design theory, and hence benefits
from a good deal of "vicarious experience," the detailed properties of the
specific algorithms presented herein have only been expiored in the context of
the two-mode example reported in Section 7.3. The results of this example
appear to be promising.

The key ideas for this approach to stochastic control of infinite-
dimensional systems have been described in Reference 1. The conceptual back-
ground for the particular problem formulation reported here may be traced to
the mean-square error methods for single~input, single-output plants developed
in the early text by Newton, Gould, and Kaiser (2], and in the early paper by
Axsiter [3]. The subsequent development of ideas may be followed through a
sequence of papers by Levine, Johnson and Athans (4], Platzman and Johmson [5],
Blanvillain and Johnson [6,7], and Naije and Bosgra [8], as well as references
cited therein.

In the remainder of Section 7.1, the technical highlights of the SOFC
approach are outlined and the assumptions are summarized. In Section 7.2, the
relative strengths and weaknesses are corpared with other methods; Section 7.3
is devoted to the example. Section 7.4 containg ~n overview, summary and
conclusions.

7.1.2 OQutline of the Design Method and Algorithm

A solution of the problem is developed in three phases:

(1) A number of synthetic sensor and actuator signals, each equal to
the number of critical modes, is formed by taking linear combina-
tions of the physical sensor outputs and actuator inputs which
are available.

(2) The magnitudes of the open-loop effects of the residual mode
signals on the critical mode dynamics and synthetic sensor outputs
are estimated, and the estimates are used to determine the magni-
tudes of statistically-equivalent random disturbances and sensor
errors (in addition to the direct effects of physical disturbances
and inherent sensor noise). The SOFC problewn for a truncated
model of the structure containing only ~ritical mode dvnamics can
then be stated.

(3) The best feedback gains for the truncated model are determined
using a recently~developed algorithm for solving the SOFC problem.
Stability, in general, must be verified through a simulation
involving the residual modes which are available.

Phases (2) and (3) may be iterated, if necessary, to improve closed-loop

properties; the relative weightings on the mean-square response errors can also

be adjusted during the design procedure.
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7.1.2.1 3tatement of the General Problem

A very high-order finite-element model of the linearized flexure
dynamics is assumed to be available in the form

M + Kq = F (7-1)
where

q = vector of physical deflection or hybrid-deflection variables.

o]
]

vector of total external forces or torques, including control and
disturbance inputs.

M = generalized mass matrix.
K = generalized stiffness matrix.

It is assumed that static deformations and forces have been eliminated in
defining the variables in Eq. (7-1). The t.ydel (7-1) is also assumed to be
sufficiently refinred that the effect of still higher order dynamics is truly
insignificant, and that these modes may thus be cafely ignored.* Through an
eigenvalue analysis, a solution of

Ko = Mon; oTMo = I

where 92 = diag [wi, 5 0 o p wi] and I = diag {., 1, . . . , 1] is assumed to
be available. Through definition of the modal coordinates ’
q= ¢

the gystem is brought into modal form

o+ %n = oTF (7-2).

In 92, suppose that the modes have been ordered so that
2 "
2 Qc v
0 a2

where tlie number of critical modes, nc, (dimension of Q:), is of the order that

can be retained for purposes of design and/or numerical computatioms. Typical
values might be n - 1000, n, o~ 30.

Furthermore, suppose that in (7-2)

———

*
See, however, suggestions for further research.
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F=F +F =Bu+F
a e a e

where Fa are actuator forces (linearly related to the control input signals, u),

and Fe represents external disturbance forces. The measurements are assumed to
be

= +
y qu e

where e represents inherent physical measurement noise.

In this analysis, it is assumed that only deflection rates can be
measured; the more general case can also be carried through. It is further
assumed that u and y both have dimensions greater than n_; again, this stipula-

tion can be removed.

The control problem is to find a set of output-feedback gains, G, such
that for

v = -Gy
the closed-loop system

o T ., .2 _.T T
n+ @B GCoH +02°n=¢F -0BGe (7-3)

is asymptotically stable. By partitioning n into critical and residual modes,
’ N

as n = , it is readily apparent from Eq. (7-3) that feedback in general

-

T
'r

will produce coupling between critical and residual modes, which has been
termed "control and observation" spillover. Define the damping matrix to be
D D

cc <Cr

T
D= = P BaGCS¢. The responses of the system, in gene-al, can be

Drc Drr

approximated by linear combinations of the mode deflections and deflection
rates

r = Hn + Lj (7-4)

For example, r might represent (linearized) line-of-sight error, or critical
mode deflections.

To apply the stochastic output feedback control approach, Fe and e are

approximated as stationary white noise processes; then for any stabilizing set
of gains, G, n(t) becomes a stationary second-order process as t » «, and r(t)
also becomes a random process. Assuming that stabilizing gains exist, we seek
an optimum set of gains, G*, which minimizes the weighted asymptotic covari-
ance of the response, denoted by




30 = 1im £ {r'(6) q_r(0)} (7-5)

t >

where Qr is a positive definite design matrix which can be used to represent
the relative importance of different responses. For instance, if Qr =1,

H = [Ii{0], and L = {0:0], then G will be chosen to minimize the sum of the
méan-square critical mode deflections.

The algorithm presented in Section 7.1.2.4 can be used to address this
large-scale problem directly, but it is of much greater practical interest to
impose a constraint that only critical mode dynamics be employed in the final
design calculations. Prjor knowledge of residual amode shapes and frequencies
is assumed to be available for purposes of model truncation, however. The
next two subsections are devoted to the treatment of this important constraint.

7.1.2.2 Model Truncation

Only a limited number of variables can be retained for purposes of
control design; in this case, a subset of the open-loop modes, termed the
critical modes, is retained. We shall describe a procedure for truncating
the remaining (residual) modes from the design model. Truncation can te viewed
as a foram of model aggregation; while it is not necessarily optimum, it has
been selected here because it is practical and easy to comprehend. It is
reasonable to assume, in doing so, that the (key) responses are correspondingly
truncated to include only critical mode components (in effect, this consti-
tutes one definition of a critical mode); beyond stabilizing the residual
modes so that the limit in Eq. (7-5) exists, all interest in detailed control
of the residual modes is thus given up.

‘The proposed method for achieving this is through combined sensor and
actuator signals. Let

u=(adu  y=(S]y (7-6)

where ﬁ, ; are of dimension a, (recall that u and y had dimensions of say,

n
Ny O

are conformatly partitioned as

, greater than nc,by assumption). Furthermore, suppbse that Ba and Cs

B
C =
Ba Br Cs [Cccr]

Truncated control-gains Mc will be in the form of a feedback from u to y




Define the transformed actuator and sensor matrices as

. @ B_ ) -
B=¢B = ﬁr and C = Cs¢ = [CcCr]

Then the closed-loop damping matrix (in modal coordinates) will be

BAMS c DCc D
cccce ccccery} _ cr -7

The rank of D cannot be greater than nc, the number of critical modes (without
the constraint Eq. (7-6), it cannot be greater than the minimum of n_ and ns);

thus it is only possible to exercise "independent" control over the damping of

at most a set of n, modes. However, when n, is strictly less than n and/or n_,

there are additional free parameters in Ac’ Sc which can be used to couple the

critical and residual modes in such a way that the stable properties of the
critical modes are "inherited" py ti.e residual modes.

A general procedure for choosing Ac and Sc is not yet available; the

output-feedback problem offers considerably less flexibility in this repard
than in the dynamic compensation case. The objectives of the procedure, in
order of importance, appear to be

(1) Make DCC = Mc.

(2) Guarantee stability of Eq. (7-3), for any Mc which stabilizes the

critical modes, and at least for the value of Mc to be determined
later,

(3) Attempt to symmetrize and block-diagonalize D by making the off-
diagonal terms (Dcr’ Drc) as small as possible, subject to the

stability requirement (2).
Preliminary work. indicates that

(1) 1f n, = nS = na, it is best to colocate seansors and actuators

and to choosc A =5 LT ands = ¢ "1,
c C c c

(2) Wvhen n, =m0 =mn, the objectives are attainable.

(3) The objectives may be generically attainable for n and n
approximately equal to 2nc. a

(4) The objectives were attained in the example of Section 7.3.

1-6
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A problem of this essential character must be solved in any output-
feedback approach, if the design model is to be based only on critical mode
dynamics. Further research is required on this problem.

The remaining steps of the procedure are illustrated, assuming that Ac
and Sc have been determired and that DCc = MC. The critical modes are then

governed by (see Eq.(7-3))

.. . . 2 T ~ .
+ = o - -
e MC n, + Qc n, [® Fe BACMCSCe]C DCr n. (7-8)
and the residual modes are governed by
Ro+D_h +aln = [0 - BAMS el -D_ 7 (7-9)
r rr r rr e cce rc c¢
The synthetic measurements are
y = Scy = SC CcnC + SCCr n, + Sce (7-10)

Equations (7-8) - (7-10) are the equations from which a truncated model is
derived.

7.1.2.3 Estimation of Stochastic Effects

The truncated control problem takes the form*

o 2 -
+ — +
nc anc u &

c
u=-My (7-11)
y = ﬁc + v,
where
g F0F,]
v, §lSc(§r ﬁr + e)

are to be approximately represented as "equivalent" white noise processes.
For this purpose, an estimate of in, i is requirad; this is based on Eq. (7-9)

ignoring critical-mode cocupling, {.e.

;We have taken [ﬁAch]c = MC and Scéc = 1 in Eq. (7-8) through (7-10); in Eq.
(7-8), D, is given by Eq. (7-7). In writing Eq. (7-11), no terms have been
eliminated from Eq. (7-8).

1-7
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note n [e°F 1. (7-12)
or
rr

. . 2 T .
n, + D n, + anr = [¢ Fe]r - [BACMCSCe]r (7-13)

While Eq. (7-12) is more crude, it does not require prior knowledge of the
gains Mc and allows the residual mode velocities to be estimated individually.
Appropriate estimation procedures are well-known for the cases when the

disturbance Fe is specified as a correlated noise process, or when initial

condition statistics on nr(O) are specified. The reader is referred to Section

7.3 for an example of how these procedures may be carried out. It should be

observed that in Eq. (7-11), £, and v, will in general be correlated equivalent

noise processes since they are both derived from Fe (and alsv since a term
involving ﬁc has been dropped from Eq. (7-12)); in the following subsecticn
they are taken to be independent white noise processes mainly to simplify the
exposition of ideus - in some circumstances, such an approximation can be
justified. The truncated model is only of order n_, the number of critical
modes, but its parameters depend on prior estimates of residual mode shapes
(through ¢ in Eq. (7-7)) and frequencies (through Qi in Eq. (7-12)). This is

the practical constraint imposed on the design procedure.

7.1.2.4 Determination of Optimum Gains

The truncated control protlem may be stated as follows: Given a
truncated model in state-space form

x = Ax + Bu + v

- (7-14)
y=Cx+w
where v and w are independent white noise processes, with
E {v(t) vT(T)} =V §(t-1) (assumed positive semidefinite)
E {w(t) wT(T)} =W §(t-1) (assumed positive definite)
find the output-feedback gains in the control law
u = My (7-15)

so as to minimlze the asymptotic mean-square response measure

7-8

PTG @D @ =90

et B S D < 2l R BT - 8RR |

s e 12 T ki venie e s bt b it

ST TEIPE L R

Talal b



output-feedback stabilizable in Eq. (7-14).
The necessarv conditions for this problem take the form

Mk = KBKC (7-17)

g e e S S g AT+ S M L

where
Ky = (BTPB)'1 BTP

' T -1
b KC-XCW

and the matrices P, X are solutions of

; IM) = 1im E {x'(£) Q x(t)} (7-16)
H tra
It is assum~d that B and C are of full rank, and that (A,B,C) is
?

T T T T
g Prgm. +om, g Py Q+ PA+ AP (7-18) ;
and
T T _ T T
(I-nB)KCWKC (I-wB) -V + KCWKC + AX + YA
|
with (7-19) 5
WB = BKB and L = ch' §
. The algorithm proposed for solving Eq. (7-18) - (7-19) is as ?
follows: ;
! (1) Find positive semidefinite symmetric matrices Po, X0 and evaluate :
’ wBO, WCO from Eq. (7-19), so that (A - wnowco) is strictly stable. %
Set i = 0. g
(2) Solve the Lyapunov equations
i+l - i i i 1, T i+l
P (A - LI )+ (A - LI )P -Q
and
i 1, i+l i+l i 1.T i 1= iT_ 1T
(A - Ty Tc X + X (A - Tp g ) -V - T e W To Tp
i
7-9

s - -



Evaluate

- T T.— -
with W= c (cc) L w cchH™ ¢, for pH*, ¥t Bi+1,

wci+1 from Eq. (7-19), set i = i+l and repeat.

. +

Through partitioning, the P(i L equation may be reduced to a Lyapunov equation
+

and the X(i D equation may be reduced to a Riccati equation.

Any least-squares performance measure for the output-feedback problen

will yield necessary conditions which are comparable to Eq. (7-17)-(7-19). These
equations are analogous, respectively, to the equations for the state-feedback
gains, the control, and the filtering Riccati equation of the steady-state
linear-quadratic - Gaussian problem. The present problem is 2lso of the LQG
class; it is a stochastic control problem where the class of admissible control
laws is parameterized by M. The unusual feature of the present formulation

is that it suggests the structure of the solution for the necessary conditions
via the projection operators "B’ WC. An understanding of the structure of

solutions to this problem is absolutely essential if one is to avoid the many
shallow local minima which characterize output-feedback problems. The idea
is to parameterize the solution set {X,P} in such a way that the sequence of

solutions {X(i).
initial guess {X

T T e RA———

P(i)} will converge to a global minimum from a prescribed

0) (0,

Finally, the parameters of Eq. (7-14) through (7-16) are related to

those of the truncated problem Eq. (7-5), (7-11). The following associations
can be made

-
e 0 1 0
X =1, A = 2 »B = C = [0 I] ’M=-Mc
n -2 0 1
c . C
] _ 1o . |o 0
. v = ’Vu 2
LEc/uch 0 chu 1

7

2
t [
w vc/chl W [chn ]
wherellicﬁ, Iv, | are estimates of the magnitudes of Ec’ Ve defined in Eq. (7-11);
the appropriate means of estimating these variables depends on the specifica-
tion of the plant disturbances and sensor and activator accuracy (see the
examples, Section 7.3).

7-10
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If we choose the line-of-sight error due to thé critical modes as the
response variable, then in Eq. (7-4)

HCHCT 0
2 X chc and Q =
0 0

in the truncated problem. Alternatively, if the critical mode deflections
themselves are taken as responses, choose Hc = I above,

The design procedure may be iterated to yield improved performance.
If Mé* is the first set of gains produced by the algorithm, one can return
to Section 7.1.2.2, improve the truncated model (now Mc is known inlEq. (7-n),
perform the estimation of the noise covariances (using Eq. (7-13)), and recom-
pute a new set of gains Hc** using the improved parameters. At present, the
convergence of this iterative procedure can only be conjectured; it is
plausible that the procedure will converge bacause the effects of the
residual modes were ovev-estimated (from Eq. (7-12)) in the first iteration,
causing the gains to be somewhat larger than necessary—in succeeding stages,
the effects of residual modes and the gains should be gradually reduced.
This then, completes the outline of the general SOFC method applied to the

large space structure contrcl problem.

7.1.3 Summary of Assumptions and Technical Innovations

The key assumptions of the SOFC method have been stated at appro-
priate places in the previous subsection; only the key assumptions are
restated here:

(1) The high-order model of the structure is sufficiently accurate
that the effects of unmodelled residual modes can be ignored.

(2) The number of available actuators and sensors (na, ns) is
sufficiently large relative to the number of critical modes
that the structure can be stabilized uging synthetic outputs
and inputs. Roughly, this requires LA 2nc. where n,
is the number of critical modes. Alternatively, one can
require that the number of modes controllable by output feed-
back be of the order of 1/2 min {na, nB}, if n, ng are
prespecified.
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(3) Deflection rate measurements (as opposed to measurements of
deflection itself) are available. (This assumption is removable.)

(4) A characterization of the external disturbance forces, Fe’ on the
structure is available, along with the modal transformation
matrix, ¢ of the high-order model and the sensor errors, e.

It is preferable, but not essentiai, that Fe and e be character-

ized in terms of their statistics.

(5) The local convergence of an algorithm for computing optimal
gains which satisfy Eq. (7-17) through (7-19) can be established.

The key technical invovations of the SOFC method applied to the large
space structure problem are the procedures for computing a truncated model
and the method of computing optimum gains for the truncated model. The
method is such that if stabilizing output-feedback gains exist, then the
optimum gains will be bounded and will stabilize the truncated model, and
the performance will be robust to modelling and tvuncation errors and the
presence of sensor noise.

7.2 Discussion

In this section, some remarks which may be of use in comparing the
stochastic output feedback control method with alternative methods are col-
lected. Discussion is restricted to the procedures described explicitly in
Section 7.1; however some fundamental improvements are proposed in Section 7.4.3,
and these possibilities should also be taken into account in assessing the
potenzial of this approach.

7.2.1 Strengths

The strengths of the SOFC method are perceived to be:

(1) The method is explicit and complete. The procedure of going from
performance specifications to optimal gains is fully~specified. At
those points where the judgement of the designer is required, the
criteria by which decisions are to be evaluated are clear. The
algorithmic requirements of the method are clear.

(2) The method is flexible. It is readily extended to take into
account additional design requirements such as:

fa) TIncorporation of sensor, actuator and disturbance dynamics.

(b) Diiferent selections of critical modes, or choices of sensor
and actuator complements.
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(c) Sensor signals which include mode deflections as well as
velocities can be incorporated.

(d) Changes in performance criteria.
(e) Generalization to design of low-order compensator dynamics.

(3) The method is robust to modelling errors and stochastic effects,
though it can be "tuned" to provide the best performance, e.g.,
when the key performance objectives are very clear, or when the
disturbance models are very accurately known. The method can be
expected to yield reasonable values of feedback gains, which are
not highly sensitive to the parameters of the truncated model.

(4) The method is "state-of-the-theory." It incorporates some of the
most recent advances in thinking about multivariable control
problems by theoreticians. It takes into account, in at least an
approximate way, issues such as model aggregation, modal spillover,
robustness and uncertainty, the algebraic complexity of the
output-feedback problem, and the physics of flexible vehicles.

(5) The method provides qualitative insights which are useful to the
designer. For instance, it can be seen from Eq. (7-7) that
independent control of all critical and residual modes is not
generally possible. Coupling of critical and residual modes may
actually enhance stability, but it may in general be asymmetric and
will tend to make the designers' task more difficult by destroying
the identity of the critical modes in the closed-loop system.
Approximate decoupling, on the other hand, will require a number
of sensors and actuators roughly equal to twice the number of
critical modes, and will be enhanced by colocation of sensors
and actuators. A number of other insights are provided.

7 7.2 VWeaknesses

The weaknesses of the method (aside from immaturity, as discussed in the
next subsection), are perceived to be:

(1) Computational requirements. The computational requirements of the
algorithm [following Eq. (7-19)] are considered to be reasonable.
However, the computational requirements for the model truncation
procedure (in particular, finding A, and S. so that the closed-loop
damping matrix Eq. (7-7) Las the desired properties) may be heavy.
At worst, this procedure would involve the solution of a numerical
optimization problem in n; [(ng-n;) + (ng-n.)] parameters involv-
ing the solution of a 2n-th order eigenvalue problem at each
iteration, where n is the total number of critical and residual
modes, n, is the number of critical modes, ng is the number of
sensors and ny is the number of actuators. Typical values might
be n = 100 to 1000, n. = 30, ng ¥ ng ¥ 60. The best case for this
truncation calculation is not yet known.
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(2) No prior guarantee of closed-loop stability. Because of the
approximations involved in determining a reduced-order model,
closed-loop stability of all modes cannot be absolutely guaranteed:
the design values must be implemented and tested on a high order
model to test stability. The predicted damping imparted to the
critical modes of the design model will be fairly accurate, but the
behavior of the residual modes is not completely predictabie. The
optimal gains, whenever they exist, are guaranteed to stabilize’
the truncated model.

(3) No prior guarantee of existence of optimum gains. The algorithm
proposed for determination of optimum gains is not guaranteed to
converge; however, it is possible that a convergence proof can be -
developed.

(4) No prior guarantee of traditional design specifications. The SOFC
method does directly minimize mean~square line-of-sight error. A
However, it is not guaranteed to yield closed-loop pole positions
which conform tn the preconceived notion of the designer, nor to
traditional design specifications such as gain margins, phase
margins, or settling times. It is not guaranteed to meet control
energy constraints either. Methods are available to incorporate
these objectives as "soft" constraints, but ultimately the gains
produced must be tested on a system model to see if "hard"
requirements are met.

7.2.3 Maturity

The procedure described in Section 7.1 has not been fully implemented,
except for the example of the following Section; therefore it must be
regarded ag immature. It is possible, judging from previous experience on
similar problems, that unforeseen pitfalls may be encountered. On the other
hand, the method does benefit from the "state-of-the-theorv" which is experi~
ence of a vicarious sort. On the basis of current information, it can only be *
sald that the method is expected to be computationally feasible, and that the
potential benefits appear to be quite substantial.

7.2.4 Applicability to Control of Large Space Structures

The model truncation procedure has been developed specifically for
application to large space structure control problems, and it exploits the
properties of the physical equations of motion for such structures., Tae
procedure for computing gains has been developed specifically for design of
low-order compensators (in the present case, zero-order compensation) for
high-dimensional systems. The particular attributes of the physical equations
have been carried through the calculations of the next section, but not
through the general procedure of Section 7.l!; preliminary derivations indicate
that substantial simplifications of the necessary conditions Eq. (7-17) through
(7-19) can be made in this case. It can be concluded that the method, by design,
is suitable for control of large-space structures.

-

The reader is referred to Section 7.4 for concluding remarks.
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7.3 Illustration: Application of the Stochastic Qutput Feedback Control
(SOFC) Method to Control of a Two-Mode System

7.3.1 Introduction !

A two-mode system for evaluation of candidate large-space-structure
design methods is presented in Section 2.5. The purpose of this subsection is
to describe the application of the candidate method to this example. The
essential idea of the SOFC method is to determine feedback gains to minimize
steady-state mean-square error respomses of the closed-loop stochastic systen.
In order to formulate the example problem in this manner, two preliminary
calculations were performed. First, a model truncation procedure was carried
out in order that dynamic calculations need be based only on the critical mode
and not on the detailed behavior of the unmodelled residual mode. While this
procedure normally would not be applied to a low-order exampie, it must be
applied in the large-scale problem because of the need to guarantee stability
R of residual modes in the controlled system. Secondly, the effects of the

specified disturbances and residual modes were represented as white noise in

the stochastic model. Finally, the SOFC method was applied to determine a

single output feedback gain (critical mode damping) of the aggregated model.

s T AT A e st 5 1

7.3.2 Model Aggregation

An implied constraint on the problem is that the dynamic analysis of the
design procedure be based only on the critical modes. However, prior knowledge
of the residual mode parameters (e.g., frequencies, eigenfunctions - in this
case fl' ¢1) may be assumed. It should be remarked that in general this is
a very severe constraint, and it is doubtful whether absolute prior guarantees
of stability are possible for any design method, short of actually working
. ‘ out the closed-loop eigenvalues of the full system. However, it is reasonable

‘ to seek design methods which "acknowledge" the presence of the residual modes,

are robust to their effects, and provide design parameters whereby an initial
design may be tuned-up.

The "aggregate model" presented here, as with many alternative schemes,
‘ is based on retaining the open-loop critical mode dynamics, However, we have
available, then, two inputs (Fj, F,) and two outputs (§;, §,) to control one
o mode. In the present case it can be shown that there is naver any advantage to
using more than one input and one output to control a single critical mode.*
Hence we synthesize a combined actuator signal, u.» such that

- ke
u = (7-21)

*This is due to the particular structure of the modal equations - in general,
a second order system would require no more than one input and output.

*k
Eq. (7-20) has been deleted.
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A

and a combined sensor signal, ;c, such that

_ a1 la i |
y,= [31 pz] ' (7-22)
9

The weighting factors (al, s Bl’ 62) are viewed as design parameters. They

may be chosen on the basis of prior knowledge of the residual modes. Their
choice will affect the extent to which residual mode disturbances must be -
accounted for in the critical-mode design model, and also the degree to which
the critical modes will couple into the residual modes.

Usually the coupling of the residual and critical modes in the closed-~
loop system is viewed as being undesirable; however in this case it must be
exploited: with only one (combined) input and output, it can be shown that we
only have independent control, in effect, of one (combined) mode. The idea
is to couple the critical and residual modes in such a way that stabilization
of the critical mode will also guarantee stabilization of the residual mode.
In the present example, this can be accomplished directly using Routh's
criterion; in the general case, more sophisticated procedures would be required
(e.g., minimizing the spectral norm of the closed-loop system matrix with
respect to the weighting parameters). In the present example, it is readily
verified that there are some choices of the weighting factors for which no
choice of feedback gain is stabilizing (see Section 7.5.2); hence this proce-
dure is quite critical and must be performed with care.

Now the calculations are carried out. Suppose that the feedback law is

v o= My (7-23)

where M is the feedback gain (positive-valued) to be determined later. Then
the cloged-loop system defined by Eq. (7-2) and (7-21) through (7-23) is given

by

2 a

ﬁ = Q"°n - oT 1

M. [8, 8] 0@ = -a%n - Dh
%2

The damping matrix, D, is then explicitly
(81101 + 05909) M (818, + 0578)) (9770 + 05707 M. (6158 + 65,85)

(8507 + 09509) M (8178, + 6518)) (8501 + 0550,) M. (6,58, + 9,,8))

We want to choose the a's and B's so that: (1) 022 = HC {i.e., the desired

critical mode damping), and (2) the closed-loop system is stable.
From (1), we find that

7-16




-1
6, = o, (1~ 6., a) e
2 22 e -i (7-24)

From (2) we find that, in view of Eq. (7-24),

: -1, -1 -1 . .1
D1y "[’21 ¥y t (fll "t 41 ¢22) °%] % [}22 ¢t (*11" 12 ?21-°22)31
= (€ +Ca) M (€, + C,8)

where C1 = 1.6603, 02 = 1.9389 are knowﬁ. Proceeding fufther, we find that
D12 = C1 + C2_91 and D21 = (C1 + 02 Bl). Further examination uf the damping

matrix, D, reveals that it has rank 1 (as claimed above), but that the
residual mode damping with coupling ignored, D;j, can be made positive by at

least some choices of aj, B1 (precisely, for aj and B; both less or both
greater than -0.856). Furthermore, when

(€, + Ciap) =(C; + CyB) =y (7-25)
the damping matrix will be symmetric, which implies that the "essential
character"” of the open-loop modes will be retained in the closed loop system.

Working out the closed-loop system matrix under the assumptions of Eq. (7-24)
and: (7-25), we find

— 0 0 1 0 7]
¢ 0 0 1
A 2 2
cl ¥ 0 .Mc Y -Mc Y
2
| 0 -0, -Mc Y -Mc _
where w1,2 = 27 f1,2’ The Routh array is
2 2 2 2
! (“1 + “2) 91 W,
, 2 2 2 2
Mc y"+1) Mc (w2 Yo+ wl) 0
2 2 2 2 2
“)2 + Y wl wl w2 0
o2 + 1)
M (Y2 + 1) 72 (w4 + (YZ - 1) w2 w2 + wa)
c 2 1 2 1
0 0
(w2 + Y2 wi)
2 1
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We did not optimize y, but observed that even though D is singular, there are
some values of y which guarantee closed-loop. stability for any choice of

M. > 0. 1In particular, this is true for y = 1, which is the value we use
subsequently.

A very significant observation should be made at this point! The
value vy = 0 completely decouples the residual modes in the closed-loop syséem,
but by the same token (as is apparent from the fourth row of the Routh arfay!)
it does not guarantee strict stability, because (obviously) the residual modes
are assumed to have no dauping. Thus, although modal control (of mode 2) is
our stated objective, it would be entirely incorrect to pick y = 0 for the
purpose of achieving "perfect" modal control and "perfect" decoupling! The re-
sulting controller would be very highly sensitive to any disturbances of the
residual modes (even assuming that ¢ and 02 were perfectly known - which they

are not), and would exhibit very undesirable responses (e.g., to Fz(t) = gin 3t).

This is a very easy trap to fall into.

The more appropriate value, y = 1, guarantees closed-loop stability and
yields

a, = 8. = =0,3407
1 (7-26)
a, = B, = 1.9398
with
[1 l]
D=M
S R |
To summarize, the problem is now to design Mc for the system
. 2 ,
ny —uy 0 " 1f_ 0.606
Ol . 2 + u + F,(t)
(7-27)
_ n
y=1[1 1] .1
M2

7.3.3 Modelling of Noises and Disturbances

Starting from Eq. (7-27), we can extract the critical mode equation

- 2 -
ng®-w, N, =M y+ 0.365 Fz(t)

_ o (7-28)
y = n, + M
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The two disturbances are

(1) An initial condition q2(0) = 1, which implies

1.21 o | ‘
n(o) = » 71(0) = (7-29)
0.729 0

and (2) A steady disturbance

Fz(t) = gin 3t

In Eq. (7-28), we are not permitted to make an explicit model of the output
disturbance ﬁl.
Our very crude approach is to approximate Fz(t) and ﬁl(t) in Kq.

(7-28) by white noise processes. The intensity of these processes is based

on the disturbances (1), (2), and the behavior of the uncontrolled system.
Thus, the design model will take the form

X = AX+ Bu+ v

(7-30)
y=Cx+w
where
Fnz _ _
X = s»U*u ,yemy
2
r0 1% 0
A = 2 + B = » C = [0 1)
~w, 0 1

and v, v are independent white noise processes with (formally)
E {v(t)

0 , Efv(®) vIn} = wse - 1)
E {w(t)

0 , E{w(t) wT(T) = W (t - 1)

In choosing V, W, we would normally look at whether disturbance (1) or
(2) were worse and use either a worst-case or average value based on the
disturbance magnitudes. In the present case, (2) was judged to be more signi-
ficant than (1), though precise estimates of the relative importance of the

effects were not computed. In the first equatioa of (7-28), we estimate
[F2(t)| = 1 and thus t.%e




with
Vy, = (0.365)2 |F, ()] = (0.365)2

and in the second equation of (7-28) the steady-skate driven response to
-2
h=-own + (0.606) sin 3t

takes the form

with
- (o.eos)/(wf - 9)
Thus

hl ~ 3A cos 3t

and  [f| v |3 (0.606) ¢ (u) - 9)] = 0.2089. Thus e took W = 0.0436 =

(0.2089)2, These approximations are so crude that evidently different esti-
mates could be made. In the results of the next section, Vjo and W are carried
as parameters so that the effects of different choices can be evaluated. Note
that we have already guaranteed stability for any (positive) value of M..

7.3.4 Application of the Stochastic OQutput Feedback Approach

The stochastic formulation of the output feedback problem captures an
esgential idea of classical control design: if the gain M. is chosen too
small, the effects of the plant disturbances, v, will be significant; if M
is too large, the output disturbances, w, will create problems - thus the best
value of M, will represent a compromise between these two extremes.

More specifically, we seek M, such that

JM) = limE {xT (t) Q x(t)l (7-31)

t » »

is minimized (for some positive definite symmetric matrix Q) subject to the
dynamic equation (7-30). Notice that if Q = Hgﬂc, then Eq. (7-31) represents
the sum of the mean-square values of the responses r = H.x. We chose Q in the

form
1 0
Q-
0 gq
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The necessary coriitions for this problem are {cf. Eq. (7-17) through ‘(7-19))

e R
K, = (87em)~ BTp (1-22)

T,,~1
Kc XC'W

where the 2x2 symmetric positive semidefinite matrices P and X are solutions
of

T T T T
To PELT. + L PvrB Q+PA+AP ‘(7 33)
and
T T T T
(I-WB) K WK, (I—wB) -V + KWK, +AX + XA
and
L BKB and "C = KCC. (7-34)
Letting
P11 Pp2 11 *12
P= A =
P12 P22 X12 *22

it is possible to show algebraically that

P.n X
* 11712 12
M =y [ y "22]

P22
where *
X, " 0
X5 = J Vn W  (independent of q)
and thus

"
LA Jvzz/w = 1.7480

Evidently, this incorporates the essential aspects of the tradeoff mentioned
earlier in this section.
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The predicted damping ratio for the critical mode is then

- Mc 1.748
=3

S " (0,410 " 9.338

(H]

Finally, we also used the same methods to work out another test case where
al = 61 = 0, a, = 82 = 1 are not optimally determined but are stabilizable

and correspond to a "common sense' approach to the choice of weightings for
the given disturbances, i.e., we control and measure 99 because the distur-

bances act on it. These results are given in Section 7.5.1.
i 7.3.5 Conclusions
First we answer the specific questions posed in Section 2.5:

(1) The computation of the gain matrix is described in Section 7.3.4.
The SOFC method itself involves the solution of Eq. (7-32) through
(7-34), which can be carried out analytically for the present example.

(2) The method guarantees stability of the residual modes via Routh's
criterion. For the choice of parameters used here, the residual
and critical mode damping ratios are predicted to be about 1.6 and
0.338 respectively. The actuval transient responses are shown on the
accompanying illustrations.

(3) Control and observation spillover are essential to achieving
stability when combined sensor and actuator signals are employed,
as in Section 7.3.2., These effects are accounted for both in the
truncation and stochastic modelling.

(4),(5) These questions are answered by the accompanying plots (Figures 7-1,
7-2). The response to initial conditions, (4), was not explicitly R
designed for, although a more refined estimation of the stochastic
terms might have improved this response somewhat.

(6) Therz are limitations on the damping of all modes which are .
imposed primarily by the use of combined sensors and actuators
rather than the SOFC method itself. By appropriate choice of
noise statistics sz. W, any desired damping can be achieved for

the design model involving only the critical mode. However, this
will not be the actual damping in the fulli closed-loop system.
The "identity" of the modes is preserved under the type of
feedback proposed here, whereas it may not be with other types ¢
of feedback.

B A S

TR W'ﬂr\ -

(7) A variation of the method can be applied (see Section 7.5.1) s~ long
as the number of velocity sensors and force actuators is not leds
than the uumber of critical modes.
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(8) 1In principle, the proposed approach can be carried through.for
any combination of position and velocity sensors.

We conclude with a few remarks about the possible relative merits of
the proposed approach. The approach involves several approximations and
probably can be improved, even in the context of the present example; under
the imposed design constraints it is doubtful whether there exists any pro-
cedure which is truly "optimal" in the absence of complete knowledge of all
of the residual modes. However, the methodology does generalize to the case
of a large number of critical and residual modes and would probably yield
results qualitatively similar to those obtained in the present case.

The aspects of the example which require further investigation are:

A

(1) The algorithm for computing optimum sensor and actuator
combinations.

*

(2) The modelling of disturbances due to residual modes in the design
model.

(3) Proposed computational algorithms to solve the SOFC equations for
higher order systems need to be coded and tested.

v A A A YRR it i i i T

None of these tasks is currently expected to be insurmountable, though
undoubtedly additional issues will arise.

7.4 Conclusions

7.4.1 Summary of Advantages (see Section 7.2)

(1) Explicit and complete.
(2) Flexible.

(3) Robust.

(4) Incorporates recent theoretical advances.

(5) Qualitative insights.

(6) Well-suited to large-space-structure control problem.

7.4.2 Summary of Disadvantages (see Section 7.2)

(1) Computational requirements might be heavy.
(2) No prior guarantee of closed-loop stability.

(3) No prior guarantee of existence of optimum gains.

(4) No prior guarantee of meeting traditional design specifications.
()

Immature.
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7.4.3 Final Comments

Naturally, one must ask whether the disadvantages are insurmountable,
and if not, whether they outweigh the advantages. We are inclined to answer
these questions both in the negative. ‘The disadvantage 7.4.2(1) of heavy
computational requirements is likely to be surmountable, although no radical
innovations are apparent. A likely possibility is to apply available techniques
for estimating the eigenvalue of a large matrix having the largest real part.
The estimation can be used with the guidelines of Section 7.1.2.2 to yield an
accuarate initial guess for the sensor and actuator combinations A , S , so
that the large eigenvalue problem ¢ ¢

AI - Iu **i
det 9 = ()
+Q AL +D
need only be solved once or twice. The disadvantages 7.4.2 (2), (4) are felt to o

be inherent to the SOFC method described in Section 7.1, but they are not fatal;
the designed gains must simply be tested on the full model to determine tran-
sient response and disturbance rejection properties. A procedure for itera~-
tive improvement of the initial gain estimates has been described. Disadvan-
tage 7.4.2(3) may or may not bz inherent to the method; however, a feasible

: numerical algorithr ‘s almost surely guaranteed in some cases; the design

i example yielded re: sonable results. Note that the truncated problem is
generically stabi .zable. The only solution to the problem of immaturity is

to gain some practical experience.

j The potential advantages, by contrast, are substantial. These have

8 been adequately described in Sections 7.1 and 7.2, Many of the advantages, more-
over, cover the pitfalls of alternative methods. Thus, although there is a

risk of misallocating resources by pursuing the SOFC method, there is also a
possibility of covering unforeseen diradvantages of alternative methods.

As a final remark, it must be noted that there are several potential £
ways of changing and improving the SOFC method presented in Section 7.1 which
would merit further investigation. The two most basi: areas for improvement
are the possibility of a rigorous approach to model aggregation (to replace
the ad hoc truncation procedure), the incorporation of control-energy penalties p
in the performance index, and the extensions to include more general sensor
and actuator models. These are all considered to be feasible. The biggest
potential payoff lies in the area of model aggregation - this holds forth the
possibility of prior determination of closed-loop stabilizability, and requires
a fundamentally new development based on asymptotic properties of finite-
elemert approximations as the model order approaches infinity. The other
areas of potential improvement merely require extensions of technical details.
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7.5 Appendices
7.5.1  SOFC Method Applied to the Cage o =8 =0, ='32 =1
The approach to this case follows Precisely that used in Sections 7.3.4
and 7.3.5. We find the equationg
2 [
111 - Wy 0 ny 0.606 i 0.606
= 2 + u + Fz(t)
ty 0o - wy HIn, 0.365 0.365
y = [0.606 0.365] n

{
\

\

ind a d

\

Proceeding as in Section 7.3.4, we £

X = Ax + Bu +
y=Cx 4+ w
with
0 1 0
A= ’B-
~up 0 0.365
Ny
X = . ’Q-
N
and
E(v(t)} = 0, Efv(t) vI(r)} =
E{w(t)} = 0, Ew(t)w (1)} = (0.606)2(0.0436

nz-l
esign model

v

» C =10, 0.365]

1 0
0 ¢
0 (0.365)

) 8(t-1) = 0.016 S(t=1) = gy §(t-1)

.




The expressions for calculating Mc are exactly the same as in Eq.ELZeBZ)chrough
(7-34). Working through the algebra, it again turns out that

Pyo%12

M = 1 +
c” W | b, *22
%19 = 0 ;
e . 22"
%99 0.365
so that
M = (0.365)"1 /W = -2.8845
. = (0.365) VoolW = -2

Responses to the two disturbances are shown in Figures 7-3 and 7-4. It is seen
that the transient response is quite fast, but that the response to the sinu-
soidal disturbance, while less than the open-loop response, is relatively
large. The closed-loop system is stable.
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7.5.2 A Sensor/Actuator Combinaticn Which Destroys Output-Feedback
Stabilizabilitv of the Example

In the course of solving the two-mode example, We came across some
values of (al, s B » B ) which destroyed stabilizability by introducing a

destabilizing coupling of critical and residual modes. Consider
(al’ @y Bl’ 62) = (-0.584, 1.37, -2.033, -2.033)

Corresponding to the differential equation following Eq. (7-23) in Section
7.3.2, we find 3

—0.546)% 0

ﬁl ny 0.454 MC -0.199 MC n
= 2 + ’
iy _ 0 -(2.59{/ n, 2,28 MC ~-1.0 Mc n,
™~ . \_‘—7 -~ o
g | -D

The characteristic polynomial is

¢ + 0.5463 M &3 + 7.006 s - 2.745 M_ s + 2.0

The Routh array is

1 7.006 2 0
J.5463 Mc ~2.745 Mc 0 0
12.03 2 0 0
~2.83 MC 0 0 0
2.0 0 0 0

Consequently, no value of MC can achieve stability (i.e., whatever value MC

assumes, there will be sign changes in the first column of the array). In
this case the stabilizability hypothesis is violated and no output feedback
solution exists,
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SECTION 8

CONCLUS IONS

8.1 Purpose

Preceding sections (3 through 7) of this Volume contain in-depth studies
of the five output-feedback methods selected for evaluation (Section 2) as
candidates for controller design tools with large space structures. Each
study includes a discussion of strong and weak points, one or more designs
with a specific (common) example, and recommendations for further work. We
deliberately eschew a pedantic restatement in this section of advantages,
disadvantages, and "conclusions" already given for the individual methods.

The purpose of this section is to identify some specific directions in which
it seems advisable to concentrate future research efforts. In order to do
this, we focus on a comparison of the performance of the individual designs
against the cowmon test example, and interpret the findings in the light of
our general insight into each method obtained by the studies in Sections 3
through 7. This approach exposes certain features of the individual design
methods which tend to be overlooked when the methods are studied in isolation.
Although evaluation against a single test example cannot render a definitive
scientific judgment on the reiative merits of these design methods, it does
assist in making a rational decision as to where near-term research efforts
should be concentrated.

8.2 Performance Comparisons

8.2.1 Data Base

Seven gpecific stable controller designs for the test example have been
reported in previous sections, including two each for the methods of Kosut
(Section 6) and Johnsor (Section 7). The prinicpal parameters of the closed-
loop system for the test example incorporating these designs are summarized
in Table 8-1; corresponding characteristics of the open-loop system are also
shown, Other reported controller designs which produced an unstable closed-
loop system are not discussed further.

Some important features of the closed-loop system response to initial
conditions for these designs, together with associated data for the open-loop
system, are summarized in Table 8-2, The particular initial condition assoc-
iated with this table is a positive unit displacement of the outer mass of the
two-mass system, with all other system states held at zero. (Time response
plots in the physical coordinates have been shown in earlier sections.) Re-
sponses to initial conditions on the modal coordinates were also studied for
each design, mainly to investigate spillover effects, Such initial conditions,
although physically realizable, are, in a physical sense, somewhat contrived.
Henre, similar tabular summaries for such initial conditions are not showm,
altuough the results were qualitatively used in formulating conclusions.
(Typical responses to modal initial conditions for the two stable Kosut designs
are shown in Figures 6-10, 6-11, and 6-4, 6-5, respectively.)
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Finally, key features of the frequency response of the closed-loop
system for each of the designs are summarized in Table 8-3. Data shown for
the specific frequency w = 3 radians/second allow these tabular data to be
related to the time response plots obtained for the disturbance input sin 3t
that were shown in earlier sections.

8.2,2 Test Design Results

The modal decoupling method (Canavin) permits free selections of the
damping ratio for each critical mode, but has no influence upon the damping
ratio for residual modes. This fact dominates the test design, which exhibits
the desired damping ratio for the critical mode, but has the lowest value for
residual mode damping of all the test designs. As a result, the settling
time of the physical coordinates in response to initial conditions exceeds
that for any of the other te.t designs. Moreover, the respuise to a periodic
disturbance exhibits the highest steady-state gain in the vicinity of the
open-loop residual mode frequency, and the smallest phase margin, of any of
the test designs. The discussion in Section 3 emphasizes the guarantee of
stability with this method. In contrast, the relatively poor performance
exhibited by the test design largely overcuadows the fact that the system is
stable over a large range of possible parameter variations, since none of
these variations has any significant influence over the residual mode damping
ratio.

The pole assignment method (Davison-Wang) does not in general permit
placement ~f all system poles as desired, even for the design model, let
alone poles corresponding to residual modes. The implications of these facts
upon performance is clearly illustrated by the relatively poor performance of
the test design in the time domain. The modal characteristics contrast sharply
with those of the Canavin design: not even 1/5 of the desired damping for
the critical mode is achieved, whereas the residual mode is extremely over-
damped. These two properties combine to produce excessive settling times for
the physical coordinates in response to initial conditions—nearly as long as
for the Canavin design, and more than twice that of any of the other designs,
In addition, the excessively high gains used result in mucn higher peak
amplitudes than for the other designs. The frequency response, however, is
quite good, exhibiting no resonance regions and the largest phase margin of
all of the designs. Overall, however, the design must be judged unsatisfactory,
since the primary design objective (czc > 0.1) is not attained.t

Performance of the optimal output feedback (Levine-Athans) design is
somevhat improved over, but qualitatively similar to, that of the Canavin design.
The principal difference is that in the Levine-Athans design, the residual
mode damping is substantially larger, although still small in absolute terms.

The lack of performance relative to designs yet to be discussed is attributable
largely to the inability of the method to influence the damping of residual
modes,

u In fairness, it should be noted that the low order of the design wmodel tends
to place the results by this method in an unfavorable light. 1In a higher
order design model, a higher percentage of the poles can be assigred (e.g.,
3 of 4; rather than 1 of 2, as in this case), possibly leading to better
parformance than exhibited here,
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The similarity of the suboptimal output feedback (Kosut) method of
minimum error excitation, as published, to the Levine-Athans method is re-
flected in the fact that the test design by the Kosut method for the stable
single sensor configuration is virtually identical to the Levine-Athans de-
sign (which nsed the same sensor configuration). Marked performance improve-
ment is exhibited by the design, applied to the two sensor configuration,
which is made possible by the extensiions to the Kosut method developed in
this volume. The additional sensor gives rise to free design parameters which
are used to eliminate residual mode excitation of the critical mode dynamics,
and to set at will the value of the residual mode damping ratio; for demon-
stration purposaes, "optimal" damplug for the resideal wode Le chosen. Sortling
time of the physical (as well as the modal) coordinates in response to initial
conditions is the shortest of all the test designs. In response to a periodic
disturbance, the steady-state gain resonance peak at the residual mode fre-
quency is completely eliminated, and the phase margin is increased by an order
of magnitude, relative to the single sensor design,

The two designs using the stochastic optimal output feedback (Johnson)
method are distinguished by the choice of the weighting factors used to pro-
duce synthetic sensor and actuator signals (Section 7.3.2). Both designs
exhibit performance which is slightly degraded in the time domain, and slightly
improved in the frequency domain, relative to the Kosut two-sensor design,

I cotitrast to the other design wethiods, this method deliverately enforces
coupling between the residual and critical modes in order to stabilize the
residual modes. As with the extended Kosut method, the relatively good
performance of these designs stems largely from the existernce of design param—
eters which can substantially influence the dynamics of (a finite number of)
residual modes.

Of the design methods studied, only the Canavin and Levine-Athans methods
guarantee stability in the closed-loop design model. The test design compar-
isons show that the assurance of design model stability, although necessary
for satisfactory performance, is by no means sufficient to assure a desired
level of system performance as evaluated by several classical time-domain
and frequency-domain criteria.

8.3 Recommendat ions

The theoretical studies of Sections 3 through 7 together with the test
design comparisons discussed in this section provide a rational basis for
deciding where to concentrate research efforts in the near future. Specific
recormendations regarding such efforts are briefly outlined below.

8.3.1 Discontinuations

The unsatisfactory test design pruduced by the pole assignment (Davison-
Wang) method on such a simple example suggest that major theoretical advances
in this method are required to make it .uitable for LSS controller design.
It is felt that the probability of success in such an effort is neither bigh
enough, nor of sufficient value to the LSS control problem, to warrant cov-
tinued study. We therefore propose discontinuing study of this method for the
present.
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8.3.2 Theoretical Studies Only

The marginal performance of the modal decoupling (Canavin) and the
optimal output feedback (Levine-Athans) methods is principally due to a lack
of influence of the methods upc.a residual mode dynmamics. It is felt that
theoretical study focused on an attempt to extend these methods so as to en-
able the designer to influence residual mode dynamics is warranted. 1In
particular, the similarity between the Levine-Athans method and the Kosut
method of minimum error excitation, together with the extensions to the Kosut
methods developed in this volume (Section 6.2.3), lead us to expect that rapid
and significant prngress could be made with the Levine-Athans method. No
large simulations with these methods are recommended at present,

8.3.3 Theoretical Development and Simulation

- The excellent performance of the test designs using the suboptimal out-
put feedback (Kosut) method, as extended, and the stochastic optimal output

feedback (Johnson) method, svggest that a major effort in two (essentially
parallel) directions should be undertaken:

1) Significant theoretical develcpments already reported should be
continued and refined. Particular focal points of interest
would include, but not be limited to:

(a) Systematic guidelines for choosing free design parameters
associated with redundant sensors so as to improve system
performance,

(b) Effects of a decentralized information structure,

(c) Development of efficient computational algorithms
(Johnson).

2) Simulations of much larger dimensional systems using these
controller design methods should be undertaken,

It should be observed tha* these rccommendations relative to the Johnson
method involve relatively high risk, because of the complexity of the method,
but promise quite high payoff, because of the broad scope of the method. 1In
contrast, the recommendations relative to the Kosut methods inolve relatively
low risk, because of the simplicity of the method, but promise somewhat lower

payoff, because the method has narrower scope—in particular, it does not
treat stochastic effects,
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APPENDIX A

FUNDAMENTAL MODAL DYNAMIC MODELS
OF LARGE FLEXIBLE SPACE STRUCTURES

A.1 Introduction

A flexible space structure is physically an infinite-dimensional dis-
tributed parameter system. In order that the finite~dimensional mathematical
model (2-1) can satisfactorily approximate the actual structure under study,

a large number (L) of generalized coordinates ie required, and a large number
of modes of vibration must be modeled. Theoretically if one wishes to control
the vibration of such a structure, one should control all of the vibration
modes. However, various practical reasons (e.g., limitations on the total
weight of actuators, sensors, and control equipment, limitations on the number:
and type of actuators used, and limitations on the capability of onboard com-
puters and memory) will prevent one from doing so. Feasible design of vib- ?
ration control for a large flexible space structure must, therefore, be based ’
on a finite-dimensional model of permissibly low order. On the other hand,

not all vibration modes may be of equal importance to the performance of the ,
structure, and not all modes will be equally excited. Among the excited modes, i,
some may be of critical importance, while others have only secondary effect.

Two approaches for simplifying the finite-element model [Eq. (2-4) to
(2-6)] are discussed in Sections A.2 to A.4. Methods for determining the
relative importance of the vibration modes are outlined in Sectioas A.5 and
A.6. Section A.7 contains a comment on the direct applicability of the con-
ventional frequency-response method to large flexible space structures.

A.2 A Reduced-Order Model

" Critical modes are usually of low natural frequencies, but not necessarily
of the lowest ones. In the frequency spectrum, critical modes may be inter-
spersed with residualmodes. Let [wcj,¢cj], j=1,...,N, denote the critical

modes, and [ka’¢Rk]’ k=1,...,M, denote the remainder of the L modeled modes.

Then the finite-element modal dynamic model [Eq. (2-4) to (2-5)] can be
partitioned into two parts [like Eq. (2-7) to (2-9)] as follows

2 T
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A first and the most common approach in reducing the large model (A—l)
‘is to completely ignore all the residual modes by assuming 0% (t) = 0. What
is left is the following fundamental modal design model

- I ;
Yy ¥ Cp¥ene * Cudane (A-2)
< $ n

q ¢e

The design of control systems is then based on such a reduced model of dimen-
sion N << L.

The assumption that nR(t) Z 0 may not be justified; since ¢;B may

not be identically zero, control may spill over to residual modes and signifi-
cantly excite them. Thus, the control systems designed need to be evaluated
first with the presence of some residual modes. For further evaluationm,
successful designs may then be implemented or simulated in the large-
dimensional finite-element model in the presence of all modeled residual
modes, See Figure 2-1.

A.3 Another Reduced-Order Model

Since flexible space structures are coupled distributed-parameter sys-
tems, the applied forces and torques may desirably influence the critical modes,
but may also undesirably influence the residual modes. Among the residual
modes, there may be some that, if ignored, might hamper the performance of the
control systems thus designed, but, if taken into account in the design or op-
timization, might assist the performance. This subset of the design residual
modes may, for example, include those residual modes on which undesirable in-
fluence (i.e., spillover) from the acturators is inevitable.

A second approach in reducing the large model (A-1) is to completely
ignore all the residual modes except the subset described above, and to ignore
only the dynamics of the latter by assuming that nDR(t) z 0, where subscript

"DR" denotes the indicated subset of design residual modes. Since nDR(t)

-2.7
implies nDR(t) QDR¢DRBAu(t), Eq. (A-1) reduces to
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Note that the fundamental modal design model remains the same as
before, but vectors q and y are augmented with terms containing the input u.
The design/optimization of control systems is then based on such a reduced
model. The validity of assuming ﬁDR(t) 2 0 and ignoring all other residual

modes is open to question. Thus, the control system design still needs to be
evaluated first with the presence of design residual modes, and then the
evaluation residual modes. Successful designs may be implemented into the
large finite-element model for further evaluation. Again see Figure 2-1.

A.4 Comments on the Reduced-Order Models

The first reduced-order model, Eq. (A-2), was used in References 1
and 2. It is similar in principle to Davison's reduced model [3], [13].
Thus, it may also suffer from having large steady-state errors in the q
coordinates while providing small errors in the dynamic behavior of the
- critical modes, according to the historic disputes between Chidambara and
. Davison, [4] through [8].

; Special forms of the second reduced-order model, Eq. (A-3), were con-

? sidered in References 9 and 10; this model is in principle similar to :
Chidambara's second model [6], [14]. ' Thus, it may also suffer from having {
far different dynamic tehavior in the q-coordinate while providing correct
steady-state response to a specific input, according tc Davison [7], [8].

ithout sufficient damping on the design residual modes, such a reduced-order
model cannot be developed on the basis of singular-perturbation theory as
commonly understood [11], [12].

Both models will have more problems with large flexible space structures
because of light damping in the systems. Moreover, the following two basic
questions common to both reduced models have not been addressed tafore. How
shall the number and the location of the actuators on the structire be selected
so that all the critical modes are controllable? How shall the location of
the actuators on the structure be selected so that control spillover to resid- \
P ual modes can be minimized? These two questions (with the equivalent ones ;
’ for the sensors) must be properly answered before effective design of control i

systems based on either of the reduced models can be made.

A.5 Magnitude of Individual Modal Responses
H

The relative importance of the L vibration modes can be deteviulned by
comparing the relative magnitude of their response to expected eixcitaticns.
Rewriting the discrete model (2-1) in terms of the vibration modes and modal
coordinates

B+ an = QTf (A-4)

and taking the Laplace transform yields

H(s) = diag%-—z—l—z —2—1—2}{4;’}(3) + sn(0) + 6(0)} (A-5)
s +uw s +w
1 L
A-3
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where H(s) and F(8) are the Laplace transforms of the timme functions n(t) and
f(t), respectively.

A.5.1 Free Vibration

With F(s) = 0, Eq. (A-5) can be rewritten in terms of initial conditions
q(0) and §(0) as follows

H(s) = diag{sz_:.:i 500 0g -B—Z—T];Ti}QTM[sq(O) + 6(0)}
, 1

This equation is useful for analyzing free vibration of the structure subject
to various initial conditions. By varying the vectors q(0) and §G(0) in the
equation over an expected class of initial conditions at expected locations on
the structure, one can determine what modes of vibration are seriously excited
most often, and hence require active control.

To a generic initial condition (q(0), 6(0)), the Laplace transform of the

jth modal response nj(t) is
1 T c
Hj (s) = = 3 %M[sq(O) + q(O):‘
s + mj .

The time-domain response is thus given by

T T, e 1
nj(t) = ¢qu(0) cos mjt + ¢qu(0) a;-ain wjt

It describes a sinusoidal function with rms (root-mean-square) magnitude given
by

T 2 T,* 2
J .7/ +
njrma 0.707 [¢jMQ(0)] [¢jMQ(0)/wj]
Comparison of the rms magnitude of the L modal responses

n » N

1rms’ 2rms **°*’ "Lrms

will determine what modes are seriocusly excited by the given initial excitation

(q(0), q(0)). Note that with everything else being unchanged, rms magnitude
njrma increases as natural frequency “j decreases.

A.5.2 Forcea Vibration

With q(0) = q(0) = 0, Eq. (A-5) becomes

H(s) = diag[———£—~—

-
o2 T




This equation is useful for analyzing forced motions of the structure subject ;
to various external disturbances. Onboard equipment, the space environment,

and maneuvers (e.g., slew) may introduce persistent, intermittent, impulsive,
or random disturbances to the space structure, and hence cause it to vibrate.
By varying F(s) in the equation over an expected class of disturbance forces

at expected locations on the structure, one can also determine what modes are
seriously excited most often, and hence require active control.

For example, consider the sinusoidal disturbances caused by onboard
equipment at various locations with possibly different frequencies of vib-
ration. A generic sinusoidal disturbance force with frequency Bk at location
k can be expressed as

i f£(t) = bkuk(t) (a-6)
; ) uk(t) = J O + 1 sin (Bkt + tan-l ak) (A-7)

with bk = (bi,..., bt) denoting the influence vector. Let Uk(s) dencte the

Laplace transform of the sinusoidal disturbance input uk(t). Then

) H(s) = diagds—t—s ,..., —— L0750 (s) |
2 N 2 2 + wZ k i
s wy s L

Obviously, any mode (say mode j) whose frequency is equal, or sufficiently

close, to some of the disturbance frequencies (say Bk) will undoubtedly be

critically excited, unless the disturbance has no influence to mode j (namely,

unless ¢Tbk = 0). Any such mode, with ¢§bk # 0, must be considered a critical

mode. J i
: Consider the case where none of the natural frequencies wj is close

&

% to any of the disturbance frequencies Bk' The Laplace transform of response

nj(t) is .

+
1T TR g a-9)

By partial-fraction expansion, it becomes

Tk 1 [BE B %St
__ @ = &b "7 2 T2, 2
f -Bk mj s X s j




Hence, the time-domain response n.(t) is

.nj(t) = ¢§bk 2 {JLR + 1 sin [B t + tan ak] :

—B+

B} /a]-’; + Bf‘/w; sin (ot + tan ™t (agwj/ﬁk)]} B YD)

The rms magnitude of this periodic function is

T. k 1 2 2,2 .
= . ———— I + - ¥
" 0 707|¢jb 5 2|j2qk 1 Bk/mj (A-10)
_B + w
Similarly, comparison of these rms magnitudes determines what modes are ser- ~x;
iously excited by the sinusocidal v1bration of the onboard equipment at loca- I

tion k. Note that, with influence |¢ b l being the same for all moies, the
rms magnitude nerS increases as the natural frequency mJ approaches the
disturbance frequency Bk’ or as the natural frequency decreases.

It is worth mentioning that if one followed the usual frequency-

response method [15]-[20] for undamped systems, one would erroneously obtain
the rms magnitude as

i
Mirms = 0.707|¢§b Ll e+ 1 (A-11) .

-B + m

migsing the term a + B /m§ under the radical sign. See Eq. (A-20) of Section

A.7.1. The difference '

7. .. .2,2 |2 .
/;ak+l+6k/mj Jak+l L

] can result in a significant error in the comparison of the L rms magnitudes,
since it varies with the vibration modes. Moreover, if one assesses the
effect of the disturbance by actually measuring the rms magnitude of response
n, (t), one may over-assess the effect, because the measurements correspond

.

to Eq. (A-10), rather than Eq. (A-11) as conventionally used.

! A.6 Individual Contributions to Line-of-Sight Error

The relative importance of the vibration modes can also be determined
by comparing their individual contributions to a given performance index on
the attitude or shape of the structure, such as the line~of-sight error. The
Laplace transform Q(s) of the response q(t) can be obtained from Eq. (A-5) as

A-6
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Q(s)

$H(s)

L
T3 4F@ + n,0) + 5. (0] (a-12)
=18 Ty ) :

A.6.1 Free Vibration

With F(s) = 0, Eq. (A~12) becomes
X\ s, (0) + 1. (0)
- j i
Q(s) = z 3 5 ¢j

the structure when a specific class of vibration modes is initially excited.

Given a performance index, the relative importance of these modes can then
be assessed.

For example, consider the line-of-sight error which is expressed as a
linear combination of the generalized coordinates ag follows

+ ...+ crq, (A-13)

where ¢ = (c,,...,c. ) 1g the L-vector of constant coefficients. Its Laplace
transform is readily given by

L

. _ N LT SO+ )
E(s) cQ(s) = Z c ¢j 3 3
j=1 s + uﬁ

Consequently, the rms magnitude of the line~of-sight error is given by

L
T 2 2 2
S 0.707;; |e 4 l/nj (0) + nj(O)/wj

where the term

A T 2 22 2
yrns - 0.707}¢ ¢3'J"j(°) + nj(O)/mj

represents the rms contribution from mode j.

Comparison of the individual rms
contributions e creye
Irmg’"°*?

Lrms determines what modes of vibration are critical
to the line-of-sight accuracy.




A.6.2 Forced Vibration

With q(0) = q(0) = 0, Eq. (A-12) becomes

L .
i § : T
% Q(S) + m j jF(S)

=15

This equation is useful for analyzing the effect on the attitude and shape of

the structure caused by various disturbances (e.g., onboard equipment, the

space environment, structural maneuvers) and by the vibration modes thereby

excited. Given a performance index, the relative importance of the naturzl

modes and the necessity of compensating the disturbance can be assessed. ¢

5 Consider again the line-of-sigat error defined by Eq. (A-13). Assume
onboard equipaent at location k produces a sinusoidal disturbance with fre-
quency Bk and phase angle tz:m-1 O s as expressed by Eq. (A-6) and (A-7).

Then, the Laplace transform of the line-of-sight error is

: L
; o8 + 8
E(s) = cQ(s) = 2—2—-1———2 cT¢j¢§bk—1‘-2—-—% (A-14)
s +w s 4+ 8
=1 K

Again, any mode (say mode j) whose natural frequency is equal, or sufficiently
; close, to the disturbance frequency Bk wlll be critically excited. Such a

natural mode, and such a sinusoidal disturbance, will be critical to the
line-of-sight accuracy, unless it contributes nothing to the line-of-sight

error (namely, unless c ¢j } k = Q).

Now, assume no wj is close to Bk. As with Eq. (A-9) - (A-10), the

time-domain line-of-sight error and its rms magnitude are given by




L

T Tk 1 2 -1
e(t) = Zc 9544b m{ /mk +1ein [t + Fan o
kY « |

i=1

= /ai + 8§/m§ sin [mjt + tan-l (akmj/Bk)]}
= ZCT%%‘bk 2 i % /c{ +1sin [Bt+ tan ! o]
L
T, Tk 1 2 2,2 -1
- Z{c ¢j¢jb -312( N w§ A + Bk/mj }sin [mjt + tan (ukuj/sk)]

(A-15)

2
T. Tk 1 2
e s - 0.707 Zc ¢j¢jb -82+ 7 (a.k+1)
j=1 kY

2 1/2
+ Z [CT¢j¢§bk 5 1 2} (“lzt + B:/wi)} (A-16)

j=1 By +u

Notice the presence of the terms

Tk 1 2 2,2
j¢jb 2, 3 @ + Bk wj » 3 = 1,...,L (A-17)

Each of these terms represents the rms contribution from an individual natural
mode of vibration to the overall line-of~-sight error. Comparison of these
contritutions elrms pawisy eers will determine what modes of vibration are

important to the line-of-sight accuracy.

A T
ejm 0.707c" ¢

Notice also that the contribution from the disturbance to the line~-

of-sight error [Eq. (A~16)] is the absolute value of the algebraic sum of L
terms *

L

T, T,k 1 2
2 Ty — s 2N
j=1 Bty

A AR, L. A R e



This contribution may be large or small, depending on whether these L terms
actually add up or cancel themselves;out. Its comparison with the individual’

contributions € lrms 't C? eers from the natural vibration modes will determiue

whether or not the disturbance is important enough to require compensation.

Again, for such an undamped system, if one followed the conventional
frequencv-resvonse method ([15] through [20]), or equivalently, the phasor
method ([17],{18], [20]), one would have erroneously obtained the rms line-
of-gight error as

L

e = 0.707 Zchs L. B T (A-18)

rms 33 -82 + w2 k
j=1 ko

(see Eq.. (A-21) of Section A.7.1.) The L terms representing the contyibution

from the vibration modes would have been missed. As a result, the line-of-sight

error would be significantly underestimated.

A.7 Steady-State Sinusoidal Response

A.7.1 Frequency-Response Method; Phasor Method

The approach, known as the frequency-response method ([15] through [19])
or the phasor method ([17), [18], and [20]), is a convenient tool for finding
the steady-state response to sinusoidal inputs. Given the transfer function
T(s) between the response Y(s) and the input U(s), and a sinusoidal input u(t)
with frequenry w, the amplitude of the steady-state response y(t) is given by

v IT(iw)Iuamp

where !T(iw)l denotes the absolute value of the transfer function T(s), with
s replaced by iw, and where uamp denotes the amplitude of u(t). Hence, the

rms magnitude of the response y(t) is given by

y = IT(iu»)lurms (A-19)

rms
where LI denotes the rms magnitude of input u(t).

Consider, for example, the modal response nj(t) te the sinusoidal dis-
turbarce input uk(t) described by Eq. (A-7). The transfer function T(s) can be
obtained from Eq. (A-8) as

T(s) = H (s)/U(s) =

i

| er————r————




Setting 8 = in yields

1 gt
} l-Bk + wj l
where Bk is ths disturbance input frequency. The rms magnitude of the dis-
turbance input uk(t) is 0.707 /aﬁ + 1. Therefore, by Eq. (A~19), the rms
magnitude of the modal response nj(t) is given by

—1 ¢§bk 0.707 /ui +1 (A-20)

“ =
i‘ jrms 812(+w§

as was given in Section A.5.2 as Eq. (A-11).

Consider for another example the line-of-sight error due to the same
sinusoidal input. From Eq. (A-14), the transfer function T(s) is ohtained

as
, ak5+8k
T(s) = E(s)U (s) = E(8)——
k 2 2
s + B
k
L
- Z 1 csz ¢Tbk
82 + mz 33
i=1 b
Consequently, the rms magnitude of the line-of-sight error is given by
L
' 1 T, T
=1 Bty

as was given in Section A.6.2 as Eq. (A-18).

A.7.2 Commentary

The frequency-response method (equivalently, the phasor method) is
actually valid only when the steady-state response is a sinusoidal function
naving exactly the same frequency as the input. It requires that each of
the system modes die out after a sufficient amount of time has elapsed. This
method has been very successful and useful in the past because most engineering
systems encountered in practice have sufficient damping on all modes. However,
it way not be directly applicable to future large flexible space structures,
which will have very little damping, and which are wodeled (and simulated hy
the computer) as undamped systems c{ harmonic oscillators. Vibration mudes of

A-11
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steady-state response. Thus, special care must be taken in order to avoid

drawing incorrect conclusions from the steady~-state response of undamped
systems,

Undamped systems traditionally have been used to illustrate various
Principles of system analysis and synthesis. Nevertheless, they were not as
carefully studied ag systems with damping, because they are not realistic

Systems. Some conclusions on system design may be wrong in the context
of undamped systems.

A-12
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APPENDIX B

CONTROLLABILITY AND OBSERVABILITY OF
VIBRATION MODES

B.1 1Introduction

Consider the problem of controlling the vibration modes of an undamped
large flexible space structure [1], [2]. The dynamics of such a structure
are usually approximated by the method of finite elements (using computer
programs such as NASTRAN, STRDYNE) as system (2.1). Combining with equations
(2-2) and (2-3) for control inputs and measurement outputs yield

{Mq + Kq = BAu

(B-1)
= + C 4
y=CatcCq
Expressed in terms of natural modes {mj, ¢.} of vibration and modal
coordinates nj, it becomes J
2 T
H+OQn 9 BAu
= én + C &7 -
y = Cpén iy (B-2)

q = %

See Section 2.2.2 for a description of the notations. It follows from system
(B~2) that for mode (mj, ¢j) to be controllable by input u, the lccation of
the actuators must be such that the jth row of the influence matrix ¢TBA is

T
nonzero; i.e., ¢jBA 4 0, Fora - ., (mj, ¢j) and (wk, ¢k), to be control-

lable, one would expect the same; namely, that both row vectors ¢§BA and ¢£BA

are nonzero. It is not obvious, however, that one should require more on
the location and the number of actuators if two or more modes have a common
natural frequency. The phenomenon of common frequencies is not unusual in
the case of symmetric struccures.

The situation regarding the location and number of sensors required
for observability of cvitical modes is similar, as expected by the duality
between observation and control.

Section B.2 first describes two different directions from which the
design of structural vibration control systems can be approached, then gives
a brief review of the notion of controllability and observability. Because
of duality, subsequent discussions concentrate on controllability. Sections
B.3 through B.7 spell out various necessary and sufficient conditions for




complete controllability of critical modes under various circumstances. An
algorithm embracing ‘all these controllability conditions is proposed in
Section B.8 for systematically determining the proper location and minimum

number of actuators required for ensuring at least completa controllability
of critical modes.

B.2 Alteration of Modes of Response, Regulation of Modal Responses;
Complete Controllability, Complete Observability

The design of control systems for suppressing structural vibration can
be apprcached from two different directions: alteration of modes of response
in the spirit of frequency-domain modal control theory and regulation of modal
responses in the spirit of time-domain state (or output) control theory.

B.2.1 Alteration of Modes of Response

Modal control of a multivariable linear time-invariant system is, by
definition [3] - (5], to alter the modes of system response to achieve the
desired control objectives., The modes of the system response are character-
ized by the poles of the system. Without redesigning the given system, a
common approach is to introduce appropriate feedback so that the closed-loop
system has the desired poles, hence the desired modes of response. However,
one can only alter the characteristics of the completely controllable and
completely observable part [5] of the open~loop system. Therefore, the loca-
tion of the actuators should be such that all those response modes which one
wishes to alter are controllable. Similarly, the location of the sensors
should be such that all modes to be measured are observable.

A large flexible space structure generally has a large number of vibra-
tion modes [11, [2], while the feasible number of sensors and especially that
of actuators placed on the structure for effecting the desired alteration are
relatively small. Moreover, because of practical limitations on the design
of feedback loops, one can actually alter a very limited number of vibration
modes. Consequently, one must concentrate on those vibration modes that are
fundamentally important to the performance of the structure. See Appendix A
for discussions of critical modes of vibration and their determination.

Partitioned into the critical and the modeled residual parts, the modal
model (B-2) becomes

'ﬁc + Q B u

= ¢ A

a3

e

= ¢ B u

A

N O

ﬁR+Q

x 3

"R
(8-3)

= + A

y CPQC“C Cvocﬁc + CPQRn + C ¢Rn

R VRR

q=¢ + ¢

S ¢"c T *R"r

Sce Section 2.2.3 for a description of the notatirn. A corresponding state-
space representation of system (B-3) is

B-2
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B (B-4)

where I denotes the identity matrix of appropriate dimension. The 2L-vector
(nc, ﬁc, ng? ﬁR) represents the state of the 2-L dimensional linear system

(B-4). To be able to alter the critical modes of the system response, one
must make the following part:

r _
0 ™~
e 0 I e 0
. . "
2 ¢ . T
4 ﬁC -QC 0' -nc QCBA
(B-5)
y = (G2 Cytc] [“c
L g

completely controllable and completely observable. Since this fundamental
system (B-5) has 2N poles (i.e., N pairs of coajugate imaginary poles), for
altering the modes of its response, a set of 2N desired closed-loop poles
may be chosen to replace them. See Section B.2.4.

B.2.2 Regulation of Modal Responses

The modal model (Eq., (B-2)) can be recast into the following state-
variable form

r
n 0 1 n 0
- + u
n <t ol |4 81 "
4

(8-6)




with s eess Mps ﬁl’ aees ﬁL denoting the 2L state variables. Regulation

is, by definition [6], [7]1, to reduce modal response from any initial state
(n(0), 1(0)) to zero directly, and to maintain an optimally small total error,
in contrast to the alteration of response modes. A feedback regulator usually
requires a state regulator with a state estimator (a Luenberger observer or a
Kalman filter), Alternatively, an output feedback controller with or without
dynamic compensators [8] may be required.

However, the regulation of modal responses of a large space structure,
like the alteration of modes of structural response, should concentrace on
fundamentally important modes of vibration. Partitioned in terms of critical
and modeled residual modes, system (B-6) can be rewritten as system (B-4},
whose fundamental subsystem is given by (B-5). One should therefore concen-
trate on regulating the 2N~dimensional state vector (nC, ﬁc) of system (B-5),

since N<<L. Complete controllability and complete observability of the system
to be regulated are prerequisite to satisfactory regulation.

B.2.3 Complete Controllability and Complete Observability; Duality

Before defining the controllability and observability of critical modes
in Section B.3, recall the definition of controllability and observability of
state [9]. To do so, consider the following standard state-space representa-
tion of linear time-invariant systems

X Ax + Bu
y = C

(B-7,

where x = (xl, 300 xn) denotes a vector of n state variables,

u = (ul, 0oog um) a vector of m inputs, and y = (yl, poog yz) a vector of

£ outputs.

An initial state xo is said to be controllable if it can be transferred R
to a zero state in a finite length of time by some control input u(t).
If every initial state is controllable, the system (B-7) is said to be
completely controllable. An initial state x0 is said to be observable if

it can be determined from the knowledge of zero-input observation output t
y(t) for a finite length of time. If every initial state is observable,

the system is said to be completely observable. See References 6, and

9 through 11.

The following are well known criteria for complete controllability

and complete observability of state [5], [10], [11]. System (B-7)
is completely controllable if and only if the nxmn matrix




Q2B a8, ..., A2l ‘ (B-8)

has rank n. It is completely observable if éﬁd only if the fnxn matrix

C
AC )
P& o (8-9)
P

has rank n.

The foliowing alternative definition and interpretation given in Refer-
ence 5 is usefui In understanding why complete controllability and complete
observability are related to the possibility of altering system characteris-
tics (i.e., modes of response) by feedback loops.

System (B-7) is said to be completely controllable if it is not
algebraically equivalent, for all t > 0, to a system of the type

il = Anx1 + Alzx2 + Blu

32 = 4232 ' (B-10)

y = CLx1 + szz

where x1 and x2 are vectors of ny and n, = n-n; components, respectively,

In other words, it is not possible to find a coordinate system in which the

state variables x = (xl, soog xn) are separated into two groups,

xl = (xi, sees X ) and x~ = (x%, 5000 xi ), such that the second group

1 2
is not affected by either the first group or by the inputs to the system,

Similarly, system (B-7) is said to be completely observable if it is
not algebraically equivalent, for all t £ 0, to a system of the type

o= a4 gl

iz = A21x1 + Azzx2 + Bzu (B-11)

y = Clxl

where xl is an nl-vector and x2 an (n - nl)-vector. In other words, it is

not possible to find a coordinate system in which the state variables are
separated into twe groups, such that the second group does not affect either
the first group or the outputs of the system.




e

It is now well known {e.g., see [5], [9], [11], [12]) that for
every conclusion concerning controllgbility, there is a corresponding one
concerning observability, and vice versa. “herefore, subsequent discussions
are focused on the controllability of critical modes. o

A strong relationship between complete controllability of an open-
loop system and the possibility that the system has desired closed-loop
poles by means of feedback was given by Wonham [13] as follows. System (B-7)
is completely controllable if and only if, for every choice of n real or
complex-conjugate numbers, there is a feedback matrix F such that the
closed-loop system matrix A+BF has these n numbers for its eigenvalues.

B.3 Controllability of Critical Modes

In the sequel, we say that the N critical modes of structural vibration
are completely controllable if and only if the (open-loop) fundamental system

" has rank N.

(B-5) is completely controllable. It follows from the best known control- §
lability criterion (Eq. (B-8)) that the N critical modes ars completely con-
trollable if and only if the 2Nx(2mN) matrix

Q& [Bos ABL, oovs A%N'lnc] (B-12)
has rank 2N, where
0 I 0
AC = -92 0 ’ Bc = 2 (B-13)

After some matrix manipulations, a simplified form of this criterion can
be given,

Theorem 1: The N critical modes are completely controllable if and

only if the Nx(mN) matrix o

Q = (6B

il 2,N-1.T {B-14)
cA? QCQCB

FORKEE (-QC) QCBA]

Proof: By induction, it is easy to show that

2,i T
(-02)" ¢ B 0
A2l . C C A ’A21+1B

cee c “¢*” 2.4 .T
0 (20)" 9B,




2 2.N-1
0 By 0 By 0 ()" "Bye

Q LN
2N 2 _2,N-1
B, 0 -8B, 0 ()" "By 0

where B2C denotes QgBA. Rearranging the columns, an equivalent form of i

QZN is given by
Q ©

Q
w7 o o

where QN is as defined by Eq. (B-14). Matrix QZN has rank 2N if and only if
matrix QN has rank N. This proves the theorem.
A statement similar to Theorem 1 was given in Reference 1 for the class

of flexible structures describable by a generalized wave equation. A simp.e
and direct consequence of Theorem 1 is the following sufficient condition.

Corullary 1: For the N critical modes to be completely controllable,
it is sufficient that the influence matrix ¢gBA have rank N.

T R—

To satisfy this sufficient condition requires a large number of specially
placed actuators. First of all, for the Nxm influence matrix to have rank N,
it is a prerequisite that m > N; namely, that there are at least as many
actuators on the structure as there are critical modes of vibration. Secondly,
these actuators must be so located (and distributed) that the N row vectors

¢ngA’ soog ¢gNBA are not only nonzero but also linearly independent. This

means that each one of the N critical modes is controlled independently of any
other critical mode by at least one actuator. 1t is just a sufficient condi-

tion, but a very restrictive one. In some cases, it may be enough to use only
one actuator, as was also observed in Reference 1. The following states pre-

cisely the necessary and sufficient conditions for using only one actuator.

Theorem 2: Assume only one actuator is used (i.e., m = 1). Let bA
AT A). Then the N critical
modes are completely controllable by a single actuator if and only if

denote its N-dimensional influence vector (i.e., B

(1) All natural frequencies of the critical modes are distinct.

(2) The influence vector bA is not orthogonal to any of the critical

mode shapes; i.e.,

T
¢Cij $ 0 for all j =1, ..., N.

B-7
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Proof: Since ¢€ bA are scalars, the matrix QN of Theorem 1 simplifies

to 3
2 2 N-1
by O | fLegg eee ()
Q, = . 5 K : _
N g 2 2 N-1
0 bN 1 “en tt (-wCN)

where bj = ¢gij. The second square matrix on the right-hand side 15 a

Vandermonde matrix, whose determinant is nonzero if and only if mcl,;..,
OeN are distinct. Therefore, matrix QN has rank N if and only if both
conditions (1) and (2) are satisfied. In view of Theorem 1, this theorem

is now proved.

Condition (2) is evident from Eq. (B-2), at least intuitively, since
the actuator must have nonzero influence on each of the critical modes to be
able to control all of them. But it is not as obvious that ccndition (2) by
itself is not sufficient. Condition (1) implies that, in general, one
actuator is not enough, specifically when two or more critical modes have
identical or nearly identical natural frequencies.

B.4 Controllability of Critical Modes Having Identical Natural Frequencies

To apply Theorem 1, it is convenient to recognize that the matrix QN

is exactly the controllability matrix of the following hypothetical*
N-dimensional dynamic system

. 2 T
z = -ch + QC

BAu (B-15)
It follows from Theorem 1 that complete controllability of the N critical

modes can be interpreted as complete controllability of the hypothetical system
(B-15), and vice versa. The "conveniences" are the diagonal system matrix

and the real eigenvalues. The system has only pure exponential decay modes.
Moreover, the system matrix is already in the Jordan canonical form with all
Jordan blocks being 1x1. Consequently, there are as many identical Jordan

blocks as there are identical natural frequencies among the critical modes.

With the aid of this simple hypothetical system (B-15) and the decomposition
(B-10), the following results are obtained.

Theorem 3: The N critical modes are completely controllable if and
only if

T
CBA is nonzero.
(2) All those rows of matrix ¢gBA which correspond to a repeated

natural frequency are linearly independent.

(1) Each row of the influence matrix ¢

*
System (B-15) is not a legitimate dynamic subsystem of (B-5) by definition,
an¢ does not really exist, B-8
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Proof: Direct proof by algebraic manipulations on the matrix QN of

Theorem 1 is not difficult, but the following is more intuitively appealing.
The necessity of condition (1) is trivial. To prove that. the addition of
condition (2) to condition (1) is necessary, assume that the natural frequency
ij is repeated r times among the fundamental modes. Let ¢j’ ¢j+1’ 0004 ¢j+r

denote the corresponding mode shapes. Then the corresponding equations in
system (B~15) are

0 2 T
r z:l = —mcjzj + ¢jBAu

. 2
2441 ° “UcyPyer T 4B

1 (B-16)

. 2
C 244y ™ Vg2 per ¥ OqaeBal

Now suppose on the contrary that the corresponding rows ¢j A’ ¢j+1 FURREE

¢j+ B, of matrix OCB are not linearly independent. Then

A

B. +¢c =0

°1¢j At CtyuBy T oot C

T
r+1¢j+rBA
for some constants cl, c2, 500¢ cr+1, not all zero. Making the corresponding

combination of the r + 1 equations in system (B-16) yields

. 2 )
tie ™ y%yc (B-17)

where

z - Clzj +c:z 141 +cr+lzj+r

denotes a combined state variable., Replacing the last equation in system
(B-16) by Eq. (B-17), the form of system (B-10) is reached. By the alterna-
tive definition of complete controllability given there, these r + 1 critical
modes are not completely controllable, Therefore, the necessity of condition
(2) is proven. The arguments for the sufficiency of conditions (1) and (2)
combined are similar, but converse, to those for their neceassity. With both
conditions (1) and (2) satisfied, system (B-15) cannot be decomposed or trans-~
formed to contain any equation of the form of (B-17), and hence is completely
controllable.

The following are two simple, but useful, corollaries nf Theorem 3.
Corollary 2 i3 essentially the same as Theorem 2 while Corollary 3 is just
the opposite.

B-9
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Corollary 2: If all natural frequencies of the critical modes are

distinct and if the influence matrix-wgBA has at least one column whose N

eLements are all nonzero, then the N critical modes are completely controllable.

Corollary 3: For the N critical modes to be completely controllable,
the number of actuators used on the structure must be at least equal to the
maximum wultiplicity of the natural frequencies over the critical modes. In
other words, if u(wcj) denotes the number of critical modes having the same

frequency ij’ then it is necessary that

). ’

m > max u{w
15968 ¢

Corollary 3 means that whenever there are two or more critical modes
having identical natural frequencies, a single input cannot control all the
critical modes. In other words, relocation of the single actuator will not
work; nor will any combination of the multiple actuators on the structure if
all of them are still driven by a common input,

B.5 Controllability of Critical Modes Having Natural Trequencies
Identical to Residual Modes

If some critical modes and some residual modes have a common natural
frequency, the preceding conclusions must be modified except for a very
special case.

Consider the special case first. This occurs when all those residuel
modes having natural frequencies identical to some critical modes are not
influenced by the actuators (i.e., ¢§kBA = 0). Then, 2ll the preceding con-
clusions (Theorems 1-3, Corollaries 1-3) are valid without modification, In

other words, such residual modes are still as ignorable as the others.

Now consider the general case. Call a residual mode (mRk’ ¢Rk) an

associated residual mode if its natural fiequency is identical to some critical
mode and if it has nonzero influence from the actuators (i.e., ¢§kBA £ 0.
Associated residual modes are not ignorable so far as the complete controll-
ability of the critical modes is concerned. The number and location of the

actuators requireé may thereby be affected.

Let matrices Qg and °C be augmented t9 include all the asgociated
residual modes as if they were additional critical modes. Let QC' and QC'
denote the augmented matrices, and N' denote the total number of critical
mcdes and associated residual modes. Note that N' > N and that Qé, and °C'
have dimension N'xN' and LxN' respectively. The preceding conclusions are
modified as follows.

B-10
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Theorem 1': The N critical modes are completely controllable if and
only if the N'x(mN') augmented matrix

T 2 T ~ N-1.T
Qqr = [90iBys = 00i00iBys oes (<000) 0B, ]

has rank N'.

Corollary 1': For the N critical modes to be completely controllable,

ir is sufficient that the augmented influence matrix ¢g,BA has rank N',

Theorem 3': The N critical modes are completely controllable if and
only if

(1) Each row of the influence matrix QgBA is nonzero.

) All the rows of the augmented influence matrix ¢£.BA which
correspond to a repeated natural frequency are linearly
independent,

Corollary 3': For the N critical modes to be completely controllable,

the number of actuators used must be at least equal to lfaiN' “(ij)’ where

u(wCJ) denotes the number of critical and associated residual modes having

the same natural frequency ij‘

B.6 Magnitude of Control Influence

From the modal Eq. (B-2) it is clear that for applying a given amount
of generalized force on uode j, the magnitude ||u|| of required control input

is smaller if the magnitude ||¢§BAI| of the control influence on mode j is

larger. Therefore, for controlling mode j, it is desirable (by adjusting
the location of the actuators on the structure) to make the control influence
on mode j not only nonzero, but also large in magnitude.

?‘.

3 Moreover, making the magnitude of control influvence on each critical

1 mode as large as possible can avoid requiring excessive input energy or

: excessively high feedback gains.

1 B.7 Controllability of Critical Modes Having Nearly Identical

: Natural Frequencies

‘ Suppcse two critical modes (ij’¢Cj) and (wck,¢ck) have nearly identical

- natural frequencles, i.e,, ij = W but ij $ Wog® Naturally, one could
treat them as having two different natural frequenciee, as they are not iden-

, tical. But it is desirable to ignore the difference.

B-11
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Assume that both row vectors ¢T'B and ¢ _, B

K “but rot lip~
cita ckoa 2Te Donzero, &

early indéﬁendent. Then
T . Te o
©49c4Ba * SkfciBa = ©

for some nonzero constants cj and ¢, . Similarly, comtining the cerresponding

equations in system (B~2), yields

2 2
i fiy, + = B-18
cyfics ¥ Sificr ™ 9ci%Nes * Yerliek T O (B-18)

Define a combined cocvrdinate

o A
e = €30y T “k"ek

Then Eq. (B~18) can be rewritten as

2 2 - 2 2
e * 0gyTe = S (oo™ e) "y

t
2 2.1 T fom
= ck(wcj"ka)——wck [L Sin(mck‘)¢ckBAu‘t 7)dT

+ nck(O)ka cos mckt + ﬁck(O) sin ka{]

2
Since ij 2 Wops the coefficient ck(mgj - wgk)/ka is negligibly small. Com-
plete controllability of these critical mod2s is weak and excessive energy is
required. Thus, it is better to consider these two modes as having identical
frequencies, and to rveadjust the location of the actuators so that at least

T T
¢CkBA and ¢CjBA are linearly independent.

Furthermcre, since computational errors are Inevitable in natural
frequencies, ij and Yop might in fact have been identical. Thus, it is

desirable that these two modes be treated as having repeated natural frequen-
cies.,. Condition (2) of Theorem 3 then applies to these two modes, together

with aay other critical modes having natural frequencies identical or nearly
identical to w., or Wog®

)

B.8 Number and Location of Actuators

B.8.1 Determination of Proper Location and Minimum Number

As can be seen from the foregoing analysis, the locrtion and number of
the actuators placed on the structure determine whether or not all the critical

B-12
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modes are controllable. Moreover, improper location may require more actua-
tors than uecessary, If the locaticn ard the pumber of the actuators on the
structure are adjustable, the following algorithm is proposed for emsuring
at least complete controllability of the N critical modes,

Step 1: Initially léy out N actuators. Set m = N.

Step 2: Adjust the location of the m actuators so that each critical mode
has nontrivial influence from the actuators; namely, ¢ngA # 0 for
all j=1, ..., N.

Step 3: Readjust the location, if necessary, so that if wj is any repeated

critical natural frequency with multip;icity uj > 2, then the

corresponding uj rows of matrix ¢ B are linearly independent.
Otherwise, go back to Step 2.
Step 4: Readjust the location, without violating the criteria in Steps 2

and 3 to increase the magnitudes of control influence on the critical
modes:

2 2 2
.¢ClB ‘ 1] '¢CZBA' gec ey !¢CN A

Step 5: Readjust the location, without violating the criteria in Steps 2 to 4,

to decrease the number of associated residual modes.
Step 6: (If there are no associated residual modes) :

Ifm = max ”(“’cj)’ 8tup;
13N
oo Otherwise, set m = max u(mcj) end go to Step 7.

1<3<N

. (If ihore are assoclated residual modes):

If m = mpax u(mcj), stop;
1<3<N"

Otherwise, set m = mux u{wcj), and gu to Step 7.
1SN

Step 7: Retain only m actuators, and go back to Step 2.

B-13
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E B.8.2 Decumposition of Modal Modes of Symmetric Structures

Symmetric structures usually exhibit groups of repeated natural frequen-
cies. Structural symmetry is useful to resolve complications with repeated
natural frequencies. The mode shapes and modal coordinates may be redefined
in such a way that the system (B-2) of wodal equations is decomposed into iden-
tical (or essentially identical) systems according to the structural symmetry
(or the multiplicities in the critical natural frequencies). Each subsystem
may be considered as a separate unit, and therefore controlled independently,

The total number of actuators required may remain the same, but the
order of complexity in the design of structural control systems may be greatly
reduced. The order of each subsystem is much smaller than the overall system,
and the control systems designed for one subsystem may ba duplicated for the
others. Furthermore, since each actuator may concentrate on fewer critical
modes (within each subsystem), feedback gains may also be greatly reduced in

magnitude.
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APPENDIX C

STATE FEEDBACK CONTROL WITH A
LUENBERGER OBSERVER VIA LINEAR-QUADRATIC REGULATION

C.1 Introduction

The objective of this section is to summarize recent results on the
robustness of Linear Quadratic Static Feedback (LQSF) regulators. A review of
the LQSF regulator design methodology was given in a previous report
[1; Sec. 4.2) and is also contained in Appendix B to Volume 2 of this report.

In Section C.2, the scope of the summary is specified and recent results
are subsequently presented. Some commerts are Jiven in Section C.3.

C.2 Robustness of LQSF Regulators

C.2.1 Scope

The robustness of LQSF regulators as discussed in this section, spe-
cifically refers to the ability of the LQSF regulators to retain
stability in the presence of perturbations of the open-loop dynamics. These
perturbations include model 2rrors and parameter variations and they may be
characterized by nonlinear time-virying changes in the open-loop dynamics.

There has been a considerable amount of published work in the open
literature related to the robustness of LQSF regulators [see References 2 - 7].
This section, is intended to be a summary of these recent results. The po-
tential application of the robustness results for LQSF regulators to the
control of large space structures will be evaluated in the future.

C.2.2 Gain and Phase Margin of LQSF Regulators

Regarding the robustness properties specific to LQSF regulators, the
first significant result is due to Anderson and Moore [2]. They show that
single-input LQSF regulators have *60° phase margin, infinite gain margin,
and 50 percent gain reduction tolerance.

Safonov and Athans [3] consider the robustness of a general LQSF
regulator:

x = Ax + Bu, x(0) = %
T T
m‘iin J(x,u) = /[x Qx + u Ru] dt (C-1)
0
T T

T




g = R 1Tk (C-2)

i
The optimal feedback gain H is given by '
where K = KT > 0 satisfies an algebraic Riccati equation [1; Sec. 4.2.1].

The class of systems considered in reference [3] are perturbed versions of the
optimally controlled system, i.e.

d - - e -
T Ax + (Bnu), x(0) = %, )

-~

4 = -Hx " (c-3)

where A, B, x., and H are the same as in Eq. (C-1) and (C-2) and n is assumed %
to be a finite-gain nonanticipative operator with n{0) = 0. The perturbed
LQSF regulator is depicted in the following:

x?

) — Y w-ars

PERTURBATION

U

H=r 18Tk K

For n(*) being a memoryless, time-varying nonlinear operator, a sufficient b
condition is obtained for the stability of the perturbed LQSF regulator

Eq. (C-3). Similarly, a second sufficient stability criterion can be given for !
n(+) being a finite-gain, linear time-invariant operator. However, more inter-
: esting results are obtained when special cases are considered.

.-

In particular, consider Egqs. (C-1), (C-2), and (C-3) but specify that
Q > 0

i R = a diagonal matrix > 0




i A A e <

=

and that the perturbation n satisfies

n = .

u
an m

so that the perturbations in the various feedback loops are noninteracting.
This particular perturbation is illustrated in the following figure:

74U
n1(') Lk
—> X
L4 3\
. > s1-A's —>
¢ —P
n..u
) =

H=R"18TK

Under these conditions, the perturbed system remains asymptotically stable
in the large, if each of the perturbations n, is memoryless with (niui)(t) -
fi(ui(t),t), and if for some k < =, some 8 >~ 0, and all t ¢ [0,=)

fi(o,t) = (

1 +
k > ;I £, (u,t) 3_~g—i—l, for allu, # 0

In particular, this result implies that either of the following changes
leaves an LQSF regulator asymptotically stable in the large:

(L A phase shift of less than or equal to 60° in the respective
feedback loops of each of the controls u,.

(2) The insertion of linear constant gains (a,) with a

> 1/2 into
the feedback loops of the respective controls u

i
il
C.2.3 Robustness of LQSF with a Prescribed Degree of Stability

Patel et al [4] consider the robustness of LQSF regulators with a
prescribed degree of stability [1, Sec. 4.2.7.3; 2] and, by Lyapunov's method,
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establish quantitative bounds on perturbations in the system such that the
closed-loop system remains stable. These bounds are obtained for the genmeral
case of nonlinear, time-varying perturbations and are determined by the pre-
scribed degree of stability (a), and the maximum and the minimum eigenvalues
of two symmetric matrices. Since these two symmetric matrices consist of
weighting matrices in the performance index, a designer can select appropriate
weighting matrices to attain a robust design.

C.2.4 Gain and Phase Margin of LQSF with Kalman Filter

The robustness properties of LQSF regulators obtained by Safonov and
Athans (see Section C.2) hold independent of plant dynamics or performance
index selection. They are global and guaranteed. However, recently, Doyle [5]

: showed by a counterexample that a standard two-state LQG control design results e

i in a closed-loop regulator that has arbitrarily small gain margin. There-

; fore, there is no guaranteed gain margin for LQSF regulators with Kalman 3o
filters. 4

Similarly, it has been stated that no guaranteed properties hold for
LQSF regulators with observers [6].

It 1s important to note, however, that there may exist apprcaches to
improve the robustness of LQSF regulators with either a Kalman filter or
H Luenburger observer, even though they do not have guarantecd robustness
properties.

C.2.5 Improving the Robustness of LQSF Regulators with
either Kalman Filter or Luenburger Observer

G

The robustness properties of LQSF regulators with filters or observers

need to be separately evaluated for each design, since no guaranteed robust-

ness properties hold in these cases. Doyle and Stein [6] present a design

adjustment procedure to lmprove the robustness of such systems. They show

that in general the approach of "speeding-up" filter or observer dynamics

will not work. To increase the robustness, their procedures are to drive \

some filter or observer poles toward stable plant zeros and the rest toward

infinity. When the procedures are applied to an illustrative example of an i

LQSF regulator with a Kalman filter, they are equivalent to a method of trad-
é ing off ‘between noise rejection and margin recovery. It is stated [6] that )
f full-state robustness (see Section C.2) can be recovered asymptotically, if
! the plant is minimum phase and correct procedures are followed.

C.2.6 Robustness of Discrete-Time LQSF Regulators

Safonov [7] considers the robustness of discrete~time LQSF regulators
and obtains the following results: discrete-time LQSF regulators have neither
the 6-dB gain reduction, nor the 4= dB gain increase, nor the *30° phase
uncertainty tclerance of their continuous-time counter parts. Instead, the
gains (ai) in each control channel must lie between the following limits

S e P

1
2 < T+ 2= (b <)

i i




and phase uncertainties (¢1) must be bounded by

b
¢ = 2 sin’ ! -éj—' < 60°

Detailed expressions for these discrete gain and phase margins as well as
tolerance bounds for wmore general types of nonlinear, time-varying, and dynamic
uncertainties can be found in [7].

C.3 Comments

P oy ot S 7 T AW RN b

The robustness properties of LQSF regulators (Section C.2) were dis-
cussed with respect to perturbations such as parameter errors, parameter
variations and gain variations. It should be noted that throughout the dis-~
cussions of this sectiun the order of the model of the open-loop system was
assumed to be correct. In particular, the robustness of LQSF regulators

against model truncation errors should be of interest to the coatrol of large
space structures.

\

The results presented in Reference [q] appear to imply that LQSF reg-
ulators without filters or observers are rotust against model truncation errors
due to the absence of observation spillover. LQSF regulators with filters or
observers do not seem to have robustness against model truncation errors due
tc both observation and control spillover. Design procedures in Reference [5]
should be evaluated for the potential application in improving the robustness
of IQSF regulators with filters or observers against truncation errors.
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