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Summary.—The flow in a round jet issuing from an orifice in the same direction as a general external stream, is
investigated theoretically as ap_ extension of the problem of a jet issuing into still air. The flow in the upstream
part of the jet{Region 4 of Fig. TY in whic re of fluid of uniform velocity exists, and the flow in the downstream
or developed part of the jet-{Region B of Fig. 1, are investigated separately ; the solutions fitted together at the
section at which the core disappears. The deviation of the outside stream due to inflow into the jet is also considered.
Numerical solutions are derived for several values of the ratio of jet exit velocity to stream velocity.
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} 1. Iniroduction.—The problem of the flow in a round jet, when the air surrounding the jet
“i3 at rest, has been fully investigated-23. The flow in and near a jet with an external stream
el to the jet axis is considered in the present report, with Sfecia.l reference to the inflow
induced outside the jet. The fluid is assumed to be incompressible but the application to jets

of heated or compressible fluids is briefly considered in para. 7.

*The jet is assumed to have a uniform velocity over its cross-sectior: at the nozzle exit. Mixi
with the outside stream occurs at the edge of the jet, and the diameter of the central core of
fluid of uniform wvelocity decreases with distance downstream, the core eventually dis-
appearing altogether. Downstream of the apex of the core the velocity on the jet axis
begins to fall and finally a quasi-steady state is reached for which the velocity profiles at all

“ sections are similar.
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2

The presence of the external stream makes the problem more complicated than for a jet with
the survounding air at rest, and the method of solution has been simplified by specifying a shape
for the velocity distribution across the jet at all normal sections. For the first part of the jet,
in which a core of undisturbed fluid exists, the radius of the core and the external radius of the
jet are determined from the equations of motion, and after the core has disappeared the velocity
on the axis and the jet radius are determined in the same way. The two solutions are then
joined by making the velocity and radius continuous at the section containing the apex « 7 the
core, and in this way a complete picture of the development of the jet is obtained.

The flow in the mixing region is assumed to be turbulent and the shear stress is determined
by application of the momentum transfer theory. Reichardt’s criticisms? of this theory do not
apply to the present application, as it is not used to determine the shape of the velocity
distribution curve; it would be possible to present the theory in Reichardt’s fofrm, but the
momentum transfer theory has been retained on account of its greater familiarity.

2. Notation.—The following notation, illustrated in Fig. 1, will be used :—
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FiG. 1—Diagram illustrating Notation.
x Distance from jet exit along axis of jet.
r Distance from jet axis.
a Radius of jet at exit.
%o Radius of outer boundary of jet.
7 Radius of inner boundary of mixing region, i.e. radius of core.
U, Stream velocity. .
U, Jet exit velocity.
i U, U,
U Excess velocity on jet axis over stream velocxty (after disappearance of core).
% Velocity parallel to jet axis at point (z, 7).
v Velocity normal to jet axis at point (z, 7).
v Stokes’s stream function for flow outside the jet.
M Jet momentum/2x.
e Stream density.
T Shear stress.
i Mixing length.
c Mixing length parameter.
¥, | Defined in Fig. 12 (Appendix 111,
ex:c'{ll;fshr:cqumunttlnudulmmwwhmymtothemmgm frﬂnthemmunmshandnpmbabl} not
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3. Flow in Region Near Jet Exit.-—In this paragraph the flow in the part of the jet which
contains a core of fluid of uniform velocity (Region A4 of Fig. 1) will be considered. At the
jet exit, which is a circle of radius a, the jet has a unifon axial velocity U,. It will be assumed
that the pressure variations in and near the jet can be negiected and that the velocity throughout
the central core is constant*,

The momentum equation for the flow across a circle of radius », whose plane is normal to the
jet axis and at a distance x from the exit, has the form (Ref. 4, p. 133) —

L orurdr—u -
= Jopru dr — u axjopurdr r, .. .. .. - (1)

where u is the mean axial velocity at the point (x, ) and ¢ is the shear stress in the axial
“direction at (x, ) due to turbulent mixing.

The assumed axial velocity distribution in the mixing region is given by the equation

1:=U0+(—(£—E—@[l—cosn(r°—7)], .. .. R 9]

Yo—1n

and 1s shown in Fig. 2, where U, is the external stream velocity and 7, r,, are respectively the
external and internal radii of the mixing region at the station x.

'l

— ]

1
Fi6. 2—Velocity Distribution across Jet in Region A. {£qn. 2).
The usual formula for the shear stress, on the momentum transfer theory of turbulent flow
(Ref. 4, p. 207), is 22
2%
,=91=(.§7), .- .. . .- .. .. -~ 3

“and this formula will be adopted. Here / stands for the mixing length, which will be assumed
to be proportional to the width of the mixing region : we therefore put

. l=c(rg — 1), .. .- .. . .. . R & )]

where ¢ is a constant, characteristic of turbulent motion for the problem under consideration.

. a5 \2

Hence ) 1=pc’(rn—rl)3 -a—';-) . - .e .o . . (5)
The quantities 7, and r, will be determined by satisfying equation (1), with % and r given

by (2) and (5), at two positions. The first position is at the outer boundary of the jet r =7,,
where v = 0 and u = U,, so that equation (1) becomes .

-a-a.x-j:'pru(u-—U.)dr=O,
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This equation is integrated and the constant of integration determined from the conditions at
the jet exit, \We obtain

J:op'l‘(" —_— Uo) d’ - ﬁ‘[ = gr;pUl (Ul - UO)I A i bl (6)
where a 1s the radius of the jet at the exit. The constant M is proportional to the jet thrust,

which is equal to 2¢xM when the fluid is taken in from the stream; but if the fluid is supplied
by other means the jet thrust is increased by the source thrust of the added fluid.

The second position at which equation (1) will be satisfied is half-way across the mixing

region, where r = 'K‘H—Trl' At this position, from equation (2),
|¢=U°+U1_ E—_l(_u_*_hl__'un
2 ' er 2N re—n, /'
so that equation (5) gives
22
g %C’ (Uy— U2

With these expressions equation (1) becomes

-

ro4r )2 2
2 uu = Yot W) gy 2oy, — Ure ) (D)

The next step is to substitute the form (2) for the velocity # into the momentum equations (6)
and (7). The integrals occurring can be evaluated without difficulty and (6) and (7) reduce to

anni+ 2a,7, 7, 4 ag 7, = at .. .- . (8)
%[Au'x!‘*"um’l'o‘*'Aoo"oz]zB('1+’o)- .. . - 9
; 5—~12 1 2 3412 1
Where a0 =2 (35"~ 51) @ = 40 =2(*5" ~ %)
4, -1B+8 1+2 5+3 . _1—1  5+3
s - ety = S i e e
1—=12 1+2 543 s '

and 1 stands for the velocity ratio UyU,.

The development of the jet up to the disappearance of the core is determined by the
equations (8) and (9) together with the conditions 7y = 7, == a at the jet exit ¥ = 0. Solutions
have been derived by the method given in Appendix I for values of 2, the ratio of the stream
velocity to the _jet exit velocity, of 0, O-lﬁ}? 0-25, 0-5 and 0-75. The resultz are given in
Tables 1-5 and in Fig. 3, which also shows the solution derived by Kuethe? for 2 = 0 by a more
elaborate method ; the agreement with Kuethe's solation i$ fairly good and this gives confidence
that the approximations introduced are reasonable. '

4. Flow in the D Jet—After the central core of uniform velocity has di
due to the inward of the turbulent mixing region, the velocity on the axis starts to fall
and further downstream the velocity distribution across a section of the sti:xt settles down to

a steady shape. No attempt will be made to allow for the variation of the
distribution. ' :

pe of the velecity




(XY () ] (]

[34] . [ )
s 3 % s o) =n s 5 [ Z)

. i
4{ ol \\ \r\.\
*et
3
Fic. 3—Jet Boundaries,

It will be assumed that the axial velocity at all sections of the developed jet is given by the
formula

’), o 3 1)

%o

%= Uol~i~ %(‘ + cos=n

——— .

where 7, is the jet radius, and the velocity on the axis is Uy + U, which falls with increase of
distance downstream. The velocity distribution given by (10) is shown in Fig. 4. In addition,
the alternative velocity distribution '

a;2]2

u=U,+U[1_(_’_ ’] O 4 113
: Yo

also shown in Fig. 4, was considered. The latter form probably represents the correct shape

better than the former at large distances from the exit, but the change was found to have little

effect on the general development of the jet, and the calculations with it will not be discussed

further.

Ch e e

Fi16. 4—Velocity Distributions across Jet in Region B.

The shear stress due to turbulent mixing is given as before by (3) but the mixing length ! is
now given by

WAy L e -

. . lztf., . .e .. ‘e “e . .. .o (ll)
which is obtained from (4) by putting 7, equal to zero.

e
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The momentum equation (1) is still valid and cquation (6) for the total momentum still holds
in the form

J;opru(u-—Uo)drzM, R 4V

but with 1 now given by (10). In addition to satisfying this, we shall satisfy (1) at the half-
radius r = 7,/2, at which, from (10),

U 2u U

u::Uo*f*?. -e—;—-‘z‘r;:

T

and, from (3) and (11), = = '—-;ic’Uz.
P

Substituting these expressions in (1) gives

@ [of? , 2 AN 'S - _ e
Cx ), pr # d’_(U°Tf)e—xI; pr u dr = —S—ch To- . -« (13)
Equations (12) and (13), with u« given by (10), are sufficient to determine the variation of 7o,
the jet radius, and U, the excess velocity on the axis, with distance downstream. Evaluation
of the integrals involved leads to the equations

pURYD1486 Uy +0-0861 Uy =M, .. .. .. .. (14
U %z (0-0578 U, + 0-0476 U) + r,iid% (0-0914U, +0-0933U) = — 1-234 20U~ (15)

Next, r, is elimnated from (l-ﬂ and (15), and a differential equation obtained for U - —

1 d_q[(o,ogu U, + 0-0033 U — 0-1486 Uy + 01722 U) (0-0578 U, + 0-04760’)]

U dx 2(0-1486 U, + 0-0861 U)
1:234 c® U32
= T MR (0-1486 U, + 0-0861 U)'r2,
If we put Uy/U = 3, this equation becomes, oa reduction,
dz (0-0626 z 4+ 0-0458) 1+ 0-0012 2
dx (0-1486 z +-0-0861)'/2 | * " (0-1486 z - 0-0861) (0-0626 z F 0-0458)]
1-234 c2 U, : '

== '——-(':M—Ipvm—o - - Y s e .. .. LR (16)

The integration of this equation is greatly simplified if an approximation to the term in
square brackets on the left-hand side is taken. This term is equal to unity for z = 0 and tends
to unity as z tends to infinity, having a maximum value of 1-05 at z = 0-7, A mean value
of 1-04 has been adopted for it and, with this simplification, equation (16) becomes

dx (z+0732)  7-310, .
dx (; - 0.57§)u: = (Mlp)"‘ » .. .. .t .. ( 7)

which integrates to

. 2
{z + 0-579)U3(0-667 z -+ 0-690) = 7—“3-{‘,—__:)1}:1.1 toonst. .. .. L. (18

P ERp
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The next step is to link this solution with the solution with the central core, already derived
in para. 3. We note first that, from (6),

12

S U 2P RS B AN
S [’6" (= L’o)“z} =(Cgn") @

-

Also, from para, 3 and Fig. 3, the distance from the jet exit of the point of disappearance of
the core is given by

Xy,

a

7 T
where b is a numkber which depends upon the velocity ratio 4 ; at this point z = .U" = U,

y)

== \7 - Substituting these values in (18) fixes the constant of integration, and this equation

becomes

(5 +0-579)" (0-667 Yr 1 0-690) — (-2 + 0-57)" (472 1 0-690)

= 7.31 2;'2)“2(52”’*[;)_ .. .. .. .. .. (19)

| R a

Equation (19) determires the variation of U, the excess velocity on the axis, '/ith distance
downstream ; when U is known, the jet radius 7, is given by (14). There is necessarily a smooth
join in the jet radius and velocity at the junction of the two solutions because of the forms (2)
and (10) adopted for the velocity distribution~, which become the same when r, is put equal to
zero in (2).

Calculations of the solutions of (19) and (14) have been 1nade for the same values* of 1 as
before, viz., 0, 0-125, 0-25, and 0-5, up to c*x/a equal to 0-4. These are given in Tables 2, 3, 4
and Figs. 34, 58 and 6, which show the jet boundaries, the velocity on the axis, and the rate of
spread of the surface on which the velocity is half-way between the stream velocity and the
velocity on the axis at the same value of x. It is worth noting here that the outer bound
of the jet, which is difficult to define experimentally, may really be slightly wider than that
calculated, because the actual velocity falls rather more slowly at the jet edge than the calculated

distribution. For this reason the * half-velocity * line (Fig. 6), should be more reliable as an
indication of the jet width.

[ ]
e
L] \\
\\-“.‘m
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Fi16. 5a—Velocity on Axis.

* i =075 was omitted.
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Fic. 6—Hall-Velocity Lines.

5. Determination of the Parameter ¢*.—Up to this point the mixing length parameter ¢ defined
in equations (4) and (11) has been left undetermined. This has been done to keep the analysis 1
as general as possible. But, before proceeding with the calculation of the inflow from outside
the jet, it is convenient to select a value. We shall take ¢* = 0-0067, this value being derived
{rom experimental data on the spread of a jet issuing from a small orifice in still air ; the analysi
leading to this is given in Appendix II. This value is to be compared with Kuethe's vaf'\:e'z
of 0-00497 obtained from comparison between theory and experiment for region 4 of a jet
issuing into still air.
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After the calculations described below had been finished, the above discrepancy in the
v\pcrimenta! data was reconsidered, and it is now thought possible that dif_’ierent values of ¢?
applv in regions 4 and B. 1n practice ¢* may rise from about 0-005 in region .4 to 0-0067 in
region 3, over a transition region downstream of the core apex.

6. Inflou Outside the Jet.—The flow inside the jet is determined by the above analysis when
¢* has been specihed. The mass flow across each section of the jet can be calculated, and is
found to increase more rapidly than the increase provided by the natural inflow into the growing
jet from the external stream : the jet thus induces an inflow towards itself. To do this, the
pressure inside the jet must be lower than in the {ree siream and this appears to be in contra-
diction to the previous assumption of uniform pressure ; it has, however, been shown by Tollmien!
that this reduction in pressure is extremely small for a jet issuing into fluid at rest.

The next step is to calculate the inflow induced at all points near the jet. This is done in
two stages ; the first is based on the assumption that the inflow is purely radial, and the second
stage is the correction of the first to allow for the interaction of the flow at neighbouring
sections.

If v is the outward radial component of velocity at the point (x, r) and y is Stokes’s stream
function for the motion, we have

v:j,rudr_ —a;=—rv .- . . .. . (20

For region 4 we substitute for # from (2) into this integral and obtain, for » > r,,

. 2 2 — 2 U 2
v = (U, — Uy ['—"i;"’ _ £L_'g)_] e

~?

ey _u oy ittt ()l P
Dewmvg [P ] e

For region B we substitute from (10} and obtain, for r > r,,

2
v =0-1486 Urg? + 22

%:o-nm%(vm Y

This last formula can be reduced by use of (14) and {17) to

3y _ M\ 4:-24
-5;"(9) {z + 0-732) {z + 0-579)3:2 ot e - 28
where, as before, z stands for Ug/U.
Equations (21) and. (23) yield values of the inflow velocity

R N 4
4

%

which, taken as they stand, correspond to the radial flow at each section of the jet being
independent of the flow in other sections : thisis agmnma’ tely true very close to the boundary
of the mixing region but is quite invalid at istances from the jet axis. The actual flow

outside the jet can be regarded as closely equivalent to that produced by a system of sinks
along the jet axis, of strength sufficient to secure the inflow at the edge of the jet indicated by

T
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the above formulae.  This svstem of sinks has a strength per unit length proportional to g_"
. %

r
which iy given by (21) and (23} ; numerical values of —— —— afe given in Tables 24 and

in Fig. 7, for the various jets considered.

AL

e
; \ PP
1 \
! : !
R N = -
Lo | E i "‘—-___\
/A" { \%F\ _‘\.\‘
£4 - i \
A0 H
i
do :' h-__\-‘___—"'—-—_
bros . f Ne—d. | aes
. . n-Ls 2 3L " 1.1!2_ ot
° s L 3 g(v_’m) 30 »ns

F1G. 7—Sink Strength along Axis of Jet.

It will be seen that there is a discontinuity in sink strength at the point of disappearance
of the core ; this is associated with the discontinuity of the rate of growth of the outer boundary
of the jet there, and is a defect in the solution which, however, is only significant in the
immediate neighbourhood of the jet edge at this particular section.

It is next required to find the inflow velocities* associated with the sink distributions shown
in Fig. 7. This is a problem which is not amenable to analytical treatment and it has been
solved by breaking up the jet axis into lengths over which the sink strength can be taken to be
linear, and summing the contributions of each linear section at 2 large number of points. The
details of this calculation are given in Appendix ITI. '

Calculations were inade for ¢* = 0-0067 and for ratios of the stream velocity to the jet exit
velocity 2 = 0-125, 0-25 and 0-5. The results are presented in Figs. 8-11, which give contours
of the angular deviation (in degrees) of the outer stream towards the jet axis ; for other velocity
ratios the stream deviation at any point can be quickly Jetermined by interpolation.

The results of similar inflow caiculations made for 2 = 0-25, ¢* = 0-005 are given in Fig. 11
for comparison with Fig. 9; the angle of inflow is slightly decreased by decrease of c2.

7. Application to Jets of Compressible or Healed Fluid.—The solution of the corresponding
problem for a jet of compressible or heated fluid is more complicated, as the energy equation
would have to be satisfied as well as the momentum equation. It would therefore be convenient
if an ‘ equivalent " jet of incompressible fluid could be determined for which the inflow was the
same as for a real jet of heated fluid.

Since the jet momentum M (equation (6) and (12)) is maintained for all sections, although
the density, temperature and velocity of a hot jet will vary, it seems probable that an equivalent
jet of incompressible fluid would be such as to have the same value of the exit momentum M,
as defined by equation (6}.

. mzuthend:almpmmtsmreqmed. The axial components are negligible in comparison with the
stream velacity, ’
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APPENDIX I

Solutions of Equations (8) and (9)
The equations are

ayy 7,7 + 2030 71 75 + age?y® = a7, A .- (8)
}‘ii? {Au 7n*+ 24,0770 + Aoo"oe] = B(r, + o). .- - (9)
From (8) | dry _ a3 G
dry ayry + ayrg’

and from (9) Blr, + 7o) 9o = Adun + A T+ 2w, + Ao
4] - L]

Elimination of -3 gives
d’o N

. 2 _d_x — f_jz(au Am — &9 Au) -+ f)'o(aquo —‘7400‘411) + fo’(aw”oc- - aooAm)
2 dr, (ayry -+ ayrod{ry + 7o)
— ot 3 ) %3fp .. .. .. .. .. (24
=%+ a7y 1+ a597 ntr’ ) ( )

ay Ay — a4y, ., = (813410 — 3104 ) (A1 — a137)
ro ayy(310 — Gyy)

where a = 2 s
i

o = y3(A10 — Ang) + arg(de — 4yy) + oAy, — A40) .
? (810 — a3)

Also, from (8),
8u" + 8 = [a’ ayy — 7o (Agey — al°!)]”"

an(r; + %) = 7olan — ayq) + Vay're? + ay(a® — "w’ui)_

= 1ol — @1 + V — 14 — 85" + ay:8e) + a* ay,.
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Using these expressions integration of (24) gives

20 e a oa o g D

0-5 Bx — 27, — V@8 — 76%{an00 — a,7)
2
Qoaityy —

LIV

t —— — A 25
T g [ e i va v SR el . (..,D)
rol@y — @) + Vatay — ry3(a;,ah — @y%)

v P
-

To evaluate the last integral let

I — J ay7odry .

7o(dp — @) + \/“n“2 — 7oAy 800 — 40%)

- f rodr,
T 0 — —_——Lim——==,
J 7o + Ve — o7y’
a a?
where Cg= —1____ 2 _. en
e YT (e — )
11 10 11 10
811405 — B10°
and =17 7

(a3 — ay0)*

Then, rationalising the denominater, - —— ; o N

— Vet — cr.0d
I = ¢, J'o('orug(l _:152) _Cz::? o = co(ly + Iy,

2 ———
where I, = J roii ;t: Z’)’o_ o I, = — j 7o VB — cy7, drg

1 c (M
We have I, = " 2 1 — A
: .2(I+C:)J'[ +r,\/l+c,—c, r.‘\f1+c,+c,] 7o

_ 1 ¢ ViTa—e ]
= e | O 1 s | 1
2(1+‘-'|)[ '+\/1+c.log(,.\/1+c’+cl)

To evaluate I, put ¢, — 7,2 = g R?, so that

. Ry¥R,
h ‘”‘J T T ake — afe;

- =V Vl'—'l—_':cJV
AN+ E;S [m'+ \/c,(lc‘-t- Q)log(ﬁ:\/l +::+ e/ VZ)]

. - ¢ VIt g~ — o
=T [2”‘ @+ e e (. T+ cle® — ety +°x')]
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. - [2!7 VEET ) + o (Y LG n | Vol — ey 4,
s To € Ca’) V1i+ Cy (701/1 N V1 ‘F_Cz(cnz — cz,.oz)x/z,_cl)

With this value of 1, x is given as a function of r, by (25) and r; as a function of r, by (8).

APPENDIX 11
Determination of ¢ from Measured Rate of Spread of a Jet in Still Air

Experimental data obtained from tests made at the R.A.E. on the rate of spread of a
jet issuing from a small orifice in still air show that the jet spreads conically. The cone on
which the velocity is equal io half the velocity on the jet axis was found to have a semi-angle

of 5 degrees. _
With the cosine velocity distribution adopted (equation (10)) this gives
73/2 = x tan 5°, ie.r, =0-175x. .. el e .. (26)
For zero stream velocity (14) and (15) become

0-0861 pU%,2 = M,

0-0476 U2 ¥o 4 0.0033 U, 2V — _ 1-234 20,
dx dx
Elimination of U between these equations leads to
ﬁg = 27-0 ct,
dx
and hence, from (26),
c® = 0-0065.

The accuracy of the experimental data is not sufficient to distinguish between an angular spread

of 5 deg. and 5-1 deg., and a value of ¢? = G-0067 has been adopted as the calculations were
a little simpler with this value.

The approximate form assumed for the velocity distribution will give the jet radius rather
less than the actual value, which is difficult to specify exactly. :
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APPENDIX III
Determination of Inflow Velocity from the Axial Sink Distribution

As stated in para. 6, the inflow velocities corresponding to the sink distributions of Fig. 7
were determined by breaking up the latter into sections, along each of which the sink strength
could be treated as linear. We therefore require formulae to determine the inflow velocity
for a linear source distribution of any length ; this in turn is easily determined if the velocity
fields of (a) a uniform source distribution of unit strength between the points A (— 1,0) and
B (+ 1,0), and (b) a source distribution from A to B of strength proportional to the distance
from the origin, can be calculated.

For case (a) the stream function is?

8a . : .
A(no) ° 8 (.9 !
F16.12. Notation used in Appendix IIL. ‘

! — &) d¢ s | 21z |2
"'zj_‘[rzg(x__)e)ﬂ]uﬁ:[‘ {" ' ("*5)}/]

=V G+ -Vt G- 1)
and e (x + 1) _ (x—1)

i Vet (x+ 1) Vet (x— 1t
= c0s b, + cos b,
where 6, and 8, are defined in Fig. 12.

For case (b) |
! 3
N J-: i i("';(;.-f);;fpl' = j...) &d [— {f’+ (x— ;):}llt]
S [‘\/r’-{‘-(x—-— DE+Vriyr (x4 1)1]1 +J" Vi (x = §)He,
s0 that B B
oy _ __ (x—1) (x4 1)

%= TVATE=I VATGr | VO rER D - VG

= (R, —Cos0) —(Ry—c0s0). .. .. e .. . .. (2 1

The radial velocity v is equal: to — ‘:‘%5" that %"’- is the quantity which we require to
determine. From (27) and {28) contours of equal values of dy/3x for the two standard source i
distributions were drawn. With th: aid of these the contribution of any set of linesr source |

distributions to the value of 2y/?x could be determined in a straightforward manner by
summation. ' *
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TABLE 3
Jet Exit Velocity
Stream Velocily
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