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ewastic divergence characteristics of swept wings. From the results of this
theory, it is predicted that, because of elastic coupling between bending and
torsional deformation of the wing box, laminated composites may be used to
preclude win, divergence for a large range of wing forward sweep angles.* For-
mulas are developed to illustrate the important parameters governing composite
wing divergence. Two examples are presented to illustrate the use of these
formulas. These examples show that composite forward swept wings have the
potential to be feasible, efficient designs.
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SECTION I

INTRODUCTION

The expanding utilization of laminated composite materials in air-

craft structural components has led engineers to seek new ways to utilize

fully these light-weight materials. One aspect of this search has been

the study of aeroelastic tailoring of composite materials. Aeroelastic

tailoring of a lifting surface involves the synthesis of a composite ma-

terial structure whose special directional properties enhance the aero-

elastic performance of the airfoil. Primary attention has been focused

upon improving conventional aircraft designs such as sweptback wing con-

figurations. The purpose of this report is to illustrate the potential

benefits to be gained by applying the aeroelastic tailoring concept to a

nonconventional design, an aircraft with a forward swept wing.

A report by Diederich and Budiansky [l] discusses the aeroelastic

divergence of metallic swept wings. Their repert shows convincingly that,

from a static aeroelastic stability point of view, sweptback metallic wings

are far superior to sweptforward metallic wings. As a result of their

study, the forward swept metallic wing has not been a serious design con-

cept for some time.

Although the metallic forward swept wing is inferior, from a structural

stiffness standpoint, the forward swept wing possesses some aerodynamic

advantages over the sweptbark wing. Knight and Noyes [2] noted in 1931

that wings with 200 of forvard sweep experience stall at higher angles of

attack than similar 200 sweptback wings. Thus, sweptforward wings may

develop higher lift coefficients tnan similar sweptback wings. In addition,

Jones [3] notes that sweepback may produce a pronounced rolling or pitching

i1
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instability because of the premature tip stall of these wings. Con-

versely, at high angles of attack, forward swept wings begin to stall first

at the wing root and are not subject to this phenomenon. On the other

hand, the inherent lack of directional stability of a forward swept fly-

ing wing makes it necessary to provide a generous vertical stabilizer and

rudder. Little has been published concerning the stability and control

characteristics of forward swept wing-fuselage configurations.

The first aircraft to employ a forward swept wing was the Junkers

Ju 287 jet bomber [4] developed in Germany during World War II. This test

aircraft flew on 16 occasions in 1944, developing speeds of over 650 km/hr

(404 mph). The wing on the Ju 287 was swept forward nearly 250, primarily

to provide good low speed flight characteristics. Limited flight tests,

brought to a halt by advancing Soviet armies, did not disclose any severe

aeroelastic or directional stability problems. The interested reader will

find the information in Reference 4 a fascinating account of a little

known chapter in aircraft history.

A modern-day example of an airplane with a forward swept wing is pro-

vided by the German Hansa twin-jet executive transport [5]. This aircraft

is the only forward swept wing aircraft other than the Ju 287 that has

actually flown. Developed by Messerschmitt-BEolkow-Blohm, the prototype

HFB 320 Hansa first flew in 1964. The metallic wing on the HFB 320 ex-

hibits an aspect ratio of 6, a taper ratio of 1:3, and employs 150 of for-

ward sweep at the quarter-chord line to avoid the necessity of taking the

main spar of the wing through the passenger cabin. The aircraft has a max-

imum cruise speed of 825 km/hr (513 mph) at 25,000 ft. A stretched ver-
sion of the HF8 320, designated as the HFB 330 Hansa has also been developed.

2



Renewed ircerest in forward swept wing technology is due to N. J.

Krone, Jr. [0]. Reference 6 illustrates the feasibility of the forward

swept wing concept when laminated composite materials, rather than metals,

are used in the wing structure. Krone's conclusion, arrived at through

a comprehensive set of numerical examples, is that the use of laminated

composite materials in the wing structure offers the design flexibility

to overcome the weight disadvantages encountered in conventional metallic,

forward swept wing design. Thus, proper aeroelastic tailoring appears

to lessen the severity of the aeroelastic divergence problem of forward

swept wings.

The results in Reference 6 leave unsettled several questions about

the basic mechanism by which static aeroelastic stability improvement is

achieved through the use of laminated composites. The present report pro-

vides a study of the static aeroelastic divergence characteristics of wings

whose structure is constructed solely of lamnated, f4brous composite materi-

als. This study uses a mathematical idealization of the wing divergence

problem similar to that used in Reference 1, but incorporates laminated

beam theory into the analysis. Attention is focused upon the additional

coupling between bending and torsional deformations of a wing, introduced

by tte laminated composite conr.truction, and its influence on swept wing

divergence.

The mathematical model used throughout the study employs a strip

theory representation of the aerodynamic loads that arise from wing bending

and torsional deformation of high aspect ratio wings. This representation,

together with laminated beam theory, allows the solution of the wing diver-

gence problem in analytical form. Such a solution is useful, since the

effect of geometrical, structural and aeroelastic parameters can be seen

readily. 3



SECTION II

AEROELASTIC MODEL IDEALIZATION

Soi,.! insight into the influence of laminated composite materials

upon swept wing design can be found through a mathematical analysis of

an idealized model of a slender, high-aspect-ratio wing, such as that

shown in Figure 1. This section describes the assumptions used to model

both the structural deformation behavior of the wing and the aerodynamic

loads due to this deformation. This idealized model will be used to devel-

op closed-form solutions for aeroelastic divergence of swept, composite

wings.

REFERENCE AXIS

Figure 1 - Geometry and sign convention used
for the constant chord swept wing
analysis.
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1. WING STRUCTURAL DEFORMATION MODEL

The wing shown in Figure i is assumed to derive all of its bending

and torsional stiffness from thin, laminated composite, cover-sheets that

form the upper and lower surfaces of the wing. It is assumed that the

resulting box-beam wing structure is such that its deformation may be repre-

sented by a bending deflection h(y), positive upward, along a straight

reference axis (the y-axis in Figure 1) and a rotation a(y), positive nose-

up, about this axis. In addition, it is further assumed that wing chord-

wise sections, perpendicular to the beam's reference axis, are rigid so

that wing deformation is a function only of the spanwise coordinate, y.

The enforcement of this type deformation is essential to the work that

follows. A similar structural model is used by Housner and Stein [7] to

study the flutter of sweptback laminated composite wings.

Using the box-beam model, equivalent bending and torsional stiffnesses

of the wing, EI and GJ, respectively, may be computed employing the clas-

sical Euler-Bernoulli assumptions. As is suggested in Reference 7, the

derivation of the equivalent El and GJ for the structure is best accomplished

through strain energy methods. The Euler-Bernoulli displacement behavior

constrains the individual laminae in the upper and lower laminated cover

the wing structure. The definition of the stress-strain relations of each

I of the laminae furnishes the additional information necessary to formulate

the strain energy expression for the box-beam.

Attention will now turn to a summary of the development of the ex-

pressions for El and GJ. Since terms that involve the individual lamina

stress-strain properties appear in the expressions for El and GJ, the

5



development of the stress-strain relations for the lamina will be reviewed.

A full discussion of the development of the equilibrium equations that

govern the laminated beam is contained in Appendices A and B.

2

I (FIBER DIRECTION) 4AQS)

Figure 2 - Composite material lamina principal
axes, 1 and 2, with respect to the
wing reference axes, x and y.

Each lamina of the box-beam is itself orthotropic with respect to a

set of principal axes, one axis being oriented in the direction of the

lamina fibers, while the other axis is perpendicular to these fibers. These

principal axes, denoted as axis I and axis 2 and shown in Figure 2, lie in

a plane parallel to the x-y reference plane of the wing, but are oriented

at an angle e with respect to the x-y system. The angle e is measured

positive in the counterclockwise direction from the x-axis shown in Figure 2.

As shown in Reference 8, the relationship between inplane stresses

and strains may be written, for a singl2 orthotropic lamina, as

Fyy 'ýl2 ý22 ýq26 £yy

TY 16 ý26 N66 YXY

6
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The terms Qij are functions of e, the fiber angle, and the orthotropic

engineering constants Qij given by the following expressions.

Qll= El/(l -"12 P21) (2a)

QO= 1112 E2/(l - 112 "21) (2b)!

1'21 EI/( " l 21 - 112)

Q22 =E2/ (1 " 'l 2 121) (2c)

Q = (2d)

The terms Qij are defined in a convenient manner by first defining a

set of parameters U1 that are functions of Qij [8].

Ul = [3Qll + 3Q2 2 + 2Q12 + 4Q6 6 ]/8 (3a)

U2 = EQ11 - Q22]/2 (3b)

U3 = [Qll + Q2 2 - 4Q66 ]/8 (3c)

U4 = Qll +Q22 + 6Q12 - 4Q6 6]/8 (3d)

U5 = [Q.1 + Q22 - 2Q1 2 + 4Q66 ]/8 (3e)

In terms of these new parameters Ui and the angle e, the Qij terms

become

'-l = U1 + U2cos2e + U3cos4e (4a)

T12 =U4 - U3 cos4e (4b)

'T22 =U - U2cos2e + U3cos4e (4c)

•16 = } U2sin2e + U3sin4e (4d)

U26 : } U2 sin2e - U3 sin4e (4e)

6= U5  U3 cos4e (4f)

7



Since the individual laminae are constrained to act as a unit, in a

manner prescribed by the Euler-Bernoulli deformation assumptions, a strain

energy functional can be constructed by summing the individual strain

energies of each lamina. The reference surface for this strain energy ex-

pression is the middle surface of the wing box. The total strain energy,

denoted as U, is written as follows (note that ( )' = d( )/dy):

U= i.EIo(h")2 - Ko(hi'la) + A22 (v0 2

S~(5)

+ B33 (VNO'') - B22 (h"v 0
1 ) + 1 GJo(a')2 dy

The terms multiplying the deflection derivatives in Equation (5) are defined

in Appendix A. These terms are linear functions of the wing chord and also

involve the Qij parameters of the individual laminae.

From Equation (5) it is seen that the bending deformation h(y) is elas-

tically coupled both to the torsional deformation a(y) and to the exten-

sional deformation of the middle surface, vo(y). The extensional deforma-

tion vo0(y) will be zero if the middle surface is also the neutral surface

for bending, a situation that occurs if the upper and lower laminated cover

sheets are oriented symmetrically with respect to the middle surface.

The Principle of Virtual Work is used to derive the differential

equations governing the static equilibrium of the laminated beam under

the action of the upward distributed load p(y) and a distributed torque

t(y). These equations, derived in Appendix B, are

[EIh"I - Ka']" = p(y) (6)

[-Kh + G =']' -t(y) (7)

Note that in Equations (6) and (7) ( )' = d( )/dy. The terms EI, GJ and K

I8
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are related to the parameters in Equation (5) by the expressions

2
El = EIo-(B 2 2 )2/A22  (8a)

GJ = GJo-(B 3 3 )2 /A22  (8b)
I 0B / (8c)

K= 2 2 B3 3/A 22  (8c)

Equations (8a,b,c) are the result of the elimination of the vo degree of

freedom from the problem, an operation described in detail in Appendix B.

Equations (6) and (7) are coupled together by the parameter K, a

term that, in general, is nonzero for a laminated material. The K parameter

provides an elastic coupling between bending and torsion not found in metal-

lic beam analysis. Since K depends upon both the stacking sequence used

in constructing the laminate and the lamina fiber orientation angles, an

opportunity to tailor the wing structure to provide advantageous bending-

torsion coupling is presented.

Boundary conditions for the cantilevered wing consist of the displace-

ment and slope conditions at the wing root,
dh

a(O) = h(O) Ty- (0) = 0 (9a,b,c)

and the bending moment, shear and torque conditions at the tip, written as:

M(1) = EIh"- Kc' = 0 (lOa)

V(x) = [EIh" - K'= 0 (lOb)

T(W) = GJa' - Kh" = 0 (lOc)

2. IDEALIZATION OF WING AERODYNAMIC LOADS

Aerodynamic strip theory provides a meaningful and somewhat accurate

way of describing, in mathematical terms, the air loads acting upon a

slender wing as the result of structural deformation. A complete discussion

9
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of this aerodynamic formulation is given in Reference 9.

The aerodynamic forces and moments acting upon wing segments that are

perpendicular to the reference axis (the y-axis) of the wing may be com-

puted, provided an effective wing root and tip are assumed, an assumption

that may involve some error. However, the strip theory approach produces

simple equations that have been shown to give satisfactory results for

large aspect ratio metallic wings. ,V
LINE OF AERODYNAMIC

REFERENCE
AXIS

EFFECTIVE

TIP

Figure 3 - Slender swept wing geometry used to
describe aerodynamic loads, showing
chordwise segments perpendicular to
the swept reference axis.

10



To formulate the divergence problem, the only aerodynamic loads to be

considered are those caused by deformation h(y) and a(y). Figure 3 defines

t1, geometrical parameters used to define these aerodynamic loads. In

terms of the upward deflection of the reference axis, h(y), and the tor-

sional rotation, a(y), of the wing chordwise sections, about this axis, the

lift force per unit length, positive upward, is

p(y) = qcaoCos 2A(a - dh tan A) (11)

The torque per unit length due to structural deformation is expressed as
qeoS2A( dh

t(y) qcea Cos A(a - L tan A) (I2)

The term ao appearing in Equations (11) and (12) is the two-dimensional

lift curve slope of the wing sections.

The lift curve slope can be empirically corrected to reflect the

effects of finite span, wing sweep and compressibility. The present report

makes no modification of the 2-D lift curve slope to account for compres-

sibility. However, the 2-D lift curve slope is empirically corrected to

take into account aspect ratio, AR, and sweep angle A by applying the cor-

rection

ao = 0o(A=O) AR +A4cosA (13)

Equation (13) is adapted from that used in Reference 1.

Equations (11) and (12) are inserted into Equations (6) and (7), re-

spectively, to provide the differential equations governing the aeroelastic

divergence of composite swept wings. The solution to these equations for

several cases is discussed in the ensuing sections.

3. DIVERGENCE OF A UNIFORM CHORD WING WITH BENDING FLEXIBILITY ONLY

The simplest wing divergence case to consider is one in which the wing
) j 11I ______________________________________



has constant geometrical and stiffness properties along its span and has

no torsional flexibility. For this case, the governing equation of equilib-
rium becomes

EIhiv + qCaod) sinAcosA = 0 
(14)

Equation (14) can be transformed into the following nondimensional form:

S~d3r
d - br =0 (15)d& 3

by defining the new variables

dh 3.

r =1 • - Y/1  b qca= snAcosA

El

Boundary conditions for this cantilever wing problem, in ternis of the vari-

able •, are:

r(l) = 0, d_0= 0 d2 r0 0 (16a,b,c)d& d

This problem is an eigenvalue problem and is discussed at length in

Reference 10 (pp. 311 - 317). The solution to this problem yields a critical

value of dynamic pressure, q, at divergence, denoted as qD' given by tne

following expression:

q = 6.33 El (1?)
a 0cl3IsilnAIcOsA

Equation (17) is valid only if A, the sweep angle, is less than zero; this value

of A occurs when the wing is sweptforward. A sweptback wing (A>O) will not
diver.-' nder tne present assumptions.

With no torsional deformation permitted, the dynamic pressure at diver-

gence is maximized by maximizing the parameter El. The maximum value of

12
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the parameter El is attained, in the case of a fibrous composite, by

aligning the fibers parallel to the swept reference axis. This result is

not surprising and, indeed, is somewhat discouraging, because the solution

to designing such a structure lies in adding more composite material as

the wing is sweptforw!'d. This strategy is identical to that followed for

conventional metallic designs.

4. DIVERGENCE OF A SWEPT WING WITH UNIFORM GFOMETRICAL AND STRUCTURAL

PROPERTIES - BENDING AND TORSION INCLUDED

a. Equilibrium Equations

The coupled differential equations that govern aeroelastic divergence

of a constant chord, laminated composite, swept wing with both bending and

torsional flexibility are written as:

EIhiv - K '" (qcaos2A) (a -h'tan)A)( htn)(18)

and

GJa" - Kh'" = -(qca 0e cos 2 A) (a- h'tank) (19)

where ( )' d( )/dy.

To nondimensionalize the above equations and thus facilitate the solu-

tion, three new variables are defined:

n = Y/,, w = h/., r = dh = dw (20a,b,c)

Tnese new variables permit Equations (18) and (19) to be expressed as:

r k a"' = a(a - r tanA) (21)

a"- gr"'= -b(a - r tanA) (22)

where now ( )' = d( )/dn. Parameters in the above expressions are defined

as follows:

13



a = qcj 3 a0cos 2 A/El (23a)

b = qcet 2a0Cos 2A/GJ (23b)

k = K/EI (23c)

g = K/GJ (23d)

The boundary conditions for these equations are written as follows:

r(O) = 0 (24a)

a(0) = 0 (24b)

r'(l) - ka'(l) = 0 (24c)

M'(1) - gr'(l) = 0 (24d)

0"(1) - ka"(l) = 0 (24e)

Equations (21) and (22) can be combined into a Eingle equation by de-

fining a new variable, a e given by the relktionship

ae = a - r tanA (25)

The variable ae represents the angle of attack of a chordwise section in-

duced by the torsional and bending deformations of the wing. The steps

necessary to accomplish the combination of these two equations into a single

equation are outlined in Appendix C. The resulting equation is a third

order differential equation with constant coefficients,

is+ bQktanA) a [a tanA) L =0 (26)
(e [ 11 - kg) Ie - 11 - kg) e

Equatinn (26) has boundary conditions given by

0e(0) = 0, ae(l) = 0 (27ab)

and + re(1)+[ - k tanlA)] (1 0 (27c)
1 - kg )e

If the parameters k and g are zero, Equition (26) and its associated bound-

ary conditions reduce to those developed in Reference 1 for the study of

14



divergence of a metallic wing.

Two aeroelastic parameters appear in Equation (26). These parameters

are defined, for ease of notation, as

a -[k tanA] [qcez2aocos 2A 1I - kgI GJ (28)

tanA - g qcAa0cos
2  

(29)1 - kg EI

b. Solution to the Divergence Equations

The solution to the eigenvalue problem defined by Equation (26) and

its boundary conditions, Equations (27a,b,c),follows that given in Refer-

ence 1. This solution is summarized in Appendix C of the present report.

Figure 4 displays the interdependence of the critical values of a

and d found for this problem. The region above the solid curve shown in

Figure 4 represents a region in which combinations of values of a and d

result in a divergence condition for the swept wing. Values of a and

below the solid curve correspond to those values of the aeroelastic param-

eters that are associated with a stable wing. Thus, the solid curve cor-

responds to a stability boundary for the constant chord wing.

As discussed in Reference 1, an approximation to the curve shown in

Figure 4 provides an accurate approximate relation between aD and dD) the

values of a and d at divergence. This approximation is developed by first

recognizing that a is equal to zero if the wing is rigid in torsion. This

condition corresponds to bending divergence of a swept wing, discussed in

Section II, part 3. In this case,

UD 3  6.333 (30)

If the wing is rigid in bending, but has torsional flexibility, then d = 0
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and the exact solution to the divergence problem results in a value of aD

given by
g D = ('1 )2 (31)

If a linear algebraic relationship between aD and dD is assumed, taking

into account the results in Equations (30) and (31), an approximate relation-

ship between a-D and dD can be developed. This relationship is given by the

equation

a D =(2 2 (3r) D (32)

The approximate relationship given by Equation (32) is shown as a

dashed line in Figure 4. For the range of values shown in this figure, the

agreement between the exact solution and the approximate solution is excel-

lent.

Combining Equations (28) and (29) with Equation (32), the dynamic

pressure at divergence is found to be

2.47 (1 -j kg) El 1 (3
recula COS2A l()k ])tanA - 0.39(tanA ii i nora

Equation (33) provides useful information about the divergence be-

havior of the swept wing. First of all, if qD is a negative number, no real

•t: divergence speed occurs, since the airspeed V must be an imaginary number

if qD is to be less than zero. Therefore, combinations of parameters that

result in negative values of q are desirable. From strain energy consid-

erations, the factor (I - kg) in Equation (33) will always be a positive

number. Thus, the denominator, containing terms dependent upon A and the

geometric and structural characteristics of the wing, controls the sign of

qD.

17



F ~ The divergence dynamic pressure q, changes sign at infinity. The 7
parameter q, becomes infinite when the following relationship is satisfied:

Ii

g + 2.56 e /

tan A crG (34)
cr 1+2.56(e g

k

Values of tan A, larger than that given in Equation (34) result in finite

The value of A determined in Equation (34) is denoted as Aicr because ft

represents that value of the sweep angle above which swept wing divirgence

is theoretically impossible. /I

To interpret and to compare the information provided by Equsation (34),

it is noted that a conventional metallic wing has the parameElr g equal to

zero. Thus, Ac is a constant for the metallic wing. For,'a laminated com-

tacc-r) 3) ,

posite wing, Ar will be a function of the laminate chargcteristics. Fur-

thermore, for a metallic wing operating at subsonic soteds, Acr will be

greater than zero for the usual case in which the parameter e is greater

than zero. This means that the metallic wing must be swept back to pre-

clude divergence. On the other hand, with a composite material wing for

which th parameer g is less than zero, the possibility exists thatAr

wichsntdta ovntoa ealcwn a the paramete g qalt

is less than zero. In chis case, sweep angles exist, in the forward swept

range, for which divergence will not occur at any flight speed.

c. Example Cases

An example of the use of Equation (34) to study divergence is provided

"by two related wing configurations. In the first* case, all of the laminate

fibers of the cover sheets are oriented along a conison direction, denoted

as the angle e. In the second case, 10% of the fibers are fixed at an

18
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angle o = 0Q, 25% of the fibers are oriented symmetrically at e = + 450

(12.5% are + 450, 12.5% are -450), while the remaining 65% of the laminate

has fibers oriented at an angle e. Geometric and lamina material data for

the wing are as follows:

Wing and Lamina Properties

Wing Aspect Ratio, AR = 6 Offset between aerodynamic center and

reference axis, e = O.lOc

Lamina Material: Boron-epoxy

E = 32.5 x 106 psi. (tension)

E2 = 3.2 x 106 psi. (tension)

S= 1.05 x 106 psi. "12 = 0.36

The ratio of box-beam depth to cover-sheet thickness is 20:1.

Figure 5 shows the relationship between the parameter g=K/GJ and o

for each case. For Case 1, in which 100% of the fibers can be tailored,

the absolute value of g has a maximum value of about 1.20. Also to be

noted is that g is an asymmetrical function (about e = 90°) of e. in Case

2, where only 65% of the fibers are available for design orientation, a

reduction in the percentage of fibers that can be used for tailoring is

seen to result in a decrease in the maximum absolute value of g to near

IgI = 0.50. In addition, the position of the min-max values of g in the

latter case lies farther away from the e = 900 position than that found

for Case 1. It should be noted that both EI and GJ are symmetrical functions

of e (about e = 900).

Using Equation (34), the relationship between Acr and B for the two pre-

viously discussed cases can be determined. These results are shown in Fig-

ure 6. In Case 1, proper orientation of the laminate fibers can preclude

19



S44-

00

W00

4)1-
0

S 3C

4JV

0 n I-E

4J Su

00

0-.

fit 20

I'



wing divergence until a forward sweep angle of nearly 49'. This occurs if

laminate fibers are oriented at an angle about 120 ahead of the swept refer-

ence axis (o = 102*). For Case 2, in which fewer fibers are used in the

tailoring process, the results are less dramatic, but still impressive.

When e is about 1100 (200 forward of the reference axis) the wing may still

be swept forward nearly 280 before a real divergence speed is encountered.

Figure 7 shows the behavior of the divergence speed VD of the uniform

property wing in Case 1 as the fiber angle changes. The results are

normalized with respect to VDO' the value of VD that results when the wing

is unswept and all the fibers are oriented along 6 = 0. Three sweep angles

are considered in Figure 7; these angles are A = 00, -300, -600, corres-

ponding to an unswept wing and two forward swept wings. In the range 00

0 < 900, the divergence speeds of the wing for each of the sweep angles

are relatively low. However, as e is increased beyond 900 and the fibers

are rotated forward of the wing reference axis, the divergence speed in-

creases rapidly. In the cases of the unswept wing and the wing with 300 of

forward sweep, the divergence speed becomes infinite for fiber angles

e = 950. There is a range of laminate fiber angles for which divergence

is impossible in these latter two sweep cases. The range of angles in

which divergence is precluded is seen to decrease with increasing forward

sweep. Referring back to Figure 6, it is to be expected that this range

or bandwidth approaches zero as the angle of forward sweep approaches 490.

Returning to Figure 7, it is seen that, for A= -60%, a maximum divergence

speed is reached when e is approximately equal to 1000. For this fiber

orientation, this particular forward swept wing has the same divergence

speed as an unswept wing with all the fibers oriented along the reference

21
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axis (e = 90°).

An additional, important feature of Figure 7 is that the divergence

behavior of the unswept wing is not symmetrical about 0 = 90°, even though

EI and GJ are symmetrical functions about that position. For a metallic

wing at zero sweep, the divergence speed is independentof the bending stiff-

ness, since bending deformation produces no lift. However, in the case of

the laminated composite wing, bending deformation, caused by lift, causes

torsional deformation that, in turn, leads to changes in lift. This elastic

coupling feature is clearly seen in Figure 7.

5. DIVERGENCE OF LINEARLY TAPERED WINGS WITH GEOMETRICALLY SIMILAR

CROSS-SECTIONS

Next in order of complexity, after the uniform property wing, is a

wing whose properties have a linear variation along the wing span. A solu-

tion to Equations (6) and (7) is discussed in Reference 1 for the metallic

wing whose wing chord varies linearly along the span while the bending and

torsional stiffnesses vary as the fourth power of the chord. Such a case

occurs when a wing has geometrically similar cross-sections. For a com-

posite wing, the parameter K also varies as the fourth power of the chord

if both geometrically similar cross-sections are used and the chord varies

linearly with distance along the span.

With the assumptions of linearly varying chord and geometrically similar

cross-sections, expressions for the problem parameters are given by the

following:

c=fcroot =fcr,e=fer,E=f 4 EIr, = f4GJ

(35)

tK K=f 4 Kr
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wheref=l -1 (l -x) I
X= wing taper ratio Ctip/Croot

S)r = parameter value evaluated at the wing root. i
Transforming Equation (6) to the independent variable f and then

nondimensionalizing, gives the bending equation (note that now ( )'

d( )/df):

f3r - kra"'" + 8f-[r- kra"] + 12f[r' - kra] -dTr + tand. 0
(36)

where
3qCrx3a SinACOSA

T 3
El (1- X)

ri

Similarly, the torsion equation is found from Equation (7) to be

f 2 [I" - grr"] + 4f[a' - grr'] + aT[a - rtanA] = 0 (38)

where
2a 2

qe aCos AaT = Gir(1- x)2  (39)

Giri

Boundary conditions on displacement are, at f = l (1 = 0),

a(l) = 0, r(l) = 0 (40a,b)

The boundary conditions at f = A (n = 1) for bending moment, shear force

and torque are
M(x) = r'(x) - krQ'(A) = 0 (40c)

V(x) = 4x3(r'(x) k cI'()) + X4(r"(x) -k r'(A)) = 0 (40d)

- r (r() r

T(x) = '(x) - grr(W) = 0 (40e)

"Appendix C, Section 2, details how Equations (36) and (38) may be
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combined into a single equation in terms of the variable = - r tanA.

This single governing equation reads as follows:

3 + 8Ce ell + (12 + -T)fat A- (2TaT -T)ce=a (41)

where the aeroelastic parameters aT and dT are given by

a I- krtanA][qerCrZ2 aos 2 A

[tn"g ]{~ gao°S2A1

The boundary condition for Equation (41) at f = 1 (n 0 ) is:
0 (44a)

At f = A, the conditions that M(A) = 0 and T(x) 0 give

d(A) T0 (44b)

The requirement that there be zero shear at the wing tip, when combined

with Equation (38), evaluated at f = 4, provides the following equation.

e aTe() = 0 (44c)

Equation (41) is an Euler differential equation that can be reduced

to a linear differential equation with constant coefficients by changing

the variable f to f = et. The details of solving Equation (41) subject

to the given boundary conditions is presented both in Reference 1 and Refer-

ence 9 (pp. 486 - 487). These details are omitted here.

As in the case of the uniform property wing, the solution to the

equations governing divergence of a tapered wing gives critical values of

a and d that occur at divergence. These critical values, denoted as aD

26
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dD are plotted in Figure 8 for several wing taper ratios. An approximate

linear relationship again can be developed between q and the geometrical,

structural and aerodynamic parameters in the problem. This relationship

is given by the expression:

G_____r_ _ _______ K1(l k k~gr)Go K (1 - k
rr (4(ta)

ao0Crt3COSA r 1-kr tanh -K 2 r 9 (tanh g dr

CI er

The constants K1 and K2 are functions of the taper ratio x and the eigen-

values found for each taper ratio. These constants are tabulated, for

several values of X, in Table 1.

TABLE 1. - VALUES OF K AND K2 FOR FOUR, VALUES

OF TAPER RATIO, x = ct /Cr.

K K
12

0.20 2.83 0.614

0.50 2.73 0.497

1.00 2.47 0.390

1.50 2.22 0.326

The effect of taper upon the divergence of swept composite wings can

be seen by considering the example for which all fibers in the laminate are

oriented at an angle e. The effect on Acr of the taper ratio is shown in

Table 2 on page 29.
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cI
TABLE 2. - Acr VERSUS o FOR THREE TAPER RATIOS, A = t-

.Acr, 'ritical sweep angle (degrees)

e(deg.) X=O.20 X=O.50 X=l.0

0 1.20 1.48 1.89

30 13.71 13.76 13.83

60 35.94 36.00 36.08

90 11.13 13.66 17.20

100 -49.08 -48.67 -48.05

120 -35.45 -35.39 -35.30

150 -13.29 -13.24 -13.16

The effect of decreasing taper ratio on Acr is to increase A cr, al-

though these increases are very small. Thus, it may be concluded that taper

ratio does not have a strong influence on Acr.

Figure 9 illustrates the behavior of the divergence velocity, (normal-

ized with respect to VD at A = 0 and e = 0), as a function of e, for X = 0.20.

Comparison of Figure 9 with Figure 7, in which X = 1.0, shows that the sets

of curves are very similar. Some differences are apparent and worth noting.

In particular, near the fiber angle e = 00, the divergence velocity at

A = 0 declines more rapidly with e. In addition, the curve corresponding

to a sweep angle A = -600 does not attain as large a maximum valuc when

x= 0.20 as it does when X = 1.0. It should be noted, however, that the

reference velocity is different in Figure 7 than it is in Figure 9.
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SECTION III

CONCLUSIONS

This report has presented a simple theory to predict the divergence

b~havior of high-aspect-ratio, laminated composite, swept wings. This

theoretical development is based upon laminated beam bending theory and

aerodynamic strip theory. The equations developed from this theory have

been used to predict the effect of laminate construction on wing di-vergence.

The conclusions drawn from the analysis and the example cases presented

are:

1) The elastic coupling between bending and torsion, introduced

by the laminated material through the parameter K, can suc-

cessfully negate the undesirable influence of forward sweep

on wing divergence for a wide range of forward sweep angles.

2) The ratio K/GJ is a very important parameter to consider

when designing an efficient forward swept wing. This ratio

should be tailored such that it has a relatively large nega-

tive value.

3) Wing taper is important to the determination of the diver-

gence speed where such a speed actually exists. However,

wing taper is of secondary importance as a parameter in-

fluencing the design of a divergence free wing.

4) The alignment of lamina fibers at angles from 100 to 15'

forward of the swept wing box-beam reference axis appears to

be an optimal orientation for wing divergence performance.

This report has shown that, from a theoretical standpoint, and unlike
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its metallic counterpart, the laminated composite, forward swept wing is a

feasible structural design. The formulas derived and presented in this

report provide a quick, inexpensive estimation tool for further research

on forward swept wing design.
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APPENDIX A

THE DEVELOPMENT OF THE STRAIN ENERGY

EXPRESSION FOR A LAMINATED FILAMENTARY

WING BOX

1. BASIC ASSUMPTIONS

The wing structural model employed throughout this report is based

upon the assumption that the bending stiffness and torsional stiffness

of the wing structure are due entirely to the presence of relatively

thin, laminated compositecover sheets, located at a large distance (in

comparison to their thickness) from the wing middle surface. Although

all of the bending and torsional stiffness is assumed to reside entirely

in the laminated cover sheets, it would be a simple task to add algebra-

ic.lly any additional stiffnesses that might arise from the ?resence of

such elements as spar caps or flexible webs.

To formulate the strain energy expression that leads to the definition

of the equivalent bending stiffness, EI, and torsional stiffness, GJ, for

this type of box-beam structure, it is necessary to make an assumption

about the deformation behavior of the wing box. The well-known Euler-Ber-

noulli hypothesis that the strain due to bending varies linearly from the

neutral surface of the box-beam provides this assumption about the dis-

placement behavior of the wing. In addition, it is further hypothesized

that chordwise sections of the wing, perpendicular to a beam reference

axis, are rigid. This means that the deformation of the wing box is a

function only of a spanwise coordinate, y. In addition to the Euler-Ber-

noulli hypothesis, the material behavior is assumed to be linear elastic.
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An additional feature of the idealized bebn iodel to be developed is that

the reference surface of the box beam is taken at the geometrical middle

surface of the wing box. This convention, commonly used in laminated plate

theory, is more convenient than the alternative of locating a modulus

weighted centroid of each section (a modulus weighted centroidal axis will

always lie in the neutral surface). If the laminated box beam is not both

elastically and geometrically symmetrical, the middle surface will not be

the neutral surface for bending.

2. COVER SHEET DiSPLACEMENTS

A Cartesian coordinate system is defined in Figure 1. The x-y plane

corresponds to the geometrical middle surface of the wing box. The posi-

tive x-axis is rearward on the wing while the y-axis lies along the swept

wing span and is coincident with the reference axis of the wing box. Dis-

placements of the individual lamina forming the cover sheets are given by

the functions u, v, w, in the x, y, z directions, respectively. The u. v,

w displacements are not independent functions; they are functions of the

variables h and a, the upward displacement of the wing elastic axis (with

respect to the y-axis) and the rotation of a chordwise section about the

y-axis, respectively.

In terms of h(y) and a(y), the functions u, v, w may be expressed as:

u(x,y) = za(y) (A-l)
v(x,y) = V (Y) - zEdh _ x da (A-2e)

0 ~dy P

or v(x,y) = V0 (y) - z[h' - xC'] (A-2b)

w(x,y) = h(y) - xa(y) (A-3)

The variable v (y) represents the spanwise stretching of the riddle

surface caused by transverse applied loads and twisting.
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3. STRAINS IN THE COVER SHEETS

The strains in the laminated cover sheets may be determined from

Equations (A-i) through (A-3). Only two strains are nonzero; these strains

are:

eyy vo z(h" - xa") (A-4)

Y0 2za' (A-5)

These strain-displacement expressions are seen to be consistent with the

isotropic Euler-Bernoulli theory of beam bending ip which there is neither

transverse shear strain nor normal stress az present. The strain-dis- j
placement expressions are to be used to develop the strain energy expres-

sion for the box beam, from which will result the EI and GJ expressions.

4. LAMINA CONSTITUTIVE RELATIONS

For a single orthotropic lamina, the relationship between membrane

stress and strain can be written, in matrix notation, as:

"Exx 1 il l2 Tl 6 C xx
(A-6)

""'yy = 12 '22 -2 6  £yy

Txy ýL6 q26 N6 xy

The terms Th. are functions of the orthotropic engineering constants

Qij and the angle e defining the orientation between the lamina principal

axes and the wing reference axes. The lamina lies in a plane parallel to

the x-y plane; the angle e is as defined in Figure 2. The Qij terms are

defined as:•

Q = E1/(l - "12 "21) (-7)
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Q12= P12 E21(l "P12 P21) (A-8a)

- "21 El/(1 - "21 112) (A-8b)

Q22= E21(l - "P2 P21) (A-9)

66 = 12 (A-10)

The terms Qij can be defined in a concise manner [8] by defining a

set of parameters Ui that are, in turn, functions of Qij.

U1 = [3Q11 + 3Q22 + 2Q12 + 4Q66J/8 (A-11)

SU2 = Qll - Q22]/2 (A-12)

U3 [QI + Q22 "2Q12 " 4Q661/8 tA-13)

U4 = EQ11 + Q22+ 6Q12 - 4Q6 6)/8 (A-14)

U5 = [Qll + Q22 " 2Q12 + 4Q6 6]/8 (A-15)

In terms of these new constants, the matrix terms Qij become

U 1 + U2 cos2o + U3cos4e (A-16)

'ý12 = U- U3cos4O (A-17)

•22 = U1 - U2cos2O + U3cos4O (A-18)

'716 2 2 sin28 + UL3 sin40 (A-19)

•26 2 U2sin26 - U3 sin46 (A-20)

'ý66 = U5 - U3cos48 (A-21)

Note that 4-6 and Q-26 are antisymmetrical functions of the angle 0, while

the other functions are symmetrical.

The constitutive relations for the inplane or membrane behavior of

the individual lamina are used to determine the strain energy functional
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for the box beam. In this case, the individual laminae are constrained to

act as a unit because of the previously defined strain-displacement re-

lations.

5. THE LAMINATE STRAIN ENERGY EXPRESSION

The strain energy density per unit volume for the box beam is defined

as:

1!

U* -,(a1+- y )(A-22)
2(Oyy £yy + xy xy

In terms of this volumetric strain energy aensity, a functional U~y) can

be defined. This latter functional represents the strain energy per unit

length and is expressed as:

U(y) ~f / U* dx dz (A-23)
-c/2 -

The limits of integration represent: c, the wing chord; and zu , the z-

location of the upper surface of the wing box. SymmI1etry, both elastic and

geometric, of the wing box in the,x-direction is assumed here.

The constitutive relations, Equations (A-6), can be substituted into

Equation (A-23) with the following result.

c2 1 (A-24)
U~~y) 21' +f fýu i~ey2 2~ ) + ~(- )dxdzU (y Q2 yy 26 yy xy 66 xy

_c/2 -zu

Th' superscript (i) appended to the lamina elastic constants refers to those

constants appropriate to the (j)th layer of the laminate.

Upon substitution of the strain-displacement expressions, Equation

(A-24) becomes
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I ~ ~!i) ) ~ ( )( ")) +~1 4-h 66 (aU~y) =c/2) 122 11125i426 "a ) +41 (h(cQ66)2

+ t.(vm) 2Q21 6 (V'h") + 4ý')6i (at%) I (A-)
Q22 1 o 22 1o6

The summation in Equation (A-25) extends over the N layers of composite

material. The constants al and 61 are defined in terms of lamina coordinates

with respect to the middle surface. In terms of the lamina thickness ti

and lamina lower and upper position coordinates zi and zi+1 , respectively,

Oi and 6i are defined as follows
Zi+l ,

0i = z'dz
z.

-(0t + 3t1z. + 3zt) (A-26)
and

6 f zdz

ti

- ti(zi+l + zi)/2 (A-27)

The term 0 i represents the area moment of inertia of a strip of material,

of thickness ti and unit width, about the middle surface. As such, 0i is

always a positive number. The term 6i represents the first moment of the

area of the same strip about the middle surface. This term 6i is positive

if the lamina area centroid lies above the middle surface and negative if

it does not.

Equation (A-25) may be simplified. It is to be noted that terms con-

taining squares of beam curvature, h", and the rate of change of twist, c',

appear in this expression. Six new terms involving the laminate elastic
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properties may be defined, leading to a more concise definition of Equa-

tion (A-25). These terms are:

WM (A-28)N 1
4~{i)

C[!GJ0 =c 66 Q i (A-29)

A22 = c22 81i (A-32)

B22  C 22 .(A-32)

ci N
B33 = 2c ) ] (A-34)

With these newly defined constants, U(y) may be written as:
1 o 92• 12. _ ]o(,..o. + 1 2

U(y) BI(h + v •a -h"2 o 222 A-
(A-35)

+ B33 vc' B B(vh") + W 2
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Equation (A-35) reveals that bending deformation and torsional de-

formation are coupled through the constant K0, defined in Equation (A-31),

and that additional coupling between the middle surface stretching and both

bending and torsion also occurs. The terms EI and GJ are defined as
0 0

they are because they occur in the energy terms associated with uncoupled

bending and torsion, respectively.

In Reference 7. the term in the strain energy expression containing

S0 is shown to be insignificant in comparison to that term involving the

term GJ0 as long as the wing has a moderate to high aspect ratio. This

term is also ignored in the analysis in the present study.

I
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APPENDIX B

THE DEVELOPMENT OF THE COMPOSITE BEAM BENDING

AND TWISTING EQUILIBRIUM EQUATIONS FOR DIVERGENCE

1. GOVERNING EQUATIONS FOR A BEAM WITH CONSTANT CROSS-SECTION

The strain energy functional can be used, in conjunction with the

Principle of Virtual Work, to derive the equilibrium equations necessary

to solve the divergence problem. For the present problem, the Principle

of Virtual Work can be stated as follows:

SU(y)dy =] (py6v0 + t 6a + pdh)dy (B-l) A

of 0

The terms py, t and p in Equation (B-l) represent the applied generalized

forces per unit length associated with the degrees of freedom vo, a, h,

respectively. These generalized forces are distributed along the length

of the beam; no concentrated forces or moments are applied. For our analy-

sis, the generalized force py is zero, since it represents an external

axial load term.

Manipulation of Equation (B-1) yields three differential equations of

equilibrium (in terms of displacement derivatives) together with the neces-
i

sary boundary conditions. These differential equations are, for the con-

stant property beam model, as follows:

-B33a" - A2 2vo" + B22 h'... 0 (B-2)

-GJa"- B3 3 vo + Kohl =t(y) (B-3)

"EI"h - -' 'B " = p(y) (B-4)0 o - 22vo

The boundary conditions at y =0 are as follows:
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vo0 (0) = 0 (B-5)

h(O) = h'(O) = 0 (B-6,7)

a(0) = 0 (B-8)

At y = z, the boundary conditions are:

GJ o0  + B3 3vo0  Khl' = 0 (B-9)

B33a' + A2 2vo' - B22 h' = 0 (B-10)

EIoh" - Koa' - B = 0 (B-Il)

EI0h'" - Ko - B22vo'' = 0 (B-12)

An understanding of the physical significance of the equations of

equilibrium can be found by formulating expressions for internal force and

moment resultants in terms of the displacement derivatives. Let Py repre-

sent the internal resultant axial force present in the beam. This force

resultant is defined as:

Py ff ayydxdz = A22vo' - B22 h" + B33a' (B-13)

Area

The internal bending moment Mx is defined as:

x -fJ a>yyZdXdz

Area

-B22 + El h" - Koa (B-14)

From static equilibrium of an infinitesimal beam section, the internal shear

force resultant V is given by the equation

_ dM
K -V = -B22 v°1 + EIoh'" - Koa" (8-15)
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Finally, the internal torque T is defined as:

T : (ZTxY " XTxz)dXdz

Area (B-16)

= GJ o' + B3 3v' Kh0!

Comparison of Equation (B-13) with Equation (B-2) shows that the

latter equation may be written as:

dP
= 0 (B-17)dy

I

Since there is no loading in the axial direction, Equation (B-17) can

be integrated once to produce the following result.

Py = 0 = A2vo - B22h' + B33c (B-1q)

Equation (B-18) may be solved for v

B2 B3V h" ' (B-19)

A22  A22  -

Equation (B-19) may be differentiated to obtain identities for higher order

derivatives of v , h and a. The identities obtained by differentiating

Equation (B-19) may be substituted into the equation for bending, Equation

(B-4) and the equation for torsion, Equation (B-3). The following equations

result.

Elo (B22) hiv - Ko- B ]"' 2 P(Y) (B-20)

Ko A h" GJo " =-t(y) (B-21)
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These equations are independent of the middle surface s~retching term vo.

The boundary conditions for the problem may also be modified so that

derivatives of vo are eliminated.

Definitions of reduced bending stiffness, EI, torsional stiffness, GI,

and the coupling parameter K are readily available from Equations (B-20)

and (B-21). With these definitions, Equations (B-20) and (B-21) become:

EI h - K a"' = p(y) (B-22)

-K h"' + GJa' = -t(y) (B-23)

Boundary conditiuns for these equations are as follows:

at y =0, a(O) = 0 (B-24)

h(O) = h'(O) = 0 (B-25)

at y = £, GJa' - K h" = T(Z) = 0 (B-26)

El h"- K a' = M x() =0 (B-27)

El h"' - K a" = Vz(L) = 0 (B-28)

2. GOVERNING EQUATIONS FOR A BEAM WITH A NON-UNIFORM CROSS-SECTION

The Principle of Virtual Work also can be used to derive the governing

equations for a nonuniform beam. However, an alternative way to derive

these equations is to use the Jefinitions of the bending moment, twisting

moment and resultant shear force, in terms of the deformations h, a and

vo, derived in the previous section.

On'cŽ,again the axial force equation yields a relationship identicai to

that given in Equation (B-19). The bending equation reads

(-B2v + EIoh" - Koa')" = p(y) (B-29)

while the torsion equation becomes

(B33vo - Kohh" + GJoa')' = -t(y) (B-30)
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Elimination of the axial stretching term, vo, results in two equations

involving )nly two variables, h and a. These equations are:

[El h" - K a']" : p(y) (B-31)

[-K h" + Ga ']' : -t(y) (B-32)

The definitions of the terms El, GJ, and K are identical to those discussed

in the previous section. Boundary conditions for Equations (B-31) and

(B-32) are:

at y = 0 a(0) : h(O) = h'(O) = 0 (B-33,34,35)

at y = Z EIh"- K a' = 0 = Mx(R) (B-36)

[El h" - K a]' = 0 = V (-) (B-37)

GJ a' - K h" = 0 = T(W) (B-38)

3. AIRLOADS FOR THE DIVERGENCE PROBLEM

Figure 3 illustrates the geometry employed to determine the incremental

lift forces and pitching moments on the swept wing. The airloads are modelled

from strip theory assumptions, assumptions that tend to overestimate the

aerodynamic loading and also give values for the airloads that are somewhat

inaccurate at large sweep angles. Nevertheless, the value of strip theory

aerodynamics lies in its ability to provide reasonably accurate aeroelastic

trend information, allowing the establishment ot the proper relationships

between the geometric, aerodyanaic and structural parameters in an aero-

elastic problem.

References 1 and 9 detail the development of the use of strip,theory

aerodynamics for swept wing aeroelasticity problems. Of importance to the

divergence problem is the determination of the incremental lift per'.unit

of span (along the swept y-axis) arising from the deformations h and a. The

reader is reminded that, for this study, h and a represent the perturbation

deformations away from some slightly deformed static equilibrium position.
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The lift per unit span due to these deformations is given by the expression

p(y) = (caqcos 2A) (a - h'tanA) (B-39)

While the pitching moment about the y-axis is written as:

t(y) = (qca 0e cos 2 A) (a - h'tanA) (B-40)

where ao= lift curve slope (two-dimensional).

c = chordwise dimension perpendicular to the y-axis.

e = the distance between the line of aerodynamic centers (A.C.)

and the y-axis, measured positive aft from the A.C.

A = the sweep angle of the reference axis, positive rearward.

4. NONDIMENSIONALIZED GOVERNING EQUATIONS FOR A UNIFORM WING

With the inclusion of the airloads given in Section B3, the coupled

equations governing divergence of a uniform cross-section, composite swept

wing are:

El hiv - K a"' = (ca qcosA)(a - h'tanA) (B-41)I' 0and

GJ a" - K h.' = -(qcaoecos 2 A)(a - h'tanA) (B-42)

These equations may be written conveniently in nondimensional form. To

accomplish this, new variables are defined as follows:

n = y/k (B-43)

w = h/i (B-44)

r= dw/dn = dh/dy (B-45)

These definitions lead to the following nondimensional, coupled equilibrium

equations.

r - k a"' a(a - rtanA) (B-46)

L" - gri" = -b(a - tanA) (B-47)
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where ( ) = d( )/d,,. The boundary conditions for these equations are

written as follows:

r(O) = 0 (B-48)

a(O) = 0 (B-49)

r'(1) - k'(1) = 0 (B-50)

a'(1) - gr'(1) = 0 (B-51)

r - k&"(l) = 0 (B-52)

The nondimensional parameters that appear in Equations (B-46)through (B-52)

are defined as follows:

a = qcz 3a0Cos 2A/EI (B-53)

b = qct 2 aoecos 2 A/GJ (B-54)

k = K/EI (B-55)

g = K/GJ (B-56)

5. NONDIMENSIONAL EQUILIBRIUM EQUATIONS FOR A TAPERED WING PLANFORM

A wing whose chord is linearly tapered along the wing span and whose

cross-sectional dimensions are proportional to the local chord will have

bending stiffness and torsional stiffness distributions that vary as the

fourth power of the chord; the coupling parameter K will also vary as the

fourth power of the chord. To begin the development of the equilibrium

equations applicable to this problem, let us define the following terms:

c = fcroot = fcr (B-57)

where f = 1 - n(l - (B-58)

and Ctip!Croo = ct/cr = wing taper ratio (B-59)

The subscript notation ( )r refers to values evaluated at the wing root,

while n = y1/.

47



Since the chord varies linearly with n and all wing sections are geo-

metrically similar, the following stiffness parameter relationships result.

El = f 4 EIr (B-60)

GJ = f4 GJ (B-61)r
K = f 4 Kr (B-62)

Equations (B-31) and (B-32) govern the static equilibrium of the nonuniform

wing and can be combined with Equations (B-39) and (B-40) (note that, in

the latter two equations, c = fc I to yield an equatien that is a function of

the nondimensioral independent variable n. The variable f = I - n(l - A)

also can be chosen as the independent variable. Since the latter choice of

an independent offers substantia'i mathematical advartages when attempting

a closed form solution to the proble;m, f, not n, is chosen as the independent

variable. With f as the independent variable, the bending equation reads

(note that ( )' d( )/df below):
3 oi] +8f2dTa

f[ E _ kr,] + 8f2 [r,, - kr,,"] + 12f[r' - krc,'] T anA 0 (B-63)

where qc r3 a oSinAcOSA
E dT r (B-64)

T El (1 - A) 3

The torsion equation becomes

f2[ I, gr',] + 4f[,' - grr)] + aT[u - rtanA] = G (B-65)

where 2 2
qcre2. 80 c.0 A

aT = (B-66)T GJ r(l _ )2

Boundary conditions at f = I (n 0 0) are,

a(I) = 0 (B-67)

r•() = 0 (B-68)
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while, at f = X (n = I),

M(M) = r'(x) - ='(X) 0 (B-69)

3 4V(x) = 4A3(r'(x) - kr '(X)) + X (r"(x) - r= 0 (B-70)

T(X) = a'(X) - gr'(x) = 0 (B-71)

While these latter equations and boundary conditions now appear rather

complex, they can be reduced to a form in which they can be readily solved.
This simplification and solution is discussed ir Appendix C.
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APPENDIX C

SOLUTION OF THE WING DIVERGENCE EQUATIONS FOR CONSTANT

CHORD AND LINEARLY TAPERED WINGS

1. SOLUTION FOR CON•STANT CHORD WINGS

In Section B4, two coupled differential equations, Equations (B-46)

and (B-47), were developed; these equations govern the divergence of a

swept wing with a constant chord. The solutinn of these equations, sub-

ject to boundary conditions, Equations (B-48) through (B-52), is detailed

in this appendix.

Let us begin by defining two new dependent variables, 0(n) and *(n),

to be used to transform Equations (B-46) and (B-47) into a single equation

in terms of the variable ae = a - r tanA. In terms of 0 and 'p the variables

r and a are defined as:

r 0(n) + kp(n) (C-l)

S= '(n) + go(n) (C-2)

where the constants k and g have been previously defined. Substitution of

Equations (C-l) and (C-2) into Equations (B-46) and (B-47) yields the fol-

lowing:

'" - [ akg'][( - k tanA)' + (g - tanA)ý] = 0 (C-3)

'•"+ [l -kg]l k tanA)i + (g - tanA)O] = 0 (C-4)

Substitution of expressions for 0(r) and p(n), as functions of r and a,

obtained from inverting Equations (C-l) and (C-2), into the expression

contained within the second set of brackets in both Equations (C-3) and

(C-4) gives the following result.
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(I - k tanA)* + (g - tanA)O = • -rtanA (C-5)

The variable, ie' is defined as

ae = a - r tanA (C-6)

The term ae is the local wing angle of attack, perpendicular to the elastic

axis, due to wing bending and torsional deformation. Equations (C-3) and

(C-4) now read

- [(I - kg)] ] = 0 (C-7)

I+ [I-kg] k e) =1 0 (C-8)

If we first differentiate Equation (C-8), multiply it by the factor

(1 - k taliA) and then add the result to the product of Equation (C-7)

times the factor (g - tanA), the result is a single equation, written as:

e (1' kg) •e -1(- kg) e cgI Equation (C-9) is a third order differential equation with constant coef-

ficients.

Boundary conditions, in terms of the variable ae' are constructed in

the following manner. Equations (B-48) and (B-49) can be combined to give

the equation

a(O) - r(O) tanA = ae(0) = 0 (C-10)

An examination of Equations (B-50) and (B-51) shows that both a'(1) and

rt(l) must De zero, thus, the following boundary condition results.

•'(I) - r'(1) tanA = a'(') = 0 (C-11)

Next, Equation (B-47) is evaluated at n = 1, multiplied by the factor

0( - k tanA), and then added to the result of the product of Equation (B-52)

and the factor (g - tanA). This operation provides the third boundary con-

dition, Equation (C-12).
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e(1)+ [b(l - k tanA)]e(1) = 0 (C-12)

eI- kg e

Equations (C-9) through (C-12) constitute an eigenvalue problem. The solu-

tion to Equation (C-9) is of the form

e Cern (C-13)

Substitution of Equation (C-13) into Equation (C-9) yields a characteristic

equation whose solution provides three values for the coefficient r. This

equation is

r 3 + ar + d : 0 (C-14)

where the constants a and d are defined as:

- [l k tanA] 0qe2aCSA

a = 1 - kg I I cJo .j (C-15)

Ff= nA -g q 3 (C-16)

Once the three roots of Equation (C-14) are determined as functions

of a and a, Equation (C-13) may be used to construct the stability determi-

nant stemming from enforcement of the homogenous boundary conditions for

the problem. The solution of the stability problem is accomplished by

finding values of a and d which render this stability determinant zero. These

critical values of a and di are denoted as aD and dD, respectively.

The numerical solution to the stability problem itself is lengthy. For-

tunately, Reference I details the solution to an identil set of equations.

Although the problem in Reference 1 involves a metallic wing, the solution

presented in Reference 1 can be adapted to the composite wing by a suitable

change in the definition of appropriate constants. An approximate solution

is given in Reference 1 and discussed in Section 2.4 of the present report.
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This approximate solution is as follows:

aD 2.47 + 0.390d (C-l)

From Equation (C-17), the value of qD9 the dynamic pressure at wing

divergence, is found to be

q 2.47 ( .41 [ E- ]Q (C-18)
0cz os A -kaA .39(tanA - g)]
0 G

2. SOLUTION FOR LINEARLY TAPERED WINGS

In Section 5 of Appendix B, the governing equations for a wing with

linear taper are presented. The solution to these equations is detailed

in this section. Equations (B-63) and (B-65) may be combined in a manner

similar to that outlined in Section 1 of Appendix C. The procedure is as

follows. First, the two variables € andý are defined. These new variables

are defined as follows:

r = 0(q) + k r((n) (C-19)

a = p(n) + gr(n) (C-20)

In addition, we define, as in the case of the constant chord wing,

me = - r tanA (C-21)

with the definitions contained in Equations (C-19) through (C-21) and with

( )' = d( )/df, Equation (B-63) becomes

f3l,,, + 8f2€,, + 12f4' + d= 0 (C-22)

S(I krgr )tanA

Similarly, Equation (B-65) becomes

f2•, aTfe
+ 44' + a 0 (C-23)1- krgr
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The following procedure results in the reduction of Equations (C-22) and

(C-23) to a single equation in terms of ae:

1) Multiply Equation (C-22) by (g - tanA).
r

2) Differentiate Equation (C-23) once with respect to f and

multiply the result by the quantity f(l - kr tanA).

3) Add the results from (1) and (2) together.

4) Make use of identities to reduce the equation resulting from

(3) to the form

f3 a"' + 8f 2 a&e + (12 + a-T)fae + (2aT - dT)aze = 0 (C-24)e eTT Ta 0

where

aT =[1 klkrtanA] [qercrx2 a0cos 2A

rgr GJr(1 _- A)2 ] (C-25)

[tanA - r 3 aEoCs2A 2

dT = - - rr ] rc l - ) (C-26)

The boundary condition at f = I (the wing root) is:

1 ce (l) = 0 (C-27)

while, at f = X, the wing tip, the bending moment and torque conditions,

M(X) = 0 end T(X) = 0, give
a;(X) = 0 (C-28)

The condition of zero shear at the wing tip, when combined with Equa-

tion (B-65), evaluated at f = x, yields

a W + aTce(X) = 0 (C-29)

The solution to Equation (C-24) subject to the boundary conditions out-

lined above follows that described in Reference 1 for a metallic tapered wing.
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Reference 1 presents an approximate linear relationship between the

critical value of dynamic pressure, qD, and the geometric, aerodynamic and

structural parameters in the tapered wing problem. This solution, when

modified to fit the composite wing problem, provides the following equation.

er G4r Kl(l - krgr) ](C-30)
0 co SA] '•r I -2k tanA K(.--r) (tanA-gr)(Gr r C-0

The constants Kl and K(2 are functions of the wing taper ratio X. These

constants were calculated for this study and are tabulated below for four

taper ratios. The values given here differ slightly from those found in

Reference 1. The reason for this slight difference is probably due to the

improved accuracy available today on modern computers.

A K K2

0.20 2.83 0.614

0.50 2.73 0.497

1.00 2.47 0.390

1.50 2.22 0.326

3. CORRECTION OF AERODYNAMIC LOADS FOR ASPECT RATIO AND SWEEP

In Reference 1, a correction for the effects of aspect'ratio and sweep

is suggested. This formula is

cl = a0 [AR/(AR + 4 cos A)] (C-31)

where a is the 2-D lift coefficient for the unswept wing section. This

correction may be used in Equation (C-18) and in Equation (C-30) in place

of a0 . This correction is used throughout this report for all examples

presented.
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