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eiastic divergence characteristics of swept wings. From the results of this
theory, it is predicted that, because of elastic coupling between bending and
torsional deformation of the wing box, laminated composites may be used to
preclude wing divergence for a large range of wing forward sweep angles. For-
mulas are developed to illustrate the important parameters governing composite
wing divergence. Two examples are presented to illustrate the use of these
formulas. These examples show that composite forward swept wings have the
potential to be feasible, efficient designs,

ACCESSKH 77
TS T
DY

Yt~

SECURITY CLASSIFICATION OF Yu't AGE(When Data Fnt

B

RSN R . |




TR

RO T

il ek o it
H

A AT . thn s

FOREWCRD

The information described in this report wac authored by Virginia
Polytechnic Institute and State University, Aerospace and Ocean Engi-
neering Department, Blacksburg, Virginia, under AFOSR Grant 77-3423,
"Aeroelastic Stability and Performance Characteristics of Aircraft with
Advanced Composite Sweptforward Wing Structures", and DARPA Order No.
3436. The work was administered by Mr. T. J. Hertz, Project Engineer,
of the Structural Mechanics Division (FBRC) of the Air Force Flight
Dynamics Laboratory.

The contracted work was performed between September 1977 and June
1978.

Dr. T. A. Weisshaar, Associate Professor of Aerospace and Ocean
Engineering, Virginia Polytechaic Institute and State University (VPI&SU)
was the principal investigator. The author acknowledges the valuable
assistance of Mr. N. J. Kudva of VPI&SU who verified the mathematical
work presented in this report. Special appreciation alsc goes to Colonel
N. J. Krone, Jr. of DARPA and Messrs M. H. Shirk and T. J. Hertz of the
Structural Mechanics Division (FBRC) of the Air Force Flight Dynamics
Laboratory for their helpful comments during the course of this work.




L g

A A e e e e

TABLE OF CONTENTS

SECTION PAGE
I. INTRODUCTION . & v ¢ v v i o e e et e e b e e e e e e e u s 1
II. AEROELASTIC MODEL IDEALIZATION . . . . . . . ¢ « ¢« v v v v . 4
1. Wing Structural Deformation Model . .. . .. ... .. 5
2. Idealization of Wing Aerodynamic Loads . . . . . . . .. 9
3. Divergence of a Uniform Chord Wing with Bending
Flexibility Only . . « v & v ¢ v v v i e e e e e e e e 11
4. Divergence of a Swept Wing with Uniform Geometrical
and Structural Properties - Bending and Torsion
Included . . . . . . . & i i i e e e e e e e e e e e 13
a. Equilibrium Equations . . . . . ... .. ... .. 13
b. Solution to the Divergence Equations . . . . . . . . 15
c. Example Cases . . . . & ¢ ¢ v vt v v e v e 0 v . 18
5. Divergence of Linearly Tapered Wings with Geometrical
Similar Cross-sections . . . . . . . . ¢ . ¢ o v .. 24
III. CONCLUSIONS . & & & v v v e et et e e bt e e v o o e v 31

APPENDIX A - The Development of the Strain Energy Expression
for a Laminated Filamentary Wing Box . . . . . 33

APPENDIX B - The Development of the Composite Beam Bending
and Twisting Equilibrium Equations for Diver-
GENCE « v v ¢ 4 o & o 4 o 4 o o o o e e e e e 4]

APPENDIX C - Solution of the Wing Divergence Equations for
Constant Chord and Linearly Tapered Wings . . . 50

REFERENCES . . . . & & & v i i i e et e e e e e e e e 56




[ ety

SEEMIRY 107 Sk Bt b i O L S LS B U i T e e LT H T LAt o i

XL

ey

B e o G AN R, SR et e

b2 3 h: »,
: n’{ﬁ"ﬁgME fmg VARSIt rcim

ol
it

FIGURE
1

LIST OF ILLUSTRATIONS

PAGE
Geometry and sign convention used for the constant chord
swept wing analysis « . . & . v L s et e e e e e e e e 4
Composite material lamina principal axes, 1 and 2, with
respect to the wing reference axes, xandy . . . . . . . 6
Slender swept wing geometry used to describe aerodynamic
loads, showing chordwise segments perpendicular to the
swept reference axis . . . . . . . v 0 e e 0 e e . 10
The relationship between the wing divergence parameters
a and d for a constant chord, uniform property wing; the
stability boundary relating a) to dD is indicated by the
solid line. (Adapted from NACA TN No. 1680) . . . . . . 16

The relationship between the elastic coupling parameter
g=K/GJ and the fiber angle e for two example laminates . 20

The relationship between the critical sweep angle A .
and the fiber orientation angle 6 for two example ¢
laminates. Finite divergence speeds will exist for sweep
angles that lie in the region above the curves. Uniform

2 117

Normalized divergence speed VD/VDO versus fiber angle o

for a laminate with all fibers oriented at an angle 6.
Uniform wing; three different sweep angles. Wing box

depth to top or bottom cover sheet thickness is 20:1 23

Swept wing divergence parameters Eb versus Hb/aD for
seve;a1 wing taper ratios. (Adapted from NACA TN No.
1680) & v vt e e e e e e e e e e e e e e e e e e e

Normalized divergence speed VD/VDo versus fiber angle ©

for a laminate with all fibers oriented at an angle o.

Three different sweep angles; wing taper ratio, A = 0.20;
wing box to top or bottom cover sheet thickness is 20:1 . 30

vi




LIST CF TABLES

g TABLE PAGE
i 1 Values of K; and K, for four values of taper ratio,
: M 1 2
): - Ct/cr e & o & & o & ¢ ¢ s e s ¢ 0 s e & ¢ e 4 & v @ 27
1 c
2 Acr versus 8 for three taper ratios, A = EE. e e e s . 29
vii

i
;
}
5
5
i

i e o o oy _ [, o=, IO G, .., = |




RIS P L B T e R TG IR S SR AN A et S

¥
m&%wmwmmfﬂﬂﬂ?ﬁw*f.qu,,; -

ENEETEI RSO, . R TR S T R oA e T g g e R e

T AT e a2 oo R s, SNV BG4

LIST OF SYMLULS

a, = twn-dimensional 1ift-curve slope.

qu = axial stiffness parameter, Equation (A-32).

a = aevroelastic parameter, Equation (28).

822 = elastic coupiing parameter, Equation (A-33).

833 = el: . tic coupling parameter, Equation (A-34).

c = wi?g chord length, measured perpendicular to the reference
axis.

d = aeroelastic parameter. Fquation (29).

e = distance between wing quarter-chord and reference axis,
positive aft.

612 = shear modulus of lamina with respect to principal axes.

EIo = bending stiffness parameter, Equation {A-28).

f = 1-n{1 ~ A).

E], E2 = Tamina moduli of elasticity with respect to principal axes.

] = composite torsionai coupling parameter, K/GJ.

GJ0 = torsional stiffness parameter, Equation (A-29).

h(y) = bending defleciion of the reference axis of the wing,
positive upward.

k = nondimensional bending coupling parameter, K/EI.

Ko = bending-torsion coupling parameter, Equation (A-31).

£ > wing semi-span dimension. measured along tne reference axis.

M, = bending mcment resultant, Equation (B-14j.

ply) = distributed load along reference axis, vositive upward.

q = dynamic pressure, %-pvz_

t(y) = distributed torque per unit length, positive nose-up.

T = torque resultant, Equation (8-16).

viit

BT oy iE. - PR e _ - _ o - - e -

UL EQc S eV S et

F A e e, SRV EY




AP I L A SRS “’ﬁ"m-’-‘v;:‘?'q‘r‘z"‘f‘i;wmérrﬂmm;v-"-?"t‘"‘E‘i!?-"’-’r‘-‘%r@wf“s FE DRSS PR T ISR AL R E RS T

LIST OF SYMBOLS (CONTD)
vo(y) = axial deformation along reference axis.
Vz = shear force resultant, Equation (B-15).
y = ¢ .stance along reference axis.
z = distance from beam middle surface, positive upward.
a(y) = torsional deformation of wing sections about the reference
axis, positive nose-up.
: a, =a-T tan A
r = dh/dy
= "
n =yl
3 8 = fiber angle with respect to a rearward normal from the reference
4 axis, Figure 2.
; A = taper ratio = ctip/croot'
3 uypokpq = Poisson's ratios.
Z A = sweep angle of the reference axis, positive for sweepback.
|
e § .
§ 1X
:
3 E




TR

P S

R L A

SECTION I
INTRODUCT 10N

The expanding utilization of laminated composite materials in air-
craft structural components has led engineers to seek new ways to utilize
fully these light-weight materials. One aspect of this search has been
the study of aeroelastic tailoring of composite materials. Aeroelastic
tailoring of a 1ifting surface involves the synthesis of a composite ma-
terial structure whose special directional vroperties enhance the aero-
elastic performance of the airfoil. Primary attention has been focused
upon improving conventional aircraft designs such as sweptback wing con-
figurations. The purpose of this report is to illustrate the potential
benefits to be gained by applying the aeroelastic tailoring concept to a
nonconventional design, an aircraft with a forward swept wing.

A report by Diederich and Budiansky [1] discusses the aeroelastic
divergence of metallic swept wings. Their repcrt shows convincingly that,
from a static aeroelastic stability point of view, sweptback metallic wings
are far superior to sweptforward metallic wings. As a result of their
study, the forward swept metallic wing has not been a serious design con-
cept for some time.

Although the metallic forward swept wing is inferior, from a structural
stiffness standpoint, the forward swept wing possesses some aerodynamic
advantages over the sweptback wing. Knight and Noyes [2] noted in 1931
that wings with 20° of forward sweep experience stall at higher angles of
attack than similar 20° sweptback wings. Thus, sweptforward wings may
develop higher 1ift coefficients than similar sweptback wings. In addition,

Jones [3] notes that sweepback may produce a proncunced rolling or pitching
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instability because of the premature tip stall of these wings. Con-
versely, at high angles of attack, forward swept wings begin to stall first
at the wing roct and are not subject to this phenomenon. On the other
hand, the inherent lack of directional stability of a forward swept fly-
ing wing makes it necessary to provide a generous vertical stabilizer and
rudder. Littie has been published concerning the stability and control
characteristics of forward swept wing-fuselage configurations.

The first aircraft to employ a forward swept wing was the Junkers
Ju 287 jet bomber [4] developed in Germany during World War II. This test
aircraft flew on 16 occasions in 1944, developing speeds of over 650 km/hr
(404 mph). The wing on the Ju 287 was swept forward nearly 25°, primarily
to provide good low speed flight characteristics. Limited flight tests,
brought to a halt by advancing Soviet armies, did not disclose any severe
aeroelastic or directional stability problems. The interested reader will
find the information in Reference 4 a fascinating account of a little
known chapter in aircraft history.

A modern-day example of an airplane with a forward swept wing is pro-
vided by the German Hansa twin-jet executive transport [5]. This aircraft
is the only forward swept wing aircraft other than the Ju 287 that has
actually flown. Developed by Messerschmitt-Bolkow-Blohm, the prototype
HFB 320 Hansa first flew in 1964. The metallic wing on the HFB 320 ex-
hibits an aspect ratio of 6, a taper ratio of 1:3, and employs 15° of for-
ward sweep at the quarter-chord line to avoid the nacessity of taking the
main spar of the wing through the passenger cabin. The aircraft has a max-

imum cruise speed of 825 km/hr (513 mph) at 25,000 ft. A stretched ver-

sion of the HFE 320, designated as the HFB 330 Hansa has also been developed.
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Renewed ircerest in forward swept wing technology is due to N. J.
Krone, Jr. [4]. Reference € illustrates the feasibility of the forward
swept wing concept when laminatad composite materials, rather than metals,
are used in the wing structure. Krone's conclusion, arrived at through
a comprehensive set of numerical examples, is that the use of laminated
composite materials in the wing structure offers the design flexibility
to overcome the weight disadvantages encountered in conventional metallic,
forward swept wing design. Thus, proper aeroelastic tailoring appears
to lessen the severity of the aeroelastic divergence problem of forward
swept wings.

The results in Reference 6 leave unsettled several questions about
the basic mechanism by which static aeroelastic stability improvenment is
achieved through the use of laminated composites. The present report pro-
vides a study of the static aeroelastic divergence characteristics of wings
whese structure is constructad solely of laminated, fibrous composite materi-
als. This study uses a mathematical idealization of the wing divergence
problem similar to that used in Reference 1, but incorporates laminated
beam theory into the analysis. Attention is focused upon the additional
coupling between bending and torsional deformations of a wing, introduced
by tke laminated composite cor.truction, and its influence on swept wing
divergence.

The mathematical model used throughout the study employs a strip
theory representation of the aerodynamic loads that arise from wing bending
and torsional deformation of high aspect ratio wings. This representation,
togethar with laminated beam theory, allows the solution of the wing diver-
gence problem in analytical form. Such a solution is useful, since the
effect of geometrical, structural and aeroelastic parameters can be seen

readily.
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SECTION II
AEROELASTIC MODEL IDEALIZATION

Somz insight into the influence of laminated composite materials
upon swept wing design can be found through a mathematical analysis of

an idealized model of a slender, high-aspect-ratio wing, such as that

shown in Figure 1. This section describes the assumptions used to model

both the structural deformation behavior of the wing and the aerodynamic

loads due to this deformation. This idealized model will be used to devel-

op closed-form solutions for aeroelastic divergence of swept, composite

wings.

N
~
/

REFERENCE AXIS

Figure 1 - Geometry and sign convention used
for the constant chord swept wing

analysis.

TR e AT TR YA IOV, 1% 3 ke e O SIS I N L e RS

PR RTIN

o £ e

g i ¢




AR ol

1. WING STRUCTURAL GEFORMATION MODEL

The wing shown in Figure 1 is assumed to derive all of its bending
and torsional stiffness from thin, laminated composite, cover-sheets that
form the upper and lcwer surfaces of the wing. It is assumed that the
resuiting box-beam wing structure is such that its deformation may be repre-
sented by a bending deflection h(y), positive upward, along a straight
reference axis (the y-axis in Figure 1) and a rotation a(y), positive nose-
up, about this axis. In addition, it is further assumed that wing chord-

wise sections, perpendicular to the beam's reference axis, are rigid so

~that wing deformation is a function only of the spanwise coordinate, y.

. The enforcement of this type deformation is essential to the work that

follows. A similar structural model is used by Housner and Stein [7] to
study the flutter of sweptback laminated composite wings.

Using the box-beam model, equivalent bending and torsional stiffnesses
of the wing, EI and GJ, respectively, may be computed employing the clas-
sical Euler-Bernoulli assumptions. As is suggested in Reference 7, the
derivation of the equivalent EI and GJ for the structure is best accomplished
through strain energy methods. The Euler-Bernoulli displacement behavior
constrains the individual laminae in the upper and lower laminated cover
sheets to act as a unit and supplies the strain-displacement relations for
the wing structure. The dafinition of the stress-strain relations of each
of the laminae furnishes the additional information necessary to formulate
the strain energy expression for the box-beam.

Attention will now turn to a summary of the development of the ex-
pressions for EI and GJ. Since terms that involve the individual lamina

stress-strain properties appear in the expressions for EI and GJ, the

il
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development of the stress-strain relations for the lamina will be reviewed.
A full discussion of the development of the equilibrium equations that

govern the laminated beam is contained in Appendices A and B.

2

— s ey — ——

| (FIBER DIRECTION) sy

Figure 2 - Composite material lamina principal
axes, 1 and 2, with respect to the
wing reference axes, x and y.

Each lamina of the box-beam is itself orthotropic with respect to a
set of principal axes, one axis L2ing oriented in the direction of the
lamina fibers, while the other axis is perpendicular to these fibers. These
principal axes, denoted as axis 1 and axis 2 and shown in Figure 2, lie in
a plane parallel to the x-y reference plane of the wing, but are oriented
at an aingle 6 with respect tc the x-y system. The angle 6 is measured
positive in the counterclockwise direction from the x-axis shown in Figure 2.
As shown in Reference 8, the relationship between inplane stresses

and strains may be written, for a singl2 orthotropic lamina, as

- .
Ox O Q2 Qg f e
oy ¢ =1 U2 T Ty <y (1)
“xy Qe T T LS

6

< e e e e s e e e 2 = e o e ;
-




The terms ﬁ}j are functions of o, the fiber angle, and the orthotropic

engineering constants Qij given by the following expressions.
Q= E4/(1 - uqp up) (2a)
G2 = g B/ (1= wpp ) ()’
= uz1 B/ (1= gy wpp)

G2 = Ep/01 = w1z upy) (2¢)

=G (2d)

12

The terms Q}j are defined in a convenient manner by first defining a

set of parameters U] that are functions of Qij [8].

U = [30); + 30y, + 20;, + 40,51/8 (3a)
E U, = [0 - Q)2 (3b)
Uy = [Q) + Qp, - 4061/8 (3¢c)
: Ug = Q4 + Qpp + 60;, - 40518 (3d)
E Us = [Q5q * Qgp - 20y, + 4Qgpl/8 (3e)

In terms of these new parameters Ui and the angle ¢, the ﬁ}j terms

become
Q) = Uy + Uycos2e + Uscosdo (4a)
Tjp = Uy - Uscosde (ab)
Tpp = Uy - U,cos2e + Uscosdo (4c)
Ty = 7 Upsin2e + Ugsinde (4d)
Qo6 = %~Uzsin29 - Ugsinde (4e)
Tgg = Ug - Uscosds (4f)

7




Since the individual laminae are constrained to act as a unit, in a

manner prescribed by the Euler-Bernoulli deformation assumptions, a strain

energy functional can be constructed by summing the individual strain
energies of each lamina. The reference surface for this strain energy ex-
3 pression is the middle surface of the wing box. The total strain energy,

denoted as U, is written as follows (note that ( )' = d( )/dy):

¢ %

é U =J//.;%-Elo(h")2 - K (h'a’) + 3 Ayy(v,')?

: ° (5)

i + Baglvg'a’) - Byplh™vy') + %‘Gdo(°')2 dy

The terms multiplying the deflection derivatives in Equation (5) are defined
in Appendix A. These terms are linear functions of the wing chord and also

involve the ﬁ}j parameters of the individual laminae.

R T T T

From Equation (5) it is seen that the bending deformation h(y) is elas-

tically coupled both to the torsional deformation a(y) and to the exten-

b

sional deformation of the middle surface, vo(y). The extensional deforma-
tion vo(y) will be zero if the middle surface is also the neutral surface
E for bending, a situation that occurs if the upper and lower laminated cover
sheets are oriented symmetrically with respect to the middle surface.

The Principle of Virtual Work is used to derive the dirferential
equations governing the static equilibrium of the laminated beam under

the action of the upward distributed load p(y) and a distributed torque

t{y). These equations, derived in Appendix B, are

: [EIh" - Ka']" = p(y) (6)
! [-Kh" + GJa']' = -t(y) (7)
§ Note that in Equations {6) and (7) ( )' = d( )/dy. The terms EI, GJ and K ]
é i
%i 8
§§
F = = @ ot
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are related to the parameters in Equation (5) by the expressions

_ 2
EL = EI_-(B,,)"/A,, (8a)
_ 2

Equations (8a,b,c) are the result of the elimination of the Vo degree of
freedom from the problem, an operation described in detail in Appendix B.
Equations (6) and (7) are coupled together by the parameter K, a
term that, in general, is nonzero for a laminated material. The K parameter
provides an elastic coupling between bending and torsion not found in metal-
Tic beam analysis. Since K depends upon both the stacking sequence used
in constructing the laminate and the lamina fiber orientation angles, an
opportunity to tailor the wing structure to provide advantageous bending-
torsion coupling is presented.
Boundary conditions for the cantilevered wing consist of the displace-

ment and slope conditions at the wing root,

a(0) = n(0) = § (0) = 0 (92,b,¢)
and the bending moment, shear and torque conditions at the tip, written as:
M(2) = EIh" -~ Ka' = 0 (10a)
V(z) = [EIh" - Ka']' = 0 (10b)
T(2) = GJa' -~ Kh" =0 (10c)

2. IDEALIZATION OF WING AERODYNAMIC LOADS
Aerodynamic strip theory provides a meaningful and somewhat accurate
way of describing, in mathematical terms, the air loads acting upon a

slender wing as the result of structural deformation. A complete discussion
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of this aerodynamic formulation is given in Reference 9.

The aerodynamic forces and moments acting upon wing segments that are
perpendicular to the reference axis (the y-axis) of the wing may be com-
putad, provided an effective wing root and tip are assumed, an assumption

that may involve some error. However, the strip theory approach produces

(L T i e A A T AR A I ot A

simple equations that have been shown to give satisfactory results for

large aspect ratio metallic wings.

LINE OF AERODYNAMIC
CENTERS

T

VcosA

R TR TR T

EFFECTIVE /7/
TIP

Figure 3 - Slender swept wing geometry used to
describe aerodynamic loads, showing
chordwise segments perpendicular to
the swept reference axis.
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To formulate the divergence problem, the only aerodynamic loads to be
considered are those caused by deformation h(y) and «(y). Figure 3 defines
th2 geometrical parameters used to define these aerodynamic loads. In
terms of the upward deflection of the reference axis, h(y), and the tor-
sijonal rotation, «(y), of the wing chordwise sections, about this axis, the
1ift force per unit length, positive upward, is

p(y) = qcaocoszA(a - %%-tan A) (1)

The torque per unit length due to structural deformation is expressed as

t(y) = qceaocoszA(a - %3 tan A) (32)

The term a, appearing in Equations (11) and (12) is the two-dimensional
1ift curve slope of the wing sections.

The 1ift curve slope can be empirically corrected to reflect the
effects of finite span, wing sweep and compressibility. The present report
makes no modification of the 2-D 1ift curve slope to account for compres-
sibility. However, the 2-D 1ift curve slope is empirically corrected to
take into account aspect ratio, AR, and sweep angle A by applying the cor-

rection

a, = a,(1=0) [m"—ﬁm] (13)
Equation (13) is adapted from that used in Reference 1.

Equations (11) and (12) are inserted into Equations (6) and (7), re-
spectively, to provide the differential equations governing the aercelastic
divergence of composite swept wings. The solution to these equations for
several cases is discussed in the ensuing sections.

3. DIVERGENCE OF A UNIFORM CHORD WING WITH BENDING FLEXIBILITY ONLY

The simplest wing divergence case to consider is one in which the wing

11
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has constant geometrical and stiffness properties along its span and has
no torsional flexibility. For this case, the governing equation of equilib-

rium becomes

AL

iv dhy . =
EIh'" + qcao(ay) sinacospy = 0 (14)

Equation {14) can be transformed into the following nondimensional form:

L br=o (15)
3 d
(3
by defining the new variables
E = th = - 3.s
: r<gy & 1- y/2 b= Sfaoz sinAcosA :
i A 3 A :

Boundary conditions for this cantilever wing problem, in terns of the vari-

able ¢, are:

3 = 05 2
r(1) = o, ar{0] . o, 40l - g (16a,b,c)
g dc”
£

This problem is an eigenvalue problem and is discussed at Iength in
Reference 10 {pp. 311 - 317). The solution to this problem vields a critical

value of dynamic pressure, q, at divergence, denoted &s ap> given by the

LAk Dbt b it LG it HOLET

following expression:

9p = g.33 El (17)
a,ce” [sinacosa
3 , Equation (17} is valid only if A, the sweep angle, is less than zero; this value

of A occurs vhen the wing is sweptforward. A sweptback wing (A>0) will not

diver - .«ader tne present assumptions.
With no torsional deformation permitted, the dynamic pressure at diver-

gence is maximized by maximizing the parameter EI. The maximum value of

Wl €7 AN AR, ¢ Ty DRI "
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the parameter EI is attained, in the case of a fibrous composite, by

aligning the fibers parallel to the swept reference axis. This rasult is

not surprising and, indeed, is somewhat discouraging, because the solution

to_designing such a structure lies in adding more composite material as

the wing is sweptforward. This strategy is identical to that followed for

conventional metallic designs.

4. DIVERGENCE OF A SWEPT WING WITH UNIFORM GFOMETRICAL AND STRUCTURAL
PROPERTIES - BENDING AND TORSION INCLUDED

a., Equilibrium Equations

The coupled differential equations that govern aeroelastic divergence
of a constant chord, laminated composite, swept wing with both bending and

torsional flexibility are written as:
tth'V - Ko™ = (qcaocoszA) (e« - h'tanp) (18)

and

GJg" - Kh' = -(qca e cos?h) (a- n'tani) (19)

where ( )' = d( )/dy.
To nondimensioralize the above equations and thus facilitate the soiu-

tion, three new variables are defined:

n=y/,,w=h ,r=dh=dw (20a,b,c)
dy dn
Tnese new vairiables permit Equations (18) and (19) to be expressed as:
' - ka" =ala - r tana) (21)
a" - gr" = -b(a - T tana) (22)
where now ( )' = d{ )/dn. Parameters in the above expressions are defined

as follows:

13
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a = qczsaocoszA/EI (23a)
b= qcezzaocoszA/GJ (23b)
k = K/EI (23c)
g = K/GJ (23d)

The boundary conditions for these equations are written as follows:

r(0) =0 (24a)
a(0) = 0 (24b)
r'(1) - ke'{1) = 0 (24¢)
a'(1) -~ gr'(1) =0 (24d)
(1) - ka"(1) = 0 (24e)

Equations (21) and (22) can be combined into a cingle equation by de

fining a new variable, L given by the relationship

ag = @ - I tanA (25)

The variable g represents the angle of attack of a chordwise section in-
duced by the torsional and bending deformations of the wing. The steps
necessary to accomplish the combination of these two equations into a single
equation are outlined in Appendix C. The resulting equation is a third

order differential equation with constant coefficients,

”"e b ]"k taNA t a - tanA -
@y +[—{T———)—)-_ kg :lue -[ 1 kg ]ae =0 (26)

Equatirn (26) has boundary conditions given by

ae(O) = 0, ué(]) =0 (27a,b)
and ag'(1) + AL =ktanb)y () = g (27¢)

If the parameters k and g are zero, Equation (26) and its associated bound-

ary conditions reduce to those developed in Reference 1 for the study of
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divergance of a metallic wing.
Two aeroelastic parameters appear in Equation (26). These parameters

are defined, for ease of notation, as

- J— 2 2 -
< - | 1ok tans qcega,cos A (28)
1 - kg GJ
- AT ace3a cocln |
£7a_cos A
_= tan‘\ - g qC 0
L b et 3 (29)
o J

b. Solution to thehDivergence Equations

The solution to the eigenvalue problem defined by Equation (26) and
its boundary conditions, Equations (27a,b,c),follows that given in Refer-
ence 1. This solution is summarized in Appendix C of the present report.

Figure 4 displays the interdependence of the critical values of a
and d found for this problem. The region above the solid curve shown in
Figure 4 represents a region in which combinations of values of a and d
result in a divergence condition for the swept wing. Values of a and d
below the solid curve correspond to those values of the aercelastic param-
eters that are associated with a stable wing. Thus, the solid curve cor-
responds to a stability boundary for the constant chord wing.

As discussed in Reference 1, an approximation to the curve shown in
Figure 4 provides an accurate approximate relation between Eb and ab, the
values of a and d at divergence. This approximation is developed by first ,
recognizing that a is equal to zero if the wing is rigid in torsion. This
condition corresponds to bending divergence of a swept wing. discussed in

Section II, part 3. In this case,
a. =29 - _6.333 (30)

If the wing is rigid in bending, but has torsional flexibility, thend = 0

15
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and the exact solution to the divergence problem results in a value of Eb
given by
ED = (n/z)z (31)
If a linear algebraic relationship between Eb and ab is assumed, taking
into account the results in Equations (30) and (31), an approrimate relation-

ship between Eb and Eb can be developed. This relationship is given by the

(i )"

The approximate relationship given by Equation (32) is shown as a

equation

dashed line in Figure 4. For the range of values shown in this figure, the
agreement between the exact solution and the approximate solution is excel-
lent.

Combining Equations (28) and (29) with Equation (32), the dynamic
pressure at divergence is found to be
= | 247 (0 - kg) El

ca_cos?a 1 -k tanh - 0.39(tank - g)
0 %) (&
e’ ‘EI

ap (33)
Equation (33) provides useful information about the divergence be-
havior of the swept wing. First of all, if ap is a negative number, no real
divergence speed occurs, since the airspeed V must be an imaginary number
if 9 is to be less than zero. Therefore, combinations of parameters that
result in negative values of q, are desirable. From strain energy consid-

erations, the factor (1 - kg) in Equation (33) will always be a positive
number. Thus, the denominator, containing terms dependent upon A and the
geometric and structural characteristics of the wing, controls the sign of

Qp-

17
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The divergence dynamic pressure ap changes sign at infinity. The

parameter 9 becomes infinite wher the following relationship is satisfied:

tan p_ = e (i)(%%) (34)

R I 2.56(g_) g
%

Values of tan A larger than that given in Equation (34) result in finite_’

/
negative values of 9 that, in turn, yield imaginary divergence velocigjbs.
/
The value of A determined in Equation (34) is denoted as Acr because it
represents that value of the sweep angle above which swept wing diyé}gence

is theoretically impossible. /

Y
To interpret and to compare the information provided by Egéation (34),
it is noted that a conventional metallic wing has the parameyér g equal to
zero. Thus, Acr is a constant for the metallic wing. For/; laminated com-
posite wing, Ay will be a function of the laminate chagdcteristics. Fur-
thermore, for a metallic wing operating at subsonic snééds, Aep will be
greater than zero for the usual case in which the parameter e is greater
than zero. This means that the metallic wing must be swept back to pre-
clude divergence. On the other hand, with a composite material wing for
which the parameter g is less than zero, the possibility exists that Aor
is less than zero. In chis case, sweep angles exist, in the forward swept

range, for which divergence will not occur at any flight speed.

c. Example Cases

An example of the use of Equation (34) to study divergence is provided
by two related wing configurations. In the firs: case, all of the laminate
fibers of the cover sheets are oriented along a common direction, denoted

as the angle o. In the second case, 10% of the fibers are fixed at an

18
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angle e = 0°, 25% of the fibers are oriented symmetrically at o = + 45°
(12.5% are + 45°, 12.5% are -45°), while the remaining 65% of the laminate
has fibers oriented at an angle ¢. Geometric and lamina material data for

the wingare as follows:

Wing and Lamina Properties

Wing Aspect Ratio, AR = 6 Offset between aerodynamic center and

reference axis, e = 0.10c

Lamina Material: Boron-epoxy

E] = 32.5 x 106psi. (tension)

E2 = 3.2 x 106psi. (tension)

6y, = 1.05 x 10%si. upp = 0.36

The ratio of box-beam depth to cover-sheet thickness is 20:1.

Figure 5 shows the relationship between the parameter g=K/GJ and o
for each case. For Case 1, in which 100% of the fibers can be tailored,
the absolute value of g has a maximum value of about 1.20. Also to be
noted is that g is an asymmetrical function (about 6 = 90°) of 6. 1in Case
2, where only 65% of the fibers are available for design orientation, a
reduction in the percentage of fibers that can be used for tailoring is
seen to resuit in a decrease in the maximum absolute value of g to near
|g] = 0.50. In addition, the positionof the min-max values of g in the
latter case lies farther away from the e = 90° position than that found
for Case 1. It should be noted that both EI and GJ are symmetrical functions
of 8 (about & = 90°).

Using Equation (34), the relationship between Acr and 8 for the two pre-
viously discussed cases can be determined. These results are shown in Fig-

ure 6. In Case 1, proper orientation of the laminate fibers can preclude
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wing divergence until a forward sweep angle of nearly 49°. This occurs if
laminate fibers are oriented at an angle about 12° ahead of the swept refer-
ence axis (8 = 102°). For Case 2, in which fewer fibers are used in the
tailoring process, the results are less dramatic, but still impressive.
When o is about 110° (20° forward of the reference axis) the wing may still
be swept forward nearly 28° before a real divergence speed is encountered.
F%gure 7 shows the behavior of the divergence speed VD of the uniform
property wing in Case 1 as the fiber angle changes. The results are
normalized with respect to VDO’ the value of VD that results when the wing
is unswept and all the fibers are oriented along 6 = 0. Three sweep angles
are considered in Figure 7; these angles are A = 0°, -30°, -60°, corres-
ponding to an unswept wing and two forward swept wings. In the range 0° <
8 < 90°, the divergence speeds of'the wing for each of the sweep angles
are relatively low. However, as 6 is increased beyond 90° and the fibers
are rotated forward of the wing reference axis, the divergence speed in-
creases rapidly. In the cases of the unswept wing and the wing with 30° of
forward sweep, the divergence speed becomes infinite for fiber angles
8 = 95°. There is a range of laminate fiber angles for which divergence
is impossible in these latter two sweep cases. The range of angles ir
which divergence is precluded is seen to decrease with increasing forward
sweep. Referring back to Figure 6, it is to be expected that this range
or bandwidth approaches zero as the angle of forward sweep approaches 49°.
Returning to Figure 7, it is seen that, for A= -60°, a maximum divergence
speed is reached when ¢ is approximately equal to 100°. For this fiber
orientation, this particular forward swept wing has the same divergence

speed as an unswept wing with all the fibers oriented aijong the reference

21
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axis (e = 90°).

An additional, important feature of Figure 7 is that the divergence
behavior of the unswept wing is not symmetrical about e = 90°, even though
EI and GJ are symmetrical functions about that position. For a metallic
wing at zero sweep, the divergence speed is independent of the bending stiff-
ness, since bending deformation produces no 1ift. However, in the case of
the laminated composite wing, bending deformation, caused by 1ift, causes
torsional deformation that, in turn, leads to changes in 1ift. This elastic
coupling feature is clearly seen in Figure 7.

5.  DIVERGENCE OF LINEARLY TAPERED WINGS WITH GEOMETRICALLY SIMILAR

CROSS-SECTIONS

Next in order of complexity, after the uniform property wing, is a
wing whose properties have a linear variation along the wing span. A solu-
tion to Equations (6) and (7) is discussed in Reference 1 for the metallic
wing whose wing chord varies linearly along the span while the bending and
torsional stiffnesses vary as the fourth power of the chord. Such a case
occurs when a wing has geometrically similar cross-sections. For a com-
posite wing, the parameter K also varies as the fourth power of the chord
if both geometrically similar cross-sections are used and the chord varies
linearly with distance along the span.

With the assumptions of linearly varying chord and geometrically similar
cross-sections, expressions for the problem parameters are given by the
following:

4

= = = = = 4
c = fc = fcr, e = fer, El=¢f EIr’ GJ=°f GJr,

root
(35)
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where f =1 - (1 -3)

A = wing taper ratio = ctip/croot

( )r = parameter value evaluated at the wing root.

Transforming Equation (6) to the independent variable f and then

é nondimensionalizing, gives the bending equation (note that now ( )' =
; d( )/df):
d %
L P - a1+ 870" - k'] + 12FL8" - ko -dpr + gy = 0 |
; (36)
E
i where

3

qc ¢ a_sinacosp
dT = r 0 3 (37)
EL.(1 - )

Similarly, the torsion equa.ion is found from Equation (7) to be

fLa" - 9,01 + 4f[a’ - gr'] + arla - rtana] = 0 (38) |

where f
2 2 .

gqc.e g a_Cos A !

aT = r r 0 2 (39) \

6J.(1 - ) ,

Boundary conditions on displacement are, at f = 1 (n = 0), i
«(1) =0, (1) =0 (40a,b)
The boundary conditions at f = A (n = 1) for bending moment, shear force

and torque are

M(2) = r'(a) - ka'(a) =0 (40c)
V) = 830 () - k' (1)) + 2HE (1) -k a"(3) = 0 (40d)
‘ T() = o' (3) = g1'(3) = 0 (40e)

Appendix C, Section 2, details how Equations (36) and (38) may be

25
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combined into a single equation in terms of the variable 4y =@ - T tanA.
This single governing equation reads as follows:
3|| e 0 S ] e by
f aé + 8§ ag t (12 + aT)fae + (2aT - dT)ae =0 (41)

where the aeroelastic parameters 3} and 3} are given by

- - o

2 2
- 1- krtanA qercrz a,c0s A
Tk 7 (42)
ror GJv(l - )
L - K
] _ tana - g, ac.2’ a costh
] dy = | ——— —— (43)
‘ 1- krgr 11 EIr(] - )
The boundary condition for Equation (41) at £ =1 (rn = 0) is:
ae(l) =0 (44a)
At f = A, the conditions that M(1) = 0 and T(x) = 0 give
ué(k) =0 {44b)

The requirement that there be zero shear at the wing tip, when combined
with Equation (38), evaluated at f = A, provides the following equation.
211 ey =
\a e(k) + aTae(A) 0 (44c)
Equation (41) is an Euler differential equation that can be reduced
to a linear differential cquation with constant coefficients by changing

t

the variable f to f = e”. The details of solving Equation (41) subject

to the given boundary conditions is presented both in Reference 1 and Refer-

ence 9 (pp. 486 - 487). These details are omitted here.

As in the case of the uniform property wing, the solution to the

equations governing divergence of a tapered wing gives critical values of

a and d that occur at divergence. These critical values, denoted as Eb

26
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Eb are plotted in Figure 8 for several wing taper ratios. An approximate E
linear relationship again can be developed between 9P and the geometrical, :
structural and aerodynamic parameters in the problem. This relationship
is given by the expression:
oz || VL )
a,C8 COSA r l-kr’canA -K?_ (E’IL) (e_z) (tanp - gr)
rfir
i
The constants K] and K2 are functions of the taper ratio A and the eigen- :
values found for each taper ratio. These constants are tabulated, for
several values of », in Table 1. ‘
TABLE 1. - VALUES OF K-l AnD K2 fOR FOUR, VALUES
OF TAPER RATIO, A = Ct /cr. %
g 0.20 2.83 0.614 !
§ 0.50 2.73 0.497
§ .00 | 2.47 | 0.3%0
% 1.50 2.22 0.326
The effect of taper upon the divergence of swept composite wings can
be seen by considering the example for which 311 fibers in the laminate are

oriented at an angle ¢. The effect on Ay of the taper ratio is shown in §

Table 2 on page 29.
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TABLE 2. - Acr VERSUS 6 FOR THREE TAPER RATIOS, A = ;;
Aeps critical sweep angle (degrees)

0(deg.) A=0.20 A=0.50 A=1.0 !
0 1.20 1.48 1.89

30 13.71 13.76 13.83 z

60 35.94 36.00 36.08 A

90 11.13 13.66 17.20 %

100 -49.08 -48.67 -48.05 ?
120 -35.45 -35.39 -35.30
150 -13.29 -13.24 -13.16

The effect of decreasing taper ratio on Aoy is to increase Acr’ al-
though these increases are very small. Thus, it may be concluded that taper
ratio does not have a strong influence on Acr’

Figure 9 illustrates the behavior of the divergence velocity, (normal-
jzed with respect to VD at A = 0and 8 = 0), as a function of &, for A = 0.20.
Comparison of Figure 9 with Figure 7, in which A = 1.0, shows that the sets
of curves are very similar. Some differences are apparent and worth noting.
In particular, near the fiber angie 9 = 0°, the divergence velocity at
A = 0 declines more rapidly with 6. In addition, the curve corresponding
to a sweep angle A = -60° does not attain as large a maximum valur when
A = 0.20 as it does when A = 1.0. It should be noted, however, that the

reference velocity is different in Figure 7 than it is in Figure 9.
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SECTION III .
CONCLUSIONS

This report has presented a simple theory to predict the divergence
bxhavior of high-aspect-ratio, laminated composite, swept wings. This
theoretical development is based upon Taminated beam bending theory and
aerodynamic strip theory. The equations developed from this theory have
been used to predict the effect of laminate construction on wing divergence.
The conclusions drawn from the analysis and the example cases presented
are:

1) The elastic coupling between bending and torsion, introduced

by the laminated material through the parameter K, can suc-
cessfully negate the undesirable influence of forward sweep
on wing divergence for a wide range of forward sweep angles.

2) The ratio K/GJ is a very important parameter to consider

when designing an efficient forward swept wing. This ratio
should be tailored such that it has a relatively large nega-
: tive value.
4 3) Wing taper is important to the determination of the diver-
“ gence speed where such a speed actually exists. However,

wing taper is of secondary importance as a parameter in-

fluencing the design of a divergence free wing. i

4) The alignment of lamina fibers at angles from 10° to 15°

forward of the swept wing box-beam reference axis appears to
be an optimal orientation for wing divergence performance.

This report has shown that, from a theoretical standpoint, and unlike

3
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its metallic counterpart, the laminated composite, forward swept wing is a
feasible structural design. The formulas derived and presented in this
report provide a quick, inexpensive estimation tool for further research

on forward swept wing design.
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APPENDIX A
THE DEVELOPMENT OF THE STRAIN ENERGY
EXPRESSION FOR A LAMINATED FILAMENTARY
WING BOX

1.  BASIC ASSUMPTIONS

The wing structural model employed throughout this report is based
upon the assumption that the bending stiffness and torsional stiffness
of the wing structure are due entirely to the presence of relatively
thin, laminated composite cover sheets, located at a large distance (in
comparison to their thickness) from the wing middle surface. Although
all of the bending and torsional stiffness is assumed to reside entirely
in the laminated cover sheets, it would be a simple task to add algebra-
ic=11ly any additional stiffnesses that might arise from the presence of
such elements as spar caps or flexible webs.

To formulate the strain energy expression that leads to the definition
of the equivalent bending stiffness, EI, and torsional stiffress, GJ, for
this type of box-beam structure, it is necessary to make an assumption
about the deformation behavior of the wing box. The well-known Euler-Ber-
noulli hypothesis that the strain due to bending varies linearly from the
neutral surface of the box-beam provides this assumption about the dis-
placement behavior of the wing. In addition, it is further hypothesiz~d
that chordwise sections of the wing, perpendicular to a beam reference
axis, are rigid. This means that the deformation of the wing box is a
function only of a spanwise coordinate, y. In addition to the Euler-Ber-

noulli hypothesis, the material behavior is assumed to be linear elastic.
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An additional feature of the idealized besn .iodel te be developed is that
the reference surface of the box beam is taken at the geometrical middle
surface of the wing box. This convention, commonly used in laminated plate
theory, is more convenient than the alternative of locating a modulus
weighted centroid of each section (a modulus weighted centroidal axis will
always lie in the neutral surface). If the laminated box beam is not both
elastically and geometrically symmetrical, the middle surface will not be
the neutral surface for bending.
2.  COVER SHEET DiSPLACEMENTS

A Cartesian cecordinate system is defined in Figure 1. The x-y plane
correspends to the geometrical middle surface of the wing box. The posi-
tive x-axis s rearward on the wing while the y-axis lies along the swept
wing span and is coincident with the reference axis of the wing box. Dis-
placements of the individual lamina forming the cover sheets are given by
the functions u, v, w, in the x, y, z directions, respectively. The u, v,
w displacements are not independent functions; they are functions of the
variables h and «, the upward displacement of the wing elastic axis {with
respect to the y-axis) and the rotation of a chordwise section about the
3 y-axis, respectively.

In terms of h(y) and «(y), the functions u, v, w may be expressed as:

u{x,y) = za{y) (A-1)
viGy) = vo(y) - 2[5k - x (A-22)
or v(xsy) = vyly) - 2l - xa'] (A-2b)
w(x,y) = k(y) - xa(y) (A-3)

The variable vo(y) represents the spanwise stretching of the middle

sur{ace caused by transverse applied loads and twisting.
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3. STRAINS IN THE COVER SHEETS
The strains in the laminated cover sheets may be determined from
Equations (A-1) through {A-3). Only two strains are nonzero; these strains

are:

Cyy = vé - 2(h" - xa") (A-4)

Ty © 2za' (A-5)

These strain-displacement expressions are seen to be consistent with the
isotropic Euler-Bernoulli thaory of beam bending ip which there is neither
transverse shear strain nor normal stress o, present. The strain-dis-
placement expressions are to be used to develop the strain energy expres-
sion for the box beam, from which will result the EI and GJ expressions. §
&.  LAMINA CONSTITUTIVE RELATIONS

For a single orthotropic lamina, the relationship between membrane

3 stress and strain can be written, in matrix notation, as: %
] 3
) [ G2 W6 o |
- (A-6) {
oyy 2 = T2 W2 Qs ) ey :

Txy Qe O Gged { vy

The terms ﬁ}j are functions of the orthetrcpic engineering constants

ey ol

Qii and the angle 6 defining the orientation between the lamina principal
axes and the wing reference axes. The lamina lies in a plane parailel to 4
the x-y plane; the angle o is as defined in Figure 2. The Qij terms are

defined as:

Qqp = Eg/(1 = wuyp upy) (A-7)
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Oz = w2 B/ (1 - uyp ) (A-82)

= uz1 B/ (1 =gy myp) (A-8b)
7R AL PRT) (A-9) ,
%6 = G12 (A-10)

The terms ﬁ}j can be defined in a concise manner [8] by defining a

set of parameters U1 that are, in turn, functions of Qij'

Uy = D30y + 305, + 20y, + 40g6)/8 (-1
U, = [0y - Qpp)/2 (A-12)
E Us = [y * Oy - 20y, - 4Qg6)/8 \w-13)
E Ug = [Qyy * Qpp + 60y, - 40g53/8 (A-14)
U = [Qgy * Qg - 20y, + 40g61/8 (A-15)

In terms of these new constants, the matrix terms ﬁ}j become

é Qyy = Uy + Upcos2e + Uscosde (A-16)
Ty, = Uy - Uscosde (A-17)
Gy, = Uy - U,c0826 + Ujcosdd (A-18)
Ty = 7 UpSin2e + Usinde (A-19)
Ty = 3 Upsin2e - Uysinge (A-20)
Qg = Ug - Ujcosdd (A-21)

Note that 616 and 626 are antisymmetrical functions of the angle 6, while
the other functions are symmetrical.
The constitutive relations for the inplane or membrane behavior of

the individual lamina are used to determine the strain energy functional
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for the box beam. In this case, the individual laminae are constrained to

act as a unit because of the previously defined strain-displacement re-

lations.
5.  THE LAMINATE STRAIN ENERGY EXPRESSION
The strain energy density per unit volume for the box beam is defined

as:

U*:

;\iL_J

+ -
%y Syy * Txy Txy) (A-22)
In terms of this volumetric strain energy aensity, a functional U(y) can

be defined. This latter functional represents the strain energy per unit

length and is expressed as:

E T

3 c/2 zu
U(y) = f / U* dx dz (A-23)
i /2 *z,

The 1imits of integration represent: c, the wing chord; and z, the z-
location of the upper surface of the wing box. Symmetry, both elastic and
geometric, of the wing box in the x-direction is assumed here.

The constitutive relations, Equations (A-6), can be substituted into

i

Equation (A-23) with the following result.

c/2 {A-24)
g 2 ~
i o - 3f f [ﬁgh 2+ 2050 e vy + T (1) ]d’“’z

-¢/2 -7,

TR TT—

PR

Thr superscript (i) appended to the lamina elastic constants refers to those
constants appropriate to the (i)th layer of the laminate. ;
Upon substitution of the strain-displacement expressions, Equation

(A-24) becomes
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N 2 :
uy) = c/2{ 3 laf,_;) g, ()2 +T5) 5, (S ()2 - 4T (vt + 4703 8 (0"

i=1

+6£Z) tilvg)?- 262) 53 (vgh") *4U§;)5i(“'vc'>)] (A-25)

The summation in Equation (A-25) extends over the N layers of composite
material. The constants B‘ and 6] are defined in terms of lamina coordinates

with respect to the middle surface. In terms of the lamina thickness ti

Lok by

3 and lamina lower and upper position coordinates z; and Zi4ye respectively,

Bi and Gi are defined as follows

Zinn
By =/ 25dz

v | G e R L R L e s L EE L

Z;
_1 4.3 2 2 .
=3 (ti + 3tizi + 3ziti) (A-26)
and
ai =/ zdz
4 Y
= ti(zi+l + zi)/2 (A-27)

L AR R

The term ei represents the area moment of inertia of a strip of material,
of thickness t; and unit width, about the middle surface. As such, Bi is
always a positive number. The term Gi represents the first moment of the
area of the same strip about the middle surface. This term 6i is positive
if the lamina area centroid lies above the middle surface and negative if
it does not.

Equation (A-25) may be simplified. It is to be noted that terms con-
taining squares of beam curvature, h", and the rate of change of twist, o',

appear in this expression. Six new terms involving the laminate elastic
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properties may be defined, leading to a more concise definition of Equa-

tion (A-25). These terms are:

3
.
s
=
=
-

N
] - a(1)
Bl C[E %o 8 (A-28)
: i=
N )
- - i
: 8J, = ¢ []E: aq5 8, (A-29)
i= ]
3~ o(1)
3 3 ;
S = 1 [}E: %, 8 (A-30)
i i=1 .
- N ) 3
3 = i
Ky = ¢ | 22 2y’ 8 (A-31)
: L j= B
- _}
- (i)
App = el 2. Uy ¢ (A-32)
1 L §=1 .
- N _( ) -
- i )
3 Byp = ¢ |20 W' & (A-33)
3 L =1 .
: (1)
- i
Byy = 2 []E: Ty 51] (A-34)
j=1
With these newly defined constants, U(y) may be written as:
11 2 2 " "t ] 2
Uy) = JE1,(h")% + 35, (a") - K (W) + FAn(v)) -

+ Byglvga') = Byylvgh") + %Gdo(“')z
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Equation (A-35) reveals that bending deformation and torsional de-
formation are coupled through the constant Ko’ defined in Equation (A-31),
and that additional coupling between the middle surface stretching and both
bending and torsion also occurs. The terms EI0 and GJO are defined as
they are because they occur in the energy terms associated with uncoupled
bending and torsion, respectively.

In Reference 7. the term in the strain energy expression containing
So is shown to be insignificant in comparison t; that term involving the
term GJo as long as the wing has a moderate to high aspect ratio. This

term is also ignored in the analysis in the present study.
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APPENDIX B
THE DEVELOPMENT OF THE COMPOSITE BEAM BENDING
AND TWISTING EQUILIBRIUM EQUATIONS FOR DIVERGENCE

1. GOVERNING EQUATIONS FOR A BEAM WITH CONSTANT CROSS-SECTION

The strain energy functional can be used, in conjunction with the
Principle of Virtual Work, to derive the equilibrium equations necessary
to solve the divergence problem. For the present problem, the Principle

of Virtual Work can be stated as follows:

2 9
a/ U(y)dy =/ (py‘wo + t 8a + psh)dy (B-1)
0 0

The terms py, t and p in Equation (B-1) represent the applied generalized

forces per unit length associated with the degrees of freedom Vo2 % h,
respectively. These generalized forces are distributed along the length
of the beam; no concentrated forces or moments are applied. For our analy-
sis, the generalized force py is zero, since it represents an external
axial load term.

Manipulation of Equation (B-1) yields three differential equations of
equilibrium (in terms of displacement derivatives) together with the neces-

sary boundary conditions. These differential equations are, for the con-

stant property beam model, as follows:

"8330" - Azzvou + Bzzh " o= 0 (B-Z)
“GJoa" - 333V0" + Koh "= t(.Y) (8'3)
EIohiv - Ko = Byov " = p(y) (B-4)

The boundary conditions at y = 0 are as follows:
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: v, (0) = 0 (B-5)
h(0) = h'(0) = 0 (B~6,7)
a(0) = 0 (8-8) :
{
At y = ¢, the boundary conditions are: N
Gloa' + Byav ' - Kh" =0 (B-9) ;
B33a' + Azzvo' - Bzzh" =0 (8-10) ‘
[ 1 (- - i
: EIoh' - Ko“ - Bzzvo =0 (B-11) ?
: EIoh'" - Ko“" - Bzzvo" =0 (B-12) ‘

An understanding of the physical significance of the equations of
equilibrium can be found by formulating expressions for internal force and

moment resultants in terms of the displacement derivatives. Let P repre-

3 y
3 sent the internal resultant axial force present in the beam. This force
é resultant is defined as:
= - s " ' -
P.y // oyydxdz A22V° 822h + 833a (8-13)
Area

The internal bending moment Mx is defined as:

. - [/ oyyzdxdz

Area

'+ ELh - Ka (B-14)

=
1

= -Byo¥p

From static equilibrium of an infinitesimal beam section, the internal shear

et

force resultant VZ is given by the equation

de " 1
Vz Iy “Boo¥," * Eloh - Ko (8-15)
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Finally, the internal torque T is defined as:
!
2
= zT,,, - d i
T / (z7 xy = Xxz Ydxdz i
Area H
(B-16) !
3
A

= ' [ u
= GJoa + B33vo Koh

tamlninblh 4 68

Comparison of Equation (B-13) with Equation (B-2) shows that the
latter equation may be written as:

dp

Y = 217)
dy 0 (B-17)
Since there is no loading in the axial direction, Equation {B-17) can
i
be integrated once to produce the following result. 3
= - v " ! - %
Py =0= F\22vo Bzzh + 333u (B-18) ;
Equation (B-18) may be solved for vo' %
F
B B i
22 33
v'=+= h" -+ a (B-19)
o Ay Aro

B AL Y Nt i K

i

Equation (B-19) may be differentiated to obtain identities for higher order

b un

derivatives of vy h and «. The identities obtained by differentiating

LR

Equation (B-19) may be substituted into the equation for bending, Equation

(B-4) and the equation for torsion, Equation (B-3). The following equations

Sl Bl 3 1 M

result.
8° | v [ Ba B3 ] "
- —A—ZE_ WYk, - _Kz?— | a" = p(y) (B-20)

] ] 2

B, B (Boq)
- LK° . _2222_33_ h o+ G, - —KZ%— a" = -t(y) (B-21) i
|
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These equations are independent of the middle surface stiretching term Vo
The boundary conditions for the probiem may also be modified so that
derivatives of v, are eliminated.

Definitions of reduced bending stiffness, EI, torsional stiffness, GI,
and the coupling parameter K are readily available from Equations (B-20)

and (B-21). With these definitions, Equations (B-20) and (B-21) become:

ELhY - Ko™ = p(y) (B-22)
=K h"™ + GJa" = ~t(y) (B-23)

Boundary conditions for these equations are as follows:
at y = 0, «(0) = 0 (B-24)
h(0) = h'(0) = 0 (B-25)
at y =2, Gla' - Kh" =T(2) =0 (B-26)
EI h" - Ka' = Mx(z) =0 (B-27)
EL h™ - Ka" =V (2) =0 (B-28)

2.  GOVERNING EQUATIONS FOR A BEAM WITH A NON-UNIFORM CROSS-SECTION

The Principle of Virtual Work also can be used to derive the governing
equations for a nonuniform beam. However, an aiternative way to derive
these equations is to use the Jdefinitions of the bending moment, twisting
moment and resultant shear force, in terms of the deformations h, a and
Vo? derived in the previous section.

Oézé\ggain the axial force equation yields a relationship identicai to
that given in Egyation (B-19). The bending equation reads

(«szvo' + EIoh" - Koa')" = p(y) (B-29)

while the torsion equation becomes

(B33v0' - Koh" + GJoa')' = -t(y) (B-30)
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Elimination of the axial stretching term, Vos results in two equations
involving oenly two variables, h and «. These equations are:
[EI h" - K a']" = ply) (8-31)
[-K h" + GJ a']" = -t(y) (B-32)
The definitions of the terms EI, GJ, and K are identical to those discussed
in the previous section. Boundary conditions for Equations (B-31) and

(B-32) are:

aty =0 «(0) = h(0) = h’(0) = 0 (B-33,34,35)
at y = 2 EIh" - Ka' = 0= M(2) (B-36)

[EI h" - Ka']' = 0=V (2) (B-37)

GJ o' - Kh"=0=T(g) (B-38)

3. AIRLOADS FOR THE DIVERGENCE PROBLEM

Figure 3 illustrates the geometry emplcyed to determine the incremental
1ift forces and pitching moments on the swept wing. The airloads are modelied
from strip theory assumptions, assumptions that tend to overestimate the
aerodynamic loading and also give values for the airloads that are somewhat
inaccurate at large sweep angles. Nevertheless, the value of strip theory
aerodynamics lies in its ability to provide reasonably accurate aeroelastic
trend information, allowing the establishment ot the proper relationships
between the geometric, aerodynamic and structural parameters in an aero-
elastic problem.

References 1 and 9 detail the development of the use of strip.theory
aerodynamics for swept wing aercelasticity problems. Of importance to the
divergence problem is the determinatiorn of the incremental 1ift periunit
of span (along the swept y-axis) arising from the deformations hand «. The
reader is reminded that, for this study, h and o represent the pertu;bation

deformations away from some slightly deformed static equilibrium position.
45 \
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The 1ift per unit span due to these deformations is given by the expression §

- 2 i

p(y) = (caoqcos A) (o - h'tanh) (B-39) ;

While the pitching moment about the y-axis is written as: :

t(y) = (qcaoe coszA) (¢ = h'tanA) (8-40) .

where a, = 1ift curve slope (two-dimensional). §

¢ = chordwise dimension perpendicular to the y-axis. %

3 e = the distance between the line of aerodynamic centers (A.C.) f
3 §
} and the y-axis, measured positive aft from the A.C. i
; A = the sweep angle of the reference axis, positive rearward. g

4.  NONDIMENSIONALIZED GOVERNING EQUATIONS FOR A UNIFORM WING

T Nema i 0

: With the inclusion of the airloads given in Section B3, the counled
3 equations governing divergence of a uniform cross-section, composite swept

wing are:

EL RV - Ka™ = (cajacos?h) (o - h'tanh) (B-41)

and
j GJ o" - Kh" = —(qcaoecoszA)(a - h'tana) (B-42)

These equations may be written conveniently in nondimensioral form. To

accomplish this, new variables are defined as follows:

n=y/s (B-43)
w=h/se (8-44)
I = dw/dn = dh/dy (B-45)

These definitions lead to the following nondimensional, coupied eguiiibrium

equations.
_ r'" - k o™ = afa - Ttanh) (B-46)
5 a" - gr" = -b{a - IM'tan4) (B-47)
% 46
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where { )' = d( )/d,. The boundary conditions for these equations are

written as follows:

r(0) =0 (B-48)
«(0) =0 (B-49)
r'(l) - k'(1) =0 (B-50)
a'(1) -or'(1) = 0 (B-51)
(1) - ka"{1) = G (B-52)

The nondimensional parameters that appear in Equations (B-46)through (B-52)

are defined as follows:

a= qcz3aocoszA/EI (B-53)
b = 2 2

= qce”a ecos A/GJ (B-54)
k = K/EI (B-55)
g = K/GJ (B-56)

5.  NONDIMENSIONAL EQUILIBRIUM EQUATIONS FOR A TAPERED WING PLANFORM

A wing whose chord is 1inearly tapered along the wing span and whose
cross-sectional dimensions are proportional to the iocal chord will have
bending stiffness and torsional stiffness distributicns tnat vary as the
fourth power of the chord; the coupling parameter K will also vary as the
fourth power of the chord. To begin the development of the equilibrium

equations applicable to this problem, let us define the following terms:

c= fcroot = fe, (B-57)
where f=1-n(1-2) (8-58)
and A s Ctip/croot = ct/cr = wing taper ratio (B-59)

The subscript notation ( )r refers to values evaluated at the wing root,

while 5 = y/2.
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Since the chord varies linearly with n and all wing sections are geo-

metrically similar, the following stiffness parameter relationships result.

£l = f4EIr (B-60)
GJ = f4GJr (3-61)
K = f4Kr (B-62)

Equations (B-31) and (B-32) govern the static equilibrium of the nonuniform
wing and can be combined with Equations (B-39) and {5-40) (note that, in

the latter two equations, ¢ = fc‘\ to yield an equaticen that is a function of
the nondimensional independent variable n. The variable f =1 - (1 - a)
also can be chosen as the independent variable. S5ince the latter choice of
ar independent offers substantiai mathematical advartages when attempting

a closed form solution to the problem, f, not n, is choser as the independent
variable. With f as the independent variable, the bending equation reads

(note that ( )' = d( )/df below):

PLrm - ko] + 862007 - ko'l * 1260 - ko'l - dir + 2o = 0 (3-63)
r r* r r® T re T' 7 tanA
where 3
qc.L aosinAcosA
dp = 3 (8-64)
EI (1 - 3)
r
The torsinn squation becomes
fz[a" - grr“] + 4f[" - grr'] + aT[u - rtana] = © (B-65)
where
QCrerzzaocoszA
ar = 5 (8-66)
GJ (1 ~ 1)
r
Boundary conditions at ¥ =1 (n = 0) are,
a{(l) =0 (B-67)
r(l1) =0 (B-68)
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while, at f = A (n =1),

M(A) =r'(2) - kra'(A) = 0 (B-69)
V(r) = 4A3(P‘(A) - kra'(A)) + A4(r"(x) - kra"(k)) =0 (B-70)
T(A) = a'(x) -~ gr'(a) =0 (B-71)

While these latter equations and boundary conditions now appear rather
complex, they can be reduced to a form in which they can be readily solved.

This simplification and solution is discussed ir Appendix C.
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APPENDIX C
SOLUTION OF THE WING DIVERGENCE EQUATIONS FGR CONSTANT
CHORD AND LINEARLY TAPERED WINGS

1. SOLUTION FOR COMSTANT CHORD WINGS

In Section B4, two coupied differential equations, Equations (B-46)
and (B-47), were developed; these equations govern the divergence of a
swept wing with a constant chord. The solution of these equations, sub-
ject to boundary conditions, Equations (B-48) through (B-52), is detailed
in this appendix.

Let us begin by defining two new dependent variables, ¢(n) and ¥(n),
to be used to transform Equations (B-46) and (B-47) into a single equation

a - T tanA. In terms of ¢ and ¢, the variables

in terms of the variable «

e

I and o are defined as:
I = ¢(n) + ky(n) (c-1)
a = y(n) + go(n) (C-2)

where the constants k and g have been previously defined. Substitution of
Equations (C-1) and (C-2) into Equations (B-46) and (B-47) yields the fol-
lowing:

8" = [ ggdl(1 - k tana)y + (g - tana)e] = 0 (c-3)

p"+ [T—:QE§J[(]' k tanA)y + (g ~ tanA)e] = 0 (C-4)

Substitution of expressions for ¢(r) and ¢(n), as functions of I and a,
obtained from inverting Equations (C-1) and (C-2), into the expression
contained within the second set of brackets in both Equations (C-3) and

(C-4) gives the following result.
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(7 - k tanA)yp + (g - tanA)e = a - T tanA (C-5)
The variable, Ags is defined as

ag =@ - T tanA (C-6)

The term % is the local wing angle of attack, perpendicular to the elastic

axis, due to wing bending and torsional deformation. Equations (C-3) and

(C-4) now read

$"' - [(T_:QF§7J [a] =0 (C-7) ;
W+ [TT—:EEETJ [ae] =0 (c-8) %

If we first differentiate Equation (C-8), multiply it by the factor
(1 - k tanA) and then add the result to the product of Equation (C-7)

E times the factor (g - tanA), the result is a single equation, written as:
" b(1 - k tanA)| , _fa(g - tanA ] - _
%t [ (1= kg) %e 51 “kg) ] %" O (C-9)
; Equation (C-9) is a third order differential equation with constant coef-
ficients.

; Boundary conditicns, in terms of the variable @y, are constructed in

the following manner. Equations (B-48) and (B-49) can be combined to give

the equation

a(0) - T(0) tanA = o (0) = 0 (c-10)

An examination of Equations (B-50) and (B-51) shows that both a'(1) and

Sl s i R

r‘(1) must oe zero, thus, the following boundary condition results.

a'(1) - (1) tana = ué(l) =0 (C-11)

Next, Equation (B-47) is evaluated at n = 1, multiplied by the factor
(¥ - k tanA), and then added to the result of the product of Equation (B-52)

and the factor (g - tanA). This operation provides the third boundary con-

dition, Equation (C-12).
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ag" (1) + (2 =ftamy, (1) = 0 (c-12)

Equations (C-9) through (C-12) constitute an eigenvalue problem. The solu-
tion to Equation (C-9) is of the form

F ag = ce™ (C-13)
Substitution of Equation (C-13) into Equation (C-9) yields a characteristic
3 equation whose solution provides three values for the coefficient r. This
: equation is

% P +ar+d=0 (C-14)

where the constants a and d are defined as:

2 2
_ - qces” a_cos“A
a = [1] _kk;a"A] [ e ] (C-15)
: 3 2
- _ - qce” a_cos A
i d = [t?nf kgg] [ 38 ] (C-16)

Once the three roots of Equation (C-14) are determined as functions
of a and d, Equation (C-13) may be used to construct the stability determi-

nant stemming from enforcement of the homogenous boundary conditions for

the problem. The solution of the stability problem is accomplished by

finding values of a and d which render this stability determinant zero. These

P R TR

critical values of a and d are denoted as Eb and Hb, respectively.

The numerical solution to the stability problem itself is lengthy. For-

B SR

tunately, Reference 1 details the solution to an identi.~% set of equations.

Although the problem in Reference 1 involves a metallic wing, the solution

presented in Reference 1 can be adapted to the composite wing by a suitable
change in the definition of appropriate constants. An approximate solution

is given in Reference 1 and discussed in Section 2.4 of the present report.

52




LA A L o e

S s e, -1 e

This approximate solution is as follows:

ap = 2.47 + 0.3903b (C-17)

From Equation (C-17), the value of Aps the dynamic pressure at wing

divergence, is found to be

(C-18)

@ * [2.4; (1 - gg)] EI
cs aocoézA JE;LEé%HHL - 0.39(tanA - g)

2. SOLUTION FOR LINEARLY TAPERED WINGS

In Section 5 of Appendix B, the governing equations for a wing with
linear taper are presented. The solution to these equations is detailed
in this section. Equations (B-63) and (B-65) may be combined in a manner
similar to that outlined in Section 1 of Appendix C. The procedure is as
follows. First, the two variables ¢ and y are defined. These new variables

are defined as follows:

¢(n) + k.p(n) (C-19)
o(n) + g.0(n) (C-20)

In addition, we define, as in the case of the constant chord wing,

r

[+

% =a =T tana (c-21)

with the definitions contained in Equations (C-19) through (C-21) and with
() =d( )/df, Equation (B-63) becomes

doax
T e
=0 (C-22)
1 - krgr)tanA

Pom + 8% + 12fp" + 1
Similarly, Equation (B-65) becomes

2 31%
foy' +4fy +s——— =0 (C-23)
1 - krgr
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The following procedure results in the reduction of Equations (C-22) and
(C-23) to a single equation in terms of oy
1) Multiply Equation (C-22) by (gr - tanh).
2) Differentiate Equation (C-23) once with respect to f and
multiply the result by the quantity f(1 - krtanA).
3) Add the results from (1) and (2) together.
4) Make use of identities to reduce the equation resulting from
(3) to the form
3 2

flay + 8f%a) + (12 + 3p)fal + (237 - dp)e, = 0 (C-24)
where
_[1 -k tana) [ qe.c_2? a_cos?a
3 = | = : rr- - (C-25)
L9 Jlgg 12 )
_ [tana - g ] [ac.2® a_cos?a ]
. = r r' % ,
T I ] -3 (¢-26)
R = L S LB ]
The boundary condition at f = 1 (the wing root) is:
ag(1) =0 (c-27)

while, at f = A, the wing tip, the bending moment and torque conditions,
M(1) = 0 and T(2r) = 0, give
aé(x) =0 (C-28)
The condition of zero shear at the wing tip, when combined with Equa-

tion (B-65), evaluated at f = i, yields

Kol (1) + Fgag(r) = 0 (c-29)

The solution to Equation (C-24) subject to the boundary conditions out-

lined above follows that described in Reference 1 for a metallic tapered wing.
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Reference 1 presents an approximate linear relationship between the
critical value of dynamic pressure, Aps and the geometric, aerodynamic and
structural parameters in the tapered wing problem. This solution, when

modified to fit the composite wing problem, provides the following equation.

-k
q =[ Gy, ] ( ) )[ Ky (1 Gggr) ] (C-30)
D 3 2 e
A C 27Cos A r ri(2L -
or 1 - k tana - K, (Elr> (er) (tana - g,)

The constants K1 and K2 are functions of the wing taper ratio A. These
constants were calculated for this study and are tabulated below for four
taper ratios. The values given here differ slightly from those found in
Reference 1. The reason for this slight difference is probably due to the

improved accuracy available today on modern computers.

A Ky K,
0.20 2.83 0.614
0.50 2.73 0.497

1.00 2.47 0.390
1.50 2.22 0.326

3. CORRECTION OF AERODYNAMIC LOADS FOR ASPECT RATIO AND SWEEP
In Reference 1, a correction for the effects of aspect ratio and sweep
is suggested. This formula is

Con = ao[AR/(AR + 4 cos A)] (c-31)

where a, is the 2-D 1ift coefficient for the unswept wing section. This
correction may be used in Equation (C-18) and in Equation (C-30) in place
of a,. This correction is used throughout this report for all examples

presented.
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