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FOR EWORD

This report documents the work accomplished during USAF Contract No.

F33615-77-C-3085. The work consisted of developing an interactive PIPSI

-To-mputer program, developing an interactive derivative computer program,
and developing and documenting supporting data libraries. The work was

accomplished in three phases. As part of the work accomplished in Phase
I of the contract, the interactive PIPSI program was completed and
delivered to the Air Force. As part of Phase II work, derivative param-

eters were selected and development work was completed on the derivative

program. During Phase III a library of inlet and nozzle/aftbody charac-
teristics was prepared, test cases were completed, documentation was

accomplished, and final programs were delivered to the Air Force. The

program was conducted under the direction of the Vehicle Synthesis

Branch, Air Force Flight Dynamics Laboratory, A', Force Systems Command.

Mr. Gordon Tamplin was the Air Force Program Monitor.

The program was initiated on 17 July 1977 and draft copies of the final

reports were submitted for approval on 15 May 1978.

Mr. W. H. Ball was Program Manager for The Boeing Company. The following
individuals contributed significantly to the work accomplished during
this contract: R. A. Atkins, Jr., computer programming; T. E. Hickcox,

inlet derivative procedure development; E. J. Kowalski, inlet configura-

tions and performance; and J. E. Petit and R. M. Trayler, nozzle/aftbody

procedure and configurations.
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SECTION I

INTRODUCTION

An essential element of the PIPSI and DERIVP computer procedures is the
use of maps of standardized format to represent the inlet and nozzle/
aaftbody performance characteristics. This volume of the contract docu-

ments contains the existing library of performance characteristics for
Inlets and nozzle/aftbodies. It also contains descriptions of the con-
figurations and the baseline derivative parameters.

The plotted data maps and derivative parameters contained in this docu-

ment represent the data that are converted (in the form of data tables)
into computer disk files for rapid use by the calculation procedures of

-. Ithe PIPSI and DERIVP computer programs.

If
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SECTION II I
INLET CONFIGURATIONS AND PERFORMANCE MAPS

This section contains descriptions of the geometric charactrosts o
the eighteen inlet configurations In the inlet library and their perfor-
mance characteristics. The performance characteristics are presented in

the form of plotted data in the standardized format required as input to
the PIPSI and DERIVP computer programs. For the exact ctrdjormat to6use

in converting the plotted data in this document (and other data Which-the
user may wish to use) into data tables for use by either of the computer
programs, the user should refer to Volume II (PIPSI Program) and Volume
III (DERIVP Program).

A summary of the Inlet types that are included in the Inlet library its
presented in Figure 1. The design Mach number foreach inlet is also
shown in Figure 1. A brief descri'ption of the sources used to obtain the

inlet configurations and data is presented In Figure 2.

The derivative parameters for each of the inlet cmnfigurations are sum-marized in Figure 3.

2.1 INLET DESCRIPTIONS AND PLOTTED DATA

This section contains sketches of each inlet geometry and the plotted
performance data for each inlet. In a general case, the performance

characteristics for each inlet are defined by a series of fourteen plots.
For some inlets, however, not all the performance plots are required

because (for example) some of the inlet designs do not require bypass or
bleed. In such cases, where tables would be zeroed out, those plots have
been omitted from this document. In several cases, the input data plots
for each configuration representing the variation of local inlet Mach
number as a function of free-stream Mach have also been omitted because
the free-stream Mach number is equal to the free-stream Mach number for

these configurations.

3
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Inlet INLET CONFIGURATIONS AND SOURCES OF DATA
No. USED TO DEVELOP THE INLET MAPS

1 A.? type Inlet; developed from published
A.7 data and engineering analysis

2 F.S type inlet; developed from published
PS4 Inlet date andanalyslp

3 Subsonic inlet type; based on data and
methods from Boeing subsonic Inlet (i.e., 707, 727, etc.)'

4 Subsonic inlet type; based en data xnd methods used
to develop Boeing 747.type inlets

5 Normal shook inlet; based on data from Rockwell
tests of F.100 airplane inlet

S Normal shook.type Inlet; based on data from Rockwell
F.100 inlet, losing LWF Inlet tests, and OD LWF
Inlet date

7 Fixed.Geometry, 2.shook Inlet; based on date from
Boeing LWF inlet tests

8 Four.shook, variable ramp inlet; throretical
design based on analysis, optimized for Mo 2 2.0

9 Pour.shock, variable ramp inlet; based on date
from NR inlet tests of IPS model

10 Pixed.geometry, single cone Inlet; based on analytical
design for a Mo 1,.6 VTOL

Li11 iI38hock, half.round inlet with variable.diameter
cntoerbody; analytical design for a supersonic Navy
VTOL conflgu ration

12 3.Shock , half-round Inlet with variable second cone
angle; GD toilor.mate tests

13 Mixed.compression; analytical design documented In
AFFDL.TR.72.147.vol IV

14 Mixed compression; based on X1.70 type
configuration and data

15 Mixed compression, bated ons NASA AMES

configuration and tests of a mach 3.5, 2*D inlet
'IS Mixed compression exisymmetric; based on a

Boeing analytical study of an AST inlet for NASA
AMEI

17 Mixed compression exlsymmltric; based on
data from NASA AMES tests of Mon 3,0 Inlet

1i Mixed compression exlsymmatria; based on result&
of Boeing analytical studies for a NASA AMES mach 3.6
Inlet

Figure 2 Sources of Data for 1n0et MAps
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2.1.1 Inlet Configuration #1 - Subsonic, Chin Inlet

This inlet is a subsonic, scoop-type inlet mounted under the nose of the
forebody. No boundary layer bleed or bypass are employed, and the con-
figuration Is characterized by a rather long subsonic diffuser. A rea-
sonably blunt cowl lip is used and angle-of-attack shielding is provided
by the presence of the fuselage forebody. This configuration is similar
to the A-7 aircraft inlet. Available inlet test data from similar con-
figurations were supplemented by engineering analyses (such as the cal-
culation procedures in Reference 1) to develop the maps of inlet perfor-

mance. A sketch of the inlet configuration is shown in Figure 4. The

performance characteristics of the inlet are presented In Figure 5.

'i 9

Figure 4; Subsonic Chin Inlet
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2.1.2 Inlet Configuration #2 - Supersonic, Chin Inlet

This inlet is a fixed geometry, nose-mounted cone-scoop configuration.
The inlet has no boundary layer control bleed system or bypass system.
It is designed for a maximum Mach number of 1.60. The cowl lip is rela-

tively sharp, and the subsonic diffuser is relatively long. The inlet

"performance characteristics for this inlet were developed from the dataI) ~ published in Reference t and analyzes methods described in Reference 1. J

A sketch of the inlet geometry is presented in Figure 6, The performance
characteristics of the inlet are presented in Figure 7o

i .A

1 41

I
Figure 6. Supersonic Chin Inlet
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2.1.3 Inlet Configuration #3 - Subsonic, Pitot Inlet

This inlet is designed for a Mach number of 0.5. It has a very blunt

lip; no bleed or bypass systems are used and the subsonic diffuser is

; •short.

The performance characteristics of this inlet were generated from test

' data obtained during wind tunnel tests to develop the 747%fixed-lip inlet
(Reference 3), A iketch of the inlet is presented in Figure 8 and the

inlet performance characteristics are presented in Figure 9.

II

Figure 8. Subsonic Fixed Lip Inlet
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2.1.4 Inlet Configuration #4 - Subsonic, Pitot-Type Inlet

This subsonic Inlet Is designed for a Mach number of 0.8. It has a
rilatively thin lip (for a subsonic inlet) and has no boundary layer
bleed or bypass system. Blow-in doors are used at takeoff and low speed.

The performance characteristics of this Inlet were developed from the

data of Reference 3. A sketch of the inlet Is presented in Figure 10 and
the inlet performance characteristics are presented in rigure 11.

I'I

V'. I..

[I..

.I

Figure 10. Subsonic Blow-In Door Inlet
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2.1.5 Inlet Configuration #5 - Supersonic. Normal Shock Inlet

This inlet is designed ftor a Mach"number 'of 1.50'. It""hmii oi6oleed or
bypass system. The subsonic diffuser is relatively lo'ng and the cowl i
is relatively sharp, for reduced drag at supersonic speeds..

The inlet performance characteristics are based on the test data con-
tamned in Reference 4. The inlet geometry. s shown.jip figt. 1 and the
inlet performance characteristics are presented in Figure 13.

Figure 12. Supersonic Normal Shock Inlet (First Version)
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F2.1.6 Inlet Configuraiion #6 Sprsnc Nra Shock Cowlelpsat

sharp, for reduced drag at higher supersonic Mach numbers.

The inlet performance characteristics are based on the test data from
Reference 4 up to Mach 1.5. Above Mach 1.5 inlet performance is calcu-
lated from normal shock total pressure losses and subsonic diffuser
l oss es for- -a duct -1,~ ýtoft weI thd-io
also Ovailable for a nra hc ile upto M~h2Ore Posing Ligpt-

weight Fighter iinlet, -development tests, These data were us*~ to substan-
.tiate,,the ýrecover-y prediction~si. The .. ......g &yt howiki J l r..., t
and the" iWet, performance char ic"teristics are presented in Figur 15

Figure 14. Supersonic Normal'Shock Inlet (Second Version)
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2.1.7 Inlet Configuration #7 - Fixed Geometry, Two-Shock Inlet

This inlet configurAtioh his i tingle 70 external ramp comorisston

surface and Is equiooji with a throat slot for boundary layer bleed.
Bleed air is dumpei overboard through a fixed geometry convergent nozzle
at an exit Ofglo 0 150. The Sideplatoes are cutback 79% (as compared

to full sidelaitos-romp tip to cowl lip). The Inlet is designed for Mach
1.6, but Will doijite up toi'Mach 2.0 Without ramp shock Ingestion. The

pevformlnie oirabtilristics of this illet are based on teit data from
Referen•b S aid * •gin*•n nilysis. A sketch of the inlet geometry is
shownAN 0400 Ai i•6nd the inlit performance characteristics are pro-

Figure 16. Fixed-Geometry Two-Shock Inlet Design for Mach 1.60
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Figure 17. Perforamace Ch'aracteristics for Inlet Configujration *7
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43



SlO -

0640~

0040 0.m -. .-.-

Figure 17. Performance Characteristics for Imlet Configuration #7 (continued)

44



OW 9

'Umii

068I

0, A.8 0.70 2.0 -

Limit

Figure 17. Perform~ance Characteristics for rniet Configuration #7 (continued)

45

9. . ... ....... ........-



CLIO

0.50 --

U 0.40. 1.2 1.6 2.0

Figure 17. Pef7orMance Characteristics for Inlet Configuration #7 (eontinued)

46

..... ....



0.20 -.-.

(c c)lil•f

0.10 ---

S•0 -• 
~ tl I 

'

00.4 me 1. 110

0.40 .1.20 - 20 -

0.30

030 " -0.

0.20

0.10

0 w
0.3 0.4 0.5 0.6 0.7 0.8 1,0

Figure 17. Performance Characteristics for Inlet Configuration #7 (co tinued)

47

ý M, Z= ý`t.W



oleo/

r

0 M.4 0.8 1.2 1.1 LO0

Ma

i •'tFgur'e, 17. Poloornance Charac•terstics f'or r'nlet C:ontfgurgtion #7 (con'tinuedl)

4

- t 
-. 

•• >" ,•'" ••• •.;!•''••••-=."l; , -••••'•! ,•-••••••• ;,••,•••••-• • ••:1 .,, '-,-., - 1 -••, :, ,.-• -•'•,..,..o .',;: -••••,,i•!:r•" ••-•,.• ' .•i-"-••



0.74
BLC004 ---

0.02
1.60

040- -

00.01 0.02 0.03 0.04 0.05 0.06

scIpurs 103:- 5OUNDA A Y~ LYER ULEEDODRAG

0 0.4 0.3 1.2 1.6 2.0

F~igure 17. Performnance Character~istics for Inlet Configuration #I~continued)]

49

... .......j



IL
I . /

Si~i•.!: •1.2
0.02

0 , 0.4 0.5 0.0 0.7 046 0.0 1.0

A

Figure 17. Performance Characteristics for Inlet Configuration *7 (concluded)

so•

I. . . .,



2.1.8 Inlet Conflauration #8 --Variable Rwno. Four-Shock,

This inlet has two movable. external ras, a73 nta .page
~.Iboundary l1ayer control bleed system conststlng ,of porous bleod-on the

Second land third ramip surfaces, sideplates, and a throat 'bleed slot
I'located aft of the norlmal ,ho~ck, -,The throat sOpt also aýts as a bypass &

to remove excess inlet airflow for matching engine airfl~oidemanud ýith.
inlet supply.I

The inlet performance characteristics were build up from "engineering
analysts and available data from ''sIm IIar. cbfigyritids 'dofin ts
The inlet geometry is shown In Figure 18 and the inlet performance 'Char-
acteristics are presented In Figure 19.

Figure 18. Mach 2.0 Four-'Shock Variable-Geometry Inlet
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2.1.9 Inlet Configuration #g - Four-Shock, Variable-Geometry, External
Compression, Two-Dimensional Inlet

This inlet is designed to have shock.on-lip at Mach 2.5. The inlet is an
external compression, horizontal ramp design. It has internal boundary
layer bleed through a porous third ramp panel and a throat panel. The
bleed from each of these panels is collected in separate, divided plenum

compartments and then is exited overboard through convergent nozzles
provided by exit louvers. The bleed flow is exited at an angle of 20
degrees relative tothe fuselage reference line. The inlet is oriented
down at an angle of 2 degrees relative to the FAR.P. so "that the ynIttial
fixed ramp angle of 4 degrees (relative to the F.R.P.) W1ll provide 6
degrees of compression at the +2 degrees angle df Attack flight attitude.

The first two ramps are fixed, but the third ramp and throat panel are
movable. This provides capability to vary shock geometry and throat

i area. The maximum throat area corresponds to Athroat/Ac a .70. This

Is obtainable by collapsing the third ramp to the 6-degree position.

A bypass system Is provided forward of the engine entrance to dump excess
inlet air overboard. The bypass doors are convergent-divergent nozzls
provided by movable doors. The bypass air is collected through porous

material into a plenum chamber surrounding the duct, then is exited

through the doors.

* To achieve high performance at takeoff (M w .20), either the maximum
throat area would have to be increased or takeoff doors may be added.

This inlet configuration is based on the model configuration and data of

Reference S. The inlet configuration in shown in Figure 20, and the

inlet performance characteristics are presented in Figure 21.

SUI



Figure 20. Mach 2.5 External Compression Inlet
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2.1.10 Inlet Configuration #10 - Half-Round, External Compresslon,
. L Translatina-S.Ike Inlet

The side mounted half-round inlets have translating 25 degrees half-angle

cone centerbodies. The movable centerbody is. used to provide a large

throat area for low speed operation and, by translating forward, can also

provide shock-on-lip for high recovery, low drag supersonic operation at

Mach 1.60.

A moderately blunted, fixed cowl lip and large blow-in doors are used to

achieve high total pressure recovery and low distortion at static and
low-speed conditions.

No boundary layer bleed or bypass are used. In the normal process of

developing an inlet of this type, wind tunnel tests would be conducted to

optimize the inlet configuration. If these tests show that the addition

of internal boundary layer bleed is necessary, no more than 1 - 2% of
inlet air would be required for bleed. The addition of this bleed would

.,not significantly change the configuration.

The inlet performance characteristics of this configuration are based on
engineering analysis. The inlet configuration is shown in Figure 22 and
the inlet performance characteristics are presented in Figure 23.

Figure 22. supersonic (Moal.60) Half-Round Inlet
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2.1.11 Inlet Configuration #11 - Half-Round, Expanding-Centerbody,
Three-Shock, External Compression Inlet

This inlet uses an expanding second cone to achieve changes in compres-
sion surface angle and throat area. Boundary layer bleed is provided in
the form of porosity on the second cone and a throat slot.

The inlet performance characteristics are based on the results of engin-
eering analysis. The. geometric features of,the inlet are shown in'Figure
24. The inlet performance characteristics-areppfgIpted in Figure 25.

.I

Figure 24. Half Round External Compression Mach 2.0 Inlet
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2.1.12 Inlet Configuration #12 - Half-Round, Three-Shock, External

Compression. Variable Cone Inlet

This inlet has a fixed 180 first cone angle and a variable second cone
angle. Porous plate boundary layer bleed is provided on the second conei
in the region of the design terminal shock location. The boundary layer

bleed flow is routed aft and exits through low angle louvers or a door

well aft of the cowl lip. Design throat Mach number is 0.7.

The inlet performance characteristics of this configuration are based on ,

data from Reference 7 and engineering analysis. The geometry of the

inlet is shown in Figure 26 and the inlet performance characteristics are

presented in Figure 27.

i'I

Figure 26. Half-Round External-Compression Inlet for Mach 2.5
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Figure 27. Perfo ance Characteristics for Inlet Configuration #12 (continued)

89



0.2 - p.

*A*

Figure 27. Performance Characteristics for Inlet Configuration #12 (comt-Inued)

90

- -- - ',.->..........~.



2.8I I

Aet

_ _ _, .... .-.-. -

1.O 2.4 2.5

e~eg

Figum 27. Performance Characteristics for rnlet Configuration 012 (cont:nued)

91



0.14

As,

Fiue2.1 -ofrAC Chrceitc -o ne ofgrto 1 cniud

92+

S..... / /_ 'V

i, I

0 0 . 0 't 0 .0 0 .0 0 ,.0 4 G O .O o . 0 1 1 0 .0 7

A, 
i

Figuie 27. Perfofiancl Character.isltics f'or Inlet Configura•t~on #12 (con'tinued)

92

- Z~t- -



St

0.5

0.2

0.1

'.1.

0 0.04 CL 012 0.16 0.20 0.24 LS

As

Figui ~. Porqw~c Chracteristics for Inlet Cofifigurati om #12 (crtiud
93



0.3A @ 0.6 W. .0. .

A*

As

o0.4 0.8 . 1.6 2.0 2.4 2.1

Figure 27. Performance Characteristics for Inlet Configuration 012 (continued)

94I



0,S.. .

0.3

0.3 0.4 0. O.1 .7 O8 0. 1.0

AFf

F~gu-e 27. Per'•or~wce Charact•eristics for tnlet: Configuration *iZ Cconclucded)

95



2.1.13 Inlet Configuration #13 - Mixed Compression, Two-Dimensional•

Variable-Geometry Inlet

The mixed compression inlet is a suitable candidate for the fighter/

bomber mission instead of an external compression inlet because it offers

the potential for higher pressure recovery, lower drag, and better match-

ing characteristics for the sustained Mach 2.5 high speed flight condi-
IL

tion. Also, it does not have to meet the same requirements for extremely

high maneuverability (high angles-of-attack), which would be difficult to

control for the mixed compression inlet.

Boundary layer bleed is accomplished by use of porous ramps, cowl, and

side-plates. Bleed air is collected in divided plenum chambers behind

the porous walls and is then dumped overboard through choked convergent

nozzles as near the plenum chamber as possible. Divided plenums are used

to provide optimum bleed capability at lowest drag penalty. Movable ramp

and throat panels are used to achieve the best inlet geometry over a wide

range of flight Mach numbers.

A bypass system is also used to dump excess inlet air overboard and

maintain the terminal shock in its design location just downstream of the

geometric throat during started operation and just forward of the lip

during external compression operation (M < 2.0). Bypass doors are

assumed to be variable geometry C-D nozzles.

For takeoff and low speed operation, the ramp system is collapsed to

provide a maximum throat area equal to 0.765AC. Takeoff doors having a

throat area equal to .12 AC per engine will also be required. These

should be located near the aft end of the subsonic diffuser near the

engine.

The ramp geometry was selected to provide shock on lip operation at Mach

2.60. This provides a small margin for angle-of-attack transients and

overspeed at Mach 2.50.
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The inlet performance characteristics are based largely on the results of
a study documented in Reference 8. The inlet geometry is shown in Figure
28 and the inlet performance characteristics are presented in Figure 29.

Figure 28. Mach 2.5 Mixed-Compression Two-Dimensional Inlet
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2.1.14 Inlet Configuration #14 - Mixed Compression, Variable-Geometry,

Two-Dimensional Inlet

The inlet is a mixed-compression type, with inlet "starting" occurring at

Mach 2.0. Below Mach 2.0, the inlet operates in the external compression

mode. Extensive boundary layer bleed is used on the inlet internal

ramps, sideplates, and cowl to avoid problems with shock-boundary layer

interactions. Three separate plenum chambers are used for collecting the

boundary layer bleed air before it is exited overboard through choked

convergent exit nozzles. The use of three separate plenums makes it

possible to operate with a relatively high plenum pressure and hence,

less drag.

The Inlet ramp system is designed to provide shock-on-lip operation at

Mach 3.0. Approximately 1% supersonic spillage is allowed to help insure

that shocks are not ingested at inadvertent overspeed conditions or

transient angle-of-attack maneuvers. Full sideplates are provided to

minimize sideplate spillage.

A variable bypass sytem is provided ahead of the engine to bypass excess

inlet airflow and help restart the inlet. The maximum bypass door throat

area is 0.50 AC, It is assumed that a maximum inlet throat area equal

to at least 0.70 AC can be achieved by retracting the ramps. The

requirement for takeoff doors to provide good recovery and low distortion
during takeoff can be examined when engine airflow demand characteris-

tics are known.

The total pressure recovery versus mass flow plots have been estinated by

using the test results from XB-70, (Reference 9), SST, Boeing in-house

studies and tests, and theory. The inlet geometry is shown in Figure 30

and the inlet performance characteristics are presented in Figure 31.
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2.1.15 Inlet Configuration #15 - Mixed Compression, Variable-Geometry,

Two-Dimensional Inlet

The initial ramp surface angle is fixed at 70. Boundary layer bleed is
collected in three divided plenum chambers.

The inlet performance characteristics for this configuration are based on
the data contained in Reference 10 and engineering analysis. The geom-

etry of the inlet is shown in Figure 32 and the inlet performance charac-
teristics are presented in Figure 33.

Figure 32. Mach 3.5 Two-Dimensional Mixed-Compression Inlet
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2.1.17 Inlet Configuration #17 - Mixed-Compression, Axisynnetrtc,
Translating Centerbody Inlet

The design Mach number for this inlet is 3.0. The initial cone angle is
100. Boundary layer control bleed flow is removed through porous bleed
holes on cowl and centerbody surfaces. Four Individual bleed zones were
provided.

The performance characteristics of this Inlet are based on the design
studies and data reported in Reference 13 and engineering analysis'. The
Inlet geometry is shown in Figure 36 and the inlet performance charac-
teristics are presented in Figure 37.

II

Figure 36. Mach 3.0 Axisymmetric Mixed-Compression Inlet
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2.1.18 Inlet Configuration #18 - Mixed-Compression, Axliymmetric.

Translating Centerbody Inlet

The mixed-compression inlet was designed for a Mach number of 3.5. A

sophisticated boundary layer control bleed system was provided based on

the results of detailed analyses. The cowl bleed system included four

separate bleed plenums with separate overboard exits for each plenum.
The centerbody includes 12 bleed plenums in a "traveling" bleed arrange-
ment. Excess inlet airflow can be exited through bypass doors.

The inlet performance characteristics of this configuration are based on

the data and design in Reference 14, supplemented with additional engin-
eering analyses. The Inlet geometry is shown In Figure 38 and the per-

formance characteristics are presented in Figure 39.

IA

Figure 38. Mach 3.5 Axisymmetric Mixed-Compression Inlet
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SECTION III

NOZZLE/AFTBODY CONFIGURATIONS AND PERFORMANCE CHARACTERISTICS

Eight different nozzle/aftbody configuration concepts were selected to

use for generating a library of aftbody drag characteristics. The types

of aftbodies selected are shown in Figure 40, together with the four

basic nozzle types used to generate nozzle C F maps.

As shown in Figure 40, each of the aftbodies has a configuration number
associated with it and a computer file name that represents the aftbody

drag map data in tabulated form. Figure 41 presents a summary of each of

the aftbody configurations and sources of the aftbody drag maps.

Following Figure 41, each of the no27le/aftbody configuration area dis-

tributions is presented along with the predicted drag map for that con-

figuration. The drag maps shown are for the fully-expailded

(Pg/Po 1.0) condition,

The derivative parameters for each of the baseline aftbody configurations

consist of the following items:

1) A "baseline" area distribution that consists of a table of

coordinates of body cross-sectional area versus fuselage station

2) A "basehine" radial tail orientation angle. (The program is

structured to accept an inplit table of incremental drag coeffi-
cient as a function of free-stream Mach number and radial tail

attachment angle. Insufficient data are available at present,

however, to complete the data tables; therefore, the incremental

drag correction is zero for all configurations.)

3) A "baseline" fore-and-aft tall position, (X - X0)/(X10 - xg)

4) A "baseline" base area ratio, AB/AlO
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CONFIG. FILE SOURCE OF
NO. DESCRIPTION NAME DRAG MAP DATA

Single axlsymmetric convergent- 208NTTY Predicted from parametric
divergent nozzle installation data relating drag as a
based on Boeing LWF configuration function of R/DM, BPgPandD/Do

checked by s ng1e nozzle
experimental data and IMS
method.

2 Twin axisymmetric convergent- CD2R Calculated IMST param-
divergent nozzles in a closely. eters from area distrlbu-
spaced aftbody installation tion; Drag correlations vs.
based on Boeing ATS studies IMST from ESIP contract

test results.

3. Single axisymmetric plug nozzle DRPI Calculated IMST param-
Installation based on using a eters from area distribu-
plug nozzle installed on the tion; Drag correlations vs.
same aftbody as in Configura- IMST from plug nozzle
tion #1 above test data.

4. Twin axisymmetric plug nozzle DRP2 Calculated IMST param-
installation based on using a eters from area distribu-
twin plug nozzle installed on tions; Drag correlations
the same aftbody as in Config- vs. IMST from plug nozzle
uration #2 above test data

5. Single two-dimensional conver- DCD2DI Calculated IMST param-
gent-divergent nozzle in an eters from area distribu-
ATS-type aftbody configuration tions; Drag correlations

vs. IMST were same as 2-D
wedge nozzle correlations

6. Twin two-dimensional convergent. DCD2D2 Calculated IMST param-
divergent nozzles in an ATS-type eters from area dsitribu-
closely-spaced aftbody configur- tions: Drag correlations
ation vs. IMST were same as ?-D

wedge nozzle correlations

7. Single two-dimensional wedge SING2D Calculated IMST param-
nozzle installed in a super- eters from area distribu-
cruiser aftbody tions; Drag correlations

vs. IMST from two-dimen-
sional nozzle test data

8. Twin two-dimensional wedge ATS2DM3 Calculated IMST param-
nozzles installed in closely- eters from area distribu-
spaced ATS-type configuration tions. Drag correlations
afthody vs. IMST from two-dimen-

sional nozzle test data

Figure 41. Summary of Aftbody Configurations and Drag Maps
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The baseline area distributions are presented in this section for each of
the library aftbody configurations. As discussed above, radial tail

location effects data maps are not available due to insufficient data.

Baseline fore-and-aft tail locations for each configuration are shown in
the figures that accompany each area distribution plot. Each of the
baseline nozzle/aftbody configurations has no base area; therefore the
"baseline" base area ratios, AB/Aio for all configurations is zero.
The nozzle/aftbody configurations and their associated drag maps are

presented in Figure 42 through 57.
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SECTION IV
NOZZLE INTERNAL CONFIGURATIONS AND CF MAPS

Four different nozzle internal configurations were selected and utilized
to provide a library of typical nozzle internal performance characteris-
tics. These nozzles included:

1) Axisymetric convergent-divergent nozzle
2) Axisypmetric plug nozzle
3) Two-dimensional convergent-divergent nozzle

4) Two-dimensional wedge nozzle

4.1 NOZZLE GEOMETRIES AND C MAPSCF
G

Each of the nozzle configurations is described in this section of the
report, followed by plotted data showing the variation of nozzle gross
thrust coefficient, CF , as a function of nozzle total pressure ratio

PT8/Po.
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4.1.1 Nozzle Configuration #1 - Axisymmietric, Convergent-Divergent
Nozzle

Axisyrnmmtric convergent-divergent nozzles can vary in complexity from a
lightweiight fixed geometry to a relatively heavy fully variable exit area
and throat area design. The configuration selected for this study is a
simple variation of the fixed geometry design utilization mechanically
slaved nozzle exit area and throat area to obtain variable internal
expansion as a function of powersetting (throat area). This type of
design is currently used on the J101/F404 and FIO0 turbofan engines. The

baseline nozzle internal divergence half-angle (801V) for this config-
uration is 11.480 which occurs at a nozzle area ratio of 1.60. The

geometry of the nozzle and the nozzle performance Pap are shown In Figure
58.
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4.1.2 Nozzle Configuration #2 -Axtsymetrtc Plul Nozzle

Important design variables of axisymetrlc plug nozzles include the plug
angle, cowl internal angle, cowl exit to throat area ratio, throat in-
clination angle, and cowl boattail angle. Various methods can be applied
to achieve plug nozzle throat area variation. The selected plug config-

uration shown above utilizes variable plug and cowl geometry to achieve
throat area and expansion area ratio control at dry and A/B powersetting.

The baseline plug half-angle, ep, for this configuration Is 100. The
nozzle geometry and performance characteristics are shown in Figure 59.

11
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4.1.3 Nozzle Configuration #3 - Two-Dimensional Convergent-Divergent

Nozzle

The non-axisymmetric C-D nozzle configuration is based on concepts

studied under the AFFDL Non-Axlsymmetric Nozzle program (ITESC). The

concept allows independent actuation to control throat area and exit

area. The design employs divergent flaps to achieve a maximum internal

area ratio of 1.6. The sidewalls are cut back to reduce weight and

cooling requirements. The baseline aspect ratio for this configuration

is 1.0. The baseline divergence half-angle, 6 DIV, Is 220 at a nozzle

area ratio A /A8 of 1.6. The geometry of the nozzle and the perfor-

mance characteristics are shown in Figure 60.
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4.1.4 Nozzle Configuration #4 - Two-Dimensional Wedge Nozzle

The non-axisymmetric wedge nozzle configuration is the Boeing 2-D Air-

frame Integrated Nozzle concept featuring airframe/nozzle structural and

aerodynamic integration. A variable geometry centerbody wedge provides

independent throat and exit area control allowing optimization of thrust/

drag performance over a wide range of dry and A/B powersetting. The cowl
geometry is fixed. The baseline aspect ratio for this configuration is
1.0 and the baseline wedge half-angle, Op, is 100. The nozzle geom-
etry and performance characteristics are presented in Figure 61.
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