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EVALUAT{ON 3

The Report constitutes a detalled state-of-the-art assessment
of the QUINCE System tor Chinese-Engiish machine transiation
of S&T literature, The curraent version of the System conslists
of nine major modules controlling the translation process and ,
a8 repertory ot utilities controliing 1/0 operations, format 1
conversion, debugging and optimization. The System's i
programming documentation Is provided separately in Vois | - 9
(application software).and 10 = I3 (utilitles). The System
inciudes a variety of data bases, an extensive software package
tor implementation of the transiation process, and a set of
lingulstic devices Implicitly incorporated in lingulstic and 1
programming componants to optimize the anaiysis ot Chinese ;
and English, A detalied description of the System is provided

in Section 11,

Judging from the viewpoint of schoiastic merit, Sectlons 11}
and iV constitute the most significant contributions to this
Report, Section 11l contains an exceptionaliy comprehenslve
and thoroughly researched critique-in-depth of the current
state of the art in computational syntactic description of
natural languages, including 8 statement of Its Impilcations
tor 8 turther deveiopment of the QUINCE System, It is
concluded that grammars wlith structured vocabulary play an
important roie In ail current language processing systems,
including the QUINEE System in which thls concept is
elaborated in 8 more systematic manner than in other ianguage
processing systems, It J.iso appears that a grammar notation
based on Knuth's attribute grammars offers the most promising
vista for a further deveiopment of the System, Section iV
provides an exhaustive discussion of possibiiities for a

] turther consoiidation of the ilinguistic data base in terms of

| the featurized iexicon and interliingual transter rules. A

& continuing enhancement of the dlversifled feature subsystem

: and contrastive lexlcal/syntactic studles of Chinese and

tnglish, combined with contextual analyslis ot language~
specific characteristics of Chinese 2re offered as the most
promising soletions In thils area.

7ot

%tlb L. (Da.. X ru}
ZB'GNIEW L, PANKOWICZ
Technical tvaluator
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SUMMARY

This report presents th2 results of a nine-month period effort to
document the Berkeley Chinese-English machine translation system (Ouince
system), to take inventory of all research materials, and to report on the
current state of the art in linguistic theory, computational linguistics, and
data processing techniques for advancement of the Quince system to the status
of an initial operational capability in one sub-discipline of physics.

A detailed textual description of the Quince system modules plus a body
of figures and tables are provided to assist the reader in conceptualizing
the system and reading the program code listings appended in the Supplements
to this report. An itemized inventory of both the hardware and software of
the translation system is presented. We review the current state of the art
in new syntactic descriptive methods with structured vocabulary, such as van
Wijngaarden grammars, Koster's affix-grammars, and Knuth's attribute-grammars,
which were developed for defining programming languages, but which are
suitable for computational use in machine translation systems for natural
languages. The existing linguistic data base of the system is reviewed in
the light of current linguistic theory and of recent advances in artificial
intelligence and computational linguistics. Suggestions for consolidating
the linguistic data base and enhancing the parsing facility are made to
advance the system to an initial operational capability.
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1. INTRODUCTION

The Univeraity of California Chinese-English machine translation
research project was initiated in 1960 under a National Science Foundation
grant. From 1967 to 1975 the Project was supported by the Department of
the Air Force (Rome Air Development Center) under five contracts. These
efforts have culminated in the development of the Syntactic Analysis
System and the emerging of the Muince system for translation from Chinese
to English.

However, owing to the ahrupt termination of the previous contract
in 1975 (F 30602-75-C-0059), the Ouince system programs were left incomplete
and their documentation has never had the chance of being adequately carried
out. The present contract (F 30602-77-C-0098), covering a period of
nine months, May 1977 to January 1978, provides the Project with an
opportunity to fully document the Quince system programs as currently
implemented and to reassess the whole translation system in the light of
recent advances in linguistic theory, computational linguistics, artificial
intelligence, and computer science. The documentation and inventory of

i e o A

the system and its reassessment will provide a smooth transition for
any ensuing effort in Chinese-English machine translation research.
The documentation and inventory of the system and its reasaessment are
the two major sections of this report. Chapter Two will be devoted to
the firat task, and Chapters Three and Four the second.

The Quince system, conceived as an integrated Chinese-English
machine translation system, consists of two major components: the lin-
guistic data base and system programs, Chapter Two presents a textual
description of the Miince system software, keyed to the Supplements. It

concentrates on those aspects least amenable to mechanical documentation:
overviews of the system as a whole, the interface between major modules,
and {nternal data structures. This chapter also includes a body of
figures and tables to assist the reader in conceptualizing the translation
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ayltcn and reading the 5npp1cnoa:t.

" There are thirtesn Supplements altogotm Supplumts One through
Nine detail the contents of nine major modules of Quince system code.
These are mechanically-produced docunentation; tha: explicitly extract
the storage aress and the calling sequences of each sub-program. Each
supplement contains three volumes: thnISOutce Code Listing, and the
Coding Internals Manual volumes I and II.

The remaining four supplenenta are nechunlcally—ptoduced documenta-
tions of the utilities programs, and three types of storage documentation
(loader storage, Common Block, and field function).

An itemized inventory of the hardware belonging to the U.S. govern-
ment and the software related o the translation system is presented in
the Appendix to Chapter Two.

Chapter Three reports on the state of the art in computational
syntactic description of natural languages, It reviews context-free
grammars and points out their inadequacies for handling natural languages
and their clumsiness for human consumption. Van Wijngaarden's model
for context-free grammars with structured vocabulary is presented to
remedy the inadequacies of and avoid the clumsiness inherent in context-
free grammars. The history of the use of structured vocabulary in lin-
guistic descriptions is traced to some pre-Chomskyan structural linguists.

Restrictions on the generative capacity of van Wijngaarden grammars
are discussed to arrive at a class of grammars easier to write and easier
to parse. Related formalisms, i.e. Koster's affix-grammars and Knuth's
attribute-grammars, are also explored and compared with other types of
van Wijngaarden grammars. Finally, it is pointed out that the use of
structured vocabulary in describing the Chinese grammar has been a topic
of research at the Project since at least 1970. Future tasks and research
areas for the Project are defined and strategies suggested.

In the last chapter, two components of the linguistic data base,
the dictionary and interlingual transfer rules, are examined. To ensure
better interactions between the two major sub-components of the grammar,
the syntactic rules and lexicon, more lexical features are needed in the

future grammar. Various kinds of the lexical features, their nature




and functions, and procedures to extract the lexical information from the
existing grammar codes are discussed.

The status of the interlingual transfer rules in the translation
cycle of the system is examined. Different types of the interlingual
transfer rules and the formalisms to be used in the future are also
discussed.

In addition, more contrastive lexical and syntactic studies between
Chinese and English and contextual analysis are recommended in the future
to strengthen the two components above of the linguistic data base.
Strategles to achieve this goal are also briefly described. Areas
where those studies will lead to the improvement of the linguistic data base

are exemplified.
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| II. DESCRIPTION AND DOCUMENTATION OF THE ‘
‘ QUINCE MACHINE-TRANSLATION SYSTEM ?
|

1. Introduction

i The Quince system is an integrated system for the machine translation
| of scientific texts from Chinese to English, developed at the Project on

' Linguistic Analysis, UC Berkeley. It includes several components: a large 1
| corpus of linguistic materials, such as texts, dictionary, and grammar; an

extensive body of software to implement the translation; and a set of lin-

gulstic insights about how Chinese and English should best be analysed,

which are implicitly incorporated within both the linguistic and programming

materials.

The second component of the Quince system, the body of computer code

written to perfovm the translation, is documented in this chapter and in the !
13 Supplements appended to this report. It cannot, of course, be totally
separated from its data base or theoretical approach. This component,
however, has been under-documented in previous reports, and so it 1is pre-
{ sented here in isolation.
i Supplements 1-9 detail the contents of 9 major modules of Quince '
| system code. Fach Supplement contains 3 volumes: the Source Code Listing,
f and the Coding Internals Manual in 2 volumes. These are mechanically-
| produced documentations that explicitly extract the storage areas and the
i calling sequences of each subprogram. These nine modules include the six
| '"main' modules, two 'supplemental' modules, and one module (the Parse Table
Print Module) used for program debupging and linguistic research. Fach
module is written in Fortran.
The remaining four Supplements are mechanically-produced documentations
of the utilities programs (Fortran as well as assembler), and three types
of storage documentation (loader storage, Common Block, and field function).
This chapter presents a textual descriptfon of the Quince system

software, keyed to the Supplements. It concentrates on those aspects least

L!llllInIlnI!llIIIIIIIIIIIIIIIIII-lIllllllIIIlIIIIIIIIlIlIllllIlI-llllllllllllllllllllllﬁliiﬂiiiiﬁil
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amenable to mechanical documentation: overviews of the aystem as a whole,
the interface between major modules, and internal data structures. This
chapter also includes a body of appended tables to assiat in reading the
Supplementa.

To large extent, the Quince system can be ‘'understood' by the flow and
structures of the data at different atages of processing. The four exter-
nal dats files are the ultimate bases of the translation; of these, it can
be said that the text is passed from module to module, sometimes in its
entirety, sometimes segment-by-segment. This necessitates temporary inter-
face files. Likewise, the grammar and its external/internal code conversion
table reside in binary files. Within each module, segments of text are
manipulated using data structures which are field function tables; these in
turn réside in Common Blocks, that permit communication within and between
modules. This chapter describes these data and storage details, as a
documentation-by-effect of the Quince system.

The Quince system documented here is Version .8; this is ta indicate
that it is substantially complete, ready for documentation, but not finished.
The translation from Chinese to English would be greatly improved if some of
the data bases were enhanced, in particular by the addition of feature in-
formation to the dictionary and grammar; this would also be utilized by the
tranafer rules (see Chapter 4). The Quince system has prepared for these
proposed changes in the data base, but until they are made available the
syatem cannot be considered complete. Even so, the Quince system in its
current form is a major research result in the field of machine translation.

2. External Data Bases
The Quince system has available four external data bases: a Chinese-

English dictionary, a set of grammar rules for parsing Chinese, a set of
Chinese telecode substitutions, and a raw text to be translated. (Sce

Figure 1.)

o
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2.1 Dictionary
The Chinese-English dictionary exists in two bodiea: the master CHIDIC

(80,000 entries), and the smaller PHYDIC (40,000 entries). PHYDIC contains
most general-~purposa Chinese words, as well as technical terms in the tieldu
of physics and mathematics, It is a subset of CHIDIC, which in practice is
too cumbersome to maintain during research. Both dictionaries are in the

sane format. Each dictionary entry contains information on the grammatical
category (terminal aymbol) of the item in Chinese and its translation in
English, keyed to telegraphic codes.

2.2 Grawmar

The grammar is a set of context-free production rules, or source rules,
which define the surface structure of Chinese; it is necessary to fully parse
each segment of Chinese text before translation, as the structures of Chinese
and English are so different. The grammar actually consists of 5 subgrammars,
each of which handles a particular level in a parse-tree. These subgrammars
are usually applied in sequential order. The size of each subgrammar is as
follows:

125 rules
500 rules
Crammar 3 =~ - 2400 rules

A
]

Grammar 1

Grammar 2

Grammar 4 - - 340 rules

Grammar 5 <« - 2750 rulea

Many source rules are included in more than one subgrammar; in particular,
Grammar 3 and Grammar 5 larpely overlap.

2.3 Telecode Substitution Table
For every Chinesc character there is a corresponding 4-digit telecode:

this is the coding scheme used in the dictionary and in the taxt. There is,
however, a set of characters that optionally subatitute for one or more
other characters, Accordingly, whenever potential substitution characters
({.e. telecoden) arc encountered, their possible corresponding character(s)
must also be made subject to dictionary lookup. These correspondences ave
found in the external telecode substitution table.

T R T oo o g o ok
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2.4 Text

The Chinese text to be translated includes 565,000 characters from
physics and mathematics texts; it is broken down into subtexts for conve-
nience. The text is not pre-edited: abbreviations are not expanded, tele-
code substitutions are not corrected for, different number-systems (e.g.
classical, modern and Western) are left to co-exist, etc. In particular,
the inconsistently-applied Chinese punctuation marks remain as in the origin-
al. The only additions are position-in-volume information for maintenance
and identification purposes.

2.5 Formats

The four external data bases are maintained in an "external' format
suitable for human maintenance: character strings, mnemonic category symbols,
pronunciation information together with the telecodes, etc. Each file has

e it8 owm set of software maintenance routines, peripheral to the Quince

system and not here documented.

Because there have been no random-access facilities on the CDC 6400
at the University of California at Berkeley, these external files are fixed-
field sequential files, stored on magnetic tape. During a previous contract
period it seemed that such hardware facilities might become available;
accordingly a random-access dictionary was designed, and a random dictionary
software module was written to perform both telecode sudbstitution and
dictionary lookup. Thia module is one of two "supplemental" modules fully
documented in this report. Were the random-access storage to become avail-

able, this random dictionary module would replace the present vestigand

forration and dictionary lookup modules, and the present sequential diction-
ary format would become obsolete (sce Figure 1).

As presently implemented, two of these external files are converted to
an "internal" format before participating in the translation process: the

table of telscode substitutions becomes an internal hash table in the module
INVEST, and the grammar source rules are adapted into an automatically-

allocated table by the module ADAPTG. The dictionary remains in external
format; it is read through in one pass during the lookup process. The text
first undergoes pre-editing, or canonization, and then is successively
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broken down into smaller translation units; each unit is read in in external
format, processed in internal format, and then saved on an intermediary
interface file in external format.

2.6 Additional Data Bases
As originally designed, the Quince system included two more external
data bases: a set of interlingual transfer specifications, and information

on English morphology. These would, reapectively, govern the transformation
| or transfer of a Chinese parse tree to an English tree, and tidy up the
surface of the final string, by e.g. agrcement in number and tenase.

At present, these two data bases do not exist. The transfers have
been approximated by reducing them to two tree operations: deletion and re-
versal of nodes. These are triggered by the application of specific grammar
rules, vhich leave "tranafer" codes on the node labals of the Chinese tree
during parsing. In anticipation of a separate body of transfer specifica-

tions, the Quince systea does not include a transfer module. These ias
instead a temporary interface module with the old SAS Syntactic Analysis
Syatem, which performs these limited tranafera and also provides plotting
capabilities for the resulting trees on the Calcomp plotter. The trees are
then returned to the (uince aystem for string extraction. This SAS compati-
bility module is the second"supplemental" module documented in this report.

f As presently implemented, each English word assumes its root dictionary
§ form during string extraction, without morphological adjustment. The result-
% ing translation is rough but reasonadbly comprehensible.
: Chapter 4 outlines future plans for these two additional data bases.
Once the interlingual transfer rules are available, an additional Quince
module transfer will modify the Chinese parse tree prior to string extraction.
The string extraction module will be expanded to include information from
the morphological rules.

Figure 1 illustrates the relationship between the four external data
bases and the six main Quince modules: it also includes the two supplemental

LB

modules, as well as two future data bases.
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3. Internal Nata Storage

During translation, the six Quince modules process the text in two
modes: text-by-text (batch) and segment-by-segment. In batch mode, the
entire body of text must pass through one module before entering the next;
this is e.g. the case while preparing for dictionary lookup, since the entire
text is looked up in the dictionary in one pass. In segment-by-segment
processing, a single segment (translation unit) is passed through several
modules. Obviously there is segment-by-segment processing within each of

the six modules -- the distinction only becomes useful in discussing the
interaction between modules.

The Quince modules pass information between each other in three possi-
ble forms: interface files, binary files, and module storage tables. These
differ both in size and function, and are determined largely by the mode of
processing.

During batch mode, the text is passed from module to module in the form
of external interface files. These are of variable length (depending on the
size of the text), and are written on tape as sequential character files.

There are 5 Interface files; each is written as output by one module, and
rewound for use as input to the next module.

Binary files are used for two large internal bodies of data which can-
not be accomoodated in-core. One is the table of category (terminal) symbols,
which relates the external strings coding these symbols to their internal
hash-table codes; this table is used during both dictionary lookup and
grammar adaptation, as both the dictionary and grammar source rules are ex-
ternal data bases. The second table is that of the adapted grammar itself --
this includes all five subgrammars, of which only one is in use during any
one parse.

Once built within the translation run, these two tables are variocusly
stored as binary files on tape, or as common files on system storage --
these storage allocations are performed automatically, depending on availa-
bility of space, to eliminate the repeated reconstruction of these tables and
to minimize retrieval time.

The module storage tables are straightforward Common Blocks. They
primarily provide for shared storage among the sub-programs within each of

11
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ly during segment~by-segment processing.

Figure 2 outlines the 5 interface files during batch processing, and
their relation to the Quince modules. Figure 3 presents the flow of control
in those modules that perform segment-by-segment processing; it includes the
two binary files. Table 1 indicates which module storage tables (Common
Blocks) are used by each of the Quince modules.
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4. Interface Filles
4.1 Canonized Text File

Before the raw text can be translated, each of its sub-texts must be
pre-edited into smaller units, called sentences; these correspond roughly to
English "sentences'". Because of differences between English and Chinese
punctuation practices, each Chinese 'sentence" typically contains several of
these smaller sentence units. 1In addition, speclal telecodes and characters
such as textual identifiers, parentheses, footnotes, etc. must be analysed
and related to the sentence. All these processes use an internal table of

special telecodes in the Quince module CANONZ; this module outputs a

canonized text file, in which the string of telecodes is broken up into

sentences within the text.

After the preliminary editing during canonization, each sentence is
divided still further into segments: in practice, these segments will corre-
spond to parse-units during parsing. 1In the dictionary each lexical entry
may consist of 1-7 telecodes (including e.p. idioms or compounds); one
characteristic of a segment is that a lexical entry will not extend past the
segment boundaries. These boundaries include punctuation marks (period,
parentheses, commas), as well as speciul syntax-marking Chinese characters.

The module INVEST outputs a segpmented text file, this is a reformula-
tion of the canonized text file in terms of sesments rather than sentences.
This file does not participate in the dictionaryv lookup or parsing of that
serment: 1t is kept around in text order until STREXT, for research purposes,

so that the Enplish and Chinese strings may be manually compared.

4.3 Vestigand File

As each segment is determined, it i{s necessarvy to make a list of all
its lexical items: these are subsequently subject to dictionary lookup.
Determining word boundaries i{n Chinese is, however, not a trivial task, as
each dictionary entry consists of a variable number of telecodes. Thus
from each sepment are calculated all the vestigands: these are strings of

from 1 to 7 telecodes in lenpth, any of which might be a valid lexical item.
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Thus the module INVEST also outputs an interface vestigand file.

This is the segmented text file formulated in vestigands (rather than in tele-
codes) for each segment,

4.4 Selected Dictionary File

The vestigand file is first sorted into dictionary order (using the
file/sort utility): and then the sub-module SELECTV (first half of the LOOKUP
process) searchea for each vestigand in the external dictionary. For each
vestigand found (now a lexical item), it records all the dictionary informa-
tion except the romanization (pronunciation), in addition to the information

from the inputed vestigand file, onto the selected dictionary file. The

selected dictionary file thus includes fewer records than the vestigand
file, aince many vestigands were not found in the dictionary; but each
existing record includes more information. This file is then sorted back in-

to text order.

4.5 Sentence Dictionary File

Since many of the postulated vestigands have been rejected during
dictionary lookup in SELECIV, {t now becomes necessary to reconstitute each
segment in terms of valid lexical items. This occurs in the sub-module
WINNOW (second half of LOOKUP). During winnowing, the shortest complete
paths are found which connect the beginning and end of each segment; for each
rejected vestigand, every path which originally included it must be discarded
-- and this in turn may eliminate some occurrances of otherwise acceptible
lexical items, since they no longer 'occur" in the segment. The sub-module

WINNOW thus outputs the sentence dictionary file: each record contains all

the information of the selected dictionary file, in nearly identical format,
but there are fewer records. Also, the grammatical code for each lexical
item is additionally expressed in terms of its category symbol, its internal
code vhich will key it to an internal hash table during parsing.

4.6 Pormat
The exact record format for each of the interface files is contained
and documented in the interface file definitions: see Section 5.1 and
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Supplement 12,

4.7 Random Dictionary Module

It should be noted that there would no longer be any interface files if
(as originally designed) the random dictionary module, witu its associated
random-access dictionary, were to replace the modules INVEST and LOOKUP.
This is because batch processing would no longer be necessary: after the raw
text had been pre-edited by CANONZ, each vestigand could be extracted and
made subject to immediate dictionary lookup, and each segment parsed as soon 3
as it was formed. This is illustrated in Figure 4. It should be remembered, fié
however, that the module random dictionary has not been able to be implemented, % s

i ]
H
[
|
I
!

|

so that as presently documented its input and output files are not yet
defined in the code.

. E
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vatch mede (CANONZ)j; all subsequent processing
would be sezment-bv-segment,
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5. Common Blocks

The #ix wmain Quince modules plus the two supplemental modules together
wre 271 common blacka -~ shared storage areas. These blocks are functionally
of two kinds: interface file definitions and module storage tables,
A1 Interface File Deflnitions

These nix arcas ave used for the five Interface filea plus the exterunal-
format dictionary,  Fach area {netudea buffer apace for one file record, plus
congtanta defining each record and varf{able names referencing each field tn
the record, The aveaa do not uclude any "working space' for procesaing the
filer: they simply "define” the f{le, and hence these {unterface file defini-
tions are used by hoth the outputing and fnputing module on efther side of
the {nterface f{lo,

Rocaure the nterface {{len are sequential character files, there arve
po flelds of less than one character {n length, and no hash tables or other
apecial allocatton fuvolved - thar the {ontevlace def{nttion tablea contatn

no tables accennod thvough fietd functlona,

5.2 Moadule Stovage Tablea

The rematniuy 17 common blocks ave naed primarily for shared constaunta
and working apace within the varfour subprograme that make up each of the 8
Miinece modulea, althouph a few Mocks are shaved by meveral matn modulesn,
This 1 {1luatvated {n Table 1,

Two of thore cownon blocka (LUCORE and NMCORE) ave alwavas resident.
Thay are part of the & bugplng and optimfzing capabitity of the uince Pro-
pram-Weiting Syatem, aml are wot constdered part of the Nituce translation
aystem {n the followlug dacuantion,

Moal of the remafuing Ih common brocks fuclude tables with spectal
storage requirementx: {{elda of tesa than 1| character (bit-level), hash
tables with wumeric or charvacter kove, floating tablea tn BCS, dvaamically
allocated tablen, ote.  Theme ave the tables accenned through the so-called
field functions. The 28 ({eld fanction talltes ave located in the 15 module

atorape tablea as ahowm in Table 2,

s
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5.3 Table Names

In the Quince system source listings, and in the detailed program docu-
mentation which supplements this report, these varoua tables have different
names in different contexts. This is a consequence partly of the Quince
Program Writing System (outlined in Figure 5), and partly of attempts to
write syatem-independent code, include e.g., separate names for Fortran arrays
and Cormon Blocks. These names are related to 2ach other in a reasonably
systematic way, as detailed in Table 3. In the present chapter we will
always uge the 'name-1" in Table 3 -- the input to the CBA Common Block Allo-
cator and the input to the FFN Field Function Writer -- when referring to the
interface file definitions, module-storage tables, and tables accessed
through field functiona.
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5.4 Format, Block Data

st R Ay

Both the interface file definitions and module storage tables are

e,

documented in the Common Block Allocator definitions in Supplement 12. The
constants from each table are extracted to build Block Data subprograms, for
load-time initializations; these are documented in Supplement 11. Table 4

lists the Block Data subprograms and their corresponding common blocks.

5.5 Field Function Tables

The 28 field function tables are orsanized so that any field in any
table, regardless of internal format, can be accessed by Fortran in a trans-
parent and straightforward way. The variable names and constants associated

with each table are documented in Supplement 13, The fields -~ their names

and size -~ are {llustrated in Figure 6A-60; these are grouped according to
which storage module table they are located in.

These field function tables appear in the code as follows. Consider
the fields IVPSG and IVNSG in field function table IVSFFN, as illustrated in
Figure 6A. These are both pointers, one to the previous segment and one to i_
the next segnment. The followinp code would reverse two segments by inter-
changing the pointers:

DUMMY = TIVPSG(I)
IVPSG(I) = TIVNSG(I)
IVNSG(I) = DUMMY
This example Is written in CGASP; here is the FORTRAN code generated by the | B
GASP Program Writer: P
DUMMY = IVPSG(T) &
CALL IVPSG@ (NULL, T, TVNSG(I))
CALL IVNSG@ (NULL, DIMMY)

The subroutine names IVPSGA and TVNSGP have been generated from the function

names IVPSCG and IVNSG to form a set/retrieve pafr of field functfons. Tn
Supplements 1-9, all field functions are fdentified as "Calls Made to Routines

Outside Module",

to
r
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Within a single module storage area there may be several field function
tablea. These are often linked with each other by pointers and pointers-to-
pointers, and processing consists primarily of moving these pointers around.
It is generally the case, however, that each pointer always links with a
certain type of node, i.e. with a certain other field function table, although
the particular node in question may change within the table.

Figure 7 presents come of the more complex data structures used in the

Quince system. The field names and field function table names are as in
Figure 6A-60.
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At almost every stage of the translation process, the text must be
considered to have the data structure of a lattice, rather than a string.
This 1s due to the linguistic nature of Chinesz -- there are so many ambi-
guities in its analysis. Telecode substitution introduces alternate readings
for each telecode, vestigands introduce alternate combinations of telecodes,
multiple possible category symbols for each lexical item introduce alternate
parse trees. For this reason, at almost every stage of translation, and
within each module, data structures such as those in Figure 7 are used.
Their manipulation takes up much of the program logic within the Quince
modules; accordingly, the modules themselves will not be further documented
in this chapter. The reader is referred to Supplements 1-9 for further

details on the modules themselves.

6. Utilities

The Quince utility modules include those subprograms which are machine-
or system-dependent, but which (generally) do not manipulate fields-within
a-word (this capability is provided by the field functions).

The utility source listings are presented in Supplement 10; they do
not, however, contain as much internal documentation as do the other Quince
modules, and so they are summarized in this section.

The utilities provide support in three general areas: input/output,
format conversion, and debugging and optimization. The IO routines handle
files on random-access storage, Extended Core Storape, and system files
(coded and binary), as well as reading the system registers. They include
the READS and WRITES routines, which replace the FORTRAN read and write
statements for coded serial files.

The format conversion routines convert and shift among binary, decimal,
integer, display character, and FORTRAN Al format. They provide justifica-
tion, and handle the only fixed-format field in the O+ince system: packed
machine-depedent telecodes.

The debugpging and optimization routines are the most conspicuous in
the Quince module source listings, as they appear in every routine to permit
timing, tracebacks, and counts of entry-within-each-routine; they are

specially implemented so as to catch fatal FORTRAN errors before they produce
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a system crash, so that traceback can be completed. It is these routines
that use the resident Common Blocks LOCORE and NMCORE. 1In a full productiern
version of the Quince system, many of these modules would be rem~ved com-
pletely: at present, thev are controlled by switches on the system registers.

Table 5 lists the utility routines by their function.

7. Additional Documentation

The NQuince system has also been documented in previous final reports.
These tend toward providing a description of the processing in linguistic,
rather than in computer, terms:; however, much of the information is still
current. 1In particular, (3) presents the coding conventions for identifying

the special telecodes, and an outline of the procedures used in text prepara-

tion. (4) outlines the "steps' of machine translation.

The Quince Program Writer has a full description in (4), which also
describes the plotting capabilities available through the SAS Compatibility
module.

There are also several unpublished papers avallable from the Project.
(1) is a manual for writing GASP, the structured programming language used
as the source language for all the Quince modules: this source code is
translated into Fortran by the GASP translator. (2) is a description of the
theoretical approach used in the PARSER module.
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IVCORE

oS o 5

o~
+ SR

1o} 10| Lo] 1o VSN

w4 /f'/rﬁz

IVFRS (10) - first telecode in segment
IVIAS (10) - last telecode in sesment

IVesSa (10) - orevious sezment vointer {
TVNSG (10) - next sezment vointer i
vime (1) - last-seg-in-sentence flag ?
IVPCL (6) - vunctuation break class this sex i

(vos sexs cnly) ' ]
IVPOS (1) - punctuaticn onlv sezment flag .

N A
lo| Yoy "7 .4 L6 IRy

&

vrer, (16) - packed telecode
IVPSN (10) - previous telecode in sentence vointer
JVNSN (10) - next telecode in sentence vointer

®igure 6A, Fields used in the Field Tunotion Tables of
Module Storage Table IVCORE
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SBCOR®

0 kgl 1o e ';
HSAMQ (10) - substitution head for key telecode o
T ]
[ taf1a] s ,
SANWL, (12) - length of new telecode string i
SRNWP (12) - head of new telecode string .
SROLTL (12) - lenzth of old telecode string
SROTP (12) - head of old telecode string
SRNXS (12) - next substitution 1
16 ’ ) o 12 SRTIEN :
L
SANXT (12) - noxt teleocode node .
SATCT, (16) - teleoode :
Pizure 6B. Mields used in the Miald Punotion Tables of
Module Storaze Table SBCORE
21




LUCORF

7 92 TPTWEN

TPIXT (792) - 132-character text field

: Y/f; 1o {0 {o| 1o VQHFEN

TPRM (10) - from vos for this type
Mo (10) - to wos for this tyve
LIRS (1 o) - first svan for this tyve
TUTAS (10) - last span for thie tyve
e (1) - last-in-unit flag

TNPP (1) - keev-this-tvpe flax

Pigure 6C, M elde used in the Meld Funotion Tables of
Wodule Store Table LUCORE :
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TUCORE (cont.)

10 | 137777 13| e

TPATR (13) - tree-organising vointer
TNQIR (13) =« aueue-organising vointer - next t
ToRm™ (12) - 1AW head revresented !

T tolto] 10| 10| 1o Py i

T.SNYT (10) - head of list on which located

1SPTN (10) - index (should be same) of ™S L
character text i

1SOPP (10) - next svan on this list
1S™X (10) - from vosition _
18™MX (10) - to vosition ol

WMaure 6D, Fields used in the Pield ¥unction Tables of
¥odule Storage Table LUGORE (cont,)
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AQCORR

Ml 1sfe2] 24 | o

12 112

ORSID (24) - riehtside of rule
gIMes (12) - IEWMS — first Luart of rule rightside

gRTCS (12) = RTAWN'S — second vart of rule
rizhtside

grPes (12) - MOPR — left side of rule
GSRNM (13) - source rule ID number
CIT™R (8) - interlinzual tranafer code for this rule

owwin (1) more-flag — this rule has a non-unique

right side (nnsm)

GnPIS (1) - oseudo-flag — this rule oreates a
opreudo-left side

12 l 12 r/;/'//'l 13 | QRN

VPATR (13) - tree-orzanisinz vointer — father
WNQUE (12) - queue-orsanisinz vointer — next
WONST (12) - oonstitute tyve revresented

M gure 6E. Fields used in the Field Munction Tadles of
Module Sivrage Table AGCORE

-

,,..,...,

s —— e

e 1 oL LS i o

o

P APFT S




CSCOR®
: 77777 CSIFRN
| He TN

CTSWR (48) - oategory symbol orint representation

EQ_‘-{ key _mjl‘-[ \c::{ ]12_ R

cA™PT (12) - nointer inmto oategory avmbol
data table

™M eure 6F, Pields used in the Pield Tunotion Tables of
Module Storage Table CSCORE
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PRCOR®

[ -

I Lo

(1o e[ 10] o]  awm

(linked with
[ 1_(.?..4 ALTRRN)

DCNT® (10) - scratch coov of SCN™ (overwritten
when LNNY is made)

LNNX (10) =~ Tisear order next vointer
UNTRD (10) - un-linear ondier next queus-vointer
SCNT (6) - count of direct successors

TNER (10) - linear order ordinal vosition (used
as sort kev)

PCN™ (6) = count of direct vpredecessors
LNPR (10) - linear order orevious nointer
SFRN (1) ~ seen flax (for transversal set-up)
DUPT(1)

duniiocate eonpoa—¢vne flax

e

CSUFFN

18

R

CSsD (15) - index of aotive constitute with
category svmbol

Ploure 6¢. ™ elds used in the Field Wuncotion Tables of
Module Storage Tahla PRCORW
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PRCORE (cont. )

[t [ Tto[22 15 ] oo

; - (1inked with

ARCWIN)
¥Ql(13) - queue~link in sentence vosition gueua
XOn.(10) - winnow = old lattice item reprenanted

wen (1) - winnow - first of tyne flaz
Ker (8) - oonv of POSWR field
X0 (12) - coov of CATSV field
ey (3) - coov of TYPR! field

Hesl 1o ts @ 15]  wen

[N NI

R S —"

WRATA (11) - astive aqueue head

WSPA (13) = aotive aueue tall

FRSMQ (13) = oulesoent auoue head
1ASTQ (13) = quiencent quoue tail
LWLAQ (1) -~ lant senpon in unit flag

SQRIaY (1) - lag — this senron vrevarad for
winnowing

Plaure 6}f, Flelde uaed in the Wiald Function Tablea of
Module Storave Malle PRCONH (cont,)
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ARCORE,
L? 12 12 (10| 13 :i AT/
linked with §
1 3 (cr.mm) P
13
TYPREL (2) - type field f ;
TATPT (13) - cover field for either of OT/ON/ , 4
SYNDIC variants -4
O1GOY (13) - constitute references (non-terminal) g
SYNDI® (13) — sentence diotionary vointer (terminals) ;
INTRA (10) =~ pointer for linear traversal of i
lattice E
SOLST (12) - successor list : ;
PRLST (12) - predecessor list :
. SPTYP (8) - sentence vosition tyve §§
NXTIK (12) - lattioe next vointer
,
{ i
1 * :
H .
i

i WVZ 72 %

TAMIX (12) - lattioce link pointer

M gure 61, Pields used in the Pield Function Tables of
Module Storage Table ARCORR
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ARCORR (oont, )

3

6] 1

)
o3

ARCWEN

(linked witn

CRCFFN)
RAMR (8) - grammar used to make
PRIKS (13) - source rule number to make
NSPNS (6) -~ parser invooation serial number
POSFR (8) - sentence position from
POSTO (8) - sentence nosition to
QUIRS (1) =~ auiesoent flax
ALTNT (1) - alternate flag
CATSM (12) ~ oatecorvy symbol pointer
TYPEC (3) - type field
15 | 3 13 e[

INING (8)
NICAD (13)

RINDX (13)
LINDX (13)

interlingual transformation oocde

sentence dioctionarv vointer
(terminals)

right constituent constitute
left oconstituent oconstitute

Pigure 6J, Flelds used in the Fleld Punotion Tadbles of
Module Storaze Table ARCORR (cont,)
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DTCORF

7. 30 ¢ | 8| ¢ o

RUTNY (8) = link to right son in balanced tree .
THINK (8) = link to left son in balanoed tree

TRXPT (8) - pointer to lexioal heuristic information

PSEQN (30)

vermanent seauenoe number

| Lo 16 16 16

TC4DC (16) - 4th telecode ,
7¢3D¢ (16) - 3d telecods ‘
T¢2D¢ (16) - 2nd telecode !

UMSNN (10) - last sense number assigned for this
vord

BAT, (2) - balance faotor for balanced tree
inspeotion

Pigure 6K, Fields used in the Pield Function Tables of
Module Storage Table DTCORE
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nPEORE (cont. )

1 é ] 1 é ]’ 1 é T DCW#IN  (cont. )

&
~

TCTDC (16) - Tth telecode

TC6DC (16) - 6th telecode

TC5DE (16) - Sth telecode

SNsPT (7) pointer to first word sense
NTCS (3) - number of mon-blank telecodes

A AN A 2
8 (Der afpitgr #oli] 16

T1Dn (16) - 18t telecode
UwiNK (B) - nointer up to father of node

Figure AL, FTields used in the Wield Punction Mables o
Module Storage Table DTCORE (cont.)
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SODATA

- - .
P AP ' r, PR

< . 5
‘ s 1 1o 10 SGATREN
PV S/ L4 ., oy oy

IR e T v .

Wxma¢ (10) =~ pointer to next in list
mxrNn (10) - nointer to telecode node

227 7 IR

TPSPN (5) = last soan list element
NXSPN (5) = next span list element
RRKTC (16) - motual break telecode 1
8PCTS (4). - olass of this break |

D l
‘ g o f]

atndb

'-’/ S,
X7Vt

v

2 é 10 1 0 1 0 SGTTERN .:

TAINX (10) - vointer to list of last aotive
NAINY (10) - vointer to list of next aotive
NXTXT (10) = next in inbut text order

TCRID (16) - telecode

M eure 6M. Fields used in the Pield Funotion Tables of
Module Storase Table SGDATA
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1 2 SOANTFIN

NXT3A (12) - pointer to next eubst/alt node
NEWTT (16) - subst/alt telecode

C e e

\\.

\

[IJPEPEN

REF

1€ k]

SBALT (12) = pointer to first subst/alt

r

A .
AP
L4 L

- v -

’ Corve, d o . oL e s, s
&, A N A
/

L o R i
v ;’/ If}r',l'l‘r/ "'/“( ‘ i f

4

”Ft::

16 ke

YITTHEN

RWCTA (4) = olasa of sormentation break of kev
telocode

™ pure 4N, Pielde umed in the Field Wunotion Tablea of
Module Storare Table 30TABS
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STCORE

12 112§ 11 13 -

1¢

INPO (23) = info — type field and data field

seen as one

SONUM (18) - sonum = SDATA field seen as constitute

number

SDATA (18) - sdata field (multi-use — with sub-

fields in STMMS for full strinzs)

SCURR (6) = sourr counter (full strines)

SLAST (6) -

slast counter (full strings)

SPRST (5) « sfrst oounter (full strinzs)

SANYS (1) -
™PE (5) -
TPULG (1) -

TRRRD (12) -
RLINK (12) -
LLINY (12) -

anv-summs-under-flaz (full strings)
tvpe field

flag to oondition presence of RTART-
RLINY/TLABTLSTHRED

thread link
right link
left link

Pigure 60, Pields used in the Field Munction Tables of
Modules Storaze Table STCORE
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Figure 7A. Data Structures in IVCORE:

segment-in-gentence data structure
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Figure 7B. Data Structures in SBCORE:

lattice structure during telecode substitution
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Figure 7C. Data Structures in AGCORE:
queue tree during LOOKUP winnowing
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Figure 7D. Data Structures
in ARCORE: 1linked lattice

structure (successors only)
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Figure 7E. Data

Structures in ARCORE:
linked lattice struc-
ture (predecessors

only)
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Figure 7F. Data Structures in ARCORF:

lattice structure during parse-time winnowing
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Figure 7I. Data Structures in SGTABS:

linked segment table
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CANONZ

INVEST

SELECTV

WINNOW

ADAPTG

PARSER

STREXT

RANDIC

ALCHEM

CNCORE

(canoni-
zer)
IVCORE SBCORE
(invest) (telecode
substitu-
tion)
SLCORE LUCORE CSCORE
(selectv) {lookup) (category
symbols)
AGCORE SRCORE
(adapted source
grammar) rules)
PRCORE ARCORE
(parse) (archive
consti-
tutes,
STCORE lattices)
(string
extract,
uproot,
transfer)

0 SGDATA SGTABS
(diction- (segment (segment
ary page) data) tables)
STRSAS
(string
extraction,
temporary
for SAS)

Table 1. Module Storage Tables Resident

for Each of the Quince Modules
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CANONZ CNCORE o1

INVEST IVCORE IVSFFN - invest segment table Fod
IVIFFN - invest text table 1]
SBCORE SBHFFN - telecode substitution '
hash table :
SBSFFN - telecode substitution
table
SBTFFN - telecode list table for ;
substitutions :
LOOKUP LUCORE LPTFFN - lookup spans table E
LQHFFN - lookup span queue table 3
LQTFFN - lookup queue tree table g
LSPFFN - lookup span table <
SLCORE -4
C
CSCORE CSIFFN - category symbol data table o
CTHFFN - category symbol hash table i
ADAPTG SRCORE ;
!
ADAPTG/ AGCORE ARLFFN - adapted rules table :
PARSER QTRFFN - winnowing queue tree table B
PARSER PRCORE CLTFFN - lattice parse-time aux. table .

CRCFFN - constitute parse-time k
auxiliary teable -

CSUFFN - category symbol parse-time
data table

SPQFFN - aentence position queue
heads table

ARCORE ALTFFN - archive lattice table
ARCFFN - archive constitute table
LTPFFN - lattice list next list
pointers

Table 2. Field Function Tables Located in Fach
of the Module Storage Tables

51




Lty pac

STREXT

RANDIC

ALCHEM

STCORE

DTCORE

SGDATA

SGTABS

STRSAS

STRFFN - master tree table

CDWFFN - word nodes for dict-
ionary page

SGATFFN - pointer to active
telecodes

SGSDFFN - telecode span list

SGTTFFN -~ list of active telecodes

SGSNFFN - substitutes/alternatives
for telecodes

SGSPFFN - telecodes for substitution/
alternation

SGSTFFN - segmentation breaks table

Table 2. (cont,)
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Module Storage Table Field Function Table

name-1 name-2 name-3 name-1 name-2 name-3
CNCORE CNCOR CNBLK N
IVCORE IVCOR IVBLK -
IVSFFN IVSFF IVSGTB o
IVIFFN IVTFF IVTXTB o
SBCORE SBTCO SBTBLK 3
SBHFFN SBHSH SBHTAB )
SBSFFN SUBST SBSTAB o
SBTFFN SBTLC SBTTAB ' é
LUCORE LUCOR LUBLK :
LPTFFN LPTFF LPTXTB tos
LQHFFN LQHFF LQHDTB u
LQTFFN LQTFF LQTRTB '
LSPFFN LSPFF LSPNTB
SLCORE SLCOR SLBLK
AGCORE AGCOR AGBLK
ARLFFN ARLFF ARLTAB
QTRFFN QTRFF QTRTAB :
CSCORE CSCOR CSBLK :
CSIFFN CSEQU SCIBAS 4
CTHFFN CSEQU CTHTAB y
SRCORE SRCOR SRBLK i
PRCORE PRCOR PRBLK :
CLTFFN CLTFF CLTCTB ¢
CRCFFN CRCFF CRCNST |
CSUFFN CSUFF CSUSTB ;
SPQFFN SPQFF SPQHDS
ARCORE ARCOR ARBLK .
ALTFFN ALTFF ALTCTB y
ARCFFN ARCFF ARCNST -
LTPFFN LTNFF LTCNXT .
DTCORE DCTCM DCTOR ]
DCWFFN DWDEQ DCTWDS N
SGDATA SGDCM SGDCOR R
SGATFFN ACTEQ ACTNDS :
SGSDFFN SPNEQ SPNNDS
SGTTFFN TXTEQ TXTNDS
SGTABS SGTCM SGTCOR
SGSNFFN SBPEQ SBPTRS
SGSPFFN SBPEQ SBPTRS
SGSTFFN BKSEQ SEGBKS
STCORE STCOR STRESD
STRFFN STABL STREE
STRSAS STRSA STRTEM

Table 3. Names of the Module :
Storage Tables, Field Function '
Tables, and Interface File
Definitions

LOCORE LOCOR RESDNT
NMCORE NMCOR NMBLK
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Interface File Definitions

CZTDEF
SGTDEF
VSTDEF
PDCDEF
SLDDEF
SDCDEF

CZTCR
SGTCR
VSTCR
PDCCR
SLDCR
SDCCR

CZTBLK
SGTBLK
VSTBLK
PDCBLK
SLDBLK
SDCBLK

Table 3. (cont.)
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ki s A

E 1 Interface File Definitions ’
: o
N

CZTDEF BDCZT1 t

PDCDEF BDPDC1 i

DSCDEF BDSDC1 i .f

SGTDEF BDSGT1
SLDDEF BDSLD1 '
VSTDEF BDVSTI ’

Module Storage Tables

AGCORE BDAGC1 ; |
ARCORE BDARC1 ;
CNCORE CDCNZ1 :
CSCORE BDCS1 sl
IVCORE BDIVC] . f
LUCORE BDLUCI i 3
PRCORE BDPRSI ; 3
SBCORE BDSET1
SLCORE BDSLC] }
SRCORE BDSRL1 ; ]
STCORE BDSTRI1 3
STRSAS BDSTS1 i
Resident Tables ‘

LOCORE BDLOC1
NMCORE BDNAME -:.

Table L. Block Data Subprograms

for Each of the Common Blocks 3

?
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1. 1/0 Routines
A. random-access disk 1/0 (COMPASS)
CLDISC i g
LRDISC é
MTDISC L
NMDISC 2
OPDISC
RDDISC
WRDISC
B. ECS storage (COMPASS)
RE
WE
C. System registers (COMPASS)
READRG -
WRITRG ‘é
D. system files ]
1) binary files
OPBIN i
CLBIN |
REWINB g
WREOFB ‘
RDBIN .
WRBIN o
2) coded files
OPCOD
CLCOD
REWINC
WREOFC
RDCOD1
WRCOD1

el ol R N

Table 5. Utility Routines Classified

by Function
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3) serial coded files
READS
WRITES

1I. Format Conversion Routines (COMPASS)

A. packed machine-dependent telecodes
ARTOTC
TCTOAR
TCCOMP

B. binary/decimal/integer/display/Al
BTOD24
BT0024
ITOC
CTO1
ARFORM
RAFORM

C. non-FORTRAN character
NFORTC

D. justification
LJUSTC
RJUSTC
LJUSTI
RJUSTI

I11. Other Routines
A. collating sequences
CHCODE
CODECH
B. shift
LLS
LRS

Table S. (cont.)
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C. field insertion ‘
INBUF §

D. string equality
STREQ

IV. Debugging and Optimization Routines
A. Traceback ]
TRCBAK ' 4
DBOUT 8
ERROR
PRTBE
PRTBP
PRTBS
NARCS
RECOVR
B. Timing
TIMER
PRGRAF
C. Machine environment
CONFIG

Table 5. (cont.)
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APPENDIX: HARDWARE, SOFTWARE AND DATA INVENTORY

1. Hardware Inventory

1.1 Teletype KSR-37 Terminal, with upper and lower case, 150 baud, At
present it can be connected via modem with the CDC 6400 at the Lawrence
Berkeley Radiation Laboratory, and also into the ARPANET.

1.2 Chinese Teleprinter Model 600D, 2 sets. Each set has a configuration
consisting of a Chinese character keyboard, a printing unit for direct
hard-copy output, a paper tape punch and a reader, aund a slightly
modified standard teletype with a standard English keyboard.

1.3 DEC DL-11E Asynchronous Serial Interface -- for characte: display on
DEC PDP 11/20 - VT-11 display.

2. Software Inventory

2.1 Quince System

The Qu'..ce system modules are contained in three libraries, each of
which {s stored on tape and maintained in both source and object form
in a set of three cycles each,
1. DMLIB, the Data Management Library
a, field function definitions
b, field functions
¢. common block allocator definitions
2. UTLIB, the Utilfities lLibrary -- all system- or machine-independent
routines, both in assembler (COMPASS) and Fortran
3. QULIB, the Quince Library

a. GASP source of all system-independent subproprams 3

b. Block Data subprograms

2.2 Program Writing System }f
The Program-writing system is a body of locally-written software ~
aids for creating and maintaining large bodies of code, Yach {s stored
on its own tape.

1. GASP Fortran Translator
2. Fi2ld Function Writer

3. Common Block Allocator

60
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2.3 Other Software

3.

3.1

3.2

1.
2.

SAS ~- Syntactic Analysis System -- predecessor to Quince system
Plot Routines

The plot routines permit the graphic display of trees and Chinese
characters for research purposes; they are actually part of the
previous Syntactic Analysis System, with data interface via the
SAS Compatibility Module (ALCHEM) of the Quince system.

a. plotting subprograms

b, vector definitions of 7000 Chirese characters

Data Inventory

Chinese-English Dictionaries on Tape

1.

2
3.
4

6.

CHIDIC (approximately 80,000 records)

PIYDIC (approximately 40,000 records)

McGraw-Hill Scientific Dictionary (partial) on 5 reels
DOD Chinese-English Scientific Dictionary (approximately 500,000
records) on 4 reels

Special sorts on CHIDIC

(1) one-telecode entries

(11) 1long entries (more than 3 telecodes)

(111) reverse telecode sort

(iv) grammar code sort

Special sort on PHYDIC

(1) grammar code sort

Chinese Grammars

The Chinese grammar consists of five levels.

at each level is:

Grammar 1 124 rules
Grammar 2 506 rules
Grammar 3 2408 rules
Grammar 4 336 rules
Grammar 5 2744 rules

There are three ways of arrangement of the rules:

1.
2.

3.

five-level grammar by levels

five-level prammar by length

concordance of rules

61
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3.3 Chinese Texts

1.

Physics Texts (papers numbered 1 to 37).
Total telecodes: 421,464

The Physics Texts were coded from the following books and articles:

a.

e.
£,
8.
h.
i.

Yuanzineng jichu zhishi. Huadong Shifan Daxue. 1958. 1l4pp.
RYyBEL I e Bk G k254 1
Yuanzineng de yuanli he yingyong. Kexue Chubanshe. 1965,

BRI BE O BA% &R AL BN kRl
Yuanziheneng. Kexuejishu Chubanshe. 1957. 262pp.

B3 45 RE, 2% 16U gER b
Yuanzineng de jiben lilun yu yuanzineng de heping gongxian.

{no publisher) 1966. 44pp. .

B3sr e A i ‘7/’?l )b Ay AT R

CL liuti lixae U# i i% b5
Gaowen dengliziti donglixue 1") & f:{ :1'{ 3‘%« i‘-ﬁf) ‘\’;

Gaowen dengliziti de fushe .;) ) % %4 } ,’j{. o 3%’ 5]7
Gaowen dengliziti zhenduan fangfa ‘%7&% .’éﬁ 3% ‘uﬁ &,',]ﬂ ¥i 3,
Tongweisu he shexian de yingyong (xia)

R E A4 BT oe A ()

Jige xinde ji jingguo gaizhuang de yanj iuxing rezhongzi fangying-
dut. 7,5 & es R 33 20l 7] PR Y fa 1

POT fanyingdui zhongzi tongliang de zengjia ji shiyan kenengxing
de kuoda [¢7 R 13 3@;% ®9 t'\i,’ hv /5\"{}1 ?)‘,2 - F'(?;M ) 3/& L
Shiyanxing qingshu nongsuoyou fanyingdui (BBP-2) de gaizhuang
At FOIGE L 5 i 1 (BBP- 270575 ¥

Zhoneshui fanyingdui (TP) de gaizhuang

f lk'vlg_f\b IP) EN (& Nty
(‘on$11 wei 2000 wa de chenruxing shiyan fanyingdui PT)
YA 20 8@.9‘; TR &b? ,\,\L fm_(mﬂ

Rezhongzi tongliang 10 zhongzi/limizo miao de yanjiu fanyingdui
ae-1) Py h % 0 YR GRE VR TTI [ I TR 15

Fushe huaxue janjiu zhuanyong fanyingdui (BBP-U)

o 25 &M R ik
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q. Yuanzi he yuanzineng. Jiaoyu Tupian Chubanshe. 1956. 121pp.
B34 F 380, AX Al 1 & vk Az

Biochemistry Texts (papers numbered 1 to 17).

Total telecodes: 59,320

"Tokuyama" Texts (sample excerpts from modern Chinese short

stories ca. 1920-30, obtained on a cooperative project with Dr.

Helen Tokuyama of the University of California at Irvine).

Total telecodes: 83,830

Total Machine-Readable Text Telecoded: 564,614

The Physics Texts ¢, e through q and the Tokuyama Texts exist both on

magnetic tape and on the original Chinese Teleprinter paper tape. The

rest of the Physics Texts and the Biochemistry Texts exist in 80 column

cards.

3.4 Chinese Character I/0 Information

1.

Kuno character vectors (7,000 records)

Telecode-Romanization Table (10,000 cards)
Chinese Teleprinter Keyboard to Telecode Table (4,800 cards)
Four-Corner System Romanization Equivalences (1,500 cards)
Original Cards for Chinese Character Indexes Volumns (14,000 cards)
Augmentation to Chinese Character Indexes, with romanization

equivalents (14,000 cards)
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Supplements

W 0B N N W e
P
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Test Canonization Module
Vestigand Formation Module
Dictionary Lookup Module
Probative Parser Module
Parse Table Print Module
String Extraction Module
Grammar Adaptation Module
Random Dictionary Module
SAS Compatibility Module
Quince Utilities Module
Loader Storage Allocation Module
Common Block Definitions
Field Function Definitions

GASP System Language Pre-processor
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III. THE STATE OF THE ART IN COMPUTATIONAL SYNTACTIC
DESCRIPTION OF NATURAL LANGUAGES

1. Introduction

When the recent history of linguistics is viewed from the perspective
of computational linguistics and machine translation, it may fairly be said
that the most conspicuous event remains the introduction of the context-free
phrase-structure grammar by Noam Chomsky in the middle 1950's. Despite the
variety of alternative formalisms for the description of languages which have
been introduced (by Chomsky and others) in the intervening twenty years, it
is still the context-free grammar which dominates the thinking of computa-
tional linguists and dominates, also, the systems which they devise,

There are, however, certain technical difficulties with the use of
context-free grammars which have led computational linguists to "augment"

1]

their grammars with "features", and with "conditions" or "actions" based on

the features. This is true of the well-known systems of today (e.g., Woods'

ATN grammars and Winograd's systemic grammars are of this kind), and has
been true stretching back to the days of the COMIT programming system of
Yngve. Most computational linguists believe that such augmented context-free ol
grammars are sufficient to describe natural languages, at least in some rough
practical way, although there is no real theory explaining how to use the
augmentations, or why they are so helpful.

Such augmentation devices were also used (though much less formally
and systematically, of course) by linguists of the pre-Chomskian American
structuralist tradition to describe such phenomena as agreement and context-
ual restrictions; this is one aspect of thelr procedures which was never
reconstructed satisfactorily in phrase-structure grammars. Furthermore, the
lack of such augmentation devices has proved troublesome in current linguis-
tic uses of context-free grammars, and they have now been re-introduced in
the most recent work on the base component of Chomskian transformational 3

grammars -- first with features of lexical items, and then with complex-
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symbol representations for all nonterminals of the grammar.

In an entirely unrelated development, as a way of defining programming
languages, the properties of the syntactic description method known as ''van
Wijngaarden grammars" or '"the Algol 68 definition method" have recently
become better understood. It now appears that this method of describing
"context-free grammars with structured vocabulary" does reconstruct an impor-
tant element common to structuralist linguists, recent Chomskian linguists,
and computational "augmentations': that is, the use of significant abbrevia-
tory conventions in context-free grammars by exploiting a systematically-
structured vocabulary of symbols.

Not only does the van Wijngaarden syntactic description method appear
to neatly cover a wide variety of extensions to context-free grammars and
thus give insight into what important properties they share, but related
formalisms (Koster's affix-grammars, Knuth's attribute-grammars) offer
similar properties while also being naturally related to centext-free
grammars in the sense that the naturalness of interpretation and attractive
parsing properties of context-free grammars are preserved. Hence, although
these formalisms have all been developed in connection with programming
languages, they appear to be of even greater interest and importance for the
processing of natural languages.

In this chapter we will review the state of the art in defining
grammars for natural languages which are suitable for computational use in
machine translation systems, giving particular stress to the new methods
just mentioned as models for a gocd deal of current unformalized practical
knowledge. We will attempt to provide an overview of the progress in defining
programming languages, and to relate the new features of this work to prior
descriptive methods used by linguists, Finally, we indicate how this work is
related to the parsing implemented in the Quince system at the Project on
Linguistic Analysis, and what further research is needed over the next three

to five years to incorporate these improved techniques.
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2. Context-Free Grammars

We began with the observation that all computational systems currently
used for research on natural language are based on context-free grammars,
even if they also incorporate much additional machinery to interpret, or
translate, or whatever. In this section we will review the advantages of
the context-free grammar formalism which have led to this state of affairs,
the extensions to the basic context-free grammar which are introduced to

counter certain disadvantages, and tha remaining difficulties.

2.1 Advantages of Context-Free Grammars

The reasons for the pre-eminent popularity of the context-free grammar
formalism are many. First, perhaps, is the fact that a context-free grammar
both defines a set of admissible strings, by giving a set of constraints on
the ordering of elements, and also associates with each string in ita language
a ﬁierarchical, tree-1like structural description. It turns out that almost
always one wishes both to separate valid strings from invalid, and also to
assign structures to the valid ones; perhaps it is only so because the tool
is at hand, but this has seemed a logical single.task.

It is also true that in an amazingly wide range of applications the
context-free grammar has seemed to be "a natural conceptual basis for defi-
nitions; the basis must correspond to the way we actually think about (what
is being defined), otherwise the related formalisms are not likely to be
fruitful" (Knuth 1971). 1In large part, context-fi:e grammars have been such
a "fruitful formalism” because of the declarative character of a grammar.
Donald Knuth, again, says that "a grammar is 'declarative' rather than
'{imperative'; it expresses the essential relationships between things without
implying that these relationships have been deduced using any particular
algorithm'" (Knuth 1971). This notion of a grammar as a set of declarative
"well-formedness conditions" is also familiar to linguists, from McCawley's
discussion of the phrase-structure base component of » transformational
grammar (McCawley 1968). (A frequent shortcoming of computational research
on natural languages, especially that conducted by non-linguists under the
name of "artificial intelligence", has been to extend context-free grammars

in procedural ways, apparently out of a lack of appreciation for declarative
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formalisms; see, e.g., Winograd 1971, 1975.)

Finally, not only is it true that relatively small context~free
grammars are easy for human beings to devise, understand, and improve, but
they are also easy for computers to manipulate. There have always existed
algorithms for parsing with a context-free grammar, and in recent years
extremely good algorithms have been described and refined in many variants

appropriate for a wide range of purposes (Aho and Ullman 1973).

2.2 Disadvantages of Context-Free Grammars

There are, to be sure, some disadvantages of context-free grammars, and
they spring to mind even more readily than do the advantages since they are
a constant source of difficulty.

The theoretical difficulties may be dispensed with -~ such things as
the inability to have infinite branching from a single node (so as not to pyt
an upper bound on the number of items in a coordinate structure), or the
inability to deal with unbounded overlapping dependencies of the sort which
are are well-known to be a prominent feature of Mohawk (Postal 1964D).
(Postal's criticism is sound, although just slightly askew; it is revised in
Fidelholtz 1974.) These difficulties are true, but irrelevant. Such examples
show that neither in terms of weak generative capacity (the sets of strings)
nor in terms of strong generative capacity (the sets of structural descrip-
tions) do context-free grammars provide a description of natural language
surface structures; but as a practical matter they cause no particular
trouble.

The fact that these are the wrong terms in which to discuss the ade-
quacy of context-free grammars becomes clear from the observation that, if we
simply restrict a natural language to sentences short enough to fit in six-
point type between California and Alpha Centauri, then the restricted lan-
guage will be finite and hence trivially a Chomsky type 3 (finite-state)
language, and thus a fortiori context-free.

The point is that a grammar which is not clear enougu to be invented
and improved by human beings cannot be produced; and clarity, as Edsger
Dijkstra observes, "has pronounced quantitative aspects" (Dijkstra 1972).

The chief practical difficulty with context-free grammars for natural
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languages has been their large size and their corresponding lack of trans-

parency. Susumo Kuno (1963) reported on an English grammar containing 133

syntactic categories and over 2100 rules, which did not yet incorporate the
obvious agreement restrictions of English. Grammars with upwards of 10,000
rules are known to exist.

As the number of rules grows into the thousands, and as it is realized
that tens of thousands of rules would be only a beginning, all the practical
advantages of context-free grammars disappear. Such grammars are no longer
at all easy to understand, nor are they easy to manipulate for computer use.

A ty)ical experience, repeated over and over throughout the 1960's and
early 1970's, has been that a context-free grammar can be written readily to
serve as an initial demonstration model over a limited range, but that re-
placing that context-free grammar with one adequate for actual natural
language 1s, practically speaking, impossible. As Samuel Johnson wrote
in the preface to his Dictionary of 1755, "a large work is difficult because
it is large, even though all its parts might singly be performed with
facility."

2.3 Why Context-Free Grammars Grow Large

Context-free grammars grow large beyond the effective power of humans
to contral them primarily because of the need to encode within them res-
trictions on contexts. This is, of course, not a contradiction or a paradox;

the name '"context-free" refers to the form of the rules in the grammar,

not to any impossibility of utilizing context to restrict the language of
the grammar. As every linguist should know by now, Peters and Ritchie
(1973) contains a demonstration that every language which can be "analyzed"
by testing putative structural descriptions using context-sensitive well-
formedness rules is a context-free language -- that is, it also is penerated
by a context-free grammar, although a context-free grammar which may have
many, many rules.

A small example of the way in which the need for context expands
context-free grammars is given by Winograd (1971). He exhibits the

grammar:
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1. S NP VP

2. NP = DET NOUN

3. VP — VERB,/INTRANS

4. VP — VERB/TRANS

5. DET ~* the

6. NOUN —* giraffe

7. NOUN ~* apple

3. VERB/INTRANS —* dreams

9, VERB,/TRANS —* eats

which generates derivations such as:

S
NP VP
///////A\\\\
///
DET NOUN VERS. TRANS NP
DET NOUN
the giraffe eats the apple

Winograd points out, though, that to expand the srammar se as to include
number agreement for subjects, thus giving:
The giraffes eat the apple.
The giraffe eats the apple.
but not:
*The giraffes eats the apple.
*The piraffe eat the apple.
requires {1f we are to Le strictly ohservant of the notion of a context-free

grammar) that we introduce new catepory svmbols to code the terminal
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vocabulary. We must add rules:

6a.

6b.

Sa.

8b.

9a.

%b..

NOUN/SG ™ giraffe
NOUN,/PL —* giraffes
VERB,/INTRANS/SG ~* dreams
VERB/INTRANS/PL = dream
VERB/TRANS/SG ™ eats

VERB/TRANS,'PL = eat

and we must also double the number of rules above the terminals, adding

additional non-terminal vocabulary as necessary:

la.

1b.

2a.

3b.

4a.

4b.

S ™" NP/SG  VP/SG

S ™ NP/PL  VP/PL

NP/SG —* DET NOUN/SG
NP/PL = DET NOUN/PL
VP/SG — VERB/INTRANS/SG
VP/PL — VERB/INTRANS. PL
VP,'SG — VERB, TRANS/SG NP

VP,/PL ~ VERB/TRANS/PL NP

(Observe that two symbols in this grammar such as NP/SG and NP/PL are wholly

distinct symbols from the standpoint of the definition. Thelr similaritv in

spelling 1s a help to the human reader in grasping the significance of the

symbols in the grammar, but the grammar itself does not exploit the sini-

larity.) We now have derivations such as:
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'
NP/SG VB/SG ;
///////A\\\\\ i
DET NOUN/SG VERB/INTRANS/SG ;E
] ; :
i
b
the giratfe dreams '

This is straightforward, and it is clear that the way in which we can

...._._,....,
st S i
AR R e e

enforce number agreement in context is by duplicating the vocabulary of
the grammar and the productions of the grammar all the way back from two
items which must agree (such as NOUN/SG and VERB/INTRANS/SG) to their
common parent (here, clear back to the start symbol S). If the agreement
possibilities have three values (masculine, feminine, and neuter, say)
then the symbols and the rules must be multiplied by three, and so forth.
It becomes discouraging to note that a similar multiplication will

P L

be required for every individual feature of context which must be coordinated

-- next, for instance, we might notice that our grammar even witl number

agreement for subjects will derive:

NP/PL VP/PL E
DET NOUN/PL VERB/TRANSPL NP -
DET NOUN
|
the apples eat the giraffe

~
[ 2> ]
e s




TRy

(We can assume that the rule re-writing plain NP still exists in the
grammar, because ohject number agreement is not necessary; alternatively we
could double the VP rules again, to introduce freely hoth NP/SG and NP/PL
as objects.) tis would lead us to double once again to code the correct

restrictions for "animate subject:, leading to terminal vocabulary such as:

NOUN/SG/ANIM ~* giraffe
NOUN,/PL/ANIM “* giraffes
NOUN/SG/NONANIM ~* apple
NOUN/PL,/NCONANIM ~* apples
VERB/TRANS/SG/ANIMSUBJ —* eats

VERB,/TRANS/PL/ANIMSUBJ ~* eat

and again we must double the rest of the productions, beginning with:

la. S = NP/SG/ANIM  VP/SG/ANIMSUBJ
lb. S = NP/PL/ANIM  VP/PL,/ANIMSUBJ
lc. 8 ™ NP SG,NONANIM  VP/SG/NONANIMSUBJ

1d. S ~* NP, PL/NONANIM VP 'PL,'NONANIMSUBJ

Fven thoupgh we have already passed the point of reasonableness, it is
obvious that we must continue this process for a long time. As Winogprad
remarks, "this sort of duplication propapates multiplicatively throuph the
cvammar, and arises in all sorts of cases,"

This then {s the wav fn which the desire to encode context restrictions
causes a context: free prammar to prov, by multiplving {ts sequences of

rules over and over apain,

2.4 Attenprs te Reduce the Stze of Context-Free Grammars

The precediuy analvsis of how context-free prammars become un-
mnanagcable suppests that some method {8 needed to simplify prammars by
fndicating where all the paratlel sets of rules occur. In practice,

virtually everv serious use of context-free grammars has {ntroduced some
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such mechanism (even if only informally), and such mechanisms will be the
subject of following sections.

In addition to these methods, however, there have been at least two
attempts to reduce the size of large grammars bty a process of factoring
them into smaller grammars, a sort of "divide and rule" strategy.

The first of these was Woods's notion of creating a "regular expression
grammar" (Woods 1969). 1In principle, this consists of an aleorithm which
takes an arbitrary context-free grammar and factors it into a set of
regular (type 3) grammars, plus the essentially context-free transitions
between them. 1In practice it seems that all examples have been composed
by hand in already factored form. In addition to the gain of breaking a
larger context-free grammar into a number of smaller grammars, it was
pointed out that the smaller grammars could be improved by using optimization
techniques applicable to regular grammars. Such grammars are of some
interest, and they need not be developed in the 'procedural” Al terminclogy
of transition networks as Woods has chosen to develop them. (See Lalonde
1977 for a development as ''regular right-part prammars" leading to a theory
and an implementation which appear more attractive than those of Woods.)

Whereas Woods broke up grammars "horizontally", the other attempt
was to break up grammars "vertically" into smaller pieces applied sequen-
tially: this was the "hierarchical sub-grammar" mechantsm introduced in
the Quince system of the Project on Linguistic Analysis (Wang and Chan 1975,
Gaskins 1973). The POLA technique required human-separation of a larpe
grammar into pileces, with the non-terminal symbols of some grammars serving
as terniuals of other grammars. In the development of such grammars it
was thus possible to separate some concerns, because in applving them to
parsing it was possible to utilize alternative grammars depending on the
tree-tops developed by a preceding grammar applicatton,

Both of these ways of making one large context-free prammar into
several smaller ones are useful, though they address such different goals
that it is impossible to compare their relative effectiveness (and they
are not mutually exclusive). But they have in common that nefther really
does much about the multiplicative duplication of vocabulary symbols and

rules previoualy described. llence, it has been necessary to augment both
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schemes with additional extensions to control multiplicative duplication,

which would still be crippling {f not contained,

3. A Model for Context-Free Grammars with Structured Vocabulary

Once we have identified the problem of multiplicative duplication
of vocabulary and rules in a context-free grammar, it is tolerably
obvious what to do about it: we must introduce a notational system which
allows the process of duplication to be implied, rather than requiring
that it be carried out at full length. TIn fact, this step is so obvious
that it has been taken by almost everyone who ever wrote grammars to be
read by human beings, but the variety of different notions and notations
introduced has been so bewildering that the similarities have not generally
been appreciated. For this same reason the device has not been developed as
well as it could be for use in descriptions of natural languages.

There is now an elegant and comprehensive notation available for
writing context-free grammars with systematically-structured vocabularies
and productions, and this is the "two-level" grammar devised by Adrian
van Wijngaarden for the definition of the programming lanpguage Algol 63,
The van Wi jngaarden grammars (in some intuitive sense) cover and include
all the other proposals, and are the simplest technique available, This
descriptive system is unfortunately not widely known, despite (perhaps
because of) the publicity given to the lanpuage Algol 63,

In this section, accordingly, we will introduce the notion of a
van Wijngaarden grammar. We will then relate it to a number of descriptive
techniques used by linpuists, to a number of extensions of context-free
lanpuages used by computational linguists, and also to related formalisms
uscd by computer scientists to define formal languages and programning
languages -- in particular, to the attribute grammars of Donald Knuth and
the affix prammars of C. H. A. Koster,

It 1s not at all clear -- a reader should know in advance -- that
it would be wise to adopt the van Wijngaarden prammar format as an actual
encodiny of rules to be used for computational analysis; but the van
Wijngaarden grammar abstracts the essential problem so cleanly that it

offers the indispensible framework of insight within which related formalisms
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can be understood and compared with one another.

3.1 wvan Wiingaarden Crammars

The idea of a "two-level" grammar (or "van Wijngaarden grammar",
sometimes also W-grammar or vW-grammar) was originated by Adriaan van
Wijngaarden, for many years the director of the Mathematisch Centrum at
Amsterdam, as a method for describing the nrogramming language Algol 68
then under development by an international committee (van Wijngaarden 1965,
van der Poel 1971). A van Wijngaarden description of Algol 68 appeared
in 1969 (van Wijngaarden et al. 1969) which failed to exploit the potential
of the method; a revised description appeared in 1975 (van Wijngaarden et
ql. 1975), which for the first time showed to advantage the two-level
grammar idea, and interest in the method revived to some degree (see
Cleaveland and Uzgalis 1977).

Unfortunately for the descriptive method, the Algol 68 language has
not been well received (specimen reaction, attributed to P. 7. Ingerman:
"This language fills a much-needed gap'), and the widespread distaste for
the languape Algol 68 has contributed to the unpopularity of the method
speclally devised to describe {t. Worse still, the Alpol 68 Report
introduced a slightly different notation for a context-free grammar, and
this impeded discussion further. (The Algol 68 Report notation for a van
Wijingaarden prammar will not be used here, but a short specimen is {ncluded
at the end of section 3.2) But the method of syntax description is really
elegant and important, and can be divorced from Algol 68, Tt should be
better known to computer scientists and linpuists.

Let us begin with a couple of examples of van Wijngaarden prammars;
after the examples the terminolopy will be reviewed at length and made
more precise. TIn section 2.3 above, we considered a grammar from Winoprad

with rules such as
la. s ™ np/sg vp/s9g
lb. s * np/pl vp pl
2a. napssg ™ det noun/sq

2b. np/pl ™ det noun/pl
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and so forth, (The use of lower-case letters to spell the symbols is a
change, which will be explained presently, but obviously this is the same
grammar as when upper-case letters were used.)

We could abbreviate these rules by taking advantage of the structure

which is in the vocabulary of symbols -- {.e., the systematic relations

between the pairs of symbols such as "np/pl" and "np/sg'. We can introduce

a cover term for either "sg" or "pl", and write the cover symbol as "NUM"
(using upper-case letters for cover symbols, lower-case letters for the

others). Using this abbreviation, the rules become

nl. (s):=+{(np/ NUM} (vp/ NUM)

h2. (np/ NUM) :=>(det) ( noun/ NUM?

and so forth. (We will use the angle-brackets to surround the symbols
in the grammar, since each one may consist of more than one piece such as
"noun/" and "NUM", and the brackets aid in visual parsing of the rules by
a human reader.) We must now understand each of these rules as a ''rule
schema", a pattern for generating the rules given before by plugging in
various values for "NIM". 1In order to make this idea precise, we will
specify the values that "NUM" can assume by a separate context-free
prammar, a "meta-grammar':

ml. NUM ‘= sg | pl
It {s very {mportant also to stipulate that the same value of NUM must be
fnserted into vach occurrence of NUM in a rule schema. For i{nstance,
there is not a rule such as " s =» np/sg vp/pl ", because that could only
result from replacing NUM in rule hl., with 'sg' at its first occurrence,
but with "pl' at {ts second occurrence. This principle we will refer to

as the Uniform Replacement Convention (URC).

These two sets of rules above constitute a "twe-level" van Uijngaarden

prammar corresponding to the original context-tree prammar (the four

rules from Winosrad) given just previously. Those four original rules are

represented in the van Wijngaarden grammar by (a) rule schemata which

incorporate variables in context-free rules (like rules hl, h2 above),

and (b) a second context-free grammar whose terminal strings are the permitted

values of the variables (like rule ml above). Terminal strings of this
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grammar are substituted for variables in the rules of other grammar,
subject to the Uniform Replacement Convention.

The name used for the variables is "meta-symbols". The second
grammar, naturally enough, is called the "meta-grammar' because it defines
the meta-symbols. The first grammar is called a "hyper-grammar", into

which the substitutions are made. Accordingly, we have three kinds of

rules:
(1) Meta-rules are context-free rules which define the possible

values of meta-symbols:
ml. NUM ‘' gg | pl
(2) Hyper-rules are schemata for context-free rules, whose symbols may
contain meta-symbols:
hi. (s):=>(np/ NUM} (vp/ NUM)
h2. {np/ NUM) = (det) (noun/ NUM)
These two sets of rules together make up a "two~level" van Wijngaarden

grammar. They define the language generated by their production rules:

(3) Production-rules are the context-free rules which can be produced

from the schematic hyper-rules by systematic replacement of meta-symbols
according to the Uniform Replacement Convention,

The meta-rules and hyper-rules of the van Wijngaarden grammar above

specify the four production-rules:
pl. s-»np/sg. vp/sg
p2. s-»np/pl vp/pl
p3. np/sg = det noun/sg
pd4. np/pl ~* det noun/pl

In this case, as very frequently happens, the two sets of rules
in the van VWijngaarden grammar (the meta-rules and the hyper~rules)
specify a set of production-rules which could perfectly well be written
down in full, as we have just done. But the van Wijnpaarden format is
shorter (not much here, but often very much shorter), and more importantly

the van Wijngaarden grammar preserves the information that rules which
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differ only 1in the number-agreement specified ("NUM") are really two
instances of the same rule schema. This formal generalization corresponds
to a linguistic claim that sentences with singular subjects do not have a
different grammar from sentences with plural subjects; in fact the grammar
is the same, but there must be number agreement between the verb and its
subject. Also, in the van Wijngaarden format the rules for sentence
formation could be modified by changing just the appropriate single

rule schema (hyper-rule), leaving the definition of the meta-variable NUM
in the meta-rules unchanged.

The preservation of this kind of structure in the vocabulary of
symbols is a most important feature of van Wijngaarden grammars for
natural languages, and it amounts to more than just a clever abbreviation
for an ordinary context-free grammar. As we will see later, a two-level
grammar can define languages which have no context-free grammar, and van
Wijngaarden grammars are actually equivalent to Chomsky type-0 grammars,
or unrestricted rewriting systems.

It will be apparent to every linguist that the use of meta-symbols
in context-free grammars is an old custom in linguistic description (and
we will examine some of those older uses below); the distinctive contribu-
tions of the van Wijngaarden grammar are some of the techniques for ex~
ploiting such meta-symbols, and the explicit use of (what else?) a second
context-free grammar to derive the meta-symbols. The whole arrangement
seemg extremely obvious, but it turns out to have some very non-chvious

properties.

3.2 Notation for van Vijngaarden Grammars

Since we now have three kinds of rules, three kinds of symbols,
and so forth, it is best to have a very clear notation for keeping them
separate. This section introduces the full nomenclature in a step-by-
step fashion, and at the end of the section there is a reference summary
of the notation which can be consulted while reading the remainder of this
chapter.

We will use upper-case letters for meta-symbels, and lower-case

letters for symbols such as the ones which can be derived from meta-

symbols (we call these lower-case symbols proto-symbols, but their name
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seldom comes up). The grammar of the meta-symbols is the meta-grammar.
Each meta-rule in such a meta grammar will take the form of expanding one
single meta-symbol on the left side of a meta-rule into a string of meta-
symbols and proto-symbols. Thus, the meta-symbols are the non-terminals
of the meta-grammar and the proto-symbols are its terminals; that 1s why
meta-symbols are upper-case and proto-symbols are lower-case, as is
customary in an ordinary context-free grammar written according to the
usual Chomsky conventions. For example, a meta-grammar of three meta-

rules is the following:

SUBJ -~ ANIMATE
ANIMATE :°~* minus-animate | plus-animate HUMAN

HUMAN ‘= minus=-human | plus-human

where SUBJ, ANIMATE, and HIMAN are the non-terminals (meta-symbols), and
minus-animate, plus-animate, ninus-human, and plus-human are the terminals
(proto~-symbols). (There is really no requirement to spell out "plus" or
"minus", but the style customary in writing these prammars is to use long
names for symbols -- probably a bad style.)

Y"ro-write"

In the meta-rules, the symbol ::—> is used for the
symbol; a different re write synbol is used in each tvpe of gramrar so
that a single rule in isolation can always have its tvpe identified. Any
rule with the double-colon arrow 1s necessarily a meta-rule.  The usual

vertical bar is used to scparate alternat{ves on the right side of rules,

and the same bar is used in all prammars. Alternatives can always be
written as additi{enal rules at the option of the grammar writer, so the
three meta-rules above are equivalent to the five (unabbreviated) meta-

rules:

"¢}

UBJ ‘!~ ANIMATE

P

ANIMATE '~ minus-animate

ANIMATE ::** plus-animate HUMAN

HUMAN :: = minus-human

HUMAN :~* plus-human




It is necessary to stress that these meta-grammars are to be interpreted

as utterly-ordinary context-free grammars. The only feature which is
slightly unusual is that you are permitted to choose any non-terminal as
the start-symbol for the grammar, and then the values of that non-terminal
are the strings it derives in the meta-grammar. For example, in this meta-
grammar if SUBJ is chosen as the start symbol, it gives three possible

strings of terminal proto-symbols:
SUBJ derives: minus-animate
plus-animate minus-human
plus-animate plus-human
So, in the rule schemata, wherever SUBJ appears it could be replaced with
any of these three strings. But if HUMAN is treated as the start symbol
of the meta-rules, then HUMAN only leads to two strings of terminal
proto-symbols:
HUMAN derives: minus-human
plus-human
and so where IIIMAN is used in the rule schemata it could be replaced only
with one of these two strings.

Moving now to the other component of a van Wijngaarden grammar, we

will call the grammar of the rule schemata the hyper-grammar. The symbols

used in the hyper-grammar are hyper-symbnls, which are strings of proto-

symbols (little letters) and meta-symbols (big letters) enclosed in angle
brackets. TFor example, np SUBJ is a single hyper-symbol, which contains
within its angle brackets the proto-symbol ‘'np' and the meta-symbol
'SUBJ'. Each rule schema is called a hyper-rule, and takes the form of

a context-free rule rewriting a single hyper-symbol on the left side as

a strins of hyper-symbols. For example, three hyper-rules are:
(g) :=(np suBJ) (suBJ vp)
(np suBJ) ‘= (det terminal) (noun SUBJ terminal)

(suBJ vp) 1= (verb SUBJ terminal)
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Each has one hyper-symbol on the left side, and a string of hyper-
symbols on the right side. 1In hyper-rules the rewrite symbol is : - ,
so any rule with a single-colon arrow is a hyper-rule. lyper-alternatives
are separated by a vertical bar, just as with meta-alternatives. (There
are no hyper-alternatives in the rules above.) Ue have already used up
the distinction between upper-case non-terminals and lower-case terminals
in the meta-grammar, and indeed both appear intermixed in the hyper-
symbols. Ve need a new convention to express that distinction in hyper-
grammars, so by convention all terminals in hyper-grammars will end with
the proto-symbol "terminal”. (In the hyper-grammar above, both the
second and third rules expand to strings of terminals only.) Some
additional mechanism is then required, such as a lexicon, to associate
each terminal symbol with its representation, which Is ordiuary computa-
tional practice anyway. We will not be concerned here with the represen-
tation of terminals,

The three hyper-rules make use of the meta-symbol SUBJ which (as
we saw before) derives three terminal strings in the meta-grammar: since
any of these may be substituted (observing the Uniform Replacement Con-
vention) in each hyper-rule, that makes the hyper-rules short for nine
rules in total:

{(s? = (np minus-animate) { minus-animate vp)

(s} = (np plus-animate minus-human)
(plus-animate minus-human vp)

(s? = (np plus-animate plus-human’
(plus-animate plus-human vp’

{np minus-animate’ =* (3>t terminal) { noun minus-animate terminal’

{np plus-animate minus-human) =*{3det terminal)
{ noun plus-animate minus-human terminal)

{np plus-animate plus-human’ = {det terminal’
{noun plus-animate plu.-human terminal’

{minus-animate vp) = {verb minus-animate terminal’
(plus-animate minus-human vp) —* { verb plus-animate minus-human terminal)

(plus-animate plus-human vp? =* { verb plus-animate plus-human terminal’
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Rules such as these, generated by the hyper-rule schemata by replacing

meta-symbols, we will call production-rules., Such production-rules

have the plain arrow as the rewrite symbol (their mark as regular context-
free grammar rules), and they rewrite a single production-symbol on the

left side as a string of production symbols. The production-symbols are

simply the concatenation of the proto-symbols within a pair of angle
brackets after substitution has taken place; the brackets are ordinarily
retained for ease in reading. Observe carefully that the separation be-
tween distinct proto-symbols is no longer present after replacement of
meta~-symbols has taken place; a production-symbol such as "s" and a
production symbol such as "npplus-animateminus-human" are equally thought
of as just single, unanalyzeable symbols -- exactly as they would be in
an ordinary context-free grammar.

For reference, we now insert a summary of this section:

A van Wijngaarden grammar (vW-grammar) consists of two components:
(1) a meta-grammar, and (2) a hyper-grammar,

The purpose of the meta-grammar is to define a structured vocabulary
of symbols., It takes the form of a context-frec grammar in which the
non-terminals are meta-symbols (written in UPPER CASE LETTERS), and the
terminals are proto-symbols (wrltten in lower case letters). Each meta-
rule consists of re—writing a sirngle meta-symbol as a string of meta-

symbols and proto-symbols. The re-write symbol used in meta-rules is :: > .

The symbol used in meta-rules to separate meta-alternatives is |.

Example meta-grammar component of a vW-grammar:

SUBJ = ANIMATE
ANIMATE '~ minus-animate ! plus-animate HUMAN

HUMAN ‘= minus-human ' plus-human

The purpose of the hyper-prammar is to serve as a set of rule
schemata for the rules defining the lanruage of the vil-grammar. It takes
the form of a context -free grammar in which the non-terminals are hyper-

symbols (strings of proto-symbols and meta-symbols enclosed in angle
brackotq () ) and the terminals are hyper-symbols ending with the proto-
symbol "terminal'. FEach hyper-rule consists of re-writing a single
hyper-symbol as a string of hyper-symbols. The re-write symbol used in
hyper-rules is : 2 . The symbol used in hyper-rules to separate hyper-

alternatives is | l g

Example hyper-crammar component of a vW-grammar:
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(s) := (np suBJ) {sSUBJ vp?

(np SUBJ) : = (det terminal’ { noun SUBJ terminal’
(suBJ vp’ ‘= {verb SUBJ terminal’

In a vW-grammar, the hyper-rules specify a srammar (the production-
grammar) which is obtained by replacing in the hyper-rules all the meta-
symbols with strings of proto-symbols which can be derived in the meta-
grammar by treating the meta-symbol as the start-symbol. (Thus, the
meta-grammar may actually be made up of several sets of meta-rules which
do not interact.) This must be done in accordance with the Uniform
Replacement Convention (URC), which says that all instances of the same
meta-symbol in a single hyper-rule must be replaced with the same string
of proto~symbols,

The purpose of the production-grammar obtained in this way is to
specify the language of the vW-grammar. It takes the form of a context-
free grammar (but possibly with an infinite number of rules) in which
the non-terminals are concatenations of proto-symbols (strings of lower
case letters), and the terminals are concatenations of proto-symbols
ending in 'terminal'. (Some further mechanism, such as a lexicon, is then
used to give the representation of each terminal symbol.) Each production-
rule consists of re-writing a single production-symbol as a string of pro-
duction-symbols. The re-write symbol used in production rules is = . ‘
The symbol used in production-rules to separate production-alternatives :
is | . Angle brackets may optionally be retained around production-
symbols to aid readability.

Example production-grammar (specified by the vW-grammar above): ?

(s) = {np minus-animate) {minus-animate vp’

(s) = {np plus-animate minus-human’ "
( plus-animate minus-human vp’ :

(s) = (np plus-animate plus-human’
{plus-animate plus human vp)

{np minus-animate) = {det terminal’ {noun minus-animate terminal’

(np plus-animate minus-human) > (det terminal’
{ noun plus-animate minus-human terminal’

(np plus-animate plus-human) = (det termiaal’
{noun plus-animate plus-human terminal’

(minuseanimate vp) = {verb minus-animate terminal)
( plus-animate minus-human vp! = {verb plus-animate minus-human terminal)

( plus~animate plus-human vp) - {verb plus-animate plus-human terminal’




The language generated by this production-grammar (and thus by
this vW grammar) consists of three strings of terminals, all with deriva-
tions essentially alike except for agreement of selectional restrictions:

(s)

/\

{np minus-animate’ (minus-animate vp)

(det terminal) (ncun minus-animate terminal) {verb minus-animate terminal)

(Important note. The terminology and notation, introduced in this
section (and used in all succeeding sections) were devised especially
for this presentation, and do not correspond to those in the Algol 68
Report or Revised Report (van Vijngaarden et al. 1969, 1975); the present
notation more resembles that used in varieus other, independent, studies
(Daker 1972, Deussen 1975, Greibach 1974). But since the Algol 68
Report is the ouly sizeable example of van Wijngaarden grammar, it is
nice to be able t¢ read it; the recent introduction to van Wijngaarden
grammars by Cleaveland and Uzgalis (1977) is an excellent practice field

for the Algol 68 Report, and the present notation was chosen with an eye

to making the transition as easy as possible,
(The Algol 68 Report, for example, uses the word "notion" in most X
of the places where "symbol" is used here; so a grammar consists of
meta-notions, hyper-notions, proto-notions, and so forth. This use of f
"notion" is counter-intuitive. The notation of the Algol 68 Report differs .
in being less redundant; for instance, the sample van Wijngaarden grammar

would be written:

{meta~rules:)
SUBJ:: ANIMATE.
ANIMATE:: minus-animate; plus-animate HUMAN.

HUMAN:: minus-human; plus-human,




{hyper-rules:)
s: np SUBJ, SUBJ np.
np SUBJ: det terminal, noun SUBJ terminal.

SUBJ vp: verb SUBJ terminal.

(No arrows, final periods, alternates separated by semicolons, hyper-
symbols set apart by commas,)

(This notation is admirably suited to typewriters, and it is a
pity that it is so hard to read (much harder, of course, in larger and
more complicated grammars). But ten years of bitter experience have
made it clear that for some reason people do not immediately find the

Algol 63 Report notation helpful.)

3.3 Chomsky's Convention as a van Wijngaarden Grammar

As another example of the notation and the motivation for grammars
with structured vocabulary, we might consider the "X Convention" as
introduced by Chomsky (1970). {This presentation is now completely out-
dated, but it will serve as an example here since it is likely to be
better known than more recent work in X syntax.) The X convention is
introduced as part of a general reformulation of the base component so
that instead of unanalyzeable non-terminal symbols, each non-terminsl
node will be characterized by a complex symbol. (This is in itself a
way of introducing a structured vocabulary into a context-free grammar,
a point to which we will return eventually.) Jackendoff (1974) has
summarized the X convention fn this way: "The peneral nature of the
claims made by the X convention is now clear. The structural schema
(28) (below), in which W represents any lexical category, is claimed to
constitute a linpuistically significant generalization of the structures

associated with the major categeries.
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(28)
X |
i spec, X i-
w |
’///////\\\\\\\\\\\ |
% X !
; Compx

That is, we expect there to exist rules whose structural descriptions

B e

. refer to a range of structures including more than one value of X."
- The rules proposed to be included in the base component by Chomsky
will employ "a variable standing for the lexical categories N, A, V"

A

which is called X, '"Then the base rules introducing N, A, and V will

be replaced by a schema." Eventually Chomsky arrives at rules which

are summarized by Jackendoff as:

=55 5 &

X ~ (Spec, X1 - X - 4

el

-+ X - comp

where 'comp' is an abbreviation for some sequence of nodes, but is not
itself a constituent, Sample comps are "NP, S, NP S, NP PrepP, PrepP Ef
PrepP, etc." (Chomsky 1970), and in the X schema above the "full range
of structures that serve as complements" should appear."

As presented by Chomsky, this entails a complete redefinition of
the base component in ways which are not made fully explicit. We can, ?}
however, identify at least four different devices at work: (1) use of X |
as a cover term for N, A, or V in rule schemata; (2) use of X, X, X to ]
indicate systematic relatedness of categories; (3) use of [Spec, i] as
a complex symbol which is analyzed differently depending on the value of
X -- {Spec, N] as the determiner, [Spec, V) as the suxiliary, and [Spec, A}
perhaps as the system of qualifying elements associated with adjective

phrases. "Analyzed" has here a technical meaning, namely that there

are rules
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( Spec, N1 — Det

[Spec, V] - Aux

and so forth: (4) use of 'comp' (Chomsky uses an ellipsis ... iInstead)
to indicate expansions Into various node sequences, although 'comp' is
not a constituent. !
Most of these devices can be captured adequately in a van Wijngaarden ilg
grammar, and so it will be an instructive exercise tc recast the two !
rule schemata of Chomsky, and all the accompanying uunderstandings about :
how they are to be interpreted, Into van Wijngaarden form. | 1
(1) 1t is easy to find a way to let X represent the category i 8
symbols N, A, or V in a rule, since that is a chief use of meta-variables. §

All we need is a meta-rule defining X:

x::--»n|a|v

(2) 1t is also easy to capture the relatedness of the categories

..o...,._,..‘

X, X, ? by defining a meta-symbol for bar and double bar (call them DAR
and DOUBLE), and then using hyper-symbols in the hyper-rules which are
composed of the meta-symbol for X and the meta-symbol for one of the
bars -- such as (X?. {x BAR}, <X DOUBLE) -— so that each hyper-symbol
contains a use of the same meta-variable, X. The separate question of
how the categories so related are rewritten in terms o“ one another is ;‘;
correctly captured in the Chomsky schemata, and so {t transfers naturally u

to the hyper-rules which are also schemata. The first hyper-rule, then,
will be: "

(X DOUBLE) ‘= (spec X BAR) (X BAR)

(3) Having tntroduced such production-symbols as {spec n bar) or
{spec v bar) under the coveriny hyper-symbol of {spec X BAR) , 1t is
perfectly easy to distinguish amony them and to expand them differently 4

through additional hyper-rules:

N U




(spec n bar) = (det)
(spec v bar) = (aux? (OPTIONALADV)

(spec a bar) = (qual)

(4) The remaining question of how to write ‘comp' and yet avold
having, 1t be a constituent is the most difficult, Cliomaky used the wild-
card symbol of ellipsis because rule schemata do not provide a way to
summarize rules with unboundedly different numbers of symbols on the
right-hand side, and neither Jdo van Wijngaarden hvper-rules.

It {s possible, however, that the content of 'comp' should not
have a recursive definition with the structure hidden, but rather should
be defined in terms of a finite number of "slots", each of which can be
"filled" by varioas nodes or in some cases by nothing; this style of
description has often been used by linguists. For exposition, we will
assume that a 'comp' {s an optional NP or PP, followed Dy an NP or S.
This will provide an exhibition of one way in which optional elements
can be Introduced into van W ingaarden grammars.

The rule which we wish to write would be represented in a common

notatfen for abbreviating context-free rules as:

- () )

This abbreviates six rules, namely those with right-hand sides
X NP NP

X rp NP

X NP
X NP S
X re S
X S

We will now explain an {mportant additional conventfon which ia

needed in {nterpreting van Wijngaarden grammars for optional elements
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and also for other purposes, and then we will apply that information
to writing the rule above.
In a van Wijngaarden grammar, we can make use of optional elements

by introducing a new meta-symbol and meta-rule:
EMPTY i1 A

(FMPTY has as its expausion the null string, represented by the lower-~
case lambda (\) rather than the usual upper-case (A1 to preserve conven-
tions.)

We can then write meta-rules utilizing EMPTY as one of the

alternatives, for example:

OPTIONALADV ::=* adv | EMPTY

and hyper-rules to use such meta-symbols, such as the one from the last

sub-gection:
(spec v bar) := (aux) (OPTIONALADV)

Such a hyper-rule will give rise to sub-trees in structural descriptivos

such as
( spec v bar) {spec v bar’
/
and /
(aux’ (adv) { aux) (EMPTY

(We will customarily show ¢MPTY in such trees rather than fts terminal
empty string in the meta-prammar, for ecase of reading.)

The important convention is that we interpret a structural descrip-
tion such as the second one above to be exactly the same as another tree
in which the EMPTY and all nodes which Jdomfnate PMPTY exclusively have
been pruned away; here, we {dentify the sccond tree above with the

pruned tree
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{ spec v bar’

{ aux)

We will have more important uses for this convention in following sections,

since it will permit the enhancement of using hyper-symbols as 'predicates",

which increares the naturalness of van Wijngaarden grammars.
Using this device for optionality, then, we can now write rules
for the COMP elements:

OPTIONALCOMPA ‘:i= np | pp | EMPTY
COMPB :=* np I s

EMPTY ::= X
(X BaR) = (x) { OPTIONALCOMPA ) {compB)

Here the COMP meta-symbols can be considered as the names of "slots"

and their terminal meta-expansions as "fillers" for the alots; the slot
names play no role in trees generated by the hyper-rule above, because
they are replaced with actual node names in production-rules. (This
interpretation is capable of further historical and practical development,

since linguists have argued for years about how to incorporate such

notions into context-free grammars.,) ,
We have now completed, plecemcal, the construction of van Wijngaarden !
rules to describe Chomsky's two schemata and quite a number of attendant

informal understandings. The result looks like this,

van Wijngaarden prammar for the X convention

Meta-rules:

mi. X:*=n la v

ma. BAR ‘= bar

m3. DOUBLE ‘:=* BAR BAR
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mé. OPTIONALCOMPA ::= np | pp | EMPTY

mS. coMpB i s | np

06. OPTIONALADV ::= adv | EMPTY

m7. EMPTY i1 A

Hyper-rules:

hl. (X DOUBLE) : = (spec X BAR) ¢X BAR)

h2. (X BAR) := (x) (OPTIONALCOMPA) {COMPB)
h3. (spec n bar) i~ (det)

hd. (spec v bar) '~ (aux) (OPTIONALADV)

hS. (spec a bar) i~ (qual)

The production rules which can be derived from the hyper-rules (via the

Unfform Replacement Convention) are:

{from hl:) n bar bar - spec n bar n bar
a bar bar -* spec a bar a bar
v bar bar -~ spec v bar v bar

(from h2:) n bar - n np np 3
n bar - n PP ap ;
n bar = n np 1
n bar - n np s '
n bar = n PP 3
n bar - n s !
a bar - a np np
a bar -~ a PP np
a bar - a np
a bar - a np s
a bar - a jul of s
a bar - a s 1
v bar - v np np
v bar - v pp ap
v bar gl np i
v bar ~ v np s '
v bar - v Pp ] .
v bar = v s ]
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(from hl:) spec n bar = det

(from Fi:) sgpec v bar = aux A
spec v bar ~* aux adv

(from h$:) spec a bar = gJual

It {s indeed clear that several linguistically significant generali-
zations are not asserted in these production-rules, but they are aaserted
fn the rules of the van Wiingaarden grammar (whether or not these penerali-
zations are correct is not the point here; for further information
about the X convention see (Halitsky 1975). It is because these linguisti-
cally significant generalizations are captured, that the van Wijngaarden

rules are nmuch easier for a human being to understand also.

3.4 vau Wijngaarden Grammars {or Non-Context-Free lLanguages

With the motivation provided by the foregolng lingulstic examples,
ve will now introduce some brief and schematic examples of van Wijngaarden
pranmars for artificial languages so as to give a better idea of thelr
possibilities, These examples are modeled after some in the literature
(de Chastellier and Colmerauer 1969, Cleaveland and Uzgalis 1977), and
{1lustrate techniques which are common {n van Wijugaarden grammar writing
but which are not readily apparent to one accustomed to single-level
Lramnars.,

Mur first example will be a prammar for the set of strings
{ SR TR § -~ that {s, the language of all strings of a's
followed by an equal number of L's, or ab, aabl, aaabbb, ...

The usual context-free grammar for this language is piven as

s =* asb Lab "

which produces derivations such as




L e Pl T ———————-—

S
a S b
/—/’\
a S b
/ \
a b

There 18, of course, no reason not to write such a grammar directly as a

van Wijngaarden grammar with a null meta-grammar component; hence,

(g):= (a terminal) <(sg) (b terminal’) |

(a terminal) (b terminal’

In either notation, the number of a's and b's is controlled by
how many times the first alternative of the rule is used, and the
equality constraint is enforced because each rule application introduces
exactly one terminal a and also exactly one terminal b, :

But there is another way of getting the same language from a van 5 .
Wi jngaarden grammar, wvhich is less straiphtforward but which generalizes 7
as the grammar above does not. An alternative van Wijngaarden grammar  f
for {a" "l n21) s

Meta-rules:
ml. N*:= n | Nn
m2, AB '™ a ! b
Hyper-rules:

hl., (g):i= (N a) {(NDB
h2, (n N AB’ ‘= (AB terminal’ (N aB)

hi. (n AB) := {AB terminal’

9
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This will take a bit of study, but the idea is basically simple and is
useful in many van Wijngaarden grammars. Notice firat that meta-rule !
(ml above) specifiesa recursively any number of n's -- meta-iymbol N
derives as terminal stringa of proto-symbols n, nn, nnn, nnnn, nnann,

and so on. Thus, meta-symbol N used as a start symbol in the meta-grammar
vields an infinite set of values; and that in turn means that when N

{2 used i{n a hyper-rule such as hl above, that the set of production-
rules which can be made from the hyper-rule schema is also infinite,

one rule for every possible value of N, The first few production rules

manufactured from hyper-rule hl above would be:

(s) *(na) {(nb}

{$) *{nna) {nnb}

{s8) *{nnna} {(annb)
{3) *{nnnna} ({nnnnb)

{ )Y~ {(annnna) <{nnanab)

and so on. This immediately changes the theory of the rules that we
are accuatomed to, because now the language of the van Wijngaarden
grammar {8 specified by an {nfinite number of production-rules (whereas
ft i{s a basic requirement of ordinary context-free grammars that the
set of rules should be fin{te),

The sscond hyper-rule also used the meta-symbol N {n an essential

way:
hl. tn N AR) !~ {aB terminal’® N AB'

This again abbreviates an {af{nite number of production rules, which
provide (in general) that a saymbol composed of a certain number of n's
plus an a or b, can be rewritten as an a-or-b-terminal followed by a
gymbal containing one fewer N's than the left side of the rule. (The
meta-svmbol AR in the rule is just a cover term for a or b.) It {a
the Uniform Replacement Convention which makea thie true: the URC

assures that the srame value for N (and for AB) {a {nserted inte both
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sides of the rule; aince there 1a an extra explicit 'n' on the left, the

production-rules generated by this hyper-rule will be of the form:

{(nna) = {a terminal) (na’

T O

{nnb) * (b terminal) (nb)

E {nnna) = (a terminal) (nna)

(nnnb} = (b terminal) {nnb’}
(nnnna’~*{a terminal’ <{nnna)

{nnnnb} (b terminal’ {nnnb’

-
.

and so on for all the values of N. Fach such rule in effect casts off
a terminal and leaves a new non-terminal which can be re-written by a

previous rule. The final hyper-rule, h3,
h3. {n AB) := (AB terminal’

simply provides for handling the final case, the 'shortest' non-terminals
produced by rules of hvper-rule hl.

Sv a sample derivation in this van Wijngaarden grammar will look like

(g
\
(nnna) (nnnb*
(a terminal’ (nna’ (b terminal’) (nnb)
(a terminai' (rpa) (b terminal) <{(nb)

(a terminal’ (b terminal’}




In this grammar the number of a's and b's is determined in an entirely

‘ different way from the context-free grammar: here the number of a's

1 and b's depends not on how many times a recursive rule is appliod

5 to rewrite S >a S b, but rather on which of the infinite number of
expansions of {8) {s initially chosen and applied once. The equality

3 conatraint {8 likewise enforced in an entirely different way: here the

equality depends not on the fact that one a and one b are added on

each recurasive expansion, but rather {s enforced by the Uniform Replacement
Convention, which assures agreement between the two non-terminals intro-
duced by the first rule application (“agreement” here meaning that they
fnitiate parallel chains of rules in the grammar to generate the same
number of terminals),

There would be no point in going through all of this for the
{ ST | w2 I‘S language, since that language has a simpler context-
free grammar. But the appreoach of the second van Wijingaarden grammar
penceralizes in a way that the approach of the first one does not. If
we now wish to have a language f Attt w2 3 -~ that {s, any
wumber of a's, followed by the same rumber of b's, and again an equal
number of c's, or abe, aabbee, aaabbbces, aaaabbbbecee, etc. -- the
stmpler scheme breaks down. This acsw language {s one which is well-
known to be not context-free, meaning that {t i{s not generated by any
context-free grammar, (It ie not hard to see why this is so: there
are only two sides to a center-embedded symbol, so a context-free grammar

can coordinate only two strings at a time, and those must be mirror-

tmages of each other.)
noayno |

But there 18 a van Wijingaarden grammar for the language {a & @
n> ?} and it 1s only trivially different from the grammar for the
preceding one.  The only difference we need to introduce is to make a
new meta-symbol ABC to be a cover symbol for a, or b, or ¢, and we also
need to introduce the three items in the first hyper-rule instead of
only two,

The rvesulting grammar is:




Meta-rules:
N n | Nn
ABC i~ a | b | ¢
Hyper-rules:
(g)t=> (Na) (Nb) (Ng)
{(n N aBC) = (ABC terminal) (N aBC)

{n ABC) := (ABC terminal)

with derivations such as:

/(S)\
(nnna) {nnnb) (nnnc)
/ \ //\
(a terminal) (nna) (b terminal) (nnhb) (¢ terminal) {nnc)
(a terminal) (na) (b terminal) {nb) (¢ terminal) {nc)
(a terminal) (b terminal’ (c terminal)

While it is true that counting of this sort is not precisely a phenomenon
of natural language, this example demonstrates that other matters of
agreement which are not naturally handled by context-free rules may
nevertheless be handled simply by a van Wijngaarden grammar.

3.5 van Wijngaarden Grammars with llyper-symbols as Predicates

We will now consider a device which can be seen as merely a matter

of style in writing van Wijngaarden grammars, but which opens up surprising
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possibilities of gaining the effect of "tests" or conditions on properties

of symbols while remaining wholly within the original syntactic frame-

work, This posaibility was not used in the original Algol 68 Report,

but was {ncorporated for the firat time in the Ravised Report; this

sugpests, correctly, that the {dea was not entirely obvious, even to

A. van Wijngaarden himself. But it is very simple, and although it is

in some sense a trick, ft i{s a satisfyingly elegant trick. The basic

votion involved i{s to introduce extra hyper-symbols into hyper-rules,

and to arrange that the other hyper-rules should either derive FMPTY from

the additional symbols, or else should fail to derive any terminal

string, thus leading to a blocked derivation. But this explanation

give no idea of how the idea ia used, and we shall now develop that slowly.
Let us begin with an example of a van Wijngaarden grammar to

generate all strings of double letters -~ the (finite) language ‘'aa',

'bb', ‘ce', ..., 'yy', 'zz'. A perfectly adequate van Wijngaarden grammar
would be:
Meta~-rule:
ALPHA 1= alblclalel elglnhliljlxlilimlinlolpl
qlelsl elulviwlxlylz
Hyper-rule:

(8) :=~ (ALPHA terminal} (ALPHA terminal)

This prammar {s correct because the Uniform Replacement Convention

assures that the hyper-rule represents exactly 26 production rules such as
(s) =(a terminal) (a terminal)
(s) = (b terminal) (b terminal)

and a0 on. Only atriugs where both lettera are the same are penerated

by the grammar, hecause only rules with both occurrences of ALPHA

replaced hy the same letter are available, We will have derivationa

such as
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(a terminal) (a terminai’

(s)

(b terminal) (b terminal)

That grammar, as we said, 1s perfectly satisfactory, but now

consider this longer approach to defining the same languape of double
letters:

Meta-rules:
ml. ALPHA 1'= alblc !l ... | xlylz
m2. ALPHAL 3" ALPHA
ml. ALPHA2 *:-* ALPHA
nd. EMPTY (1=t A
Hyper-rules:
hl. (s) *= (ALPHAl terminal) (ALPHA2 terminal) (ALPHAl ALPHA2)

h2. ( ALPHA ALPHA? :— (EMPTY)

This grammar relfes crucially on the way the Uniform Replacement
Convention 18 understoud to work., The URC says that in any one rule,
all occurrences of the same meta-symbol must be replaced by identical
terminal-atrings generated in the meta-rules by the meta-symbol: but
different meta-symbols may be replaced with different terminal strings.
In particular, in hyper-rule ! above ALPHAL and ALPHAY are different

meta-symbols: they may be replaced independently with the same values
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or with different values, but repeated inastances of ALPHAl or rapeated
instances of ALPHA2 must be replaced consiatently with the aame string
in every repeated inatance, (Tn the meta-rules above, obviously ALPUAl
and ALPHA? have been {ntroduced -- both dirvectly derivine ALPHA ~- for
thin very purpose, to have "syronyma" for ALPHA which are diftovent to
the URC, In future grammars. we will assume without explicit mention
that all wmeta-symbols ending in single diptta like these are introduced
an gynonyma for meta-symbela without dipfts, ag in meta-rules 2 and 3
above.)

By the URC, then, from the firat hyper-rule we will get production-
rules like the following:

(3) ={a terminal? (a terminal) (a a?

(a) =(a terminal) (b terminal} {(a b}

(a) ={(a terminal? {c terminal) (a ¢?

e

{8} = (b terminal’ (a terminal’ (b a?
(3> = (b terminal’ (b terminal) (b b)

(8> ={(n reiminal’ (c terminal} (b ¢!

[#1

(3 = {¢ terminal) \a tarminal) (¢ a)
(s) =*{¢ terminal) (b terminal) (€ b}

(a) ~{o terminal’ (¢ terminal} (¢ @)

G

The firgt column of terminals and the firat letter in the patr at the

end both come from replacing ALPHAL; the second column of terminala
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and the second letter in the pairs at the end both come from replacing

ALPlIA2; so replacement values for the same meta-symbol always agree,
but replacement values for the different meta-symbols are chosen in-

dependently.

We have dramatically increased the number of production-rules |

used to define the language. In the previous grammar of double letters, :
we had 26 production-rules in all; now in this grammar we have 26 times
26 production rules (676 rules) from the first hyper-rule alone, and all
the pairs of letters that we do not want are being generated so far.

We correct for this, and discard all the pairs of letters that

do not agree, with the second hyper-rule: .

(ALPHA ALPHA) :— (EMPTY)

again by the URC the two instances of ALPHA must be replaced by the ’ g
same string of proto-symbols, so this rule underlies just an additional
26 production rules of the sort:

‘_,,,,,_.

(a a) ~(EMPTY) ff

(b b) - {EMPTY)

and so forth. Accordingly, the second hyper-rule will provide for
re~writing the pairs of letters generated by the first hyper-rule, just

in case they are the same letter. We will have derivations such as: !

(s)

(a terminal) (a terminal) (a a)

(EMPTY)

ey

In just the cases we want, then, the strings in which the same terminal

is repeated, we will get a tree like this one ( EMPTY produces the
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terminal null string A , but by our agreement we have instead the meta-
symbol EMPTY). Since the terminal string of the third non-terminal aa

is the null string, we have the correct string of terminals; and in accord-
ance with the convention explained earlier that all nodes in a tree which
dominate only FMPTY are pruned (that the tree is identified with another
tree which i{s the same except that those nodes are missing), we will

treat the structural description above as equivalent to the structural

description

(s)

(a terminal) (a terminal)

and so both the string and the tree are what we want.

So much for liow the strings of double letters are generated, which
was the language to be defined. Now in very many cases the partial
derivations produced by our grammar will not be like the ones we have

inspected. Instead, they will be like the following:

(s)

(a terminal) (b terminal) (a b)

This is a very different situation. The production-symbol {a b)) is
not a terminal, obviously, because i1t does not end with the proto-symbol
'terminal'. Tt i{s a non-terminal, but the grammar provides no way to
re-write that non-terminal symbol; there is no production-rule with the
production-symbol <:al»> on the left side (because hyper-rule 2 only
provides production-rules for rewriting such symbols when they are
composed of the samc character twice). So this last tree 18 not a
structural description underlying any string in the language of the
grammar., This attempted derivation just "blocks" since it camnot be

completed into a string of terminals.
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Of the production-rules, 650 rules introduce such pair-symbols

which are not matched; only 26 introduce double letters. The 26 production-

rules of the second hyper-rule then re-write the double-letter symbols
as EMPTY, The 650 rules always introduce non-terminal symbols which
cannot be rewritten, thus blocking a derivation in a "blind alley."
this second grammar also defines just the language of the 20 pairs of
double letters, the same language as the first grammar did.

Although 1in this example the second grammar is more cumbersome
than the first, the general stratepy is useful in more complicated
grammars: it is often clearer to write a hyper-rule so that 't pives
rise to unwanted production-rules, and then "restrict" those production
rules by failing to provide additional production-rules to rewrite all
the symbols introduced,

The name "predicate' is used to describe hyper-symbols such as
{ ALPHAl ALPHA2 ) which are inserted only to either (a) yleld FMPTY
and disappear, or (b) yield a "blind alley" and block. Tt is possible
to be more suggestive by adding some extra proto-symbols to a predicate
as window-dressing. For example, instead of { ALPUAL ALPHA2>>, we might
toss in two extra proto-symbols and make the hyper-symbol (\ﬂuwv AlLPHAL
is ALPHA2>\ This would let us rewrite the hyper-rules of the last

grammar as

Hyper-rules:
hl. (g):= (ALPHAl terminal) ({ALPHA2 terminal’
(where ALPHAl is ALPHA2)

h2. (where ALPHA is ALPHA) '~ (EMPTY)

but this does not change the method fn the least, {t only plves more

suggestive hyper-symbols and the ability to define more than one praodicate

with the same meta-symbols. (me might have
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{where ALPHAl is ALPHA2)
(where ALPHAl is not ALPHA2)
{where FEATURES] are contained in FEATURES2)

{where FEATURES] nonconflicts with FEATURES2)

and so on, cach of which would block in different circumstances.

It is required that all such predicate hyper-symbols be defined
in strictly syntactic terms, and we have not really shown yet how this
is done. (The example of < where ALPHA is ALPHA {s hardly representative,
because it uses the URC to immediately take over all the work.) How to
write the syntactic rules to make the predicates have their intended
effect 1s rather specialized, and for the present it is sufficient to
believe that a great deal {s possible, As an aid in acquiring such a
helief we will go just one step farther here, and define a simple but
not trivial predicate hyper-symbol. Detailed examples are worked out
at length in sections 5.1 and 5.4 below.

For this example, we will define a van Wijngaarden grammar to
penerate a language just the opposite of the last one -—- this time, we

will have the languapge of pairs of letters which are not the same,

(This is apain a finite language: ab, ac, ac, ..., ay, az, ba, bc, ....)
We will use the same meta-rules again (this time omitting the rules for
ALPHAl and ALPHA2 in accordance with our convention that they are

assumed to be synonyms for ALPHA), but we will need additional meta-rules

for STRINGs and new hyper-rules.

Meta-rules:
ml. ALPHA = alblc | ... | x!I y' z
m2. EMPTY ‘:= \
m3. STRING ‘= ALPHA | STRING ALPHA i

md. OPTSTRING ‘= STRING | EMPTY

(A STRINC 1s just one or more ALPHAS, and an OPTSTRING {s zero or more
ALPlAS.)
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Hypex-rules:

hl, {g) = {ALPHA) terminal) { ALPHA2 terminal)
(where ALPHAl is not ALPHA2)

h2. (where ALPHAl is not ALPHA2) i -
(where ALPHAl precedes ALPHA2 in abcdefghijklmnopgrstuvwxyz) |

(where ALPHA2 precedes ALPHAl in abcdefghijklmnopgrstuvwxyz)

h3. (where ALPHAl precedes ALPHA2 in OPTSTRING1 ALPHAL

OPTSTRING2 ALPHA2 OPTSTRING3) :— (EMPTY)

The length of the hyper-symbols in the hyper-rules makes them fit the
lines badly, but careful attention will sort them out. Rule hl rewrites
(l) as a terminal, followed by another terminal, followed by a predicate.
Rule h2 rewrites a predicate as either of two alternative more-primitive
predicates. Rule h3 rewrites a single monstrously-long left-side symbol
as EMPTY; note in this last rule h] that everything but EMPTY is in a
single pair of angle-brackets and is on the left side of the rule.

Clearly the basic idea of this grammar is the same as the last one,
because in the first hyper-rule the only element which is changed 1is
the firal predicate; as before we generate two terminals and a restriction
on them, but now the restriction is the reverse of what it was.

Rule h2 defines what it means for one ALPHA to "be not" another
ALPHA, by saying that it means either that the first precedes the second
in the alphabet or else the second precedes the first in the alphabet.
(If neither of these is true, then they are the same letter.)

Rule h3 then defines what it means for one character to precede
another in a string, by saying that if character 1 precedes character 2
in the string, then it will be possible to divide the string into five
parts so that the first part is zero or more chsracters, the second part
is character 1, the third part is zero or more characters, the fourth
part is character 2, and the fifth part is zero or more characters.

But the summary just given of the hyper-rules is not quite adequate,

because the effect described is achieved not by some kind of process of
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trying a string and seeing if it can be divided, and so on, but purely in
terra of synbols and rewrite rules. A sample derivation in this grammar
could be

(s)

(¢ terminal) (£ terminal) {where c is not f)

(where c precedes f in abcdefghijklmnopqrstuvwxyz)

(EMPTY)

We know that there 1s a production-rule which produces EMPTY from that

last symbol, because it comes from the last hyper-rule:

(whete ALPHAl precedes ALPHA2 in OPTSTRING1 ALPHAl OPTSTRING2 ALPHA2 OPT-

STRING3 )

where ¢ precedes f in ab c de £ ghijkl...

ALPHAl and ALPHA2 are replaced by the same values at their repeated ‘g
appearances, and OPTSTRINGI, OPTSTRING2, and OPTSTRING3 are independently 7
chosen as sequences of zero or more characters; therefore, this must be ;

a production-rule validly produced from hyper-rule 3., Prolonged inspection
will convince the interested reader that when the two characters are the ;
same (ALPHAl and ALPHA2 are the same terminal proto-symbols) and the string
introduced by hyper-rule 2 is the alphabet, there is no way that any values 3
can be chosen to make a production-symbol which is also on the left of
any production-rule generated by hyper-rule 3, and hence when the two
characters are the same the derivation will lead to a blind alley.

Now, once two letters can be distinguished, then two strings of
letters can be distinguished (one letter at a time), and so any information
vhich can be coded into strings (that is, any information) can be mani-
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pulated. The details of this manipulation are fascinating, and to an
enthusiast may be the most interesting facet of van Wijngaarden grammars;
it is satisfying to be able to define the predicates with no additional
machinery whatsoever. (van Wijngasrden 1974 contains a two-level grammar
to simulate s Turing machine, using 9 meta-rules and 30 hyper-rules.)

As a practical matter, though, the exact definition of thc predicates
is of secondary importance. Once basic predicates are defined, then
they can be used in one grammar after another without changes (something
like a subroutine library). Also, the predicates would never be used in
a computer program as they are in the grammars because they would be
implemented instead with primitive tests for identity, non-identity,
etc., outside the grammatical apparatus. Moreover, since anything can
be coded as a predicate hyper-symbol, there is no actual restriction on
expressive power in requiring that the definition be syntactic. It is
important, however, that the URC restricts the predicate to appearing
in the very hyper-rule where the items to be restricted are introduced;
we gain 'locality of definition' when the restriction is on nodes intro-
duced by a single rule, rather than on global tree configurations.

4, Prior Linguistic Uses of Grammars with Structured Vocabulary

It 1s immedistely suggestive that there have been several links
between the development of the van Wijngaarden grammar formalism which
we have been considering and grammars of natural languages. Adriaan van
Wijngaarden himself, at the Mathematisch Centrum, applied its earliest
computing machinery to a study of newspaper Dutch, saying that "we hope
that this and similar information to be obtained in the future will
help us to get better insight in the formal properties of our language"
(van Berckel et al. 1965), and since then has shown an interest in natural
language analysis using Algol 68 (van Wijngaarden 1970, Smith 1976).

C. H. A. Koster, an author of the Algol 68 Report and an influential
advocate of the van Wijngaarden descriptive method, had first used a
similar formalism in writing a context-free grammar of English in 1962
(see Koster 1965). The author of a technical note on van Wijngaarden
grammars (Deussen 1975) makes reference to a doctoral dissertatica of
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the same period which consists of a large surface grammar of German
utilizing essentially the van Wijngaarden grammar format (Schneider 1965,
1966). And one of the very earliest formalizations of the van Wijngaarden
method was undertaken at the Universite de Montreal for use in a French-
English machine translation project (de Chastellier and Colmerauer 1969).

It seems likely that this repeated invention has been prompted by
necessity when context-free grammars are used to describe natural languages.
Evidence that this is so is forthcoming when one begins to consider other
previous linguistic work in light of the model of grammars with structured
vecabularies provided by van Wijngaarden grammars, and finds repeatedly
the same essential use of structured vocabulary as a natural part of the
descriptive techniques used.

Since it is not at once obvious exactly how to go about making
best use of structured vocabulary in describing natural languages, it
is reasonable to examine the independent approaches toward structured
vocabulary which linguists have needed. The uses exemplified may be
instructive, even when the understanding is as frustrated bulas tantali-
zingly close as in this passage where Hockett (1966) describes a '‘compo-
nential alphabet" on two-levels:

A simple example is Potawatomi noun stems (N) which are either
animate (An) or inanimate (In) in gender (Gn), and also either
independent (Ind) or dependent (Dep) in dependency (Dp). ...
One could provide for the whole situation in a single composite
rule subsuming four elementary rules:

N NAnInd, NAnDep, NInInd, NInDep

(Footnote 63:) I am not sure how the procedure developed here
would fit into the rest of the grammar. I am not sure whether

my notations such as 'NAnInd' are single characters or strings

of characters; perhaps indeed one here needs to use a componential
alphabet so that NAnInd (and the like) can be a single character
but with components susceptible to separate manipulation."

liockett's puzzlement in his footnote appears to have been shared by wany
othars who felt that phrase-structure grammars missed some essential
features of natural languages, and surprisingly often it turms out to

be possible to interpret the missing element as provision for structured

vocabulary.
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4.1 Pre-Chomskian Uses of Structured Vocabulary

Although there is little doubt that diligence could locate the
true gsource of two-level grammars in fanini, we will for brevity in
this initial essay begin with the American linguists who immediately
preceded Chomsky. Their usage of structured vocabularies in describing

natural languages may be most conveniently studied in Chomsky's own

early manuscript The Logical Structure of Linguistic Theory (1955/1975)

and in Paul Postal's provocative demonstration that a whole range of
descriptive methnds amount to very little more than phrase-structure
grammars (Postal 1964b). These summaries are interesting enough, however,
to suggest that additional first-hand consideration could be rewarding.
A lengthy development related to the ideas of Zellig Harris 1is
provided by Chomsky (1955/1975), which seems to be of chief importance
in understanding the ideas about structured vocabulary which played a
role in Chomsky's own eaily theories. There the motivation for structured
vocabulary arises from an elaborate scheme to establish ''grammatical
categories" so as to explain "degrees of grammaticalness" (i.e., why
"of of the of'" is less grammatical than "colorless green ideas sleep
furiously" -- at this period, however, the second of these strings was
considered to be grasnmatical, a status which it was later to lose).
Chomsky describes a process of hierarchical sorting, or clustering
which establishes many extremely tiny grammatical categories containing

only one or a few lexical items as members, then groups some of these

into larger categories, some of the resulting categories into still
larger categones, etc. Finally, there is an evaluation procedure (whose
details are unknown, as is usual with evaluation procedures) by which

to choose the level of grouping which is optimal for describing the
language, and this level so chosen is called the "absolute analysis."
Chomsky explains:

The absolute analysis embodies the major grammatical
restrictions. Presumably these will be stated in terms of such
classes as Noun, Verb, Preposition, etc. There will then be
many further grammatical restrictions that have to do with limited
and special contexts, and that will, presumably, be reflected in
superior degrees of grammaticalness (i.e., smaller, lower-order
categories). These further restrictions correspond in part to
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what Harris has called selection. Thus selectional restrictions
can be defined as those which refer to an account of grammaticalness
which is more detailed and specific than that provided by the
absolute analysis. Although Preposition may well turm out to be

a class of the absolute analysis for English, there will be sub-
classes of prepositions that occur with different nouns and

verbs, etc....

The difficulty is that categories of different aizee on different levels
may simultaneously make different linguistically-signifitant generaliza-

tions:

There will, for instance, be various strings which we would like
to say are noun phrases, even though they do not all appear
grammatically (with firat-order grammaticalness) as subjects of the

same verb phrases, although each occurs grammatically with some
verb phrase.

It 18 the desire tc keep multiple levels of generalization which leads
eventually to treating these category symbols as complex symbols (as in
section 3.3 above), so that the complex similarities and differences
can be preserved.

Some understanding akin to the one just outlined, that various
grammatical categories were alike for some purposes but different for
others, seems to have been general among American linguists of the period.
This understanding was of principal use in two situations: (1) describing
the occurrence of items whose environments were nearly identical, and
(2) describing agreement phenomena, or perhaps more generally “discon-
tinuous constituents'. Although it is sometimes difficult to sharply

separate these two, they do seem to be different uses.

A convenient example of the first kind of use is provided by Zellig
Harris. Harris's formulas introduce several kinds of description re-
miniscent of two-level description. In one of these, symbols are given
numbers and "each higher numbered symbol represents all lower numbered
symbols, but not vice-versa" (Harris 1951). For instance, the formula _ 3
Nz

but such generalization only occurs on the left si.les of formulas (the

- §= N also represents the additional formula N' -S= N3 3
right sides of rules). This system would be modeled by a van Wijngaarden

grammar which made use of meta-symbols on only one side of hyper-rules.

E.Be»
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NTHREE ‘= nthree | NTWO
NTWO ‘= ntwo | NONE

NONE ‘= none

(nthree) = (NTwO) (s)

The numbers are introduced by Harris because an N3 can occur
everywhere an N2 can occur, except in the rules turning an N2 plus
somathing else into an N3; thus, by collapsing all these rules for items
in the same environments, much duplication of rules is avoided.

A related example is given by Harris to show the utility of grouping
morpheme classes into classes of 'positiona'" in which morphemes occur
(Harris 1951). If morphemes of class Q occur in positions which are the
same as those of class R morphemes (the two being differentiated only
in which adjuncts such as '-1ly', '-al' they occur before), then it is
possible to make a "positional category" N which includes Q and R (which

are now to be written N. and N respectively, to show that they are

nembers of class N). The adju:cta ~ly, -al are similarly classified
into Na, and Nab. "...we have the equations N. + Naa = A, N+ Nag= A,
etc., all of which can be summarized in the position-class equation
N + Na= A, It is understood that this equation, unlike our previous ones,
holds not for every member of the clamses involved but only for certain
members (or sub-classes).” The ones for which it holds, of course, are
the corresponding ones which appeared together among the sub-class
equations, and vhich have been here suppressed.

The similarity of this understanding te thé Uniform Replacement
Convention suggests that a similar van Wijngaarden grammar could be

written along the lines of

Crass ::= a | b
(a) := (n sub cLASS) {na sub CLASS)

wvhich serves as the "position-class equation” N + Na = A. The sub-class

equations summarized by this one can then be recorded in f{urther
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hyper~rules:

(n sub &' := (q)
{(na sub a) ! (-ly terminal)
(n sub b) = ()

(na sub b) : = (-al terminal)

As Herris remarks, "it {s impossible to eliminate from our records the
explicit sub-class equetions'; their rule is here assumed by these further
hyper-rules which preserve what aach sub-class of N and Na represents.
The "understanding” or convention of Harris's that these position-class
equations are to be understood specially as holding only of corresponding
sub-classes is not formally represented in his notation; in the van
Wijngaarden grammar, of course, this is reconstructed by the meta-symbols
in the hyper-rules and by the URC governing their replacement,

The motivation here again sesms to have been a desire to collapse
rules dealing with the identical or nesrly-identical environments of the
"Q" and "R" morphemes, but in this case there is also a need to define
slots and to require that they be filled subject to agreement; so this
usage shades over into our second type.

The second motivation for use of structured vocabulary in earlier
linguistic work appears to be the desire to represent phemonena of "agree-
ment" or "concord."

This was sometimes seen as of a piece with the problem of "dis-
continuous constituenis." Harris, again (1951), employed what he called
"long components" (by analogy to supra-segmental phenomena in phonology)
to express agreement: "Similarly, ...a...a i{s a single morphemic segment,
meaning female" in Latin filia bona 'good daughter'; such a female 'long
component" is treated as a component part of several complex symbols.
This process is further extended and is really rather sophisticated, but
it is never at all comfortable within an immediate constituent analysis.

Quite a number of people appear to have thought of utilizing
"variables'" in their formulas or representations, with something like

the Uniform Replacement Convention to govern them and thus to enforce
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agreoment. Chomsky, h\§54 of (Chomsky 1955/1975) considers this very

interpretation of 'long components’ and propoaes a notation for rules:

P P? ~ ?§
kK = a
Xk ™ b

Here the "long component" ia the sywbol "K', Obvioualy the first rule ia

somethiing like & ven Wijngsarden hyper-rule, and the last two rules are

something like meta~rules (and so we see that there is no separation of

levals in this grammar). Observe that, just as in the Harris super-

script numbars, the variables occur only on the right aide of the rule,
Chomsky then goes on to propose something very like the URC to

govern ths f{nterpretation of these rules, adding "suppose further that

by convention all identical superscripts assume the same value in deri-

vations .... The derivations would now work out exactly right, the

algabra would be restricted, snd the notatfonms NP, VI', etc. would be

retained with all essential ganerality." What this means ia that because

of the "componential' nsture of category symbo's like Pg . 1t is poasible

to let the P be "NP" and to recognize it as the same symbol regardless

of what value of k qualifies {t, Chomaky's rulea and convention are clearly

fntended to be interpreted to be virtuslly fdentfical to the van Wijngaarden

rules

Kii=* al p

(p? = (pp X)) (g K)

Chomsky decides, on the banis of having tried auch a system to

represent long components in his Morphophonemica of Modern lebrew (1951)

that {t could well be useful for such things as number agreement, but

ft 1s not an appropriate device for imposing the vast complex of restric-
tions necessary to avoid "the rearming of Germany ia at diuner" --

that is, appsrently, for telliny grammatical sense {rom grammatical

nongense. Chowaky then concludes with a note of much interest to those
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studying van Wijngaarden grammars:

This is an important question, deserving of a much fuller
treatment, but it will quickly lead into areas where the
present formal apparatus may be inadequate. The difficult
question of discontinuity is one such problem. Discontinuities
are handled in the present treatment by construction

of permutational mappings from P to W (phrase structures

to words), but it may turn out that they must ultimately

be incorporated into P (phrase structure) itself,

Chomsky himself appears to have believed that transformations
were another tool for dealing with agreement, and so naturally he was
more interested in following up the transformational approach to the
question. Postal (1964b) extolls the incomparable value of the trans-
formation to achieve agreement, and Koutsoudas (1966) exhibits many
examples of the technique of generating an item of agreement in one
constituent and then transformationally copying it into other consti-
tuents with which agreement was required. Postal (1964b) also credits
Sydney Lamb (1962) in "stratificational grammar' and Elson and Pickett
(1960) in "tagmemics" with introducing the ideas of variable-symbols
and their uniform replacement to describe agreement phenomena; further
study would probably uncover several more similar developments.

Qur preliminary scan, then, indicates early use of structured
vocabulary for two major purposes: (1) to indicate that two category,
symbols share many properties but are not subject to expansion by all
the same rules -- that is, to encode "rule features'; (2) to indicate
that two category symbols share many properties, but differ in their
"contextual restrictions" of the sort usually thought of as 'agreement'.

Either use can be naturally incorporated into a van Wijngaarden grammar.

4.2 Structured Vocabulary in Transformations and 'Extended Phrase

Structure Grammars'

Chomsky, throughout the period of Syntactic Structures (1957) and

"A Transformational Approach to Syntax" (1962) continues to employ
symbols which have the informal app2arance of being structured, but he
does not provide any formal method of representing their relatedness.

Thus, he givez rules such as
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NPpl
- + N+
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be
NP i .
sing n eav Npsing *+ hux {_becomez

Pred - b
NP in . NP + b
pl env. N pl Aux {b‘come —
Comp
v -
t v‘r {Prt z
- - vTal val eeey VTg, in env. Nh PP Comp
T
V,rx in env. Prt

Hare in the first rules the aymbols NPling and NPpl are being
used for number agreement; but the two symbols, no matter how suggestively
similar, are different and unrelated symbols in the grammar. It makes

no difference that the brackets are drawn around alternatives in the ;

and NP ~ '
sing pl 4
rekain as distinct as Aux and Prt in the vocabulary of the grammar. The ;
rules dealing with verbs use context-sensitive format to impose rule- i

features as well as agreement.

first rule, or drawm around two entire rules; the symbols NP

The reason why Chomsky gets along reasonably well without a method
for relating various symbols in the vocabulary is that the only "relatedness"
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of importance, in much of this work, is that a group of symbols should
be trested the same way by transformations, and this kind of relstadness
is reconstructed in the definition of a transformation rather than in
the vocabulary of node labels.

A transformation operates on terminals, but segments them into
terms based on the complicated notion of a "proper analysis" which amounts
to a string of non-overlapping sub-trees which together exhaustively
dominate the terminal string. This means, among other things, that if
the structural description of the passive tranaformation is

NP - Aux -~ VPP - NP
1 2 3 4

then its first term is as well satisfied by a subtree

NP
sing
/////’\\\\\\
T N

as it is satisfied by the alternative subtree

NP
Nppl
T’//////]\\\\\\\\:‘

because only the top node of the sub-tree is relevant to satisfying the
structural description of the tranaformation.

This means that there i8 one way NPP1 and NPnins’ for example,
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are related in the grammar, and that is that they can both be rewritings

of NP, This is utilized by the transformational rules, since in the

] structural description of a transformational rule a node label is like

E a variable which stands for any string of terminals which can be derived |
{ from that node in the base grammar. (Distinguish this from the usual

meaning of ''variable" in transformational specifications, which is any

é unspecified left-to-right factorization.)

This interplay between the structure of the base grammar and the N
structural description specifications of transformational rules, then,
acts in some ways like a two-level grammar. To see how this is so, we
can model this particular aspect of a transformational grammar as a van
Wijngaarden grammar. (This is purely to guide intuition about the simi-

larity; there is no suggestion that a van Wijngaarden grammar can be made

to act like a transformational grammar in any satisfactory way. But on
this one point, the similarity is striking.) We imagine that the base
grammar of a transformational grammar is the meta-grammar, and the
transformations are hyper-rules; modeling the rules on those presented
at the first of this section, we could have: ‘
NP :i- NPSING | NPPL
NPSING > t n .
NPPL i= t n -8 i
VP ‘' AUX VPP 3
VPP {1= VTCM comp | VTPR prt
vrem ::= vra | oves | ... | vrG

VTPR i VTX

and so forth; the entire base component is simply a context-free meta-

grammar. Then the passive transformation is a hyper-rule:
(NP1 AUX vPP NP2) : = (NP2) (AUX) (be -en? (vPP) (by) <(nP1)

(Notice that there is only one hyper-symbol on the left of this rule --
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a string of meta-symbols -~ but there are six hyper-symbols on the right
side.)

This hyper-rule simply and correctly renresents all the (many,
many, many) rules in which a terminal string derived (in the meta-grammar)
from the meta-symbols in the left-hand hyper-symbol is re-written as its
correct permutation under the passive transformation. The Uniform Replace-
ment Convention will assure that the subject and object NP's (1 and 2)
are reversed, and that they are exactly the same terminal strings in the
active and passive versions.

Thus, again: the reason that Npsing and NPp1

transformations, is exactly the same reason that NPS!NG and NPPL are

are treated aiike by

treated alike in the 'passive hyper-rule'; the permutation rule is written
in terms of the category NP, and both aymbols can be derived from NP in
the base grammar (meta-grammar).

(To bring up this comparison suggests the question of whether van
Wijngaarden grammars can, or should, be used in this way to replace
transformational grammars. The answer appears to be no, to both, although
an attempt has been made to use van Wijngaarden grammars in just this
way to describe natural languages (de Chastellier and Colmerauer 1969)
from which attempt a still more general formalism for manipulating tree-
structures was later developed (Colmerauer's Q-system). In any case some
additional conventions are necessary to understand van Wijngaarden grammars
as tree-manipulating systems, since ordinarily the trees of the meta-
grammar have no interpretation., This leads to different usages, which
we will not consider here.)

An important point, however, is that transformational rules gain
some of their naturalness from their ability to refer to many different
strings under a single variable cover-term, and their ability to specify
the strings corresponding to the variable by a phrase-structure grammar
(the base grammar of the transformations); this is so basic to the system
that it is usually thought of as inherent, and is the property called
"structure-dependence” in transformational theory.

At the same time that Chomsky was making use of this special kind
of "two-level" property in his transformational grammars, there was a
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quite different proposal for two-level grammars which met @ bizarre fate;

this was the "extended phrase structure grammar' of Gilbert Harman
(Harman 1963).

The Harman proposal was not really novel, being pretty much a
proposal to write rules in the programming language COMIT (Yngve 1960,
1961, 1972); Chomsky will have it that the notation was really devised
by G. H. Matthews while writing a grammar of German in 1957-58, and that
Matthews really developed the COMIT system as well (Chomsky 1965, pp. 79
and 213). Harman's paper has become well known only because of some
unwontedly colorful remarks about ants and antelopes and about extended
baboons in which Chomsky attacked it (Chomsky 1966); his criticism
must have been chiefly motivated by Harman's r~ovocrative stance in main-
taining that transformations had been proved to be unnecessary, because
the substance of Harman's paper should not have been offensive.

Basically, the Harman rules envisioned a structured vocabulary
consisting of a set of category symbols, each augmented with a set of

"subscripts' or ''tags'. An ordinary context-free rule such as

A —~-» B C

is then understood to mean that A is rewritten as B followed by C, and
that all of A's tags are 'copied" onto B and onto C; it is just like

the static notion of a schema

(a TAGS) := (b Tacs) (c TAGS)

The definition of the tags is not clearly separated, however, and thus
there are many additional conventions for adding to, modifying, and
erasing the tag set associated with a particular symbol. Rule features
are implemented by conditions on the tags associated with the left-
side symbol.

Harman's ''defense of phrase-structure" (the subtitle of his paper)
is that Chomsky has not properly represented the tradition of immediate-
constituent analysis in defining context-free grammars; amoug other things,
Chomsky has not represented discontinuous elements or agreement. (And

this was, as we have remarked above, a legitimate complaint.) If Chomskian
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phrase-structure grammars are augmented to restore these traditional

parts of immediate-constituent analysis, Harman believes that such

"extended phrase-structure grammars" can then adequately describe natural
E languages; unfortunately, however, the resulting grammars will be very

large -- too large to handle in practice. Harman replies to thls admitted

difficulty in using extended phrase-structure grammars by saying that

the proper acswer to this practical problem is that it
is only a technical difficulty. Being only technically
a difficulty, it can be overcome by changing techniques.
We require some technique which will enable us to write
and grasp millions of rules at once; that is, we require
a useful way of abbreviating large sets of rules.

The desire to "write and grasp millions of rules at once" is probably
the best description given so far of the motivation leading to two-
level van Wijngaarden grammars and similar grammars with structured
vocabulary.

But Harman's purpose of abstractly abbreviating large sets of
rules gets lost in Chomsky's rebuttal, covered over by quarrels about
whether the result is still properly called a phrase-structure grammar.
Just how lost it was can be seen from McCawley's review of Chomsky's
argument (McCawley 1968b), in which McCawley says that if Chomsky had
penetrated behind the terminological question

He could have made a far more devastating criticism of it
than he presented. Harman is able to dispense with agreement
transformations only at the cost of having separate rules,
e.g. to select the number of the subject NP (which must be
attached as a feature of the S-node which dominates it, so

as to allow that feature to be 'inherited' by the VP through
Harman's 'feature inheritance' mechanisms), and to select the :
number of all other NP's. (Footnote: Because Harman

neglected to include this latter type of rule in his restatemant

of the rules of Chomsky (1957), his rules generate only

sentences in which all NP's have the same number.) Since the

inheritance of features from a common dominating node in the

surface structure is Harman's only means of incorporating

selectional restrictions into a grammar, and since there are

infinitely many types of verb-NP selectional restrictions

which can hold in surface structure, Harman's treatment

would require an infinite number of selectional features

and infinitely many rules to attach them to the relevant

S-nodes.

McCawley's account of Harman's method is quite accurate, particularly
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in describing the feature-inheritance mechanism which it shares with
van Wijngaarden grammars; but McCawley believes that this accurate
account is a devastating criticism because of 1ts obvious absurdity.
McCawley seems not to have appreciated the point that it is not absurd
to define a language by millions of rules (or by an infinite number of
rules), so long as you have a technique for defining those rules which
peraits you to '"write and grasp" then.

There are two ways in which Harman's use of structured vocabulary
in grammars differs from Chomsky's use in transformations, however, and
both are of interest in the context of machine-translation and computa-
fional linguistics,

First, Harman used (implicit) variables in the phrase-structure
rules themselves, and did uot try particularly to simulate transformations
in the way explained earlier (rewriting permuted node strings); the tags
of Harman's symbols are used both to enforce agreement, and to collapse
rules by utulizing rule-features -- wuch like the similar uses by pre-
Chomskian linguists.

Second, the notation scheme used by Harman was developed as a
programming language, specifically for work in machine translation and
natural language research, which suggests that the idea of category
symbols qualified by features immediately appealed to the linguistis
vho tried to use the early computers (hopelessly short of software) for
natural language processing. In fact, some intereating work was done
in COMIT, and in a version of COMIT coded into Lisp ('METEOR'; see
Bobrow 1964).,

4,3 Post-Aspects Use of Complex-Symbol Vocabularies

The next chapter of the story is of unusual interesat, because
the device rejected so strongly is made the cornerstone of the theory
of the base component of a transformational grammar (Chomsky 1965).

In Aspects of the Theory of Syntax, Chomsky takes the point of

view that non-branching re-write rules such as




NP }
sing
Np

are clearly not the correct way to achieve subcategorization. "Although

this defect was pointed out quite early," he says, 'there was no attempt

t -+ deal with it in most of the published work of the last several
years.'" Chomsky gives credit for the earliest recognition of this
fact to G. H. Matthews, developer of the COMIT notation for "Extended
Phrase-Structure Grammars.' (Other echemes are given in Bach 1964
and Schachter 1962), A base component very close in structure to a
two-level grammar is proposed in Seuren 1968.)

The Aspects theory of base grammars is developed twice. First,
a proposal is made to have four kinds of rules: (1) Context-free
rewrite rules which develop the entire non-terminal phrase structurp
of a phrase-marker; (2) context-free subcategorization rules which intro-
duce terminals with "inherent features': (3) context-sensitive strict
subcategorization rules which introduce " contextual features'" of the
geometry of the phrase-marker; (4) context-sensitive selectionsl rules
which introduce "contextual features" of other terminals.

Examples of these four t'mes of rules would be:

(1) CF rewrite: 5 = NP"Predicate-Phrase
{(2) CF Subcategorization: (+N] = [+Det ]

(+Count] = ([+Animate])

(3) CS Strict Subcategorization: ([+V] = [+ NPl /S NP

(4) CS Selectional: ([+V] = [+(+Abstract]|-Subject] ,/ [+N,+Abstract] Aux

{There is a very strong resemblance Letween these last three types
of rules which have left-sides meaning 'a symbol with at least the
features | 1", and the COMIT-Harmon scheme.)

The obvious redundancy of these last rules is then used to motivate
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a proposal to have their effect achieved by conventions on lexical
insertion, asuch that lexical items are inserted with their inherent
features from a lexicon, observing the constraints that items with
strict-subcategorization features are inserted cnly into conforming
base structures, and items with selectional features are inserted only
into base structures with conforming lexical items.

This set of conventions is then treated as defining "lexical
insertion transformations', witli the observation that subcategorization
is achieved by "local transformations' which only affect a substring
dominated by a single category symbol, and which (Chomsky suggests
in a note) may be sensitive to the "vertical context" of dominating |
nodes as well as to the "horizontal context' usually employed in con-
text-sensitive rules.

Rules with the properties of these Chomskian 'local transforma-
tions" have recently been studies by Joshi and Levy (1977), who generalize
the very satisfying result of Peters and Ritchie (1973) regarding coutext-
sensitive rules, to the.expected further result that "local transformations'
(context-free rules constrained by Boolean combinations of proper-analysis
predicates and domination predicates -- really quite a general definitiom)
when used as node-admissibility conditions to constrain structural
descriptions, admit terminal strings which are only context-free languages.

Thus, it is reasonable to consider the entire Aspects base component
as specifying a set of derivation-initial phrase-markers in a two-level
grammar, where only the hyper-grammar is made expl:cit (although possible
meta-symbols are characterized by the redundancy ru.es for features),
and restrictions on the hyper-symbols are stated as »redicate hyper-

symbols.

Additional motivation for such a formulation of the base component
is afforded by more recent work (Chomsky 1970, 1977, (homsky and Lasnik
1977) in which a complex-symbol analysis of non-terminal as well as
terminal categories is used to capture additional regularities and
restrict the possible rules of the base; some of this {s similar to the
wmaterial discussed in section 3.3 above on the X-bar c~avention.

(The complex-symbol notational conventions were crigpinally developed
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in connection with phonological rules, and the description of the formalism
in (Chomsky and Halle 1968, pp. 390-399) may be of some use in understanding
how a van Wijngaarden grammar would be employed on sets represented as

strings.)

4.4 Computational Linguists and Structured Vocabulary in Crammars

Without having a good understanding of what counts as structured

vocabulary for grammars, it would be possible to come to the conclusion
that computational linguists had made comparatively trivial use of
grammars with structured vocabulary; nearly every grammar is written
with names for category symbols which are related to one another,

but the way in which their relatedness is exploited by the processing

programs is not as obvious. A closer look, however, reveals that ideas
importantly related to grammars with structured vocabulary have been
ugsed by some of the most notable computational linguistics projects,
often in slightly disguised form.

The general line of development is usually considered under the
heading of parsers for unrestricted rewriting systems (type-0 grammars
in the terms of Chomsky 1959). Thus, one of the earliest significant
systems of this sort was Yngve's COMIT programming language (Yngve

kO s

1961, 1972) designed specifically for research on natural languages and
machine translation, and discussed briefly in section 4.2 above in connec- ]
tion with Gilbert Harman's use of the notationm. ‘

The COMIT language is based upon the format of Markov's "normal .
algorithms"; the individual statements in the language are for this
reason called "rules", and they operate by identifying a string and
re-writing it. COMIT adds labels and transfers to the uotation, and the
resulting "labele ' Markov algorithms" arc sufficiently convenient to be
used for many string-oriented tasks as a general programming language "
(see Brainerd and Landweber 1974, Chapter 5).

The basic type-0 grammar format of the COMIT language is in
principle sufficient to achieve any computation, but from its earliest
versions a;,additional mechanism of "subscripts'' was used, which amounts

to a type of two-level grammar.
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Each symbol in a COMIT program may have "subscripts,” which may

in turn have values (values are 'essentially sub-subscripts" (Yngve
1961, §1112l). The subscripts are something like feature bundles, the
sub-subscripts something like individual features. (Numeric subscripts
are also available, which have somewhat different properties). COMIT
rules manipulate the symbols as basic constituents, subject to the
convention that re-writing a syrbol means including its subscripts on
the resulting symbols; there are a great many possible variations which
may be stated, such as minimum or maximum sets of subscript features
necessary on the left-side symbol for the rule to apply, and explicitly
setting, erasing, and merging subscript sets.

Although a COMIT 'grammar' (program) is only a one-level grammar,
its vocabulary 1is structured in a way which -- like a two-level grammar
-~ makes it possible to abbreviate large sets of rules in schemata.

There is nothing in the theory of Markov algorithms to suggest this

step, so its inclusion must have been prompted by the linguist-designers'’
feelings that for natural-language rules the use of systematically
structured symbols would enhance the ease and naturalness of using the
COMIT system. Given the developments in linguistics reviewed in previous
sections, this is not surprising.

There are two principal paths of development from this early
work of Yngve's (and of G. H. Matthews', according to Chomsky). The
first is the work cf pattern-matching, which results in Snobol4 (Griswold
et al, 1971, Gaskins &«nd Gould 1972) and its underlying theory (Gimpel
1973, 1975, 1976). Although related to two-level grammars, this line
will noe? :: followed up here. The other line of work is in type-0
parsers, und here the most influential publication is Martin Kay's
"powerful parser" (Kay 1967).

Kay's grammars are again not well separated into levels, but they

contain rules such as:
§G.1 = NUM(l)

PL.1 = NUM(1)

N.l NUM.2 V.3 2 = NOUN(1l2) VERB(32)
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(Since these are recognition rules, Kay writes them backwards -- the

left side of the rule is on the right side of the paper, and vice

versa. The numbers after dots assign identifying numbers; the numbers

in parentheses use those identifications to build constituent structure.)
The first two rules here recognize either singular or plural number

as being of category NUM. (The single item -- dot one -- is made the
sole constituent of a NWM node -~ parenthesized one.) The third rule
then recognizes four elements: (1) a noun N, (2) a number morpheme NUM,
(3) a Qerb V, and (4) a second number morpheme which is the same (SG

or PL) as item two ~-- and so this fourth item is not assigned a number

of its own. These four items are rewritten as two items (the left side
of the rule, seen here on the right side of the paper): (1) a noun phrase
NOUN dominating right-side items 1 and 2, and (2) a verb phrase VERB
dominating right-side items 3 and 4 (3 and 2, since 4 and 2 are required
to be {dentical). After this rule has applied a possible partial parse-

tree would be

- ~N
-~ \
/ Ld
- ~
NOUN VERB
N NUM v NUNM
5 SG

Agreement of the SG's during recognition is forced here, it should
be noted, by the analogue of the Uniform Replacement Convention; the
two instances of NUM can be required to have the same value because
they are recognized in a single rule; and that is why what are essentially

two unrelated context-free rules
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: NOUN — N + NUM

VERB = V + NUM

are applied together in a single type-0 rule application.

Unfortunately not too much development of this sort of use is
given, because the '"main concern’ of Kay's paper is 'to discuss the
extent to which the program we have been describing can be made to
function as a transformational analyzer." A compulsion to use a type-0
grammar to effect 'transformations" runs through this whole line of
work, It 18 exactly the same ability as the use of van Wijngaarden
gramars to effect "transformations" which we discussed above (section
4,2), and unfortunately it always exceeds the range of manageable
complexity rather quickly.

Immediate successors of Kay are Kaplan's General Syntactic Processor
(Kaplan 1973) -- Kay's parser plus some extras from Woods's ATN's --
and the REL (Rapidly Extensible Language) System (Dostert and Thompson
1971, 1972). The REL development is of some interest, because to the
original concept of Kay's type-0 parser has been added a layer of
features, so that the resulting grammar has the same structure as a COMIT
program,

Coverage of a large part of English is claimed, with only 300
rules in the REL English grammar. These are really rule schemata, like : 8

hyper-rules, since a rule has the form:

vP* ~* NP VP
FEATURE CHECK: VP must be (~Passive) (~Subject) and (-Agentive).
FEATURE SET: Assign (+Subject) and (+Agentive) to VP' together

with the features of VP,

This summarizes (as we may reinterpret the formalism) all the rules
(production-rules) in which categories representing all kinds of feature-
bundles participate, so lony as the feature-bundles of NP' and VP are

related as "dynamically" specified in the final conditlon, and so long
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as the feature-bundle of the VP has the specified values. Hidden

under the preocedural terminology of 'check' and "set" or "assign'

we discern a hyper~grammar with hyper-rules such as

(vp-prime VFEATURES1) := (np NFEATURES) {vp VFEATURES2)
(where VFEATURES2 includes (-pas,-subj, -agt) )

(where VFEATURESL is VFEATURES2 but (+subj,+agt))

In this version the "feature check" and "feature set" actions of the
REL rule have become the two predicate hyper-notions. It is not too
hard to see how to define predicates like these syntactically, although

in an implementation they would of course be implemented just as the

"check" and "set" actions are implemented in REL.

The importance of the features, or rather the inadequacy of a
grammar of 300 rules, is not easy to overestimate. The example sentence
"Has John attended the school of Cambridge's Mayor?" is said to parse
unambiguously in REL English with features, but to be 2,70l-ways ambiguous

i S e

in the same grammar without features (Dostert and Thompson 1972). 1In
REL English the subacript features are said to have three roles: (1) to
subcategorize parts of speech; (2) to prevent ungrammatical strings i1
(1.e., to collapse nearly-identical rules); and (3) to determine the :
preferred order of syntactic groupings (such as preventing multiple
ambiguities in strings of nouns or adjectives -- a motivation analogOus
to that for Harris's superscript numbers).

The REL grammar is rather easy to see as a very large context- '
free grammar abbreviated in a way somewhat like a van Wijngaarden grammar;
the "category symbols" provide a gross check on the applicability of a
rule during parsing, and only if that test is passed is it necessary to
check to see if a detailed rule which is a refinement of the gross form
is actually applicable. (And, the detailed rules do not physically

exist, but are made up on the fly from the abbreviatory schemata plus

the features actually discovered to be present.)

et L et et il e

This same form of grammar has been used in several other recent

computational linguistics projects, but concealed still further in
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"procedural"” terminology, and making use of program fragments instead
of a more abstractly-defined data base of rules. This is the work of
Woods, of Sager, and of Winograd.

It is perhaps no accident that each of these three approaches
is somewhat "an implementation in search of a theory." The engineering
approach is to write a program and work out any problems as they come up,
and the linguistic engineers of early machine translation days fell
into the same error (see, e.g., Garvin 1966 for a defense of the practice)
of encoding their grammars as recsrgnition procedures. It is undeniably
odd, however, that such a practice should have persisted up to the present,
Outside the circles of the artificial intelligentsia, the current view
is rather more typified by Grishman's remarks that "The 'grammar in

progra~'

approach which characterized many of the early machine transla-
tion efforts is still employed in some of ioday's systems." '"...research
goals should be the ability to manage grammatical complexity and the
ability to communicate successful methods to others. In both these
regards, a syntactic analyzer using a unified, semi-formal set of rules
is bound to be more effective (Grishman 1976)." Today's systems, it
should be noted, are more apt to have some set of formal rules, but then
to compromise this by inserting in the rules the names or addresses of
arbitrary bits of program to carry out procedures -- thus effectively
putting an essential part of the grammar into programs, which are hard
to control.

Woods's Augmented Transition Networks (Woods 1969, 1970, 1975)
are the best-known example of such a proucedural way of analyzing natural
language. They actually represent a use of structured vocabulary, although
because of the organization of the systems they sometimes give the impression
of being completely ad-hoc recognition systems. They are, in the usual
sincere flattery claimed for this kind of work , ''capable of doing
everything that a transformational grammar can do" (Woods 1970), in the
usual uninteresting sense. In addition to the use of structured vocabulary
which we shall attempt to identify, the ATN grammars also model themselyes
after the special factored form of a "regular right-part grammar" explained

in section 2.4. They further confuse matters by interspersing actions
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to bulld a tree structure which is distinct from the structural description
of the string analysed; this 1s of no interest here, being merely an
ill-structured translation of a context-free grammar made at an incon-
venient time.

In a Woods ATN, the structured vocabulary of the grammar 1s nowhere
explicit, but is held in the state of various (software) registers over
time. When a subject NP is recognized, the features of its head noun
are put {rto a special "subject register" by an "action'; then, later,
when a VP 1s at hand, the subject register is interrogated by a "condition"
which checks compatibility.

This is obviously one possible low-level implementation of a
two-level grammar -- although Woods's grammars have been naive in details
such as providing a limited set of grammatical relations to program into
registers, and in attaching features to words alone so that other actions
must "look inside" larger constituents to find the features (Burton and
Woods 1976).

It would perhaps be worth exploring the application of a more
abstract van Wijngaarden approach to ATN's -- introducing many states
with structured names, and so forth, while retaining the regular-right-
part format --- to see whether those who like ATN's would like the resulting
version. Such a development would be merely a notational variant of the
restricted grammars with structured vocabulary to be introduced in
following sections, and would remove the procedural flavor from the
definition of conditions and actions, while retaining it for the basic
recursive networks.

A similar project using similar means is the "Linguiatic String
Project" of Sager, which is influenced by Harris's String Analysis
notions (Harris 1962). As Sager and Grishman observe, ''This basic
strategy of grammar design, in which a context-free framework is augmented
by a set of conditions written as procedures, has become quite popular;
it i1s used, for example, in the systems of Woods and Winograd" as well
a8 in their own Liaguistic String Project system (fager and CGrishman
1975). Their implementation again employs ''registers' which are set

and checked, and if anything it is less constrained than Woods's systems
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] because they have invented a "restriction language" in which to propgram
the conditions.
The last of these implementations which we shall mention is that

of Terry Winograd. Winograd is much influenced by the idea of the

compactness in a structured vocabulary built on categury symbols plus . ;
features:

We allow each symbol to have additional subscripts, or 1
features, which control its expansion. In a way, this
is like the separation of the symbol NP into NP/PL and
NP/SG in our augmented context-free grammar. But it is 3
not necessary to develop whole new sets of symbols with 3
set of expansions for each. A symbol such as CLAUSL may

be associated with a whole set of features (such as '
TRANSITIVE, QUESTION, SUBJUNCTIVE, OBJECT-QUESTION, ’
etc.) but there is a single set of rules for expanding

CLAUSE. These rules may at various points depend on the

set of features present. (Winograd 1971)

This is not a bad description of the practical advantages of structured
vocabulary and rule schemata, as we have described them previously.
Unfortunately, Winograd svomehow came to believe that M. A. K.

Halliday is the only professional linguist who shares this appreciation

(probably because only there did he see explicitly written features,

outside of Chomsky), and so Winograd develops his own grammar in the

e U o ik e

form of a program working on Halliday's hints about "systemi: grammar"
(Halliday 1961). Winograd rapidly programs himself into an ad-hoc mess:

How, for example, can we handle agreement? One way to do this
would be for the VP program to look back in the sentence

for the subject, and check its agreement with the verd

before going on, We need a way to climb around on the

parsing tree, looking at its structure,

[ PO

...The call (*C DLC PV (NP)) will start at the current
node, move down to the rightmost completed node ({i.e.,
not currently active) then move left until it finds a
node with the feature NP (Down-last-Completed, PreVious)....

When this idea is elaborated over several years, the result is a hacker's
dream, This is precisely the sort of approach to the advantages of a
structured vocabulary from which we are saved by the invention of a two-

level van Wijngaarden grammar.

132




E
]

5. Restrictions on Grammars with Structured Vocabulary

We have seen in section 2 zbove that context-free grammars of

the classic one-level type are in practice unwieldy for describing

natural languages. In section 3, we saw that by introducing a structured

et o TR R

vocabulary in a van Wijngaarden ''two-level" grammar, it was possible to

overcome some of the practical difficulties, but that the resulting

class of grammars contains formidably complex systems, equivalent to

unrestricted rewriting systems. More than just being theoretically
powerful, there is the practical question of how to apportion function
for maximum insight in a two-level grammar.

In the review of prior linguistic uses of structured vocabulary

in section 4, we have seen that there is a strong tradition going back

to pre-Chomskian linguistics to work with basic units of syntactic
categories, qualified by the addition of features (tags, subscripts)
to provide for agreement or co-occurrence restrictions and to permit ;

rule features to collapse nearly identical rules. We saw that this,

B VPR,

tradition was continued without question by early implementors of
systems and languages for natural language processing; and that because d
the same formal devices could be used to encode "transformations' or

tree-manipulation rules, that purpose was added to the traditional uses

AN a2t ik

of structured vocabulary by some computational linguists., It also
appeared that these last extenslons have been counterproductive, and
that the two purposes of abbreviating a large context-free grammar and
of transforming structural descriptions should be conceptually separated. !g

Accordingly, we examine in this section restrictions designed to ‘
model a grammar with category symbols and features, as a restriction
on the form of van Wijngaarden grammars. These restrictions are not
introduced to alter to weak generative capacity of the grammars (the i
restricted grammars are still type-0 grammars), but they do restrict
grammars to a class which is easier to write and easier to parse, More-
over, by restricting the format of grammars it is possible that the |
notation can be made less cumbersome.

The restrictions proposed here are somewhat similar to those in

(Greibach 1974), which reduce the generative capacity of the grammars
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to a sub-class of context-sensitive languages and yield other pleasant

theorstical properties; but here our interest 1s exclusively in the
practiccl ease and naturalness of the grammars when written by people

to describe natural languages.

It is likely that grammars of the class described in this section
can be written which would be adequate to serve as recognition grammars

for parsing natural languages, in such practical applications as machine ' g

translation. These grammars do not effect any inter-language transformation

or correspondence, which would be left to a separate component.

5.1 A Restricted van Wijngaarden Grammar

In this section we will introduce a simple van Wijngaarden grammar
to define an artificial language; its interest lies in the fact that
the grammar is constructed using a restricted part of the potential
techniques available in a van Wijngaarden grammar. Cenerally, we mean

to restrict every non-predicate hyper-symbol to be a single prote-symbol

(the "category symbol") and a string of meta-symbols (the "features"),
and further to require that each proto-symbol is always accompanied by i;
the same set of meta-symbols. Only predicate hyper-symbols (those which
dominate only EMPTY or blind alleys) are not restricted in this way. d
The style of grammar which vesults from these restrictions will be shown
in the following sections, where alternative notations for such restricted
grammars will be shown and exemplified by transcribing the same grammar
into them. Following these samples, a more complex grammar related to -
natural languages (though still simplified for exposition) will be
exhibited in all three notations.

Suppose we wish to define a language in which names may be "declared”
and "used', in a way much like in ordinary programming languages. (This ‘i

example language 18 modeled after that of (Watt 1977), and is related

to the larger example to follow which concerns the proper characterization
of quantified logical formulas.) In this language every name must be

declared (as '"new information") before it 1s used (as "old information");

o e it e e i e

no name may be declared more than once, and every name must be declared

before it 1s used. (Names may be declared without being used, however,
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and may be used more than once after being declared.) This language
resembles a programming language with semi-strict declarations and
without block structure.

For example, good strings in this language are ones such as

dcl x use x end

in which x is declared (dcl) and then used (use), and other good strings

would be: ;

del x del y use y use x end

dcl z dcl x dcl y use x yse 2 use z end

dcl x use x use x use X end i

But this language does not include strings such as the following:

*dcl x use x ugse y end (no declaration for y before use)

*dcl x del x use x end (x declared twice)

;

Sl AR s il AR I

We will be employing only the names x, y, and z, so special ad-hoc
methods could be used to define this language; however, it is a well-
known theorem that in general languages like this one are not context-

free languages (have no grammars which are context-free grammars), so ?

=

this will serve as a sample of a language which has no contgxt-free
grammar, '

A context-free grammar which gives strings of the correct general

form is the following, which generates "programs" composed of a "list"

of declarations followed by a 'sequence' of uses: s
program <> list . seg end ;
list = dcl name l list dcl name
seq = A | seq use name

name ™ X | vy | z

(As before lower-case lambda [\] is the empty string.) A typical

{
structural description derived in this grammar would be: !
i
i
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program
/"/
/‘
list seq end
list dcl name seq use name
dcl name X A y
p 3

dcl x dcl x use y end

Of course, as this sample indicates, the restrictions on declaration
and use are not observed in this grammar, so that the tree above 1s generated
by the grammar, but the terminal string is not one which we wished to be
in the language (x is declared twice and y is used without declaration).

We can correct this flaw by employing a two-level van Wijngaarden grammar
in which the list of declarations and the sequence of uses are constrained
to be the same members, after which the declarations are peeled off

one by one (destructively) and the uses are checked for membership. Such

a grammar is the following:

Meta-..les:
ml. NAME ':i= x | ¢ | =z
m2. SET :i= NAME ! SET NAME
m3. EMPTY ::= A\

Restricted Hyper-rules:

hl. (program) := {list SET) (seg SET’ (end)
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h2. (list SET) : = (dcl) <(name NAME)

(where NAME is not in EMPTY)

(where SET is union of EMPTY NAME) | Lk
(list SET1) ({dcl) (name NAME)

{where NAME is not in SET1)

L P

{where SET is union of SET1l NAME)

h3. {seq SET) :— (EMPTY) |
(seq SET) (use’ (name NAME)

(where NAME is in SET)

h4. (name NAME') : = (NAME terminal’

Additional meta-rules and hyper-rules to define predicate hyper-symbols i

(first-time readers may siip the remaining rules):

o =

-.

({where NAMEl is not NAME2)

4
. g
md. OPTIONAL ‘ ‘= NAME | EMPTY i
K hS. (where NAMEl is not in NAME2 SET) : =
£
§

(where NAMZ! is not in SET’ g

ey

hé. f(where NAMEl is not in NAME2) ‘=
{where NAMEl is not NAME2)
h?. (where NAMEl is uot NAME2) '
{where NAMEl precedes NAMS2 in xyz'
| (where NAME? precedes NAMEl in xyz)
h8. {where NAMEl precedes NAME? in OPTIONALL NAMEl OPTIONALL
NAME2 OPTIONAL3) :=*

{EMPTY)
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h9.

hl9Q.

hll.

hl2.

hl3.

hl4.

hls.

hlé.

hl7.

(where NAME is not in EMPTY) -
(EMPTY)
(where NAME1l is in NAME2 SET) :~
(where NAMEl is NAME2)
| (where NAMEl is in SET)
(where NAMELl is in NAME2) : -
{where NAMEl is NAME2)
(where NAME is NAME/! - =
(EMPTY)
(where EMPTY is in EMPTY) : -
(EmPTY)
(where SET1 is union of SET2) :—*
(where SET1 is subset of SET2)
(where SET2 is subset of SET1)
(where SET1 NAME is subset of SET2) :-*
(where NAME is in SET2)
(where SET! is subset of SET2)
(where NAME is subset of SET) :=*
(where NAME is in SET)
{where EMPTY is union of EMPTV) :-*

(EMPTY)

This van Wijngaarden grammar generates exactly the language specified,

with all restrictions observed. (The detailed syntax of the predicate

hyper-symbols in rules h5 -- hl7 will not be discussed here, but generally

follows the pattern introduced in section 3.5 above, with which comparison

would be useful.)
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A sample structural description in this grammar would be:

( program’
(list xy? (seq xy) (end)
‘list y? {(dcl) ‘name x) (seq xy) (use (name y/
(del? (name y> (x terminal) (seq xy) (use) {name x) <y terminal)
(y terminal) (seq xy) (use) {name xXx terminal)
™~

(seq xy) (use) \‘name y) (x terminal)

|

(EMPTY) (y terminal)

del vy del x us& Y use X use x use y end

(This grammar, for simplicity, uses the convention that either the
underlined symhols or a production-symbol ending in 'terminal' are
terminals.) The predicate hyper-symbols in the hyper-rules enforce that
only one ideclaration per name can take place in the left branch and that
names used on the right are in the declared set; but observe that the
axtensive sub-trees dominating only EMPTY and headed by predicate symbols
have been suppressed in the tree above, A fuller diagram would be much

more complicated at every level -- a sample level would be:
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( ALdHA ) ( ALIWT )
Ax ST (%X ST
A CECIELN X 2a3ym )
]
(4 urt (X urt
ST £ ax9ym) ALAWE ) ST X @I8YyM)  (ALdAWI)
| | |
(Ax ut (X ST Ax> uTt (A 8T
ST & Basym) X 2a8ym ) ST X aI9ym) A aa3ym) (ALAWZ )
|
| | |
(&% 3o 3esqns (Ax ur  (x& 3o 38sqns (¥4 ut (24&x ut VS
ST A aa9m) ST X 2Idym) ST X dId9Um, st £ azaym) sapadaxd x aaaym,
(A% 30 3esqns (¥A 30 39sans (£ 3ou
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(¥4 30 uotumn Am ut 30U

s1 Ax azsym
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(A% 3ISTT)

/s
rd

7/

ST X _aIaym, \\
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This shows all the rule applications which had to be possible in order
for the rule rewriting {listxy > as {1list y> { dcl 7> {name x > ¢ where

x is not in v> { where xy is union of yx > to be part of a valid derivation.
The last two hyper-symbols (the two predicates) and all their dominated
material was removed from the structural description because it dominated
only EMPTY terminals. Trees like this are generated at each declaration,
and a smaller tree is gencrated at each use, If the sample derivation had
not been correct, then some of the predicate nodes would not have been able
to generate only EMPTY, because the derivation would have blocked at a
non-terminal which could not be re-written.

It should be clear, looking at this grammar, how proto-symbols
such as 'list' énd 'seq' are used as category symbols, while meta-symbols
such as 'SET' and "NAME' are used as features. The production~rules
generated from the basic hyper-rules will re-write a category symbol and
any possible feature set, leaving it to the rules re-writing predicate
hyper-symbols to block the derivations containing features which are not

correctly arranged.

5.2 Koster's Affix Grammars

In the preceding section we exhibited a correctly-matched structural :
description and associated string in the language of the sample van :

Wijngaarden granmar. Dut it is a nice question how we could have started

e

with the string and the grammar, and discovered the structural description

(1f any). We could not, for instance, have expanded the van Wijngaiarden
rules out to their equivalent production rules, since there are an

unbounded number of production rules produced by the first hyper-rule alone:

SET '~ NAME | SET NAME
(program) : = (list SET) (seq SET) (end)
Any value of SET can be used to form a production rule, even though not
all sets initiate valid derivations (for example, those with repeated

instances of the same name do not),

Clearly we nced to begin the other way, and to find some method s
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to discover from a string to be parsed what rules are relevant to it -~

and then gsee {f those rules exist. One proposed way to do this is to
re-formulate a van Wijngaarden grammar as a different but related kind of
"affix grammar" specifically designed to make this strategy trivial

(Koster 1971, 1974b, 1975, Crowe 1972, Watt 1977). This must be done by
hand, since not every van Wijugaarden grammar can be so re-written,

and the conversion {s not mechanical., But we will examine affix grammars
here, anyway, since they employ a notation which i related to our restricted
van Wijngaarden grammars and since they do suggest intuition as to how
parsing could proceed.

An affix grammar can be seen as a restricted van Wijugaarden grammar
which (like those of the preceding section) contains only non-predicate
hyper-symbols which consfst of a single preto-symbol and a string of
meta-syubols, always the same string for any single proto~-symbol. But
in addition, for each appearance of any meta-symbol in a rule the grammar
writer must specify whether it fs "inherited" or "synthesized" -- that ia,
whether its value fn that appearaunce depends on the values of symbols in
its constituents alone (svnthesized), or whether its value depends in
part on the context of its use (inherited). Finally, predicates are
defined in non-syntactic ways {(for convenience), and may compute the
values of some meta-symbols. Since the meta-symbols iwn this sort ot grammar
8o clearly qualify the protc-symbols, they are called "affixes".

As an example, we give here an aff{ix grammar for the same lauguage
defined in the previous section. The new notation here consists of a
rising acrow ) to precede synthesized affixes, and a down arrow 4 to
precede inherited affixes. 7This definition can be compared rule fov

rule with the van Wijngaarden grammar given before.

ml. NAaME P x| oy 1o
ml. SET ' NAME | GSET NAME

m3. EMPTY ':= A

(affix-style hyper-rulea:)




hl. (program) := (1list 'SeT) (seq {SET) (end)

h2. (1list 'ser) := (decl) (name TnNAME)
( add (EMPTY ,NAME) return (SET) ) | S
(1ist tsET1) (dcl) (name tNAME)

( add (SET1,NAME) return (SET) }

h3. {seq ¢sET) : = (EMPTY) |

(seq +SET) (use) (name TNAME)
( identify (SET,NAME) } f

h4. {(name TNaME) : = (INAME terminal)
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