
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB029370

Approved for public release; distribution is
unlimited. Document partially illegible.

Distribution authorized to U.S. Gov't. agencies
only; Contractor Performance Evaluation; JUN
1978. Other requests shall be referred to Air
Force Rome Air Development Center, IRDT,
Griffiss AFB, NY 13441. Document partially
illegible.

RADC, USAF ltr, 26 Sep 1980

iHI3 R~PORT HAS BEEN DELIMI7ED

AND CL£ARED FOR PUBLIC REL~5E

UNDER DOP DXRECTIVE 5200.20 AND
NO RESTniCTIONS ARE IMPOSED UPON

ITS USE AND DISClOSUH~.

DISTRIBUTION STATE~ENT A

APPROVED FQR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

Fl

f >
,/

o
CO

o
CQ
o

RADC-TR-78-153
Final Technical Report
June 1978

QUINCE SYSTEM; STATE-OF-THE-ART REVIEW

William S-Y Wang
Chiu-Chung Liao
Robert Gasklns
Mary S. Wang, et. al.

University of California

Distribution limited to U.S. Government agencies only;
kntrsctor Performance Evaluation; June 1978. Other requests for

this document must be referred to RADC (IRDT) Grlffiss
AFB NY 13441.

>-
Q-
O
C3

> U-

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griff iss Air Force Base, New York 13441

D D C
zmim

AUG 23 1978

rr n i m

B

21 H6

miiyiiw

·•·

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLYo

. N
RADC-TR-78~153 has been reviewed and is approved for publication.

APPROVED:

HLYX> I.^LU^
ZBIGNIEW L. PANKOWICZ
Project Engineer

APPROVED:

HOWARD DAVIS
Technical Director
Intelligence and Reconnaissance Division

FOR THE COMMANDER: ^/M^v'^T AA***^

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or If you wish to be removed from the RADC
mailing list, or if the addressee la no longer employed by your organiza-
tion, please notify RADC (IRDT) Grlffiss AFB NY 13A41. This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

ia3äM-.^.v^,.,^^ .^^.^v..^,-..^..^.:^^,^^^^^^^^^-^^,, ^B^ü»^^^^^

UNCLASSIFIED
»eCUI»IT>^fc.AiSmC*TION OF Th'S P*GE (Wtitn Omlm En(.r«iJ)

{(y REPORT DOCUMENTATION PAGE

T)H»W

^
i GOVT ACCISSION

». TlTLi; f«od 5u»«l(»J ____

QUINCE SYSTEM.; STATE-OF-THE-ART REVIEW . /

SIONJWJ;

no / William S-Y/Wangj i Robert/Gaskins
Chiu-Chung/Liaop v'Mary S-Iwangfet al'/'

I ^J

i PtHFORMINO OHO*N1Z*T10N N*ME *ND AODRSSS

The University of California at Berkeley
Department of Linguistics ^
Berkeley CA 94720 L'

1>. CONTROLLING OFFICE N*ME *ND ADDRESS

Rome Air Development Center (IRDT)
Griffiss AFB NY 13441 / 0'.
U MONITORING *OENCYN*Mf. »JKDOBESSiil j(l(X«r»<iit_X'S.m f.xm.'illn« OKn.l

Same
j'^y jibo.

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 RECIPIENT'S CATALOG NUMBER

8. 'TTP't «P'WBP»!!»-* I««WBII6«M^ED

Final technical^epswt.
1 May 77-- 31 Jan 78^

» pgRFUWwimi URarweponT-mnwrt«
N/A

ÜMBERf»!

F306gl2-77-C-0098/'

10 PROGRAM El EMENT, PROJECT, TASK
AREA » *ORK.yNIT NUMBERS

62702F i \'iJ } -'
45946830 '

l_2 _H|cpoaT- O*T«

Jun» Ä78

217
tS. SECURITY CLASS fol Ihi» r.poro

UNCLASSIFIED

IS», OECL ASSTFICATION DOWNGRADING
SCMEOULE

N/A
16, DISTRIBUTION STATEMENT «.((hi. R«por()

Distribution limited to U.S. Government agencies only;Ccntractor Ferformanoe Evaluation;
June 1978. Other requests for this document must be referred to RADC (IRDT)
Griffias AFB NY 13441.

17 DISTRIBUTION STATEMENT (o(lh» •lulcocl «itur«!« In l)lc,-k JP. It rflflnrwil from R»p(.rl)

Same

I» SUPPLEMENTARY NOTES

RADC Project Engineer: Zbignlew L. Pankowicz, (IRDT)

1» KEY *OSOS fCnnllnu» on r*v«r>a «id» »f n»c»»»»r> «iic(lj(»nHh- h\ Mm» ^m<It^»

Linguistic Theory
Computational Linguistics
Chinese-English Machine Translation
Computer Programming

ABSTRACT fCiWvrlmi« sw r«v#ra» «id» If n»c»»»»n- mnd idvnMfv hv Mrtrfc rtumh»rl

The Report documents a 9-month effort consisting of programming documentation
for QUINCE System; inventory of R&D holdings (software, hardware, data files),
and state-of-the-art assessment of linguistic and data processing requirements
for IOC in Chinese-English machine translation. Background information Is pro-
vided in Section 1 (INTRODUCTION). Section 11 contains a textual description
of application software and utilities, including pertinent flowcharts, diagrams
and tables. Programming documentation supplied under contract consists of a -^
^ (Cont'd) N,

OD IJAN7S 1473 EDITION OF t NOV «S IS OBSOLETE UNCLASSIFIED ^

HOc/ orf
SECURITY CLASSIFICATION OF THIS PAGE f»»>»n n«(« KBl»t».t!

-b
m^mmtmu^^*»'*^'' i*^*-^*;« ciiA^'J ■•a1'''

f

UNCLASSIFIED
tacuniTv cuwincATjOM or TWU »»«tpwiwi at» animt)

V
four-volua« set (13 supplOBents). Inventory of hardware, software and data
files is Included In Appendix. Section III provides a critical review of the
current state-of-the-art in computational syntactic description of natural
languages fron the viewpoint of its relevancy to machine translation R&D.
Rules for a fragment of Chinese graamar are presented in the Appendix.
Section IV describes requisites to a further consolidation of the linguistic
data base in terms of semantic feature set, interlingual transfer component,
contrastive lexical/syntactic studies and contextual analysis Involving
language-specific problems in Chinese (elided subjects; number, tense and
aspect, definite vs. indefinite reference). Extensive bibliographies are
provided in Section III (pp-lM-iSf) and Section IV. (pp-ttä*tOff.

1

■&

„. v., }
s

I i

f 1

UNCLASSIFIED
SECUNITV CLASSiriCATION OP THIS !»A<jef»>»« OMa gnlttti!

ÄPfts ̂v^^ö^SS*^:^"1.«-''-

TABLE OF CONTENTS

111

Pane

»I

Summary 1

I. Introduction 2

II. Description and Documentation of the Quince Machine-Translation

Syst HI 5

1. Introduction 5

2. External Data Bases 6

2.1 Dictionary S

2.2 Gramaar 6

2.3 Telecode Substitution Table 8

2.4 Text 9

2.5 Formats 9

2.6 Additional Data Bases 10

3. Internal Data Storage 11

4. Interface Files 15

4.1 Canonized Text File 15

4.2 Segmented Text File 15

4.3 Veatigand File 15

4.4 Selected Dictionary File 16

4.5 Sentence Dictionary File 16

4.6 Format 16

4.7 Random Dictionary Module 17

5. Common Blockt 19

5.1 Interface File Definitions 19

5.2 Module Storage Tables 19

5.3 Table Names 20

5.4 Format, Block Data 22

5.5 Field Function Tables 22

6. Utilities 24

1 m Additional Documentation 25

£-^^VJU^^^^^^^^^-i|^iij^ ^ ^&^a^^A.i^^E^^

References

Appendix: Hardware, Software and Data Inventory

59

60

III, The State of the Art in Computational Syntactic Description of

Natural Languages 65

1. Introduction 65

2. Context-Free Graramars 67

2.1 Advantages of Context-Free Graamars 67

2.2 Disadvantages of Context-Free Graramars 68

2.3 Why Context-Free Grammars Grow Large 69

2.4 Attempts to Reduce the Slse of Context-Free Grammars 73

3. A Model for Context-Free Grammars with Structured Vocabulary 75

3.1 van Wijngaarden Grammars 76

3.2 Notation for van Wijngaarden Grammars 79

3.3 Chomsky's X Convention as a van Wijngaarden Grammar 86

3.A van Wijngaarden Grammars for Non-Context-Free Languages 93

3.5 van Wijngaarden Grammars with Hyper-Symbols as Predicates 98

4. Prior Linguistic Uses of Grammars with Structured Vocabulary 108

4.1 Pre-Chomskian Uses of Structured Vocabulary 110

4.2 Structured Vocabulary in Transformations, and "Extended

Phrase Structure Grammars" 115

4.3 Post-Aspects Uses of Complex Symbol Vocabulary 122

4.4 Computational Linguists and Structured Vocabulary in

Grammars 125

5. Restrictions on Grammars with Structured Vocabulary 133

5.1 A Restricted van Wijngaarden Grammar 134

5.2 Roster's Affix Grammars 141

5.3 Knuth's Attribute Grammars 147

5.4 An Experiment with Three Notations 151

5.5 The Parsing Problem for Raatrlcted Grammars with

Structured Vocabulary 164

6. The Quince System and Grammars with Structured Vocabulary 166

6.1 Previous Uses of Structured Vocabulary at POLA 167

6.2 Research Areas for Future Study 170

iv

■'--■""'-•■ -"-"■Jrirt--n-i,i-iili'[iMm(>llVriii'ifrli -nmm mm

References

Appendixt Rules for a Fra^went of Chinese f'ramwar

175

ir.s

IV. Further ConsoltJatIon of the Lin^tilsttc nala r.ase: Lexical

Features and Interlingual Transfer Rules

1. Introduction

2. Lexical Features

2.1 Nature of Semantic Features

2.2 Function« of Semantic Features

2.3 Building up the Semantic Feature Set

2.4 The Other Types of Lexical Features

2.5 Types of Lexical Information

3. Interlingual Transfer Rules

3.1 Interlingual Component In Artificial Intelligence

Approaches to Machine Translation

3.2 Nature, Functions, and Types of and Fonnallsn for the

Interlingual Transfer Rules

3.3 Contrastlve Lexical and Syntactical Studies

3.3.1 Contrastlve Lexical Studies

3.3.2 Contrastlve Syntactic Studies

3.4 Contextual Analysis

3.4.1 Elided Subjects

3.4.2 Number, Tense, and Aspect

3.4.3 Definite vs. Indefinite Reference

References

1'V)

101

1 94

in/t

IfV,

\V)

1"6

1^7

1^.

_'{>^

2->l

•'n'

■',\\

:<x,

'OS

\ t

List of Figure«;

1. Quince modules and external i'at.» basi-s

2. Quince modules and interface files

3. Segment-by-sepnent processln; and Mnarv 'iles

4. Random dictionary nodule

5. Overview of the Oulnce proe.ra!" writ in;.* svslen

6. Fields used In the field function tables, as organized by

module storage table:

1 5

21

tssMImaJBmmAmäimimiäa

M,.-.^-^,jKS*^«v«:-r

I
A. IVCORE 26

B. SBCORE 27

C. LUCXJRE 28

D. LUCORE (cent.) 29

E. AGCORE 30

F. CSCORE 31

H. PRCORF. 32

U. PROCF.E (cont.) 33

I. AKCOUi: 34

J. ARCORE (cout.) 35

K. DTCORE 36

L.])ICORE (cont.) 37

?I. SCDATA 38

a. SGTABS 39

0. STCORE 40

7. Data structures

7A. IVCORE: segmsnt-in-sentence data stmctur« 41

7B. SBCORE: lattice structure during telaeode substitution 42

7C. AGCORE: queue tree for LOOKUP trlnnowlng 43

7D. ARCORE: linked lattice structure (successors only) A4

7E. ARCORE: linked lattice structure (predecessors only) 45

7r. ARCORE: lattice structure during parse-tlae winnowing 46

7G. rrxoRE: unsorted and sorted linear order 4?

711. DTCORE: balanced tree structure 48

71. SGTABS: linked segment table 49

List of Tables;

1. Module Storage Tables Resident for Each of the Quince Modules SO

2. Field Function Tables Located in Each of the Module Storage

Tables 51

3. Sames of the Module Storage Tables, Field Function Tables,

and Interface File Definitions S3

4. Block Data Subprograms for Each of the C -non Blocks 55

3. Utility Routines Classified by Function 56

vi

katimikzmmmimsi —-^-«WVi^ÄPC mäum fefeäsmi

tnwMiw mmmmmmmm. > -*'" ■ • *• - v.

h

EVAIUATION

Th« Rtport constitutes a detaHed stata-of-th©
0* the QUINCE System for CMnest-EngHsh machl
of S4T llttrature. The current version of the
of nine «ajor modules controlling the translat
a repertory of utilities controlling I/O opera
conversion, debugging and optIml»at Ion. The S
programming documentation Is provided separate
(application software).and ID - 13 (utilities)
Includes a variety of data bases, an extensive
for Implementation of the translation process,
linguistic devices Implicitly Incorporated In
programming components to opt I mlie the enalysi
and English. A detailed description of the Sy
in Section Il.

-art assessment
ne translation
System consists
Ion process and
tlons, format
ystem's
ly in Vols I - 9

The System
software package
and a set of

!ingulstlc and
s of Chinese
stem Is provided

Judging from the viewpoint of scholastic merit, Sections III
and IV constitute the most significant contributions to this
Report, Section III contains an exceptionelly comprehensive
end thoroughly researched crltlque-ln-depth of the current
stete of the art In computational syntactic description of
natural languages, including a statement of Its Implications
for a further development of the QUINCE System, it Is
concluded that grammars with structured vocabulary play an
Important role In all current language processing systems,
Including the QUINCfSystem In which this concept Is
elaborated In a more systematic manner than In other language
processing systems. It «Iso appears that a grammar notation
based on KnuthH attribute grammars offers the most promising
vista for a further development of the System. Section IV
provides an exhaustive discussion of possibilities for a
further consolidation of the linguistic date base in terms of
the featurized lexicon and interlingual transfer rules. A
continuing enhancement of the diversified feature subsystem
and contrastlve lexical/syntactic studies of Chinese and
English, combined with contextual analysis of language-
specific characteristics of Chinese ^re offered as the most
promising solutions In this area,

28'.ONII« L. PANKOWIC2 0
Technical tvaluator

vii

IlipliiilP ^^^^^^m^^^mmf ^^^g^^^^i^m^^^^mm ö^iw^fe^^.,^«^^^?^«'^^^1^^

SUMMARY

t

This report presents tha results of a nine-month period effort to

document the Berkeley Chinese-English machine translation system (Oulnce

system), to take inventory of all research materials, and to report on the

current state of the art in linguistic theory, computational linguistics, and

data processing techniques for advancement of the Quince system to the status

of an initial operational capability in one sub-discipline of physics.

A detailed textual description of the Quince system modules plus a body

of figures and tables are provided to assist the reader in conceptualizing

the system and reading the program code listings appended In the Supplements

to this report. An itemized inventory of both the hardware and software of

the translation system is presented. We review the current state of the art

in new syntactic descriptive methods with structured vocabulary, such as van

Wijngaarden grammars, Roster's affix-grammars, and Knuth's attribute-grammars,

which were developed for defining programming languages, but which are

suitable for computational use in machine translation systems for natural

languages. The existing linguistic data base of the system is reviewed in

the light of current linguistic theory and of recent advances in artificial

intelligence and computational linguistics. Suggestions for consolidating

the linguistic data base and enhancing the parsing facility are made to

advance the system to an initial operational capability.

Hiijg^Jjftjj mg^^aeä ^ä^i^fc^a^
ffr^irtiiff%wi>f

1
mm^m»m*<mmimmmmwmmm*«iM09. mmm^^^m^S^^m^

I. INTRODUCTION

The University of California Chinese-English machine translation

research project was initiated in 1960 under a National Science Foundation

grant. Frora 1%7 to 1975 the Project was supported by the Department of

the Air Force (Rome Air Development Center) under five contracts. These

efforts have culminated in the development of the Syntactic Analysis

System and the emerging of the Quince system for translation from Chinese

to English.

However, owing to the ahrupt termination of the previous contract

in 1975 (F 306O2-75-C-O059), the Quince system programs were left incomplete

and their documentation has never had the chance of being adequately carried

out. The present contract (P 30602-77-C-0098), covering a period of

nine months. May 1977 to January 1978, provides the Project with an

opportunity to fully document the Quince system programs as currently

implemented and to reassess the whole translation system in the light of

recent advances in linguistic theory, computational linguistics, artificial

intelligence, and computer science. The documentation and inventory of

the system and its reassessment will provide a smooth transition for

any ensuing effort in Chinese-English machine translation research.

The documentation and inventory of the system and its reassessment are

the two major sections of this report. Chapter Two will be devoted to

the first task, and Chapters Three and Four the second.

The Quince system, conceived as an integrated Chinese-English

machine translation system, consists of two major components: the lin-

guistic data base and syst«»n prop.r.ims. Chapter Two presents a textual

description of the Quince system software, keyed to the Supplements. It

concentrates on those aRperts least amenable to mechanical documentation:

overviews of the system a» a whole, the interface between major modules,

and internal data structures. This chapter also includes a body of

figures and tables to assist the reader in conceptualizing the translation

rf i iinn aaül tmi^^^. —^ -^ -

^w¥m

itf :•?'■': '

•fit« m& tmäim® th» tospplmmt».
flMr« ar« thtrt««A ^ippl«M»ts «Itt^eelMir. Siip|»l«a«a£8 One elurough

Sto« detail th*t cmtrnt» of »la« sajor noäviles of (^linee systan eode.

fheae are meehanleallf-^roäueed doetaentatietas that explleitly extract

the atorage areaa aad the calllag aiftteocea of each mh^tr^ran. Each

aiiftploMmt eodtaiiis three volunws: the Source Code Listing, and the

Coding Internals Manual voluaes I and 11.

The remaining four supplasenc* are mechanically-produced docuaenta-

tioas of the utilities programs, and three types of storage documentation

(loader storage, Cowson Block, and field function).

An itemised inventory of the hardware belonging to the U.S. govern-

ment end the software related to the translation system is presented in

the Appendix to Chapter Two.

Chapter Three reports on the state of the art in computational

syntactic description of natural languages. It reviews context-free

graomars and points out their inadequacies for handling natural languages

and their clumsiness for human consumption. Van Mijngaarden's model

for context-free grammars with structured vocabulary is presented to

remedy the inadequacies of and avoid the clumsiness inherent in context-

free gramaart. The history of the use of structured vocabulary in lin-

guistic descriptions is traced to some pre-Chomskyan structural linguists.

Restrictions on the generative capacity of van Wijngaarden grammars

are discussed to arrive at a class of gramnars easier to «rite and easier

to parse. Related formalisms, i.e. Roster's affix-grammars and Xnuth's

attribute-grammars, are also explored and compared with other types of

van Wijngaarden gramnars. Finally, it is pointed out that the use of

structured vocabulary In describing the Chinese grammar has been a topic

of research at the Project since at least 1970. Future tasks and research

areas for the Protect are defined and strategies suggested.

In the last chapter, two components of the linguistic data base,

th« dictionary and interlingual transfer rules, are examined. To ensure

better interactions between the two major sub-components of the grammar,

the syntactic rules and lexicon, more lexical features are needed in the

future grammar. Various kinds of the lexical features, their nature

Sik&ka^ÄäEMl -■YiriiWfllHfui' -■"fftt^filfflm

and functions, and procedures to extract the lexical Information from the

existing grammar codes are discussed.

The status of the Interlingual transfer rules In the translation

cycle of the system Is examined. Different types of the Interlingual

transfer rules and the formalisms to be used In the future are also

discussed.

In addition, more contrastive lexical and syntactic studies between

Chinese and English and contextual analysis are recommended In the future

to strengthen the two components above of the linguistic data base.

Strategies to achieve this goal are also briefly described. Areas

where those studies will lead to the improvement of the linguistic data base

are exemplified.

II. DESCRIPTION AND DOCUMENTATION OF THE

QUINCE MACHINE-TRANSLATION SYSTEM

1. Introduction

The Quince system Is an Integrated system for the machine translation

of scientific texts from Chinese to English, developed at the Project on

Linguistic Analysis, UC Berkeley, it Includes several components: a large

corpus of linguistic materials, such as texts, dictionary, and grammar; an

extensive body of software to implement the translation; and a set of lin-

guistic insights about how Chinese and English should best be analysed,

which are implicitly incorporated within both the linguistic and programming

materials.

The second component of the Quince system, the body of computer code

written to perform the translation, is documented In this chapter and in the

13 Supplements appended to this report. It cannot, of course, be totally

separated from its data base or theoretical approach. This component,

however, has been under-documented in previous reports, and so it is pre-

sented here in isolation.

Supplements 1-9 detail the contents of 9 major modules of Quince

system code. Each Supplement contains 3 volumes: the Source Code Listing,

and the Coding Internals Manual in 2 volumes. These are mechanically-

produced documentations that explicitly extract the storage areas and the

calling sequences of each subprogram. These nine modules Include the six

'main' modules, two 'supplemental' modules, and one module (the Parse Table

Print Module) used for program debugging and linguistic research. Each

module Is written In Fortran.

The remaining four Supplements arc mechanically-produced documentations

of the utilities programs (Fortran as well as assembler), and three types

of storage documentation (loader storage, Conunon Block, and field function).

This chapter presents a textual description of the Quince system

software, keyed to the Supplements. It concentrates on those aspects least

■i

V mm

piipPpif^W¥TBW^I?pi?ipsSf?Rffli5S!fSSWf*WW^

«mensbi« Co mtchattictl documentation: overviews of the system as a whole,

the Interface between mjor modules, and internal data structures. This

chapter alao includes a body of appended tables to assist In reading the

Supplement«.

To large extent, the Quince system can be 'understood' by the flow and

structures of the data at different stages of processing. The four enter-

nal data files are the ultimate bases of the translation; of these, it can

be said that the text is passed from module to module, sometimes in its

entirety, sometimes segraent-by-segment. This necessitates temporary inter-

face files. Likewise, the grammar and its external/internal code conversion

table reetde in binary file«. Within each module, segments of text are

manipulated using data structures which are field function tables; these in

turn reside in Common Blocks, that permit communication within and between

modules. This chapter describes these data and storage details, as a

documentation-by-effect of the Quince system.

The Quince system documented here is Version .8; this is to Indicate

that it is substantially complete, ready for documentation, but not finished.

The translation from Chinese to English would be greatly Improved if some of

the data bases were enhanced, in particular by the addition of feature in-

formation to the dictionary and grammar; this would also be utilised by the

transfer rules (see Chapter 4). The Quince system has prepared for these

proposed changes in the data base, but until they are made available the

system cannot be considered complete. Even so, the Quince system in its

current form is a major research result in the field of machine translation.

2. External Data Bases

The Quince system has available four external data base»: a Chinese-

English dictionary, a set of grammar rules for parsing Chinese, a .net of

Chinese telecode substitution«, and a raw text to be translated. (See

Figure I.)

•„aäü ^«as. . ^^-ja..u-i.. .-^ . mMisiSiäaa^äimMSU^MimSaiäiM^tsI EMaaiäteattiaasaäKMia^^iiäaaB

TMCt

Ttltood«
fSubetitution

T»bX«

Chl&«8«~
Vnxlish

Diotionazy

Qrftwaar
Souro«
Hul«t

InttrliiMriiÄl

8t>«olfio«tlons
Tr«&«f«r

Text
CanonlBatlon

C4N0HZ

MaotAtlon
kMPVQ

VtytiKaod
Forwfttloa

IWlSf

MotlOlMUT
Lookop
U)oinn>

frobatlT«
Pftr««p
FARSIR

DlotioBAxgr
FANDIC

: i—J:

 i Tr*Bsf«r

/ toftllah \
• Norpholoffloal i-
• laf oraatioaj.l 1IIZI V-'-VJ-'

strimr
Ixtraotloa

^

M 'I
S43

Coaoatlbllitj
Awmw

Pl<rur« 1. Quino« Hodul«« and Eactcraal pata
Bases. Overview of 4 external data bases, 2
additional data bases, 6 orlnarr modules, 1
additional module, and 2 suoolementazr module«
in the Quince system.

J

mwmi

..::

2.1 Dtctlonafy

The Chlnete-EngUah dictionary axlst« in tvo bodlw: th« «aster CUXDIC

(80,000 antrlaa), and th» awaller PHYDIC (40,000 entrlea). PH¥01C contains

most gsnsral-purpose Chines« words, as veil as technical terns in the fields

of physics and mathematics. It is a subset of CHIDIC, which in practice is

too cumbarsome to maintain daring research. Both dictionaries are In the

sane format. Each dictionary entry contains information on the grammatical

category (terminal symbol) of the item in Chinese and its translation in

English, keyed to telegraphic codes.

2.2 Gr

The grammar is a set of context-free production rules, or source rules,

which define the surface structure of Chineset it is necessary to fully parse

each segment of Chinese text before translation, as the structures of Chinese

and English are so different. The Rrammr actually consists of S subgrammars,

each of which handles a particular level In a parse-tree. These subgrammar»

are usually applied in sequential order. The sise of each subgrammar is as

followst

Gramaar I - - 125 rules

Grammar 2 « - 500 rules

Granmar 3 - - 2400 rules

Grammar 4 - - 340 rules

Grammar 5 - - 2750 rules

Many source rules are included in more than one aubgrammar; in particular,

Grammar 3 and Grammar 5 largely overlap.

2.3 Telecode Substitution Table

For every Chinese character there is a corresponding 4-digit telecode;

this is the coding scheme used in the dictionary and in the text. There is,

however, a set of character« that optionally substitute for on« or «ore

other characters. Accordingly, whenever potential substitution characters

(i.e. telecodes) arc encountered, their possible corresponding eharacterC»)

must also be m.ide subject to dictionary lookup. These correspondences are

found in the external telecode substitution table.

8

^»*f-iiarJaü lafea •^-■^iMirmTrfili-i mummämamm mm aäüü gHüi

Igyyyiiiip^

i

i

SaS«M«lBS5«»v.,.,»,.,r!^, .r,..,;..-.,., •..

2.4 Text

The Chinese text to be translated Includes 565,000 characters fro®

physics and mathematics texts; it is broken down Into subtexts for conve-

nience. The text is not pre-edited: abbreviations are not expanded, tele-

code substitutions are not corrected for, different number-systems (e.g.

classical, modern and Western) are left to co-exist, etc. In particular,

the inconsistently-applied Chinese punctuation marks remain as in the origin-

al. The only additions are positlon-in-volume information for maintenance

and identification purposes.

2.5 Formats

The four external data bases are maintained in an "external" format

f suitable for human maintenance: character strings, mnemonic category symbols,

pronunciation information together with the telecodes, etc. Each file has

8K3.jet of software maintenance routines, peripheral to the Quince

system and not here documented.

Because there have been no random-access facilities on the CDC 6400

I at the University of California at Berkeley, these external files are fixed-

l field sequential files, stored on magnetic tape. During a previous contract

| period it seemed that such hardware facilities might become available|

I accordingly a random-access dictionary was designed, and a random dictionary

software module was written to perform both telecode substitution and

dictionary lookup. This module is one of two "supplemental" modules fully

} documented in this report. Were the random-access storage to become avail-

able, this random dictionary module would replace the present vestigand

formtion and dictionary lookup modules, and the present sequential diction-

ary format would become obsolete (see Figure 1).

As presently Implemented, two of these external files are converted to

an "Internal" format before participating in the translation process: the

t table of telecode substitutions becomes an Internal hash table in the nodule
INVEST, and the graanar source rules are adapted into an automatically-

allocated table by the module Mü^lC. The dictionary remains in external

format; It la read through in one pass during the lookup process. The text

first undergoes pre-editing, or canonisation, and then is successively

m

'rtiTMmTlfr"^*'»--"^^^^

mpr^'" '

hmhm dona lato isuillQr Cfanslatlon unit«; each unit 1« read in In «xtemal

feraae, proetttad In intamal fomat, and than aavad on an intaraadlary

Intarfaea fila in axtamal foraat.

l.ft Mdttlenal l^ita Baaaa

As originally dasigned, tha (^ilnea aygtan Includad two more axtamal

data haaaa: a aat of intarlingual transfar spaclflcatlona, and Information

on Eagliah norphology. Thaaa would, raapeetlvaly, govern the ttansfonaation
w tranafar of a Chlnaaa parse tree to an English tree, and tidy up tha

surface of tha final string, by e.g. agreement In number and tense.

At present, these two data bases do not exist. The transfers have

been approximated by reducing them to two tree operations: deletion and re-

versal of nodes. These are triggered by the application of specific granntar

rules, which leave "transfer*' codes on the node labels of the Chinese tree

during parsing. In anticipation of a separate body of transfer specifica-

tions, the Quince system does not Include a transfer module. These is

instead a temporary interface module with the old SAS Syntactic Analysis

System, which performs these limited transfers and also provides plotting

capabilities for the resulting trees em the Calcomp plotter. The trees are

then returned to the Quince system for string extraction. This SAS eompatt-

billty module is the seeond^supplementar* module documented in this report.

As presently implemented, each English word assumes its root dictionary

form during string extraction, without morphological adjustment. The result-

ing translation Is rough but reasonably comprehensible.

Chapter 4 outlines future plans for these two additional data bases.

Once the interlingual transfer rules are available, an additional Quince

module transfer will modify the Chinese parse tree prior to string extraction.

T*"8 *trln| extraction module will be expanded to Include Information from

the morphological rules.

Figure I illustrates the relationship between the four external data

basts and the six main Quince modules; It also Includes the two supplemental

modules, as well as two future data bases.

IP

■•-^"""-iliiilii mam aüüüBuilti mmm ■ rnitiinMiiliiiiinil.ii,

pwsf^srwwp?11^"-■ -

w^^^^^smA^irimss^m^^^m^m^msmm^^m

I

3. Xofrmal TUtU Storgi«

During translation, (he six Quince nodules process the text In tiro

modest text-by-text (batch) and aegment-by-segment. In batch »ode, the

entire body of text must pass through one module before entering the next;

this is e.g. the case while preparing for dictionary lookup, since the entire

text is looked up In the dictionary In one pass. In segment-by-segment

processing, a single segment (translation unit) Is passed through several

modules. Obviously there Is segment-by-segment processing within each of

the six modules — the distinction only becomes useful In discussing the

interaction between modules.

The Quince modules pass information between each other In three possi-

ble forms: interface files, binary files, and module storage tables. These

differ both in size and function, and ace determined largely by the «ode of

processing.

During batch mode, the text is passed from module to module In the form

of external interface files. These are of variable length (depending on the

sise of the text), and are written on tape as sequential character files.

There are 5 interface files; each Is written as output by one module, and

rewound for use as input to the next module.

Binary files are used for two large internal bodies of data which can-

not be aecomoodated in-core. One is the table of category (terminal) symbols,

which relates the external strings coding these symbols to their internal

hash-table codes; this table Is used during both dictionary lookup and

grammar adaptation, as both the dictionary and grammar source rules are ex-

ternal data bases. The second table is that of the adapted grammar Itself —

this includes all five subgrammars, of which only one is in use during any

one parse.

Once built within the translation run, these two tables are variously

stored as binary files on tape, or as common files on system storage —

these storage allocations are performed automatically, depending on availa-

bility of space, to eliminate the repeated reconstruction of these tables and

to minimize retrieval time.
7116 module storage tables are straightforward Common Blocks. They

primarily provide for shared storage among the sub-programs within each of

i'-;:il

.;

11

timmmMMtSsaikUiii BSÜaäiiSs - MM ^

is.

ft
t If

the 6 modules; but they occasionally are shared by several modules, especial-

ly during segraent-by-segment processing.

Figure 2 outlines the 5 interface files during batch processing, and

their relation to the Quince modules. Figure 3 presents the flow of control

in those modules that perform segment-by-segment processing; it Includes the

two binary files. Table I indicates which module storage tables (Common

Blocks) are used by each of the Quince modules.

i

12

M

Chines«
T«xt

CUIOWZ

Tslcood«
SubBtittrfcion

Tabl«

Ixtttrnal
FomAt

Diotionarr

IMTEW

SfWW

CunoniB«!
Text W.U

tr««tl«rand
fil«

(sorted)

~>

Searasatsd

wiwow

Grsnnar
Sourfl«
Hules

kTikvpQ nwwt

STRfTP

Relsotsd
Diotlonary

fil«
(sortsd)

S«3,t«noe \
DiotionaiT 1

^! J

•e

figure 2. Quince Modules and Interface piles.
Overview of 5 interface files^ 4 external data
baseS| and 6 orimarv modules in the Quince
svfitetu ^Note that the LOOKUP orimarv module
is divided into its submodules SSUSCTV and
WIHNOVf for claritvj

13

f 1

Ext «mal
formX
Dictionary,

Cat««orr ^rm-
bol Binarv »il
(ranarated if
neoasaarr)

Qrammar
Sourea
Rules adaot next I

— *>-——" oub^raimiÄri

/^Adaotad Hula \
/ Binarv »ile
I (generated if

P^RSRR

RTRRXT

Fl«mre \, Segment-bv-seirment Prooesainsr and
Binarv ?ilea. Segment-lw-ee^ment oroeesainp
In the \ end modules of the Quince svatera
UQAP^O. PKVSm and STHUXT^. and their use of
2 binary files.

1-4

•--'^-■■,^mm£BililiMlMmKIUMII^i^ma totiümiMSsm

A. Interface Files

4•I Canonized Text File

Before the raw text can be translated, each of Its sub-texts must be

pre-edited Into smaller units, called sentences; these correspond roughly to

English "sentences". Because of differences between English and Chinese

punctuation practices, each Chinese "sentence" typically contains several of

these smaller sentence units. In addition, special telccodes and characters

such as textual identifiers, parentheses, footnotes, etc. must be analysed

and related to the sentence. All these processes use an Internal table of

special telecodes in the Quince module CAN0N2; this module outputs a

canonized text file, in which the string of telecodes Is broken up Into

sentences within the text.

4.2 Segmented Text File

After the preliminary editing durinp, canonization, each sentence Is

divided still further into segments; in practice, these segments will corre-

spond to parse-units during parsing. In the dictionary each lexical entry

may consist of 1-7 telecodes (including e.g. Idioms or compounds); one

characteristic of a segment is that a lexical entry will not extend past the

segment boundaries. These boundaries include punctuation marks (period,

parentheses, commas), as well as special syntax-marking Chinese characters.

The nodule INVEST outputs a sej^ejued _text_flle, this Is a reformula-

tion of the canonized text file in terms of segments rather than sentences.

This file does not participate in the dictionary lookup or parsing of that

segmentr It is kept around in text order until STREXT, for research purposes,

so that the English and Chinese strings may be manually compared.

4.3 Vest Ijifind^ F11c

As each segment is determined, it Is necessary to make a list of all

its lexical items; these are subsequently subject to dictionary lookup.

ncterralnins word boundaries In Chinese Is, however, not a trivial task, as

each dictionary entry consists of a variable number of telecodes. Thus

from each senraent are calculated all the vestlgands: these are strings of

from 1 to 7 telccodes In length, any of which might be a valid lexical Item.

lr>

iJkä&mmä&m jS^^ygi&iliji^^

Thus the module INVEST also outputs an interface vestl^and file.

This is the segmented text file formulated in vestlgands (rather than in tele-

codes) for each segment.

4.4 Selected Dictionary File

The vestigand file is first sorted into dictionary order (using the

file/sort utility); and then the sub-module SELECTV (first half of the LOOKUP

process) searches for each vestigand in the external dictionary. For each

vestigand found (now a lexical item), it records all the dictionary informa-

tion except the romanization (pronunciation), in addition to the information

from the inputed vestigand file, onto the selected dictionary file. The

selected dictionary file thus includes fewer records than the vestigand

file, since many vestlgands were not found in the dictionary; but each

existing record includes more information. This file is then sorted back in-

to text order.

4.5 Sentence Dictionary File

Since many of the postulated vestlgands have been rejected during

dictionary lookup in SELECTV, it now becomes necessary to reconstitute each

segment in terns of valid lexical items. This occurs in the sub-module

VINHOW (second half of LOOKUP). During winnowing, the shortest complete

paths are found which connect the beginning and end of each segment; for each

rejected vestigand, every path which originally included it must be discarded

— and this in turn may eliminate some occurrences of otherwise aceeptlble

lexical items, since they no longer "occur" in the segment. The sub-module

WINNOW thus outputs the sentence dictionary file; each record contains all

the information of the selected dictionary file, in nearly identical format,

but there are fewer records. Also, the gramatleal code for each lexical

item is additionally expressed in terms of its category symbol, its internal

code which will key it to an internal hash table during parsing.

4.6 Format

The exact record format for each of the interface files is contained

and documented in the Interface file definitions; see Section S.l and

16

Msm^mmfaamsmflm iataa

Supplaaeot 12.

4.7 Randow Dictionary Module

It should be noted that there vould no longer be any interface files if

(as originally designed) the randon dictionary module, wlti» its associated

random-access dictionary, were to replace the modules INVEST and LOOKUP.

This is because batch processing would no longer be necessary: after the raw

text had been pre-edited by CAMONZ, each vestigand could be extracted and

made subject to immediate dictionary lookup, and each segment parsed as soon

as it was formed. This is illustrated in Figure 4. It should be reaeabered,

however, that the module random dictionary has not been able to be implemented,

so that as presently documented its input and output files are not yet

defined in the code.

17

<:
T«l«ood«

Substitution
Tftbl« ^

Random-
ftOOCSS

Siotionarr s

Qramnar
Souro«
Rul««

Canonised
T«xt Fil« J

«

fiÄUX« 4. Random JDictionarv Module. With P»NDIC
only the raw Chinese text would be nrooeBsed in
batch mode (CAN0N2)| all subsequent prooesBlm?
would be segment-bv-Be«raent.

18

i-
a^^^^^^«a^wlL^.«^^fc^^^ m^maMmämMmmlgm

11

The six main Quince modules plui the two «up|il«meiiit«l modules together

u»e 2^ common block« -~ ghnred storage «re«». The«e blocks «re functionally

of two kinds: Interface file definition« and module atorage tables.

'>.! Interface File Definition«

These «tx areas are waed for the five Interface fllea plus the external-

fi^nnat dlctlonarv. Kach area tnoludea buffer «pace for one file record, plus

conatantii defining each record and variable namea referenclOR each field In

the record. The areaa do not Include anv "working apace" for proceaalng the

file»: they simply "define" the file, and hence theae Interface file defini-

tions are used by both the output in« ami Inputlng module on either aide of

the interface file.

Because the interface file« are sequential character fllea, there arp

no field« of less than one character In length, and no hash tables or other

special allocation involved -- thus the Interface definition table» contain

no tables accessed through field functions.

•».2 Module Storage Tables

The remaining 17 common blocks are used primarllv for shared constants

and working space within the various subprograms that make up each of the 8

Quince modules, although a few Mocks are shaved bv several main modules.

Thl» la illustrated In Table I.

Two of these co,n,aon blocks (UH'ORT, and NMCORlO are alwavs resident.

They are part of the d'bugging and optlmiÄlng capahilltv of the Quince Tro-

gram-Wrltlng System, and are not considered part of the »Julnce translation

system In the following discnsHloiv.

Moat of the remaining I'> common blocks include t.vhles with special

storage requirements: field» of less than I character (bit-level), hash

tables with numeric or character kevs, floating table» In KCS, dynamically

allocated tables, etc. These are the tables» accessed through the so-called

field function». The .'8 field function tab!«»» are located In th« 15 module

«torage tables as shown In Table .',

l<»

..■»■■ i .,.....J.: ».„. .-..,.,.^-»-..„- - ■ „;.-.. ---■-^—■-»--^»iflimMifiiMiiiii I'm li • - - 'M ■*■'-.••.*

5.3 Table Namea

In the Quince ayatem «ource listings, and In the detailed program docu-

mentation which supplements this report, these varoua tables have different

names In different contexts. This is a consequence partly of the Quince

Program Writing System (outlined in Figure 5), and partly of attempts to

write ayatero-independent code, include e.g. separate names for Fortran arrays

and Comaon Blocks. These names are related to each other in a reasonably

systematic way, as detailed in Table 3. In the present chapter we will

always uae the "name-l" in Table 3 — the Input to the CBA Common Block Allo-

cator and the Input to the FFN Field Function Writer -- when referring to the

interface file definitions, module-atoraße tables, and tables accessed

through field functions.

20

■^iVitrSiVriii^^'^-^*'^^ Ä& ^&£* ^^^^^^-.^^.::..^^^>..^.^^ ^^.a^^u^.^^

i

/

r
o «t
H tu 1 o h- (_

1 ^
o
2 H

H i <d
Ü. U- J

/fr?\

01
JC
w

60
»w n
0 "H

iJ
3 •rl
0) M

•H »

i
S

O • M »o (X

ö. J 8> 8

5 •
9 a u

4? «8

SUB

5.4 Format, Block Data

Both the Interface file definitions and module storage tables are

documented in the Common Block Allocator definitions in Supplement 12. The

constants from each table are extracted to build Block Data subprograms, for

load-time initializations; these are documented in Supplement 11. Table 4

lists the Block Data subprograms and their corresponding common blocks.

5.5 Field Function Tables

The 28 field function tables are organized so that any field in any

table, regardless of Internal format, can be accessed by Fortran in a trans-

parent and straightforward way. The variable names and constants associated

with each table are documented in Supplement 13. The fields — their names

and size — are illustrated in Figure 6Ä-60; these are grouped according to

which storage module table they are located in.

These field function tables appear in the code as follows. Consider

the fields IVPSG and IVNSG in field function table IVSFFN, as illustrated in

Figure 6A. These are both pointers, one to the previous segment and one to

the next segment. The following code would reverse two segments by inter-

changing the pointers:

DUiMY « ivrsn(i)

IVPSG(1) - IVNSG (T)

IVNSG(I) - DUMMY

This example is written In GASP; here is the FORTRAN code generated by the

GASP Program Writer:

DUMMY - IVPSG(T)

CALL IVPSG0 (NULL. T. IVNSG(I))

CALL IVNSG0 (NULL. DUMMY)

The subroutine names IVPSG0 ami TVNSG0 have been generated fron the function

names IVPSG and IVNSG to form a set/retrlcvo pair of field functions. Tn

Supplements 1-9, all field functions are Identified as "Calls Made to Routines

Outside Module".

ti mirnfmimammmumm

Within a single module storage area there nay be several field function

tables. These are often linked with each other by pointers and pointers-to-

pointers, and processing consists primarily of moving these pointers around.

It is generally the case, however, that each pointer always links with a

certain type of node, i.e. with a certain other field function table, although

the particular node in question may change within the table.

Figure 7 presents come of the more complex data structures used In the

Quince system. The field names and field function table names are as in

Figure 6A-60.

2:)

t.aiis^w»*^lifea^Mi'^fe,in-wfa^.,^-l-1 ■f.f.|frtlf>,,i-vr, fiiMafftiiii

At almost every stage of the translation process, the text must be

considered to have the data structure of a lattice, rather than a string.

This Is due to the linguistic nature of Chinese — there are so many ambi-

guities in Its analysis. Telecode substitution Introduces alternate readings

for each telecode, vestlgands Introduce alternate combinations of telecodes,

multiple possible category symbols for each lexical Item Introduce alternate

parse trees. For this reason, at almost every stage of translation, and

within each module, data structures such as those in Figure 7 are used.

Their manipulation takes up much of the program logic within the Quince

modules; accordingly, the modules themselves will not be further documented

in this chapter. The reader is referred to Supplements 1-9 for further

details on the modules themselves.

6. Utilities

The Quince utility modules Include those subprograms which are machlne-

or system-dependent, but which (generally) do not manipulate flelds-within

a-word (this capability is provided by the field functions).

The utility source listings are presented in Supplement 10; they do

not, however, contain as much internal documentation as do the other Quince

modules, and so they are summarized in this section.

The utilities provide support in three general areas: input/output,

format conversion, and debugging and optimization. The 10 routines handle

files on random-access storage. Extended Core Storage, and system files

(coded and binary), as well as reading the system registers. They include

the READS and WRITES routines, which replace the FORTRAN read and write

statements for coded serial files.

The format conversion routines convert and shift among binary, decimal,

integer, display character, and FORTRAN Al format. They provide justifica-

tion, and handle the only fixed-format field in the Q"ince system: packed

machlne-depedent telecodes.

The debugging and optimization routines are the most conspicuous in

the Quince module source listings, as they appear in every routine to permit

timing, tracebacks, and counts of entry-within-each-routine; they are

specially Implemented so as to catch fatal FORTRAN errors before they produce

24

I

^
^^^..^-^^^^i^^^^o^limi^

a system ciash, so that traceback can be completed. It is these routines

that use the resident Common Blocks LOCORE and NMCORE. In a full production

version of the Quince system, many of these modules would be removed com-

pletely; at present, they are controlled by switches on the system registers.

Table 5 lists the utility routines by their function.

^• Additional Documentation

The Quince system has also been documented in previous final reports.

These tend toward providing a description of the processing in linguistic,

rather than in computer, terms; however, much of the information is still

current. In particular, (3) presents the coding conventions for identifying

the special telecodes, and an outline of the procedures used in text prepara-

tion. (4) outlines the "steps" of machine translation.

The Quince Program Writer has a full description in (4), which also

describes the plotting capabilities available through the SAS Compatibility

module.

There are also several unpublished papers available from the Project.

(1) is a manual for writing GASP, the structured programming language used

as the source language for all the Quince modules; this source code is

translated into Fortran by the GASP translator. (2) is a description of the

theoretical approach used In the PARSER module.

^^:^l^V^^^V».^-'^r^,.^ift^^|^|nV||m|.|lr;T|.|.^...Vrt^lWy

prnORB

6 10 10 10 10 jvsinw

IVPRS (10) - first taleoode in aeKraent

I7TAS (10) - last talsoode in awrment

IVPSf» (10) - Drevious ssfirraent tx>inter

ivmaa (10) - nsxt secrmsnt no inter

jyt.WO (1) - last-ssK-in-sentenoe fla*f

IVPCT. (6) - mmotuation break class this sear
fnos seffs onlv^

I7P0B (1) - punctuation onlr soRmant fla«

lo io
'^Ä4 16 IWITPW

i
IVPOt. (16) - oacked teleoode

IVPSW (io) - previous teleoode in sentence pointer

IVNSN (io) - next taleoode in sentence nolnter

n«ure 6*. Fields used in the Field Function Tables of
Module Storage Table XVCORE

26

 ^■^•-^iiifiiirnir • - iiiiiiiimfnimiiHiiiMi—■«■-■^-^-'-'-^■^-»— mmämmmmn
'k

SBCORR

Tfl u u. 1^ snww

Hf?W»0 (10) - BubBtitutlon head for kw t«l«ood«

11 11 11 12 12 SttfWPf

RWWT. (12) - lewrth of n«w tel«oode strin«:
Ri^WP (12) - head of new talooode strin«
RW)T,T. (12) - lowrth of old toleoodo airing
nWhP (12) - head of old teleoode etrlnÄ
Raines (12) - next oubetittttlon

swmwi

?!?

JmMTT (12) - noxt teleoode node
swwn. (16) - teleoode

fijmre 6B. »ielde ueed in the »ield l^motlon Tabl«» of
Nodule Storage fable 3BC0R1

27

r--w^rnviffnMi1n-i^^ iririrrr-iTTmitinäaiiir^-itititriii^

LWtoW

7 11 T.PTWW

T.PTXT (792) - 1i2-oharaoter tert field

,....„, . 1
1 lo LO lo io TßHWW

!,TnPR* (10)

um* (to)
WTWW (10)

TWAS (10)

T,tn.»R (1)
um* (i)

- from woo for this type

- to noa for this type

- first «man for this type

- last span for this type

» last-in-tmlt fla«

- keetj-tbls-tvoe fla«

»iirur« 60. Heide used in the neM »unotion Tables of
Module Store ^able LUGORB

[

i*&iüMaMm^>%-&iL m&ämiiiMmsääaiiSt

TJJCORI (oont.)

1 il 13 13 Ti^jfPWfH

T,P4i»w ^i^) > tree-orflranlslng oointar

T.M0IT1? (1 ^) - oti«u«-or#t&nl8ing oointw - n«rt

TÄmyr (12) - T/JR h«ad r«i>res«nt«d

lo to 10 io 10 T^PF1?N

^»rrp (10) - httad of li«t on whloh located

TäTTH (to) - lnd«c Should bo MM^ of WS
oharftotor tost

!,«S(ypi» (10) - aoxt ooaa on thio Hot

U«liTW (10) - fro« oosUion

UWrr (10) - to ooaitlon

vi«ruro' 6D, fislds used in the ""ield function tables of
Module StorMte Table LUQO^g foonO

li \

m&smSä&sM&äm&mäimk rlMinnliie-ar^W'TliirTliiiriliii fiiKriiti aiiriMftrtiea^,

r

AHCORR

i

ill iljjl
11 I 12

»RT.S'WN

ORSD (24)

OT.WS (12)

QJWS (12)

O^WR (12)

oaww (n)
OIT/P^ (8)

OWfrt (1)

riehttld« of rul«

T.wwns — fir»t vjurt of rul« ri*chtBid«

RTdwrca — seoood oart of rul«
riehtside

•POPCH — l«ft sid« of rule

sourc« rul« in number

int«rlin«rual tran«f«r ood« for this rule

nor«-flMr — this rul« ha« A non-uniqu«
ri«ht side (aiwm)

QTtvm (i) - Qa«udo~flae — this rule creates a
oreudo-left side

n 12 '//;, ':/.
'• V' TTI ^RFW

WP^R (n) - tree-oreaniBliu? oointer — father

WNqui (12) - Queue-oreanisine oointer — next

wniiwi« (12) - oonstitute troe reoresented

»i«ure 6S. «"lelds used In the »Held *unotion Tables of
«tedule sVora«e T«bl« »OCORR

30

ÜMHM iM;

r

csnoR*

H $ caiwiw

OTSITR (48) - oatfMrory srmlsol orint raoresentatlon

E v~ II 2^ g i 11 CTWBfW

CA,^,f,,^, (12) - THjintw? Into oatenory «rabol
data table "•*

^iirure 6F, ''islds ua«d in the «i.eld Wunotlon fables of
«odule «storage Table CSGO^E

31

i^Jilb>L^«^l.^

PRCOR«:

io (, lo A n io
io ^linkftd with

DCW (io) - scratch oonv of SC1^ (ov«nrritt«n
when LNHNrr ie n«d«)

- 1 Mear order n«xt ooltit«r

- vin-linear oraler nert queue-oolnt«r

- count of direct BuocessorB

LNWT (10)

SOW (6)

T,NET> (10) - lin«ar order ordinal wositlon (used
as sort kev)

PCNfi1 (6) - ooxmi of direct wredecesaors

LNPR (10) - linear order orevious tjointer

SWWh) - seen flewr (for transversal aet-uü)

I)UPT.(lJ - dunlioate eonpoe-tvpe fla^r

1^ GSUFFW

...J

GSUSD (15) - index of active oonetitute with
category svmbol

"•iwire 6Q. Plelda usnd in the RHeld «"unction Tables of
Module Htorawe Table PHGORW

\2

imf^WiM^r^fBifiaifr^ -»^^.AAjjyjlfl) mmmmmmmmsm&m^M

5

^

PRCORK (oont.)

I :

?["l2 [?~|| In];^ 13
(Unk«il with

^1,(1 \)

f 01.(1 o)
irw (i)

KW (8)

res (n>)

- au«u«-lVnk In ••nt«no« oosliion .i\i«uo

- winnow — old lattto« it«ra r«or»net»t«ti

- winnow — flmt of tyn« fliwr

- ooov of VQF&K fl«ld

- ooev of nAT3W fl«ld

- eonv of TTPW flftld

(ILi^Lij J .TTlill .")
«V^V'h'N

s,R!W^ (l \) « aottvt» qu«u« hejul

U*^A (1^) - native ou«u« tftU

PRS'ny (1 0 - quUöoent rjuon» head

l.^SfQ (1 "\) - naleaoent aueue tall

l.^lAO ^1) - Inat nenw« In unit fla«

RQVUI (1) - ri«w — this «anpo» nrenwrnl foi
wInnow\n«

figure eill, ^lolti« u8«Hi In th« ^i«l'i «'unotlon fiibU« »f
Module Storage l'abU ^CüWK (oont.)

\ \

ä^uuitiaubäu^uäiätii .«a^in&aaääiüaaaitti ■Hi

Awjom?

9 ii L2- io HI
13
13

AT/pinm

(linked with

TTPP.I (2)
UTW (13)

oir.o'J (1 v

wm (io)

SCLS-»' (12)

pm^T (12)

SPTYP (8)

- tyoe field

- oover field for either of OWON/
srMDic variants

- constitute references (non-terminal)

- sentence dictionary nolnter (terminals)

- pointer for linear ti'aversal of
lattice

> suooessor list

- nredsoessor list

- sentence position type

il mmmMmmmm. T?

^mm^M^M^E^^
T/P^WW

NTTT.iC (12) - lattice next pointer

T.ftTT.K (12) - lattice link pointer

»lisrure 61, Wields used In the Wield ^unotion Tables of
Module Storage Table ARCOR«

34

ii^j^etmmmetmatämmimtmääiii^tiiä üsHaHüiHIMttiMiH

ö

4WG0R«; (oont.)

12 b 13 ? ARCFW

(_linked vlth
CRCWN)

aRftMR (8) - «rrararaar used to make

PRmfS (l^) - souro» rule number to make

nsWS (6) - oturser invooatlon, serial numbei

PQSJf^ (8) - sentence position from

PORIK) (8) - sentence nositlon to

QUI^S ^1) - quiescent flag

AWP^T (1) - alternate fla#:

CATRM (12) - oateeorr symbol pointer

TYPSR (^) - type field

13 13 13 ?

3

INTJia (8) - interlingual transformation oode

niCM) (1^) - sentence diotionarv pointer
(terminals)

RIWT)X (1 ^) - ri^ht constituent constitute

LPmX (1 ^) - left constituent oonstitute

ffiffure 6J, Fields used In the Field Function Tables of
Module Storage Table A^ORW (cont.)

Jr.

SJL.-A -•>•■■ '-^^ ^. i.^.-j--*rv;,..j. J\- iaa^^aeteai^tLaii^t^a^

DTCOR*;

3o ? ? ? DCWWN

RWT.HTr (8) - link to risrht son in balanood tree

T.WT.NK (8) - link -to left son in balanced tree

WPT (8) - pointer to lexical heuristic information

PSK^W (30) - oermanent seauence number

l\ lo it It U j

TC4ün (16) - 4th telecode

TGWI (I6) - ^ t«l«oode
TC21)n (16) -2nd telecode

UPSWN (10) - last sense number assismed for this
word

B^T, (2) - balance factor for balanced tree
inspection

FHsure 6K. ""ields used in the ^ield ^unction Tables of
Module Rtorace Table DTCORE

36

SiaftUSL-...

'-tfi
- ^ :■ ^^.■^^:^-j..-^^W:^..JJ^;p;||.|^|-^-||-|rgr|p|ff'M- Hiiiiifmfrlitfitri^'iiiiiiiri-

TWCORE (oont.)

v) 7 1 (o H U BCW^'W (oont»)

TC7DC (16) - 7th telecode

Tn6DC (16) - 6th teleoode

^QW- (16) - 5th teleoode

SNBW (7) - Txjinter to first word sense

NTCF? (^) - number of non-blank teleoodes

2 '.'SrA V fV ■^,

'Af/Z/ty,/'/',/'''' '■ fr'^t-r H

'POIDC (16) - Ist teleoode

UVT.^v (^8) - no inter w> to father of node

Figure 6L. fields used in the ^ield ^unction ^able« o:
Module Storage ^ablp jm^ORE (cont.)

17

1 itiirir'iij-i --ifWiM

anom

<.*• •< -—-—' ■ ! •

io io aaA^ww

Km'AC (10) - point«r to next in list

•^XWD (10) - nolnter to t«l«ood« node

fftMM^^i U \S\5\ wnwvm

T.TSPN (5) - last aoan list olement

HTftPNT (3} - n«zt span list elsment

T<pitn«n (16) - actual break teleoode

SPCT^ ^4). - olass of this break

u io io io\ aOTTFFN

T^TWr (10) - pointer to list of last aotlre

HUTWir (10) - oointer to list of next aotive

WXT (10) - next in input text order

TCWT.D (16) - telooode

»iirure 6H. fields used In the »ield "'imotion Tablen of
Module Storage fable SODA^A

30

mtrnk tmmmmmiummmttmmm^^mM^ai^^i^mä^^Uit^^^^

WA,BS

m^zm it ^

aanMvi'N

NTT3A (12) - oolnttr to n«xt »übst/alt nod«

VWWTf! (16) - subst^aU t»l«ood«

tu —~~:

jl liljj m^pwm

«BM.T (12) - TK>lnt«r to first Bubat/alt

—————— 'I' > -y—-in ...iip.—^y

'f
w

1(i. M ManTUTN

wcT.n (4) - ol«8H of «8ffm©nt»tion br«ak of ksv
teloeode

»lirrire 6ti. «•Itldn uaad in the rielil ^unotlon TabUa of
»«odul« Rtorar« Tnbl« SO^ABS

V)

^ ^.^1^^^«^^^^^. ^..^SHiffy-ifavrrriiig^ii^Wi liiliTiaiiir n-iiii' mfnifHr'1iHlat''-"-~- " "■"- ' -'••'iiriiriliiiiiiiiriiiniiiiliiini1

STCORE

12 11 11 •23
5" 1?

1?
5- 6 (,

STRWW

INTO (23) - info — tTB« field and data field
seen as one

SHKUM (18) - aonum - SOW field seen as oonstittxte
number

SDATA (18) - sdata field (multi-use — with sub-
fields in smj*S for full strings)

SCUUR (6) - sourr counter (full strings)

SLASt» (6) - slast counter (full strings)

SFRST (5) - sfrst counter (full strinjrs)

SAWTS (l) - anv-«uniras-under-fla« (full strings)

TYPE (S) - tvoe field

TPUO (l) - fla«: to condition oresenoe of RT,*BT—

'mam (12) - thread link

RUW (12) - ri«rht link

LUWf (12) - left link

Figure 60, fields used in the Field Function Tables of
Modules Storage Table S^COWK

40

...^^^-^-a-Mi-ni^^ frn-t, ntelfflMlfri -■^-'■■-—^—^~^- ,: .^-»Ea..^l^.^:^^^:,:..-r

IV/nM IVPSN

IVT.FFN
(ivcore.^

IVFRS iv?se,

IVL4S iv/AlSfe,

IVSFFN
(ivcopt)

Figure 7A. Data Structures In IVCORE:

segment-in-sentence data structure

41

i^iwi«iif»««#MMTiMiafii»-aim-ti-Triii»iiii n -liir

I 1 T I
p_

kS>fTC

SÖHFFN

S GT C L

SQTFFN
CsDcorc)

SÖA/WL

SONKS

SBOLP

Csocor*)

Figure ?B. Data Structures In SBCORE:

lattice structure during telecode substitution

42

. I --^-■^■-■-'■S.aiv^ftlifhri^^ mrsm^mmmmimmjmtil^im

%

► m

QUFFN

WPATR WA/quß" WCNST^

€>

ALTFFN

3-^® ^TMR-^)

Figure 7C. Data Structures in AGCORE:

queue tree during LOOKUP winnowing

43

büisiJäLi^ a iti.tirM'nrwt^ir^Mtf.Wi^-it-^Mm^m^^^

LATLK

Figure 7D. Data Structures

in ARCORE: linked lattice

•tructure (successors only)

^

NXTLK

JPFFN
avcor«-)

ALTFFN

, r di irnnrtfiiritiiV Miiiifa.iiiaiift'iriiiaii) ,1.,..J».-,^ .,..„„. .^.. ^,^i.^^^m^^ii^..

-M

€a>

Figure 7E. Data

Structures In ARCORE:

linked lattice struc-

ture (predecessors

only)

45

k^A.—*■..—..■.-.-..■■.■. . . _ Äa_.

®J^
LATLK NXTLK

ITfPFN
labtet)

(Lr4£ES^ &

^LTFFN

SLLJL

FlRure 7F. Data Structures in ARC.ORF.:

lattice structure ilurln;» parso-tiroo wlnnowtnp,

ti^infii^l^in^mi^ar^-^'^-^--"^-'-''^^"-'^^^'*"--" "'-"■•

Figure 7G. Data

Structures In

PRCORE: unsorted

and sorted linear

orders

no"kt LNTRA

.1 LNNX

ct^ is a*

LNNX

47

 ^>mm¥-f*-tfrl,--.f¥,^ia -.. — .--. LW.

UWLNK

LWLNK R.WLNk

OCW FFN

j Figure 7H. Data Structures in DTCORE:

balanced tree structure

a 48

mammmäämMmimtm tmmmmmmtm ^n

no-sh
n ' M

1 h- 58ALT

SC-,SPFFN

NXTSA
TÄJfTÜ
Ttltcpdt.

SC-,S?FFM

Figure 71. Data Structures in SGTABS:

linked segment table

49

■ -TnrmiiimaiiTiMtiiiaWit^------ '-'riilia.iiiiM"r'--glJmW'"''- ■ ^■-.-..^^^~m»i3i--»i~-

CANONZ

INVEST

SELECTV

WINNOW

ADAPTG

PARSER

STREXT

RANDIC

ALCHEM

CNCORE
(canonl-
zer)

LOCORE |
(low core
resident)

NMCORE
(low core
name table)

1

IVCORE
(Invest)

SBCORE
(telecode
substitu-
tion)

SLCORE
(selectv)

LUCORE
(lookup)

CSCORE
(category
symbols)

AGCORE
(adapted
grammar)

SRCORE
source
rules)

PRCORE
(parse)

ARCORE
(archive
consti-
tutes,

\ lattices) STCORE
(string
extract,
uproot,

1 transfer)
bTC0k£
(diction-
ary page)

SGDATA
(segment
data)

SGTABS
(segment
tables)

STRSAS
(string
extraction,
temporary
for SAS)

Table 1. Module Storage Tables Resident

for Each of the Quince Modules

50

twtmi^itrntMmtiät^t^mmamiämäim

CANONZ CNCORE

N

INVEST IVCORE IVSFFN
IVTFFN

SBCORE SBHFFN

SBSFFN

SBTFFN

LOOKUP LUCORE

SLCORE

LPTFFN
LQHFFN
LQTFFN
LSPFFN

CSCORE CSIFFN
CTHFFN

ADAPTG SRCORE

ADAPTG/
PARSER

AGCORE ARLFFN
QTRFFN

PARSER PRCORE CLTFFN
CRCFFN

CSUFFN

SPQFFN

ARCORE ALTFFN
ARCFFN
LTPFFN

Invest segment table
invest text table

telecode substitution
hash table
telecode substitution
table
telecode list table for
substitutions

lookup spans table
lookup span queue table
lookup queue tree table
lookup span table

category symbol data table
category symbol hash table

adapted rules table
winnowing queue tree table

lattice parse-time aux. table
constitute parse-time
auxiliary table
category symbol parse-time
data table
aentence position queue
heads table

archive lattice table
archive constitute table
lattice list next list
pointers

Table 2. Field Function Tables Located In Each

of the Module Storage Tables

51

.JL »t, ^^■■■.'jäS^riisiL-j, 11 iiir iTiiiiiiiliriitlniifi «iiiilüriüiii lidi v

STREXT STCORE STRFFN - master tree table

RANDIC DTCORE CDWFFN -

SGDATA SGATFFN

SGSDFFN
SGTTFFN

SGTABS SGSNFFN

SGSPFFN

SGSTFFN

word nodes for dict-
ionary page

- pointer to active
telecodes

- telecode span list
- list of active telecodes

- substitutes/alternatives
for telecodes

- telecodes for substitution/
alternation

- segmentation breaks table

i ;

ALCHEM STRSAS

Table 2. (cont.)

52

Module Storagg Table Field Function Table

nane-1 nane-2 name-3 nane-1 name-2 naiBe-3

CNCORE CNCOR CNBLK
IVCORE IVCOR IVBLK

IVSFFN IVSFF IVSGTB
IVTFFN 1VTFF IVTXTB

SBCORE SBTCO SBTBLK
SBHFFN SBHSH SBHTAB
SBSFFN SUBST SBSTAB
SBTFFN SBTLC SBTTAB

LUCORE LUCOR LÜBLK
LPTFFN LPTFF LPTXTB
LQHFFN LQHFF LQHDTB
LQTFFN LQTFF LQTRTB
LSPFFN LSPFF LSPNTB

SLCORE SLCOR SLBLK
AGCORE AGCOR AGBLK

ARLFFN ARLFF ARLTAB
QTRFFN QTRFF QTRTAB

CSCORE CSCOR CSBLK
CSIFFN CSEQU SCIBAS
CTHFFN CSEQU CTHTAB

SRCORE SRCOR SRBLK

PRCORE FRCOR PRBLK
CLTFFN CLTFF CLTCTB
CRCFFN CRCFF CRCNST
CSUFFN CSUFF CSUSTB
SPQFFN SPQFF SPQHDS

ARCORE ARCOR ARBLK
ALTFFN ALTFF ALTCTB
ARCFFN ARCFF ARCNST
LTPFFN LTNFF LTCNXT

DTCORE DCTGM DCTOR
DCWFFN DWDEQ DCTWDS

SGDATA SGDCM SGDCOR
SGATFFN ACTEQ ACTNDS
SGSDFFN SPNEQ SPNNDS
SGTTFFN TXTEQ TXTNDS

SGTABS SGTCM SGTCOR
SGSNFFN SBPEQ SBPTRS
SGSPFFN SBPEQ SBPTRS
SGSTFFN BKSEQ SEGBKS

STCORE STCOR STRESD
STRFFN STABL STREE

STRSAS STRSA STRTEM
Table 3. Names of the Module

LOCORE
NMCORE

LOCOR
HMCOR

RESDNT
NMBLK,

Storage Tables, Field
Tables, and Interface

Function
File

53

lä.^^^. y^ggaiaiMiiaiiigaiiiaiiiiai

Interface File Definitions

j

CZTDEF CZTCR CZTBLK
SGTDEF SGTCR SGTBLK
VSTDEF VSTCR VSTBLK
PDCDEF PDCCR PDCBLK
SLDDEF SLDCR SLDBLK
SDCDEF SDCCR SDCBLK

=1- I Table 3. (cont.)

54

..-. ^^^i^^a^'.^a.^*aiäBd^Äe3ldaö*s*iM

Interface File Definitions

CZTDEF BDCZT1

PDCDEF BDFDC1

DSCDEF BDSDCl

SGTDEF BDSGT1

SLDDEF BDSLD1

VSTDEF BDVST1

Module Storage Tables

AGCORE BDAGC1

ARCORE BDARC1

CNCORE CDCNZ1

CSCORE BDCS1

IVCORE BDIVCl

LUCORE BDLUC1

PRCORE BDPRS1

SBCORE BDSET1

SLCORE BDSLC1

SRCORE BDSRL1

STCORE BDSTR1

STRSAS BDSTS1

Resident Tables

LOCORE BDLOC1

NMCORE BDNAME

Table U, Block Data Subprograms
for Each of the Common Blocks

55

&jMtm*£A*!aä

I. I/O Routines
A. random-access disk I/O (COMPASS)

CLDISC ; }

LRDISC
MTDISC ; 1

NMDISC : |

OPDISC ' I

RDDISC I

WRDISC ! j

B. ECS storage (COMPASS) l I

RE J

WE I 1

C. System registers (COMPASS) 3

READRG I

WRITRG . 1

D. system files ' \

1) binary files j

OPBIN \

CLBIN
REWINB i \

WREOFB ■ |

RDBIN i ^

WRBIN

2) coded files

OPCOD

CLCOD

REWINC

WREOFC

RDCOD1

WRCODl

Table 5. Utility Routines Classified

by Function

56 !

3) serial coded files

READS

WRITES

II. Format Conversion Routines (COMPASS)

A. packed machine-dependent telecodes

ARTOTC

TCTOAR

TCCOMP

B. binary/deciraal/lnteger/display/Al

BTOD24

BT0024

1T0C

CT01

ARFORM 1

RAFORM

C. non-FORTRAN character

NFORTC

D. justification

UUSTC

RJUSTC

UUSTI

RJUSTI

III. Other Routines

A. collating sequences

CHCODE

COOECH

B. shift

LLS

LRS

Table 5. (cont.)

57

.-■iiiirir.iaiiiTiiin''-'J-'-J-l'"-'-m^--J--J-"*-'l«ilirfiiftiiir-"•"--''••'''

C. field insertion

INBUF

D. string equality

STREQ

IV. Debugging and OptimlMtlon Routines

A. Traceback

TRCBAK

DBOUT

ERROR

PRTBE

PRTBP

PRTBS

NARCS

RECOVR

B. Timing

TIMER

PRGRAF

C. Machine environment

CONFIG

Table 5. (eont.)

56

--''"•""' "^-™'¥fBiii#itWi1nmiiiMiriWM ■aaMMMMMi

References

1. r.askina, Robert. Manual of GASP. Unpublished paper.

2. Raskins, Robert. Probative Parsing. Unpublished paper.

3. Wang, William S-Y. and Stephan W. Chan. 197A. Development of Chinese-

English Machine Translation System. University of California. RADC-TR-

74-22, Final Report, February 1974.

4. Wang and Chan. 197S. Chinese-English Machine Translation System.

University of California. RADC-TR-75-109. Final Report, April 1975.

59

^^lffiil^^wVlti^rilrl1;lt^^1a^Vt]li1r^

APPENDIX: HARDWARE, SOFTWARE AND DATA INVENTORY

1. Hardware Inventory

1.1 Teletype KSR-37 Terminal, with upper and lower case, 130 baud. At

preeent it can be connected via modem with the CDC 6400 at the Lawrence

Berkeley Radiation Laboratory, and also Into the ARPANET.

1.2 Chinese Teleprinter Model 600D, 2 sets. Each set has a configuration

consisting of a Chinese character keyboard, a printing unit for direct

hard-copy output, a paper tape punch and a reader, and a slightly

modified standard teletype with a standard English keyboard.

1.3 DEC DL-llE Asynchronous Serial Interface — for charactet display on

DEC PDF 11/20 - VT-ll display.

2. Software Inventory

2.1 Quince System

The Qu .ce system modules are contained in three libraries, each of

which is stored on tape and maintained In both source and object form

In a set of three cycles each,

1. DMLIB, the Data Management Library

a. field function definitions

b. field functions

c. conmon block allocator definitions

2. UTLIB, the Utilities Library — all system- or rnachlne-independent

routines, both In assembler (COMPASS) and Fortran

3. QULIB, the Quince Library

a. GASP source of all system-Independent subprograms

b. Block Data subprograms

2.2 Program Writing System

The Program-writing system Is a body of locally-written software

aids for creating and maintaining large bodies of code. Each is stored

on Its own tape.

1. GASP Fortran Translator

2. Flild Function Writer

3. Consnon Block Allocator

60

tmsm

Reference«

i I

1. Gaskins, Robert. Manual of GASP. Unpublished paper.

2. Gaskins, Robert. Probative Parsing. Unpublished paper.

3. Wang, William S-Y. and Stephan W. Chan. 1974. Development of Chlnese-

English Machine Translation System. University of California. RABC-TR-

74-22, Final Report, February 1974.

4. Wang and Chan. I97S. Chlnese-Rngliah Machine Translation System.

University of California. RADC-TR-75-109, Final Report, April 1975.

59

^^-«i.diiüaK^.J^E^J^

i I

i, ^

2,3 Other Software

1. SAS -- Syntactic Analysis System — predecessor to Quince system

2. Plot Routines

The plot routines permit the graphic display of trees and Chinese

characters for research purposes; they are actually part of the

previous Syntactic Analysis System, with data interface via the

SAS Compatibility Module (ALCHEM) of the Quince system.

a. plotting subprograms

b. vector definitions of 7000 Chinese characters

3. Data Inventory

3.1 Chinese-English Dictionaries on Tape

1. CHIDIC (approximately 80,000 records)

2. PHYDIC (approximately 40,000 records)

3. McGraw-Hill Scientific Dictionary (partial) on 5 reels

4. DOD Chinese-English Scientific Dictionary (approximately 500,000

records) on 4 reels

5. Special sorts on CHIDIC

(I) one-telecode entries

(II) long entries (more than 3 telecodes)

(ill) reverse telecode sort

(iv) grammar code sort

6. Special sort on PHYDIC

(1) grammar code sort

^•^ Chinese Grammars

The Chinese grammar consists of five levels. The total number of rules

at each level is:

Grammar I 124 rules

Granunar 2 506 rules

Grammar 3 2408 rules

Grammar 4 336 rules

Grammar 5 2744 rules

There are three ways of arrangement of the rules:

1. five-level graranmr by levels

2. five-level grammar by length

3. concordance of rules

61

..„»»JJMM»«»^.»*»»»^ iajumimm^

3.3 Chinese Texts

I. Physics Texts (papers numbered 1 to 37).

Total telecodes: 421,464

The Physics Texts were coded from the following books and articles:

a. Yuanzineng jichu zhlshl. Huadong Shifan Daxue. 1958. 114pp.

b. Yuanzineng de yuanll he ylngyong, Kexue Chubanshe. 1965.

c. Yuanzlheneng. Kexuejlshu Chubanshe, 1957. 262pp.

d. Yuanzineng de jlben lllun yu yuanzineng de heplng gongxian.

(no publisher). 1966. 44pp.

* i f>\ ^ i. 4 wfo 5 ft > ^ ^ ^ 13 ^K:
e. Cl llutl llxue 2^ i >'ü'$ t> ^

f. Gaowen denglizltl dongllxue i^J-it -j «ii f fy f-h f %

g. Gaowen denglizltl de fushe ,,-) (^ '^ J;^ .} ,'^ ^ ^ ^^

h. Gaowen denglizltl zhenduan fangfa ^^ ^^/;£ /'£ ^ ■-7^ £

1. Tongwelsu he shexlan de ylngyong (xla)

j. Jlge xlnde jl jingguo galzhuang de yanjiuxing rezhongzi fangying-

dui. ii *[i',-^'I & '4. ^:iL*i ^r] t tl^-t ^ /^Lii td
k. P^T fanylngdui zhongzi tongliang de zengjla jl shlyan kenengxing

de kuoda m A4 in 1\&\ -O f'g ^o /^'^ i^ -) (4U »VO ?/| X
1. Shlyanxlng qingshui nongsuoyou fanylngdui (BBP-2) de galzhuang

v\^n n 'IM! ä ^ ;>i^ tit (w~ a)^ ^ -^
m. Zhong«hul fanylngdui (TP) de galzhuang

n. Goncll wel 2000 wa de chenruxlng shlyan fanylngdui (HPT)

ip ^ A. ^rx> fa '*i ui ^ ^ i'X& k 4 Miiwv
14 2 o. Rezhongzi tongliang 10 zhongzl/llml • mlao de yanjiu fanylngdui

(BBP^^-Hi^/D'V^/ÄH2'^/ ^/it^ -t/t
p. Fushe huaxue janjlu zhuanyong fanylngdui (BBP-U)

«M^i^^llHIMMM

q. Yuanzi he yuanzlneng, Jlaoyu Tuplan Chubanshe. 1956. 121pp.

it*~ ft}4. hß'$)ikh%U
2. Biochemistry Texts (papers numbered 1 to 17).

Total telecodes: 59,320

3. "Tokuyama" Texts (sample excerpts from modem Chinese short

stories ca. 1920-30, obtained on a cooperative project with Dr.

Helen Tokuyama of the University of California at Irvine).

Total telecodes: 83,830

Total Machine-Readable Text Telecoded: 564,614

The Physics Texts c, e through q and the Tokuyama Texts exist both on

magnetic tape and on the original Chinese Teleprinter paper tape. The

rest of the Physics Texts and the Biochemistry Texts exist In 80 column

cards.

3.4 Chinese Character I/O Information

1. Kuno character vectors (7,000 records)

2. Telecode-Romanizatlon Table (10,000 cards)

3. Chinese Teleprinter Keyboard to Telecode Table (4,800 cards)

4. Four-Corner System Romanlzatlon Equivalences (1,500 cards)

5. Original Cards for Chinese Character Indexes Volumns (14,000 cards)

6. Augmentation to Chinese Character Indexes, with romanlzatlon

equivalents (14,000 cards)

63

..^f» a-^a^-B^.^ .»..^«M-^^a^^J^^^a^tJ^^aaa

Supplements

1. Test Canonization Module (CANONZ)

2. Vestlgand Foraation Module (INVEST)

3. Dictionary Lookup Module (LOOKUP)

4. Probative Parser Module (PARSER)

5. Parse Table Print Module (PARPNT)

6. String Extraction Module (STREXT)

7. Grammar Adaptation Module (ADAPTG)

8. Random Dictionary Module (RANDIC)

9. SAS Compatibility Module (ALCHEM)

10. Quince Utilities Module (QUTILS)

11. Loader Storage Allocation Module (BLKDAT)

12. Common Block Definitions (CBADEF)

13. Field Function Definitions (FFNDEF)

14. GASP System Language Pre-processor (GSPSRC)

64

ä^tera£Js^ä&*u*äÄia££Marikäää^ääJfe£ailäS WtMttwMaiiMMltiiliMtllMllia jBH

III. THE STATE OF THE ART IN COMPUTATIONAL SYNTACTIC

DESCRIPTION OF NATURAL LANGUAGES

1. Introduction

When the recent history of linguistics Is viewed from the perspective

of computational linguistics and machine translation, it may fairly be said

that the most conspicuous event remains the introduction of the context-free

phrase-structure grammar by Noam Chomsky in the middle ^SO's. Despite the

variety of alternative formalisms for the description of languages which have

been introduced (by Chomsky and others) in the intervening twenty years, it

is still the context-free grammar which dominates the thinking of computa-

tional linguists and dominates, also, the systems which they devise.

There are, however, certain technical difficulties with the use of

context-free grammars which have led computational linguists to "augment"

their grammars with "features", and with "conditions" or "actions" based on

the features. This is true of the well-known systems of today (e.g.. Woods'

ATN grammars and Winograd's systemic grammars are of this kind), and has

been true stretching back to the days of the COMIT programming system of

Yngve. Most computational linguists believe that such augmented context-free

grammars are sufficient to describe natural languages, at least In some rough

practical way, although there is no real theory explaining how to use the

augmentations, or why they are so helpful.

Such augmentation devices were also used (though much less formally

and systematically, of course) by linguists of the pre-Chorasklan American

structuralist tradition to describe such phenomena as agreement and context-

ual restrictions; this is one aspect of their procedures which was never

reconstructed satisfactorily In phrase-structure grammars. Furthermore, the

lack of such augmentation devices has proved troublesome in current linguis-

tic uses of context-free grammars, and they have now been re-introduced in

the most recent work on the base component of Chomskian transformational

grammars — first with features of lexical Items, and then with complex-

65

^1.. ^^iHlittBfantfi^iiiiMiriMliatei^^ ■Kfll S5S2B OBB

symbol representations for all nonterminals of the grammar.

In an entirely unrelated development, as a way of defining programming

languages, the properties of the syntactic description method known as "van

Uijngaarden grammars" or "the Algol 68 definition method" have recently

become better understood. It now appears that this method of describing

"context-free grammars with structured vocabulary" does reconstruct an impor-

tant element common to structuralist linguists, recent Chomskian linguists,

and computational "augmentations": that is, the use of significant abbrevla-

tory conventions in context-free grammars by exploiting a systematically-

structured vocabulary of symbols.

Not only does the van Wijngaarden syntactic description method appear

to neatly cover a wide variety of extensions to context-free grammars and

thus give Insight into what important properties they share, but related

formalisms (Roster's affix-grammars, Knuth's attribute-grammars) offer

similar properties while also being naturally related to context-free

gramnars in the sense that the naturalness of interpretation and attractive

parsing properties of context-free grammars are preserved. Hence, although

these formalisms have all been developed in connection with programming

languages, they appear to be of even greater interest and importance for the

processing of natural languages.

In this chapter we will review the state of the art in defining

grammars for natural languages which are suitable for computational use in

machine translation systems, giving particular stress to the new methods

just mentioned as models for a good deal of current unformallzed practical

knowledge. We will attempt to provide an overview of the progress in defining

programming languages, and to relate the new features of this work to prior

descriptive methods used by linguists. Finally, we indicate how this work is

related to the parsing implemented in the Quince system at the Project on

Linguistic Analysis, and what further research is needed over the next three

to five years to incorporate these Improved techniques.

66

2. Context-Free Grammars

We began with the observation that all computational systems currently

used for research on natural language are based on context-free grammars,

even if they also Incorporate much additional machinery to Interpret, or

translate, or whatever. In this section we will review the advantages of

the context-free grammar formalism which have led to this state of affairs,

the extensions to the basic context-free grammar which are introduced to

counter certain disadvantages, and tha remaining difficulties.

2»1 Advantages of Context-Free Grammars

The reasons for the pre-eminent popularity of the context-free grammar

formalism are many. First, perhaps, is the fact that a context-free grammar

both defines a set of admissible strings, by giving a set of constraints on

the ordering of elements, and also associates with each string in its language

a hierarchical, tree-like structural description. It turns out that almost

always one wishes both to separate valid strings from invalid, and also to

assign structures to the valid ones; perhaps it is only so because the tool

Is at hand, but this has seemed a logical single task.

It is also true that in an amazingly wide range of applications the

context-free grammar has seemed to be "a natural conceptual basis for defi-

nitions; the basis must correspond to the way we actually think about (what

Is being defined), otherwise the related formalisms are not likely to be

fruitful" (Knuth 1971). In large part, context-fi-.e grammars have been such

a "fruitful formalism" because of the declarative character of a grammar.

Donald Knuth, again, says that "a grammar is 'declarative1 rather than

'iraperative*; It expresses the essential relationships between things without

implying that these relationships have been deduced using any particular

algorithm" (Knuth 1971). This notion of a grammar as a set of declarative

"well-formedness conditions" is also familiar to linguists, from McCawley's

discussion of the phrase-structure base component of * transformational

grammar (McCawley 1968). (A frequent shortcoming of computational research

on natural languages, especially that conducted by non-linguists unner the

name of "artificial intelligence", has been to extend context-free grammars

in procedural ways, apparently out of a lack of appreciation for declarative

67

formalisms; see, e.g., Wlnograd 1971, 1975.)

Finally, not only Is It true that relatively small context-free

grammars are easy for human beings to devise, understand, and Improve, but

they are also easy for computers to manipulate. There have always existed

algorithms for parsing with a context-free grammar, and in recent years

extremely good algorithms have been described and refined in many variants

appropriate for a wide range of purposes (Aho and Ullraan 1973).

2.2 Disadvantages of Context-Free Grammars

There are, to be sure, some disadvantages of context-free grammars, and

they spring to itind even more readily than do the advantages since they are

a constant source of difficulty.

The theoretical difficulties may be dispensed with — such things as

the Inability to have infinite branching from a single node (so as not to px^t

an upper bound on the number of items in a coordinate structure), or the

inability to deal with unbounded overlapping dependencies of the sort which

are are well-known to be a prominent feature of Mohawk (Postal 196Ab).

(Postal's criticism is sound, although just slightly askew; it is revised in

Fldelholtz 1974.) These difficulties are true, but Irrelevant. Such examples

show that neither in terms of weak generative capacity (the sets of strings)

nor in terms of strong generative capacity (the sets of structural descrip-

tions) do context-free grammars provide a description of natural language

surface structures; but as a practical matter they cause no particular

trouble.

The fact that these are the wrong terms in which to discuss the ade-

quacy of context-free grammars becomes clear from the observation that, if we

simply restrict a natural language to sentences short enough to fit In six-

point type between California and Alpha Centauri, then the restricted lan-

guage will be finite and hence trivially a Chomsky type 3 (finlte-itate)

language, and thus a fortiori context-free.

The point is that a grammar which is not clear enougu to be invented

and improved by human beings cannot be produced; and clarity, as Edsger

Dljkstra observes, "has pronounced quantitative aspects" (Dljkstra 1972).

The chief practical difficulty with context-free grammars for natural

68

a.^-^..;.^.«^M,wfc.|nw|

languages has been their large size and their corresponding lack of trans-

parency. Susurao Kuno (1963) reported on an English grammar containing 133

syntactic categories and over 2100 rules, which did not yet Incorporate the

obvious agreement restrictions of English. Grammars with upwards of 10,000

rules are known to exist.

As the number of rules grows into the thousands, and as It is realised

that tens of thousands of rules would be only a beginning, all the practical

advantages of context-free grammars disappear. Such grammars are no longer

at all easy to understand, nor are they easy to manipulate for computer use.

A typical experience, repeated over and over throughout the ^BO's and

early 1970's, has been that a context-free grammar can be written readily to

serve as an initial demonstration model over a limited range, but that re-

placing that context-free grammar with one adequate for actual natural

language is, practically speaking, Impossible. As Samuel Johnson wrote

in the preface to his Dictionary of 1755, "a large work is difficult because

it is large, even though all its parts might singly be performed with

facility."

2.3 Why Context-Free firammars Grow Large

Context-free grammars grow large beyond the effective power of humans

to contral them primarily because of the need to encode within them res-

trictions on contexts. This is, of course, not a contradiction or a paradox;

the name "context-free" refers to the form of the rules In the grammar,

not to any impossibility of utilizing context to restrict the language of

the grammar. As every linguist should know by now, Peters and Ritchie

(1973) contains a demonstration that every language which can be "analyzed"

by testing putative structural descriptions using context-sensitive well-

formedness rules Is a context-free language — that Is, it also is generated

by a context-free grammar, although a context-free grammar which may have

many, many rules.

A small example of the way In which the need for context expands

context-free grammars is given by Winograd (1971). He exhibits the

grammar:

69

A^ i iiri.mi.iwranitf 1 rnrrii -inh mam»immimm^miimiäimuuä

1. S -* NP VP

2 . NP -* DET NOUN

3. VP -" VERB/INTRANS

4. VP -► VERB/TRANS

5. DET "* the

6. NOUN -* giraffe

7. NOUN -* apple

8. VERB/INTRANS "* dreams

9. VERB/TRANS -* eats

which generates derivations such as:

DET

the qiraffe eats

Wlnonrad points out, though, that to expand the f.rammar so as to include

number agreement for subjects, thus giving:

The giraffes eat the apple.

The giraffe eats the apple,

but not:

*The giraffes eats the apple.

*The giraffe eat the apple.

requires (If we are to 1,0 strictly observant of the notion of a context-free

grammar) that we Introduce new category symbols to code the terminal

70

 ,-..—-Wl-l., »Itv.!/«..:-^.»^^^^-^^..»»«....^,.-. /..-».A--^^.
:M

vocabulary. We must add rules:

6a. NOUN/SG -* giraffe

6b. NOUN/PL -+ giraffes

8a. VERB/INTRANS/SG "♦ dreams

8b. VERB/INTRANS/PL -* dream

9a. VERB/TRANS/SG "* eats

9b.. VERB/TRANS/PL "* eat

and we must also double the number of rules above the terminals, adding

additional non-terminal vocabulary as necessary:

la

lb

2a

2b

3a

3b

4a

4b

S -* NP/SG VP/SG

S -*" NP/PL VP/PL

NP/SG "* DET NOUN/SG

NP/PL -* DET NOÜN/PL

VP/SG -* VERB/INTRANS/SG

VP/PL -* VERB/INTFANS/PL

VP/SG "* VERB/TRANS/SG NP

VP/PL "* VERB/TRANS/PL NP

(Observe that two symbols in this grammar such as NP/SG and NP/PL are wholly

distinct symbols from the standpoint of the definition. Their simllnritv In

spelling is a help to the human reader in grasping the significance of the

symbols in the grammar, but the grammar itself does not exploit the simi-

larity.) We now have derivations such as:

71

L iianiiniimiM-n. ■ riimi[iTiwiiiiii tY'm^mmtumämaäiitiiimmmimm^tm^^a^m^

NP/SG

DET

the

NOUN/SG

giraffe

VP/SG

VERB/INTRANS/SG

dreams

This is straightforward, and it is clear that the way in which we can

enforce number agreement in context is by duplicating the vocabulary of

the grammar and the productions of the grammar all the way back from two

items which must agree (such as NOUN/SG and VERB/INTRANS/SG) to their

common parent (here, clear back to the start symbol S). If the agreement

possibilities have three values (masculine, feminine, and neuter, say)

then the symbols and the rules must be multiplied by three, and so forth.

It becomes discouraging to note that a similar multiplication will

be required for every individual feature of context which must be coordinated

— next, for Instance, we might notice that our grammar even with number

agreement for subjects will derive:

NP/PL

DET NOÜN/PL

VP/PL

VERB/TRANS/PL

the apples eat

^»U^.^^.^,.!,.,^,!,^^.^^
iiiTiliiniiTiiiiifiliiia"W

(We can assume that the rule re-wrltlng plain NP still exists in the

Rraramar, because object number agreement is not necessary; alternatively we

could double the VP rules again, to introduce freely both NP/SG and NP/PL

as objects.) TMs would lead us to double once ap.aln to code the correct

restrictions for "animate subject:, leading to terminal vocabulary such as:

NOUN/SG/ANIM -* giraffe

NOUN/PL/ANIM "* giraffes

NOUN/SG/NONANIM "* apple

NOUN/PL/NONANIM "* apples

VERB/TRANS/SG/ANIMSUBJ "♦ eats

VERB/TRANS/PL/ANIMSUBJ "♦ eat

and ap,ain we must double the rest of the productions, beginning with:

la. S "* NP/SG,'ANIM VP/SG/ANIMSUBJ

lb. S "* NP'PL/ANIM VT''PL/ANIMSUBJ

J.c. S -* NP SG/NONANIM VP/SG/NONANIMSUBJ

Id. S "* NP/PLy NONANIM W'PL/NONANIMSUBJ

Even though we have already passed the point of reasonableness, it Is

obvious that we must continue this process for a long time. As Wlnograd

remarks, "this sort of duplication propagates multIpllcatively through the

gmmmar, and arises in all sorts of cases."

This then is the way in which the desire to encode context restrictions

c.uisos a context free giamm;ir to grow, by multiplying Its sequences of

rules over and over ajvain.

2.'» Atteviptjr. to Reduce the Sl^.e of Context-Free Grammars

The preceding nnalvsis of how context-free grammars become un-

manageable suggests that some method is needed to simplify grammars bv

indicating where all the parallel sets of rules occur. In practice,

virtually everv serious use of context-free grammars has introduced some

75

such mechanism (even if only informally), and such mechanisms will be the

subject of following sections.

In addition to these methods, however, there have been at least two

attempts to reduce the size of large grammars by a process of factoring

them into smaller grammars, a sort of "divide and rule" strategy.

The first of these was Woods's notion of creating a "regular expression

grammar" (Woods 1969). In principle, this consists of an algorithm which

takes an arbitrary context-free grammar and factors it into a set of

regular (type 3) grammars, plus the essentially context-free transitions

between them. In practice it seems that all examples have been composed

by hand in already factored form. In addition to the gain of breaking a

larger context-free grammar into a number of smaller grammars, it was

pointed out that the smaller grammars could be improved by using optimization

techniques applicable to regular grammars. Such grammars are of some

interest, and they need not be developed in the "procedural" AT terminology

of transition networks as Woods has chosen to develop them. (See Lalonde

1977 for a development as "regular right-part grammars" leading to a theory

and an implementation which appear more attractive than those of Woods.)

Whereas Woods broke up grammars "horizontally", the other attempt

was to break up grammars "vertically" into smaller pieces applied sequen-

tially; this was the "hierarchical sub-grammar" mechanism Introduced in

the Oulnce system of the Project on Linguistic Analysis (Wang and Chan 1975,

Haskins 1973). The POLA technique required human-separation of a large

grammar into pieces, with the non-terminal symbols of some grammars serving

as terminals of other grammars. In the development of such grammars It

was thus possible to separate some concerns, because in applying them to

parsing it was possible to utilize alternative grammars depending on the

tree-tops developed by a preceding grammar application.

Both of these ways of making one large context-free grammar Into

several smaller ones are useful, though they address such different goals

that it is impossible to compare their relative effectiveness (and thoy

are not mutually exclusive). But they have in common that neither really

does much about the multiplicative duplication of vocabulary symbols and

rules previously described. Hence, it has been necessary to augment both

74

schemes with additional extensions to control multiplicative duplication,

which would still be crippling If not contained.

3. A Model for Context-Free_Crammars with Structured Vocabulary

Once we have identified the problem of multiplicative duplication

of vocabulary and rules in a context-free grammar, it is tolerably

obvious what to do about it: we must introduce a notational system which

allows the process of duplication to be implied, rather than requiring

that it be carried out at full length. In fact, this step is so obvious

that it has been taken by almost everyone who ever wrote grammars to be

read by human beings, but the variety of different notions and notations

Introduced has been so bewildering that the similarities have not generally

been appreciated. For this same reason the device has not been developed as

well as it could be for use in descriptions of natural languages.

There is now an elegant and comprehensive notation available for

writing context-free grammars with systematically-structured vocabularies

and productions, and this is the "two-level" grammar devised by Adrian

van Wijngaarden for the definition of the programming language Algol 6ß.

The van Wijngaarden grammars (in some intuitive sense) cover and include

all the other proposals, and are the simplest technique available. This

descriptive system is unfortunately not widely known, despite (perhaps

because of) the publicity given to the language Algol 68.

In this section, accordingly, we will introduce the notion of a

van VJijngaardcn grammar. We will then relate it to a number of descriptive

techniques used by linguists, to a number of extensions of context-free

languages used by computational linguists, and also to related formalisms

used by computer scientists to define formal languages and programming

languages — In particular, to the attribute grammars of Donald Knuth and

the affix grammars of C. H. A. Koster.

It Is not at all clear — a reader should know In advance — that

it would be wise to adopt the van Wijngaarden grammar format as an actual

encoding of rules to be used for computational analysis; but the van

Wijngaarden grammar abstracts the essential problem so cleanly that it

offers the indlspenslble framework of insight within which related formalisms

75

can be understood and compared with one another.

3.1 van Wljngaarden Grammars

The Idea of a "two-level" grammar (or "van Wijngaarden grammar",

sometimes also W-grammar or vW-grammar) was originated by Adriaan van

Wijngaarden, for many years the director of the Mathematisch Centrum at

Amsterdam, as a method for describing the nrograrmlng language Algol 68

then under development by an international committee (van Wijngaarden 1965,

van der Poel 1971). A van Wijngaarden description of Algol 68 appeared

in 1969 (van Wijngaarden et al. 1969) which failed to exploit the potential

of the method; a revised description appeared in 1975 (van Wijngaarden et

ql. 1975), which for the first time showed to advantage the two-lovel

grammar idea, and Interest in the method revived to some degree (see

Cleaveland and Uzgalis 1977).

Unfortunately for the descriptive method, the Algol 68 language has

not been well received (specimen reaction, attributed to P. Z. Ingeman:

"This language fills a much-needed gap"), and the widespread distaste for

the language Algol 68 has contributed to the unpopularity of the method

specially devised to describe it. Worse still, the Algol 68 Report

introduced a slightly different notation for a context-free grammar, and

this Impeded discussion further. (The Algol 68 Report notation for a van

Wijngaarden grammar will not be used here, but a short specimen is included

at the end of section 3.2) But the method of syntax description is really

elegant and Important, and can be divorced from Algol 68. It should be

better known to computer scientists and linguists.

U-t us begin with a couplo of examples of van Wijngaarden grammars;

after the examples the terminology will be reviewed at length and made

more precise. Tn section 2.3 above, we considered a grammar from Wlnograd

with rules such as

la. s "* np/sg vp.'sg

lb. s "*■ np/pl vp pi

2a. np/sq "* det noun/sg

2b. np/pl ~* det noun/pl

76

and so forth. (The use of lower-case letters to spell the symbols Is a

change, which will be explained presently, but obviously this Is the same

grsmmar as when upper-case letters were used.)

We could abbreviate these rules by taking advantage of the structure

which is In the vocabulary of symbols — I.e., the systematic relations

between the pairs of symbols such as "np/pl" and "np/sg". We can introduce

a cover term for either Msg" or "pi", and write the cover symbol as "NUM"

(using upper-case letters for cover symbols, lower-case letters for the

others). Using this abbreviation, the rules become

hi. <s> :-Mnp/ NUM> <vp/ NUM)

h2. <np,/ NUM> :-»(det) < noun/ NUM)

and so forth. (We will use the angle-brackets to surround the symbols

in the grammar, since each one may consist of more than one piece such as

"noun/" and "NUM", and the brackets aid in visual parsing of the rules by

a human reader.) We must now understand each of these rules as a "rule

schema", a pattern for generating the rules given before by plugging in

various values for "NUM". In order to make this Idea precise, we will

specify the values that "NUM" can assume by a separate context-free

grammar, a "meta-grammar":

ml. NUM : :-* sg I pi

It is very important also to stipulate that the same value of NUM must be

Inserted into each occurrence of NUM In a rule schema. For Instance,

there is not a rule such as " s -> np/sg vp/pl ", because that could only

result from replacing NUM In rule hi. with 'sg' at its first occurrence,

hut with 'pi' at its second occurrence. This principle we will rofor to

as the Uniform Replacement Convention (URC).

Thoso two sots of rules above constitute a "two-level" van V.'ijngaarden

grammar corresponding to the original context-tree grammar (the four

rules from Wlnograd) given just previously. Those four original rules are

represented In the van Wijngaarden grammar by (a) rule schemata which

Incorporate variables In context-free rules (like rules hi, h2 above),

and (b) a second context-free grammar whose terminal strings are the permitted

values of the variables (like rule ml above). Terminal strings of this

77

grammar are substituted for variables in the rules of other grammar,

subject to the Uniform Replacement Convention.

The name used for the variables is "meta-symbols". The second

grammar, naturally enough, is called the "meta-graramar" because it defines

the meta-symbols. The first grammar is called a "hyper-grairariar", into

which the substitutions are made. Accordingly, we have three kinds of

rules:

(*) Meta-rules are context-free rules which define the possible

values of meta-symbols:

ml. NUM : : -*• sg I pi

^ Hyper-rules are schemata for context-free rules, whose symbols may

contain meta-symbols:

hi. < s^-Knp/ NUM) <vp/NUM>

h2 . i np/ NUM >: "* < det) (noun/ NUM >

These two sets of rules together make up a "two-level" van Wijngaarden

grammar. They define the language generated by their production rules:

(3) Production-rules are the context-free rules which can be produced

from the schematic hyper-rules by systematic replacement of meta-symbols

according to the Uniform Replacement Convention.

The meta-rules and hyper-rules of the van Wijngaarden grammar above

specify the four production-rules;

pi. 3—►np/sg. vp/sg

p2. s-*np/pl vp/pl

p3. np/sg ■* det noun/sg

p4. np/pl -* det noun/pl

In this case, as very frequently happens, the two sets of rules

In the van Wijngaarden grammar (the meta-rules and the hyper-rules)

specify a set of production-rules which could perfectly well he written

down in full, as we have just done. Rut the van Wijngaarden format Is

shorter (not much here, but often very much shorter), and more importantly

the van Wijngaarden grammar preserves the Information that rules which

78

differ only In the number-agreement specified ("NUM") are really two

instances of the same rule schema. This formal generalization corresponds

to a linguistic claim that sentences with singular subjects do not have a

different grammar from sentences with plural subjects; in fact the grammar

is the same, but there must be number agreement between the verb and its

subject. Also, In the van Wijngaarden format the rules for sentence

formation could be modified by changing just the appropriate single

rule schema (hyper-rule), leaving the definition of the meta-variable NUM

in the meta-rules unchanged.

The preservation of this kind of structure in the vocabulary of

symbols is a most important feature of van Wijngaarden grammars for

natural languages, and It amounts to more than just a clever abbreviation

for an ordinary context-free grammar. As we will see later, a two-level

grammar can define languages which have no context-free grammar, and van

Wijngaarden grammars are actually equivalent to Chomsky type-0 grammars,

or unrestricted rewriting systems.

It will be apparent to every linguist that the use of meta-symbols

in context-free grammars is an old custom in linguistic description (and

we will examine some of those older uses below); the distinctive contribu-

tions of the van Wijngaarden grammar are some of the techniques for ex-

ploiting such meta-symbols, and the explicit use of (what else?) a second

context-free grammar to derive the meta-symbols. The whole arrangement

seems extremely obvious, but it turns out to have some very non-obvious

properties.

3.2 Notation for van Wijngaarden Grammars

Since we now have three kinds of rules, three kinds of symbols,

and so forth, it is best to have a very clear notation for keeping them

separate. This section introduces the full nomenclature in a step-by-

step fashion, and at the end of the section there is a reference summary

of the notation which can be consulted while reading the remainder of this

chapter.

We will use upper-case letters for meta-symbols. and lower-case

letters for symbols such as the ones which can be derived from meta-

symbols (we call these lower-case symbols proto-symbols, but their name

79

I ■'

seldom comes up). The grammar of the meta-symbols Is the meta-srammar.

Each meta-rule in such a meta grammar will take the form of expanding one-

single raeta-symbol on the left side of a meta-rule into a string of meta-

symbols and proto-symbols. Thus, the meta-symbols are the non-terminals

of the meta-grammar and the proto-symbols are its terminals; that is why

meta-symbols are upper-case and proto-symbols are lower-case, as is

customary in an ordinary context-free grammar written according to the

usual Chomsky conventions. For example, a meta-grammar of three meta-

rules is the following:

SUBJ : : -,, ANIMATE

ANIMATE : : -*■ minus-animate I plus-animate HUMAN

HUMAN : : ~* minus-human I plus-human

where SUBJ, ANIMATE, and HITMAN are the non-temlnals Onetn-syiubols), and

minus-animate, plus-animate, ninus-huraan, ami plus-human are the terminals

(proto-symbols). (There is really no requirement to spell out "plus" or

"minus", but the style customary in writing these grammars is tc. use long

names for symbols — probably a bad style.)

In the meta-rules, the symbol ::-> is used for the "re-write"

symbol; a different re-write symbol is used In each type of gramirar so

that a single rule in isolation can always have its type identified. Any

rule with the double-colon arrow is necessarily a neta-rule. The usual

vertical bar is used to separate alternatives on the right side of rules,

and the sane bar Is used in all grammars. Alternatives can always be

written as additional rules at the option of the grammar writer, so the

three meta-rules above are equivalent to the five (unabbreviated) meta-

rules:

SUBJ : '• - ANIMATE

ANIMATE : : ■* minus-animate

ANIMATE : : ■* plus-animate HUMAN

HUMAN : : "♦ minus-human

HUMAN : : -* plus-human

It is necessary to stress that these meta-grammars are to be Interpreted

as utterly-ordinary context-free grammars. The only feature which is

slightly unusual is that you are permitted to choose any non-terminal as

the start-symbol for the grammar, and then the values of that non-terminal

are the strings it derives in the meta-grammar. For example, in this meta-

grammar if SURJ is chosen as the start symbol, it gives three possible

strings of terminal proto-symbols:

SUBJ derives: minus-animate

plus-animate minus-human

plus-animate plus-human

So, in the rule schemata, wherever SUBJ appears it could be replaced with

any of these three strings. But if HUMAN is treated as the start symbol

of the meta-rules, then HUMAN only leads to two strings of terminal

proto-symbols:

HUMAN derives: minus-human

plus-human

and so where HUMAN Is used In the rule schemata it could be replaced only

with one of these two strings.

Moving now to the other component of a van Wijngaarden grammar, we

will call the grammar of the rule schemata the hyper-grammar. The symbols

used In the hyper-granmar are hyper-symbols, which are strings of proto-

symbols (little letters) and meta-symbols (big letters) enclosed In angle

brackets. For example, np SUBJ is a single hyper-symbol, which contains

within Its angle brackets the proto-symbol 'np' and the meta-symbol

'SUBJ'. Each rule schema is called a hyper-rule, and takes the form of

a context-free rule rewriting a single hyper-symbol on the left side as

a string of hyper-synbols. For example, three hyper-rules are:

< s > : -< np SUBJ > <SUBJ vp >

<np SUBJ^ :-*<det terminal) < noun 3ÜBJ terminal)

(SUBJ vp) : -* (verb SUBJ terminal)

81

mmmmm

Each has one hyper-symbol on the left side, and a strin« of hyper-

symbols on the right side. In hyper-rules the rewrite symbol Is : -> ,

so any rule with a single-colon arrow is a hyper-rule. Ilyper-alternatlves

are separated by a vertical bar, Just as with meta-alternatlves. (There

are no hyper-alternatives In tlse rules above.) We have already used up

the distinction between upper-case non-terminals and lower-case terminals

in the meta-grammar, and indeed both appear Intermixed in the hyper-

symbols. We need a new convention to express that distinction in hyper-

grammars, so by convention all terminals in hyper-grammars will end with

the proto-symbol "terminal". (In the hyper-grammar above, both the

second and third rules expand to strings of terminals only.) Some

additional mechanism is then required, such as a lexicon, to associate

each terminal symbol with its representation, which is ordiuary computa-

tional practice anyway. We will not be concerned here with the represen-

tation of t«rminals.

The three hyper-rules make use of the meta-symbol SUB.T which (as

we saw before) derives three terminal strings in the meta-grammar: since

any of these may be substituted (observing the Uniform Replacement Con-

vention) in each hyper-rule, that makes the hyper-rules short for nine

rules In total:

(s) '* (np minus-animate) <minus-animate vp)

(3) ~* (np plus-animate minus-human)
<plus-animate minus-human vp)

(s) "* ^np plus-animate plus-human)
^plus-animate plus-human vp)

^np minus-animate) ^ (d^t terminal) ^noun minus-animate terminal)

<np plus-animate minus-human) "* ^det terminal)
(noun plus-animate minus-human terminal)

(np plus-animate plus-human) "* < det terminal)
<noun plus-animate plu^-human terminal)

^minus-animate vp) "* (verb minus-animate terminal)

(plus-animate minus-human vp) ~* (verb plus-animate minus-human terminal)

(plus-animate plus-human vp) "* (verb plus-animate plus-human terminal^

Rules such as these, generated by the hyper-rule schemata by replacing

meta-symbols, we will call production-rules. Such production-rules

have the plain arrow as the rewrite symbol (their mark as regular context-

free grammar rules), and they rewrite a single production-symbol on the

left side as a string of production symbols. The production-symbols are

simply the concatenation of the proto-symbols within a pair of angle

brackets after substitution has taken place; the brackets are ordinarily

retained for ease in reading. Observe carefully that the separation be-

tween distinct proto-symbols is no longer present after replacement of

meta-symbols has taken place; a production-symbol such as "s" and a

production symbol such as "npplus-anlraateminus-human" are equally thought

of as just single, unanalyzeable symbols — exactly as they would be in

an ordinary context-free grammar.

For reference, we now Insert a summary of this section:

A van Wijngaarden grammar (vW-grammar) consists of two components:
(1) a meta-grammar, and (2) a hyper-grammar.

The purpose of the meta-grammar is to define a structured vocabulary
of symbols. It takes the form of a context-free grammar in which the
non-terminals «re meta-symbols (written in UPPER CASE LETTERS), and the
terminals are proto-symbols (written in lower case letters). Each meta-
rule consists of re-wrltlng a single raeta-syrabol as a string of meta-
symbols and proto-symbols. The re-write symbol used in meta-rules is :; ~^
The symbol used in meta-rules to separate meta-alternatlves is L

Example meta-grammar component of a vW-graramar:

SUBJ : : -•• ANIMATE

ANIMATE : : -*■ minus-animate I plus-animate HUMAN

HUMAN : : -*• minus-human | plus-human

The purpose of the hyper-^raromar is to serve as a set of rule
schemata for the rules defining the language of the vl!-graramar. It takes
the form of a context -free grammar in which the non-terminals are h^per^
symbols (strings of proto-symbols and meta-symbols enclosed In angle
brackets O) ^"^ t^0 terminals are hyper-symbols ending with the proto-
sytnbol 'terminal'. Each hyper-rule consists of rc-writlng a single
hyper-symbol as a string of hyper-symbols. The re-wrlte symbol used in
hyper-rules is j_^ . The symbol used In hyper-rules to separate hyper-
altcrnatlves is j_ .

Example hyper-grammar component of a vW-grammar:

S3

< s > : -* < np SUBJ > < SUBJ vp >

<np 3UBJ> : "* <det terminal) (noun SUBJ terminal)

<SUBJ vp) :-*<vBTb SUBJ terminal)

In a vW-grammar, the hyper-rules specify a grammar (the production-
grairanar) which is obtained by replacing in the hyper-rules all the meta-
synbols with strings of proto-symbols which can be derived in the meta-
grammar by treating the meta-symbol as the start-symbol. (Thus, the
meta-graramar may actually be made up of several sets of meta-rules which
do not interact.) This must be done in accordance with the Uniform
Replacement Convention (URC), which says that all instances of the same
raeta-symbol in a single hyper-rule must be replaced with the same string
of proto-symbols.

The purpose of the production-grammar obtained in this way is to
specify the language of the vW-gramraar. It takes the form of a context-
free grammar (but possibly with an infinite number of rules) in which
the non-terminals are concatenations of proto-symbols (strings of lower
case letters), and the terminals are concatenations of proto-symbols
ending in 'terminal'. (Some further mechanism, such as a lexicon. Is then
used to give the representation of each terminal symbol.) Each production-
rule consists of re-wrlting a single production-symbol as a string of pro-
duction-symbols. The re-write symbol used in production rules is ;> .
The symbol used In production-rules to separate production-alternatives
is J^ . Angle brackets may optionally be retained around production-
symbols to aid readability.

Example production-grammar (specified by the vW-grammar above):

(

<s

(np minus-animate

(np plus-animate minus-human

< np plus-animats plus-huraan

«Xa

-♦ (np minus-animate) (minus-animate vp)

-* (np plus-animate minus-human)
(plus-animate minus-human vp)

-* (np plus-animate plus-human)
(plus-animate plus human vp)

"*(det terminal) (noun minus-animate terminal)

-* (det terminal)
(noun plus-animate minus-human terminal)

-* (det terminal)
(noun plus-animate plus-human terminal)

•* (verb minus-animate terminal)

-* (verb plus-animate minus-human terminal)

< minus^animate vp

(plus-animate minus-human vp

(plus-animate plus-human vp) -* (verb plus-animate plus-human terminal)

('

The language generated by this production-grammar (and thus by
this vW grammar) consists of three strings of terminals, all with deriva-
tions essentially alike except for agreement of selectional restrictions:

< np minus-animate) (minus-animate vp)

< det terminal> (neun minus-animate terminal) < verb minus-animate terminal)

(Important note. The terminology and notation,introduced in this

section (and used in all succeeding sections) were devised especially

for this presentation, and do not correspond to those in the Algol 68

Report or Revised Report (van Wijngaarden et al. 1969, 1975); the present

notation more resembles that used in var'itus other, independent, studies

(Baker 1972, Deussen 1975, Greibach 1974). But since the Algol 68

Report is the only sizeable example of van Wijngaarden grammar, it is

nice to be able to read it; the recent Introduction to van Uljnsaarden

grammars by Cleaveland and Uzgalis (1977) is an excellent practice field

for the Algol 68 Report, and the present notation was chosen with an eye

to making the transition as easy as possible.

(The Algol 68 Report, f^r example, uses the word "notion" in most

of the places where "symbol" is used here; so a grammar consists of

meta-notions, hyper-notions, proto-notions, and so forth. This use of

"notion" is counter-intuitive. The notation of the Algol 68 Report differs

in being less redundant; for Instance, the sample van Wijngaarden grammar

would be written:

(meta-rules:)

SUBJ:: ANIMATE.

ANIMATE:: minus-animate; plus-animate HUMAN.

HUMAN:: minus-human; plus-human.

85

(hyper-rules:)

s: np SUBJ, SUBJ np.

np SUBJ: det terminal, noun SUBJ terminal.

SUBJ vp: verb SUBJ terminal.

(No arrows, final periods, alternates separated by semicolons, hyper-

symbols set apart by commas.)

(This notation Is admirably suited to typewriters, and it is a

pity that it is so hard to read (much harder, of course, in larger and

more complicated grammars). But ten years of bitter experience have

made it clear that for some reason people do not immediately find the

Algol 68 Report notation helpful.)

3.3 Chomsky's Convention as a van Wljngaarden Grammar

As another example of the notation and the motivation for grammars

with structured vocabulary, we might consider the "X Convention" as

introduced by Chomsky (1970). (This presentation is now completely out-

dated, but it will serve as an example here since it is likely to be

better known than more recent work in X syntax.) The X convention is

Introduced as part of a general reformulation of the base component so

that instead of unanalyzeable non-tcrmtnal symbols, each non-terminal

node will be characterized by a complex symbol. (This is in Itself a

way of introducing a structured vocabulary into a context-free grammar,

a point to which we will return eventually.) Jackendoff (197A) has

summarized the X convention In this way: "the general nature of the

claims made by the X convention is now clear. The structural schema

(28) (below), in which V represents any lexical category, Is claimed to

constitute a linguistically significant generalization of the structures

associated with the major categories.

86

i-
(28)

Spec

Comp

That Is, we expect there to exist rules whose structural descriptions

refer to a range of structures including mote than one value of X."

The rules proposed to be Included in the base component by Chomsky

will employ "a variable standing for the lexical categories N, A, V"

which is called X. "Then the base rules introducing N, A, and V will

be replaced by a schema." Eventually Chomsky arrives at rules which

are summarized by Jackendoff as:

X -* [Spec, X] - X

X -*■ X - comp

where 'comp' Is an abbreviation for some sequence of nodes, but Is not

Itself a constituent. Sample comps are "NP, S, NP S, NP PrepP, PrepP

PrepP, etc." (Chomsky 1970), and in the X schema above the "full range

of structures that serve as complements" should appear."

As presented by Chomsky, this entails a complete redefinition of

the base component in ways which are not made fully explicit. We can,

however. Identify at least four different devices at work: (1) use of X

as a cover term for N, A, or V in rule schemata; (2) use of X, X, X to

indicate systematic relatedness of categories; (3) use of [Spec, Xj as

a complex symbol which is analyzed differently depending on the value of

X — (Spec. Nj as the determiner, fSpec, V^ as the aixiliary, and [Spec, AJ

perhaps as the system of qualifying elements associated with adjective

phrases. "Analyzed" has here a technical meaning, namely that there

are rules

87

' •%ri--' ...^ ^- ■:^;r.... :^..-^ai,.\^?|MMitti,i^1^

C Spec, N] —i Het

C Spec, V 3 --> Aux

and so forth; (A) use of 'comp' (Chomsky uses an ellipsis ... Instead)

to Indicate expansions Into various node sequences, although 'comp' Is

not a constituent.

Most of these devices can be captured adequately in a van Wljngaarden

grammar, and so it will be an Instructive exercise to recast the two

rule schemata of Chomsky, and all the accompanylnj» understandings about

how they are to be Interpreted, into van Wljngaarden form.

(1) It is easy to find a way to let X represent the category

symbols N, A, or V in a rule, since that is a chief use of meta-varlables.

All we need Is a meta-rule deflnln" X:

(2) It Is also easy to capture the relatedness of the categories

X, X, X by defining a meta-symbol for bar and double bar (call them EAR

and DOUBLE), and then using hyper-symbols in the hyper-rules which are

composed of the meta-symbol for X and the raeta-symbol for one of the

bars — such as <x), (X BAR), (X DOUBLE) — so that each hyper-symbol

contains a use of the same meta-varlable, X. The separate question of

how the categories so related are rewritten in terms or one another Is

correctly captured In the Chomsky schemata, and so it transfers naturally

to the hyper-rules which are also schemata. The first hyper-rule, then,

will be:

<X DOUBLE) s-* < spec X BAR) <X BAR)

(3) Having Introduced such production-syinbols as (spec n bar) or

(spec v bar) under the covering hyper-symbol of ^spec X BAR) , it is

perfectly easy to distinguish among them and to expand them differently

through additional hyper-rules:

88

J_ ^i..iMi..^,.i,j.>«.a.-.- TMfttitiitimffiiaigftitiiii-am

< spec n bar) :-* (det)

(spec v bar) : "* <*ux) < OPTIQNALADV)

< spec a bar) : *♦ (qual)

(A) The renwiitvln;; question of how to write 'comp' and yet avoid

havlnj', It be a constituent is the most difficult. Chomsky used the wild-

card symbol of ellipsis because rule schemata do not provide a way to

summarize rules with unboundedly different numbers of symbols on the

right-hand side, and neither do van Wljngaarden hvper-rules.

It Is possible, however, that the content of 'comp' should not

have a recursive definition with the structure hidden, but rather should

be defined In terms of a finite number of "slots", each of which can be

"filled" by various nodes or In some cases by nothing; this style of

description has often been used by linguists. For exposition, we will

assume that a 'comp' is an optional NP or PF, followed hy an NP or S.

This will provide an exhibition of one way in which optional elements

can be introduced into van Wljngaarden grammars.

The rule which we wish to write would be represented in a common

notation for abbreviating context-free rules as:

({.']) (">
This abbreviates six rules, namely those with right-hand sides

X NP NP

X PP NP

X NP

X NP S

X

X

rp S

S

We will now explain an important additional convention which is

needed in interpreting van Wljngaarden grammars for optional elements

89

^.»ftvm.a^a.;.;,
L^aiaaaeaiiiiiiaifa.dimaig^^^

and «l«o for other purposes, and then we will apply that Information

to writing the rule above.

In a van Wljngaarden grammar, we can make use of optional elements

by Introducing a new meta-symbol and meta-rule:

EMPTY = = -♦ X

(EMPTY has as its expansion the null string, represented by the lower-

case lambda LM rather than the usual upper-case UU to preserve conven-

tions.)

We can then write meta-rules utilizing EMPTY as one of the

alternatives, for example:

OPTIONALADV : : -* adv I EMPTY

and hyper-rules to use such meta-symbols, such is the one from the last

sub-section:

(spec v bar > s -* < aux > (OPTIONALADV)

Such a hyper-rule will give rise to sub-trees In structural descriptions

such as

<spec v bar ^

and

< aux) v adv)

vspec v bar)

\ aux \ EMPTY,

(We will customarily show r'MPTY In such tree« rather than Its terminal

empty string in the meta-gramnar, for ease of readlnf,.)

The Important convention Is that we Interpret a structural descrip-

tion such as the second one above to be exactly the same as another tree

In which the EMPTY and all nodes which Joinluato EMPTY exclusively have

been pruned away: here, we Identify the second tree above with the

pruned tree

90

Ääi^aa&iiMätft^^ mssäüummMimia. atyäuäaätöfttttf&iit

< spec v bar >

s ■

< aux)

We will have more important uses for this convention In following sections,

since it will permit the enhancement of using hyper-symbols as "predicates",

which increafes the naturalness of van Wljngaarden grammars.

Using tils device for optlonallty, then, we can now write rules

for the COMP elements:

OPTIONALCOMPA :=

COMPB : : -* np

EMPTY = : -♦ X

i X BAR > : -* < X >

np pp EMPTY

<OPTIONALCOMPA) < COMPB)

Here the COMP meta-symbols can be considered as the names of "slots"

and their terminal meta-expanslons as "fillers" for the slots; the slot

names play no role in trees generated by the hyper-rule above, because

they are replaced with actual node names in production-rules. (This

Interpretation Is capable of further historical and practical development,

since linguists have argued for years about how to incorporate such

notions into context-free grammars.)

We have now completed, piecemeal, the construction of van Wljngaarden

rules to describe Chomsky's two schemata nnd quite a number of attendant

informal understandings. The result looks like this.

van Wljngaarden grammar for j:he. X convention

Meta-rules:

mi. X : : ** n i a I v

m2. BAR :: ■* bar

m3. DOUBLE : : "* BAR BAR

91

i ""i nätmumtimummim

r

m4. OPTIONALCOMPA : :-* np i pp I EMPTY

m5. COMPB : : -♦ s I np

mö. OPTIONALADV =

m7. EMPTY '• : ^ X

*dv i EMPTY

Hyper-rules:

hi. <X DOUBLE) : "♦ < spec X BAR) < X BAR>

h2. < X BAR) : "* (X > < OPTIONALCOMPA) < COMPB >

h3. <sp«c n bar) :- <det)

h4. < spec v bar) :-* <aux) (OPTIONALADV)

h5. (äp«c a bar) : "* ^ qual)

The production rules which can be dertved from the hyper-rules (via the

Unlfom Roplncenent Convention) are:

(from hi-.) n bar bar -♦ spec n bar n bar
a bar bar .*♦ spec a bar a bar
V bar bar ■■» spec V bar v bar

(from h2i) n bar «# n np np
n bar -* n PP np
n bar ■+ n np
n bar •* n np s
n bar -» n PP 3

n bar -» n s

a bar -» a np np
a bar -* a PP np
a bar -* a np
a bar -* a np s
a bar -• a PP s
a bar -► a s

V bar -♦ V np np
V bar -♦ V PP np
V bar «^ V np
V bar -» V np s
V bar -♦ V pp s
V bar ~» V s

')!!

(from h3:) spec n bar -» det
(froa ti-.) spec v bar -♦ avx X

spec v bar -* aux adv
(fro® h5:) spec a bar "♦ qual

It ta Indeed clear that several linguist leally significant generali-

sations are not assorted In these praductlon-rules, bat they are asserted

In the rule» of the van Wljngaarden Rrammar (whether or not these generali-

zations are correct Is not the point here; for further Information

about the X convention see (Ualitsky 1975). It is because these linßulsti-

cally significant generaltkrations are captured, that the van Wijnp.aarden

rules are auch easier for a human being to understand also.

-^• ^ Yau ^'ij'^aarden Orammars for ^on-Context-Free hanguages

With the motivation provided by the foregoing linguistic examples,

we will now introduce aorie brief and schematic examples of van Wljngaarden

grammars for artificial languages so as to give a better Idea of their

possibilities. These examples are modeled after some in the literature

(de Chastelller and Colmerauer 1%9, Cleaveland and I'egalls 1977), and

Illustrate techniques wlvlch are common in van Wljngaarden granenar writing

but which are not readily apparent to one accustomed to single-level

grammars.

Our first example will be a grammar for the set of strings

I a' .''' I n Z! I ^ -- that Is, the language of all strings of a's

followed by an equal number of blat or ah, aabb, aaahbh, ...

The usual context-free grammar for this language is given as

S ~* a S b i a b

which produces derivations such as

«

mmmmmmmaaaaaamatBBM

I

There la, of course, no reason not to write such a grammar directly as a

van Wljngaarden graranar with a null raeta-graramar component; hence,

< s > : "♦ < a terminal > (3 > < b terminal, > I

<a terminal> < b terminal^

In either notation, the number of a's and b's Is controlled by

how many times the first alternative of the rule is used, and the

equality constraint is enforced because each rule application Introduces

exactly one terminal a and also exactly one terminal b.

But there is another way of f.ettinp, the same language from a van

Wljngaarden grammar, which is less straightforward but which generalises

as the grammar above does not. An alternative van Wljngaarden grammar

for { a" l>n ! « > I} is

M«ta-ruless

ml. N : :-fc n I N n

ml. kB '■■- & ! b

Hyper-rules 8

hi. U> :- <N A> <N b^

h2. <n N AB> =-* iÄB temunai N (N AB
S

hJ. <n .\B)
:- <AB terminal)

9*

zMttäiamämMm

i

This will take a bit of study, but the idea is basically slnple and is

useful In many van Wljngaarden grmnraara. Notice first that «eta-rule I

(ml above) specifies recursively any number of n'a — «eta-»ywbol N

derives as terminal strings of proto-syinbols n, nn, nnn, nnnn, nnnnn,

and so on. Thus, meta-symbol N used as a start symbol in the meta-gr

yields an infinite set of values; and that In turn means that when N

is used in a hyper-rule such as hi above, that the set of production-

rules which can he made from the hyper-rule schema is also infinite,

one rule for every possible value of N, The first few production rules

manufactured from hyp^r-rule hi above would be:

U) -* < na) < nb >

(s) "* (nna) C nnb >

(s) "♦ < nnna) (nnnb)

{•&)-*{ nnnn*) (nnnnb)

<) "* (nnnnna) { nnnnnb)

and so on. This immediately changes the theory of the rules that we

are accustomed to, because now the language of the van VJijngaarden

grammar is specified by an infinite number of production-rules (whereas

it is a basic requirement of ordinary context-free grammars that the

set of rules should be finite).

The f.{>cond hyper-rule also used the meta-symbol N In an essential

way:

h2. ^n N AB> :-» < m terminal ^ v N AB N

This if.ain 4.bhrevlj»tes an infinite number of production rules, whloh

provide (in (-.eneral) that a symbol composed of a certain number of n's

plus an a or b, can he rewritten as an a-or-b-terminal followed by a

symbol containing one fewer N's than the left side of the rule. (The

meta-symbol AB in the rule is Just a cover terra for a or b.) It is

the rnlform Replacement Convention which makes this true«, the URC

assures that the same value for N (and for AB) is inserted Into both

»JS

ly&ä^ais!^

\ i

sides of the rule; since there Is an extra explicit 'n' on the left, the

production-rules generated bv this hyper-rule will be of the form:

(nna) "* < a torminal) (na)

< nnb > -* v b terminal > < nb >

(nnna) ~* (a terminal) ^ nna)

<nnnb) "* < b terminal) <nnb^

<nnnna>-*<a terminal) <nnna)

i nnnnb) ~*(b terminal > < nnnb)

and so on for all the values of N. Each such rule In effect casts off

a terminal and leaves a new non-terminal which can be re-wrltten by a

previous rule. The final hyper-rule, hi,

h3. <n Aß) :"* ^AB terminal)

simply provides for handling the final cast', the 'shortest' non-terminals

produced by rules of hyper-rule h2.

So a sample derivation In this van U'ljnnaarden grammar will look like

H

ia t«rrainal) < nna)

(s>

(a t«rminal ■ < na)

(a terminal)

(b terminal) (nnb >

< b terminal) ^ nb)

< b terminal)

96

«r-iv .■-> i..iJ^..„.-.i,.,J„.,„, r.llljlmtllMlgUluujitlflilaglliHilillitmify^^

1^1
mam

In this gramraar th« number of a's and b's la determined In an entirely

different way from the context-free graramar: here the number of a's

and b's depends not on how many times a recursive rule la applied

to rewrite S ~^a S b. but rather on which of the infinite number of

expflnstons of < s) is initially chosen and applied once. The equality

constraint is likewise enforced In an entirely different way: here the

equality depends not on the fact that one a and one b are added on

each recursive expansion, but rather is enforced by the Uniform Replacement

Convention, which assures agreement between the two non-terminals intro-

duced by the first rule application ("agreement" here meaning that they

Initiatt* parallel chains of rules in the grammar to generate the sane

number of terminals).

There would be no point in going through all of this for the

I >: * b" \ »s ä J j language, since that language haa a simpler context-

free j-rammar. Rut the approach of the second van Uljngaarden grammar

i\enerali?.es in a way that the approach of the first one does not. If

we now wish to have a language | a bn o I n i 1) *•— that Is, any

number of a's, followed by the same number of b's, and again an equal

number of c's, or abc, aabbcc, aaabt>hcce, aaaabbbbcccc, etc. — the

simpler »cheoe breaks down. This aaw language is one which Is well-

known to be not context-free, meaning that It is not generated by any

context-free graramar. (It is not hard to see why this Is so: there

are only two sides to « center-embedded symbol, so a context-free grammar

can coordinate only two strings at a tine, and those must be mlrror-

Images of each other.)

Rut there |s a van Wijngaarden gramar for the language \ a h 0 '

►s .> * ^ and it Is only trivially different from the grammar for the

preceding one. The only difference we need to Introduce Is to make a

new reeta-sywbol ABC to be a cover symbol for a, or b, or c, and we also

need to Introduce the three Items In the first hyper-rule instead of

only two.

The resulting grammar 1»:

97

LJ. „..,.„..,-.., - ^■^■.^,.-.......-..,., ■.■..■^.J,..^.„

Meta-rules:

N ••-*■ n I N n

ABC --* a lb I c

Hyper-rules:

<s> :-* <N a) <N b) <N c>

<n N ABC> :-,■ <ABC terminal) <N ABC)

(n ABC> J-* <ABC terminal)

with derivations such as:

< a terminal) (nna) (b terminal) (nnb > (c terminal) < nnc)

<a terminal) < na) (b terminal> < nb)

(a terminal) {b terminal)

(c terminal M nc)

(c terminal)

While it Is true that counting of this sort Is not precisely a phenomenon

of natural language, this example demonstrates that other matters of

agreement which are not naturally handled by context-free rules may

nevertheless be handled simply by a van Wljngearden grammar.

3.5 van Wljngaarden Grannars with llyper-synbols as Predicates

We will now consider a device which can be seen as merely a matter

of style in writing van Wljngaarden grammars, but which opens up surprising

98

^"•^^■"■"--nTimiii- ir'YuiiriniiTirrnMi ifihiiriiiT1 1 TiiiiiniiriiiiTitiirhiTarirfiiiii

i

poaslbllltles of gaining the effect of "t«it«" or condition« on propertie«

of symbols while remaining wholly within the original syntactic frame-

work. This possibility was not used In the original Algol 68 Report,

but was incorporated for the first time in the Revised Report; this

suggests, correctly, that the idea was not entirely obvious, even to

A. van Wljngaarden himself. But It Is very simple, and although it Is

in some sense a trick. It Is a satlsfylngly elegant trick. The basic

notion Involved is to Introduce extra hyper-symbols into hyper-rules,

and to arrange that the other hyper-rules should either derive EMPTY from

the additional symbols, or else should fail to derive any terminal

string, thus leading to a blocked derivation. But this explanation

give no idea of how the idea is used, and we shall now develop that slowly.

Let us begin with an example of a van Wljngaarden grammar to

generate all strings of double letters — the (finite) language 'aa',

'bb', 'cc', ..., 'yy', '««'. A perfectly adequate van Wljngaarden grammar

would be:

Meta-rules

ALPHA !"♦ a I b I d d I e I flglhl l! jlkl llmlnlolpl

qlrlsl tI u I v I wI x I y I s

Hyper-rulet

< n) s ■* < ALPHA terminal> < ALPHA terminal>

This grammar is correct because the Uniform Replacement Convention

assurM that the hyper-rule represents exactly 26 production rules such as

<8> -< a terminal) Utarminal)

<s) •♦(b terminal) <b terminal)

and so on. Only strings where both letter» are the same are generated

by the grammar, because only rules with both occurrences of ALPHA

replaced by the «am« letter are available. We will have derivations

such an

99

<s)

<a terminal) (a terminai)

<s>

(b terminal) <b terminal)

That grammar, as we said, Is perfectly satisfactory, but now

consider this longer approach to defining the same language of double

letters:

Meta-rules:

mi. ALPHA !:-* a I b I c I ... I x I y I z

m2. ALPHAl : : ■* ALPH^

m3. ALPHA2 : : -* ALPHA

m4. EMPTV :: "♦ X

Hyper-rules:

hi. (»>'•* (ALPHAl terminal) < ALPHAS terminal) < ALPHAI ALPHA2 >

h2, (ALPHA ALPHA)'••*(EMPTY >

1

This gransnar relies crucially on the way the Uniform Replacement

Convention Is understood to work. The URC says that in any one rule,

all occurrences of the same meta-symbol must he replaced by Identical

terminal-strings generated In the meta-rules by the meta-symbol; hut

different meta-syrabols may be replaced with different terminal strings.

In particular, In hyper-rule I above AI.PUAl and AIPHA- are different

meta-symbols; they may be replaced independently with the same values

I00

SlirlMiriiiliiiiti-iii —— 1

II

or with different value«, but repeated Inetences of ALPHAl or repeated

inetanc*» of AtP!lA2 muat b© replaced conatetently with the same atrlng

in every repeatwi Inetance. (Tn the meta-rules above, obvtouely AiPHAl

and AtTIIAS have beeu Introduced ~- both directly derivlno ALPHA — for

rhts vöry purpose, to have "syr.onyma" for ALPHA which are different to

the PRC, In future grammar», we will asaume without explicit mention

that all meta-aymbole endlna In single dlftlts like these are Introduced

a» synonym« for meta-aymbola without digit«, aa In meta-rulea 2 and 3

abov o.)

Hy the I'RC, then, from the first hyper-rule we will get productlon-

ruU'a Uke the following;

(«) •* (a terminal) <a terminal) (a a)

<a) -♦(* terminal) (bteiminal) i * b)

{ ») -* (a temdnal) <c terminal) <a c)

(a) -* < b terminal) va terminal) ^b a)

<a) "*(b terminal) <btennin*i> (bb)

<s) -* < r> tsiminal) ic tarminal) (be)

<ä) -♦< c terminal) < a terminal) <c a >

is) -*<c terminal) <b terminal) <C b)

(a) -<c tanninal) (c terminal) (c o >

The first column of teralnala and the first letter in th« pair at the

end both come from replacing ALPHAI; th« aeoond column of terminal«

101

■ - -■ -^-■--'■-■"-^-'nihi'TriiiiWini'mii'iifrtiliir-i iiMiiiBti->^',*J*a^Ttllimim»^m —J.,.-.. ^,.-,

and the second letter in the pairs at the end both come from replacing

ALPUA2; so replacement values for the same meta-sytnbol always agree,

but replacement values for the different meta-symbols are chosen in-

dependently.

We have dramatically increased the number of production-rules

used to define the language. In the previous grammar of double letters,

we had 26 production-rules In all; now in this grammar we have 26 times

26 production rules (676 rules) from the first hyper-rule alone, and all

the pairs of letters that we do not want are being generated so far.

We correct for this, and discard all the pairs of letters that

do not agree, with the second hyper-rule:

(ALPHA ALPHA) <EMPTY)

again by the URC the two Instances of ALPHA must be replaced by the

same string of proto-symbols, so this rule underlies just an additional

26 production rules of the sort:

<a a) -♦(EMPTY)

(b b) "♦(EMPTY)

and so forth. Accordingly, the second hyper-rule will provide for

re-writing the pairs of letters generated by the first hyper-rule. Just

in case they are the same letter. We will have derivations such as:

(a terminal) (a terminal) a a.

(EMPTY)

In Just the cases we want, then, the strings in which the same terminal

is repeated, we will get a tree like this one (EMPTY produces the

102

" ^*"Awwwii*^wtir-------^'--^lüff mmsamtmimäiM JtoH

^.T^W^-fr^uj^-^-r-xciy^p

tennlnal null string A , but by our agreement we have Instead the meta-

symbol EMPTY). Since the tennlnal string of the third non-terminal aa

Is the null string, we have the correct string of terminals; and In accord-

ance with the convention explained earlier that all nodes In a tree which

dominate only KMPTY are pruned (that the tree is Identified with another

tree which Is the same except that those nodes are missing), we will

treat the structural description above as equivalent to the structural

description

^ a terminal) <a terminal)

and so both the string and the tree are what we want.

So much for how the strings of double letters are generated, which

was the language to be defined. Now in very many cases the partial

derivations produced by our grammar will not be like the ones we have

Inspected. Instead, they will be like the following;

<s)

i a t@ muna rmina] <a b)

This Is a very different situation. The production-symbol^a b ^ is

not a terminal, obviously, because It does not end with the proto-symbol

'terminal'. Tt is a non-terminal, but the grammar provides no way to

re-write that non-terminal symbol; there is no production-rule with the

production-symbol <(a b^ on the left side (because hyper-rule 2 only

provides production-rules for rewriting such symbols when they are

composed of the same character twice). So this last tree is not a

structural description underlying any string in the language of the

grammar. This attempted derivation Just "blocks" since It cannot be

completed into a string of terminals.

103

■.^^ ^^^..^^^^^^

W^momw??^^-- ".r '. ^T'^'-'f I?°■■■^Vh■^" T^^f-'K '7,;*;.,^V?^:r^."^Tva^-^ r *

Of the production-rules, 650 rules Introduce such pair-symbols

which are not matched; only 26 Introduce double letters. The 26 production-

rules of the second hyper-rule then re-write the double-letter syinbolB

as EMPTY. The 650 rules always Introduce non-tennlnal symbols which

cannot be rewritten, thus blocking a derivation In a "blind alley." Thus,

this second grammar also defines Just the language of the 2G pairs of

double letters, the same language as the first grammar did.

Although In this example the second grammar is more cumbersome

than the first, the general strategy is useful in more complicated

grammars: it Is often clearer to write a hyper-rule so that U gives

rise to unwanted production-rules, and then "restrict" those production

rules by falling to provide additional production-rules to rewrite all

the symbols Introduced.

The name "predicate" is used to describe hyper-symbols such as

< ALPHA1 \LPHA2> which are Inserted only to either (a) yield KMPTY

and disappear, or (b) yield a "blind alley" and block. It is possible

to be more suggestive by adding some extra proto-syrabols to a predicate

as window-dressing. For example. Instead of (ALP1IA1 ALP1!A2)> , we might

toss In two extra proto-syrabols and make the hyper-symbol ^ where AIPUA1

is A1.PHA2 / . This would let us rewrite the hyper-rules of the last

gramnar as

Hyp«r-rul«a;

hi. <s> :-♦ <ALPHA1 terminal) (ALPHA2 terminal)

<where ALPHAl is ALPHAi)

h2. <where ALPHA is ALPHA) • "* <EMPTY)

but this does not change the method in the least, it only gives more

suggestive hyper-symbols and the ability to define more than one predicate

with the same meta-symhols. One might have

104

^tM^mi, mmm

<where ALPHAI is ALPHA2)

<where ALPHAl is not ALPHA2>

<where FEATURESl are contained in FEATURES2>

<where FEATURESl nonconflicts with FEATURES2>

and so on, each of which would block In different circumstances.

It Is required that all such predicate hyper-symbols be defined

In strictly syntactic terms, and we have not really shown yet how this

Is done. (The example of {where ALPHA Is ALPHA/ Is hardly representative,

because It uses the URC to immediately take over all the work.) How to

write the syntactic rules to make the predicates have their Intended

effect Is rather specialized, and for the present It Is sufficient to

believe that a great deal Is possible. As an aid in acquiring such a

belief we will go just one step farther here, and define a simple but

not trivial predicate hyper-symbol. Detailed examples are worked out

at length in sections 5.1 and 5.4 below.

For this example, we will define a van Wljngaarden grammar to

generate a language Just the opposite of the last one — this time, we

will have the language of pairs of letters which are not the same.

(This is again a finite language: ab, ac, ac, ..., ay, as, ba, be,)

We will use the same meta-rules again (this time omitting the rules for

ALPHAl and ALPHA2 in accordance with our convention that they are

assumed to be synonyms for ALPHA), but we will need additional meta-rules

for STRINGS and new hyper-rules.

Meta-rules:

ml. ALPHA ::-* albic I ... I xiylz

m2. EMPTY : : -•■ X

m3. STRING : : "* ALPHA I STRING ALPHA

m4. OPTSTRING : : "* STRING I EMPTY

(A STRING is Just one or more ALPHAS, and an OPTSTRING la zero or more

ALPHAS.)

105

iämäStämaiäiäStäaMiiä^b

Hyper-rulas:

hl, ^s> :-* \ALPHA1 terminal) < ALPHA2 terminal)

<where ALPHA1 is not ALPHA2)

h2. <where ALPHAI is not ALPHA2) :-*

(where ALPHAI precedes ALPHA2 in abcdefghijklmnopqrstuvwxyz)

(where ALPHA2 precedes ALPHAI in abcdefghijklmnopqrstuvwxyz)

h3. (where ALPHAI precedes ALPHA2 in 0PTSTRING1 ALPHAI

0PTSTRING2 ALPHA2 0PTSTRING3) = -* (EMPTY)

The length of the hyper-symbols in the hyper-rules makes them fit the

lines badly, but careful attention will sort them out. Rule hi rewrites

^s)as a terminal, followed by another terminal, followed by a predicate.

Rule h2 rewrites a predicate as either of two alternative more-primitive

predicates. Rule h3 rewrites a single monstrously-long left-side symbol

as EMPTY; note in this last rule h3 that everything but EMPTY is in a

single pair of angle-brackets and is on the left side of the rule.

Clearly the basic idea of this gramar is the same as the last one,

because in the first hyper-rule the only element which is changed is

the final predicate; as before we generate two terminals and a restriction

on that, but now the restriction is the reverse of what it was.

Rule h2 defines what it means for one ALPHA to "be not" another

ALPHA, by saying that it means either that the first precedes the second

in the alphabet or else the second precedes the first In the alphabet.

(If neither of these is true, then they are the same letter.)

Rule h3 then defines what it means for one character to precede

another in a string, by saying that if character 1 precedes character 2

in the string, then it will be possible to divide the string into five

parts so that the first part is zero or more characters, the second part

is character 1, the third part is sero or more characters, the fourth

part is character 2, and the fifth part is sero or more characters.

But the summary just given of the hyper-rules is not quite adequate,

because the effect described is achieved not by some kind of process of

106

uiuääütutaliMasiH

i i

trying « string »nd a«eiag If it can be divided, and so on, but purely in

texrn of sysbols and rewrite rules. A saaple derivation in this grammar

could be

<c teradnal) <f teminal) (where c is not f)

(where c precedes f in abcdefghijklamopqrstuvwxya)

<EMPTY>

We know that there is s production-rule which produces EMPTY fro« that

last symbol, because it comes from the last hyper-rule:

(where ALPHAl precedes ALPHA2 in OPTSTRINOi ALPHA1 0PTSTRING2 ALPHA2 OPT-

STRING3 y

where c precedes f in ab c de f ghijkl...

ALPHAl end ALPHA2 are replaced by the same values at their repeated

appearances, and OPTSTRINGl, 0PTSTRIII62, and OPTSTRINfS are independently

chosen as sequences of zero or more characters; therefore, this must be

a production-rule validly produced from hyper-rule 3, Prolonged inspection

will convince the interested reader that when the two characters are the

same (ALPHAl and ALPHA2 are the same terminal proto-symbols) and the string

introduced by hyper-rule 2 is the alphabet, there is no way that any values

can be chosen to make a production-symbol which is also on the left of

any production-rule generated by hyper-rule 3, and hence when the two

characters are the same the derivation will lead to a blind alley.

Now, once two letters can be distinguished, then two strings of

letters can be distinguished (one letter at a time), and so any information

which can be coded into strings (that is, any Information) can be mani-

107

.... . ..--....^---.--.^^-.^^..^-■^^f^^^

 -- ■--•

pulated. The details of thla manipulation are fascinating, and to an

enthusiast nay be the most interesting facet of van Wljngaarden granmars;

It is satisfying to be able to define the predicates vith no additional

machinery whatsoever, (van Wljngaarden 1974 contains a two-level grammar

to simulate a Turing machine, using 9 meta-rules and 30 hyper-rules.)

As a practical matter, though, the exact definition of the predicates

is of secondsry Importance. Once basic predicates are defined, then

they can be used in one granaar after another without changes (something

like a subroutine library). Also, the predicates would never be used In

a computer program as they are in the grammars because they would be

implemented Instead with primitive tests for identity, non-identity,

etc., outside the graamatical apparatus. Moreover, since anything can

be coded as a predicate hyper-symbol, there is no actual restriction on

expressive power in requiring that the definition be syntactic. It is

important, however, that the URC restricts the predicate to appearing

In the very hyper-rule where the items to be restricted are introduced;

we gain 'locality of definition' when the restriction is on nodes intro-

duced by a single rule, rather than on global tree configurations.

4. Prior Linguistic Uses of Gramaars with Structured Vocabulary

It is ianedlately suggestive that there have been several links

between the development of the van Wljngaarden grammar formalism which

we have been considering and grammars of natural languages. Adriaan van

Wljngaarden himself, at the Mathematisch Centn», applied its earliest

computing machinery to a study of newspaper Dutch, saying that "we hope

that this and similar infomatlon to be obtained in the future will

help us to get better insight in the formal properties of our language"

(van Berckel et al. 1965), and since then has shown an interest in natural

langu4%e analysis using Algol 68 (van Wljngaarden 1970, Smith 1976).

C. H. A. Koster, an author of the Algol 68 Report and an Influential

advocate of the van Wljngaarden descriptive method, had first used a

similar formallam in writing a context-free grammar of English in 1962

(see Koster 196S). The author of a technical note on van Wljngaarden

grammars (Dcussen 197S) makes reference to a doctoral dissertation of

108

änaäükütjeüi mätitfi,m ^^'■■i*YM^--,"^^^[M'iiiiiiiM^

r Sf^v^^VW^S^^'^^"

the sane period which consists of a large surface gramar of Geraan

utilizing essentially the van Uljngaarden graaaar format (Schneider I965,

1966). And one of the very earliest foraallzations of the van Wijngaarden

method was undertaken at the Universite de Montreal for use in a French-

English machine translation project (de Chastelller and Colmerauer 1969).

It seems likely that this repeated invention has been prompted by

necessity when context-free grammars are used to describe natural languages.

Evidence that this is so is forthcoming when one begins to consider other

previous linguistic work in light of the model of grammars with structured

vocabularies provided by van Wijngaarden grammars, and finds repeatedly

the same essential use of structured vocabulary as a natural part of the

descriptive techniques used.

Since it is not at once obvious exactly how to go about making

best use of structured vocabulary in describing natural languages, it

is reasonable to examine the independent approaches toward structured

vocabulary which linguists have needed. The uses exemplified may be

instructive, even when the understanding is as frustrated but as tantali-

zingly close as in this passage where Hockett (1966) describes a "compo-

nential alphabet" on two-levels:

A simple exsmple is Potawatomi noun stems (N) which are either
animate (An) or inanimate (In) in gender (Gn), and also either
independent (lad) or dependent (Dep) in dependency (Dp). ...
One could provide for the whole situation in a single composite
rule subsuming four elementary rules:

N NAnlnd, NAnDep, HInInd, NInDep

(Footnote 63:) I am not sure how the procedure developed here
would fit into the rest of the grammar. I am not sure whether
my notations such as 'NAnlnd* are single characters or strings
of characters; perhaps Indeed one here needs to use a componential
alphabet so that NAnlnd (and the like) can be a single character
but with components susceptible to separate manipulation."

Hockett*s puzzlement in his footnote appears to have been shared by many

othsrs who felt that phrase-structure grammars missed seme essential

features of natural languages, and surprisingly often it turns out to

be possible to interpret the missing element as provision for structured

vocabulary.

109

J''6"'1-" - ' ' "• ~ i • ririiiiiT'iiiMiBlitMMfBMrriil irM

■vfr^;1' T^m-f-c-^v^-^vi-

4.1 Pr«i~Ch<WB8ki«o Use» of Structared Vocabulary

Although there Is little doubt that diligence could locate the

true source of two-level grannars in t'anini, we will for brevity in

this initial essay begin with the American linguists who Immediately

preceded Chomsky. Their usage of structured vocabularies in describing

natural languages may be most conveniently studied in Chomsky's own

early manuscript The Logical Structure of Linguistic Theory (1955/1975)

and in Paul Postal's provocative demonstration that a whole range of

descriptive methods amount to very little more than phrase-structure

grammars (Postal 1964b). These summaries are interesting enough, however,

to suggest that additional first-hand consideration could be rewarding.

A lengthy development related to the ideas of Zellig Harris is

provided by Chomsky (1955/1975), which seems to be of chief importance

in understanding the ideas about structured vocabulary which played a

role in Chomsky's own eavly theories. There the motivation for structured

vocabulary arises from an elaborate scheme to establish "grammatical

categories" so as to explain "degrees of grammaticalness" (i.e., why

"of of the of" is less grammatical than "colorless green ideas sleep

furiously" — at this period, however, the second of these strings was

considered to be grammatical, a status which it was later to lose).

Chomsky describes a process of hierarchical sorting, or clustering

which establishes many extremely tiny grammatical categories containing

only one or a few lexical items as members, then groups some of these

into larger categories, some of the resulting categories into still

larger categorwrs, etc. Finally, there is an evaluation procedure (whose

details are unknown, as is usual with evaluation procedures) by which

to choose the level of grouping which is optimal for describing the

language, and this level so chosen is called the "absolute analysis."

Chomsky explains:

The absolute analysis «»bodies the major grammatical
restrictions. Presumably these will be stated in terms of such
classes as Noun, Verb, Preposition, etc. There will then be
many further grasnatical restrictions that have to do with limited
and special contexts, and that will, presumably, be reflected in
superior degrees of grammaticalness (i.e., smaller, lower-order
categories). These further restrictions correspond in part to

HO

1 —--■'

what Harris has called selection. Thus »elect<onal restrictloos
can be defined as those which refer to an account of gramatlcalnesa
which is more detailed and specific than that provided by the
absolute analysis. Although Preposition may well turn out to be
a class of the absolute analysis for English, there will be sub-
classes of prepositions that occur with different nouns and
verbs, etc....

The difficulty is that categories of different sizes on different levels

may simultaneously make different linguistically-significant generaliza-

tions:

There will, for instance, be various strings which we would like
to say are noun phrases, even though they do not all appear
granraatically (with first-order grsnoaticalness) as subjects of the
same verb phrases, although each occurs granaatically with some
verb phrase.

It is the desire to keep multiple levels of generalization which leads

eventually to treating these category symbols as complex symbols (as in

section 3.3 above), so that the complex similarities and differences

can be preserved.

Some understanding akin to the one just outlined, that various

grannatlcal categories were alike for some purposes but different for

others, seems to have been general among American linguists of the period.

This understanding was of principal use in two situations: (1) describing

the occurrence of items whose environments were nearly Identical, and

(2) describing agreement phenomena, or perhaps more generally "discon-

tinuous constituents". Although it Is sometimes difficult to sharply

separate these two, they do see» to be different uses.

A convenient example of the first kind of use is provided by Zellig

Harris. Harris's formulas Introduce several kinds of description re-

miniscent of two-level description. In one of these, symbols are given

numbers and "each higher numbered symbol represents all lower numbered

symbols, but not vice-versa" (Harris 1951). For instance, the formula

N * - S - N3 also represents the additional formula M - S - N ^ ;

but such generalization only occurs on the left si lea of formulas (the

right sides of rules). This system would be modeled by a van Wljngaarden

grammar which made use of meta-symbols on only one side of hyper-rule».

E.g..

HI

^■■^.^-^-.^^...^.^..^^^.-..-.^^w^...,:-^ tn iiriwiiiuiirirMBiiir^-'—' " •

NTHBEE :: "♦ nthree I NTWO

NTWO : : -* ntvo I NONE

NONE : : "* none

< nthree > : -♦ < NTWO > < s >

3
The ouabers are Introduced by Harris because an N can occur

2 2
everywhere an N can occur, except in the rules turning an N plus

3
something else into an N ; thus, by collapsing all these rules for items

in the same environments, much duplication of rules is avoided.

A related example is given by Harris to show the utility of grouping

morpheme classes into classes of "positions" in which morphemes occur

(Harris 1951). If morphemes of class Q occur in positions which are the

same as those of class R morphemes (the two being differentiated only

in which adjuncts such as '-ly*, '-al* they occur before), then it is

possible to make a "positional category" N which Includes Q and R (which

are now to be written N and N. respectively, to show that they are
a D

members of class N). The adjuncts -ly, -al are similarly classified

into Na and Na. . "...we have the equations N + Na ■ A, N. + Na.« A,

etc., all of which can be suanarized in the position-class equation

N -f Na ■> A. It is understood that this equation, unlike our previous ones,

holds not for every member of the classes involved but only for certain

members (or sub-classes)." The ones for which it holds, of course, are

the corresponding ones which appeared together among the sub-class

equations, and which have been here suppressed.

The similarity of this understanding to the Uniform Replacement

Convention suggests that a similar van Wijngaarden grammar could be

written along the lines of

QASS : : •* a 1 b

<a) =-► <n sub CLASS) < na sub CLASS>

which serve« as the "position-class equation" N -l- Na « A. The sub-class

equations suanarited by this one can then be recorded in further

112

EkK-a -TitttiirTT-'-1'--'"-"-

hyper-rule«;

< n sub aN :-* <q>

<na nub a) ;-♦ <-ly terminal)

<n sub b> :- < r>

<na sub b) :"* <-ai terminal)

At Harris remarks, "It Is Impossible to eliminate from our records the

explicit sub-class equrtlons"; their rule is htre assumed by these further

hyper-rules which preserve what each sub-class of N and Ha represents.

The "understanding" or convention of Harris's thst these position-class

equations are to be understood specially as holding only of corresponding

sub-classes is not formally represented in his notation; in the van

Uljngaarden grammar, of course, this is reconstructed by the meta-symbols

in the hyper-rules and by the URC governing their replacement.

The motivation here again seems to have been a desire to collapse

rules dealing with the identical or nearly-identical environments of the

"Q" and "R" morphemes, but in this case there is also a need to define

slots and to require that they be filled subject to agreement; so this

usage shades over into our second type.

The second motivation for use of structured vocabulary in earlier

linguistic work appears to be the desire to represent phemonena of "agree-

ment" or "concord."

This was sometimes seen as of a piece with the problem of "dis-

continuous constltueLls." Harris, again (1931), employe^ what he called

"long components" (by analogy to supra-segmental phenomena in phonology)

to express agreement; "Similarly, ...a...a is a single morphemic segment,

meaning female" in Latin filla bona 'good daughter'; such a female "long

component" is treated as a component part of several complex symbols.

This process is further extended and Is really rather sophisticated, but

it is never at all comfortable within an immediate constituent analysis.

Quite a number of people appear to have thought of utilizing

"variables" In their formulas or representations, with something like

the Uniform Replacement Convention to govern them and thus to enforce

113

Jteaaa^i^aaiBti.-JaiMiia.^^AM^^

«gr«wa«nt. Chonwky, in 154 of (Chomnky 1955/1975) eon»idei« this very

lnt(9rpr«t«tloft of Uong ccmpon^nts'" «nd propoa#R a notation fur rules?

k -* a

k -* b

U«r« the "lung component" ia the symbol "k". Obviously the ttrst rule I»

eoaething like a van Uljngaarden hyper-rule, and the laet two rules are

aoHethlng like neta-tuits (and so %m «ee that there la no aeparatlon of

levels In this granaar). Obaerv« that, Just ae in the llarrle awper-

•crlpt number«, the variables occur only on the right aide of the rule.

Chomsky then goes on to propone something very like the URC to

govern the Interpretation of these rules, adding "suppose further that

by convention all Identical superscripta assume the same value in deri-

vation« The derivations would now work out exactly right, the

algebra would be restricted, and the notations NF, VI*, etc. would be

retained with all essential generality." What this mean« la that because

of the "componentlal" nature of category symbo'« like P- , it la posalble

to let the P be *'MP" and to recognlie it as the same symbol regardless

of what value of k qualifies it. Chomsky's rules and convention are clearly

intended to be interpreted to be virtually identical to the van Wljngaarden

rules

K ! : -♦ a ! b

(pt > '-♦ (^ K) (p, K>

Chomsky decides, on the basis of having tried such a system to

represent long components in his Harphophonemlcs of Modern Hebrew (19M)

that it could well be useful fur such things as number agreement, but

it is not an appropriate device for imposing the vast complex of restric-

tions necessary to avoid "the rearming of Uermany is at dinner" —

that 1«, apparently, for telling grammatical aenee from grammatical

nonsense. Chomsky then concludes with a note of much interest to those

114

studying van Wljngaarden gramars:

This Is an important question, deserving of a much fuller
treatment, but it will quickly lead Into areas where the
present formal apparatus may be Inadequate. The difficult
question of discontinuity is one such problem. Discontinuities
are handled in the present treatment by construction
of perrautatlonal mappings from P to W (phrase structures
to words), but it may turn out that they must ultimately
be incorporated into P (phrase structure) Itself.

Chomsky himself appears to have believed that transformations

were another tool for dealing with agreement, and so naturally he was

more Interested In following up the transformational approach to the

question. Postal (1964b) extolls the Incomparable value of the trans-

formation to achieve agreement, and Koutsoudas (1966) exhibits many

examples of the technique of generating an Item of agreement in one

constituent and then transformationally copying it into other consti-

tuents with which agreement was required. Postal (1964b) also credits

Sydney Lamb (1962) in "stratificational grammar" and Elson and Pickett

(1960) in "tagmealcs" with introducing the ideas of variable-symbols

and their uniform replacement to describe agreement phenomena; further

study would probably uncover several more similar developments.

Our preliminary scan, then, indicates early use of structured

vocabulary for two major purposes: (1) to indicate that two category,

symbols share many properties but are not subject to expansion by all

the same rules — that is, to encode "rule features"; (2) to indicate

that two category symbols share many properties, but differ in their

"contextual restrictions" of the sort usually thought of as "agreement".

Either use can be naturally incorporated into a van Wljngaarden grammar.

4.2 Structured Vocabulary in Transformations and 'Extended Phrase

Structure Graramars'

Chomsky, throughout the period of Syntactic Structures (1957) and

"A Transformational Approach to Syntax" (1962) continues to employ

symbols which have the Informal appearance of being structured, but he

does not provide any formal method of representing their relatedness.

Thus, he gives rules such as

115

NP

HP, -♦ T + N + ^
sing

MP pi
T + N + S

and

Pr«d -*

NP . in «nv. NP , + Aux sing sing

NP . in «nv. NP
Pi

| bacome^

pi +A-{äco4

[pr^j

V_ . V Vm , in «nv. N. Ta Tb Tg h

V^ in env. Prt

Comp

Here In th« f irat rules the aymbola NP>1 and NP . are being

used for number agreement; but the two symbols, no matter how suggestively

similar, are different and unrelated symbols in the grammar. It makes

no difference that the brackets are drawn around alternatives in the

first rule, or drawn around two entire rules; the symbols NPgina
aRd ^ai

remain as distinct as Aux and Prt in the vocabulary of the graraaar. The

rules dealing with verbs use context-sensitive format to impose rule-

features as well a« agreement.

The reason why Chomsky gets along reasonably well without a method

for relating various symbols in the vocabulary la that the only "relatedness"

116

iÄ^-W-^ü .^^ä*,*"^ .^.-^i..^...--::^ i

of Importance, in much of this work, is that a group of ayttbol« ahould

be treated the tame way by transformatlona, and thli kind of relatednes«

is reconstructed in the definition of a transformation rather than in

the vocabulary of node labels.

A transformation operates on tetminals, but segments them into

terms based on the complicated notion of a "proper analysis" which amounts

to a string of non-overlapping sub-trees which together exhaustively

dominate the terminal string. This means, among other things, that if

the structural description of the passive transformation is

NP - Aux - VPP - NP

12 3 4

then its first term is as well satisfied by a subtree

NP

NP
sing

as it is satisfied by the alternative subtree

because only the top node of the sub-tree is relevant to satisfying t'ie

structural description of the transformation.

This means that there Jls one way NP^ and NPtl , for example,

117

,,..,..l»»>J..^i.J.....v-...JM-»-^»....1.^^i,i^^.lnr.^»^.»^^w^J^.j^_M. fniiniiiiiiiiiin-niin-tvii

«re related In the grammar, and that Is that they can both be rewritings

of NP. This is utilized by the transformational rules, since in the

structural description of a transformational rule a node label is like

a variable vhich stands for any string of terminals which can be derived

from that node in the base grammar. (Distinguish this from the usual

meaning of "variable" in transformational specifications, which is any

unspecified left-to-right factorisation.)

This interplay between the structure of the base grammar and the

structural description specifications of transformational rules, then,

acts in some ways like a two-level grammar. To see how this is so, we

can model this particular aspect of a transformational grammar as a van

Wijngaarden grammar. (This is purely to guide intuition about the simi-

larity; there is no suggestion that a van Wijngaarden grammar can be made

to act like a transformational grammar in any satisfactory way. But on

this one point, the similarity is striking.) We imagine that the base

grammar of a transformational gramnar is the meta-grammar, and the

transformations are hyper-rules; modeling the rules on those presented

at the first of this section, we could have:

NP : : -♦ NPSING I NPPL

NPSING • : * t n

NPPL : ; -♦ t n -s

VP : : -* AUX VPP

VPP : : "♦ VTCM comp I VTPR prt

VTCM : : "* VTA I VTB I . . . i VTG

VTPR : : "* VTX

and so forth; the entire base component is simply a context-free meta-

gramar. Then the passive transformation is a hyper-rule:

< NP1 AUX VPP NP2 > :-* < NP2 > (AUX) (be -en > (VPP> <by> < NPl >

(Notice that there is only one hyper-symbol on the left of this rule —

US

m^T rittimiiMh-iiiirini ^■^.^.■■.^.■^■ir1ttiWlij^

a string of meta-symbols — but there are six hyper-symbols on the right

side.)

This hyper-rule simply and correctly represents all the (many,

many, many) rules in which a terminal string derived (in the meta-gratamar)

from the meta-symbols in the left-hand hyper-symbol is re-written as its

correct permutation under the passive transformation. The Uniform Replace-

ment Convention will assure that the subject and object NP's (1 and 2)

are reversed, and that they are exactly the same terminal strings in the

active and passive versions.

Thus, again: the reason that NP . and NP , are treated alike by
* 0 sing pi '

transformations, is exactly the same reason that NPSING and NPPL are

treated alike in the "passive hyper-rule"; the permutation rule is written

in terms of the category NP, and both symbols can be derived from NP in

the base grammar (roeta-granmar).

(To bring up this comparison suggests the question of whether van

Wljngaarden grammars can, or should, be used in this way to replace

transformational grammars. The answer appears to be no, to both, although

an attempt has been made to use van Wljngaarden grammars in just this

way to describe natural languages (de Chastellier and Colmerauer 1969)

from which attempt a still more general formalism for manipulating tree-

structures was later developed (Colmerauer's Q-system). In any case some

additional conventions are necessary to understand van Wljngaarden grammars

as tree-manipulating systems, since ordinarily the trees of the meta-

grammar have no Interpretation. This leads to different usages, which

we will not consider here.)

An important point, however, is that transformational rules gain

some of their naturalness from their ability to refer to many different

strings under a single variable cover-term, and their ability to specify

the strings corresponding to the variable by a phrase-structure grammar

(the base grammar of the transformations); this ia so basic to the system

that it is usually thought of as inherent, and Is the property called

"structure-dependence" in transformational theory.

At the same time that Chomsky was making use of this special kind

of "two-level" property In his transformational graamart, there was a

119

quite different proposal for two-level grammars which met a bizarre fate;

this was the "extended phrase structure grammar" of Gilbert Harman

(Herman 1963).

The Harman proposal was not really novel, being pretty much a

proposal to write rules In the programming language COMIT (Yngve 1960,

1961, 1972); Chomsky will have it that the notation was really devised

by G. H. Matthews while writing a grammar of German in 1957-58, and that

Matthews really developed the COMIT system as well (Chomsky 1965, pp. 79

and 213). Harman's paper has become well known only because of some

unwontedly colorful remarks about ants and antelopes and about extended

baboons in which Chomsky attacked it (Chomsky 1966); his criticism

must have been chiefly motivated by Harman's fovocative stance in main-

taining that transformations had been proved to be unnecessary, because

the substance of Harman's paper should not have been offensive.

Basically, the Harman rules envisioned a structured vocabulary

consisting of a set of category symbols, each augmented with a set of

"subscripts" or "tags". An ordinary context-free rule such as

A -^ B C

is then understood to mean that A is rewritten as B followed by C, and

that all of A's tags are "copied" onto B and onto C; it is just like

the static notion of a schema

< a TAGS > : -* < b TAGS > < c TAGS >

The definition of the tags is not clearly separated, however, and thus

there are many additional conventions for adding to, modifying, and

erasing the tag set associated with a particular symbol. Rule features

are Implemented by conditions on the tags associated with the left-

side symbol.

Harman's "defense of phrase-structure" (the subtitle of his paper)

Is that Chomsky has not properly represented the tradition of immediate-

constituent analysis in defining context-free grammars; amoag other things,

Chomsky has not represented discontinuous elements or agreement. (And

this was, as we have remarked above, a legitimate complaint.) If Chomsklan

120

phrase-structure grammars are augmented to restore these traditional

parts of immediate-constituent analysis, Harman believes that such

"extended phrase-structure grammars" can then adequately describe natural

languages; unfortunately, however, the reBultlng grammars will be very

large — too large to handle in practice. Harman replies to this admitted

difficulty in using extended phrase-structure grammars by saying that

the proper answer to this practical problem is that It
is only a technical difficulty. Being only technically
a difficulty, it can be overcome by changing techniques.
We require some technique which will enable us to write
and grasp millions of rules at once; that is, we require
a useful way of abbreviating large sets of rules.

The desire to "write and grasp millions of rules at once" is probably

the best description given so far of the motivation leading to two-

level van Wijngaarden grammars and similar grammars with structured

vocabulary.

But Harman's purpose of abstractly abbreviating large sets of

rules gets lost in Chomsky's rebuttal, covered over by quarrels about

whether the result is still properly called a phrase-structure grananar.

Just how lost it was can be seen from McCawley's review of Chomsky's

argument (McCawley 1968b), in which McCawley says that if Chomsky had

penetrated behind the terminological question

He could have made a far more devastating criticism of It
than he presented. Harman is able to dispense with agreement
transformations only at the cost of having separate rules,
e.g. to select the number of the subject NP (which must be
attached as a feature of the S-node which dominates it, so
as to allow that feature to be 'Inherited' by the VF through
Herman's 'feature inheritance' mechanisms), and to select the
number of all other HP's. (Footnote: Because Harman
neglected to include this latter type of rule In his restatement
of the rules of Chomsky (1957), his rules generate only
sentences in which all HP's have the same number.) Since the
inheritance of features from a common dominating node In the
surface structure is Herman's only means of incorporating
selectional restrictions into a grammar, and since there are
infinitely many types of verb-NP selectional restrictions
which can hold in surface structure, Harman*8 treatment
would require an infinite number of selectional features
and infinitely many rules to attach them to the relevant
S-nodes.

McCawley's account of Herman's method is quite accurate, particularly

121

'-■-■—■■■-

in describing the feature-inheritance mechanism which it shares with

van Wljngaarden graiatars; but McCawley believes that this accurate

account is a devastating criticism because of Its obvious absurdity.

McCawley seems not to have appreciated the point that it is not absurd

to define a language by millions of rules (or by an infinite number of

rules), so long as you have a technique for defining those rules which

permits you to "write and grasp" than.

There are two ways in which Barman's use of structured vocabulary

in grammars differs fro® Chomsky's use In transformations, however, and

both are of interest in the context of machine-translation and computa-

tional linguistics.

First, Herman used (implicit) variables in the phrase-structure

rules themselves, and did not try particularly to simulate transformations

in the way explained earlier (rewriting permuted node strings); the tags

of Herman's symbols are used both to enforce agreement, and to collapse

rules by utullxlng rule-features — much like the similar uses by pre-

Chomskian linguists.

Second, the notation scheme used by Harman was developed as a

programming language, specifically for work in machine translation and

natural language research, which suggests that the idea of category

symbols qualified by features inmediately appealed to the linguistis

who tried to use the early computers (hopelessly short of software) for

natural language processing. In fact, some interesting work was done

in COMIT, and in a version of COMIT coded into Lisp ('METEOR'; see

Bobrow l%4).

4.3 Poat-Aspeets Use of Complex-Symbol Vocabularies

Tho next chapter of the story is of unusual interest, because

the device rejected so strongly is made the cornerstone of the theory

of the base component of a transformational grammar (Chomsky 1965).

^n Aa]pgct8 of. thg Theory of Syntax, Chomsky takes the point of

view thai non-branching re-write rules such as

122

..^.m «-~~--^■»■riBWlMtiaiMlMiM -.i-^J»-..^!.....»-..-.■■.:■--■.—a,»-.J...»Ja»..^a

NP

NP
sing

NP , (

are clearly not the correct way to achieve subcategorlzatlon. "Although

this defect was pointed out quite early," he saya, "there waa no attempt

r deal with It In most of the published work of the last several

years." Chomsky gives credit for the earliest recognition of this

fact to G. H. Matthews, developer of the COHIT notation for "Extended

Phrase-Structure Grammars." (Other schemes are given in Bach 1964

and Schachter 1962). A base component very close in structure to a

two-level grammar Is proposed In Seuren 1968.)

The Aspects theory of base grammars Is developed twice. First,

a proposal is made to have four kinds of rules: (1) Context-free

rewrite rules which develop the entire non-terminal phrase structure

of a phrase-marker; (2) context-free subcategorisation rules which intro-

duce terminals with "Inherent features"; (3) context-sensitive strict

subcitegorizatlon rules which introduce " contextual features" of the

geometry of the phrase-marker; (4) context-sensitive selectional rules

which introduce "contextual features" of other tenainals.

Example« of these four fies of rules would be:

f ;

I (1) CF rewrite: S ** NP Predicate-Phrase

(2) CF Subcategorization; [+N] -* {-t-Det 1

[♦ Count] -*■ [♦Animate]

(3) CS Strict Subcategorization: [*V] ■* [+ NP] NP

(4) CS Selectional: E+V] -•' [+ i+Abstractl-Subject] / [•♦■N,♦Abstract) Aux

(There is a very strong resemblance between theac last three types

of rules which have left-sides meaning "a symbol with at least the

features if?", and the COHIT-Harmon scheme.)

The obvious redundancy of these last rules is then used to motivate

123

• proposal to h«»ve their effect achieved by conventions on lexical

Insertion, Much that lexical items are inserted with their Inherent

features from a lexicon, observing the constraints that items with

strict-subcategorlsation features are Inserted only into conforming

bast» structures, and items with selectional features are Inserted only

into has« structures with conforming lexical items.

This set of conventions is then treated as defining "lexical

Insertion transformations", with the observation that: aubcategorlzation

is achieved by "local transformations" which only affect a substring

dominated by a single category symbol, and which (Chomsky suggests

In a note) nay be sensitive to the "vertical context" of dominating

nodes as well as to the "horizontal context" usually employed in con-

text-sensitive rules.

Rules with the properties of these Chomskian "local transforma-

tions" have recently been studies by Joshi and Levy (1977), who generalize

the very satisfying result of Peters and Ritchie (1973) regarding context-

sensitive rules, to the expected further result that "local transformations"

(cont«xt>free rules constrained by Boolean combinations of proper-analysis

predicates and domination predicates — really quite a general definition)

when used as node-admisslbility conditions to constrain structural

descriptions, admit terminal strings which are only context-free languages.

Thus, it is reasonable Ko consider the entire Aspects base component

as specifying a set of derivation-Initial phrase-markers in a two-level

graanar, where only the hyper-grammar is made explicit (although possible

■eta-syabols are characterized by the redundancy ru.es for features),

and restrictions on the hyper-symbols are stated as predicate hyper-

symbols.

Additional motivation for such a formulation of the base component

if afforded by more recent work (Chomsky 1970, 1977, Chomsky and Lasnik

1977) in which a complex-symbol analysis of non-termimd as well as

terminal categories is used to capture additional regularities and

restrict the possible rules of the base; some of this is similar to the

material discussed in section 3.3 above on the X-bar conventIon.

(The complex-symbol notational conventions were originally developed

\2i

tOBHaMämabä&tSl^aUlum

In connection with phonological rules, and the description of the formalism

in (Chomsky and Halle 1968, pp. 390-399) may be of some use in understanding

how a van Uljngaarden grammar would be employed on sets represented as

strings.)

A.4 Computational Linguists and Structured Vocabulary in Grammars

Without having a good understanding of what counts as structured

vocabulary for grammars, it would be possible to come to the conclusion

that computational linguists had made comparatively trivial use of

grammars with structured vocabulary; nearly every gramar is written

with names for category symbols which are related to one another,

but the way in which their relatedness is exploited by the processing

programs Is not as obvious. A closer look, however, reveals that ideas

importantly related to grammars with structured vocabulary have been

used by some of the most notable computational linguistics projects,

often in slightly disguised form.

The general line of development is usually considered under the

heading of parsers for unrestricted rewriting systems (type-0 grammars

in the terms of Chomsky 1959). Thus, one of the earliest significant

systems of this sort was Yngve's COMIT programming language (Yngve

1961, 1972) designed specifically for research on natural languages and

machine translation, and discussed briefly in section 4.2 above In connec-

tion with Gilbert Barman's use of the notation.

The COHIT language Is based upon the format of Markov's "normal

algorithms"; the individual statements in the language are for this

reason called "rules", and they operate by identifying a string and

re-writing it. COMIT adds labels and transfers to the aotatlon, and the

resulting "labelc " Markov algorithms" are sufficiently convenient to be

used for many string-oriented tasks as a general prograanlng language

(see Brainerd and Landweber 1974, Chapter S).

The basic type-0 grammar format of the COMIT language is in

principle sufficient to achieve any computation, but fro« its earliest

versions an.additional mechanism of "subscripts" was used, which amounts

to a type of two-level grammar.

125

'aa*Ma^a~°-^^

Each symbol in a COMIX program may have "subscripts," which may

in turn have values (values are "essentially sub-subscripts" (Yngve

1961, §11121). The subscripts are something like feature bundles, the

sub-subscripts something like Individual features. (Numeric subscripts

are also available, which have somewhat different properties). COMIT

rules manipulate the symbols as basic constituents, subject to the

convention that re-writing a symbol means including its subscripts on

the resulting symbols; there are a great many possible variations which

may be stated, such as minimum or maximum sets of subscript features

necessary on the left-side symbol for the rule to apply, and explicitly

setting, erasing, and merging subscript sets.

Although a COMIT 'grammar' (program) Is only a one-level grammar,

its vocabulary Is structured In a way which — like a two-level grammar

— makes it possible to abbreviate large sets of rules in schemata.

There Is nothing in the theory of Markov algorithms to suggest this

step, so its inclusion mist have been prompted by the linguist-designers'

feelings that for natural-language rules the use of systematically

structured symbols would enhance the ease and naturalness of using the

COMIT system. Given the developments in linguistics reviewed in previous

sections, this is not surprising.

There are two principal paths of development from this early

work of Yngve's (and of 0. H. Matthews', according to Chomsky). The

first is the work of pattern-matching, which results in Snobol4 (Griswold

•t «1. 1971, Gaskins and Gould 1972) and its underlying theory (Gimpel

1973, 1975, 1976). Although related to two-level grammars, this line

will nor ■.;■•> followed up here. The other line of work is in type-0

patters, and here the most influential publication is Martin Kay's

"powerful parser" (Kay 1967).

Kay's grammars are again not well separated into levels, but they

contain rules such as:

I,.

SG.l • N'JMd)

PL.l « NUMd)

N.l NUM.2 V.3 2 - N0UN(12) VERB(32)

126

»«8*^^* ■**■■■

(Since these are recognition rules, Kay writes them backwards — the

left side of the rule is on the right side of the paper, and vie**

versa. The numbers after dots assign identifying numbers; the numbers

In parentheses use those identifications to build constituent structure.)

The first two rules here recognise either singular or plural number

as being of category NUM. (The single item — dot one — is made the

sole constituent of a NIM node — parenthesiaed one.) The third rule

then recognizes four elements: (1) a noun N, (2) a number morpheme NUM,

(3) a verb V, and (4) a second number morpheme which is the same (SG

or PL) as item two -- and so this fourth item is not assigned a number

of Its own. These four items are rewritten as two items (the left side

of the rule, seen here on the right side of the paper): (I) a noun phrase

NOUN dominating right-side items 1 and 2, and (2) a verb phraae VERB

dominating right-side items 3 and 4 (3 and 2, since 4 and 2 are required

to be identical). After this rule has applied a possible partial parse-

tree would be

>"■

\

NOUN
X
VERB

NUM

SG

NUM

SG

Agreement of the SH's during recognition is forced her«, it should

be noted, by the analogue of the Uniform Replacement Convention; the

two instances of NUM can be required to have the same value because

they are recognized in a single rule; and that is why what are essentially

two unrelated context-free rules

127

NOUN -♦ N ■»• NUM

VERB -♦ V + NUM

are applied together In a single type-0 rule application.

Unfortunately not too much development of this sort of use Is

given, because the "main concern" of Kay's paper Is "to discuss the

extent to which the program we have been describing can be made to

function as a transformational analyzer." A compulsion to use a type-0

grammar to effect "transformations" runs through this whole line of

work. It Is exactly the same ability as the use of van Wijngaarden

grammars to effect "transformations" which we discussed above (section

4.2), and unfortunately it always exceeds the range of manageable

complexity rather quickly.

Immediate successors of Kay are Kaplan's General Syntactic Processor

(Kaplan 1973) — Kay's parser plus some extras from Woods's ATN's —

and the REL (Rapidly Extensible Language) System (Dostert and Thompson

1971, 1972). The REL development Is of some Interest, because to the

original concept of Kay's type-0 parser has been added a layer of

features, so that the resulting grammar has the same structure as a COMIT

program.

Coverage of a large part of English is claimed, with only 300

rules in the REL English grammar. These are really rule schemata, like

hyper-rules, since a rule has the form:

VP' -*■ NP VP

FEATURE CHECK: VP must be (-Passive) (-Subject) and (-Agentive).

FEATURE SET: Assign (+Subject) and (+Agentive) to VP' together

with the features of VP.

This summarizes (as we may reinterpret the formalism) all the rules

(production-rules) In which categoricE representing all kinds of feature-

bundles participate, so long as the feature-bundles of NP' and VP are

related as "dynamically" specified in the final condition, and so long

128

as the feature-bundle of the VP has the specified values. Hidden

under the preocedural terminology of "check" and "set" or "assign"

we discern a hyper-grammar with hyper-rules such as

(vp-prime VFEATURESl) :-♦ <np NFEATURES> (vp VFEATURES2>

<where VFEATURES2 includes (-pas,-subj,-agt))

<where VFEATURESl is VFEATURES2 but (+subj,+agt)>

In this version the "feature check" and "feature set" actions of the

REL rule have become the two predicate hyper-notlons. It is not too

hard to see how to define predicates like these syntactically, although

in an implementation they would of course be Implemented just as the

"check" and "set" actions are implemented in REL.

The importance of the features, or rather the inadequacy of a

grammar of 300 rules, is not easy to overestimate. The example sentence

"Has John attended the school of Cambridge's Mayor?" is said to parse

unambiguously In REL English with features, but to be 2,70l-way8 ambiguous

in the same grammar without features (Dostert and Thompson 1972). In

REL English the subscript features are said to have three roles: (1) to

subcategorize parts of speech; (2) to prevent ungrammatlcal strings

(i.e., to collapse nearly-identical rules); and (3) to determine the

preferred order of syntactic groupings (such as preventing multiple

ambiguities in strings of nouns or adjectives — a motivation analogous

to that for Harris's superscript numbers).

The REL grammar is rather easy to see as a very large context-

free grammar abbreviated in a way somewhat like a van Wijngaarden grammar;

the "category symbols" provide a gross check on the applicability of a

rule during parsing, and only if that test is passed is it necessary to

check to see If a detailed rule which is a refinement of the gross form

is actually applicable. (And, the detailed rules do not physically

exist, but are made up on the fly from the abbreviatory schemata plus

the features actually discovered to be present.)

This same form of grammar has been used in several other recent

computational linguistics projects, but concealed still further in

129

mm

"procedural" terminology, and making use of program fragments instead

of a more abstractly-defined data base of rules. This is the work of

Woods, of Sager, and of Winograd.

It is perhaps no accident that each of these three approaches

is somewhat "an implementation in search of a theory." The engineering

approach is to write a program and work out any problems as they come up,

and the linguistic engineers of early machine translation days fell

into the same error (see, e.g., Carvin 1966 for a defense of the practice)

of encoding their grammars as rec* gnition procedures. It is undeniably

odd, however, that such a practice should have persisted up to the present.

Outside the circles of the artificial intelligentsia, the current view

is rather more typified by Grishman's remarks that "The 'grammar in

program' approach which characterized many of the early machine transla-

tion efforts is still employed in some of today's systems." "...research

goals should be the ability to manage grammatical complexity and the

ability to communicate successful methods to others. In both these

regards, a syntactic analyzer using a unified, serai-formal set of rules

is bound to be more effective (Grishman 1976)." Today's systems, it

should be noted, are more apt to have some set of formal rules, but then

to compromise this by inserting in the rules the names or addresses of

arbitrary bits of program to carry out procedures — thus effectively

putting an essential part of the grammar into programs, which are hard

to control.

Woods's Augmented Transition Networks (Woods 1969, 1970, 1975)

at'e the best-known example of such a procedural way of analyzing natural

language. They actually represent a use of structured vocabulary, although

because of the organization of the systems they sometimes give the impression

of being completely ad-hoc recognition systems. They are, in the usual

sincere flattery claimed for this kind of work , "capable of doing

everything that a transformational grammar can do" (Woods 1970), in the

usual uninteresting sense. In addition to the use of structured vocabulary

which we shall attempt to identify, the ATN grammars also model themselyes

after the special factored form of a "regular right-part grammar" explained

in section 2.4. They further confuse matters by interspersing actions

130

to build a tree structure which is distinct from the structural description

of the string analysed; this is of no interest here, btiing merely an

ill-structured translation o{ a context-free grammar made at an incon-

venient time.

In a Woods ATN, the structured vocabulary of the grammar is nowhere

explicit, but is held in the state of various (software) registers over

time. When a subject NP is recognized, the features of its head noun

are put into a special "subject register" by an "action"; then, later,

when a VP is at hand, the subject register is interrogated by a "condition"

which checks compatibility.

This is obviously one possible low-level implementation of a

two-level grammar — although Woods's grammars have been naive in details

such as providing a limited set of grammatical relations to program into

registers, and In attaching features to words alone so that other actions

must "look inside" larger constituents to find the features (Burton and

Woods 1976).

It would perhaps be worth exploring the application of a more

abstract van Wijngaarden approach to ATN's — introducing many states

with structured names, and so forth, while retaining the regular-right-

part format to see whether those who like ATN's would like the resulting

version. Such a development would be merely a notational variant of the

restricted grammars with structured vocabulary to be introduced in

following sections, and would remove the procedural flavor from the

definition of conditions and actions, while retaining it for the basic

recursive networks.

A similar project using similar means is the "Linguistic String

Project" of Sager, which is influenced by Harris's String Analysis

notions (Harris 1962). As Sager and Grishman observe, "This basic

strategy of grammar design, in which a context-free framework is augmented

by a set of conditions written as procedures, has become quite popular;

it is used, for example, in the systems of Woods and Winograd" as well

as In their own Linguistic String Project system (fager and irishman

1975). Their implementation again employs "registers" which are set

and checked, and If anything it is less constrained than Woods's systems

131

Ä.

because they have Invented a "restriction language" In which to program

the conditions.

The last of these implementations which we shall mention is that

of Terry Winograd. Wlnograd is much Influenced by the idea of the

compactness in a structured vocabulary built on category symbols plus

features:

We allow each symbol to have additional subscripts, or
features, which control its expansion. In a way, this
Is like the separation of the symbol NP into NP/PL and
NP/SG in our augmented context-free grammar. But it is
not necessary to develop whole new sets of symbols with
set of expansions for each. A symbol such as CLAUSE may
be associated with a whole set of features (such as
TRANSITIVE. QUESTION, SUBJUNCTIVE, OBJECT-QUESTION,
etc.) but there is a single set of rules for expanding
CLAUSE. These rules may at various points depend on the
set of features present. (Winograd 1971)

This is not a bad description of the practical advantages of structured

vocabulary and rule schemata, as we have described them pre/iously.

Unfortunately, Winograd somehow came to believe that M. A. K.

Halllday is the only professional linguist who shares this appreciation

(probably because only there did he see explicitly written features,

outside of Chomsky), and so Winograd develops his own grammar in the

form of a program working on Halllday's hints about "systemic grammar"

(Halllday 1961). Winograd rapidly programs himself into an ad-hoc mess:

How, for example, can we handle agreement? One way to do this
would be for the VP program to look back in the sentence
for the subject, and check its agreement with the verb
before going on. We need a way to climb around on the
parsing tree, looking at Its structure.

...The call (*C DLC PV (NP)) will start at the current
node, move down to the rightmost completed node (i.e.,
not currently active) then move left until it finds a
node with the feature NP (Down-Last-Completed, Previous)....

When this idea is elaborated over several years, the result is a hacker's

dream. This is precisely the sort of approach to the advantages of a

structured vocabulary from which we are saved by the invention of a two-

level van Wijngaarden grammar.

132

5. Restrictions on Grammars with Structured Vocabulary

We have seen in section 2 above that context-free grammars of

the classic one-level type are in practice unwieldy for describing

natural languages. In section 3, we saw that by Introducing a structured

vocabulary in a van Wljngaarden "two-level" grammar, it was possible to

overcome some of the practical difficulties, but that the resulting

class of grammars contains formidably complex systems, equivalent to

unrestricted rewriting systems. More than just being theoretically

powerful, there is the practical question of how to apportion function

for maximum insight in a two-level grammar.

In the review of prior linguistic uses of structured vocabulary

In section 4, we have seen that there is a strong tradition going back

to pre-Chonskian linguistics to work with basic units of syntactic

categories, qualified by the addition of features (tags, subscripts)

to provide for agreement or co-occurrence restrictions and to permit

rule features to collapse nearly identical rules. We saw that this ,

tradition was continued without question by early implementors of

systems and languages for natural language processing; and that because

the same formal devices could be used to encode "transformations" or

tree-manipulation rules, that purpose was added to the traditional uses

of structured vocabulary by some computational linguists. It also

appeared that these last extensions have been counterproductive, and

that the two purposes of abbreviating a large context-free grammar and

of transforming structural descriptions should be conceptually separated.

Accordingly, we examine in this section restrictions designed to

model a grammar with category symbols and features, as a restriction

on the form of van Wljngaarden grammars. These restrictions are not

introduced to alter to weak generative capacity of the grammars (the

restricted grammars are still type-0 grammars), but they do restrict

grammars to a class which is easier to write and easier to parse. More-

over, by restricting the format of grammars it is possible that the

notation can be made less cumbersome.

The restrictions proposed here are somewhat similar to those in

(Greibach 1974), which reduce the generative capacity of the granunars

133

^aa^mgjlüaajg^g

to a sub-class of context-sensitive languages and yield other pleasant

theoretical properties; but here our interest is exclusively in the

practical ease and naturalness of the grammars when written by people

to describe natural languages.

It is likely that grammars of the class described In this section

can be written which would be adequate to se»-ve as recognition grammars

for parsing natural languages, in such practical applications as machine

translation. These grammars do not effect any inter-language transformation

or correspondence, which would be left to a separate component.

5.1 A Restricted van Wijngaarden Grammar

In this section we will Introduce a simple van Wijngaarden grammar

to define an artificial language; its interest lies in the fact that

the grammar is constructed using a restricted part of the potential

techniques available in a van Wijngaarden grammar. Generally, we mean

to restrict every non-predicate hyper-symbol to be a single proto-symbol

(the "category symbol") and a string of meta-symbols (the "features"),

and further to require that each proto-symbol is always accompanied by

the same set of meta-symbols. Only predicate hyper-symbols (those which

dominate only EMPTY or blind alleys) are not restricted in this way.

The style of grammar which results from these restrictions will be shown

in the following section^, where alternative notations for such restricted

grammars will be shown and exemplified by transcribing the same grammar

into them. Following these samples, a more complex grammar related to

natural languages (though still simplified for exposition) will be

exhibited in all three notations.

Suppose we wish to define a language in which names may be "declared"

and "used", in a way much like in ordinary programming languages. (This

example language is modeled after that of (Watt 1977), and is related

to the larger example to follow which concerns the proper characterization

of quantified logical formulas.) In this language every name must be

declared (as "new information") before it is used (as "old information");

no name may be declared more than once, and every name must be declared

before it is used. (Names may be declared without being used, however.

13.'»

-^•"tf' ^iMtiiiTiiifn iwfrii

and may be used more than once after being declared.) This language

resembles a programming language with semi-strict declarations and

without block structure.

For example, good strings in this language are ones such as

del x use x end

in which x is declared (del) and then used (use), and other good strings

would be:

del x del y use y use x end

del z del x del y use x use z use z end

del x use x use x use x end

But this language does not include strings such as the following:

*dcl x use x use y end (no declaration for y before use)

*dcl x del x use x end (x declared twice)

We will be employing only the names x, y, and z, so special ad-hoc '

methods could be used to define this language; however, it is a well-

known theorem that in general languages like this one are not context-

free languages (have no grammars which are context-free grammars), so

this will serve as a sample of a language which has no context-free

ßrammar.

A context-free grammar which gives strings of the correct general

form is the following, which generates "programs" composed of a "list"

of declarations followed by a "sequence" of uses:

program "* list • seq end

list -♦ del name I list del name

seq "* ^ ' seq use name

name "* x I y I z

(As before lower-case lambda CAI is the empty string.) A typical

structural description derived In this grammar would be:

135

M'^iilinhfeMT^iifffittrhAniaii^^

program

del name

del del use y end

Of course, as this sample indicates, the restrictions on declaration

and use are not observed in this grammar, so that the tree above is generated

by the grammar, but the terminal string is not one which we wished to be

in the language (x is declared twice and y is used without declaration).

We can correct this flaw by employing a two-level van Wijngaarden grammar

in which the list of declarations and the sequence of uses are constrained

to be the same members, after which the declarations are peeled off

one by one (destructively) and the uses are checked for membership. Such

a granssar is the following:

Meta-i-les:

mi. NAME : : - x 1 y ' :

m2. SET : : "* NAME ' SET NAME

m3. EMPTY : ; "* X

Restricted Hyper-rules:

hi. (program) : "* (list SET) < seq SET) (end)

136

.,.1^ rr--ir?|-T°liTtimitir Vin i i i iiiidfll'liiliH'1 ^* Jtt

h2. (list SET)-- (del) (name NAME)

(where NAME is not in EMPTY)

(where SET is union of EMPTY NAME) i

(list SET1> (del) (name NAME)

(where NAME is not in SETI)

(where SET is union of SETI NAME)

h3. (seq SET) : -* (EMPTY) I

(seq SET) (use) (name NAME)

(where NAME is in SET)

h4. (name NAME) ; ^ (NAME terminal)

Additional meta-rules and hyper-rules to define predicate hyper-symbols

(first-time readers may skip the remaining rules):

m4. OPTIONAL : : "* NAME i EMPTY

h5. (where NAMEl is not in NÄME2 SET) '■-*

Where NAMEl is not NAME2)

(where NAMEl is not in SET)

h6. (where NAMEl is not in NAME 2) ; "*

(where NAMEl is not NAME2)

hT. (where NAMEl is not NAME2) :'*

(where NAMEl precedes NAMS2 in xyz)

1 (where NAME2 precedes NAMEl in xyz)

hS. (where NAMEl precedes NÄME2 in OPTIONALI NAMEl 0PTI0NAL2

NAME2 OPTIONAL3) : "*

< EMPTY)

137

-"-''■ * ■■:— -■ -•-■-■-■«■■^■»^'■^■^—■^"^»"-■-^"■■--'-»---■--■-^-■■*".---J«*»^-—

h9. (where NAME is not in EMPTY> : "♦

<EMPTY>

hlO. <where NAME1 is in NAME2 SET> : "*

<where NAMEl is NAME2)

I (where NAMEl is in SET)

hll. (where NAMEl is in NAME2> : "*

^where NAMEl is NAME2)

hl2. (where NAME is NAME) ; "*

(EMPTY)

hi 3. (where EMPTY is in EMPTY) :-♦

(EMPTY >

hl4. (where SETI is union of 3ET2) :-*

(where SETI is subset of SET2)

(where SET2 is subset of SETi)

hl5. (where SETI NAME is subset of SET2) : "*

(where NAME is in SET2>

(where SETI is subset of SET2)

hl6. (where NAME is subset of SET) :-*

(where NAME is in SET)

hl7. (where EMPTY is union of EMPTV) : •*

(EMPTY)

This van Wljngaarden graamar generates exactly the language specified,

with all restrictions observed. (The detailed syntax of the predicate

hyper-symbols In rules h5 — hi7 will not be discussed here, but generally

follows the pattern Introduced in section 3.5 above, with which comparison

would be useful.)

138

^■^^^^^^...^^■^^^.l^-^^^^JHrtyfljl^r,,.-^ „„i

A sample structural description in this grammar would be:

(program >

<end>

 < name y > < x terminal> < seq xy > < use) < name x) (y terminal)

(y terminal) < seq xy) (use) ' naune xK x terminal)

< seq xy) < use) \ name y) < x terminal)

< EMPTY) (y terminal)

del y del x us_e_ y use x use x use y end

(This grammar, for simplicity, uses the convention that either the

underlined symbols o£ a production-symbol ending in 'terminal' are

terminals.) The predicate hyper-symbols in the hyper-rules enforce that

only one declaration per name can take place in the left branch and that

names used on the right are in the declared set; but observe that the

extensive sub-trees dominating only EMPTY and headed by predicate symbols

hav<2 been suppressed in the tree above. A fuller diagram would be much

more complicated at every level — a sample level would be:

139

j..^-^. V-.^ -^^„„.-.-.^^..j-^f. -TTfiiiffTrritt-ftliiitiiil

U) in w tN — ^V

■* U-l ■^ •H >. >
O --^ (1) ^ >, >< N >» --s. _ ^ W — -1 4J - x >, tt) H ^^ / 0» 0) tt) tt! £ w

^
/ U Hi u C M a y •v<-

m /«% a> ■H 0) •A •N^

■H / x: x:
*4 / S m 5e 3

1

0<
-_- ■—

^X /a 0) \ 1 u
U) >

\. «i 1 « ^ \ "-' X
/ -c \ ^ -^v >.

-"V

f * tn \xg. tt) X t-<
w x J •s^ s^ "I * >, / a) — (U w

/ u c .c ■H Cd
>,>M / 0) -H s ^^
* O/ •^-•

/ 5) c\
/ »^ 0 \ X

/ <U H \ >.
/

5 ^ \
m w W

/ ■r4 m ■^ •^
/ 'N-'- y 0 •-v X ^*v

/ \ ^N X X X X -•*, ^->v >4

/ \ X n >. X _ <1) X — •—— |~4

\ m >. (DO) — — v - 0) M P«

\ •r< / M Ifl u c H c tt) «1 «%
\ *•"' J 'i^ S) •H 0) ■H JC -H &] W O / JC .c 3t ■*y x » Wl » ■f N^-

^X N^ **• ■^^

0) (U \
M (fl \

•§N v m
>i

.'*N

5 « \ x "-V JM

\

"v^

<y

0)
 M

s

\ U)-^ •0 > V w >, 0)

\x C **x 0) N \ * X N
-*S-

^v

*s. V • ^
X

<U 0
—— 0)

0 X c 1 t> £ C tt» c: ■l-t

§^ > £ 0) Pb]
Nw* S M >, '**' c

<
■s** 9)

140

fl

This shows all the rule applications which had to be possible in order

for the rule rewriting <li8txy > as «(list y > 4 del > < name x N < where

x is not in y> < where xy is union of yx > to be part of a valid derivation.

The last two hyper-syrabols (the two predicates) and all their dominated

material was removed from the structural description because it dominated

only EMPTY terminals. Trees like this are generated at each declaration,

aad a smaller tree is generated at each use. If the sample derivation had

not been correct, then some of the predicate nodes would not have been able

to generate only EMPTY, because the derivation would have blocked at a

non-terminal which could not be re-written.

It should be clear, looking at this grammar, how proto-symbols

such as 'list' and 'seq' are used as category symbols, while meta-symbols

such as 'SET' and 'NAME' are used as features. The production-rules

generated from the basic hyper-rules will re-write a category symbol and

any possible feature set, leaving it to the rules re-writing predicate

hyper-symbols to block the derivations containing features which are not

correctly arranged.

5.2 Roster's Affix Grammars

In the preceding section we exhibited a correctly-matched structural

description and associated string in the language of the sample van

Wljngaardcn grammar. But it is a nice question how we could have started

with the string and the grammar, and discovered the structural description

(if any). We could not, for Instance, have expanded the van Wljngaarden

rules out to their equivalent production rules, since there are an

unbounded number of production rules produced by the first hyper-ruU' alone:

SET ; : - NAME 1 SET NAME

< program) :-* (list SET> < seq SET) < end)

Any value of SET can be used to form a production rule, even though not

all sets Initiate valid derivations (for example, those with repeated

Instances of the same name do not).

Clearly we need to begin the other way, and to find some method

141

^..^,.„„ .,».—..■^—:„—^■■iiiiirmWfMin'tiilii-^iw-iirnfiiiiiMili^iMItliiiMi

to discover from a string to be parsed what rules are relevant to it -—

and then see If those rules exist. One proposed way to do this is to

ra-fcrmulate a van Wljngaarden grammar as a different but related kind of

"affix grammar" specifically designed to make this strategy trivial

(Koster 1971, 1974b, 1975, Crowe 1972, Watt 1977). This must be done by

hand, since not every van Wljngaarden grammar can be so re-written,

and the converalon is not mechanical. But we will examine affix grammars

here, anyway, since they employ a notation which Is related to our restricted

van Wljngaarden grammars and since they du suggi-st intuition as to how

parsing could proceed.

An affix grammar can be seen as a restricted van Wljngaarden gvammar

which (like those of the preceding section) contains only non-predicate

hyper-symbols which consist of a single proto-symbol and a string of

raeta-syiabols, always the same string for any single proto-symbol. Rut

In addition, for each appearance of any meta-symbol in a rule the grammar

writer must specify whether It is "Inherited" or "synthesized" ■-- that is,

whether its value in that appearance depends on tho values of symbols In

Its constituents alone (synthesized), or whether its value depends in

part on the context of Its use (inherited). Finally, predicates are

defined in non-syntactic ways (for convenience), and may compute the

values of some meta-symbols. Since the meta-symbols in this sort ot grammar

so clearly qualify the protr-symbols, they are called "affixes".

As an example, we give here an affix grammar for the same language

defined In the previous section. The new notation here consists of a

rising arrow T to precede synthesized affixes, and a down arrow •* to

precede Inherited affixes. This definition can be compared rule for

rule with the van Wljngaarden grammar given before.

ml. NAME ; : -* x ! y I 2

m2. SET : : -* NAME I SET NAME

m3. EMPTY ; : "♦ X

(affix-style hyper-rules:)

■■ ■tlraft*iliM HaiBBiiMMaiBMiiiaii»

hl. (program) :-> < list tSET> <seql-SET> <«nd)

h2. < list tsET> :-* (de 1) < name t NAME>

< add(EMPTY,NAME)return(SET)) I

(list tsETl) (del) (name tNAME)

(add(SETI,NAME)return(SET))

h3. (seq 4.SET) :-* (EMPTY) I

(seqlSET) (use) (name tNAME)

(identify(SET,NAME))

h4. (name tNAME) : "* (tNAME terminal)

Here "add" and "Identify" are names of predicates; they are defined

procedurally, by giving the ranges of their parameters and a specification

of their actions:

Predicates:

name
input

parameters
result

parameters function

add 1. SETI

2. NAME

3. SET if NAME € SETI

then fail

else SET :- SETI U {NAME}

fi

identify 1. SET

2. NAME

if NAME € SET

then succeed

else fail

fi

It will be observed that the basic rules here are typographically

143

--"■"■--'-— — ■^•^^-

almost Identical to the corresponding rules of the van Wijngaarden

grammar, but these rules contain extra Information.

Interpreted as a van Wijngaarden grammar, this affix grammar

defines the same language in exactly the same way as before — that is,

the language generated by production-rules which can be obtained from

the affix-grammar rules by the Uniform Replacement Convention. But

hidden in the arrows is a further assertion that a possible parsing

strategy would be to construct a parse tree according to the proto-syrabols

alone, and then check the affixes in the order indicated by the arrows,

letting the 'taffixes move up the tree, while the yaffixes move down.

For example, the parse tree corresponding to an example similar to the

one given before would be:

144

wäatmuätetäamm mm^ätmälaia^m^iäälammim

131

4)1

4>

§1

^1

^

145

■MU

In this diagram, the dotted arrows running through the affixes of every

node describe a feasible pattern of checking which would be effev-ive;

beginning with the terminal names, values are synthesized upward and

inherited back down, computing the value of all the affixes and checking

the compatibility of them. In general, of course, the declarations are

gathered moving up the left side of the tree, and then uses are checked

moving down the right side of the tree.

Without going too deeply into the restriction philosophy, we

can distinguish in any hyper-riile affixes which are in "defining occurrences"

from those which are in "applied occurrences." Defining occurrences are

those of (1) inherited affixes on the left side of a rule, or (il)

synthesized affixes on the right side of a rule. Applied occurrences

are just the opposite: (i) synthesized affixes on the left side, or

(11) Inherited affixes on the right side. For example, in

< list tsET) :-* <dcl_> < name TNAME)

(add(EMPTY,NAME)return(SET) >

the synthesized affix f NAME is "defining" on the right, while the

synthesized affix t'SET is "applied" on the left; this corresponds to

pass-ins Information up the tree while parsing, and the predicate "add"

computes a value for SET using the value of NAME.

Affix grammars in this form are usually subject to some additional

constraints, because they have been defined for programming languages

where the goal is to parse very rapidly, and the constraints make it

possible to parse in one pass over the input string left to right,

propagating affixes through the tree in the same pass as parsing is

completed. We will not explore the effect of these constraints hero,

because for natural language analysis a looser set of constraints is

inevitable -- and that is the subject of the following section.

What is notable, however, is that the restriction of van Wijngaarden

grammars to be essentially context-free grammars with features and tests

rapidly moves them quite far down the scale of generality, so that

convenient parsing algorithms become available.

1A6

^na^iramtaiiTi'tllMTrBBiBait^^

And, as we might expect, the resulting grammars are also easier for

humans to read and understand. Slmonet (1977) suggests defining programming

languages by van Wljngaarden grammars, but restricted van Wljngaarden

grammars modeled after affix grammars for ease of human use. That

suggestion seems plausible, given the widespread popularity of the same

representation for natural language analysis.

5.3 Knuth's Attribute Grammars

Still another variant of a grammar with structured vocabulary

is the sort Introduced by Donald Knuth and now generally referred to

as an "attribute grammar" (Knuth 1968, 1971, Fang 1972, Wllner 1972).

Although originally motivated by rather different goals, attribute

grammars may for our purposes be considered as simply a set of notatlonal

proposals for affix grammars or van Wljngaarden grammars.

The advantage of the Knuth approach is that it Is once again

quite easy to achieve an abstract, "declarative" way of looking at

the grammar. In a van Wljngaarden grammar, the declarative view is

obvious: a class of well-formed strings and their associated structural

descriptions is characterized, but no procedure for parsing is implied.

Affix grammars, by contrast, use a notation which suggests preoccupation

with passing things around, one step after another. A little bit of

this is useful to suggest how practical implementations could be achieved,

but to Insist on this procedural view is to complicate the task of

writing a grammar by raising to notice just those details which it is

the glory of a grammar to suppress. Affix grammars can be viewed as

declarative, with a bit of effort, but once they are viewed in that

way the Knuth approach may recommend itself as more natural.

A first orientation to attribute grammars should Include a warning

that (unlike affix grammars) attribute grammars are not (explicitly)

two-level grammars, were not motivated by the syntax of Algol 68, nor

were they Introduced to admit of efficient parsing. Instead, attribute

grammars were proposed by Knuth as a way to specify the "Semantics of

Context-Free Languages" (the title of Knuth 1968). The idea was to

associate "attributes" with the categories of a context-free grammar.

147

^^MKK^&H&i&ii^^

:tnd (,1 .l~;~:,,~.·Lt!t' nd.·~; f,,r C<'lllputing :lttrihutt':' 1dth tile rult .. '!; nf tb·

~:u,·ll ;tttri'·<ltt·~; Ct'uld IH' ;!ttlrL! t•LllH1l':lt\.' th;m "featurt•!;" in tht!

th•· " .. ,,. ·11\n··"

'· ~ :: 1 , ~ ~ r c,. ~ '· , , r

.: t r it,, t ,\ !'' .1.,.,, ... :: :!1 ~ .. ,,!! r .. 'tll'~~ t·r._,

1., ' ..

' 1 ii t \

I',. ·'

t't ~tt~ .t~ t·i~·ttl'' t,~t !';\·it~,·.~.·:; .:t·\t ~tttri!'ttlt.' ,,., t~~ t ... ·:t, .1'1 it~\~,·l·itl~\1

' . '. :, t \ : ;u:.t

t4S
BEST AVAILABLE Copy

3 .

. ...

it:; ·.tlue t,, lltl' v:llut>~: uf (1tLer attributes in the same rule.

li~t seq ~~d l.la

1 '.
4- .1.0

2 .1a .

.::.lb

l.:.st -l ·1 \....."" -. 2 .. 1.

t\'t~e \'.\lue

St:.~t ,='t n.:1mt2s
d8cL1red

set ,_,f names

BooLea.n

(t:::" .. :e or false)

SD1i\NT I.:S

for
cat~qorv svmbols

name

list

seq

nar.·.t.~, 1 ist, seq,
~rogram

S~!i.(pr(:-<:;ram) -= ERR(l.ist) .OH. ERR(seq)

OSET(list) = NA~~(name)

DSET(listl) = DSET(list:.~) U {~:\ME(n.tme)}

b E:RR(listl) = 2RR(1ist2) .OR.

3 • cl

::

·L lb

(if NA:01E (nam~) E DSET (list2)
then --t-rue e 1 se false)

E~R(seq) = Eals~ ·

ERS.(-~t'qll =-= E~R(seq:) .OR.

(if NA~~(name) E USET(seql)

then false 0lse true)

NA:-\E(nar:1~~) ·""' (strinq name)

ERR(name) = false

BEST AVAILABLE COPY

rL'['l';tt.•,l in~ ;mcc~; of the same symbol -- DSET(listl) is the llSI:T ~lttriLutc

Pi t!a• first llCl:urrl•ncc of the c;ttcgory symbol 'list' in the rulv. etc.)

Thus, it is ncccss;try to say explicitly th;tt ln

rule 1

list ~~eq end

(.:md >

l"l'SUlt

BEST AVAILABLE COPY

If the above convention on unwritten rules Is adopted.) Clearly, other

conventions about errors which would be more like those of the affix

grammar could be used.

Finally, the convention of calling the context-free rules the

"syntactic rules" and of calling the conditions on attribute values

the "semantic, rules" is purely an historical artifact and new nomenclature

can be introduced. The same distinction has been so long used in natural

language systems, however, where the category symbols of "the syntax"

are augmented with "semantic features" and tests, that there is not much

risk of confusion in the present context.

5.4 An Experiment with Three Notations

Although there is no question of the utility of grammars with

structured vocabulary in defining syntax, there are many practical

questions about how to go about writing and grasping a grammar large

enough to be a comprehensive grammar for a natural language. Restricted

van Wijngaarden grammars, in a sense, only work with "inherited"

attributes; all information lower in a structural description is Imposed

by higher levels. Knuth (1968) points out that alternatively it is always

possible to use only "synthesized" attributes; the entire form of the

tree can be encoded into attributes of successively higher nodes, and

then any function of that attribute computed at the root. But the

claim is that an interplay of inherited and synthesized definitions is

more natural, and easier for people to think about.

It is by no means clear whether or not this is true, so as an aid

In evaluating the claim we present here three definitions of the same

language, this time a language more closely related to the non-context-

free phenomena of natural languages.

Natural language examples tend to be very large relative to what

they reveal, so we once again consider a language abstracted from natural

language studies so as to be able to write revealing grammars in reasonable

space. This sample draws on material familiar to linguists, and so should

give the flavor of the enterprise. Such abstract structures as are used

here are not envisioned as playing a part in any machine translation

151

System directly, although analogous problems arise in machine trauslatiuiu

The problem is that of specifying the set of derivation-initial

phrase-narkers for a grammar of the sort associated with ""enerative

Semantics". In such a "semantically-hased" grammar, one needs something

like a base component to initiate derivations; as McCawley says, "the

closest analogue to the base component of Aspects is a set of rules

specifying what semantic representations are well-formed" (McCawley 1973).

Although no such set of rules has ever been made explicit, in general

we are talking about structures in which quantified noun phrases originate

in higher sentences, and in which clauses of the ordinary type contain

only references to the indexes of these noun phrases.

A tiny context-free grammar for such structures could bo:

1. tops "* # 3 #

i. * ? -* qp S

3. qp -'• q binding-np

4. s ■* pred arg arg

5. arg "* 3

6. arg ~* bound-np

We will imagine that lexical terminals appear under "q" (quantifier),

"pred" (predicate), "binding-np", and "bound-np" by some auxiliary

non-grammatical process. This is perhaps not the best grammar for such

structures, but it has the advantage of being very simple; still more

interesting, though longer, examples could he constructed around the

structures of (McCawley 1973, pp. 79ff.).

A sanplc derivation in this grammar might be (with lexical terminals

Inserted):

152

in ii ••jMiiiiir^^^^^itt-fimiTliiiliiiiiriltiiiiliifrMiiTri

tops

men.

which could possibly underlie "Few men read many booKs."

But the context-free base rules are not adequate rr define the

structures we want, since they could equally well produce the trees such

as the following (assuming that the lexical Insertion process Is not

smart, but merely randomly inserts lexical nouns):

153

tops

men. books.

This tree has two binding occurrences for men.; that Is not possible, so

the outer men, would be a vacuous quantifier. Books, appears free in

this expression, but It should be bound; It lacks a defining quantifier

expression. Thus, this tree could not underlie any well-formed expression

since It Is Incoherently formed.

So we should add to our context-free grammar a requirement that

every bound-np must be the same as one and only one binding-np above it,

must be the same Index as the lowest instance of the same name above it,

and there must be no excess binding-np's.

Since these linguistic trees were designed to be parallel in structure

to logical formulae, it is not surprising that these requirements are

the sane as the requirements for "coherent quantification" in the quantl-

ficational expressions used by logicians. But the fact is that such

languages are not context-free (have no context-free gramars). (This

154

^J^J.^i^.;m.Mm^lM|.|^.:^.|.^li|f n|.|l.|.^fft ^^

f

tact as applied to logical formulae ha« been discussed by Janet Dean

Fodor 1970; McCawley has discussed the difficulty in specifying a base

granaar, but without giving this natural linguistic characterisation of

it.)

Obviously this logical language is related to the one discussed

in the preceding three sections, but It la «ore complicated in two ways.

First, the same "name" may be Introduced several times with different

meanings, so long as each layer of binding and bound occurrences meets

all the tests, and so the syntax must sort out such multiple uses.

Second, vacuou» binding occurrences are not permitted, so It is necessary

to Impose the vequlrement that every name (every binding use of a name)

has a bound use somewhere else.

A van Wljngaarden grammar for ;*uch a language is extremely straight-

forward to set down, although It is rather tricky to read and understand,

the Important part la the first six hyper-rules (corresponding to the

six context-free rules), which have predicate symbols that require that

every sentence ha*1 a properly-formed table consisting of "layers" of

bindings which is consistent with the bindings actually present, that a

parallel table of uses also contain all bindings, and that bound variables

should be the only item used in their tables and should be identified

In the proper scope of the bindings table.

The characterization of well-formed tables of names and binding

occurrences also turns out to be straightforward, If tedious, in purely

grammatical terns. A well- formed table Is a set of pairs (TEXT, IDEM!)

divided into layers by the punctuation mark "new". All names must be

distinct in every layer. The same name TEXT may occur in different layers,

but every unique name IDENT must be unique In the table. Observe that

the meta-rules generate all the possible TABLES there are for the hyper-

rules, and it is only the predicate tests which restrict the tables to

be well-formed.

i,

Meta-rules:

ml. ALPHA =; -» a I b I c I .,. I x I y

m2. STRING s ; "♦ AUPHA I STRING ALPHA

155

mmmämmmimm mmmm mMmmm^ msM mm mm mam

I iii

m3. EMPTY : : "* X

m4. STRINGETY : : -* STRING ' EMPTY

mS. LETTER :: "* letter ALPHA

m6. TEXT :: "* LETTER I TEXT LETTER

ro7. NUMBER ::-* i ' ti ' iii ' ...

m8. DIGIT ::-* digit NUMBER

m9. IDENT ::- DIGIT I IDENT DIGIT

tnlO. DEF ::- { TEXT , IDENT)

mil. DEFS ::-* DEF I DEFS DEF

ml2, DEFSETY • ■ •* DEFS I EMPTY

ml3. NEW ; ; -♦ new

ml4. TABLE : : "* new DEFS I TABLE new DEFS

ml5. BOUND : : -* TABLE

ml6. USED ; : "* TABLE

ml7. ALPHABET : : "* abcdefghijklmnopqrstuvwxyz

iiiiiii.

Basic Hyper-ruies:

hi. (tops) :- (4 symbol) <s BOUND USED) (# symbol)

<where BOUND is NEW>

(where USED differs from NEW)

h2. (3 BOUND USED) : "* (qp DEFS > (3 BOUND NEW DEFS USED)

(where BOUND NEW DEFS is a well-formed table)

(where BOUND NEW DEFS is a subset of USED)

h3. (qp DEFN : "* (q) (bindmq-np DEF ^

!r>f>

ii^irliiyir^ffflat«Tniäri,i<i^'tta'"''lff;IrtB'rM^ lwPiifi--ff'||ffygj^^f;..,f-r^t|:j1^.1.|tt^.Mi^.j^^^^

h4. < s BOUND ÜSED1 > :-*- (pred) < arg BOUND USED2 > < arg BOUND USED3)

<where USED1 is union of ÜSED2 and USED3>

h5. < arg BOUND USED > : -* < s BOUND USED >

h6. < arg BOUND USED > : -»• (bound-np DEF >

<where DEF is identified in BOUND>

^where NEW DEF is USED>

Hyper-rules to expand predicate hyper-symbols

h7. <where TABLE new DEFSETY is a well-fonned table) : "♦

<where TABLE is a well-formed table) n

^where DEFS is a well-formed layer)

(where DEFS does not confuse TABLE)

h8. (where DEFSETY (TEXTfIDENT) is a well-formed layer) : "*

(where (TEXT, is not in DEFSETY)

(where ,IDENT) is not In DEFSETY)

(where DEFSETY is a well-fonned layer)

I (where DEFSETY is EMPTY)

h9. (where (TEXTl, is not in (TEXT2,IDENT) DEFSETY) :-'■

(where TEXTl differs from TEXT2)

(where (TEXTl, is not in DEFSETY)

i (where TEXTl differs from TEXT2)

(where DEFSETY is EMPTY)

hlO. (where ,IDENT1) is not in (TEXT,IDENT2) DEFSETY) ■ ■*

(where IDENT1 differs from IDENT2)

(where ,IDENT1) is not in DEFSETY)

I (where IDENTl differs from IDENT2)

(where DEFSETY is EMPTY)

lr)7

"I-^T-irmi tfif-: ■■ rf -f-, T;it-isiiniWiiinirimifffiTiri'irWflrr r^s li-iMiiiffiMiffitairiv'^Tiin-iriiWifrtiaHiwiiWiw^^ -.fmiifif^"^'-^-"'-

hll. (where DEFS does not confuse TABLE new DEFSETY> :-*

(where DEFS does not confuse TABLE) j

(where DEFS does not confuse DEFSETY) |
1

hl2. (where DEFSETY (TEXT.IDENT) does not confuse DEFS> =-♦ |

(where ,IDENT) is not in DEFS) |

(where DEFSETY does not confuse DEFS) \

hl3. (where DEF is identified in TABLE new DEFSETY> :-♦ |
i

(where DEF resides in DEFSETY) !

I (where DEF is independent of DEFSETY)

(where DEF resides in TABLE)

hl4. (where DEF1 resides in DEFS DEF2) :-•• ;

(where DEF1 resides in DEFS) \
I

I (where DEFl resides in DEF2) !

hl5. (where (TEXT1#IDENT1) resides in (TEXT2,IDENT2))
:-* ,

(where TEXT1 is TEXT2)

(where IDENTl is IDENT2)

hl6. (where USEDl is union of USED2 and USED3) :-

(where USEDl is setequal to USED2 USED3)

hl7. (where USED is setequal to BOUND) :-*■

(where USED is subset of BOUND)

(where BOUND is subset of USED)

hl8. (where TABLE1 new DEFSETY is subset of TABLE2) :-

l (where TABLEl is subset of TABLE2)

(where DEFSETY is subset of TABLE2)

58

i
t^a^äääiiUmäMtStaääimsma&mx^^ämiii&ikM^i

f 1

hl9. <where DEFSETY DEF is subset of TABLE> : •*

<where DEF is identified in TABLE)

<where DEFSETY is subset of TABLE)

h20. <where EMPTY is subset of TABLE) : "*

< EMPTY)

h2i. <where STRINGETY1 ALPHA! differs from STRINGETY2 ALPHA2) : "♦

<where STRINGETY1 differs from STRINGETY2)

I <where ALPHAl precedes ALPHA2 in ALPHABET)

I <where ALPHA2 precedes ALPHAl in ALPHABET)

h22. (where STRING differs from EMPTY) :-*

(EMPTY)

h23. < where EMPTY differs from STRING) '■-*

< EMPTY)

h24. <where ALPHA! precedes ALPHA2 in STRINGETY1 ALPHAl

STRINGETY2 ALPHA2 STRINGETY3) : "*

< EMPTY)

h25. <where STRINGETY is STRINGETY) : ■*

< EMPTY >

^,1 affix grammar for the same language is considerably more detailed

(in the part corrospoiulinj; to the first six hyper-rules, naturally, since

there is nothlnj; to rorrospoml to the rest of then). It Is no longer

possLMo to juat take the lofty view that wo dl.l in the van Ul jni'.aarden

I'.raranar that every hiruling varinhle mist he used and every variable used

must be hound; now we trust devise an explicit arrangement whereby a list

of binding, occurrences is passed down, while, both lists of binders and

\r>r>

uses are passed up to be compared at the root,

Affix grammar rules:

1. <tops> '■-*■ <» symbol) <s J-BOUND tuSED tlNTR> <# symbol)

<assignset({})returns(BOUND))

<checkuse(INTR,USED))

2. <s iBOUNDl tuSED tlNTRl) : "* <qp tINTR2 tBDING)

(s IBOUND3 tuSED tINTR3)

<assignset(INTR2 U INTR3)returns(INTR1))

(overridepairs(B0UND1,BDING)returns(B0UND3))

3. <qp tlNTR tBDING) :-^ (q) <binding-np ttEXT tlDENT>

(assignset({IDENT})returns(INTR) >

< overridepairs{{TEXT,IDENT},{})returns(BDING))

4. <s ABOUND tuSEDl tlNTRl) : "* <pred) <arg iBOUND tuSED2 tlNTR2)

<arg ABOUND tUSED3 tlNTR3)

<assignset(USED2 U USED3)returns(USEDl))

<assignset(INTR2 U INTR3)returns(INTRl))

5. (arg 4B0UND tuSED tlNTR) :-♦ <s ABOUND tuSED TlNTR)

6. (arg 4BOUND tuSED tlNTR) : "* <bound-np tTEXT)

^assignset({})returns(INTR))

(identify(TEXT,BOUND)returns(USED) >

160

Predicates:

name
input

parameters
output

parameters function

assignset 1. SETI 2. SET2 SETI SET2

checkuse 1. SETI

2. SET2

if (SETI \ SET2)

then succeed

else fail

fi

o

overridepairs 1. PAIRSl

2. PAIRS2

3. PAIKS3 PAIRS3 := (PAIRSl

overridden by

PAIRS2)

identify 1. TEXT

2. PAIRS

3. IDENT if (TEXT is first member

of a pair in PAIRS)

then IDENT :« (corresponding

second member)

else fail

fi

And finally, an attribute grammar will he much like an affix

grammar in its strategy.

161

tt^atSuxn«^^^».-»^»rnsuaaM^ nifirrnr n TV ' - '. "• iTKTniiTiiiiirtri.iiui 'in taStT,iiümia■liiiir-hiiflür'""--J"-""-"' -"■" ^"-■"■"-■^-—-

Attributes:

Inherited

name for symbols

ABOUND s, arg

Synthesized

name for symbols

tUNUSED tops

tuSED s, arg

tlNTR

tBDING

s, arg, qp

qp

type of value

function

type of value

set of idents

set of idents

set of idents

function

tTEXT binding-np, string

bound-np

tIDENT binding-np unique

number in tree

comment

specifies unique ident

for any text, relative

to context

comment

vacuous bindings

binding variables used

in this subtree

binding variables intro-

duced in this subtree

specifies ident of a

single binding text

text of variable

name

identification of

binding np

i 1

Convention:

A tree is well-formed only if the value of tUNUSED at the root

is the null set.

162

-Mi-mViihtoiilte^iHiiiliii»^^ ■üttüäHiHttittüalitfin --tJ---": -^■'-'■■'^ ■ "'■■'■■ ■ ■ ^-.»-^^-^--^ ■

.ttews/s«« ' V -v*,-.._„ ,1 -... ,, ^,,,

Attribute graunmar rules:

tops

2. s, qp S2

3. qp binding-np

4. s ""*■ pred argi

5. arg

6. arg ~* bound-rvp

tUNUSED(tops) = tlNTR(s) \tuSED(s)

4B0UND(s) = {}

tuSED(Si) = tuSEDlsz)

tlNTR(Si) = tlNTR(S2) ^ tlNTR(qp)

iBOUND(sj) = iBOUND(si) Ö tBDING(qp)

'tlNTR(qp) = tlDENT(binding-np)

tBDING(qp) = {tTEXT(binding-np),

tlDENT(binding-np)}

argj

tuSED(s) = tuSED(argi) UtüSED(arg2)

tlNTR(s) = tlNTR(argi) UtlNTR(arg2)

4B0UND(argi) = iBOUND(s)

ABOUND(argj) = iBOUND(s)

tüSED(arg) = tuSED(s)

tlNTR(arg) = tlNTR(s)

4BOUND(s) =» ABOUND (arg)

tuSED(arg) « ABOUND(arg)(tTEXT(bound-np))

tiOTR(arg) =» ()

if

1^3

- -IBJ-^I iVffiit.ai^l-arM ittB^MAaaMBäriaäaBiä^iüBaiMaaiiüa

A comparison of these three definitions is somewhat difficult,

all the more so because there are choices of style made in connection

with each which are arbitrary and which could be changed. But it does

seem that the van Wijngaarden grammar may offer "too smooth a surface,"

and conceal too much behind Its meta-symbols and the predicates to

restrict their productions. The greater length of the van V.'ljngaardcn

grammar should not be held against it — quite the contrary, since the

excess comes entirely In the expansion of the predicate hyper-symbols,

in which every jot and tittle of convention is forriaUzed completely

in syntactic terms, whereas the other definitions both rely on many

"understood" notions from nathematics and progranmin", languages, however,

it seems hard to avoid some feeling of a Turing machine sir.ul^tlon In the

strings of the production symbols in a van '.'i* jnr.aarden grammar, and it

is probably helpful to relax a little nt! the others do and accept sets

and trees (say) as primitives, with operations on then directly.

The affix grammar scens to conceal just the wrong part of the

grammar in its separately-defined predicates. The long lists of (mostly

redundant) affixes are vritten out in full, but the actions are bidden

in separate procedures which define relations amon", the affixes. The

reverse arrangement of Knuth's attribute grammars seems preferable;

and it is possible to read (and perhaps necessary to write) the attribute

grammar In purely a "declarative" frame of mind, treating the semantic

rules as static conditions on the well-formedness of feature sets.

A practical notation for van VijngaarJeu grammars, based on this

very limited experiment, might ha tu write rules with condilions in

Knuth's Ion». It would doubtless in this ca^o be wise to ndvl some

analogue of the rnlfonn Replacement Convention, as we dlscusstJ before.

Observe, for instance, how rule 5 in the van V'ijnt;aarden grammar and in

the affix graumar are exquisitely simple, whereas rule ' in the atCii!<u!.0f

grammar contains (predictable) conditions to "pass alony,' every attribute

of the symbols in the rule.

5.5 The i'arsing rroblem for Restricted Grammars vita rtructured Vocabulary

The parsing problem for general van UijngaarJen grammars is the

problem of parsing type-O languages, but for reslrlctod languages such

1(4

Jiij,iS^K^''ii!^^'g^^gv- iiiiinfM-irffr^liiitir'iriilirirJiirhirüNI I

l\ f.

as we have explored in the last section, the basic parsing strategy is

clear: these are just context-free graranars plus "a little more." As

a result, It Is not difficult to see how to proceed.

For basic context-free parsing, there is one algorithm of greatest

importance, or one family of algorithms: this is the "nodal spans"

algorithm of John Cocke (Cocke and Schwartz 1970) and its extension

with the predictive elements of Knuth's LR(k) technique (Knuth 1965)

by Jay Earley (Earley 1968, 1970). This "chart parser" technique (Benson

1969, Woods 1975) is the most flexible and general of the parsing algorithms,

with excellent speed when implemented correctly. This algorithm has

been employed in the Quince system at Berkeley, and in its predecessor

Syntax Analysis System, since 1967 — perhaps uniquely, since a recent

survey of the field (Crishman 1976) remarks that these "algorithms have,

to the best of our knowledge, not yet been used in natural language

parsing."

The only remaining question, then, is how to handle the "little

more" of the features.

If one is given the restrictions customarily placed on affix

grammars (not detailed here) (Watt 1977), then it is possible to check

all affixes in a single pass over a parse tree, and moreover this can

be interleaved with parsing itself in a deterministic parsing algoritlim

(such as LR(k) or LL(k)). It is not clear, however, that a grammar for

any natural language could be written conforming to these restrictions.

For completely unrestricted attribute grammars. Fang (1972) wrote

a non-deterministic parsing system, of unsatisfactory efficiency. For

restricted attribute grammars of the sort considered here, however,

it is not clear that such generality is needed, either.

The best choice seems to be the procedure of (Bochraann 1976), in

which a number of left-to-right passes over a parse tree are used to

evaluate all attributes. In practical cases it appears that a very few

passes would be sufficient, unless the definition of attributes is

circular, because the depth of nesting in grararaars for natural languages

is not great. (Bochnann Includes an algorithm for determining the

naxlmum number of passes necessary for an attribute grammar, and such

algorithms can be of practical use with restricted grammars, In spite

165

».„-„.■^...M^mw^fmn.-. ,.^,>M,...^.^ia,w.aifct-<iyM||tHHj.5Ui...>,.,Ji;Mi^....,,. .^.^..j^a...^^

of the tlemonstration (Jazayeri, Ogden, and Rounds 1975) of the intrin-

sically exponential complexity of the circularity problem for attribute

gramraars.)

The problem is well-understood in the case of attribute grammars

applied to programming languages (see, e.g.. Lewis, Rosenkrnnta, and

Stearns 1976). A chief difference between these grnnmars and grammars

used for natural languages is that programr.ing language grnr.nars are

typically unambiguous (or nearly so) even vithout considering attributes.

The ambiguity of natural language grnr.nars vithout considering attributes

is intended to be high •— that is part of vhat the attrM-utcs are for —

which suggests that as much as possible of the attribute-processing

should bo interfactored with parsing tc eliminate false partial trees

■is early as possible. This rcrgnrenent could well mean that a detcmina-

tion should be made by a grammar pre-prucessor as to which attributes have

the "one-pass" property, and viiich wast be computed over caaplcted deriva-

tion trees, with different strategics used lor the two kinds of attributes.

This Jetcruiiuation applied to an attribute graiuuir would be straight-

forward as compared to a compiler for Uoods's ATüs (Durton and "..'cods

1976) because of the wore regular structure of the attribute grammar.

At the level of implementation tactics, as opposed to strategy,

there are a number of challenging problems in using grammars with

structured vocabulary. Some of the techniques have been worked out in

connection with the current Ouince parser in use at bcrkeley, and

references to such of this work as has been published will be found in

the final section.

C. The Quince System and Grammars with Structured Vocabulary

It would be more surprising than not if grammars with structured

vocabulary played no part in the existing Ouince parsing approaih and

in our plans for future progress -- especially is this so in lig'at or

the argument made in the preceding sections, that structured vocabulary

is important (however disguised) in the grammars or procedures of all

current natural language systems. We have, hovewr, been perhaps more

systematic than most rese.vrch groups in our past .u vole, meal of this t'»pie,

Uf>

n irmr»MWir«.irt^liiHrii''tf rTN(€«-BaiMi^Ti---.to^.»M^itmtr^^ . -,...„..„.

SS'Wa^JifeSfeäS

6,1 Previous Uses of Structured Vocabulary at POLA

How to utilize a grararaar of Chinese with structured vocabulary

has been a topic of research at the Project on Linguistic Analysis since

at least 1970. Prior to that tine machine translation research at

Berkeley (goin^ back to Sidney Lamb's work on Russian in the early

lOfil's) had made use of grammars with symbols which were systematically

related in the minds of the grammarians, but this relatedness was not

exploited in the computer systems. By the early 1970*8, a succession

of v-ramnar-writers had introduced several different and in part in-

compatible systems of structuring the vocabulary of the grammars.

Accordingly, research was begun on how a set of features should

be used with the existing grammar of Chinese. This eventually led to

a project (described at length in '-.'ang and Chan 1974) to write a "core

grammar'' of basic syntactic categories, augmented with a set of features.

In support of this project a reclasslfication of all syntactic categories

was undertaken, and a program was written which translated between the

basic category symbols plus features, and a second "extended" set of

category symbols which included the feature information.

Thus, since about 1972 Chinese grammars at POLA have been maintained

using indexes of "core grammar rules" followed by their feature instan-

tiations, so that a grammarian did not need to understand over 3090

rules directly.

Studies of features and simplifications of the grammar continued,

and (Vang and Chan 1975) reports a wide variety of Chinese examples

with the features needed for correct syntactic analyses in terms of the

basic categories. For example, the feature "nbstractness" is found to

be essential for analysing copula sentencet;. The subject noun phrase

must agree with the object noun phrane with respect to this feature in

a copula sentence. An actual example from our Physics texts is extracted

lolo« for Illustration. Two syntactic analyses are possible for this

sentence, given as (a) and (b) below, but only (b) gives the correct

analysis of the structure of the sentence.

H

rxanpK«: fron Physics T-2, 1972-10, p. 61, 5th parag.

\f'i

1 HMBmaäaaMit^aüiMäifeiiti tHUkJMfittH ^Mii».-.j.j.^....1-Ma^..,.i.|frw.|t^l1)f|r||.||111|T ^f|g|||imfteyr,»i|.1lyf---

c , i
<T Vl
co ,- >.

ri n <t i-4
0- n ■ '
S'. + -« TL J:

t » ^j in -H

CO Iß
VJO \-p 0

c

c .r
—' .r

r*. ^^

in
C

c
o
u

cc
-A^

^
0)

»—* a
•H

»—i «J
N -1-1 >J

r- w «C
<r c
«a- i

£ r
S <r

<r> c m :V1 «! •H
«M .,, ., r« a
vC " 0'

C! S
C^ — m c
o r ■ -H 05
c ,. -a •H
sO- •o

c
o u
u
u
«

c
19

jr.
H-l
«
Iß
o

I-t
u

«5

c <ß

S 'f'1 s
^

r- 0 1^

r-l 0
»~. 01 I-!

g V * 0
X

c ■•

163

^^■^'■^^■-.

I

m
a

.+
VJ

o
<r

PS

t-l
<T f*
t ■ ij^J •H
r-(^f^. -a
»n

CO
CO M
SO \- O
o a
c

es • \'i u
r~ X* «
>* a
•* i

£3 r; <3
C\

e
a) o
»A k? m •H *-< w a
o 9 «

O
W

3
U V-

o ^ tl •H
vO * -0

3\U >
t- o

•-4
f* «Si

O \
O

e

ja

o
w
M

I

ja

s.

«ft

«

s
3

160

A mechanism for "feature parsing" was designed into the Quince

parsing system, and provisions for it were made in the initial implementa-

tion of the parser. The practical problem of giving feature encodings to

a complete Chinese dictionary was intractable with the staff available,

and so a smaller dictionary was constructed with which to work from

selected physics texts for feature encoding.

At the same time, other distinct changes in the grammar and in the

method of applying "interlingual transformations" were made for the

Quince system, so that a version of Knuth's attribute grammars could be

employed, with the interlingual specification of structural change carried

as attributes imposed by the Chinese grammar rules.

We did not then recognize the close connections between these two

topics, although the fact that they were being worked on by the same

staff members should have assured that they would converge eventually,

had development not come to a temporary halt shortly thereafter.

6.2 Research Areas for Future Study

All work to date indicates that the primary research problem In the

area of parsing for Chinese-English machine translation lies in how to

define/describe natural languages in general, and how to define/describe

Chinese and English in particular. This linguistic analysis is the

really difficult task, compared to which the implementation of programs

to carry out the analysis is straightforward.

Therefore, the next task is to make some trials of recasting

our Chinese grammar into various notations for grammars with structured

vocabulary, to see what format appears to give maximal insight in us«.

At present, based upon the earlier experiences d icribed above, it seems

that a grammar notation based jn Knuth's attribute grammars is the most

promising. Without attempting to formulate a realistically-large fragment

of a gramar for a natural language, there is no way to be sure about

some of the minor (though perhaps crucial) details, because prior systematic

uses of these formalisms have been in connection with programming languages.

The strong tradition of using structured vocabulary, however

informally, in prior linguistic description and in computational projects,

makes us quite certain that systematic attention to creating a grammar

170

I

In this general form would constitute an advance over previous work.

There are two specific areas of uncertainty which we wish to begin

inroediately to clear up:

(1) What is the trading relation between encoding information as

category symbols, versus features? Clearly, any grammar with a finite

number of rules (any such hyper-grammar) can be encoded directly by

multiplying out category symbols and rules (no matter that this may be

wildly Impractical). At the other extreme, one can imagine a grammar

containing a single category symbol ("NODE") and one rule for combining

each length string of such symbols as a single symbol, with all the

information carried in attributes. Linguistic tradition suggests an

intuitive division of grammatical information in the two classes, but can

a clearer description be formulated?

(2) We have not attempted to exploit the "internal structure"

given by the raeta-grananar of a van Wljngaarden grammar, and in passing

to an attribute representation one passes naturally to sets, functions,

etc. as attributes. But Is there a way to exploit the fact that a tree

is given by a meta-grammer for every meta-symbol replaced, without getting

confused by the tree-manipulation systems? And if so, would it be

advantageous to restrict attributes to being tree-structured (ignoring

as much structure as desired In particular cases)?

Doubtless other similar questions will suggest themselves as work

continues.

Wille such research goes forward on the grammatical side, there

are also many questions to explore about a computer parsing procedure for

such grammars. The fact that such good strategies exist for parsing the

restricted affix grammars suggests that a related procedure could be

devised for restricted attribute grammars which would work similarly

(intcrfactorlng parsing and attribute value calculation) wherever possible,

and only do more work (in the form of post-parse processing of attributes

»I in one or more additional passes over the tree) when necessary. Thip

could be of importance in making the full exploitation of such grammars

possible, although the techniques reported by us in the past would them-

selves certainly be adequate to permit the most important uses of grammars

with structured vocabulary to be incorporated directly into the Quince system.

171

l> l

I f
li !

> I

Acknowledgement. The initial research at POLA into grammars with

structured vocabulary was begun by Herbert Doughty, who also devised

plans for an ingenious and efficient implementation of features, and

played a major role along with the author in elaborating proposals to

Incorporate this work into the Quince system.

f i

172

References

(Agafonov 1976)

Agafonov, V. N., "On Attribute Grammars", Antonl Mazurklewicz (ed.).

Mathematical Foundations of Computer Science 1976, (Proceedings,

5th symposium, Gdansk, September 6-10, 1976), Lecture Notes in Computer

Science No. 45, Berlin: Springer 1976, pp. 169-72.

(Aho 1968)

Aho, Alfred V., "Indexed Grammars — An Extension of Context-Free

Grammars," Journal A.CM. 15, 1958, pp. 647-71.

(Aho and Ullman 1973)

Aho, Alfred V., aod Ullman, Jeffrey D., The Theory of Parsing.

Translation, and Compiling, 2 vols., Englewood Cliffs, N.J.: Prentice-

llall, 1973.

(Bach 1964)

Bach, Emond, "Subcategories in Transformational Grammars", Lunt, H.

(e^•)» Proceedings of the Ninth International Congress of Linguists,

The Hague: Mouton, 1964, pp. 672-78.

(Baker 1970)

Baker, John L., "Some Formal Properties of the Syntax of ALGOL 68,"

Doctoral dissertation, University of Washington, May 1970.

(Baker 1972)

Baker, John L., "Grammars with Structured Vocabulary: A Model for the

ALGOL-68 Definition," Information and Control 20. 1972, pp. 351-95.

(Benson 1969)

Benson, David B., "The Algebra of Derivations and a Semlthue Parser,"

Proceedings of the 24th National Conference, New York: Association

for Computing Machinery, 1969, pp. 1-10.

(Bobrow 1964)

Bobrow, Daniel G., "Meteor: A List Interpreter for String Trans-

formations," Berkeley, E.C., and Brobrow, D. G. (eds.), The Program-

ming Language Lisp; Its Operation and Application, Cambridge, Mass.:

Information International, Inc., 1964, pp. 161-90.

173

(Bobrow and Collins 1975) j

Bobrow, Daniel G., and Collins, Allan (eds), Representation and

Understanding; Studies in Cognitive Science, New York: Academic

Press, 1975.

(Bochmann 1976) '■
Bochmann, Gregor V., "Semantic Evaluation from Left to Right,"

Comn. A.CM. 19. 1976, pp. 55-62. I

(Book 197A) I

Book, Ronald V., "Topics in Formal Language Theory," Aho, A. V. (ed.), |

Currents in the Theory of Computing. Englewood Cliffs, N.J.: \

Prentice-Hall, 1973, pp. 1-34.

(Brainerd and Landweber 197A) i

Brainerd, Walter S., and Landweber, Lawrence H., Theory of Computation, i

New York: Job Wiley, 1974.

(Burton and Woods 1976)

Burton, R. R., and Woods, William A., "A Compiling System for

Augmented Transition Networks", Paper presented at International

Conference on Computational Linguistics, Ottawa, Canada, June 1976.

(Chomsky 1951) \

Chomsky, Noam, "Morphophonemics of Modem Hebrew," revision of 1951

Masters Thesis, University of Pennsylvania.

(Chomsky 1955/1975)

Chomsky, Noam, The Logical Structure of Linguistic Theory, Unpublished

1955 MS available from MIT Libraries, printed with omissions and \

revisions. New York: Plenum Press, 1975.

(Chomsky 1956)

Chomsky, Noam, "Three Models for the Description of Language,"

I.R.E. Transactions on Information Theory. vol IT-2, 1956, pp. 113-24. '

Reprinted with corrections In Luce, R.D., Bush, R., and Galanter, E.,

(eds,). Readings in Mathematical Psychology, vol. II, New York: Wiley, i

1965.

(Chomsky 1957)

Chomsky, Noam, Syntactic Structures. Janua Linguarum, series minor,

no 4, The Hague: Mouton, 1957.

174

(Chomsky 1959)

Chomsky, Noam, ''On Certain Formal Properties of Grammars,"

Information and Control 2. 1959, pp. 133-67. Reprinted in Luce, R. D.,

Bush, R., and Galenter, E., (eds.). Readings in Mathemetical

Psychology, vol II, New York: Wiley, 1965.

(Chomsky 1962)

Chomsky, Noam, "A Transformational Approach to Syntax," Hill, A. A.

(ed.), Proceedings of the 195G Conference on Problems of Analysis in

English, Austin, Texas, 1962, pp. 124-48, Reprinted in Fodor, Jerry

A., and Katz, Jerrold J. (eds). The Structure of Language; Readings

in the Philosophy of Language, Englewood Cliffs, N.J.: Prentice-

llall, 1964.

(Chomsky 1965)

Chomsky, Noam, Aspects of the Theory of Syntax, Cambridge, Mass.:

M.I.T. Press, 1985.

(Chomsky 1966)

Chomsky, Noam, "Topics in the Theory of Generative Grammar,"

Sebeok, Thomas A. (ed.). Current Trends in Linguistics; III. Theoretical

Foundations. The Hague: Ilouton, 1966, pp. 1-60.

(Chomsky 1970)

Chomsky, Noam, "Remarks on Nomlnallzation," Jacobs, Roderick A.,

and Rosenbaum, Peter S., (eds.), Readings in English Transformational

Grammar, Waltham, Mass.: Ginn & Co. Reprinted in Chomsky, Noam,

Studies on Semantics in Generative Grammar, The Hague: Mouton, 1972.

(Chomsky 1977)

Chomsky, Noam, Essays on Form and Interpretation, (Studies in Lin-

guistic Analysis, 2), New York: Elsevier North-Holland, 1977.

(Chomsky and Halle 1968)

Chomsky, Noam, and Halle Morris, The Sound Pattern of English,

New York: Harper and Row, 1968.

(Chomsky and Lasnik 1977)

Chomsky, Noam, and Lasnik, Howard, "Filters and Control," Linguistic

Inquiry 8, 1977, pp. 425-504.

175

(Cleaveland and Uzgalls 1977)

Cleaveland, J. Craig, and UzgaliB, Robert C., Grammars for Prograa-

ging Languages, (Elsevier Computer Science Library, Programming

Languages Series No. 4), New York: Elsevier North-Holland, 1977.

(Cocke and Schwartz 1970)

Cocke, John, and Schwartz, J. T., "Programming Languages and Their

Compilers," Preliminary Notes, Second Revised Version, Lecture

Notes, Courant Institute of Mathematical Sciences, New York Univer-

sity, April 1970.

(Crowe 1972)

Crowe, David, "Generating Parsers for Affix Grammars," Comm» A.CM.

15, 1972, pp. 728-34.

(de Bakker 1969)

de Bakker, J. W., "Semantics of Programming Languages," Tou, Julius

T., (ed.). Advances in Information Systems Science, vol. 2, New

York: Plenum Press, 1969, pp. 173-227.

(de Chastelller and Colmerauer 1969)

de Chastelller, Guy, and Colmerauer, Alain, "W-Granmar," Proceedings

of the 24th National Conference, New York: Association for

Computing Machinery, 1969, pp. 511-18.

(Dljkstra 1972)

Dijkstra, Edsger W., "Notes on Structured Programming," Dahl, O.-J.,

Dljkstra, E. W., and Hoare, C. A. R., (eds.). Structured Progranming,

A.P.I.C. Studies in Data Processing No. 8, New York: Academic Press,

1972.

(Donahue 1976)

Donahue, James E., Complementary Definitions of Programming Language

Semantics, Lecture Notes in Computer Science No. 42, Berlin:

Springer, 1976,

(Dostert and Thompson 1971)

Dostert, B. H., and Thompson, F. B., "How Features Resolve Syntactic

Ambiguity," Proceedings of Symposium on Information Storage and

Retrieval, University of Maryland, April 1971.

176

(Dostert and Thompson 1972)

Dostert, B. H., and Thompson, F. B., "Syntactic Analysis in REL

English: A Computational Case Grammar," Statistical Methods in

Linguistics 8. 1972, pp. 5-38.

(Earley 1968)

Earley, Jay, "An Efficient Context-Free Parsing Algorithm," Ph.D.

thesis, Department of Computer Science, Carnegie-Mellon University,

1968.

(Earley 1970)

Earley, Jay, "An Efficient Context-Free Parsing Algorithm," Comm.

A.CM. 13, 1970, pp. 94-102.

(Elson and Pickett 1960)

Elson, Benjamin, and Picket, Velma B., Beginning Morphology —

Syntax, Santa Ana, California, 1960.

(Fang 1972)

Fang, Isu, "Folds: A Declarative Formal Language Definition System,"

Ph.D. Thesis, Stanford University, 1972.

(Fldelholtz 1974)

Fldelholtz, James L., "On the Non-Context-Freeness of Natural

Languages, with Some Comments on the Competence*Performance Distinc-

tion," Indiana University Linguistics Club Mimeo, 1974.

(Fischer 1968)

Fischer, M. J., "Grammars with Macrolike Productions," Ph.D. Thesis,

Harvard University, 1968.

(Floyd 1962)

Floyd, Robert W., "On the Non-Exlstence of a Phrase-Structure

Grammar for Algol 60," Coam. A.CM. 5, 1962, --. 483-4.

(Fodor 1970)

Fodor, Janet Dean, "Formal Linguistics and Formal Logic," Lyons,

John, (ed.). New Horizons in Linguistics, Harraondsworth: Penguin

Books, 1970, pp. 198-214.

(Fodor and Kat« 1964)

Fodor, Jerry A., and Katz, Jerrold J., (eds.). The Structure of

Language; Readings in the Philosophy of LanRuap.e, Englewood Cliffs,

177

N.J.: Prentice-Hall, 1964.

(Garvln 1966)

Garvln, Paul L., "Some Comments on Algorithm and Grammar in the

Automatic Parsing of Natural Languages," Mechanical Translation 9,

1966. Reprinted in Garvin, Paul L., On Machine Translation. The

Hague: Mouton, 1972, pp. 43-7.

(Caskins 1973)

Gaskins, Robert, "Probative Parsing: The Use of Grammars to Resolve

or Preserve Knowledge of Indistinct Sequences for Natural Language

Recognition," Machine Translation Group, Project on Linguistic

Analysis, University of California, Berkeley, December 1973.

(Gaskins and Gould 1972)

Gaskins, Robert, and Gould, Laura, "Snobol4: A Computer Language

for the Humanities." Department of Computer Science and Campus

Computer Center Report, University of California, Berkeley, 1972.

(Gimpel 1973)

Gimpel, J. F., "A Theory of Discrete Patterns and Their Implementation

in Snobol4," Comm. A.CM. 16. 1973, pp. 91-100.

(Gimpel 1975)

Gimpel, J. F., "Nonlinear Pattern Theory," Acta Infonaatlca 4. 1975,

pp. 213-29.

(Gimpel 1976)

Gimpel, J. F., Alfiorithms in Snobol4, New York: John Wiley, 1976.

(Greibach 1974)

Greibach, Sheila A., "Some Restrictions on W-Grammars," International

Journal of Computer and Information Sciences 3, 1974, pp. 289-327.

(Crishman 1976)

Grlshman, Ralph, "A Survey of Syntactic Analysis Procedures for

Natural Language," American Journal of Computational Linguistics,

microfiche 47, 1976.

(Griswold, Poage, and Polonsky 1971)

Griswold, Ralph E., Poage, J. F., and Polonsky, I.P., The Snobol4

Programming Language, 2nd ed., Englewood Cliffs, N.J.: Prentice-

Hall , 1971.

178

t

(Gross, Halle, and Schtitzenberger 1973)

Gross, Maurice, Halle, Morris, and Schützenberner, Marcel-Paul,

(eds.), The Formal Analysis of Natural Languages; Proceedings oC

the First International Conference, The Hague: Mouton, 1973.

(Halitsky 1975)

Halitsky, David, "Left-Branch S's and NP's in English: A Bar

Notation Analysis," Linguistic Analysis 1^, 1975, pp. 279-96.

(Halliday 1961)

I Halliday, M. A. K., "Categories of the Throey of Grararaar," Kord 17,

1961, pp. 241-92.

(Harman 1963)

Harraan, Gilbert H., "Generative Grammars without Transformations:

A Defense of Phrase Structure," Language 39, 1963, pp. 597-616.

(Harris 1951)

Harris, Zellig S., Methods In Structural Linguistics. Chicago:

University of Chicago Press, 1951. Reprinted 1963 as a Phoenix

Book with title Structural Linguistics.

(Harris 1962)

Harris, Zellig S., String Analysis of Sentence Structure, The

Hague: Mouton, 1962.

(Hockett 1966)

Hockett, Charles F., "Language, Mathematics, and Linguistics,"

Sebeok, Thomas A. (ed.). Current Trends in Linguistics; III,

Theoretical Foundations, The Hague: Mouton, 1966, pp. 155-304.

(Jackendoff 1974)

Jackendoff, Ray S., "Introduction to the X Convention,"

Indiana University Linguistics Club Mimeograph, October 1974.

(Jazayeri, Ogden, and Rounds 1975)

Jazayerl, Mehdi, Ogden, William F., and Rounds, William C, "The

Intrinsically Exponential Complexity of the Circularity Problem for

Attribute Grammars," Conm. A.C.M. 18, 1975, pp. 697-706.

(Joshl and Levy 1977)

Joshl, Aravlnd K., and Levy, Leon S., "Constraints on Structural

Descriptions: Local Transformations," SIAM Journal on Computing, 6

s
179

1977, pp. 272-84.

(Kaplan 1973)

Kaplan, R. M., "A General Syntactic Processor," Rustln, Randall,

(ed.). Natural Language Processing, New York: Algorlthmlcs Press, 1973.

(Kay 1967)

Kay, Hartin, "Experlmants with a Powerful Parser," Santa Monica,

California: RAND Corporation Memorandum No. RM-5452-PR, October 1967.

(Knuth 1965)

Knuth, Donald E., "On the Translation of Languages from Left to

Right»" Information and Control 8, 1965, pp. 607-39.

(Knuth 1968)

Knuth, Donald E., "Semantics of Context-Free Languages," Mathematical

Systems Theory 2, 1968, pp. 127-45. An important correction appears

in Hath. Sys. Th. 5, 1971. pp. 95-6.

(Knuth 1971)

Knuth, Donald E., "Examples of Formal Semantics," Engeler, E. (ed.),

Symposium on Semantics of Algorithmic Languages, Lecture Notes in

Mathematics No. 188 , Berlin: Springer, 1971, pp. 212-35.

(Koster 1965)

Koster, C. U. A., "On the Constructuon of Procedures for Generating,

Analysing, and Translating Sentences in Natural Languages,"

Mathematisch Centrum, Ar..sterdam, Technical Report MR72, February 1965.

(Koster 1971)

Koster, C. H. A., "Affix Grammars," Peck, J. E. L. (ed.), Algol 68

Implementation, Proceedings IFIP Working Conference on Algol 63

Implementation, Munich, July 20-24, 1974, Amsterdam: North-Holland,

1971.

(Koster 1974a)

Koster, C. K. A., "Two-Level Grammars," Bauer, F. L., et al. (eds.),

Compiler Construction; An Advanced Course, Lecf are Notes in Computer

Science No. 21, Berlin: Springer. 1974, pp. 146-56.

(Koster 1974b)

Koster, C. 11. A., "Using the CDL Compiler-Compiler." Bauer, F. L.,

et al. (eds.). Compiler Construction; An Advanced Course, Lecture

180

i'KWäSiSfcMl«

Notes In Computer Science No. 21, Berlin: Springer, 1974, pp. 366-426.

(Koster 1975)

Koster, C. H. A., "A Technique for Parsing Ambiguous Languages,"

Slefkes, Dirk (ed.), Gesellschaft für Informatik 4, Jahrestagung,

Lecture Notes in Computer Science No. 26, Berlin: Springer, 1975,

pp. 233-46.

(Koutsoudas 1966)

Koutsoudas, Andreas, Writing Transformational Grammars; An intro-

duction, New York: McGraw Hill, 1966.

(Kuno 1963)

Kuno, Susumo, "The Multiple-Part Syntactic Analyser for English,"

Report No. NSF-9 in Mathematical Linguistics and Automatic Transla-

tion, Computation Laboratory, Harvard University.

(Kuroda 1970)

Kuroda, S.-Y., "Remarks on Selectional Restrictions and Presupposi-

tions," Kiefer, Ferenc (ed.), Studies in Syntax and Semantics,

Dordrecht: D. Reidel, 1970, pp. 138-67.

(LaLonde 1977)

LaLonde, Wilif R., "Regular Right Part Granraars and Their Parsers,"

Cowm. A.CM. 20, 1977, pp. 731-41.

(Lamb 1962)

Lamb, Sidney M., Outline of Stratificational Grammar, Berkeley,

California, 1962.

(Ledgard 1972)

Ledgard, Henry F., "Embedding Markov Normal Algorithms within the

Lambda-Calculus," International Journal of Computer Mathematics

Section A 3, 1972, pp. 131-40.

(Ledgard 1974)

Ledgard, Henry F., "Production Systems, or Can We Do Better than

BNF?", Coma. A.C.M. 17. 1974, pp. 94-102.

(Lees 1957)

Lees, Robert B., "Review of Syntactic Structures," Language 33.

1957, pp. 375-407. Reprinted in Harman, Gilbert H. (ed.)t On Noam

Chomsky; Critical Essays. Garden City, N.Y.: Anchor Books, 1974,

181

pp. 34-79.

(Lewis, Rosenkrantz, and Steams 1976)

Lewis, P. M., II, Rosenkrantz, D. J., and Steams, R. E., Compiler

Design Theory, Reading, Mass,: Add!son-Wesley, 1976.

(McCawley 1968a)

McCawley, James D., "Concerning the Base Component of a Transforma-

tional Grammar," Foundations of Language 4, 1968, pp. 243-69.

Reprinted in McCawley, James D., Grammar and Meaning; Papers on

Syntactic and Semantic Topics, Taishukan Studies in Modem Linguistics,

New York: Academic Press, 1976, pp. 35-58.

(McCawley 1963b)

McCawley, James D., "Review of Sebeok (ed.) Current Trends in

Linguistics: III, Theoretical Foundations." Language 44, 1968,

pp. 556-93. Reprinted in McCawley, James D., Grammar and Meaning:

Papers on Syntactic and Semantic Topics, Taishukan Studies in Modem

Linguistics, New York: Academic Press, 1976, pp. 167-205.

(Marcotty, Ledgard, and Bochmann 1976)

Marcotty, Michael, Ledgard, Henry F., and Bochmann, Gregor V., "A

Sampler of Formal Definitions (van Wijngaarden Grammars, Ledgard's

Production Systems, Vienna Definition Language, and Knuth's

Attribute Grammars)," Computing Surveys 8, 1976, pp. 191-276.

(Mazurklewicz 1969)

Mazurklewicz, A. W., "A Note on Enumerable Granmars," Information

and Control 14, 1969, pp. 555-8.

(Peters and Ritchie 1973)

Peters, P. Stanley, Jr., and Ritchie, Robert W., 'Context-Sensitive

Immediate Constituent Analysis: Context-Free Languages Revisited,"

Mathematical Systems Theory 6, 1973, pp. 324-33.

(Petrick 1965)

Petrick, Stanley P.. "A Recognition Procedure for Transformational

Granmars," Ph.ü. thesis, Department of Modem Languages, M.I.T.

(Petrick 1976)

Patrick, Stanley R., "On Natural Language Based Computer Systems,"

IBM Journal of Research and Development 20, 1976, pp. 314-25.

182

'SS«*.-

(Postal 1964a)

Postal, Paul M., "Limitations of Phrase-Structure Grammars," Fodor,

Jerry A., and Katz, Jerrold J., (eds.), The Structure of Language;

Readings in the Philosophy of Language, Englewood Cliffs, N.J.:

Prentice-Hall, 1964, pp. 137-54.

(Postal 1964b)

Postal, Paul M., Constituent Structure: A Study of Contemporary

Models of Syntactic Description, Indiana University Research Center

in Anthropology, Folklore, and Linguistics Publication No. 30,

Bloomington, Indiana: Indiana University, 1964. Also appeared as

part III of International Journal of American Linguistics 30.» no 1»

1964.

(Sager and Grishman 1975)

Sager, Naomi, and Grishman, Ralph, "The Restriction Language for

Computer Gransnars of Natural Language," Coinm. A.C.H. IS, 1975,

pp. 390-400.

(Schachter 1962)

Schachter, Paul, "Review of R. B. Lees 'Grammar of English Uoninaliza-

tions'," International Journal of American Linguistics 23, 1962,

pp. 134-45.

(Schneider 1965)

Schneider, H.-J., "Ein formales Verfahren zur maschinellen Sprach-

analyse," Dissertation, Hannover, 1965.

(Schneider 1966)

Schneider, H.-J., "Die Berücksichtigung von Kasus, Genus und anderen

Spezifikationen bei formalen Grammatiken natürlicher Sprachen,"

Elektronische Datenverarbeitung .5, 1966, pp. 245-8.

(Seuren 1968)

Seuren, Peter A. M., "Generative Grammar: Essay of Grammatical

Description for a Limited Vocabulary in Dutch, I and II," Braffort,

P., and van Scheepen, F. (eds.). Automation in Language Translation

and Theorem Proving. Commission of the European Communities

(EURATOM), Brussels, 1968.

183

^&skJiäääiJ&äga&&iäL': K^-^^Am^K*^^^^*^^ rttifaja

(Simonet 1977)

Sitnonet, M., "An Attribute Description of a Subset of Algol 68,"

Proceedings of the Strathclyde Algol 68 Conference, Glasgow, March

1977, Association for Computing Machinery Special Interest Group

on Programming Languages, SIGPLAN Notices 12, No. 6, June 1977,

pp. 129-37.

(Sintzoff 1967)

Sintzoff, M., "Existence of a van Wijngaarden Syntax for Every

Recursively Enumerable Set," Annales de la Soclete Scientifique de

Bruxelles 81. 1967, pp. 115-8.

(Sintzoff 1969)

Sintzoff, M., "Gratomalres superposees et autres systemes formels,"

Joumees d1 Etude sur 1*Analyse Syntaxique, Centre d'Automatique,

Fontalnebleau, 1969.

(Smith 1976)

Smith, Joan M., "Third Annual General Meeting, 1975: Minutes,"

Association for Literary and Linguistic Computing Bulletin 4^,

1976, p. 55.

(Stearns and Lewis 1969)

Stearns, R. E., and Lewis, P. M., "Property Grammars and Table

Machines," Information and Control 14, 1969, pp. 524-9.

(van Berckel et al. 1965)

van Berckel, J. A. Th. M., Corstius, H. Brandt, Mokken, R. J.,

and van Wijngaarden, A., Formal Properties of Newspaper Dutch.

Mathematical Centre Tracts No. 12, Amsterdam: Mathematisch Centrum,

1965.

(van der Poel 1971)

van der Poel, W. L., "Some Notes on the History of Algol," de

Bakker, J. W., et al. (eds.), MC-25 Informatiea Symposium, Mathematical

Centre Tracts No. 37, Amsterdam: Mathematisch Centrum, 1971, chapter 7.

(van Wijngaarden, Adriaan 1965)

van Wijngaarden, Adriaan, "Orthogonal Design and Description of a

Formal Language," Technical Report MR76, Mathematisch Centrum,

Amsterdam, October 1965.

184

.i,^^,^^JtoM*>«^<^..^,,^^^^„.J„^.-,^...J]Wj^|||Mtf^a.f[|1 | 1...l^.. ^^.„^„^.^„.^ ,^^..

Mmm^^mvm*

I

(van Wijngsarden et al. 1969)

van Wijngaarden, A. (ed.). Mallloux, D. J., Peck, J. E. I.., and

Kottcr, C. H. A., "Report on the Algorithmic Language Algol 68,"

Technical Report No. MRIOI, Mathematisch Centrum, Amsterdam, February

1969. Alao in Numerische Mathematik H, 1969, pp. 79-218.

(van Wijngaarden 1970)

van Wijngaarden, Adriaan, "On the Boundary between Natural and

Artificial Languages," Linguaggl nella socleta e nella tecntca,

Mllano: Edl«Joni di Comunita, 1970, pp. 165-75.

(van Wijngaarden, 197A)

van Wijngaarden, Adriaan, "The Generative Power of Two-Level

Graiaaars," Loeckx, Jacques (ed.). Automata, Laoguages and Program-

raing, 2nd Colloquium, University of Saarbrücken July 29 - August 2

1974, Lecture Notes in Computer Science No. 14, Berlin: Springer,

1974, pp. 9-16.

(van Wijngaarden et al. 1975)

van Wijngaarden, A., Mallloux, B. J., Peck, J. E. L., Koster.

C. H. A., Sinttoff, H,, Llndsey, C. H., Meertens, L. C. L. T.,

and Fisker, R. G., "Revised Report on the Algorithmic Language

Algol 68." Acta Informatica 5. 1975, pp. 1-236. Reprinted Springer,

Berlin and New York, 1976. Originally appeared aft Technical Report

No. TR 74-3, Department of Computer Science, University of Alberta

(Edmonton), March 1974.

(Wang and Chan 1974)

I Wang, William S-Y,, and Chan Stephen W., "Development of Chinese-

English Machine Translation System," Final Technical Report 01

September 1970 - 30 August 1972, Rome Air Development Command

Report No. RADC-TR-74-22, 776813, Rome Air Development Center, Air Fore*'

Systems Command, Grlfflss Air Force Hase, Hew York, February 1974.

(Wang and Chan 1975)

Wang, William S-Y., and Chan, Stephen W., "Chinese-English Machine

Translation System," Final Technical Report 01 September 1972 -

31 August 1974, Rome Air Development Command Report No. RADC-TR-

75-109, A011715, Rome Air Development Center, Air Force Systems Cowwind,

185

^^^«^.■.^..^■^-»^^^.^^^

('rlffIss Air Force Base, New York, April 1075.

(W.in«',, Chan, and Robyn 1976)

Wan»;, William S-Y., Chan, Stephen W., and Robyn, Philip, "Chlnese-

I'nj'llsh Machine Translation System," Final Technical Report 01

^cptcmher 197A ~ 11 October 1975, Rome Air Development Command

Report No. RADC-TR-76-21, A021969, Rome Air Development Center, Air

Force Systems Command, Griffiss Air Force Base, New York, February 1976.

(Wall 1077)

Wut, David Anthony, "The Parnlnf, Probletv. for Affix Crammars,"

Acta Tnformatlea K 1977, pp. i-20.

(Wllner l"?!')

1'ilner, Wayne T., "Fornal Semantic Definition URlnp, Synthesized and

Inherited Atlrlhuter.," fUisttn, Randall (ed.). Formal Semantics of

rroRrammlng Languages. F.n!',lewood Cliffs, N.J.: Prentice-Hall, 1972,

pp. 25-40.

(Wlnograd 1971)

Wlnop.rad, Terry, "Procedures as a Representation for Data in a

Computer Program fur Understantllnp, Natural Lanp.uaRe," Ph.D. thesis,

Departnent of Mathematics, M.I.T. Printed as Project MAC Report

Ao. MAC-TR-HA, Project MAC, M.T.T., February 1971.

(Wln.v.rad I')7'.)

Wtno^rad, Terry, "Frame Representations and the Declarative/

Procedural Controversy," liobrow, Daniel C, and Collins, Allan

(eds.), R£Pr^jsenj^jtjon ami Understanding: Studies in Cognitive

Science, New York: Academic Press, lt)75, pp. IS5-210.

(V.'ooils lo60)

Woods, William A., "Augmented Transition Networks for Natural

l«innua[;e Analysis," Alken Computation laboratory Report No. CS-l,

Harvard University, lH.*cerober 1969.

(Woods 1970)

Woods, William A., "Transition Network Crararaara for Natural l^nnr.uaRe

Analysis," Comw. A.CM. 13, 1970, pp. 591-606.

186

i, .-.—^„■..^„«^t^^^... wmtm

(Woods 1975)

Wood«, William A., "Syntax, Semantics, and Speech,'' 11BH Report

No. 306?, A. T. Report No, 27, Cambridge, UaB».; Bolt B^raook and

Newman Inc., April 1975.

(Wood«, Kaplan, and NaaU-Webb«r 1972)

Woods, William A., Kaplan, Ronald M., and Nash-Wehbcr, Bonnie,

"The Lunar Sciences Natural Languan® Information System; Final

Report," BBN Report No. 2378, Carabrldi««!, Nftsa.: Boll Uoran4»k i\\u\

Newman Inc., 1972.

(Yngve 1960)

Yngve, Victor 11., "A Model and an Hypothesis for l.av»nua!,1c

Structure," Proceedinga of the American)'hlloao^lücal Soctety

104, I960, pp. 444-66.

(Yngve 1961)

Yngve, Victor H., CCWIT Pro^rammors' Wt'fortMvee Manual, Kosoaroh

Laboratory of Klectronica and The Computation (ontor, Masjuuiuisotta

Institute of Technology. 1%1.

(Yngve 1972)

Yngve, Victor St., Computer rroj^ramn\in^ wUh £ffllT 11. Caralrlvl}',<•,

Mass.: MIT Tress, 197:.

187

>. -~-----tr-^Mriir'iiiliinriMlMBrailliailiaiiltlliBiiiintaH^^ ÜAÜÜlBaAMli

...-.-■¥■.•-.>:■■

■

APPENDIX; RULES FOR A FRAGMENT OP CHINESE GRAMMAR

0 • < env TP > J —> < vva TP GP >

1 . < rra TP CF > : —> (<s«<iv>)(<time TP>)

CF —> INTER PASS NEO IMPER

TP —> TENSE ASPECT

TENSE —> PAST 1 PRES | PUT

PAST --> +past -pres -fut

PRES --> -past -fpres - fut

PUT —> -past -pres +fut

ASPECT —> PROG PERF

PROG —»■ ♦prog | - prof | EMPTY

PERF —> +pepf | -perf \ EMPTY

Kotes::

env = environment

TF = Time Peaturas

rrs = root root sentence

CF = Clause Features

aadv = sentence advepbials

ra = root sentence

INTER s interrogative

PASS = passive

NEC = negative

IMPER = imperative

PRES s present

PUT - future

PROG X progressive

PERF = perfective

188

ini^iarsaiiihiiiiiilr .■^-^^.■-.■■^^-^■^■^-■"■■-

^ra TF "P>

• -.>

* I'S

-rs TP JF> .-■>

<rs 7F GP> • -.->

<r3 TF JF> ._>

-rs TP CP> '__>

^rs TP Ct:'> s--> -

rn

<np2 CP ^'BJ> ^vp2 GF TF VP VIRSÜBJ VTROBJ>

«•where VF cor.tain +intran>

«where SUBJ nonconflicts VIHSUBJ>

<vp2 GF TF VP V1H3UBJ VIR0BJ>

<w\ere GF contain ■♦•iinper>

<wp2 CP SUBJ> <vp2 GF VF VP VIRSIIBJ VIROBJ>

<np2 OF ;)BJ>

»■where VF contain -intran>
*where SUBJ nonconflicts VIRSUBJ>

*where OBJ nonconflicts VIROBJ>

<np2 CP SUBJ> <vp2 CP TF VF VTRSUBJ VIROBJ>

<nn2 GF OBJ>

»■where VF contain +conula>

»■where SUBJ onconflicta OBJ>

<np2 GP SrBJ> *np2 GF OBJ> <vp2 CP TP VP

VTRSUBJ VTROBJ>

»■where VF contain -lntran>

<where SUBJ nonconflicts VIRSUBJ>

*where OBJ nonconflicts VIROBJ>

<np2 CP ^BJ> <np2 CP S"BJ> <vp2 GP TP VF

^TRSUBJ VTHOBJ>

«■where VP contain -intran>

»wliere OBJ nonconflicts VIROBJ>

»where SUBJ nonconflicts VI8SI1BJ>

-np2 CP OBJ> <vp2 CP TF VF VIHSUBJ VIKOBJ>

»•where VP contain -intran>

••where OBJ nonconflicts VIROBJ>

vp2 CP TP VP VIHSUBJ VIHOBJ> »np2 CP 0BJ>

»•where VP contain -intrai\>

»■where OBJ nonCvMifllcta V1R0^J>

*-vi>2 CP T^ ^'P VI.iSUBJ "1H0BJ> »nnC Cv 03J>

»-where VP contain ♦exists

«•where voJ noi\c-»nf 1 icts \fTHO;iJ>

1S9

11 JM niM«^ ■ i.aiiMriii.i.in

SIT3J j—>

VTRSUBJ >_->

OBJ -_>

"IROBJ -->

NF -->

ITCOMMON -->

UABSTRAGT ::-->

UANTMATE : :-->

ÜBIOTIG : :-->

UMOBILE ::—>

UHUMAN : :-->

VF • t -->

<rs TF CF> ;— > <np2 (

<rs TF CP> :—>

<r3 TF CF> :—>

NP

NP

NP

NP

+noun UCaHMQK

+common UAHSTHAGT

-abstract UANTMATE

+abstract UMOBILE

- abstract UANTMATE

+animate UIU'MAN

-animate UBIOTIC

+biotic

-biotic UMOBILF

+mobile | - mobile

■Huunan | -human

INTRAN AGKNT ERO REFLEX AUX EXIST

<np2 GF SIIBJ> <vp2 GF TF VP YIHSUBJ VIROBJ>

<np2 GF OBJl> *np2 GF 0BJ2>

*where VF contain -intpan>

<where OBJ1 contain +human>

<whepe SUBJ nonconfllcts VIRSUBJ>

<where OBJ nonconfllcts VIR03J>

<np2 CF ÖBJ2> *np2 GF SUBJ> <vp2 GF TF VF

VTRSUBJ V1R0BJ> <np2 CF OBJl>

«where VF contain -intran>

<where OBJ1 contain +human>

«where OBJ nonconfllcts VIRaBJ>

«where SUBJ nonconfllcts VIHSUBJ>

«np2 GF OBJ1 - <np2 GF srBJ> <vp2 CF TF VP

VIRSUBJ VIH03J- «np2 CF OBJ2>

«where OBJ1 contain ♦human>
«where VP contain -intran>

«where OBJ nonconfllcts VIRüBJ>

«where SUBJ nonconfllcts VIRSUBJ>

1 :

190

W^»Sä^.;;S¥;.*:,:Wr,p,

Notes:

vp

VIRSUBJ

VIROBJ

NF

INTRAN

ERG

REFLEX

AUX

EXIST

Rule 2 includes the

Subject

Subject

Subject

Subject

Subject Object

Object

Object
(direct)

Object
(indirect)

= Verb Features

= virtual subject

= virtual object

= Koun Features

= intranaive

« ergative

= reflexive

= auxiliary

= existential

following types of sentences

Verb
(intranairive)

Verb (imperative sentence)

Verb Object
(nonintransi tive)

Subject

Subject

Subject

Verb (copula) Object

Object

Verb (nonintransitive)

Verb (nonintransifclve)

Object Verb
(nonintrana1tive)

Verb
(existential)

Verb
(nonintransitive}

Verb
(nonintransitive)

Verb
(nonintransitive)

Verb (nonin-
transi tive)

Object

Object
(indirect)

Object
(indirect)

Object
(direct)

Object
(direct)

191

i^*±^™™*™^*

.■mnmy

3, <vp2 CP TF VF VIRSI'BJ VIROBJ> :—> {<pp PF>)(<adv>) <nep>

<vpl GF TF VF VIHSÜBJ VIROBJ>

<where GF contain +neg>

<where PP nonconflict VF>

<vp2 CP TF VF VIRSIIBJ VIR0iJj> :—> (<pp PF>)(<adv>)

<vpl CF TF VF VIRSUBJ VIR03J>

<where GF contain -nep>

<where PF nonconflict VF>

Notes:

PP = prepositional phrases

PF = Prepositional Features

adv = adverbial

nef = negative

h. <np2 GF1 SUBJ> :—> <s TP2 CF2 SIIBJ> | <npl CF1 SUBJ> |

(<det>) <r el GF1 SIT;iJ> <de> |

(<det>) ^rel CF1 HEA^> <de> <npl CF1 HEAD STTBJ>

<np2 CF1 OBJ> :—> <s TF2 CF2 03J> I <npl CP1 0BJ> |

(<det>) <rel GF1 0BJ> <de> |

(<det>) <rel CF1 HEÄD> <de> <npl GF1 HEAD OBJ>

HEAD ::--> NP

Notes:

s s sentence

det = determiner

rel = relative clause

de = relative clause marker (terminal symbol)

5. <rel CF1 SU3J> :--> <a CF1 SU3J TP2 CP2> | <npl CF1 SUBJ> j

<pp CF1 SUBJ>

<rel CF1 03J> :—> <s GP1 OBJ TF2 CP2> | <npl GF1 OBJ> |

<pp GF1 03J>

<rel GF1 HKAD> :--> <a GF1 HEAD TP2 CF2 > | <npl GF1 HEAD> |

<pp CF1 HEAD>

192

j^.v^.».,...^ »aiiaiiif----*--■"■-•'--■-■■'•'~i ■- n-«f"liriiir'limilrlWltilirliiit'riiri'fr'M'r -■■ifi-lniiirml-""--"—trififn^mnin

^ BSfHS;:«;^!;;
s- -- ,■■ ■ ■.-.■.. ■■ -r. -.

IV. FURTHER CONSOLIDATION OF THE LINGUISTIC DATA BASE:

LEXICAL FEATURES AND INTERLINLÜAL TRANSFER RULES

1. Introduction

During the past few years, numerous improvements to the old SAS system

had been made or conceived. To make it possible to incorporate these con-

ceived improvements, a new system, the Quince system has been emerging. In

this chapter, some previously conceived improvements to the two areas of the

linguistic data base, the lexicon and interlingual transfer rules, will be

elaborated in the light of recent developments in linguistic, artificial in-

telligence, and computational linguistic theories.

The discussion on the lexicon will be focussed on lexical features,

whose implementation will be the most important single improvement to the

lexicon. The preceding chapter has already provided us with a conceptual

framework in which feature-handling mechanisms can be feasibly implemented.

The nature and functions of these lexical features and their relationships

to the other components of the linguistic data base will be described. The

choice of the lexical features and the types of lexical Information for the

lexical entries in the lexicon will also be touched upon.

The interlingual transfer operation was conceived as an independent

phase in the translation cycle. The Interlingual transfer rules were regard»

ed as belonging to an independent component of the linguistic data base. In

this chapter, the actual separation of the Interlingual transfer rules from

the analysis rules will be emphasised once more. The nature, functions and

different types of the interlingual transfer rules and a possible «my of 1m-

plementing them will be discussed. To further Improve the interlingual trans-

fer component, eontrastive lexical and syntactic studies and contextual ana-

lysis will also be outlined as part of future endeavors.

193

aaaMUMiu. ■SHIM

2. Lexical Features

The lexical features as defined here include the following types:

semantic, syntactic or morphological, contextual, and rule features. Each

lexical entry in the lexicon may contain all or part of these feature types.

Semantic features refer to what Katz (1972) called semantic markers. Examples

are [Humanl, LObject], LAnimatsl. etc. Syntactic or morphological features

are those obligatory grammatical distinctions which a language imposes on its

surface representation. Examples in English are gender distinction in the

third person singular pronoun, singularity or plurality of countable nouns,

etc. Contextual features refer to those contexts in which a lexical item may

occur. For example, the contextual feature for an English noun Is t+Det J,

andi+ NP3 for an English transitive verb. The rule features are those

which indicate which particular interlingual transfer rule(s) a particular

lexical item will or will not participate in.

2.1 Nature of Semantic Features

The names "semantic features", "semantic markers", and "semantic

primitives" are roughly equivalent terms used by different researchers in

different disciplines. They are theoretical constructs intended to represent

basic conceptual units or general sense-components. Since there is no unique

way of breaking down the universe into the basic conceptual units, different

researchers have different lists of those units. For example, Wllka (1973a)

gave a list of sixty semantic primitives while Wierzbicka (1972) listed only

fourteen. Based on our conception of the functions of semantic features as

stated below, we are not providing an exhaustive list of them adequate for

the analysis of the vocabulary of the Chinese language. Only those semantic

features which will best account for our data and serve our practical ends

will enter our feature list.

2.2 Functions of Semantic Features

Recent developments in semantic primitives or semantic features seem to

have started in eomponentlal analysis in anthropology. In anthropological

componential analysis, semantic features are Intended to be the building

194

. ...-^....J.,..,,..-....^,.» -.. rtirilillifiifililr

i^w^^'mm^^m^^-:-

ISr

blocks of lexical fields. In some well-defined lexical fields, componential

analysis has been successful, but it cannot be vigorously applied to the many

fields which are not well defined with the same degree of success.

In linguistic semantics, saaantic features are used mainly to indicate

meaning relations among the lexical entries of the lexicon. They are also

used to explain semantic anomaly in terms of feature incompatibility within

a constituent.

In artificial intelligence, semantic primitives and relations are the

building blocks of semantic networks, which represent meanings or conceptuali-

zations of words or sentences in a language.

Within the conceptual framework of our feature grammar outlined in the

previous chapter, the primary function of semantic features in the rules and

the lexicon is to provide an elegant means of capturing general conditions on

syntagmatic collocation or co-occurrence restriction. Those conditions on co-

occurrence restriction are to be used as well-formedness conditions, to help

disambiguate sentences and to throw out semantically anomalous Interpretations.

In our future feature approach to analysis only those semantic features

which appear both in the lexicaon and rules will be used. That is, only

those semantic features which have grammatical consequences will be entered

in the lexicon. In this conceived grammar of Chinese, the grammar rules

will incorporate semantic features as part of their well-formedness condi-

tions. Those conditions on the rules will check the directly dominated non-

terminals or terminals for compatibility. Only if no conflict arises will

the constituent under consideration be accepted as being well-formed.

2.3 Building up the Semantic Feature Set

The first step to build up the semantic features for the future grammar

xules and lexicon is to select and extract those relevant features contained

In the existing grammar codes. Since those features were well-motivated to

capture general co-occurrence restrictions in Chinese, they can be taken over

without too much modification. The second step is to enter the extracted

features in the respective lexical entries.

The existing features will be insufficient for our purpose In the

future. As research goes on, we expect more features to be invoked to make

l«5

"'"-''"'"•"■•i-v,i>lii'Wiin»iriliniiii-fifiiii,iiiirii[tiiMl 'tiriiiriiMTifiirflaMVlllli «aamiu«^^,t^^.*M..J..,..,A.J,^Jt..,. M . „ -,

our grammar more sufficient. For example, a new set of semantic features will

be needed If co-occurrence restrictions such as those between classifiers and

nouns and in noun compounding are to be more adequately formulated than they

are now. For ideas of semantic features that may be needed In the future, the

feature set proposed in the 1974 Final Technical Report, p. 38, could be con-

sulted. Other lists such as those given in artificial intelligence litera-

ture, Wllks (1972. 1973a) and Sehank (1973, 1975c) may also be helpful.

The co-occurrence restrictions contained in the existing grammar codes

can be extracted and restated in the new rules of our grammar. Some of the

co-occurrence restrictions will have to be restated as our understanding of

them deepens. For example, the co-occurrence restrictions between the verb

and the subject and/or the object as Indicated by the syntactic subcategori-

aatlon in the current grammar have to be revised once they are better under-

stood in terms of case relationships. Instead of a single co-occurrence

restriction between the verb and subject and/or object, we may have to allow

alternatives In a preferential scale in many cases.

In the existing grammar codes, the semantic features could only assume

the positive value owln«', to the nature of the rules themselves. In the

future grammar, each semantic feature should be allowed to have either the

positive, negative or unmarked value. The unmarked value is Intended to be

used in those lexical entries where the dichotomous contrast with respect to

a certain semantic dimension is neutralised. By allowing the negative and

unmarked value» for the semantic features the rules of the grammar and the

lexicon will be greatly simplified.

2.4 The Other Types of Lexical Features

The dlstitution between the semantic features discussed above and the

syntactic or morphological features mentioned is section 2 can be at times

very fussy, simply because the line drawn between syntax and semantics is not

always clear. For our purpose, there is no need to make the distinction be-

tween these two types of features. The contextual features as defined above

refer to the syntactic environments in which lexical items of a certain

grammatical category or constituents can be predicted in tenas of other

categories or constituents when they concatenate. Both the syntactic and

10f,

- _^t^*^--'^^"»^-^^^^^iM!i^iih< fe.a^,,^^.„^^■^^.■^1ai)l| «MMM J.

ms^w^^mw^f^^^f^ßfi'^'f'^''^^^ »gpipji^p^pwr^rs^^^»,^ r^^esyy^. I^;II,J^.B^J,)(JW_WIIJ.,IT1)I|B

contextual features are In part present In the grammar codes of the current

grannar and can be selected, extracted, and entered into respective lexical

entries. Whenever necessary new features of these two types can be Incor-

porated.

The last feature type, rule features, are Intended to either trigger

interlingual transfer rules or to handle exceptions to them. The use cf

rule features will greatly simplify the Interlingual transfer rules and only

slightly increase the complexity of the lexicon. If the exceptions to the

interlingual transfer rules were not registered in the lexicon, they would

have to be handled by either writing less general rules or by further sub-

categorlxing. The rule features as defined here and in section 2 can be

discovered only after the interlingual transfer rules have been formulated.

2.5 Types of Lexical Information

The incorporation of the lexical features into the lexicon will

necessitate change of the existing dictionary format. The existing format

used for the SAS allows only the Information of grammar code, telecode,

English gloss, and romanlzation. In the future format, at least the follow-

ing types of information whenever applicable for each lexical entry in the

dictionary should be included: telecode, syntactic category, syntactic and

semantic features, contextual features, rules features, English gloss, and

lexical disambigueting heuristics. As we will see below (section 3.3), the

English gloss should be based on extensive contrastive lexical studies. The

lexical disambiguating heuristics will be based on the Immediate contexcual

information. Whenever low-level ambiguities arise this contextual Informa-

tion «rill be consulted first to resolve the ambiguities.

3. Interlingual Transfer Rules

The interlingual transfer was originally conceived as an independent

phase of the translation cycle (see Wang, et al. 1971). Under this conception,

the output of the analysis phase becomes the input to the Interlingual trans-

fer component. In practice, however, the Interlingual transfer rules were

incorporated into the Chinese grammar Itself. Attempts to separate them

from the analysis rules were made but have not yet been fully Implemented

197

 ■.""■*»» mmtmmmm mm

wmm^^m^^m^^iHfm^^gm w>!*mim%?w^i!*&v^^??t*m!!*f??f^.:'^^

with appropriate machine programs. Although Che analysis of Chinese la not

an end In Itself In machine translation, the mixture of these two phases

may always confuse the issue and complicate the tasks at each phase. An

Independent component of interlingual transfer rules is both conceptually

sound and linguistically practical. The separation should be carried out as

Soon as possible In the next phase of research.

^• ^ Inter 11 ngual Component in Artificial Intelllp.ence Approaches to Machine

Translation

Wllks (1973a, 1^73b) described an English-French machine translation

system at Stanford University, which follows an "artificial Intelligence"

approach. Briefly speaking, in this approach English sentences of a para-

graph are first converted into semantic or conceptual representations by-

passing the syntactic analysis stage. Corresponding French sentences are

then generated from those semantic or conceptual representations. Schänk

(1975Walso gave a brief account of an artificial Intelligence approach to

machine translation. The semantic or conceptual representation Is repre-

sented by some kind of semantic network where the meaning(s) of a sentence

Is represented by primitive conceptual units and their relations (see Woods,

1975). It Is supposed to he a universal luterlingua. Any natural language

can be decoded into it and encoded into another language.

One of the motivations behind the semantlcally-based approach to

machine translation Is "... that the space of meaningful expressions of a

natural language cannot be determined or decided by any set of rules what-

ever -- in the way that almost all linguistic theories Implicitly assume CAN

be done." (Wilks, 1971a) According to Wllks, any string of words can be

made meaningful by the use of explanations and definitions. But under

current linguistic theories, those meaningful expressions may be excluded as

unacceptable. Wllks' observation, though very true, should only be taken

with some caution at this stage of machine translation research. Nobody

has ever come up with any grammar for any natural language that Is capable

of describing all the well-formed sentences In that language under any lin-

guistic theory, not to say a grammar for Interllngua.

It Is doubtful that the artificial intelligence to machine translation

m

ü^assssäsasr« HUH

awiwpwMi^iP^^

described above really reflects human translation process. Besides, there

are problems with semantic network representation of meanings for natural

language. Woods (1975) gave a critical review of the semantic network re-

presentation of meanings for natural language. The problems seem to center

around the issue of how to capture all the relevant meanlnRs embodied In

the very rich syntactic structure of a natural language in a semantic net-

work representation. On the basis of the current state-of-the-art, our

syntactically-based approach to machine translation should be maintained

in the next phase of research.

3.2 Nature,, Functions, and Types of and Formalism for the Interlingual

Transfer Rules

In our conception of machine translation, it has been assumed that the

English glosses in the dictionary will give us the necessary meaning elements

In English sentences. Syntactic rearrangements of those elements in

accordance with the English syntax and morphological adjustments to those

English glosses in their base forms will give us the correct English output,

semantically, syntactically, and morphologically. We will accept this con-

ception as generally correct, except for some of the issues raised below.

Under the above conception, the output of the analysis phase, Chinese

trees, will undergo syntactical and morphological adjustments, which are

rules of the interlingual transfer component, to arrive at correspond Inp,

English sentences. Morphological adjustments are always idiosyncratic

(i.e., lexical) in nature. In the following discussion, the types of Inter-

lingual transfer rules refer only to syntactic adjustments.

All the interlingual transfer rules contained in the current Chinese

graaroar will be sorted out and stated in terms of the three basic tree

operations: deletion, substitution, and adjunction. We will follow the

formalism presented In Friedman (1971) and Morin (1973) for representing

these tree operations. So far only a small portion of the existing rules

Have been recast into this formalism.

Each interlingual transfer rule will take the form of a transforma-

tional rule. It will consist of a structural description and a structural

change. The structural description will be based on the principle of

ion

- ir"Trir--fr"mBiirrtTriin'iri irt^ nr—— >-.~...-.^--^— -- ^ ^ , ■ , m „ 1 „ lipM

r
IMM^'ilMfW^iWWPM'lW'iWWPiiiip^

"analyzabllity'' or "proper analysis."

3.3 Contraatlve Lexical and Syntactical Studies

In the above discussion It was assumed that correct English glosses

plus appropriate syntactic adjustments to a correctly-analyzed Chinese tree

will produce a correct corresponding English sentence. How can we arrive

at the correct glosses and appropriate syntactic adjustments? The solutions

seem to hinge on extensive contrastive lexical and syntactic studies be-

tween Chinese and English.

3.3.1 Contrastive Lexical Studies

In order to arrive at the correct English glosses for their Chinese

counterparts, it is necessary to compare and contrast them in terms of their

participation in a scene, or a schema, or a frame in their respective

languages. Linguistically speaking, a frame refers to either a sltuational

context or a lexical network which a word invokes. On the basis of its

role(s) in a frame, the correct interpretation of a word In the source

language can be rendered closest to its counterpart to the target language.

This approach to contrastive lexical studies is partially in accord with

the principle of structural semantics which states that the meaning of a

word in a language is determined by its paradigmatic relationships to other

lexical items in the same paradigm.

In addition to the paradigmatic relations, the syntagiftatlc lexical

relations between any two words in both language have to be taken into

account. It has been familiar to linguists in the field of contrastive

lexicography that words of 8«ne or similar meanings in two different languages

may not have same or similar syntactic bahavlor. In many cases, the glosses

of some Chinese lexical Items, especially those "empty" words, cannot be

given the appropriate ones without contrastive studies of their syntagraatic

behavior In both languages being made. Right steps in this direction had

been taken in the past. More work needs to be done in the future to update

the whole dictionary to enable producing better English translations.

;oo

 _ .. •^Wrt.Wi^tWMlIM^ ^.^-.^..^^ i

*,»

?

3.3.2 Contraatlve Sptactlc Studie»

In the past, th« linguists of our project had to carry out original

contrastive syntactic studies between Chinese and English because of a lack

| of research by others in this area. Many Interlingual transfer rules based

on those studies were written. As research goes on, some old rules will

have to be revised and new ones added.
W-'
; In order to accomaodate the earlier machine-implemented SAB, the

| interlingual transfer rules were «»bodied in the Chinese grammar, whenever

a certain syntactic adjustment was needed for outputlng correct English . It

was introduced in all the rules that needed It. In the future when the

,'j. interlingual rule component is separated from the grammar component, rule

I schemata can be used to capture the generalization of those structural
s
f changes.

t The strategy to be followed to uncover the syntactic correspondences

V between Chinese and Ensllsh will be to systematically compare and contrast

K the sentential and phrasal structures according to their types. Files of

the Chinese sentence and phrase types will first be built up. Representa-

tive token sentences and phrases from each type will then be translated

into the corresponding English sentences and phrar.es, with as few syntactic

adjustments as possible. At the same time, the same syntactic adjustment»

will be attempted for sentences or phrases of the samt» type unless fidelity

is violated. By doing so, it is hoped that rules of greater ßenerallzation

can be uncovered. The Chinese sentences and phrases will later be compared

and contrasted with their English counterparts. According to the scope of

the systematic syntactic correspondences uncovered, interlingual transfer

rules of varying generaliaation will be formulated. Sporadic exceptions to

the rules will be entered as rule features in the relevant lexical entries so

that other adjustments can be attempted.

The results of the extensive contrastive lexical and syntactic studie«

between Chinese and English outlined above will greatly enhance our linguis-

tic data base. Those results will also be of great relevance to both teach-

ing English or Chinese as a foreign language and Chinese-English bilingual

dictionaries.

if

»■

201

. ™»~.- — - iiiiiriiiiiilmMiif

3.A Contextual Analysis

In our syatax-based approach to machine translation, units of linguis-

tic analysis and translation are sentences or sub-sentences. This decision

uas basfctl on practical considerations. However, they are many cases where

the syntactic and semantic infonnation within those parse units alone is not

enough to resolve ambiguities in then. Information from the surrounding

contexts, both linguistic and/or situational, is necessary to do the work.

Linguistic contexts are provided b> visible surrounding linguistic

units, and the cues for resolving ambiguities in one sentence or sub-sentence

are those lexical items or syntactic features in those units. The lexical

and syntactical cues do not have to be in the immediately preceding or

following sentence. Situational context, or more generally, knowledge of

the world provides the richer and mc^e important disambiguating information

of the two. It is more reliable than linguistic context but more elusive.

It Is probably by far the most important criterion of selecting the correct

or preferred Interpretation among the many possible ones from the point of

human language processing. However, world knowledge Is enormous and cannot

be feasibly incorporated in any natural language processing system of a

great world domain. Even if we want to be more selective, we are always

hampered by our incapability of predicting which part of our world knowledge

will be useful or necessary in the system.

Although in a machine translation system, unlike a question-answering

system, the world knowledge can be filled in by the reader of the transla-

tion; nonetheless, it is desirable to resolve as many ambiguities as possible

during parsing and fill in as many linguistic gaps as possible during inter-

lingual transfering for the reader of the translation. In the following,

a few areas of the Chinese grammar will be exemplified to show the needs for

contextual information.

3.4.1 Elided Subjects

In Chinese writing in general, and scientific writing in particular,

many sentences or clauses have their subjects elided. They are omitted

because they are "understood" or "recoverable" from the contexts. In

English, recoverable subjects are limited to a few well-defined linguistic

202

^ji*_ 1. ^Sj-' . -.feäMaÜttE ^tiaa^M, müHH k

contexts, but in Chinese the elided subjects cannot be determined in purely

linguistic terms. Extra-linguistic contexts are also involved. In order to

output "readable" English, rules or heuristics to fill in the elided subjects

have to be uncovered. Their discovery depends on a thorough contextual

analysis of a huge corpus of Chinese texts.

Our preliminary investigation indicates that the author(s) of an

article or textbook is the most frequently elided subject. In many other

cases, the elided subject is the indefinite third person pronoun. Chinese

sentences with elided subjects in the above two cases can always be translated

into corresponding English subjcctless passives. However, extra-linguistic

considerations for contextual coherency may override these general stylistic

conventions. It is those considerations that cause the trouble. Unless we

come up with some principles of extra-linguistic contextual coherency other

than the general conventions of stylisfrics In Chinese writing, we may re-

cover the wrong subjects. Sometimes, linguistic well-formedness conditions

may rule out the possibility of certain nouns in the surrounding sentences

being the elided subject, but they cannot determine which noun is the one.

In other occasions, linguistic cohesive devices, such as connectives, may

provide cues for recovering the elided subject. Much research in the area

of the principles of extra-linguistic contextual coherency needs to be done

in the future to solve the problen of elided subjects in Chinese.

3.4.2 Number, Tense, and Aspect

In Chinese the number of a noun and the tense and aspect of a verb are

not morphologically marked. The number in many cases surfaces as quantifiers

or determiners; and tense and aspect are often indicated by time nouns,

adverbs, or particles, or any combination of then. In some cases, however,

none of the overt markers exist. Since these syntactic features are obliga-

tory In English, they have to be inferred from the Chinese contexts whenever

the overt markers are absent. As in the case of elided subjects, we can

sometimes rely on such cohesive device as connectives to provide the nece-

ssary information for the English reader. Information such as the organiza-

tion of «vents along the temporal axis and its cues in a text may also be

helpful In assigning the correct tense and aspect to the unmarked verbs.

203

v^sstmm

Information of this type can be gathered only through contextual analysis.

3.4.3 Definite vs. Indefinite Reference

Definite vs. indefinite reference to nouns is an obligatory feature in

the English grammar. In Chinese it is a derived feature and is not morpho-

logically marked in all cases. When this opposition is not marked for a

particular noun in a Chinese clause or sentence, only the context can pro-

vide information for the reader to make a decision. Generally speaking, the

indefinite reference is often expressed by a preceding indefinite quantifi-

cation expression or by default of any preceding definite expression while

the definite reference is always expressed by repetition of a preceding

noun, an anaphoric expression, or a preceding demonstrative. Other overt

linguistic cues for the definite vs. indefinite reference to Chinese nouns

need to be further investigated. In cases where no overt cues are available,

extra-linguistic contextual analysis is necessary to provide the information

for this opposition in English. The semantic notions of new vs. old or

shared information, and of generic vs. specific or unique, may be helpful

in the extra-linguistic contextual analysis.

We have briefly discussed the three areas of the Chinese grammar where

some kind of contextual information has to be gathered and passed from

Chinese sentences into the corresponding English sentences to produce "read-

able" translations. There are three major problems related to contextual

analysis that have to be tackled in the near future. They are: (1) to deter-

mine the relevant contextual information, (2) to gather this information, and

(3) to implement the information in the system. As the fields of linguistics,

artificial intelligence, computational linguistics, and others advance, it is

hoped that solutions to these problems may soon emerge.

204

^*^- ^ _

^> "?"VTS "^.-y.-.tv.lÜI^VtT ÄTi; ^ YJ;

References

Bobro«, Daniel G. and Allan Collins, eds. 1975. Representation and under-

standing: studies in cognitive science. NOW York: Academic Press, Inc.

Brower, R.A., ed. 1959. On translation. Cambridge: Harvard University

Press.

Bruce, Betram C. 1975. Discourse Models and language comprehension. AJCL

microfiche 35:19-35.

Celce-Murcia, M. 1976. Verb paradigms for sentence recognition. AJCL

microfiche 38.

Chamiak, £. and Y. Wilks, eds. H75. Computational semantics: an

introduction to artificial intelligence and natural language compre-

hension. New York: American Elsevier Publishing Company, Inc.

Diller, T.C., ed. 1975. Proceedings, 13th annual meeting, ACL 4: Modeling

discourse and world knowledge I. AJCL microfiche 35.

. Proceedings, 13th annual meeting, ACL 5: Modeling discourse and

world knowledge II, and text analysis. AJCL microfiche 36.

Flllmore, C. 1969. Types of lexical Information, In Studies in syntax

and semantics, ed. by F. Kiefer, 105-137. Dordrecht-Holland: D.

Reldel Publishing Company.

Friedman, J., T.H. Bredt, R.W. Doran, B.W. Pollack, and T.S. Martner.

1971. A computer model of transformational grammar. New York:

American Elsevier Publishing Company, Inc.

Hallidays, M.A.K. and R. Hasen. 1976. Cohesion in English. London:

Longman.

Hays, D.G. and J. Mathias, eds. 1976. F6IS seminar on machine translation.

AJCL microfiche 46.

Hudson, R.A. 1976. Arguments for a non-transformational grammar. Chicago:

University of Chicago Press.

Katz, J.J. 1972. Semantic theory. New York: Harper & Row, Publishers.

IClapphola, D. and A. Lockraan. 1976. Contextual reference resolution.

In Diller, ed. AJCL microfiche 36:4-25.

205

_ .jüsaeSsssisE!.. i»e«.»aiai»a-ia«iaj.«.iJ...-«.JMA. . ■-"'-^iniinrimiilu::

Leont'eva, tl.N. and S.C. Mlkicina. 1973. Semantic relations expressed

by Russian prepositions. In Machine translation and applied linguistics,

vol. 2:319-404, Athenalon Vevlag.

Lyons, J. 1977. Semantics, vol. 1. New York: Cambridge University Press.

Mlnsky, M.L. 1975. A Framework for representing knowledge. In The

psychology of computer vision, ed. by P.U. Winston.

Morin, Y.C. 1973. A computer-tested transformational grammar of French.

Linguistics 116:49-113.

.Magao, M. and J.I. Tsujii. 1976. Analysis of Japanese sentences by using

semantic and contextual information. AJCL microfiche 41.

Philips, B. 1975. Judging the coherency of discourse. AJCL microfiche

35:36-49.

Nlda. E.A. 1969. Science of translation. Language 45:483-98.

Rieger, C.J., III. 1975. Conceptual memory and Inference. In Schänk,

et. al., 157-288.

Riesbeck, C.K. 1975. Conceptual Analysis. In Schänk, et. al., 83-156.

Schänk, R. and KjHl Colby, eds, 1973. Computer models of thought and

language. San Francisco: W.H. Freeman and Company.

Schänk R. 1973. Identification of conceptualizations underlying natural

language. In Schänk and Colby, eds., 187-247.

 , N.H. Goldman, C.J. Rieger, and C.K. Riesbeck. 1975. Conceptual

Information Processing. New York; American Elsevier Publishing

Company.

Schänk, R. 1975b. The conceptual approach to language processing. In

Schänk, et.al., 5-21.

 . 1975c. Conceptual dependency theory. In Schänk, et.al., 22-82.

Simmons, R.F. 1973. Semantic network: their computation and use for

understanding English sentence. In Schänk and Colby, eds., 63-113.

Taylor, B. and R.S. Rosenberg. 1975. A case-driven parser for natural

language. AJCL microfiche 31.

Wang, W. S-Y., B.K. T'sou, and S.W. Chan. 1971. Research In Chinese-

English machine translation. RADC-TR-71-211, Final Technical Report.

 . 1975. Chinese-English translation system. RADC-TR-75-109, Final

Technical Report.

206

^1 M^Sit3JBgMS|2**jSte^Mi^a6Eg!i ' ' - . - ,..,. ^-sg^^^aMsaaii^ii^jgii^y^ji

■'•-■^^L'^.y^v^^j^^jsi '

^* *JA ?,<< ^^ -tr ^ . ! S tt^?-^dm^m:

and P. Robyn. 1976. Chlafese-English machine translation system.

if.

: *_

i

8ADC- TR-76-21, Final Technical Report.

Wlenblcka, Anna. 1972. Semantic primitives. Athenalon Verlag.

Milks, Y.A. 1972. Gramar, meaning and the machine analysis of language.

London: Routledge and Kegan Paul.

 . 1973a. An artificial Intelligence approach to machine translation.

In Schänk and Colby, eds., 114-51.

 . 1973b. The Stanford machine translation project. In Natural

language processing, cd. by R. Rustin, 243-^0. New York: Algorlthwics

Press, Inc.

 . 19761. Natural lanpuage understanding systems within the A.I.

paradigm: a survey and some comparisons. AJCL microfiche 40.

 . 1976b. Processing case. AJCL microfiche 56.

Winograd, T. 1971. Procedures as a representation for data in a conputer

program for understanding natural language. HAC-TR-S4, MAC Report.

Woods, W.A. 1975. Foundations for semantic networks. In Sobrow anc

Collins, eds., 35-S2.

207

IMttitBiMMmiiiiiiiJfellia WiilrtfitiiBliiliaiiitti IBfirniTimtriiaiTiri^iiBTI in'li'imi

