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FOREWORD

This report was prepared by the Douglas Aircraft Company, Aircraft
Division, Long Beach, California, for the Analysis and Optimization Eranch,
Structural Mechanics Division, Air Force Flight Dynamics Laboratory, Air
Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio
under contract F33615-77-C-3101. This research was conducted under Project
2401, "Structural Mechanics", and Task 240102, "Design Analysis Methods for
Aerospace Vehicle Structures". Mr. L. J. Huttsell of the Structural Mechanics
Division was the Project Engineer.

The work reported herein was conducted during the period of August 1, 1977
to March 1, 1978.
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The Principal Investigators were J. A. McGrew, J. P. Giesing and R. M.
Pearson assisted by K. Zuhuruddin, M. E. Schmidt and T. P. Kalman.

The preliminary theoretical developments necessary to incorporate part
of the improved aerodynamic time lag representations were developed under
IRAD funding prior to this contract award. Sections 2.5.1.1 through 2.5.1.4
and Appendices A and B document these efforts for the purpose of completeness.
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SECTION I INTRODUCTION

Modern aircraft wing designs are increasingly taking advantage of
recently developed supercritical airfoil sections which are more aerodynami -
cally efficient than conventional airfoil sections. This increased efficiency
is achieved by delaying the drag rise, thus allowing the aircraft to cruise
at higher Mach numbers with less sweep. Also, higher 11ft coefficients are
obtainable with wings using these advanced airfoil sections. The YC-15 and
YC-1511 prototype aircraft are recent examples using supercritical wings.

There has been concern that the flutter characteristics of supercritical
wings may be significantly different from wings with conventional airfoils.
Recent NASA test data on a TF-8A flutter mciel showed a substantially larger
decrease of flutter speed near the Mach number of maximum 1ift curve slope
than predicted by theoretical subsonic oscillatory aerodynamic theory.
Further studies were needed to determine the aerodynamic mechanisms which
contribute to this large decrease in flutter speed.

The objective of this study was to develop and evaluate transonic
flutter prediction methods for supercritical wings. The study was divided
into five phases:

a. Phase I - TF-8A Flutter Analysis (Steady Corrections) -
Conduct a flutter analysis of the TF-8A flutter model using correct-
jon factors to the aerodynamic influence coefficients (AIC's)
based upon steady aerodynamic data from the pressure model and
correlate with test results.

Phase II - TF-8A Flutter Analysis (Unsteady Correction) -

Apply an improved unsteady correction factor technique (see Phase
I1I) to the flutter analysis of the TF-8A flutter model and corre-
late with test results.

Phase III - Transonic Method Improvement
Improve the time lag representation and include shock wave motion
in the transonic method.




Phase IV - YC-15I1 Flutter Analysis -
Use the final, proven methods of Phases I, II and III to perform
a flutter analyses of the YC-15II.

Phase V - Flutter Test Plan -
Use the results of the analytical effort to define an economical
flutter model test plan.




SECTION II TECHNICAL DISCUSSION
2.1 BASIC AERODYNAMIC DATA

The basic theory used for the flutter and static aeroelastic analyses
reported herein was the Doublet Lattice Method (DLM) described in Reference
1. This method is applicable to generai configurations and is well proven
and correlated. The DLM requires that the 1ifting surfaces (wings, tails,
etc.) be broken up into boxes and the bodies (fuselage, nacelles, etc.) be
jdealized with both slender body and interference elements. Figures 2.1-]
and 2.1-2 present the idealizations for the two configurations considered
in this report, i.e., the TF-8A wing-body and the YC-15II.

Experimental wind-tunnel data are available for both of these configura-
tions. The YC-1511 data were taken from unpublished McDonnell Douglas
sources while the TF-8A data were taken from Reference 2. The TF-8A wind tunnel
model was found to be quite elastic considering that it was to be a nominally
'rigid' model. Aeroelastic corrections were applied to the data in an
attempt to remove the effects of flexibility. These corrections were essential
to obtain the correct section 1ift curve slopes across the span and consisted
of determining the actual or 'effective' angle-of-attack, doff? of each
section and using these in the distributions of cland ot The aeroelastic
correction was based on a bending curve found in Reference 2 for one
particular loading. This curve was generalized for all cases by normaliza-
tion with respect to the angle-of-attack and dynamic pressure. The twist for
the reference condition was obtained from the bending curve by taking the
slope and scaling it with the sine of the sweep angle.

. - (dz /7 dy)sin A,
r

n
where z is the local bending deflection and y is distance along the
elastic axis.

The resulting normalized elastic twist,?a.is given as:

and is plotted in Figure 2.4-4. Subsection 2.4 presents additional details
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Figure 2.1-2 YC-1511 Idealization




of the aeroelastic correction procedure including the corrected or effective
angle-of-attack, G ff at each spanwise section which is given by:

Goff - a(1-T, a)

Subsection 3.1.3 presents plots of section Co and Con data versus Aaff
for various conditions.

The data of Reference 2 were obtained for a low Reynolds Number,
specifically 1.96 x 106, based on the chord at the three-quarter span loca-
tion. Thus, the data is not considered reliable for predicting the stall or
near stall conditions. Because of this,only 1ift curve and moment curve
slopes in the low angle-cf-attack range were used, i.e., where c, Was a
near-linear function of VTR The moment curves were not linear anywhere but
the non-linearity in the small angle-of-attack range was due to transonic
effects and thus were considered more reliable. The points on the 1ift and

moment curves where the slopes were taken are given in the results section
(Section 3).




2.2 VIBRATION MMDAL DATA

Normal modes of vibration of the TF-8A wing and the YC-15II wing were
used as the basis for flutter and static aeroelastic calculations. For the
YC-1511 modes were available from the design analyses process and were used
directly. These modal data had been corrzlated with past aircraft vibration
test data and good agreement shown.

NASA (Langley) prcvided measured mode shapes and generalized mass for
six elastic modes of the TF-8A model wing in the form of normal modal defl-
ections at 81 wing locations. Spanwise sectional plots of these deflections
showed relatively small camber deformations in the modes of concern and
therefo~e the modal amplitudes were transformed into sectional pitch and
plunge degrees of freedom in order to simplify the subsequent aerodynamic
weighting processes.

A sectional least squares fit: was used to determine pitch and plunge

amplitudes for a sixteen spanwise section mathematical model. The measured
modal data and transformed modes are shown in Section 3.1.

As a check against the transformation process, vibration modes for the
same (sectional) model were calculated with distributed stiffness and
inertial data which become available later in the study program. The result-
ing mode shapes, frequencies and generalized mass agreed well with the trans-

oformed test data except for the torsion mode, in which the discrepancy is
due to a probable misinterpretation of torsional stiffness magnitude.
Factoring the torsional stiffness levels led to good agreement in modal
deflections and generalized mass.




2.3 STATIC AEROELASTIC ANALYSIS PROCEDURES

The analysis procedures used for all static aeroelastic analyses proced-
ures used herein consist of a subset of the generalized equations used to
solve for the linear elastic trim conditions and deformation of a free
flying aircraft. It is assumed that total balance force of the model is
specified and the wind tunnel model is then pitched until that specified
total 1ift is achieved. Drag forces are not accounted frr herein although
the procedure is simply extended for these forces if required. The number
of equations to be solved for is n + 1, where n is the number of normal
elastic modes of the system used. Lift and weight are taken as positive
down and moments are positive nose up in the following. The generalized
equations are formed by a similarity transform with the normal modes upon
the mass and aerodynamic equations for the model. The total force on the
model support is given by

a (Dha a + [DhE] {q}) + a LJ + Wt FT (2.3-])
The elastic equations are:

[keel 9} - @ ((Dg Yo + [Dgg] a}) - gimgy) - GiLy) = 0 (2.3-2)

where
q = dynamic pressure, psi
a = model reference angle of attack
q = generalized modal amplitudes ( an n x 1 vector)
Ej = total jig (reference integrated basic 1ift), 1ift/q
W =  total weight
FT = total specified force on the modal balance
Keg = generalized stiffness (mEE . “ZEE)
Mg = generalized weight forces
LJ = generalized jig (reference basic 1ift and moment),forces/a
D, = total 1ift due to a/q




DEa = elastic aerodynamic force/a-q
D = ‘total 1ift/q-q

DEE = elastic aerodynamic force/q-q
The model reference angle of attack is split into two parts for convenience:

= +
a 00 (IT

where

R
n

model insertion angle

ar model trim angle

Equation {2.3-1) may be solved for ay in terms of a5 9 jig forces and
balance force and substituted into Equation (2.3-2) leaving n equations with
n unknowns (q). Post multiplication of the vector q into the modal set used
to obtain the equations leads to the deformed surface

{hy = [e] {q} (2.3-3)

where h are the deflections (and rotations) of the surface ard ¢ is the set of
normal mode shapes of the surface. The spanwise local angle of attack
distribution then is given by the sum of the model insertion angle, the model
trim angle, the local elastic twist angles and the effective jig or built in
twist distribution.




2.4 AERODYNAMIC WEIGHTING FACTORS

The concept of modifying the matrix of theoretical Aerodynamic Influence
Coefficients [AIC's] with a correction factor or weight factor matrix [WT]
has been investigated in many reports one of which is Reference 3. One of
the methods of Reference 3 is to premultiply the theoretical AIC matrix
with the weight factor matrix as follows:

[AIC]NT= [WT] [AIC]
This technique is the one used in the present report.

The type of AIC matrix used is that for an elastic axis representation.
Thus, the elements of the AIC are proportional to the sectional values of
1ift and moment coefficients. In what is to follow the sectional Tift co-
efficient is discussed primarily; however, the concept applies equally to
the section moment coefficient.

The weight factor for a particular section 1ift coefficient (at a parti-
cular wing spanwise location) is given in two parts: a steady part, WTS
and an unsteady part, WTUS. The total weighted value for 1ift is:

(wt) 2
cﬁa (k.) = WTSCL WTUSCL cla (k)

where WTSCL and WTUSCL are WTS and WTUS for the <, term.
a
The steady weight factor, WTS, is usually obtained from wind tunnel
section 1ift coefficient data. The idea is to correct the theoretical 1ift
coefficient so that it gives the experimental values when the frequency is
sero. This term is obtained from the ratio of experimental to theoretical
1ift curve slope at kr = 0. Thus:

wtscL = c, (P (k= 0)/c, (K, = 0)
(0]

L
o

r

Where ¢ is the theoretical result and c, (exp) is that obtained experimentally.
fo ) s




Similarly for the moment

0)

WTSCH = o (&) (k= 0Vcy (k.

a

Or, in terms of aerodynamic center, Xac® and 1ift coefficient:

_ . (exp) _ . (exp) )
WTSCM cla (xea Xac )/c’LQL (xea xac)

where Xea is the axis about which the moment is taken.

The aerodynamic theory usad to obtain the AIC and, conseguently, the
Cy (k ) is a subsonic 1ifting surface theory containing no transonic efiects.
This, the effects of shock motion, etc., are not contained in this theory.
Transonic effects can be included into the analysis by using an unsteady
weight factor based on other theories which contain transonic effects. For
instance, if a two-dimensional transonic theory is available, then it can be
used as a basis for the weight factor, WTUS, on a strip theory basis as
follows:

(2DTRANS) (2D)
WTUSCL (k) = "4 ("r)/c"a (ky)

T2DTRANS) 120)
k. =0/%

L
a

]
o
L

where ¢, (2DTRANS) is the result obtained from the two-dimensional transonic
theory and ¢ <, (20) js the result obtained from the two-dimensional subsonic
theory (the tlo-dimensional equivalent of the AIC). The reason for the
division by the values of Co at k = 0 (steady values) is so that the weight
factor WTUS will reduce to ulfity for the steady case. This is required

since WTS has already taken care of the steady weighting.

The formula above for WTUSCL holds equally well for the moment; simply
replace WTUSCL with WTUSCM and c, with G

a a

The application of two-dimensional theory to the three-dimensional swept
wing case requires further analysis. Consider Figure 2.4-1.

n
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Swept Wing

Figure 2.4 - 1 Strip Theory Approximation
For a High Aspect Ratio Wing

The constant chord two-dimensional swept wing, that approximates the
strip on the wing whose chord length is ¢, is shown as dashed 1ines. The
flow is two-dimensional, in a plane normal to the axis of sweep. If we
designate all values given in this reference system with a superscript tilda,
then the section 1ift, moment and frequency are:
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where kr is the frequency to use in the two-dimensional theory. The two-
dimensioﬂgl frequency is related to the three-dimensional theory as follows:
k A <
20 a, ; "D ¢
The two-dimensional transonic theory used as a basis for this strip theory is
presented in subsections 2.5 and 3.3. The Mach Number used in the two-

dimensional theories is related to the free stream Mach Number as follows:

MZD = Mm cos A

In the strip theory approach the chord line of the airfoil section considered
is forshortened as Figure 2.4-1 shows. The thickness and camber distributions
however are not changed thus the effective thickness and camber of the airfoil
section, as a percent of local chord, increases as 1/cosA. Also the angle of
attack increases in the same way.

2.4.1 Effects of Twist and Reynolds Number on the Steady Weight Factors

The steady weight factors, WTS, are usually determined from wind tunnel
data taken on semi rigid models. It has been found that the steady incidence
angle of each wing section has an important bearing on both the steady and
unsteady 1ift curve slopes especially for supercritical wings. Since the
shock moves as the section angle of attack, «, is changed, there appears a
large increase in perturbation pressure, Cpu’ at the steady shock location
which is proportional to the jump in steady pressure. Figure 2.4-2 which was
taken from Reference 4, illustrates this effect. The effect of the peak in
pressure is very noticeable in the moment coefficient especially for super-
critical type wing sections.

Figure 2.4-3 presents tne 1ift and moment coefficient for the TF-8A wing
' (y/(b/2) = .804) operating at a free stream Mach Number of 0.99. Notice
especially the nonlinearity in the moment coefficient. Figure 2.4-3 also
shows nonlinearities caused by viscous or separation effects. These are easily
seen in the plot of c, versus a.

The slopes of these curves, Cp » Cp » are the parameters required for

the weight factor calculation. 1t%is oBvious that the slopes vary along the
curves. Sometimes this variation is very large. Thus, the values of Cy and Cn

13
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Figure 2.4-2 Steady and Quasi-Steady Pressure Distributions
on the NLR 7301 Airfoil in Transonic Flow
(Taken from Reference 4 )
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Figure 2.4-3 Experimental Lift and Moment Coefficient for the
TF-8A Wing




used depend to a large degree on the section angle of attack. The section
angle of attack, G is made up of the following parts:

= ate, te
% 9 T

which consist of the aircraft angle of attack o (which is a function of
weight, etc.), the built-in twist, €5 and the elastic twist, c, which is
proportioned to loading, dynamic pressure, etc.). Once the section twist is

known, the values of <, and ¢, can be determined from the curves obtained

from the wind tunnel. 4

This procedure is slightly different from the usual procedure of reading

Cy and C, On the 1inear part of the curve. The usual procedure is consider-

ed®conservitive because the linear value of <, is most often the maximum

value, resulting, usually, in the lowest flutéﬁr speed.

Some caution must be exercised when using o to find the 1ift and moment

curve slope. The reason for this is that the experimental curves of C, and
Cp» Versus o may be inaccurate or inappropriate for several reasons. First,
the pressure model is not entirely rigid and model bending and twisting induce
elastic twist in the model. For instance, the elastic twist, €g? induced

by the bendirg of the swept TF-8A wing can be calculated from bending data
given in Reference 2. Figure 2.4-4 presents a plot of normalized

er’qrar) at which

the bending was determined. This curve was used to correct the section angle-
of-attack to an effective angle of attack, A ff for all cases as follows:

elastic twist ee/qa versus span for the one condition (e

= +
Yeff N
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Figure 2.4-4 Elastic Twist of the TF-8A Pressure Model




and where the reference condition is given by @, = 3.24° g © 932 PSF,
and the free stream Mach Number, M_ = 0.99.

Just as small changes in steady section mean angle of attack, g change
the loading on the flutter model, small changes in ag on the pressure model
have the same effect. Thus, elastic twist, although usually assumed small
for the pressure model, wall induced angle of attack, etc. are important
considerations when using the pressure model data.

Another important consideration, especially for supercritical wing
sections, is the camber change due to boundary layer thickness. Shock
location and the loading on the aft part of the supercritical wing section
are sometimes very critically affected by the boundary layer as Figure
2.4-5 shows. This indicates that the boundary layer must be modeled accurate-
ly in the wind tunnel. Therefore, among other things, the test Reynolds
Number must be sufficiently large.

Another reason for requiring that the test Reynolds Numbers be large is
that the proper stall characteristics may need to he simulated. Flutter
models are usually highly flexible so that flutter speeds can be reached in
the wind tunnel. These models are dynamically modeled but are not statically
modeled. This flexibility can cause large negative twist values for swept
wings. Figure 2.4-3 shows that, at y/(b/2) = 0.804 for the TF-8A wing
operating at M_ = 0.99, any twist of the flutter model (teyond that built-in
to the pressure model) of greater than a -2 degrees will put the flutter
model into an apparent stall condition. At other sections, which do not
stall quite so easily, the slope of the 1ift curve at a negative twist angle
may change drastically from its untwisted position. Reynolds Number plays a
part here since the nonlinear shape of the curve is a function of it. Thus,
for insufficient Reynolds Number, the 1ift and moment curve slopes are nct
to be trusted except in the linear range. Figure 2.4-6 presents the effect
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Figure 2.4-5 The Effects of Boundary Layer Displacement Thickness on a
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Figure 2.4-6 The tEffect of Reynolds Number on the Lift Curve of an
Outboard Wing Station of the TF-8A Wing




of Reynolds Number on the 11ft curve slope for positive angles of attack.
There are noticeable changes in c, for small changes in Reynolds Number.
Thus, if the Reynolds Number for twaxpressure model test is insufficient
(it should be approximately 10 ) then the results for 11ft and moment curve
slopes may be inaccurate for angles of attack in the nonlinear range.

For the case of the TF-8A wing, the pressure test was run at a Reynolds
Number of 1.96 x 10 (based on the chord at y/(b/2) = 0.75) where as the
flutter model was run at a Reynolds Number ranging from 3.0 to 9.0 x 106.

Thus, 1t must be concluded that the nonlinear portions of the 1ift and
moment curves, as obtained from the pressure model, probably do not apply
to the flutter model.

The shock location also has a large effect on the unsteady and steady
weight factors. Thus, the twist and angle of attack of the flutter model,
or aircraft, must be known at the flutter speed if these weight factors are
to be calculated properly.

2]




2.5 TRANSONIC TWO-DIMENSIONAL LIFTING SURFACE THEORY

Three approaches to the unsteady transonic flow problem are: (1) direct
numerical solution of the time dependent differential equations step-by-step
in time using finite difference techniques (see References 5 and 6); (2)
direct numerical solution of the oscillatory transonic differential equations
using finite difference or finite element techniques (see References 7, 8,
and 9); and, (3) solution of the transonic problem using 1ifting surface
theory (see References 3 and 10).

The first approach, which is currently operational in two-dimensional
analyses, accounts for transient shock motion. The cost of this type of
approach is prohibitive in production flutter and PSD gust analysis, at least
with current generation computers.

The second approach shows promise even though shock motions are currently
not accounted for and even'though it 15 restricted to Tow reduced frequencies.
The dependence of the oscillatory transonic solution on the steady state
solution multiplies the number of .cases that must be done in a routine flutter
investigation, thus, also multiplying the cost.

Classical subsonic 1ifting surface theory has gone a long way in pre-
dicting flutter speeds even in the transonic region, especially when steady
weight factors are applied. It seems logical that modifications of 1ifting
surface theory, to account for transonic effects, is a profitable avenue to
investigate. The third approach deals with this area. The approach of

Cunningham (Reference 10) is encouraging. This approach uses a local appli-

cation of classic subsonic and supersonic lifting surface theories coupled
with an appropriate shock motion analysis.

The method of Reference 3 addresses the problem of modifying the
classic lifting surface theories themselves to account for transonic effects.
The 1ifting surface theory approach to the problem is economically the most

desirable if it produces sufficient accuracy.

In this section of the report, an investigation into a two-dimensional
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transonic 11fting surface theory is presented which is an extension of the
initial work of Reference 3. The theory is split up into a part which is

independent of shock wave motion and one part that deals strictly with the
effects of the shock wave motion. The method is correlated using the NLR

7301 airfoil.

2.5.1 Basic Theory Without Shock Wave Motion Effects

In this section, the basic differential equation for the potentiel, ¢,
is solved using Green's theory which results in a surface singularity
approach. The nonuniformity of the flow field is accounted for in the express-
jon for the point singularities used. The airfoil boundary conditions are
satisfied by adjusting the singularity strength. The basic singularity used
in 1ifting surface theory is the doublet; however, the doublet can be obtained
from an even more basic singularity, i.e., the source. The derivation of
the expression for a transonic source is given in the following and in
Appendix A.

The shock boundary conditions are dealt with in Section 2.5.2.

2.5.1.1 The Transonic Source

Lifting surface theory is based on the assumption thot the disturbances
to the fluid caused by a surface moving through it are small. These small
disturbances travel through the fluid at the speed of sound as acoustic
waves. Classic 1ifting surface theory makes the further assumption that the
medium through which the waves travel is uniform. It is felt that one of the
major transonic effects arises due to the fact that acoustic waves encounter
nonuniform flow fields. This is especially important for forward traveling
waves in a near sonic stream. Small changes in fluid speed can change the
direction of motion of these waves thereby changing the character of the
flow. A derivation of an expression for the potential, ¢, due to a source
in a nonuniform stream is presented in Appendix A. The result is:

N T
¢(x9y929t) = Z o—iﬂ_iL
j=1 47 &y




The term o is the source strength which is a function of time. To understand
this expression, it must be noted that a source in a fluid stream is actually
an infinite string of acoustic pulses; one born at each instant, traveling
downstream. Figure 2.5-1 shows a source in a uniform flow located at
(go, Ny ;0) with an il1lustration of the trailing acoustic pulses. Notice
the two pulses that reach the receiving point (x,y,z) at the particular time
in question. These pulses were generated previously one at t = Y and one
at t = 1,, at the sending or source point (go, Ny ;o).

Once an acoustic pulse is generated, its total strength remains unchanged.
0f course, the local wave strength on the pulse perimeter varies with time
as the wave expands and distributes its strength along an ever-lengthening
perimeter. Thus, the total strengths of the waves that have reached the
receiving point (x,y,z) are a function of the time at which they were
generated at the point (eo, o’ ;0). The strengths of the waves reaching
(x, y, z) are the strengths of the source at (50, Ny co) at the previous
times t = 1, and T, This idea is written as 0(1]) and of 2).

For the uniform flow supersonic case, these times Tys Tos OF phase lags,

are expressed as:
| )
Uniform super-

s sonic case
T - ; (x-&o)-R}"'t 2

For the uniform flow subsonic case, only one wave passes the receiving point,
thus

- M (x-¢)-RY+t i=1Uniform Subsonic Case
ap? ” e




Acoustic Pulse
Radius

Figure 2.5-1 Time Histories of a Series of Acoustic Pulses Emmitted
From a Moving Point Source
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Speed of sound

In general, there are N such waves passing the receiving point for the
nonuniform flow case. For this case, a special acoustic pulse generator
is required to determine the time histories of the shapes and locations of
the generated acoustic pulses in a nonuniform flow. Such an acoustic pulse
generator is described in subsection 2.5.1.4.

V)

In the expression for the source potential, ¢, the term Ri is expressed
in terms of acoustic pulse parameters as follows:

- .
‘-' n

™
2

where V} is the total velocity of a point on the acoustic pulse surface,

T its surface normal vector in the direction of travel (see Figure 2.5-2), a,
an equivalent speed of sound and 5 an equ1va]ent acoust1c pulse radius. The
acoustic pulse generator is used to determine V and 1. The equivalent speed

Figure 2.5-2 Pulse Surface Velocity Vectors




of sound a is determined implicitly from the following formula

- -  _a
Vi = V+an
This formula simply says that the total velocity, G}. of the wave front is
a vector combination of the fluit ve1oc1ty.v and the acoustic velocity of
. the pulse, an. This is observed graphically in Figure 2.5-2. The nonuniform
flow field V must be known from a suitable steady transonic flow solution;
in this case the Jameson Method (see section 2.5.1.4). Since the total, V}.
is known from the acoustic pulse generator the equivalent speed of sound, a,
may be solved for. When no approximations for T are used a = a and the formula
for a is not needed. The expression for a is kept, however, for later refer-
ence as approximations for T are introduced.
i= (Wp-V)-w
The effective local Mach Number, M, is then
. N
n

Ve

M =

o |=<<i

- =Y
-V-n
The inverse of the term o is a measure of the local wave strength along

the wave parameter. For the uniform flow case this term reduces to the

acoustic pulse radius, o, (see Figure 2.5-1) where:
p(t) = alt-1y)

and where a is the speed of sound in a uniform flow. A factor f is introduced
to account for the fact that the wave strength, in a nonuniform flow, is not

exactly proportional to the inverse of the acoustic pulse radius.
3 = fp = fa(t- Ti)

For uniform flow, Appendix A shows that Ei simply becomes the hyperbolic

radius for both the subsonic and supersonic cases. That is,

¥ " ri 7 o .
Ry ~+ N = (x - 50) LA el i =1,2 Uniform Flow Case
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If, further, the oscillatory case is considered for uniform fliow, i.e.,
o(t) = o exp(iwt), then the expression for the potential becomes:

N

-} jwt,

L N
J=1

For the supersonic case N = 2, and using the expressions for T Ty gives

- a E_R_\ 2 1wt
#lt) = oy cos( acz} exp[iuM_(x - ¢.) / a8, le

For the subsonic case N = 1, and using the expression for M gives

o(t) = x exp [iuM_ (x - go) / aBmz] exp [-in/aBmz] e“"t

m

These are the classic results for the potential of the supersonic and subsonic
source.

2.5.1.2 Equivalent Sending Point Location

The acoustic pulse generator, to be described in subsection 2.5.1.4,
provides a means of calculating the time history of an acoustic pulse emitted
from a sending point (50, o’ ;0) moving in a nonuniform steady transonic
flow field. When the pulse has arrived at the receiving point, it has dis-
tored from the classic circular shape and its wave strength has deviated
from the classic value of o/p where p is the pulse radius. However, locally
at the receiving point (x, y, z) an equivalent circular pulse can be matched
to the actual pulse (see Figure 2.5-3).

N

The quantities to be matched are the terms T3 and Ri appearing in the
expression for the source in a nonuniform flow potential:

n
that is, the terms T and Ri’ for the equivalent circular pulse, are to be
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matched to the actual pulse at the recaiving point (x, y, z). Once the
match is made an equivalent sending point location (Eo. N co), flow field
speed V, speed of sound a and pulse radius o can be found. The bar over the
terms indicates equivalent terms and not actual ones. The derivation of

these equivalent terms is given as follows.

R

(Acoustic
Pulse
Center)

Actual Pulse

Matched Circular Pulse

Figure 2.5-3 Matching a Circular Pulse to the Actual Pulse at the
Receiving Point (x,y,z)

From Figure 2.5-3, the following vector identity is easily observed:

- C > = S
p (X'Eo)i r = V(t-nq)+en

+

or by components:
(x - € V(t-)+on,
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and

FY =l -
where n.=n: A

Using these quantities in the expression for the equivalent hyperbolic
radius, R, gives:

o= (T (-0 5?8500
-2‘_ B
= %? 3% + 2n, Va + V2n Y {
2 |
where
L = nf (V2 - W)
Now if we require that
i- L
a
then L = 0 and ﬁ becomes
Vn
= 5 1t =
a

N
It can be shown that this expression reduces to the expression for R/f as
follows:
)
V. n
JI—| =
a

=
!

when lF is assumed that the equivalent velocity is parallel to the x-axis,
i.e.,V = v 1 and when we take note of the expressions

- = =
VT = V+an
p = fi
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which were given in subsection 2.5.1. Thus, the equivalent hyperbolic radius
is fR and the expression fer the potential becomes:

The quantities 9, o, f and a are yet to be determined. First, assume
that V is the local flow field velocity at the receiving point (xy ¥y 2).
Secondly, the pulse radius o can be selected by fitting the best radius to
the actual pulse or simply by letting it be a(t - 1) where a is the equiva-
lent speed of sound. For simplicity, the latter is assumed. The quantity f
is then obtained by noting the actual strength of the wave and comparing
it to a(t - 1), 1.e.,
N
2 el
a(t - 1)

Pulse Surfsce

x T

Figure 2.5-4 Pulse Surface at Time = t and t+at and Associated
Vector Quantities
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Thirdly, the equivalent local speed of sound can be obtained by refering
to Figure 2.5-4. This figure shows the position of a wave at two time inter-
vals At apart. Inspection of the figure shows that:

<

VT g

- -~
n An

s B

at+Vi = "

The term an/Aat can be obtained from the acoustic pulse generator in a

numerical manner from the pulse shape at two successive times. Llastly,
- > o

knowing the values of V and n allows a to be solved for as follows:

- - >
= (gg-Vin)

A1l terms in the expression for ¢ are now known and it can be used in
the form presented. However, the classic potential is usually not used in
this form. Usually the more classical one given at the end of subsection
2.5.1.1 is used. In these expressions, the terms T and T, are given in
terms of (x - go), M_and R as given in Appendix A. According to Figure
2.5.95

R [k - B +V (b -0 =88 (- 0)f
solving this expression in terms of (t - 1) gives

-(x - Eo) V/a i_ﬁ
+(t-1) =

31 - M)

Since M = V/a then

=
1

and

+ w(t -




where k. = we/2U

Thus, the classic expression for w(t - 1) is modified by simply replacing

M_ with M, and (x - 50) and r with (x - Eo) and r and dividing by V/Uw. The
The classic oscillatory subsonic case has one root, i.e., i =1 and the
result, taken from the end of subsection 2.5.1.1, is:

R N N R AR AL

If we introduce the equivalent qualities, i.e.,

(x - g) > (x =) = Wt -x)+pm

+r

p

and where V is the local flow field velocity at the receiving point and
(t - ©) is the time required for the acoustic pulse to move from the
sending point to the receiving point; then the equivalent potential be
for a source in a nonuniform flow is

elwt 0_

exp [ (M (x - T) - R) (kM /& 201
4nRf

2 =2

- @ A g

(x- E)"+ 8 r
. -

Here the quantities (t - 1), An/ot and n are obtained from the acoustic
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pulse generator and, Q, from the steady transonic fiow generator.
2.5.1.3 The Two Dimensional Transonic Source

The three-dimensional source can be written as:

_ - iwt
b = 0 8
- ol W - &) R
R - o’ =~iAR
¢e T 4r % ____C‘_
R
where X = A/V/U_
M2
where » = &k =
rg G

The two-dimensional source can be obtained from the three-dimensional one

by integrating the sending poirt in the no-direction from plus to minus
infinity.

-]

%op ° -/F ¢g dng

-00

If we assume f is independent of n then

©0

- iMA(x-E) 8&
g g 0 -1AR
b0 T F © S e > g
but
éi)\R dn 2 é'l)\R dﬁ r g f -iAR dﬁ
= 0 T— _B
o R -B (y'n ) R ﬁ - R
2D v 20 -
where

Rey = (x-E)?-8% (z-7 )"

34




Introducing 6 = ﬁ/R20

= L Z  -iAR,, © . -
Qfé“R R = f e D go = I Ho(z) (Ryp)
——— 2 T B

JRE-RS, 1 Je i

-B
*=Q0

Thus the two-dimensional equivalent source is

o em(x " &) HO(Z) (RR

manmm——

)
gaf 2D

%20

(See Appendix C for expression for supersonic flow)
The only difference between this source and the classic uniform flow source
are the quantities f, V/U_, M and x - £ and z - Ly

The assumption is now made that the source potential, bop» May be diff-
erentiated and integrated to produce the velocity field due to a pressure
doublet. This is necessary because the pressure doublet is the basic singul-
arity used in 1ifting surface theory.

This assumption is probably accurate for differentiation; however, inte-
gration requires consideration of a sending point that varies from the origin
to downstream infinity. The first step in obtaining the downwash due to a
pressure doublet is to obtain the downwash due to a velocity doublet by a
double differentiation, i.e., 62¢e/a;az. The second step is to integrate the
effects of a distribution of velocity doublets along a line originating at
(;0. ;O) and passing to downstream infinity parallel to the x-axis. The most
accurate way to handle this is to obtain a new (t - t), an/at, etc. for points
along the integration path and perform the integration numerically. For now
however, the values of (t - 1), an/at, etc. will be obtained for the origin only
(50, ;0). In essence, this assumption states that the flow is nonuniform from
the sending point (Eo. Zﬂ) to the receiving point (x, z) but that the flow is
uniform from a point in the wake of the sending point up to the sending point
jtself. Figure 2.5-5 gives a graphical illustration.

With these assumptions one simply introduces the equivalent geometry,
(x - Eo) and (z - Eo), along with the equivalent Mach Number, M, into the
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Integrating Over Wake
A
Ve

(e T )

Wake of Point Pressure

F‘ | Doublet
Non-uniform flow region Uniform flow region

Figure 2.5-5 Result of Assuming that the Equivalent Geometry (E R E;)
Applies Directly to a Point Pressure Doublet. -

expression for the point pressure doublet (used in 1ifting surface theory)
and then proceeds to solve the resulting equations in the usual manner.

2.5.1.4 Acoustic Pulse Generator

In the previous subsectious expressions were derived for equivalent
distances and Mach Numbers based on the properties of acoustic pulses traveling
in nonuniform flow fields. It was assumed that the following data were obtain-
able from these acoustic pulses: (1) (t - 1), the time taken for a pulse to
travel from its origin (50, co) to a receiving point (x, z); (2) T, the normal
vector of the pulse surface at the receiving point; and (3) f, the dialation
of the pulse over and above the usual time dialation. These quantities are
known if the time history of the pulse is known. In this subsection, a method
of computing the pulse time history in a nonuniform flow field will be
presented.

Basically, a pulse surface is made up of a series of points each of which
has its own time history or trajectory. The velocity of these surface points
depends on the flow field velocity, the speed of sound, and the normal direction
of the surface in the direction of motion.
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Figure 2.5-6 Quantities Associated With the Trajectories of
Points Lying on a Pulse Surface

o’

Specifically, Figure 2.5-6 shows that the total velocity VT of a pqipt
in the acoustic pulse surface is the vector addition of the flow field, V,
and the pulse front velocity, which is the speed of sound in the direction of
the surface normal, i.e., a . Thus the total is:

-l >

VT = V +na

or in the normalized form,

= -
]
er

00

where M_ is the free stream Mach Number.
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The normal vector, n, at a pulse surface point is obtained by averaging
the normal vectors of the elements on either side of the point as Figure
2.5-6 illustrates. Thus,

-3

- S
n o= (n] + n2) / 2

More sophisticated curve fitting procedures were tried but they were found to
be time consuming and sometimes unstable. This simple procedure has worked
best.

bo— Shock
1‘ Location

$ “Rmax

#ZR(max-ﬁ

¢ ZR'I y

LzR3

ZR

ZR 2

Transformed Airfoil Upper Surface

Figure 2.5-7 Grid Used for The Interpolation of The Transonic
Flow Velocity Field

-
The velocity V( x, z) was obtained by an interpolation/extrapolation
procedure based on a set of velocities obtained from a modified Jameson
steady two-dimensional transonic computer program (Reference 11).




=
The onset velocity field V is broken up into a uniform component U_i and

a nonuniform increment, aV. The interpolation/extrapolation is performed on
the nonuniform increment, aV. The vector notation will Re dropped for conven-
jence. Also, with this program, it was assumed that AVzk was small enough to
ignore. The interpeiation in the x-direction is linear as follows:

oV(x, 3) = (V5 (3) - aVy@)Imx aV;(2)

- X% = XR;
- XR, . ,-XR
AR N

and where XR. are the x-locations of Avj(%). i.e., the values to be inter-
polated from. Figure 2.5-7 {1lustrates the grid of points. The tilda over
the z indicates a transformed plane where the airfoil surface transforms into
the Z = 0 plane. The upper and lower surfaces are calculated separately and
treated independently. The transformation required to render Z = 0 on the
surface §s assumed small enough to ignore subsequent to the transformation.

The determination of AVj(?) is either found by linear interpolation, for

7 < Ripax-1) °F by curve fitting for Z > IR (max-1)* The expression for
interpolation is:

Ny WY v 3 b
aV,(2) = [aVj(ERy ) - aV5(RRO)] mzy + aVy(Ry) 2 < Wipayn)

For the case z > ZR(max-]) the formula to use is:

) (bZRmax+])

AVj(%) = AVj(ZR
(bZ + 1)

max

/ S
. f!jfZRmax) : AVJ(ZRmaxfll

TRiax-1 O Pnax-1) - Pax SR i

max
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This formula has the property of approaching zero like 1/; as 2 approaches
infinity. This formula is fitted through the last two points; ZRmax and
IR ax-1+ Figure 2.5-7 also illustrates this curve.

The values of Avj(ZRi) are obtained from a modified version of the steady
flow two-dimensional transonic method of Jameson (Reference 11). The
method had to be modified since only surface values of velocity, pressure and
Mach Number were computed. Appendix B presents the method used in modifying
the Jameson procedure to produce the flow field velocities off of the body
surface. Basically, what was available was the potential at various grid
points in a plane transformed so that the space around the airfoil was mapped
into a rectangle, one unit high and two units wide. The procedure involves
multiple mappings and Appendix B presents the properties of these and their
use in obtaining the flow field velocities. Figure 2.5-8 presents an example
of the flow field incremental velocity, V - U_, as calculated by the modified
Jameson p:ocedure for the NLR 7301 airfoil operating at M_ = 0.745 and
o = -0,20.

The acoustic pulse generator is initiated by prescribing an initial set
of points, given on the arc of a very small circle. As time passes, the pulse
radius, and thus, the distance between adjacent points, becomes large. An
automatic procedure for filling points in between these initial points has
been implemented. Thus, the character and accuracy of the pulse surface is
maintained even if the surface is dialated excessively at various points.
Points are filled in at a rate such that the distance, D, between adjacent
points does not exceed:

D £A(t - 1)a
where A is a prescribed parameter.

Example calculations of the acoustic pulse generator are shown in
Figure 2.5-9 through 2.5-11. Figure 2.5-9 presents the time history of the
surface of an acoustic pulse in a nonuniform flow whose origin is at the 55%
point on the NLR 7301 airfoil operating at M_ = 0.7 and a = 1.75°. Below
the x-axis is presented, for reference, the time history of the same pulse in
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NLR 7301 Airfoil, M= 0.745, a= -0.2°
v = |V - U

aje = 02554 afc = .10288

Figure 2.5-8 Non-uniform Flow Field Increment Over the NLR 7301 Airfoil
As Calculated by the Jameson Transonic Flow Method
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Figure 2.5-9 Time History of An Acoustic Pulse Whose Origin is At
x/c = 0.55 For The Nonuniform Flow (above axis) and
Uniform Flow (below axis) Cases. Nonuniform Flow is
That for The NLR 7301 Airfoil (My= 0.7, a= 1.750) On
the Upper Surface
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Figure 2.5-10(a) Time History of an Acoustic Pulse Yhose Origin is At
x/¢ = 0.70 For The Non-Uniform Flow (above axis) And
Uniform Flow (below axis) Cases. Non-Uniform Flow is
That For the NLR 7301 Airfoil (M= 0.745, o = -0.2)
On The Upper Surface. 2D
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Uniform Afrfoi
Flow

1.0 75

Figure 2.5-10 (b) Time History of an Acoustic Pulse Whose Origin is
at x/c = 0.4 for the Non-Unifcrm Flow (Above Axis)
and Uniform Flow (below axis) Case. Nonuniform
Flow is that for the NLR 7301 Airfoil (M,= 0.745,
a = -0.2°) on the Upper Surface.
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Figure 2.5-11 Time History of An Acoustic Pulse Whose Origin is At x/c = 0.55
for The Mon-Uni®erm Flow (above axis) and Uniform Flow (below

axis) Cases. Non-Uniform Flow is That for The TF-8A Wing
Section at y/(b/2) = 0.657 (M20 = 0.711 % = 4,20) on the
Upper Surface.
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in a uniform flow. The time history depicted below the x-axis is the type
assumed for the classic 1ifting surface theory where as, that shown above the
x-axis is the actual one.

The nonuniform flow field found on the upper surface of the NLR 7301
airfoil operating as indicated possesses a supersonic zone ahead of the 40%
point which is terminated with a shock wave that extends to a height ov 0.2c.
A small secondary supersonic zone occurs aft of the shock also. The acoustic
pulse surface moves forward very slowly at first slowing down even further as
it approaches the shock wave location (40% point). The upper part of the
acoustic pulse moves forward of the lower part causing a rotation in the
inclination of the wave surface. As the wave rotates counter clockwise it
starts moving into the supersonic zone; the greater the rotation the faster
it moves.

Figures 2.5-10(a) and (b) presents a similar calculation for the NLR
7301 airfoil operating at the design "shock free" point of M_ = 0.745 and

a = -0.20. Even through there is no shock the supersonic zone still acts
like a barrier to the advancing acoustic wave. The wave shapes are quali-
tatively similar to those for the shock wave condition except that the pulse
passes into the supersonic zone a 1ittle more smoothly.

Figure 2.5-11 presents a third example calculation. This involves the
TF-8A wing.

2.5.1.5 Application to Lifting Surface Theory

The transonic approach taken in this report consists of finding equivalent
geometry and Mach Number that exist between a sending anc receiving points and
then placing these equivalent quantities into the classic theory for the
desired transonic result. Thus a classic method is required that will cover
both the subsonic and supersonic cases. The Doublet Lattice Method is subsonic
only and thus, a supersonic extension is needed. Such an extension for the
two-dimensional case is derived in Appendix C. As a test case, the supersonic
Doublet Lattice Method was compared to the analytic solution for an airfoil
pitching about its mid-chord at M = 1.2 and kr = 0.99. The result shown in
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Figure 2.5-12 is very satisfactory.

——— Analytic
o o Present Method

Figure 2.5-12 Comparison of the Present Method With the Analytic
Solution for The Oscillatory Supersonic Case.
Airfoil Pitching About Mid-Chord at kr = 0.99 and

Mg= 1.2

Cunningham (Reference 10) has shown that the downwash boundary
conditions should be modified for the transonic case.

W = %— W

Or, the modified downwash, w, is the unusual downwash, w, times the ratio of
local surface Mach Number, M, to the free stream Mach Number, M_. Cunningham
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goes on to modify the reduced frequency in a similar manner.

In the method developed for finding an equivalent geometry (subsection
2.5.1.2) the possibility exists that a planar case (airfoil in z = 0 plane)
may become nonplanar because of the acoustic pulse matching procedure. That
is, the matched circular pulse may have its origin (Eo, Eo) of f the airfoil
surface even though the actual origin (50, ;o) is on the surface. This is
especially true for acoustic pulse waves traveling upstream over the top of
supersonic zones. As Figures 2.5-9 through 2.5-11 show, these pulse waves
become inclined to the airfoil surface. Such an inclination for matched
circular pulse waves indicates a pulse origin that lies off of the airfoil
surface.

At this stage of development of the method, such a complication of the
calculation is unjustified. Thus, an assumption is introduced at this point.
The fitted circular pulse origin is assumed to lie on the airfoil surface.
This means that the wave normal vector is not matched but the time of arrival
(t - 1) is matched. The equivalent values of geometry and flow parameters
then become:

(x = E) >V (t-1)+6p

Where ax is the incremental distance along the x-axis that the pulse has
traveled during time At. With these quantities (x - Eo) and M, can be

50




written as:

(x- &) = (t-1) 0+ s /Min,

ﬁ:]/ﬂ—-

atv

The values of (t - t) and M are introduced into the subsonic-supersonic
two-dimensional Doublet Lattice Method to account for transonic effects. To
save computation and input time and expense, the values of t - t and M are not
input ‘for every sending/receiving point combination (which for 10 elements
would be 100 values) but are input at a selected set of points. The
values needed are then obtained by a double linear interpolation scheme.
Figure 2.5-13 presents an example of a typical time-of-arrival plot. Speci-
fically, the time of arrival of an acoustic pulse (whose origin is located at
the 70% point) at various locations on the airfoil surface is presented.
Notice that the time of arrival of the pulse is large upstream of the pulse
origin and small downstream of it. This is because upstream moving acoustic
pulses are moving against the flow while downstream moving pulses are moving
with the flow. The result for the uniform flow case is also shown. Even
though the flow at the airfoil surface is supersonic on the forward portion
of the airfoil, the acoustic pulse still moves upstream (see Figures 2.5-9
through 11), even if only very slowly.

Notice that the curve of (t - 1) vs x/c has a discontinuous slope at the
sending point. A special interpolation procedure is used because of this
change in slope. This special procedure requires that the curves of (t - 1)
vs x/c be known not only over the airfoil surface but a short distance up and
down stream of it. For instance, in Figure 2.5-14, if the desired sending
point, XSI], lies between two available sending points, XS1 and XS2, then an
interpolated curve (shown dashed) must be ~enstructed. The right half of the
interpolated curve is obtained from the right halves of the known curves
conversely the left half of the interpolated curve is obtained from the left
halves of the known curves. In this example it is easily seen that the left
half of the known curve eminating from XS1 must extend forward of the leading
edge so that an interpolated left half can be constructed. The converse is
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Figure 2.5-14 Time-of-Arriva) versus Chordwise Position for Acoustic
Pulses at Various Sending Point Locations

true for the trailing edge when dealing with the right half of an interpolated
curve whose origin lies between XS4 and XS5.

The local effective Mach Number, ﬁ, is also a discontinuous function
and requires special treatment. It has been found that it is a function
mostly of the receiving point location and whether it is up or down stream
of the sending point. Figures 2.15(a) and (b) present the local effective
Mach Number plotted versus the receiving point location for various sending
point locations for two conditions. The following conclusions can be drawn
from these figures. First, for receiving points downstream of the sending
point, the local effective Mach Number is close to the 1ocal surface Mach
Number. Second, for receiving points downstream of the supersonic zone
the local effective Mach Number is also close to the local surface Mach Number
independent of the location of the sending point. Third, for receiving
points upstream of sending points (in a supersonic zone) the local effective
Mach Number falls on one curve independent of sending point location and the
Mach Numbers are subsonic. The reason why the effective Mach Numbers are
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subsonic for this condition is that the acoustic pulse wave fronts manage to
propagate up into this supersonic zone just as if the Mach Numbers were sub-
sonic. Figures 2.5-9 through 11 illustrate this mechanism.

Other assumptions have been made to facilitate the incorporation of the
effective geometry and Mach Number into the classic subsonic and supersonic
methods. For instance, the application of this technique to pressure doublets,
which are used in the Doublet Lattice Method, requires just such an assumption.
A discussion of this assumption is presented in subsection 2.5.1.3 but it
bears repeating here.

Pressure doublets are made up of a distribution of velocity point
doublets along a line starting at the pressure point (go, :0) and passing to
downstream infinity in the x-direction. The effective geometry and Mach
Number should, strictly speaking, be applied separately to each of these
points in the ‘wake' of the pressure doublet. However, to simplify this pro-
cedure, it is assumed that the effective geometry and Mach Number for the
pressure doublet (with wake) are those based on the leading edge of the
pressure doublet, i.e., the sending point (co, co). This means that pulses
that elinate from the wake of the pressure doublet (aft of the point (go, co))
see a uniform flow between them and the point (50, co) and a nonuniform flow
from there to the receiving point (x, z). The effects of this assumption are
not easily observed; however, in general they should not be too large.

Future refinements may involve the elimination of this assumption.

Another assumption involves the basic nature of the transonic pulse.

The basic theory of transonic nonuniform flow (subsection 2.5.1.1) shows that
the effect of an acoustic source at a receiving point (x, z) depends on how
many times the pulse passes over that point. The summation over j from 1 to
N in the equation for ¢ in subsection 2.5.11 and Appendix A indicates this
fact. In classic subsonic flow, the acoustic pulse passes over a given point
only once (see Figure 2.5-16a). The upstream facing part of the pulse moves
slowly upstream while the downstream part moves rapidly in the downstream
direction. In supersonic flow, such is not the case. The pulse wave either
passes over the point twice (for a point lying in the aft Mach cone of the
source) or not at all, for points lying outside of the Mach cone. The down-
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(a) Subsonic (b) Supersonic

(£gs8,)

(¢) Transonic (Upstream Influence) (d) Transonic (Downstream Influence)

Figure 2.5-16 Pulse Wave Patterns for Various Flow Conditions

57




LLo44Lly LOEL YN
ue 404 $°Q = I/X 3° BJ24NOS © U0 [PALUJY-30-3uiL] IS|Nd
J13SN0Jy j0 san|ep ajewixouddy pue [en3dy jO uosLaedwo) /{-G'Z d4nbL4

8°0 L0

] L

3/°r/(r - 3) weaajsumop uo \V||

paseq uotjewixoaddy

uoL3nios
WA04 LUNUON |en3dy

2/7n(2-3)
0°¢
leALJady JO dwl]

3ARM 213SNODY
o't




stream facing part of the wave passes first and then the upstream facing
part, which is being swept downstream (see Figure 2.5-16b).

For transonic flow, the qualitative characteristics of pulse wave passage
can be more complicated than just described and can also act subsonically in
a supersonic zone and supersonically in a subsonic zone. For instance, it
it has been shown that pulses can move upstream up and over a shock wave and
down into the supersonic zone (see Figures 2.5-9 through 11 and Figure 2.5-16c).
The basic nature of this pulse is subsonic; acting in accordance with the
local effective Mach Number M and not the local supersonic Mach Number M.
For this case, the pulse passes over the receiving point once. Thus, the
Eubsonic Doublet Lattice Method is modified for this case using (x - Eo) and
M. Refering to Figure 2.5-16d, it is seen that pulses that start out in a
supersonic zone have a dual character: a supersonic character, where the
pulse passes over those receiving points twice that are within the Mach
cone (x], z]) (not quite a cone for this case) and, a subsonic character, as
the pulse breaks out of the Mach cone and moves upstream to pass over points

that lie outside of the Mach cone (XZ’ 22)' The receiving point (x], z])
then has the pulse passing over it three times. An assumption currently
adopted, which could be eliminated, is that the third passing of the wave is

neglected for points lying within the Mach cone. The single passing of the
wave at (x2, 22)‘ however, is retained. Figure 2.5-17 illustrates this case

by presenting the time-of-arrival versus airfoil location for an acoustic
source located at x/c = 0.4 for the NLR 7301 airfoil at M = 0.745 and o = -0.20°
In the area lying between 0.53 3_%-3_0.4, there are three values for the time-
of-arrival of the acoustic pulse. Currently,in the present method the highest
of the values of (t - t) is ignored in this area. There is some justification
for this since the pulse wave strength weakens as time increases. However,
other factors, like the speed with which the wave passes over the receiving
point, have a large effect on the magnitude of the pulse contribution. The
second highest value for the time of arrival is accounted for implicity by
using the first time of arrival to obtain (x - Eo) and M and assuming
supersonic flow. This means that the second time of arrival is legislated
using (x - Eo) and M and is not quite equal to the actual value. The relation-
ship between the two times-of-arrival (assuming uniform flow quantities of

V, a, etc.) is




(t-1), = (t-1), (:*:)

The result is shown in Figure 2.5-17 as the dashed line. This assumption can
also be eliminated by breaking up the supersonic evaluation into its two
component parts and applying a separate time-of-arrival and local effective
Mach Number for each part. Currently, this refinement does not seem warranted
but may be in the future.

In summary, the equivalent (x -.E;) and M are used in the classical
formulas for either the supersonic (M > 1) or subsonic (M < 1) downwash
influence coefficients for every sending (Eo) receiving (x) pair of points.
The classical method used is the Doublet Lattice Method. This simple way of
using the equivalent data, i.e., (x - Eo) and M is approximate in some ways
but at this stage of development this seems appropriate. There is no use
refining a method before it has been tried.

This method was applied to the NLR 7301 airfoil at its shockfree design
point. Figure 2.5-15(a) presents the values of M used, while Figure 2.5-18
presents the time-of-arrival data used. Figure 2.5-19 presents a comparison
for the steady case of the present method and the Jameson Method. The results
for the Jameson method are obtained by taking a numerical derivative of the
results at a as follows:

p ;Cp(““%g')'cp("’

a

Figure 2.5-19 presents data for the upper and lower surfaces. On the
upper surface the present method is compared to the numerical derivative of
the Jameson method (Aa = 0.10°) for two average angles of attack, o, that are
only slightly different. The difference in the Jameson results for a of
-0.2° and 0.175°is large. The large response of C_  to small a changes is
not currently understood. Because of this, the derfvative itself may be in
doubt. The present method is in better agreement with the Jameson method
than is the classical result (which is the negative of the classic result
for the lower surface). It is the opinion of the author that the large
response of the Jameson method to small changes in a can not be duplicated in
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Figure 2.5-19 Comparison of the Present Method and the (lassical
Theory with the Jameson Transonic Method for Two
Average Angles for the Case of Shock Free Flow
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practice by the present method with its current set of assumptions. The
present method depends on the Jameson methed at o bu® it does not seem possible
that the flow field would change enough (by changivs = from -0.2 to .17) to
change the entire character of the acoustic pulse solutions. If such changes
do occur, it seems that a much more accurate representation of the flow field
must be used, in the acoustic pulse generator, than the one in use (double
linear interpolation). It seems that a fruitful line of investigation would

be to try and uncover the mechanism of this rapid change of character with a
using a finite difference method l1ike the Jameson method or better yet, the
Traci-Farr-Albano method (Reference 8).

On the lower surface of the NLR 7301 airfoil, the classic theory and
present method are compared with results from the Jameson Method. As expected,
this surface exhibits less transonic effects than the upper surface. Also,
changing a from -0.2° to 0.17° does not effect the result to any noticeable
degree. The results for the present method agree fairly well with the Jameson
method.

Application of the present method and Jameson method to the NLR 7301
airfoil for an off design case (M_= 0.7, o = 1.75°) is presented in Figure
2.5-20. In this case, a shock wave exists at x/c = 0.4 (see Figure 2.5-22).
Also, shown in this figure, is the classic uniform flow subsonic result which
bears no resemblance to the Jameson result. The results given by the present
method do not correlate with the Jameson results especially in the region of
the shock wave. Notice especially that the large peak in pressure at the
shock location is missing. In addition, the large negative peak in pressure
is missing. What does exist is a pressure that peaks at a value that is
approximately the average of the two peaks however which 1ies midway between
them. This indicates that shock wave motion effects are missing from the
present method. This could easily be the case since no boundary or compati-
bility conditions were introduced at the shock location. The subject of the
next subsection is the inclusion and satisfaction of shock wave motion
boundary and compatibility conditions in the present method.

Before proceeding to thes2 subsections, it will be instructive to compare
the Jameson method with experimental data gathered for the NLR 7301 airfoil
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and presented in Reference 4. Figures 2.5-21 and -22 present comparisons of
wind tunnel data with the Jameson Method for the two conditions previously
studied. The angles of attack have been adjusted to reproduce the best
comparison. A better method of matching however, is to add the boundary

layer thickness to the airfoil and rerun the transonic calculations. A

second method is to perform an inverse calculation whereby the required
pressure distribution is input and the modified airfoil shape it output. This
latter technique was applied in the cases of the TF-8A and YC-15 wing sections
(to be discussed later) but was not applied in this case. Figures 2.5-23

and -24 compare data with the Jameson method for ACp/Aa. These figures show
that the pressure levels output by the Jameson method are approximately
correct and can be used as a basis for comparison with the present method.
These figures, especially 2.5-23, show that the transonic perturbation press-
ures are very volatile, varying rapidly with the flow parameters. In Figure
2.5-24 note especially the disagreement between the Jameson method and data
aft of the shock.

The question may arise: if the Jameson program predicts the perturbation
loads adequately, why not use the Jameson program alone and not worry about
the 1ifting surface method. First, the Jameson program is applicable only to
steady flow. Second, the extension of the Jameson method to three-dimensional
flows will increase the cost significantly,whereas the 1ifting surface theory
costs are very reasonable.

2.5.2 Effects of Shock Wave Motions

Figure 2.5-20 illustrates that the present method, as developed up to
this point, does not account for shock wave motion. Inspection of this figure
shows that the shock motion effect plays a dominate role in the prediction of
transonic loads. Thus in the next few subsections the theory for the effects
of shockwave oscillation will be developed. Along these lines References 10,
12 and 13 are helpful in the following developments.

2.5.2.1 Interference Flow Due to Shock Motion

The following jump conditions across a shock wave can be derived from




Reference 14 (page 59 Eq. 2.47).

2 & 1
G “"M‘];)

where u and w are the x and z components of the velocity, the tilda stands for
instantaneous position and the subscripts stand for locations just up and
downstream of the shock. Therefore these shock jump conditions hold just up
and downstream of the instantaneous shock position. In order to translate
these conditions to the steady shock surface an analytic continuation of the
steady conditions 1s necessary. Consider the velocity potential for instance:
31’2 = ¢ + elut [ )

[ 3+ 4,

1,2 5,2

where ¢S] - is the steady potential just up (¢S ) or downstream (¢s ) of the
1 2

steady shéck position, A is the amplitude of oscillatory motion of the shock,
and $]’2 is the oscillatory perturbation potential just up or downstream of
the steady shock location (see Figure 2.5-25). Here we have made the assump-
tion that the shock moves in a simple harmonic manner. Since W = 24/3z the
tangential flow boundary condition Wz - W] = 0 can be written as follows
using the above expression for %1’2:

-w =

5 steady

S

2
W2 . \W]

0
1 ,
oW w
= —A( Sp - § ) Oscillatory
ax ax

But since w = 3¢/5z then
= 2 =
awS/ax ) ¢S/azax auS/az

Thus the oscillatory shock jump condition can be rewritten as:
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Figure 2.5-25 Analytic Continuation of Flow Variables Due to
Shock Wave Motion

This equation shows that vorticity exists on the shock surface because there
is a jump in the tangential velocity, w, across the shock. Let y be this

vorticity, then

w = '(;‘2 i \:‘])

A%—(ﬁ . B )
4 Sz S-I

If we use the linear expression for the steady pressure, i.e., C = -2 us‘/Uo°

Ps

then the vorticity ¥ can be expressed in terms of pressure jump across the

steady shock wave.

52
fore y/x is known.

(cps2 - cps] ) u_/ 2 (2.5.2-1)

The quantities Cp (z) and Cp (z) are known from the steady solution, there-

5

This vorticity distribution induces a flow field (see Figure 2.5-26) in
the vicinity of the airfoil which must be negated by the doublet lattice
elements that are on the 1ifting surface. Cunningham (Reference 12) came to
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Figure 2.5-26 Shock Vorticity Interference Flow

the conclusion that a concentrated vortex was to be placed at the foot of the
shock wave to simulate the shock motion interference. However from the above
derivation it is seen that such a concentrated vortex is an approximation of
the distributed vorticity that 1ies on the shock surface. Tha strength, T,
of this equivalent concentrated vortex is:

Zsonic
ydz = A(C (0) -C (0))U / 2 (2.5.2-2)

Ps Ps ®

1

since C

)-¢

Ps (zsonic Ps Zsonic
2 1

) = 0. This is because the pressure jump

across the shock at its upper end, z__ . , is zero. The quantities C_ (0),
sonic P
2
cp (0) are the steady pressure coefficients on the surface (z = 0) in front,
s
1

C_ , and in back of, C_ , of the steady shock.
PS1 P52




For simplicity in the present analysis the point vortex model will be
adopted. The onset downwash flow field due to this point vortex can be
computed with the aid of the equivalent geometry, (x - Eo ), and Mach Number
M where the subscript "sv" stands for "shock vortex". Sofé question arises,
however, as to what values of time delay (t - t) should be used in this down-
wash calculation and if the point vortex is to be placed on or off of the air-
foil surface. At present it will be assumed that the point vortex lies on the
airfoil surface and that the time delay to be used is that which is associated
with this surface point. Figure 2.5.27 presents the downwash due to a unit

- /
Downwash
Due to L:tni‘lu‘l :

Shock L b=—— Shock Location

Vortex /]
W/Um f

0.8

1

0

Transonic

Atllniul

Figure 2.5-27 Shock Vortex Interference Flow Downwash For
The NLR 7301 Airfoil Operating at M, = 0.7
and a= 1,750




point vortex on the surface of the NLR 7301 airfoil at the shock location
v/c = 0.4 for the off-design case of M_ = 0.7. Shown in this figure are two
curves; one representing the downwash due to a transonic vortex and one
representing the downwash due to a classic subsonic vortex in a uniform
stream (of M_= 0.7) for reference. As a check ont - 7 for the shock wave
vortex the acoustic pulse generator was rerun for a series of points above
the airfoil along the shock surface. The resul*s are that the time delay,

t - 1, did not change significantly for points along the length of the shock
wave.

For the NLR 7301 airfoil the shock motion X is known because of experi-
mental data and data from the Jameson method. Thus the vortex strength, f,
is:

- Y.
Po= x/z(cp (0) -cps](0)> - .2 (cpsz(O) -cps](O))

52

where 31/3a is the rate of change of shock motion from its steady position
with respect to . In general this term is time complex but in the steady
case to follow it is simply a real number. for the NLR airfoil at M = 0.7,

a = 1.75° the Jameson method gives aA/aa( Cps (0) - CpS (0))= 6.02. Thus

Fa = 3.01 for this airfoil and condition. Tﬁe resu]tizg interference pressure
is presented in Figure 2.5-28. Large variations are observed between the
classic subsonic vortex and the transonic one. This volatibility indicates
that the details of the vorticity on the shock may be important. Future
refinements should then include refinements in the modeling of the shock
vorticity.

2.5.2.2 Pressures Due to Shock Wave Motion Interaction with Steady Flow

The pressures Cp caused by the shock vortex interference flow (shown ‘in

Figure 2.5.28) is to ge added to the pressure calculated in the absence of
the shock (shown in Figure 2.5-20). Before this is done however there is one
more term that must be considered. This last term in the pressure is caused
b by the direct action of the shock wave on the surface. As the shock wave
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passes over a pgrticular point the perturbation pressure rises sharply. The
region on the airfoil where this occurs is confined to that area over which
the shock wave moves.

The pressure coefficient Cp on the airfoil due to the motion of the shock
wave is

i} _ x _ X
Cylar x) -(cpsz cps]) H(c : ())+ .

where H is the step function at the instantaneous position of the shock ?S(a)
and the zeros have been dropped from Cp (0) and Cp (0) for convenience.

s s

2 1
The derivative is:

i N
i g b owg % U X% :
. (cp52 cps] ) a(c - = (a))( 5/ c) (2.5.2-3)

where & is a dirac delta function. In the limit as the amplitude of shock
wave travel is reduced to zero then

?S(a) > xg = steady position of the shock
n,
s o, o
aa oa
X = X

The force, Fa/q. generated by this pressure is then

A
= - = - 22 2.5.2-4
Fa/q f cpa & (CPSZ CPS'I) = | )

For the case of oscillatory motion A = A  exp (-iwt) and o = aexp(iuwt).
If F/q = F/q exp(iwt) then:

A
- _ - ™ _ — -—0. -. -
F/qg = F /qa = a (cps2 - cpS])aa exp(-io,) (2.5.2-5)
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oA
where ¢ and 3;2 are functions of the reduced frequency kr' Notice that

equation 2.5.2-4 is exactly equal to the force generated by the shock vortex
of strength Fa. That is:

£ ) FU_.EH Y
a/q -1 2 U 5

= Bn 1I'c -C
h 3'&'( p52 ps1)

The expression for the pressure, C_, given in equation (2.5.2-3), is
not suitable for plotting and applies fof infinitesimley small motions. For
finite motions, consider the finite form of C

p -
*1)2‘

p .

Qa

C C
aC ( ps T Py ) }
Aao . 2 = ] gH (x . ( Xg *+ ax/aa)) - H(x - xs)‘ (2.5.2-6)

This is a rectangular shape of height (Cps - Cps )/ta and width

An = 3)3a Aa. This equation applies for shockzwaves lhat are not defused.
However Figure 2.5-22 shows that the shock is not sharp for the NLR 7301
airfoil at M_ = 0.7 and o = 1.75°, but is spread out from x/c = 0.39 to
x/c = 0.45; a total length of bxg = 0.06. An approximate way of accounting
for this effect would be to p]ot aC /Aa as a trapezoid whose base is

Ax + BXgs whose top width is aAx and whose area is F /q For the NLR 7301
airfoil at M,=0.7,a=1. 75 the value of ax is 0. 065 for a corresponding
Ao of 0.0087 rad. The trapezoid base is then 0.125, the top width is 0.065.
The total force, 3r/da (CpS - CpS ), = 6.02 thus the height of the trapezoid
is 6.02(.065 + .175)/2 = 63?4. ]

A1l of the contributing terms for the final pressure distribution are
now known, that is, 1) the shock free pressure distribution derived in sub-
section 2.5.1, 2) the pressure distribution caused by the interference flow
of the shock vortex, and, 3) the pressure distribution just discussed which
is a direct result of the moving of the shock wave. Specific application to
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the NLR 7301 airfoil at M_ = 0.7 and o = 1.75° is presented in Figure 2.5-29,
where the results of Figure 2.5-20 (shock free flow) are combined with the
results of Figure 2.5-28 (transonic shock vortex) and with the trapezoidal
distribution discussed above. The agreement is good except in the region
forward of the shock wave in the supersonic zone. The good agreement aft
of the shock may not be entirely trustworthy since it appears that the shock
vortex interference pressures are presently somewhat in doubt and this is the
flow that produces this correlation. The correlation with the shock peak is
good because the present method has been censtrained to reproduce the proper
total force ?a/q due to steady shock motion. This total force is proporational
to shockwave motion, 3)X/3a, and steady pressure jump (CpS - Cps ). Currently
the present method uses either experimental data or resu]%s from1the Jameson
steady transonic flow method to obtain the quantities needed, i.e., 3\/3a
and Cp - Cp . The next subsections describe a possible method for deter-
52 51
mining the shock wave amplitude 3)/3a Tor the general oscillatory case (which
includes the steady case). The Jameson method can not be used to obtain shock
wave motion data for the oscillatory case although it can be used to aid in
its determination.

The object of the present method is to furnish an inexpensive 1ifting
surface theory for transonic flow that can be run for various modes of motion
at various frequencies and which is based on steady flow data which is used

once and for all. This steady flow data can be from experimental sources
or from transonic steady flow methods.

So far in the correlation of the present method only steady flow conditions
have been considered. However at this stage of development this seems
appropriate since the steady perturbation results must agree before the un-
steady results are attempted. In addition the unsteady shock wave amplitude
calculation has not yet been tried in the present method and therefore a
complete correlation awaits this development.

The correlation illustrated in Figure 2.5-29 shows that the shock wave
motion contribution to the pressure is a dominant transonic effect. A
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possible method of including transonic effects in a simple way would be to
add the shock wave motion effect to the classic theory. This idea is pursued
in the next subsection.

2.5.2.3 Investigation of a Simple Method for Accounting for Transonic Effects

In this subsection the results of adding the shock motion pressures to
those determined by the classical subsonic theory is investigated for the
NLR 7301 airfoil. The pressure distribution is presented in Figure 2.5-30
for reference.

In the analysis of flutter and other dynamic aeroelastic phenomena
it is the section 1ift and moment which are of paramount importance. In
Reference 4 the experimental 1ift and moment are plotted versus the reduced
frequency for various Mach Numbers. The results of the classic theory are
compared to these experimental values. At low Mach Numbers the data and
theory should agree since transonic effects are small. However there is still
a difference between theory and data and this difference is attributable to
viscous boundary layer effects. This boundary layer effect can be isolated
by subtracting the results for the experiment from those of the theory for
the low Mach Number case. This effect can then be taken out of the data for
transonic Mach Numbers so that viscous effects do not confuse the issue.

Transonic effects can be easily isolated now that the viscous effects are
eliminated. This is accomplished by taking the difference between the classi-
cal theory and the corrected experimental data in the transonic speed range.
This has been done for the NLR 7301 airfoil at M_= 0.7, o = 1.75°and the
results plotted in Figure 2.5-31. The specific formula for the corrected

. . 5 N o
transonic increment in lift ac, is:
a

o

n,
ac, = ¢, (data) - <,
a (4] a

where the corrected data, 82 , is the result of eliminating the viscous loss

of 1ift, ac, , from the data?
a
Ez (data) = <, (data) + ac, atM_= 0.7
a a o

(classic theory) at w_ = 0.7
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where the viscous loss of 1ift ac, is determined from theory and data at M
- (-]

be, " oc, (theory) - Cy (data) at M_ = 0.5.
a a a

A similar procedure applies to the mcment.

This data is compared with the simplified transonic effect consisting of
the shock moticn pressure alone. Thus

& -3 . a\/c -
ac, Fa/qc i (cp cp )
a S S
2 1
~ = A’
Acm = Ac, xs/c
a o

where Fa/qc is the normalized force due to shock wave motion and Xs is the
shock location point at which the force ?a acts.

The term A is, in general, a complex number which can be represented as
follows (see Equation 2.5.2-5):

A= ag(ka)exp(-ie,)

where ¢ is the phase lag between the shock and airfoil motions. Reference 4
shows that this phase lag is proportional to the frequency. Based on an
approximate calculation it was concluded that the constant of proportionality
was the time, t, it takes a "Kutta wave" to reach the shock wave. Reference
4 defines the Kutta wave as an acoustic wave eminating from the trailing
edge. Using the acoustic wave generator described in subsection 2.5.1.4 the
time history of an acoustic wave eminating from the trailing edge was gener-
ated. The results are presented in Figure 2.5-32. The time that the shock
first feels this acoustic wave is approximately t = w_/c = 3.0. The
experimental data of Reference 4 shows that

¢ = 4.32 kr
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If it is assumed that ¢ is also proportional to the time 1 then the prop-
ortionality constant is 1.44 or

b = 1.44 kr 7 (concluded by present authors)

The authors of Reference 4 concluded that

¢S = Zkrt
because they had only an approximate value for . Irrespective of these two
formulas the phase lag, o> is taken as the experimental value of 4.22.
(Actually, for Figure 2.5-31, the value 4 4.56 was used. The difference,
5%, should not cause any significant difference).

Reference 4 also presents experimental data (for the NLR 7301 airfoil)
for the amplitude of the shock wave motion, Ao, as a function of frequency.
This data can be generalized by normalizing it with respect to the steady
amplitude A (kr = 0). A plot of xo(kr)/xo(kr = 0) = G shown in Figure
2.5-33. This curve will be used later for the TF-8A and YC-15 wings. The
value of Ao(kr) is obtained from this curve as follows:

Ao(kr) = Ao(kr =0)6 (kr)

For Figure 2.5-31 two values of Ao(kr = 0) were used: the experimental value
and the value obtained from the Jameson method.

The agreement for the incremental transonic effects is fairly good
considering the simplicity of the theory. The percent error due to the
differences in the 1ift increments will be reduced when added to the basic
1ift. For the moment however the shock movements represent the largest portion
of the final result and thus the percent error will not change much. In
general it is observed that the theory over predicts the 1ift and under pre-
dicts the moment.

2.5.2.4 Shock Wave Compatibility Relations
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In subsection 2.5.2.1 the tangential velocity shock jump-condition was
used to obtain the interference flow due to the shock motion. It was shown
that this interference flow is caused by a vorticity distribution of known
shape which is proportional to the shock wave amplitude. The shape of the
vorticity was simplified to a point vortex on the surface. The total vorticity
is proportional to the steady component of pressure rise across the shock

wave, (Cp - Cp ), and the amplitude of shock wave motion, 3A/3a. The steady
s 3
2 1

pressures are known but the amplitude of unsteady shock motion 1S not known

and it is the object of this section to suggest a procedure for obtaining it.

The first equation of subsection 2.5.2.1 presents the jump conditions for
the x-component of velocity at the instantaneous shock position:

Gom Uy = B 4 ( | =2l )

2% T WY e
where, as before, the tilda indicates instantancous shock position and the
subscripts indicate positions just upstream, 1, and just downstream, 2, of
the shock. Landahl (Reference 15, Equation 1.17, page 4) gives an expression
for ﬁ]

RS S A N RS WA

where 0 ( ) indicates order of magnitude. The following analytical continu-
ation of $ is used:

3 = o + (ag/ox + ) exp(iut)

If the proper derivatives are taken of $ and the nonlinear terms, 0(¢x22)
are assumed small enough to ignore then

(

0y ) [ .2 2m, &

_ﬁ—z ¥ iﬁ;? + (1 - Y)3¢S]/ax ‘ + (1-v) {A \3 ¢S]/3X + 1w3¢s]/ax)
1

+ (a&l/ax + im$]) %exp(iwt)




where ¢ and ¢ are the steady and oscillatory components of the potential.

Applying the analytic continuation procedure to 3] gives

ﬁ] = u, +(a aus]/ax + ;) exp(iut)

1

Introducing the expressions for 3]. and l/pl'I2 into the expression for

| 32 - U] and remembering that 3¢/ax = u gives:
- d |
L 32 - 31 = ?%T' }A + [ AB + Cu] + D¢] ] exp(iwt) + 0'exp(i2ut)) ‘
where
A= -u (82 M+ (- )y )
1 "
Vo
B = -u. (1 -v)(u + feu_)-u (g M-+ (V- y) u )
5 S1x ¥ S1x 5
= 2,32 4 1
C = ~ug (1 -v) - (BM_+{1-v)ug)
1 1

D = -ug (1 - v) o
1

Expanding the left hand side of the equation 32 - U] and using the expression

for analytic continuation gives:

N o
u

g = Uy = E¥ (AF + 62 - ﬁ]) exp(iuwt)

where

Equating the two expressions for 32 - Ul and separating steady and
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oscillatory parts gives:
U -u, = +2 (M (-y)u ) steady f1
v Y e e Yls ! Ty W

A 2 o) 2 .\ 2
u]-uz = A (F+y—+TB" +UI(FTC) +¢-|(Y—+TD) (2.5.2.4-1)

oscillatory flow
These are the final expressions for the u-component jump conditions across

the shock referred to the steady position of the shock.

The jump conditions for the w-component were given in subsection 2.5.2.1 as

If this expression is integrated clockwise around the shockwave then

Zsonic g
62 (Z) = a](z) = / ;J] ds + ./ V-Vz ds
z Zsonic
Zsonic Zsonic
= - / (w2 - w])ds = A / a(u52 - us1)/as ds

pd pd
4
| 0p(2) - 64(2) = - A(uSZ(Z) - uS](Z)) (2.5.2.4-2)

since uSz - uS] = 0 at the sonic point z = Zonic” Here the assumption has

been made that the amplitude does not vary with height above the airfoil.
If this is not the case then this assumption can be eliminated by considering

A to be an assumed function of z of unknown amplitude. Equations (2.5.2.4-1)
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and (2.5.2.4-2) can be combined to eliminate the unknown shock wave motion,
A as follows:

Uy G - u, H % J - ¢y K (2.5.2.4-3)

where

G c/(y+1)] (usz : g

)

1
)
[F + 28/(r)] + [ug) - ug ) 2/(r1)

F + 28/(y+1)

1 f Yy
n terms of pressures cp = =2 U:' G%' . Equation (2.5.2.4-3) can be

written as:

-U
TGC +2—HC

= 3 9_G6) -3 iw -
P = B Q6 - F (KeghH) (25.2.4-4)

P2
Equations (2.5.2.4-3) or (2.5.2.4-4) furnishes a compatibility condition

that is to be satisfied by the oscillatory flow across the steady shock
position. These equations hold at all positions along the shock trom the
surface (z = 0) to the sonic point (z = zsonic)° Consistent with the
assumption that the shock amplitude of motion does not change along the

shock is the assumption that the compatibility equation is not a function

of the vertical direction z. These equations can thus be satisfied on the
airfoil surface only. In this case the second version of the compatibility
equation, i.e. (2.5.2.4-4) is appropriate. This expression furnishes one
additional equation in the set of equations for the 1ifting surface pressures.

The wave amplitude, A, is the one additional unknown in the problem. Thus
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the problem is determinent.

The 1ifting surface theory without a shock wave (but with transonic
effects) can be written in matrix form as:

{Cpo} = [D]{ W, }

where the subscript "o" indicates shock free transonic flow. The shock
vortex onset flow is given by

% Cpr : = a [D] {wr}

where {wr} is the downwash due to the shock vortex or vorticity. The strength
of the vortex is that associated with shock motion of unit amplitude. The
compatibility equation can be written as:

where the term {L}T is the matrix form of Equation (2.5.2.4-4) and where:

$

‘cprt =Iicpo

e |
: l oy

$

Combining the first two equations with the third produces an equation that
can be solved for the shock motion amplitude A. Placing A into the expression

for ‘Cp !and adding :Cp : produces the final total. This total represents
r) 0
the combination of the shock free transonic and shock vortex flows. To this

is added the shock motion pressure. It is anticipated that the steady value
of X can be used as an aid in the evaluation of the quantities required in
the compatibiiity equation.

In sunmary, a procedure has been outlined for determining the shock wave
motion amplitude for oscillatory flow. This procedure has not been implemented
under the current contract or McDonnell Douglas Company IRAD funds. Future
investigations of this procedure are thus recommended.
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2.6 FLUTTER ANALYSIS PROCEDURES

A1l of the flutter analyses performed in this study were carried out
using the standard American, or V-g method. The analyses used the measured
aerocynamic mode shapes, generalized mass, and frequencies of six elastic
modes of the TF-8A flutter model. A few cases were also analyzed using modal
deflection cata as calculated from basic distributions of inertial and rigidity
data. Section 3 below discusses the basic data used in the flutter analysis
in detail.

Analyses were run at Mach numbers of .6, .8, .9, .95 and .99 for the
TF-8A flutter model and .76 for the YC-151I. In each case the unsteady
aerodynamic influence coefficients (AIC's) were generated theoretically by
the subsonic Doublet Lattice Method and weighted appropriately.

Two sorts of weighting were applied to each case; they are described
in detail in Sections 2.4 and 2.5. Briefly, the first method, loosely des-

cribed as "steady corrections” assumes that the ratio of the correct data to
the theoretical data at all values of reduced frequency, k, is the same as at
kr = 0. The correct data at kr = 0 is of course the available static pressure
model data, converted to spanwise distribution of sectional 1ift and moment
coefficient. This method does account for the static aeroelastic twist and
the non-lirear character of the aerodynamic derivatives. The second method,
described as "unsteady corrections" theoretically accounts for unsteady
transonic effects and results in a muliplicative correction factor which is
applied to the "steady corrected" AIC's. This multiplicative correction

factor is a complex valued function of kr and reduces to 1.0 at kr = 0.

The V-g solution was obtained for several values of density for each
Mach number so that the calculated flutter speed at each density could be
cross-plotied to obtain the flutter speed which matched the Mach number
under consideration. Structural damping was assumed to be g = 0.02 in all
elastic modes.

2.7 FLUTTER MODEL PROCEDURES




The analytical work documented in this report shows the need for further
wind tunnel flutter model test confirmation of the analysis methods. Airfoil
shape, static twist, reduced frequency at ¥lutter, and Reynolds numbers are {
some of the parameters that the flutter model should evaluate.

A cantilevered wing (with adjustable root pitch) would te an ideal
candidate for the study since it would avoid problems of scaling 1ift to
weight ratio inherent in a free-flying model. The basic planform area shouid be
one for which high speed rigid model steady aerodynamic data already exists,
such as the proposed C-15A wing.

Instrumentation should be included to measure the wing spanwise static
bending and torsion deformation. Optical methods can confirm the tip twist.
The Langley Research Center Transonic Dynamics Tunnel provides the current
optimum facility for this study. Reynolds number effects can be evaluated by
building models of difference size and/or air/freon mixes. All of the other
parameter of interest can be incorporated into a single spar design.

Section 3.5 below discusses some details of a proposed flutter model.
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SECTION III RESULTS OF ANALYSIS

3.1 PHASE I RESULTS

3.1.1 TF-8A Vibration Modal Data

The flutter analysis of the TF-8A flutter model was based upon measured
vibration deflection data supplied by NASA. Fiqure 3.1-1 shcws the model
deflection measurement grid. Table 3.1-1 lists the coordinates of this grid.
Tables 3.1-2 to 3.1-7 show the modal deflections at the deflection control
points for the six measured TF-8A modes. The frequency and generalized mass
of each mode as supplied by WASA are also shown in Tables 3.1-2 to 3.1-7.

In order to more easily weight the AIC's it was decided to transform the
idealization into plunge and pitch deflections alona a set of streamwise
strips. This proved to be justifiable since an inspection of the oriaginal
modal data showed the winag to be essentially riaid in a structural chordwise
direction. The method used to make this transformation is discussed above
in Section 2.2. Figure 3.1-2 shows the transformed idealization. Tables
3.1-8 to 3.1-13 show the transformed modal deflections.

The vibration modes of the TF-8A flutter model were also calculated
from NASA supplied rigidity and mass data. Figures 3.1-3 to 3.1-F show
these data. The resultina mode shapes agreed well with the transformed test

values. For the bending modes, the calculated values of frequency were
within five percent and the generalized masses within four percent of the

test value. For the torsion modes a discrepancy between measured and

calculated frequency and aeneralized mass existed. Factoring the torsional
stiffness eliminated this discrepancy, and when the calculated aerodynamic

mode shapes were used in the flutter analysis along with the measured
frequencies and aeneralized masses, the results were within two percent of those
obtained usina the transformed measured deflections.




Since,at the time the calculated modes were obtaired, the study was
already underway, it was decided to continue using the transformed measured
modal data as the basis of the flutter analysis instead of switching in mid-
stream to the calculated shapes. This was justified in light of the good
flutter analysis correlation mentioned above.




See Table 3.1-1 for tabulated
coordinates of grid

= +down at
each point

Ficure 3.1-1 TF-8A Hodal Ceflection "easurement Grid
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TABLE 3.1-1

TF-8A MODE SHAPE MEASUREMENT STATIONS

Y INCHES

.5528

STATTUN

46

88.4250
90.1830
92.3614
93.4315

.4873
.0042
.1665
.2638

47
48
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84.1375
85.0929
87.0802
89.4497
90.7491

.8087
.0027
.3262
.3273
2311

XINCHES

55.7806
.6151
.2075
.0292
.3987

Y INCHES

.2348
.6872
.6567
.4327
.4338

80.5271
81.5972
83.7756
86.3362
87.5209

.1493
.2466
.4089
.2488
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.3291
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.0235
.9981
.6160

.6861
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.8823
.5293
.3209
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83.3432
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53.3466

14,0915
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.8217
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73.2012
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.1000
.0000
.5000

59.3910
61.0725
64.5121
68.1046
70.3212

.8941
.4756
.5740
.5434
.6735




=D MASS=

THIS PAGE IS BEST QUALITY PRACTICASLE
.00484

FROM COPY FURNISHED TODDC _—

of NERALLZ

(o]

Pl

-\

o 2

ZH \lll..l.l.|Lllll\t\.z‘/_z227,“2227,“)..74_7(.22-l

L] OO\VOOO\.JOUU\UOJUOJOO\U\UOOU\JOO‘JO

@x ____...m___.._._._._._...._.
C.EEF.EPCC.EF..P.C.:LF::::..__::::::F::E;...:_.P.C.E

Ou 92733997)143&0UJ)OOJOJ)OO))l

z HJB\L?&JZ()37630%55.4«7527.95—31 N~ . —

(] ONT NNt md =t et 3.0 o R 1T a Lok st Sl e Keallooa o 8,00 A haskan)

‘“'t ..........I‘.......l.l.0....

vlnM 0000000000000000 20DDODDMODODD

101

Y4567890123456789012345075901
A5555556666666b66777777777788
[+ 8}

Table 3.1-2
TF-8A Measured Modal Deflections

1000000\UO\UOOOOOJJOOUOO.J.JCO00OOOOOOOJJOOQQ00000000[111
OQOOJ\JUOOJO\U\JJJ)JJO\UOO.‘U\UOOUOJOOOOOOOO‘UOOOOOJOOJ000000
04+¢+000*+0+&+0¢++¢++*00++¢0+0++00#++#&#++0000+00. ]
c.:_E.:c.:..t..:E:.F_F.F.:E.F:LC..CF.r_c.E.ttEC.F.:"E::.:EF::C::::::.C.C.:.EF.EEEEEE:_E

— 0672404653378711196456832136630426883075005179431234[
TOANMPRODIN O~ 0.06.3337\438%319919209882220[765_5433006155
1.0889777776‘05b6555555441,44&33433327.227.2221\.111\.1114766

L4 l..........COC.O.......“'O....l........'l....'.....'

2 0000\40UOOOOOOOOOUOOU)OOOOO\UOO\UOOCOOOOOQ\U\UOOOOOQOUOOOO
z
u

DYl&23,%56789015;345678901234567890[2345678901234567.
UA 1111111111222227.22223333333333/4/ﬂ4“444“

p s o




ABLE
N MASS=

&

JENERALIZ

FROM COrY FURNISHED TODDC __—

TH1S PAGE IS BEST QUALTTY PRACTIC

o 1o 1o ko 1o Lo Yo o L= PEVIEEY PRV RSPy i PRIy Py i pu pi g g pes g
ololololslblolaleiolslolaleleololalaolololalolinlislslolalal
AR S0 JU T T N T A T e T T T T I T I A A A

U DU UNOe  IuU B ND G swe S I i au iy
OTONINO FNWANM—~=~ IO MO MOM~MO
TONOANAN—ADINNDF O DT TODO—NTM NS M
NF rdodododrd ot et D VP LUV T F VOO O ot ot ot df omd oot ok
® ¢ ® 0 @ & 90 ¢ & & & 9 & O & 0 g O G 9 O 9 O ° 8O 8 e

DF QODO0O0DOTDOCOTOOODDODDDODDOONO
2 L N T D N A L A A T U I I O IO N O A A

~N

>TNOMDID~NMINIP-TOD~NMFT N OO~
NNV QD OO 0O L OO OMPPePrte PO

wv

=

o

o=

-+

(S}

Q

—

G

[}

Oﬂ. o

— -—

. 14

™ ©

(@]

Q =
—

L ©

< Q

[ ad 1

]

(7]

©

U

=

<

[ee)

'

(S

—

SODOoCoORDaDS O D000 0 D0
S IOTEITOIODODNDOND
il..l.i..lli'l.llf*##&.’#f
FEETELERLE U P L Wik v e Do s ity
= o = W D SR~ OO DO
T T T P O D RO
-..h.l.r-.li!-. -ﬁ—ll-i{i-‘ﬁ‘ZZlell
‘.l.lllii'l............
UU?UUdﬂﬂG JOOOOOODO
LANL DN T A | L I I |

=D T D) et — g TN
D DSOD IO ID I
+ 4+ 4+ 000 T
FC

#

.1.._
u
l.
TRTOR P U E e T AR TR N P LEE RN Ty FRENRET PR P |
® _J..U.OZQ,/%s‘iJU.-FUrl]-ﬂ_\u!.-.ﬂ-]l
T O 20 Ot B s Pl ®e I CO YOO P ST RS P T P o
— O S e o el N ) U UN TR P S e
o @ @ W B B & B @ W & B 6 e 6 O ¢ W M F FE & F F &S
OOnH.I._..-..U.u.I-n_rII._.u-H__-ILO)O\UUA_H.ﬂ_ u-.-h..._l...”h mam-..hun._.u__._..;-u:...u
1!

L
294

-ﬂ.}httih
= 'E.-l-.u

-3 dYHE QD

"'I:H-

—ONE TN O~ D —~ON N O DO O—=NM FND~00 DI~NMFNO~DON DN SN O~ O— N
¥ 9Nllll11111222222T2223}3333333}404444 4 e

MUDE N2
BAY




THIS PAGE IS BEST QUALITY PRACTICABLE

FROM COPY FURNISHED TO DDC e

<
]
—
L3
o
(1]
—
Fe
(-]
—

TF-8A Measured Modal Deflections

GENERALIZED MASS

000010000\;00011\;\;11111111\.00
00000000UOOOUOJOOOOUOOOOOOOJ
0##0.00#0.0#0. [ ._._._.._.ff
.CEEEC_EEF.E:.L_.CEC.EC..EF.EEEF:.CC.CuEEEE
—Q 1657748977)6%874004575270582
T T MO NTON
X N TN
—u s o0 0 s & s 0 o0
@ 0000000000000000000000000000
=S 1t (] 1 r1 Y by

Y45678901234.‘)6’39012345678901
A55555566666666 o] P o o S N o ol e Lo
T

lloo-lllin..l.l.lrllﬁn. I.ls1..|.0|...ll.rll._.|-.l-..r..-||.00|s.l.l0011000110000100001000
plololololale UJJJJHJOU\UOQ_J_JI_.-.nl..QGUOOQOOOOOOOOO\UOOUOOUQJ\U\UOUO
PO B B B h >Rl ii.f#.o.t.b.&.#+++Q0§f#+++##f&+f¢++#

1) WU UL ki R kb b AU N0 L L0 Gl L o B .E.CEEC._;"EE—F.-_._..—LE"CC._.__EEC~EC:CC.:LC.,,C.'CEF_—.:

056153‘51‘32 D O (Nt D UM ] el n._.059159283685672,09672119 ~N —N-O
3H077742L1I.U.U1|.4I..1_ D=dh- N S & e T 547350/ﬂ427377c_7265026600070’4
— e L\ el O\ Wl.l-\ll-?lllllll-l:rni]:!l-ldllll6211)0 47&1163291/’2);713\11
oooooo-!iaj..-..-ooo..__.-.-.-_‘.-ooooooo.oo-ooooooooooce.o-co
OOA-UOOH.V\.__U.U H-.U.Uﬁn_ﬂ...u__..u\,.uwumun...-.d...ﬂdﬂn-uﬂ-.d:_uoUOOUOOOOA_UA_UOOO\UOOOOO\UOO.U\UOO

1 ] I | | I (I} 1 1 (] (]

—NEOE N O DPO—NM TN 678Q,0123Q567890[2345678901234567
i g b g PR PRT TN NTO VN TV I e e ) MOCAMMAN T I TS

MODE NUO.

£ AY



3=

.00165

42.80 GENERALIZED MAS

BEND I NG

OODOOO DO OO ettt ot ot o=t ol ol ek ot —d md 4 NI OO
[elelslolololbloleolsloleolololelolololplelolmislolelelole )
LR I K 2R JE 20 2 T N T R T O A O I I A B I
0 LU LS 1 LU L 2 UL U U UL U s W U L U W W i L
ANt DN DVND et NNV =N D ISODNNNCT —~TTDODDOD
ST IO AN JF DD DI DN T~ FINDM S
U g et NI ot ot et ot et O D O T A F T A O ot ot o=t U ot

o ® 0 6 5 06 © 9 6 0 6 09 00 2060690 00 8 8 %00 00
MF QODDOMNOODDDODDIDOIODIDOODMNODIDMTDODO
P

NG
104

H1S PAGE IS BEST QUALITY PRACTICABLE

FROM COPY FURNISHED T0 P

Table 3.1-5

> IFNODOCO—~NAFTNODI D~NMITNLSHCN D~

QNN T O 0 000000 DN P=P=rf PP F~D D0
@™

TF-8A Measured Modal Deflections

—_OOOCC DD Dttt mi SO DDOD DODCODDONDH—TDDO I~ DSOS —~DTDOODO00

oo Ll T late e ale o lo talclete tntelo tnlelolalotals Intoto Jalololalalotn lola lolo TolatoloJo folplals] o late)

e OararE e OO T I W OO AR ST R SR R SR B A R S T B R 2R U AR JE e d g

WAL L LU W LU D U D b L 0 U L U I U U L s G S W L L Lt U Uty 1 LU A U U LD W Lt A IR S

< O—T AN~ ONNRDIORD~OTOND L—NTDIDOIOFTICONC TN~ P MR ODDC~DNDC N

TAND M~ ONAIDICONTDONENAN AP LIOAOPFO~ATETOON P AN ANNOM P L~ DD

DU LU O A O o et ot )~ o ek med NI AN et VLN, Y 3 et et NN PO ) D et N et e U it o NI = O NN N = N NN

...............0........I..........l.................

D OOOOOOUOOOOOOOO%OO%NOOﬂﬂOﬂM%%ﬂ00%0%0004NOOUOOOUOOUOOO
Z AR RN (] | v

-J

O3>t TN LT OO=NMIEN LTI D~NM TN OO D=NNITNID D~ SN OO DN
<t it el o ) ek ek ot e e OO NICL AN NN NN NN OO NN N A E T T T nannn
ro




0
(]
E
o
@
=
0
©
T

TF-8A Measured Modal Deflections

7 MASS

ENDING
73,

4TH WING B

40 GENERALIZE

FREO

TH1S PACE 1S BEST QUALITY PRACTICABLE

FROM COFY FURNISHED T0DDC

12000110001100\51\.111\.11\;11\.1
0000000000000000000000000000
[} R T I I B I |
EEEEC.EEEEEF.EEEEEEEEEC.EC.EEEC.E
80941008“7778449059870530006
HQ.OI.Q..).JB&61292155014005004074
P () =t ot 00 LN P DD AN NI ot ot
......O....Q.......0.00.....
0000000000000000000000000000
.._..__.._..._.._._._.._.__.

> TN OMDPO—~NM TNV DI =ANN S L LCH-DP D~
M5555556666666666777777777788

10000001111000000000111UOI.\.\.I.I.OO.J0010000\.210000111000
UOOOO000000\VOU\UOOOUOOOOUOOOOOO\J\JU UOOUJOOOOOUOJO,\UOOOUO
PO R R N .+++++0+++_ P+ + 1 _.r0+00.00++. P t+4+4 1 j +4+ 4+
...C.CE_tC:r.E.tEEEEEECuEEEEE...E:_EC._.L_E.,E
941780132004370749\.\.35
%87)4402050813)_7J
91112216[11[337211
..0............0.... ...l...........d..
OOOOOQOO\UH.X.Un.un_Un.un_vn_vn_UOOOWOn.u\.._v..JO.UO00OOOOOOUJOOOOO‘UOW\.Un_VoowOn.v
) [ | | [ ]

Y12345678901234567890123456789012345678901234567890127
P4 111111111122222222223333333333444#4444445555
H



g
B
E
4
&
@
8

=
&

a
0
(=]
(2]
:
(=1
g
bxy
>4
g
~
]
—
(32]
%}
—
L0
<
—

T4.30 OGENERALIZED MASS=

001100011000111001211222222
QUOO)O\UOOU\UOOOOUJOOOOO)\UOO\U

0#..++0_.+¢+___00.._.._.__.
OGN W WU U L) ) WU WU W WU G B L L g

946193860297772203017000000
—DTOCT om0 ONNM FMMOMMEO— O T 3 — T —dtdt
U 6‘7Q,113.3411231\.711[123qr33ﬁ199\U
o .........I....q......'.......
ou OOOUOOOOOUOOOOUOOOOUQOODOOOO
m (I [ [ | (I | [}

TIRSIUN

> T A ODBIFO~ANMINONDRI=NNT NI~ VRO —
Z DN 0 D 0 0000 000N~ Pp-re - 20 O

2 o]

TF-8A Measured Modal Deflections
N

1010000000000000UOUO[\A\A[[UJOll.l.,.\u.u\...,,UO\.ul.nU DDD=DODDDDDC~D
\UUO\,U)U\U\JU\U)OOOJ\JU\JOUOUOJOOUl\;nu\uO\J)UJOJ,,UUUUJOUOO\U\JC\UOOQ
0+.++0++000++000§000_.__.#00__++0++++.+++#_40*0+00+_+

U U P g 1k 1 WL 3 WU W WU LD L D W UL D e e L U Wul U it Wiidu s gl i
091024106850646.161533855035777(3.5.9427795851055205[499
6H04684520476416’553338661035157602‘0309313.097_627.7.07..:));0(1
16759772478622“/4 311271161’3212)R,./ﬂll74531*35/«.2747311571.Ol..

@ © o & o © 9 ¢ o O

Q.I...........0............l........I......
JOOOOO000000030000000000000‘UOJOUO\JO.\JUOO\UOOOOUOUUUOOOO

[ 1 [ | t) LI Vi (3 t [ (I )
12345675901234567890123456789J12345b78901234567890121
et el omd ot et o el et = N U NN N AN N A A AN N A M MM S 3 TS inannn




Figure 3.1-2 TF-8A Transformed Aerodynamic Deflection Idealization
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Table 3.1-10

TF-8A Transformed Modal Deflections
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3.1.2 TF-8A Static Aeroelastic Solutions

Section 2.3 above contains the discussion of the method used to generate
the TF-8A static aeroelastic solutions. Figures 3.1-6 and 3.1-7 show the
resultant twist distribution for the five Mach numbers under consideration.
MASA supplied an optically measured static shape for several cases and

Figure 3.1-8 shows a comparison of these measurements with a calculated
shape for the same 1ift and Mach number. Good agreement is seen to exist.
The use of these static shapes is discussed above in Sections 2.4 and 2.5,
and below in Section 3.1.3.

3.1.3 Aerodynamic Data and Weighting Factors for the TF-8A Wing

The Doublet Lattice Idealization of the TF-8A wing is shown in Subsection
2.1. The theoretical results for the spanwise variation of section 1ift
coefficient slope and aerodynamic center are presented in Figures 3.1-13
tirough 3.1-17 for five freestream Macn Numbers. The experimental data are
also shown. As expected, the theory underestimates the 1ift because several
transonic affects are not accounted for.

The data were taken from Reference 2 and corrected for aeroelastic
effects as described in Subsections 2.1 and 2.4.1. Limitations of the data
¢ due to insufficient Reynolds Humbers were also described in Subsection 2.4.1.
It was concluded there that the stall characteristics of the c, and ¢
versus o were not reliable. Thus, the values of c; were read only in their
'non-stalled' ranae and not necessarily at the section angles-of-attack to
which the flutter model had deformed statically during the flutter test.

For example, Fiqures 3.1-9 through -12 present the aeroelastically
1 corrected pressure model data (cz, Cpp VS aeff) for the M_ = 0.99 case. It is

obvious that the values of ¢, and especially cp  depend on the section
angle-of-attack. The section angle-of-attack distribution across the span
of the flutter model in turn is the sum of the riqid body anqle-of-attack,
the built-in twist and the elastic twist as described in Section 2.4. The
distribution of section angle-of-attack for the TF-8A wina is given in
Subsection 3.1.2. The effective angle-of-attack at which the Ce, and Cp,

17




are to be read is the difference between the section angle-of-attack of the
flutter model, as(f), and the built-in twist of the pressure model ej(p).
That is,

f f
Afhe o0

where egp) is given in Table 3.3.2. The reason why the elastic twist of the
pressure model is not mentioned here is because it has already been accounted
for in the term Aof e i.e., the pressure data has already been corrected back
to the rigid state.

The values at which the 1ift and moment curve slopes are to be read,
aé;;. are also plotted in Figures 3.1-9 through -i2. In Figure 3.1-9, the
effective section angles-of-attack of the flutter model lie in the non viscous
range for the ¢, curve and these are the values read. In Figure 3.1-10, the
effective angles-of-attack of the flutter model fall in the viscous range
only for the section at y/{b/2) = 0.933. Since the curve is unreliable

there, the value of Cra at topg = 0 is used.

The curves of moment coefficient versus effective angle-of-attack are
nonlinear everywhere due to transonic and viscous effects. For this case
the slopes of cma selected for the M__= 0.99 case are shown in 3.1-11 and
3.1-12 as tangent lines to the curves. Due to the lack of data points,
the actual shape of the C, VS @ curve is open to various interpretations.
This is unfortunate because cma scams to have a large effect on flutter
speed.

In Figure 3.1-12, three separate interpretations of the C, versus o,
curve have been drawn for Stations y/(b/2) = 0.653 and 0.804. The tangent
lines or slopes of these curves are also indicated. The 30lid line indicates
our best guess to the slope; however, the other slopes are also retained and
used in the flutter analysis to show the effect of flutter speed on the slope
cma. Two separate interpretations have been drawn for the curve at y/(b/2) =
0.48. The final three curves of aerodynamic center resulting from these
various interpretations are given in Figure 3.1-17.

Special consideration is given to the curve of c, versus o for the wing
tip Station y/(b/2) = 0.933. As indicated previously, the point at which
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e, and Cm My are to be measured lies in the viscous region for the pressure
model. Due to the Reynolds Number difference between the pressure and
flutter models, (1.96 x 10° for the pressure model and 3.0 - 9.0 x 108 for
the flutter model). the pressure model curves can not really be trusted in
the viscous region.

4*The hand]ing of this difficulty posed a problem since the ¢, versus
curve is very nonlinear, even in the non-viscous regions. The moticns of
shock waves tend to change the character of the C, curves drastically as
passes fron negative to positive values. One possible solution is to extrap-
olate the m versus o curve, based on its shape close to a of zero, to the
point in questwon ignoring the break in the curve 2t « = -1.5 degrees. When
this is done, it is found that the aerodynamic center lay very far aft on
the airfoil, specifically, at Xa /r ~0.70. This result is considered
unreasonable since the aerodynam1c center usually moves forward at the wing
tip, not aft. If this result (xa.c. = 0.7) is used in the flutter analysis,
the resulting flutter speed is also unreasonable; lying well above the
results for the unweighted theory. A two-dimensional transonic solution was
applied to the airfoil section (plus boundary Jayer) at y/(b/2) = 0.933.
The section data gave a moment curve with a minimum point at o = 0 similar
to the data. However, the slopes were much less resulting in an aerodynamic

- center, at o = -1.82, of X b /¢ = 0.3966. Three-dimensional effects will

move this point forward. It is felt, then, that the aerodynamic center
selected for this station, shown in Figure 3.1-17, is correct.

A s1m11ar problem was encountared for the case of M = 0.95. Fiqure
3.1-16 presents the unreasonable aerodynamic center distribution as a
dashed 1ine. This curve was flattened to the solid line. Again, if the
unreasonable curve of aerodynamic center is used, the flutter speed is well
above the unweighted theory result.

The final values of c, and Xa.c. used for all Mach Numbers considered
are presented in Figures 3. 1 13 through -17 where they are compared with the
theory. The ratios of experimental to theoretical Cry and me are the steady
weight factors, as described in Subsection 2.4. The curves presented in
Figures 3.1-13 through -17 were interpolated for ¢, and Xa.c. at the tay
positions for the theoretical as well as experimental data. The weight

factors for the five Mach Numbers considered are aiven in Table 3.1-14,
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a
Windstream
(degrees) a = Built in twist + root pitch + elastic twist

2 Measured (M= 1.0)
© Calculated (M = 0.
L = 162 Lbs

q = 127.1 PSF

‘I,E

Percent semispan

Figure 3.1-8 TF-8A Elastic Correlation with NASA Data
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y/(b/2)
0.653

0.304
4 0.933

W,
- Tangent Slope (best estimate) N
~~= Tangent Slope (alternate est.) -

(f)
e Flutter Model Coff

e, e S i |, M O |
Taff

L =0.12

Figure 3.1-12 TF-8A ¢ vs. o gt Mg = .995 y/(b/2) = .653, .804, .933
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M_= 0.6
¥Y/(b/2)  WISCL
.095 1.141
167 1.107
.224 1.070
280 1.075
.337 1.053
.39 1.033
452 1.034
.509 1.057
567 1.123
.624 1.119
680 1.256
737 1.285
795 1.295
852 1.266
.909 1.218
.969 1.105
M =0
Y/(b/2)  WISCL
.095 1.216
167 1.213
.224 1.161
.280 1,151
.337 1,203
.39 1.21
452 1.250
.509 1.279
.567 1.340
.624 1.385
.680 1.438
REY 1.479
795 1.501
.85 1.495
.909 1.436
.969 1.185

.90

TABLE 3.1-14
TF-8A Steady Weight Factors

M =0.8
WTSCM Y/(b/2) WTSCL WTSCM
1.475 .095 1.227 1.437
1.440 167 1.238 1.614
1.277 .224 1.165 1.462
1.224 .280 1.146 1.379
1.223 .337 1.145 1.388
1.162 .394 1.134 1.298
1.136 .452 1.106 1.219
1.133 .509 1.146 1.717¢
1.173 .567 1.185 1.163
1.205 .624 1.215 1.118
1.232 .680 1.229 1.108
1.228 .737 1.213 1.093
1.181 .795 1.208 1.068
1.162 .852 1.211 .986
1.141 .909 1.262 .894
1.118 . 969 1.378 .689
M_= 0.95

WTSCM Y/(b/2) WTSCL WTSCM
1.336 .095 562 .342
1.552 167 1,175 .754
1.518 .224 1.2 1.051
1.399 .280 1.332 1.312
1.456 .337 1.383 1.389
1.359 .394 1.396 1.333
1.331 .452 1.433 1.373
1.285 .504 1.443 1.422
1.278 .567 1.436 1.442
1.254 .624 1.424 1.387
1.261 .68 1.430 1.397
1.226 737 1.448 1.395
1.187 .795 1.496 1.413
1.044 .852 1.485 1.337

.808 .909 1.401 1.145

.450 .969 .953 .658
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TABLE 3.1-14 (Cont'd)

TF-8A Steady Weight Factors

Y/(b/2) WTSCL WTSCM
.095 .902 .553
167 1.104 .902
.224 1.157 1.035
.280 1.195 1.071
.387 1.256 1.045
.394 1.288 917
.452 1.357 913
.509 1.445 .949
.567 1.590 1.026
.624 1.729 1.107
.68 1.796 1.133
737 1.758 1.103
.795 1.662 1.102
.852 1.576 .949
.909 1.493 .878
.969 1.279 .643
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TABLE 3.1-15

TF-8A Unsteady Weight Factors

M= .90
BAY NO. 11 y/(b/2) = .452
" WTUSCL WTUSCMEA K.

2D REAL IMAGINARY REAL IMAGINARY 3D

0 1 0 1 0 0
.095 .975 -.032 .968 -.027 A
.190 .928 -.064 .920 -.067 2
.314 .862 -.068 .847 -.081 .333
.950 .892 +.014 .827 +.037 1.0

BAY NO. 10 y/(b/2) = .509
20 WTUSCL WTUSCMg o kr3D
REAI IMAGINARY REAL IMAGINARY.

0 L 0 ] 0 0
.090 .976 -.030 .970 -.025 A
.180 .934 -.062 .926 -.064 ¥
.300 .867 -.0N .854 -.082 .333
.900 .888 +.021 .817 +.035 1.0

BAY NO. 9 y/(b/2) = .567
N WTUSCL WTUSCMEA K,
2D REAL IMAGINARY REAL IMAGINARY 3D

0 1 0 1 0 0
.085 .978 -.027 .971 - 022 el
.170 .941 -.060 .933 -.060 5
.280 .875 -.073 .863 -.082 .333
.851 .884 +.024 .808 +.031 1:6

J]
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TABLE 3.1-15 (Cont'd)
TF-8A Unsteady Weight Factors

M= .90
BAY NO. 8 y/(b/2) = .624
k. WTUSCL WTUSCMEA .
20 REAL IMAGINARY | REAL IMAG INARY 30
0 1 0 1 0 0
: 080 .979 -.025 .973 -.020 A
160 .947 -.057 1939 -.055 2
| 270 880 -.074 869 -.083 333
' .800 878 +.026 799 +.026 1.0
BAY NO. 7 y/(b/2) = .68
K, WTUSCL WTUSCMEA Ky
20 REAL TMAGINARY | REAL IMAG INARY 3D
0 1 0 1 0 0
.076 980 -.022 .975 -.017 i’
152 951 - .055 1943 -.052 2
250 889 -.073 879 -.082 .333
760 872 +.026 792 +.020 1.0
‘ BAY NO. 6 1T_vy/(b/2) - 737
WTUSCH
“ra e AR | AL TR “ryp
0 1 0 ! 0 0
.07 .982 -.020 976 -.014 R
142 .956 -.052 .949 -.049 2
240 .894 -.072 885 .08 333
710 864 +.023 786 +.012 1.0
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TABLE 2.1-15 (Cont'd)

TF-8A Unsteady Weight Factors

M= .00

o

BAY NO. 5 y/(b/2) = .795

WIUSCL WTUSCMEA
REAL IMAGINARY REAL IMAGINARY

1 0 1 0
.983 .017 .977 .012
.959 .049 962 .045
.907 .070 .897 .077
.856 .020 .783 .004

BAY NO. 4 y/(b/2) = .852

WTUSCL WTUSCMER
REAL IMAG INARY REAL IMAG I NARY

1 0 1 0
.970 .014 1.046 .008
.940 .065 1.005 .072
.864 117 .915 .139
.668 .001 .619 .048

BAY NO. 3 y/(b/2) = .909
SeL WTUSCME o
REAL IMAGINARY REAL IMAGINARY
1 0 1 0
.973 .008 1.049 .00
.946 .057 1.012
.884 .108 .935
.661 .023 .626




TABLE 3.1-15 (Cont'd)
TF-8A Unsteady Weight Factors

M= .90
L BAY NO. 2 =
: y/(b/2) = .968

K, WTUSCL WTUSCMER k,

20 REAL | ImAGINARY] RFAL | IMAGINARY ®

0 1 0 1 0 0
.052 .974 -.004 1.051 +.003 1
.105 .951 -.050 7.019 -.050 .2
75 .900 -.098 .954 -.116 .333
.520 .661 -.046 .639 -.109 1.0
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TABLE 3.1-16

TF-8A Unsteady Weight Factors

M= .95

el

BAY NO. 1 y/(b/2) = .452

SCL WTUSCMEA
REAL IMAGINARY IMAGINARY

1 0 0
.960 .058 - .036
.878 123 - .098
.740 .120 ; 121
.802 .016 e .062

BAY NO. 10 y/(b/2) = .509
. WTUSCL WIUSUMEA
2D REAL IMAGINARY REAL IMAGINARY

0 1 0 1 0
.09 .962 .853 .964 .032
18 .891 118 .900 .092
.30 .750 .126 .800 123
.90 .796 .031 .735 .057

BAY NO. 9 y/(b/2) = .567
WTUSCL _ WTUSLNE A
REAL IMAGINARY REAL IMAGINARY
] 0 1 0
.965 .049 " .028
.904 112 ! .086
.766 132 . 124
.787 .04 . .050




TABLE 3.1-16 (Cont'd)
TF-8A Unsteady Weight Factors

M= .95

oo

y/(b/2) = .624
CL WiUSCMep
IMAGINARY REAL IMAGINARY

0 1 0
.044 .968 .025
105 .920 .080
134 .823 23
.049 .707 .041

BAY NO. 7 y/(b/2) = .68
SCL WTLSCMEA

REAL IMAGINARY REAL IMAGINARY
1 0 1 0
.969 .040 .970 .021
.922 .100 .927 .074
792 137 .840 22
.766 .052 .699 .033

BAY NO. 6 y/{b/2) = .737

WIUSCL WIUSCME
REAL IMAGINARY REAL IMAGINARY

1 0 1 0
971 .036 971 .018
.930 .093 .935 .069
.802 137 .848 119
.750 .050 .692 .020




TABLE 3.1-16 (Cont'd)

TF-8A Unsteady Weight Factors

M= .95

oo

BAY NO. 5 y/(b/2) = .795

WTUSCL WIUSCMEA
IMAGINARY REAL IMAGINARY

0 1 0
.030 878 .013
.088 .942 .063
.136 .865 12
.044 .690 .008

BAY NO. 4 y/(b/2) = .852

_WTIUSCL WIUSLMEA
REAL IMAGINARY REAL IMAGINARY

1 0 1 0
.968 .017 .980 .021
.940 .025 .969 .009
871 .087 .954 .017
.629 .076 .836 .054

BAY NO. 3 y/(b/2) = .909
SCL WITSUEA
REAL IMAGINARY|  REAL IMAGINARY
1 0 1 0
.970 .020 .982 .022
.946 .018 .971 .0
.888 .076 .957 .013
.641 .092 .844 .054




TABLE 3.1-16 (Cont'd)
TF-8A Unsteady Weight Factors

M= .95

=]

BAY NO. 2 y/(b/2) = .969
SCL WTUSCMEA

REAL IMAGINARY|  REAL | IMAGINARY
1 0 1 0

.971 .022 .983 +.022

.951 .010 .972 +.013

.900 .064 .961 -.008

.658 .108 .853 -.054




TABLE 3.1-17
TF-8A Unsteady Weight Factors
M= .99

ao

BAY NO. 11 y/(b/2) = .452

_ WIUSCL WTUSCMEA
REA] IMAGINARY REAI IMAGINARY

1 0 1 0
577 0.00 .992 .010
.920 -.070 .978 .006
.822 -.122 .959 .021
.675 +.025 .892 .024

BAY NO. 10 y/(b/2) = .509
&6l WIUSUME A
REAL IMAGINARY REAL IMAGINARY
1 0 1 0
.979 +,002 .992 +.011
.930 -.062 .980 -.004
.831 -.120 .961 -.020
.668 +.013 .897 -.027

BAY NO. 9 y/(b/z) = .567
WTUSCL WTUSCMEA
REAL IMAGINARY REAL IMAGINARY
1 0 1 0
.980 +.006 .993 .01
.938 -.054 .982 .002
.846 -.15 .964 .019
.664 0.00 .903 .030




TABLE 3.1-17 (Cont'd)

TF-8A Unsteady Weight Factors

M_= .99
BAY NO. 8 y/(b/2) = .624
Ke WIUSCL WTUSCMg k.
2D REAL IMAGINARY REAL IMAGINARY 3D
0 1 0 1 0 0
.080 .981 +.009 .993 +.012 A
.160 .946 -.046 .984 0.00 L
.270 .853 =112 .965 -.018 .333
.800 .662 -.012 .908 -.031 1.0
BAY NO. 7 y/(b/2) = .68
Ky WTUSCL WTUSCMEA k.
20 REAL IMAGINARY |  REAL IMAGINARY 30
0 ] 0 1 0 o
.076 .982 +.012 .993 +.012 A
.152 .952 -.040 .985 +.062 2
.250 .869 -.105 .968 -.015 k|
.760 .663 -.024 .912 -.032 1.0
-
BAY. NO. 6 y/(b/2) = .737
K, WTUSCL WIUSCMEA ke
2D REAL IMAGINARY REAL IMAGINARY 3D
0 1 0 y 0 0
.071 .982 +.0) .994 +.013 A
.142 .958 -.032 .986 +.004 &
.240 .876 -.100 .970 -.014 .333
.710 .665 -.038 .917 -.032 g
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TABLE 3.1-17 (Cont'd)
TF-8A Unsteady Weight Factors

M_= .99
BAY NO. 5 y/(b/2) = .795
k, WTUSCL HTCSLHEA K,
2D | REAL IMAGINARY REAL IMAGINARY 3D
0 1 0 1 0 0
.067 .984 +.018 .994 +.013 N
.133 .963 -.027 .987 +.005 .2
; .220 .892 -.090 .973 -.on .333
.670 .669 -.051 .921 -.032 1.0
BAY NO. 4 y/(b/2) = .852
erD WTUSCL WTUSCMEA Rr3D
REAL IMAGINARY REAL IMAGINARY
0 1 0 1 0 0
.062 .972 -.014 .985 +.006 N
124 .940 -.086 .968 -.022 .2
.206 .832 -.160 .922 -.059 .333
.620 .574 -.001 773 -.046 1.0
BAY NO. 3 y/(b/2) = .909
' k WTUSCL WTOSCWE k
r r
20 REAL IMAGINARY |  REAL IMAGINARY 3D
0 1 0 1 0 0
.057 .975 -.006 .986 +.010 N
‘ 114 .947 -.076 .972 -.018 .2
.190 .855 -.150 .933 -.053 .333
.570 .568 -.029 .782 -.056 1.0
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TABLE 3.1-17 (Cont'd)
TF-8A Unsteady Weight Factors

M= .99

a0

BAY NO. 2 y/(5/2) = .969
WTUSCL WTUSCMEp
REAL IMAGINARY REAL IMAG INARY

1 0 -1 0
.976 0.00 .986 +.011
.952 -.064 974 -.013
.876 -.140 .942 -.046
.569 -.058 .793 -.065




The unsteady weight factors are described in Subsection 3.3. Figures
3.3-5 through -10 present unsteady weight factors for three spanwise stations
as a function of section reduced frequency, k, _ where erD = —%-kr3D. The
results at these three stations are applied to all wing bays as described
in Subsection 3.3. Tables 3.1-15 through -17 present the unsteady correction
factors for the TF-8A wing. There are no tables for M, = 0.6, 0.8 since the
unsteady weiqgnt factors for these “Yach Numbers are unity (no shock wave
motion). In the tables for the other Mach Numbers some inboard bays are
missing. Again the reason for this is the fact that the weight factors there
are unity (no shock wave motion). These data were applied at the four
reduced frequencies of kr3D =0, .1, .2, .333, and 1.0. The total weight
factor for any bay is the product of the steady and unsteady factors:

WTCL = WTSCL*WTUSCL
WTCM = WTSCM*WTUSCM

Normally, these totals are not formed directly. The procedure followed
is to: First, modify the theoretical AIC matrix with the steady weight
factors, store, and use them as required; Second, modify the modified AIC
matrix with the unsteady weight factors, store again, and use as required.

3.1.4 TF-8A Flutter Results - Steady Weighting
Flutter analyses were run using the "steady weighted" AIC's. The

discussion of the weiahting procedures, along with the unexpected difficulties
experienced in connection with Reynolds Number discrepancy between the
pressure and flutter models, appears above in Subsections 2.1, 2.4, and

3.1.3. In those sections it was pointed out that at high Mach numbers the
static aeroelastic twist distributions and steady aerodynamic 1ift curve
slope data seemed to indicate that the last few wing tip stations were
stalled; e.q., Coy = 0. A flutter analysis was run at M, = 0.99 under this

assumption. The flutter dynamic pressure was not reasonable (qF= 195 psf).

Since tre measured flutter speed trends indicated no tip stalling,
flutter analysis was rerun using AIC's weighted under the assumption
that the actual 1ift slopes at the static twist angles-of-attack are
the same as shown in the pressure model data at smaller pre-stalled
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values of angle-of-attack. The basis for this assumption is the Reynold's
Number discrepancy between the two models (See Section 2.4 above for
discussion).

Figure 3.1-18 shows a summary of computed flutter speeds under this assump-
tion of no tip stalling for the value of Crg * Unweighted theoreticai results
(usfng subsonic Doublett Lattice Method) are shown for comparison.

As discussed above in Section 3.1.3, the available aerodynamic data was not
adequate to unambiguously define the section moment slopes, Cpy - At M,
G.99, Figure 3.1-18 shows the calculated flutter speed for three different
interpretations of Co . * and 11lustrates the sensitivity of flutter speed
toc, . Section 3. 1 3 contains a detailed discussion of this moment data
and 1ts interpretations. At M_ = .95 and 0.99, one additional possible
interpretation of Cn (namely, using the steepest negative slope between
a=0and a= -1.5 ) was used which resulted in an unreasonable aerodynamic
center distribution (70% chord at the tip) and an unreasonable flutter
speed (near 300 gqsf. for both Mach numbers).

Section 5 helow discusses recommended work to resolve these ambiguities.
The steady weight factors (best guess for Cm ) used in the TF-8A analysis
are shown in Table 3.1-14, ¢

Figure 3.1-18 shows an apparent discrepancy between the calculated and
measured flutter frequencies at high Mach number. Actually, the discrepancy
is not severe because the analysis shows that the flutter mode decreases in
frequency very rapidly just before flutter onset. For example, the analysis
shows the frequency to be dropping at a rate of 2 Hz per 3 kts at flutter.
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3.2 RESULTS OF ANALYSIS - PHASE 11

3.2.1 TF-8A Flutter Analysis Results - Unsteady Corrections

Flutter analyses were also run using AIC's reflecting the "unsteady
weighting factors". Section 2.5 discusses the theory and Section 3.3
discusses the application of that theory to the TF-8A wing.

Tables 3.1-15 through 3.1-17 show the unsteady weightinj factors for
reduced frequencies of 0, .1, .25 and 0.5. The "steady weighted" AIC's for
these values of k. were weighted by these factors and then the AIC's for the
total 1ist of reduced frequencies required by the flutter analysis was ob-
tained by interpolation between these basic four.

The results of the flutter analyses showed that for the TF-8A the
unsteady weighting factors changed the flutter speec by less than two
percent at all Mach numbers.
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3.3 PHASE III RESULTS

The theories developed under Phase III of the contract are presented
in Subsection 2.5. It was noted there that the major transonic effect is
the perturbation pressure induced by shock wave motion. The effects of
shock wave motion were added to the classical 1ifting surface theory and
the results discussed and correlated in Subsection 2.5.1.3. The correlation
of this procedure using the NLR 7301 airfoil for the range of frequencies
considered in the experiment is very encouraging.

The full transonic theory described in Subsection 2.5 is not entirely
complete since the procedure for determining the shock wave motion for
oscillatory flow has not been tried. The nondimensional shock wave motion
function, A(kr)/x(kr : 0) obtained experimentally for the NLR airfoil at
M =0.7and a=1.75, can temporarily be used to obtain the shock wave
motions for the TF-8A and YC-15I1 wings. It was felt, however, that if
this approximation is to be used, then a less general theory could be used.
Specifically, the method described in Subsection 2.5.1.2, as mentioned
above, would be the logical choice because it contains the major transonic
effect, i.e., pressures due to shock wave motion and because of its good
correlation with data. A second reason for using this method is the effort
involved. At its current level of development the general theory would
require more time than available to run all of the conditions for the TF-8A
and YC-15I1 wings.

The theory of Subsection 2.5.1.3 gives the incremental 1ift and moment
due to shock wave motion as:
g _ 3o/ ¢ =
ac, 8165 (Cp Cp ) . P ( 12kr1A)
a S s
2 1
8 . ; 1 upper surface
-1 lower surface

5 o 3 1 shock moving aft with increasing a
-1 shock moving forward with increasing o




Where Cp R Cp are the steady pressures on either side of the shock
51 %2

wave, A is the amplitude of shock motion, and T is the non-dimensional

time (ru /c) for an acoustic wave to reach the shock wave from the trailing

edge. The oscillatory value of xo is approximated using the curve of

A (k )/A (k = 0) for the NLR 7301 airfoil and the value of Ao(kr = 0)

for the airfoi] under consideration (see Figure 2.5-33). Thus, the xo(kr)

for any wing is

Ao(kr) = Ao(kr = 0) G(kr =
where
G(kr) = xo(kr)/xo(kr = 0) for NLR 7301 airfoil at Mm = 0.7, a ®=1.75 .

1f the acoustic time T is computed as in Reference 4, then the constant
A can be set to 1.0. To simplify the calculation, the method of Reference 4
was adopted instead of using the acoustic pulse generator (along with the

estimated value for A). The approximate method of Reference 4 consists of
using the following formula:

dx
- MtZ/Mz

where
My= 07 [M-M ] +M,

Where M is the local surface Mach Number

The weight factor for the 1ift coefficient is given in Subsection 2.4

MTUSCL(K,) = § (2DTRANS ) )/ 20) (k..
: (ZDTRANS)(k n 0)/ @,

G




(2DTRANS)

Where the transonic cy i.e., cg is given as the total of

a
the classic theory, cgu(zo), plus the transonic increment, ac

2 "
a

The weight factor for the 1ift then becomes:
WTUSCL(k ) = (1 + BCL G(kr)LCL(kr)/ (1 + BCL)

where

BL = (¢, - C, ) Ak =0)/3afc, ik, =0)
52 S] a

LeL(k,) = [C,Lm‘zm(klr - 0)/ e, 0k, ] exp (-12k )

The derivation of the weight factors for the moment coefficient about
the elastic axis follows and is similar.

= - A
Ac (xS/c xea/ c) czcl

m
4}

where X is the shock location. The unsteady weight factors for Cn is then;

WTuscM, = (1 + BCM G(k,) LCM(kr))/(l + BCM) *(3.3-2)

where
(x_Jc - x

c)
BCM = —> el BCL
(/4 - xéa/ c)

LeM(k ) = [cé‘zn)(kr = 0)/ cr(nzo)(kr) ] exp (-i2k 7)

The values of the steady flow classic theory are

cgim(kr = 0) = 20/8

(2D) _ 2n
Cma (kr = Q) = -E'(Xea/c - 1/4)




The weight factors just described are calculated for three sections
along the wing and applied to all of the aerodynamic bays. Figure 3.3-1
shows the bays that are associated with the three sections for the TF-8A
wing while Figure 3.3-2 shows it for the YC-15I1 wing.

The elastic axis data, xe.a./c, to be used in the formulas for the
unsteady weight factors are found in Table 3.1-1. The values of c, (20)(kr)
and Cn (20) (kr) are obtained from the two dimensional compressible“subsonic
1iftind surface theory.

The shock wave data to be used in these formulas could not be taken
directly from steady wind tunnel data because of the elasticity of both the
pressure model and the flutter model and because of the difference in built-
in twist between the two models. Shock wave location and movement are
highly dependent on the local section angle-of-attack and boundary layer
build-up. Since both the built-in twist and elastic twist of the pressure

model are different than those of the flutter model, the following procedure
was followed.

The first step is to find the total section ang]e-of—attack,as(f), of
each of the three wing sections on the flutter model at an estimated dynamic
pressure for flutter. The section angle-of-attack, u§f), is composed of

rzg;d body angle u(f), elastic twist eéf), and built-in or 'jig' twist,
f

Ej Iy
where 'f' indicates flutter model.

a(f) . off) , e(f) , e(f)
S J e

From this value of section angle-of-attack for the flutter model, is
subtracted the value of egp) for the pressure model.

ba (eff) _ alf) _ e(p)
S S J




Aerodynamic Bay Limits

— — = Selected Wing Sections

Figure 3.3-1 The Association of Aerodynamic Bays with Selected
Wing Sections for the TF-8A Wing.




——— Aerodynamic Bay Limits

— — = == Selected Wing Sections

Figure 3.3-2 The Association of Aerodynamic Bays with Selected
Wing Sections for the YC-15II Hing.




TABLE 3.3-1 - Elastic Axis Locations

TF-8A YC-15

Y/(b/2) Y/(b/2)

. 309 : .16
.657 . .42
.933 . .85

TABLE 3.3-2 - TF-8A Incremental Angles-of-Attack Between
the Elastic Flutter Model and Pressure Model

Aag
y/(b/2)

Mo = 0.9 Mo = 0.95 Mo = 0.99

0 0.6° 1.28
-0.4° -0.7° 0
-0.8° sz.? -1.8°

TABLE 2.3-3 -  YC-1511 Incremental Angles-of-Attack Between
the Flastic Aircraft and Pressure Model




The incremental angle-of-attack, Aa(e f) , is the angle-of-attack on the

pressure model required to match the flutter model conditions. (This angle
is an effective angle and must be reduced to an actual angle by using the
aeroelastic correction of the pressure model in reverse. This process was
not done in the calculations; however, the resulting error is small.)

The aeroelastic calculations of uif) for the two flutter models is
given in Subsection. 3.1.2 for the TF-8A wing and 3.4.2 for the 'YC-15I1I
wing. The value of egp) for the pressure model 1is given in Figure 3.1-6.
The values of Aa for the TF-8A wing at various Mach Numbers are presented
in Table 3.3-2. The values of bag for the YC-1511 are given in Table 3.3-3.

The next step in the process is to find experimental pressure model
data for pressure distributions that correspond as close as possible in «
to the bag tables above and to match this data to theoretical calculations
using the Jameson and/or Garabedian methods (see Reference 16 and Appendix D
for a description of the Garabedian method). The inverse process produces
a modified airfoil shape when the experimental pressure disiribution and
Mach Number are used. The medified shape exhibits a thickening in the
vicinity of the trailing edge which is typical of bourdary layer growth
(see Figure 3.3-3 for examples).

Early in the contract, calculations were performed using the inverse
Garabedian method on TF-8A wing sections but at angles-of-attack that did
not match the values of 8o given in Table 3.3-2. In order to take
advantage of this work, the resulting modified airfoil shapes (shown in
Figure 3.3-3 for M_= 0. 99) were used. Instead of revising the airfoil
shape to match the data, the angle-of-attack and Mach Numbers were varied
to produce a best-fit of the theory (Jameson Method) to the data. A table
of these increments is given in Table 3.3-4.

Some of the section pressure distributions of the TF-8A wing could
not be matched using this procedure and for these the inverse Garabedian
procedure was reapplied near the correct angle of attack. For the case of
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the YC-15II all of the airfoils were generated using the inverse Garabedian
at angles-of-attack which were close to the desired ones given in Table
3.3-3. The output of the inverse Garabedian procedure also includes a
change in angle-of-attack, 8a, from that which corresponds to the input
experimental pressure distribution. In Tables 3.3-4 and 3.3-5, these are
indicated by an asterisk (*).

The term 6a is now added to the values of bag and &y is added to the
two-dimensional value of Mach Number (M,; = M_cos A).

Ao, +
Aas = Aus Sa

N,

2p = M

2D + &M

The values of XE; and ﬁéD are then input into the Jameson steady
transonic method and the necessary shock data calculated.

The shock data required for the calculation of the weight factors are:
(1) The jump in pressure across the steady shock, Cp - CpS ; (2) The shock
1
location, xs/c, (3), the local Mach Number distribution (so that T may be
calculated); and (4) The change in shock location with respect to angle-of-
attack, axo(kr = 0)/2a. The last term is done in a numerical manner by
varying the angle-of-attack slightly about the mean position. Thus,

Sa
c

DY

-9 =
Ja

An example is presented in Figure 3.3-4. The values of interest for
the TF-8A and YC-15II wings are given in Tables 3.3-6 and 3.3-7.

The quantities in these tables are used to produce the desired
incremental unsteady weight factors. These factors are plotted for the
TF-8A wing in Figures 3.3-5 through 3.1-10. These figures are for free
stream Mach Numbers, M_ = 0.9, 0.95 and 0.99. The results for M_= .8 are




TABLE 3.3-4 - (TF-8A) Corrections to Jameson
Transonic Theory to Give Best
Match to Data

M_= 0.8 M= 0.9 M_= 0.95 M= 0.99

Sa &M Sa &M Sa &M Sa &M

4 Commpmand

No  Shock

1.5°
0.5°

TABLE 3.3-5 - (YC-1511) Differences Between Data
and Garabedian Theory for a and M

y/(b/2) e -1®
Sa

.163 -0.85°%*
.42 -1.5%
.85 -0.18%*

* Could not obtain good match by changing « and M in the Jameson Method
and had to perform Garabedian inverse.




®© a = 1.5°
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Figure 3.3-4 Steady Pressure Distribution Near the Shock Wave for ’
Angles of Attack Near the Required Value (1.5°) for the
TF-8A Wing (y/(b/2) = 0.657, M_ =M, =0.99, Mo = .80).

I1lustration of the Calculation 3x/3a& (CpSz = CPS19'




TABLE 3.3-6 - Shock Location & Motion
Variables for the TF-8A Wing Section

y/(b/2) L (c Vony/6a

.309
.657 Shocks)
.933
. 309 No Shock -

.657 0.1351 1.2900
.933 0.2141 3.1515
.309 No Shock -

.657 0.2373 2.9223
.933 0.3894 4.7413
.309 No Shock =

.657 0.4445 3.8964
.933 0.3894 4,8705

Table 3.3-7 Shock Location & Motion
Variableg for the YC-15I1 Wing Sections

y/(b/2) x/c T 2 P Yo /6 o
1

.163 . 3644 3.553
.42 .4122 1.776 Upper surface
.42 .4350 1.031 Lower surface
.85 4644 0.974




unity because there are no shock waves at this Mach Number, and thus, are
not plotted. The results for y/(b/2) = 0.309 for all Mach numbers are not
shown for the same reasons; i.e., no distinct shock exists for this inboard
wing section.

Figures 3.1-11 through 3.1-14 present the weight factors for the three
sections of the YC-15I1 wing plotted versus reduced frequency for one Mach
Number (M = 0.76). The section at y/(b/2) = 0.42 requires two plots because
there are shock waves on both top and bottom surfaces.

Notice that the incremental unsteady weight factors are unity at kr = 0.
These factors are used to produce a weight factor correction to the steady
weight factors previously discussed. As stated in Subsection 2.4, the total
weight factor is the product of the steady weight factor and the unsteady
weight factor.

The incremental unsteady weight factors are plotted versus a two-
dimensional sectional reduced frequency. The two-dimensional sectional
reduced frequency is related to the three-dimensional reduced frequency
as follows (see Subsection 2.4):

Kk =k <
' T3

The values of kr for the TF-8A wing are:
3D
kr (TF-8A) = 0, 0.1, 0.333, 1.0
3D
The values of kr for the YC-15II wing are:
3D

k. (Yc-1511) = 0, 0.1, 0.25, 0.5
3D
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The sectional values of reduced frequency, kr » then vary as the local
2D

chord, c, varies. The spec’ "‘c values of kr and the corresponding values
2D

and c, are presented in Subsection 3.1.2 for the
a a

TF-8A wing and in Subsection 3.4.2 for the YC-15II wing.

of weight factors for c,
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3.4 RESULTS OF ANALYSIS - PHASE IV
The methods of Phases I - IIl were applied to the YC-15II aircraft.

3.4.1 YC-15I1 Basic Data
Reference 17 documents the YC-15I1 basic data.

3.4.2 YC-15]] Static Aeroelastic Solutions

The methods of Section 2.3 were applied to generate the YC-1511 wing
static aeroelastic shape at the critical wing Mach Number, M_=0.76. Figure
3.4-1 shows the results for a typical payload/fuel configuration. As can be
seen the unswept, relatively stiff wing undergoes quite small deflections even
at this high dynamic pressure. The maximum magnitude of the wing tip angle-
of-attack is about 2.5 degrees (minus).

3.4.3 Aerodynamic Data and Weighting Factors for the YC-15I1 Wing

The Doublet Lattice Method idealization is presented in Subsection 2.1.
The resulting theoretical distribution of section 1ift coefficient slope and
aerodynamic center are presented in Figure 3.4-4. The theoretical distributions
are compared to those obtained by wind tunnel tests.

Figures 3.4-2 and 3 show that the 1ift and moment curve slopes are
functions of the section angle-of-attack. Specifically, the angle-of-attack
distribution required is one that is relative to the pressure model at zero
rigid body angle-of-attack. The distribution of section angle-of-attack for
the YC-15I1 aircraft consists of (1) the rigid body angle, a(a) , (2) the
built-in twist, e(ag , and (3) the elastic twist ¢ :) calculated at a given
dynamic pressure corresponding to a flutter speed previously estimated. The
superscript (a) refers to the aircraft. This curve is shown in Fiqure 3.4-1
of Section 3.4.2. The angle-of-attack distribution of the pressure model at
zero rigid body anole-of-attack is just the pressure model built-in twist. Thjs
is also shown in Fiqure 3.4-1. The desired section angle-of-attack is then
the difference between the aircraft and pressure model distributions, i.e.,

2P - L) 4 Ej(a) B Ee(a) ) ej(p) - .(3) ee(a) — EJ.(a) i Ej(p)
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This difference, sa (P}, which is also plotted in Figure 3.4-1, is the
final result. The points at which Cla and Cm, are to be calculated are now
known and are indicated in Figures 3.4-2 and -3. The resulting Cog and Xa .
distributions are plotted in Figure 3.4-4. The theoretical distribution,
also shown in the figure, was used as an aid in finding the experimental
distribution because only three spanwise points were available.

c.

The ratio of experimental to theoretical values of c, and ¢, at the
various bay locations are the steady weight factors. Table 3.4-1 presents
the results of these calculations for two estimates of cp, .

These two estimates come from the slopes on either side of the Aa(p)

points. These two values of c, are carried through the flutter calculation,
Qa

The unsteady weight factors are described in Subsection 3.3 and plots
of them versus the reduced frequency k., _ are given in Figures 3.3-11 through
-14 for three spanwise stations. The data for these three spanwise stations
are applied to all of the bays in a manner also shown in Subsection 3.3.

The values of the two-dimensional reduced frequency, erD’ are related to
the actual values, k”3D’ as shown in Subsection 2.4 as, k,.20 = ¢/¢ kr3D'

The reduced frequencies considered for the generation of the AIC's are

kr3D = 0, 0.1, 0.25, 0.5. The tables of the unsteady weight factors used,
WTUSCL and WTUSCMgp (about elastic axis) are given in Table 3.4-2. There is
a slight disparity between the tables and curves for the inboard half of the
wing. Also, the shock motion on the lower surface at y/(b/2) = 0.42 was
omitted, see Figure 3.3-13. The effects of this omission and disparity
should be very small as far as flutter is concerned since the flutter speed
changes due to the unsteady weight factors is itself small and due to the
fact that only the inboard portion of the wing was affected.




e

3.4.4 YC-15I1 Flutter Analysis Results

Figure 3.4-2 shows the measured (high speed wind tunnel model) sectional
1ift curve coefficient versus angle-of-attack for three span stations. As can
be seen, the statically deformed wing is still in the essentially linear range
of the aerodynamics. Figure 3.4-4 shows a plot of sectional Coq VS percent
semispan using the approximately linear portion of the slopes from the previous
figure (from between angles-of-attack of zero and -2.5 degrees). The AIC's
were weighted to match Figure 3.4-4 for the "steady weighting" exercise. This
is the same weighting that was used in the production YC-15I1 flutter analysis,
which resulted in the previously reported minimum calculated flutter speed
at M_ = 0.76. Flutter analysis results are discussed in detail in Reference
17. Thus, the static aeroelastic twist effects, which were ignored during
the original YC-15I1 flutter analysis, are indeed negligible.

Table 3.4-2 shows the "unsteady correction" multiplicative weighting
factors for the YC-15I1 wing. These were included in the YC-15I1 flutter
analysis resulting in a flutter speed reduction of some 2-3 KEAS. Hence,
the YC-15I1 results are similar to the TF-8A results in that the unsteady
transonic corrections are virtually negligible in effect compared to the steady
corrections. The steady corrections were of course very impurtant on the YC-1511
as they resulted in a calculated flutter speed equal to 89 percent of the flutter
speed predicted by purely theoretical AIC's at M_= 0.76. The two values of
Cn used had little influence since they are close to each other on the out-
boird wing. The final value of flutter speed was taken as the average of that

obtained using the two values of Cp *
a
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Figure 3.4-2 YC-15II ¢y vs. a, M_= .76
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TABLE 3.4-1
YC-1511 Steady Weight Factors
(M,= .76)
max ¢
l "y
y/b/2 WTSCL WTSCM
.148 1.09434 .23618
214 1.10185 . 36447 i
274 1.10035 .50098 |~
.334 1.08813 .57113 1
.393 1.09421 64771
.451 1.07981 .71515
.514 1.06818 .72542
.578 1.06074 .76112
.641 1.05491 .78418
.704 1.06475 .82415
.767 1.08538 .85471
.829 1.12782 .90167
.963 1.11765 .87788
M= .76
(min c, )
a
.148 1.09434 .27415
.214 1.10185 .54004 N
274 1.10035 .76158
.334 1.08813 .88133
.393 1.09421 .96664
.45 1.07981 .98728
.514 1.06818 98121
.578 1.06074 .97858
.641 1.05491 .97690
.704 1.06475 .97725
.767 1.08538 .95956
.829 1.12782 .96335
.892 1.19167 .98948
.963 1.11765 .87788
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TABLE 3.4-2
YC-1511 Unsteady Weight Factors

M= .759
BAY NO. 20 y/(b/2) = 167
K, _MTUSCL WTUSLMEA K,
20 REAL I IMAGINARY REAL IMAGINARY 3D
0 ] 0 1 0 0
) .184 .866 -.144 .983 -.0Nn N
.459 .636 -.022 .955 -.013 .25
.918 776 +.023 .954 +.004 .5
BAY NO. 2) y/(b/2) = .226
k. WTUSCL WiUSUHEA k.
2D REAL IMAGINARY |  REAL IMAGINARY 3D
0 1 0 1 0 0
75 .881 -.139 .984 -.010 A
. .437 .639 -.037 .957 -.013 .25
.875 JN +.037 .953 +.004 .5
BAY NO. 22 y/(b/2) = .284
k"zo WTUSCL —WTUSCMEA k.
REAL IMAGINARY REAL | IMAGINARY 30
0 1 0 1 0 0
=1 167 .893 -.133 .985 -.010 N
417 .643 -.051 .958 -.014 .25
.833 .764 +.047 .952 +.002 .5
|
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TABLE 3.4-2 (Cont'd)

YC-1511 Unsteady Weight Factors

M= 759
BAY NO. 23 y/(b/2) = .344
WL WIUSCMgA
erD REAL SLILMAGINARY REAL | IMAGINARY k"ao
0 1. 0 1. 0 0
.158 .903 -.128 .986 -.009 R
.395 .650 -.069 .960 -.014 .25
.789 .753 +.056 .951 +.001 .5
BAY NO. 24 y/(b/2) = .408
erD WIUSCL WTUSCMEAA Rrso
REAL IMAGINARY REAL IMAGINARY
0 1. 0 1. 0 0
.149 .972 -.030 1.000 0.00 A
.372 .902 -.045 1.002 +.001 .25
.743 .883 +.009 1.003 +.001 .5
BAY NO. 25 y/(b/2) = .469
. ky WIUSCL WTUSCMEA k,
, 20 REAL IMAGINARY REAL | IMAGINARY 30
0 1. 0 1. 0 0
.140 .976 -.028 1.000 0.00 A
.349 .907 -.046 1.002 .001 .25
.699 .881 +.005 1.003 .00 .5
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TABLE 3.4-2 (Cont'd)

YC-1511 Unsteady Weight Factors
M= .759

BAY NO. 26 y/(b/2) = .537

WIUSCL WTUSCMEA
REAL IMAGINARY REAL IMAGINARY

1. 0 15 0
.979 -.025 1.000 0.00
.914 -.046 1.002 +.001
.879 G.00 1.003 +.001




TABLE 3.4-2 (Cont'd)
YC-1511 Unsteady Weight Factors
M= .761

BAY NO. 27 y/(b/2) = .604

WTUSCl WTUSCMEA
REAL IMAGINARY | REAL IMAGINARY

1 0 1 0
.984 -.013 .996 +.001
935 -.040 .990 -.004
.889 -.019 .983 -.006

BAY NO. 28 y/(b/2) = .664
k WTUSCL WTUSCMEA

"eD REAL IMAGINARY | REAL IMAGINARY
0 1 0 1 0
AN 985 -.010 .997 +.001
278 .941 -.039 .991 -.004
556 891 -.024 .984 -.006

BAY NO. 2° y/(b/2) = .725
WTUSCL WTUSCMEA
REAL IMAGINARY |  REAL JMAGINARY
1 0 1 0
.987 -.008 .997 +,001
.947 -.037 .992 -.004
.896 -.030 ,985 -.006




TABLE 3.4-2 (Cont'd)
YC-1511 Unsteady Weight Factors

M= .76

BAY NO. 30 y/{b/2) = .785
WTUSCL WTUSCMEA
REAL | IMAGINARY |  REA ~IMAGLNARY
1 0 1 0
.997 +.001
.993 -.003
.986 -.006

BAY NO. 31 y/(b/2) = .845
WTUSCL ___ WTUSCMgp
REAL IMAGINARY | _ REAI IMAGINARY
1 0 1 0
.990 -.004 .998 +.001
.960 -.031 .994 -.002
.909 -.039 .987 -.006

BAY NO. 32 y/(b/2) = .906
WTUSCL WTUSCMEA
REAL IMAGINARY REAL IMAGINARY
1 0 1 0
.991 -.001 .998 +.002
.967 -.028 .994 -.002
.917 -.041 .988 -.006




TABLE 3.4-2 (Cont'd)
YC-1511 Unsteady Weight Factors

M= .761
BAY NO. 33 y/(b/2) = .968
kr2 WTUSCL WTUSCMEA k.
D REAL IMAGINARY REAL IMAGINARY 3D

0 1 0 1 0 0
.067 ,992 +.001 .998 +.002 R
.168 .973 -.024 .995 -.001 .25
.335 .927 -.081 .989 -.005 .5
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3.5 FLUTTER MODEL TEST PLAN

A flutter model test is presented to support the analyses in determining
the effects of some of the critical parameters on flutter of supercritical
wings. A brief flutter analysis of the proposed flutter model was done to
verify that the desired flutter speed range could be achieved with a reason-
able stiffness distribution.

3.5.1 Description of Model

Design and build a cantilevered wing flutter model representing a typical
STOL transport wing. The model is to be tested in the NASA Langley Transonic
Dynamics Tunnel. The model will have the following features:

1. Interchangeable airfoil segments.

a. Supercritical shape

b. Conventional shape

Variable angle of attack at the wing root.

Variable wing twist distribution.

Instrumented to provide spanwise internal load distribution.

W N

Removable engine weights.

The model will be a single spar wing with twelve balsa segments represent-
ing the airfoil shape(s). Two dummy engines representing the important mass
properties will be mounted to the wing using rigid pvlons to eliminate tuning
effects of the engines. These dummy engines will also be removed so as to
gather data for a higner frequency flutter case. The spar will be instrumented
with a series of strain gages along the span to measure bending in two
directions as well as torsion. Figure 3.5-1 shows the general arrangement
of the model.

The variations in angle of attack of the wing will be attainable by using

either the tunnel floor turntable or the wide wall mounting fixture in the
NASA Langley 16 ft TOT.
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The variations of wing twist distribution will be made by shimming between
the wing segments and the spar.

3.5.2 Wind Tunnel Test

The wind tunnel facility anticipated for testing the cantilevered wing is
the NASA Langley 16 ft TDT which uses Freon for a test medium. Normal testing
method of changing Mach No. with total pressure constant will be used. Tunnel
speeds will be increased until flutter onset is obtained or some predetermined
maximum is reached due to tunnel operating limit or model applicability.

3.5.3 Model Configurations

The two basic configurations will be with dummy engines and without dummy
engines. The three major parameters for each configuration will be the airfoil
shape, wing root angle of attack, and wing twist distribution.

3.5.4 Wind Tunnel Test Data

The model test data for any configuration will consist of the following:

Zero speed vibration modes and damping.

Wind tunnel parameters.

Flutter speed and frequency

Wing spanwise internal load distribution.

Wing aeroelastic deformation if measureable with optical devices.

(3, N S VS B S B
S o= oMo 0o
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CANTILEVERED WING FLUTTER MODEL
FOR NASA LANGLEY 16 FT. TDT
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Figure 3.5-1 Propoéed Cantilevered Wing Flutter Model




SECTION IV CONCLUSIONS
4.1 CONCLUSIONS RELATED TO THE FLUTTER ANALYSIS

1. The theoretical subsonic method seriously underestimates the relevant
steady aerodynamic data (1ift curve slopes and aerodynamic center distribution)
at the critical Mach number for a wing with "supercritical" airfoil sections.
This is in contrast to recent results for subsonic transport designs with
conventional airfoils where the theory has been in good agreement at the
critical Mach number (and overestimated the derivatives at low Mach numbers).
For example, the YC-15I11 wing steady 1ift curve slope at the critical Mach
number (0.76) was 17 percent higher than predicted by the Doublet Lattice
Method, while for the TF-8A the wing CL test data was approximately double
the Doublet Lattice prediction (at M = 0.99). Figure 4.1-1 below summarizes
the general trends for conventional and supercritical airfoils of recent ex-
perience.

2. The sectional 1ift curve slopes for a supercritical airfoil possess
an inherently nonlinear character over the pre-stall range. However, it appears
that the pre-stall range can be approximated by two slopes; a small slope over a
small angle of attack around zero, and a steeper slope at higher angles of attack
(but sti1) before viscous effects are seen). Figure 4.1-2 shows typical data.
This characteristic "dual slope" phenomenon has shown up consistantly on three
different supercritical designs and is more pronounced the more "supercritical"
the design. The steeper slope is a transonic effect, and cannot be predicted

by subsonic lattice methods. e

Ik

Superdr|tical /
\‘)HEFJ’\
"Ilr e ]

£ - i

‘ I
L]
Figure 4.1-1 Comparison of Theoretical Atrcraft

Data for Conventional and Supercritical

I Lift Curve Slope with Experimental
Wings.

I\
|

L -
Critical M.
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Supercritical

Viscous

Figure 4.1-2 Nonlinear Character
Sub- of The Transonic
critical Lift-Curve

3. The "steady corrections", wherein the AIC for kr = 0 was weighted to
match the steady test aerodynamic data, and then these weight factors applied
to all reduced frequencies, resulted in flutter speeds which were in reasonable
agreement with measured flutter speeds. Analysis using purely theoretical
AIG's resulted in significantly non-conservative flutter speed predictions,
for both the TF-8A flutter model and the YC-15I1 prototype.

4. The unsteady transonic weight factors had a negligible effect on the
flutter speed of both the TF-8A and YC-15I1. This may be because the reduced
frequency at flutter is relatively low for both ajrcraft; krF = 0.15 for the TF-
8A flutter model and kr = 0.125 for the YC-1511. Since the direction of the
effect was detrimental En both aircraft (even though negligible in magnitude),
these techniques should be applied to a configuration with high flutter freq-
uencies hefore any final conclusions are made.

5. For advance design configurations which use supercritical wings and
for which no high speed aerodynamic data exists, application of the steady
three-dimensional Jameson method (reference 11) or similar method should be
made. This method has been implemented into a production status at Douglas
and much correlation work done. Steady and unsteady corrections could then
be based on this predicted transonic aerodynamic data in lieu of test data.
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6. The effect of static twist on flutter is obviously significant since
the final section angle of attack may end up in the smaller slope range, the
steeper slope range, or even the viscous effect range. It seems clear, however,
that the certification analysis must use the steepest slopes regardless of the
lgcruise twist distribution, so as to cover the maneuvering range of the air-
craft, and other unknowns.

Accounting of static twist effects are obviously very important in
a correlation analysis of a flutter model with a relatively flexible wing.

7. Incorrect Reynolds number simulation in pressure models and flutter
models may lead to errors:

a) If the high speed flutter model does not fly at a high enough
Reynolds number the wing tips may stall prematurely resulting in
nion-conservative flutter speeds predictions or in puffet or stall

flutter condition which are not realistic.

If the pressure model and flutter model were flown at different
Reynolds numbers (as in the TF-8A case) they will experience tip
stall at different angles of attack, confusing the correlation
analysis.

Pressure models may not be "rigid". The TF-8A pressure model was
significantly flexible. In the future, the flexibility of the
pressure modal should be calculated, and if significant, should
either be re-designed out of the model or eise the pressure data
from the test should be properly modified. See Section 2.1 for a
discussion of this problem and its ramifications.

8. Sufficient section 1ift and moment data should be available vs a to
unambiguously define the curves so that accurate Co and Cn data can be
obtained at the proper twist angles. This is especfally trlle of the moment data
since it is so highly nonlinear. In practice, this means getting the data request
to the relevant Aerodynamics personnel in a timely manner, since left to their
own, they may not get the required pressure data at a fine enough o grid or
at large enough negative angles of attack.
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4.2 CONCLUSIONS RELATED TO TRANSONIC AERODYNAMICS

1.
are:

a)

b)

2

<

Three significant transonic effects on lifting surface aerodynamics

.

Nonuni form flow fields modify the basic aerodynamics such that
1iftir® surface elements can propogate their effects upstream
through a supersonic zone. This seems to be very important for
'éupercritical airfoils operating at their design (shock free)
condition.

The shock wave generates a flow field through the action of a
vorticity distribution on the shock wave itself. The effects on
the wing surface are especially large just aft of the shock wave.

The movement of the shock wave with angle of attack creates a

very large effect on the perturbation pressures and loads. This
load is proportional to the shock movement times the pressure

jump across the steady shock wave. For supercritical airfoils the
shock movement versus angle of attack can be very large. For air-
foils with shock waves this effect is probably the largest of the
three effects.

Transonic load effects are highly dependent on the shock wave

location because much of the loading is concentrated in the jmmediate vicinity
of the shock wave. For supercritical wing sections th2 location of the shock
wave is a sensitive function of angle of attack, boundry layer thickness,
wind tunnel wall corrections etc. Thus the static aeroelastic twist dis-
tribution is very important to the flutter analysis.




SECTION V  RECOMMENDATIONS

5.1 RECOMMENDATIONS: FLUTTER ASPECTS

This study confirms that supercritical wings exhibit signicantly lower
flutter speeds than a conventional wing of equal size and ricidity. It was

demonstrated, furthermore, that these lower flutter speeds could be accurately
predicted if the Doublet Lattice unsteady aerodynamics were properly weighted
by the relevant test data.

The major problem encountered during this study was that the relevant aero-
dynamic data required to unambiguously define the important sectional 1ift
and moment slopes were not available. A secondary complication was that the
static aeroelastic twist of the TF-8A flutter model was extreme. Finally,
both examples treated in this study exhibited flutter at low reduced frequencies;
thus, the importance of the unsteady weight factors in general was not
established.

Future studies should be planned so as to address these problems. In
Section 3.5 a proposed cantilevered wing flutter model is discussed that
should prove to be a useful tool to further evaluate transonic effects on
flutter speed. The static twist distribution of this proposed wing will be
more representative of current transport aircraft than was the TF-8A flutter
model. The wing geometry is the YC-15 prototype, for which adequate definition
of aerodynamic data exists. Furthermore, analysis has shown that removal of the
engine weights will change the flutter frequency from a low value to a high
value of kr' thus allowing a better evaluation of the unsteady weighting factors
as a function of reduced frequency.




5.2 RECOMMENDATIONS FOR THE DEVELOPMENT OF TRANSONIC LIFTING SURFACE THEORY

It has been demonstrated that, for the configurations considered in this
report, the steady flow transonic effects are the most important. The basic
reason for this is the fact that these configurations fluttered at relatively
low reduced frequencies where unsteady effects are smail.

However, it is still important to obtain the unsteady effects for two

reasons: 1) increased accuracy of flutter results, and 2) application to

aircraft configurations that flutter at moderate to high reduced frequencies.
The unsteady effects may not be important enough to develop and employ very
exnensive finite element methods but it does seem worth the effort to develop
less expensive methods. An example of such a method is the transonic 1ifting
surface method discussed in Subsection 2.5 of this report. Specific re-
commendations to fu-ther the development of this method are outlined as
follows:

Extend the method so that the amplitude, and phase, of the unsteady
shock wave motion can be determined.
Refine the shock motion interference flow representation. Replace
the point vortex with the proper distribution along the shock.
Investigate the reason for poor correlation of the method in the
supersonic zone and make appropriate corrections. Pertinent to this
investigation is the evaluation of the impact of the various simplifying
assumptions made during the analysis.

4. Extend the method to the three-dimensional case.

Transonic 1ifting surface theories, such as the one described in this
report, and the one in References 10 and 12, require reliable production sub-
and supersonic linear methods. Subsonic methods are well developed and very
reliable. The same can not be said of supersonic methods, hovever. Thus it
is recommended that supersonic methods be brought up to the same status as
the subsonic ones.




APPENDIX A
SOURCE IN A NON-UNIFORM FLOW FIELD

Lifting surface theory is based on the assumption that the disturbances to the
fluid caused by a surface moving through it are small. Thes2 small disturbances
travel through the fluid at the speed of sound as acoustic waves. Classic
1ifting surface theory makes the further assumption that the medium through
which the waves travel is uniform. It is felt that one of the major transonic
effects arises due to the fact that acoustic waves encounter non-uniform flow

| fields. This is especially important for forward traveling waves in a near
sonic stream. Thus, an expression is derived here for an acoustic source in
a non-uniform flow field.

To start the derivation, consider a moving coordinate system Xxyz such that

the flow at infinity is uniform and equal to U_ in the X direction. Consider
an acoustic pulse emitted at £, ng» &g at time t = 1. If the flow is
uniform near the source, then the pulse will be circular. If, in general, the
flow is slightly perturbed then the wave will be deformed (see Figure A-1).

Shape of Wave for No

.l Perturbations in
' Flow
[
g{x,y,2,t-7) = 0
Shapes of Acoustic
Waves at Time t
Origin of
Source at
Time
| ) ter Shape of Wave

For
Pertrubations
In Flow

—=yx ¢

Figure A-1  Acoustic source Pulse Surface at Time t-T For the Uniform
And Nonuniform Flow Cases
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For no perturbations in the flow field, the potential is:

s ((t-1)-op/a)

= 4 o

¢

)2 2

(x - B5:- u,2 (t-r1) +r® = acoustic radius

2 . 2
(v - n)" + (z - g)
where a is the speed of sound and where % is the source strength. When per-

turbations exist, in the flow the potential is

% &(q/a

-]
L *

b

where g(x, y,z, t-t) = 0 is the equation of the surface of the wave, p is
an equivalent acoustic radius such that o/p is the wave front strer -th, and
a is the effective wave speed.

Now as a point on the 1ifting surface moves along, it creates sources of

varying strength at various points along its flight path at various time
(see Figure 2.5-1).

To find the total potential field due to this string of pulses simply sum or
integrate them along the path as a function of time. The potential at time
t is a sum of all the sources generated previ&us]y along the flight path.
t t .
o(t) f R R = L. s

0 0 P

The results for perturbed flow is:
t -
- f oft) & (gq/a) dt
R -

0 P




A theorem for the proper integration of delta functions, & , is:

b N f(Ti)
f ) s o) ) o =D g
a i=1 —‘81 (T‘i)

where T, are the real roots of g(t) = O lying between 1 = a and b and where
N §s the number of these roots.

The term ag/st is the negative of 3g/3t which can be shown to be

2g/a _ n
at ! =
a
g 5 -
where VT * 7 is the velocity of the wave normal to itself. The velocity VT

is composed of the acoustic propagation velocity, an, and the fluid velocity

3

V. Thus,

A S R

a a
and thus,
N
D o (1) — (A-1)
4r o (1) \1+ V'n‘
i=1 5
where  g(ss) = 04 = 1, " (A-2)

The solution for ¢ (ri) 0 i=1, .., Namounts to finding thet, vajues for
all of the waves that pass over point (x,y,z). Figure 2.5-16 (b) presents @
uniform flow supersonic case. For a point iying within the Mach cone (x],z1)
two waves are felt. For points lying outside the Mach cone (XZ’ZZ) no waves
are felt. In the uniform flow subsonic case only one wave passes a point (see
Figure 2.5-16(a)). In mixed non-uniform transonic flow, the problem is com-

plicated as figure 2.5-16(c),(d) shows. In particular Figure 2.5-16.d) shows
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that point (x],z]) has three waves passing over it while (x2,22) has one

wave passing over it even though it lies outside the Mach cone.

For uniform flow:

plty) = olry) = alt - 1)
v = Tu,
-ﬁ.-'l' = [X'go‘um (t-Ti)]/p(Ti)
g ()= 0 = t-1,- o(y)/a
|
then » 1+ v i = +M (x=-¢) -U (t-1) M
L a L S 0 © i’ Ve
and t; are found solving g (11) = 0. .

2 2

a® (t - Ti)z = 0" ¢ x-§,-4, (t- N+

o«

or solving for a (t - ri) gives:

a(t - vy) = % {—]{- [ M (x-&o)iR]}
8
where RS = (x - 50)2 + 82r2

Now, acoustic waves generated in the future, (t - 11) <0 have no effect at
time t, thus,

(t - Ti) >0

For supersonic flow (M_> 1) both roots (+R) are admissible since M_ (x - £o)2 R.
Also, for supersonic flow (x - go) > 0 since waves do not travel up stream.

Finally, since 82 is negacive the negative sign outside of the braces must
be used. ,
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— DM (k- + R4
a (t-rt) = )-8 Supersonic flow

- I, (- g) - R]

-B

For the subsonic case M_ < 1, M_ (x - £) <R and g% > 0. There are two
solutions which fit the condition (t - ri) > 0 but only one makes sense
physically, i.e.,

- 1 . ,
a(t - ri) e B [-M_ (x - go) +R] = Subsonic flow

8

Knowing the roots allows us to move on to find the expression for the
potential as follows:

. >
v & |gives

Using the equation, o = a (t - ri) in the expression for o l 1% &=

ARE s ‘=‘p+Mw(x-£°)-Uw(t-11)Mml

2
\(t-ri)as +Mm("‘50)l
Using the expression for the roots gives:

° | B _z'é'i"" = l (t - ;) a 6% + M (x - go)l = R

Thus, for uniform flow the expression for the potertial becomes

a82

¢ ¥t v Ly g 0]+ ole s i (xeg) )

ag

“Supersonic source
4qR

o gt + a_lf (M (x -&.) - R)t
44R

Subsonic source




These are the classic expressions for a source in a uniform flow. The
evaluation of the potential ¢ for the case of non-uniform flow is dependent
on the ability to numerically calculate acoustic waves propagating in a non-
uniform stream. Such an acoustic wave generator can be used to determine the
local normal vector n, acoustic radius o, and intercept time Ty of a wave
passing over the receiving point (x,y,z) that originated at the sending point
(go, Ny? ;o). Whether the flow is uniform or non-uniform, the acoustic wave
expands at the speed of sound. The wave strength along the wave front
diminishes with increased time as the wave expands. Because of non-uniform
flow conditions, the wave distorts from the circular form and changes in
strength along the periphery of the wave. One way to express this fact is to
say that the wave dilation p is expressed in terms of the uniform flow acoustic
wave radius p and a correction factor f.

b & of 2 it -z)F

The termp = a(t - t) gives the increase in radius with time while f accounts
for the wave strength distorsion along the wave front. The expression for ¢
then becomes:

o (Ti)
= = A-3
? z: 4n p(ri)f‘] +‘$'n e

=

g (r;) = 0 i = 1,N (A-4)

204




APPENDIX B

FLOW FIELD CALCULATIONS USING THE TWO-DIMENSIONAL,
STEADY, TRANSONIC JAMESON PROCEDURE

The two-dimensional Jameson procedure transforms the space around the airfoil
into a rectangle, one unit high and two units wide. This rectangle is divided
up into a grid of points. The modified differential equation is solved for
by finite-difference procedures in this rectangular space. The solution pro-
duces a value of potential at each point in the rectangular plane. The pro-
cedure in finding the velocity at a particular point in physical sapce is to:

Find the location of the point of interest in the transformed space.
Find the derivative of ¢ in this space at the point of interest.
Find the velocity transformation to be applied to the differentials
of ¢ to produce the velocity vector in the physical plane.

The following equations and sketches describe the process of transforming
from the physical to the computational plane.
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Figure B-2 Scaled and Shifted Plane
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Figure B-4 Vertical Shear Plane
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Once the desired points are transformed into the computational plane the
desired derivatives 3¢/ zc can be numerically obtained from the tabulated
values of ¢ vs. zc and xc. The following procedure is required to transform
these derivatives in the computational plane into velocity components, Vy V
in the physical plane.

Z

98¢/ 3x%x0 + coSa

38¢/3zo + sina

where 23A¢/3x0 and 3a¢/520 are:




304/3%0 = 3n/aXPp (—2—9) - a6¢/azp (—z;L)

306/320 30/3XPp (—Z—EL) + a86/3Zp (—"-E—)
where o xp2 g zp2

and where 3a¢/oxp and 3a¢/azp are:
304/ 9xp 200/3Xp - 38¢/3Zp as(xp)/axp
Ate/azp 90$/9ZP

The qu ntities 2a¢/3Xp and 3a¢/3zp are found as follows:
304/ 3Xp 38¢/3%C A

3/2
ane/ozp = 3b¢/dzC 7}/ (z]; + zp)

where 0 pEhs n688 o
1/ D+ (113_3'7-5-)2] , | xc | >.625

A finally the terms 3a¢/axc, 3A¢/3zc are determined numerically from the grid
of A¢ vs. Xc and xc.




APPENDIX C
SUPERSONIC TWO-DIMENSIONAL DOUBLET LATTICE METHOD

For supersonic flow the following integral equation holds:

a1
)3

x-8(z-z)
el £ & / 80(£) ¢pp de
3
L.e

and where a¢(g) is the potential jump across the airfoil and ¢, is the
potential due to a source of unit strength, i.e.,

bop = Jo(AR) exp (-iaM_(x-£))/28

2
where R2 = (x-£)2-B°(z-¢)

B2 = M2-1

A = oM_/U.B

where w is the downwash boundary condition applied to the 1ifting surface
and Jo (AR) is a Bessel Function of the first kind.

The first step in the derivation of a Doublet Lattice Method for
supersonic flow is the evaluation of the double differential of the integral,
i.e., 2°l/3zac.

Performing the first differential gives:

a .

sc - Boo(e=x-B(z-c)) oy (e=x-B(z-z))

~X-B(z-z)

| a¢(E) 3¢,p/0c de
£

2.

e.




sayy (eox-B(z0)) = g exp(-iaM B(z-c)

since Jo(0) = 1.0
Taking the second derivative of I gives

321/0z5c = B a8e(E=x-B(2-0))/5z2 by (6=x-B(z-2))
+ B 8¢(£=x-B(z-z)) abopp(=x-B(2-2)) /32

- B a¢(e=x-B(z-2)) db¢pp/ac
g=x-R(z-t)
x-B(z-z)
+ 22
j.A¢(e)a ¢op/ 320% dE

3
L.e.

The terms of this expression are evaluated as follows: (use

.A-‘i’ = A¢(E=X'B(Z'C))9 ‘520 F ¢’ZD(E=X'B(Z‘C))

32¢/32 = 3%%-%5 = ¢ (-B)

5;20/32 = -i(\M_/2) exp(-iiM _B(z-z))

389pp/0t = -1 (AR) 23R exp (- _(X-2))
)
7B

= _Ry2(o.
3A¢ZD/QC - EA—%E—SJ- exp (-iaM _B(z-c))
£=x-B(z-z)

since 1im J; (AR)/AR — 1/2 as R — 0
2 .
2 ¢pp/0230 = Flexp (-iaM_(X-z)))/2B

where

~

v .z
F = 'Jl A _&?_R_




2
R _B(z-g) . -R

o
P4 R Y

2 4 2
B~ , B(z-2)
R R3

agaz
Before these terms are substituted into the expression for azl/aza; the

limit Z+ ¢ must be applied since the receiving points (x,z) must range over
the airfoil surface (which is z = z). In the limit as z » z;

R+ | x-¢ |
a$ZD/az + -iaM_/2
389,p/ 32 Ig=x-B(z-c_:) el
F s - 00]x-g]) ABZ/Ix -£]
8¢ (e=x-B(z-z)) + A¢(x)
8¢ (e%-B(z-c)) + 8¢~ (x)
8éop(E = x - B(z -z)) + 5%
The final expression for 32I/53z3z, line 2 » ¢ is:

Tim  321/320; - 1%- % ad”(x) + 1aM_ a¢(x)

z-+z . %

4 AZ f
£
L.

= 9 (x|x-£])/x|x-¢]

26 (£)F (| x -] Jexp(-1aM_(x-g))de ¢ (C-1)




Notice that ¢ is always less than or equal to x thus x - ¢ is always positive
and the absolute value sign can be dropped. For simplicity of notation
introduce

A{x - £) then 0
%.e.

1% 8¢(x) + 1AM _po(x) + x'/r s6(c) F(plexp(-iM p) dp  (C-2)
0

where

F(p) = Jy(p)/p, and £ = x - p/x and 86" (x) = 04/

Equations (C-1) or (C-2) are the final results for the downwash due to a dis-
tribution of potential jump a¢(x), on a 1ifting surface (and wake). Lifting
surface theories, such as the Doublet Lattice Method (DLM) do not use a dis-
tribution of potential jump but use a distribution of pressure jump,

Cp(x). This distribution of pressure jump is simulated in the DLM by a series
of point pressure doublets. The point pressure doublet (shown in Figure C-1)
possesses the following properties: (1) the pressure jump and potential jump
are zero for points forward of the doublet; (2) the pressure is a delta
function at the location of the doublet; and (3) the pressure jump is zero
downstream of the doublet but the potential jump is not (wake). Mathematically,
this is expressed as foliows:

0

2b¢p §(x - xo)

oCp =

-2(8¢ 4 —‘-l‘j— ad)

@0




Figure C-1 Potential Jump Due to a Point Pressure
Doublet

Solving the differential equation for A¢ downstream of &o and taking into
account the properties at and ahead of X0 gives:

26 = b, Hlx - xo) exp (- du (x - x5) / U,) (C-3)

Placing (C-3) into the first two terms of (C-2) gives:

iw

Ao +iAM_Ag = bo, {6(x-x°) s 3 H(x-xo)exp(-iw(x-xo)/um) (C-4)

when it is noted that sH/3x = §. The expression for a¢(c) given in terms
of (C-3) and the variable p is:

so(e) + 8¢, HE - x5) exp (-1w (e=xy) / U,) =

; . iw
A¢pH(g-x0) exp (-1m(x-xo) / U_)exp (+ N p)

Combining the last part of this term with the term exp(-iM_p) in (C-2) gives:

exp(iwp/aU_) exp(-iM_p) = exp(- ip/M )




Placing this term and (C-4) into (C-2) gives the downwash, Wp, for a point
pressure doublet. c

o 1800xg) + 5z Hlxmxo) exp(-1ulxwxg) / U,)

Py .e. -
+ aexp(-iw(x-x,) / U,) / H(E-Xo)e-1p/M°°F(P)dp
. .

The step function in the integral eliminates that part of the integral lying
in front of Xo

0 g<xjorp> A(x-xo) = P
Hg-x,) =

1 g2x,0rp<pg

Thus, the upper limit becomes Po? thus

Po.e. Ax - xo)

and the term H (g-xo) can be eliminated.

Let

pO
E(py» M) = / e TP/M F(p) dp

o
where  F(p) = J;(p)/p

Then the expression for w becomes

Wp ¥ -% A¢p ié(x-xo) +

ALi/M, +]7 E(PsM ) Jexp (2iw(x-x ) /U‘”)s




The force f generated by the point doublet in the uniform flow U_ is

- - . c sl
f = /Acpdc /2(A¢ +1UwA¢) de

Introducing equation (C-3) gives

f = -2A¢p[5(g-xo) de = - 2p¢

P

In the Doublet Lattice Method a point dorblet is placed on each element. The
resulting force ganerated by this dcublet is averaged over the element to
produce an average pressure, Zfb. Thus,

_ - AL
Zfb = f/aX = - 3y 4

p

Sclving this for A¢p and introducing the result into (C-6) gives the result
for the local downwash w due to a point pressure doublet of average pressure
2C.. If we also average the downwash over the element, Wb, then the result

P
is

W %-Zcpr {E + Alim_ + E/2] exp (-iw(x-xo) / U.) } (c-7)

Since the average of the delta function is
AX
1

c(x-xo) dx =) on the element

off of the element

Equation (C-7) then, along with the expressions for E and & are the final
results for the downwash due to a pressure element in supersonic flow. The
expression for E, i.e.,




pO :
£ (pgt) = f e PMa £ (p) dp
(o]

= A(x-xo)
F(p) = 9 (p)/P
is evaluated numerically.

The steady case, w = G, reduces to the classic results

BaC.
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APPENDIX D
THE GARABEDIAN TRANSONIC AIRFOIL INVERSE PROCEDURE

The program method of analysis is based on the work of Korn, Garabedian
and Jameson and utilizes a Poisson fast solver differencing scheme. Because
viscous effects are not considered in the 2-D Jameson flow solution, the
analytical pressure distribution obtained was often an unacceptable match
with pressures obtained experimentally. The effect of the viscous boundary
layer can be seen in Figure 2.4-5 where the pressures on both the upper and
lower airfoil surfaces are seen to deviate from the experimental data. In
order to account for the effects of viscosity, it was decided to alter the
geometry of the airfoil used in the 2-D inviscid analysis. To do this, use
was made of a transonic airfoil design computer program (ASBE) containing
an iverse Garabedian design option. Although basically inviscid, the
program accounts for viscosity by adding a displacement thickness to the
original airfoil geometry.

To decrease computational time and lower cost, a Poisson fast solver
differencing scheme was incorporated into the program. Tle advantage of the
fast solver lies in the fact that convergence occurs in fewer cycles through
the flow field than with other methods. Because the governing compressible
flow equation is unstable fcr transonic flows when written in the form used
with the fast solver, fast solver cycles are alternated with successive line
over-relaxation cycles. The SLOR cycles handle the supersonic regions, and
the fast solver cycles propogate information quickly through the flow field
and satisfy the kutta condition. A restriction to using the fast Poisson
solver is that the equations must be solved in a closed area with Neuman,
Dirichlit or periodic boundary conditions. This restriction is satisfied by
using a circle as the computational plane. The circumference, which corres-
ponds to the airfoil surface, has Neumann conditions, the center of the
circle, infinity in the physical plane, has Dirichlit conditions, and periodic
conditions are established along a line from the tail to infinity.

To aid in the analysis, the program was set up to run from the IBM 2250
graphics terminal. The original airfoil geometry, 2-D Mach nurber and desired
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2-D 1ift coefficient are input and a 20 cycle flow solution is performed

first on a coarse grid and then on a grid refined by halving the crude grid
mesh spacing. The resulting pressure distribution is then displayed on the
tube and is changed using a light pen to correspond to the experimental data.
Twenty cycle inverse flow solutions are then performed on both the coarse and
refined grids to obtain a revised airfoil geometry. The updated geometry

can then be run forward through a flow solution and the resulting pressure
distribution again compared and updated if necessary. This process is repeated
until the revised geometry produces the desired pressure distribution.

Examples of airfoil geometries revised using the inverse Garabedian
program are shown in Figure 3.3-3. The revision to the station .309 geometry
is a typical boundary layer displacement correction for attached flows in that
the trailing edge thickness and camber are altered.

The station .657 revision is untypical due to a thickening of the entire
airfoil section. Because the two-dimensional airfoil geometry is scaled from

the 3-D coordinates as ZZD/C = Z3D/c /cos AEFF‘ the thickness correction
indicates the use of an incorrect (too small) effective sweep angle in the
initial scaling operation. Because the 2-D Mach number is scaled down as

M20 M COSAggps the thickness displacement can also be seen to indicate
that too large a 2D Mach number was used in the inverse calculation. This
uniform thickening would be eliminated if the 2-D Mach number were lowered
an appropriate amount and the case rerun in the Garabedian inverse.
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