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FOREWORD 

This report was prepared by the Douglas Aircraft Company, Aircraft 

Division, Long Beach, California, for the Analysis and Optimization Branch, 

Structural Mechanics Division, Air Force Flight Dynamics Laboratory, Air 

Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio 

under contract F33615-77-C-3101. This research was conducted under Project 

2401, "Structural Mechanics", and Task 240102, "Design Analysis Methods for 

Aerospace Vehicle Structures". Mr. L. J. Huttsell of the Structural Mechanics 

Division was the Project Engineer. 

The work reported herein was conducted during the period of August 1, 1977 

to March 1, 1978;  

The Principal Investigators were J. A. McGrew, J. P. Giesing and R. M. 

Pearson assisted by K. Zuhuruddin, M. E. Schmidt and T. P. Kaiman. 

The preliminary theoretical developments necessary to incorporate part 

of the improved aerodynamic time lag representations were developed under 

IRAD funding prior to this contract award. Sections 2.5.1.1 through 2.5.1.4 

and Appendices A and B document these efforts for the purpose of completeness. 
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SECTION I INTRODUCTION 

Modern aircraft wing designs are increasingly taking advantage of 

recently developed supercritical airfoil sections which are more aerodynami- 

cally efficient than conventional airfoil sections. This increased efficiency 

is achieved by delaying the drag rise, thus allowing the aircraft to cruise 

at higher Mach numbers with less sweep. Also, higher lift coefficients are 

obtainable with wings using these advanced airfoil sections. The YC-15 and 

YC-15II prototype aircraft are recent examples using supercritical wings. 

There has been concern that the flutter characteristics of supercritical 

wings may be significantly different from wings with conventional airfoils. 

Recent NASA test data on a TF-8A flutter model showed a substantially larger 

decrease of flutter speed near the Mach number of maximum lift curve slope 

than predicted by theoretical subsonic oscillatory aerodynamic theory. 

Further studies were needed to determine the aerodynamic mechanisms which 

contribute to this large decrease in flutter speed. 

The objective of this study was to develop and evaluate transonic 

flutter prediction methods for supercritical wings. The study was divided 

into five phases: 

a. Phase I - TF-8A Flutter Analysis (Steady Corrections) - 

Conduct a flutter analysis of the TF-8A flutter model using correct- 

ion factors to the aerodynamic influence coefficients (AIC's) 

based upon steady aerodynamic data from the pressure model and 

correlate with test results. 

b. Phase II - TF-8A Flutter Analysis (Unsteady Correction) - 

Apply an improved unsteady correction factor technique (see Phase 

III) to the flutter analysis of the TF-8A flutter model and corre- 

late with test results. 

c. Phase III - Transonic Method Improvement 

Improve the time lag representation and include shock wave motion 

in the transonic method. 



d. Phase IV - YC-15II Flutter Analysis - 

Use the final, proven methods of Phases I, II and III to perform 

a flutter analyses of the YC-15II. 

e. Phase V - Flutter Test Plan - 

Use the results of the analytical effort to define an economical 

flutter model test plan. 

1 -  .  - ■  ^ 
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SECTION II TECHNICAL DISCUSSION 

2.1 BASIC AERODYNAMIC DATA 

The basic theory used for the flutter and static aeroelastic analyses 

reported herein was the Doublet Lattice Method (DLM) described in Reference 

1. This method is applicable to general configurations and is well proven 

and correlated. The DLM requires that the lifting surfaces (wings, tails, 

etc.) be broken up into boxes and the bodies (fuselage, nacelles, etc.) be 
idealized with both slender body and interference elements. Figures 2.1-1 

and 2.1-2 present the idealizations for the two configurations considered 

in this report, i.e., the TF-8A wing-body and the YC-15II. 

Experimental wind-tunnel data are available for both of these configura- 

tions. The YC-15II data were taken from unpublished McDonnell Douglas 

sources while the TF-8A data were taken from Reference 2. The TF-8A wind tunnel 

model was found to be quite elastic considering that it was to be a nominally 

'rigid' model. Aeroelastic corrections were applied to the data in an 

attempt to remove the effects of flexibility. These corrections were essential 

to obcain the correct section lift curve slopes across the span and consisted 

of determining the actual or 'effective' angle-of-attack, aeff, of each 

section and using these in the distributions of c^and c^. The aeroelastic 

correction was based on a bending curve found in Reference 2 for one 

particular loading. This curve was generalized for all cases by normaliza- 

tion with respect to the angle-of-attack and dynamic pressure. The twist for 

the reference condition was obtained from the bending curve by taking the 

slope and scaling it with the sine of the sweep angle. 

t   = (dz / dy)sin A, 

where z is the local bending deflection and y is distance along the 

elastic axis. 

The resulting normalized elastic twist,! .is given as: 

o. er   r r 

and is plotted in Figure 2.4-4. Subsection 2.4 presents additional details 

j_ ___ .__-_____ 



^mmm  "     -■"" 

m go 

Figure 2.1-1    TF-8A Idealization 

■^— *  — ■ 



—————— 

1000 

1100 

i ■ I, ww z '  74.3 

1/- 

rj 

Figure 2.1-2 YC-15II Idealizati- on 

J 



—' ■"■ 

of the aeroelastic correction procedure including the corrected or effective 

angle-of-attack. aeff. at each spanwise section which is given by: 

Jeff 
•(1-T    q) 

Subsection 3.1.3 presents plots of section c£ and cm data versus aeff 

for various conditions. 

The data of Reference 2 were obtained for a low Reynolds Number, 

specifically 1.96 x 1Q6, based on the chord at the three-quarter span loca- 

tion. Thus, the data is not considered reliable for predicting the stall or 

near stall conditions. Because of this, only lift curve and moment curve 

slopes in the low angle-of-attack range were used, i.e., where c^, was a 

near-linear function of a 4!f.    The moment curves were not linear anywhere but 

the non-linearity in the small angle-of-attack range was due to transonic 

effects and thus were considered more reliable. The points on the lift and 

moment curves where the slopes were taken are given in the results section 

(Section 3). 
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2.2 VIBRATION PML DATA 

Normal modes of vibration of the TF-8A wing and the YC-15II wing were 

used as the basis for flutter and static aeroelcstic calculations. For the 

YC-15II modes were available from the design analyses process and were used 

directly. These modal data had been correlated with past aircraft vibration 

test data and good agreement shown. 

NASA (Langley) provided measured mode shapes and generalized mass for 

six elastic modes of the TF-8A model wing in the form of normal modal defl- 

ections at 81 wing locations. Spanwise sectional plots of these deflections 

showed relatively small camber deformations in the modes of concern and 

therefore the modal amplitudes were transformed into sectional pitch and 

plunge degrees of freedom in order to simplify the subsequent aerodynamic 

weighting processes. 

A sectional least squares fit was used to determine pitch and plunge 

amplitudes for a sixteen spanwise section mathematical model. The measured 

modal data and transformed modes are shown in Section 3.1. 

As a check against the transformation process, vibration modes for the 

same (sectional) model were calculated with distributed stiffness and 

inertial data which become available later in the study program. The result- 

ing mode shapes, frequencies and generalized mass agreed well with the trans- 

^formed test data except for the torsion mode, in which the discrepancy is 

due to a probable misinterpretation of torsional stiffness magnitude. 

Factoring the torsional stiffness levels led to good agreement in modal 

deflections and generalized mass. 

--- — • 
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2.3 STATIC AERÜLLASTIC ANALYSIS PROCEDURES 

The analysis procedures used for all static aeroelastic analyses proced- 

ures used herein consist of a subset of the generalized equations used to 

solve for the linear elastic trim conditions and deformation of a free 

flying aircraft. It is assumed that total balance ^orce of the model is 

specified and the wind tunnel model is then pitched until that specified 

total lift is achieved. Drag forces are not accounted for herein although 

the procedure is simply extended for these forces if required. The number 

of equations to be solved for is n + 1, where n is the number of normal 

elastic modes of the system used. Lift and weight are taken as positive 

down and moments are positive nose up in the following. The generalized 

equations are formed by a similarity transform with the normal modes upon 

the mass and aerodynamic equations for the model. The total force on the 

model support is given by 

q {\a  « + [DhE] {q}) + q Lj + W = FT (2.3-1) 

The elastic equations are: 

[KEE] (q) - q ({DEa}a + [DEE] {q}) - gimEH} - qlLj} = 0  (2.3-2) 

where 

q ■ dynamic pressure, psi 

a = model reference angle of attack 

q = generalized modal amplitudes ( an n x 1 vector) 

[. = total jig (reference integrated basic lift), lift/q 

W = total weight 

FT = total specified force on the modal balance 

KFE ■  generalized stiffness (mEE • M EE) 

g.mFh =  generalized weight forces 

i   = generalized jig (reference basic lift and moment), forces/q 

B.   =  total lift due to u/q 
ha 

8 
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;EE 

elastic aerodynamic force/a«q 

total lift/q-q 

elastic aerodynamic force/q-q 

The model reference angle of attack is split into two parts for convenience: 

a = ao + aT 

where 
model insertion angle 

ou. ■ model trim angle 

Equation (2.3-1) may be solved for a-,, in terms of oy q, jig forces and 

balance force and substituted into Equation (2.3-2) leaving n equations with 

n unknowns (q). Post multiplication of the vector q into the modal set used 

to obtain the equations leads to the deformed surface 

{h} = [•] {q} (2.3-3) 

where h are the deflections (and rotations) of the surface and * is the set of 

normal mode shapes of the surface. The spanwise local angle of attack 

distribution then is given by the sum of the model insertion angle, the model 

trim angle, the local elastic twist angles and the effective jig or built in 

twist distribution. 
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2.4 AERODYNAMIC WEIGHTING FACTORS 

The concept of modifying the matrix of theoretical Aerodynamic Influence 

Coefficients [AIC'sj with a correction factor or weight factor matrix [WT] 

has been investigated in many reports one of which Is Reference 3. One of 

the methods of Reference 3 is to premultiply the theoretical AIC matrix 

with the weight factor matrix as follows: 

[AICJWT= [WT] [AIC] 

Tnis technique is the one used in the present report. 

■ 

The type of AIC matrjx used is that for an elastic axis representation. 

Thus, the elements of the AIC are proportional to the sectional values of 

lift and moment coefficients. In what is to follow the sectional lift co- 

efficient is discussed primarily; however, the concept applies equally to 

the section moment coefficient. 

The weight factor for a particular section lift coefficient (at a parti- 

cular wing spanwise location) is given in two parts: a steady part, WTS 

and an unsteady part, WTUS. The total weighted value for lift is: 

(wt) (kj -    WTSCL WTUSCL c. (k ) 

where WTSCL and WTUSCL are WTS and WT'JS for the c  term, 

The steady weight factor, WTS, is usually obtained from wind tunnel 

section lift coefficient data. The idea is to correct the theoretical lift 

coefficient so that it gives the experimental values when the frequency is 

zero. This term is obtained from the ratio of experimental to theoretical 

lift cur/e slope at kr ■ 0. Thus: 

WTSCL 

Where c  is the theoret 
a 

(exp) 
(kr = 0)/cl    (kr ^ 0) 

ical result and cc ^exp^ is that obtained experimentally. 

10 
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Similarly for the moment 

WTSCM = % (eXP) (kr = 0)/cm (kr = 0) 
i a 

Or, in terms of aerodynamic center, xac, and lift coefficient; 

WTSCM - c, (exp) ( x.. - xJe*P))/ct (xea-xac) 
a ea  ac 

where x  is the axis about which the moment is taken. 
ea 

The aerodynamic theory u^ed to obtain the AIC and, consequently, the 

c  (k ) Is a subsonic lifting surface theory containing no transonic effects. 

Thös, the effects of shock motion, etc., are not contained in this theory. 

Transonic effects can be included into the analysis by using an unsteady 

weight factor based on other theories which contain transonic effects. For 

instance, if a two-dimensional transonic theory is available, then it can be 

used as a basis for the weight factor. WTUS, on a strip theory basis as 

follows: 

WTUSCL (kr) 

(2DTRANS)   /- (»)  . 
[M/S    (M 

(MRANS)       /c (2D) 
(kr -0)/\      (kr = o) 

where c (2DTRANS) is the result obtained from the two-dimensional transonic 

theory anS c (2D) is the result obtained from the two-dimensional subsonic 

theory (the tfto-dimensional equivalent of the AIC). The reason for the 

division by the values of c^ at kr = 0 (steady values) is so that the weight 

factor WTUS will reduce to uftity for the steady case. This is required 

since WTS has already taken care of the steady weighting. 

The formula above for WTUSCL holds equally well for the moment; simply 

replace WTUSCL with WTUSCM and c^ with cm . 
a       a 

The application of two-dimensional theory to the three-dimensional swept 

wing case requires further analysis. Consider Figure 2.4-1. 

11 
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Figure 2.4 - 1  Strip Theory Approximation 
For a Hiqh Aspect Ratio Wing 

The constant chord two-dimensional swept wing, that approximates the 

strip on the wing whose chord length is c, is shown as dashed lines. The 

flow is two-dimensional, in a plane normal to the axis of sweep. If we 

designate all values given in this reference system with a superscript tilda, 

then the section lift, moment and frequency are: 

■ i /''- ■ i £ AC dx = c, 

m / 
ACpU-X^dx   =  i 

'v. 

/' 
ACjx-xJdx p        m m 

ü)C     _  u)C  COS   A 

2D 2& 
2U  COSA 

A _   

12 

■ ua^aaHl 



where k   is the frequency to use in the two-dimensional theory. The two- 

dimensioSSl frequency is related to the three-dimensional theory as follows: 

uC c    L    c 
kr     TIT ~ " kr  ~ r2D     » c     3D c 

The two-dimensional transonic theory used as a basis for this strip theory is 

presented in subsections 2.5 and 3.3. The Mach Number used in the two- 

dimensional theories is related to the free stream Mach Number as follows: 

M2D - M^ cos A 

In the strip theory approach the chord line of the airfoil section considered 

is forshortened as Figure 2.4-1 shows. The thickness and camber distributions 

however are not changed thus the effective thickness and camber of the airfoil 

section, as a percent of local chord, increases as 1/COSA. Also the angle of 

attack increases in the same way. 

2.4.1 Effects of Twist and Reynolds Number on the Steady Weight Factors 

The steady weight factors, WTS, are usually determined from wind tunnel 

data taken on semi rigid models. It has been found that the steady incidence 

angle of each wing section has an important bearing on both the steady and 

unsteady lift curve slopes especially for supercritical wings. Since the 

shock moves as the section angle of attack, a, is changed, there appears a 

large increase in perturbation pressure, C , at the steady shock location 

which is proportional to the jump v. steady pressure. Figure 2.4-2 which was 

taken from Reference 4, illustrates this effect. The effect of the peak in 

pressure is very noticeable in the moment coefficient especially for super- 

critical type wing sections. 

Figure 2.4-3 presents the lift and moment coefficient for the TF-8A wing 

(y/(b/2) = .804) operating at a free stream Mach Number of 0.99. Notice 

especially the nonlinearity in the moment coefficient. Figure 2.4-3 also 

shows nonlinearities caused by viscous or separation effects. These are easily 

seen in the plot of c£ versus a. 

The slopes of these curves, c£ , cm , are the parameters required for 

the weight factor calculation. Itais oßvious that the slopes vary along the 

curves. Sometimes this variation is very large. Thus, the values of c^ and cm 

13 
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Figure 2.4-2  Steady and Quasi-Steady Pressure Distributions 
on the NLR 7301 Airfoil in Transonic Flow 
(Taken from Reference 4 ) 
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Figure 2.4-3  Experimental Lift and Moment Coefficient for the 
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used depend to a large degree on the section angle of attack. The section 

angle of attack, ■ , is made up of the following parts: 

as - ^ + ^ + ^ 

which consist of the aircraft angle of attack a (which is a function of 

weight, etc.), the built-in twist, t., and the elastic twist, c, (which is 

proportioned to loading, dynamic pressure, etc.). Once the section twist is 

known, the values of c  and c  can be determined from the curves obtained 

from the wind tunnel. 0l 

This procedure is slightly different from the usual procedure of reading 

c  and c  on the linear part of the curve. The usual procedure is consider- 

edaconservStive because the linear value of c0 is most often the maximum 

value, resulting, usually, in the lowest flutter speed. 

Some caution must be exercised when using a to find the lift and moment 

curve slope. The reason for this is that the experimental curves of c£ and 

c , versus a may be inaccurate or inappropriate for several reasons. First, 

the pressure model is not entirely rigid and model bending and twisting induce 

elastic twist in the model. For instance, the elastic twist, t , induced 

by the bending of the swept TF-8A wing can be calculated from bending data 

given in Reference 2. Figure 2.4-4 presents a plot of normalized 

elastic twist £- /qa versus span for the one condition Uer,qrar) at which 

the bending was determined. This curve was used to correct the section angle- 

of-attack to an effective angle of attack, *mfft  for all cases as follows: 

or ££ =  a + t 
eff      e 

where 

e  = -T a q 
e     a 

or 

Vf =  a (1 - Ta U 

16 
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Figure 2.4-4     Elastic Twist of the TF-8A Pressure Model 
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where 

and where the reference condition is given by ap = 3.24° qr ■ 932 PSF, 

and the free stream Mach Number, M^ ■ 0.99. 

Just as small changes in steady section mean angle of attack, a^,  change 

the loading on the flutter model, small changes in üS on the pressure model 

have the same effect. Thus, elastic twist, although usually assumed small 

for the pressure model, wall induced angle of attack, etc. are important 

considerations when using the pressure model data. 

Another important consideration, especially for supercritical wing 

sections, is the camber change due to boundary layer thickness. Shock 

location and the loading on the aft part of the supercritical wing section 

are sometimes very critically affected by the boundary layer as Figure 

2.4-5 shows. This indicates that the boundary layer must be modeled accurate- 

ly in the wind tunnel. Therefore, among other things, the test Reynolds 

Number must be sufficiently large. 

Another reason for requiring that the test Reynolds Numbers be large is 

that the proper stall characteristics may need to he simulated. Flutter 

models are usually highly flexible so that flutter speeds can be reached in 

the wind tunnel. These models are dynamically modeled but are not staticnlly 

modeled. This flexibility can cause large negative twist values for swept 

wings. Figure 2.4-3 shows that, at y/(b/2) ■ 0.804 for the TF-8A wing 

operating at M^ ■ 0.99, any twist of the flutter model (beyond that built-in 

to the pressure model) of greater than a -2 degrees will put the flutter 

model into an apparent stall condition. At other sections, which do not 

stall quite so easily, the slope of the lift curve at a negative twist angle 

may change drastically from its untwisted position. Reynolds Number plays a 

part here since the nonlinear shape of the curve is a function of it. Thus, 

for insufficient Reynolds Number, the lift and moment curve slopes are not 

to be trusted except in the linear range. Figure 2.4-6 presents the effect 

18 
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Figure 2.4-6 The Effect of Reynolds Number on the Lift Curve of an 
Outboard Wing Station of the TF-8A Wing 
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r 
of Reynolds Number on the 11ft curve slope for positive angles of attack. 

There are noticeable changes In c£  for small changes In Reynolds Number. 

Thus, If the Reynolds Number for tWixpressure model test Is Insufficient 

(it should be approximately 107) then the results for lift and moment curve 

slopes may be Inaccurate for angles of attack in the nonlinear range. 

For the case of the TF-8A wing, the pressure test was run at a Reynolds 

Number of 1.96 x 106 (based on the chord at y/(b/2) = 0.75) where as the 

flutter model was run at a Reynolds Number ranging from 3.0 to 9.0 x 106. 

Thus, it must be concluded that the nonlinear portions of the lift and 

moment curves, as obtained from the pressure model, probably do not apply 
to the f1 utter model. 

The shock location also has a large effect on the unsteady and steady 

weight factors. Thus, the twist and angle of attack of the flutter model, 

or aircraft, must be known at the flutter speed if these weight factors are 
to be calculated properly. 

L 
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2.5 TRANSONIC TWO-DIMENSIONAL LIFTING SURFACE THEORY 

Three approaches to the unsteady transonic flow problem are: (1) direct 

numerical solution of the time dependent differential equations step-by-step 

in time using finite difference techniques (see References 5 and 6); (2) 

direct numerical solution of the oscillatory transonic differential equations 

using finite difference or finite element techniques (see References 7, 8, 

and 9); and, (3) solution of the transonic problem using lifting surface 

theory (see References 3 and 10). 

The first approach, which is currently operational in two-dimensional 

analyses, accounts for transient shock motion. The cost of this type of 

approach is prohibitive in production flutter and PSD gust analysis, at least 

with current generation computers. 

The second approach shows promise even though shock motions are currently 

not accounted for and even though it is restricted to low reduced frequencies. 

The dependence of the oscillatory transonic solution on the steady state 

solution multiplies the number of cases that must be done in a routine flutter 

investigation, thus, also multiplying the cost. 

Classical suosonic lifting surface theory has gone a long way in pre- 

dicting flutter speeds even in the transonic region, especially when steady 

weight factors are applied. It seems logical that modifications of lifting 

surface theory, to account for transonic effects, is a profitable avenue to 

investigate. The third approach deals with this area. The approach of 

Cunningham (Reference 10) is encouraging. This approach uses a local appli- 

cation of classic subsonic and supersonic lifting surface theories coupled 

with an appropriate shock motion analysis. 

The niethod of Reference 3 addresses the problem of modifying the 

classic lifting surface theories themselves to account for transonic effects. 

The lifting surface theory approach to the problem is economically the most 

desirable if it produces sufficient accuracy. 

In this section of the report, an investigation into a two-dimensional 
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transonic lifting surface theory is presented which is an extension of the 

initial work of Reference 3. The theory is split up into a part which is 

indt-pendent of shock wave motion and one part that deals strictly with ihe 

effects of the shock wave motion. The method is correlated using the MLR 

7301 airfoil. 

2.5.1 Basic Theory Without Shock Wave Motion Effects 

In this section, the basic differential equation for the potential, $, 

is solved using Green's theory which results in a surface singularity 

approach. The nonuniformity of the flow field is accounted for in the express- 

ion for the point singularities used. The airfoil boundary condition: are 

satisfied by adjusting the singularity strength. The basic singularity used 

in lifting surface theory is the doublet; however, the doublet can be obtained 

from an even more basic singularity, i.e., the source. The derivation of 

the expression for a transonic source is given in the following and in 

Appendix A. 

The shock boundary conditions are dealt with in Section 2.5.2. 

2.5.1.1 The Transonic Source 

Lifting surface theory is based on the assumption thet the disturbances 

to the fluid caused by a surface moving through it are small. These small 

disturbances travel through the fluid at the speed of sound a; acoustic 

waves. Classic lifting surface theory makes the further assumption that the 

medium through which the waves travel is uniform. It is felt that one of the 

major transonic effects arises due to the fact that acoustic waves encounter 

nonuniform flow fields. This is especially important for forward traveling 

waves in a near sonic stream. Small changes in fluid speed can change the 

direction of motion of these waves thereby changing the character of the 

flow. A derivation of an expression for the potential, ^, due to a source 

in a nonuniform stream is presented in Appendix A. The result is: 

N   T 

«t)(x,y,z,t) = 5^ j \ 
1=1 47r fti 
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The term o 1s the source strength which is a function of time. To understand 

this expression, it must be noted that a source In a fluid stream is actually 

an infinite string of acoustic pulses; one born at each Instant, traveling 

downstream. Figure 2.5-1 shows a source in a uniform flow located at 

U . n . t ) with an Illustration of the trailing acoustic pulses. Notice 

the two pulses that reach the receiving point (x,y,z) at  the particular time 

in question. These pulses were generated previously one at t = -t. and one 

at t = i2,  at the sending or source point (c , n . c )• 

Once an acoustic pulse Is generated, its total strength remains unchanged, 

Of course, the local wave strength on the pulse perimeter varies with time 

da the wave expands and distributes its strength along an ever-lengthening 

perimeter. Thus, the total strengths of the waves that have reached the 

receiving point (x,y,z) are a function of the time at which they were 

generated at the point (f , n , ; ).  The strengths of the waves reaching 

(x, y, z) are the strengths of the source at U , n0i ^0)  at the previous 

times t = x, and t«. This idea is written as B(T«) and o^). 

For the uniform flow supersonic case, these times T,, :„, or phase lags, 

are expressed as: 

(soni 
Uniform super- 

c case 

x9   =.  —   {M   (x - £ ) - R 
aB2 

For the uniform flow subsonic case, only one wave passes the receiving point, 

thus 

Tl 
_1 

aß 
- {M (x - £ ) - R} + t  1=1 Uniform Subsonic Case 
2   °°     o 

where 

R2 = (x - g2 ♦ ß2r2 

r2 - (y - n0)
2 ♦ U - ;0)

2 
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Acoustic Pulse 
Radius 

Figure 2.5-1  Time Histories of a Series of Acoustic Pulses Emmitted 
From a Moving Point Source 
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a = Speed of sound 

In general, there are N such waves passing the receiving point for the 

nonunifonu flow case. For this case, a special acoustic pulse generator 

is required to determine the time histories of the shapes and locations of 

the generated acoustic pulses in a nonuniform flow. Such an acoustic pulse 

generator is described in subsection 2.5.1.4. 

% 
In the expression for the source potential, .f, the term Ri is expressed 

in terms of acoustic pulse parameters as follows: 

i* IV" 

where VT is the total velocity of a point on the acoustic pulse surface, 

"n its surface normal vector in the direction of travel (see Figure 2.5-2), a, 

an equivalent speed of sound and p an equivalent acoustic pulse radius. The 

acoustic pulse generator is used to determine VT and n. The equivalent speed 

Figure 2.5-2  Pulse Surface Velocity Vectors 
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of sound i is determined implicitly from the following formula 

VT = V + a n 

This formula simply says that the total velocity. V-p of the wave front is 

a vector combination of the fluit velocity V and the acoustic velocity of 

the pulse, ä n. This is observed graphically in Figure 2.5-2. The nonuniform 

flow field V must be known from a suitable steady transonic flow solution; 

in this case the Jameson Method (see section 2.5.1.4). Since the total, VT, 

is known from the acoustic pulse generator the equivalent speed of sound, a, 

may be solved for. When no approximations forfi are used i = a and the formula 

for i is not needed. The expression for a is kept, however, for later refer- 

ence as approximations for n are introduced. 

i = (VT - V) • n 

The effective local Mach Number, M, is then 

ä    Vj • n - V • n 

The inverse of the term p is a measure of the local wave strength along 

the wave parameter. For the uniform flow case this term reduces to the 

acoustic pulse radius, P, (see Figure 2.5-1) where: 

p(t) = a(t - T^ 

and where a is the speed of sound in a uniform flow. A factor f is introduced 

to account for the fact that the wave strength, in a nonuniform flow, is not 

exactly proportional to the inverse of the acoustic pulse radius. 

} = fp = fa (t - T^ 

For uniform flow. Appendix A shows that ^ simply becomes the hyperbolic 

radius for both the subsonic and supersonic cases. That is, 

^ R =   (x - E,0)C ♦ ij ?  « • ^  Unifonri Flow Case 

27 

1     - 



■' 

If, further, the oscillatory case is considered for uniform flow, i.e., 
<J(T)    = ö exp(iw-r), then the expression for the potential becomes: 

N 
A ■ J. 1 T^  ei(JTi ♦    if t 2rf      J 

j=i 

For the supersonic case N = 2, and using the expressions for t^, T2 gives 

*(t) = ZTR    C0S(^) 
expLiuM^tx - ^o) / aen) ] e1" 

For the subsonic case N = 1, and using the expression for -^ gives 

2. i'^t 
*(t) =  ^R exp [i^ (x - ^0) / aß^ ] exp H^R/ae^ ] e 

These are the classic results for the potential of the supersonic and subsonic 

source. 

2.5.1.2 Equivalent Sending Point Location 

The acoustic pulse generator, to be described in subsection 2.5.1.4, 
provides a means of calculating the time history of an acoustic pulse emitted 
from a sending point U , n0, ;0) moving in a nonuniform steady transonic 
flow field. When the pulse has arrived at the receiving point, it has dis- 
tored from the classic circular shape and its wave strength has deviated 
from the classic value of s/p where p is the pulse radius. However, locally 
at the receiving point (x, y, z) an equivalent circular pulse can be matched 

to the actual pulse (see Figure 2.5-3). 

The quantities to be matched are the terms T^ and Ri appearing in the 

expression for the source in a nonuniform flow potential: 
N 

1=1 
47iR. 

that is, the terms x-  and R., for the equivalent circular pulse, are to be 
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matched to the actual pulse at the receiving point (x, y, z). Once the 

match is made an equivalent sending point location U0»  n0. c0)> flow field 

speed V, speed of sound ä and pulse radius p can be found. The bar over the 

terms indicates equivalent terms and not actual ones. The derivation of 

these equivalent terms is given as follows. 

(Acoustic 
Pulse 
Center) 

Actual Pulse 

Matched Circular Pu^se 

Figure 2.5-3  Matching a Circular Pulse to the Actual Pulse at the 
Receiving Point (x,y,z) 

From Figure 2.5-3, the following vector identity is easily observed: 

p ■ (x - c0) i + r = V (t - T) + pn 

or by components; 

(x - i0)    •    V (t - T) + pn, 
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and 
r = pn. 

where n = n • r/r 

Using these quantities in the expression for the equivalent hyperbolic 

radius, R, gives: 

R2   ■    (V (t - r) + pnx)2 + I1 p2 nr
2 

■  !r j • ♦ 2nxvä + v \ + L | 

where 

L    .    nr
2 (v2 - M2ä2) 

Now if we require that 

M ■ 

then L = 0 and R becomes 

R = p 
Vn. 

1 + 

It can be shown that this expression reduces to the expression for R/f as 

follows: 

\ 
R = P 

VT • n 
fR 

when it is assumed that the equivalent velocity is parallel to the x-axis, 

i.e.,V ■ V i and when we take note of the expressions 

V + a n 

p - f, 
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which were given in subsection 2.5.1. Thus, the equivalent hyperbolic radius 

is fR and the expression for the potential becomes: 
N 

t 
i=l i 

The quantities V, P, f and ä are yet to be determined. First, assume 

that V is the local flow field velocity, at the receiving point (x, y, z). 
Secondly, the pulse radius p can be selected by fitting the best radius to 
the actual pulse or simply by letting it be ä(t - tj where ä is the equiva- 
lent speed of sound. For simplicity, the latter is assumed. The quantity f 
is then obtained by noting the actual strength of the wave and comparing 

it to i(t - T), i.e., 

t   =  I  
ä(t - T) 

ir^r 

Pulse Surface 

-^xt 

Figure 2.5-4 Pulse Surface at Time 
Vector Quantities 

t and t+At and Associated 
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Thirdly, the equivalent local speed of sound can be obtained by refering 

to Figure 2.5-4. This figure shows the position of a wave at two time inter- 

vals At apart. Inspection of the figure shows that: 

VT ■ n ä + V i 
An -^ 
Zt n 

The term An/At can be obtained from the acoustic pulse generator in a 

numerical manner from the pulse shape at two successive times. Lastly, 

knowing the values of V and n allows ä to be solved for as follows: 

/An 
lAt 

V i • n) 

All terms in the expression for 4» are now known and it can be used in 

the form presented. However, the classic potential is usually not used in 

this form. Usually the more classical one given at the end of subsection 

2.5.1.1 is used. In these expressions, the terms T, and ^ are given in 

terms of (x - f, ), M^ and R as given in Appendix A. According to Figure 

2.5.3, 

r2 ♦ [(x - €0) ♦ V (t - x)]2 ■ a-2 (t - x)2 

solving this expression in terms of (t - x) gives 

♦ (t - t) = 
(x - L) V/i + R 

i (1  - M2) 

Since M   =    V/i then 

-2 -2 

and 

R2 = (x - g2 ♦ ß2 f2 

+   -(t - x)    -    \\Z^   L(x -  C0) M + R  J j /V/Uo 
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where kr = wc/2Uo 

Thus, the classic expression for „(t - t) is nK>dified by simply replacing 

M with i. and (x - U and r with (x - l0) and r and dividing by V/U  The 

The classic oscillatory subsonic case has one root, i.e.. i = 1 and the 

result, taken from the end of subsection 2.5.1.1. is: 

, . eiUt ^ exp [ („^ (x - g - Rl {1kr2M„ / i  I.
1) ] 

If we introduce the equivalent qualities, i.e., 

(x - g - (x - y = V(t - t) + P nx 

pn. 

M M = V/i 

where 

(7T - V i • n) 
At 

p = (t - T)ä 

and where V is the local flow field velocity at the receiving point and 

(t - x)  is the time required for the acoustic pulse to move from the 
sending point to the receiving point; then the equivalent potential *e 

for a source in a nonuniform flow is 

= e iuit  o 

AuRf 
exp [ (M (x - L) - R) (V< / E I2  V) ] 

where 

R2 = (x- l0)Z + f  r2 

Here the quantities (t - T). An/At and ^ are obtained from the acoustic 
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pulse generator and, V, from the steady transonic flow generator. 

2.5.1.3 The Two Dimensional Transonic Source 

The three-dimensional source can be written as: 

A  ■ * e 
iwt 

i M A(X - 

where A 

where \ 

*e = Ä? 

A/V/U 
00 

b M   2 
kr^  - 

ß   c 

4o^ -ixR e 

The two-dimensional source can be obtained from the three-dimensional one 

by integn 

infinity. 

by integrating the sending point in the n -direction from plus to minus 

P2D 
/ 

*edno 

If we assume f is independent of n then 

iMÄ(x-L) o -     'o' 
p2ü    " 4^f    e 

J n 

but 

/ 
e dn -enR   m 2    f 

i     -ß2(y-n0) 
K2D 0 

/  * 
-ixR dR 

J R2 •- R2 V
2D 2D 

where 

"20   '    <" " V2 " ß2 (' " '^o >2 
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Introducing I ■ R/R2D Qives 

dR 

00 

1/ 
-1XR?D e 
e     ZD de 

2D t T i 
1 

Thus the two-dimensional equivalent source is 

iMx(x - L)  (2) 
io   »      0 H ^•| fx 

'20 i4f 
(XR2D) 

(See Appendix C for expression for supersonic flow) 

The only difference between this source and the classic uniform flow source 

are the quantities f. i/M„. M and x - ^0 and z - l%. 

The assumption is now made that the source potential, »g. may be diff- 

erentiated and integrated to produce the velocity field due to a pressure 

doublet. This is necessary because the pressure doublet is the bas-'c singul- 

arity used in lifting surface theory. 

This assumption is probably accurate for differentiation; however, inte- 

gration requires consideration of a sending point that varies from the ongm 

to downstream infinity. The first step in obtaining the downwash due to a 

pressure doublet is to obtain the downwash due to a velocity doublet by a 

double differentiation, i.e.. fyllll. The second step is to integrate the 

effects of a distribution of velocity doublets along a line origmatmg at 

U  j ) and passing to downstream infinity parallel to the x-axis. The most 

accurate way to handle this is to obtain a new (t - t). AnMt. etc. for points 

along the integration path and perform the integration numerically. For now 

however, the values of (t - x). */At. etc. will be obtained for the origin only 

U  , )  In essence, this assumption states that the flow is nonuniform from 

^'sending point (^ L) to the receiving point (x. z) but that the flow is 

uniform from a point in the wake of the sending point up to the sending point 

itself. Figure 2.5-5 gives a graphical illustration. 

With these assumptions one simply introduces the equivalent geometry. 

(x - ^0) and (z 
I  ), along with the equivalent Mach Number, M. into the 
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(x.z) 
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Integrating Over Wake 

r 
—   ^^^"^»^1—I—I—I—V'       —       ^ 

*— Wake of Point 

«••*.) 

Pressure 
Doublet 

»H* 
Non-un1form flow region ' Uniform flow region 

r1gure 2.5-5     Result of Assuming that the Equivalent Geometry (V , 7 ) 
)11es Directly to a Point Pressure Doublet. 

Rest 
AppV 

expression for the point pressure doublet (used in lifting surface theory) 

and then proceeds to solve the resulting equations in ttM usual MRntr. 

2.5.1.4 Acoustic PulM Generator 

In the previous subsections expressions were derived for equivalent 

distances and Mach Numbers based on the properties of acoustic pulses traveling 

in nonuniform flow fields. It was assumed that the following data were obtain- 

able from these acoustic pulses: (1) (t - i). the time taken for a pulse to 

travel from its origin U0, ^0) to a receiving point (x, z); (2) n, the normal 

vector of the pulse surface at the receiving point; and (3) f, the dialation 

of the pulse over and above the usual time dialation. These quantities are 

known if the time history of the pulse is known. In this subsection, a method 

of computing the pulse time history in a nonuniform flow field will be 

presented. 

Basically, a pulse surface is made up of a series of points each of which 

has its own time history or trajectory. The velocity of these surface points 

depends on the flow field velocity, the speed of sound, and the normal direction 

of the surface in the direction of motion. 
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Figure 2.5-6 Quantities Associated With the Trajectories of 
Points Lying on a Pulse Surface 

Specifically, Figure 2.5-6 shows that the total velocity VT of a point 

in the acoustic pulse surface is the vector addition of the flow field, V, 

and the pulse front velocity, which is the speed of sound in the direction of 

the surface normal, i.e., a n. Thus the total is: 

VT = V + na 

or in the normalized form. 

-I    J-  4  IL 
U  "UM 

where M is the free stream Mach Number. 
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The normal vector, n, at a pulse surface point is obtained by averaging 

the normal vectors of the elements on either side of the point as Figure 

2.5-6 illustrates. Thus, 

n :  (^ +1^) / 2 

More sophisticated curve fitting procedures were tried but they were found to 

be time consuming and sometimes unstable. This simple procedure has worked 

best. 

i—i —d > 

h Shock Location. 

l>lR 

zR 

zR. max 

(max-i 

uzR, 

'zR. 

zR, 

■  Tran sformed Airfoil Upper Surface 

Figure 2.5-7  Grid Used for The Interpolation of The Transonic 
Flow Velocity Field 

The velocity V( x, z) was obtained by an interpolation/extrapolation 

procedure based on a set of velocities obtained from a modified Jameson 

steady two-dimensional transonic computer progra.Ti (Reference 11). 
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The onset velocity field V is broken up into a uniform component UJ and 

a nonuniform increment. AV.    The interpolation/extrapolation is performed on 

the nonuniform increment. AV.    The vector notation will be dropped for conven- 

ience.   Also, with this program, it was assumed that AVzk was small enough to 

ignore.     The interpolation in the x-direction is linear as follows: 

AV(x. h    ■    LAVj+1(z) - AV^nrnx       ♦ Ifjff) 

where 

mx 
x - XRj 

XRj+1-XRj 

and where XR. are the x-locations of AV^Z). i.e.. the values to be inter- 

polated from. Figure 2.5-7 illustrates the grid of points. The tilda over 

the z indicates a transformed plane where the airfoil surface transforms into 

the z = 0 plane. The upper and lower surfaces are calculated separately and 

treated independently. The transformation required to render z = 0 on the 

surface is assumed small enough to ignore subsequent to the transformation. 

The determination of If-flf) is either found by linear interpolation, for 

1 1 ZR(max-l) 
or by Curve fittin9 f0r * *  ZR(max-l)- The exPression for 

interpolation is: 

AV-tf) = UV^R^) - AV^R.)] mZi ♦ Ufa]        z < ZR^^.T) 

where 
z-zRi 

For the case z > ZR 

«.m 
(max-1) 

the formula to use is: 

(b^ + l) 

b   = 
^W i\    max 
ZR       , AV/ ZRmav , \ max-1     |     max-1 ) 

ZRma¥ AV(ZRmaJ max max 
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This formula has the property of approaching zero like 1/z as z approaches 

infinity. This formula is fitted through the last two points; ZR  and max 
ZR   I. Figure 2.5-7 also illustrates this curve. 

The values of /W.(ZR.) are obtained from a modified version of the steady 

flow two-dimensional transonic method of Jameson (Reference 11). The 

method had to be modified since only surface values of velocity, pressure and 

Mach Number were computed. Appendix B presents the method used in modifying 

the Jameson procedure to produce the flow field velocities off of the body 

surface. Basically, what was available was the potential at various grid 

points in a plane transformed so that the space around the airfoil was mapped 

into a rectangle, one unit high and two units wide. The procedure involves 

multiple mappings and Appendix B presents the properties of these and their 

use in obtaining the flow field velocities. Figure 2.5-8 presents an example 

of the flow field incremental velocity, V - U^, as calculated by the modified 

Jameson procedure for the NLR 7301 airfoil operating at M^ = 0.745 and 

a = -0.20. 

The acoustic pulse generator is initiated by prescribing an initial set 

of points, given on the arc of a very small circle. As time passes, the pulse 

radius, and thus, the distance between adjacent points, becomes large. An 

automatic procedure for filling points in between these initial points has 

been implemented. Thus, the character and accuracy of the pulse surface is 

maintained even if the surface is dialated excessively at various points. 

Points are filled in at a rate such that the distance, D, between adjacent 

points does not exceed: 

D ^A(t - t)i 

where A is a prescribed parameter. 

Example calculations of the acoustic pulse generator are shown in 

Figure 2.5-9 through 2.5-11.  Figure 2.5-9 presents the time history of the 

surface of an acoustic pulse in a nonuniform flow whose origin is at the 55% 

point on the NLR 7301 airfoil operating at M^ = 0.7 and a = 1.75°. Below 

the x-axis is presented, for reference, the time history of the same pulse in 
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NLR 7301 Airfoil, M«» 0.745, »■ -0.2 

AV • IVI - Uoo 

02554 

Sonic 

.10288 

Figure 2.5-8  Non-uniform Flow Field Increment Over the NLR 7301 Airfoil 
As Calcul«ted by the Jameson Transonic Flow Method 
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x/c = .35601 

AV 
20... .30    .40 

AV 

Figure 2.5-8 (Continued) 
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Figure 2.5-8 (Continued) 
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Nonunl 
Flow 

1.25     1.0     0.75 0.37S 

Figure 2.5-9     Time History of An Acoustic Pulse Hhose Origin Is At 
x/c ■ 0.55 For The Nonunlform Flow (above axis) and 
Uniform Flow (below axis) Cases.    Nonuniform Flow is 
That for The NLR 7301 Airfoil  (M^- 0.7, o« 1.75°) on 
the Upper Surface 
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4.5 4.25 3.75    ,„ 3>0 
4-0        3.50 2;7b2.5     2<0 

1.5    1.25    KG   0.75    0-50    0.375 

Figure 2.5-10(a)T1me History of an Acoustic Pulse Hhose Oriqin Is At 
x/c - 0.70 For The Non-Uniform Flow (above axis) And 
Uniform Flow (below axis) Cases.    Non-Uniform Flow is 
That For the NLR 7301 Airfoil  («,■ 0.745. a - -0.2) 
On The Upper Surface. ZD 
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Uniform 
Flow 

Figure 2.5-10    (b)    Time History of an Acoustic Pulse Whose Origin is 
at x/c =0.4 for the Non-Uniform Flow (Above Axis) 
and Uniform Flow (below axis) Case.    Nonuniform 
Flow is that for the NLR 7301 Airfoil   (M^ 0.745, 
a = -0.2°) on the Upper Surface. 
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•-Uco+AV 

75 0.50 0.375       jfcM 

Figure 2.5-11     Time History of An Acoustic Pulse Whose Origin is At x/c = 0.55 
For The Mon-Uniforr How (above axis) and Uniform Flow (below 
axis) Cases.    Non-Uniform Flow is That for The TF-8A Wing 
Section at y/(b/2) - 0.657 (M2D « 0.711 «2D « 4.20) on the 
Upper Surface. 
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in a uniform flow. The time history depicted below the x-axis is the type 

assumed for the classic lifting surface theory, where as. that shown above the 

x-axis is the actual one. 

The nonuniform flow field found on the upper surface of the NLR 7301 

airfoil operating as indicated possesses a supersonic zone ahead of the 40% 

point which is terminated with a shock wave that extends to a height 01" 0.2c. 

A small secondary supersonic zone occurs aft of the shock also. The acoustic 

pulse surface moves forward very slowly at first slowing down even further as 

it approaches the shock wave location (40% point). The upper part of the 

acoustic pulse moves forward of the lower part causing a rotation in the 

inclination of the wave surface. As the wave rotates counter clockwise it 

starts moving into the supersonic zone; the greater the rotation the faster 

It moves. 

Figures 2.5-10(a) and (b) presents a similar calculation for the NLR 

7301 airfoil operating at the design "shock free" point of M^ = 0.745 and 

a ■ -0.20. Even through there is no shock the supersonic zone still acts 

like a barrier to the advancing acoustic wave. The wave shapes are quali- 

tatively similar to those for the shock wave condition except that the pulse 

passes into the supersonic zone a little more smoothly. 

Figure 2.5-11 presents a third example calculation. This involves the 

TF-8A wing. 

2.5.1.5 Application to Lifting Surface Theory 

The transonic approach taken in this report consists of finding equivalent 

geometry and Mach Number that exist between a sending anc receiving points and 

then placing these equivalent quantities into the classic theory for the 

desired transonic result. Thus a classic method is required that will cover 

both the subsonic and supersonic cases. The Doublet Lattice Method is subsonic 

only and thus, a supersonic extension is needed. Such an extension for the 

two-dimensional case is derived in Appendix C. As a test case, the supersonic 

Doublet Lattice Method was compared to the analytic solution for an airfoil 

pitching about its mid-chord at M = 1.2 and kr = 0.99. The result shown in 
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Figure 2.5-12 is very satisfactory. 

8r 

AC. 

Analytic 
• •     Present Method 

y 

Figure 2.5-12     Comparison of the Present Method With the Analytic 
Solution for The Oscillatory Supersonic Case. 
Airfoil Pitching About Mid-Chord at k   - 0.99 and 
»,■ 1.2 

Cunningham (Reference 10) has shown that the downwash boundary 

conditions should be modified for the transonic case. 

w r w 

Or, the modified downwash, w, is the unusual downwash, w, times the ratio of 

local surface Mach Number, M, to the free stream Mach Number, M^. Cunningham 
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goes on to modify the reduced frequency in a similar manner. 

In the method developed for finding an equivalent geometry (subsection 

2.5.1.2) the possibility exists that a planar case (airfoil in z = 0 plane) 

may become nonplanar because of the acoustic pulse matching procedure. That 

is, the matched circular pulse may have its origin {l0,  LJ off the airfoil 

surface even though the actual origin U0. c0) is on the surface. This is 

especially true for acoustic pulse waves traveling upstream over the top of 

supersonic zones. As Figures 2.5-9 through 2.5-11 show, these pulse waves 

become inclined to the airfoil surface. Such an inclination for matched 

circular pulse waves indicates a pulse origin that lies off of the airfoil 

surface. 

At this stage of development of the method, such a complication of the 

calculation is unjustified. Thus, an assumption is introduced at this point. 

The fitted circular pulse origin is assumed to lie on the airfoil surface. 

This means that the wave normal vector is not matched but the time of arrival 

(t - T) is matched. The equivalent values of geometry and flow parameters 

then become: 

(x - y ♦ ¥ (t • T) ♦ Ij m 

where 

6m   -   sign (x - g 

M V/ä 

where 

a = Al. • i 
At   * 

(t - t) i 

Where AX is the incremental distance along the x-axis that the pulse has 

traveled during time At. With these quantities (x - L) and M, can be 
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written as: 

(x - y ■ (t - T) (1 + 6m/M)V/Uo 

M = 1 / 
AX 

AtV 
- 1 

The values of (t - T) and M are introduced into the subsonic-supersonic 

two-dimensional Doublet Lattice Method to account for transonic effects. To 

save computation and input time and expense, the values of t - T and M are not 

input'for every sending/receiving point combination (which for 10 elements 

would be 100 values) but are input at a selected set of points. The 

values needed are then obtained by a double linear interpolation scheme. 

Figure 2.5-13 presents an example of a typical time-of-arrival plot. Speci- 

fically, the time of arrival of an acoustic pulse (whose origin is located at 

the 70% point) at various locations on the airfoil surface is presented. 

Notice that the time of arrival of the pulse is large upstream of the pulse 

origin and small downstream of it. This is because upstream moving acoustic 

pulses are moving against the flow while downstream moving pulses are moving 

with the flow. The result for the uniform flow case is also shown. Even 

though the flow at the airfoil surface is supersonic on the forward portion 

of the airfoil, the acoustic pulse still moves upstream (see Figures 2.5-9 

through 11), even if only very slowly. 

Notice that the curve of (t - T) VS x/c has a discontinuous slope at the 

sending point. A special interpolation procedure is used because of this 

change in slope. This special procedure requires that the curves of (t - T) 

vs x/c be known not only over the airfoil surface but a short distance up and 

down stream of it. For instance, in Figure 2.5-14, if the desired sending 

point, XSI,, lies between two available sending points, XS1 and XS2, then an 

interpolated curve (shown dashed) must be instructed. The right half of the 

interpolated curve is obtained from the right halves of the known curves 

conversely the left half of the interpolated curve is obtained from the left 

halves of the known curves. In this example it is easily seen that the left 

half of the known curve eminating from XSI must extend forward of the leading 

edge so that an interpolated left half can be constructed. The converse is 
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Time of Arrival 
(t-r) 

Interpolated for XSI 
1 

Leading 
Edge 

Figure 2.5-14 

Trailing 
Edge 

Tlme-of-Arrlval versus Chordwlse Position for Acoustic 
Pulses at Various Sending Point Locations 

true for the trailing edge when dealing with the right half of an interpolated 

curve whose origin lies between XS4 and XS5. 

The local effective Mach Number, M, is also a discontinuous function 

and requires special treatment. It has been found that it is a function 

mostly of the receiving point location and whether it is up or down stream 

of the sending point. Figures 2.15(a) and (b) present the local effective 

Mach Number plotted versus the receiving point location for various sending 

point locations for two conditions. The following conclusions can be drawn 

from these figures. First, for receiving points downstream of the sending 

point, the local effective Mach Number is close to the local surface Mach 

Number. Second, for receiving points downstream of the supersonic zone 

the local effective Mach Number is also close to the local surface Mach Number 

independent of the location of the sending point. Third, for receiving 

points upstream of sending points (in a supersonic zone) the local effective 

Mach Number falls on one curve independent of sending point location and the 

Möch Numbers are subsonic. The reason why the effective Mach Numbers are 
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Figure 2.5-15(b)    M^    ■    0.70       a     =      1.75c 
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subsonic for this condition is that the acoustic pulse wave fronts manage to 

propagate up into this supersonic zone just as if the Mach Numbers were sub- 

sonic. Figures 2.5-9 through 11 illustrate this mechanism. 

Other assumptions have been made to facilitate the incorporation of the 

effective geometry and Mach Number into the classic subsonic and supersonic 

methods. For instance, the application of this technique to pressure doublets, 

which are used in the Doublet Lattice Method, requires just such an assumption. 

A discussion of this assumption is presented in subsection 2.5.1.3 but it 

bears repeating here. 

Pressure doublets are made up of a distribution of velocity point 

doublets along a line starting at the pressure point U0, ^ and passing to 

downstream infinity In the x-direction. The effective geometry and Mach 

Number should, strictly speaking, be applied separately to each of these 

points in the 'wake' of the pressure doublet. However, to simplify this pro- 

cedure, it is assumed that the effective geometry and Mach Number for the 

pressure doublet (with wake) are those based on the leading edge of the 

pressure doublet, i.e., the sending point U , ;.)• This means that pulses 

that elinate from the wake of the pressure doublet (aft of the po<nt U0, c0)) 

see a uniform flow between them and the point (c , c ) and a nonuniform flow 

from there to the receiving point (x, z). The effects of this assumption are 

not easily observed; however, in general they should not be too large. 

Future refinements may involve the elimination of this assumption. 

Another assumption involves the basic nature of the transonic pulse. 

The basic theory of transonic nonuniform flow (subsection 2.5.1.1) shows that 

the effect of an acoustic source at a receiving point (x, z) depends on how 

many times the pulse passes over that point. The summation over j from 1 to 

N in the equation for ^ in subsection 2.5.11 and Appendix A indicates this 

fact. In classic subsonic flow, the acoustic pulse passes over a given point 

only once (see Figure 2.5-16a). The upstream facing part of the pulse moves 

slowly upstream while the downstream part moves rapidly in the downstream 

direction. In supersonic flow, such Is not the case. The pulse wave either 

passes over the point twice (for a point lying in the aft Mach cone of the 

source) or not at all, for points lying outside of the Mach cone. The down- 

M^O. ■ 
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(a)   Subsonic (b)    Supersonic 

H..IJ 

(c) Transonic (Upstream Influence) 
(d) Transonic (Downstream Influence) 

Figure 2.5-16 Pulse Wave Patterns for Various Flow Conditions 
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stream facing part of the wave passes first and then the upstream facing 

part, which is being swept downstream (see Figure 2.5-16b). 

For transonic flow, the qualitative characteristics of pulse wave passage 

can be more complicated than just described and can also act subsonically in 

a supersonic zone and supersonically in a subsonic zone. For instance, it 

it has been shown that pulses can move upstream up and over a shock wave and 

down into the supersonic zone (see Figures 2.5-9 through 11 and Figure 2.5-16c). 

The basic nature of this pulse is subsonic; acting in accordance with the 

local effective Mach Number M and not the local supersonic Mach Number M. 

For this case, the pulse passes over the receiving point once. Thus.^the 

subsonic Doublet Lattice Method is modified for this case using (x - IJ  and 

M. Refering to Figure 2.5-16d. it is seen that pulses that start out in a 

supersonic zone have a dual character: a supersonic character, where the 

pulse passes over those receiving points twice that are within the Mach 

cone (x,. I.) (not quite a cone for this case) and, a subsonic character, as 

the pulse breaks out of the Mach cone and moves upstream to pass over points 

that lie outside of the Mach cone (x2. Ij). The receiving point (x1. z^ 

then has the pulse passing over it three times. An assumption currently 

adopted, which could be eliminated, is that the third passing of the wave is 

neglected for points lying within the Mach cone. The single passing of the 

wave at (lg. Ig), however, is retained. Figure 2.5-17 illustrates this case 

by presenting the time-of-arrival versus airfoil location for an acoustic 

source located at x/c = 0.4 for the NLR 7301 airfoil at M = 0.745 and a ■ -0.20f 
In the area lying between 0.53 >*■> 0.4. there are three values for the time- 
of-arrival of the acoustic pulse. Currently.in the present method the highest 

of the values of (t - t) is ignored in this area. There is some justification 

for this since the pulse wave strength weakens as time increases. However, 

other factors, like the speed with which the wave passes over the receiving 

point, have a large effect on the magnitude of the pulse contribution. The 

second highest value for the time of arrival is accounted for implicity by 

using the first time of arrival to obtain (x - l0)  and M and assuming 
supersonic flow. This means that the second time of arrival is legislated 

using (x - L) and M and is not quite equal to the actual value. The relation- 

ship between0the two times-of-arrival (assuming uniform flow quantities of 

V. a, etc.) is 
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(t - T)( (t - T) 1 
M ♦ 1 

M - 1 

The result is shown in Figure 2.5-17 as the dashed line. This assumption can 

also be eliminated by breaking up the supersonic evaluation into its two 

component parts and applying a separate time-of-arrival and local effective 

Mach Number for each part. Currently, this refinement does not seem warranted 

but may be in the future. 

In summary, the equivalent (x - i )  and M are used in the classical 

formulas for either the supersonic (M > 1) or subsonic (M < 1) downwash 

influence coefficients for every sending (4 ) receiving (x) pair of points. 

This simple way of The classical method used is the Doublet Lattice Method 

using the equivalent data, i.e., (x 

but at this stage of development this seems appropriate. There is no use 

refining a method before it has been tried. 

I ) and M is approximate in some ways 

This method was applied to the NLR 7301 airfoil at its shockfree design 

point. Figure 2.5-15(a) presents the values of M used, while Figure 2.5-18 

presents the time-of-arrival data used. Figure 2.5-19 presents a comparison 

for the steady case of the present method and the Jameson Method. The results 

for the Jameson method are obtained by taking a numerical derivative of the 

results at o as follows: 

= 1 
/ P 

a + 
Aa 
2 ) - C  (a = a - -^ )./ Aa 

Figure 2.5-19 presents data for the upper and lower surfaces. On the 

upper surface the present method is compared to the numerical derivative of 

the Jameson method Ua = 0.10°) for two average angles of attack, ä, that are 

only slightly different. The difference in the Jameson results for ■ of 
-0.2° and O.^S'ls large. The large response of C  to small S changes is 

not currently understood. Because of this, the derivative itself may be in 

doubt. The present method is in better agreement with the Jameson method 

than is the classical result (which is the negative of the classic result 

for the lower surface). It is the opinion of the author that the large 

response of the Jameson method to small changes in ■ can not be duplicated in 
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Ö-0.24 

• • • Jameson 

  Present Method (^=-0.2°) 

Classical Theory 

V ö-745 
NLR 7301  Airfoil 

•   ö - .0.20°, 0.175° 

Figure 2.5-19  Comparison of the Present Method and the Classical 
Theory with the Jameson Transonic Method for Two 
Average Angles for the Case of Shock Free Flow 
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practice by the present method with its current set of assumptions. The 

present method depends on the Jameson methci at ä bo* U does not seem possible 

that the flow field would change enough (by chanqi; o I  from -0.2 to .17) to 

change the entire character of the acoustic pulse solutions. If such changes 

do occur, it seems that a much more accurate representation of the flow field 

must be used, in the acoustic pulse generator, than the one in use (double 

linear interpolation). It seems that a fruitful l^ne of investigation would 

be to try and uncover the mechanism of this rapid change of character with ■ 
using a finite difference method like the Jameson method or better yet, the 

Traci-Farr-Albano method (Reference 8). 

On the lower surface of the NLR 7301 airfoil, the classic theory and 

present method are compared with results from the Jameson Method. As expected, 

this surface exhibits less transonic effects than the upper surface. Also, 

changing ■ from -0.2° to 0.17° does not effect the result to any noticeable 
degree. The results for the present method agree fairly well with the Jameson 

method. 

Application of the present method and Jameson method to the NLR 7301 

airfoil for an off design case (M^ ■ 0.7, ■ = 1.75°) is presented in Figure 

2.5-20. In this case, a shock wave exists at x/c = 0.4 (see Figure 2.5-22). 

Also, shown in this figure, is the classic uniform flow subsonic result which 

bears no resemblance to the Jameson result. The results given by the present 

method do not correlate with the Jameson results especially in the region of 

the shock wave. Notice especially that the large peak in pressure at the 

shock location is missing. In addition, the large negative peak in pressure 

is missing. What does exist is a pressure that peaks at a value that is 

approximately the average of the two peaks however which lies midway between 

them. This indicates that shock wave motion effects are missing from the 

present method. This could easily be the case since no boundary or compati- 

bility conditions were introduced at the shock location. The subject of the 

next subsection is the inclusion and satisfaction of shock wave motion 

boundary and compatibility conditions in the present method. 

Before proceeding to these subsections, it will be instructive to compare 

the Jameson method with experimental data gathered for the NLR 7301 airfoil 
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Figure 2.5-20  Comparison of the Present Method (Without Shock 
Wave Effects) and the Classic Theory With the 
Jameson Transonic Method 
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Figure 2.5-23  Comparison of the Jameson Transonic Method With Wind 
Tunnel Data for The NLR 7301 Airfoil. Jameson Method 
Used at Two Angles of Attack 
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and presented in Reference 4. Figures 2.5-21 and -22 present comparisons of 

wind tunnel data with the Jameson Method for the two conditions previously 

studied. The angles of attack have been adjusted to reproduce the best 

comparison. A better method of matching however, is to add the boundary 

layer thickness to the airfoil and rerun the transonic calculations. A 

second method is to perform an inverse calculation whereby the required 

pressure distribution is input and the modified airfoil shape it output. This 

latter technique was applied in the cases of the TF-8A and YC-15 wing sections 

(to be discussed later) but was not applied in this case. Figures 2.5-23 

and -24 compare data with the Jameson method for .*C /Aa. These figures show 

that the pressure levels output by the Jameson method are approximately 

correct and can be used as a basis for comparison with the present method. 

These figures, especially 2.5-23, show that the transonic perturbation prsss- 

ures are very volatile, varying rapidly with the flow parameters. In Figure 

2.5-24 note especially the disagreement between the Jameson method and data 

aft of the shock. 

The question may arise: if the Jameson program predicts the perturbation 

loads adequately, why not use the Jameson program alone and not worry about 

the lifting surface method. First, the Jameson program is applicable only to 

steady flow. Second, the extension of the Jameson method to three-dimensional 

flows will increase the cost significantly,whereas the lifting surface theory 

costs are very reasonable. 

2.5.2 Effects of Shock Wave Motions 

Figure 2.5-20 illustrates that the present method, as developed up to 

this point, does not account for shock wave motion. Inspection of this figure 

shows that the shock motion effect plays a dominate role in the prediction of 

transonic loads. Thus in the next few subsections the theory for the effects 

of Shockwave oscillation will be developed. Along these lines References 10, 

12 and 13 are helpful in the following developments. 

2.5.2.1 Interference Flow Due to Shock Motion 

The following jump conditions across a shock wave can be derived from 
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Reference 14 (page 59 Eq. 2.47). 

u. 

w. 

2 t  (i 
^2 ) 

= 0 

where l and w are the x and z components of the velocity, the tilda stands for 

instantaneous position and the subscripts stand for locations just up and 

downstream of the shock. Therefore these shock jump conditions hold just up 

and downstream of the instantaneous shock position. In order to translate 

these conditions to the steady shock surface an analytic continuation of the 

steady conditions is necessary. Consider the velocity potential for instance: 

J 1.2 *. 
iwt 

'1,2 
X 3*    / 9X + $ 

1.1 1.2 

where *   is the steady potential just up U ) or downstream (<k ) of the 
sl 2 12 

steady shock position, x is the amplitude of oscillatory motion of the shock, 

is the oscillatory perturbation potential just up or downstream of and <t> 1.2 
the steady shock location (see Figure 2.5-25). Here we have made the assump- 

tion that the shock moves in a simple harmonic manner. Since w ■ 3$/9z the 
tangential flow boundary condition w2 - ^ =0 can be written as follows 

using the above expression for ^1>2: 

w  - w s2  s1 

Wp ~ JWi 
ax   ax 

steady 

Oscillatory 

But since w = 3$/9z then 

3WS/9X     ■     324.s/a29x     =     8US/9Z 

Thus the oscillatory shock jump condition can be rewritten as 

w2 .«, X-*[\ 0 
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Figure 2.5-25 Analytic Continuation of Flow Variables Due to 
Shock Wave Motion 

This equation shows that vorticity exists on the shock surface because there 

is a jump in t^e tangential velocity w, across the shock. Let y  be this 

vorticity, then 

i--v - -li(vv Y  ■  "(W, - W,)  =  A 

If we use the linear expression for the steady pressure, i.e., Cp - -2 us/Uoo 

then the vorticity y  can be expressed in terms of pressure jump across the 

steady shock wave. 

»fc   V 
) 

U / 2 (2.5.2-1) 

The quantities C  (z) and C  (z) are known from the steady solution, there- 
Ps2      \ 

fore Y/X is known. 

This vorticity distribution induces a flow field (see Figure 2.5-26) in 

the vicinity of the airfoil which must be negated by the doublet lattice 

elements that are on the lifting surface. Cunningham (Reference 12) came to 
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Downwash 

Figure 2.5-26  Shock Vortlclty Interference Flow 

the conclusion that a concentrated vortex was to be placed at the foot of the 

shock wave to simulate the shock motion interference. However from the above 

derivation it is seen that such a concentrated vortex is an approximation of 

the distributed vortlclty that lies on the shock surface. Tha strength, r, 

of this equivalent concentrated vortex is: 
zsonic   i \ 

r -   f ydz    =    xU      (0) -Cp {0))lW 2   (2.5.2-2) 

Ö V  s2      Sl 

,inrp r   (Z  . ) - C   (z  . ) = 0. This is because the pressure jump 
since L   vzsonic'   pc 

v some' 
s2 sl 

across the shock at its upper end. zsonic, is zero. The quantities Cp (0). 
s2 

C  (0) are the steady pressure coefficients on the surface (z = 0) in front, 

C  , and in back of, C  , of the steady shock. 
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For simplicity in the present analysis the point vortex model will be 

adopted. The onset downwash flow field due to this point vortex can be 

computed with the aid of the equivalent geometry, (x ■ ^0 )» and Mach Number 

M where the subscript "sv" stands for "shock vortex'. SoM  question arises, 
however, as to what values of time delay (t - T) should be used in this down- 

wash calculation and if the point vortex is to be placed on or off of the air- 

foil surface. At present it will be assumed that the point vortex lies on the 

airfoil surface and that the time delay to be used is that which is associated 

with this surface point. Figure 2.5.27 presents the downwash due to a unit 

0.5r 

Downwash 
Due to 
Shock 
Vortex  X 

/ 

Figure 2.5-27 Shock Vortex Interference Flow Downwash For 
The NLR 7301 Airfoil Operating at M^ - 0.7 
and a« 1.75° 
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point vortex on the surface of the NLR 7301 airfoil at the shock location 

R/C = 0.4 for the off-design case of M^ ■ 0.7. Shown in this figure are two 

curves; one representing the downwash due to a transonic vortex and one 

representing the downwash due to a classic subsonic vortex in a uniform 

stream (of Mm= 0.7) for reference. As a check on t - T for the shock wave 

vortex the acoustic pulse generator was rerun fbr a series of points above 

the airfoil along the shock surface. The resuTs are that the time delay, 

t - T, did not change significantly for points along the length of the shock 

wave. 

For the NLR 7301 airfoil the shock motion x is known because of experi- 

mental data and data from the Jameson method. Thus the vortex strength, r. 

is: 

r = A/z/c (o) (o)\ = 
n / 

3X/2 
3a 

(0) (0) 
) 

where 3A/8a is the rate of change of shock motion from its steady position 

with respect to a. In general this term is time complex but in the steady 

case to follow it is simply a real number. For the NLR airfoil at \»  0.7, 

a  = 1.75° the Jameson method gives 3X/3a( Cp (0) - Cp (0))= 6.02. Thus 
s2      Sl 

f  ■ 3.01 for this airfoil and condition. The resulting interference pressure 

is presented in Figure 2.5-28. Large variations are observed between the 

classic subsonic vortex and the transonic one. This volatibility indicates 

that the details of the vorticity on the shock may be important. Future 

refinements should then include refinements in the modeling of the shock 

vorticity. 

2.5.2.2 Pressures Due to Shock Wave Motion Interaction with Steady Flow 

The pressures C  caused by the shock vortex interference flow (shown in 

Figure 2.5.28) is to be added to the pressure calculated in the absence of 

the shock (shown in Figure 2.5-20). Before this is done however there is one 

more term that must be considered. TMs last term in the pressure is caused 

by the direct action of the shock wave on the surface. As the shock wave 
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passes over a p^ticular point the perturbation pressure rises sharply. The 

region on the airfoil where this occurs is confined to that area over which 

the shock wave moves. 

The pressure coefficient C on the airfoil due to the motion of the shock 

wave is 

Cp(a. X)  = (Cps  - C 

where H is the step function at the instantaneous position of the shock xs(a) 

and the zeros have been dropped from C  (0) and C  (0) for convenience. 
Ps2      \ 

The derivative is: 

•.•(' 
).(J-?M)(^'.) (2.5.2-3) 

where 6 is a dirac delta function. In the limit as the amplitude of shock 

wave travel is reduced to zero then 

"V x (a) -»■ * E steady position of the shock 

3a 
11 
3a 

X = X, 

The force, F /q, generated by this pressure is then 

F /q = 
J      ^       ( Ps2   Ps^

9" 

For the case of oscillatory motion ^ = x
0 exp (-iwi) and a 

If F/q = F/q exp(iü)t) then: 

F/q ■ Fa /q a expH^) 

(2.5.2-4) 

üiexp(ia)t). 

(2.5.2-5) 
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3X. 
where | and y-2- are functions of the reduced frequency kr. Notice that 

equation 2.5.2-4 is exactly equal to the force generated by the shock vortex 

of strength r .  That is: 

F^ 

3a ^ PS2   "t, | 

The expression for the pressure, C , given in equation (2.5.2-3), is 

not suitable for plotting and applies fo? infinitesimley small motions 

finite motions, consider the finite form of C : 

For 

AC 

Aa 
J .,) 

Aa («-I xs + 3A/3 •n - H(X xs)  (2.5.2-6) 

This is a rectangular shape of height (C   - C  )/z.a and width 
S2   Sl 

An = 3A/3a Aa. This equation applies for shock waves that are not defused. 

However Figure 2.5-22 shows that the shock is not sharp for the NLR 7301 

airfoil at M^ = 0.7 and a = 1.75°, but is spread out from x/c = 0.39 to 

x/c = 0.45; a total length of Ax = 0.06. An approximate way of accounting 

for this effect would be to plot AC /Aa as a trapezoid whose base is 

AX + AX . whose top width is AA and whose area is F /q. For the NLR 7301 s 0 a ^ 
airfoil at M^ = 0.7, a = 1.75 the value of AX is 0.065 for a corresponding 

Aa of 0.0087 rad. The trapezoid base is then 0.125, the top width is 0.065 

The total force, 3A/3a (C_ 

is 6.02(.065 + .175)/2 = 63.4. 

C  ), = 6.02 thus the height of the trapezoid 
sl 

All of the contributing terms for the final pressure distribution are 

now known, that is, 1) the shock free pressure distribution derived in sub- 

section 2.5.1, 2) the pressure distribution caused by the interference flow 

of the shock vortex, and, 3) the pressure distribution just discussed which 

is a direct result of the moving of the shock wave. Specific application to 

80 

■ - - 



" 

• • 

70r 

60- 

50- 

4(- 

>« 

3C- 

2C 

1C- 
♦.••' 

•10 

-20 

Direct Shock 
Motion 
Contribution 

• Jameson 

—   Present Method 

Mco» 0.7 

a - 1.75° 

Estimated 
Shock 
Location 

x/c 

Shock Free 
Plus Shock 
Vortex 
Contribution 

Figure 2.5-29  Comparison of the Present Method (With Shock 
Wave Effects) With the Jameson Transor.c Method 
For the NLR 7301 Airfoil 
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the NLR 7301 airfoil at M^ = 0.7 and a = 1.75° is presented in Figure 2.5-29, 

where the results of Figure 2.5-20 (shock free flow) are combined with the 

results of Figure 2.5-28 (transonic shock vortex) and with the trapezoidal 

distribution discussed above. The agreement 1s good except in the region 

forward of the shock wave in the supersonic zone. The good agreement aft 

of the shock may not be entirely trustworthy since it appears that the shock 

vortex interference pressures are presently somewhat in doubt and this is the 

flow that produces this correlation. The correlation with the shock peak is 

good because the present method has been constrained to reproduce the proper 

total force F /q due to steady shock motion. This total force is proporational 

to Shockwave motion, sx/aa, and steady pressure jump (C 
■'  " CPs s2   sl 

Currently 

the present method uses either experimental data or results from the Jameson 

steady transonic flow method to obtain the quantities needed, i.e., 9A/3a 

and C  - (L . The next subsections describe a possible method for deter- 
ps   ps s2   sl 

mining the shock wave amplitude d\/da  for the general oscillatory case (which 

includes the steady case). The Jameson method can not be used to obtain shock 

wave motion data for the oscillatory case although it can be used to aid in 

its determination. 

The object of the present method is to furnish an inexpensive lifting 

surface theory for transonic flow that can be run for various modes of motion 

at various frequencies and which is based on steady flow data which is used 

once and for all. This steady flow data can be from experimental sources 

or from transonic steady flow methods. 

So far in the correlation of the present method only steady flow conditions 

have been considered. However at this stage of development this seems 

appropriate since the steady perturbation results must agree before the un- 

steady results are attempted. In addition the unsteady shock wave amplitude 

calculation has not yet been tried in the present method and therefore a 

complete correlation awaits this development. 

The correlation illustrated in Figure 2.5-29 shows that the shock wave 

motion contribution to the pressure is a dominant transonic effect. A 
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possible method of including transonic effects in a simple way would be to 

add the shock wave motion effect to the classic theory. This idea is pursued 

in the next subsection. 

2.5.2.3 Investigation of a Simple Method for Accounting frr Transonic Effects 

In this subsection the results of adding the shock motion pressures to 

those determined by the classical subsonic theory is investigated for the 

NLR 7301 airfoil. The pressure distribution is presented in Figure 2.5-30 

for reference. 

In the analysis of flutter and other dynamic aeroelastic phenomena 

it is the section lift and moment which are of paramount importance. In 

Reference 4 the experimental lift and moment are plotted versus the reduced 

frequency for various Mach Numbers. The results of the classic theory are 

compared to these experimental values. At low Mach Numbers the data and 

theory should agree since transonic effects are small. However there is still 

a difference between theory and data and this difference is attributable to 

viscous boundary layer effects. This boundary layer effect can be isolated 

by subtracting the results for the experiment from those of the theory for 

the low Mach Number case. This effect can then be taken out of the data for 

transonic Mach Numbers so that viscous effects do not confuse the issue. 

Transonic effects can be easily isolated now that the viscous effects are 

eliminated. This is accomplished by taking the difference between the classi- 

cal theory and the corrected experimental data in the transonic speed range. 

This has been done for the NLR 7301 airfoil at M^ = 0.7, a = 1.75°and the 

results plotted in Figure 2.5-31. The specific formula for the corrected 

transonic increment in lift AC  is: 

JT  = c0 (data) - c. (classic theory)   et ^ ■ 0.7 

where the corrected Uu\  . is the result of eliminating the viscous loss 

of lift, AC. . from the data" 
a 

c^ (data) 
a 

c^ (data) 
a 

AC, at M 0.7 
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Figure 2.5-31  Comparison of The Simple Transonic Method With 
Experimental Data. Simple Method Uses Steady 
Data From Two Sources. 
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where the viscous loss of lift Ac  is determined from theory and data at M = 0.5. 

AC, c. (theory) - c0 (data)   at M = 0.5. 
a a 

A similar procedure applies to the moment. 

This data is compared with the simplified transonic effect consisting of 

the shock motion pressure alone. Thus 

dx/c 

a rS2    S, 

AC ■ AC 
£    XS/C a 

where F /qc is the normalized force due to shock wave motion and xc is the 
a _ s 

shock location point at which the force F acts. 

The term x is, in gpneral, a complex number which can be represented as 

follows (see Equation 2.5.2-5): 

A = Ao(kr)exp(-i((.s) 

where $    is the phase lag between the shock and airfoil motions. Reference 4 

shows that this phase lag is proportional to the frequency. Based on an 

approximate calculation it was concluded that the constant of proportionality 

was the time, x, it takes a "Kutta wave" to reach the shock wave. Reference 

4 defines the Kutta wave as an acoustic wave eminating from the trailing 

edge. Using the acoustic wave generator described in subsection 2.5.1.4 the 

time history of an acoustic wave eminating from the trailing eriqe was gener- 

ated. The results are presented in Figure 2.5-32. The time that the shock 

first fee1s this acoustic wave is approximately x = TUJC  = 3.0. The 

experimental data of Reference 4 shows that 

*< 4.32 k 
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If it is assumed that t is also proportional to the time i then the prop- 

ortionality constant is 1.44 or 

a  = 1.44 k i (concluded by present authors) 

The authors of Reference 4 concluded that 

= 2kr, 

because they had only an approximate value for T. Irrespective of these two 

formulas the phase lag, $ ,  is taken as the experimental value of 4.32. 

(Actually, for Figure 2.5-31, the value 4> ■ 4.56 was used. The difference, 

5%, should not cause any significant difference). 

Reference 4 also presents experimental data (for the NLR 7301 airfoil) 

for the amplitude of the shock wave motion, A , as a function of frequency. 

This data can be generalized by normalizing it with respect to the steady 

amplitude X (kr = 0). A plot of X
0(
k
r)/

A
0(
k
r ■ 0) ■ fi shown in Figure 

2.5-33. This curve will be used later for the TF-8A and YC-15 wings. The 

value of x  (k ) is obtained from this curve as follows: o r 

or     or       r 

For Figure 2.5-31 two values of A (k = 0) were used: the experimental value 

and the value obtained from the Jameson method. 

The agreement for the incremental transonic effects is fairly good 

considering the simplicity of the theory. The percent error due to the 

differences in the lift increments will be reduced when added to the basic 

lift. For the moment however the shock movements represent the largest portion 

of the final result and thus the percent error vill not change much. In 

general it is observed that the theory over predicts the lift and under pre- 

dicts the moment. 

2,5.2.4 Shock Wave Compatibility Relations 
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In subsection 2.5.2.1 the tangential velocity shock jump-condition was 

used tc obtain the interference flow due to the shock motion. It was shown 

that this interference flow is caused by a vorticity distribution of known 

shape which is proportional to the shock wave amplitude. The shape of the 

vorticity was simplified to a point vortex on the surface. The total vorticity 

is proportional to the steady component of pressure rise across the shock 

wave, (C 
s2   s1 

pressures are known but the amplitude of unsteady shock motion is not Known 

and it is the object of this section to suggest a procedure for obtaining it 

- C  ), and the amplitude of shock wave motion, 3X/3a. The steady 
So   ^s. 

The first equation of subsection 2.5.2.1 presents the jump conditions for 

the x-component of velocity at the instantaneous shock position: 

u2 - B, ^i(^) Dr i 
where, as before, the tilda indicates instantaneous shock position and the 

subscripts indicate positions just upstream, 1, and just downstream, 2, of 

the shock. Landahl (Reference 15, Equation 1.17, page 4) gives an expression 

for iL 

_L  = -I_  + (1 - v) [ $ + I + 0 U 2 )] / U 
1 o» 

where 0 (  ) indicates order of magnitude. The following analytical continu- 

ation of <}) is usel: 

$ = * + (xa^ax + I)  exp(iiot) 

If the proper derivatives are taken of | and the nonlinear terms, OU  ) x ,z 
are assumed small enough to ignore then 

4-2 = Jo   +0 - Y)3*S /9X j  + (1-Y)    A (|24| /ax2 + ico3*s fU ) 
M,        '   °o 1 ' '1 1 

+ IsL/ax ♦ iu^, j   exp(i(Jjt) 
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where * and I  are the steady and oscillatory components of the potential 

Applying the analytic continuation procedure to u-j gives 

u, = u  + (x 3ue /3x + ü,) exp(iüjt) 1    s1     s1     i 

Introducing the expressions for u1, and 1/M1 [nto the expression for 

ü2 - u, and remembering that H/z*  ■ u gives: 

JL-IL ■ ^ly }A + [ XB + C^ + D^ ] exp(iu)t) • 0'.exp(i2wt)) | 

where 

00     00 
A = -ur     (ß2„/M2m + (1 - Y) U.. ) 

B = -uf (1 - Y) (ue  + M^J - us  (ß2 /M2 + (1 - Y) u ) 
"1 'slx    sl   alx 

,2,u2 . /• C = -u. (1 - Y) - (ßX+ (1 " Y) "s ) 
sl 1 

D = -ue (1 - Y) I« 
sl 

Expanding the left hand side of the equation u2 - u1 and using the expression 

for analytic continuation gives: 

U-i = E + (xF + ü2 - ü-j) exp(iü)t) 

where 

E = u  - u 
s2   sl 

F = u 
s2x   slx 

Equating the two expressions for u2 - ul and separating steady and 

A 
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oscillatory parts gives: 

u     - u       ■ s2     ST IT( ifli* (i -T) ■.) ^ steady flow 

ui -«i (Ft^TB) tuif^Tc) »»ifcJr»] '2-5-z-',-1> 
oscillatory flow 

These are the final expressions for the u-component jump conditions across 

the shock referred to the steady position of the shock. 

The jump conditions for the w-component were given in subsection 2.5.2.1 as 

w2 " wl 
X3(ue    - u. )/dz 

s2       Sl 

If this expression is integrated clockwise around the Shockwave then 

^2 (z) - J|(l) 

-sonic      * 

/ 5, * • ♦ J   B, d s 

"some 

sunn 'sonic 

= - /  (w2 - w^ds = X  /  (ur - u, )/  dc ■s2  ST 

(t)9(z) - Mt) = - ^(u^ (z) - u (z)) s2   ST 
(2.5.2.4-2) 

since u  - u  = 0 at the sonic point z = z  ic. Here the assumption has 
s2   sl 

been made that the amplitude does not vary with height above the airfoil. 

If this is not the case then this assumption can be eliminated by considering 

x to be an assumed function of z of unknown amplitude. Equations (2.5.2.4-1) 
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and (2.5.2.4-2) can be combined to eliminate the unknown shock wave motion, 

x as follows: 

u-i G - up H = $1 0 - ^ ^ 

where 

G 

H 

J 

K 

[1 - 2C/(Y+1)] (US2 - uSi) 

[F + 2B/(Y+1)J + K " US I 2D/^+1) 
\   s2   sl/ 

F + 2B/(Y+1) 

In terms of pressures C. (J1 ♦ «4 I Equati 
\ -   C ' writte 

(2.5.2.4-3) 

on (2.5.2.4-3) can be 
tten as: 

^ 6 C 2    p 1 
H C  = *, (0 + i^G) - *2 (K + o^H)  (2.5.2.4-4) 

Equations (2.5.2.4-3) or (2.5.2.4-4) furnishes a compatibility condition 

that is to be satisfied by the oscillatory flow across the steady shock 

position. These equations hold at all positions along the shock from the 

surface (z = 0) to the sonic point (z = zsonic). Consistent with the 

assumption that the shock amplitude of motion does not change along the 

shock is the assumption that the compatibility equation is not a function 

of the vertical direction z. These equations can thus be satisfied on the 

airfoil surface only. In this case the second version of the compatibility 

equation, i.e. (2.5.2.4-4) is appropriate. This expression furnishes one 

additional equation in the set of equations for the lifting surface pressures 

The wave amplitude, x, is the one additional unknown in the problem. Thus 
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the problem is determinent. 

The lifting surface theory without a shock wave (but with transonic 

effects) can be written in matrix form as: 

jcP0j ■ wK} 

where the subscript "o" indicates shock free transonic flow. The shock 

vortex onset flow is given by 

|cpr{
= k[DJ!M 

where {w } is the downwash due to the shock vortex or vorticity. The strength 

of the vortex is that associated with shock motion of unit amplitude. The 

compatibility equation can be written as: 

a = { L }T • C  ! 
{ L }  | CPT i 

where the term {L} is the matrix form of Equation (2.5.2.4-4) and where: 

( pT |  | % j  I Pr I 

Combining the first two equations with the third produces an equation that 

can be solved for the shock motion amplitude A.    Placing A into the expression 

for 'C   'and adding    C     '   produces the final  total.    This total  represents 

the combination of the shock free transonic and shock vortex flows.    To this 

is added the shock motion pressure.    It is anticipated that the steady value 

of A can be used as an aid in the evaluation of the quantities required in 

the compatibility equation. 

In sunriary, a procedure has been outlined for determining the shock wave 

motion amplitude for oscillatory flow.    This procedure has not been implemented 

under the current contract or McDonnell  Douglas Company IRAD funds.    Future 

investigations of this procedure are thus recommended. 
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2.6 FLUTTER ANALYSIS PROCEDURES 

All of the flutter analyses performed in this study were carried out 

using the standard American, or V-g method. The analyses used the measured 

aeroCynamic mode shapes, generalized mass, and frequencies of six elastic 

modes of the TF-8A flutter model. A few cases were also analyzed using modal 

deflection data as calculated from basic distributions of inertia! and rigidity 

data. Section 3 below discusses the basic data used in the flutter analysis 

in detail. 

Analyses were run at Mach numbers of .6, .8, .9, .95 and .99 for the 

TF-8A flutter model and .76 for the YC-15II. In each case the unsteady 

aerodynamic influence coefficients (AIC's) were generated theoretically by 

the subsonic Doublet Lattice Method and weighted appropriately. 

Two sorts of weighting were applied to each case; they are described 

in detail in Sections 2.4 and 2.5. Briefly, the first method, loosely des- 

cribed as "steady corrections" assumes that the ratio of the correct data to 

the theoretical data at all values if reduced frequency, k, .s the same as at 

k = 0. The correct data at k = 0 is of course the available static pressure 

model data, converted to spanwise distribution of sectional lift and moment 

coefficient. This method does account for the static aeroelastic twist and 

the non-1irear character of the aerodynamic derivatives. The second method, 

described as "unsteady corrections" theoretically accounts for unsteady 

transonic effects and results in a muliplicative correction factor which is 

applied to the "steady corrected" AIC's. This multiplicative correction 

factor is a complex valued function of kr and reduces to 
1.0 at kr = 0. 

The V-g solution was obtained for several values of density for each 

Mach number so that the calculated flutter speed at each density could be 

cross-plotted to obtain the flutter speed which matched the Mach number 

under consideration. Structural damping was assumed to be g = 0.02 in all 

elastic modes. 

2.7 FLUTTER MODEL PROCEDURES 
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The analytical work documented in this report shows the need for further 

wind tunnel flutter model test confirmation of the analysis methods. Airfoil 

shape, static twist, reduced frequency at flutter, and Reynolds numbers are 

some of the parameters that the flutter model should evaluate. 

A cantilevered wing (with adjustable root pitch) would be an ideal 

candidate for the study since it would avoid problems of scaling lift to 

weight ratio inherent in a free-flying model. The basic planform area should be 

one fo«" which high speed rigid model steady aerodynamic data already exists, 

such as the proposed C-15A wing. 

\ 

Instrumentation should be included to measure the wing spanwise static 

bending and torsion deformation. Optical methods can confirm the tip twist. 

The Langley Research Center Transonic Dynamics Tunnel provides the current 

optimum facility for this study. Reynolds number effects can be evaluated by 

building models of difference size and/or air/freon mixes. All of the other 

parameter of interest can be incorporated into a single spar design. 

Section 3.5 below discusses some details of a proposed flutter model. 
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SECTION III RESULTS OF ANALYSIS 

3.1 PHASE I RESULTS 

3.1,1 TF-8A Vibration Mwja]_DataL 

The flutter analysis of the TF-8A flutter model was based upon measured 

vibration deflection data supplied by NASA. Fiqure 3.1-1 shews the model 

deflection measurement grid. Table 3.1-1 lists the coordinates of this grid. 

Tables 3.1-2 to 3.1-7 show the modal deflections at the deflection control 

points for the six measured TF-8A modes. The frequency and generalized mass 

of each mode as supplied by NASA are also shown in Tables 3.1-2 to 3.1-7. 

In order to more easily weiqht the AIC's it was decided to transform the 

idealization into plunge and pitch deflections alona a set of streamwise 

strips. This proved to be justifiable since an inspection of the original 

modal data showed the wino to be essentially riaid in a structural chordwise 

direction. The method used to make this transformation is discussed above 

in Section 2.2. Fiqure 3.1-2 shows the transformed idealization. Tables 

3.1-8 to 3.1-13 show the ttansformed modal deflections. 

The vibration modes of the TF-ÖA flutter model were also calculated 

from NASA supplied rigidity and mass data. Figures 3.1-3 to 3.1-5 show 

these data. The resultinn mode shapes agreed well with the transformed test 

values. For the bending modes, the calculated values of frequency were 

within five percent and the generalized masses within four percent rf the 

test value. For the torsion modes a discrepancy between measured and 

calculated frequency and oeneralized mass existed. Factorinq the torsional 

stiffness eliminated this discrepancy, and when the calculated aerodynamic 

mode shapes were used in the flutter analysis along with the measured 

frequencies and Generalized masses, the results were within two percent of those 

obtained usinn the transformed measured deflections. 
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Since,at the time the calculated modes were obtained, the study was 

already underway, it was decided to continue usinq the transformed measured 

modal data as the basis of the flutter analysis instead of switching in mid- 

stream to the calculated shapes. This was justified in light of the good 

flutter analysis correlation mentioned above. 
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See Table 3.1-1 for tabulated 
coordinates of grid 

h ■ +down at 
each point 

Firure 3.1-1 TF-8A Modal Deflection Measurement Grid 
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STATION 

2 
3 
4 
5 
6 
7 
8 
9 

10 
n 
12 
13 
14 
15 
IT 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

'INCHES 

96.1993 

TABLE 3.1-1 
■rF-8A MODE SHAPE MEASUREMENT STATIONS 

INCHES 

88.4250 
90.1830 
92.3614 
93.4315 
84.1375 
85.0929 
87.0802 
89.4497 
90.7491 

62.5528 
62.4873 
61.0042 
59.1665 
58.2638 

80.5271 
81.5972 
83.7756 
36.3362 
87.5209 
77.0373 
78.1839 
80.5916 
83.3432 
84.8337 

59.8087 
59.0027 
57.3262 
55.3273 
54.2311 
56.1493 
55.2466 
53.4089 
51.2488 
50.2494 

73.3547 
74.6923 
77.3676 
80.2874 
81.8772 

52.6329 
51.6657 
49.6345 
47.3132 
46.0559 
49.1980 
48.0696 
45.8128 
43.3496 
42.0084 

69.8996     I 
71.3137 
74.1036 
77.1992 
78.9572 

45.^901 
44.2972 
41.9437 
39.3322 
37.8492 

66.4505 
67.9792 
70.9601 
74.2469 
76.1959 

42.0218 
40.7322 
38.2174 
35.4448 
33.8005 

62.9207 
64.5641 
67.7361 
71.1757 
73.2012 
59.3910 
61.0725 
64.5121 
68.1046 
70.3212 

3S.4580 
37.0716 
34.3957 
31.494! 
29.7854 
34.8941 
33.4756 
30.5740 
27.5434 
25.6735 

STATTjN XINCHES YINCHES 

46 55,7806 31.2348 
47 57.6151 29.6872 
48 61.2075 26.6567 
49 65.0292 23.4327 
50 67.3987 21.4338 
i\ 52.3291 H'OCI 
52 54.2399 26.0741 
53 58.0235 22.8823 
54 61.9981 19.5293 
55 64.6160 17.3209 
56 48.7943 24.0388 
57 50.7434 22.3946 
58 54.7563 19.0094 
59 58.9602 15.4629 
60 61.8265 13.0449 
61 45.1149 20.6078 
62 47.2933 18.7701 
63 51.5355 15.1914 
64 55.8540 11.5483 
65 59.6376 8.3565 
66 41.7422 17.0^50 
67 44.0353 15.1406 
68 48.3920 11.4652 
69 52.9017 7.6609 
70 58.0993 3.2762 
71 37.5245 IllMIS 
72 40.4902 11.5897 
73 45.1680 7.6435 
74 49.8688 3.6780 
75 53.3466 .7441 
76 37.1668 7.8518 
77 41.9440 3.8217 
78 45.5747 .7589 
79 34.1000 4.1000 
80 29.9000 5.0000 
81 25.1000 2.5000 
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THIS PAGE IS BEST QUALITY PRACIICA3Ü 
FBUä CUi-Y nMSMB TO DDC  

TF-8A 

MOOs 
RAY 

1 
2 
3 

5 
6 

«3 
9 

IÜ 
11 
12 
13 u 
15 
16 
17 
Id 
19 
20 
21 
22 
23 
2^ 
2b 
26 

15 
29 
30 
31 1 
34 
35 

NÜ 

rt 

j| 
45 

4 

50 
51 
52 I' 

M 
0 . IU06«Q1 
ü.o7oEOO 
0.837r*00 
t.8925*00 
J,904E*J0 
0. 790EO0 
Ü . 7 74E«-00 
o. r 6 6 f ♦ 0 ü 
0.7 75c>ÜO 
O.773E+00 
0.693E*00 
0.o57E+ )0 

0 .bölE* JJ 
0 .551c>0 J 
0.589E>30 
0.536t;>00 
U ,574': *Ü0 
) .5J5E+00 

Ü .4*6* «-00 
0.488^*0J 
ü.:t-)3t«-0J 
0.432b*0C 
0.41 IE+0 0 
0 . 393E+00 
0, 396E+0Ü 
0 . 4 16 E O 0 
J.393E+00 
U . 3 2 0 E <• 0 0 
0. 3J4EXJ0 
0.2925*00 
0.?86E*JO 
C .288E>00 
0.223E+OJ 
0.22JE+00 
Ü.220E+00 
J.207E+O0 
0 . 2 I 5 E «-0 J 
0. 170E + 00 
0. 160E+J0 
0. 155E+00 
0.151E+J0 
0 . U7P4-00 
0. 1J9E+0C 
0. 104EO0 
0 . 1 J3E*00 
U . ICIE+00 

Tab! e 3.1- ■2 

Measured Modal Deflections 

1ST   * ING   H 5 NO I NO                       tm  m 

F^tC   « 5.29       .r NMALl ttü 
BAY H 

54 0. b09E- Ul                     .00484 
55 0. 582E- 01 
5ö 0. H17E- 0 1 
57 0. 373E- 01 
58 0. 353E- 01 
59 0. 3295- 01 
60 0. 2f'9E- Jl 
61 0. li7E- 01 
62 0, 17)E- ■01 
63 U | lölE- ■01 
64 0. 134E- •01 
65 0 .IQ3E- -01 
66 0, .S^E- -J2 
ö7 0 .D50E- -02 
66 0 .obOE- -02 
69 0 .5JJC- -02 
70 t .57J-.- -02 
71 0 . 7ö0E- -02 
72 0 .7205 -02 
73 0 .67J5- -02 
74 0 .J50E- -02 
75 0 . )SJE -02 
7o 0 . ll 5 J E -J2 
77 0 ,4103 -02 
7« 0 .9305 -02 
79 0 .S7)E -02 
•o 0 . )435 -J2 
81 0 . Illr -0 1 

NASS* 
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THIS PAGE IS BEST QUALITY PRACTlCABiS 
FBuM CUr X i' ÜKM StiLD TO DD C 

Table 3.1-3 

TF-8A Measured Modal  Deflections 

MOOI 
HAY 

I 
2 
3 
t 
5 

7 
b 
9 

U 
11 
12 
13 u 
15 
lb 
17 
Id 
19 
20 
21 
11 
23 
2t 
25 
26 
27 
28 
29 
3VJ 
31 
32 
33 
3^ 
35 
36 
37 
38 
39 
^0 
■tl 
42 
43 
44 
45 
4o 
^7 
4d 
49 
50 
51 
52 

N* 
H 

1J0C u . u J^T ♦■0 i 
0.6Ö6E+00 
n     i. o i c ». r 

0 . J ' > > J 
0.1806♦JO 
).222E+0 ) 
0 . ^ 29 f +0.0 

-o »e^L-ol 
-'J.375c-Jl 

^ ,301=-01 

-0 .247-*Jü 
-0 .236^*00 
-o.zazf^oo 
-0«2O6E^O0 
-0. W8C<-J0 
-0«184f»03 
-1. 179t<-J0 
-0.1 75C>00 

2r;D   WINO   d: NO IMG 
FKFU    =      18.08 

3AY H 
54 -0.15ÜE+UO 
55 -0.1t34t>-UÜ 
56 -0.138E+00 
5 7 -O.I32t-»-0 0 
58 -0.124E+00 
59 -0.112E+C0 
oo -o.iao->oo 
6 1 -0..35 4E-0 1 
62 -0.d52E-i0l 
63 -0.735t-01 
64 -0^72E~01 
6 5 -0.S4 3C-01 
66 -0.541E-01 
67 -0.497t-Jl 
68 -d•4671-01 
69 -0.3 92^-0 1 
70 -0.3-»2E-01 
71 -0.305E-01 
72 -0.2d0E-01 
7 3 -0,2 69t-0I 
74 -0.2 19E-0 1 
7 5 -0.153E-0 1 
7ö -0«l8«|-Oi 
77 -0.163:-J1 
78 -0.150E-J1 
79 -0.14 7E-J1 
dO -0.14J£-0 1 
81 -0.133F-01 

-L NE KALI ZEO    MAiS = 

.00268 

in i    *ml i 
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ftMi OUr^ f UiuUiH£D TO HD.Q 

Table 3,1-4 

TF-8A Measured Modal  Deflections 

NÜOE 
bAY 

I 
2 
3 
<t 
5 
6 
7 
a 

10 u 
ii 
13 
l^» 
15 
Ih 
17 
18 
IV 
2U 
21 
22 
?3 
2^ 
25 
26 
27 
28 
29 
3J 
31 
32 
33 
3^ 
35 
36 
37 
30 
39 
<»0 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
5■, 

NO. 3 
H 

0. lOOtO I 
-0.1 75E + 01 
-J.576E*00 

0.771=*OO 
0. 145!!«-01 

-0.223P+Ü1 
•0. 164EO 1 

. 179i:"<-0l 
-0. 182^*01 
-J.l il-^Ol 
-0. 146fc+OÜ 

-0.845t+u0 
0.179E* )0 
0.1 31E«-01 
0. 185P01 

-J.[09i»01 
-Ö.6'-»2E*0U 

0.24öE-«-ÜO 
D.123E*01 
0. 176t*01 

-0. 338£«-ÜO 
-0.it7 5f:*-OQ 

0«276€^00 
U. 1C7'Z+01 
ü. 152E+-J1 

-0.627E+O0 
-0.360E*C0 

Ü.259E+Ü0 
0 .^Ohr.*00 
0. 127E+01 

-0.4621♦üu 
-0. 26lr *-t'0 

0.201c>00 
0.70^c»00 
0. 102h-»-01 

-o. wir+oo 
-0. 195P+00 

0 . 146E «-OO 

1ST   WING   rMSIOM 
FPEO    ■      3 7.10 

HAY H    _ 
5^» 0.52lc*OO 
55 0.736E+00 
56 -0.2o5E*00 
57 -0.157E+Ü0 
58 0.-J57E-01 
59 0.344E*C,0 
60 0.5081^00 
61 -0.174EO0 
62 -0.117=^-00 
63 J.337E-01 
6^» 0.193E+-00 
65 0.28öE*-00 
66 -J.118EV00 
67 -0.H63E-01 
o8 0.157E-.)1 
^ ).784E-01 
70 0.580t-01 
71 -Ü.94JE-01 
72 -0.824E-01 
73 -0.335E-01 
7^, -0.177E-01 
7t) 0.275fc-01 
76 -0.842E-01 
77 -Ü.5?7t-01 
7H -0.3206-01 
79 -).955E-01 
80 -0.118E+UO 
81 -0.142EO0 

fU NFRALI ZED   MÄSS = 

.02735 
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Table 3.1-5 

TF-8A Measured Modal  Deflections 

3Pn   WING   PENDING 
MJOt NU.     4 FREO   =     H2.6J     GENERAL! ZEÜ MASS 
tm H 3AV rl                                                              **#*^ ^^ 

i U.l JUE^-Jl 5<. ü.l63Ef00                             .00165 

! 
0.621E*0ü 55 O.l'tOE+OO 
0.539Ef00 56 O^'VIF^-OO 

* 0.591E> )ü 57 0.2J8E+-0O 
s 0.572E*- )0 58 0.173E«-00 
6 0.267E*J0 59 3.13dE*00 
7 Ü.255E «-OU 60 0.1 15E<-GO 
8 0•22|f♦OQ 61 0. lö3E*30 
9 0.ia5E*U0 62 ü. U1E+00 

lü Ü.167F♦Üü 63 0. 1 15E+UO 
11 -0.13ÜE-01 6^ 0.915E-01 
12 -U.30JE-Ü1 65 0.688E-01 
13 -0. 327b-01 66 0.93lc-01 u -0. l^OE-t-UO 67 0.338E-01 
15 -Ü. ldlE*-0'J 68 0.7J8E-01 
[ft -0 . 166E«- JO 64 0.3^6E-01 
17 -0. 139E *<Jü 70 0.5J0E-01 
Iri -0.250E+JO 71 U.'.^OE-Ol 
19 -0.3 35EVU0 72 0.432E-01 
20 -J. 376E4-Ü0 73 Ü.365E-01 
21 -Ü. IH>><-*- )0 7^ 3.252t-01 
22 -0.211E+0Ü 75 0. 1^'')C-J1 
7 3 -J.2 V?E*ÜJ 76 U. 171C-JI 
?-♦ -ü. irt^L«-.30 77 O.lVJE-Ol 
25 -o.^ftof^jo 78 0.950E-02 
26 -0.10BE+JÜ 79 0.5J0E-02 
27 -0. 1 3U:J «-OO 80 0. 1 }0c-02 
23 -0.2O0E+JU bl 0.3^0F-0? 
2V ->0.294E«00 
io -J . 3^JE<-üÜ 
31 ).309E-J1 
32 -ü.3 1)E-ü? 
33 -J.697F-01 
3^ -0. l'V9E«-00 
35 -0.23<»E+JÜ 
36 J. l63E<-00 
37 J.131£+üU 
38 0.595=-01 
39 -0.11 1E-01 
%ü -0 . V97E-01 
'Vl 0.259E«-JÜ 

2! 0.2 23E«-UO 
Ü".159E^0Ü 

ftft 0. 100E+-00 
^♦5 0.6766-01 
^6 0.2^8E*CÜ 
^7 0. 2 69E«-Ü 0 
^8 0.2 17L«-00 
^9 0. 15Bfc>00 
5U 0 . 1 3 3 E ♦0 0 
51 Ü.2Ö8E+0J 

H 0.2A9E«-)0 
0.2 J2E*00 
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Table 3.1-6 ' 

TF-8A Measured Modal Deflections 

1 

6 
7 
8 
9 

U 
II 
U 
13 u 
15 
16 
17 
18 
19 
20 
21 
22 
23 
2^» 
25 
26 
27 
28 
29 
30 
31 
32 
33 
3^» 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

H 
0.l00E-«-Ul 
0.525E*00 
0.47dE*-00 
0.444E«-00 
0.418E*00 
0.164E*00 
0.123E+-ÜÜ 
0.56 It-01 

-J.506E-dl 
-0.979E-01 
-0.642E-Ü1 
-0.10 IF♦JO 
-0.194E+00 
-Ü.321E+00 
-0.391E+J0 
-0.109F+00 
-0.139E*Ü0 
-0.21REO0 
-0.3?9E*t0 
-0.388E+-00 
-0.162E-01 
-3.4J2E-01 
-0.908E-01 
-0. l4Jc*-0d 
-J.179E+J0 

0.9&3e-Ül 
Ü.fll6F-01 
0.uo2£-01 
0.511E-01 
3.489t-0l 
0.l46FfJ0 
0.13 »-00 
0.154E*JJ 
0.131E*UO 
0.207E«-JO 
0.943E-01 
0. lOOE+OO 
J.1H1E>J0 
0.183F+OO 
0.232F+CJ 

-0.240L-01 
0. 140F-02 
0.604E-01 
J.123E+OÜ 
0.l67E«-00 

-0.150E+JÜ 
-J . 1071: «-OU 
-0.3Ü4--Jl 
0.3l9t-01 
0.73lf:-01 

-0.2>IL*JO 
-0.173t «-UO 
-0.lJ5::fOO 

4TH  WINO  BENDING 
FKEÜ    =      73.40 

BAY H 
54 -0.398E-01 
55 -0.100E-02 
56 -0.219E«-O0 
57 -0.194E*-00 
58 -0.1ilF*00 
59 -0.730E-01 
60 -0.330E-01 
61 -0.18bE*00 
62 -0. 164E+00 
63 -0.117E+Ü0 
64 -0.727E-01 
65 -0.3976-01 
66 -0.128E+ÜJ 
67 -O.IUE^-OO 
68 -0.854E-01 
69 -0.559E-01 
70 -0.500E-01 
71 -0.715E-01 
72 -0.649E-01 
7 i -0.508E-01 
74 -O.3O7F-01 
7S -0.25JF-01 
76 -0. 5JriE-Jl 
77 -0.30d£-01 
7d -0.24ÜE-01 
79 -0.2J0E-01 
80 -0.170E-01 
81 -0. 146E-0I 

CENEKALI ZLO    MASS' 

.0008 

THIS PACZIS BEST QUALITY mCriCABU 
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rais PAGE is BEST QUAiiry mcnciaM 
Table 3.1-7     ■•«««■M»««»»« ^?^ 

TF-8A Measured Modal Deflections 

MÜDE 
L<AY 

1 
? 
3 
't 
b 
6 
7 

9 
10 
II 
12 
13 
It 
15 
16 
17 
18 
19 
2U 
21 
22 
2i 
2^» 
25 
26 
27 
28 
29 
3J 
31 
32 
33 
3^ 
35 
i6 
37 
38 
39 
^J 
♦ 1 
^2 
^3 

^5 

^♦7 
%fl 
^♦9 
50 
51 
52 
5' 

NO«    6 
H 

J, 100c«-01 
-0.6^9E*00 
-J.761E-01 
0.580L+00 
Ü.9^2F«-J0 

-0.")84[- 4-00 
-0.721F «-OO 
-0.?0')E«-JO 
ü.^46h*00 
0.778E+JÜ 

-ü.8fc5?«-)0 
-J.O40E+C0 
-0.216F+C0 
J.?5^E*0J 
0 .<♦ ?6C:«-JÜ 

-0.^51 ?<■ Jü 
-0. 356^ «-OO 
-0. 13lc»JO 
0. 135E*-00 
0,233E«-O0 

-0,?B3E-01 
-0. 1^8f--01 

).165f-Jl 
0 . 6 I 51 - J 1 
0.J00E-Ü1 
0.333F+00 
0,255E»oJ 
o. 11 fFtog 

-0.25 7E-J1 
-J.  iTT'r-Jl 

0.5o ff fOJ 

0. 12 3^ MU 
-0, 169:*0J 
-0. 33^e*JO 

0.632t*-ÜO 
0. 397c* )0 
0.^376-01 
0. 319E+00 

-J.535E »ÜÜ 
0.A.J8E »-OO 
0.295E* JO 

-0. ^lE-01 
-O.^bOt^OO 
-J.725F«-00 
0. )25E<-C0 
0. 172E+00 
0. 160t«-JO 

-0. 52 5E*C'J 
-0.75 If *JO 

Ü. I »^♦OO 
0.6d-J3-01 

-a.l99E«-30 

2NL'   MING    nRSIJN 
PPPü    =      7^.30     CbNf PALI ZED MASS 

dAY 
5*» -Ü.<»99E*J0                              •0057 

55 -0. 70^E<-00 
56 0.996F-01 
57 O.ltilE-01 
58 -0.[79E*JC 
59 -0.393E+00 
60 -0 ,5tj6E«-00 
61 0.^2fcE-Jl 
62 -0.120t-01 
63 -J. 132L-H.O 
6^. -0.2/t9E*J0 
65 -0.337E+Ü0 
66 0.177E-J1 
b7 0.107E-01 
68 -U.732E-01 
69 -J.132E*00 
70 -0.180E*J0 
71 0.113E-01 
72 -0.190E-02 
73 -0.2^1E-01 
7^ -0. 3^7E-()l 
75 O.RlÜ^:-02 
76 0.590E-J2 
77 :). UOE-J? 
78 J.91JE-02 
79 O.^lOE-02 
80 0.9lJc-.J2 
bi 0. J 
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Figure 3.1-2 TF-8A Transformed Aerodynamic Deflection Idealization 
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Table 3.1-8 

TF-8A Transformed Modal  Deflections 

1ST   «ING BENDING 
"ijDe NJ.               1 FHtO    = 5.29 GfcNERALlZFO 
HAY H ALPH 

2 0.88506*00 0.15376-01 .00484 
3 0.77606*00 0.14026-01 
4 0.6690e«-00 0.12886-01 
5 0.56906*00 0.11806-01 
6 0.47506*00 0.1080P-01 
7 0.38506*00 0.101AE-01 
8 0.30106*00 0.907CP-C2 
9 0.22806*00 0.7620E-02 
0 0.16506*00 0.66406-02 
I 0.10706*00 0.578C6-0? 
2 0.61006-01 0.42006-02 

13 0.30006-01 0.26106-02 
14 0.12006-01 0.11706-02 
l«) 0.50006-02 0.14006-02 
16 0.40006-02 0.10006-03 
17 0.300GE-02 0.0 

MASS' 

'   -    ■       ■ IIIMlMHI—ll   
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Table 3.1-9 

TF-8A Transformed Medal Deflections 

Mone NO.         i           Ai D. 
BAY H                        ALPH 

2 0.65006*00     0.^l2*|-0l 
3 0.4050E*00     0.3890|-01 
4 O.ITOOE^OO     0.35l«|-0l 
5 -0.3600E-01     0.2932P-01 
I -0.1900E+00     O^OO^E-Ol 
7 -0l2700E*00     0.119^-01 
8 -0.3100E*0U     0.5930|-02 
9 -0.30706*00     0.99006-03 

10 -0.27806+-00  -0.20406-02 
11 -0.23006*00  -0.43106-02 
12 -0.17506*00   -0.55006-02 
13 -0.11806*00  -0.48006-0? 
14 -0.75006-01   -0.34706-02 
15 -0.45006-01   -0.2220|-02 
16 -0.27006-01   -O.IOOC6-02 
17 -0.20006-01   -0.75006-03 

2*%^ö\f.of ctHEMtiao ***• 

L t 

.00268 
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Table 3.1-10 

TF-8A Transformed Modal  Deflections 

1ST   *,1N0   TJ^SIUN 
MOO( Nu.              3 FKFU    =      37.IU      Gf.NEKALIZEO 
BAY H ALPH 

2 -0.6000E*00 0.3269E*0C                                    .02735 
3 -0.4500E*00 0.3127E*00 
4 -0.29 5ÜE-J-00 O.2893E*00 
5 -0.1?20E*00 0.2567E*OC 
6 0.600ÜE-01 O.2?3AE*O0 
7 0.1850E*-00 0.1938F+00 
8 0.2A20E+-00 0.1637E+CC 
P 0.2650E+00 0.n4lE*00 

10 0.2600E«-00 0.107AE+00 
11 0.2230E+00 0.8476E-01 
12 0.1540E*00 0.6260E-01 
13 0.fl400E-01 0.4311E-01 
14 0.3000E-01 0.268AE-C1 
15 -O.UOOE-Ol 0.U4^=-01 
16 -0.390OE-01 0.6590^-02 
17 -0.5400E-01 O.A230E-02 

MASS = 

110 
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Table 3.1-11 

TF-8A Transformed Modal Deflections 

MIDc   NU. 
BAY 

2 
3 

5 
6 
7 
8 
9 

I 

0.6000E«-00 
0.22506*00 

-0.8000E-01 
-0.26206*00 
-0.29006*00 
-0.26306*00 
-0. 17506*00 
-0.25006-01 
0.16506*00 
0.21706*00 
0.21206*00 
0.17806*00 
0.11906*00 
0.68006-01 
0.30006-0 1 
0. 12006-01 

3PL WING   tiENUIMG 
FREU   =     ^2.80 

ALPH 

0. ^5826- 01 
0. 35566- •0 
0. 17066- •0 

-0. 31906- •02 
-0. 17136- •0. 
-0, 23516- •01 
-0. .29836- •01 
-0. .3A236- -01 
-0 .25816- -01 
-0 .11576- -Cl 
-0 .42906- -02 

0 .8400E- -03 
0 .35206- -02 
0 .344C6- -02 
0 .23106 -02 
0 .186C6- -02 

GEfCKALltCO   ^ASS = 

.00165 
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Table 3,1-12 

TF-8A Transformed Modal Deflections 

Mint   NO. 
BAY H 

2 0.4850E*00 
3 0.5000E-01 
<* -0.2080E+00 
5 -0.2240E+00 
6 -0.9300E-01 
7 0.7200E-ÜI 
8 0.1630E*0Ö 
9 O.ISOOE+OO 

10 0.6500E-01 
11 -0.5000E-01 
12 -O.lllOE+00 
13 -0.l3lOE*-00 
14 -0.12Ü0E*00 
15 -0.8600E-01 
16 -0.4R00F-01 
17 -0.29O0E-O1 

^TH   WING 
FKFU    = 

ALPH 

B E NO I NG 
73.40 

D.464 
0.215 

•0.958 
0.290 
0.296 

•0.189 
•0.127 
0.U2 
0.230 
0.223 
0.155 
0.898 
0.302 

•0.111 
•0.192 
•0.207 

AE-Ol 
0E-C1 
o=-n2 
9^-01 
7E-01 
OE-01 
OE-02 
7E-01 
£E-01 
6P-01 
«=-01 
OP-02 
OE-02 
0 = -02 
CE-C2 
OE-02 

GtNfcHALl ZED    MASS = 

.0008 

L       * -■-  -■ 
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Table 3.1-13 

TF-8A Transformed Modal Deflections 

Mür)E 
BAY 

2 
3 i 
5 
6 

I 
9 

10 
11 
12 
13 
14 
15 
16 
17 

NÜ 

-0.9000E-0 1 
-0.2070E+00 
-O.2280E*O0 
-O.1220E+00 
O.22O0F-01 
0.1270E*üO 
O.1370F+O0 
0.5000E-Ü1 

-0.7500E-01 
-0.1780E*-00 
-0.2110E+00 
-0.1920E*00 
-0.1300E«-00 
-0.5500E-0 1 
-0.1000E-ÜI 

O.5O00E-02 

2ND   WING 
MFO   = 

ALPI- 

0. 1953E+00 
0.1618E+00 
0.105AE+00 
0.4111E-01 

-0.8310E-02 
-0.3421P-01 
-0.48^85-01 
-0.5206E-01 
-0.5045E-01 
-0.4785E-01 
-0.4190E-01 
-0.3576P-01 
-0.2500E-01 
-U. 147ÜE-01 
-Ü.4630E-02 
-0.193CE-02 

rn^siUM 
7^.3J OhNERALlZEÜ   MASS' 

.0057 

L . ■«■■MUMullMHdlMUtfHaHiMMüi 
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3.1.2 TF-8A Static Aeroelastic Solutions 

Section 2.3 above contains the discussion of the method used to generate 

the TF-8A static aeroelastic solutions.    piqures 3.1-6 and 3.1-7 show the 

resultant twist distribution for the five Mach numbers  under consideration. 

NASA supplied an optically measured static shape for several cases and 

Figure 3.1-8 shows a comparison of these measurements with a calculated 

shape for the same lift and Mach number.    Good agreement is seen to ex^st. 

The use of these static shapes is discussed above in Sections 2.4 and 2.5, 

and below in Section 3.1.3. 

3.1.3 Aerodynamic Data and Weighting Factors for the TF-8A Hin£ 

The Doublet Lattice Idealization of the TF-8A wing is shown in Subsection 

2.1.    The theoretical  results for the spanwise variation of section lift 

coefficient slope and aerodynamic center are presented in Figures 3.1-13 

through 3.1-17 for five freestream Mach Numbers.    The experimental  data are 

also shown.    As expected, the theory underestimates the lift because several 

transonic affects are not accounted for. 

The data were taken from Reference 2 and corrected for aeroelastic 

effects as described in Subsections 2.1  and 2.4.1.    Limitations of the data 

due to insufficient Reynolds iJumbers were also described in Subsection 2.4.1. 

It was concluded there that the stall  characteristics of the Cj  and cnl 

versus a were not reliable.    Thus, the values of c^ were read only in their 

'non-stalled'  ranne and not necessarily at the section angles-of-attack to 

which the flutter model  had deformed statically during the flutter test. 

For examole. Figures 3.1-9 through -12 present the aeroelastically 

corrected pressure model data (c^. cm vs aeff) for the *„ ■ 0.99 case.    It is 

obvious that the values of c^ and especially cma depend on the section 

angle-of-attack.    The section angle-of-attack distribution across the span 

of the flutter model  in turn is the sum of the rigid body anole-of-attack, 

the built-in twist and the elastic twist as described in Section 2.4.    The 

distribution of section angle-of-attack for the TF-8A wino is given in 

Subsection 3.1.2.    The effective angle-of-attack at which the C£a and cma 

117 
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are to be read is the difference between the section angle-of-attack of the 

flutter r 

That is. 

flutter model, a ' ', and the built-in twist of the pressure model •* ' 

M .   a  if) .    M 
eff   s     j 

where ey'  is given in Table 3.3.2. The reason why the elastic twist of the 

pressure model is not mentioned here is because it has already been accounted 

for in the term ' «. i.e., the pressure data has already been corrected back 

to the rigid state. 

The values at which the lift and moment curve slopes are to be read, 

^eff,  are also plotted in Figures 3.1-9 through -12. In Figure 3.1-9, the 

effective section angles-of-attack of the flutter model lie in the non viscous 

range for the cl  curve and these are the values read. In Figure 3.1-10, the 

effective angles-of-attack of the flutter model fall in the viscous range 

only for the section at y/(b/2) « 0.933. Since the curve is unreliable 

there, the value of c. at a „ » 0 is used. ■a   eTT 

The curves of moment coefficient versus effective angle-of-attack are 

nonlinear everywhere due to transonic and viscous effects. For this case 

the slopes of c  selected for the M = 0.99 case are shown in 3.1-11 and 

3.1-12 as tangent lines to the curves. Due to the lack of data points, 

the actual shape of the c vs ■ curve is open to various interpretations. 
This is unfortunate because cm MNM to have a large effect on flutter 

speed. 
ma 

In Figure 3.1-12, three separate interpretations of the c versus a « 

curve have been drawn for Stations y/(b/2) = 0.653 and 0.804.  The tangent 

lines or slopes of these curves are also indicated. The solid line indicates 

our best guess to the slope; however, the other slopes are also retained and 

used in the flutter analysis to show the effect of flutter speed on the slope 

c . Two separate interpretations have been drawn for the curve at y/(b/2) = 

0.48. The final three curves of aerodynamic center resulting from these 

various interpretations are given in Figure 3.1-17. 

Special consideration is given to the curve of c versus a for the wing 3 m 
tip Station y/(b/2) ■ 0.933.    As indicated previously, the point at which 
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Ci and c  are to be measured lies in the viscous region fo» the pressure 

model. Due to the Reynolds Number difference between the pressure and 

flutter models., (1.96 x in6 for the pressure model and 3.0 - 9.0 x 10 for 

the flutter model), the pressure model curves can not really be trusted in 

the viscous reqion. 

t»The handling of this difficulty posed a problem since the cm versus ■ 

curve is very nonlinear, even in the non-viscous regions. The motions of 

shock waves tend to change the character of the c^ curves drastically as i 

passes from negative to positive values. One possible solution is to extrap- 

olate the c versus i curve, based nn its shape close to ■ of zero, to the 

point in question ignoring the break in the curve at  ■ -1.5 degrees. When 

this is done, it is found that the aerodynamic center lay very far aft on 

the airfoil, specifically, at x^/r ^0.70. This result is considered 

unreasonable since the aerodynamic center usually moves forward at the wing 

tip. not aft. If this result (xa , /c = 0.7) is used in the flutter analysis, 

the resulting flutter speed is also unreasonable; lying well above the 

,-esults for the unweighted theory. A two-dimensional transonic solution was 

applied to the airfoil section (plus boundary layer) at y/(b/2) = 0.933. 

The section data gave a moment curve with a minimum point at -• = 0 similar 

to the data. However, the slopes were much less resulting in an aerodynamic 

center, at a = -1.82, of x  /c = 0.3966. Three-dimensional effects will 

move this point forward. It is felt, then, that the aerodynamic center 

selected for this station, shown in Figure 3.1-17, is correct. 

A similar problem was encountered for the Case of M«2 0.95. Figure 

3.1-i6 presents the unreasonable aerodynamic center distribution as a 

dashed line. This curve was flattened to the solid line. Again, if the 

unreasonable curve of aerodynamic center is used, the flutter speed is well 

above the unweighted theory result. 

The final values of c; and xa   used for ill Mach Numbers considered 

are presented in Figures 3.1-13 through -17 where they are compared with the 

theory. The ratios of experimental to theoretical c, ( and cm are the steady 

weight factors, as described in Subsection 2.4. The curves presented in 

Figures 3.1-13 through -17 were interpolated for c^ and x^ at the bay 

positions fo^ the theoretical as well as experimental data.  The weight 

factors for the five Mach Numbers considered are given in Table 3.1-14. 
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■,"   ■" p—— wm^m^m     mi 

Windstream 
(degrees) ■ = Built in twist + root pitch + elastic twist 

□ Measured (M^ 1.0) 
O Calculated (M^ 0.99) 

L - 162 Lbs 
q = 127.1 PSF 

Figure 3.1-8   TF-8A Elastic Correlation with NASA Data 

122 

— MMMMMH^ 



r ———— ~—m 

o 

ro 
CO 

J3 

> 

i 

en 
i 

l 

123 

k 



r -■•— — 

\ V 

• 8 
§   - « 

■ a s 
3 

•»- 
w- 
o 
c ■ m 3 n m >n o» oo VO 
i« 

■ ■ ■ & 
*-* «^ ^^ 
PU (M «>J 
■^ ■%. & 
■a J3 A Wl-^t^ 

V *~ *- ^ »— >-^  «1 >» >l >» UJ      o 

8 
i 
in 

s 

o 
I 

124 

J 



— I'1   ! 

© 

5     ■ Y     0 

'SS 
co 

I        II        N H 

■ ■ 
2 

CM n o oo t— •♦- H- 
^ ^ n «• =>—i «t 
xi •      •     • -J     S 

0 GO • 

T 

|     | 
o        o 

*-> 
**-   «J u- 
O     E  O 

(O      UJ I « 
uj    c C 
4->       OJ 

01 
00 

I 

9 

i 

CSJ 

X) 

OJ 
8 
• 

1/1 
> 
E 

o 

i 

C 
3 
CD 

125 



1 ■' -— ^^mmmm 

r     0.02 

y/(b/2) 
A     0.653 

■     0.304 
&    0.933 

— Tangent Slope (best estimate)   OS^t^, 
 Tangent Slope (alternate est.) 

•   Flutter Model    a if) 
iff 

-1 1 L 

Figure 3.1-12   TF-8A <:„, vs. aeff: M^ =  .99; y/(b/2) =  .653,  .804,  .933 
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TABLE 3 .1-14 

TF-8A Steady Weight Factors 

M = 0.6 
00 

M = 0.8 
00 

Y/(b/2) WTSCL WTSCM Y/(b/2) WTSCL WTSCM 

.095 1.141 1.475 .095 1.227 1.437 

.167 1.107 1.440 .167 1.238 1.614 

.2?4 1.070 1.277 .224 1.165 1.462 

.280 1.075 1.224 .280 1.146 1.379 

.337 1.053 1.223 .337 1.145 1.388 

.394 1.033 1.162 .394 1.134 1.298 

.452 1.034 1.136 .452 1.106 1.219 

.509 1.057 1.133 ,509 1.146 1.179 

.567 1.123 1.173 .667 I.1H 1.163 

.624 1.119 1.205 .624 1.215 1.118 

.680 1.256 1.232 .680 1.229 1.108 

.737 1.285 1.228 .737 1.213 1.093 

.795 1.295 1.181 .795 1.208 1.068 

.852 1.266 1.162 .852 1.211 .986 

.909 1.218 1.141 .905 1.26? .894 

.969 1.105 

M    ■ 0.90 
oo 

1.118 .969 1.378 

M    -- 0.95 
OO 

.689 

Y/(b/2) WTSCL WTSCM Y/(b/2) WTSCL WTSCM 

.095 1.216 1.336 ,095 .an .342 

.167 1.213 1.55? ,167 1.175 .754 

.224 1.161 1.518 .224 1.271 1.051 

.280 1.151 1.399 .280 1.332 1.312 

.337 1.203 1.456 .337 1.383 1.389 

.394 1.211 1.359 .394 1.396 1.333 

.452 1.250 1.331 .452 1.433 1.373 

.509 1.279 1.285 .504 1.443 1.422 

.567 1.340 1.278 .567 1.436 1.442 

.624 1.385 1.254 .624 1.424 1.387 

.680 1.438 1.261 .68 1.430 1.397 

.737 1.479 1.226 .737 1.448 1.395 

.795 1.501 1.187 .795 1.496 1.413 

.852 1.495 1.044 .852 1.485 1.337 

.909 1.436 .808 .909 1.401 1.145 

.969 1.185 .450 .969 .953 .658 
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TABLE 3.1-14 (Cont 'd) 

TF-8A Steady Weight Factors 

Y/(b/2) WTSCL WTSCM 

.095 .902 .553 

.167 1.104 .902 

.224 1.157 1.035 

.280 1.195 1.071 

.387 1.256 1.045 

.394 1.288 .917 

.452 1.357 .913 

.509 1.445 .949 
.567 1.590 1.026 
.624 1.729 1.107 
.68 1.796 1.133 
.737 1.758 1.103 
.795 1.662 1.102 
.852 1.576 .949 
.909 1.493 .878 
.969 1.279 .643 

I 
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TABLE    3.1-15 

TF-8A Unsteady Weight Factors 

oo .90 

BAY NO. 11 y/(b/2) ■ .452 

r2D 
1      WTUSCL WTUSCMFA So REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.095 .975 -.032 .968 -.027 .1 

.190 .928 -.064 .920 -.067 .2 

.314 .862 -.068 .847 -.081 .333 

.950 .892 + .014 .827 + .037 1.0 

BAY NO. 10 y/(b/2) = .509 

r2D 
WTUSCL WIUbLMEA 

So RFAl IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.090 .976 -.030 .970 -.025 .1 

.180 .934 -.062 .926 -.064 .2 

.300 .867 -.071 .854 -.082 .333 

.900 .888 + .021 .817     +.035 1.0 

BAY NO. 9                       y/(b/2) = .567 

k 
r2D 

I      WTUSCL WTUSCMEA So REAL IMAGINARY REAL IMAGINARY 

0 

.085 

.170 

.280 

.850 

1 

.978 

.941 

.875 

.884 

0 

-.027 

-.060 

-.073 

+ .024 

1 

.971 

.933 

.863 

.808 

0 

-.022 

-.060 

-.082 

+ .031 

0 

.1 

.2 

.333 

1.0 
- 
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TABLE 3.1-15 (Cont'd) 

TF-8A Unsteady Weight Factors 

M = .90 

BAY NO. 8 

2D 

0 

.080 

.160 

.270 

.800 

MTUSCL 
REAL 

1 

.979 

.947 

.880 

.878 

IMAGINARY 

0 

-.025 

-.057 

-.074 

+ .026 

y/(b/2) " .624 

WTUSCMEA 
REAL IMAGINARY 

1 0 

.973 -.020 

.939 -.055 

.869 -.083 

.799 + .026 

3D 

0 

.1 

.2 

.333 

1.0 

BAY NO. 7 

2D 

0 

.076 

.152 

.250 

.760 

WTUSCL 
REAL 

1 

.980 

.951 

.889 

.872 

IMAGINARY 

0 

-.022 

-.055 

-.073 

+ .026 

y/(b/2) ■ .68 

REAL 

1 

,975 

.943 

.879 

.792 

IMAGINARY 

0 

-.017 

-.052 

-.082 

+ .020 

r3D 

0 

.1 

.2 

.333 

1.0 

BAY NO.  6 y/(b/2) =  .737 

r2D 
uTii<;r.i               1 WTUSCMFA k 

r3D 
REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.071 .982 -.020 .976 -.014 .1 

.142 .956 -.052 .949 -.049 .2 

.240 .894 -.072 .885 -.081 .333 

.710 .864 + .023 .786 + .012 1.0 
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TABLE    3.1-15  (Cont'd) 

TF-8A Unsteady Weight Factors 

M = 
OO 

.90 

BAY NO. 5 y/(b/2) = .795 

r2D 
1      WTUSCL WTUSCMEA So REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.067 .983 -.017 .977 -.012 .1 

.133 .959 -.049 .952 -.045 .2 

.220 .907 -.070 .897 -.077 .333 

.670 .856 + .020 .783 + .004 1.0 

BAY NO. 4 y/(b/2) ■ .852 

r2D 
WTUSCL WTUSCMEA So 

REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.062 .970 -.014 1.046 -.008 .1 

.124 .940 -.065 1.005 -.072 •2 

.206 .864 -.117 .915 -.139 .333 

.620 .668 -.001 .619     -.048 1.0 

BA) NO. 3 y/(b/2) = .909 

r2D 
WTl SCL WTUSCMEA 

r3D REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.057 .973 -.008 1.049 0.00 .1 

.114 .946 -.057 1.012 -.062 .2 

.190 .884 -.108 .935 -.129 .333 

.570 .661 -.023 .626 -.077 
1 

1.0 

m-^-^A 
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TABLE    3.1-15 (Cont'd) 

TF-8A Unsteady Weight Factors 
1-  -90 

BA^ f NO.  2 y/(b/2) =  .96^ 

r2D 
WTUSCL WTUSCMEA So 

REAL TMARTNARY BPÄI IMAGINARY 

0 1 0 1 0 0 

.052 .974 -.004 1.051 + .003 i 

.105 .951 -.050 i.019 -.050 .2 

.175 .900 -.098 .954 -.116 .333 

.520 .661 -.046 .639 -.109 1.0 
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TABLE 3.1-16 

TF-8A Unsteady Weight Factors 

N .95 

BAY NO. 11                       y/(b/2) = .452 

k 
r2D 

1      WTUSCL WTUSCMEA 
r3D REAL IMAGINARY REAL IMAGINARY 

0 

.095 

.190 

.314 

.950 

1 

.960 

.878 

.740 

.802 

0 

-.058 

-.123 

-.120 

+ .016 

1 

.962 

.891 

.789 

.753 

0 

-.036 

-.098 

-.121 

+ .062 

0 

.1 

.2 

.333 

1.0 

BAY NO. 10 y/(b/2) ■ .509 

r2D 
WTUSCL WTUSCMEA 

So REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.09 .962 -.053 .964 -.032 .1 

.18 .891 -.118 .900 -.092 .2 

.30 .750 -.126 .800 -.123 .333 

.90 .796     +.031 .735     +.057 1.0 

BAY NO. 9 y/(b/2) = .567 

r2D 
!       WTUSCL WTUSCMEA 

So REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.085 .965 -.049 .966 -.028 .1 

.170 .904 -.112 .910 -.086 .2 

.280 .766 -.132 .815 -.124 .333 

.850 .787 + .041 .719 + .050 1.0 
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TABLE 3.1-16 (Cont'd) 

TF-8A Unsteady Weight Factors 

M.= .95 

BAY NO. 8 

2D 

0 

.080 

.160 

.270 

.800 

jflUSCL 
REAL 

1 

.967 

.914 

.774 

.776 

IMAGINARY 

0 

-.044 

-.105 

-.134 

+ .049 

y/(b/2) = .624 

REAL 

1 

.968 

.920 

.823 

.707 

IMAGINARY 

0 

-.025 

-.080 

-.123 

+ .041 

3D 

0 

.1 

.2 

.333 

1.0 

BAY NO. 7 y/(b/2) ■ .68 

r2D 
UTiKr.l WTU3CMFA SD REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.076 .969 -.040 .970 -.021 .1 

.152 .922 -.100 .927 -.074 .2 

.250 .792 -.137 .840 -.122 .333 

.760 .766 + .052 .699 + .033 1.0 

BAY NO. 6 y/(b/2) ■ .737 

r2D 
WTUSCL WTUSCMEA So REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.071 .971 -.036 .971 -.018 .1 

.142 .930 -.093 .935 -.069 .2 

.240 .802 -.137 .848 -.119 .333 

.710 .750 + .050 .692 + .020 1.0 
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TABLE  3.1-16 (Cont'd) 

TF-8A Unsteady Weight Factors 

M ■  .95 

BAY NO. 5                       y/(b/2) ■ .795 

r2D 
1      WTUSCL WTUSCMEA s, 

REAL IMAGINARY REAL IMAGINARY 

0 

.067 

.133 

.220 

.670 

1 

.973 

.936 

.824 

.734 

0 

-.030 

-.088 

-.136 

+ .044 

1 

.973 

.942 

.865 

.690 

0 

-.013 

-.063 

-.112 

+ .008 

0 

.1 

.2 

.333 

1.0 

BAY NO. 4 y/(b/2) = .852 

r2D 
uTiisr.i 

WTUSCMEA r3D 
REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.062 .968 + .017 .980 + .021 .1 

.124 .940 -.025 .969 + .009 .2 

.206 .871 -.087 .954 -.017 .33! 

.620 .629 -.076 .836     -.054 1.0 

BAY NO. 3 y/(b/2) " .909 

r2D 
WTUSCL 

WTUSCMEA 
r3D 

REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.057 .970 + .020 .982 + .022 .1 

.114 .946 -.018 .971 + .011 .2 

.190 .888 -.076 .957 -.013 .333 

.570 .641 -.092 .844 -.054 1.0 
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TABLE   3.1-16 (Cont'd) 

TF-8A Unsteady Weight Factors 

M =  .95 

BA> I NO. 2 y/(b/2) =  .969 

r2D 
WTUSCL WTUSCMEA s. REAL IMAGINARY RFAI TMAniNARY 

0 1 0 1 0 0 

.052 .971 + .022 .983 + .022 .1 

.105 .951 -.010 .972 + .013 .2 

.175 .900 -.064 .961 -.008 .333 

.520 .658 -.108 .853 -.054 1.0 

-- ---  ^ - - 
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TABLE 3.1-17 

TF-8A Unsteady Weight Factors 

M = .99 

BAY NO. 11 y/(b/2) = .452 

r2D 
MTIK n WTUSCMEA So RFAI TMAHINARY RFAI TMAfiTNARY 

0 1 0 1 0 0 

.095 .977 0.00 .992 + .010 .1 

.190 .920 -.070 .978 -.006 .2 

.314 .822 -.122 .959 -.0?1 .333 

.950 .675 + .025 .892 -.024 1.0 

BAY NO. 10 y/(b/2) = .509 

r2D 
L    WTUSCL !     W1USCMEA 

r3D 
REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.090 .979 + .002 .992 + .011 .1 

.180 .930 -.062 .980 -.004 .2 

.300 .831 -.120 .961 -.020 .333 

.900 .668 + .013 .897     -.027 1.0 

BAY NO. 9 y/{b/2) = .567 

r2D 
I      WTUSCL WTUSCMEA So 

REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.085 .980 + .006 .993 + .011 .1 

.170 .938 -.054 .982 -.002 .2 

.280 .846 -.115 .964 -.019 .333 

.850 .664 0.00 .903 -.030 1.0 
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TABLE   3.1-17  (Cont'd) 

TF-8A Unsteady Weight Factors 

M,= .99 

BAY NO. 8 y/(b/2) ■ .624 

r2D 
UTIKf.l WTUS(;MEA    J r3D 

REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.080 .981 + .009 .993 + .012 .1 

.160 .946 -.046 .984 0.00 .2 

.270 .853 -.112 .965 -.018 .333 

.800 .662 -.012 .908 -.031 1.0 

BAY NO.  7 

20 

0 

.076 

.152 

.250 

.760 

WTUSCL 
REAL 

1 

.982 

.952 

.869 

.663 

IMAGINARY 

0 

+ .012 

-.040 

-.105 

-.024 

y/(b/2) 
WIUbCMEA 

.68 

REAL 

1 

.993 

.965 

.968 

.912 

IMAGINARY 

0 

+ .012 

+ .0U? 

-.015 

-.032 

BAY. NO. 6 y/(b/2) = .737 

r2D 
WTUSCL       ! WTUSCMEA k 

r3D 
REAL IMAGINARY REAL IMAGINARY 

0 1 0 i o 0 

.071 .982 + .016 .994 + .013 .1 

.142 .958 -.032 .986 + .004 .2 

.240 .876 -.100 .970 -.014 .333 

.710 .665 -.038 .917 -.032 1.0 
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TABLE 3.1-17 (Cont'd) 

TF-8A Unsteady Weight Factors 

M,= .99 

BAY NO. 5 y/(b/2) = .795 

r2D 
1     WTUSCL WIUbCMEA 

r3D REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.067 .984 + .018 .994 + .013 .1 

.133 .963 -.027 .987 + .005 .2 

.220 .892 -.090 .973 -.011 .333 

.670 .669 -.051 .921 -.032 1.0 

BAY NO. 4 y/(b/2) = .852 

r2D 
WTUSCL WTUSCMEA So 

REAL IMAGINARY REAL   1 IMAGINARY 

0 1 0 1 
1 

0 0 

.062 .972 -.014 .985 + .006 .1 

.124 .940 -.086 .968 -.022 .2 

.206 .832 -.160 .922 -.059 .333 

.620 .574     -.001 .773 -.046 1.0 

BAY NO. 3 y/{b/2) ■ .909 

r2D 
WTUSCL WIUSLMEA 

r3D REAL IMAGINARY REAL IMAGINARY 

0 1 0 1 0 0 

.057 .975 -.006 .986 + .010 .1 

.114 .947 -.076 .972 -.018 .2 

.190 .855 -.150 .933 -.053 .333 

.570 .568 -.029 .782 -.056 1.0 
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TABLE 3.1-17 (Cont'd) 

TF-8A Unsteady Weight Factors 

Km .99 

BAY NO.  2 y/(b/2) =  .969 

r2D 
WTUSCL WTUSCMEA 

So REAL IMAGINARY REAL IMAGINARY 

0 1 0 -1 0 0 

.052 .976 0.00 .986 + .011 .1 

.105 .952 -.064 .974 -.013 .2 

.175 .876 -.140 .942 -.046 .333 

.520 .569 -.058 .793 -.066 1.0 
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The unsteady weiqht factors are described in Subsection 3.3. Figures 

3.3-5 through -10 present unsteady weight factors for three spanwise stations 

as a function of section reduced freguency, kr  where kr  = -i- kr . The 

results at these three stations are applied to all wing  bays as   described 

in Subsection 3.3. Tables 3.1-15 through -17 present the unsteady correction 

factors for the TF-8A wing. There are no tables for M^ = 0.6, 0.8 since the 

unsteady weight factors for these '^ach Numbers are unity (no shock wave 

motion). In the tables for the other Mach Numbers some inboard bays are 

nissinq. Again the reason for this is the fact that the weight factors there 

are unity (no shock wave motion).   These data were applied at the four 

reduced frequencies of kr  =0, ,1, .2, .333, and 1.0. The total weight 

factor for any bay is the product of the steady and unsteady factors: 

WTCL ■ WTSCL*WTUSCL 

WTCM = WTSCM*WTüSCM 

Normally, these totals are not formed directly. The procedure followed 

is to: First, modify the theoretical AIC matrix with the steady weight 

factors, store, and use them as required; Second, modify the modified AIC 

matrix with the unsteady weight factors, store again, and use as required. 

3.1.4 TF-8A Flutter Results - Steady Weighting 

Flutter analyses were run using the "steady weighted" AIC's. The 

discussion of the weinhting procedures, along with the unexpected difficulties 

experienced in connection with Reynolds Number discrepancy between the 

pressure and flutter models, appears above in Subsections 2.1, 2.4, and 

3.1.3. In those sections it was pointed out that at high Mach numbers the 

static aeroelastic twist distributions and steady aerodynamic lift curve 

slope data seemed to indicate that the last few wing tip stations were 

stalled; e.g., c^ =0. A flutter analysis was run at Mm = 0.99 under this 

assumption. The flutter dynamic pressure was not reasonable (q = 195 psf). 

Since t^e measured flutter speed trends indicated no tip stalling, 

flutter analysis was rerun using AIC's weighted under the assumption 

that the actual lift slopes at the static twist angles-of-attack are 

the same as shown in the pressure model data at smaller pre-stalled 
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values of angle-of-attack. The basis for this assumption is the Reynold s 

Number discrepancy between the two models (See Section 2.4 above for 

discussion). 

Figure 3.1-18 shows a suimary of computed flutter speeds under this assump- 

tion of no tip stalling for the value of e^ . Unweighted theoretical results 

(using subsonic Double« Lattice Method) are shown for comparison. 

As discussed above in Section 3.1.3. the available aerodynamic data was not 

adequate to unambiguously define the section moment slopes, c^. At M^ • 

0.99, Figure 3.1-18 shows the calculated flutter speed for three different 

interpretations of ^ . and Illustrates the sensitivity of flutter speed 

to c  . Section 3.L3 contains a detailed discussion of this moment data 

and its interpretations. At «.,• .95 and 0.99, one additional possible 

interpretation of c,,, (namely, using the steepest negative slope between 

a . 0 and a- -1.5 )awas used which resulted in an unreasonable aerodynamic 

center distribution (70% chord at the tip) and an unreasonable flutter 

speed (near 300 qsf. for both Mach numbers). 

Section 5 below discusses recommended work to resolve these ambiguities. 

The steady weight factors (best guess for c^ ) used in the TF-8A analysis 

are shown In Table 3.1-14. 
(i 

Figure 3.1-18 shows an apparent discrepancy between the calculated and 

measured flutter frequencies at high Mach number. Actually, the discrepancy 

is not severe because the analysis shows that the flutter mode decreases in 

frequency very rapidly just before flutter onset. For example, the analysis 

shows the frequency to be dropping at a rate of 2 Hz per 3 kts at flutter. 
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Figure 3.1-18 TF-8A Flutter Results 
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3.2    RESULTS OF ANALYSIS - PHASE II 

3.2.1    TF-8A Flutter Analysis Results - Unsteady Corrections 

Flutter analyses were also run using AIC's reflecting the "unsteady 

weighting factors".    Section 2.5 discusses the theory and Section 3.3 

discusses the application of that theory to the TF-8A wing. 

Tables 3.1-15 through 3.1-17 show the unsteady weighting factors for 

reduced frequencies of 0,   .1,  .25 and 0.5.    The "steady weighted" AIC's for 

these values of kr were weighted by these factors and then the AIC's for the 

total  list of reduced frequencies required by the flutter analysis was ob- 

tained by interpolation between these basic four. 

The results of the flutter analyses showed that for the TF-8A the 

unsteady weighting factors changed the flutter speed by less than two 

percent at all Mach numbers. 
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3.3    PHASE  III  RESULTS 
The theories developed under Phase III of the contract are presented 

in Subsection 2.5.    It was noted there that the major transonic effect is 

the perturbation pressure induced by shock wave motion.    The effects of 

shock wave motion were added to the classical  lifting surface theory and 

the results discussed and correlated in Subsection 2.5.1.3.    The correlation 

of this procedure using the NLR 7301 airfoil  for the range of frequencies 

considered in the experiment is very encouraging. 

The full  transonic theory described in Subsection 2.5 is not entirely 

complete since the procedure for determining the shock wave motion for 

oscillatory flow has not been tried.    The nondimensional  shock wave motion 

function, x(kr)/x(k   = 0) obtained experimentally for the NLR airfoil  at 

M   = 0.7 and a - 1.75°, can temporarily be used to obtain the shock wave 

motions for the TF-8A and YC-15II wings.    It was felt, however, that if 

this approximation is to be used, then a less general  theory could be used. 

Specifically, the method described in Subsection 2.5.1.2, as mentioned 

above, would be the logical  choice because it contains the major transonic 

effect, i.e., pressures due to shock wave motion and because of its good 

correlation with data.    A second reason for using this method is the effort 

involved.    At its current level of development the general  theory would 

require more time than available to run all of the conditions for the TF-8A 

and YC-15II wings. 

The theory of Subsection 2.5.1.3 gives the incremental  lift and moment 

due to shock wave motion as: 

ÄC1    =6162  (Cp      -Cp    )^exP  ^V*) 
a S2 S1 

6.    , ^   1  upper surface 

I -1 lower surface 

6?    . )   1  shock moving aft with increasing a 

1-1 shock moving fonvard with increasing a 

150 

■    ■   



-~- 

Where C      . C       are the steady pressures on either side of the shock 
hy       \ 

wave, x    is the amplitude of shock motion, and T is the non-dimensional 
o 

time (TU /C) for an acoustic wave to reach the shock wave from the trailing 
09 

edge. The oscillatory value of Xo is approximated using the curve of 
x  (k )/\  (k = 0) for the NLR 7301 airfoil and the value of x (k = 0) 
oN r  o r t    \ 
for the airfoil under consideration (see Figure 2.5-33). Thus, the xo(kr) 

for any wing is 

Xo(kr)-Xo(kr=0)G(kr=0) 

where 
G(kr) '  X0(kr)/X0(kr - 0) for NLR 7301 airfoil at M^ = 0.7, a * 1.75' 

If the acoustic time 7 is computed as in Reference 4, then the constant 
A can be set to 1.0. To simplify the calculation, the method of Reference 4 

was adopted instead of using the acoustic pulse generator (along with the 
estimated value for A). The approximate method of Reference 4 consists of 

using the following formula: 

i I (i - VA 

where 
M - M  1    + M 

00   I «0 

Where M is the local  surface Mach Number 

M. = 0.7 

as 

The weight factor for the lift coefficient is given in Subsection 2J 

WTUSCUU -   i (2[ITRANS>(«,.) A, (2D) (kJ 

(ZDTRANS)^^/       (ZD){kr.s0) 
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Where the transonic c^ i.e., c^ ^ 0  NS) is given as the total of 
a a 

the classic theory, c^ ^2D', plus the transonic increment, AC    . 

The weight factor for the lift then becomes: 

WTUSCL(kr) - (1  + BCL G(kr)LCL(kr)/ (1 ♦ BCL) 

where 

BCL = (Cp     - Cp    I 3Xo(kr = Vl *alC 
s
2 Sl ' 

t
(2D)(kr = o) 

% r 

LCL(kr) (2D) (kr ■ 0)/« 
(2D) 

(kr) exp (-i2krT) 

(3.3-1) 

The derivation of the weight factors for the moment coefficient about 

the elastic axis follows and is similar. 

Atm   MV0" Xea/c>&C* 

where x„ is the shock location.    The unsteady weight factors for cm   is then; 
a(3.3-2) 

where 

s 

WTUSCMEA = (1  + BCM G(kr) LCM(kr))/( J   + BCM) 

(XJC " XoJc) 
BCM s __SZ eai_   BCL 

(l/4-xea/c) 

LCM(kr) = 
a                    /a 

exp (-i2krT) 

The values of the steady flow classic theory are 

a 
0)  = 2n/ß 

.(2D), 2^ cr'(lcr-0) = ^(xH,'c-1/4) 
a 
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The weight factors just described are calculated for three sections 

along the wing and applied to all of the aerodynamic bays. Figure 3.3-1 

shows the bays that are associated with the three sections for the TF-8A 

wing while Figure 3.3-2 shows it for the YC-15II wing. 

The elastic axis data. x^/c. to be used in the formulas for the 

unsteady weight factors are found in Table 3.1-1. The values of cn   (kj 

and c 
Ml 

^2D^  (k ) are obtained from the two dimensional compressibleasubsonic 

lifting surface theory. 

The shock wave data to be used in these formulas could not be taken 

directly from steady wind tunnel  data because of the elasticity of both the 

pressure model and the flutter model and because of the difference in  built- 

in twist between the two models.    Shock wave location and movement are 

highly dependent on the local  section angle-of-attack and boundary layer 

build-up.    Since both the built-in twist and elastic twist of the pressure 

model  are different than those of the flutter model, the following procedure 

was followed. 

The first step is to find the total  section angle-of-attack ,as     , of 

each of the three wing sections on the flutter model at an estimated dynamic 

pressure for flutter. The section angle-of-attack, o^ % is composed of 

rigid body angle a(f), elastic twist E^f), and built-in or 'jig' twist, 

eJ 
(f) 

where 'f indicates flutter model 

•(f) . a(f) + »(f) + »(f) 
s j    e 

From this value of section angle-of-attack for the flutter model, is 

subtracted the value of tr    ^r the pressure model. 

La   (eff) 
s 

•(f) 
s 

»(p) 
J 
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 ■"•   Selected Wing Sections 

Aerodynamic Bay Limits 

Figure 3.3-1    The Association of Aerodynamic Bays with Selected 
Wing Sections for the TF-8A Wing. 
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Aerodynainic Bay Limits 

   Selected Wing Sections 

Figure 3.3-2   The Association of Aerodynamic Bays with Selected 
Wing Sections for the YC-15II Wing 

» 
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TABLE 3.3-1 Elastic Axis Locations 

TF-8A YC-15 

Y/(b/2) 

.309 

.657 

.933 

]ea^c_ 

.5 

.5 

.5 

Y/(b/2) Xea/c 

.16 .38 

.42 .43 

.85 .5 

TABLE 3.3-2 TF-8A Incremental Angles-of-Attack Between 
the Elastic Flutter Model and Pressure Model 

y/(b/2) 
4« a 

Mc0= 0.8 Mo^ 0.9 Mco» 0.95 PI.« 0.99 

.309 

.657 

.933 

0.2° 

-0.8° 

-1.62° 

0 

-0.4° 

-0.8° 

0.6° 

-0.7° 

-2.4° 

1.2° 

0 

-1.8° 

1  

TABLE 2.3-3     -      YC-15II Incremental Angles-of-Attack Between 
the Elastic Aircraft and Pressure Model 

y/(b/2) Aos      M    =0.76 

.163 

.42 

.85 

-0.7° 

-1.0° 

-2.0° 
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The incremental angle-of-attack, Aa^eff', is the angle-of-attack on the 

pressure model  required to match the flutter model conditions.    (This angle 

is an effective angle and must be reduced to an actual  angle by using the 

aeroelastic correction of the pressure model  in reverse.    This process was 

not done in the calculations; however, the resulting error is small.) 

The aeroelastic calculations of a^ for the two flutter models is 

given in Subsection    3.1.2 for the TF-8A wing and 3.4.2 for the YC-15II 

The value of t^ for the pressure model    is given in Figure 3.1-6. wing. 
-j 

The value» of Aa    for the TF-8A wing at various Mach Numbers are presented 

in Table 3.3-2.    The values of Aa,. for the YC-15II are given in Table 3.3-3. 

The next step in the process is to find experimental pressure model 

data for pressure distributions that correspond as c^ose as possible in a 

to the Aa   tables above and to match this data to theoretical  calculations 

using the5Jameson and/or Garabedian methods  (see Reference 16 and Appendix D 

for a description of the Garabedian method).    The inverse process produces 

a modified airfoil shape when the experimental pressure distribution and 

Mach Number are used.    The modified shape exhibits a thickening in the 

vicinity of the trailing edge which is typical of boundary layer growth 

(see Figure 3.3-3 for examples). 

Early in the contract, calculations were performed using the inverse 

Garabedian method on TF-8A wing sections but at angles-of-attack that did 

not match the values of Aas given in Table 3.3-2.    In order to take 

advantage of this work, the resulting modified airfoil  shapes  (shown in 

Figure 3.3-3 for M^ = 0.99) were used.    Instead of revising the airfoil 

shape to match the^data, the angle-of-attack and Mach Numbers were varied 

to produce a best-fit of the theory (Jameson Method) to the data.    A table 

of these increments is given in Table 3.3-4. 

Some of the section pressure distributions of the TF-8A wing could 

not be matched using this procedure and for these the inverse Garabedian 

procedure was reapplied near the correct angle of attack.    For the case of 
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the YC-15II all of the airfoils were generated using the inverse Garabedian 

at angles-of-attack which were close to the desired ones given in Table 

3.3-3.    The output of the inverse Garabedian procedure also includes a 

change in angle-of-attack, 6a, from that which corresponds to the input 

experimental  pressure distribution.    In Tables 3.3-4 and 3.3-5, these are 

indicated by an asterisk (*). 

The term 6a is now added to the values of Aas and 6M is added to the 

two-dimensional  value of Mach Number (M,,D = M^ cos A). 

Aa    s  Aa    + 6a 

M2D = M2D ♦ 6M 

The values of Äö and FL^ are then input into the Jameson steady 

transonic method and the necessary shock data calculated. 

The shock data required for the calculation of the weight factors are: 

(1) The jump in pressure across the steady shock, C   ' Cp ; W  The shock 
s2 s1 

location, x /c,  (3). the local Mach Number distribution (so that ' may be 

calculated); and (4) The change in shock location with respect to angle-of- 

attack, ax (k    = 0)/3a.    The last term is done in a numerical manner by 
o    r 

varying the angle-of-attack slightly about the mean position.    Thus, 

 O  _  AA^ 
3a Aa 

An example Is presented in Figure 3.3-4.    The values of interest for 

the TF-8A and YC-15II wings are given in Tables   3.3-6 dnd 3.3-7. 

The quantities in these tables are used to produce the desired 

incremental  unsteady weight factors.    These factors are plotted for the 

TF-8A wing in Figures 3.3-5 through 3.1-10.    These figures are for free 

stream Mach Numbers, M   = 0.9, 0.95 and 0.99.    The results for M   =  .8 are 
CO 
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TABLE 3.3-4   - (TF-8A) Corrections to Jameson 
Transonic Theory to Give Best 
Match to Data 

y/(b/2) M ' 0.8 ■ 
6a                 6M 

M^ 0 

6a 

.9 

6M 

\» 0 

6a 

.95 

m 6a 

.99 

6M 

0.309 

0.657 

0.933 

1 
Chnrl- U bnocK— 

0.58° 

2.08° 

0 

0.009 

0.85° 

0.25° 

0 

0 

1.5° 

0.5° 

0.018 

-0.012 

TABLE 3.3-5 

y/(b/2) V 
6a 

.76 

6M 

.163 

.42 

.85 

-0.85°* 

-1.5°* 

-0.18°* 

0* 

0* 

0* 

(YC-15II) Differences Between Data 
and Garabedlan Theory for a and M 

* Could not obtain good match by changing a and M in the Jameson Method 
and had to perform Garabedlan Inverse. 
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Figure 3.3-4    Steady Pressure Distribution Near the Shock Wave for 
Angles of Attack Near the Required Value (1.5°] for the 
TF-BA Wing (yAb/2) = 0.657,    M^ ■ M      ■ 0.99,    M     ■  .80) 
Illustration of the Calculation 3X/9a (C PS2 

= C PS 1 
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TABLE 3.3-6 Shock Location & Motion 
Variables for the TF-8A Wing Section 

M3D 
(MJ 

M2D y/(b/2) 61 62 v T (c -c )*Ju 
s2  sl 

.80 - .309 

.80 - .657 (No  Shocks ) 

.80 - .933 

.90 - .309 - - No Shock - - 

.90 .711 .657 -1 -1 0.1351 3.07 1.2900 

.90 .72 .933 -1 -1 0.2141 2.52 3.1515 

.95 - .309 - - No Shock - - 

.95 .75 .657 -1 -1 0.2373 3.154 2.9223 

.95 .75 .933 -1 -1 0.3894 1.766 4.7413 

.99 - .309 - - No Shock - - 

.99 .80 .657 -1 -1 0.4445 1.912 3.8964 

.99 .77 .933 -1 -1 0.3894 2.685 4.8705 

Table 3.3-7 Shock Location & Motion 
Variables for the YC-I5II Wing Sections 

M3D 
(MJ 

M2D y/(b/2) 61 62 xs/c T (c -c )«V«. 
s2  I, 

.76 .759 .163 1 1 .3644 3.29 3.553 

.76 .759 .42 1 1 .4122 3.35 1.776 Upper surface 

.76 .759 .42 -1 -1 .4350 2.44 1.031 Lower surface 

.76 .761 .85 -1 -1 .4644 2.07 0.974 
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unity because there are no shock waves at this Mach Number, and thus, are 

not plotted.    The results for y/(b/2) = 0.309 for all  Mach nunters are not 

shown for the same reasons; i.e., no distinct shock exists for this inboard 

wing section. 

Figures 3.1-11  through 3.1-14 present the weight factors for the three 

sections of the YC-15II wing plotted versus reduced frequency for one Mach 

Number (M   = 0.76).    The section at y/(b/2) = 0.42 requires two plots because 

there are shock waves on both top and bottom surfaces. 

Notice that the incremental  unsteady weight factors are unity at kr = 0. 

These factors are used to produce a weight factor correction to the steady 

weight factors previously discussed.    As stated in Subsection 2.4, the total 

weight factor is the product of the steady weight factor and the unsteady 

weight factor. 

The incremental  unsteady weight factors are plotted versus a two- 

dimensional  sectional  reduced frequency.    The two-dimensional  sectional 

reduced frequency is related to the three-dimensional   reduced frequency 

as follows (see Subsection 2.4): 

20 r3D c 

The values of kr     for the TF-8A wing are: 
r3D 

k        (TF-8A) = 0, 0.1, 0.333, 1.0 
r3D 

The values of k       for the YC-15II wing are 
r3D 

k        (YC-15II) = 0, 0.1, 0.25, 0.5 
r3D 
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The sectional values of reduced frequency, k      , then vary as the local 
r2D 

chord, c, varies.    The specJ "'c values of k„     and the corresponding values 
r2D 

of weight factors for c,    and c     are presented In Subsection 3.1.2 for the 
a a 

TF-8A wing and In Subsection 3.4.2 for the YC-15II wing. 
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Figure 3.3-5 Unsteady Weight Factors for the TF-8A Wing 
(y/(b/2) = 0.657. M3D = 0.90, M2D ■ 0.711) 
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WTUSCMEA  .82 
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0 WTUSCL 

□ WTUSCMEA 
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WTUSCL 

WTUSCMEA 

IMAGINARY 

Figure 3.3-6 Unsteady Weight Factors for the TF-8A Winq 
(y/(b/2) = 0.933. M3D = 0.9, M2D = 0.72) 
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Figure 3.3-7 Unsteady Weight Factors for the TF-8A Wing 
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Figure 3.3-8 Unsteady Weight Factors for the TF-8A Win 
(y/{b/2) = 0.933, M3D = 0.95, M2D ■ 0 
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Figure 3.3-9 Unsteady Weight Factors for the TF-8A Wing 
(y/(b/2) = 0.657, M3D = 0.99, M2D=0.80). 
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Figure 3.3-10   Unsteady Weight Factors for the TF-8A Wing (y/(b/2) = 0.933, 

'30 0.99,    M2D    =    0.77) 
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Figure 3.3-11 Unsteady Weight Factors for the YC-15II 
(y/(b/2) - 0.16. M2D ■ 0.759) 
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Figure 3.3-12 Unsteady Weight Factors for the YC-15II 
(y/{b/2) = 0.42, M2D = 0.759), Upper Surface 
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Figure 3.3-13 Unsteady Weight Factors for the YC-15II 
(y/(b/2) ■ 0.42, Ng, = 0.759), Lower Surface 
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3.4  RESULTS OF ANALYSIS - PHASE IV 

The methods of Phases I - III were applied to the YC-15II aircraft. 

3.4.1 YC-15II Basic Jata 

Reference 17 documents the YC-15II basic data. 

3.4.2 YC-15II Static Aeroelastic Solutions 

The methods of Section 2.3 were applied to generate the YC-15II wing 

static aeroelastic shape at the critical wing Mach Number, M = 0.76. Figure 

3.4-1 shows the results for a typical payload/fuel configuration. As can be 

seen the unswept, relatively stiff wing undergoes quite small deflections even 

at this high dynamic pressure. The maximum magnitude of the wing tip angle- 

of-attack is about 2.5 degrees (minus). 

3.4.3 Aerodynamic Data and Weighting Factors for the YC-15II Wing 

The Doublet Lattice Method idealization is presented in Subsection 2.1. 

The resulting theoretical distribution of section lift coefficient slope and 

aerodynamic center are presented in Figure 3.4-4. The theoretical distributions 

are compared to those obtained by wind tunnel tests. 

Figures 3.4-2 and 3 show that the lift and moment curve slopes are 

functions of the section annle-of-attack. Specifically, the angle-of-attack 

distribution required is one that is relative to the pressure model at zero 

rigid body anqle-of-attack. The distribution of section anqle-of-attack for 

the YC-15II aircraft consists of (1) the rigid body angle, a    ' , (2) the 

built-in twist, c  . , and (3) the elastic twist t'j' calculated at a given 

dynamic pressure corresponding to a flutter speed previously estimated. The 

superscript (a) refers to the aircraft. This curve is shown in Fiqure 3.4-1 

of Section 3.4.2. The angle-of-attack distribution of the pressure model at 

zero rigid body annle-of-attack is just the pressure model built-in twist. 7^5 

is also shown in Fiqure 3.4-1. The desired section angle-of-attack is then 

the difference between the aircraft and pressure model distributions, i.e.. 

Act 
(P) = a(a) + e.(a) + E (a) . ,>) = >).,(*) since ei 

j     e     J e        j 
(a) = t (P) 

J 

Ik  i 
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This difference, Aa ^p', which is also plotted in Fiqure 3.4-1, is the 

final result. The points at which c^ and cm are to be calculated are now 

known and are indicated in Figures 3.4-2 and -3. The resulting c^ and xa 

distributions are plotted in Fiqure 3.4-4. The theoretical distribution, 

also shown in the figure, was used as an aid in finding the experimental 

distribution because only three spanwise points were available. 

The ratio of experimental to theoretical values of c^ and cm at the 

various bay locations are the steady weight factors. Table 3.4-1 presents 

the results of these calculations for two estimates of Cm . 

These two estimates come from the slopes on either side of the La{p' 
points. These two values of c  are carried through the flutter calculation. 

The unsteady weight factors are described in Subsection 3.3 and plots 

of them versus the reduced frequency kr  are given in Figures 3.3-11 through 

-14 for three spanwise stations. The data for these three spanwise stations 

are applied to all of the bays in a manner also shown in Subsection 3.3. 

The values of the two-dimensional reduced frequency, kr , are related to 

the actual values, kr . as shown in Subsection 2.4 as, kr  = c/c kr . 

The reduced frequencies considered for the generation of the AIC's are 

k^  = 0, 0.1, 0.25, 0.5. The tables of the unsteady weight factors used, 
3D 

WTUSCL and WTUSCMEA (about elastic axis) are given in Table 3.4-2. There is 

a slight disparity between the tables and curves for the inboard half of the 

wing. Also, the shock motion on the lower surface at y/(b/2) = 0.42 was 

omitted, see Figure 3.3-13. The effects of this omission and disparity 

should be very small as far as flutter is concerned since the flutter speed 

changes due to the unsteady weight factors is itself small and due to the 

fact that only the inboard portion of the wing was affected. 
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3.4.4 YC-15II Flutter Analysis Results 

Figure 3.4-2 shows the measured (high speed wind tunnel model) sectional 

lift curve coefficient versus angle-of-attack for three span stations. As can 

be seen, the statically deformed wing is still in the essentially linear range 

of the aerodynamics. Figure 3.4-4 shows a plot of sectional t»      vs percent 
semispan using the approximately linear portion of the slopes from the previous 

figure (from between angles-of-attack of zero and -2.5 degrees). The AIC's 

were weighted to match Figure 3.4-4 for the "steady weighting" exercise. This 

is the same weighting that was used in the production YC-15II flutter analysis, 

which resulted in the previously reported minimum calculated flutter speed 

at M = 0.76. Flutter analysis results are discussed in detail in Reference 
oo 

17. Thus, the static aeroelastic twist effects, which were ignored during 

the original YC-15II flutter analysis, are indeed negligible. 

Table 3.4-2 shows the "unsteady correction" multiplicative weighting 

factors for the YC-15II wing. These were included in the YC-15II flutter 

analysis resulting in a flutter speed reduction of some 2-3 KEAS. Hence, 

the YC-15II results are similar to the TF-8A results in that the unsteady 

transonic corrections are virtually negligible in effect compared to the steady 

corrections. The steady corrections were of course very important on the YC-15II 

as they resulted in a calculated flutter speed equal to 89 percent of the flutter 

speed predicted by purely theoretical AIC's at M^ ■ 0.76. The two values of 

c  used had little influence since they are close to each other on the out- 
m 
board wing. The final value of flutter speed was taken as the average of that 

obtained using the two values of cm . 
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Figure 3.4-2    YC-15II c^ vs. a, M^ ■  .76 
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TABLE   3.4-1 

YC-15II Steady Weight 

\m  -76 
(maxc^   ) 

a 

Factors 

y/b/2 WTSCL WTSCM 

.148 1.09434 .23618 

.214 1.10185 .36447 

.274 1.10035 .50098 

.334 1.08813 .57113 

.393 1.09421 .64771 

.451 1.07981 .71515 

.514 1.06818 .72542 

.578 1.06074 .76112 

.641 1.05491 .78418 

.704 1.06475 .82415 

.767 1.08538 .85471 

.829 1.12782 .90167 

.963 1.11765 

V •76 
(min cm  ) 

.87788 

.148 1.09434 .27415 

.214 1.10185 .54004 

.274 1.10035 .76158 

.334 1.08813 .88133 

.393 1.09421 .96664 

.451 1.07981 .98728 

.514 1.06318 .98121 

.578 1.06074 .97858 

.641 1.05491 .97690 

.704 1.06475 .97725 

.767 1.08538 .95956 

.829 1.12782 .96335 

.892 1.19167 .98948 

.963 1.11765 .87788 
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TABLE 3.4-2 

YC-15II Unsteady Weight Factors 

■ ■ .759 
00 

• —T 

BAY NO. 20 y/(b/2) -  .167 

r2D 
UTUSCL       ■ WTUbCMEA      I So 

RFAL TMART NARY REAL TMARI NARY 

0 

.184 

.459 

.918 

1 

.866 

.636 

.776 

0 

-.144 

-.022 

+ .023 

1 

.983 

.955 

.954 

0 

-.011 

-.013 

+ .004 

0 

.1 

.25 

.5 

t.      i—■           — 

 . . 1 

BAY NO. 21 y/(b/2) = .5,26 

r2D 
WTUSCL          1 

WIUbLMFA      , s, 
REAL IMAGINARY REAL IMAGINARY 

0 

.175 

.437 

.875 

1 

.881 

.639 

.771 

0 

-.139 

-.037 

+ .037 

1 

.984 

.957 

.953 

0 

-.010 

-.013 

+ .004 

0 

.1 

.25 

.5 

i     ■■■-' ■  

BAY NO. 22 y/(b/2) - .284 

r2D 
I       WTUSCL 1      WTUSCMFA r3D 

REAL IMAGINARY REAL IMAGINARY 

0 

.167 

.417 

.833 

1 

.893 

.643 

.764 

0 

-.133 

-.051 

+ .047 

1 

.985 

.958 

.952 

0 

-.010 

-.014 

+ .002 

0 

.1 

.25 

.5 
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TABLL 3.4-2 (Cont'd) 

YC-15II Unsteady Weight Factors 

M = .759 

BAY NO. 23 y/(b/2) ■  .344 

r2D 
i                 WTUSCL WTUSCMEA 

So REAL TMARTNARY RFAl TMARTNARY 

0 1. 0 1. 0 0 

.158 .903 -.128 .986 -.009 .1 

.395 .650 -.069 .960 -.014 .25 

.789 .753 + .056 .951 + .001 .5 

BAY NO. 24 y/(b/2) =  .408 

r2D 
WTUSCL I               WTUbCMEA So REAL IMAGINARY REAL IMAGINARY 

0 1. 0 1. 0 0 

.149 .972 -.030 1.000 0.00 .1 

.372 .902 -.045 1.002 + .001 .25 

.743 .883 + .009 1.003 + .001 .5 

1 

BAY NO.  25 y/(b/2) -  .' 169 

r2D 
WT SCL WTUSCMEA 

So REAL IMAGINARY REAL IMAGINARY 

0 1. 0 1. 0 0 

.140 .976 -.028 1.000 0.00 .1 

.349 .907 -.046 1.002 .001 .25 

.699 .881 + .005 1.003 .001 .5 
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TABLE 3.4-2 (Cont'd) 

YC-15II Unsteady Weight Factors 

&3 ■ .759 

BAY NO. 26 y/(b/2) = .537 

r2D 
WT JSCL WTUSCMEA 

SD 
REAL IMAGINARY RFA1 IMARINARY 

0 1. 0 1. 0 0 

.130 .979 -.025 1.000 0.00 .1 

.325 .914 -.046 1.002 + .001 .25 

.649 .879 0.00 1.003 + .001 .5 
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TABLE 3.4-2 (Cont'd) 

YC-15II Unsteady Weight Factors 

M =  .761 

BAY NO. 27 

2D 

0 

.120 

.300 

.600 

WTUSCL 
.REAL 

1 

.984 

.935 

.889 

IMAGINARY 

0 

-.013 

-.040 

-.019 

y/(b/2) = .604 

WTUSCMEA 

mi*. 
i 

.996 

.990 

.983 

TMARINARY 

0 

+ .001 

-.004 

-.006 

3D 

0 

.1 

.25 

.5 

BAY NO. 28 y/{b/2) = .664 

\o 
UTiisn WTUS CMEA 

So REAL IMAGINARY RFA1 IMAGINARY 

0 1 0 1 0 0 

.111 .985 -.010 .997 + .001 .1 

.278 .941 -.039 .991 -.004 .25 

.556 .891 -.024 .984 -.006 .5 

BAY NO. 29 y/{b/2) = .725 

r2D 
WTU SCL WTUSCMEA So 

REAL IMAGINARY REAL .IMAGINARY 

0 1 0 1 0 0 

.102 .987 -.008 .997 + .001 .1 

.256 .947 -.037 .992 -.004 .25 

.512 .896 -.030 .985 -.006 .5 
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TABLE 3.4-2 (Cont'd) 

YC-15II Unsteady Weight Factors 

PL" .761 

BAY NO. 30 

2D 

0 

.094 

.234 

.468 

WTUSCL 

REAL 
1 

.988 

.953 

.901 

UMfillliBl 
0 

-.006 

-.034 

-.035 

y/{b/2) = .785 

BFAI 

1 

.997 

.993 

.986 

WTUSCMEA  

IMAGINAPY 

0 

+ .001 

-.003 

-.006 

3D 

0 

.1 

.25 

.5 

BAY NO.  31 y/(b/2) =  .845 

r2D 
WTUSCL WTUSCMFA So 

REAL IMAGINARY RFAI TMAfilNARY 

0 1 0 1 0 0 

.085 .990 -.004 .998 + .001 .1 

.212 .960 -.031 .994 -.002 .25 

.424 .909 -.039 .987 -.006 .5 

BAY NO. 32 

2D 

0 

.076 

.190 

.380 

WTUSCL 

M&. 
1 

.991 

.967 

.917 

IMAGINARY 

0 

-.001 

-.028 

-.041 

y/(b/2) ■ .906 

WTUSCMEA        k 

JBEAL 

1 

,998 

.994 

.988 

0 

+ .002 

-.002 

-.006 

JO 

0 

.1 

.25 

.5 
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TABLE    3.4-2 (Cont'd) 

YC-15II Unsteady Weight Factors 

IL"  .761 

BAY NO. 33                     y/{b/2) = .968 

r2D 
WTUSCL WTUSCMEA So REAL IMAGINARY REAL IMAGINARY 

0 

.067 

.168 

.335 

1 

1 

.992 

.973 

.927 

0 

+ .001 

-.024 

-.041 

1 

.998 

.995 

.989 

0 

+ .002 

-.001 

-.005 

0 

.1 

.25 

.5 
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3.5 FLUTTER MODEL TEST PLAN 

A flutter model test is presented to support the analyses in determining 

the effects of some of the critical parameters on flutter of supercritical 

wings. A brief flutter analysis of the proposed flutter model was done to 

verify that trie desired flutter speed range could be achieved with a reason- 

able stiffness distribution. 

3.5.1 Description of Model 

Design and build a cantilevered wing flutter model representing a typical 

STOL transport wing. The model is to be tested in the NASA Langley Transonic 

Dynamics Tunnel. The model will have the following features: 

1. 

2. 

3. 

4. 

5. 

Interchangeable airfoil segments. 

a. Supercritical shape 

b. Conventional shape 

Variable angle of attack at the wing root. 

Variable wing twist distribution. 

Instrumented to provide spanwise internal load distribution, 

Removable engine weights. 

The model will be a single spar wing with twelve balsa segments represent- 

ing the airfoil shape(s). Two dummy engines representing the important mass 

properties will be mounted to the wing using rigid pylons to eliminate tuning 

effects of the engines. These dummy engines wil1 also be removed so as to 

gather data for a higner frequency flutter case. The spar will be instrumented 

with a series of strain gages along the span to measure bending in two 

directions as well as torsion. Figure 3.5-1 shows the general arrangement 

of the model. 

The variations in angle of attack of the wing will be attainable by using 

either the tunnel floor turntable or the wide wall mounting fixture in the 

NASA Langley 16 ft TDT. 

189 



The variations of wing twist distribution will be made by shimming between 

the wing segments and the spar. 

3.5.2 Wind Tunnel Test 

The wind tunnel facility anticipated for testing the cantilevered wing is 

the NASA Langley 16 ft TDT which uses Freon for a test medium. Normal testing 

method of changing Mach No. with total pressure constant will be used. Tunnel 

speeds will be increased until flutter onset is obtained or some predetermined 

maximum is reached due to tunnel operating limit or model applicability. 

3.5.3 Model Configurations 

The two basic configurations will be with dummy engines and without dummy 

engines. The three major parameters for each configuration will üe the airfoil 

shape, wing root angle of attack, and wing twist distribution. 

3.5.4 Wind Tunnel Test Data 

The model test data for any configuration will consist of the following: 

1. Zero speed vibration modes and damping. 

2. Wind tunnel parameters. 

3. Flutter speed and frequency 

4. Wing spanwise internal load distribution. 

5. Wing aeroelastic deformation if measureable with optical devices. 
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CANT1LEVERED WJNG_f LUTTER_ MODEL 

FOR NASA LANGLEY 16 FT. TDT 

6.950" 

REMOVABLE 
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16 FT T^T 
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Figure 3.5-1 Proposed Cantilevered Wing Flutter Model 
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SECTION IV CONCLUSIONS 

4.1 CONCLUSIONS RELATED TO THE FLUTTER ANALYSIS 

1. The theoretical subsonic method seriously underestimates the relevant 

steady aerodynamic data (lift curve slopes and aerodynamic center distribution) 

at the critical Mach number for a wing with "supercritical" airfoil sections. 

This is in contrast to recent results for subsonic transport designs with 

conventional airfoils where the theory has been in good agreement at the 

critical Mach number (and overestimated the derivatives at low Mach numbers). 

For example, the YC-15II wing steady lift curve slope at the critical Mach 

number (0.76) was 17 percent higher than predicted by the Doublet Lattice 

Method, while for the TF-8A the wing C. test data was approximately double 

the Doublet Lattice prediction (at M ■ 0.99). Figure 4.1-1 below summarizes 

the general trends for conventional and supercritical airfoils of recent ex- 

perience. 

2. The sectional lift curve slopes for a supercritical airfoil possess 

an inherently nonlinear character over the pre-stall range. However, it appears 

that the pre-stall range can be approximated by two slopes; a small slope over a 

small angle of attack around zero, and a steeper slope at higher angles of attack 

(but still before viscous effects are seen). Figure 4.1-2 shows typical data. 

This characteristic "dual slope" phenomenon has shown up consistantly on three 

different supercritical designs and is more pronounced the mor«» "supercritical" 

the design. The steeper slope is a transonic effect, and cannot be predicted 

by subsonic lattice methods. 

'TO Figure 4.1-1    Comparison of Theoretical Aircraft 
Lift Curve Slope with Experimental 
Data for Conventional  and Supercritical 
Wings. 

Critical M 
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Supercritical 

Viscous 

Figure 4.1-2 Nonlinear Character 
of The Transonic 
Lift-Curve 

3. The "steady corrections", wherein the AIC for kr = 0 was weighted to 

match the steady test aerodynamic data, and then these weight factors applied 

to all reduced frequencies, resulted in flutter speeds which were in reasonable 

agreement with measured flutter speeds. Analysis using purely theoretical 

AIC's resulted in significantly non-conservative flutter speed predictions, 

for both the TF-8A flutter model and the YC-15II prototype. 

4. The unsteady transonic weight factors had a negligible effect on the 

flutter speed of both the TF-8A and YC-15II. This may be because the reduced 

frequency at flutter is relatively low for both aircraft; kr = 0.15 for the TF- 

8A flutter model and k = 0.125 for the YC-15II. Since the direction of the 

effect was detrimental In both aircraft (even though negligible in magnitude), 

these techniques should be applied to a configuration with high flutter freq- 

uencies before any final conclusions are made. 

5. For advance design configurations which use supercritical wings and 

for which no high speed aerodynamic data exists, application of the steady 

three-dimensional Jameson method (reference 11) or similar method should be 

made. This method has been implemented into a production status at Douglas 

and much correlation work done. Steady and unsteady corrections could then 

be based on this predicted transonic aerodynamic data in lieu of test data. 
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6. The effect of static twist on flutter is obviously significant since 

the final section angle of atcack may end up in the smaller slope range, the 

steeper slope range, or even the viscous effect range. It seems clear, however, 

that the certification analysis must use the steepest slopes regardless of the 

Igcruise twist distribution, so as to cover the maneuvering range of the air- 

craft, and other unknowns. 

Accounting of static twist effects are obviously very important in 

a correlation analysis of a flutter model with a relatively flexible winq. 

7. Incorrect Reynolds number simulation in pressure models and flutter 

models may lead to errors: 

a) If the high speed flutter model does not fly at a high enough 

Reynolds number the wing tips may stall prematurely resulting in 

non-conservative flutter speeds predictions or in buffet or stall 

flutter condition which are not realistic. 

b)  If the pressure model and flutter model were flown at different 

Reynolds numbers (as in the TF-8A case) they will experience tip 

stall at different angles of attack, confusing the correlation 

analysis. 

c) Pressure models may not be "rigid". The TF-8A pressure model was 

significantly flexible. In the future, the flexibility of the 

pressure modal should be calculated, and if significant, should 

either be re-designed out of the model or else the pressure data 

from the test should be properly modified. See Section 2.1 for a 

discussion of this problem and its ramifications. 

8. Sufficient section lift and moment data should be available vs a  to 

unambiguously define the curves so that accurate c  and c  data can be 

obtained at the proper twist angles. This is especially tröe of the moment data 

since it is so highly nonlinear. In practice, this means getting the data request 

to the relevant Aerodynamics personnel in a timely manner, since left to their 

own, they may not get the required pressure data at a fine enough a grid or 

at large enough negative angles of attack. 
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4.2    CONCLUSIONS RELATED TO TRAHSONIC AERODYNAMICS 

1.    Three significant transonic effects on lifting surface aerodynamics 

are: 

a) Nonunifomi flow fields modify the basic aerod/namics such that 

liftim? surface elements can propogate their effects upstream 

through a supersonic zone. This seems to be very important for 

supercritical airfoils operating at their design (shock free) 

condition. 

b) The shock wave generates a flow field through the action of a 

vorticity distribution on the shock wave itself. Tne effects on 

the wing surface are especially large just aft of the shock wave. 

c) The movement of the shock wave with angle of attack creates a 

very large effect on the perturbation pressures and loads. This 

load is proportional to the shock movement times the pressure 

jump across the steady shock wave. For supercritical airfoils tha 

shock movement versus angle of attack can be very large. For air- 

foils with shock waves this effect is probably the largest of the 

three effects. 

2. Transonic load effects are highly dependent on the shock wave 

location because much of the loading is concentrated in tne immediate vicinity 

of the shock wave. For supercritical wing sections thl location of the shock 

wave is a sensitive function of angle of attack, boundry layer thickness, 

wind tunnel wall corrections etc. Thus the static aeroelastic twist dis- 

tribution is very important to the flutter analysis. 
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SECTION V RECOMMENDATIONS 

5.1 RECOMMENDATIONS: FLUTTER ASPECTS 

This study confirms that supercritical wings exhibit sign^'cartly lower 

flutter speeds than a conventional wing of equal size and rigidity. It was 

demonstrated, furthermore, that these lower flutter speeds could be accurately 

predicted if the Doublet Lattice unsteady aerodynamics were properly weighted 

by the relevant test data. 

The major problem encountered during this study was that the relevant aero- 

dynamic data required to unambiguously define the important sectional lift 

and moment slopes were not available. A secondary complication was that the 

static aeroelastic twist of the TF-8A flutter model was extreme. Finally, 

both examples treated in this study exhibited flutter at low reduced frequencies; 

thus, the importance of the unsteady weight factors in general was not 

established. 

Future studies should be planned so as to address these problems. In 

Section 3.5 a proposed cantilevered wing flutter model is discussed that 

should prove to be a useful tool to further evaluate transonic effects on 

flutter speed. The static twist distribution of this proposed wing will be 

more representative of current transport aircraft than was the TF-8A flutter 

model. The wing geometry is the YC-15 prototype, for which adequate definition 

of aerodynamic data exists. Furthermore, analysis has shown that removal of the 

engine weights will change the flutter frequency from a low value to a high 

value of k , thus allowing a better evaluation of the unsteady weighting factors 

as a function of reduced frequency. 
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5.2 RECOMMENDATIONS FOR THE DEVELOPMENT OF TRANSONIC LIFTING SURFACE THEORY 

It has been demonstrated that, for the configurations considered in this 

report, the steady flow transonic effects are the most important. The basic 

reason for this is the fact that these configurations fluttered at relatively 

low reduced frequencies where unsteady effects are small. 

However, it is still important to obtain the unsteady effects for two 

reasons: 1) increased accuracy of flutter results, and 2) application to 

aircraft configurations that flutter at moderate to high reduced frequencies. 

The unsteady effects may not be important enough to develop and employ very 

expensive finite element methods but it does seem worth the effort to develop 

less expensive methods. An example of such a method is the transonic lifting 

surface method discussed in Subsection 2.5 of this report. Specific re- 

commendations to further the development of this method are outlined as 

follows: 

1. Extend the method so that the amplitude, and phase, of the unsteady 

shock wave motion can be determined. 

2. Refine the shock motion interference flow representation. Replace 

the point vortex with the proper distribution along the shock. 

3. Investigate the reason for poor correlation of the method in the 

supersonic zone and make appropriate corrections. Pertinent to this 

investigation is the evaluation of the impact of the various simplifying 

assumptions made during the analysis. 

4. Extend the method to the three-dimensional case. 

Transonic lifting surface theories, such as the one described in this 

report, and the one in References 10 and 12, require reliable production sub- 

and supersonic linear methods. Subsonic methods are well developed and very 

reliable. The same can not be said of supersonic methods, however. Thus it 

is recommended that supersonic methods be brought up to the same status as 

the subsonic ones. 
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APPENDIX A 

SOURCE IN A NON-UNIFORM FLOW FIELO 

Lifting surface theory is based on the assumption that the disturbances to the 
fluid caused by a surface moving through it are small. Thesa small disturbances 

travel through the fluid at the speed of sound as acoustic waves. ClassK 
lifting surface theory makes the further assumption that the medium through 
which the waves travel is uniform. It is felt that one of the major transonic 
effects arises due to the fact that acoustic waves encounter non-uniform flow 
fields  This is especially important for forward traveling waves In a near 
sonic stream. Thus, an expression is derived Hifl for an acoustic source li 

a non-uniform flow field. 

To start the derivation, consider a moving coordinate system xyz such that 
the flow at infinity is unifon. and equal to Ü. in the x direction. Consider 
an acoustic pulse emitted at V v S at time t - t. If the flow is 

uniform near the source, then the pulse will be circular. If, in general the 
flow is slightly perturbed then the wave will be deformed (see Figure A-l). 

i.t> 

Origin of 
Source at 
T1 
t   • T 

Shape of Wave for No 
Perturbations  In 
MOM 

g(x.y,z.t-T) . 0 

Shapes, tif Anustlc 
Waves at Time t 

Shape of Wave 
For 
Pertrubatlons 
In Flow 

~*-x.t 

Figure A-l  Acouitlc Source Pulse Surface at Tine t-r For the Unlfor» 
And Nongnlfor» Flow Cases 
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For no perturbations in the flow field, the potential  is: 

I   .   1       o 6  Ht- T) - p/a) 
V      -    ^1T o p 

2 2 2 
where      p      =    (x - f    - U^    (t -  i)  )      ♦ f      I    acoustic radius 

r2    =    (y- n0)
2   ♦      (I    -    ;0)2 

where a is the speed of sound and where a is the source strength. When per- 

turbations exist, in the flow the potential is 

; . j   -0o tlifl] 
p 

where g(x, y,z, t-i) = 0 is the equation of the surface of the wave, p is 

an equivalent acoustic radius such that o/p" is the wave front stre'-th, and 

a is the effective wave speed. 

Now as a point on the lifting surface moves along, it creates sources of 

varying strength at various points along its flight path at various time 

(see Figure 2.5-1). 

To find the total potential field due to this string of pulses simply sum or 

integrate them along the path as a function of time. The potential at time 

t is a sum of all the sources generated previously along the flight path. 

iit)       =       j $(T)dT =     j     —j^ (r) 5(t  -     T   -     p/a) 
rw— j 4, 

0 

The results for perturbed flow is 

t 

* =   j       gfej      6 (g/i) dT 

0 
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H  theorem for the proper integration of delta functions, 6 , is; 

b ! 

f      f (0  6 {f(t) } ch   -^ 
fC-i) 

i = 1 »-(tj 
9T  ' 1 

where T. are the real roots of gd) ■ 0 lying between T = a and b and where 

U is the number of these roots. 

The term ag/ix is the negative of ag/n which can be shown to be 

it 
t 

where VT ' n is the velocity of the wave normal to itself. The velocity VT 

is composed of the acoustic propagation velocity, in, and the fluid velocity 

f. Thus, 

VT * n = 1 + I  • n 

and thus. 

N 

i = 1 

W- 
An p (T.) 1 ♦  | 

(A-l) 

where g(^) 0 i 1,N {A-2) 

The solution for g (r.) = 0 i = 1, .., N amounts to finding the^ values for 

all of the waves that pass over point (x,y,z). Figure 2.5-16 (b) presents I 

uniform flow supersonic case. For a point iying within the Mach cone (x-,^) 

two waves are felt. For points lying outside the Mach cone (x2.z2) no waves 

are felt. In the uniform flow subsonic case only one wave passes a point (see 

Figure 2.5-1 6(a)). In mixed non-uniform transonic flow, the problem is com- 

plicated as figure 2.5-16(c) ,(d) shows. In particular Figure 2.5-16^) shows 
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that point (x,,z,) has three waves passing over it while (x^.z^ has one 

wave passing over it even though it lies outside the Mach cone. 

For uniform flow: 

then p 

pftj) = p(T|) = a(t - fj) 

f   = T u 
00 

"   "  T    ■    ^  -  ^0  ■  UC0  ^  -  Ti^  I      P(V 

g (T.) = 0 = t " Ti " p(Ti) / a 

I • i i + P + M» (x - U - U  (t - x.) M 
OO T '      CD 

and T. are found solving g (TJ) ■ 0. 

a2 (t - T^2 = p2 = (x - ^o - U^ (t - T))2 + r2 

or solving for a (t - T.) gives: 

a(t- fj) ■ ♦ j-J- [ M^ (x 

where R2 = (x - r,o)
2 + B2r2 

Ot« 

Now, acoustic waves generated in the future,  (t - T.) <0 have no effect at 

time t, thus. 

(t t|J lO 

For supersonic flow (M > 1) both roots (+R) are admissible since M '^ - t \i  R, 
oo — oo Q'_ 

Also, for supersonic flow (x - O > 0 since waves do not travel  up stream. 
2 o   — 

Finally, since ß    is negative the negative sign outside of the braces must 

be used. 
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a   (t - TJ 

i-   [ M.   (x -  f.0)    ♦ «]    1  =  1 

4- [M, (x - g - R]     I • I 
Supersonic flow 

For the subsonic case \ < 1, M[c (x - co)  < R and B   > 0.    There are two 

solutions which fit the condition (t - T.) ^ 0 but only one makes sense 

physically, i.e., 

a (t - T.) = -4- C-M. (x " ^o) + R^ '  -] Subsonic flow 

Knowing the roots allows us to move on to find the expression for the 

potential as follows: 

- I   1*1 I Using the equation, p ■ a (t - Cj) in the expression for P | 1 + —j-  Igives 

1 + 1 '  n *K^-     O  -  Uc..  (^  ^i^ 

(t - t^ a^2 ♦ Mr, (x - 40) 

Using the expression for the roots gives: 

1 + 1  • n 
(t - tj) a .2 ♦ \   (x - c0) 

Thus, for uniform flow the expression for the potential becomes 

•   o It ♦ L +    1       (Moo(x-C0)+R)(  ♦  alt t -L(Mjx^0)-R) 
\        aß         )        /       aB I 

4*R 

jt+    1       (Mjx -CJ - J 

4TTR 

-   Supersonic source 

Subsonic source 
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These are the classic expressions for a source in a uniform flow.    The 

evaluation of the potential  $ for the case of non-uniform flow is dependent 

on the ability to numerically calculate acoustic waves propagating in a non- 

uniform stream.    Such an acoustic wave generator can be used to determine the 

local normal vector n, acoustic radius p, and intercept time  ^ of a wave 

passing over the receiving point (x.y.z) that originated at the sending point 

U  . n , ;; ).    Whether the flow is uniform or non-uniform, the acoustic wave 
O        O       0 

expands at the speed of sound. The wave strength along the wave front 

diminishes with increased time as the wave expands. Because of non-uniform 

flow conditions, the wave distorts from the circular form and changes in 

strength along the periphery of the wave. One way to express this fact is to 

say that the wave dilation p is expressed in terms of the uniform flow acoustic 

wave radius p and a correction factor f. 

p = pf = a(t - T) f 

The term p    =   a(t - T) gives the increase in radius with time while f accounts 

for the wave strength distorsion along the wave front.    The expression for 4) 

then becomes: 

N (    \ 
 Ls—ar {A-3) 

i   : 1        4TT P(T.) f n   *  "  ■■■  - 

where 

g 1^1   ■ =  0 i    =    1, N (A-4) 
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APPENDIX B 

FLOW FIELD CALCULATIONS USING THE TWO-DIMENSIONAL, 

STEADY. TRANSONIC JAMESON PROCEDURE 

The two-dimensional Jameson procedure transforms the space around the airfoil 

into a rectangle, one unit high and two units wide. This rectangle is divided 

up into a grid of points. The modified differential equation is solved for 

by finite-difference procedures in this rectangular space. The solution pro- 

duces a value of potential at each point in the rectangular plane. The pro- 

cedure in finding the velocity at a particular point in physical sapce is to: 

I. Find the location of the point of interest in the transformed space. 

?. Find the derivative of $ in this space at the point of interest. 

3. Find the velocity transformation to be applied to the differentials 

of t to produce the velocity vector in the physical plane. 

The following equations and sketches describe the process of transforming 

from the physical to the computational plane. 
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Once the desired points are transformed into the computational plane the 

desired derivatives a*/ zc can be numerically obtained from the tabulated 

values of | vs. zc and xc. The following procedure is required to transform 

these derivatives in the computational plane into velocity components, Vx Vz 

in the physical plane. 

V       =     3A(t)/3XO + COSa 

V,     =     3A(t)/3ZO    +     Sina 

where    3A4i/3xo and IA4/MO are: 
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3A(J)/3XO 3A^/3Xp   (-Ä)      -     bA^/3Zp   (JJ-) 

3A(>/9ZO     ■     3A^/3Xp   (-^-)   +     3A(t)/3Zp   (-2J-J 

2 2 where p ■ xp + zp 

and where 3A({)/3xp and 3A4>/3zp are: 

3A4>/3xp     =     3A(t)/3xp     -      3A4./3ZP     3s(xp)/3Xp 

3^4>/3Zp     =     3A({)/3zp 

The qu ntlties 3A4)/3xp and 3A4)/3zp are found as follows; 

3A(|>/3xp 

3AC/3ZP 

where A 

=     3A(})/3XC  A 

=     3A*/3ZC    | /    (|    +     Zp) 

=   j 1   ,     lxc| i .625 

3/2 

3/2 
|  1/  [1  +  (^5)  ]        •   1  xc  I >.625 

A finally the terms    3A4)/3xc, >A4/tK are determined numerically from the grid 

of At vs. xc and xc. 
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APPENDIX C 

SUPERSONIC  TWO-DIMENSIONAL DOUBLET LATTICE METHOD 

For supersonic flow the following integral  equation holds: 

w 

where I = 

3     I 
3Z    3; 

/ 

x-B(z-;) 

A#U)  *2D dC 

and where A(t>(c) is the potential jump across the airfoil and fa is the 

potential due to a source of unit strength, i.e., 

4>2D = J0(XR) exp (-ixMoo(x-0)/2B 

where    R2 = (x-02-B2(z-d2 

2 2 
B    = M -1 

00 

X    = ^UUcoB2 

where w is the downwash boundary condition applied to the lifting surface 

and Jo (AR) is a Bessel Function of the first kind. 

The first step in the derivation of a Doublet Lattice Method for 

supersonic flow is the evaluation of the double differential of the integral, 
2 

i.e., 3 I/3z3c. 

Performing the first differential  gives: 

BA^U=x-B(z-d) M2D (c=x-B(z-0) 

i   &#(e) 3*2D/3c dc 

( 
8..e. 
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Now 
^      U=x-B(z-;)) - jj- exp(-ixMJ5(z-r,)) 

since Jo(O) = 1.0 

Taking the second derivative of I gives 

ä2I/3z^ ■  B 8A*U=x-B(z-rJ))/Sz   H2D  (C=x-B(z-d) 

+ B A*U=X-B(z-0)  3At2D(4 = X-B(z-d)/32 

- B At(^=x-B(z-0) 3A*2D/3c; ' 

x-B(z-;)2 
+ C 2 

J A(j)U)3 ^2D/8ZH d5 

% 
i.e. 

The terms of this expression are 

Ä* = A*U=X-B(z-OK ^2D = ♦t0^"I",^,"C^ 

lC=x-R(.7-c) 

evaluated as follows:    (use 

IA^/tl IMli  =   a/(.ß) 
3^   3Z 

3'2D/3z    ■    -HWJ2) expl-iAMJlz-O) 

^«Q/^C 

2B 

M(-I(l-C) 
'>X U't)    exp (•IXN.Kl-c)) 

since lim J|  {xR)/xR  - 1/2 as xR   -   0 

3%2D/9Z3C    ■    F(exp (-ixMoo(X-0))/2B 

where 
'       o 2 

F     =     .J1     x^   3R_ 3R     -Jj   X9   R 
3Z  3; 3Z3r, 

211 



"»"I " " •ll'1 
    —— 

and 9R _ B (z-c) .  -3R 

■bOl I       R3 

Before these terms are substituted into the expression for a I/Sz^ the 

limit i-•■ c must be applied since the receiving points (x,z) must range over 

the airfoil surface (which is z = c). In the limit as z ♦ ^; 

R «-C I 

a^2[)/az 4. -iAM^/2 

a&W^ lc=x-B(z-c) "0 

F ♦ - Jjxlx-cj) XB /|x-c! 

A^(c=x-B(z-0) ♦ A4>(x) 

A^'(c=x-B(z-d) ■»- *♦' (X) 

A^U = X - B(Z -c)) ♦ ^ 

The final expression for 92I/9z3c, line z ■+ c    is: 

lim       32I/9z3c   ♦   ^    j   A(r(x) + ixM^ A<}>(X) 

x2 y*       A*(OF(X|X -c|)exp(-ixMoo(x-c))df; (C-l) 

I 

where ^(xlx-cD/xln-cl 
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Notice that ( is always less than or equal to x thus x - ' is always positive 

and the absolute value sign can be dropped. For simplicity of notation 

introduce 

p = x(x - () then 

i 
l.t. 

-l| [A#'(X) + ixMj^(x) + \  j A*(c) F(p)exp(-iM p) dp  (C-2) 

where 

F(p)    =    J^p)/?. and c =    K - P/1    and &<t, (x) = aA*/3x 

Equations (C-l) or (C-2) are the final  results for the downwash due to a dis- 

tribution of potential jump M(x), on a lifting surface (and wake).    Lifting 

surface theories, such as the Doublet Lattice Method (DLM) do not use a dis- 

tribution of potential jump but use a distribution of pressure jump, 

C (x).    This distribution of pressure jump is simulated in the DLM by a series 

o/point pressure doublets.    The point pressure doublet (shown in Figure C-l) 

possesses the following properties:   (1) the pressure jump and potential jump 

are zero for points forward of the doublet;  (2) the pressure is a delta 

function at the location of the doublet; and (3) the pressure jump is zero 

downstream of the doublet but the potential jump is not (wake).    Mathematically, 

this is expressed as follows: 

0 
;Cp * 2^p6(x  -x.0) 

-2(M ♦ i -j-A*) 0 

X' x0 

X    =  /, 

X   > x. 
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ReA« 

Figure C-l     Potential Jump Due to a Point Pressure 
Doublet 

Solving the differential equation for A* downstream of*    and taking into 

account the properties at and ahead of x    gives: 

A*    -   A<j)p   H(x - x0) exp (- iw  (x - x0) / Uj (C-3) 

Placing  (C-3) into the first two terms of (C-2) gives: 

lu 
Acr+ixM^A« ■ A<t    {{(X-XQ) ♦ Lj-gr   H(x-x0)exp(-ia)(x-x0)/Uoo) (C-4) 

when it is noted that 9H/9X = 6.    The expression for A(fi(c) given in terms 

of (C-3) and the variable p is: 

A4.U) + A*    H(c - x0) exp (-1« U-x0) / Uj 

1u A* H(S-xo) exp (-iüJ(x-xo) / Uoo)exp (+ ^—p) 

Combining the last part of this term with the term exp(-iM p) in (C-2) gives: 

expdwpAU )    exp(-iM p)    =    exp(- ip/M ) 
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Placing this term and {C-4) into {C-2) gives the downwash, Wp, for a point 

pressure doublet. 

-B 1« 
•> - 1 AV M.      6(x-xJ ♦ nV H(x-xJ exp(-i4x-xJ / U.) V      U P ""• "o' 

00 

+    Aexp(-iw(x-x0) / UJ     /* 
ce. 

H(£>-xJe'ip/M-F(p)dp 

The step function in the integral eliminates that part of the integral  lying 

in front of x„ 

HU-V 
0     c < x.0 or p > x(x-x0)    =    P0 

I      C ix0 or p ^ p0 

Thus, the upper limit becomes p0, thus 

P^.e. * po =  x(x - ^^o) 

and the term H U-x ) can be eliminated. 

Let 

E(Po' MJ =    f0 e"iP/M<" F(p) dp 

o 
where       F(p)    =   J1(p)/p 

(C-5) 

Then the expression for w   becomes 

*♦-   i«(*-KÄ) + 
F "p 

X[i/Mn *\   E(P0,Moo)]exp  (#Mx.X9) /Ujj {C-6) 
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The force f generated by the point doublet in the uniform flow Ut is 

f =  /ACpdf,  = - / 2 (A*' + i jj A4) * 

Introducing equation (0-3) gives 

f  =  -2A(f_ / ?♦- J i(c^9) <C ■ - U#p 

In the Doublet Lattice Method a point dorblet is placed on each element. The 

resulting force generated by this dcublet is averaged over the clement to 

produce an average pressure, Äü_. Thus, 

ACL f/AX " /ÜA*p 

Solving this for A* and Introducing the result into (C-6) gives the result 

for the local downwash w due to a point pressure doublet of average pressure 

JC .    If we also average the downwash over the element, w„, then the result 
p P 

is 

wp    =   | ÄCpAx f| + x[i/M,    + E/2] exp (-Mx-xo) / Uj | 

Since the average of the delta function is 

AX 
1 

6 M 
'O 

ij 7 6(x-xo)dx ■ AX 
on the element 

off of the element 

(C-7) 

Equation {C-7) then, along with the expressions for E and 6 are the final 

results for the downwash due to a pressure element in supersonic flow. The 

expression for E, i.e.. 
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i (Po'MJ ■ i ■ip/M • F(p) dp 

A{x-xo) 

F(p) ■ i,(f)/f 

is evaluated numerically. 

The steady case, M = 0, reduces to the classic results 

ßül 
w. 
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APPENDIX D 

THE GARABEDIAN TRANSONIC AIRFOIL INVERSE PROCEDURE 

The program method of analysis is based on the work of Korn, Garabedian 

and Jameson and utilizes a Poisson fast solver differencing scheme. Because 

viscous effects are not considered in the 2-D Jameson flow solution, the 

analytical pressure distribution obtained was often an unacceptable match 

with pressures obtained experimentally. The effect of the viscous boundary 

layer can be seen in Figure 2.4-5 where the pressures on both the upper and 

lower airfoil surfaces are seen to deviate from the experimental data. In 

order to account for the effects of viscosity, it was decided to alter the 

geometry of the airfoil used in the 2-D inviscid analysis. To rio this, use 

was made of a transonic airfoil design computer program (A5BE) containing 

an iverse Garabedian design option. Although basically inviscid, the 

program accounts for viscosity by adding a displacement thickness to the 

original airfoil geometry. 

To decrease computational time and lower cost, a Poisson fast solver 

differencing scheme was incorporated into the program. The advantage of the 

fast solver lies in the fact that convergence occurs in fewer cycles through 

the flow field than with other methods. Because the governing compressible 

flow equation is unstable fcr transonic flows when written in the form used 

with the fast solver, fast solver cycles are alternated with successive line 

over-relaxation cycles. The SLOR cycles handle the supersonic regions, and 

the fast solver cycles propogate information quickly through the flow field 

and satisfy the kutta condition. A restriction to using the fast Poisson 

solver is that the equations must be solved in a closed area with Neuman, 

Dirichlit or periodic boundary conditions. This restriction is satisfied by 

using a circle as the computational plane. The circumference, which corres- 

ponds to the airfoil surface, has Neumann conditions, the center of the 

circle, infinity in the physical plane, has Dirichlit conditions, and periodic 

conditions are established along a line from the tail to infinity. 

To aid in the analysis, the program was set up to run from the IBM 2250 

graphics terminal. The original airfoil geometry, 2-D Mach nutrber and desired 

218 

i 



•""- 

2-D lift coefficient are input and a 20 cycle flow solution is performed 

first on a coarse grid and then on a grid refined by halving the crude grid 

mesh spacing. The resulting pressure distribution is then displayed on the 

tube and is changed using a light pen to correspond to the experimental data. 

Twenty cy:le inverse flow solutions are then performed on both the coarse and 

refined grids to obtain a revised airfoil geometry. The updated geometry 

can then be run forward through a flow solution and the resulting pressure 

distribution again compared and updated if necessary. This process is repeated 

until the revised geometry produces the desired pressure distribution. 

Examples of airfoil geometries revised using the inverse Garabedian 

program are shown in Figure 3.3-3. The revision to the station .309 geometry 

is a typical boundary layer displacement correction for attached flows in that 

the trailing edge thickness and camber are altered. 

The station .657 revision is untypical due to a thickening of the entire 

airfoil section. Because the two-dimensional airfoil geometry is scaled from 

the 3-D coordinates as 1^/c  = Z3D/c /cos AEFF, the thickness correction 

indicates the use of an incorrect (too small) effective sweep angle in the 

initial scaling operation. Because the 2-D Mach number is scaled down as 

KLn = M cosArcl-, the thickness displacement can also be seen to indicate 
2D   ■    trr ...    T. . 

that too large a 2-D Mach number was used in the inverse calculation. This 

uniform thickening would be eliminated if the 2-D Mach number were lowered 

an appropriate amount and the case rerun in the Garabedian inverse. 
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