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2. Background:

Diagnosis of the internal condition of equipment by analysis of sound and
vibration has been done for many years. One of the most basic examples is a
mechanic who listens to an engine with a screwdriver. More relevant examples
are production quality control of DC motors by vibration analysis (reference i)
evaluation of ball bearing faults by vibration analysis (discussed in reference
g), and vibration mont - ing of large, stationary machines to indicate when
repair is necessary.

Major effort has been spent on diagnosis of automotive and aircraft engines
through vibration analysis. Reference h provides a comprehensive listing of the
various efforts to analyze helicopter turbine and transmission vibration.
Several articles on diagnosis of turbine engines are also presented in reference
g.

Efforts to automatically diagnose automotive engines through analysis of
many parameters (pressures, temperatures, voltages, vibration, etc.) are described
in references c, d, e, and f. Significant accomplishments in the area of
multi-parameter diagnosis are the STE/ICE and ATE/ICE program, Depot MAIDS,
and the PRD Diesel Engine Analyzer.

STE/ICE (Simplified Test Equipment/Internal Combustion Engine) is
essentially a digital voltmeter, which is connected to various pressure,
temperature, and voltage transducers on the engine. Each transducer value
is read and compared with the acceptable limits provided ir, an accompanying
table. ATE/ICE (Automatic Test Equipment/Internal Combustion Engine) is a
micro-computer which tells the operator which transducers to attach, analyzes
the output of those transducers, and tells the operator what malfunctions
(if any) are present.

Depot MAIDS is a computerized test system used in instrumented
dynamometer cells at Letterkenny Army Depot. Many pressure, temperature,
air flow, speed, and vibration measurements are fed into the computer. The
computer lists the malfunctions present as well as the corrective action,
part number and TM required to correct the malfunctions. The PRD Diesel
Engine Analyzer is similar to Depot MAIDS except that a smaller microprocessor
and a portable dynamometer are used so that the unit is mobile.

2
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These previous accomplishments are essentially electronic automation
of the tasks presently done by mechanics. Compression, timing, oil pressure
and other measurements are made and analyzed electronically rather than
manually. This study involves the application of a new technique (pattern
recognition) to a measurement not generally made (vibration).

Pattern recognition is a powerful, mathematic technique that determines
how to distinguish one class of data (such as the vibration of faulty engines)
from another class of data (the vibration of healthy engines). The pattern
recognition system used in this study was a computer program which, when
given data from two different classes, sequentially selects features (such as
vibration level at a certain frequency) that best distinguish one class from
the other. Inherent in the selection of features is the specification of what
value of that feature is characteristic of class I (faulty engines) and what
value is characteristic of class II (healthy engines).

The beauty of pattern recognition is that the computer does all the work.
The features that distinguish one class of vibration data from another, while
not immediately obvious, can be determined through rigorous mechanical
analysis. The pattern recognition computer program finds these features
empirically much faster and cheaper than a mechanical engineer toiling away
with his handbook and calculator, or scrutinizing vibration records ever could.

3. Objective:

The general objective of this program is to develop a method of non-
destructive assessment of the internal condition of equipment through analysis
of the vibration emitted by that equipment. The specific objective of Phase I
is development of the software necessary to distinguish between faulty and
healthy engines.

4. Summary of Results:

Earlier work done by the Army, as well as work done by PRD in development
of their Diesel Engine Analyzer attempted to use microphones to monitor internal
combustion engines. Both attempts failed due to excessive variations of
background noise. More successful results, such as the GE study referenced
(reference b) have been obtained with vibration (accelerometer) signals.
Because of these earlier failures of microphones and the success of accelero-
meters, it was determined that vibration (accelerometer) signals alone would
be used in this phase rather than microphones.

J4
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Data tapes of accelerometers mounted on 12-cylinder, air-cooled, AV-1790-7

engines before and after repair that were made for the GE study were obtained.
These tapes were provided to a contractor (Scope Electronics) who did the
pattern recognition work. The report from Scope is inclosed.

Several problems with the data (physical deterioration, missing channels,
timing sensor improperly set, no defects in the engine before repair, etc.)
resulted in only six engines with usable vibration data both before and after
repair. The computer was able to distinguish between faulty engines and
healthy engines with 100% success on the data available.

5. Conclusions:

MTD concurs with the conclusions of the Scope report (i.e., that this
type of automatic vibration analysis is feasible). The success of the
computer program in distinguishing between faulty and healthy engines is
impressive but only a qualified success. The small sample size of data
was not a rigorous test of the program. More data is needed to properly
prove that the method works and implement a productive system.

6. Recommendations:

Section 1.3.2 of the Scope report recommends that a real t±me engine
vibration analysis system be created. MTD concurs with the intent of this
recommendation, but does not concur on the implementation. It is recommended
that this idea be implemented by either purchasing or renting the pattern
recognition program (OP-SEEKER). Using existing APG mini-computers, data
can be gathered from a new type of engine that allows convenient access for
instrumentation (perhaps an engine used in an engine-generator set). This
plan will permit the engine vibration analysis system to become productive
and pay for itself in a minimum amount of time.

FOR THE COMMANDER:

3 Inc! BILDISSOM
1. Engine Vibration Analysis Associate Director
Final Technical Report (Draft) Materiel Testing Directorate
2. DD-1473
3. Test Directive
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I. INTRODUCTION

1.1 METHOD

This final report describes a feasibility study investigating pattern
recognition methods for automatic malfunction diagnosis in internal
combustion engines using vibration signatures.

In the past five years, a number of approaches have been suggested
for solving this problem and, in fact, it is apparent that vibration
signals contain much information about engine condition. Successful
engine analyzers have been built and demonstrated. However, the
analysis problem in adapting to a new engine is a complex one. At
this time, the major barrier standing in the way of progress in
this field is the analytical cost of designing signal processors
matched to individual engine types. The signal processing hardware
itself is not expensive and can be built with a modular approach
using off-the-shelf equipment. Classifier algorithms may be imple-

mented on minicomputers which also gather engine data, add it to the
data base, and diagnose it, all in real time.

The purpose of this effort was to demonstrate a method for automati-
cally and inexpensively generating the signal processor algorithm
design best matched to an engine type. Success at this endeavor
eliminates the major cost now involved in the automatic diagnosis
of engine problems from vibration signals.

The approach taken in this study begins with definition of a class
of decision functions, called quadratic decision trees. Selected
features of the measured data are available to all nodes of the tree.
Each node is a quadratic classifier which is required to make a
classification decision about the subject engine using the measuredfeatures available to it.

Each decision points to a node at a lower level of the tree, where
the next decision is to be made, further defining the diagnosis.
Thus, a sequence of decisions progresses from the top to the bottom
of the three by a path which fully defines the diagnosis.

There are several important points to be made regarding this pro-

cedure:

a) The algorithm is fixed for all engines; only the node
parameters change with changing engines.

b) The node decision criteria are the most powerful available
(quadratic).

c) The system "learns" from an expanding data base since the
decision functions are designed automatically from an
empirical data base by an algorithm called OPSEEKER. Thus,
performance can be improved constantly as more engines
are tested and added to the data base.



d) The individual nodes are designed separately by the algorithm,
so that problem areas are easily isolated and addressed.

e) A minimum number of features are automatically selected
in the node design process. It is this factor which
reduces the problem to the point that the powerful quadra-
tic decision function may be used at each node of the
decision tree and still run on-line, in real time on a
minicomputer.

1.2 RESULTS

The work performed in this effort used data which have been analyzed
before in earlier studies. The data were derived from air-cooled
12 cylinder tank engines. Feasibility of classification was demon-
strated in earlier studies (Ref. 1).

The current effort demonstrated further the feasibility of automatic
"learning" design of the classifier from an empirical data base. With
the limited number of engine samples available, accurate classifica-
tion of good versus defective engines was readily attained using a
small number of processed time domain data features. Data from only
one engine speed and one sensor were required to achieve this level
of classification.

The major limitation of this study was the amount of data, as had
been anticipated. A general solution to a decision theoretic
problem having multiple sensors and a large number of classes demands
an immense amount of raw data - a resource not currently available.

Improved methods for measurement, time and power normalization, and
averaging were demonstrated, and studies were made of sensor place-
ment, synchronization rectification and phase coherency of signatures.

Classifier tests indicated that successful classifiers can probably
be developed using a single sensor rather than multiple sensors
distributed over the engine, although some information is definitely
lost in reduction of the number of sensors. This loss is a result
of masking of components further away by components very close to
the sensor.

Tests indicated that the feature sets selected by the OPSEEKER for
classification using different sensors contained the same or similar
features. This indicates a physical consistency in the results and
emphasizes the likelihood of success with the single-sensor approach
to engine classification.

1.3 CONCLUSIONS AND RECOMMENDATIONS

1.3.1 Conclusions

Automatic analysis of engines from vibration signals is feasible,
and generation of classifiers for this purpose should be done

2 d

a; -



automatically using statistics derived from empirical data rather
than by study of induced failures or models.

The design of classifier algorithms can be performed automatically
and in such a way that the classifier "learns," improving its
performance each time a new engine is tested and analyzed.

Measurement should ideally be conducted under computer control at
the source to assure good data. A possible scenario might have the
computer 1) monitor signal level from each sensor and provide an
alarm if any sensor is not connected or is not in the proper range;
2) monitor the timing channel for the presence and regularity of the v
timing mark pulse; and 3) monitor and display engine speed and
trigger data intake only when the rpm is within a specified tolerance
range. Stable signature estimates are achieved by averaging approxi-
mately 100 engine cycles. Thus, under this arrangement, the actual
measurement time during which the sensors must be connected might be !

only a few seconds. 1

Both time and power normalization are required to remove effects of
uncontrollable variables in the measurement process.

Averaging of many engine cycles is necessary because a wide variance
exists between signatures of individual cycles. This must be
preceded by time normalization to maintain coherence, or averaging
will deteriorate the signature quality because of wave interference.
This interference effect is increasingly more pronounced as distance
from the timing marker increases.

The major concern in sensor placement is the masking of signature
components by the signal strength of engine elements which are very
close to the sensor. Results in this study were based upon using
one sensor only in any one test. If a single sensor is to be used,
it should be placed in the most central location possible relative
to cylinder locations. If more sensors are used, they should be
distributed symmetrically relative to the cylinders.

The need for rectification (which was pointed out in Ref. 1) is
greatly reduced by time normalization, which was not possible with
the instrumentation used in the referenced study. Time normaliza-
tion, software fine-tuning of synchronization, and averaging of un-
rectified signals yields a surprisingly stable and structured signa-
ture.

1.3.2 Recommendations

The next step toward economical implementation of this concept is
to install a real time engine Vibration Analysis System with the
prototype software for data base, OPSEEKER, analysis, and classifi-
cation. The software components must provide for creation and
maintenance of an ever increasing data base, including engine
signatures tagged with the results of analysis and repair by mechan-
ics. The OPSEEKER will be resident to redesign problem nodes in the 4
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classifier as the data base becomes larger and includes represen-
tative samples of more specific failure types. The classifier
will be a modular quadratic decision tree, and will output its
diagnosis in real time while the engine is still connected to it.

so that they can be routinely tested and added to the data base,

and so that vibration data can be tagged with results from repair
reports.

System performance should be evaluated on a quarterly basis. When
performance against the selected engine attains a satisfactory
level, smaller less expensive microcomputer-based analyzers may
be implemented using the same algorithm, but not requiring the data
base or OPSEEKER capabilities. These inexpensive analyzers may be
placed in all maintenance depots. In the meantime, the pilot
system may be extended to develop an algorithm and data base for
other engine types and continue to generate analyzer algorithms
for new engines.

4
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II. STATEMENT OF THE PROBLEM

2.1 PROBLEM

* I The problem is to diagnose engine condition instantly from external
measurements of its vibration signature. The first level of decision
to be made is "good" versus "bad." The second level is the classifi-
cation of the individual failure modes which may be present.

There are many possible failure modes which may occur, and their
symptoms are distributed broadly in time over the engine signature.
Therefore, no static data base is likely to contain enough samples
to allow design and evaluation for all possible engine failures.
This constrains any analyzer designed automatically to perform well
only for those failure modes which it has seen in its design data
base.

2.2 APPROACH

2.2.1 Dynamic Data Base

The more common failure modes will quickly become represented as
the size of the data base grows. As the capability of the analyzer
to locate these faults improves, new data need not be added for
these faults. However, the data base manager should continue to
search for examples of the less common failures, and to analyze
data for those engines which may be misclassified by the algorithm.
So, the data base must be dynamic and capable of growing selectively
throughout the engine life cycle.

2.2.2 How Many Classes of Engines

For a given engine type, the diagnosis problem is a many class
decision theory problem. It is possible at the outset to define
it as a 2-class problem - good and bad, as shown in Figure 1.

Here the signature is input to a single node, at which a statistical
test is applied, resulting in the decision that the engine is good
or bad.

As the system is applied to a growing data base, enough data will
be accumulated on the most frequent failure modes to permit isola-
tion of individual failures. Figure 2 shows two possible ways of
adding decision modules to Figure 1 for isolation of sticking
valves. Figure 2 introduces the architectural concepts of modular
decision node functions and of decision trees.

Algorithmically, the decision functions at all nodes are identical,
for simplicity of design and maintenance. Each node selects from
the same array of signature data. The definition of a node includes
the parameters which define its level, which nodes point into it,
how many subclasses it must select from, and the statistical class
descriptions which it uses to make these decisions.

5
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The tree structure is defined by levels and branches, generally
shaped as shown in Figure 3. The definition of nodes and their
arrangement into a tree can have significant effect on the perform-
ance of the system. The general methodology to be applied in
defining tree structure is that of clustering.

It is desirable to define the smaller subclasses (e.g. sticking
valves and loose wrist pins) to be grouped together into a larger
subclass in a high level node (e.g. good and bad) so that the sub-
classes which are grouped together have signature statistics which
are somewhat similar (or clustered in some proximity to each other
in the signature space). Further, the clusters of bad signatures
must not so surround the cluster of good signatures as to make a
decision boundary between the two sets impossible to draw.

It seems reasonable to assume that the good engine signature samples
will be clustered and separable from bad ones, which may be ideally
thought of as deviations from the good signature model. For separat-
ing specific failure modes, as a beginning strategy, consider the
following. Failure mode M., as a matter of course is classified
at the top node as bad (or'good), and therefore channeled to the
appropriate Level 2 node, N.. When enough data samples are avail-
able for failure mode Mi, te node Nj is retrained so that, in
addition to its past function, it now isolates failure Mi. In a
multi-level tree, each new failure mode should be isolated at the
highest node at which its sample signatures remain grouped together.
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III. DESCRIPTION OF WORK

This program paralleled the GE effort (Ref. 1) and used the same
4, data base. Major improvements were made in the measurement and
'I processing techniques. Emphasis is on automatic design of the

classifier algorithm. Both time domain signatures and frequency
spectrum signature.. were used in classification experiments.
Although performance was comparable, the time domain should prove
to be the most useful because of physical considerations. The
data did not support a three dimensional time versus frequency ver-
sus amplitude signature study.

3.1 DATA

The original GE study demonstrated the detection of the following
kinds of faults:

a) Improperly adjusted and sticking valves
b) Bent connecting rods
c) Loose wrist pins
d) Defective piston rings
e) Damaged cylinder walls
f) Worn or loose connecting rod bearings
g) Poor combustion
h) Improper timing

This was done in two phases. Phase I used magnetic tapes of
data from ten engines and detailed inspectors' reports of the
engine condition. These tapes were found to be unusable in the
SEI study, because of their physically deteriorated condition.

The GE Phase II study used vibration data from a lot of forty
Continental Engine AV 1790-7s, instrumented with five high frequency
accelerometers mounted in the engine blocks. The Phase II data
were in good condition and were used in the SEI study. Not all of
the forty engines were represented in the available data, as shown
in Table 1. These data were labeled as to whether they were taken
before or after repair, and repair reports indicated whether the
measurements were made before or after repair and the magnitude of
the repair. Sensors number 1 and number 5 were found to have good
data for all runs in the data base, according to the tabulation
in the GE test report, whereas the other sensors didn't. Sensors 1
and 5 were used for most of the SEI work. Some data from sensors

3 and 4 were used to check on the effects of using multiple sensor
data and the effects of sensor placement. Some data runs were
discarded because of error in the Rotan placement.

Available data existed at 1600 rpm full load power, 2800 rpm full
load power, and an acceleration run at no load. Only 1600 rpm
data were used in design and evaluation of classifiers.

10
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Table 1. Summary of Data Base

ENGINE SENSORS NO. GOOD MAJOR ROTAN
1 3 4 5 SAMPLES REPA-IR ERROR

lIB x x 65
11A x x 67 x

12B x x 66
12A x x 62 x

13B x x 68 x
13A x x 70 x x

14B x x 70
14A x x 67 x x
15B x x 56
15A x x 72

16B x x 69
16A x x 58 x

17B x x 62
17A x x 67 x

18B x x 51 x

21B x x 69
21A x x 68 x

22B x x 60 x x

42B x x x x 73 x
42A x x x x 57 x
45B x x x x 62 x

V 46B x x x x 69 x

47B x x x x 63 x
48B x x x x 62
48A x x 71

49B x x x x 56 x

50B x .x 64
50A x x 63 x

* i



The recordings were narrow-band FM. Some d-c offset was encountered
in playback because of variations in center frequency between record
and playback equipment, but this was not enough to cause a problem
in analysis.

'" .A Visicorder was used monitoring tetiming reference track to locate

data on the tapes. Zero markers were placed on the tapes and run
locations were measured and logged in a directory.

3.2 MEASUREMENT

Figure 4 is a block diagram of the measurement system.

The analog tapes are those from the Phase II data. They were
recorded at 30 ips and played back at 15 ips, one half signal time
(real time in the recording operation). The playback bandwidth at
this speed is 2-1/2 kHz, which translates to 5 kHz in real signal
time. The signals had been bandpassed in recording also to a 5 kHz
bandwidth.

Data channels 1 and 2 consisted of buffer switch amplification of 20
to 1 and a 3 dB corner frequency at 3 kHz or 6 kHz in real signal
time. This is implemented on Newport Model 70A differential
amplifiers. The output signal levels are ±10 volts. The time
channel is unity gain for buffering the timing data track.

The multiplexer and analog-to-digital converter is a Phoenix Data
Inc. Model 2218. Each channel is converted with 10 bits resolution
and input range of ±10 volts. The sampling rate is 5 kHz for each
channel, which translates to 10 kHz in real signal time. This rate
is the Nyquist rate for the band limitation imposed by record and
playback.

The sampling scheme in the multiplexer and A/D converter was as
follows. The time channel was monitored continuously (sampled
every 200 microseconds) since the timing sync reference triggered
sampling of the data channels. The leading edge of the timing sync
pulse was arbitrarily used as the 0 reference in the engine cycle
(00 to 7200 for a complete cycle). When the timing sync pulse came
up, the two data channels were sampled, approximately synchronously
as shown in Figure 5. The delay between samples in channels 1 and 2
is approximately 80 microseconds. There was some variation in the
duration of engine cycles from cycle to cycle and run to run, but
the nominal rpm was 1600, and 2 revolutions (7200) are required per
engine cycle. This results in 800 engine cycles per minute, or a
nominal engine cycle duration of 75 milliseconds in real signal
time. This translates to 150 milliseconds played back at one half
speed. Therefore, there are nominally 750 samples per engine cycle
per data channel. Data for any engine cycle which had a much larger
or much smaller number of samples than 750 in a cycle was rejected
since this implied a spurious or missed timing pulne.

12
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TIME

iU

CHANNEL oe 720*

Oms 75me

DATA 11111111111 . . .11111
CHANNEL
7

DATA 11111111111 II ii I
CHANNEL

2 kA

Figure 5. Sampling Scheme for Time Channel
and Two Data Channels

I

14

P.EcZDING PAGE BLANK-NOT FIL14ED



A PDP-11 minicomputer was used to concentrate the data into blocks
and transmit it to a PDP-10 timesharing computer in the SEI Computer
Center. Algorithms were implemented on both the PDP-ll and the
PDP-10 to assure error-free transmission in the time shared
environment of the PDP-10. Algorithms were also developed for
unpacking and demultiplexing the sampled data on the PDP-10 and
formatting it into disk and magnetic tape files.

3.3 SIGNATURE PROCESSING

3.3.1 Summary

A variety of processing and display programs were used in this
study. They include:

1) Graphics terminal display of individual raw data samples,
averaged or processed samples

2) Hard copy plots of the above

3) Max and min values over a run for each point in the waveform

4) Variance over a run for each point

5) Zero mean waveform

6) Rectification of waveform

7) Peak normalization

8) Power normalization

9) Time normalization

10) Cycle averaging

3.3.2 Signature and Data Base Description I

Figure 6 is a plot of a typical raw data signature. It is created
from approximately 750 time samples of a single 7200 engine cycle
as measured at one of the sensors. The number of engine cycles
measured for each engine ranged from 55 to 70, constituting a run.
The plotted output labels are described in Table 2.

3.3.3 Display

For study and editing purposes, any engine cycle signature or any
processed signature data can be instantly displayed on a GT-40
graphics data terminal or on a diqital plotter.

15
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Table 2. Processing Options for Displayed Data

4V
K iFILE NAME:

EXXY Z

Engine Engine rpm
number S = 1600 rpm

F = 2800 rpm
A = acceleration run

A or B for after
repair, before repair

OPTIONS:

ZERO - input data were zero meaned

RCTFY - input data were rectified

T = n - input data time normalized to n points

A = n - amplitude normalized, peak = n

P = n - power (length) normalized, length = n

17
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3.3.4 Max and Min Values Over Runs

A run is a series of consecutive engine cycles at 1600 rpm. There
is relatively little variation from engine cycle to engine cycle
in time (or phase) of individual signatures which have undergone
time normalization. One interesting statistic is the relative
stability of the amplitude values from cycle to cycle over a run.
A measure of this is the maximum and minimum values of observations
over a run for each sample interval.

3.3.5 Variance versus Sample Time

A measure similar to the preceding is the variance of observations
for each time point over all engine cycles in the run.

3.3.6 Zero Mean

The recording, playback, conditioning and sampling processes result
in a dc offset in the data signature waveforms. This is removed
from the digital data base by subtracting the mean value over each
individual cycle.

3.3.7 Waveform Rectification

In the GE report of Reference 1, it was decided to rectify waveforms
prior to averaging. This was based on lack of phase coherence in
the signature from cycle to cycle and run to run, so that averaging
without rectification often resulted in cancellation rather than
enhancement of high frequency portions of the signature. A
rectification algorithm is included in the processing package.

3.3.8 Peak Normalization and Power Normalization

It is common practice to normalize amplitude in some fashion prior
to applying pattern recognition algorithms prior to display of
waveforms. This is helpful in reducing the channel gain effects
on the appearance of the waveform, thereby making comparison of
the actual shapes easier for the analyst.

The two methods used in this study were peak normalization and power
normalization. In peak normalization, the highest peak value in
the signature VD, is scaled to a selected value, VS , and all other
points are scaled by the factor (Vs,Vp), so that the shape of the
waveform is preserved while all signatures are constrained to have
the same maximum.

Energy normalization is also a shape-preserving transformation,

but in this case, the scale factor is V/7E,
N

Where E = . S(t)2 , S(t) being the sample value at time t, N being
t=l

the total number of samples taken in the engine cycle. This

18
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normalization is often preferable to peak normalization because
it makes all transformed N-dimensional vectors have equal length
and removes any amplitude (often channel-related rather than source-
related) effects from the signal. The processor which performs
classification on energy normalized signatures uses purely the
shape of the signature (or vector direction) and not amplitude
(vector length) in its classification.

In the data, energy was observed to be fairly constant from one
cycle to another within a given run, but varied widely from one
run to another.

3.3.9 Time Normalization

Time normalization is particularly important in this problem, since
no two runs are performed at exactly the same rpm. For this reason,
it is crucial to reconstruct the sampled data waveforms, which
may consist of 700 to 800 samples in an engine cycle, and then to
sample the reconstructed waveform with exactly 750 evenly spaced
samples before processing. This preserves the phase coherence of
the signature so that its shape may be compared or averaged directly
with signatures from other runs and other cycles. The lack of this
ability would appear to be a major shortcoming of the Enhancetron
of Reference 1, since it depends on the engine speed to maintain
a constant time reference, a condition which is not met in the data.

3.3.10 Cycle Averaging

Averaging waveforms which are rectified or which have timing coher-
ence enhances the signal while reducing the random noise components.
This is because the signal components add in amplitude, which
increases signal energy as the square of the number of waveforms
added together, while the random phase noise components add in
enerqy so that their energy contribution only increases proportionally
to tne number of waveforms to the first power.

3.4 RELATIONSHIP BETWEEN TIME SIGNATURE AND ENGINE CYCLE

Key events and their locations in the engine cycle are described
in Tables 3 and 4 and Figure 7. In Table 3, note that the Rotan
device is the device which generates the ti'laing marker used in the
data base. Its occurrence is offset by 100 from the true 00
reference point in the engine cycle. Figure 7 maps key engine
events onto the graphical scale used in all plots in this report.

3.5 SENSOR PLACEMENT STUDY

Figure 8 shows the locations of the accelerometers on the test
engines. Figures 9 through 12 show averaged and normalized engine
cycles for the same engine as observed at sensors 1, 3, 4 and 5
respectively.
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Table 3. Engine Cycle Event Locations

ROTAN SIGNAL IMPOSES +100 SHIFT TO CALCULATIONS BELOW

TDC -360IEXHAUST CLOSE -328
BDC -180

INTAKE CLOSE -56

POWER TDC 168 firing in herePOE TC} 6 somewhere
EXHAUST OPEN +112)

BDC +180

INTAKE OPEN +320

TDC +360
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Table 4. Power Top Dead Center Timing

CYLINDER POWER TDC*
7

IL 0
5 6R 90

7 5L 120

5 2R 210
7

3L 240
5

4R 330

L 6L 360

IR 450
2L 480
5R 570

4L 600

3R 690

* +100 for Rotan

2
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Ix.]I
5* R

A2

4L 4R

Q Accelerometers are attached to the outer surface of the crank case
at a height corresponding to the level of the upper main bearing.

*Symmetrical placement using one sensor for every two cylinders.

SCentral placement for a single sensor.

Figure 8. Location of Pickups
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Therefore obvious differences are apparent in the amplitude character-
istics of the signatures from sensors in different locations. It
has been verified that the largest signal regions from a given sen-
sor relate to the firing time of the cylinder nearest to it.

Several conclusions may be drawn from this study regarding sensor
placement.

First, the engine classification experiments which were done used
single sensor data and it seems possible that satisfactory perform-
ance might be achieved operationally using a timing sensor and a
single accelerometer, if the accelerometer were centrally located
on the engine. This would offer significant advantage in the
connection and disconnection aspects of testing, and also in the
volume of data to be stored and processed.

At the other extreme, one sensor might be used for every two
cylinders, with the sensor placed halfway between the two. Inter-
mediate numbers of sensors could also be used.

Whatever the number of sensors used, the placement should strive
for symmetry in the matrix of cylinders, since the information is
lost from the signatures by masking. When a sensor is much closer
to cylinder A than to cylinder B, the activity of cylinder A tends
to dominate the sensor's dynamic range in certain time segments of
the engine cycle. The result that problems in the remote cylinder
during those intervals may be difficult to discern.

3.6 SIGNAL TO NOISE ENHANCEMENT BY AVERAGING

Figures 13 and 14 are signatures for engine number 42 after repair,
as measured on sensor 5. The plots are time normalized to 750
points and power normalized to 10,000.

Figure 13 is a single engine cycle, rectified, while Figure 14 is
the average of 57 engine cycles. Under close comparison, it may
be seen that much of the apparent fine structure in the single-cycle
signature is misleading and not statistically significant, since
it washes out in the averaging process. It is clear that a single
engine cycle signature does not provide a good estimate either of
the average amplitude at a given time in the signature or of the
location of those amplitude peaks which will emerge as significant
in the averaged signature.

3.7 TIME NORMALIZATION STUDY

T-ime normalization is vital to success in engine signature analysis.
Results indicate that the engine rpm is not sufficiently stable
even within the same run for clean averaging. This can be seen in
Figures 15 and 16. Figure 15 shows the result of averaging without
time normalization of 69 engine cycles from the same run at nominally
the same rpm. Figure 16 is an average of the same runs, but time
normalized prior to averaging. Generally, it is apparent that the
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peaks occurring nearest the timing marker (to the left of the plot)
are sharp and clear in both cases. However, as you move further
toward the right, the effects of small rpm variations within the
run cause a blurring of the peaks in the unnormalized data of
Figure 15. At the same time, the normalized data retain sharpness
and focus throughout the 7200 engine cycle.

The signal enhancement within a run is obvious from this comparison.
The results of Reference 1, using the same data, depended upon the
rpm regulation since the Enhancetron instrument had an independent
fixed time base.

This enhancement effect is magnified when consideration is extended
to data from two different runs, which must ultimately be compared
in any automatic pattern recognition processor. Tests showed H
that rpm variation between different runs was considerably greater
than variation within a run.

The use of software time normalization on a cycle-by-cycle basis
relieves the demands on mechanical and human test specifications i
in an automatic data collection system because data may be recorded I
over a range of 5 to 10% from nominal rpm.

Time normalization was accomplished by reconstructing the waveform
from the sample values, using linear interpolation, and then samp-
ling the reconstructed waveform so that there were exactly 750
samples per engine cycle.

A further refinement may be appropriate to fine-tune the engine
cycle synchronization. An error-prone step in measurement is the
mounting of the Rotan device or other 00 synchronizing signal
source, as witnessed by the fact that errors occurred in several
runs in the data base used here. Given a good marker delineating
each cycle, minor adjustments in timing may be provided by a
digital matched filter. The measured signature should be correlated
against the matched filter (or prototype signature) at various
time shifts, and correlation measured as a function of the time
shift. The time shift yielding maximum cross-correlation should
then be used as the reference marker. This should yield timing
accuracy within tl of rotation, probably better than can be done
by mechanical means.

3.8 PHASE COHERENCY AND RECTIFICATION

In Reference 1, rectification of the signature was recommended on
the basis of phase instability in the timing of major peaks. The
result of Enhancetron averaging of successive wave forms was
always some degree of cancellation, as shown graphically in the
preceding section. Rectification provides a hedge against this
problem. In the rectified signature, the peaks may be diminished,
but the time regions of high energy are still apparent. In fact,
the uncertainty resulting from phase instability in the signatures
is translated from a cancellation of peaks to a smearing or time
uncertainty in the averaged signature.
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Experimentation here has shown that averaging of unrectified signa-
tures can result in clear and well structured signatures, provided
that cycle time is normalized prior to averaging. This is demon-
strated by Figure 17, which is the average of 67 time normalized
engine cycles for engine 11 after repair. Comparison of Figure 1'
with the rectified average in Figure 18 shows the equivalency and
hence the phase coherence of the time normalized signatures.

Another measure of phase coherence of the signature is shown in
Figure 19, which is a histogram of the number of times that each
time point was a local maximum or minimum, out of 67 samples. Note
that certain points have a very high incidence of occurrence asextrema, while others very seldom occur as extrema.

One further perspective on the variation of engine signatures is
given in Figure 20, in which the max, min and range of measurements
are plotted for each time interval over 67 sample signatures from a
single run.

Extremely wide variation occurs from cycle to cycle for engine
signatures, emphasizing the fact that automatic classification would
not be practical on these signatures without averaging.
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IV. CLASSIFICATION EXPERIMENTS

4.1 SUMMARY

An essential result of this study was good results in engine
classification using the vibration data available. Successful
classification demonstrates the feasibility of completely automatic
design of engine classifiers from empirical data.

Past efforts have depended very heavily on human analysis for the
design of classifiers and, while they have had some success, they
were both expensive and heavily dependent on individuals for their
success. By contrast, automatic design is relatively inexpensive,
the major cost element being the empirical data base, so that it
allows for easy extension to new engine types and additional failure
modes for a given engine type. Automatic design also escapes from L
the subjective nature of human design. In a problem which has as
many classes (possible failure modes) and as many dimensions in the
signal space as this problem, human insight can be unreliable andeasily misled.

The OPSEEKER algorithm developed by SEI provides a means by which
classifiers can be automatically designed and their performance
evaluated. The OPSEEKER requires as input an equal number of repre-
sentative signatures for each class to be discriminated. The
OPSEEKER works in an interactive manner in which it first selects
a feature, then designs a classifier incorporating this feature
along with those previously selected, and then uses this classifier
on the data base to determine its performance. Each interaction
of this process is referred to as a pass.

The following experiments demonstrate performance and stability of
automatic classifier design, given the empirical data available,
using data from a single sensor in either the time or frequency
domain.

4.2 CLASSIFICATION WITH TIME DATA

4.2.1 Sensor 5, Zero Mean, Time and Power Normalized, Not Rectified

The first experiment used time signatures from sensor 1. These
signatures were processed to have zero mean but were not rectified.
They are time normalized and power normalized. The signature for
each engine was on an average of 50 engine cycles.

Class 1 was defined as engines after major repairs, while Class 2
was engines which were definitely bad, prior to major repairs. The
data base is described in Table 5.

The obvious problem with this data base is its small size, imposed
by the source analog data base. Given that there were only six
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Table 5

CLASS 1 CLASS 2
Engine ii 11 Training

12 12 Data
17 17
21 21
48 48

50 50 Independent
Test

engines available with data from before and afcer major repair, the
test strategy selected was to use five signatures for the design of
the classifier (or training) and then use those five plus a sixth
which the classifier had not seen before to test its performance.

The OPSEEKER algorithm was applied to these samples. Table 6 shows
the scores attained after the first pass. The classifier output
tables show the scores of the data signatures when played against
the class discrimination functions. Scores with the lowest magnitudes
are the nearest to the class membership criterion. Thus, in Table 6
under Class 1 data, it is seen that sample 1 is erroneously called
a Class 2 while the others are correctly classified. Similarly, in
the Class 2 data, the 6th sample was misclassified in the first
training pass.

Table 7 shows that measurement number 294 was used (the 294th time
sample in the averaged signatures) in the first pass classifier.
This feature was selected as having the most information about class
membership out of the 750 possible choices. The classification
matrix shows that five Class 1 samples were called Class 1 and one
was called Class 2 for a total percentage accuracy of 83.3%.

Table 8 shows the Pass 2 scores, and Table 9, the Pass 2 perfoi:mance,
which achieves 91.7%.

Tables 10 and 11 show the Pass 3 scores and features used. This
was the final pass tested. The classification score remained 91.7%.
The misclassified signal was the unknown Class 6 signature after
repair.

4.2.2 Sensor 1 Time Signature Unrectified Classification

The engines and signal conditioning used here are the same as in the
preceding section, except that sensor 1 is the signature source.

Classification results are shown in Table 12 for two passes with
data from sensor 1, achieving 100% with two features.
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OPIAT,P4 IJP'T OAT, FILE
P aA I3 A _ 0 Q_ AA EL . .. . . . .
2 NU ,iER OF CLASSES

N1 'Rk R OF EYA'4PI ES PER CLASS
NjU.-1RER UF EXAMPLES FUR TRAI,"ING

75:1 NhJ%4rRF OF MASEM-'TS PPR EXAMPL E
I NU!ER OF FIRST PASS TO DC
6 NUIMER OF LAST RASS TO nO
0 NLI'YER OF LAST PASS DONE

PASS 1

SCLASSIFIER OUTPUT CLASS I DATA

Class 1 DF Class 2 DF
I 6j246 v1-84

2 -5,2566 -13,8532

d -5,334Z W53,6061

5 -6173 .3 8ri0l
5 -5, 47 -i,3564

Scores of the C1L.ss 1 Signatures MeasuredAgainst Class i and Class 2 Discriminatin
_Functions (pFj " _ _"

CLASSIFIER OUTPJT CLASS 2 DATA

Class 1 DF Class 2 DF

S -71000 -4,6885

4 -6,1599 -3,7860
5 -.',A 93 ..3 1 687
6 -5#5746 -7,262.

Scores of the Class 2 Signatures Mqasured
Against Class 1 and Class 2 Discrimination
Functions (DF)

Table 6. Scores of First OPSEEKER Pass
on Sensor 5 Time Signafuirp-. Tnrpe j-fjp nata
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PASS 1 2 CLASSES 6 EXAMP/CLASS 750 MEAS/CLASS

MFAJRREMFTS SCLFCTE

[ ,94

!4FtjREmF'TS RrJFCTFO

750

STATO 0,8134

CLASS Ir'yI4G MATRIX

5 1 _ _ _ _ _

1 5

PERCENT RIGHT2 83.3333

Table 7.. Performance Matrix for Pass 1, Sensor 5, Time Signature

Un. ec t if ied

CLASSIFIER OUTPUT CLASS I

"] -I ,88 -7 33

2 -9,9993 "487,4554
-!S0440 -8i1:7376

4 -10,9157 .1429,7120
5 -. 74Q3 .25A700184

5 -21,4163 -222,4061

LJ

CLASSIFIER OUTPUT CLASS 2

Si "28ah1 A0_-_._ 3

2 "14,972 -9,7023
A "AA. 976 m9.5575
4 q44t1840 -6,1012

9 -221.101 -R.!184

6 -13,3623 "172,4542

Table 8. Pass 2 Scores, Sensor 5, Time Signature Unrectified

'-4 2,

* I

- A

,!. ~



PA3S 2 2 CLASSES 6 rA!!?/CLASS 750 MEAS/CLA4S

'4 E-iSg-ENiS SCLECTEP

7 ~~74 410~

STAT: 2,2463

CLASSFYIPG MATRIX

PERC7tiT RIGHTS 91.A667

Table 9. Pass 2 Performance, Sensor 5, Time Signature Unrectified

VLASSIFILR OUTPUT CLASS I

2 -13e1641 -494,9910
3 140~221 85i.3'3682

4 -130804 -1529,6897
:3 "'t -A7j4 3-JA,8622
5 -530t5755 -237o5326

CLASSIFIER OUTPUT CLASS 2

1 "1192,2724 -11.0447

2 -915.3575 "12,3166.
3 n23ia4.32'M3 -12,2A99
4 "1479,3905 -11,2517
5 -1IS7.9715 18q1
6 -866,6089 "300,7449

Table 10. Pass 3 Scores, Sensor 1, Time Signature Unrectified
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PASS 3 2 .CLASSE~S 6 EXAfIP/CLASS 7501 IEAS/CLASS

"EtSJUMF'NIS SrI VCTFn

204 430S 29

MFAJdMFNTS REJFrCrfl

STAT: 4.6327

CLASS1VYb;G MATR.IX

PERCEN.T RIGHT2 91,6667

Table 11. Pass 3 Performance, Sensor, Time Signature Unrectified
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PASS 3 2 CLASSES 6 EXAMP/CLASS 750 htEAS/CLASS

394 h74 644

M FAS RFMVN~TS RCJErTFfl

STAT= 4,61Z4

CLASSIFYING HATRIX

PE CErT RIGHTz 91,6667

Table 12. Results After Three OPSEEKER Passes Using Sensor 1 Time
Signatures Unrectified.
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4.2.3 Sensor 1 Rectified Time Signatures

Table 13 shows results for Sensor 1 data rectified, in the time
domain. Accuracy is 100% after two passes.

4.2.4 Sensor 5 Rectified Time Signatures

See Table 14. Accuracy is 91.7% after four passes.

4.3 CLASSIFICATION IN THE FREQUENCY DOMAIN

Frequency domain signatures for each run were generated by computing
the FFT for the time signature of each engine cycle sample in the
run, typically 50 engine cycles per run. These individual samples
were time and energy normalized prior to FFT. The time normalized
engine cycle consisted of 750 sample points which were preceded
by 137 zeroes and followed by 137 zeroes in a 1024 point waveform.
submitted to the FFT. The result was a 512 filter spectrum for
each engine cycle. These engine cycles were then averaged to pro-
duce a single spectrum representative of each engine.

The data used included those used for the time domain classifier
experiments plus an additional engine, number 42 before and after,
making a total of seven engines in each class. The classes were
Class 1 - Before Major Repair, and Class 2 - After Major Repair, as
before. It was possible to use engine 42 in this test and not in
time domain tests because its Rotan timing reference device was
installed incorrectly, destroying phase coherence with the other
engines.

Linear and logarithmic amplitude displays were edited, and linear
was chosen for the classifier tests.

The classifier was trained on six samples and tested on seven.

Results for Sensor 1 are given in Table 15 showing 100% correct
classification after three passes. Sensor 5 results, in Table
16, show 92.9% accuracy after five passes.

4.4 INTERPRETING THE CLASSIFIER DESIGNS

Table 17 contains a summary of t~he classifiers designed for each
experiment and their performance. The featured numbers selected
can easily be translated into their actual physical meaning. For
time domain studies, tests 1 to 4, each feature represents a sample
taken at a particular crank angle. In all four tests time was
normalized such that there were 750 samples taken across 720 degrees
of crank rotation. Thus one need only multiply the feature number
by 720/750 or 0.96 to determine what crank angle it represents. In
the frequency domain studies, tests 5 and 6, each feature represents
the power content at a particular frequency. The filter bandwidth
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in both tests is 5000 Hz/512 or 9.7-6 Hz; the center frequency for
each of the selected features may be calculated by multiplying the
feature number by the filter bandwidth.
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o PASS 1 2 CLASSES 6 EXAMP/CLASS 750 MEAS/C4ASS
- -J

AE ASJREMENTS SrLFCTEF

MEASJREMENTS REJFCTEO

753

STAT: 0,9588

CLASSIFYING MATRIX

5 1

S 6

POCENT RIGHT8 91,6667

I,

PASS 2 2 CLASSES 6 EXAMP/C.ASS 750 MEAS/C4ASS

S MEASJREHENTS SrLECTEO

26A 55

ME&SJREMENTS RN!ECTED

750

STAT2, 2,4813

CLASSIFYING MATRIX

6 6

- PEICENT RIGHT213,0

Table 13. Results with Tw6 1PSEEKER Pas.e§ Using Sensor 1 Time
Data Rectified 48,

48 L . ...



PASS 4 2 CLASSES 6 EXA!*P/CLASS 750 1riAS/CLAbS

MEIAFMF jT S-L CTEfl

J79 ',54 346 A

M4FA5 IFMFNTS HRJVrCTFl

STAT: 1'0)..175 i

PE'-C7,T RiGHT- 91,7

Table 14. Sensor 5 Rectified Time Signature Results
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PASS 3 2 CLASSES 7 £XA4iF/CLASS 512 MEAS/CLASS

41EAiS JREi%~r TS SrQ OTE'-

3 93 3:16 :)t

STAT= 3,5456

CLAS IFY14; !.ATHTX

7 
_ _

, 7

PEcri T ~I~Ti~ '

T',ble 15. Classifier Results Using 512 Filter FFT Signatures,
Sensor 1
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PASS 5 2 CLA.sS S 7 EXAMiP/CLASS 512 MFAS/C6ASS

MF £S !RrME~vTS SrLFCTr*-

3i9; 3 132 1-'1 227 i
M1FAS JREME -vTS Rr!-Tr

STAT: 11,2566

r[ CASzIFYIN'G ' ATRJX

Table 16. Classifier Results Using 512 Filter FFT Signatures,
Sensor 5-
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