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PREFACE
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This final report was prepared by the Missile Division, Hughes
Aircraft Company, Canoga Park, California 91304, under Contract No.
3 F08635-75-C-0014 with the Air Force Armament Laboratory, Armament
Development and Test Center, Eglin Air Force Base, Florida. Major
Robert L. Haney (DLMM) monitored the program for the Armament

Laboratory. This effort was conducted during the period from August 1974
to November 1976.

b This report consists of three volumes. Volume I contains Digital
) Processor System Studies. Volume II is concerned with System Simula-

i tions. Volume III deals with a Programmable Digital Autopilot. This is
¥ Volume II.

This technical report has been reviewed and is approved for
publication,
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SECTION 1

INTRODUCTION

The Digital Guided Weapon Technology (DGWT) program was initiated
with the general intent of determining the role of digital processing techniques
in guided weapons. Recognizing that too broad a2 scope can be self-defeating
for this kind of program, the Air Force set two specific goals to be accom-
plished. The first was a near term application of digital processing to an
existing weapon family. Specifically, a digital autopilot for the GBU-15
weapon was to be designed and evaluated. The evaluation required fabrica-
tion of a brassboard digital processor for the autopilot and verification of
its performance with a hybrid simulation. That part of the program was
completed in 1975, A separate program was initiated to bring the GBU-15
digital autopilot into engineering development based on the results. The
Programmable Digital Autopilot (PDAP) work is reported in Volume III of
this final report.

The second goal was to determine how digital processing techniques
could be used to assist in integrating the components of an advanced modular
weapon system. Earlier studies sponsored by the Air Force had investigated
the characteristics of a modular weapon. The results of one of these studies,
as expressed in AFATL-TR-72-202, were used as a starting point
to define the weapon system to be studied in the DGWT program. Specifically,
the program was to accomplish the following objectives:

1. Determine which functions ¢ould be done digitally in the weapon
system.

2. Determine what the digital processing system should do to
assist in integrating the weapon components.

3. Determine which other functions should be done in the digital
processor,

4, Define the interfaces of the digital processing subsystem within
the weapon system.

5. Determine the requirements of the digital processing system.
6. Produce a preliminary design of the digital processing system.

7. Build two breadboard processing systems.

8. Evaluate the breadboard systems in hybrid simulation and
other tests.
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All of these objectives were accomplished. The work performed and
results achieved relative to the first six objectives are reported in Volume I,

Digital Processor System Studies. That volume describes the digital process-
ing systemi recommended to perform the integration function in an advanced
modular weapon. The work done relative to the seventh and eighth objectives
is reported here in Volume II.

To fulfill the seventh objective, two breadboarded digital processing
systems, DPIl and DP2, were constructed, The first of these, the DP1 sys-
tem was integrated with an inertial measurement unit (IMU) furnished by the
Air Force, and after tests at Hughes Aircraft Company, was shipped to the
Central Inertial Guidance Test Facility (CIGTF) at Holloman Air Force Base
in New Mexico. At CIGTF, the DP1 system was integrated with CIRIS (Com-
pletely Integrated Reference Instrumentation System) and then underwent
performance tests under the direction of the Air Force, In addition to labora-
tory tests, the system was tested in a van, on surface roads, and also in an
aircraft.

The DP2 system was integrated into a six-degree-of-freedom (6DOF)
hybrid computer simulation of the GBU-15 cruciform wing weapon in the
Hughes Hybrid Computer Laboratory at Canoga Park. The simulation was
performed to investigate the use of aided inertial guidance for midcourse.

Detailed information about these two breadboarded systems, DP1 and
DP2, and about the related software developed for the simulations and tests
performed is contained in the following documents and reports:

1. Operating Manual and System Description for Digital Processor
Number 1, Report No. DGWT 0210-1, Revision A,

2. Operating Manual and System Description for Digital Processor
Number 2, Report No. DGWT 0210-2,

3. Programmer's Manual for PDAP, DPI1 and DP2, Report No.
DGWT 0170-2,

4. Digital Processor System Specification, Report No. DGWT
0240-1,

5. Digital Processor Software Development Repo:t, Report No.
DGWT 0165-1.

This Volume Il provides a brief description of the system hardware,
the documentation for the system execitive software, and a detailed des-
cription of the actual tests and simulations involving the two systems, DPI
and DP2,
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SECTION 11

DIGITAL FROCESSING SYSTEM

The basic digital processing (DF) system is composed of a digital
processor, a weapon bus and the executive software. In an operating system,
there will be other subsystems which must be interfaced with the DP, The
interface is accomplished by means of a Bus Interface Unit (BIU), which pre-
sents a common interface to the bus, and the executive software. In prac-
tice, most existing subsystems are not directly compatible with the common
BIU interface, therefore, additional interfacing equipment is required.

This was true for all the subsystems used in the CIGTF operation and the
simulations.

The executive software is common to all configurations, It acts as
the software interface between the external world and the DP system. In
addition, it interfaces between the various applications software modules
which the system requires. 'When applications software modules (e.g.,
inertial navigation) are added to the system, it is also necessary to add
special interfacing software modules to allow the executive to do its job,
These special modules are part of the System Management function,

DIGITAL FROCESSING SYSTEM HARDWARE

The basic DF hardware is shown in Figure 1. Figure 1 illustrates
how external subsystems can be integrated into the system, The Control
Fanel, used in system development, allows monitoring and control of sys-
tem functions. It would not be present in a tactical weapon installation,

The digital processor (DP) is a rack-mounted breadboard unit. The BIU's
are separate units which terminate sections of the weapon bus, The proces-
sor in the DP2 system differs from the DF1 processor in having an enlarged
instruction set and in having the Master Bus Control in the DP rather than
in the BIU box as in DP1, Further details of the hardware are contained in
Sections III and IV, For a complete description, the reader is referred to

the DFP1 and DF2 System Description Manuals, Reports DGWT 0210-1 and
DGWT 0210-2, respectively,

EXECUTIVE

The executive is an organized collection of software routines (shown
in Figure 2) designed to manage the processor resources, It is responsible
for interfacing with all interrupt hardware and input/output equipment and
for supervising the execution of all software modules, The executive acts
as a buffer between software modules and the hardware by performing all
input/output operations, thereby making software modules independent of
the mechanization of input/output hardware. It also acts as a buffer between
software moduies, providing a common way of interfacing one module to
another, The isolation provided by the executive reduces the likelihood that
changes made in one software module will propagate into other modules, It
also makes it a relatively easy matter to add more functions to the system,
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The executive is a permanent part of the system that is common to all
configurations.

The processor functions are partitioned into units called tasks., Each
task is a unit of work that is to be performed as a result of some external
event or time event or command from another task. Tasks can range in

size from a few instructions to a few hundred instructions, and in execution
time from microseconds to seconds. Some tasks may only be executed once
while others may be executed from 100 to 400 times per second. They are
characterized by a unique identification number, a starting address, and a
priority, Tasks are called by each other or associated with external events

, only by their ID number, Only the executive needs to know the location and

i priority of a task,and since this information is contained in a table, it can

: vary from one configuration to another without the tasks having to be changed.

In determining how to partition a processor function into tasks, some
general rules should be followed:

1. Each task should consist of a single operation at some level of
abstraction in the description of the function, At a lower level of
1 abstraction the task might include many operations but there
A - should be some level at which the programmer can consider the

{ task as s single operation. Otherwise, it should be broken down
into smaller tasks,

A task should not have delay loops longer than 30 microseconds
in it that wait for some external event to be completed. If a task
must initiate an external event, such as the transmission of a
block of data from a weapon subsystem to the DP, and has no
other operations to perform until the data block has.been
received by the DP, then it should be broken into two tasks. The
first task would initiate the external event and then end by
o g returning to the executive. The second task would execute when
the data transfer is complete. During the time in between, the

| executive can start executing some other task so the time is not
L | wasted,

‘ A task should not have a small subset of operations that have a
1§ much higher priority than the bulk of the task., Instead it should
: be partitioned into two tasks which have different priority levels.
_ One task containing the bulk of the operations would run at a low
£ r priority, and the remaining few operations would be performed

‘ in a separate task at a higher priority.

All these tasks must be tied together and executed in a sequence
appropriate to the weapon configuration. This will be accomplished by two

levels of software, One of these levels is the executive which causes soft-

ware modules to be executed in response to signals from external devices or

o in response to commands from other software modules. The executive does {
e this without any knowledge of the weapon configuration or what each module
is supposed to do. This knowledge is contained in the system management




module which is the second level of software that controls the sequence of
execution of all tasks. The system management function is described in
software subsections of Sections III and IV,

The remainder of the EXECUTIVE subsection discusses the various
components of the executive.

Task Supervisor

The purpose of the task supervisor is to supervise the execution of
all tasks in the DF assuring that high priority tasks take precedence over
low priority tasks. The task supervisor consists of the task queueing rou-
tine TASKQU, the task dispatching routine DISPAT, the queue searching
routine SEARCH, the ID table IDTAB, and the task queue TQ. The hierarchy
of these routines is shown in Figure 3.

TASKQU. The purpose of the task queueing routine shown in Figure 4 is to
place the address and priority of a task in the TASK QUEUE.

It can be called by interrupt routines or by any task., When called,
TASKQU looks up the address and priority of the task in the TASK ID TABLE
and places them in the TASK QUEUE which is an unordered list, It also
compares the priority of the task being placed in the queue with the CURRENT
TASK PRIORITY. If the priority of the new task is higher it sets a flag
called HIGH FRIORITY TASK WAITING. It then returns to the program that
called. The cailing program may look at the HIGH PRIORITY TASK
WAITING flag to decide whether to go to the task DISPATCHER immediately
or not. The flowchart for TASKQU is shown in Figure 5,

DISPAT. The purpose of the task dispatching routine shown in Figure 6 is
to search the TASK QUEUE for the highest priority task,and if this task has
a higher priority than the CURRENT TASK FRIORITY, then the task should
be removed from the queue and executed.

DISPAT includes the routine SEARCH,

DISPAT can be called by any program that queues up a task although
it is not necessary. All tasks are called by the dispatcher so all tasks
return to the dispatcher by executing an RTN when they are finished.

. T WS e

A

When it is called DISPAT first clears the HIGH PRIORITY TASK
WAITING flag if it is set and saves processor status. It then searches the
TASK QUEUE for the highest priority task, If the highest priority task in
the queue is higher in priority than the CURRENT TASK PRIORITY, then
the dispatcher removes that task from the queue and calls it. When the
task is finished, it executes a return instruction returning it to the dis-
patcher. The dispatcher then searches the TASK QUEUE again for the
highest priority task, When the highest priority task in the queue has lower
priority than the CURRENT TASK PRIORITY, the dispatcher restores the
processor status and executes a return instruction. The flowchart for
DISPAT is shown in Figure 7, :
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SEARCH. The purpose of the SEARCH routine shown in Figure 8 is to
search the task queue for the highest priority task.

SEARCH is only called by DISPAT, When called, it searches the
task queue for the highest priority task., It returns the highest priority in
the queue in latch 2 and the location in the queue of the highest priority task
in index register 1. If the queue was empty, it returns a zero in latch 2,
The flowchart for SEARCH is in Figure 9.

SAVE and RESTORE. The purpose of the routines SAVE and RESTORE (see
Figures 10 and 11, respectively) is to save the status of the processor when
a task is going to be interrupted by another task and to restore the status of
the processor when the interrupted task is to be resumed.

SAVE pushes the contents of the two latches, the carry bit, the shift
counter, memory location JMPLNK, and index registers 0 through 5 onto the
stack, RSAVE is used when only the latches and carry bit need to be saved.

RESTORE restores the contents of the two latches, the carry bit, the
shift counter, memory location JMPLNK, and index registers 0 through 5
from the stack. RREST restores only the two latches and the carry bit.

Task ID Table., The TASK ID TABLE shown in Figure 12 stores the starting
address and priority of each of the tasks in the DP, The routine IDTABL,
also shown in Figure 12, puts entries in the table.

THE STACK. The STACK is a push down (last in first out) stack imple-
mented in operand memory with index register 31 used as the stack pointer,
The stack expands downward in memory toward location 0, The stack
pointer normally points to the last occupied position in the stack, To push
an item onto the stack the stack pointer should be decremented by one and
then the item should be stored in the stack at the location indicated by the
stack pointer. When popping an item off the stack the item should first be
read from the stack, then the stack pointer should be incremented.

Data Bus Supervisor

The purpose of the data bus supervisor is to maintain a queue of
messages to be transmitted on the data bus, and to schedule the messages
according to priority.

The data bus supervisor is called by tasks when data is to be sent on
the data bus, If the bus is available, the message is sent imrediately,
Otherwise, the message is queued up to be transmitted when the data bus
becomes available. The data bus supervisor includes a routine to put
messages in a queue (MQINSE), a routine to remove messages fromthe
queue (MQREMO), a driver for the data bus (DBDRV), an interrupt routine
to handle the normal completion of a message (DBCOMP), and an interrupt
routine to handle error conditions (DBERR), Each block of data to be trans-
mitted on the data bus is called a message and must have a Message Faram-
eter Table associated with it that contains descriptions of the source and
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/ SEARCH TQ FOR HIGHEST FRIORITY TASK

SEARCH NOF
STM»O»TQ $PUT FOINTER TO END OF QUEUE IN IO
JIFIZ»0Q9SEAEX $IF QUEUE IS EMFTY EXIT
LI2I+0,TQ $LOAD ENTRY FROM QUEUE INTO L2
AND2I»30yHOOOF SEXTRACT FRIORITY AND FLACE IN L1
WR2¢190
JTr»SEASAV # JUMF

SEALOO LI2I«0»TQ $LOAD ENTRY FROM QUEUE INTO L2
AND2I» 30, HOOOF $EXTRACT FPRIORITY
JIFFSyL1:L2ySEALOW §JUMF IF FRIORITY LI > PRIORITY L2
WR2+1+0 $MOVE PRIORITY INTO L1

SEASAV RIR2+0 $MOVE FOINTER INTO L2
STL2.1 $THEN INTO I1

SEALOW INDyO»SEALOO $DECRIMENT FOINTER AND LOOF IF NOT O
WR1+290 $MOVE FRIORITY TO L2

= RTN

SEAEX DAT2+0 $SAY FRIORITY IS O
RTN

/ EXIT WITH PRIORITY IN L2 AND LOCATION OF TASK IN I1

/

Figure 8. Search TQ for Highest Priority Task Routine (SEARCH)
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Figure 9. SEARCH Flowchart
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{ / SAVE FROCESSOR STATUS

| SAVE NCIr31912 s MAKE KOOM ON STACK
WR11s3190 R
WR2Ty 3191 L2
DAT150 s CARRY
A1Cy19KO
WR1I»3192
RIOGC»2¢0 SSHIFT COUNTER
WR2193193
LDy 29 JMFLNK $ JUMP LINK
WR2Iy3195
RIR20 $10
WR2193196
* RIR291 11
B WR2193197
! KRIR292 512
| ! WR211318
* RIR23 13
! WR21+31+9
| RIR2v4 14
! - WR21931910
3 RIK295S 15
i WR2I,31s11
NOF
RIRKM» 319 TFSTK sTEST FOINT FOR STACK FOINTER
: RTN
; /
; RSAVE DCIv3193
: WR1I931+0 s SAVE LATCHES ON STACK
2 WR2I»3191
¥ DAT1,0 $ SAVE
. AD1Cy1¢KO $ CARRY
j WR1I/31+2 $ON STACK
1 | RIRM» 319 TFSTK {TEST POINT FOR STACK POINTER

RTN

g Figure 10. Save Routine (SAVE)
i
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|
/
| / RESTORE PROCESSOR STATUS
i RESTOR LD2I,31y11 15
{ : STL2,S
i ' LD2I+31,10 P14
: STL2+4
LD21+,3149 $13
3 STL2+3
¢ LD2I,31,8 $12
4 STL2y2
b LD21+31,7 $I1
g STL2y1
| 1 LD2Is3196 410
B § STL2,0
! | LD21+31,5 $ JUMF LINK
] WR2y ¢y JMFLNK
E DAT1y-1 $SHIFT COUNTER
4 DAT2,-1
R SHLDMI» 31,3
‘ SCALEv v 31
3 LD2I,31,2 $CARRY
AD2,2,M1
LD2Iy31,1 L2
g LD1I+s3140 sL1
: 4 DCIv31y-12 $CLEAR STACK
3 NOF
'5‘ RTN
i 3 y
% b RREST LD21Iy31,2 }RESTORE CARRY
! 3 AD2, 2y M1 #FROM STACK
M | LD2I,31,1
1 P LD1I,31,0 {RESTOR LATCHES FROM STACK
3 DCIv31,-3
: RTN

Figure 11. Restore Routine (RESTOR)




FIRST LOCATION NOT USED

ADDRESS OF TASK|PRIORITY
12BiTS 4 BITS

63 LOCATIONS
IN TABLE

/ MAKE AN ENTRY IN THE ID TAELE
/ ENTER WITH ID IN I1, ADDRESS IN L1y PRIORITY IN L2
IDTARL SHL1M» yK4

ADDI»1+IDTAE

RTN

Figure 12. Task ID Table (IDTABL)
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destination of the message, the number of words in the message, the priority
of the message, and the ID number of a task to be queued up when the mes-
sage has been transmitted. The data bus supervisor is shown in Figure 13.

DBSUPR. To send a block of data on the weapon bus, a task puts the
address of a message parameter table in index register 0 and calls the data
bus supervisor (DBSUPR). DBSUPR (shown in Figure 14) checks to see if
the bus is busy, If the bus is not busy, DBSUPR calls the data bus driver
(DBDRYV) to send the data. If the bus is busy, DBSUPR calls the message
queue insert routine (MQINSE) to put the message in the message queue for
later transmission, The flowchart of DBSUPR is shown in Figure 15.

DBDRV. The data bus driver is the interface between the rest of the soft-
ware and the weapon bus, Figure 16 shows the data bus driver routine,

It takes parameters from the message parameter table, transforms them if
necessary, and writes them in the I/O registers for the weapon bus, After
the parameter describing the source, destination, and size of the data block
have been given to the bus master, DBDRV sends the Start Data Transfer
signal and returns to the calling routine. While the weapon bus is transmit-
ting the block of data, the DP is free to resume executing tasks, The flow-
chart of DBDRYV is shown in Figure 17,

MQINSE, The message queue insert routine shown in Figure 18 places the
address index register 0 in the message queue, The address in index
register 0 is assumed to be the address of a message parameter table,
The flowchart for MQINSE is also shown in Figure 18,

MQREMO. The message queue remove routine shown in Figure 19 searches
the queue looking for the highest priority message in the queue. It does this
by looking at the priority word in each message parameter table listed in the
queue, If there are several messages at the same priority level, the one

closest to the bottom of the queue (oldest message) will be chosen. The sel-
ected message is removed from the queue and the address of the message

parameter table is placed in index register 23, If there are no messages in

the queue, a 0 is placed in index register 23, The flowchart for MQREMO
is shown in Figure 20,

DBCOMP. The data bus complete routine shown in Figure 21 is an interrupt
service routine that is executed when the bus master determines that the
message has been transmitted correctly, DBCOMP clears a status bit in
the message parameter table of the message just completed, This feature
is useful only if the message parameter table is in read/write memory.
DBCOMP also checks the status word of the message parameter table to
determine which task, if any, is to be executed as a result of the completion
of the message transmission. If the task ID in the status word is non zero,
that task is queued up by calling the task queueing routine (TASKQU).
DBCOMP then calls the message queue,remove routine (MQREMO) which
returns the address of the highest priority message in the message queue.

If there was any message in the queue the data bus driver (DBDRYV) is
called to transmit the message. DBCOMP checks the "HIGH PRIORITY
TASK WAITING" flag to determine whether to jump to the dispatcher
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DATA RUS SUFERVISOR
ENTER WITH ADDRESS OF MFT IN I0
123 IS THE ADDRESS OF THE ACTIVE MFT
LIy 3sK1S tMASK INTERRUFTS WHILE IN DESUFR
LIy1,TF103 GET TEST FOINT COUNTER
Alll» 1K1 INCREMENT COUNT
WR1ysTF103 WRITE EACK IN MEMORY
LD1I+0 #MSTAT FJSET STATUS OF MFT
Al » 1y MEUSY $TO INDICATE THAT MESSAGE
WR1I,0 »MSTAT iHAS NOT BEEN SENT YET
JIFIZ»23»DENRUS #IF NO ACTIVE MESSAGE JUMF TO NOT BRUSY
.Dy1yMFRILI #IF BUSY CHECK FRIORITY LIMIT
LI2I,0 +MFRI PAGAINST FRIORITY OF NEW MESSAGE
JIFFS»L1<L2yDRRUSY $IF NEW MESS NOT IMFORTANT ENOUGH JUMF
LD1I»23yMDWCNT +MESS IS IMFORTANT SO GET NUMBER OF WORDS
SUE1s1»DERCNT #IN ACTIVE MESSAGE AND SUBTRACT NUMEER
JIFFSyL1<L2y DEFRUSY $ALREALY SENT. THEN COMFARE TO NEW MESS FRI
WRFy10v1 #IF NEW MESS IS MORE IMFORTANT STOF ACTIVE
RIRMy O 'ETEM1 tMESSAGE AND' MAKE NEW MESSAGE ACTIVE
RIRMy 23, DBTEM2 $BY SWAFFING OLD MESSAGE
STMs23+DRTEMI AND NEW MESSAGE
STMyOyDRTEM2 {IE. SWAF 10,123
GSEy yMQINSE # INSERT OLD MESSAGE IN MQUE
GSE» »y IRDRV 'CALL DRIVER
JT»» DEDONE » DONE

DENBUS RIRM»OyDRTEM1 $MAKE NEW MESSAGE ACTIVE BY
STM» 23y DERTEML +FUTTING ADDRESS OF MFT IN I23
GSE» y DRDORV #CALL DRIVER
JT» » DRIIONE # DONE

DEBRUSY GSE» » MQINSE #FUT NEW MESSAGE IN MQUE

DEDONE LUy 3» INTFRI #ALLOW INTERRUFTS
NOF
RTN

% o AR T

L

t

Figure 14. Data Base Supervisor Routine (DBSUPR)




DBSUPR

INHIBIT
INTERRUPTS

AMNY
ACTIVE
MESSAGE
[

YES

New\ vES
PRIODRITY =

LiM ?

MEW
PRIQIRTY ==

WORD COUNT
7

HALT ACTIVE
MESSAGE

v

MQINSE:
INSERT OLD MESSAGE
IN QUEUE

,1

MAKE NEW
MESSAGE
ACTIVE

'

DBDRV:
SEND MESSAGE

MQINSE:
INSERT NEW
MESSAGE IN
QUEUE

UNINHIBIT
INTERRUPTS

RETURN

Figure 15. DBSUPR Flowchart
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LRIRV

Arp et B -

DROWAL

: DEDONL
~ DERIWAF

T TR

DBOWA2

DEDON2
DEDWAZ

PRI R A SO AR

[AT1,18
WR1ir1+DEBCSIZ
LO1I,»23yMOSTID
WR1¢1»DRID
WRF¢8»s1
LD1TI,23yMLUSTAD
WR1y1»DERADR
LD1I»23yMSRCIND
LD2I»239sMSRCAL
STr»24+50
JIFFS»8yIRDION1L
INDy24»DRIWAL
JTy » DRDRV
STr»24,31
INDy 24y DERDWAF
WRFsBy1
WR1+1»DEID
WR2y2yBADR
LD2I 23y MIWCNT
SHL29¢5
WR2y 1 yDEDCNT
DAT1,19
WR1s1yDRDSIZ
ST»24,50
JIFFS»8yDRNDON2
IND»24,yDEBDWAZ2
JTy» DRIIRV
STr»24,31
INDY 24y DRDWA3
WRF+?s1
LDsy1,TF105
Allls1sK1
WR1yyTF105
NOF
RTN

IATA BUS DRIVER
ENTER WITH ADDRESS

Figure 16. Data Bus Driver Routine (DBDRYV)

OF MFPT IN 123

# COMMAND WORD SIZE

#$SEND TO ERIU

#GET DEST IDI AND OFCODE

$SEND TO RIU

$CLEAR BIU DONE FLAG

+GET DEST ADDRESS

ySEND TO RIU

iGET SOURCE IDI' ANL' OFCODE

+GET SOURCE ADDRESS

JLIMIT THE AMOUNT OF TIME WE WILL WAIT
+IS DATA BUS DONE

iNO. WAIT AWHILE

#TOO LONG - ERROR

FWAIT FOR THE SIGNAL THAT SETS
$THE FLAG TO GO AWAY

yCLEAR THE FLAG

SEND ID TO ERIU

SEND ADDRESS TO ERIU

GET WORD COUNT

$SHIFT WORD COUNT INTO FROFFER FIELD
#SEND TO ERIU

{DATA WORD SIZE

$SEND TO ERIU

fLIMIT THE AMOUNT OF TIME WE WILL WAIT
#+IS DATA BUS DONE

iNO WAIT AWHILE

#TOO LONG - ERROR

sDELAY 1 MICROSEC

PWAIT

$START MESSAGE

#GET TEST FPOINT COUNTER

# INCREMENT COUNT

fWRITE BACK .IN MEMORY




SEND COMMAND
WORD SIZE TO
BUS MASTER

]

SEND DEST ID
AND OPCODE TO
BUS MASTER

v

CLEAR BIU
DONE FLAG

v

SEND DEST
ADDRESS TO
BUS MASTER

MAXIMUM
WAIT TIME

EXCEEDED s 1

FOR BlIU
DOMNE FLAG

DELAY TO LET BIU
DONE SIGNAL GO AWAY

!

lCLEAR BiU DONE FLAG J

SEND SOURCE ID

OPCODE & ADDRESS
TO BUS MASTER

v

SEND WORD COUNT
TO BUS MASTER

SEND DATA WORD
SIZE TO BUS MASTER

MAXIMUM
WAIT TIME
EXCEEDED

WAIT
FOR BIU
DONE FLAG

DELAY TO LET BIU DONE
SIGNAL GO AWAY

START MESSAGE
TRANSMISSIOQ

RETURN

Figure 17, DBDRYV Flowchart
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] / MESSAGE QUEUE INSERT ROUTINE

{ / ENTER WITH ADDRESS OF MFT IN IC :
MQINSE STM»21,»MQUE $FUT MAUE EROUNDRY IN I21 i
DCIs21r-1 # INCREMENT MQUE EBOUNIDRY
RIR2y0 #FUT MESS FARM TAELE AIDR IN L2
| WR2I+21»MQUE #NOW FUT IT IN MQUE
RIRM» 21y MQUE i AND SAVE EOUNDRY
NOF
RTN

‘ MQINSE ’
|

-
.
1 MOFOINTER «—
’ MQPOINTER +1
1
o ‘;‘v
+ E
i
i & MQUE (MQUE POINTER) «—
4 3 MPT ADL( RESS
¥
1
i

’ ‘ RETURN >
; 4

i ?

Figure 18. Message Queue Insert Routine and Flowchart (MQINSE)
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MQREMO

MQRLOO

MQRLOW
MQREX1

e ——

MQREX
MQREX2

MESSAGE QUEUE REMOVE ROUTINE
EXIT WITH ADDRESS OF MFT IN I23

STM+»24yMQUE
JIFIZy24yMQREX2
RIR2+24
LItI»24,MQUE
WR1y1,1IT
STMy239 IT
ICIy2491
RIRMyY 24y MQUE
JIFIZy24yMQREX
DCI,31+2
WR2I,31+0
WR1L:» 3191
LD1I»239MFRI
LD21I,24sMQUE
STL2923
LD21»23»MFRI
JIFFS»L1<L2yMQRLOW
WR2+190
RIR2y24
WR2I93140
INDy 24, MQRLOO
LD1I,31r1

—LD21v3170 - - - - -

STL2,24
LD2I+24/,MQUE
STL2»23
WR1I+24,MQUE
DCI»31y-2
NOP

RTN

ST»23+0

NOF

RTN

GET FOINTER TO END OF MQUE

# IF MQUE EMFTY EXIT

$COFY FOINTER TO L2

#+GET ADDRESS FROM END OF MQUE

#AND TRANSFER IT TO

# INDEX REG 23

tDECRIMENT FOINTER

$STORE' FOINTER INDICATING THAT ONE ENTRY
#IF ONLY ONE ENTRY» THIS MUST BE IT.
fOTHERWISE,» MAKE ROOM ON STACK

#SAVE FUINTER IN TEMFO

#SAVE ADDRESS IN TEMF1

GET MESS FRIORITY

+GET NEXT ADDRESS

#FUT ADDRESS IN INDEX REG 23

$GET FRIORITY

$COMFARE FRIORITIES LOOKING FOR HIGHEST
$FPRIORITY(I24) IS HIGHER MOVE L2 TO L1
#SAVE FOINTER TO HIGHEST FRIORITY

#IN TEMFO

$DECRIMENT FOINTERELOOF TILL END OF MQUE
yGET ADDRESS IN TEMF1. WAS AT END OF MQUE

$GET POINTER-IN TEMFO TO-HIGHEST-PRIOR-

FUT FOINTER IN INDEX REG 24

#+GET ADDRESS TO EE REMOVED

#FUT ADDRESS IN INDEX REG 23

#+FPUT SAVED ADDRESS IN SLOT JUST VACATED
#CLEAR STACK

#+IF MQUE WAS EMPTY FUT O IN I23

$RETURN

Figure 19. Message Queue Remove Routine (MQRE MO)
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! / DATA BUS COMFLETE INTERRUFT ROUTINE
' NOF '
} DECOMF GSEy » RSAVE SAVE CONTENTS OF LATCHES
LIy1yTF104 yGET TEST FOINT COUNTER
AD1,1,K1 © 1 INCREMENT COUNT
WR1ysTF104 fWRITE EBACK IN MEMORY
LD2I 23y MSTAT 1SET STATUS OF ACTIVE MESSAGE
AND2T»30yHZFFF #TO SHOW MESSAGE COMFLETE
WR2I,23sMSTAT #THEN LOOK FOR COMFLETION TASK
[AT1,0 'LOAD 0 FOR COMFARISON
) JIFFSyL1=L2yDBCNTA #IF NONE JUMF
. GSEy s TASKQU #IF YES QUEUE THE TASK
i DECNTA GSE» » MQREMO #ANY MESSAGES IN QUEUE
: - JIFIZy23 s DRCMTY # IF MQUE WAS EMFTY DO NOT CALL DRIVER
NOF
GSE» s DEDRV #+CALL DRIVER
i i DERCMTY NOF
i ; ' GSE» »RREST +RESTOR LATCHES
i GSEy »RSTINT #RESET INTERRUFT
JIFFSyASDISFAT #IF ANY HIGHER TASK THEN DO IT
RTN
“ ‘L Figure 21. Data Bus Complete Interrupt Routine (DBCOMP)
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p 1
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(DISPAT) or to just return to the interrupted prograim. The flowchart for
DBCOMP is shown in Figure 22,

DBERR. The data bus error routine shown in Figure 23 is an interrupt
service routine. The interrupt occurs when the bus master detects that an
error has occurred in data being transmitted on the bus, DBERR transfers
data from the active message parameter table to an empty message param-
eter table, The source and destination addresses and the word count are
adjusted to account for the number of words already sent, and the data bus
driver (DBDRYV) is called to transmit the remainder of the message.
Whether the word in which the error occurred is retransmitted is
determined by the sign bit of the word count. If the sign bit is one, the
word in which the error occurred is retransmitted. The flowchart for
DBERR is shown in Figure 24,

MQUE. The message queue shown in Figure 25 is a data structure which is
an unordered list of message parameter table addresses, The pointer con-

tains the number of entries in the queue and therefore points to the last
entry in the queue.

Message Parameter Table., The message parameter tables are
tables (one for each message as shown in Figure 26) describing the block of
data to be transmitted on the bus, Each one describes the source, destina-

tion, size, and priority of a message, and also indicates which task is to be
executed when the message has been transmitted.

Interrupt Bus Supervisor

The purpose of the interrupt bus supervisor shown in Figure 27 is to
supervise the transmission and reception of interrupt messages on the inter-
rupt bus. The interrupt bus supervisor includes the interrupt bus interrupt
service routine (IBUSIN) shown in Figure 28,

To send an interrupt message from the DP to an external device,the
interrupt bus supervisor (IBUSSU) is called with the interrupt message in
Latch 2, 1BUSSU will send the message on the interrupt bus immediately if
the bus is not busy, If the bus is busy, IBUSSU will wait long enough for the

bus to transmit one message and then try again. The flowchart for IBUSSU
is shown in Figure 29.

Interrupt Bus Service Routine. The interrupt bus service routine (IBUSIN)
shown in Figure 28 is executed each time an interrupt message is received
by the DP. IBUSIN gets the interrupt from the bus interface unit and con-
verts the message into a task ID, It then calls the task queueing routine
which queues up the appropriate task, IBUSIN then checks the HIGH
PRIORITY TASK WAITING flag,and .if it is set, jumps to the dispatcher
which will execute the task just queued up. If the flag is not set, IBUSIN
returns to the task that was interrupted. The flowchart for IBUSIN is shown
in Figure 30,
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O

i SEND
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i
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INTERRUPT
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l-figure 22. DBCOMP Flowchart
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DEERR

DEBERX

NOF
GSE s yRSAVE
STy 24y DRECNT
GSEs o INCHM
STr»24/yMFTE
LTI 23y MOSTID
WR1I»24yMOSTIN
LD1XI»23yMSRCID
WR1I+,24yMSRCID
LI'1I,23sMFPRI
WR1I»24yMFRI
LO1TI,23yMSTAT
WR1I,24yMSTAT
LDy 2y DERCNT
ALy 2 M1
LOIT»23sMDUCNT
JIFFSsL1<0y DBRERX
ALy 24K1
SUBRI »24yMDUWCNT
LD1I»23,MDSTAD
ADDTI 24, MISTAD
LI1I»23sMSRCAL
ALDTI » 24y MSRCAD
ST»23/yMFTE
GSE» » DRDIRV
GSE» yRREST
RTNINT

LD11,24,50
A1 s1,K1
WR11I+2490
RTN

"~ $DATA BUS ERROR ROUTINE

#SAVE LATCHES

#COUNT DATA ERUS ERRORS

?» INCREMENT COUNTER

+GET ADDERSS OF ERROR MFT
? TRANSFER

yDESTINATION 1D

SOURCE ID
iFRIORITY

FSTATUS

tGET NUMBER OF WORDS ALREADY SENT

tADD -1 BECAUSE LAST WORD SENT WAS BAD
iNUMRER OF WORDS TO EE SENT

#IF SIGN BRIT IS ZERO

sTHEN ADD 1 TO THE WORDS SENT

SUR NO SENT FROM NO TO BE SENT» STORE

SGET DEST ADDRESS

+ADD NO SENT AND STORE

#GET SOURCE ADDRESS

#ADD NO SENT AND STORE

iGET ADDRESS OF ERROR MFT
fAND CALL DATA EUS SUFERVISOR
+RESTORE LATCHES

+END DATA BUS ERROR ROUTINE

#GET WORD FROM MEM
$ADD ONE
$FPUT WORD EACK IN MEM

Figure 23. Data Bus Error Routine (DBERR)
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TO ERROR MPT
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MOVE
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v
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v
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v
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Figure 24, DBERR Flowchart

MQUE POINTER TO LAST ENTRY IN MQUE @

FIRST ENTRY IN MQUE

EACH ENTRY IS THE ADDRESS
OF A MESSAGE PARAMETER TABLE

LAST ENTRY IN MQUE ‘—-—J

UNUSED SPACE

END OF MQUE SPACE

Figure 25, Message Queue Structure

MDSTID DESTINATION ID — OPCODE
MSRCID SOURCE ID — OPCODE
MPSTAD DESTINATION ADDRESS
MSRCAD | SOURCE ADDRESS
MDWCNT [ « | DATA WORD COUNT
MPRI MESSAGE PRIORITY
MSTAT #]COMPLETION TASK ID

*MSB CONTROLS ERROR
RECOVERY ROUTINE, IF
BIT IS SET, RETRANSMIT
WORD THAT WAS IN
ERROR, IF BIT NOT SET
IGNORE BAD WORD AND
JUST RETRANSMIT REST
OF MESSAGE.

#STATUS BIT —~ INDICATES
THAT MESSAGE IS NOT
COMPLETE YET. CAN
ONLY BE USED WHEN
MPT IS IN READ/WRITE
MEMORY,

Figure 26. Message Parameter Table
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RUSSU

IRUSUWA

TRUSNF

/
/
IBUSIN

IBUSID

IBURTN

INTERRUFT RUS SUFERVISOR
ENTER WITH INTERRUFT ID IN L2

NOF

LDy1,TF106 +GET TEST FOINT COUNTER
AD1+1,K1 # INCREMENT COUNT
WR1,»TF106 JWRITE BACK IN MEMORY
JIFFS» 99 IBUSNF #1S BRUFFER FULL

DAT1,-32 yYES WAIT

AD1y1sK1 DELAY

JIFFSyL 10y IBUSWA #LOOF

JIFFSy» 9y IRUSNF IS RUFFER FULL

NOF sYES SOMETHING IS WRONG
NOF

RTN

WR2y2y IBUSOU $BUFFER NOT FULL. OQUTFUT INTERRUFT 1D
RTN

Figure 27. Interrupt Bus Supervisor (IBUSSU)

INTERRUPT BUS INTERRUFT ROUTINE

LDy 3,K15 IMASK INTERRUFTS

JIFFS»31y IBURTN #IF FLAG 31 RETURN WITH INTERRUFTS MASKED
GSBy yRSAVE #$SAVE LATCHES

LDy1,TP107 $GET TEST FOINT COUNTER

AD1y1,K1 # INCREMENT COUNT

WR1,»TP107 $WRITE BACK IN MEMORY

LDs2y INTID #GET INTERRUFT ID FROUM EBIU BUFFER
AND21,30y IDMSK iMASK OFF GARBAGE ERITS

WR2:0 »0 $DISPLAY 1D

GSBr yRSTINT #RESET INTERRUPT

GSBr» TASKQU $CALL TASK QUEUER

GSBy RREST $RESTOR LATCHES

NOFP

JIFFSy45»DISFAT #IF ANY HIGHER TASK THEN DO IT
RTN

RTNINT $RESET INTERRUFT» RETURN

Figure 28, Interrupt Bus Interrupt Routine IBUSIN)
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1BUSSU

BUFFER
FULL
¥

WAIT
-1 25 uSEC

BUFFER
FULL
T

‘ YES
PUT

INTERRUPT
1D IN BUFFER

RETURN

Figure 29. IBUSSU Flowchart
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IBUSIN

MASK INTERRUPTS
SAVE LATCHES
& CARRY

v

GET INTERRUPT
MESSAGE FROM BIU
BUFFER

EXTRACT ID

v

RESET INTERRUPT

v

QUEUE UP THE TASK
(THIS UNMASKS
THE INTERRUPTS)

v

RESTORE LATCHES
& CARRY

HIGH
PRIORITY
TASKE WAITING
?

YES

DISPAT

RETURN

IBUSIN Flowchart

Figure 30,




Clock Supervisor

The purpose of the clock supervisor is to process the 400 Hz clock
interrupts and count the 400 Hz down to a lower iteration rate needed by
tasks in the clock table.

The clock supervisor includes the clock interrupt service routine
(CLKINT) shown in Figure 31, a routine to place tasks in the clock table
(CLKTAB) as shown in Figure 32, and a routine to remove tasks from the
clock table (CLKREM) as shown in Figure 33, The clock table contains task
ID's, the period of execution of each task, and a counter for each task,
CLKTAB is called with a task ID in latch 1 and the iteration period in units
of 2.5 ms in latch 2, CLKTAB places the task ID and its period in the clock
table and sets the counter, The flowchart for CLKTAB is shown in Fig-
ure 32, CLKINT is executed each time the 400 Hz clock signal is received.
For each entry in the table the counter is decremented by one. If the
counter has reached zero, it is reset to the period and the task is queued up
by calling TASKQU. The flowchart for CLKINT is shown in Figure 35,
CLKREM is called with a task ID in latch 2. It searches the clock table and
removes all occurrences of the task ID in the table, The flowchart for
CLKREM is shown in Figure 34,

Test Interrupt

The purpose of the test interrupt service routine shown in Figure 36
is to execute a test task each time the test interrupt button is pushed.

The test interrupt routine requires that the test tasks be numbered
sequentially and has a counter that keeps track of how many of the tests
have been executed so far, Each time the test interrupt button is pushed,
TSTINT increments its counter and queues up the next task in the sequence
by calling TASKQU, It then jumps to DISPAT which will execute the task,
The flowchart for TESINT is shown in Figure 37,

Interrupt Priority Level

Latch 3 is the interrupt priority mask register. Only interrupts that
have a priority greater than the contents of latch 3 can interrupt the DP.
The contents of latch 3 can be temporarily changed without losing the original
contents through the use of PRICHG and PRIRES shown in Figure 38,
PRICHG saves the old contents of latch 3 and sets a new level. FPRIRES
restores the old contents. The memory word INTPRI normally contains the
same value as latch 3.

RSTINT, also shown in Figure 38, is used by interrupt routines to

clear an interrupt request that is being processed without returning to the
interrupted program yet.
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Linkqge Tables
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The executive contains linkage tables to all the executive subroutines

and interrupt routines that could be entered from outside the executive (see

! /
/
CLKINT

H L=

CLKLF

3

i1

] CLKOK
; CLKMTY
i

CLKNT

CLKRTN

Figure 39).

This allows changes to be made in the executive which move rou-
tines around without having to modify any external routines that call them,

CLOCK INTERRUFY ROUTINE

LDy3yK15
JIFFSy31yCLKRTN
GSEy yRSAVE
LDy1,TF108
AD1y1yK1
WR1,»TFP108
NCI»29»1
DAT1+11
WR1I+290
LNy 3y INTPRI
STM» 26y CNUM
JIFIZy269yCLRKMTY
LD1I+y269»CCOUNT
SUE1s19,K1
WR1Iy26yCCOUNT
DAT2,0
JIFFSeL1>L29CLKOK
LD11I,26CMAX
WR1I»26yCCOUNT
LD2Iy26¢CID
GSBy» TASKQU

WRF 45,1
INDy26yCLKLF
STM»26+CTIC
IND»26 9 CLKNT
STM»26yCRATE
LD»1»TIME
Allls1,K1
WR1»1,TIME
RIRM»26+CT1IC
GSEs rRREST

GSE» sRSTINT
DCI»29v-1
JIFFS»45,DISPAT
RTN

RTNINT

> 9> .

1 MASK INTERRUFTS

»IF FLAG 31 THEN RETURN

$SAVE L1,L2

GET TEST FOINT COUNTER
INCREMENT COUNT

WRITE BACK IN MEMORY

#FPUSH FRIORITY DOWN ON STACK
yMARKE NEW CURRENT FRIORITY

#IN CASE THIS ROUTINE GETS INTERRUFPTED
*NOW UNMASK INTERRUFTS

*+SET UF LOOF FOR CLOCKS

# CHECK FOR 0

$GET COUNTER

# COUNT

#STORE NEW COUNT

# COMFARE COUNT TO ©

# IF GREATER CLOCK IS OK JUMF
yALARM HAS GONE OFF RESET CLOCK
PWITH MAXIMUM COUNT

$FPUT ID IN L2

$CALL TASK QUEUER

#MAKE SURE WE WILL GO TO DISFAT
#LOOF UNTIL ALL CLOCKS ARE CHECKED
$GET ELAFSED TIME FRECOUNTER
#COUNT AND CHECK FOR O »IF NOT O THEN
#=0 RESET COUNTER

#AND GET ELAFSED TIMER

fUFDATE TIME

$SAVE NEW TIME

$SAVE FRECOUNTER

fL1sL2

$RESET INTERRUPT

$FOF PRIORITY STACK

$IF ANY HIGHER TASK THEN DO IT

IRESET INTERRUFTs» RETURN

Figure 31. Clock Interrupt Routine (CLKINT)
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/ MAKE AN ENTRY IN THE CLOCK TARLE

! / ENTER WITH ID IN L1,y COUNT IN L2
3 CLKTAB STM» O »CNUM $GET NUMERER OF ENTRIES
! 1 iCIv0Or-1 # INCREMENT NUMEER OF ENTRIES
! WwR1I,0,CID $STORE ID IN TAELE
WR2Iy0yCMAX $STORE MAX COUNT IN TAERLE
{ RIRM» Oy CNUM #+STORE IN CNUM
RTN
s
i STORE ID IN
1 TABLE, STORE
% MAX COUNT (THE

DIVISOR OF THE

BASIC 400 Hz

CLOCK) IN THE

TABLE, SET

COUNTER TO

A MAX COUNT.

i = INCREMENT THE
& NUMBER OF

b | ; ENTRIES BY 1

RETURN

Figure 32. Clock Table — Entry Routine and Flowchart (CLK TAB)

4 / REMOVE AN ENTRY FROM THE CLOCK TAELE
; / ENTER WITH ID OF TASK TO BE REMOVED IN L1
| / USES L1,L2,10+11
| } CLKREM  NOF
] 1 §T»0yCNUM JGET NUMBER OF CLOCKS
, ] JIFI1Z+0yCLKREX $1IF EMFTY, EXIT
.i i CLKRLP  LDZI»0,CID SGET ID FROM TARLE
it JIFFSyL1=L2,CLKRMV $COMFARE, IF EQUAL REMOVE FROM TABLE
’ “JT» »CLKROK JOTHERWISE IT‘S OK
CLKRMY -~ STMs1sCNUM $TO REMOVES GET ADDRESS OF LAST ENTRY
< LD2I,1,CID " $GET LAST ID
g WR21+0+CID $MOVE TO EMPTY SFACE
‘ LD211yCHAX $GET MAX COUNT
WR2I 10 s CMAX $MOVE TO EMFTY SPACE
P LD21+1»CCOUNT $GET COUNTER
’ WR210»CCOUNT PMOVE TO EMFTY SFACE
, DCIsls1 JDECRIMENT NUMBER OF CLOCKS
A RIRM?1»CNUM SAND STORE
"~ CLKROK  IND»O+CLKRLF $LOOP THROUGH TABLE i

CLKREX RTN

Figure 33, Clock Table — Remove an Entry (CLKREM)
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L1 =IDTO BE
CLKREM REMOVED

|l NUMBER OF ENTRIES
IN CLOCK TABLE

TAKE LAST ENTRY IN
TABLE AND PUTIT IN
PLACE OF ENTRY (1}
NUMBER OF ENTRIES &
NUMBER OF ENTRIES -1

Il - 1

WD

RETURN

Figure 34. CLKREM Flowchart
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i
{ CLEINT
i
; PRECOUNT = PRECOUNT -1
1 MASKE INTERRUPTS
1
PRECOUNT
| -
YES
* FLAG.3T
RTN INT PRECOUNT = CRATE
TIME = TIME + 1
SAVE LATCHES & CARRY .
PUSH CUR PRI DOWN ON PRI STACK
MAKE CUR PRI = I '
| = NUMBER OF CLOCKS
RESTORE LATCHES & CARRY
4 RESET INTERRUPTS
/ : E POP PRI STACK
YES
|- | < o N
h .l b
! ' §
ﬂ i HIGH YES
y PRIORITY TASK
WAITING
f 4 COUNT (1) = COUNT (1) +1
z
; COUNT (1) NO
i 5 -0
4 b YES
‘1_ \‘.
i COUNT {1} = MAX COUNT (1} BIBeAT
] 1 SET HIGH PRIORITY TASK WAITING
£y g PUT TASK (1} IN QUEVE

Figure 35, CLKINT Flowchart
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TESINT GSEy rRSAVE

i DAT2,~-1
WR2+5+0
LDy2»TESTNO

{ AD2y2yK1
WR2,» TESTNO
AD2,2yTESTID

l GSEs» TASKQU

i GSEy sRREST

| GSBy yRSTINT

i JT» 2 DISFAT

Figure 36.

TEST INTERRUFT ROUTINE

TESINT

$SAVE REGISTERS
# BLANK 0UT
sDISFLAY

#GET TEST NUMEER
# INCREMENT
#STORE

+ADD ID NUMBER OF FIRST TEST
yQUEUE UF TEST

+RESTORE REGISTERS

fRESET INTERRUFT
G0 TO DISFATCHER

Test Interrupt Routine {(TESINT)

SAVE
LATCHES
& CARRY

¢

BLANK
DISPLAY
(177777)

b

e

TESTNO = TESTNO +1

3

QUEUE UP TASK
#TESTNO + TEST ID

ERECE e ST

v

BESTORE |
LATCHES
& CARRY

v

RESET
INTERRUPT

Figure 37,

DISPAT

TESINT Flowchart




/ TEMFORARILY CHANGE INTERRUFT FRIORITY MASK
/ ENTER WITH NEW LEVEL IN L2

/ BOTH L1 AND L2 ARE USED

FRICHG NOF

et e g

DCIy31v1 ' MAKE ROOM ON STACK
LDs1 s INTFRI #GET INTERRUFT FRIORITY LEVEL
WR1I,3150 #SAVE ON STACK

f WR293» INTPRI +SET NEW LEVEL

] RTN

/
/ RESTORE INTERRUFT FRIORITY LEVEL

/ LATCH 1 IS USED
FRIRES LI1I»31+0 +GET OLD LEVEL FROM STACK

{J WR1s39 INTFRI JRESTORE IT TO INTFRI AND MASK
# DCI»31v~1 tCLEAR STACK
i RTN

s

% RESET INTERRUFT REQUEST AND RETURN TO CALLING FROGRAM
WITHOUT RETURNING TO INTERRUFTED FROGRAM
RSTINT RTNINT $RESET INTERRUFPT REQUEST

=

Figure 38, PRICHG, PRIRES and RSTINT Routines
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/ LINK TABLE TO JUMF THROUGH WHEN CALLING EXECUTIVE
| JTe e INITI
! 4 JTr» TASKQU
. i JTr o DISPAT
4 ‘i JT»» DRSUFR
5 JTy» IRUSSU
1 3 JTees IDTAEL
‘ JT» CLKTAE
JT» o CLKREM
JT2 s FRICHG
JT» o FRIRES

R / INTERRUFT VECTORS
i *SET 3578
JT» s TESINT g
JTy » CLKINT 4
JT+ 1+ IBUSIN 3
{
]

JTy s IRUSIN
JT»» DBERR
JT» s DBCOMP
NOP

Figure 39. Linkage Tables
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SECTION III

CENTRAL INERTIAL GUIDANCE TEST FACILITY OPERATION

This section defines the digital processing system and the associated
software which is to be evaluated at the CIGTF, Holloman Air Force Base.
The elements of the digital processing system are shown in Figure 40, The
Hughes digital processor is a breadboard unit designated DP1 by the Air
Force Armament Laboratory (AFATL/DLMM), Eglin Air Force Base,
Florida. The IMU is a Hamilton Standard 3030 breadboard strapdown iner-
tial measurement unit (GFE), The interconnection of these elements is per-
formed by the weapon bus, the bus interface units (BIU's), and appropriate
interface equipment developed by the contractor.

This equipment mechanizes a strapdown inertial navigation system in
which the DP1 performs the required computational and communication func-
tions under software control. The performance of the system is to be evalu-
ated on the basis of navigation accuracy relative to the Completely Integrated
Reference Instrumentation System (CIRIS). CIRIS performs as a master
navigator and records DP system parameters for these tests,

SYSTEM DESCRIPTION

This section defines the system functions to be performed and the
allocation of these functions among the system elements. The system hard-
ware is described,and performance parameters are summarized in the sub-
sequent HARDWARE DESCRIPTION subsection. The interfacing of the
system software with the system: hardware is performed by the Executive
software described in Section II, The system software functions are con-
tained in a number of software tasks, The functions performed in each task
and the interrelationships of the tasks are presented in the SOFTWARE
DESCRIPTION subsection. The detailed software documentation is presented
in the Digital Processor Software Developinent Report, Report No. DGWT
0165-1,

Functional Description

The elements of the system configuration to be evaluated at CIGTF
are shown in Figure 40, The functions of the CIRIS are to(i1) supply refer-
ence data to the DP1 and(2) request and format DP1 data for the instrumenta-
tion system. The system-level timing of both of these data transfers is
controlled by the HP2100 computer in CIRIS. The strapdown IMU supplies
incremental velocity and rotation angle data to DP1 in a coordinate system
determined by the IMU mounting position. The timing of IMU data transfers
is controlled by DP1. The data from the altimeter (GFE) is used for
stabilization of the vertical channel of a strapdown inertial reference sys-
tem. The timing of altimeter data transfer to DP1 is controlled by DP],
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Figure 40. Digital Processing System (CIGTF) Block Diagram




, The weapon bus and BIU elements are used for all data transfers
within the system. The synchronization of the system operations is accom-
plished by interrupt messages which are transmitted on the interrupt bus
portion of the weapon bus.

Ay

All DP1 software operations are initiated either by operator action
using the control panel or by interrupts. The control panel provides means
; for the operator to start and stop DP1l, control system modes, and monitor
system operation in real time., When the START button is pressed, the state
of the DP1 is initialized in preparation for receiving reference data from the
i HP2100 interface. Only self-test software execution can be performed
after this time if the HP2100 is not connected (or simulated) to the system,.

When the HP2100 is supplying reference data, the available system
modes are set by the control panel switches for either free navigation or
alignment, The first set of reference data received after navigation is
enabled will cause the initialization of the strapdown inertial navigation soft-
ware to the state corresponding to the reference data, Data transfers from
the IMU at 100 Hz and from the altimeter at 10 Hz are also initiated under
DP1 software control in response to internal DP1 time strobe interrupts.
The appropriate strapdown navigation software routines will be performed
at the corresponding iteration rates until the RESET button on the control
panel is pressed.

2

The alignment filter software is executed once for each set of refer-
ence data received after alignment is enabled. The total number of alignment
f i filter iterations is 900 and is under software control. After this nurnber of
iterations, the system reverts to free navigation.

Instrumentation data is transferred from the DP1 to the HP2100 com-
puter when requested by the HP2100. The first 13 of the 64 data words are
a repetition of the last set of reference data received from HP2100 by the
DP1l. Whenever the DP1 is running and the HP2100 is operating, the ref-
erence data may be compared to the appropriate instrumentation data block
to confirm interface integrity, The remaining 51 instrumentation data
words allow evaluation of the strapdown inertial reference performance.

Hardware Description

Two categories of hardware elements are included in the CIGTF

Operation: Government Furnished Equipment (GFE) and Hughes equipment
developed on this contract. The GFE consists of the Hamilton Standard
! 3030 breadboard inertial measurement unit (IMU), the altimeter, and the

’ CIRIS, The Hughes-developed equipment includes a breadboard digital
- processor (DP1), a control panel for the processor, the weapon bus, equip-
4 ment to interface the GPE with the weapon bus, and the power distribution
and power supplies., The Hughes-developed equipment and the IMU are |
s i installed in bays 3 and 4 of a palletized rack, as shown in Figure 41. The ]
o Bt k ; HP2100 computer (part of CIRIS) is located in the same rack. The |

.. e | remainder of the CIRIS is installed on a different pallet. The altimeter is
2 also remotely located. The following paragraphs describe the hardware
R e elements and show their performance characteristics.
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HS-3030 Inertial Measurement Unit. The HS-3030 strapdown inertial
measurement unit was developed for aircraft and missile applications

requiring moderate inertial quality navigation performance in the range of
4 to 10 nmi/hour CEP,

The HS-3030 IMU consists of an orthogdnal triad of three pulse rebal-
anced Mini-Rig 30 strapdown rate integrating gyros, three pul'se rebalanced
Systron-Donner 484 accelerometer s, modular supporting Digital Control
E'z2ctronics (i. e., countdown, waveform generation,and input/output inter-
face circuits), and a sensor block temperature c¢ontroller and power supply.

The three HS-3030 gyro loops are scaled to provide a full-scale rate
capability of +200 degrees/second independently about each of the three
vehicle primary axes. This full-scale capability is sufficient to accommo-
clate the most severe measuring range requirements currently anticipated
for the system. In order to provide ooth high rate and precision readout
capabilities while at the same time conserving system operating power, a
dual gyro measuring rarge capability is provided for each of the three gyro

ebalance channels, Full-scale rate capability in the low rate mode is 125

Adegrees/second. Mode switching is accomplished automatically within each

servo rebalance electronics channel. Each of the three accelerometer chan-
nels is scaled for t40 g fuli-scale operation,

Inertial performance characteristics are presented in Table 1.

TABLE 1. HS-3030 INERTIAL MEASUREMENT
SYSTEM CHARACTERISTICS

GYROS: HAMILTON STANDARD MINI-RIG 30 (3)
ACCELEROMETERS% SYSTRON-DONNER 484 (3)
INPUT RATE CAPABILITY: HIGH RATE MODE +200 DEGREES/SECOND

LOW RATE MODE +25 DEGREES/SECOND

GYRO SCALE FACTOR: HIGH RATE MODE 6.6 ARC SEC/PULSE

LOW RATE MODE 0.7 ARC SEC/PULSE

INPUT ACCELERATION CAPABILITY: +40 G
ACCELEROMETER SCALE FACTOR: 0.04 FPS/PULSE
45
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CIRIS Description. The Completely Integrated Reference Instrumertation

System (CIRIS) shown in Figure 42 is capable of providing highly accurate
position, velocity and attitude reference over long flight paths fur real-time
use in testing guidance and navigation systems, The CIRIS is palletized and
normally occupies pallet station No. 1 in the C-141. This airborne automated
system is operationally independent due to integration of all its reference
measurement sources by minicomputers.

CIRIS generates the reference data by using four ineasurement
devices that are controlled and time-coordinated by a minicomputer to pro-
vide inputs to a 15-state Kalman filter, The real-time filtered reference
data which is generated in a second minicomputer is distributed to the test
data acquisition computer and recorded with the raw measurement data on
the magnetic tape. Further processing (backward filtering and smoothing)
can be done postflight as required,

The measurement hardware includes an inertial navigation system
stabilized by barometric altitude from an Air Data Computer, a Doppler
Radar, and a precision radio range/range-rate system. The inertial sys-
tem data is used in the filter as a continuous reference for data propagation
and reference for the filter error states. The error states are updated by
incorporation of barometric altitude, doppler velocities, and precision range
and range-rates to precisely surveyed ground sites, The CIRIS accuracies
are directly dependent on the measurements obtained from the range/range-
rate system which includes an airborne interrogator that is used to selec-
tively interrogate one ground-base transponder every two seconds. A set of
four transponders nearest the current aircraft location is used to provide
one recundant measurement in a time-phased triangulation scheme, The
transponders and associated omnidirectional antenna are portable and are
designed for remote operation. They are deployed in a triangular pattern
separated by approximately 150 miles in a line along the flight path. CIRIS
degradation can occur when flight paths leave areas of radio range coverage
which extends to 200 nautical miles line-of-sight, Incorporation of doppler
radar data will minimize degradation until coverage is resumed.

CIRIS data has the following specifications:

1, Position accuracy to 13 feet (1 sigma) in three axes,

2. Velocity accuracy to 0, 10 ft/sec (1 sigma) in three axes.
3. Attitude accuracy to 3 arc-minutes (1l sigma).

4, Real-time reference points every 5 seconds.

5. Postflight reference points every 2-4 seconds,

Altimeter Description. The altimeter is an HLT Industries, Inc. No.

502000-39 Indicated Altitude Pressure Transducer System. The altimeter
output is provided by a potentiometer whose resistance ratio is a function of
altitude. In the system, the potentiometer is supplied with a reference




ARH-200
DOPPLER VELOCITY
RADAR

4 Y

GENERAL -
PURPOSE
COMPUTER
HP-2100

Y | ~ 1

PRECISION
NAVIGATION FLIGHT DATA RANGING SYSTEM
COMPUTER RECORDER CRe100
LC-728 INTgRRocATog
17 I
CR~100
INERTIAL TRANSPONDER (S)
MEASUREMENT
UNIT

Figure 42, Completely Integrated Reference Instrumentation System {CIRIS)

Shri

e

LA

47




—— -

e

r R

=

voltage from the IMU interface, and the pickoff voltage relative to the
reference voltage provides a measure of altitude to the IMU interface. The
performance characteristics of the altimeter are:

Altitude Range: 0 - 80000 feet

Output Linearity: +1% of full range

Nominal Altitude Resolution: 20 feet

Repeatability Error: 160 +130 feet (altitude dependent)

Hughes Developed Equipment. A detailed description of the Hughes devel-
oped equipment is presented in Operating Manual and System Description for
Digital Processor Number 1 and Installation at Central Inertial Guidance
Test Facility, DGWT 0210-1, This section provides only a summary of the
equipment characteristics.

Digital Processor. The DPI is a breadboard implementation of a subset of
the digital processor architecture presented in Volume I of this report.

The design is an outgrowth of the PDAP design and incorporates some
instruction set modifications to facilitate execution of digital processor soft-
ware functions, The DPI instruction set is presented in the Programmers
Manual, DGWT 0170-2,

The DP1 breadboard processor consists of a number of circuit boards
each of which contains an autonomous function as shown in Figure 43, The
circuit boards are interconnected by a common bus structure allowing the
relative position of the boards in the rack to be changed with no wiring
changes, Additional boards; e.g., program memory, may also be plugged
into the bus structure.

The program memory (PM) contains the machine language instruc-
tions, Three PM cards were fabricated: one read-only-memory (ROM) card
for flight test, and two read/write (RAM) cards for laboratory tests. The
operand memory (OM) card contains the read/write memory for storing sys-
tem computational variables. A block of ROM for storage of system con-
stants were installed on the ROM PM card.

The control unit (CU) card decodes the instructions from the PM,
generates timing and control signals for the processor, and generates
addresses for both the OM and PM cards. The arithmetic unit (AU) card
performs arithmetic and logic operations on operands., The interrupt card
(INT) processes interrupts from the BIU I/O card to synchronize the proc-
essor operations with external events, The BIU I/O interfaces the proc-
essor with the weapon bus and provides both the processor clock and real
time clock interrupts (rate set under software control),

The DP1 parameters are shown in Table 2,
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TABLE 2. DPl PARAMETERS

NUMBER OF INSTRUCTIONS:

64

COMPUTATION WORD LENGTH: 16 BITS
PROCESSOR THROUGHPUT (SPECIFICATION MIX): 1.85 MOPS
PROGRAM MEMORY 4 K WORDS
PROGRAM WORD SIZE
TECHNOLOGY: ROM OR RAM — SELECTABLE IN 24 BITS
1 K WORD BLOCKS VIA SWITCHES ON
PM CARDS.
OPERAND MEMORY: RAM 2 K WORDS
ROM 512 WORDS
TOTAL ADDRESS SPACE (INCLUDING 1/0) 4 K WORDS
VECTORED PRIORITY INTERRUPTS: 15 LEVELS
SUBROUTINE STACK: 32 LEVELS

INDEX REGISTERS:
ARITHMETIC REGISTERS:

FLAGS:

2

2
64

Control Panel, The Control Panel (Figure 44) is used for both monitoring
and controlling the DP1,

Information from Program Memory, the 24-bit instruction word, is
displayed on the top octal display and is broken down into the OPF code, the
Tag Field, and the Address Field, left to right, respectively.

The 16-bit Data Bus is displayed in the next octal display and also
can be selected for decimal display by the rotary select switch,

By software control, the information on the Data Bus can be latched
into the next octal display. The programmer has this feature at his control
by inserting the instruction to output data to I/O Latch 5. The information
can be displayed in decimal through the decimal display switch,

The Data Bus can also be latched for octal and decimal display, using
the Operand Memory (OM) or Program Memory (PM) Address. By selection
of a desired address on the octal thumbwheel switch labeled OM/PM ADDR
FOR DB LATCH, then choosing either OM or PM on the toggle switch, the
contents of the Data Bus will be latched into the DB LATCH (PM/OM ADDR)
display when the OM ADDRESS or PM ADDRESS selected in the thumbwheel
switch is reached in the program. This will be a continuirg update as long
as the program is run,
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The program can be stopped by several means. The simplest is to
depress the STOP pushbutton which will halt the DP1 at its present address.
Pressing the START button will continue the program from that address. If
RESET is pressed, the program will stop and the program counter will be
set to zero where the program will continue from when restarted. Pressing
STEP will also stop the program, similar to STOP, and continual depress-
ing will continue the program from that point,one instruction at a time.

The PM ADDRESS FOR STOP octal thumbwheel switch can be used
for stopping the DP1 when the STOP toggle switch is set to enable. When the
program reaches the thumbwheel PM address, it will stop. Pressing
START, the program will continue on fromthat point,

Both the OM and PM address are displayed in octal continuously and
in addition can be selected for display as a decimal number, The PM ADDR
FOR STOF OCTAL thumbwheel can be selected for decimal display to assist
perhaps in any octal to decimal conversion calculation.

The Flag Word Group 3 switches are used under software recognition,
usually as conditions for branching.

The Test-Interrupt is used when all other interrupts (such as the
B.1,U. -1/0) are electrically disconnected from the DP1 and is purely for
test and troubleshooting. To enable any of the 15 priority interrupts, the 15
rocker DIP switches on the Test Panel Card have to be switched accordingly.
Then the Test-Interrupt pushbutton will enable the selected interrupt to the
DP1.

Weapon Bus., The weapon bus provides a communication link for the transfer
of data and control signals between the system elements. All communication
over the weapon bus is in bit serial format, Separate communication paths
are provided for data (weapon data bus) and control signals (weapon interrupt
bus). All data transfers are under the control of the DP1 software via the
master bus interface unit connected to DP1, Control signal transfers may be
initiated by any system element by sending the appropriate commands to the
slave BIU which connects it to the bus, Control signals are transferred as
an 8 bit interrupt identifier, The BIU's only provide an interface between the
weapon bus and the system elements -- all interpretation of command mes-
sages or data is performed by the respective interface equipment (IMU or
HP2100) as discussed in the next section, The performance parameters of
the weapon bus are summarized in Table 3,

HP2100 Interface. The HP2100 Interface equipment interfaces the HP2100
computer (CIRIS) with its BIU, The HP2100 supplies reference data to the
interface as a block of 13 words (16 bit data content per word) in
CAROUSEL IV format. These words are stored in a buffer memory in the
interface in preparation for transmission to the DP1 via the weapon data
bus, Two interrupt messages are sent to DP1 concerning the reference data
by the interface. A time Sync interrupt (ID = 1) notifies the DP1 that the
first word of the reference data block has been received and acts as a
marker to indicate the time at which the reference data was generated by
CIRIS., A Reference Data Ready interrupt (ID = 2) is sent to the DP1 when
all 13 words have been stored in the buffer,
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When the HP2100 desires instrumentation data from DP1, an Instru-
mentation Data Request discrete is sent to the interface which sends the cor-
responding interrupt (ID = 5) to DP1, As the instrumentation data is
received from DP1 via the weapon data bus, it is transferred in word serial
format to the HP2100 at the data bus word transfer rate, A data valid strobe
is also output to the HP2100 by the interface for each word.

TABLE 3. WEAPON BUS PARAMETERS

WEAPON DATA BUS

DATA CONTENT/WORD 16 BITS
MAXIMUM DATA BLOCK SIZE 256 WORDS
TRANSMISSION RATE CAPACITY 100K WORDS/SECOND

WEAPON INTERRUPT BUS

INTERRUPT IDENTIFIER 8 BITS
SINGLE WORD TRANSMISSION

TRANSMISSION RATE CAPACITY 120K WORDS/SECOND

IMU Interface, The IMU interface connects both the IMU and the altimeter
to the BIU, Data is requested of the IMU by the interface when it receives
either the Data Request interrupt (ID = 64) from the DP1 via the weapon
interrupt bus, Either of these interrupts will cause the IMU REQ signal to
be sent to the IMU which responds with the IMU DR signal when the first of
the six IMU parameters is ready at its output. The interface sends the Data
Ready (IMU) interrupt (ID = 8) to DP1 at the time. The DPI1 then accesses
the IMU data via the weapon data bus, The six IMU parameters are trans-
ferred from the IMU through the interface to BIU in word serial format at
the data bus transmission rate, The receipt of the Test Data Interrupt also

causes a Test discrete to be output by the interface, but the test function is
not available in the breadboard IMU,

When the Start Conversion interrupt (ID = 32) is received by the inter-
face from DPI1, the altimeter output analog signal is converted to digital for-
mat and stored in a buffer, When the digital word is stored, the interface
outputs a Conversion Complete interrupt (ID = 10) to DP1 which may then
initiate the transfer of the altimeter data via the weapon data bus,

Software Description

The DP1 software consists of 25 modules (tasks) which perform five
system functions: System Management, Navigation, Alignment, Instrumen-
tation, and Self-Test, Any discussion of these software functions must also
include the operations occurring in the system hardware elements and the
operations of the executive software which interfaces the functional software
with the hardware, The function of the system is to implement a strapdown
inertial navigator, Within this system function, the software performs the
required communication control and computational functions,
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The operating sequences in the system and the individual software

‘tasks are described herein, Detailed documentation of these software mod-

ules is presented in the Digital Processor Software Development Report,
No. DGWT 0165-1,

System Operating Sequences, All operating sequences are initiated by hard-

ware interrupts, The selection of computational processes is performed by
the appropriate System Management software module (task) under control by
the operator via the control panel switches, The system operating procedur-
is presented in DGWT 0220-1 and will not be repeated in this section, The
following paragraphs are concerned with the processing of system interrupts
and system data after the appropriate system power-on and initialization
procedure,

Reference Data Interrupt Sequences, Two system interrupts are gen-
erated by the HP2100 interface in response to reference data inputs by the
HP2100 computer, This TIME SYNC interrupt (ID = 1) (see Figure 45) is
generated and sent to DP1 when the first reference data word is received.
The executive module, IBUSIN, is called when the interrupt is received by
DP1 and queues up Task 1 (TSINT) for execution, This System Management
task enables the processing of the Reference Data Ready interrupt, sets an

REFERENCE DATA WORD
0 RECEIVED BY
2100 INTERFACE

INTERRUPT ID=1

TO DP1
IBUSIN EXFCUTIVE
y
PSINT: (TASK 1) SYSTFM VANAGEMENT
TASKQU EXECUTIVE
TSYNC: (TASK 23) ALIGNMENT

Figure 45, Time Sync Interrupt Sequence
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ALIGN flag according to the position of the control panel ALIGN switch, and
calls the TASKQU (Executive module) to queue up Task 23 (TSYNC), The
alignment module, TSYNC, transfers DPI| navigation data for use by the
alignment filter,

The Reference Data Ready interrupt (ID = 2) processing is shown in
Figure 46. The receipt of the interrupt by DP1 causes the IBUSIN module
to queue the REFRED (System Management task) for execution., REFRED
calls the DBSUPR executive module with the appropriate data bus message
parameters, DBSUPR initiates the transfer of the reference data from the
HP2100 interface to DP1 via the weapon data bus, Completion of the trans-
fer generates the XFER COMPLETE interrupt which calls the DBCOMP
executive module., DBCOMP queues the RDXFRD system management task
wliich initiates processing of the reference data. The first operation of
RDXFRD is to qucue the RINIT systern management task via a call to the
executive TASKQU module, RINIT transfers the reference data to the DP1
operand memory and performs format conversions required for compati-
bility with the DP1 computational modules, Further processing of the ref-
erence data is controlled by the RDXFRD module.

Navigation Initialization and Initiation (Figure 47). The navigation
computation state of DP1 is initialized to correspond to the first set of
reference data received after the control panel navigation switch is on, The
initialization operation is controlled by RDXFRD which queues up IMUINT
via a call to the executive TASKQU module. RDXFRD also inserts the
1100-Hz task in the clock table to be called by the executive at a 100-Hz rate.

IMU Data Formatting and Data Transfer (Figure 48). The executive
CLKINT module is called at a 400-Hz rate and, in turn, queues up the
I100-Hz task for execution at 100 Hz, I100 Hz calls the executive IBUSSU
module which sends the IMU DATA REQUEST interrupt (ID = 128) to the
IMU interface via the weapon interrupt bus, When the IMU data is formatted
and ready for transfer, the IMU interface sends the DATA READY interrupt
(ID = 8) to DP1. Receipt of this interrupt calls the IBUSIN executive module
which queues the DATRED system management task, DATRED calls the
DBSUPR executive module with the appropriate data message parameters.
DBSUPR then initiates the transfer of IMU data to the DP1 via the weapon
data bus, The completion of the data transfer generates the XFER COM-
PLETE interrupt which calls the DBCOMP executive module, DBCOMP
queues the IMUCOM system management task which checks the validity of
the IMU data and transfers it to the DP1 operand memory.,

Navigation Computations (Figure 49). The navigation computatmns
are initiated by the IMUCOM task which queues up the IMU100 task via a call
to the executive TASKQU module, The IMU100 updates the navigator state
using the IMU data at a 100-Hz rate and also performs high priority compu-
tations at a 100-Hz rate, Lower priority computations at 10-Hz and 1-Hz
rates are initiated by this module, The altimeter data sequence (see Fig-
ure 50) is performed at a 10-Hz rate, The 1-Hz computations are initiated
via a call to the executive TASKQU module which queues up the IMU1 task,




REFERENCE DATA
BLOCK RECEI1VED
BY 2100 INTERFACE

INTERRUPT ID = 2

IBUSIN:

!

REFRED: (TASK 2)

J,

DBSUPR

EXECUTIVE

SYSTEM MANAGEMENT

EXECUTIVE

45/ XFER COMPLETE

/

DBCOMP

RDXFRD (TASK 6)

RINIT: (TASK 15)

TASKQU

£
l

EXECUTIVE

SYSTEM MANAGEMENT

EXECUTIVE

SYSTEM MANAGEMENT

Figure 46. Reference Data Ready Interrupt Processing
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NAV. SWITCH
ON - RDXFRD (TASK 6) SYSTEM MANAGEMENT
i
FIRST TIME ONLY
TASKQU EXECUTIVE
\
IMUINT (TASK 14) NAVIGATION
i
y \

CONNECT I100HZ
TO 100 HZ CLOCK
INTERRUPT

-t
B e &

! % Figure 47. Navigation Initialization and Initiation
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400 HZ TIMED
INTERRUPT

{ CLKINT EXECUTIVE
a_
{ ‘L 100 HZ
| 1100 HZ: (TASK T) SYSTEM MANAGEMENT
| !
IBUSSY EXECUTIVE

INTERRUPT ID=128
TO IMU INTERFACE

L} -
( FORMAT IMU DATA

INTERRUPT ID=8

T0 DP1

| IBUSIN EXECUTIVE

1 , DATRED: (TASK 8) SYSTEM MANAGEMENT
] |

1 !

1 3 DBSUFR EXECUTIVE

XFER COMPLETE

'Hi

‘ DBCOMP EXECUTIVE

% l

- B IMUCOM: (TASK 4) SYSTEM MANAGEMENT

Figure 48, IMU Data Formatting and Transfer
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TASKQU EXECUTIVE

!
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// 1 HZ ALTIMETFR DATA
SEQUENCE

TASQU: EXECUTIVE
IvUl: (TASK 12) NAVIGATION

Figure 49. Navigation Computations
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Altimeter Data Sequence (Figure 50), The altimeter data scquence
is initiated by the IMU100 which calls the executive IBUSSU module at a
10-Hz rate. The IBUSSU sends the START CONVERSION interrupt (ID = 32)
to the IMU interface. The IMU interface converts the altimeter signal to

digital format and sends the CONVERSION COMPLETE interrupt (ID = 10)

l to DPl, This interrupt calls the executive IBUSIN module which queucs the
ALTRED module. ALTRED calls the DBSUPR module with the altimeter
message transfer parameters and DBSUPR initiates the transfer, The XFER
COMPLETE interrupt calls the executive DBCOMP module which quecues the
navigation IMU10 task,

e 2R

e i

Alignment Initialization and Computations (Figure 51), A sequencer
associated with the alignment function is controlled by the RDXFRD system
management module, The first execution of this module (see Figure 46)
after the ALIGN flag is ON (set by TSINT module) will initialize the align-
ment filter, Initialization is performed by the FINI module which is queued
via a call to the executive TASKQU module. As a part of the alignment initial-
ization, the 100-Hz alignment task (CENTSK) is connected to the clock inter-
rupt. Task 6 also queues the alignment filter computation task (DRITSK)
| ; 900 times via a call to the executive TASKQU module (CONTRL) cach time it
= is executed. When the alignment filter is operating, Task 6 also queues the
gyro bias computation module (GYRO) after each 300 iterations of the align-
ment filter.

IOV

IMU Data Accumulation {(Figure 52). The IMU data accumulation
module (COMPT) is connected to the clock interrupt as part of the DPI ini-
i i tialization function,

Instrumentation Data Transfer Sequence (Figure 53), The instrumen-
tation data transfer sequence is initiated by the HP2100 interface when it
receives the instrumentation request from the 2100. The interface sends the
INSTRUMENTATION DATA REQUEST interrupt (ID = 5) to DP1, This inter-

s

! rupt calls the IBUSIN executive module which queues the INSREQ task, This
\; 1 task formats the instrumentation data in preparation for transfer and then
1 calls the DBSUPR executive module with the data message parameters, The
| | DBSUPR initiates the data transfer. No software task is queued by the
i ' DBCOMP module when it is called by the XFER COMPLETE interrupt.

Self-Test (Figure 54). Three self-test software tasks are sequenti-
ally called by pressing the control panel test interrupt as shown in the figure.
The sequencing of these tasks is performed by the executive TEST INTER-
RUPT handling routine. TESTDP and BIUTES perform tests on the DP1 and
weapon bus hardware elements, respectively, CHKSU is a sequencing mod-
ule which queues a test data generation module, SIMULT, at a simulated
100-Hz rate and controls the sequencing of the navigation and alignment
computational functions at the corresponding rates, This sequencing module
essentially replaces the normal system interrupts associated with IMU and
. reference data generation and transfers by queueing the appropriate modules |
‘ under software control.
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1MU100; (TASK 9)

\ 10 KZ

IBUSSU

NAVIGATION

EXECUTIVE

INTERRUPT ID=32
TO IMU INTERFACE

MU INTERFACE

EXECUTIVE

CONVERT

ALTIMETER

DATA
INTERRUPT ID=10
TO DP1

IBUSIN

!

ALTRED: (TASK 10)

¥

SYSTEM MANAGEMENT

DBSUPR EXECUTIVE
XFER COMPLETE

DBCOMP EXECUTIVE

IMU10: (TASK 11) NAVIGATION

Figure 50, Altimeter Data Sequence
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ALIGN FLAG
ON ~ ~ 1 RDXFRD: (TASK 6) SYSTEM MANAGEMENT

FIRST TIME ONLY

TASKQU EXECUTIVE

{

FINI- (TASK 16) ALIGNMENT

!

CONNECT CENTSK
TO 100 HZ CLOCK
INTERRUPT

900 TIMES

Y

TASKQU : EXECUTIVE

Y

DRITSK: (TASK 17) ALIGNMENT

Y

TASKQU:

4
CONTRL: (TASK 21)

|

TASKQU : EXECUTIVE

GYRO: (TASK 18) ALIGNMENT

Figure 51, Alignment Initialization and Computation
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DP1 INITIALIZATION

y

CONNECT COMPT

(TASK 13) TO 100 HZ
CLOCK INTERRUPT

Figure 52, IMU Data Accumulation

RECEIVED BY 2100
INTERFACE

INSTRUMENTATION REQUEST

INTERRUPT ID=5
TO DF1

IBUSIN

]

INSREQ: (TASK 5)

|

DBSUPR

XFER COMPLETE

DBCOMP

EXECUTIVE

INSTRUMENTATION

EXECUTIVE

EXECUTIVE

Figure 53, Instrumentation Data Transfer Sequence
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TESINT EXECUTIVE
FIRST SECOND
TIME TIME
TASKQU FXEC TASKQU
TESTDP: (TASK 32) SELF CHKSU: (TASK 34)
TEST
TASKQU EXECUTIVE
= SELF
BIUTES: (TASK 33) PEST

Figure 54, Self Test
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Software Module Description, This subsection contains a brief description
i of cach of the software modules applicable to the DP}l system. The execu-
tive software is discussed in subsection 2.2 and is not repeated in this sub-
| section. A list of the software modules by task ID is shown in Table 4, In
1 the following paragraphs, the software module descriptions are organized
by the system functions.

System Management, Task | (TSINT) is queued up when the time sync
interrupt is received from the HP2100, This occurs at a 1-Hz rate, This
task stores the 100-Hz counter in the instrumentation buffer and sets a flag
(REF-DATA-XFER) to indicate that a block of reference data is being received
from the 2100, It also examines the ALIGN switch on the control panel and
sets the ALIGN flag if the switch is up, This task queues up Task 23,

Task 2 (REFRED) is queued up when the reference data ready inter-
rupt is received from the HP2100, This occurs at a 1-Hz rate approximately
50 ms after the time sync interrupt is received, If the REF-DATA-XFER
flag is true this task starts the transfer of the reference data from the 2100
interface unit to the DP via the data bus, The completion of this transfer
will queue up Task 6,

Task 4 (IMUCOM) is queued up by the completion of the IMU data
transfer to DP1., This task checks the validity of the IMU data just received
by comparison with maximum expected data magnitudes, Valid data is trans-
ferred to the appropriate operand memory locations,and invalid data is dis-

3 carded (previous valid data is used), This task then queues Task 9 (IMU100),

5 Task 6 (RDXFRD) is queued up when the reference data from the
HP2100 has heen transferred to the DP. This transfer is started by Task 2
and occurs at a 1-Hz rate. This task queues Task 15 to transfer the ref-
erence data to the appropriate operand memory locations. When the navi-
gate switch on the control panel is raised,this task starts the navigation
routines running by queueing up Task 14 once and connecting Task 7 to the
clock for execution at a 100-Hz rate, When the align switch on the control
panel is raised, this task provides the sequencing for the alignment tasks by
queueing up Task 16 once, connecting Task 22 to the clock for execution at
a 100-Hz rate, queueing up Task 17, 900 times at a 1-Hz rate, and queueing
up Task 18, three times at 5-minute intervals,

sl B

L e

o T Task 7 (I100 Hz) is queued up by the clock at a 100-Hz rate, It
requests data from the IMU, When the IMU responds, Task 8 will be queued

1 B up,

e o

Task 8 (DATRED) is quetied up when the IMU data ready interrupt is
N received from the IMU interface at a 100-Hz rate., This task starts the

K transfer of data from the IMU to the DP via the data bus, When this transfer
; is complete, Task 4 will be queued up,

iy Task 10 (ALTRED) is queued up when the altimeter data ready inter-
i rupt is received from the IMU interface at a 10-Hz rate. This task starts




! TABLE 4, SOFTWARE MODULES

¢
; D TASK PRIORITY NAME
1 PROCESS TIME SYNC FROM 2100 8 TSINT
t 2 TRANSFER REFERENCE DATA TO DP 5 REFRED
3
a VALIDATE IMU DATA 8 IMUCOM
! 5 PROCESS INSTRUMENTATION DATA REQUEST 3 INSREQ
] 6 PROCESS REFERENCE DATA 5 RDXFRD
{ 7 REQUEST IMU SENSOR DATA AT 100 HZ 8 1100HZ
8 TRANSFER IMU DATA TO DP 8 DATRED
9 PROCESS IMU DATA 8 IMU100
10 TRANSFER ALTIMETER DATA TO DP 6 ALTRED
1" PROCESS ALTIMETER DATA 6 IMU10
12 UPDATE SLOW NAV PARAMETERS AT 1 H2 8 MU1
13 ACCUMULATE IMU DATA 8 comeT
14 INITIALIZE NAVIGATION PARAMETERS 6 IMUINT
15 SCALE REFERENCE DATA 6 RINIT
16 INITIALIZE ALIGNMENT PARAMETERS 6 FINI
. ‘ g 17 PERFORM ALIGNMENT ALGORITHM 6 DRITSK
"’ 18 PERFORM GYRO BIAS CALCULATIONS 6 GYRO
19
20
21 UPDATE ALIGNMENT CONTROL FEEDBACK 8 CONTRL
22 PERFORM ALIGNMENT FILTER PROCESSING AT 100 HZ 8 CENTSK
1. 23 STORE ALIGNMENT AND NAV. PARAMETERS AT TIME STROBE 8 TSYNC
24 {NITIALIZE SELF TEST PARAMETERS 6 SIMINT
25 PERFORM 100 HZ SELF TEST CALCULATIONS 8 SIMULT
26
27
af ] 28 .
29
, 30
} ' 3
i 32 TEST DP FUNCTIONAL UNITS 5 TESTDP
33 TEST BIU'S 5 BIUTES
34 TEST NAVIGATION AND ALIGNMENT EQUATIONS 5 CHKSU
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the transfer at altimeter data {from the IMU interface to the DP via the data
bus. When this transfer is complete, Task 11 will be queued up.

Task 15 (RINIT) is queued by Task 6 to transfer the reference data to
the appropriate instrumentation data operand memory locations., This task
also formats, rescales, and stores the reference data in operand memory
for use by the navigation and alignment software modules,

Navigation, Task 9 (IMU100) is queued up by Task 4 at 100 Hz to
process the IMU data. This task performs the IMU data compensation cal-
culations, the quaternion (attitude) update calculations, and integrates the
accelerometer data in the navigation frame to determine velocity and posi-
tion at a 100-Hz rate, Navigation frame rotations are performed at a 10-Hz
rate. The altimeter data sequence is initiated at a 10-Hz rate, This task
also queues Task 12 at a 1-Hz rate,

Task 11 (IMU10) is queued when the altimeter data has been trans-
ferred to DP1 (10-Hz rate), This task performs gravity and coriolis com-
pensation computations and uses the altimeter data for vertical channel damp-
ing. Latitude and longitude parameters are updated by this task,

Task 12 (IMU!) is queued by Task 9 at a 1-Hz rate, This task com-
putes slowly varying navigation parameters which are used in Tasks 9 and 11,

Task 14 (IMUINT) is queued once by Task 6, This task initializes the
attitude, velocity, and position navigation parameters to correspond to the
reference data, Navigation software parameters, both computational and
control, are also initialized to the appropriate state by this task,

Alignment, Task 16 (FINI) is queued once by Task 6 at the first
occurrence of the REFERENCE DATA READY interrupt after the align flag
is set, (This flag is raised by the system management software when one of
the DP1 front panel flag switches, Switch No, 1, is set, Thereafter, the
position of the switch has no effect.) FINI initializes the Kalman filter soft-
ware parameters. FINI also serves one additional function: prefilter level-
ing, which is designed to reduce the initial tilt errors,

Task 22 (CENTSK) is queued by the clock service routine and contains
all of the 100-Hz filter calculations. The sole purpose of CENTSK is to
accumulate north, west, and vertical velocity increments with the scaling
FS = 128 ft/sec. These, after approximately one second's accumulation,
make up the rapidly-varying transition matrix elements, Because this mod-
ule uses a vector variable which is updated at 100 Hz (by a navigation rou-
tine with priority 8), CENTSK must have priority 8, i

Task 23 (TSYNC) is initiated by Task 1 as a response to the TIME %
SYNC interrupt, which signals the start of the reference data transfer, This |
is the earliest available time marker for the reference velocity and position
values, and in order to make a meaningful comparison, the corresponding
DP navigation parameters should be sampled at this time and put into safe
storage. Since DP navigation software calls for latitude/longitude updates at
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only a 10-Hz rate, a call to the update module LTNG is made at this time
to ensurec that the most current values are used. (No correction is made for
the staleness of the reference data, that is, for the briefl passage of time
between the generation of the data and the start of the transfer to the DP,)
TSYNC also performs two other functions: (1) transfers the accumulated
velocity increments intothe correct transition matrix elements, resectting the
accumulators to zero, and(2) calculates the elapsed time since the last ref-
erence data transfer, so that a rather large variation in the nominal 1-Hz
transfer rate can be accommodated.

Task 17 (DRITSK) is queued by Task 6 when the reference data sect
has been entirely transferred (all information needed in the Kalman filter
update has been assembled), In order of occurrence, DRITSK does the fol-
lowing things: (1) Updates the slowly varying transition matrix elements,
bypassing some of these when velocity-match only is selected. (Note: all
of the rapidly varying elements are updated in the module TSYNC., Also, we
actually use the matrix ''D," that is, the transition matrix minus the 7 by 7
identity matrix, ) (2) Updates the covariance matrix P to reflect the passage
of time AT since the last measurement., (3) Symmetrizes the P matrix and
adds 1 L.SB process noise, Q, to the diagonal elements. (4) Tests for scaling
headroom in the matrix P and the measurement noise covariance matrix R,
If these can be shifted up, this is done, recording the cumulative shift count
in the variable SCLCNT, (5) Calculates position and velocity errors, scaling
them up to form single precision measurement vector elements. (6) Perforins
the measurement updates. (7) Rescales the single-precision state estimates
to farm the appropriate corrections to the navigation parameters. (8) Places
CONTRL in the task queue to perform the corrections at the necessary higher
priority. (9) Resets the state estimates to zero and returns control to the
executive,

Task 18 (GYRO) is queued a total of three times: at the 300th, the
600th, and 900" occurrence of the REFERENCE DATA READY inter rupt
after the ALIGN mode is entered (that is, after 5 minutes, 10 minutes, and
15 minutes have elapsed) by Task 6. In each case, the cumulative misalign-
ment estimates are reset to zero, the Kalman filter is reinitialized, and
DRITSK is called as a subroutine. On the second and the third entries, how-
ever, GYRO uses the accumulated misalignment estimates to estimate gyro
biases and compensate for them, The general idea behind this calculation is
that the misalignment which builds up during these periods is due to gyro
drift; i, e, ,

ﬂi =6, + (5 minutes)

where
1% .2, 35

The first 5-minute period is disqualified as a large initial misalignment
may be present, GYRO also has the relatively low priority of 6.

Task 21 (CONTRL) is queued by Task 17 at high priority (level 8) to
correct the navigation state, The first correction is to the navigation




. quaternion q, in whose four elements all attitude information resides, KEssen-
tially what is done is to multiply by & correction quaternion, which is close
to the identify (0, 0, 0, 1); actually, it is equal to (61, 62, 63, | = 1/2612 s
1/2 622 - 1/2632 ) to second order in the misalignment angles §;, 62. 63.
More precisely, we use the fact that the correction quaternion has the form
I1+4; first A'q is calculated, and the result added (with overflow safeguards)
to q to form the corrected attitude quaternion. The next part of the control
task is to correct the latitude, longitude, north velocity, and west velocity
variables by subtracting from these (double-precision) the best estimates of
their errors. '

Instrumentation. Task 5 (INSREQ) is queued up when an instrumen-
tation data request is received from the HP2100, This occurs at a 1-Hz rate.
This task calculates the current position and velocity errors and transfers
them along with the rest of the instrumentation data into the output buffer.
Then it starts the transfer of the instrumentation data from the output buffer
to the HP2100 via the data bus, No tasks are queued up at the completion of
this transfer.

Task 13 (COMPT) is queued at 100 Hz by the executive clock service
routine., When navigation is enabled, this task accumulates raw and compen-
sated IMU data for instrumentation, This task also provides gyro bias com-
pensation updating by matching compensated gyro rates to earth rate if enabled
by the control panel switches,

§ Self-Test. Task 24 (SIMINT) is a self-test initialization module, pro-
3 viding initial values for position, velocity, and other kinematic parameters

for the 100 Hz self-test driving function SIMULT, SIMINT is iterated
once only at the start of the self-test processing. This task is queued by

Task 34,
%
g; & Task 25 (SIMULT) is the self-test driver, whose purpose is to com-
_ 1 pute simulated (100 Hz) IMU data and simulated (1 Hz) reference data,
% i Since the self-test processing takes place much faster than real time,

SIMULT is iterated at a rate much greater than 100 Hz (as are the 100-Hz
navigation and alignment tasks also), SIMULT simulates (unrealistic)
high-dynamic flight conditions so that the navigation and alignment modules
are extensively exercised, Since only a checksum test is performed, the
fact that these conditions are unrealistic is of no importance., This task

is queued by Task 34,

el i o S

Task 32 (TESTDP) is queued up the first time the test interrupt
button on the control panel is pushed after a reset. It determines that the
memory, arithmetic, and control boards are present in the DP,

Task 33 (BEIUTES) is queued up the second time the test interrupt
button on the control panel is pushed after a reset, It tests the BIU's to
insure that they respond to command words,

Task 34 is queued up the third time the test interrupt button on the
control panel is pushed after a reset. It tests the DP hardware and software
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by executing the navigation and alignment tasks for a simulated 60 seconds
using known inputs. Then it computes a checksum over part of operand
memory and compares it to a precomputed checksum. This ‘ask quenes up
Tasks 11, 14, 15, 16, 17, 18, 22, 23, 24, and 25.

SYSTEM TESTS

This subsection reports the results of tests which were performed on
various combinations of hardware and software elements of the DP1 system.
These tests range from detailed testing of individual software functions in a
laboratory environment through complete system testing in a flight environ-
ment,

Expected Navigation Performance

The required level of navigation performance was not specified for
the DP1 system. However, a design goal of 1600 feet (10) in each axis at the
end of a 10-minute free navigation period following system alignment was
used in the development of system software. The principal error sources
to be considered are IMU parameter deviations from nominal values, tilt
misalignment, and software computation error (algorithm truncation, round
off, limited precision, etc.). In licu of a detailed error allocation to the
elements of the system software, the design philosophy was to make the com-
putation error contributions to total navigation error small, The measured
computation errors are presented in the following section.

For several reasons, the performance of the transfer alignment soft-
ware could not be quantitatively predicted. First, the superficial structure
of the filter (number of states, measurement model, etc.) was derived,
developed, and verified by covariance analysis, a main-frame computer pro-
gram which measures the performance of the filter relative to a more
elaborate truth model. No truth model of manageable size, however, can
be complete, and so the performance measure is probably optimistic to some
slight but indeterminate degree.

Worse yet, the fixed-point implementation in DP assembly language
forced some unforeseen structural deformations in the filter, the impact of
which could not be assessed —by covariance analysis, or otherwise —in the
short time scale allowed for software development, , The process noise, for
example, which optimized the covariance analysis filter model could not be
faithfully reproduced in the fixed-point version; this is discussed in some
detail in the DP1 alignment software documentation. The filter iteration
rate used in the covariance analysis was 6 Hz; in the finished suftware, how-
ever, a more promising rate of 1 Hz was adopted, Moreover, the gyro bias
estimation feature was added as an afterthought and though it assumed a very
reasonable and convincing form in the finished software, no verification of
its performance (or the theory of operation, for that matter) existed before-
hand, either in the literature or in the form of a simulation, ]

Using the covariance analysis as a guide, and some rough calcula- 8
tions of filter sensitivity to gyro bias, -a set of residual estimation errors ‘
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were promulgated which, if actually approached by the DP1 alignment soft-
ware, would constitute success, These are:

Tilt misalignments 1 arc-minute
Azimuth misalignment 3 arc-minutes
Gyro hias 0.2 degree/hour

. Since the uncompensated gyro biases expected in the Hamilton-Standard

3030 IMU are fully an order of magnitude greater than the last figure
(2 degrees/hour as opposed to 0,2 degree/hour), the untested gyro bias
estimation module appeared to be a good gamble,

System navigation performance is shown as a function of tilt mis-
alignment and gyro bias in Figure 55, The effect of the azimuth misalign-
ment error is dependent on the azimuth maneuvers during free navigation,
If the average azimuth maneuver during free navigation were lg then the
navigation error due to this source would be equivalent to that shown for tilt
misalignment. In the absence of an azimuth maneuver, azimuth misalign-
ment error only produces a second order effect on navigation error through
its coupling of earth rate into the attitude parameters,

Laboratory Tests

A series of laboratory tests were performed both at Hughes and at
CIGTF. The emphasis in the’laboratory tests at Hughes was on the verifi-
cation of the software modules and the integration of the software with the
Hughes-developed hardware and the Hamilton Standard IMU, The CIRIS
interface with this equipment was simulated during this phase of testing.
Tests involving the IMU at Hughes were primarily static although limited
dynamic conditions were used in some tests.

The laboratory tests at CIGTF were concerned with integration of the
HP2100 computer (CIRIS simulation) with the other system elements, and
system level tests with the IMU both in a static environment and using coning

motion, Subsequent paragraphs provide the detailed results of the labora-
tory tests.,

Software Module Tests, The executive software modules were extensively
tested prior to their integration with the other system software. Executive
software testing during this phase involved the use of test drivers which
simulated the system software modules interfacing with the executive,

These test drivers exercised both the executive software and the system hard-
ware elements in a high stress environment, The test environment was much
more stringent than the actual system operating environment and, thue,
ensured adequate capability to accomplish the system testing.,

The following navigation and alignment software module tests also
involved the use of test drivers to simulate the operations of the other sys-
tem software and hardware elements. These tests, therefore, did not use
the weapon bus, interface hardware, or the executive software.




L
[
O

L]

[

s o

@)

s 5]

o0

€3]

=

@

£

<

&

o

<

A4

i L
LE -

l l . 5
TILT MISALIGNMENT, ARC-MINUTES

<.

L

0.2
GYRO BIAS, DEGREES/HR

Figure 55. Navigation Error After 10 Minutes




Quaternion Update/Direction Cosine Matrix (Portion of Task 9). The attitude
determination portion of the navigation software was driven using simulated
coning motion as well as high constant angular rates about one axis. The
constant rate input about one axis produced no error and merely checked
scaling and gross code errors. Coning motion exercised the quaternion .
i algorithm so that a good accuracy assessment could be made, Test results

i showed that the adaptive (dynamic scaling) algorithm is very accurate. Fig-
ure 56 shows the 7. axis error in the direction cosine matrix versus time
during coning motion,

T W e

Wy = A sin (Wt)

Ww_ = A cos (wt)
Yy

with A = 0,4575695 rad/sec, w = 20, 0951483 rad/sec. This corresponds to
f - a coning half angle of 1.3 degrees at a coning frequency of 3,2 Hz, Drift
, rate for this test case was 0,17 degrees/hour. A 36-bit floating point machine
! showed a 0, 07 degree/hour drift using a direction cosine algorithm with the
same forcing function., Less violent motions than the above will have con-
siderably less computation induced drift than 0.17 degree/hour.
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Figure 56, Coning Motion Z Axis, » Error Relative to
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Velocity and Position, Gravity and Coriolis Corrections, Navigation Frame

Rotations (Portions of Tasks 9 and 11). These blocks of code were checked

against analytic results, The differential cquations solved for checkout were
contrived (that is, simplified) in the case of the Gravity and Coriolis Correc-
tions and the Navigation Frame Rotations, Upper bounds on the calculation
biases include 0,01 degree/hour in the Navigation Frame Rotations, 1,5 x
10-4 ft/sec'2 in Coriolis Corrections, while calculation scale factor errors
cause 0, 008 percent error in latitude movement and ~0, 005 percent error

in longitude movement, Small statistical variations occur in the latitude

and longitude calculations with a simplified analysis showing an error with

a standard deviation of 26. 6 feet in 5 minutes, Some of the calculation error
sources could be fixed but were not fixed since IMU randomness easily
swamps all of them,

As an example of the checkout analysis performed, the following test
of the coriolis and latitude/longitude code was made. With the body acceler-
ations and vertical velocity forced equal to zero, the navigation equations
simplify to :

V.. = VW(L + 282) sin A

N
Vw = - vN(L +26) sinA
\_VN
~ TP

-V
i = pW cos A
A A

where
V., = north velocity

V.., = west velocity

N
w
A = jatitude

Py, = longitude

B = Re(l -e, 2-73 sinz)t)

i 1
Fr=R_(1-e sin®))

Re is earth's equatorial radius (20925695 feet) and e, earth's eccentricity
(1/298,3). The differential equations for Vy and VW are still too compli-
cated for solving, By NOP'ing certain lines in the G&C code, Vy is forced
to zero and the equations become
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-V

VN— VW( P)\cos/\ + 2€)) sin A

Letting A and L be initially zecro and then noting that A will not change appreci-
ably over a few minutes,

: Vw fVN

Vo=Vl +29)A~V +29Q)
N w .))\(O) )\(0) DL(O)

Letting

-V
2 _ W
o VW(PA(O) +2Q) 5 (0)

the differential equation satisfied by VN becomes
2y -
VN +w VN =
The solution to this equation is

VN = VNo cos t VN0 = VN(t = 0)

VN(t=0)=Osince)\=0att=0

t
VN j; cos wt VN sin wt

P1, wPy,
2 -th
p)‘(cos”average

With the initial conditions VW =-2048 ft/sec, VN = 2048 ft/sec, I. - A=

0 degrees (large velocities were desired to see the small coriolis effects),
measured and analytic results are shown in Table 5. The velocity error is
very small and is easilx accounted for by the worst case 1.5 x 10~ “4 ft/sec?
known error (1.5 x 10-* x 300 = 0, 045 ft/sec). However, the small Vy error
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and no Vys error does not account for the error in latitude and longitude, A
detailed analysis reveals the error sources to be calculation limitations in
forming p1.*! and —p)\'l cos ()\)'1.‘,_ At A = 0 degree,P1,~! is 0,008 percent
too small and py~ ! cos (A" ig ~ 0., 0045 percent too small, The error in
pL'1 explains the latitude error but the error in p)\'l cos )\'1 is smaller
and opposite in sign to the measured error, A detailed examination of the
code with the specific west velocity of -2048 ft/sec revealed a rounding
error peculiar to the longitude channel of -0,0142 percent, A code state-

ment was subsequently added,but no further verification was warranted,

TABLE 5, EXPERIMENTAL VERSUS ANALYTIC RESULTS
AFTER 5 MINUTES (299.9 SECONDS)

VARIABLE MEASURED

ANALYTIC ANALYTIC - MEASURED NORMALIZED ERROR (%)

2045.7803 FT/SEC 4.15 x 10.4%

2045.7888 FT/SEC 0.008S FT/SEC

A 0.02953617 RAD. 0.02953873 RAD. 2.56 10-6 RAD. ORS3.5 FT 0.0087%

L 0.02935975 0.029355514 4.24 x 10 6 RA<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>