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INTRODUCT ION

A primary goal of this research is to develop adaptive signal prc-
cessing algorithms that wiil be useful in providing anti jam A/J protection for
alrcraft receiving syétems, Because of the motion of the aircraft and the
uncertain position of the signal source, signal reception May be possible
from almost any direction of incidence. The uncertainty and time variable
nature of jammer positions requires rapid adaptive capabiiity for elimination
of one or more slmultaneously'operating jammers. Furthermore, aircraft receiv-
ing arrays generaily have oniy a few elem?nts, each having highly irregular and
sometimes unpredictable radiation patterns. ' The problem is.not simple.

This report is divided into three parts, ;ac; one representing a
major effort contributing to adaptive A/J technology.

Part A describes singie channel algorithms for arating signals
based on their power leveis. Jamming signais, when of concern, are
generaiiy iarge in ampiitude. By siphoning off the strongest input
components, the desired signal can be decoded from the remainder. Adaptive
signal processors are proposed, anaiyzed, and computer simulated that have
the capability of separating signais by power with controllable SNR
slicing thresholds. The '""ABWIN" algorithm, the first conceived, requires
injection of synthetic noise of controllabje amplitude (to control slicing
threshold). An improved "ABWAIN' is also described. This algorithm is
quieter and simpler to implement. The effects of the synthetic nolse
are obtained algorithmically. The analysis proves stabiiity conditions,
determines rate of convergence, and determines noise in the adaptive filter
weight vector and its effects on system performance. This approach is usable

for signal separation when the signais are narrowband with non-overlapping
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passbands. When these passbands overlap, separation would only be possible
with a multichannel system connected to an array of antenna elements

rather than to a single element. Development of multichannel adaptive
power separators has been proposed for future work.

Part B of this report describes, simulates, and analyzes an adaptive
antenna scheme that sustains (via a "soft constraint') an approximately
uniform sensitivity in all directions except those corresponding to
arrlval directions of strong signals (which presumably are jammers).

The threshold level dividing strong and weak signals is controllable.
This scheme has never been tried before and appears to be quite workable
and simple. Computer simulations show that several strong jammers (which
may be elther narrowband or broadband) can be eliminated simul taneously
when the antenna array contains only a few elements. Irregularities in
the Individual element patterns cause nonuniformity in the overall system
recelving pattern, but do not significantly reduce the system's ability
to notch out strong jammers. Many analytical problems remain to be
solved, such as how many jammers can be eliminated simultaneously, how
deep will the nulls be vs. SNR, bandwidth, direction of arrlvaL, what
determines rate of convergence, etc. The present algorithm requires the
injectlon of fynthetlc nolse. A new scheme without injected noise is
under development.

Part C is a reprint of a Paper published in the September 1976
issue of JEEE Transactlons on Antennas and Propagation. Tﬁe paper
describes, among other things, work on the "linear random search' algorithm,
This adeptive aigorithm is by no means as efficient as the LMS algor!thm
(in terms of nolse In the solution weight vector vs. the speed of con-

vergence), but Iis generally simpier to Implement and can be applled to
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systems whose patterns are adjusted by phase shift control rather than 2y
varlabie attenuators. LMS can only be used In the iatter systems, not i
the former. The iinear random sea;'ch aigorithm is shown to have operational
properties simliar to those of a Steepest descent adaptive algorithm which
estimates gradient components one at a time. The random search algorlithm
Is expected to have wide appilcabllity and to be implementable at RF and

IF frequencies. It couid be appiied to almost any form of adjustable
system parameter, from microwave cavity paddles, to adjustable tuning stubs,
to phase shifters, to attenuators, etc. Many theoreticai problems remaln
to be soived, such as behavior in systems with miitimodal performance
surfaces, and derivation of reiationships between system performances versus
speed of convergence. This is a new aigorithm. It appears to be anaiyzabie
in many circumstances. Because of its iinear nature and reiatlve simpliclity

compared to other random search aigorithms, It may become very widely used.

i
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Part A

ADAPT{VE SEPARATION OF SIGNALS IN NOISE IN TERMS OF THEIR RELATIVE POWER LEVELS

I. Introduction

In this section we describe a study of an adaptive device which can
strip off the coherent signai component with the highest power. It has
two outputs, one a fiitered version of the selected component, and the o
other contains the totai input signal with the selected component can-
ceiied out. This device can be used aione to provide one degree of A/J
protection (we assume the jammers to be powerful), or, with several in tandem,
can be used to strip off and rank the various coherent signai components
by power. It may aiso be generaiized to an array configuration. This
section describes the device, expiores its theoreth;at behavior briefiy,

and presents some resuits of computer simuiations of the device's performance.

ii. Background

The output of a receiving antenna array can often by modeied as
wideband noise pius severai narrowband signai components of differing
frequencies and power ievels. The probiem addressed in this section is
that of automaticaiiy ranking the coherent components In order of their
respective powers whiie disregarding wideband components such as noise.
Such a scheme has many uses. Usually oniy one or a few of the signai com-
ponents are usefui. The others are not usefui and under some circumstances
may hinder detection and estimstion of the desired component. A signail
ranking scheme wouid aliow the processor to deal only with the desired -
component(s). In other applications the ranking might provide information
in itself. Generalized to an array configuration it might be used to

separate signal components and identify the azimuth of each source. The
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basic approach uses the "'Adaptive Line Enhancer [1] (ALE)'* in a structure
that allows it to strip off the most powerful coherent component of the
input signal and pass all the rest. Similar additional stages could strip
of f the successively less powerful components [2]. This concept is
diagrammed in Figure A-1. Modifications to the ALE's adaptive algorithm
will be shown to improve the separation properties.

An inherent advantage of the ALE configuration is that it could
provide two outputs. One is the input signal with the most powerful
component subtracted out, thus providing the input for the next stage.

The other output is a filtered version of the stripped component, allowing
that component to be processed independently to find its parameters (e.g.,
frequency, azimuth).

The Adaptive Line Enhancer was introduced and described in reference
(1). Reference [2) describes its behavior with inputs consisting of white
noise and a sinusoid. A diagram of the ALE is shown in Figure A-2,

The error signal (k) is the difference between the input x(k) and
that signal delayed by A time units and filtered by an adaptive transversal
fiiter. The error signal is used by the Widrow-Hoff Least Mean Square (LMS)
algoirthm to adjust the weights of the adaptive fitler to minimize the error
power [1]. This system's behavior is best exemplified with an input of
a sinusoid plus white noise. Since the sinusoid is coherent in time it
is compieteiy predictable and & filter can be found (via the adaptive
algorithm) which fiiters the delayed signai to provide an output y(k) of
the same phase. Thus a sinusoid may be successfully subtracted from the
input signal and the error power minimized thereby. However, since the

noise is incoherent in time there is no way that a fiitered version of the

delayed noise can cancel any of the input noise. Thus to minimize mean
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square error the adaptive algorithm must find a filter impulse response
which allows the sinusoid through but inhibits the noise as much as pcssible.
In fact the adaptive filter found in this case is a matched filter with
sinusoidal impulse response, which passes the sinusoidal component but
has the smallest possible bandwidth to minimize the noise power in the
filter output. The sinusoid and the noise may be viewed as adversaries to
the adaptive porcess. Were the input just the sinusoid, the filter would
converge to a form which had a gain of | at the sinusoid's frequency
thereby cancelling the sinusoid altogether in c(k). If the input were
white noise only, the filtered signal would actually increase the error
power so the LMS algorithm turns off the filter by adjusting all the weights
to zero. |If the input contains both signal and noise then the adaptive
algorithm must make a tradeoff to minimize the total error power,

Quarterly reports | and 2 [2] discuss the behavior of the ALE at some
length. Two significant points were made.

1) For an input consisting of a single sinusoid of frequency f_ ard "’

0
white noise, the convergent filter gain at frequency fo is given by:

n
7 SNR

a*- e ———

|+g--sua

uhere.Sﬂﬁ is défined as the ratio of the input sinusgid's power to thac of
the lpput white noise, and n is the number of weights in the transversal
filter. A graph depicting a* as a function of SNR is shown in Figure A-3,
It may be seen that a* » 0 as SNR 0. Cieariy the behavior of a* iq.é

non | inear function of SNR.
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2) If the input signal consists of coherent components which are
sufficiently separated in frequency and if the number of weights n is large
enough, then the convergent filter's impulse response will be the super-
position of contributions from each of the coherent inputs. Each of these
contributions is the same as if that coherent component were the only
input. This property is called "‘pseudol inearity'’. If the input is assumed
to be composed of several sinusoids plus white noise it can be shown that
af. the optimal filter gain at the frequency of the ith sinusoid, is
given by:

* SNR,
ak = s

I+

NE1CE]
-

. SNR'

where SNR. is the ratio of the power of the ith input sinusoid to that of
the total Input noise. The fact that each optimal gain a*' is not dependent
on the power of any coherent input other than the ith is a result of the ALE's
pseudol inearity.

With these two principles it was showr in reports | and 2 {2] that the
ALE cen be used to strip the most powerful coherent component out of an
input signal. This may be seen in the particular case where the input
consists of several sinusoids plus white noise. For those sinusoidal
components for which ;- . SNR' >> 1 the filter gain is approximately one and
they are almost compietely cancelled out of the error signal e(k). They
are of course fully represented in the fliter output y(k). However the
components for which % . Sﬂl'«l have associated filter gains tending
near zero. As a result they appear in the error signal and not in the
fliter output. The same is true of the broadband noise components. Thus
the ALE can perform a separation of the input components on the basis of
their input poreers and bandwidths. The threshold of separation for

Jo
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sinusoids or narrowband slgnals is given by g-- SNRi = | or P' = 2%— 5
where 02 is the power of the white Input noise and Pi is the power of the
ith sinusold SNRi - Piloz. The threshold, denoted O, is a function both
of the input noise power 02 and the number of fllter welghts n. Fiqure

5 A-4 shows an ALE adjusted to sllce off the most powerful sinusoidal com-

ponent.

Aimost any practical application of such level separator would

= requlre that the separation threshold O be adjustable over a wide range.
However, as reference [2] shows, there are compelling reasons for changing
neither the input noise power or the tapped delay line length n. For

? ; obvious reasons the input noise power cannot be decreased. It can be

‘f increased artificially however by adding extra white noise to the ALE

input, but this has the disadvantage that the extra noise propagates on

through the error signal Into successive stages. Changing the filter length

n changes both the filter dynamics and the number of components whlch can

be handled simultaneously and independently. Usually the user would desire

to have these parameters remain constant. To allow alteratlon of the

threshold level without changing elther 02 or n, an alternate separator

was suggested [2]. This processor, the ALE with injected noise (ALEWIN),

diagrammed In Flgure A-5, provides for the varlable threshold of

2
O= go_:o&_)' leaving 02 and n fixed. This is accomplished by adding

extra white noise of power oi into the adaptive filter input. The added

; , noise decreases the apparent SNRs of the coherent input components and
. therefore modifies the power slicing level. Flgure A-6 shows the optimal
filter gain as a function of SNRl for the ALEWIN. The term SNR! |s defined

i
2 2
by P'/(o + OA)'
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Figure 5. The Adaptive Line Enhancer With Injected Noise (ALEWIN)
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This new scheme has the disadvantage however that the added noise
propagates through the filter, into the error signal, and into succeeding
stages. It is not as bad as would be the case if the noise were injected
into the ALE input, but still the effect is undesirable. This problem
can Sa modified to some extent by adding a ''slave" filter which filters a
delayed version of the input but without its added noise. This slave
filter uses weights copied from the udaptive filter. Since no noise is
actuaily added into its input, the slave filter output and the error signal
formed with it are devoid of the direct effects of the injected noise.
This method is practical and may have application in some situations.

Zahm (6], for example, has suggested its use for the suppression of strong
Jamming in an adaptive beamformer without obliteration of desired weak
input signals. However this method still has a major flaw in that the
injected noise increases the adaptive fiiter's "misadjustment.'' The
adaptive algorithm which determines the weights of the adaptive filter
produces errors or noise in its estimates of the optimal weights. Weight
noises are a function, among other things, of the input noise. In a
normai weii-designed adaptive processor, weight noises are tolerably small
and weight errors are not a problem. However in this case the large amount
of injected noise can cause large and bothersome noises in the weights, and
cause significant amounts of random moduiation of the filter output.

Further research has shown that this problem can aiso be solved.

By appropriately modifying the adaptive aigorithm used to adjust the
fiiter waights, behavior similar to that caused by the injected white
noise can be attained. In addition the modified algorithm does not cause
the increased misadjustment that the injected noise does, nor does it

require the siave fiiter. It has been dubbed the "ALE with algorithmically

14
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injected noise'" (ALEWAIN), and its operation is clearly superior to chat
of the ALEWIN [2]). The next section will describe the mathematical

formulation of the ALEWAIN and show its relationship to the ALE and
ALEWIN.

itl. Theoretical Motivation for the ALEWAIN

This section will provide motivation for ths ALEWAIN configuration
by first analyzing the mechanism of filter optimizotion for the ALEWIN
and then showing that in expectation the same effect can be achieved by
mod|fying the algorithm. To proceed, some definitions and background are
required.

Flgure A-7 is a block diagram of the ALEWIN. The input signal, x(k),
passes Into two paths, one directly to a differencing clrcuit, and the other
through a decorrelating delay of A time units, through a tapped delay line
fllter, and into the other input of the differencing circuit. This
difference c(k), termed the error signal, is used by the adaptive algorithm
to adjust the filter in such a way as to minimize the expected powe.r of

€(k). The following definitions allow this to be put into mathematical

form:

x(k) = the input signal
n(k) = the noise injected into the filter Input
f(k) = the actual Input into the fiiter [=x(k-A)+n (k)]

F(k) = [f(k) f(k-1) ... f(k-nﬂ)]T = samples of filter input
in the tapped delay line
Wk) = [wo(k) wn-'(k)lT = the impulse response of the

tapped delay line filter (also
called the ''weight vector")
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y(k) = fiiter output = VT(k)F(k)

e(k) = the error signal = x(k) - y(k) = x(k) - VT(k) * F(k)

It will be assumed that x(k) and f(k) are random variables which are

statisticaliy independent, stationary and zero-mean. The autocorreiation
function “of x(k) is rx(t) and that of n(k) is rn(T). The injected noise,
n(k), is assumed white. Therefore rn(r) = 026(1), where o: is the power

-of the injected noise process.

The filter impulse response (the weight vector W(k)) is iteratively

-adjusted toward its optimum vaiue by the Widrow-Hoff LMS algorithm, which,

in expectation, wili reduce ez(k) to its minimum value. The LMS

. algorithm updates its estimate of the optimai weight vector at each sample

interval by making an instantaneous estimate of the gradient of the error

surface and then moving toward the minimum. Mathematically this may be

written:

W(k+1) = W(k) + pee(k)*F(k), wW(0) = ¥

, =i
where €(k)<F(k) is the magnitude of the instantaneous gradient estimate and
U, the adaptation constant, determines how much the weight vector will be
changed in response to that estimate.

By making some substitutions this recursion equation car be written

in another useful form. Note that by definition the error is given by

€(k) = x(k)-FT(k)-w(k). Substituting this into equation 111-1 and collecting

terms In W(k):

W(k+l) = (l-uF(k)-FT(k)]-w(k) + pex(k)oF(k), W(0) = Y -2

From this equation W(k) can be computed iteratively given only the Input

signal and injected noise.




Suppose the expected vaiue of the weight vector were examined. This
wouid represent the average behavior of the ALEWIN in the statisticzl
sense. If the expected values of both sides of Eqn. 111-2 are taken and
if it is assumed that F(k)-FT(k) and W(k) are uncorrelatedt this can be
; done.

E[W(k+1)] = [1-uR]-E[W(K)] + E[x(k)+F(k)], E[W(0)] = W(0) = W

0
e-3

where R = E[F(k)-FT(k)l. the autocorrelation matrix of the process

F(k). The tapped deiay iine data vector, F(k) can be written as the sum

of X(k), the vector representing the component due to the input signal, and
N(k), the component due to the injected noise. Further x(k) and n(k)

have been assumed independent. Therefore E[F(k)<F' (k)] becomes E[X(k)X' (k)]+
E{N(k)-NT(k)] - Rx + Rn’ the sum of the two autocorrelation matrices for the
two separate processes. By the definition of the autocorreiation matrix

the ijth element [R], = r(i-}). Since r (1) = o38(1) this implies that

2

Rn = 0, !, where | is the identity matrix. The input signal matrix Rx is

; not in general diagonal.

The same facts as above may be appiied to the evaiuation of the
driving term E[x(k)*F(k)]. Since F(k) = X(k) + N(k) and since x(k) and
n(k) are independent then the term becomes E[x(k)*X(k)] = Px' the auto-
correlation vector of the process x(k). The ith eiement of Px is given

by ['x]l - rx(A¢I*l).

*
Assuming that the transition term F(k)F‘(k) and the weight vector W(k)
are uncoirelated is a common simplifying assumption in work on adaptive

. signal processors [1,5,7]. It is an excellent assumption when the constant

U is small enough that adeptation is slow.
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With these observations equation 111-3 may be simplified to the

following:

EWV O ]=[(1-u(R 30+ D]-EIM()] + uP_, E[W(0)] = W -

0

This equation then describes the expected behavior of the weight vector
of the ALEWIN. In fact if this equation is solved to find the con-
vergent behavior of the algorithm and if assumptions of the sort used in
a previous report [2] are applied, this equation yields the formulas
obtained in this report by the Parseval's Theorem approach. Furthermore if
.x(k) is assumed to contain only white noise and sinusoidal components and
if o: is set to zero, then Eqn. 111-4 converges to the functional forms
described in reference 3. Thus equation Il1-4 describes the operation
and behavior of both the ALE and the ALEVIN.

With this background, the modified algorithm may be introduced.
Suppose that the system used is exactly as in Fig. | except that there is
no injected noise. If so then F(k) = X(k) and the recursion expression

for the expected weight vector wouid be:

E(W(k+1)) = [l-qu] E(W(k)] + uP_, E[W(0)] = W -5

0
As pointed out in the previous paragraph this is simply the weight vector
recursion for the ALE, the iimiting case of the ALEWIN as o: approaches
zero. However suppose that instead of the standard LMS algorithm, another
adaptive algorithm (the "ieaky' LMS aigorithm) is used. Suppose the

welght vector update equation Is given by:

W(k+i) = yeW(k) + pee(k)eX(k), W(0) = Vo -6

where v > 0. For this work v wiii aisc be assumed to be less than or

oqual to 1. The action of this aigorithm at each sample Instant to add in

40
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the new instantaneous estimate of the error surface gradient but also to
diminish the weight vector by a small factor (causing it to "leak'). The

rationaie for this wiil be discussed later.

Suppose that the weight vector equation of Eqn. 111-6 Is applied to
the ALE configuration. Making the appropriate changes to Eqn. 111-5 then
becomes :

EMW(+D] = y[I-uR ] EWG)] + P, E[W(0)] = W, 11-7a
or, E[W(k+1)] = [yt-vuR ] E[W(k)] + uP_, E[W(0)] = W, 11-7b
or,  E[W(k+1)] = n-u[!'—;l’- R 1T EIVGD] + P, EMV(O)T = Wy, 111-7c
But Eqn. 111-7c is exactly the same form as that of the normal LMS
impiementation of the ALE (compare with Eqn. 111-5) If [ilﬁXL I+ Rx] were

interpreted as the autocorreiation matrix of the tapped delay iine data
vector. However, by comparison with Eqn. I11-4, it may be seen that this
Is exactiy the recursion expression for the expected value of the ALEWIN
weight vector if jlﬁll | = Rn. But Rn = o: I; therefore, If v Is chosen
so that ¥ = | - o2 then the ALE configuration with the modified (leaky)
adaptive algorithm and no injected noise would have the same expected
weight vector as the ALE with injected noise of power o: using the normal
LMS adaptive aigorithm. Thus modifying the adaptive algorithm has the same

effect as injecting noise into the filter input. The line enhancer driven

by the leaky LMS algorithm is called ALEWAIN.
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IV. Discussion

The previous section shows that the ALEWAIN gives the same mean
weight vector as that of the ALEWIN (but not the same variance in the weight
vector). Whatever value of 0: that would have been chosen to separate

the most powerful coherent component with the ALEWIN can be related to the

proper value of y(-l-uoi) which will allow the ALEWAIN to achieve the same
effect in the mean. However, since no nolse is actually injected in the
ALEWAIN, it significantly outperforms the ALEWIN and is cheaper to
implement. The ALEWIN requires the actJal Injection of noise into the
filter input. Therefore the filter output y(k) and the difference (error
signal) e(k) are noiser than they would be if only the input signal were
driving the adaptive algorithm. Since both the fllter output and the
difference signal are desired outputs of the power separator, this extra
noise is deleterious. This probiem was partiaily eliminated in previous
work (1] by using a duplicate fiiter, the so-cailed ''clean' filter, whose
impuise response is copied from the main f)lter. Since no noise is
injected into its input, the output and ensuing difference signal are not
corrupted by the injected noise. But its weights are noisier than need be
because the maln fiiter weights are made more noisy by the Injected noise.
In addition, the use of the clean fiiter increases by 50% the number of
multiplications required for each iteration of the filter. With the ALEWAIN
the duplicate filter is not needed since no noise is actuaily injected.
Furthermore, the weights of the ALEWAIN are iess noisy for the same speed
of convergsnce. Look again at the adaptive update schems for the ALEWIN.
The estimate of the gradient of the error surface Is -e(k)*F(k). Suppose
the ALEVIN has converged. If so then the expected vaiue of the gradient

is zero. If the weight vector were driven by the true gradient, then the

Weos e
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weight vector would be unchanging at convergence. However it is actually
driven by an instantaneous estimate of the gradient. The more nolse
that Is injected then the more - (k)*F(k) wiii differ instantaneously
from its expected value of 2ero at convergence. Thus the weight vector
will not stay at its optimel vaiue but wiii be perturbed away. This i5 the
manifestetion of weight noise mentioned eariier and in the case of the
ALEWIN, it increases with the value of 0‘2\. Since the ALEWAIN configuration
injects no noise, its weight noise is a function only of the input signal
as well as vy end the edaptation constant M.

Some insight into the equivaience of the ALEWIN and ALEWAIN can be
gained by discussing the effect of the injected noise on the aigorithm.

It was shown [1] that the effect of edding noise to the fiiter input was to

decreese the effective SNR of each input component. Since the optimal gain
SNR!

at = U is monotonically decreasing with decreasing SNR;, then
ltmionlz

increasing the injected noise has the effect in expectation of reducing

the contribution in the weight vector from the less powerful component.

In terms of the weight vector adjustment eigorithms, Eqn. lil-4, the

expected weight vector for the ALEWIN may be compared with Eqn. 11-5,

the expected weight vector for the ALE. It may be seen that in expectation
they both have the same driving term qu. Thus the injected noise contributes
nothing to the driving term. The only plece the injected noise appears

is in the transition term It serves only to decreasc the magnitude of the
weight vector et eech iteration. The higher the injected noise, the

greater is the decrease in the weight vector. Since n(k) is white, then In

expactation ell weights ere decreased equaily. Thus Px tends to increase




the magnitude of the weight vector and Rn tends to decrease it. The terms
vie, on the basis of power, to determine the convergent weight vector
magnitude. The vector Px must be iarge to compensate for the decrease in
the weight vector caused by Rn.

The ALEWAIN performs exactly the same function by aitering the
adaptive algorithm so that it deterministicaliy decreases the weight
vector at each iteration rather than reiying on the statistical effects of
the white injected noise. To remain fully represented in the weight
vector, each input component must be strong enough to counteract the
effects caused by Y.

This modified algorithm has been termed leaky LMS (LLMS) since if
el(k)*X(k) = 0 then the weight vector tends to leak away to zero as k tends
to infinity. It is also a good model of analog implementations of the LMS
algorithm where imperfect (leaky) integrators are used. A distinction
should be drawn here. In the case of analog integrators, the ''leakiness'
is an undesirable feature and much design effort goes into trying to
minimize it. However, the work in this report shows that a controlled
amount of leakiness can have a desirable effect in the application of signal
separation by power level. Another important observation is that leaky LMS
does not minimiz.c“tho mean square error. It does find a Wiener solution
but for a performance function corresponding to an input which contains
an artificial additive noise term. Weak input signals excluded from the

filter output y(k) because of their lesser powers.

a¥
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IV. Amplitude Correction Via a One-Weight Noise Canceller

Reference 2 shows the results of computer simulations of the ALEWAIN.
These simulations demonstrate that the ALEWAIN can in fact slice off the
most powerful sinusoid of an input signal and that its performance is clearly
superior to that of the ALEWIN. However, for the ALEWAIN to function well
in the power separation scheme shown in Figure A-1, not only must the most
power ful component be isolated in the filter output, but it must also be
completely removed from the error signal. If this signal is not completely
extracted then some following stage might attempt to Isolate the residual
rather than the next lower-powered signal. Unfortunately it can be shown
that the power ratio of the most and second most powerful signals must be
infinite to aliow complete separation in one ALEWAIN stage. To achieve
complete separation with a finite ratio, an additional modification can be
made. This modification uses a single-weight Adaptive Noise Canceller
(Anc) [3].

A block diagram of the adaptive noise canceller is shown in Fiqure
A-8. The ANC has two inputs, the primary which contains the desired signal
Plus some corruptive influence, and the reference input which contains
noise which is correlated with the corruptive influence in the primary
signal. By adaptive filtering the reference signal, noise may then be
subtracted from the primary signal to reduce the effect of the corruptive
influence. The use of an adaptive filter makes this noise subtraction
possible and practical by changing the adaptive filter weights to best
adjust the spectral content and phase of the reference signal, even if
the character of the signal and the undesired corruption change with time.

Using this concept, the problem of complete extraction of the most

powerful component can be dealt with. Refer to Fig. A-9. The input signal

2
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x(k) forms the primary input. It may now be viewed as the sum of man+’

; deslrable components plus an undesired corruptive signal, the most powerful

coherent component. The reference signal, a correlated version of this com-

ponent, can be supplied by the ALEWAIN filter output y(k). This concept

is illustrated in Figure A-9. In the particularly useful case in which

the most powerful component is sinusoidal, only a single adaptive weight is

required in the noise canceller stage. This is a result of the fact that
the sinusoid in the ALEWAIN output is in phase synchronism with the mos t

powerful sinusoid in the input signal. Because only the gain (and not the

phase) must be adjusted, only one acaptive weight is required.

?§ This concept may be viewed in another way. To perform signal separation
i

with the ALEWAIN it must do several things:

; 1) Identify the most powerful component ia

é 2) Isolate the most powerful component (i.e. form a filter to pass It)

? 3) Adjust the gain of the most powerful signal to provide complete

% cancellation,

; b) And, minimize the gain of the flliter for less powerful components.
Unfortunately points 3) and 4) are contradictory. Attempting to make the
gain of the adaptive vilter equal to one at the frequency of the most

, powerful component has the simultaneous but undesirable effect of increasing
v | the gain for the less powerful components. The ALEWAIN with the NC modiflcation
|

allows the ALEWAIN to perform functions 1, 2, and 4, while the nolse can-

celler stage adjusts the isolated component to have unlty gain for ldeal

cancellation from the input signal. As will be shown In Sectlon V the

ALEWAIN with tandem one-weight adaptlve noise canceller (denoted AKEWAIN + NC)

, performs very well with narrowband inputs.
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V. Experiments Results

To demonstrate the performance of the ALEWAIN + NC conflgufatlon. it

was simulated on an HP 2{16B minicomputer. An experiment was designed to

test the abiiity of the ALEWAIN + NC to successfully strip off the coherent

components of an input in order of their power. The input signal was composed

of three sinusoids of different frequencies and powers plus white noise of

unit variance. The powers and frequencies of these sinusoids are as

follows:
Frequency (Hz) Power
Sinusoid #1 179. 78.625
Sinusoid #2 312.5 3.12%
Sinusoid #3 607.0 0.125

Forty-eight hundred samples of the Input signal were stored in a disk file,
serving as input data for the program which simulates t\r ALEWAIN + NC.
The program operates by taking input samples from a designated file and storing

the resulting noise canceller filter and difference outputs In additional

disk files. In this manner the same program can be used provide several

stages of separation by simply specifying the input file of the current run

to be the difference signal from the prev!bus run. In such a fashion the

input signal was subjected to three levels of slicing. At feach level the

length of the ALEWAIN filter n and the decorrelation delay A were held

constant (64 and !, respectively). To achieve separation wilthin the

desired number of i terations, however, Hys Moo and Y were varied on the

three runs. The values actually used are as follows:




|

g

Run #1

Run #2

Run #3

The abbreviation ECT stands for "estimated convergence time,' expressed
in number of iterations. The column to the right of that for Y shows the
value of o: which would be required by the equivalent ALEWIN. The strategy
used for the choice of these operating parameters is discussed in Section Vi.

In actual practice, all the cascaded adaptive processors might be
allowed to begin adaptation simultaneously. For this simulation however
each cascaded processor was not allowed to adapt until the preceding
processor had reached convergence. The estimated convergence times were
used to determine the startup times. As noted before, this Is not mandatory
in practice. It is done here to uncouple the transient nature of each stage
from all the others in order to study these adaptive transients.

Figure A-10 is a plot of 512 points of the input signal and the
sssociated power spectrum. The format of this figure will be used several
times so it will be explained In detail here. Part (a) of the figure
presents a 512-point record of the signal of choice (in this case, the input
to the first separator stage). The middle curve is the magnitude squared of
the DFT of the data record. This plot is scaled by its maximum value.

The bottom curve is the logarithm of the middle plof. While taking the
logarithm presents a less spectacular picture than the linear plot it makes
the second order effects such as input noise and the effects of filter
weight noise more visible. The arrows below the frequency axes indicates

the frequencies of the input sinusoids. They will be shown on all such

spectrum plots. Note thet the power relationship between all the coherent
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sinusoid #1 - 179. Hz, power 78.625

sinusoid #2 - 312.5 Hz power 3.12§
INPUT SIGNAL {sinusoid #3 - 607. Hz, power .1258
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input components is visibie in Figure A-iOc.

Flgure A-1i shows the fiiter output of ALEWAIN #i at the beginning
of adsptation. the exponentiai growth of its enveiope is just as pre-
dicted by other work on the ALE structure [i]. Figure A-i2 shows the
fiiter output sigrai and its spectrum weii after convergence (iteration
3000). From its spectrum it is clear that the most powerfui sinusold has
been esientialiy isoiated.

Figure A-i3 shows the strong output of stage #i. Adaptation begins
at iteration 500 (after ALEWAIN #i converges) and converges in roughly 300
iterations to provide the proper scaiing for sinusoid #1. That this
scaiing has been properiy found is iiiustrated in Figure A-i4. This is
the remainder output of stabe'#i; At iteration 500 (when its adaptation
begins) the contribution from sinusoid #i begins to decrease dramaticaiiy
and by iteration 800 it is virtuaily gone. Figure A-i5 further demonstrates
this point by showing the remainder signai #i, and its spectrum beginning
at lteration 3000. From the iog spectrum piot it is ciear that the most
powerfui sinusoid #i has been highiy attenuated. In fact it has been
decreased by approximately 60 dB. (Additionai experiments have shown
this to be a typicai vaiue).

Figures A-16 through -i8 show the behavior of the second separation
stage. its Input is simpiy remainder output #i (Fig. A-i5). Adaptation
was begun at iteration 1000 (after the convergence of NC #i). Figure A-i6
shows the output of ALEWAIN #2 and its spectrum after convergence
(1teration 3000). Sinusoid #2 appears aimost exclusiveiy at the fiiter
output. Figure A~18 demonstrates remainder signai #2 after convergence.
Sinusold #2 (and #1, as well) has been almost compieteiy extracted. The
spectral plot shows that only sinusoid #3 and the input noise remain in the

remainder output #2.
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If this difference output is applied to the third separation stage
the remaining sinusoid (#3) can be separated from the input noise. This
signal and its spectrum are shown in Figure A-19.

This experiment demonstrates that the ALEWAIN + NC configuration
can successfully be used to effect separation of narrowband signals on
the basis of power when they do not overlap in frequency. The theory
developed so far (and the experiment presented) are based on the use of
sinusoids as the coherent inputs. With finite bandwidth narrowband
signals, so long as the bandwidth of the relatively coherent components
is considerably less than 1/A (A=the decorrelation delay), each signal
separation stage will slice off a separate signal. However it may be
necessary to use more than one weight in the NC stage to effect complete

separation. This will be discussed further in the next section.

VI. Choice of Operating Parameters

The previous theory and simulations have assumed that sufficient a
priori knowledge about the input signal is available to the user so that
the values of the adaptation and leakage constants can be appropriately

adjusted. This section will explore some considerations in their choice.

A. Choice of the Leakage Coefficient Y

The slicing level of each separation stage is controlled by the
leakage coefficient y used for the associated ALEWAIN. This choice is
determined by the fact that the most powerful component must be passed while
less powerful components must be suppressed as much as possible. The nature
of this problem can be understood by reexamining Figure A-6. This is
the operating curve of the ALEWIN/ALEWAIN and shows the convergent gain

of the ith input component as a function of the SNR: (the input SNR as

o



modified by the algorithmically injected noise). Suppose that the input
contains two coherent components whose power ratio is PIIP2 =P>1. The
goal of making ag as small as possible while holding af fixed is clearly
achieved by operating on the left side of the operating curve (where the
curve Is increasing approximately linearly). If the coherent components

are assumed to be sinusoids, the maximum possible ratio of gains can be

found analytically.

n
2 | 20'2 .l
2- ]
at I +3° SWR nP,
-—;— = = .2 5
a 0. sNR! 2007 ,
2 nP'
+ =
| SNR,

2

where 0'2 |5 the total equivaient noise power (i.e. 0° + o:, for the

ALEVIN, or o2 + 1ﬁ1  for the ALEWAIN). If SNR} and SNR; are farge com-
pared to % then a?/ag ¥ | and there is no gain difference. This corresponds
to locating both components on the right hand side of Figure A-6. Since
there is no gain difference, separation cannot be attained. \f, however,
SNRi and SNRé are both considerabiy less than %-. then:

iim P

— P
2 P

0'2-,09

This indicates that the best separation is attained by operating as far
ieft as possibie in Figure A-6. Unfortunateiy this desirable behavior is
offset by the fact that operation in this region (where the injected
noise completeiy controls the dynamics of adaptation) tends to disturb
the gain relationships between the various parts of a non-sinusoidal input

component. As a resuit a singie weight noise cancelier wili not suffice

dl
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to completely cancel this component in the NC remainder output. This
problem can be circumvented to some degree by adding more weights to :he
NC stage. Experiments have shown however that generally good perfo:mance
can be attained for both slnusoldal and narrowband inputs by setting y
(or o:) so that a? » the gain for the most powerful component equals .5.
This implies that SNRi-%-- 1 and corresponds to the "knee' or breakpoint
in the a* vs. SNR' curve. The values of y used in the various separation
stages of the experliment shown in section V were chosen in this manner.

In actual practice the power of the most powerful component Is usually
unknown and this complicates the choice of Y. The value of Y could be
swept to search for a solutlon. By simply examining the input waveform and
attributing its maximum excursion to the most powerful sinusoid, the power
of thls component may be roughly estimated by the RMS power of the input
Itself. In the case where the coherent Inputs have widely disparate powers
and all have SNRs greater than one, this Is a fairly accurate estimate
and the value of y found from this estimate will work well. If the
conditions are not satlsfied, then the performance will be poorer. However
this adaptive structure is quite tolerant of small parameter mischoices
and will usually provide very good performance even if the power is mis-
estimated. If the SNR condition is not met, then the background noise

wlll determine the RMS Input power and hence the choice of Y.

8. Time Constant Determinatlion

The convergence times of the ALEWAIN and the NC are determined by M,
and uz, respectively. The convergence behavior of these adaptive processes
an be quantifled by finding the time constants assoclated with the uncoup led
modes In each of the processes' welght vectors. To determine thls behavlor

for the ALEWAIN, consider again Equatlon 111-7c,

Hd




E(W(k+1)] = {l-ull%ﬁl |+ Rx]} E(Ww(k)] + “lPx .

Since Rx is real and symmetric it is possible to find a coordinate trans-
formation which uncouples the modes of the adaptive process [8). If this

is done the expected value of a typical uncoupled weight, w'(k) say, can

be written [8] as:

Elwi (k)] = Fyug A ] Elwd (0] + ud,,

where 02 is the input noise power and A‘ is the eignevlaue of Rx associated
with the ith uncoupled input mode. The growth time constant of such a

recursion expression can be shown to be:

1
T:WT » 1<i<n

T -
Notice that if v = | then the time constant degenerates to that for the ALE.
If u'A' >> 1=y then the adaptive time constant for this mode is determined
by ¥ and the powers of the input noise and the uncoupled coherent component.
If, however, M) or the input powers are so small that l-y>ulkl then the
adaptive dvnamics are determined only by y. If |-y>u|x,, for all i, then

the ALEWAIN becomes a recursive correlator [9] with a time constant of Jd
1=y
for all modes. In the case of sinusoidal inputs these solutions can be

put in terms of the power of the most powerful sinusoidal input. It can be
shown [8] that a sinusoidal input induces two eigenvalues of Rs which are
approximately equai to %F » where P is the power of the sinusoid. In this

case the adaptive time constant associated with the two modes of interest is

given by:

]
I-Y+u, (02+ -"Z—P-

T =
S

Convergence of the adaptive algorithm is a matter of definition but a

practical value is twice the longest growth time constant of interest. There-
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fore, for a sinusoldal input, the estimated ALEWAIN convergence time is

glven by:
2

ETC. =
1=v+y, “’2"12t

If the sinusold is very strong then ETCA tends to h/u'nP. However,
if M; Is very small then ETC, tends to 2/(1-y)(i.e. the recursive

correlator case).

Determination of the time constant for the one-welght noise canceller

Is quite simple. The expected behavior of the welght 1s descrlbed by:
Elw(k+i)] = (l-uzPy) Elw(k)] + u,C,

where Py is the expected power In y(k), the ALEWAIN f1iter output, and C Is

the crosscorrelation of the primary input with the ALEWAIN filter output.

In a fashion similar to that above the estimated convergence time can be

shown to be:

ETC

= L-
NC uzPy
The power In y(k) is determined by the value of a* chosen for the ALEWAIN
via Y. If the recommended choice of a* = .5 Is made and 1f the component

of Interest is sinusoidal with input power P then ETCNc reduces to:

16
ETCNC - qp

As the assumption regarding infinite coherence (sinusoidal Inputs) Is
violated the time constant estimates glven here become poorer. However
these estimates vork weil in practice and should give good resuits. Further

insight Into the convergence times of adsptive processor such as the ALE

ond ALEVAIN can be found in reference 8.




Vii. Conclusions

This work has demonstrated in a preliminary way the practicalitv of
the ALEWAIN + NC adaptive processor as a signal sorter or separator,
particulariy in the case where the desired singals are narrowband and their
signal-to-noise ratios are high ( >i). Jamming signals wouid have such
high SNR's. Resuits presented here have demonstrated how to design a
signal separator, how to choose (either manualiy or automaticaiiy) the
operating parameters, and how to estimate the convergence time of such
8 processor. These results shouid be very useful for a variety of communi-
cations and signal processing applications (i.e., anti-jamming). However
an equally important part of this research was the discovery and preiiminary
examination of the leaky LMS (LLMS) adaptive aigorithm as appiied to
adaptive line enhancing. Even though much remains to be expiored about
the behavior of this algorithm it seems ciear that it will have wide
applicability to sonar and radar signal processing. In spite of the fact
that it was conceived for the ALEWIN configuration through evoiutionary
development, it can be generalized to more compiex temporal and spatiai

filtering applications.
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Part 8
ADAPT IVE BEAMFORMING WITH INJECTED NOISE
|. Introduction

In this section an adaptive antenna array system with a special pilot
signai is proposed and studied. The goal is to produce an antenna system
which responds to signals as a function of their power jevels — the stronger
the signal, the more attenuation desired. A system of this type would
allow reception of weak signals in an environment conteining stronger, un-
desired signals (i.e., jammers).

An adaptive system is desired to cope with the non-stationary
character of most environments. The non-stationarity arises from signals
turning on and off, <ignals fading, signal sources moving in space, and
possibly the receiving array changing in physical orientation (due either
to being mounted on a moving vehicle, or on a base subject to stretching
and malformation).

The use of an antenna array as opposed to a single antenna is desired,
since this ailows spatiai fiitering in addition to frequency filtering.
Therefore, the system can form nuils in its reception pattern in the
direction of undesired slgnils.

A final objective of the system is to maintain reception sensitivity
in directions where no signels are currently to be found. This allows
for immediate acquisition of desired signals when they start up and for
essentially unattenuated reception of low power signais arriving at unknown
directions of incidence.

In conclusion, we wish the adaptive antenna system to have the follow-
ing properties:

1) attenuation based on signai power strength

2) fast response to changes in the signals




3) response to changes in the array itseif

h) receptivity in directions where no signals currentiy exist.

2. Presentation of the Aigorithn

In this section we propose in adaptive algorithm for use in an
array antenna system, designed to fulfill the functions outiined in the
Previous section. Due to the characteristics of the algorithm and its
relationship to conventional adaptive beamforming antenna systems, this
adaptive array antenna system wiil be called the Adaptive Beamformer
With Injected Noise (ABWIN).

2.1 Introduction to the Algorithm

The basic idea behind the algorithm is to feed into an adaptive
antenna array processor the signals received from the environment,
augmented by a specially chosen pilot signai. The pilot s!énai of the
ABVWIN is designed to place "soft constraints' on the array's response to
signals; the intent is to have an omnidirectional reception capabiiity in
the absence of strong (possibiy jamming) signais, but attenuating strong
signals when they do occur, the degree of attenuation being a function of
the signal power and the pilot signal power.

2.2 The ABWIN

The structure of the adaptive array system will now be described; a
discussion on the pilot signal will then be presented.

Figure B.1 illustrates the structure of the adaptive array system.
Signals are received from the environment by an array of antenna elemént_s
(the array geometry is shown in the figure for I1lustrative purposes |
as six elements in a circular pattern — the geometry of an actual antenna
array may be any configuration). Added to the outputs of the antenna

elements are the Individual components of the pilot signal (labelled "
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Figure B.1 Structure of the ABWIN for a six element antenna array.
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through e in the figure). The resulting signals are Inputs to a set of
transversal filters, whose outputs are summed to produce the array's out-
put. This output Is subtracted from the pilot signal producing an error
signal which is used by the ABWIN for updating the impulse response of the
transversal filters.

We see that the array's output contains the pilot as well as the
recelved signals, which is clearly undesirable. To overcome this problem,
8 second set of transversal filters is established so that the received
signal can be passed through this set without the addition of the pilot
signal. Therefore, one set is used for the adaptation or training of the
system; (the training filters) the second may be regarded as an operational
set of filters whose output is the useful system output. We will assume
that the reference signal is formed as i1lustrated in the figure: simply
add the pliot signal components (nl through "6)' and use the result as
the reference signal In the adaptation algorithn. Other methods of forming
the pilot signal are possible and will be discussed later. The adaptation
algorithm used for adjustment of the transversal filter weights is Widrow-
Hoff Least Mean Square (LMS) algorithm [ 1, which will be discussed In
more ;otall in the next sectlon.

The pliot signal of the ABWIN Is constructed in a speclal manner.
Each of the pllot signal components (n' through ng on the figure) is a
noise signal, generated independently of the other pilot signal components,
and the external signals. The pilot signal 1Is then the sum of the pilot
signal components. This method of cénstructlon glves the pilot signal the
property that It does not appear to be arriving from any speclfic direction,

unlike the pilot signal of conventional adeptive beamformers [ 1. The
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effect of a piiot signai constructed in this manner is described in a later

section,

2.3 Mathematical definition of the ABWIN

We wili now describe the ABWIN mathematicaily. Let there be M
antenna elements. Denote the output of sensor | at time k by s‘(k) (i=1,

..+,M). Denote the component of the pilot signal added to the ith sensor

signal by n'(k). Denote their sum by u'(k).
u‘(k) = s'(k) + n‘(k)

Associated with =ach element is a transversai filter (TF) where TF‘ is

associated with ith eiement. Each TF can be described by two M dimensionai

vectors:

a) the contents of the tapped delay line. For the training filters
we will denote the contents of the delay elements at time k of TFl
by

U, (k) = [u; (k) uy (k1) ouy (kenen)]T
where n is the number of elements in the tapped delay line. For the oper-

ational filters we will denote the contents of the delay line of TF‘ at

time k by
Sp(k) =[5, (k) s, (ke1)...s, (kene))]T

b) the weights of the transversal filter, which are the same for the
training filters TFl and the operational filters TF‘. We wili de-

note the weight vector at time k of filters 1’Fl and TF‘ by:
T
W (k) = [w”(k) wlz(k)...wl n(k)]" .

Using this notation, the output of TF' at time k is: y'(k) = VlT(k)U‘(k);

and the output of "l at time k is: Yl(k) - wlT(k) S'(k).

4




For the purpuse of writing the adaptation algorithm in vector

notatlon, we need the foilowing vectors:

U(k) = the augmented tapped deliay iine contents vector of the train-

Ing set of fiiters

u(k)= | Y2 (K)

Uy (k)

LM

S(k) = the augmented tapped delay line contents vector of the

operational set of fliters (dimension of M xi)
s, ()]

S, (k
L."( ).J
N(k) = the augmented pllot signal vector (dimensloned anl)

= X(k) - s(k)

W(k) = the augmented TOL weight vector (dimensioned anl)
v, ()

(k)= Y2 (k)

o=
*
.

W, (k
, Wid

Therefore, the output of the tralning fllters (which have the pilot signal)

is y(k) = VT(k)U(k). The output of the operational filters (which contain
only the sensor signals) Is: j(k) = VT(k)S(k).

(7N




The operation of the ABWIN can now be described mathematically. At
time k
1)  Input the new data, shifting the old data down the tapped delay
lines:
U(k) = Bu(k=1) + Bu(k)
S(k) = Bs(k=1) + s (k)
where u(k) = [u'(k)...uM(k)]T = s(k)+n(k)
s(k). = [, (k)...5, (k)]T
A = the tapped delay line shift matrix
B = the tapped delay line input matrix
These equations can be written in a component form, as illustrated
below for the U(k) vector:
ru'(kT [alo]... 0 rui(k) 1 Telof...|0] -u'(lJ

(k)= |Y2(k)]a [0]A]... |0 u, (k)= , |o]8]...]o u, (k)

i - e o) o e e e == e | Je = o « - - -

_uM(k.)J OIOI...IAJ _UM(k)J ofo]...|8 _uM(kb

where
- - -
[000...00 I
100 .00 0
A= 010...00 B = 0 » A is nxn, B is nx]
001 ...00 0
_000 IO_J [ 0
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2) Calculate the system output:
y(k) = W' (k)U (k)

¥ (k) = W' (k)S (k)
3) Caiculate the system error for use in the adaptation equation:
e(k) = d(k)-y(k)

For most of the remainder of this report we wiil assume the pilot

(or "desired'') signal is formed as follows:

M
d(k) = % n|(k)
i=]

Other possibilities will be discussed in a later section.

k) Perform the LMS adaptation:

W(k+1) = W(k) + 2ue(k)u(k)

where u is the adaptation constant.
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2.4 The Pilot Signal
To this point very little has been sa'd about the pilot signa: and its
components, but the functioning of the ABWIN depends heavily on the pilot
signal.
It was stated previously that the purpose of the pilot signal in
the ABWIN is to place "sofc' constants in the array's response to signals;
the intent being to maintain an omnidirectional reception capability in
the absence of signals. To attain the capability of omnidirectionality,
the reference signal components (ni(k), i=1, M) are Independent white noises.
Consider a signal recelved by the array from an external source.
Such a slgnal appears identical to each sensor, with the exception that
the signal may arrive at a different time. Thus there is a correlation
between sensors for a slgnal with any spatial orientation.
The ABWIN pliot signal is different, however. Since the pilot signal
components are Independent nolses, there Is no correlation between the
pliot signal components on different sensors. Thus, the pilot signal
component from one sensor cannot be used to cancel any portion of the pilot
signal component of another sensor. Because of this, the pllot signal
does not appear to arrlve from a speciflc direction. In other words, it
does not exhlbit any spatlal orlentation.
With a pliot signal created as described above, the ABWIN cannot
place a lobe in a given direction to enhance reception of the pilot slignal
as In conventlonal adaptlve arrays. At the same time, any change to the TF
welghts does affect the system's response to the pilot signal. Thus, In
the absence of external signals, the ABWIN attalns a receptlion pattern
which will be referred to as the ''qulescent" pattern. When an external signa!

Is recelved, the ABWIN reacts to place a null in the reception pattern in
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the direction and frequency of the received signal. This null also Jecreases
the gain of the pilot signal through the system; as a result, the ABwIN
will adjust to a reception pattern that '"balances' the amount of the

pilot signal lost against the amount of the external signal that is aliowed

to pass. This, then, is the ''soft constraint'' capability of the ABWIN.

3. The Quiescent Pattern of the ABWIN

Let us now determine the quiescent pattern of the ABWIN, by
examining the impulse response of the various transversal filters in the
absence of signals received by the elements.

Consider the way in which the pilot signal is generated. The signal
used for reference purposes is the sum of the individial components.
Therefore, we see from Figure 1 that !n the absence of any external signals,
the adaptive array can obtain zero error if its output is simply the sum
of the current inputs to the TF's. This is achieved when each TF has a
weight vector which is zero except for the weight corresponding to the
most recent input. This most recent input has a weight of | associated

with it. Thus, the quiescent system weight vector is:

1
J

n elements

1
O et ¢0 ¢ O =

W(k)=

OQeee O amwoceo IO e

!
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In other words, the response of each TF to & unit impulse is a unit impulse.

Note that the zero weights arise from the fact that white noise
sources are used for generating the pilot signal components. Since white
noise has no time correlation, the pilot signal components from previous
time samples are of no aid in 'predicting' the reference signal at this
time instant. Thus a zero weight is associated with c11 delayed samples.

The weights associated with the current inputs must be unity. This
is a result of the statistical independence of the individual pilot
signal components. Since the components are statistically independent, none
of the components is any aid in 'predicting'" the value of another component.
Thus to change a weight from unity would only add to the system output a
quantity which could not be cancelled by the pilot signal, resulting in
a non-zero error,

Thus we see that in the absence of external signals, the ABWIN can
produce a zero error by selection of a unique weight vector, which has
the effect of just summing the current inputs to produce the output, with
no dependence on past inputs.

This "quiescent'’ weight vector determines the ''quiescent'' array
reception pattern, in conjunction with the antenna array geometry. This
quiescent pattern is simply the pattern obtained when the antenna element
outputs are directly sunmed. Thus the sensor geometry has a direct effect
on the quiescent pattern of the ABWIN, but does not effect the quiescent
weight vector. A method of modifying the pllot signal to modify the
quiescent weight vector, allowing a broader choice of quiescent reception

pattern, is proposed In a later section.
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PF' : y, Analysis of the Convergence Point of the ABWIN

In this section we wiii anaiytically determine the mean (expected

value) of the weight vector, at congergence. Begin with the adaptatior

equation:

: Wik¢i) = Ww(k) + 2ue(k)U(k) = W(k) + 2uU(k)e(k)

Substituting for the error:

Wik#1) = W(k) + 200 (k) [d (K)-y (k)]

= W(k) + 200 (k) [d(k)-uT (k)W (K) ]

= W(k) + 2ud (kU (k) - 200 (k)uT (k)W (k)

Now take the expectation:

AN TR Y L SR R e SRR T A ST

E(W(k+1)} = E(W(K)} + 2uE{d(K)U(K)) - 2uE{u (k)07 (k)W (k))

Now we make the approximation _hat

EU()UT (W)} = E(u(k)oT ()} E(W(k))

which is good for small u. Under this approximation:

E(W(k+i)}= E{W(K)} + 2uE{d (k)u(k)} -2uE{u(k)u" (k)} E{W(k)}

At convergence, we have E{W(k+i)} = E{W(k)} , which is achieved when

EU(IUT (k)} E{W(K)} = E{d(k)U (k)

Therefore at convergence,

EW(D} = Eu)uT (1)) etdir)u(k))

For ease of notation, let

T
R, 9 Eu)uT(k))

, P = E{d(k)u(k))
' W= E(W(k))
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Thus the converged weight vector satisfies

we=gr"!p,
uu
Now, since
M
d(k) = L n'(k)
j=)
we have

M
E{d(k)u(k)} = = E{n'(k)U(k)}
i=1

However, the piiot signals are white and independent of one another and any
external signals. Therefore,

[ 2]

.o...o Q

O eee O Q e
[ 1]

0

where 02 is the power of a pilot signal component: o 8 E{nf} .

However, Ruu can be decomposed into a contribution from the external

signals and one from the pilot signals,
R = ELISOON(] (ST ()+NT ()]} .

But the n'(k)'s were constructed to be Independent of the s'(k)'s. So

Ruu can be broken into the sum of external signal and pilot signal covariance

matrices.
R, = E(SIST()) + EONGONT ()

=R _+R
s nn
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Thus, for the mean weight vector at convergence, we have

Ve (R + am)" P

Now, since the n, are independent white noises of variance 02, R = le

nn
where | Is an identity matrix. Thus

Ve R _+o?n)7p
The term Rss itseif may be the sum of a set of matrices, each dependent on
signais received by the array.

We see that the converged weight vector is a functlon of the ref-
erence signal power 02, as well as a functlon of the signals in the
tapped delay 1lne (Rss)' Rss is dependent upon both the time correiation
characteristics of the external signals as well as the sensor geometry.

A signal with non-zero correlatlon across a delay of one or more time
samples will Introduce non-zero off-diagonai terms in Rss’ due to the
tapped delay lines. In additlon, an external wavefront received by the
sensor array arrlves at each sensor delayed in time by an amount
dependent upon the sensor geometry and the direction of arrival of the
wave. This geometry dependent time delay affects correaltion between
the contents of the tapped delay lines of different sensors. Thus we
see that the cross-correlatlion matrlx Rss is a compllicated function of
the statistical characteristics of the received signals and the sensor
geometry.

We see that In the absence of external signals, Rss = 0, and the

quiescent weight vector ls:




p 1]
Ve 02)'palpa 0

o2 :

0.

I

0

L.é.a

as predicted in an earlier discussion.

25 5. Application of the ABWIN

5.1 Introduction

In this section the ABWIN is applied to a particular array configuration

et gt e o

under several different signal environments. The simulation of the ABWIN
is compared with results calculated from the theory presented earlier
to demonstrate the validity of the theory. Then the theory is used to

- calculate the ABWIN behavior under different signal conditions to demon-

strate the ABWIN response to a signal on the basis of its power.

5.2 The Array Configuration

Figure B.2 shows the sensor geometry used in this section. The

speed of signal propagation is 1, the sampling rate is .125, and each

tapped delay iine contains 8 taps. Thus each tapped delay line will hold
| cycle of a sine wave of frequency 1, and If the signal sine wave (with
frequency 1) is arriving from the 0° direction, the signal at sensor & is

shifted 180° In phase from the signal at sensor |.

5.3 Simulation Results
. This section presents an example where the converged vaiue of the
mean weight vector is computed from the theoretical results presented

earlier, and compared with an actual weight vector obtained from a computer

simulation of the ABWIN.
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In this example two signals are present. The first signal has a
frequency of 1., a power of 1., and is arriving from a direction of :8°.
The second signal has a frequency of 2., a power of 1., and is arriving
from a direction of 108°. The pilot signal component power (02) is 5.

The calculated value of W is compared below with a weight vector obtained
from a simulation of the ABWIN. Note that the simulation weight vector
is an Instantaneous weight vector; no averaging was used to obtain this
vector.

The weight vector consists of 48 (6x8) elements. The first eight
elements correspond to the TF associated with sensor | (TF'). The next eight
«lements correspond to TFz and so on. The first weight of each set of
eight corresponds to the weight associated with the most recent sample, the
second to the next oldest sample, and so on.

The theoretical and measured weight vectors are presented in Table

LD




TABLE B.1 THEORETICAL AND MEASURED WE IGHT VECTORS

W (theoretical)

1.0358
- .1375
. 1407
.0003
.0508
.0109
0541
.1269
.9228
.0245
.0510
. 1025
. 0005
. 1568
. 1287
- .0297
.0380
.1079
.0823
.0M85
.0452
- .0929

1.0358

. 1269
.0109
.0508
- .0003
- . 1407
- .1375
.9228
- .0297
. 1287
. 1568
.0005
. 1026
.0510
.8309
- 00929
. 0485
.o'“
.0823
.'07’
- .o;u

ABWIN simulation

1.0344
- 1224
- .1326
.0020
.0559
.0015
.0332
. 12hb
9224
.0231
.0582
.1103
.0031
.1600
1174
- .0451
.8232
.0515
.0883
.0735
.0153
.0572
.0579
- .0781
1.0269

119

.0490

0171

.0h94

. 0040

1472

-9055

0243

1391

. 1648

.0048

. 1075

.0565

.0365

.8271

.0978

.0b43

.0560

.0288

.0895

173

0400




B e ey U T L ST

As can be seen, there is a very good agreement between the theoretica:
and actual weight vectors. In all cases examined in this research a cood

agreement between actual and theoretical vaiues were obtained.

5.4 Results Calcuiated form Theory

This section presents results in which the thoery presented eariier
is used to caiculate the response of an ABWIN to a set of situations which

allow examination of the ABWIN performance.

5.4.1 Signal of Frequency = |, Power = i, Direction = i8°

In this section, a single signal of frequency 1 and power | is
impinging on the array of sensors, arriving from a direction of i8°.
Table B.2 below shown the gain of the ABWIN in the direction of the signai
as a function of the power of the pilot signal components. Figures 8.3
and 8.4 show the entire antenna pattern at a frequency of | for two of
the cases in Table 1. The crosshairs on the figures show the receiving array
gain in the direction of signal arrival. The stronger the pilot signai,
the relatively weaker the recieved signal is, the more like a signal and less
like a powerfui jammer it appears to the system. So, the stronger the piiot

signal, the lower the notching effect seen by the actuai signal of unit

power.
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TABLE B.2

ANTENNA POWER GAIN AT FREQUENCY = 1, DIRECTION = 18°, SIGNAL POWER = |

Pilot Signal 2 Signal Power

Component Power (0°) Gain
180. 5.22
| 3. 2.48
| 9. .694
b's .239

1. 1.28 x 1072

N 1.38 x 1073




i 5.4.2. Signal of Frequency = |, Power -10, Direction = 18°

| This is the same as the previous situation, except the power of the
) incoming signal has been increased from | to 10. Table 8.3 and Figures
B.5 and B.6 present the results. Once again, the weaker the pilot signal,

the greater the rejection of the received signal. The more powerful

recieved signal (of power 10) is more strongly rejected by the adaptive

antenna than that of unit power.

5.4.5 Two Si nals: Signal I:
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‘ JABLE B.3
§ ANTENNA POWER GAIN AT FREQUENCY = 1, DIRECTION = 18°, SIGNAL POWER = 10
i Pilot Signal Signal Power
; Component Power (c“) Galin
i 198. .694
3. .991 x 10”"
8. 128 x 10"
| ; 5. .334 x 1072
; | | . 138 x 1073
i i: 'S
; . 139 x 10
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P' % 5.4.3 Signai of Frequency = 2, Power = i, Direction = 108°

y Table B.4 shows the gain of the ABWIN to a signal of frequency = 2,
direction = i80°, and power = i. Figures B.7 and B.8 show the entire

antenna pattern for the cases of reference signai component power = 30

and 5. The ioss of signal is roughiy simiiar to the previous cases

(Fig. B.3 and B.4)
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TABLE B.4

ANTENNA POWER GAIN AT FREQUENCY = 2, DIRECTION = 1085 POWER = |

Pilot Signal 2 Signal Power
Component Power (0°) Gain
196. 2.30
3 36. 1.09
§ 8. .306
: 5. .105
F 1. .565 x 1072
N .608 x 107"




5.4.4 Signal of Frequency = 2, Power = 10, Direction = 108°

. This situation is the same as the previous case except the signel
power has been increased from 1 to 10. Stronger signal losses result. Tabje

8.5 and Figures B.9 and B. 10 present the measured responses.
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Signal of Frequency = 2, Power =10, Direction = 108°, with
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of Figure B.5, except signal is of different frequency and
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is greater here.
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TABLE B.5
ANTENNA POWER GAIN AT FREQUENCY = 2. DIRECTION = 108°, POWER = |7

Pilot Signal Signal Power
Component Power (02) Gain
108. . 306
3. 436 x 107!
9. .565 x 1072 |
5. 147 x 1072 1
1 1. .608 x IO-“ !
. 613 x 1078




5.4.5 Two Signals: Signal I: Frequency = 1, Power = 1, Direction = 18°

Signal 2: Frequency = 2, Power = 10, Direction = 108°

In this situation we have the case of two signals, of different f requency

and different direction, where one signal is much stronger than the other.
The ABWIN reacts in such a way that, at the output, signal | is stronger
than signal 2, even though at the input it is the weaker of the two. The
phenomenon is similar to "inversion of signal to noise ratios." Table B.6
shows the results, and Figure B.11shows the antenna patterns at the two
frequencies for the case where the pilot signal component power = 36, and
Figure B.12 is the analagous figure for the case where the signal component
power = §,

i The adaptive system handles the two signals essentially independently,

1. somewhat attenuates the weak signal and strongly attenuates the strong

signal.
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Signal 2 = Frequency = 2., Power = 1§., Direction = 108°
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(Same conditions as Figure B.11 excep: pilot

component power is less here)
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TABLE B.6

ANTENNA POWER GAIN IN THE DIRECTION OF TWO SIGNALS:

SIGNAL 1: Frequency = 1., Dlrectlon = 18°, Power = |,

SIGNAL 2: Frequency = 2., Dlrectlon = 108°, Power = 1§,

Pilot Signal

Component Power (02)

188.
.
| B

5.
Vs
.

Signal 1

Power Galn

5.22
2.48
694
.239
128 x 10°
.138 x 1073

Signal 2

Power Galn
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5.4.6 Two Signals: Signa! 1: Frequency =1, Power = 1§, Direction = '§°

Signal 2: Frequency =2, Power = |, Direction = 108°

This situation is the same as the previous section except the jower
levels of the two signals have been interchanged. We see from Table B.7
that the gain of the antenna in the signal directions and frequencies
have also switched, resulting once again in greater attenuation for the
stronger signal. Figure B.13 shows the antenna patterns at the two
frequencies for the case where the reference signal component power = 3§.,
and Figure B.14 is the analgous case for the reference signal component

power = 5. Figures B.13 and B.14 may be directly compared with Figures

8.9 and B.10 respectively.
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Signal 2 = Frequency = 2, Power = 1., Direction = 108°
with P{lot Signal Component Power = 38. (Same conditions
as Figure B.11 except the signal powers have been inter-
changed).
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TABLE 8.7

ANTENNA POWER GAIN IN THE DIRECTION OF TWO SIGNALS:

, Slgnal 1: Frequency = 1., Dlrection = 18°, Power = 1§,

Signal 2: Frequency = 2., Dlrection = 108°, Power = 1,

Pllot Signal
Component Power Signal 1

Signatl 2
(Noise Power) Power Gain Power Galn
! 198. 694 2.30
3. .991 x 107" 1.09
i 1. 128 x 107! 306
5. .33% x 1072 .105
| 1. 138 x 1073 .505 x 10”2
*' . 139 x 1070 .608 x 107"
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5.5 Summary of the Simulations

From section 5.4 we see that the pilot signal component power has a
direct effect on the attenuation an external signal experiences. An
Important parameter is ratio of signal power to pilot power. The two
incident signals used In the simulations were handled essentially Independentiy
by the system. Figure B.15 I1lustrates how the recieved signals are
attenuated as their power increases. Weak signals pass while strong jammers
are attenuated.

The results of section 5.5 supports the goal of ABWIN response to a
signal on the basis of its power level. In the examples gliven, the effect
Is so strong that the reiative power levels of the signals at the output
of the array system is reversed from that at the input.

Figure 8.15 is a sunmary figure which shows the relationship between
the gain of the ABKIN and the ratio of the signal power to the pillot
signal power. From this figure we cleariy see the effect the pilot signal
power has on the ABWIN's response to a signal. (The data points for the
signal of frequency | was extracted from Tables 8.2, B.3, B.6, and B.7.

Similarly, the data for the signal of frequency 2 was extracted from Tables

8.4, 8.5, B.6, and 8.7).

6. Modifying the ABWIN Piiot Signal

In previous sections the assumption was made that the pilot signal was
constructed by summing the individual piiot signal components ("I)' It
was shown that this resulted in a particular quiescent weight vector, which,
with the sensor geometry, determined the quiescent reception pattern for

the system. A probiem exhibited itself in that the quiescent pattern was




T

L1
A , x
A
[ + x
RHY
i 4
+ ] '
, tRe|

fan
A
S ]
[N
R
i :
i
e
ll/
i‘ i ' )
' ' el ™ "
o = L [ )
|
. P . " . | ) [
F N SR TR
. 4 L] . .

Figure B.15 ABWIN gain as a function of signal to pilot siqgnal power
ratio.



e

2

the same pattern obtained by summing the antenna element outputs., I~
many situations the pattern so obtained may be unacceptable for the
application.
By modifying the formation of the pilot signal, the quiescent pattern
may be modified, and thus the sensor geometry may be taken into consideration.
Consider the quiescent pattern as discussed in section 4. In trat

section, it was proven that W = Jf P, where P = E{d(k)U(k)}, the correlation
a

between the pilot signal and the contents of the tapped delay lines. Since
it was assumed the pilot signal components (ni) were uncorrelated with the
antenna element outputs, we see that the only significant contents of the
tapped delay lines are delayed samples of the pilot signal components.
Thus, by changing th= pilot signal! d(k) to correlate differently with U(k),
the quiescent weight vector W can be altered.

The method proposed here for modifying d(k) is to allow d(k) to
include delayed samples of the ni(k)' This can be accomplished by passing
the "i(k) through a set of transversal filters, where each weight has as a
value the desired correlation of d(k) with the corresponding element in
u(k).

As an example, let us take a case of two sensors, each with two taps.
If the pilot signal is formed as originally described, we have

d(k) = n'(k) + nz(k)

I,(k>

n'(-l)
u(k) = |-'- - -
nz(k)

nz(k-l)
— J




: n, 20k + n,()n, (k)
Then P = E(d(k)U(k) | = E Qi <yl ~ Gy D
' 2
n, (k) + n‘(k)nz(k)
n‘(k)nz(k-l) + nz(k) nz(k-l)
Since " and n, are independent, white noise sources of zero mean and variance
I 02 we obtain:
i
| o2 ]
| 0 — 0
E P= =3 y SOW= —P =|--- , as expected.
| o 02 1
| 0_ 0
Now suppose that form consideration of sensor geometry we wanted
a
_ b
W= |---
c
d
To do this, we would form the pilot signal as follows:
d(k) = an‘(k) + bn‘(k-l) + cnz(k) + dnz(k-l)
y Then —
! r.-an 2(k) + bn, (k=1)n, (k) + cn (k) n,(k) + dn_ (k=-1)n, (k)
% ¢ 1 1 1 2 1 2 1

an‘(k)nl(k-l) + bnlz(k-l) + cnz(k)nl(k-l) + dnz(k-l)nl(k-l)

an‘(k)nz(k) + bn‘(k-l)nz(k) + cnzz(k) + dnz(k-l)nz(k)

: L?n‘(k)nz(k-l) + b (keD)ny (k=1) + cn,(k)n, (k=1) + dn,? (k=1)
. : -

5]
ao

2
b02
2
2

ca

do
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4
'
1
|
Yy

£Yo) ("] =WJE P = -—— , as desired.
a

a o

Thus this method of formation of the pilot signal allows control over the

quiescent pattern of the system by choice of a suitable quiescent weight

vector,

7. A Proposal for Modification of the ABWIN Algnrithm

In view of the preceding analysis of the ABWIN, particularly of the
advantages of choosing a quiescent weight vector, and many similarities to
the ALEWIN described in part A of this report, a modification to the ABWIN
is proposed here.

In section A of this report, after the ALEWIN is intrnduced, a second
type of line enhancer, the ALEWAIN is introduced. The similarities in per-
formance between the ALEWIN and the ALEWAIN are demonstrated. The
ALEWAIN (using the ''leaky' LMS algorithm) has the characteristic that in the
absence of any excitation (inputs), the weight vector collapses, of ''relaxes'
to zero. In the ABWIN, we see similar behavior in that in the absence of
external excitation, the weight vector returns to its quiescent value.

On the basis of this resemblance, the following algorithm is proposed:

run the adaptive array as discussed before, but without the pilot sigral noise
components added to the sensor outputs. As the error signal, use the

negative of the system output. Then use the following rule for updating

the weight vector:

Wk1) = W(k) + 2e(K)U(K) - 2uy (W-W(K))

-~

where Y is a constant to be adjusted, W is the quiescent weight vector.

11
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Now a term explictly causing a relaxatlon effect is included, the constant
Y controlling the magnitude of the relaxation effect.

Preliminary studies indicate that this algorithm has the desirea
features of the ABWIN, but in addition does not require a '‘parallel"
system for computation of the system output ¥ without the corrupting pilot
signal does not require a complicated scheme for generating the desired
quiescent pattern, and generates less adaptation noise in the weights

(thus enabling faster convergence).

8. Conclusions

The Adaptive Beamformer With Injected Noise has been introduced,
and some analysis has been undertaken. Simulations of the ABWIN have been
shown to agree with the theoretical results. The formation of the pilot
signal to obtain a desired quiescent response has been discussed, and a new
method to accomplish the same goals as the ABWIN with a simpler algorithm
has been proposed for study.

The effect of sensor geometry on the capabilities of the ABWIN has
not ylelded to analysis at thls time, and is likely to be a problem in
future studles of all antenna arrays, adaptive and otherwlse.

It is suggested that the study of the new algorithm proposed above
be pursued, with the intent of camparing its performance to that of the
ABWIN, and extending analysis of both algorithms further than presented
herein. In addition, the study of the effect of sensor geometry on the

capablllties of these systems should be continued as a background activity.
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1. INTRODUCTION

HE APPLICATION of adaptive techniques has

allowed development during the past fifteen years of
high-performance receiving antennas with a capability of
automatically eliminating sidelobe interference. In such
antennas the main beam is steered in a predetermined
direction in search of expected signals, while interference
received outside the main beam causes the formation of
nulls in the radiation pattern [1]-[10]. New types of
adaptive antennas are also currently being designed that
will automatically seek and track desired signals. This
application promises a further significant enhancement of
antenna capabilities.

Many adaptive antenna systems are configured by con-
necting the elements of an antenna array to a multichanne:
adaptive filter. In its genéral form an adaptive filter is a
device that adjusts its internal parameters and optimizes
its performance according to the statistical characteristics
of its input and output signals. The internal filter adjustment
is made through a series of variable settings controlled by an
adaptive algorithm.

The purpose of this paper is to analyze and compare the
properties of certain algorithms available for use with
adaptive filters. Two basic methods of adaptation are
considered, those of steepest descent and random search.
Theoretical performance comparisons of algorithms based
on these methods, including the Widrow-Hoff LMS
algorithm and a new linear random search algorithm, are
made by relating quality of solution to speed of adaptation.
Results of computer simulations are presented to provide
experimental confirmation of the theoretically predicted
performance of tie algorithms and to illustrate their use in
adaptive antenna applications.

I1. CHARACTERISTICS AND TERMINOLOGY
OF THE ADAPTIVE PROCESS

The theoretical analyses of this paper are based on the
particular form of adaptive transversal filter illustrated in
Fig. 1. This finite impulse response (FIR) filter consists of
a tapped delay line connected to an adaptive linear combiner
that adjusts the gain of (or “‘weights™) the signals derived
from the delay line and combines them to form an output
signal.! All of the algorithms described in this paper can
be used to govern the operation of the adaptive linear
combiner; the LMS algorithm is restricted to this use.

The input signal vector X; of the adaptive linear combiner
is defined as

X7 A [xyx qu]r- m

The. input signal components are ammmed to appear
simultancously on all input lines ai Jdiscoste times indexed
by the subscript /. The weighting cosflicionts ov multiplying
factors w,,w,, " - *,w, are adjustable. & symbalined i Fig. |

! The adaptive linear combinw i “Ta™ ey wlen G -
finad ; =1 ] whms
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INPUT o—og— . TAPPED DELAY LINE

WITH UNIT DELAYS

ADJUSTABLE
WEIGHTS

:.ﬁ).% ouTPuT
412

ADAPFTIVE
ALGORITHM
DESIRED
RESPONSE
(@)
wy
/ Xy

(b)

Fig. t. Adaptive filter consisting of tapped delay line connected
to adaptive linear combiner. (8) Adaptive filter configuration. (b)
Adapiive linear combiner with input and output terminology.

by circles with arrows through them. The weight vecter W is
WT A [w,wy o w]". (2
The output y, is equal to the inner product of X; and W:
y; =XW=W'X, 3)

The error ¢, is defined as the differcnce between the desired
response d; (an externally supplied input sometimes called
ihe “‘training signal”) and the actual response y;:

G Ad - X'W=d — WX, )

In adaptive antenna systeins the desired response may be
derived by various methods, one of which is to inject a
“pilot signal” whose characteristics determine the “look™
direction and frequency response of the main beam [4].
Other methods ure illustrated in Section V1.

It is the purpose of the adaptive process to adjust the
weights of the adaptive linear combiner to minimize the
mean square of the error ¢, Let the input sigrals X; and
desired response d; be statistically stationary. During
adaptation the weight vector varies, so that even with
stationary inputs the output y; and error ¢; will generally
be noanstationary. Care must thus be taken in defining the
nean square error for an adaptive system. The only pos-
sibility is an ensemble average, which can be established in
the following manner.




F’fe

- R R

it € et il

WIDPOW AND McCOOL: ADAPTIVE ALGORITHMS

The adaptive process progresses recursively or by iterative
cycles. At the kth iteration let the weight vector be W,.
Squaring ar.d expanding (4) and letting W = W, yields

6,-2 == lljz — MIXITW. + W.TXIXITW.. (5)

Now assume an ensemble of identical adaptive linear
combiners, each having the same weight vector W, at the
kth iteration. Let each combiner have individual inputs
X, and d; derived, respectively, from stationary ergodic
ensembles. Each combiner will produce an individual error
¢, represented by (5). Averaging (5) over the ensemble
yields

E[elzl'-'. = E[4}'] - 2E[d,X,']W.
+ WJE[X,XTIW,. (6)

Defining the vector P as the cross correlation between the
desired response (a scalar) and the X-vector then yields

’T A E[djqu = E[dle d]le st d,x,,]r. (7)

The input correlation matrix R is defined in terms of the
ensemble average

XX XiyXay
R Iy E[XIXIT] = E le:xl] ij:le

Xy Xnj
@®

This matrix is real, symmetric, and positive definite, or in
rare cases positive semi-definitc. The mean square error
&, can thus be expressed as

c. A E[GII]'-'. = E[dlz] . ZPTW. + W.TRW.. (9)

Note that the mean square error is a quadratic function of
the weights that can be pictured as a concave hyper-
paraboloidal surface, a function that never goes negative.
Adjusting the weights involves descending along this surface
with the objective of reaching its unique minimum point
(“the bottom of the bowl” [11]). Gradient methods are
commonly used for this purpose.

The gradient ¥, of the mean square error function with
W = W, is obtained by differentiating (9):

dE !l!! I
ow,

vV, 2 = -2P + 2RW,  (10)

0
dw,

The optimal weight vector W*, gencrally called the Wiener
weight vector, is obtained by setting the gradient to zero:

We* =R"'P (1

This equation is a matrix form of the Wiener-Hopf equation
[12]{14]).

For the purposes of subsequent analysis it is convenient
to reexpress the mean square error function (9) and the
gradient function (10) in moge compact form. Substituting

v,

617
(11) in (9) yields the minimum mean square error:
bmin = E[d)}] — W*TP. (12)
Recombining (12) with (9) and (11) yiclds
$u = Smin + V,TRV, (13)
where
V. AW, - W, (14)

The gradient may be expressed in terms of ¥, as
V. = 2RV,. (15)

If one assumes that the R-matrix is positive definite, it
may be expressed in normal form as follows

R=0QAQ" (16)

where the columns of the square modal matrix Q are the
eigenvectors of R and A is the diagonal matrix of eigen-
values. If Q is comstructed to be orthonormal,? then one
may write

Q' =0" (17
Note further that the inverse of R is
R'=0A'Q° " (18)
The mean square error may thus be expressed as
& = Lmin + ViTQAQV,. (19)
A new set of coordinates may now be defined as follows:
Vv =0Qv=0Q'¥v (20)
and
VT =vTQ. )
Substituting (20) and (21) into (19) then yields
&= bum + TiTAY,. (22)

The transformation Q projects ¥ into ¥'—that is, projects
V into primed coordinates. It can be observed from (22)
that, since A is diagonal, the primed coordinates must
comprise the principal axes of the quadratic mean square
error performance surface. The gradient expressed in
primed coordinates then becomes

V. = 2AW,. @)

IIl. THE METHOD OF STEEPEST DESCENT

The practical objective of the adaptive process is to find
asolution to(11). One way of doing so would be by analytical
means. An analytical solution, however, would present
serious computational difficulties when the number of
weights was large or when the input data rate was high.
In addition to the inversion of an n x n matrix, it could
require as many as a(n + 3)/2 autocorrelation and cross
correlation measurements to obtain the clements of X
and P. Furthermore, this process would have to be con-
tinually repeated in most circumstances, where the input

3 This can always be done when R is positive definite.
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signal statistics would be slowly varying. For these reasons
it is more practicable to make use of other recursive statistical
estimation methods in devising algorithms for use in
adaptive filters.

A well known and proven method for adjusting the
response of an adaplive system is that of steepest descent
[15]). [16]). Adaptation by this method starts with an
arbitrary initial value W, for the weight vector. The
gradient of the mean square error function is measured
and the weight vector altered in accordance with the
negative of the value obtained. This procedure is repeated,
causing the error to be successively reduced and the weight
vector to approach the optimal value.

The method of steepest descent can be described by the
relation

Weii = Wi + u(-V) (24)

where u is a parameter that controls stability and rate of
convergence, and V, is the value of ihe gradient at a point
on the error surface corresponding to W = W,. An
expression for the gradient, a linear function of the weights,
is given by (15). Substituting this expression into (24) yields

Wi.. = W, — 2uRV,. (25)
Subtracting W* from both sides of (25) yields
Viei = Vi — 2uRV, = (I - 2uR)V,. (26)

Equation (26) is a linear homogeneous vector difference
equation whose solution characterizes the dynamic be-
havior of the weight vector as it begins at W, and, if the
process is convergent, relaxes toward W*. The solution of
(26) is given by

V. = (I - 2uR)\V,,. @n
This solution is stable (convergent) if
lim (I — 2uR)* = 0. (28)
Since e
(I — 2uR) = QI — 2uA)Q™" (29)
and
(I - 2uRY} = I - 2uA) Q7" (30)
condition (28) will be satisfied if
P:n (I - 2uA) = 0. (k1))
Condition (31) will be met when
Il = 2ud,| < | 32)

forp = 1,2, - -,n. Since all eigenvalues are positive,
i

>u>0 33

where 1_,, is the largest eigenvalue of R. Equation (33)
gives the stable range for u.

It is casily shown that in primed coordinates the method
of steepest descent is represented by

Vieg= (I - 2uA)Vy’ (34)
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whose solution is

V. = (I — 2uA)'V,'. (35)
For the pth coordinate one may write
v’.' = (I - 2”‘.’,).0’0'. (36)

Equation (36) ;epresents a simple geometric progression for
vy sta‘rting‘ ﬁtom tie initial condition v,,'. The pth
geometric ratio is

r, = (1 — 2ui,). a1y

An exponential envelope of time constant 1, car be
fitted to the geometric sequence represented by (30). If the
unit of time is one iteration cycle, then

r, =exp(—lft,) =1 — ! + l
’ g 1, Ak

In practical adaptive processes u is chosen so that 7, is
large compared to one; the series of (38) can thus be
represented by its first two terms. Combining (38) with (37)
gives a formula for the pth time constant of the method of
steepest descent:

T, = ——.
P,

(39)

Transient phenomena in the weights, as seen from (35)
and (36), are simple geometric sequences along the primed
coordinates. Along the original unprimed coordinates, the
same phenomena, represented by (27), are more complicated.
Transients in the weights themselves thus consist of sums
of geometric sequences, the number of time constants
typically being equal to the number of weights.

While transients are occurring in the weights as they
relax toward the optimal Wiener solution, the mean square
error undergoes changes. The cxpected error, for W = W,,
is given by (22). The weight transients, expressed in terms
of ¥,’, are given by (35). A “learning curve” showing mean
square error as a function of number of iterations k can be
computed by substituting (35) into (22):

& = Emin + Vo'T(I - 2uA)AVy. (40)

As long as conditions (31) and (33) are met, the adaptive
process will converge on the minimum point of the mean
square error surface:

.hm Cl = émln' (4|)
The mean square error solution starts at k = 0 with an
initial value {p + Vo AV, corresponding to V,' = ¥/,
and relaxes toward ¢, ,,. The relaxation process is a sum of
geometric sequences whose pth mode has a geometric ratio
of (1 — 2;41,)’. Thus the mean square error learning curve
has a pth mode time constant of

i
fm—;’-‘i;

Learning curves of computer simulated adaptive processes
will be presented below.

1
= -2
o 42
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Fig. 2. Gradient estimation by derivative measurement.

If exact gradient measurements could be made each
iteration, the adaptive weight vector would converge to the
Wiener optimal weight vector. In reality, however, exact
gradient measurements are not possible, and the gradient
vector must be estimated from a limited statistical sample.
The following sections describe two algorithms based on the
method of steepest descent that use different techniques
to obtain the necessary gradient estimates. The first uses
differentiation and requires that finite perturbations be
made in the weight vector. The second, the LMS algorithm,
obtains gradient estimates directly and without perturbing
or “dithering™ the nominal weight vector adjustment.

A. Differential Algorithm

One way of estimating gradient vectors is by the direct
measurement of derivatives. Although this technique is
straightforward and easy to implement, it has been largely
overlooked in the iterature and is here analyzed in detail.
For convenience the resulting algorithm is designated the
DSD (“differential steepest descent™) algorithm.

1) Gradient estimation by derivative measurement: A
single component of the gradient vector can be measured
in the manner illustrated in Fig. 2. The curve representing
the parabolic mean square error function of a single
variable is defined by

@) A &= An? + & 43)
Its first and second derivatives are
d
@)... = 2 “
‘3
F").-.. = 22 (45)

The derivatives are numerically estimated by taking
“‘symmetric differences”:

i\ o+ ) - o -9)

(5. % “o
Y _o+d)-An+imn-98
... 2 - 150
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These finite differences are exact for the quadratic ¢-
function.

The procedure illustrated in Fig. 2 requires that the weight
adjustment be altered while the gradient measurement is
being made. It is assumed that no time is spent at the
nominal adjustment v, but that equal time® is spent at
vy + 6 and v, — 4. The result is that on the average the
mean square error is greater by an amount y than it would
have been if the adjustment had remained at v,. A per-
formance penalty thus results from the weight vector
alteration.

The quantity y can be calculated for the one-dimensional
quadratic {-function as follows:

Y= A‘(vl + 6)1 + ;-(vg - 6)1 + zfmin
2

= 5%, (48)

Notice that the value of y deoends only on 1 and é and
not on v,. A dimensionless measure of how much the
adaptive system is perturbed each time the gradient is
measured, a parameter that may be called the “perturbation™
P, is defined as follows:

= A0 = Suim

Y
Pp—=—. 49)
Cma ‘mia
This is the average increase in mean square error normalized
with respect to the minimum achievable mean square error.
The estimation of two-dimensional gradients may now be
considered. In this case the R-matrix is given by

R = |70 ’on] 50
. LMo ™ 50)
and the {-function is
§ = roovy’ + ryyva® + 276,0,0; + L (1))
When the partial derivative of the error surface along
coordinate v, is measured, the perturbation is

P = r005*[{ min: (52)
The perturbation for meazurement along coordinate v, is
P =118 i (53)

Assuming that equal time is required for the measurement
of each gradient component (that is, that 2N data samples
are used for each measurement), the average perturbation
during the measurement is given by

P, =P ooty (54)
Suin 2
If one now defines a general perturbation for n dimensions

as the average of the perturbations of the individual
gradient component measurements, one obtains

P=m— —. (35

3 The time required to take N data samples.
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Since the trace of the R-matrix is equal to the sum of its
cigenvalues, and since the sum divided by the number of
cigenvalues is equal to the average of the cigenvalues, the
perturbation may be conveniently expressed as

P
Semin

Other means of gradient measurement have been used in
practical systems. A weight can be perturbed or dithered
sinusoidally, and the cross correlation between the weight
value and the value of the performance function determined.
Al weights can be simultaneously dithered at individual
frequencies and the gradient components obtained by cross
correlation. The procedure of Fig. 2 corresponds to square-
wave dithering.

2) Gradient measurement noise: Gradients measured in
the manner shown in Fig. 2 are noisy because they are
based on differences in {-measurements that are noisy.
Each {-measurement is an estimate based on N error

samples:
taly e
N;: &

It is well known that the variance in an estimate of the mean
square obtained from N independent samples is equal to
the difference divided by N between the mean fourth and
the square of the mean square. The variance in the estimate
of { may accordingly be expreseed as

4 _ 2
var [a - Ele N(E[G ) .
If ¢, is normally distributed with zero mean and variance

of o2, its mean fourth is 30%, and the square of its mean
square is o*. The variance in the estimate of { is thus

2
m[e]-llv(u‘-a‘)-%-z_%,

(36)

(7

(58)

(39)

Note that the variance is proportional to the square of ¢
and inversely proportional to the number of data samples.
It can thus in general be expressed as
wr 8] = % (©0)
N
where x has a value of 2 for an unbiased Gaussian probability
density. If the probability density is other than Gaussian, the
value of x is generally less than but close to two. It is thus
assumed for the purposes of subsequent analysis that
2‘2

var ==, 6]
B = (61)
The derivatives required by the gradient estimation
technique of Fig. 2 are measured in accordance with (46).
The error in the derivative estimate will be a sum of two
components that, since the samples of the error ¢, are
assumed to be independent, will also be independent. The
variance of each component is determined by (61). If it is
assumed that the perturbation P is small, that the adaptive
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process is close to convergence, and that the weight vector
remains near the minimum point of the mear. square error
surface, then the two components will have essentially
the same variances, and these variances will be additive.
The variance in the estimate of the derivative, using (46)
and (61), may be expressed as

. [d_: _ 1 [2:‘(v. +9) , %% - 6)]
dv =Dy 462 N N
o fonn
o (62)

When a gradient vector is measured, the errors in each
component are independent. The gradient noise vector N,
may thus be defined in terms of the true gradient V, and
the estimated gradient V,:

V.4V, + N, (63)
Under the assumed conditions the covariance of the gradient
noise vector is thus given by
f 2ln 1
cov[N,] = 22 ]
[M] = 2=

It is also useful to obtain an expression for the covariance
of the gradient noise vector in primed coordinates:

N/ = Q7'N, (65)

Since the covariance matrix of .4, is scalar, projecting into
primed coordinates through the orthonormal transforma-
tion Q™! yields the same covariance for N,’:

(64)

2
cov [N,] = E[Q"'N,N,Q] = I%L‘;"z I (66)
Near the minimum point of the mean square error surface
the covariance of the gradient noise is essentially constant
and not a function of W,.

3) Noise in the weight vector: Adaptation based on noisy
gradient estimates results in noise in the weight vector.
The method of steepest descent with ideal gradients is
represented by (26). With estimated gradients this equation
may be rewritten as

Vit = Ve + 1(=V) = Vo + u(=Y, = N). (67
Substituting (15) and combining terms yields
Vier = (I — 2uR)V, — pN, (68)

a first-order vector difference equation with a stochastic
driving function of —uN,. Projection into primed co-
ordinates may be accomplished by premultiplying both
sides of (68) by 0~ ':

Visr = (I = 20A)Vy’ — pNy'. (69)

In steady state, after initial adaptive transients have died
out, ¥,’ undergoes a stationary random process in response
to the stationary driving function —uN,’. Since there is
no cross coupling between terms and the components of
N,’ are mutually uncorrelated, the components of ¥V,
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will also be mutually uncorrelated, and the covariance
matrix of N, will be diagonal. To find this matrix one first
multiplies both sides of (69) by their own transposes:

Vo tKils = (I = 2uM)W VT = 2uA)
+ WBNSNST = (1 - 2uA)V/'NT
- uN/ V(1 — 2uA). (70)
Taking expected values of both sides yields*
cov [V,'] = (I = 2uA) cov [V - 2uA)
+ ulcov [N/]. (7))
Combining terms further yields
cov [W'] = p¥(4uA — 4uPA?)~! cov NI (72

In practical circumstances the method of steepest descent
is implemented with a small value of H, so that

HA « 1. 73)
Neglecting the squared terms in (72) thus yields

cov[V,] = g A" cov [N,]. (74)
Using (66) one may now write

2
cov [V] = 3‘% A, (5)

The components of V,’ are mutually uncorrelated but not
all of the same variance. The covariance of ¥, can be
obtained from (75) by using (18) and (20):

cov [1] = E[QV,'V,7Q""] = ;‘—% R (76)

4) Misadjustment: Without noise in the weight vector,
adaptation by the method of steepest descent would con-
verge to a steady-state solution at the minimum point of
the mean square error surface. The mean squate error
would therefore be {,,,. Noise in the weight vector, however,
tends to cause the steady-state solution to vary randomly
about the minimum point—that is, to “climb the sides of
the bowl.” The result is an *“‘excess” mean square error, a
mean square error that is greater than ¢,

An expression for mean square error in terms of V'
is given by (22), where the excess mean square error is
V. TAV,'. The average excess mean square error is

E[V,"AV,] = ');‘,l 3E[(0)). am
From (75) one may write
2
E[(00)*] = %‘; G) (18)

4 Note thai since V' is affected gradient noise from previous
MVCC”L, \ /N ll.)d“N.'m mﬁ. e
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Thus (77) can be rewritten

2
VTAV,] = MHomin 79
E[ [ l] 4N62 ( )
A useful parameter in the design of adaptive processes
is the misadjustment M, which is defined as the average

€xcess mean square error divided by the minimum mean
square error:

E [ Vl’rA Vl']
‘min '

The misadjustment is a dimensionless measure of the dif-
ference between adaptive performance and optimal Wiener
performance as a result of gradient noise. In other words,
it is a measure of the cost of adaptability.

Using (79) one can express the misadjustment for the
DSD algorithm as follows:

M (80)

= Wia
4Né?

This formula is simple and clear but can be more usefully
expressed in terms of time constants of the learning process
and the perturbdtion of the gradient estimation process.

Each gradient component measurement uses 2N samples
of data. Each iteration involves » gradient component
measurements and therefore requires 2Nn data samples.
The time constant Tpmeo i8 given by (42) in number of
iterations, a basic “unit of time.” If one now defines a new
time constant T,__ whose basic unit is the data sample and
whose value is expressed in number of data samples, then
for the DSD algorithm

@n

T,.. & 2Nz, . (82)

The new time constant is zasily related to real time if the
sampling rate is known.

Using the perturbation formula (56) one can reexpress the
misadjustment for the DSD algorithm (81) as

M = W (83)

Using (42) the time cunstant defined by (82) can also be
reexpressed as

T = — (84
Pmoe 2“1’ )
which is equivalent to
o= ﬂ ....l_ 85
'y (T,__) ¢
or
nN /(|
), ®

Combining (86) with (83) shows the misadjustment to be

n (1
M= 7.__“)”. @7
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For the DSD algorithm, misadjustmen’ is thus pro-
portional to the square of the number of weights and
inversely proportional to the perturbation. It is also in-
versely proportional to the speed oI adaptation; that is,
fast adaptation results in a bigh misadjustment. More
specifically, the misadjustment :s dependent on the average
reciprocal time constant of th:: learning curve whose time
base is calibrated in number of cata samples. Note that
very fast modes may dominate t!is average and cause an
increase in misadjustment, whil: the rate of convergence
will remain limited by the slowest mode. In other words,
with disparate eigenvalues in the R-matrix, the adaptive
process may be afflicted with the misadjustment of its
fastest modes but may converge only at the rate of its
slowest modes. With equal or closely similar eigenvalues,
the process is more efficient, and the misadjustment is
given by

nl

T 8PT..

(88)

In this case the iearning curve has only one time constant,
T

Misadjustment as defined here is a normalized per-
formance penalty resulting from noise in the weight vector
and is a stochastic effect. In an actual adaptive system,
where the weight vector is deterministically perturbed to
measure the gradient, another penalty accrues, the perturba-
tion, also a ratio of excess mean square error to minimum
mean square error. The total excess mean square error can
be shown to be the sum of the “stochastic” and ‘!deter-
ministic” components. The total misadjustment is thus

My 4M+P (89)
Adding these components yields

M, = ;-'-; (i) + P (%)

The perturbation is & design parameter. Its choice is
optimized by differentiating (90) with respect to P and
setting the derivative to zero. The result is to make the two
right-hand terms of (90) equal. The optimal perturbation
is thus

P.’I - ‘}Mm 91)

and the minimum total misadjustment is

(Moo = ;E-' (-T— [ _') ]"z o

The use of the above misadjustment formulas in the
design of adaptive systems will be illustrated in Section V
below.

B. LMS Algorithm

The LMS algorithm is an implementation of the method
of steepest descent that employs a gradient estimation
technique more efficient than derivative measurement. This
algorithm, however, is not universally applicable, and its

correlated
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use is restricted to the adaptive linear combiner of Fig. 1,
where inputs X, and d, are given.

1) Gradient estimation, convergence, time consiants: The
error ¢; of the adaptive linear combiner of Fig. 1 is given
by (4). A gradient estimate may be obtained by squaring
the single value of ¢; and differentiating it as if it were the
mean square efror:

[ de? %
R ow ow,
as isj_
aw ow,
Substituting (93) into (24) yields the LMS algorithm:

Since a new gradient estimate is obtained with each data
sample, an adaptive iteration is effected with the arrival of
each sample. The index k is thus replaced with the index j.

The gradient estimate of (93) may be implemented in a
practical system without further squaring, averaging, or
dlﬂ'ercntlatlon and is elegant in |fs simplicity and efficiency.
All components of the gradient ve«.tor are obtained from a
single data sample without pegturba';on of the weight vector,
Since the estimate is obtained without averaging, it contains
a large component of noise. The noise, however, is averaged
and attenuated by the adaptive process, which acts as a
low-pass filter in this respect. It is important to note also
that for a fixed valve of W the estimate is unbiased:

95)

From (10), the formula for the true gradient, this expression
can be rewritten as

E[V,]=-2P-RW)=V. (96)

Proofs of convergence of the LMS algorithm have
appeared in the literature (4], [11], [17]-[20].° These
proofs show that the algorithm is stable when

igea >4 >0 o7

which is the same as the condition for stability of the method
of steepest descent in general, given by (33). It is also shown
in [4] and [19] that the time constants of the LMS algorithm
are

1
Tose = 30y = i, (98)
which are similarly identical to the time constants for the
method of steepest descent, given by (42). Once again, t,
is the time constant of the pth mode for transient phenomena
in the weights, while t,__, is the corresponding time constant
of the learning curve. Since only one data sample per itera-

* For input vectors X, mutually over time f
n?:pum:a"onhnmwm(mmdﬁm o
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tion is used, the time constant expressed in number of data
samples is

TPmu = thnn ° (99)

2) Gradient measurement noise: Let it be assumed that
the adaptive process, using a small value of the adaptive
constant u, has converged to a steady state near the
minimum point of the mean square error surface defined
by (9). The gradient estimation noise of the LMS algorithm
at the minimum point, where the true gradient is zero, is
the gradient estimate itself"

N, =V, = —2X,. (100)
The covariance of this noise is given by
cov [N;] = E[NNT] = 4E[ex,X,T).  (101)

It is well known from Wiener filter theory that, when the
weight vector is optimized (that is, when W; = W*), the
error ¢, is uncorrelated with the input vector X,. If one
assumes that ¢, and X, are Gaussian, not only are they
uncorrelated at the minimum point of the error surface

but also statistically independent. Under these conditions
(101) becomes

cov [N,] = 4E[¢*)E[X,X,T] = 4¢,..R.  (102)
In primed coordinates the covariance is
cov [N/] = Q7' cov [N]]Q = 4., A.  (103)

3) Noise in the weight vector: Equations (67)-(74) above
apply to the method of steepest descent with any means of
gradient estimation that results in a diagonal covariance
matrix for N,/'—that is, to both the DSD algorithm and the
LMS algorithm. For the LMS algorithm, using (74) and
(103), one may write

cov [¥] = f—;A"«cm.nA) = Wmod.  (104)

The covariance of the steady state noise in the weight
vector (at or near the minimum point of the mean square
error surface) is

cov [¥,] = pmal. (109)

4) Misadjustment: Fu: the LMS algorithm the misad-
justment M, defined by (°0), may be found as follows.
The average excess mean square error, given by (77), may
be written as

E[V,"AV,] = ’z:;l 3E[(0,,)] = W ,’:3. .
= Wmntr R (106)

where, according to (104), E[(v,,)?] = péma for all p.
The misadjustment is thus given by

'T ’
M=M=ulrk. (107)
min

This useful formula may be reexpressed in a manner that
allows one to perceive the relationship between misadjust-
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ment and rate of adaptation. According to (98) one may
write

A, = 108
ua, . (108)
and
l &« 1 nf 1
utrR=—2—=- . (109)
p=1 r’mu 4 t’m' av
The misadjustment may thus be written
mM=" ( L ) . (110)
' 4 tl’mu av

It is interesting to compare (110) with (87), the misadjust-
ment formula for the DSD algorithm. Once again it is
apparent that misadjustment is reduced by slow adaptation,
by making the values of t, ., where p = 1,---,n, large.
With the LMS algorithm, however, for a given value of
misadjustment, the adaptive time constants increase linearly
with the number of weights rather than with the square of
the number of weights. Furthermore, there iz no perturba-
tion. In typical circumstances much faster adaptation is
thus possible than with the DSD algorithm, as will be borne
out by the numerical examples presented in Section VI.

It may also be observed from (110) that the LMS
algorithm, since it is based on the method of steepest
descent, suffers like the DSD algorithm when there is a
great disparity in the eigenvalues of R. Under such con-
ditions misadjustment once again can be dominated by
the fastest modes (those with the smallest time constant
Tpme)» While rate of convergence can be limited by the
slowest modes.

When the cigenvalues are equal, a useful formula for the
misadjastment of the LMS algorithm is

M=5(L). (111)

4\t

Experience has shown this formula to be a good approx-
imation of the relationship between misadjustment, time
constant of the learning curve, and number of weights even
when the eigenvalues are not equal. Such a relationship is
needed in designing an adaptive system when the eigenvalues
are unknown.

Since trace R is the total power of the inputs to the weights,
which is generally known, one can use (107) in choosing
a value of u that will produce a desired value of M. One
can accordingly combine (111) and (107) to obtain a general
formula for time constant of the learning curve with equal
cigenvalues:

n

dutr R

This formula is also a good approximation in many cases
when the eigenvalues of R are unequal.

(112)

IV. RANDOM SEARCH

The method of steepest descent is a systematic surface-
searching procedure. Although randomness enters in
practice through gradient estimation noise, adaptation by
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this method is basically a deterministic process. Random
search, by contrast, seeks to improve performance by
making random changes in system parameters. A simple
algorithm based on this method, inspired by the Darwinian
concept of evolution, may be called random search by
“‘natural selection.” Though derived from a natural model
this algorithm appears to offer a practical approach to the
adaptive process that may have engineering merit [23].

In random search by natural selection a random change
is made in the weight vector of an adaptive processor, such
as the lincar combiner of Fig. 1. The mean square error is
measured before and after the change and the measurements
compared. If the change causes the error to be lower, it is
accepted. If it does not, it is rejected, and a new random
change is tried. This procedure can be described algebraically
as follows:

Wiiy = W, + 3[1 + sgn &w) - &w, + UYL,
(113)

where U, is a random vector; &(W,) is an estimate of mean
square error based on N samples of ¢ with W = W,;
&W, + U,) is an estimate of mean square error based on
N samples of e, with W = W, + U,; and sgn {z} is +1
forz>0and —1forz <0.

This algorithm, though easy to implement, has the
drawback that nothing is learned when a trial change is
rejected and forgotten. For this reason a more efficient
“linear” random search algorithm, hereafter called the
“LRS algorithm,” has been devised. In this algorithm,
first described here, a small random change U, is tentatively
added to the weight vector at the beginning of each iteration.
The corresponding change in mean square error perform-
ance is observed. A permanent weight vector change,
proportional to the product of the change in performance
and the initial tentative change, is then made. This procedure
can be expressed algebraically as follows:

Wy = W, + BLEW) - w, + UL, (119

where U, is a random vector from a random vector generator
designed to have a covariance of a*I; §W,) and W, + U,)
are defined as in (113); and the terms § and o? are design
constants affecting stability and rate of adaptation.

The LRS algorithm is “linear” because the weight change
is proportional to the change in mean square error, and in
this respect it differs from random search by natural
selection as described in (113). The latter algorithm is
simpler to implement but does not perform as well. It is
also difficult to treat mathematically, and a performance
analysis is not attempted in this paper.

For the purpose of analyzing the LRS algorithm, the
following definitions are useful. The true change in mean
square error resulting from the addition of U, to W, is
given by

(&) & W, + 1) — (WY (115)
The corresponding estimated change in mean square error is

B8, & W, + U) - EW). (116)
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The error in the estimated change is

L B (AD), — (Ad) (117)
whose variance, from (59), is given by
var [{,] = var [(A,E),]
= var [§(W, + U)] + var [§(W))]
- LA AR LA D

In steady state operation near the minimum point of the
mean square error surface, (118) can be expressed as
4

var [(,] = N (e (119)

A perturbation is caused by the tentative changes in the
weight vector that are a part of the LRS algorithm. At
cach iteration, N samples of data are used to obtain &(W,),
with the weight vector set at its nominal value, and N
samples to obtain &(W, + U,). The next nominal value is
chosen immediately after the two & measurements are made.

During a given cycle the average excess mean square €rror
is thus given by

(W) + (W, + Uy)
2
= $E[E(W,) — W, + U] (120)
Since U, has zero mean and is uncorrelated with W,, and

since cov [U,] = cov [U,’] = 6’1, the average excess
mean square error can also be expressed as

$E[UTRU,] = 3E[U/TAU] = Yo R (121)

The perturbation P is defined as the ratio of the average
excess mean square error (resulting from tentative changes
in the weight vector) to the minimum mean square €rror.
It may thus be expressed as

cltr R
zcmln
1) Stability, time constants of LRS algcrithm: Equation

(114) may be rewritten, using (115), (116), and (117), as
follows:

E [c( W) -

P =

(122)

Wiei = W, + B[ (A%, + L]U (123)

or
Vier = Vi + B[-(AQ, + LU (124)

If one lets o* be small by design, so that U, is always small,
one can write

A&, = UV, = 2U,'RV,. (125)
Substituting (125) into (124) then yields
Vier = Vi + BU[-2URY, + ]
= (I - 28U URY, + Bl U, (126)

Equations (114) and (126) are equivalent representations
of the LRS algorithm, the former more useful for im-
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plementation and the latter for analysis. Equation (126)
shows that the weight vector is the solution of a first-order
linear vector difference equation having a randomly time-
variable coefficient —2BU,U,"R and a random driving
function g{,U,.

Both sides of (126) may be premultiplied by Q! to
obtain an equivalent expression in primed coordinates :

Vieo = (I - 28070, "A, + BLU. (127)

Though this expression is simpler than (126), it remains
difficult to solve because of cross coupling and randomness
in the matrix coefficient. It is thus necessary to derive
stability conditions for the LRS algorithm without an
explicit solution to (127). One may begin by studying the
behavior of the mean of the weight vector.

By taking expected values of both sides of (127) and
observing that U,’ is a random vector uncorrelated with '
and V,, one obtains

E[V,.,] = E[U - UU NV + BE[LU/]
= (I - 2E[UUTINEDY,] + 0
=1 - ZﬂdzA)E[V,']. (128)

This equation is analogous to (34) for the method of steepest
descent. Its solution is

E[V/] = (2 - 2pa*A)V,. (129)

Eguation (129) gives, for an initial condition of V' =V,
the expected value of the weight vector’s transient response.
Stability of (128) assures convergence of the mean of V.
The stability condition is

1Apa > po* > 0. (130)

When fia? is so chosen, the following condition is fulfilled :
lim E[¥,] = 0. (131)
[ g ]

By analogy with the method of steepest descent, whose
transient behavior is characterized by (34) through (39), the
time constant of the pth mode of the expected value of the
weight vector is

1

T,=m.

The time constant of the pth mode of the mean square
error learning curve is half this value:

1
f’“—m.

2) Noise in the weight vector of the LRS algorithm: If
one lets S’ be chosen so that (130) is satisfied, then the
mean of the weight vector will converge according to (131).
Convergence of the mean, however, does not necessarily
imply boundedness of the covariance of the weight vector.
For the purpose of obtaining an expression for the noise
in the weight vector, such boundedness is here assumed
without proof. It is also assumed that the weight vector
undergoes a stationary stochastic process after initial
adaptive transients have died out.

(132)

(133)
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The assumed steady state covariance of the weight
vector may be calculated as follows. Multiplying both
sides of (127) by their own transposes yields

VieVili = (I - 28U UTAW V(T - 26A0,U,T)
+ BLAU T
+ (I - 28U U TNV BLU,T
+ BLUSVT(T - 2AU, U (134)

Noting that {, and U, are stationary processes of zero
mean uncorrelated with each other and taking expected
values of both sides of (134) yields

A LAN AN
= E[(I - 20U UMV VT - 28A0, U T))
+ BE[LY)E(U/ U] + 0
= E[(I - 28U/ USTA,V,T(T - 28U, U]

+ p? 1iv El,.0%1 (135)

Since in steady state ¥,’ is also a stationary process of zero
mean uncorrelated with U,’, one may write
LA A

= E[(I - 2BU U, TAE[V, V. "XT - 28AU, U, )]
4
+ B2 5 Samo’l (136)
and
cov [V/']
= E[(I - 2BUUTA) cov [V NI - 2BAU,U,T)]

4
+ ﬂz ﬁ c:lnazl

= cov [V\'] — 2BE[U,U,;T]A cov [¥,']
— 28 cov [V, JAE[U/ U]
+ 4E[U/ U, TA cov [V AU/ U, )

2
+ ﬂz ﬁ :llnazl

= cov [W'] = 2Ba*A cov [V,] - 286° cov [V,']A
+ 4BE[U U.TA cov [VIAU U]

+ p? % 30 ) A (137)

Solving (137) to find the covariance of ¥, is difficult
because the matrices cannot be factored. After reexamining
(130), however, one could argue heuristically that in steady
state the covariance matrix should be diagonal. All com-
ponents of the driving function of (127) are uncorrelated
with each other and uncorrelated over time. The random
coefficient 7 — 28U,'U,'TA is furthermore diagonal on the
average, though generally not for each value of k, and
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uncorrelated with ¥,’ and with itself over time. Though
this argument does not constitute a proof that the covariance
of V,’ is diagonal, it makes such an assumption plausible.

If the covariance matrix of V,’ is thus assumed to be
diagonal, then with some rearranging of terms (137)
becomes

4B0’A cov [V,'] — 4B*E[U,/U/A cov (v AU U]
4
N
For slow adaptation, the case of greatest interest, it may be
noteg that

= B — Cano’l. (138)

po*A « I (139)

which is analogous to (75) for the method of steepest
descent.® One may note further that

B*E[U/U,/TA cov [V/]JAUY U] = (BaA)? cov [ V)]
(140)
and from (}39) that

(Ba*A)? cov [V,'] « Ba*A cov [I",’]. (141)

The term —4B2E[ ] of (138) is thus small and can be
neglected. Equa ion (138) accordingly becomes

cov (W] = %c:...A“. (142)

Though this expression has not been rigorously derived,
experience has shown it to lead to misadjustment formulas
that are generally accurate.

3) Misadjustment of LRS algorithm: The average excess
mean square error due to noise in the weight vector is
given by (77). Using (142) one may write for the LRS
algorithm

E[VAV] = '\;‘,. iy (% &, 1'.’)

- "—,fc:... (143)

According to the definition of (80) the misadjustment of
the LRS algorithm is thus

= — {min- (l“)

This result can be usefully expressed, using (121), in
terms of the perturbation of che LRS process:

_npa’uw R _ n’fa’i,,
o NP NP G

It can slso be expressed in terms of time constants of the
adaptive process. The time constant of the pth mode of the
learning curve, expressed in number of iterations, is given
by (132). Since 2N samples of data are used per iteration,

¢ The role of x in the mothod of stespest descent is the sams as
that of ge? in the LRS algorithm. control over # and o?
is necessary, hewever, bacause o*

IPEE TRANG. TIONS ON ANTENNAS AND PROPAGATION, SEPTEMBER 1976

this time constant expressed in number of data samples is

Y

2pa%A,
Note the difference between (146) and the equivalent
expression (82) for the DSD algorithm, reflecting the
difference in utilization of data per adaptive cycle by the

two algorithis.
According to (146) one may write

L)

P 280 \T, .

e = 2—;‘—, (-T—'—) . (148)

Pmse’ BV
Inserting (148) into (145) yields
n (1
= —f—07,) . 149
4P (T ) ()

Pmee’ 8V

T, 4 2Nt,_, (146)

and

This formula closely resembles its counterpart (87) for the
DSD algorithm. '
According to (89) the total misadjustment must include
the effects of perturbation. One may thus write
2

1
M, = (—-) + P. 150
w= 2P \T_).. (150)
Optimal choice of P requires that both right-hand terms of
(150) be equal and that P, therefore, be one-half the total
misadjustment (91). One may thus further write

ZP_; (_T"__“) =n [(.T'_'_:)J“ (1s1)

This formula once again closely resembles its counterpart
(92) for the DSD algorithm and is further indicative of the
fact that many behavioral properties of the LRS algorithm
rescmble those of steepest descent algorithms despite the
difference in search procedure. '

Other random search algorithms applicable to adaptive
control and pattern recognition systems have been described
in the literature [24]-[31]. These algorithms are capable
of taking advantage of performance measurements from
previous iterations in determining current parameter changes
and are useful in searching multimodal performance
surfaces. They tend to be complicated in implementation
and mathematical description, however, and have not been
analyzed to determine their misadjustment as a function of
rate of adaptation. It is conjectured in this regard that their
behavior may be somewhat similar to that of the LRS
algorithm and that their convergence close to optimal
points is relatively slow in high dimensional spaces.

(M hl)-ln =

V. SUMMARY OF ANALYTICAL RESULTS

In the foregoing sections analytical expressions have been
derived that characterize the performance of the DSD
and LMS algorithms, based on the method of steepest
descent, and the LRS algorithm, based on a random search
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TABLE 1
PERFORMANCE CHARACTERISTICS OF ADAPTIVE ALGORITHMS
DSD algn ithm LMS algorithm _— LRS algorithm
Hn up
Misadjustment, M Y = pUuUR-= = =
N 4N62 mm N min
( s/ i(_l__) n? (_n_)
8P\ 4a\T 4P\T
Pinse Pmsc/, Pinsc/,,
N
LI W oln Ay
Perturbation, P == 7
Enn Emin
Total misadjustinent, My M+P M M+P
Time constant of pth mode:
In numbes of adaptive | ] 1
iterations, 7, durg 4udy 402 A
mw
In number of data Nn 1 N
y 2 M A 4 » Y 2 02 by
samples, T"mu- p (4 [ p

1 L] []

28 512

TIME CONSTANT T, NO. OF DATA SAMPLES

6 32 e 128
NUMBER OF WEIGHTS, n

Fig. 3. Time constant of adaptive process as function of number of
weights with total misadjustmeni M,,, fixed at 10 perceni (perturba-
tion P optimized for DSD and LRS algorithms).

-

procedure. The most important of these expressions are
presented in Table I in a inanner that allows the three
algorithms to be readily compared.

Tbe principal measur: of performance is the misadjust-
ment M, which is the penalty arising from the imperfect
statistical estimation process. The formulas presented show
that misadjustment increases with speed of adaptation, and
this result can be taken as a general rule of adaptive proces-
sing. For a given real-time speed of adaptation’ and given
number of adaptive parameters, however, misadjustment
varies considerably among the three algorithms. The most
cfficient in this respect is the LMS elgorithm. The DSD
and LRS algorithms, whose misadjusiment expressions are
nearly equivalent, are considerably less efficient.

Fig. 3 shows the relative efficiency of the three algorithms
by plotting the required adaptive time constant as a function
of number of adaptive weights with total misadjustment
M, fixed at 10 percent. The eigenvalues of the R-matrix

7 The basic unit of time in digital systems is the sampling period;
in analog systems it is the equivalent sampling period cor-
respending 10 the bandwidth of the error =

are assumed to be equal, and the value of the total mis-
adjustment for the DSD and LRS algorithms is minimized
according to (92) and (151). It is readily seen that for a large
number of weights the DSD and LRS algorithms have
similar time constants. The LMS algorithm, on the other
hand, has a much smaller time constant. _

The formulas presented in Table I and the curves of Fig. 3
provide & practical tool for use in the design of adaptive
filters. For the purposes of illustration let us assume that
an adaptive digital filter with 10 weights is needed for a
particular application. Let us further assume that a total
misadjustment of 10 percent would be acceptable and that -
the eigenvalues of the R-matrix are essentially equal. For
the DSD algorithm, a total misadjustment of 1G percent,
according to (91), yields an optimal perturbation of $§
percent. Thus the misadjustment M is

_m+ (1 _
M= T (—)" = 5 percent. (!52)

T’lnlc
This equation can be solved by substituting the apprepriate
values of n and P to obtain the average reciprocal time
constant in number of data samples:

(TL) = 2(10)°%,

Pmse’ 8V

(153)

Since all cigenvalues are assumed to be equal, there is only
one time constant associated with the mean square error
curve, and (153) can be rewritten as

104

T = 5 - 5000 data samples. (154)

This is a large adaptive time constant for a 10-weight filter.

If the LMS algorithm is used instead of the DSD
algorithm, then there is no perturbation and the misadjust-
ment is

M="

(155)

+1 I) )
: ('r,_,, 10 percent
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which yields a time constant of
Tnee = 25 data samples. (156)

This is a much mo-e favorable value. Within about four
time constants adaptive transients would essentially die
out. Settling time would be about 100 sampling periods or
iterations.

For the LRS algorithm one must once again allocate one-
half the total misadjustment to the perturbation P. The
misadjustment M is thus

e -

Pree

5 percent (157)

which yields a value of the time constant of
Tonee = 10000 data samples. (158)

The LRS algorithm thus would require twice the settling
time required for the DSD algorithm. Note that the per-
turbation is set as follows:

2
P=o0p0s=2 "R

(159

which is equivalent to
a? = 0.1¢,./tr R. (160)

To set o2 for the random vector generator one would need
to know the values of {,,, and trace R. Approximate values
would be adequate in most practical circumstances.

These results illustrate the efficiency of the LMS algorithm,
which has been shown to approach a theoretical limit for
adaptive algorithms when the eigenvalues of the R-matrix
are equal or close to equal in value [32].* There are
circumstances, however, where the LMS algorithm cannot
be used and where the DSD and LRS algorithms provide
a valuable option. An example is included in the applica-
tions described in the next section.

VI. EXPERIMENTAL RESULTS

In this section the results of experiments performed by
computer simulation are presented. These results show the
relative pezformance of the DSD, LMS, and LRS algorithms
in practical circumstances of varying complexity. They also
provide a means of verifying the expressions for misadjust-
ment and adaptive time constant derived in the preceding
sections.

A. Modeling Experiments

Two modeling or system identification problems were
simulated by computer to demonstrate the convergence of
the three algorithms and the degree of correspondence

* The t and performance cstimation methods used in 1he
unfuhnwmfinvoln the difference between 1wo
Inrp.noilyc uantities. Some of this is due to statistical
fluctuation (that .tonchan.eindltlmthlt‘?fromones‘amplelo
actual weight change,
repeated and the difference
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Fig. 4. Modeling a fixed delay wilh an adaptive filter.

between actual and theoretical performance. In these
simulations an adaptive transversal filter with four weights
was used. In the first the algorithms were required to con-
verge to a weight vector solution that modeled the impulse
response of a ‘‘digital” filter with a single fixed delay A
of 272, where z™! is the transfer function of the unit delay.
In the second they were required to converge to a solution
that best approximated the infinite impulse response of a
one-pole recursive digital filter.

1) Modeling a fixed delay: Fig. 4 shows the experimental
configuration used to test convergence of the algorithms
to model the fixed delay. An input signal n,, composed of
independent samples of white noise of unit power, was
routed in parallel to the delay filter and the adaptive filter.
The output of the delay filter was corrupted by a second
input n,, composed of independent additive white noise
with a power of 0.5, to form the output of the system to be
modeled. This output, the desired response d; of the adaptive
process, was compared with the adaptive filter output y,
in the normal way to form the error signal ¢;.

The optimal weight vector solution W* for this experi-
ment is zero for all weights except that whose tap delay
corresponds .o the delay A. The value of this weight is
one. Thus, when the adaptive process has converged, the
error ¢; is the noise n,, which ic uncorrelated over time.
The minimum mean square error §,,, is not zero but has a
value equal to the power of the noise n,. In addition, because
the input n, is white and of unit power, all inputs to the
weights are mutually uncorrelated and of unit power. The
input correlation ma!-ix R is thus equal to the unit matrix ,
and all eigenvalues of R are equal to one. These circum-
stances are the simplest that could be devised to test the
three adaptive algorithms.

Fig. 5§ shows learning curves of the adaptive process
when the three algorithms were implemented with a fixed
theoretical time constant T, of 2048 data samples. An
individual learning curve and an ensemole average of 32
independent learning curves are presented for each
algorithm. The averaged curves allow the misadjustment of
the adaptive process to be experimentaily measured.” The

® The measurement is made by dividing by {ai the difference
between the average value of asymptolic mean square error and oi,.
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Fig. 5. Results of fixed delay

modeling experiment with theoretical time constant T,,, fixed at 2048 data samples.

ing
(a) Individual learning curves. (b) Enserable averages of 32 learning curves.

TABLE 11
ResuLTs of FIXep DELAY MODELING EXPERIMENT WITH THEOXETICAL TimMe CONSTANT T,
FIXED AT 2048 DATA SAMPLES
Total
Perturbation P, Misadjustment M,  misadjustment Mot Theoretical time
Convergence constants percent percent percent comtant Tmae-
Algorithm X 10-3 [ o?x1073 Theor.  Meas. Theor. Meas. Theor.  Meas. no. of data samples
DSD 15.625 - - 2.21 219 4.42 5.70 6.63 7.89 2048
LMS 0.12207 - - - 0.0488 0.08 0.0488 0.05 2048
LRS - 0.5 7.8128 3.128 3.12 6.28 8.08 9.375 11.20 2048

“high-frequency” variations of the curves representing the
DSD and LRS aigorithms are due to the required perturba-
tion of the weight vector at each iteration. At the beginning
of each experiment all adaptive weights were set to zero.

Table II presents the theoretical and measured velues of
perturbation and misadjustment for the learning curves of
Fig. §. Also:hownmthevalmofzhepmmm“p.p,
and o, It is readily secn that the theorctical and measured
values are in close agroement for all three algorithms.

Fig. 6 presents individual larning curves and ensembie
averages of 32 learning curves showing convergence of the

three algorithms with a fixed theoretical total misadjustment
M, of 9.375 percent. Table III shows the values of pertur-
bation, misadjustment, and time constant together with the
values of the parameters u, B, and o>. Once again close
agreement between the theoretical and experimental results
is observed.

2) Modeling a one-pole recursive filter: Fig. 7 shows the
experimental configuration for the second modeling
experiment. An input n, composed once again of independent
samples of white noise of unit power, is routed in paralle]
to an adaptive transversal filter and a one-pole recursive
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6. Results of fixed delay modeling experiment with theoretical total ustment M., fixed at 9.375 percent.
31 e (a) lndmdunl lamm. curves. (b) Ensemble averages m ve :
? .
'] TABLE M
Rmsurts of Fpap Detay MopeLING EXPERIMENT WITH THEORETICAL TOTAL MIBADJUSTMENT M,
; Foap AT 9.375 ParCENT
3 ;7 Total
‘ Perturbation P,  Missdjustment M,  misadjustment My, Theoretical time
; f Convergence constants percent percent percent constan: T ...
s Algorithm  ux 10°2 8 o¥x 10> Theor. Meas. Theor.  Meas. Theor. Meas. no. of data samples
DSD 2 - s 2 301 628 826 9315 1137 1026
LMS 234 - - - = 9375 1035 937§ 1035 10.7
LRs = 0S 78128 LIS 312 6325 808 9375 1.22 2048
digital filter whose transfer funqion is 1)(1 — az”'). The impulse response. Since the input n is white noise, the
output of the one-pole filter is the desired response d;,, optimal solution is to cause the adaptive filter’s impulse
which is combined with the adaptive filter output y, to response to match the one-pole filter’s geometrical impulse
+ producs the error s,. response to the extent dllowed by the length of the adaptive
Ja this experiment the four-weight adaptive filter is tapped delay line. A residual mean square error will be
stiempting to model a ome-pole filter with an infinite present because the best match attainable is imperfect.
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Fig. 7. Modeling a one-pole recursive filter with an adaptive filter.
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learning curves.

In this case, when the adaptive filter has converged to the
optimal solution, the error s, will be correlated over time.
This latter condition violates one of the assumptions on
which the previous derivations of misadjustment and time
constant were based and can be expected to affect the
agresment between theoretical and measured misadjustment

and time constant,

Fig. 8 shows individual and averaged learning curves of
the adaptive process with a fixed theoretical tota) misadjust-

ment M,,, of 7.5 percent for the DSD and LRS algorithms
and of 0.75 percent for the LMS algorithm. Note the
difference in time scales and the rapid convergence of the
LMS algorithm. Table IV presents the values of perturba-
tion, misadjustment, and time constant and of the con-
vergence parameters. It may be seen that the measured

misadjustment is approximately twice the theoretical

misadjustment for the DSD and LRS algorithms. For the
LMS algorithm, however, measured and theoretical mis-

L mve N - e - oa

- e - g

- B P
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i TABLE 1V
d REesuLTs OF ONE-Pork [FILTEFR MODFLING [XPTRIMENT WITH THEORETICAL TOTAL MISADJUSTMENT My,
FIXep AT 7.5 PERCENT FOR DSD AND RS ALGORITIMS AND 0.75 PERCENT FOR LMS ALGORITHM

Total

Portughgny o B,

Convergenve ¢ onstants

- 1
px 07 B

;u‘n l'm

Misadjustiment M, misadjustment My .

;wrcvnt pereent

Theoretical tiume

constant T o

Algonithm 0 ¥ 10 Hu- ar Mca\ H\cur Meas. Theor.  Meas. no. of data samples
DSH 40 25 251 S 10.31 7.8 12.82 1600

E LMS 1 RS 0.75 0.77 0.75 0.77 133
LRS 17467 Yanti 2.5 2.67 5 9.23 1.5 11.90 3200

T TS

adjustment are in closc agreement. The results for the
DSD and LRS algorithms are expected and can be attributed
to the fact that the correlation in the error &; over time

makes the effective statistical sample size less than the actal AT | bl
number of error samples. The reason that the LMS algorithm ALAPTIVE
is not sensitive in this respeet and does not experience a 1 1] ol
loss in performance is not understood at the present time | ‘ N
and is a subject under investigation. | 1L ,",:,f:,fl' 1 1, P58 S
This experiment and the foregoing fixed declay experiment | l — v 'f-f J"?”
demonstrate that, in accordance with the theoretical | : T />
expectation, the performance of the LMS algorithm is T _I'Lr"‘—:l'
superior to that of the DSD and LRS algorithms, whose |

performance is approximately equivalent. The LMS
algorithm converges more rapidly for a given level of
misadjustment or is less noisy (produces less misadjustment)
for a given rate of adaptation. For the DSD and LRS
algorithms the relationship between rate of adaptation and
misadjustment is known approximnately for a wide variety
of input statistical conditions. For the LMS algorithm the
relationship under the same variety of inpui conditions is
known to a closer approximation.

B. Adaptive Cancelling of Sidelobe Interference in a
Receiving Antenna Array

The objective of this experiment is to demonstrate one of
the ways in which adaptive filtering can be applied to
reduce interference received by the sidelobes of an antenna
array. Results are presented only for the LMS algorithm.
The DSD and LRS algorithms could also be used with this
problem, but their performance would not equal that of the
LMS algorithm, as indicated by the formulas and ex-
perimental results already presented. An experiment where
the DED and LRS algorithms are applied to a problem that
cannot be solved by the LMS algorithm is presented in the
next section.

A number of adaptive beamforming methods capable
of reducing interference in the sidelobes of an antenna
array have been described in the literature [1]-{10]. These
methods have the disadvantage that, unless the adaptive
process is constrained, strong signal componsnts in the
main beam are rejected. When the adaptive process is
constrained the signal is preserved, but there may be a loss
in array performance caused by gain or phase errors due
to nonuniformity in clement placerent, transfer function,
or near-fleld effects.

CONVENTIONAL BEAMFORMER
[ e ||

ADAPTIVE NOISE CANCELLER
9

| :PRIMANV BELAY
} HNPUT o }
P Sren e T ad

Fig. 9. Block diagram of null-conslmned adapuvc beamformer
tolerani of array element gain and phase errors.

By the use of adaptive noise cancelling techniques'® it
is possible to realize a constrained adaptive beamformer
that does not suffer a significant loss in performance when
array clement properties are not uniform. This beamformer,
described here for the first time, is capable of reducing
broadband and narrowband interference in the sidelobes of
an antenna array without rejecting broadband signal
components in the main beam, regardless of their strength.
It is also simplc and easy to implement

Fig. 9 is a block diagram of the constrained adaptive
beamformer. An array of receiving elements is connected
to a conventional time delay and sum beamformer, which is
steered in the direction of the signal. The conventional
beamformer’s output, containing signal and interference,
forms the primary input to an adaptive noise canceller. This
input is delayed by an amount A/2, where A is defined
below, to form the desired response d; of the adaptive
process. Multiple reference inputs to the noise canceller are
derived by taking the deiayed element outputs from the
conventional beamformer before summation. These inputs
are routed to a bank of adaptive transversal filters, each
comprising a tapped delay line with a total delay of A.
The filter outputs are summed to form a single output y,,
which is subtracted from d; to obtain the canceller output z,.

10 Adaptive noise cancelling Jllulfoﬂn thal
makes use of two mp\m.hlu"ptlimlrv input eo(:rm-' W
noise and a “reference" consisting of
unknown way wnth that mlheprilurylnpm

w nctedfromlheptmyinputtoobnin

:d:gulm in many cases to that obtainable by other
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column-of-zeros constraint. (c) “Hc . relass™ constraint.

This output also provides the “error” signal ¢, for the
adaptive process.

The operation of the adaptive beamformer of Fig. 9 is
constrained by constraining the weighting coefficients
(gains) of the adaptive filter taps. Fig. 10 shows three forms
of constraint, each suitable for a different purpose. Fig.
10(a) represents the matrix of coefficients appropriate for
an ideal line array with a plane-wave signal incident in the
“look” direction of the conventional beamformer. The gain
of the central taps is constrained to be zero. The gains w
of each of the other taps are independently controlled by
the adaptive process. Note that the matrix has as many
rows as there are reference inputs.

In this problem the signal appearing at the central tap of
each adaptive filter is idemical except in scale to d,. If one
assumes that the received signal is “white” and has an
impulsive autocorrelation function, the signals appearing
at the other taps will be uncorrelated with d. It is thus
apperent that the signal components in ¥, will be uncor-
related with those in d; and that the adaptive process will
have no tendency to cancel the received broadband signal.
Interference components arriving from other than the
“look™ direction, on the other hand, will be correlated with
the interference components in d; at one or more of the
unconstrained taps. These components will thus be cancelled
by the adaptive process, which adjusts the gain of the un-
constrained taps to minimize the mean square of the error
8, (in this case, output power).

In practical applications arrays with ideal properties
cannot be realized because perfect receiving elements,
perfect element placement, and freedom from near-field
irregularities cannot be achieved. Fig. 10(b) shows a form
of constraint proposed to desensitize the behavior of the
adaptive sidelobe canceller to imperfections in the properties
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of the recciving clements. This constraint consists of
inserting an additional column of zeros on either side of the
central column. Fig. 10(c) shows a configuration of the
weighting coefficients that would allow the reception of
strong broadband signals over a finite and controllable
angular sector; in this configuration the zeros are arranged
in the form of an “‘hourglass.”

Fig. 11 shows directional response patterns obtained by
computer simulation that indicate the performance of the
adaptive beamformer o Fig. 9 with an ideal and a nonideal
array using the single and triple *‘column-of-zeros” con-
straints. The ideal array consists of ten elements in a linear
configuration and with half-wavelength spacing at the
sampling frequency; for the nonideal array the single
elements at each end of t1e array are moved forward one-
qQuarter of a wavelength. The simulated re<eived signal has a
power of one, a white specirum, and originates from a point
source. The simulated interference is isotropic, with a
power of 0.01 and a white spectrum. The directional
response of the conventional time delay and sum beam-
former is shown as a dotted line for purposes of comparison.

Fig. 11(a) represents the adaptive beamformer’s per-
formance with the ideal array and the single column-of-
zeros constraint, while Fig. 11(b) represents performance
with the nonideal array and single column-of-zeros con-
straint. Note that the beam formed is ‘‘super-directive”
—that is, much narrower than the conventional beam—but
severely reduced in sensitivity when array properties are not
ideal.

Fig. 11(c) and Fig. 11(d) show beamformer performance
with the triple column-cf-zeros constraint. In this case the
adaptive beam is close in width to the conventional beam,
and its sensitivity is not affected by element irregularity.
Even at high signal-to-noise ratios sensitivity is sustained
over a finite range of angles, an unusual result since adaptive
beamforiners generally lose signals not incident exactly in
the “look” direction.

C. Adaptive Phase Control of a Transmitting
Antenna Array

This experiment illustrates the use of the DSD and LRS
algorithms to solve a problem that cannot be solved with
the LMS algorithm.'" The problem selected, adaptive
phase control of a transmitting array, is representative of a
class of problems more general than those heretofore
treated in this paper. Other problems of a similar nature
include adaptive adjustment of the parameters of microwave
resonators, waveguides, and coaxial transmission lines. A
related problem at optical frequencies is adaptive adjust-
ment by controlled warping of laser mirrors.

Jt should be noted that the formulas for time constant,
perturLation, and misadjustment of the DSD and LRS
algorithms given in Table I were derived by assuming
stationary stochastic inputs to an adaptive system so
configured that mean square performance is a quadratic

' In the form described in this. paper tye LMS algorithm can be
used only (o adjust variable weights. The DSD and LRS algorithms
do not suffer from this limitation.
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Fig. 12. Satellite tranamitting information to receiver on earth.

function of the adjustable parameters. The conditions on
which these formulas and proof of convergence are based
are not sstisfled in the adaptive phase control problem
examined here. If one ignores the deterministic nature of
the sinusoidal input signals and treats input power as in
the stochastic case, however, the expressions of Table 1
provide predictions borme out well by experimental
simulation.

Fig. 12 shows a typical application for a transmitting
array with adaptive phase control. A satellite is relaying
information over a large Gistance to a receiver on the earth.

The power available to drive the transmitter is limited, and
it is desirable for maximum power transfer to keep the
main beam of the transmitting antenna optimized and
steered toward the receiving station, whose position with
respect to the satellite changes with the carth’s rotation and
the satellite’s orientation. The array’s elements need not be
ideal. It is assumed that the power of the received signal can
be measured or estimated and transmitted via a feedback
link to the satellite for uae as an input to an adaptive beam-
forming process. To avoid a loss of signai power that would
partially or wholly offset the directional gain, the beam-
forming process must control the output phase rather than
the gain of the satellite antenna’s elements.

Fig. 13 is a block diagram showing the model used to
simulate an adaptive transmitting antenna array of »
clements. The signal is represented by a sine wave produced
by a signai generator. An array of n phase compensators
governed by an adaptive sigorithm represents the adaptive
prooessor. A corresponding array of n phase shifters provides
a means of simulating the unknown phase shifts between
the antenna elements and the receiver. The outputs of the
phase shifters are summed and injected with ‘‘receiver”
noise to simulate a weak received signal. This signal is
sampled, squared, and averaged, providing a power estimate
for the adaptive algorithm. The algorithm adjusts the phase
compensatocs to maximize measured power. It is clear that
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Fig. 13. Digital simulation of adaptive transmitting antenna.

maximum power will be transmitted when the combined
phase shifts on each branch of the block diagram are
integral multiples of 360 degrees relative to each other.
Although there is no unique solution to the problem, there
are families of equivalent solutions that provide maximum
power transfer.

This model comprises all aspects of the fatellite trans-
mission example described above except the two-way time
delay of the transmission path. This delay would affect the
rate of adaptation of the processor and would have to be
taken into account in designing a real system.

Fig. 14 shows lcarning curves of the adiptive process
for the DSD and LRS algorithms when the injected noise
of Fig. 13 is set equal to zero. The transmittinhg antenna was
composed of 16 isotropic elements in a line array. Note that
the curves rise to an asymptote representing maximum
power rather than decaying toward a minimum. Note
further that they are not exponential except as the optimal
solution is approached. Exponential learnihg curves occur
only when the algorithms are applied to quadratic per-
formance surfaces. The performance surface for the
simulated problem is a representasion of output power as
a function of phase and is not quadratic except near
stationary points, where it can be represented by first- and
second-degree terms of a Taylor expansion.'? For this
application the method of steepest descent might better be
designated the “method of steepest ascent.” It is described
by (24) with the sign of u reversed. A corresponding reversal
of sign is also required in applying the LRS algorithm to
this problem.

The “theoretical” time constant of both learning curves
of Fig. 14 is 128 data samples. This value is based on the
characteristics of the performance surface (that is, its
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Fig. 14. Learning curves of simulated adaptive transmitting antenna
without noise. (a) DSD algorithm, (b) LRS algorithm.

“R-matrix”) in the vicinity of the global optimum.'®
Visual inspecticn indicates that the actual time constants
of the two curves are similar and agree well with the above
value. The convergence parameter u for the DSD algorithm
was 8 x 1073, The convergence parameters S and o?
for the LRS algorithm were 1 and 8 x 1073, respectively.
The maximum transmitted power ¢, was equal to 32. The
“perturbation™ P for both algorithms was 5 percent, and
the value of N was one.

Fig. 15 shows sequences of radiation patterns correspond-
ing to the learning curves of Fig. 14. Real time is indicated
in terms of data samples equivalent to sampling periods of
the digital system of Fig. 13. The simulated receiving site
was located at a relative angle of 20 degrees. The initial
setting of the phase compensators was zero. The unknown
phase settings of the phase shifters were chosen at random.
Note the rapid formation of the main lobe at 20 degrees and
the suppression of sidelobes.

Fig. 16 shows learning curves of the adaptive process
when independent samples of white noise with a power of
0.01 were injected into the simulated received signal. Array
configuration and adaptive parameters are the same as in
the noiseless case represented by Fig. 14. As well as can be
determined by visual inspection, the actual time constants

13 all ;
the “Rimairix” of (o periormas rrhes con b s 1 250

R= 80

The are that » is lasge and that equal power flows
a7 Thane SAhers The s s st squal pawer flows theough
cigenvalues are equal and negative.




IR hinr o g

636

10 /
| \ * 16 DATA SAMPLES
| A
Wy
] \\ n " H \/\ f\\ ;/-\ | \,\
s BRTE RIS
T \! i ]
Loy
\ H R
-90 o 20 20
10
128 DATA SAMPLES

!
[
il
|
i

06 i \ Y
/ \1/‘ \\/v/ 1\ | \(\ // ! \\
o \
8 ol iy
g -0 0 20 20
g 19
] 268 DATA SAMPLES
|
i |
08 i
P, ;'ﬁﬁ fi ‘|ﬂll R rﬂ"n -~
/ -.__.-' |||| I'.u.'r ||| .Ihnli \‘I"',l '|I /
nl Y __,,,_.I ll L
-0 0 2 80
10
|""I 1024 DATA SAMPLES
|
i I
o8 |

g’“ waw".l': N *V\"‘V \f"v;u

DEGREES
(a)

IEER TRANSACTIONS ON ANTENNAS AND PROPAGATION, SEPTEMBER 1976

1.0
! 2 DATA SAMPLES

| \H‘\
o8 AN ‘I u\ \‘_“ \\

o.oo 0 26 90
1.0, f
|| 266 DATA SAMPLES
i
|
¥
05 N/ I|I || I'| I|'| AWE
[ ! \ | |
|II l'- : -"II I|I III"'Il-hl'ul [ ll { )
{ h II | i
f | |
%] | t|
¥ ol ' n
g W0 o 20 9
z
g 10 f
|| 5120ATA SAMPLES
[
|
|
| i
0.6 | |
| || A
< Tl b
A W wW L
10 o\
. \\/ . || 1 i
-20 0 2 90
10 ’\ 2048 DATA SAMPLES
|
|

|
LY SV AVAYAAAA m'.'(\f‘v’“u -
-90 0 2 920
DEGREES

®)

15, Radiation of simulated i without noise injection. (a) DSD algorithm.
Fig. patierns mm?b)mlmm noise injection. (a) gorit

for both algorithms are also approximately the rame as in
the noiseless case.

Noise in the adaptive phase control process, as evident in
Fig. 16, canees a steady-state average loss of array power
gain. One can define for this case a form of misadjustment
that is & ratio of the loss in power-10 the peak power {,,,.

Though the appropriate formulas have not yet been derived,
the formulas for stochastic inputs and quadratic perform-
ance surfaces would suggest that with equal theoretical time
constants the misadjustment of the LRS algorithm would be
greater than that of the DSD algorithm. This expectation is
confirmed by the results obtained in this experiment.




WIDROW AND M COOL . ADAPTIVE ALGORITIIMS

. LI
aS—— Lt L~
3 -
:
X
i -
1
:
v i, 1, LRI 2048
LS ae
(a)
z Coms
g « r‘ '
o 2 AN ‘J"Mf"-'\v. A
o o v
= g
: v
5 . .
a s
a !
e a ‘). /V
e !
o /
'Y
N L]
= : S
< : %
Z A
I} g
Z 0- . . . s b d . . 9 - b b
0 512 1024 1536 2048
DATA SAMPLE
(b)

Fig. 16. Learning curves of simulaled adaptive transmitting antenna
with noise. (a) DSD algorithm. (b) LRS algorithm.

VII. ConcrLusioN

The theoretical and experimental results presented in this
paper show that the LMS algorithm is the most efficient by
a large factor of the three algorithms compared and
indicate that it should be used whenever circumstances
permit. The DSD algorithm is less efficient than the LMS
but more efficient by a factor of two than the LRS algorithm.
Its use is appropriate where technical or economic con-
siderations preclude use of the LMS algorithm or where
a high speed of adaptation is not required. Use of the LRS
algorithm may °  appropriate in cases where the per-
formance surface for the adaptive process is not well
behaved and has both local and global optima. Further
experience is required, however, to confirm that the random
weight vector changes associated with this algorithm can
provide an advantage in the presence of local optima that
may slow or prevent global convergence of algorithms
based on the method of steepest descent. Further work is
also required to extend the theoretical derivations for time
constant and misadjustment of the three algorithms to
applications other than those entailing stochastic inputs
and quadratic performance surfaces.
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