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INTRODUCTION 

A primary goal of this research  is to develop adaptive signal  pro- 

cessing algorithms that will  be useful   in providing antijam A/J protection  for 

aircraft receiving systems.    Because of the motion of the aircraft and the 

uncertain position of the signal source, signal  reception  may   be possible 

from almost any direction of incidence.    The uncertainty and time variable 

nature of jammer positions  requires  rapid adaptive capability for elimination 

of one or more simultaneously operating jammers.    Furthermore, aircraft  receiv- 

ing arrays generally have only a few elements, each having highly  irregular and 

sometimes unpredictable radiation patterns.    The problem Is not simple. 

This report  Is divided into three parts, each one representing a 

major effort contributing to adaptive A/J technology. 

Part A describes single channel algorithms for Doarating signals 

based on their power levels.    Jamming signals,when of concern, are 

generally large  in amplitude.    By siphoning off the strongest input 

components, the desired signal can be decoded from the remainder.    Adaptive 

signal processors are proposed, analyzed, and computer simulated that have 

the capability of separating signals by power with controllable SNR 

slicing thresholds.    The "ABWIN" algorithm,  the first conceived,  requires 

Injection of synthetic noise of controllable amplitude  (to control slicing 

threshold).    An  improved "ABWAIN" is also described.    This algorithm is 

quieter and simpler to implement.    The effects of the synthetic noise 

are obtained algorithmically.    The analysis proves stability conditions, 

determines rate of convergence, and determines noise in the adaptive filter 

m\^t vector and Its effects on system performance.    This approach is usable 

for signal separation when the signals are narrowband with non-over lapping 



pusbands. When these passbands overlap, separation would only be possible 

with a multichannel system connected to an array of antenna elements 

rather than to a single element. Development of multichannel adaptive 

power separators has been proposed for future work. 

Part B of this report describes, simulates, and analyzes an adaptive 

antenna scheme that sustains (via a "soft constraint") an approximately 

uniform sensitivity In all directions except those corresponding to 

arrival directions of strong signals (which presumably are Jammers). 

The threshold level dividing strong and weak signals is controllable. 

Thl» scheme has never been tried before and appears to be quite workable 

and simple. Computer simulations show that several strong janwners (which 

may be either narrowband or broadband) can be eliminated simultaneously 

whan the antenna array contains only a few elements.  Irregularities in 

the Individual element patterns cause nonunlformity in the overall system 

receiving pattern, but do not significantly reduce the system's ability 

to notch out strong Jammers. Many analytical problems remain to be 

solved, such as how many Jammers can be eliminated simultaneously, how 

daep will the nulls be vs. SNR, bandwidth, direction of arrival, what 

determines rate of convergence, etc. The present algorithm requires the 

Injection of synthetic noise. A new scheme without injected noise is 

under development. 

Part C is a reprint of a paper published in the September 1976 

,,,ut of »EEC Transactions on Antennas and Prooaoatlon. The paper 

describes, among other things, work on the "linear random search" algorithm. 

This adaptive algorithm is by no means as efficient as the LMS algorithm 

(In tenm of noise in the solution weight vector vs. the speed of con- 

Wfenea), but Is generally simpler to Implement and can be applied to 



system whose patterns are adjusted by phase shift control  rather than ay 

variable attenuators.    LMS can only be used In the  latter systems, not  -n 

the former.    The linear random search algorithm Is shown to have operational 

properties similar to those of a steepest descent adaptive algorithm which 

estimates gradient components one at a time.    The random search algorithm 

Is expected to have wide applicability and to be Implementable at RF and 

•F frequencies.     It could be applied to almost any form of adjustable 

system parameter, from microwave cavity paddles,  to adjustable tuning stubs. 

to ph... shifters, to attenuators, etc.    Many theoretical problems remain 

to be «olved. such as behavior In systems with .ultlmodal performance 

surfaces, and derivation of relationships between system performances versus 

.P.ed of convergence.    This  Is a new algorithm.     It appears to be analyzabIe 

In m^y circumstances.    Because of Its linear nature and relative simplicity 

compared to other random search algorithms.  It may become very widely used. 

i 



Part A 

ADAPTIVE SEPARATION OF SIGNALS  IN NOISE  IN TERMS OF THEIR RELATIVE POWER LEVELS 

I.     Introduction 

In this section we describe a study of an adaptive device which can 

strip off the coherent signal  component with the highest power.     It has 

two outputs, one a filtered version of the selected component, and the 

other contains  the total   input signal with the selected component can- 

celled out.    This device can be used alone to provide one degree of A/J 

protection (we assume the Jammers to be powerful), or. with several  in tandem, 

can be used to strip off and rank the various coherent signal components 

by power.    It may also be generalized to an array configuration.    This 

section describes the device, explores Its theoretical  behavior briefly, 

and presents some results of computer simulations of the device's performance. 

11.    Background 

The output of a receiving antenna array can often by modeled as 

wideband noise plus several  narrowband signal conponents of differing 

frequencies and power levels.    The problem addressed in this section is 

that of automatically ranking the coherent components  in order of their 

respective powers while    disregarding wideband components such as noise. 

Such a scheme has many uses.    Usually only one or a few of the signal com- 

ponents are useful.    The others are not useful and under some circumstances 

«•y hinder detection and estimation of the desired component.    A signal 

ranking scheme would allow the processor to deal only with the desired 

componentU).    In other applications the ranking might provide Information 

In itself.   Generalized to an array configuration It might be used to 

separate signal components and identify the azimuth of each source.   The 
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basic approach uses the "Adaptive Line Enhancer [I] (ALE)1' in a structure 

that allows it to strip off the most powerful coherent component of tSe 

Input signal and pass all the rest. Similar additional stages could strip 

off the successively less powerful components [2]. This concept is 

diagrammed in Figure A-l. Modifications to the ALE's adaptive algorithm 

will be shown to improve the separation properties. 

An inherent advantage of the ALE configuration Is that It could 

provide two outputs. One Is the input signal with the most powerful 

component subtracted out, thus providing the input for the next stage. 

The other output is a filtered version of the stripped component, allowing 

that component to be processed independently to find Its parameters (e.g., 

frequency, azimuth). 

The Adaptive Line Enhancer was introduced and described in reference 

Ml. Reference [2] describes its behavior with Inputs consisting of white 

noise and a sinusoid. A diagram of the ALE Is shown In Figure A-2. 

The error signal e(k) is the difference between the input x(k) and 

that signal delayed by A time units and filtered by an adaptive transversal 

filter. The error signal is used by the Widrow-Hoff Least Mean Square (LMS) 

algolrthm to adjust the weights of the adaptive fitler to minimize the error 

power [Ij. This system's behavior Is best exemplified with an Input of 

a sinusoid plus white noise. Since the sinusoid is coherent In time It 

it completely predictable and a filter can be found (via the adaptive 

algorithm) which filters the delayed signal to provide an output y(k) of 

the sane phase. Thus a sinusoid may be successfully subtracted from the 

Input signal and the error power minimized thereby. However, since the 

noise is Incoherent In time there is no way that a filtered version of the 

delayed noise can cancel any of the input noise. Thus to minimize mean 
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square error the adaptive algorithm must find a filter impulse response 

which allows the sinusoid through but inhibits the noise as much as possible, 

In fact the adaptive filter found in this case Is a matched filter with 

sinusoidal impulse response, which passes the sinusoidal component but 

has the smallest possible bandwidth to minimize the noise power in the 

filter output. The sinusoid and the noise may be viewed as adversaries to 

the adaptive porcess. Were the input just the sinusoid, the filter would 

converge to a form which had a gain of I at the sinusoid's frequency 

thereby cancelling the sinusoid altogether In e(k).  If the Input were 

white noise only, the filtered signal would actually Increase the error 

power so the LMS algorithm turns off the filter by adjusting all the weights 

to zero.  If the ir.put contains both signal and noise then the adaptive 

algorithm must make a tradeoff to minimize the total error power. 

Quarterly reports I and 2 [2] discuss the behavior of the ALE at some 

length. Two significant points were made. 

1) For an Input consisting of a single sinusoid of frequency f and 

white noise, the convergent filter gain at frequency f is given byi 

j • SMR 

I ♦ SNR 

where SNK Is defined as the ratio of the Input sinusoid's power to that of 

the input white noise, and n Is the number of weights in the transversal 

filter. A graph depicting a* as a function of SNR Is shown lr\ Figure A-3. 

It may be seen that a* ■» 0 as SNR • 0. Clearly the behavior of a* l-s a 

nonlinear funcllun of SNR. 
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2)     If the Input signal consists of coherent components which are 

sufficiently separated in frequency and  If the number of weights n  is  large 

enough, then the convergent filter's  impulse response will be the super- 

position of contributions from each of the coherent Inputs.    Each of these 

contributions  is the same as if that coherent conponent were the only 

input.    This property Is called "pseudol Inearlty".    If the Input  is assumed 

to be composed of several sinusoids plus white noise It can be shown that 

a^,  the optimal  filter gain at the frequency of the Ith sinusoid,  is 

given by: 

y • SNR. 2 i 

I        | + " 
2  • SNR! 

at - 

where SMRj   is the ratio of the power of the Ith input sinusoid to that of 

the total  Input noise.    The fact that each optimal gain a*,  Is not dependent 

on the power of any coherent input other than the  Ith Is a result of the ALE's 

pseudoli nearity. 

With these two principles It was shown in reports I and 2 [2]  that the 

ALE can be used to strip the most powerful coherent component out of an 

Input signal.    This may be seen in the particular case where the input 

consists of several sinusoids plus white noise.    For those sinusoidal 

components for which J • SNR, » I the filter gain Is approximately one and 

they are almost completely cancelled out of the error signal e(k).    They 

•re of course fully represented in the filter output y(k).    However the 

coMponentt for which y • SHRj« I have associated filter gains tending 

«••r sera.    As a result they appear in the error signal and not in the 

filter output.    The samt Is true of the broadband noise conponents.    Thus 

tke All can perform • separation of the Input components on the bests of 

tkelr Input pOMtrs and bandwldths.   The threshold of seperation for 

/» 
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sinusoids or narrowband signals is given by - • SNR. - I or P - — 

- 2     I       i   n  » 

where o is the power of the white input noise and P. is the power of the 

Uh sinusoid  SNR. - Pj/o2. The threshold, denoted 0. is a function both 

of the input noise power o and the number of filter weights n. Figure 

A-4 shows an ALE adjusted to slice off the most powerful sinusoidal com- 

ponent . 

Almost any practical application of such level separator would 

require that the separation threshold O be adjustable over a wide range. 

However, as reference [2] shows, there are compelling reasons for changing 

neither the input noise power or the tapped delay line length n. For 

obvious reasons the Input noise power cannot be decreased.  It can be 

increased artificially however by adding extra white noise to the ALE 

Input, but this has the disadvantage that the extra noise propagates on 

through the error signal into successive stages. Changing the filter length 

n changes both the filter dynamics and the number of components which can 

be handled simultaneously and Independently. Usually the user would desire 

to have these parameters remain constant. To allow alteration of the 

threshold level without changing either o2 or n, an alternate separator 

was suggested (2]. This processor, the ALE with Injected noise (ALEWIN), 

diagrammed in Figure A-5, provides for the variable threshold of 

0 "   n  ' ,eavln9 o and n fixed. This Is accomplished by adding 

extra white noise of power oj Into the adaptive filter Input. The added 

noise decreases the apparent SMRs of the coherent Input components and 

therefore modifies the power slicing level. Figure A-6 shows the optimal 

filter gain as a function of SNR, for the ALEWIN. The term SNRj Is defined 

by P,/^2 ♦ aj). 

II 
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Figur» S. The Adaptive Line Enhancer With Injected Noise (ALEHIN) 
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This new scheme has the disadvantage however that the added noise 

propagates through the filter, Into the error signal, and Into succeeding 

stages.  It Is not as bad as would be the case If the noise were Injected 

Into the ALE Input, but still the effect Is undesirable. This problem 

can be  modified to some extent by adding a "slave" filter which filters a 

delayed version of the Input but without Its added noise. This slave 

filter uses weights copied from the adaptive filter. Since no noise Is 

actually added Into Its Input, the slave filter output and the error signal 

formed with It are devoid of the direct effects of the injected noise. 

This method is practical and may have application In some situations. 

Zahm [6], for example, has suggested Its use for the suppression of strong 

Jamming In an adaptive beamformer without obliteration of desired weak 

Input signals. However this method still has a major flaw in that the 

Injected noise increases the adaptive filter's "misadjustment." The 

adaptive algorithm which determines the weights of the adaptive filter 

produces errors or noise In Its estimates of the optimal weights. Weight 

noises are a function,,among other things, of the Input noise.  In a 

normal well-designed adaptive processor, weight noises are tolerably small 

and weight errors are not a problem. However In this case the large amount 

of Injected noise can cause large and bothersome noises In the weights, and 

cause significant amounts of random modulation of the filter output. 

Further research has shown that this problem can also be solved. 

By appropriately modifying the adaptive algorithm used to adjust the 

filter weights, behavior similar to that caused by the Injected white 

noise can be attained. In addition the modified algorithm does not cause 

the Increased misadjustment that the Injected noise does, nor does It 

require the slave filter. It has been dubbed the "ALE with algorlthmlcally 
i 
i 

I 
l 
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injected noise"  (ALEVMIN), and tts operation is clearly superior to that 

of the ALEWIN [2].    The next section will  describe the mathematical 

fonmilation of the ALEUAIN and show Its relationship to the ALE and 

ALEWIN. 

III.    Theoretical Motivation for the ALEWAIN 

This section will provide motivation for ths ALEWAIN configuration 

by first analyzing the mechanism of filter optimization for the ALEWIN 

•nd then showing that In expectation the same effect can be achieved by 

modifying the algorithm.    To proceed, some definition» and background are 

required. 

Figure A-7 Is a block diagram of the ALEWIN.    The input signal. x(k), 

PMMS Into two paths, one directly to a differencing circuit, and the other 

throHfk a decorretating delay of A time units, through a tapped delay line 

filter, and into the other input of the differencing circuit.    This 

difference €(k), termed the error signal.  Is used by the adaptive algorithm 

to adjust the filter in such a way as to minimize the expected power of 

c(k).    The following definitions ellow this to be put  Into mathematical 

form: 

x(k) - the Input signal 

n(k) - the noise injected Into the filter Input 

f(k) - the actual  Input Into the filter (-x(k-A)+n(k)l 

F(k) - tf(k)  f(k-l)  ...  f(k-n+l)JT - samples of filter input 

In the tepped delay line 

W(k) - (w0(k)  ... *,.|(k)l    - the Impulse response of the 

tapped delay line filter (also 

called the "weight vector") 

Jl 
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r y(k) - filter output - WT(k)F(k) 

E(k) - the error signal - x(k) - y(k) - x(k) - WT(k) • r(k) 

It will be assumed that x(k) and f(k) are random variables which are 

statistically independent, stationary and zero-mean. The autocorrelation 

functionV x(k) is rx(T) and that of n{k) Is rjt). The injected noise, 

n(k). Is assumed white. Therefore ^(T) - o^ii),  where a* Is the power 

of the injected noise process. 

The filter Impulse response (the weight vector W(k)) Is Iteratively 

adjusted toward its optimum value by the Widrow-Hoff LMS algorithm, which, 

In expectation, will reduce e2(k) to Its minimum value. The LMS 

algorithm updates its estimate of the optimal weight vector at each sample 

Interval by making an instantaneous estimate of the gradient of the error 

surface and then moving toward the minimum. Mathematically this may be 

written: 

W(k*l) - W(k) ♦ M.e(k).F(k), W(0) - W0 . MM 

where e(k)«F(k)  Is the magnitude of the Instantaneous gradient estimate and 

M, the adaptation constant, determines how much the weight vector will be 

changed In response to that estimate. 

By making some substitutions this recursion equation car be written 

In another useful  form.    Note that by definition the error Is given by 

c(k) - x(k)-F (k)«W(k).    Substituting this into equation  lll-l and collecting 

terms In W(k): 

W(M-I) - (l-|iF(k).FT(k)l-W(k) ♦ p«x(k).F(k), W(0) - W 111-2 

From this equation W(k) can be computed iteratively given only the Input 

signal and Injected noise. 

I* 



Suppose the expected value of the weight vector were examined. This 

would represent the average behavior of the ALEWIN in the statistical 

sense.  If the expected values of both sides of Eqn. 111-2 are taken and 

T * 
if it is assumed that F(k)*F (k) and W(k) are uncorrelated, this can be 

done. 

ElW(k*l)l - [l-uRFl-E[W(k)l ♦ E[x(k)-F(k)l, E(W(0)]- W(0) - W0 

MI-3 

where Rp - E[F(k)»F (k)], the autocorrelation matrix of the process 

F(k). The tapped delay line data vector, F(k) can be written as the sum 

of X(k), the vector representing the component due to the input signal, and 

N(k), the component due to the injected noise. Further x(k) and n(k) 

have been assumed independent. Therefore E[F(k)»FT(k)] becomes E[X(k)»XT(k)]+ 

£{N(k)*N (k)l ■ R ♦ R„, the sum of the two autocorrelation matrices for the x  n 

two separate processes. By the definition of the autocorrelation matrix 

the IJth element (Rl,. - r(i-j). Since ^(T) - OJö(T) this implies that 

2 
Rn " aA I, where I is the identity matrix. The input signal matrix R Is 

not in general diagonal. 

The same facts as above may be applied to the evaluation of the 

driving term E[x(k)«F(k)l. Since F(k) - X(k) ♦ N(k) and since x(k) and 

nCk) are independent then the term becomes E(x(k)*X(k)] - P , the auto- 

correlation vector of the process x(k). The Ith element of P is given 

by IPJ, • rx(A*KI). 

Assuming that the transition term F(k)FT(k) and the weight vector W(k) 

are unco.-related is a common simplifying assumption in work on adaptive 

signal processors (1,5,7). It is an excellent assumption when the constant 

M Is «Mil enough that adaptation Is slow. 

/q 
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With these observations equation  II1-3 may be simplified to the 

following: 

E[W(k*l)l-((l-u(R +a*.|)l.E[W(k)] ♦ pP  , E(W(0)1 - W, 'l'-k x   A      -     - - x' -'"-"'      "o 

This equation then describes the expected behavior of the weight vector 

of the ALEWIN.     In fact if this equation is solved to find the con- 

vergent behavior of the algorithm and If assumptions of the sort used ',n 

a previous report [2] are applied,  this equation yields the formulas 

obtained In this report by the Parseval's Theorem approach.     Furthermore  If 

x(k)   is assumed to contain only white noise and sinusoidal  components and 
2 

If oA  is set  to zero, then Eqn.   Ill-* converges to the functional  forms 

described in reference 3.    Thus equation  lll-i» describes the operation 

and behavior of both the ALE and the ALEWIN. 

With this background, the modified algorithm may be introduced. 

Suppose that the system used is exactly as  in Fig.  I except that there Is 

no Injected noise.    If so then F(k) - X(k) and the recursion expression 

for the expected weight vector would be: 

E[W(k+l)l - [l-uRl  EtW(k)l  ♦ yP  , E[W(0)1 - W, 111-5 

A» pointed out  In the previous paragraph this Is simply the weight vector 

recursion for the ALE, the limiting case of the ALEWIN as o? approaches 

»re.    However suppose that Instead of the standard LMS algorithm, another 

adaptive algorithm (the "leaky" LNS algorithm)  Is used.    Suppose the 

weight vector update equation is given by: 

W(k+I) - Y«W(k) ♦ M'e(k).X(k). W(0) - W, 111-6 

rtmn Y > 0. For this work y will also be assumed to be less than or 

•qu»! to I. The action of this algorithm at each sample Instant to add In 

ao 



the new Instantaneous estimate of the error surface gradient but also to 

diminish the weight vector by a small factor (causing it to "leak"). The 

rationale for this will be discussed later. 

Suppose that the weight vector equation of Eqn. llt-6 is applied to 

the ALE configuration. Haking the appropriate changes to Eqn. 111-5 then 

becomes: 

or, 

or. 

E[W(k*l)l - Yll-PR 1 ElW(k)l + pP . E[W(0)] - WA, 

E[W(k+l)l - [yl-YVR ) E(W(k)l ♦ uP , E[W(0)1 - WA, 
" X 0 

IM-7a 

lll-7b 

fllM E[w(k*i)l - [I-MI-^LL KRJJ E[w(k)] + yp^ E[w(0)j . Wo |M.7c 

were 

But Eqn. Ill-7c Is exactly the same form as that of the normal LMS 

implementation of the ALE (compare with Eqn. 111-5) if [Ulli | + R ] 

interpreted as the autocorrelation matrix of the tapped delay line data 

vector. However, by comparison with Eqn. Ill-«, it may be seen that this 

is exactly the recursion expression for the expected value of the ALEWIN 

weight vector If -Ü^Ü- I - 1^. But % - aj I; therefore, if y  is chosen 
2 

so that Y - I - MaA then the ALE configuration with the modified (leaky) 

adaptive algorithm and no Injected noise would have the same expected 

weight vector as the ALE with injected noise of power oj| using the normal 

LMS adaptive algorithm. Thus modifying the adaptive algorithm has the same 

effect at Injecting noise into the filter input. The line enhancer driven 

by the leaky LMS algorithm is called ALEMAIN. 

At 



IV. Discussion 

The previous section shows that the ALEWAIN gives the same mean 

weight vector as that of the ALEWIN (but not the same variance In the weight 

vector). Whatever value of o* that would have been chosen to separate 

the most powerful coherent component with the ALEWIN can be related to the 

proper value of yC-l-yoJ) which will allow the ALEWAIN to achieve the same 

effect In the mean. However, since no noise is actually Injected In the 

ALEWAIN. it significantly outperforms the ALEWIN and Is cheaper to 

Implement. The ALEWIN requires the actiiel Injection of noise Into the 

filter input. Therefore the filter output y(k) and the difference (error 

signal) e(k) are noiser than they would be if only the input signal were 

driving the adaptive algorithm. Since both the filter output and the 

difference signal are desired outputs of the power separator, this extra 

noise is deleterious. This problem was partially eliminated In previous 

work ^IJ by using a duplicate filter, the so-called "clean" filter, whose 

Impulse response is copied from the main filter. Since no noise is 

Injected into its input, the output and ensuing difference signal are not 

corrupted by the injected noise. But its weights are noisier than need be 

because the main filter weights are made more noisy by the injected noise. 

In addition, the use of the clean filter Increases by 501 the number of 

multiplications required for each iteration of the filter. With the ALEWAIN 

the duplicate filter Is not needed since no noise is actually Injected. 

Furthennare. the weights of the ALEWAIN are less noisy for the same speed 

of convergence. Look again at the adaptive update schema for the ALEWIN. 

The estimate of the gradient of the error surface is -c(k).F(k). Suppose 

the ALEWIN hat converged. If so then the expected value of the gradient 

Is zero, if the weight vector were driven by the true gradient, then the 

Ä^ 



weight vector Mould be unchanging at convergence. However ft is actually 

driven by an Instantaneous estimate of the gradient. The more noise 

that Is Injected then the more -e(lc).F(k) will differ instantaneously 

from its expected value of zero at convergence. Thus the weight vector 

will not stay at Its optimal value but will be perturbed away. This is the 

manifestation of weight noise mentioned earlier and In the case of the 

ALEWIN. It Increases with the value of oj. Since the ALEWAIN configuration 

Injects no noise, its weight noise Is a function only of the input signal 

as well as Y «nd the adaptation constant p. 

Some Insight Into the equivalence of the ALEWIN and ALEWAIN can be 

gained by discussing the effect of the Injected noise on the algorithm. 

It was shown [\]  that the effect of adding noise to the filter Input was to 

decrease the effective SNR of each Input component. Since the optimal gain 

SNK 
i 

uwrnn Is monotonlcally decreasing with decreasing SNR'    then 
I 

increasing the injected noise has the effect  In expectation of reducing 

the contribution in the weight vector from the less powerful component. 

In terms of the weight vector adjustment algorithms, Eqn.  Ill-l», the 

expected weight vector for the ALEWIN may be compared with Eqn.  IM-5. 

the expected   weight vector for the ALE.    It may be seen that In expectation 

they both have the same driving term v?^    Thus the injected noise contributes 

nothing to the driving term.   The only place the injected noise appears 

Is In the transition term.   It serves only to decrease the magnitude of the 

weight vector at each Iteration.   The higher the injected noise, the 

greater I« the decrease in the weight vector.    Since n(k) Is white, then in 

expectation all weights are decreased equally.    Thus P   tends to Increase 

-1 
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the magnitude of the weight vector end R tends to decrease it. Th* terms 

vie, on the basis of power, to determine the convergent weight vector 

magnitude. The vector P must be large to compensate for the decrease in 

the weight vector caused by R . n 

The ALEWA IN performs exactly the same function by altering the 

adaptive algorithm so that it deterministically decreases the weight 

vector at each iteration rather than relying on the statistical effects of 

the white injected noise. To remain fully represented in the weight 

vector, each input component must be strong enough to counteract the 

effects caused by y. 

This modified algorithm has been termed leaky LHS  (LLHS) since if 

e(k)*X(k) - 0 then the weight vector tends to leak away to zero as k tends 

to infinity.    It  Is also a good model of analog implementations of the LMS 

algorithm where imperfect  (leaky)  Integrators are used.    A distinction 

should be drawn here,    in the case of analog integrators, the "leaklness" 

is an undesirable feature and much design effort goes into trying to 

minimize it.    However,  the work In this report shows that a controlled 

amount of leaklness can have a desirable effect  in the application of signal 

separation by power level.    Another Important observation is that leaky LHS 

does not minimize the mean square error.    It does find a Wiener solution 

but for a performance function corresponding to an input which contains 

an artificial additive noise term.   Weak Input signals excluded from the 

fitter output y(k) because of their lesser powers. 
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IV.    Amplitude Correction Via a One-Weight Noise Canceller 

Reference 2  shows  the  results of computer simulations of the ALEWAIN. 

These simulations demonstrate that  the ALEWAIN can  In  fact slice off the 

most powerful  sinusoid of an  input signal  and  that   Its performance  Is clearly 

superior  to that of  the ALEWIN.    However,   for  the ALEWAIN to function well 

In the power separation scheme shown   in Figure A-l.  not only must  the most 

powerful  component  be  Isolated  in the  filter output,  but   it must also be 

completely  removed  from the error signal.     If  this signal   is not completely 

extracted then some  following stage might attempt  to  Isolate the  residual 

rather  than the next   lower-powered signal.    Unfortunately  it can be shown 

that the power ratio of the most and second most powerful  signals must be 

Infinite to allow complete separation  In one ALEWAIN stage.    To achieve 

complete separation with a finite ratio,  an additional  modification can be 

made.    This modification uses a single-weight Adaptive Noise Canceller 

(ANC)   [31. 

A block diagram of the adaptive noise canceller  Is shown  in Figure 

A-8.    The ANC has  two  Inputs,  the primary which contains  the desired signal 

plus some corruptlve  influence, and the  reference   input which contains 

noise which  Is correlated with the corruptlve  Influence   In the primary 

signal.     By adaptive filtering the reference signal,  noise may then be 

subtracted from the primary signal  to reduce the effect of the corruptlve 

Influence.    The use of an adaptive filter makes  this noise subtraction 

possible and practical by changing the adaptive filter weights to best 

adjust the spectral  content and phase of the reference signal, even  If 

the character of the signal  and the undeslred corruption change with time. 

Using this concept,  the problem of complete extraction of the most 

powerful component can be dealt with.    Refer to Flg. A-9.    The input signal 
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x(k) forms the primary Input.  It may now be viewed as the sum of many 

desirable components plus an undeslred corruptive signal, the most powerful 

coherent component. The reference signal, a correlated version of this com- 

ponent, can be supplied by the ALEWAIN filter output y(k). This concept 

is Illustrated In Figure A-9.  In the particularly useful case In which 

the most powerful component Is sinusoidal, only a single adaptive weight Is 

required In the noise canceller stage. This Is a result of the fact that 

the sinusoid In the ALEWAIN output Is In phase synchronism with the most 

powerful sinusoid In the Input signal. Because only the gain (and not the 

phase) must be adjusted, only one adaptive weight Is required. 

This concept may be viewed In another way. To perform signal separation 

with the ALEWAIN It must do several things: 

1) Identify the most powerful component --»- 

2) Isolate the most powerful component (I.e. form a filter to pass It) 

3) Adjust the gain of the most powerful signal to provide complete 

cancellation, 

*!) And, minimize the gain of the filter for less powerful components, 

unfortunately points 3) and *) are contradictory. Attempting to make the 

gain of the adaptive rilter equal to one at the frequency of the most 

powerful component has the simultaneous but undesirable effect of Increasing 

the gain for the less powerful components. The ALEWAIN with the NC modification 

•Hows the ALEWAIN to perform functions 1, 2, and i|, while the noise can- 

callar stage adjusts the isolated component to have unity gain for ideal 

cancellation from the input signal. As will be shown in Section V the 

ALEWAIN with tandem one-weight adaptive noise canceller (denoted AKEWAIN ♦ NC) 

performs very »fell with narrowband inputs. 
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V.    Experiments Results 

To demonstrate the performance of the ALEWAIN + MC conffguratfon.   It 

was simulated on an HP 2II6B minicomputer.    An experiment was designed to 

test the ability of the ALEWAIN ♦ NC to successfully strip off the coherent 

components of an  Input  In order of their power.    The  Input signal was composed 

of three sinusoids of different frequencies and powers plus white noise of 

unit variance.    The powers and frequencies of these sinusoids are as 

follows: 

Frequency (Hz) Power 

Sinusoid #1 179. 78.625 

Sinusoid #2 312.5 3.125 

Sinusoid #3 607.0 0.125 

Forty-alght hundred samples of the input signal were stored in a disk file, 

serving as  input data for the program which simulates the ALEWAIN ♦ NC. 

The program operates by taking Input samples from a desilnated file and storing 

the resulting noise canceller filter and difference outplts In additional 

disk files,    in this manner the same program can be used Jo provide several 

stages of separation by simply specifying the  input file OIF the current run 

to be the difference signal  from the previous run.     In suci a fashion th« 

Input signal was subjected to three levels of slicing.    At Lach level  the 

length of the ALEWAIN filter n and the decorrelation delay i were held 

constant  (6I| and I.  respectively).    To achieve separation within the 

desired number of Iterations, however,    JJ,, ^ and Y were varied on the 

three runs.    The values actually used are as follows: 
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ECT, ECT NC 
Y   Equv.aA 

t.6x)Ö* SCO Lio'1* 500 

.9999375 

76. US  

2x103 1000 |2.5x10'3 1000 3.125 

IO-3 1000 • 1 ■ 1 0     1 

Run #1 

Run 12 

Run 13 

The abbreviation ECT stands for "estimated convergence time," expressed 

in number of iterations. The column to the right of that for y shows the 

value of o? which would be required by the equivalent ALEWIN. The strategy 
A 

used for the choice of these operating parameters is discussed in Section V.l. 

In actual practice, all the cascaded adaptive processors might be 

allowed to begin adaptation simultaneously. For this simulation however 

each cascaded processor was not allowed to adapt until the preceding 

processor had reached convergence. The estimated convergence times were 

used to determine the startup times. As noted before, this is not mandatory 

In practice,  it is done here to uncouple the transient nature of each stage 

from all the others in order to study these adaptive transients. 

Figure A-10 Is a plot of 512 points of the Input signal and the 

associated power spectrum. The format of this figure will be used several 

times so it will be explained in detail here. Part (a) of the figure 

presents a 512-polnt record of the signal of choice (In this case, the input 

to the first separator stage). The middle curve is the magnitude squared of 

the DFT of the data record. This plot is scaled by its maximum value. 

The botto« curve is the logarithm of the middle plot. While taking the 

logarithm presents a less spectacular picture than the linear plot It makes 

the second order effects such as input noise and the effects of filter 

weight noise more visible. The arrows below the frequency axes Indicates 

the frequencies of the input sinusoids. They will be shown on alt such 

spectrum plots. Note that the power relationship between all the coherent 

Q. 
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input components is visible in Figure A-iOc. 

Figure A-ll shows the filter output of ALEWAIN #1 at the beginning 

of adaptation. Vhe exponential growth of its envelope Is just as pre- 

dicted by other work on the ALE structure (!]. Figure A-12 shows the 

filter output signal and Its spectrum welI after convergence (Iteration 

3000). From Its spectrum It is clear that the most powerful sinusoid has 

been essentially isolated. 

Figure A-I3 shows the strong output of stage #1. Adaptation begins 

at iteration 500 (after ALEWAIN #1 converges) and converges in roughly 300 

iterations to provide the proper scaling for sinusoid #1. That this 

scaling has been properly found is illustrated in Figure A-H. This Is 

the remainder output of stage #1. At Iteration 500 (when Its adaptation 

begins) the contribution from sinusoid #1 begins to decrease dramatically 

and by iteration 800 It is virtually gone. Figure A-15 further demonstrates 

this point by showing the remainder signal #1, and Its spectrum beginning 

at iteration 3000. From the log spectrum plot it is ciear that the most 

powerful sinusoid #1 has been highly attenuated.  In fact It has been 

decreased by approximately 60 dB. (Additional experiments have shown 

this to be a typical value). 

Figures A-16 through -18 show the behavior of the second separation 

stage. Its Input Is simply remainder output II (Flg. A-15). Adaptation 

was begun at Iteration 1000 (after the convergence of NC #1). Figure A-16 

shows the output of ALEMAIN #2 and Its spectrum after convergence 

(iteration 3000). Sinusoid #2 appears almost exclusively at the filter 

output. Figure A-18 demonstrates remainder signal 02  after convergence. 

Sinusoid 12 (and II, as well) has been almost completely extracted. The 

spectral plot shows that only sinusoid #3 and the Input noise remain in the 

remainder output 12. 
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If this difference output Is applied to the third separation stage 

the remaining sinusoid (#3) can be separated from the Input noise. This 

signal and Its spectrum are shown In Figure A-19. 

This experiment demonstrates that the ALEWAIN + NC configuration 

can successfully be used to effect separation of narrowband signals on 

the basis of power when they do not overlap in frequency. The theory 

developed so far (and the experiment presented) are based on the use of 

sinusoids as the coherent Inputs. With finite bandwidth narrowband 

signals, so long as the bandwidth of the relatively coherent components 

Is considerably less than I/A (A-the decorrelatlon delay), each signal 

separation stage will slice off a separate signal. However It may be 

necessary to use more than one weight in the NC stage to effect complete 

separation. This will be discussed further In the next section. 

VI. Choice of Operating Parameters 

The previous theory and simulations have assumed that sufficient a 

priori knowledge about the input signal is available to the user so that 

the values of the adaptation and leakage constants can be appropriately 

adjusted. This section will explore some considerations in their choice. 

A. Choice of the Leakage Coefficient y 

The slicing level of each separation stage is controlled by the 

leakage coefficient y  used for the associated ALEWAIN. This choice is 

determined by the fact that the most powerful component must be passed while 

less powerful components must be suppressed as much as possible. The nature 

of this problem can be understood by reexamining Figure A-6. This Is 

the operating curve of the ALEWIN/ALEWAIN and shows the convergent gain 

of the Ith input component as a function of the SNRj (the Input SNR as 
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modified by the algorlthmically Injected noise). Suppose that the input 

contains two coherent components whose power ratio Is P,/P, » P> I. T>e 

goal of making a* as small as possible while holding a* fixed is clea-ly 

achieved by operating on the left side of the operating curve (where the 

curve Is Increasing approximately linearly). If the coherent conponents 

are assumed to be sinusoids, the maximum possible ratio of gains can be 

found analytically. 

I • ^"i      Sol,, 
.*      ' * I • %m\       "'2 

a*        n 7n'2 
2        i: SNR2      ^-+' 

1 ♦ f • SMR2 
I 

where a'2 Is the total equivalent noise power (i.e. a2 ♦ 0?, for the 
A 

ALEWIN, or a2 ♦ ill , for the ALEWAIN). If SMR| and SHRJ are large com- 

2 
pared to - then a|/aj J 1 and there Is no gain difference. This corresponds 

to locating both components on the right hand side of Figure A-6. Since 

there Is no gain difference, separation cannot be attained. If, however, 

SMRj and SMR' are both considerably less than - , then: 
'      * n 

'lm     Ü-P'-P 
o'2^«  a5  ^   ' 

This indicates that the best separation Is attained by operating as far 

left as possible In Figure A-6. Unfortunately this desirable behavior Is 

offset by the fact that operation In this region (where the injected 

noise completely controls the dynamics of adaptation) tends to disturb 

the gain relationships between the various parts of a non-sinusoidal input 

component. As a result a single weight noise canceller will not suffice 
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to completely cancel this component In the NC remainder output. This 

problem can be circumvented to some degree by adding more weights to ehe 

NC stage. Experiments have shown however that generally good performance 

can be attained for both sinusoidal and narrowband inputs by setting Y 

(or oA) so that a* , the gain for the most powerful component equals .5. 

This Implies that SNRj»y - I and corresponds to the "knee" or breakpoint 

in the a* vs. SNR' curve. The values of y  used in the various separation 

stages of the experiment shown In section V were chosen In this manner. 

In actual practice the power of the most powerful component is usually 

unknown and this complicates the choice of y.    The value of y  could be 

swept to search for a solution. By simply examining the input waveform and 

attributing Its maximum excursion to the most powerful sinusoid, the power 

of this component may be roughly estimated by the RHS power of the input 

Itself.  In the case where the coherent inputs have widely disparate powers 

and all have SHRs greater than one, this is a fairly accurate estimate 

and the value of y  found from this estimate will work well.  If the 

conditions are not satisfied, then the performance will be poorer. However 

this adaptive structure Is quite tolerant of small parameter mlscholces 

and will usually provide very good performance even if the power is mis- 

estimated.  If the SNR condition is not met, then the background noise 

will determine the RNS input power and hence the choice of y- 

B. Time Constant Determination 

The convergence times of the ALEVMIN and the NC are determined by p 

and jig, respectively. The convergence behavior of these adaptive processes 

•n be quantified by finding the time constants associated with the uncoupled 

modes In each of the processes' weight vectors. To determine this behavior 

for the ALEWAIN, consider again Equation Ml-7c, 
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E(W(k+l)] - jl-U,^ I + Rx]| E[W(k)] + p|Px . 

Since Rx is real and symmetric It Is possible to find a coordinate trans- 

formation which uncouples the modes of the adaptive process [8].  If this 

Is done the expected value of a typical uncoupled weight, w,(k) say, can 

be written [8] as: 

E[w|(k+l)J - [Y+lijX,] E[wj(k)] + yd,, 

where a Is the Input noise power and Xf Is the elgnevlaue of Rx associated 

with the Ith uncoupled input mode. The growth time constant of such a 

recursion expression can be shown to be: 

Tl " I-Y+PJX,  • 'l1!" 

Notice that If y - I then the time constant degenerates to that for the ALE. 

If M^, » I-Y then the adaptive time constant for this mode Is determined 

by M, and the powers of the Input noise and the uncoupled coherent component. 

If. however, M, or the input powers are so small that I-y^jX, then the 

adaptive dvnamics are determined only by y.     If l-y^A,, for all I, then 

the ALEWAIN becomes a recursive correlator [9] with a time constant of -L 

f '"Y 

for all modes. In the case of sinusoidal Inputs these solutions can be 

put in terms of the power of the most powerful sinusoidal Input. It can be 

shown [8] that a sinusoidal Input induces two eigenvalues of R which are 

approximately equal to ^ , where P is the power of the sinusoid. In this 

case the adaptive time constant associated with the two modes of Interest is 

given by: 

T !  
s i-vn^a2*^) 

Convergence of the adaptive algorithm is a matter of definition but a 

practical value It twice the longest growth time constant of interest. There- 
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fore,  for a sinusoidal   input,  the estimated ALEWAIN convergence time is 

given by: 

ETC. - 
A      l-Y^fa2^ 

If the sinusoid  Is very strong then ETCA tends to V^nP.     However, 

«f M,   Is very small  then ETCA tends  to 2/(l-Y)(l.e.  the  recursive 

correlator case). 

Determination of the  time constant for the one-weight noise canceller 

is quite simple.    The expected behavior of the weight  Is described by: 

EMk+l)l - 0-li2Py) E[w(k)l *v2c, 

where Py Is the expected power In y(k), the ALEWAIN filter output, and C is 

the crosscorrelatlon of the primary Input with the ALEWAIN filter output. 

In a fashion similar to that above the estimated convergence time can be 

shown to be: 

ETC  ■ - 

2 y 

The power in y(k) Is determined by the value of a* chosen for the ALEWAIN 

via y. If the recommended choice of a* - .5 is made and if the component 

of Interest Is sinusoidal with Input power P then ETCMC reduces to: 

ETC 16 
NC  y1 

As the assumption regarding Infinite coherence (sinusoidal   Inputs)  is 

violated the time constant estimates given here become poorer.    However 

these estimates work well  In practice and should give good results.    Further 

Insight  Into the convergence times of adaptive processor such as the ALE 

and ALEWAIN can be found In reference 8. 
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VII. Conclusions 

This work has demonstrated In a preliminary way the practical I tv of 

the ALEVIAIN + NC adaptive processor as a signal sorter or separator, 

particularly In the case where the desired singals are narrowband and their 

signal-to-noise ratios are high ( >l). Jamming signals would have such 

high SMR's. Results presented here have demonstrated how to design a 

signal separator, how to choose (either manually or automatically) the 

operating parameters, and how to estimate the convergence time of such 

a processor. These results should be very useful for a variety of communi- 

cations and signal processing applications (i.e., anti-Jacwning). However 

an equally important part of this research was the discovery and preliminary 

examination of the leaky LMS (LLMS) adaptive algorithm as applied to 

adaptive line enhancing. Even though much remains to be explored about 

the behavior of this algorithm It seems clear that It will have wide 

applicability to sonar and radar signal processing. In spite of the fact 

that It was conceived for the ALCWIN configuration through evolutionary 

development, it can be generalized to more complex temporal and spatial 

filtering applications. 
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Part B 

ADAPTIVE BEAMFORHING WITH  INJECTED NOISE 

I.     Introduction 

In this section an adaptive antenna array system with a special  pilot 

signal   is proposed and studied.    The goal   is  to produce an antenna system 

which responds  to signals as a function of their power levels  -   the stronger 

the signal,   the more attenuation desired.    A system of this  type would 

allow reception of weak signals  in an environment confining stronger,  un- 

desired signals  (i.e., jammers). 

An adaptive system is desired to cope with the non-stationary 

character of most environments.    The non-stationarlty arises from signals 

turning on and off, signals fading, signal  sources moving In space, and 

possibly the receiving array changing  In physical orientation  (due either 

to being mounted on a moving vehicle, or on a base subject to stretching 

and malformation). 

The use of an antenna array as opposed to a single antenna Is desired, 

since this allows spatial  filtering In addition to frequency filtering. 

Therefore,  the system can form nulls  In Its reception pattern  In the 

direction of undeslred signals. 

A final objective of the system is to maintain reception sensitivity 

in directions where no signals are currently to be found.    This allows 

for Immediate acquisition of desired signals when they start up and for 

essentially unattenuated reception of low power signals arriving at unknown 

directions of incidence. 

In conclusion, we wish the adaptive antenna system to have the follow- 

ing properties: 

1) attenuation based on signal power strength 

2) fast response to changes In the signals 
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3) response to changes In the array Itself 

M receptivity In directions where no signals currently exist. 

i) 

2.    Presentation of the Algorithm 

In this section we propose an adaptive algorithm for use in an 

array antenna system, designed to fulfill the functions outlined  In the 

previous section.    Due to the characteristics of the algorithm and its 

relationship to conventional adaptive beamformlng antenna systems,   this 

adaptive array antenna system will  be called the Adaptive Beamformer 

With Injected Noise  (ABWIN). 

^     Introduction to the Algorithm 

The basic  idea behind the algorithm Is to feed Into an adaptive 

antenna array processor the signals  received from the environment, 

augmented by a specially chosen pilot signal.    The pilot signal of the 

AWIN is designed to place "soft constraints" on the array's response to 

signals;  the intent  is to have an omnidirectional  reception capability In 

the absence of strong (possibly Jamming) signals, but attenuating strong 

signals when they do occur, the degree of attenuation being a function of 

the signal power and the pilot signal  power. 

2.2    The ABWIN 

The structure of the adaptive array system will now be described; a 

discussion on the pilot signal will  then be presented. 

Figure B.l   illustrates the structure of the adaptive array system. 

Signals are received from the environment by an array of antenna elements 

(the array geometry Is shown In the figure for illustrative purposes 

at six elamants In a circular pattern -   the geometry of an actual antenna 

array «ay be any configuration).   Added to the outputs of the antenna 

•laMtntt are the individual components of the pilot signal  (labelled n. 

4t 
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Figure B.I    Structure of the ABWIN for a six element antenna array. 
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through n6 in the figure). The resulting signals are Inputs to a set of 

transversal filters, whose outputs are summed to produce the array's out- 

put. This output Is subtracted from the pilot signal producing an error 

signal which Is used by the ABWIN for updating the Impulse response of the 

transversal filters. 

Me see that the array's output contains the pilot as well as the 

received signals, which Is clearly undesirable. To overcome this problem, 

a second set of transversal filters Is established so that the received 

signal can be passed through this set without the addition of the pilot 

signal. Therefore, one set Is used for the adaptation or training of the 

system; (the training filters) the second may be regarded as an operational 

set of filters whose output Is the useful system output. We will assume 

that the reference signal Is formed as Illustrated In the figure: simply 

add the pilot signal components (n, through n6). and use the result as 

the reference signal In the adaptation algorithm. Other methods of forming 

the pilot signal are possible and will be discussed later. The adaptation 

algorithm used for adjustment of the transversal filter weights Is Wldrow- 

Hoff Least Mean Square (LMS) algorithm ( J, which will be discussed In 

more detail In the next section. 

The pilot signal of the ABWIN Is constructed In a special manner. 

Each of the pilot signal components (nf through n6 on the figure) Is a 

noise signal, generated independently of the other pilot signal components, 

and the external signals. The pilot signal Is then the sum of the pilot 

signal components. This method of construction gives the pilot signal the 

property that it does not appear to be arriving from any specific direction, 

unlike the pilot signal of conventional adaptive beamformers I ]. The 
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effect of a pilot signal constructed in this manner is described in a later 

section. 

2'3 Mathematical definition of the ABWIN 

We will now describe the ABWIN mathematically. Let there be h 

antenna elements. Denote the output of sensor I at time k by s (k) (1-1, 

...,M). Denote the component of the pilot signal added to the ith sensor 

signal by nj(k). Denote their sum by uAk). 

UjCk) - s^k) + njCk) 

Associated with each element is a transversal filter (TF) where TF is 

associated with ith element. Each TF can be described by two M dimensional 

vectors: 

a) the contents of the tapped delay line. For the training filters 

we will denote the contents of the delay elements at time k of TF 

by 

UjOO - [ujCk) UjCk-D.^UjCk-n+l)!7 . 

where n Is the number of elements In the tapped delay line. For the oper- 

ational filters we will denote the contents of the delay line of TF at 

tine k by 

5,(1*) - [sjU) s|(k-l)...s|(k-n-H)J
T . 

b) the weights of the transversal filter, which are the same for the 

training filters TFj and the operational filters TFj. We will de- 

note the weight vector at time k of filters TF, and TF by: 

W,(k) - IwM(k) w|2(k)...w| n(k))
T . 

Using this notation, the output of TF, at time k is: y. (k) - Wl
T(k)U (k); 

•nd  the output of TF, at time k Is: Y,(k) - w,T(k) S,(k). 
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For the purpose of writing the adaptation algorithm In vector 

notation, we need the following vectors: 

U(k) - the augmented tapped delay line contents vector of the train- 

ing set of filters 

U(k). 

U^k) 

u2(k) 

• 
• 
• 

yk). 
S(k) the augmented tapped delay line contents vector of the 

operational set of filters (dimension of M xl) 
n 

sjCkT 

S{*)' s2(k) 

sM(k) 

M(k) - 

W(k) - 

the augmented pilot signal vector  (dimensioned H xl) 
n 

X(k)  - S(k) 

the augmented TOL weight vector  (dimensioned M xl) 
n 

W(k). 

W^k) 

w2(k) 

-T- 
• 
• 

wM(k) 

Therefore, the output of the training filters  (which have the pilot signal) 

J« v(k) - W (k)ü(k).    The output of the operational  filters  (which contain 

only the tensor signals)  Is: y(k) - WT(k)S(k). 

SX 



The operation of the ABWIN can now be described mathematically.  At 

time k 

1)  Input the new data, shifting the old data down the tapped delay 

Iines: 

U(k) -iU(k-l) +Iu(k) 

S(k) -iS(k-I) +Is(k) 

where u(k) - [u,(k)...uM(k)1
T - s(k)+n(k) 

s(k) - [sI(k)...sM(k)]
T 

A - the tapped delay line shift matrix 

B - the tapped delay line input matrix 

These equations can be written in a component form, as Illustrated 

below for the U(k) vector: 

U(k). 

"u, (k) A 0  . ..  0 Vk) 

u2(k) 
- 

0 A  . 'lo u2(k) 

• 
• 
• 

■       •       • 

•       • 
• 
• 

»      • 
• 
• • 

vkil 0 0.. .  A uM(k) 

B|0|...  0 

O|B|... o 

• •     •            • 
• •        •        • 
i    •            •    • 

0 0  ...   B 

"u, (k) 

u2(k) 

• 

where 

0 0 0.. 

10 0.. 

0 10.. 

0 0  1.. 
• •      •      • 
• •      • 
0 0 0.. 

0 0 

0 0 

0 0 

0 0 
• s 

• i 

1 0 

I 

0 

0 

0 

, A  is nxn,  B  Is nxl 
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Thus 

I- 

A|0|. 

OlAl. 

. 0 

0|0|...|A 

B|0|...|0 

O|B|...|O 

O|O|...|B 

2) Calculate the system output: 

y(k) - WT(k)U(k) 

y(k) - WT(k)S(k) 

3) Calculate the system error for use In the adaptation equation: 

e(k) - d(k)-y(k) 

For most of the remainder of this report we will assume the pilot 

(or "desired") signal Is formed as follows: 

M 
d(k) - I    n  M 

l-I  ' 

Other possibilities will be discussed in a later section. 

A) Perform the LMS adaptation: 

W(k+1) - W(k) + 2pe(k)U(k) 

where M H the adaptation constant. 

£l 



2.'« The Pilot Signal 

To this point very little has been sa;H about the pilot signal and Its 

components, but the functioning of the ABWIN depends heavily on the pilot 

signal. 

It was stated previously that the purpose of the pilot signal in 

the ABWIN Is to place "soft" constants In the array's response to signals; 

the Intent being to maintain an omnidirectional reception capability in 

the absence of signals. To attain the capability of omnidirectionalIty, 

the reference signal components (n?(k), l-l, M) are Independent white noises. 

Consider a signal received by the array from an external source. 

Such a signal appears Identical to each sensor, with the exception that 

the signal may arrive at a different time. Thus there Is a correlation 

between sensors for a signal with any spatial orientation. 

The ABWIN pilot signal Is different, however. Since the pilot signal 

components are independent noises, there Is no correlation between the 

pilot signal components on different sensors. Thus, the pilot signal 

component from one sensor cannot be used to cancel any portion of the pilot 

signal component of another sensor. Because of this, the pilot signal 

does not appear to arrive from a specific direction.  In other words. It 

does not exhibit any spatial orientation. 

With a pilot signal created as described above, the ABWIN cannot 

place a lobe In a given direction to enhance reception of the pilot signal 

as in conventional adaptive arrays. At the same time, any change to the TF 

weights does affect the system's response to the pilot signal. Thus, In 

the absence of external signals, the ABWIN attains a reception pattern 

which will be referred to as the "quiescent" pattern. When an external signal 

Is received, the ABWIN reacts to place a null in the reception pattern in 
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the direction and frequency of the received signal. This null also decreases 

the gain of the pilot signal through the system; as a result, the ABWIN 

will adjust to a reception pattern that "balances" the amount of the 

pilot signal lost against the amount of the external signal that is allowed 

to pass. This, then, is the "soft constraint" capability of the ABWIN. 

3. The Quiescent Pattern of the ABWIN 

Let us now determine the quiescent pattern of the ABWIN, by 

examining the impulse response of the various transversal filters in the 

absence of signals received by the elements. 

Consider the way in which the pilot signal is generated. The signal 

used for reference purposes is the sum of the individjal components. 

Therefore, we see from Figure I that !n the absence of any external signals, 

the adaptive array can obtain zero error if its output is simply the sum 

of the current inputs to the TF's. This is achieved when each TF has a 

weight vector which is zero except for the weight corresponding to the 

most recent input. This most recent input has a weight of I associated 

with it. Thus, the quiescent system weight vector is: 

W(k). 

I 

0 
1 

1 
0 

n elements 

^ 

■t,w-* r-WiK,: 



In other words, the response of each TF to a unit Impulse Is a unit liipulse. 

Note that the zero weights arise from the fact that white noise 

sources are used for generating the pilot signal components. Since white 

noise has no time correlation, the pilot signal components from previous 

time samples are of no aid In "predicting" the reference signal at this 

time instant. Thus a zero weight Is associated with ell delayed samples. 

The weights associated with the current inputs must be unity. This 

Is a result of the statistical independence of the individual pilot 

signal components. Since the components are statistically Independent, none 

of the components Is any aid In "predicting" the value of another component. 

Thus to change a weight from unity would only add to the system output a 

quantity which could not be cancelled by the pilot signal, resulting in 

a non-zero error. 

Thus we see that In the absence of external signals, the ABWIN can 

produce a zero error by selection of a unique weight vector, which has 

the effect of Just summing the current inputs to produce the output, with 

no dependence on past Inputs. 

This "quiescent" weight vector determines the "quiescent" array 

reception pattern, in conjunction with the antenna array geometry. This 

quiescent pattern Is simply the pattern obtained when the antenna element 

outputs are directly summed. Thus the sensor geometry has a direct effect 

on the quiescent pattern of the ABWIN, but does not effect the quiescent 

weight vector. A method of modifying the pilot signal to modify the 

quiescent weight vector, allowing a broader choice of quiescent reception 

pattern, I« proposed In a later section. 
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r *•    An.lv,l, of the Convergence Point of the ABWIN 

•n thl. sect.on we will .n.lyt,c.,lv „etennln. th. „„ (eKp,cl.d 

vlue) of the wel9ht «ctor. ., conger^nce.    fc9|„ with the edeptetlon 

equation: 

W(k*l) - w(k) ♦ 2lje(k)U(k) - W(k) * 2uU(k)e(k) 

Substltutrng for the error: 

W(k+1)  - W(k)  *2uU(k)[d(k)-y(k)J 

- W(k)  ♦2uU(k)Id(k)-UT(k)W(k)l 

- W(k) + 2wd(k)U(k)  - 2pU(k)UT(k)W(k) 

*>* Uke the expectation: 

E{W(k*l)} . E(W(k)} * 2uE(d(k)ü(k)}  - 2MEfü(k)UT(k)W(k)} 

Now we make the approxImatJon   hat 

E{ü(k)UT(k)W(k)}-E{ü(k)üT(k)}E{W(k)} 

which I. good for small p.    Under this approximation: 

E(W(k*i)}- E{W(k)> ♦ 2uE(d(k)ü(k))  -2pE(ü(k)UT(k)} EfW(k)} 

At convergence, we have E(W(k.,)) . E(W(k)}  . which is achieved when 

E{ü(k)üT(k)} E{W(k)} - E{d(k)U(k)} 

Therefore at convergence, 

E{W(k)} - EOiWü^k))-1 E{d(k)ü(k)) 

For eat« of notation,  let 

R
uu 

ö C(ü(k)üT(k)} 

P- E{d(k)ü(k)) 

^- E{W(k)) 

St 



Thus the converged weight vector satisfl es 

Mow, since 

W - R"' p. 
uu 

d(k) - Z    n.fk) 
l-I  ' 

we have 

E{d(k)U(k)} - Z    E{nt(k)U(k)} 
l-I 

However, the pilot signals are white and independent of one another and any 

external signals. Therefore, 

.2 

P - 

a 

0 

a 

0 

i-0.i 

2 
where a Is the power of a pilot signal component: o2 Ä E{n2} . 

Hoi*ever» Ruu can ^ «fccomposed Into a contribution From the external 

signals and one from the pilot signals. 

*uu - EUS(kHl(k)l [ST(k)^T(k)J} . 

But th« n^M's were constructed to be Independent of the s.Ck)^. So 

R
ttu «•" ^ broken Into the sum of external signal and pilot signal covarlance 

matrlcet. 

"uu " E(S00$T(k)) ♦ E{M(k)MT(k)} 

- « . ♦ R 
•s  nn 

MM 

Si 



Thus,  for the mean weight vector at convergence, we have 

w- (R   ♦ R r1 P ss        nn 

Mow, since the n. are Independent white noises of variance o2. R  - 32l 1 nn 

where I Is an Identity matrix. Thus 

W- (R^-HJ2!)"1 P 

The term R$s Itself may be the sum of a set of matrices, each dependent on 

signals received by the array. 

We see that the converged weight vector Is a function of the ref- 

erence signal power a , as well as a function of the signals In the 

tapped delay line (Rs$). R^ Is dependent upon both the time correlation 

characteristics of the external signals as well as the sensor geometry. 

A signal with non-zero correlation across a delay of one or more time 

samples will introduce non-zero off-diagonal terms In R , due to the 

tapped delay lines. In addition, an external wavefront received by the 

sensor array arrives at each sensor delayed In time by an amount 

dependent upon the sensor geometry and the direction of arrival of the 

wave. This geometry dependent time delay affects correaltlon between 

the contents of the tapped delay lines of different sensors. Thus we 

see that the cross-correlation matrix Rss Is a complicated function of 

the statistical characteristics of the received signals and the sensor 

geometry. 

«• see that In the absence of external signals, R  - 0, and the 

quiescent weight vector is: 

W 



o 

I 
0 

I 
0 

as predicted in an earlier discussion. 

5. Application of the ABWIN 

5.1 Introduction 

In this section the ABWIN is applied to a particular array configuration 

under several different signal environments. The simulation of the ABWIN 

is compared with results calculated from the theory presented earlier 

to demonstrate the validity of the theory. Then the theory is used to 

calculate the ABWIN behavior under different signal conditions to demon- 

strate the ABWIN response to a signal on the basis of its power. 

5.2 The Array Configuration 

Figure B.2 shows the sensor geometry used in this section. The 

speed of signal propagation is I, the sampling rate is .12$. and each 

tapped delay line contains 8 taps. Thus each tapped delay line will hold 

1 cycle of a sine wave of frequency I, and if the signal sine wave (with 

frequency I) is arriving from the 0° direction, the signal at sensor k  is 

shifted 180* In phase from the signal at sensor I. 

5.3 Simulation Results 

This section presents an example where the converged value of the 

mean «Might vector is computed from the theoretical results presented 

earlier, and compared with an actual weight vector obtained from a computer 

simulation of the ABWIN. 
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Figure B.2   Geometry of the antenna array used In the simulations, 
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In this example two signals are present. The first signal has a 

frequency of I., a power of I., and is arriving from a direction of 18°. 

The second signal has a frequency of 2., a power of 10., and is arriving 

from a direction of 108°. The pilot signal component power (a ) is 5. 

The calculated value of W is compared below with a weight vector obtained 

from a simulation of the ABWIN. Note that the simulation weight vector 

Is an Instantaneous weight vector; no averaging was used to obtain this 

vector. 

The weight vector consists of kB  (6x8) elements. The first eight 

elements correspond to the TF associated with sensor I (TF.). The next eight 

•lentnts correspond to TF2 and so on. The first weight of each set of 

eight corresponds to the weight associated with the most recent sample, the 

second to the next oldest sample, and so on. 

The theoretical and measured weight vectors are presented in Table 

B.I. 
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TABLE  B.I    THEORETICAL AMD MEASURED WEIGHT VECTORS 

-« 

W (theoretical) ABWIN simulation 

1.0358 1.03** 
- .1375 - .122* 
- .Ili07 - .1326 
- .0003 .0020 

.0508 .0559 

.0109 .0015 

.05*1 .0332 

.1269 .12** 

.9228 .922* 
- .02«i5 - .0231 
- .0510 - .0582 
- .1025 - .1103 
- .0005 .0031 

.1568 .1600 

.1287 .117* 
- .0297 - .0*51 

.8309 .8232 
- .0380 - .0515 

.1079 .0883 

.0823 .0735 

.0160 .0153 

.0*85 .0572 

.0*52 • 0579 
- .0929 - .0781 
1.0358 1.0269 
.1269 .1119 
.05*1 .0*90 
.0109 .0171 
.0508 .0*9* 

- .0003 - .00*0 
- .1*07 - .13*9 
- .1375 - .1*72 

.9228 .9055 
- .0297 - .02*3 

.1287 .1391 

.1568 .16*8 
- .0005 .00*6 
- .1026 - .1075 
- .0510 - .0565 
- .02*5 - .0365 

.8309 .8271 
- .0929 - .0978 

.0*52 .0**3 

.0*8$ .0560 

.0160 .0288 

.0823 .0895 

.1079 .1173 
- .0380 - .0*00 

u 



A$ can be seen,  there is a very good agreement between the theoretic»» 

and actual weight vectors.    In all cases examined In this research a cood 

agreement between actual and theoretical  values were obtained. 

5.*   Results Calculated form Theory 

This  section presents results  in which the thoery presented earlier 

Is used to calculate the response of an ABWIN to a set of situations which 

allow examination of the ABWIN performance. 

5'*,•,    Signal of Frequency ■ I. Power ■ I. Direction ■ 18° 

In this section, a single signal of frequency I and power I   is 

«•"Pinging on the array of sensors, arriving from a direction of 18°. 

Table B.2 below shown the gain of the ABWIN in the direction of the signal 

as a function of the power of the pilot signal components.    Figures B.3 

and B.li show the entire antenna pattern at a frequency of I for two of 

the cases  In Table I.    The crosshairs on the figures show the receiving array 

gain in the direction of signal arrival.    The stronger the pilot signal, 

the relatively weaker the recleved signal   is.  the more like a signal  and less 

like a powerful Jammer It appears to the system.  So. the stronger the pilot 

signal,  the lower the notching effect seen by the actual signal of unit 

power. 
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TABLE B.2 

ANTENNA POWER GAIN AT FREQUENCY - 1, DIRECTION - 18°. SIGNAL POWE^ - 1 

Pilot Signal 
Component Power (o ) 

100. 

30. 

10. 

5. 

I. 

.1 

s gnal Power 
Gain 

5.22 

2.i»8 

.694 

.239 

1.28 x 10" 
-2 

1.38 x 10"3 

•'•*'" c—a-c 



S.k.2.    Signa]  of Frequency ■ 1. Power -10. Direction « 18° 

This is the same as the previous situation, except the power of the 

incoming signal has been increased from 1 to 10. Table B.3 and Figures 

B.5 and B.6 present the results. Once again, the weaker the pilot signal, 

the greater the rejection of the received signal. The more powerful 

recieved signal (of power 10) is more strongly rejected by the adaptive 

antenna than that of unit power. 

S.k.S    Two Signals; Signal I; Frequency ■ 1. P^r ■ 1 ntr-tUi*  - ■«' 
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TABLE B.3 

AMTEMMA POWER GAIN AT FREQUENCY - I. DIRECTION - 18°. SIGNAL POWER -  10 

Pilot Signal 
Component Power (o ) 

IM. 

30. 

I«. 

5. 

I. 

.1 

Signal Power 
Gain 

.69* 

.991 x 10* 

.128 x 10 -I 

.33« x I0"Z 

.138 x 10"3 

.139 x 10"5 

t 



5«*'3 Signal of Frequency ■ 2. Power ■ I. Direct?on - 108° 

Table B.k  shows the gain of the ABWIN to a signal of frequency - 2, 

direction - 180°, and power - I. Figures B.7 and B.8 show the entire 

antenna pattern for the cases of reference signal component power - 30 

and 5. The loss of signal Is roughly similar to the previous cases 

(Flg. B.3 and B.*) 
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TABLE  B.k 

ANTENNA POWER GAIN AT FREQUENCY - 2.  DIRECTION - 108! POWER ■  1 

I 
I Pilot Signal  , Signal Power 
| Component Power (a ) Gain 

IM. 2.30 

30. 1.09 

10. .306 

5. .105 

I. .565 x lO-2 

.1 .608 x lO"* 



5'*»* Signal of Frequency - 2. Power ■ 10. Direction - 108° 

This situation is the same as the previous case except the signel 

power has been increased from I to 10. Stronger signal losses result. Table 

B.5 and Figures B.9 and B.IO present the measured responses. 
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TABLE B.5 

ANTENNA POWER GAIN AT FREQUENCY ■ 2. DIRECTION - 108°. POWER I? 

i ' 

Pilot Signal 
Component Power (o ) 

100. 

30. 

10. 

5. 

I. 

.1 

Signal Power 
Gain 

.306 

.kit  x 10" 

.365 x 10 

.H»7 x 10" 

-2 

.608 x 10 

.613 x 10" 

-k 

,—-^ 



S.^.S    Two Signals;  Signal 1;  Frequency - 1. Power « I. Dtrection - 18° 

Signal 2;  Frequency - 2. Power - 10. Direction - 108° 

In this situation we have the case of two signals, of different frequency 

and different direction, where one signal Is much stronger than the other. 

The ABWIN reacts in such a way that, at the output, signal I is stronger 

than signal 2. even though at the input it is the weaker of the two. The 

phenomenon Is similar to "Inversion of signal to noise ratios." Table B.6 

shows the results, and Figure B.I I shows the antenna patterns at the two 

frequencies for the case where the pilot signal component power - 3«. and 

Figure B.I2 is the analagous figure for the case where the signal component 

power ■ 5. 

The adaptive system handles the two signals essentially Independently, 

somewhat attenuates the weak signal and strongly attenuates the strong 

signal. 

"^^^2SS^ 
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TABLE B.6 

ANTENNA POWER GAIN IN THE DIRECTION OF TWO SIGNALS; 

SIGNAL I: Frequency - I., Direction - 18°, Power - I. 

SIGNAL 2: Frequency - 2., Direction - 108°, Power - If. 

Pilot Signal . 
Component Power (a ) 

II 

3«. 

10. 

5. 

I. 

.1 

Signal 
Power Ga 

1 
In 

Signal 2 
Power Gain 

5.22 .306 

2.48 .'»36 X lO-' 

.694 .565 x I0"2 

.239 .147 x I0"2 

.128 x 10" •1 .608 x ]0'k 

.138 x 10' 3 .614 x I0"6 

• " "' U,J^ 

s^ 
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5.*.6 Two Signals; Signa! I; Frequency -1. Power - 10. Direct ton ■ !80 

Signal 2; Frequency -2. Power ■ I. Direction ■ 108° 

This situation is the same as the previous section except the power 

levels of the two signals have been interchanged. We see from Table B.7 

that the gain of the antenna In the signal directions and frequencies 

have also switched, resulting once again In greater attenuation for the 

stronger signal. Figure B,I3 shows the antenna patterns at the two 

frequencies for the case where the reference signal component power • 3«., 

and Figure B.U is the analgous case for the reference signal component 

power - 5. Figures 8.13 and B.U may be directly compared with Figures 

B.9 and 8.10 respectively. 
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Y 
TABLE B.7 

AWTEMNA POWER GAIN IN THE DIRECTION OF TWO SIGNALS; 

Signal 1: Frequency - I., Direction - 18°, Power - 10. 

Signal 2: Frequency - 2., Direction - 108°. Power - I. 

Pilot Signal 
Component Power 

(Noise Power) 

IN. 

3«. 

I«. 

5. 

I. 

Signal I 
Power Gain 

.69* 

•991 x lO"1 

.128 x lO-1 

.33* x I0"2 

.138 x I0"3 

.139 x I0'5 

Signal  2 
Power Gain 

2.30 

1.09 

.306 

.105 

.505 x 10 -2 

.608 x lO"*1 

• ~~*r* ■ "■"' * 

u 
an M ■ 



5.5 Suwwry of the Simulations 

From section S.* we see that the pilot signal component power has a 

direct effect on the attenuation an external signal experiences. An 

Important parameter is ratio of signal power to pilot power. The two 

Incident signals used In the simulations were handled essentially Independently 

by the system. Figure B.I5 Illustrates how the recleved signals are 

attenuated as their power Increases. Weak signals pass while strong Janwers 

are attenuated. 

The results of section 5.5 supports the goal of ABWIN response to a 

signal on the basis of Its power level.  In the examples given, the effect 

Is so strong that the relative power levels of the signals at the output 

of the array system is reversed from that at the Input. 

Figure B.I5 Is a summary figure which shows the relationship between 

the gain of the ABWIN and the ratio of the signal power to the pilot 

signal power. From this figure we clearly see the effect the pilot signal 

power has on the ABWIN's response to a signal. (The data points for the 

signal of frequency I was extracted from Tables B.2, B.3, B.6, and B.7. 

Similarly, the data for the signal of frequency 2 was extracted from Tables 

BA,  B.5. B.6, and 8.7). 

6. Hodifying the ABWIN Pilot Signal 

in previous sections the assumption was made that the pilot signal was 

constructed by summing the Individual pilot signal components (n,).  It 

was shown that this resulted In a particular quiescent weight vector, which, 

with the sensor geometry, determined the quiescent reception pattern for 

the system. A problem exhibited Itself In that the quiescent pattern was 

qi> 
■ MU •»UUIH««^ I IjWifWl^ mm 
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the same pattern obtained by summing the antenna element outputs.  I-» 

many situations the pattern so obtained may be unacceptable for the 

application. 

By modifying the formation of the pilot signal, the quiescent pattern 

may be modified, and thus the sensor geometry may be taken into consideration. 

Consider the quiescent pattern as discussed in section k.     In that 

section, it was proven that W = -L P, where P = E{d(k)U(k)}, the correlation 
o 

between the pilot signal and the contents of the tapped delay lines.  Since 

it was assumed the pilot signal components (n.) were uncorrelated with the 

antenna element outputs, we see that the only significant contents of the 

tapped delay lines are delayed samples of the pilot signal components. 

Thus, by changing tha pilot signal d(k) to correlate differently with U{k), 

the quiescent weight vector W can be altered. 

The method proposed here for modifying d(k) is to allow d(k) to 

Include delayed samples of the n.(k).  This can be accomplished by passing 

the nj(k) through a set of transversal filters, where each weight has as a 

value the desired correlation of d(k) with the corresponding element in 

U(k). 

As an example, let us take a case of two sensors, each with two taps. 

If the pilot signal is formed as originally described, we have 

d(k) 

U(k) - 

n^k) + n2(k) 

n^k) 

rijH) 

n2(k) 

n2(k-l) 

ni 



Then P « E{d(k)U(k) I = E 

n, (k) + n2(k)n1(k) 

rijfk)  + rijCk-l) + n2(k)n1(k-l) 

n2
2(k) + n|(k)n2(k) 

nJ(k)n2(k-l) + n2(k) n2(k-l) 

Since n. and n. are independent, white noise sources of zero mean and variance 

o we obtain: 

a 
0 

ad 

0 

. so w = -L P = 
a 

, as expected, 

Now suppose that form consideration of sensor geometry we wanted 

W 

To do this, we would form the pilot signal as follows; 

d(k) - an^k) + bn^k-l) + cn2(k) + dn2(k-l) 

Then 

anj (k) + bn^k-Dn^k) + cn2(k) nj (k) + dn2(k-l )n1 (k) 

an)(k)nJ(k-l) + bn^k-l) + cn2 (k)n) (k-1) + dn2 (k-1 )n1 (k-1) 

an)(k)n2(k) + bPj(k-1)n2(k) + cn2 (k) + dn2(k-l)n2(k) 

an1(k)n2(k-l) + b^(k-1)n2(k-I) + cn2{k)n2(k-l) + dn2
2(k-l) 

fao2 

bo2 

co2 

do2 

■Vr 



so w = -Lp = 
2 

a 
b 

c 
d 

as desired. 

Thus this method of formation of the pilot signal allows control over the 

quiescent pattern of the system by choice of a suitable quiescent weight 

vector. 

7. A Proposal for Modification of the ABWIN Algorithm 

In view of the preceding analysis of the ABWIN, particularly of the 

advantages of choosing a quiescent weight vector, and many similarities to 

the ALEWIN described In part A of this report, a modification to the ABWIN 

is proposed here. 

In section A of this report, after the ALEWIN is introduced, a second 

type of line enhancer, the ALEWAIN is Introduced.  The similarities in per- 

formance between the ALEWIN and the ALEWAIN are demonstrated. The 

ALEWAIN (using the "leaky" LMS algorithm) has the characteristic that in the 

absence of any excitation (Inputs), the weight vector collapses, of "relaxes" 

to zero.  In the ABWIN, we see similar behavior in that In the absence of 

external excitation, the weight vector returns to Its quiescent value. 

On the basis of this resemblance, the following algorithm is proposed: 

run the adaptive array as discussed before, but without the pilot signal noise 

components added to the sensor outputs. As the error signal, use the 

negative of the system output. Then use the following rule for updating 

the weight vector: 

W(k+1) - W(k) + 2vie(k)U(k) - 2MY(W-W(k)) 

where y is a constant to be adjusted, W Is the quiescent weight vector. 

HI 



Now a term explictly causing a relaxation effect is included, the constant 

Y controlling the magnitude of the relaxation effect. 

Preliminary studies indicate that this algorithm has the desirea 

features of the ABWIN, but in addition does not require a "parallel" 

system for computation of the system output y without the corrupting pilot 

signal does not require a complicated scheme for generating the desired 

quiescent pattern, and generates less adaptation noise in the weights 

(thus enabling faster convergence). 

8. Conclusions 

The Adaptive Beamformer With Injected Noise has been introduced, 

and some analysis has been undertaken.  Simulations of the ABWIN have been 

shown to agree with the theoretical results. The formation of the pilot 

signal to obtain a desired quiescent response has been discussed, and a new 

method to accomplish the same goals as the ABWIN with a simpler algorithm 

has been proposed for study. 

The effect of sensor geometry on the capabilities of the ABWIN has 

not yielded to analysis at this time, and is likely to be a problem in 

future studies of all antenna arrays, adaptive and otherwise. 

It is suggested that the study of the new algorithm proposed above 

be pursued, with the intent of camparing its performance to that of the 

ABWIN, and extending analysis of both algorithms further than presented 

herein.  In addition, the study of the effect of sensor geometry on the 

capabilities of these systems should be continued as a background activity. 

H 



im TRANSACTIONS ON ANItMNAS AND qtOMOATION. VOI, AF-24. NO. S. ■FimnR 1976 613 

A Comparison of Adaptive Algorithms Based on 
the Methods of Steepest Descent and Random 

Search , 
BERNARD WIDROW. FELLOW, ras. AND JOHN M. McCOOL, SENK» MEMBSR. IEEE 

K k*mm** Iht IMS iliiillhi, wkkk to tht M* 
m > ■hrtNUMt pripiitiiMl n *m matm tit i 

DSDMILIBI 
t« ti» tfHrt of Ik» HHfe«r «T adtftift pHMMton. The 

i<r«»«lmi|piMMl»i 
. «T ttt LMi ripritta to te «MM« «fl 

I if a imM« «tom amgrt «< «T (k* D8D Hi LRS 
i ^ Wim P^HM fMHHM VI ■ OTHHHPm MNHl WnST.   IM 

I Homrim 5.JW; rwtod April 15.1976.        *m*mmkt nl fcw— 1i m ilpWmilj iii"i7li." 

J. M. MoOoot to wfS UM PlMl rwjiumk* DnuamM. Ntvnl    *■"* "* LMS •'•"l*" >• •• *•* *«■ taeriM to thto paf« to 
ItoJHiM Cwtor. SMI DJMO. CA «111 MlMtaHk IMmM Ontor. 8M Dtofo. CA §2132. 

Capyil0KOlfftk]rTlMlMtitMtor EhctiiedndElMtmki&#MMi bo 
MuMltaUJA. AlMhNo.    609APOOS 



M6 IEEE TKANSACnONS ON ANTENNAS AND PROPAGATION, SEPTEMKK 1976 

I. INTRODUCTION 

THE APPLICATION of adaptive techniques has 
allowed development during the past fifteen years of 

high-performance receiving antennas with a capability of 
automatically eliminating sidelobe interference. In such 
antennas the main beam is steered in a predetermined 
direction in search of expected signals, while interference 
received outside the main beam causes the formation of 
nulls in the radiation pattern [1]-[10]. New types of 
adaptive antennas are also currently being designed that 
will automatically seek and track desired signals. This 
application promises a further significant enhancement of 
antenna capabilities. 

Many adaptive antenna systems are configured by con- 
necting the elements of an antenna array to a multtchanne! 
adaptive filter. In its general form an adaptive filter is a 
device that adjusts its internal parameters and optimizes 
its performance according to the statistical characteristics 
of its input and output signals. The internal filter adjustment 
is made through a series of variable settings controlled by an 
adaptive algorithm. 

The purpose of this paper is to analyze and compare the 
properties of certain algorithms available for use with 
adaptive filters. Two basic methods of adaptation are 
considered, those of steepest descent and random search. 
Theoretical performance comparisons of algorithms based 
on these methods, including the Widrow-Hoff LMS 
algorithm and a new linear random search algorithm, are 
made by relating quality of solution to speed of adaptation. 
Results of computer simulations are presented to provide 
experimental confirmation of the theoretically predicted 
performance of the algorithms and to illustrate their use in 
adaptive antenna applications. 

II. CHARACTERISTICS AND TEXMiNouxiY 
OF THE ADAPTIVE PROCESS 

The theoretical analyses of this paper are based on the 
particular form of adaptive transversal filter illustnted in 
Fig. 1. This finite impulse response (FIR) filter consists of 
a tapped delay line connected to an adaptive linear combiner 
that adjusts the gain of (or "weights") the signals derived 
from the delay line and combines them to form an output 
signal.1 All of the algorithms described in this paper can 
be used to govern the operation of the adaptive linear 
combiner; the LMS algorithm ii restricted to this use. 

The input signal vector JT, of the adaptive linear combiner 
is defined as 

INPUT« TAPPED DELAY LINE 
WITH UNIT DELAYS 

The input signal 
simultaneously on all input 
by the subscript/The 
factors wt,wt, ■••,*, aic 

^r a) 

/  /\   ADJUSTABLE 

»    t  '    * OUTPUT 

(a) 

xi< 

-"—0n 

"*—0 

,-2P 

(b) 

Fig. I. Adaptive filter consisting of tapped delay line connected 
to adaptive linear combiner, (a) Adaptive filter configuration, (b) 
Adaptive linear combiner with input and output terminology. 

by circles with arrows through them. The weight vector W is 

WT A [H'I w2 • • • wJT. (2) 

The output yl is equal to the inner product of AT, and W\ 

yj = JT/IF - ^Xj. (3) 

The error e^ is defined as the difference between the desired 
response dj (an externally supplied input sometimes called 
the "training signal") and the actual response yy. 

tjädj- X/W dj- WXy (4) 

k'-^ 

In adaptive antenna systems the desired response may be 
derived by various methods, one of which is to inject a 
"pilot signal" whose characteristics determine the "look" 
direction and frequency response of the main beam [4]. 
Other method! are illustrated in Section VI. 

It ia the purpose of the adaptive process to adjust the 
weights of the adaptive linear combiner to minimize the 

square of the error «y. Let the input signals Xj and 
response dl be statistically stationary. During 

adaptation the weight vector varies, so that even with 
statmiary inputs the output yl and error Cy will generally 
be nonatationary. Care must thus be taken in defining the 
«Mm square error for an adaptive system. The only pos- 
sibility is an ensemble average, which can be established in 
the following manner. 
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The adaptive process progresses recursively or by iterative 
cycles. At the Ath iteration let the weight vector be Wk. 
Squaring ar.d expanding (4) and letting W = tVk yields 

~d/ 2diXjrWk + WSXjX/lV,. (5) 

Now assume an ensemble of identical adaptive linear 
combiners, each having the same weight vector tVk at the 
kth iteration. Let each combiner have individual inputs 
Xj and dj derived, respectively, from stationary ergodic 
ensembles. Each combiner will produce an individual error 
«y represented by (5). Averaging (5) over the ensemble 
yields 

EMw.wk = EW\ - lEtyXfiW, 

+ WjE&jXftW,.   (6) 

Defining the vector F as the cross correlation between the 
desired response (a scalar) and the JT-vector then yields 

PT ä EfaXfi = EldjXv djx» ■ ■ ■ djx^y.      (7) 

The input correlation matrix R is defined in terms of the 
ensemble average 

R A £[*,*/] = * 

xHxii   x\ixij 
X2JXIJ    X2JX2J 

XmlX, Wnl 

(8) 

This matrix is real, symmetric, and positive definite, or in 
rare cases positive semi-definite. The mean square error 
{t can thus be expressed as 

^t A EWlw.w* - £W2] - 2PTWk + Wk
TRWk.   (9) 

Note that the mean square error is a quadratic function of 
the weights that can be pictured at a concave hyper- 
paraboloidal surface, a function that never goes negative. 
Adjusting the weights involves descending along this surface 
with the objective of reaching its unique minimum point 
("the bottom of the bowl" [II]). Gradient methods are 
commonly used for this purpose. 

The gradient ?» of the mean square error function with 
W ~ Wk'n obtained by differentiating (9): 

V. 4 -2P -♦- 2RWk.       (10) 

The optimal weight vector W*, generally called the Wiener 
weight vector, is obtained by setting the gradient to zero: 

W* - Ä-'F, 01) 

This equation is a matrix form of the Wiener-Hopf equation 
[I2HI4]. 

For the purposes of subsequent analysis it is convenient 
to reexpress the mean square error function (9) and the 
gradient function (10) in mope compact form. Substituting 

(II) in (9) yields the minimum mean square error: 

^« = £K2] - W^P (12) 

Recombining (12) with (9) and (I I) yields 

{» = «U„ + VjRVk (13) 
where 

Vk kWk - W. (14) 

The gradient may be expressed in terms of Vk as 

Sk = lRyk (15) 

If one assumes that the it-matrix is positive definite, it 
may be expressed in normal form as follows 

R = Q\Q-* (16) 

where the columns of the square modal matrix Q are the 
eigenvectors of R and A is the diagonal matrix of eigen- 
values. If Q is constructed to be orthonormal,2 then one 
may write 

Q~x = QT (17) 

Note further that the inverse of R is 

*-■ = ßA-'e-'. (ig) 

The mean square error may thus be expressed as 

^ = *».« + ykTQ\QTvk. (19) 

A new set of coordinates may now be defined as follows: 

V = ßrF= Q~XV 
and 

V'T = VTQ. 

Substituting (20) and (21) into (19) then yields 

U = U + »V'APV. 

(20) 

(21) 

(22) 

The transformation Qprojects Vinto F—that is, projects 
V into primed coordinates. It can be observed from (22) 
that, since A is diagonal, the primed coordinates must 
comprise the principal axes of the quadratic mean square 
error performance surface. The gradient expressed in 
primed coordinates then becomes 

V»' - 2AFt'. (23) 

III. THE METHOD OF STEEPEST DESCENT 

The practical objective of the adaptive process is to find 
a solution to (11). One way of doing so would be by analytical 
means. An analytical solution, however, would present 
serious computational difficulties when the number of 
weights was large or when the input data rate was high. 
In addition to the inversion of an n x n matrix, it could 
require as many as «(« + 3)/2 autocorrelation and cross 
correlation measurements to obtain the elements of R 
and P. Furthermore, this process would have to be con- 
tinually repeated in most circumstances, where the input 

* Th» can ahnyi be done when K it positive definite. 
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signal statistics would be slowly varying. For these reasons 
it is more practicable to make use of other recursive statistical 
estimation methods in devising algorithms for use in 
adaptive filters. 

A well known and proven method for adjusting the 
response of an adaptive system is that of steepest descent 
[15], [16]. Adaptation by this method starts with an 
arbitrary initial value W0 for the weight vector. The 
gradient of the mean square error function is measured 
and the weight vector altered in accordance with the 
negative of the value obtained. This procedure is repeated, 
causing the error to be successively reduced and the weight 
vector to approach the optimal value. 

The method of steepest descent can be described by the 
relation 

whose solution is 

»n+i = W» +/*(-?») (24) 

where /i is a parameter that controls stability and rate of 
convergence, and Vt is the value of the gradient at a point 
on the error surface corresponding to W - Wk. An 
expression for the gradient, a linear function of the weights, 
is given by (15). Substituting this expression into (24) yields 

Wk,x = Wk-lnRVk. (25) 

Subtracting W* from both sides of (25) yields 

V^x = Vk- 2nRVk = (/ - 2ßR)Vk. (26) 

Equation (26) is a linear homogeneous vector difference 
equation whose solution characterizes the dynamic be- 
havior of the weight vector as it begins at W0 and, if the 
process is convergent, relaxes toward W*. The solution of 
(26) is given by 

Vk = (l- liiRfV0. 

This solution is stable (convergent) if 

Since 

and 

lim (/ - 2/iÄ)* = 0. 

(I - 2/iÄ) = <?(/- 2/iA)ß- 

(/ - 2/1*)» = Ö(# - ^/fi- 

condition (28) will be satisfied if 

lim (/ 
k-*<t> 

2/iA)* - 0. 

(27) 

(28) 

(29) 

(30) 

(31) 

Condition (31) will be met when 

|1 - 2/i^| < 1 

for/» ■ 1,2,- ■ -.n. Since all eigenvalues are positive, 

— > ;i >0 
"am 

where Xmn is the largest eigenvalue of R. Equation (33) 
gives the stable range for /i. 

It is easily shown that in primed coordinates the method 
of steepest descent is represented by 

(32) 

(33) 

»V = (/-2/iA)tK0'. (35) 

For the pth coordinate one may write 

»„/ = (I - 2^P)V W 
Equation (36) represents a simple geometric progression for 
r,/, starting from tie initial condition v^'. The />th 
geometric ratio is 

(I - 2/i-L). (37) • P     \-      ~i~"pi 

An exponential envelope of time constant T? car. be 
fitted to the geometric sequence represented by (36). If the 
unit of time is one iteration cycle, then 

r, = exp(-l/T),) = I 
I + I 

2'V 
(38) 

In practical adaptive processes n is chosen so that T,, is 
large compared to one; the series of (38) can thus be 
represented by its first two terms. Combining (38) with (37) 
gives a formula for the pth time constant of the method of 
steepest descent: 

I 

W, 
(39) 

Transient phenomena in the weights, as seen from (35) 
and (36), are simple geometric sequences along the primed 
coordinates. Along the original unprimed coordinates, the 
same phenomena, represented by (27), are more complicated. 
Transients in the weights themselves thus consist of sums 
of geometric sequences, the number of time constants 
typically being equal to the number of weights. 

While transients are occurring in the weights as they 
relax toward the optimal Wiener solution, the mran square 
error undergoes changes. The expected error, for W = Wk, 
is given by (22). The weight transients, expressed in terms 
of Vk, are given by (35). A "learning curve" showing mean 
square error as a function of number of iterations k can be 
computed by substituting (35) into (22): 

{. = U, + ^o'r(/ " 2M)"AF0'. (40) 

As long as conditions (31) and (33) are met, the adaptive 
process will converge on the minimum point of the mean 
square error surface: 

lim {. = $.*,,. (41) 

The mean square error solution starts at /c = 0 with an 
initial value {„i« + Vn

T\V0', corresponding to Vk = V0', 
and relaxes toward i,^. The relaxation process is a sum of 
geometric sequences whose /rth mode has a geometric ratio 
of (I - 2/j/l,)2. Thus the mean square error learning curve 
has a pth mode time constant of 

T. = 
I 

4/i^ 
= !f (42) 

^.-(f-WV (34) 
Learning curves of computer simulated adaptive processes 
will be presented below. 



wmtow AND MCOOOL: ADAPTIVI kuxmnraa 619 

Fig. 2.   Gradient estimation by derivative imasuicment. 

If exact gradient measurement» could be made each 
iteration, the adaptive weight vector would converge to the 
Wiener optimal weight vector. In reality, however, exact 
gradient measurements are not possible, and the gradient 
vector must be estimated from a limited statistical sample. 
The following sections describe two algorithms based on the 
method of steepest descent that use different techniques 
to obtain the necessary gradient estimates. The first uses 
differentiation and requires that finite perturbations be 
made in the weight vector. The second, the LMS algorithm, 
obtains gradient estimates directly and without perturbing 
or "dithering" the nominal weight vector adjustment. 

A. Differential Algorithm 

One way of estimating gradient vectors is by the direct 
measurement of derivatives. Although this technique is 
straightforward and easy to implement, it has been largely 
overlooked in the literature and is here analyzed in detail. 
For convenience the resulting algorithm is designated the 
DSD ("differential steepest deeceat") algorithm. 

1) Gradient estlmmtm by derioatlve measurement: A 
single component of the gradient vector can be measured 
in the manner illustrated in Fig. 2. The curve representing 
the parabolic mean square error function of a single 
variable is defined by 

i(v*) A «» - V + U.- 

Its first and second derivatives are 

vdiv»"»» 

(43) 

(44) 

(45) 

The derivatives  are  numerically estimated  by taking 
"symmetric differences": 

^\      _ Uv* + 6)-2** + gfo - a) 
»■•» 

(47) 

These finite differences are exact for the quadratic {• 
function. 

The procedure illustrated in Fig. 2 requires that the weight 
adjustment be altered while the gradient measurement is 
being made. It is assumed that no time is spent at the 
nominal adjustment vk but that equal time3 is spent at 
vk + S and vk - 6. The result is that on the average the 
mean square error is greater by an amount y than it would 
have been if the adjustment had remained at vk. A per- 
formance penalty thus results from the weight vector 
alteration. 

The quantity y can be calculated for the one-dimensional 
quadratic {-function as follows: 

Hvk + S)2 + x(i>t - S)1 + 2tnin 

2 

XS*. 

- Hvt)1 - u 

(48) 

Notice that the value of y depends only on X and S and 
not on vk. A dimensionless measure of how much the 
adaptive system is perturbed each time the gradient is 
measured, a parameter that may be called the "perturbation" 
P, is defined as follows: 

PAJL.^I. (49) 
Curt«        Cmln 

This is the average increase in mean square error normalized 
with respect to the minimum achievable mean square error. 

The estimation of two-dimensional gradients may now be 
considered. In this case the Jt-matrix is given by 

(50) 

(51) 

it - P00   H 
and the (-function is 

t - »Wi2 + »n«'!2 + ^oififj + («.»• 

When the partial derivative of the error surface along 
coordinate », is measured, the perturbation is 

? - rooi1/^- (52) 

The perturbation for mearurement along coordinate tj is 

P - rtlS
2IUr (53) 

Assuming that equal time is required for the measurement 
of each gradient component (that is, that 2N data samples 
are used for each measurement), the average perturbation 
during the measurement is given by 

(54) 

If one now defines a general perturbation for n dimensions 
as the average of the perturbations of the individual 
gradient component measurements, one obtains 

* The tin« nquirad to take AT data Mnphs. 

(55) 
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Since the trace or the ff-matrix is equal to the sum of its 
eigenvalues, and since the sum divided by the number of 
eigenvalues is equal to the average of the eigenvalues, the 
perturbation may be conveniently expressed as 

(56) 

Other means of gradient measurement have been used in 
practical systems. A weight can be perturbed or dithered 
sinusoidally, and the cross correlation between the weight 
value and the value of the performance function determined. 
All weights can be simultaneously dithered at individual 
frequencies and the gradient components obtained by cross 
correlation. The procedure of Fig. 2 corresponds to square- 
wave dithering. 

2) Gradient measurement noise: Gradients measured in 
the manner shown in Fig. 2 are noisy because they are 
baaed on differences in {-measurements that are noisy. 
Each {-measurement is an estimate baaed on N error 
sampfea: 

N Jml 
(57) 

It is well known that the variance in an estimate of the mean 
square obtained from N independent samples is equal to 
the difference divided by N between the mean fourth and 
the square of the mean square. The variance in the estimate 
of { may accordingly be expieaied at 

^ J N 
(58) 

If «y is normally distributed with zero mean and variance 
of a1, its mean fourth is 3«r*, and the square of its mean 
square is a*. The variance in the estimate of { is thus 

vartf].i(^-,*)-^.2-C L J     N N       N 
(59) 

Note that the variance is proportional to the square of { 
and inversely proportional to the number of data samples. 
It can thus in general be expressed at 

var[0-5Ü 
1 J      N 

(60) 

where K hat a value of 2 for an unbiated Gauttian probability 
dentity. If the probability dentity it other than Gauttian, the 
value of K it generally lew than but dote to two. It it thut 
attumed for the purpotes of tubaequent analysis that 

var to-*. (61) 

The derivativet required by the gradient cttimation 
technique of Fig. 2 are meamred in accordance with (46). 
The error in the derivative estimate will be a tum of two 
conponentt that, tinoe the tamplet of the error ty are 
attumed to be independent, will alto be independent. The 
variance of each component it determined by (61). If it it 

I that the perturbation P it «mall, that the adaptive 

process is close to convergence, and that the weight vector 
remains near the minimum point of the mean square error 
surface, then the two components will have essentially 
the same variances, and these variances will be additive. 
The variance in the estimate of the derivative, using (46) 
and (61), may be expressed as 

var [*1     =_Lf 2{2(P» + 5) . 2e{vk - 
N N 

,] 
f2 
Smln 

NS2' 
(62) 

When a gradient vector is measured, the errors in each 
component arc independent. The gradient noise vector Nk 

may thus be defined in terms of the true gradient Vt and 
the estimated gradient $*: 

V» Ä V4 + Nk. (63) 

Under the assumed conditions the covariance of the gradient 
noise vector is thus given by 

cov [JVJ = ^ /. (64) 

It is also useful to obtain an expression for the covariance 
of the gradient noise vector in primed coordinates: 

Nk' - c-yv». (65) 

Since the covariance matrix of J^ is scalar, projecting into 
primed coordinates through the orthonormal transforma- 
tion Q~l yields the same covariance for Nk': 

cov [yv;] = £[ß-^Arß] = ^/■ 
No 

(66) 

Near the minimum point of the mean square error surface 
the covariance of the gradient noise is essentially constant 
and not a function of Wk. 

3) Noise in the weight vector: Adaptation based on noisy 
gradient estimates results in noise in the weight vector. 
The method of steepest descent with ideal gradients is 
represented by (26). With estimated gradients this equation 
may be rewritten as 

y, + M-V») = P» + M-V» - Nk).     (67) r»+i 

Substituting (IS) and combining terms yields 

K4+1 ~ {I - lnK)Vk - pN, (68) 

a first-order vector difference equation with a stochastic 
driving function of -ßNk. Projection into primed co- 
ordinates may be accomplished by premultiplying both 
sides of (68) by C'1: 

^.-(/^MW/-/^»'. (69) 

In steady state, after initial adaptive transients have died 
out, Vk undergoes a stationary random process in response 
to the stationary driving function -nNk. Since there is 
no cross coupling between terms and the components of 
Nk are mutually uncorrelated, the components of Vk 
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will also be mutually uncomlated, and the covariance 
matrix of A',' will be diagonal. To find this matrix one first 
multiplies both sides of (69) by their own transposes: 

K+Mlt = (/ - 2n\)Vk'Vk'
T(l - 2M) 

+ n2Nh'Nk'
T - M - IßWN* 

-WV^U-lftK). (70) 

Taking expected values of both sides yields4 

cov [>V] = (/ - 2/iA) cov [>;'](/ - 2/iA) 

+ ii1 cov [/V].    (71) 

Combining terms further yields 

cov [»V] = /i2(4/iA - VA2)"' COV [Nk'\     (72) 

In practical circumstances the method of steepest descent 
is implemented with a small value of/i, so that 

Neglecting the squared terms in (72) thus yields 

cov [>V] - ^ 

Using (66) one may now write 

J A-cov [AT/]. 

cov[fV] 
4Ä^A   ' 

(73) 

(74) 

(75) 

The components of Vk' are mutually uncorrelated but not 
all of the same variance. The covariance of Vk can be 
obtained from (75) by using (18) and (20) : 

cov^] = E[QVk'V*Q-f\ - i^sisjr«. 
ANS1 (76) 

4) Misadjustment: Without noise in the weight vector, 
adaptation by the method of steepest descent would con- 
verge to a steady-state solution at the minimum point of 
the mean square error surface. The mean square error 
would therefore be {.„. Noise in the weight vector, however, 
tends to cause the steady-state solution to vary randomly 
about the minimum point—that is, to "climb the sides of 
the bowl." The result is an "excess" mean square error, a 
mean square error that is greater than {„,. 

An expression for mean square error in terms of V 
is given by (22), where the excess mean square error is 
P»' AF»'. The average excess mean square error is 

Thus (77) can be rewritten 

L *J      4NS1 

621 

(79) 

A useful parameter in the design of adaptive processes 
is the misadjustment M, which is defined as the average 
excess mean square error divided by the minimum mean 
square error: 

MA
EWTW\ 

(mill 
(80) 

The misadjustment is a dimensionless measure of the dif- 
ference between adaptive performance and optimal Wiener 
performance as a result of gradient noise. In other words, 
it is a measure of the cost of adaptability. 

Using (79) one can express the misadjustment for the 
DSD algorithm as follows: 

M "rtrn 
ANS1 (81) 

This formula is simple and clear but can be more usefully 
expressed in terms of time constants of the learning process 
and the perturbation of the gradient estimation process. 

Each gradient component measurement uses 2N samples 
of data. Each iteration involves n gradient component 
measurements and therefore requires 2Nn data samples. 
The time constant T^ is given by (42) in number of 
iterations, a basic "unit of time." If one now defines a new 
time constant 7^ whose basic unit is the data sample and 
whose value is expressed in number of data samples, then 
for the DSD algorithm 

7^ A 2«JVT. w (82) 

The new time constant is easily related to real time if the 
sampling rate is known. 

Using the perturbation formula (56) one can reexpress the 
misadjustment for the DSD algorithm (81) as 

4NP 
(83) 

Using (42) the time constant defined by (82) can also be 
reexpressed as 

nN 

which is equivalent to 

EWAVA - i vr[(i,M')a]. 
F-l 

From (75) one may write 

*<-■*-it (f> 

(77) 

(78) 

2ß\T. Ü 

(84) 

(85) 

or 

^»s^^j^jssäa^^^^ 
Combining (86) with (83) shows the misadjustment to be 
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For the DSD algorithm, misadjustment is thus pro- 
portional to the square of the number of weights and 
inversely proportional to the perturbation. It is also in- 
versely proportional to the speed uf adaptation; that is, 
fast adaptation results in a high misadjustment. More 
specifically, the misadjustment s dependent on the average 
reciprocal time constant of the learning curve whose time 
base is calibrated in number of rata samples. Note that 
very fast modes may dominate t! is average and cause an 
increase in misadjustment, while the rate of convergence 
will remain limited by the slowest mode. In other words, 
with disparate eigenvalues in the A-matrix, the adaptive 
process may be afflicted with the misadjustment of its 
fastest modes but may converge only at the rate of its 
slowest modes. With equal or closely similar eigenvalues, 
the process is more efficient, and the misadjustment is 
given by 

M - ——. (88) 

In this case the learning curve has only one time constant, 
T 

Misadjustment as defined here is a normalized per- 
formance penalty resulting from noise in the weight vector 
and is a stochastic effect. In an actual adaptive system, 
where the weight vector is deterministkally perturbed to 
measure the gradient, another penalty accrues, the perturba- 
tion, also a ratio of excess mean square error to minimum 
mean square error. The total excess mean square error can 
be shown to be the sum of the "stochastic" and deter- 
ministic" components. The total misadjustment is thus 

A/lol IM + P. 

Adding these components yields 

"Im SP 
+ P. 

(89) 

(90) 

The perturbation is a design parameter. Its choice is 
optimized by differentiating (90) with respect to P and 
setting the derivative to zero. The result is to make the two 
right-hand terms of (90) equal. The optimal perturbation 
is thus 

fm - W* (91) 

and the minimum total misadjustment is 

Hie use of the above misadjustment formulas in the 
design of adaptive systems will be illustrated in Section V 
below. 

B. LMS Algorithm 

Tht LMS algorithm is an implementation of the method 
of steepest descent that employs a gradient estimation 
technique more efficient than derivative measurement. This 
algorithm, however, is not universally applicable, and its 

use is restricted to the adaptive linear combiner of Fig. 1, 
where inputs Xj and dj are given. 

1) Gradient estimation, convergence, time constants: The 
error e, of the adaptive linear combiner of Fig. 1 is given 
by (4). A gradient estimate may be obtained by squaring 
the single value of Ej and differentiating it as if it were the 
mean square error: 

• 
de/ 

■ = 2ej' 

dej 

dwl 

de. 
-2ejXj. (93) 

Substituting (93) into (24) yields the LMS algorithm: 

(94) 

Since a new gradient estimate is obtained with each data 
sample, an adaptive iteration is effected with the arrival of 
each sample. The index k is thus replaced with the index / 

The gradient estimate of (93) may be implemented in a 
practical system without further squaring, averaging, or 
differentiation and is elegant in id simplicity and efficiency. 
All components of the gradient vector are obtained from a 
single data sample without perturbation of the weight vector. 
Since the estimate is obtained without averaging, it contains 
a large component of noise. The noise, however, is averaged 
and attenuated by the adaptive process, which acts as a 
low-pass filter in this respect. It is important to note also 
that for a fixed value of W the estimate is unbiased: 

£[V7] - -2E[ejXj] = -2E[djXj - XjXfW]. 
(95) 

From (10), the formula for the true gradient, this expression 
can be rewritten as 

£[V;] - -2(1»-iW)- V. (96) 

Proofs of convergence of the LMS algorithm have 
appeared in the literature [4], [11], [17]-[20].s These 
proofs show that the algorithm is stable when 

1/4« > P > 0 (97) 

which is the same as the condition for stability of the method 
of steepest descent in general, given by (33). It is also shown 
in [4] and [19] that the time constants of the LMS algorithm 
are 

*, 
1 

(98) 

which are similarly identical to the time constants for the 
method of steepest descent, given by (42). Once again, T, 

is the time constant of the/>th mode for transient phenomena 
in the weights, while t^^ is the corresponding time constant 
of the learning curve. Since only one data sample per itera- 

* For input vectort X, mutually uncomlatwl over time; prooft for 
correlated input vectors have ban developed in (21) and (221. 

gffj^wi img-T-—-* JMUJP |y   „^        , nn II^WII   I..,., ««IfW 
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tion is used, the time constant expressed in number of data 
samples is 

TP^ = t^... (99) 

2) Gradient measurement noise: Let it be assumed that 
the adaptive process, using a small value of the adaptive 
consunt /i, has converged to a steady state near the 
minimum point of the mean square error surface defined 
by (9). The gradient estimation noise of the LMS algorithm 
at the minimum point, where the true gradient is zero, is 
the gradient estimate itself: 

Nj - V;. = -IBJXJ. (100) 

The covariance of this noise is given by 

cov [Nj] = EINJNJ7} = AEle/XjX/l      (101) 

It is well known from Wiener filter theory that, when the 
weight vector is optimized (that is, when Wj = »f •), the 
error e, is uncorrelated with the input vector Xj. If one 
assumes that Cj and Xj are Gaussian, not only are they 
uncorrelated at the minimum point of the error surface 
but also statistically independent. Under these conditions 
(101) becomes 

cov [Nj] = iEic/MXjXj^ = At^R.      (102) 

In primed coordinates the covariance is 

cov [Nß = ß-' cov [yvy]ß = ^„A.       (103) 

3) Nobe in the weight vector: Equations (67)-(74) above 
apply to the method of steepest descent with any means of 
gradient estimation that results in a diagonal covariance 
matrix for Ay—that is, to both the DSD algorithm and the 
LMS algorithm. For the LMS algorithm, using (74) and 
(103), one may write 

cov [V/] = J A-,(4{in.nA) = ^mln/.        (104) 

The covariance of the steady state noise in the weight 
vector (at or near the minimum point of the mean square 
error surface) is 

cov[F>] = ^min/. (105) 

4) Misadjustment: Fur the LMS algorithm the misad- 
justment M, defined by (?0), may be found as follows. 
The average excess mean square error, given by (77), may 
be written as 

f »-I 

- /tfmlB tr if (106) 

where, according to (104). £[(r,/)J] = n^n for all p. 
The misadjustment is thus given by 

M-£[^rAF''] = /itr*. (107) 

This useful formula may be reexpressed in a manner that 
allows one to perceive the relationship between misadjust- 

ment and rate of adaptation. According to (98) one may 
write 

K = I 
4T. 

and 

The misadjustment may thus be written 

M = -(—) 

(108) 

(109) 

(110) 

It is interesting to compare (110) with (87), the misadjust- 
ment formula for the DSD algorithm. Once again it is 
apparent that misadjustment is reduced by slow adaptation, 
by making the values of T,^., where /» = !,•• ■,«, large. 
With the LMS algorithm, however, for a given value of 
misadjustment, the adaptive time constants increase linearly 
with the number of weights rather than with the square of 
the number of weights. Furthermore, there is no perturba- 
tion. In typical circumstances much faster adaptation is 
thus possible than with the DSD algorithm, as will be borne 
out by the numerical examples presented in Section VI. 

It may also be observed from (110) that the LMS 
algorithm, since it is based on the method of steepest 
descent, suffers like the DSD algorithm when there is a 
great disparity in the eigenvalues of R. Under such con- 
ditions misadjustment once again can be dominated by 
the fastest modes (those with the smallest time constant 
xPmJ' wh'le rate of convergence can be limited by the 
slowest modes. 

When the eigenvalues are equal, a useful formula for the 
misadj jstment of the LMS algorithm is 

«-iö (HD 

Experience has shown this formula to be a good approx- 
imation of the relationship between misadjustment, time 
consunt of the learning curve, and number of weights even 
when the eigenvalues are not equal. Such a relationship is 
needed in designing an adaptive system when the eigenvalues 
are unknown. 

Since trace i? is the total power of the inputs to the weights, 
which is generally known, one can use (107) in choosing 
a value of ß that will produce a desired value of M. One 
can accordingly combine (111) and (107) to obtain a general 
formula for time constant of the learning curve with equal 
eigenvalues: 

(112) 
4/itr J? 

This formula is also a good approximation in many cases 
when the eigenvalues of R are unequal. 

IV. RANDOM SEARCH 

The method of steepest descent is a systematic surface- 
searching procedure. Although randomness enters in 
practice through gradient estimation noise, adaptation by 

^^ijr1 »• ••« "•y1 



624 IEEE TIlANSACnON» ON ANTENNAS AND PROPACiATION, SEPTFMBER 1976 

this method is basically a deterministic process. Random 
search, by contrast, seeks to improve performance by 
making random changes in system parameters. A simple 
algorithm based on this method, inspired by the Darwinian 
concept of evolution, may be called random search by 
"natural selection." Though derived from a natural model 
this algorithm appears to offer a practical approach to the 
adaptive process that may have engineering merit [23]. 

In random search by natural selection a random change 
is made in the weight vector of an adapt've processor, such 
as the linear combiner of Fig. I. The mean square error is 
measured before and after the change and the measurements 
compared. If the change causes the error to be lower, it is 
accepted. If it does not, it is rejected, and a new random 
change is tried. This procedure can be described algebraically 
as follows: 

^+. = »n + i[> + sgn tfW) - IW + 14)}]1/» 
013) 

where Uk is a random vector; £(Pfk) is an estimate of mean 
square error based on N samples of e, with W = Wk; 
{(Ff* + 14) is an estimate of mean square error based on 
N samples of e, with W = Wk + Uk; and sgn {z) is +1 
for z ^ 0 and -1 for r < 0. 

This algorithm, though easy to implement, has the 
drawback that nothing is learned when a trial change is 
rejected and forgotten. For this reason a more efficient 
"linear" random search algorithm, hereafter called the 
"LRS algorithm," has been devised. In this algorithm, 
first described here, a small random change Uk is tentatively 
added to the weight vector at the beginning of each iteration. 
The corresponding change in mean square error perform- 
ance is observed. A permanent weight vector change, 
proportional to the product of the change in performance 
and the initial tentative change, is then made. This procedure 
can be expressed algebraically as follows: 

W»*. - W* + PUilTu) - lW* + V&V*    (114) 

where Vk is a random vector from a random vector generator 
designed to have a covariance of 92/;{(H\) and {(H^ + C/t) 
are defined as in (113); and the terms /? and a1 are design 
constants affecting stability and rate of adaptation. 

The LRS algorithm is "linear" because the weight change 
is proportional to the change in mean square error, and in 
this respect it differs from random search by natural 
selection as described in (113). The latter algorithm is 
simpler to implement but does not perform as well. It is 
also difficult to treat mathematically, and a performance 
analysis is not attempted in this paper. 

For the purpose of analyzing the LRS algorithm, the 
following definitions are useful. The true change in mean 
square error resulting from the addition of C/t to Wk is 
given by 

(A«» A W + I/») - «W. O15) 
The corresponding estimated change in mean square error is 

&\ 4 \W* + I/») - *TO. (116) 

The error in the estimated change is 

C» k (AO» - A 
whose variance, from (59), is given by 

var fo] = var [Ä] 

= var \l(Wk + I/»)] + var [!(»;)] 

= \ \!L\Wk + (/») + i\Wk)\ 
N 

(117) 

(118) 

In steady state operation near the minimum point of the 
mean square error surface, (118) can be expressed as 

var [C4] S - &n. (119) 

A perturbation is caused by the tentative changes in the 
weight vector that are a part of the LRS algorithm. At 
each iteration, N samples of data are used to obtain l(tVk), 
with the weight vector set at its nominal value, and N 
samples to obtain |(Pf4 + Uk). The next nominal value is 
chosen immediately after the two | measurements are made. 
During a given cycle the average excess mean square error 
is thus given by 

^TO-^ + ^' + ^j 
= i£|W»)- W + Uk)].   (120) 

Since Uk has zero mean and is uncorrelated with Wk, and 
since cov [l/J = cov [Uk'] = a21, the average excess 
mean square error can also be expressed as 

i£[t/t
riH/t] = i£[lVTAlV] = iff2 tr R.    (121) 

The perturbation P is defined as the ratio of the average 
excess mean square error (resulting from tentative changes 
in the weight vector) to the minimum mean square error. 
It may thus be expressed as 

ff2trJ? 
P = 

2{, 
(122) 

1) Stability, time constants of LRS algorithm: Equation 
(114) may be rewritten, using (115), (116), and (117), as 
follows: 

»;♦, - W» + fflXA«» + m 023) 
or 

Vk*x ~ Vk + P[-{,K\ + täUk. (124) 

If one lets a1 be small by design, so that Vk is always small, 
one can write 

(A{)4 = Vk
T\k = Wk

TRVk. (125) 

Substituting (125) into (124) then yields 

Vk^ - Vt+ßVki-2Uk
rRVk + tä 

- (/ - lßVkUk
TIt)Vk + ßUVk.        (126) 

Equations (114) and (126) are equivalent representations 
of the LRS algorithm, the former more useful for im- 
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plementation and the latter for analysis. Equation (126) 
shows that the weight vector is the solution of a first-order 
linear vector difference equation having a randomly time- 
variable coefficient -2ßUkUk

TR and a random driving 
function ß^U^ 

Both sides of (126) may be premultiplied by Q'1 to 
obtain an equivalent expression in primed coordinates: 

VUt = (/ - 2ßUk'Uk'
T\y/k' + ßW.       (127) 

Though this expression is simpler than (126), it remains 
difficult to solve because of cross coupling and randomness 
in the matrix coefficient. It is thus necessary to derive 
stability conditions for the LRS algorithm without an 
explicit solution to (127). One may begin by studying the 
behavior of the mean of the weight vector. 

By taking expected values of both sides of (127) and 
observing that Uk' is a random vector uncorrelated with C» 
and Vk, one obtains 

W*i] = £[(/ - 2ßUk
,Uk'

T\)yk'-\ + /JE[C»tV] 

= (/ - 2ßE[Uk'Ut'
T-\\)ElVk'] + 0 

= (I - 2ßa
2\)E[Vk']. (128) 

This equation is analogous to (34) for the method of steepest 
descent. Its solution is 

W] = (! - 2ßa2AYV0'. (129) 

Equation (129) gives, for an initial condition of yk' = V0', 
the expected value of the weight vector's transient response. 
Stability of (128) assures convergence of the mean of Vk'. 
The stability condition is 

1/4« > ßo2 > 0. (130) 

When ßa2 is so chosen, the following condition is fulfilled: 

lim £[17] = 0. 
k—<t> 

(131) 

By analogy with the method of steepest descent, whose 
transient behavior is characterized by (34) through (39), the 
time constant of the pth mode of the expected value of the 
weight vector is 

''= ißk, (,32> 
The time constant of the pth mode of the mean square 
error learning curve is half this value: 

I 

4/fcV 
(133) 

2) Noise in the weight vector of the LRS algorithm: If 
one lets ßn* be chosen so that (130) is satisfied, then the 
mean of the weight vector will converge according to (131). 
Convergenoe of the mean, however, does not necessarily 
imply boundedness of the covariance of the weight vector. 
For the purpose of obtaining an expression for the noise 
in the weight vector, such boundedness is here assumed 
without proof. It is also assumed that the weight vector 
undergoes a stationary stochastic process after initial 
adaptive transients have died out. 

The assumed steady state covariance of the weight 
vector may be calculated as follows. Multiplying both 
sides of (127) by their own transposes yields 

Vi^yilx = (/- 2ßuk'uk'
T\)yk'yk-T(i - 2ß\uk'uk

T) 

+ (/ - 2ßuk'uk
T\)vk'ßt:kuk'

T 

+ /Wyk'
T(l - 2ß\Uk'Uk'

T). (134) 

Noting that C4 and Vk' are stationary processes of zero 
mean uncorrelated with each other and taking expected 
values of both sides of (134) yields 

= £[(/ - 2ßVk
,Vk

TA)yk'Vk'
T(t - 2ßAVk'Vk

T)] 

+ /^[C*2]£[C/t'tVr] + 0 

= £[(/ - 2ßUk
,Ul:

T\)yk'Vk'
T(l - 2ß\Vk'Uk'

T)] 

+ ß2i tLyi. 
N (135) 

Since in steady state yk is also a stationary process of zero 
mean uncorrelated with Uk', one may write 

= £[(/- 2ßuk'uk'
T\)E[yk'yk^i- 2ß\vkuk

Ty] 

+ ß2i &y' N (136) 

and 

cov[>V] 

= £[(/ - 2ßVk'Vk'
T\) cov [yk'](l - 2ß\Uk'Uk'

T)] 

= cov [yk'-\ - 2ßE[Uk
,Uk'

r]\ cov [yk'] 

- 2ßcov[yk']\E[Uk'Uk'
T] 

+ 4/?2£[£VCVrA cov [yk']\Uk'Uk'
T] 

= cov [yk'] - 2ßo2A cov [IV] - 2ßa2 cov [F»']A 

+ 402£[C/4'tV
TA cov [K;]At/;tvr] 

+ /^ &.*'/• (137) 

Solving (137) to find the covariance of yk' is difficult 
because the matrices cannot be factored. After reexamining 
(130), however, one could argue heuristically that in steady 
state the covariance matrix should be diagonal. All com- 
ponents of the driving function of (127) are uncorrelated 
with each other and uncorrelated over time. The random 
coefficient I - IfiVJU^K is furthermore diagonal on the 
average, though generally not for each value of *, and 
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uncorrelated with Vk' and with itself over time. Though 
this argument does not constitute a proof that the covariance 
of yk' is diagonal, it makes such an assumption plausible. 

If the covariance matrix of Vk' is thus assumed to be 
diagonal, then with some rearranging of terms (137) 
becomes 

4ßa2\ cov [F»'] - Aß2E[VkUk'
T\ cov [Vk

,]\UkUk
T] 

N 

For slow adaptation, the case of greatest interest, it may be 
notefl that 

/Jff2A « / (139) 

which is analogous to (75) for the method of steepest 
descent.6 One may note further that 

ß2E[Uk'Vk'
T\ cov [PVWIV7] S (ße2*)2 cov [Kt'] 

(140) 

and from (139) that 

(/to2A)2 cov [F»'] « /Jff2A cov [>V]. (141) 

The term -4/J2£[ ] of (138) is thus small and can be 
neglected. Equa ion (138) accordingly becomes 

covra^LA". 
is 

(142) 

Though this expression has not been rigorously derived, 
experience has shown it to lead to misadjustment formulas 
that are generally accurate. 

3) Misadjustment of LRS algorithm: The average excess 
mean square error due to noise in the weight vector is 
given by (77). Using (142) one may write for the LRS 
algorithm 

ww-iM^T) 

this time constant expressed in number of data samples is 

N 

N C"ta• 
(143) 

According to the definition of (80) the misadjustment of 
the LRS algorithm is thus 

™ ~ {ml«- 
TV 

(144) 

This result can be usefully expressed, using (121), in 
terms of the perturbation of (he LRS process: 

nßo2 tr R m nfo'A,, 
2NP     "    2NP 

M (145) 

It an alto be expretted in terms of time conttuitt of the 
adaptive prooett. The time constant of the pth mode of the 
learning curve, expressed in number of iterations, is given 
by (132). Since 2N samples of data are used per iteration. 

'Tharakor* in the imtbod of 
that of ^ to tlw LRS aliorMim. ~ 

A 2ArT_ = 
2ßo2X, 

(146) 

Note the difference between (146) and the equivalent 
expression (82) for the  DSD algorithm, reflecting the 
difference in utilization of data per adaptive cycle by the 
two algorithi is. 

According to (146) one may write 

and 
'     2Po2\Tj 

2/J(T2 iT^J., 

Inserting (148) into (145) yields 

4/'\TFmJ., 
This formula closely resembles its counterpart (87) for the 
DSD algorithm. 

According to (89) the total misadjustment must include 
the effects of perturbation. One may thus write 

is the samt as 
ow#aad«a 

(147) 

(148) 

(149) 

4/»\T.    /„ 
(150) 

Optimal choice of P requires that both right-hand terms of 
(150) be equal and that P, therefore, be one-half the total 
misadjustment (91). One may thus further write 

c-U-^)  -"[(TM]""«'5" 
This formula once again closely resembles its counterpart 
(92) for the DSD algorithm and is further indicative of the 
fact that many behavioral properties of the LRS algorithm 
resemble those of steepest descent algorithms despite the 
difference in search procedure. 

Other random search algorithms applicable to adaptive 
control and pattern recognition systems have been described 
in the literature [24]-[3l]- Th«86 algorithms are capable 
of taking advantage of performance measurements from 
previous iterations in determining current parameter changes 
and are useful in searching multimodal performance 
surfaces. They tend to be complicated in implementation 
and mathematical description, however, and have not been 
analyzed to determine their misadjustment as a function of 
rate of adaptation. It is conjectured in this regard that their 
behavior may be somewhat similar to that of the LRS 
algorithm and that their convergenoe dose to optimal 
points is relatively slow in high dimensional spaces. 

V. SUMMAKY or ANALYTICAL RESULTS 

In the foregoing sections analytical expressions have been 
derived that characterize the performance of the DSD 
and LMS algorithms, baaed on the method of steepest 
dcaoent, and the LRS «liorithm, baaed on a random search 
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TABLE I 
PERFORMANCE CHARACTEROTICS OF ADAPTIVE ALGORITHMS 

Misjldju<i(incnt. M 

USDalgoiilhm 

4N» 
i nmn 

PertiiThahnn, P 

1otal miudjustmciil. MJ0J M *¥ 

Tinw corKlinl ufplh mode 

In numbrr of adaplivf I 

iterations, r„ «Mp 

In number of data Nn 

BInpkS.T 2^P 

IMS alporiltim 

»ilf * r 

^p 

**K 

IRS algorithm 

N »mm 

«"Op     ) «UP     ) **\TP     ) 

o   n X, 

* *min 

M« P 

Aa2p\B 

2a20\B 

16       33       S4       128 
NUIWER Of WEIGHTS, n 

Fig. 3. Time contunt of adaptive process as function of number of 
weightt with total miaac^ustment Mm fixed at 10 percent (perturba- 
tioo P optimized for DSD and LRS alforithms). 

procedure. The most important of these expressions are 
presented in Table I in a manner that allows the three 
algorithms to be readily compared. 

The principal measur; of performance is the misadjust- 
ment M, which is the penalty arising from the imperfect 
statistical estimation process. The formulas presented show 
that misadjustment increases with speed of adaptation, and 
this result can be taken as a general rule of adaptive proces- 
sing. For a given real-time speed of adaptation7 and given 
number of adaptive parameters, however, misadjustment 
varies considerably among the three algorithms. The most 
efficient in this respect is the LMS flgorithm. The DSD 
and LRS algorithms, whose misadjusUnent expressions are 
nearly equivalent, are considerably less efficient. 

Fig. 3 shows the relative efficiency of the three algorithms 
by plotting the required adaptive time constant as a function 
of number of adaptive weights with total misadjustment 
Mm fixed at 10 percent. The eigenvalues of the Jt-matrix 

7 The balk unit of time in digital tyttams is the 
ia aaalot ayitaim it ia the «quivaiMM Nyauiit 

H m tin l—lwliMi nf ihi mm ifcB 

period; 
period cor- 

are assumed to be equal, and the value of the total mis- 
adjustment for the DSD and LRS algorithms is minimized 
according to (92) and (151). It is readily seen that for a large 
number of weights the DSD and LRS algorithms have 
similar time constants. The LMS algorithm, on the other 
hand, has a much smaller time constant. 

The formulas presented in Table I and the curves of Fig. 3 
provide a practical tool for use in the design of adaptive 
filters. For the purposes of illustration let us assume that 
an adaptive digital filter with 10 weights is needed for a 
particular application. Let us further assume that a total 
misadjustment of 10 percent would be acceptable and that 
the eigenvalues of the A-matrix are essentially equal. For 
the DSD algorithm, a total misadjustment of 10 percent, 
according to (91), yields an optimal perturbation of S 
percent. Thus the misadjustment M is 

M 
(n + I)2 /   1   \ 

(152) 

This equation can be solved by substituting the appropriate 
values of n and P to obtain the average reciprocal time 
constant in number of data samples: 

2(10)- (153) 

Since all eigenvalues are assumed to be equal, there is only 
one time constant associated with the mean square error 
curve, and (153) can be rewritten as 

2 
5000 data samples. (154) 

This is a large adaptive time constant for a 10-weight filter. 
If the LMS algorithm is used instead of the DSD 

algorithm, then there is no perturbation and the misadjust- 
ment is 

Mm 
H+  1 

10 percent (155) 
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which yields a time constant or 

rm« = 25 data samples. (156) 

This is a much mo-c favorable value. Within about four 
time constants adaptive transients would essentially die 
out. Settling time would be about 100 sampling periods or 
iterations. 

For the LRS algorithm one must once again allocate one- 
half the total misadjustment to the perturbation P. The 
misadjustment M is thus 

A/ = ^4^(F-) =5percent   (,57) 

"?| 

which yields a value of the time constant of 

Tn„ =» 10000 data samples. (158) 

The LRS algorithm thus would require twice the settling 
time required for the DSD algorithm. Note that the per- 
turbation is set as follows: 

p = 0.05 = tJL* (159) 
2<. 

which is equivalent to 

ff2 -0.1{mlll/trÄ. (160) 

To set a1 for the random vector generator one would need 
to know the values of {„,„ and trace R. Approximate value» 
would be adequate in most practical circumstances. 

These results illustrate the efficiency of the LMS algorithm, 
which has been shown to approach a theoretical limit for 
adaptive algorithms when the eigenvalues of the it-matrix 
are equal or close to equal in value [32].s There are 
circumstances, however, where the LMS algorithm cannot 
be used and where the DSD and LRS algorithms provide 
a valuable option. An example is included in the applica- 
tions described in the next section. 

VI. EXPERIMENTAL RESULTS 

In this section the results of experiments performed by 
computer simulation are presented. These results show the 
relative performance of the DSD, LMS, and LRS algorithms 
in practical circumstances of varying complexity. They also 
provide a means of verifying the expressions for misadjust- 
ment and adaptive time constant derived in the preceding 
sections. 

A. Modeling Experiments 

Two modeling or system identification problems were 
simulated by computer to demonstrate the convergence of 
the three algorithms and the degree of correspondence 

'The gndknt and pcrfoonanoe estimation methods used in the 
DSD «nd LRS aborithmt involve taUnc the difference between two 
IwK Mto {-quamitiis. Some of this d&femce it due to itatntical 
fluctuation (that ». to a change in data ttattetia from one sample to 
the neat), aa undesirable effect, and some to the actual weight change, 
a desirable effect. If the data could be repeated and the difference 

1 to the latter effect, the result would be a reduction in the 
of data raqutoed and a much better estimate. The gradient 

" ique of the LMS algorithm is equivalent to such 
' which accounts for its inherent eflkiency. 

n,, ,-- -. -  *-., 
DELAY 

A 
-V 

J   ADAPTIVE 
1      FILTER 

V 
Fig. 4.    Modeling a fixed delay with an adaptive filter. 

between actual and theoretical performance. In these 
simulations an adaptive transversal filter with four weights 
was used. In the first the algorithms were required to con- 
verge to a weight vector solution that modeled the impulse 
response of a "digital" filter with a single fixed delay A 
of z-2, where z~' is the transfer function of the unit delay. 
In the second they were required to converge to a solution 
that best approximated the infinite impulse response of a 
one-pole recursive digital filter. 

1) Modeling a fixed delay: Fig. 4 shows the experimental 
configuration used to test convergence of the algorithms 
to model the fixed delay. An input signal />,, composed of 
independent samples of white noise of unit power, was 
routed in parallel to the delay filter and the adaptive filter. 
The output of the delay filter was corrupted by a secoud 
input «2, composed of independent additive white noise 
with a power of 0.5, to form the output of the system to be 
modeled. This output, the desired response di of the adaptive 
process, was compared with the adaptive filter output ^ 
in the normal way to form the error signal t}. 

The optimal weight vector solution W* for this experi- 
ment is zero for all weights except that whose tap delay 
corresponds iO the delay A. The value of this weight is 
one. Thus, when the adaptive process has converged, the 
error e, is the noise /t2, which is uncorrelated over time. 
The minimum mean square error {„,,„ is not zero but has a 
value equal to the power of the noise «j. In addition, because 
the input n, is white and of unit power, all inputs to the 
weights are mutually uncorrelated and of unit power. The 
input correlation IURHX R is thus equal to the unit matrix /, 
and all eigenvalues of R are equal to one. These circum- 
stances are the simplest that could be devised to test the 
three adaptive algorithms. 

Fig. 5 shows learning curves of the adaptive process 
when the three algorithms were implemented with a fixed 
theoretical time constant Tm„ of 2048 data samples. An 
individual learning curve and an ensemble average of 32 
independent learning curves are presented for each 
algorithm. The averaged curves allow the misadjustment of 
the adaptive process to be experimentally measured.9 The 

*The measurement is made by dividing by {.i. the difference 
between the average value of asymptotic mean square error and im)m. 
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DATA SAMPLE 

(b) 

8192 

Fig. 5.   Reniltt of fi^ d^y modeling experiment with theoretical time constant T^ fixed at 2048 data samoles 
(a) Individual learning curves, (b) Ensemble averages of 32 learni^curves P 

5 

ROULTS OF FtXED DlLAV MODCUNO EXPERIMENT WIIH THEOSEHCAL TlME CONSTANT T^ 
FIXED AT 2048 DATA SAMPLES 

Total 

Perturb» ion P, Miudjustmenl M, miMdjustment MtoI. ThcoreUcil tiiTic 
Conveiience conitantt percent percenl percenl constant T_.-.. 

Aliorithm « X ID"-1 f a1 X 10-3 Theor. Men. Theor. Men. Theor. Meas. no of data samples 

DSD IS.62S _ _ 2.21 219 4.42 5.70 6.53 7.89 2048 
LMS 0.12:07 - - 0.048H n.os 0.048« 005 2048 
LRS - 0.5 7.8125 3.125 3.12 6.25 H.08 9.375 11.20 2048 

"high-frequency" variations of the curves representing the 
DSD and LRS algorithms are due to the required perturba- 
tion of the weight vector at each iteration. At the beginning 
of each experiment all adaptive weights were set to zero. 

Table II presents the theoretical and measured vcJues of 
perturbation and misadjustment for the learning curves of 
Fig. S. Abo shown ate the values of the parameters n, ß, 
•nd ff2. It is readily seen that the theoretical and measured 
values are in dose agreement for all three algorithms. 

Fig. 6 piwgats individual laming curves and ensemble 
•«•KMn of 32 ienrniaf curves showing convenpenoe of the 

three algorithms with a fixed theoretical total misadjustment 
Af,ol of 9.375 percent. Table III shows the values of pertur- 
bation, misadjustment. and time constant together with the 
values of the parameters ft, fi, and o1. Once again close 
agreement between the theoretical and experimental results 
is observed. 

2) Modeling a one-pole recursive filter: Fig. 7 shows the 
experimental configuration for the second modeling 
experiment. An input n, composed once again of independent 
samples of white noise of unit power, is routed in parallel 
to an adaptive transversal filter and a one-pole recursive 
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Fig. 6.   Remit« of fixed delay modeiing experiment with theoretical total miiadjuttment Mm fixed at 9.375 percent, 
(a) Individual leaning curvet, (b) Entembie averates of 32 fearning curve*. 

TABLE HI 
RWULII OP PDCBD DELAY MODEUNO EXPEMMENT WITH THEOREIICAL TOTAL MBADiuimENr M,M 

FIXED AT 9.373 PEKCSNT 

T-JUl 

Pcrturt»lion P,      Matdjuilmenl M,     miudjuitmcnl M|0,, Theoreticil liinc 

Conwuencc ceiwtinli ptreent ptrecnt ptrcenl comtan: T_ 

Alforithm      »i X IÖ"2      t       a2 X I0~3      Thcor.     MCM.      Theor      Men.        Thcor.        Meu.        no. of dtu nmplet 

DSD 

LRS 

3.131 

2.34 

3.125       3.11 

O.S 7.1125 3.I2S       3.12 

6.2S 

9J7J 

«.25 

•.26 

10.35 

8.08 

9.375 11.37 

9.375 10.35 

9.375 11.22 

1024 

10.7 

2048 

diftal fiher whose Utosfar function is 1/(1 - at-1). The impulse tesponse. Since the input it is white noise, the 
output of the on*poie filler is the desired response dj, optimal solution is to cause the adaptive filter's impulse 
which is eonbiaad with the adaptive filler output yj to response to match the one-pole filter's geometrical impulse 
produce the error •/. response to the extent allowed by the length of the adaptive 

la this wpariient the fouMveiiht adaptive filter is tapped delay line. A residual mean square error will be 
to model a one-pole filler with an infinite present because the best match attainable is imperfect. 
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Fig. 7.   Modeling a one-pole recursive filter with u adaptive filter. 
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DSD udLRS ataonthin and at 0.73 percent for LMS algorithm, (a) Indhn 
of 32 W Individual Icaining curv«. (b) EnnmUe avam 

b thk cue, when the adaptive filter hat converged to the 
opdnal Mhitioo, the error «, will be oondated over time. 
This latter condition violates one of the anumptioiu on 
which the previous derivations of misadjustment and time 
ooostant wen baaed and can be expected to affect the 
agnenient between theoretical and measured miiadjtistiiient 

Flf. I Aows individual and averafed learninf curves of 
the adaptive process with a fixed theoretkal total misadjust- 

ment tf„, of 7.S percent for the DSD and LRS alforithms 
and of 0.7S percent for the LMS alforithm. Note the 
difference in time scales and the rapid converfence of the 
LMS alforithm. Table IV presents the values of perturba- 
tion, misadjustment, and time constant and of the con- 
verfence parameters. It may be seen that the measured 
misadjustment is approximately twice the theoretical 
misadjustment for the DSD and LRS alforithms. For the 
LMS alforithm, however, measured and theoretical mis- 

eg,«*'«'! 1 w^m <w — r        .M*.    , 
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TABLE IV 
RESULTS OF ONE-POU FILTER MOHFIINO IXPIRIMINT wmi THFORFTK AL TOTAL MISADJUSTMENT MU 

FIXE» AT 7.5 PFRCTNT FOR DSD AND l.RS ALGORITHMS AND 0.75 PERCENT FOR LMS ALGORITHM 

i'lrhi 

Total 

Mi^idiuslmcnt M. nusadjustnirnl M[n,,      nicurtttcal time 

percent  percent constant Tm,e.   Convgrgpncr con^lanH pet^cnt 

Algorithm pX 11)"- ß o* ¥ 10 then       Mcav liu'ur        Meas. I heor.      Meas.        no. of data samples 

DSD 40 

LMS 1 K ■ 

LRS I  M()' 

2.5 2,51 5 10.31 7.5 

0.75 0.7T        0.75 

2.5 2,67 5 0.2.1        75 

12.S2 

Ü.77 

11.90 

U>00 

133 

3200 

adjustment are in close agreement. The results for the 
DSD and LRS algorithms are expected and can be attributed 
to the fact that the correlation in the error r.j over time 
makes the effective statistical sample size less than the actual 
number of error samples. The reason thai the LMS algorithm 
is not sensitive in this respect and docs not experience a 
loss in performance is not understood at the present time 
and is a subject under investigation. 

This experiment and the foregoing fixed delay experiment 
demonstrate that, in accordance with the theoretical 
expectation, the performance of the LMS algorithm is 
superior to that of the DSD and LRS algorithms, whose 
performance is approximately equivalent. The LMS 
algorithm converges more rapidly for a given level of 
misadjustment or is less noisy (produces less misadjustment) 
for a given rate of adaptation. For the DSD and LRS 
algorithms the relationship between rate of adaptation and 
misadjustment is known approximately for a wide variety 
of input statistical conditions. For the LMS algorithm the 
relationship under the same variety of input conditions is 
known to a closer approximation. 

B. Adaptive Cancelling ofSidelobe Interference in a 
Receiving Antenna Array 

The objective of this experiment is to demonstrate one of 
the ways in which adaptive filtering can be applied to 
reduce interference received by the sidelobes of an antenna 
array. Results (tie presented only for the LMS algorithm. 
The DSD and LRS algorithms could also be used with this 
problem, but their performance would not equal that of the 
LMS algorithm, as indicated by the formulas and ex- 
perimental results already presented. An experiment where 
the DSD and LRS algorithms are applied to a problem that 
cannot be solved by the LMS algorithm is presented in the 
next section. 

A number of adaptive beamforming methods capable 
of reducing interference in the sidelobes of an antenna 
array have been described in the literature [IHIO]. These 
method! have the disadvantage that, unless the adaptive 
process is constrained, strong signal components in the 
mam beam are rejected. When the adaptive process is 
constrained the signal is preserved, but there may be a loss 
in anty performanoe caused by gain or phase errors due 
to nonunifonnhy in dement placement, transfer function, 
or near>fieid ewcts. 

CÜMVtNTIQNAL BEAMFOHMER !         ^ 

!> \.        IPRIMARY 
"   y"^ 'INPUT 

ADA PT^VJ NO IS E_C A N« LL E R 

DELAY 

L J 

Fig. 9.   Block diagram of null-constrained adaptive beamformer 
tolerant of array element gain and phase errors. 

By the use of adaptive noise cancelling techniques10 it 
is possible to realize a constrained adaptive beamformer 
that does not suffer a significant loss in performance when 
array clement properties arc not uniform. This beamformer, 
described here for the first time, is capable of reducing 
broadband and narrowband interference in the sidelobes of 
an antenna array without rejecting broadband signal 
components in the main beam, regardless of their strength. 
It is also simple and easy to implement 

Fig. 9 is a block diagram of the constrained adaptive 
beamformer. An array of receiving elements is connected 
to a conventional time delay and sum beamformer, which is 
steered in the direction of the signal. The conventional 
beamformer's output, containing signal and interference, 
forms the primary input to an adaptive noise canceller. This 
input is delayed by an amount A/2, where A is defined 
below, to form the desired response dj of the adaptive 
process. Multiple reference inputs to the noise canceller are 
derived by taking the delayed element outputs from the 
conventional beamformer before summation. These inputs 
are routed to a bank of adaptive transversal filters, each 
comprising a tapped delay line with a total delay of A. 
The filter outputs are summed to form a single output yj, 
which is subtracted from dj to obtain the canceller output Zj. 

10 Adaptive noise cancelling 1331 ■» • form of optimai filtering that 
makes use of two inputs, a "primary" input consisting of signal and 
noise and a "wfcwce" input comntiag of noise comlalwl in son» 
unknown way with that in the primaiy input. The nhnttai input is 
adaptivdy filtered and subtracted from the primaiy input to obtain 
a signal «tfanale in many OBHS supsrior to that obtainable by other 
fofms of adaptive or oonveavional flUsring. 
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F'fJ0- Weighting coeffident matrices for null-constrained adaptive 

betmformer. (a) Single column-of-zeros constraint, (b) Triple 
column-or-zeros constraint, (c) "He. rglass" constraint. 

This output also provides the "error" signal ej for the 
adaptive process. 

The operation of the adaptive beamformer of Fig. 9 is 
constrained by constraining the weighting coefficients 
(gains) of the adaptive filter taps. Fig. 10 shows three forms 
of constraint, each suitable for a different purpose. Fig. 
10(a) represents the matrix of coefficients appropriate for 
an ideal line array with a plane-wave signal incident in the 
"look" direction of the conventional beamformer. The gain 
of the central taps is constrained to be zero. The gains w 
of each of the other taps are independently controlled by 
the adaptive process. Note that the matrix has as many 
rows as there are reference inputs. 

In this problem the signal appearing at the central tap of 
each adaptive filter is identical except in scale to </,. If one 
assumes that the received signal is "white" and has an 
impulsive autocorrelation function, the signals appearing 
at the other taps will be uncorrelated with dj. It is thus 
apparent that the signal components in yj will be uncor- 
related with those in dj and that the adaptive process will 
have no tendency to cancel the received broadband signal. 
Interference components arriving from other than the 
"look" direction, on the other hand, will be correlated with 
the interference components in dj at one or more of the 
unconstrained taps. These components will thus be cancelled 
by the adaptive process, which adjusts the gain of the un- 
constrained taps to minimize the mean square of the error 
»j (in this case, output power). 

In practical applications arrays with ideal properties 
cannot be realized because perfect receiving dements, 
perfect element placement, and freedon fnm near-field 
irregularities cannot be achieved. Fit- 10(b) *ow» a form 
of constraint proposed to desensitize the behavior of the 
adaptive sidelobecancclter to imperfections in the properties 

of the receiving elements. Tnis constraint consists of 
inserting an additional column of zeros on either side of the 
central column. Pi*. 10(c) shows a configuration of the 
weighting coefficients that would allow the reception of 
strong broadband signals over a finite and controllable 
angular sector; in this configuration the zeros are arranged 
in the form of an "hourglass." 

Fig. 11 shows direciional response patterns obtained by 
computer simulation that indicate the performance of the 
adaptive beamformer o" Fig. 9 with an ideal and a nonideal 
array using the single md triple "column-of-zeros" con- 
straints The ideal array consists of ten elements in a linear 
configuration and with half-wavelength spacing at the 
sampling frequency; for the nonideal array the single 
elements at each end of lie array are moved forward one- 
quarter of a wavelength. The simulated received signal has a 
power of one, a white spectrum, and originates from a point 
source. The simulated interference is Isotropie, with a 
power of 0.01 and a white spectrum. The directional 
response of the conventional time delay and sum beam- 
former is shown as a dotted line for purposes of comparison. 

Fig. 11(a) represents the adaptive beamformer's per- 
formance with the ideal array and the single column-of- 
zeros constraint, while Fig. 11(b) represents performance 
with the nonideal array and single column-of-zeros con- 
straint. Note that the beam formed is "super-directive" 
—that is, much narrower than tlw conventional beam—but 
severely reduced in sensitivity when array properties are not 
ideal. 

Fig. 11(c) and Fig. 11(d) show beamformer performance 
with the triple column-cf-zeros constraint. In this case the 
adaptive beam is close in width to the conventional beam, 
and its sensitivity is not affected by element irregularity. 
Even at high signal-to-noise ratios sensitivity is sustained 
over a finite range of angles, an unusual result since adaptive 
beamforners generally lose signals not incident exactly in 
the "look" direction. 

C. Adaptive Phase Control of a Transmitting 
Antenna Array 

This experiment illustrates the use of the DSD and LRS 
algorithms to solve a problem that cannot be solved with 
the LMS algorithm." The problem selected, adaptive 
phase control of a transmitting array, is representative of a 
class of problems more general than those heretofore 
treated in this paper. Other problems of a similar nature 
include adaptive adjustment of the parameters of microwave 
resonators, waveguides, and coaxial transmission lines. A 
related problem at optical frequencies is adaptive adjust- 
ment by controlled warping of laser mirrors. 

ft should be noted that the formulas for time constant, 
perturtation, and misadjustment of the DSD and LRS 
algorithms given in Table I were derived by assuming 
stationary stochastic inputs to an adaptive system so 
configured that mean square performance is a quadratic 

" In the form described in thi« paper the LMS algorithm can be 
used onlyto adjust variable weights. The DSD and LRS algorithm 
do not nnfer from this limitation. 
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Fig. 12. 
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Satellite transmitting information to receiver on earth. 

fuactkm of the adjuitabie ptnuneten. The conditions on 
which these fonnulu and proof of convergence are based 
are not wtisfled in the adaptive phase control proUem 
examined here. If one ignores the deterministic nature of 
the sinusoidal input signals and treats input power as in 
the stochastic case, however, the expressions of Table I 

predictions borne  out  weil  by  experimental 

Fig. 12 shows a typical application for a transmitting 
anay with adaptive phase control. A satellite is relaying 
iafemation over a larpdistanoe to a receiver on the earth. 

The power available to drive the transmitter is limited, and 
it is desirable for maximum power transfer to keep the 
main beam of the transmitting antenna optimized and 
steered toward the receiving station, whose position with 
respect to the satellite changes with the earth's rotation and 
the satellite's orientation. The array's elements need not be 
ideal. It is assumed that the power of the received signal can 
be measured or estimated and transmitted via a feedback 
link to the satellite for use as an input to an adaptive beam- 
forming process. To avoid a loss of signal power that would 
partially or wholly offset the directional gun, the beam- 
forming process must control the output phase rather than 
the gain of the satellite antenna's dements. 

Fig. 13 is a block diagram showing the model used to 
simulate an adaptive transmitting antenna array of n 
elements. The signal is represented by a sine wave produced 
by a signal generator. An array of n phase compensators 
governed by an adaptive algorithm represents the adaptive 
processor. A corresponding array of n phase shifters provides 
a means of simulating the unknown phase shifts between 
the antenna elements and the receiver. The outputs of the 
phase shifters are summed and injected with "receiver" 
noise to simulate a weak received signal. This signal is 
sampled, squared, and averaged, providing a power estimate 
for the adaptive algorithm. The algorithm adjusts the phase 
compensators to maximfae measured power. It is dear thai 

,mmJtimmiuijii¥Mmim* -r«.- -««».*i»*, ^ - - ■ «i»»*j!-. SSiZi "-"*- 
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Fig. 13.   Digital simulation of adaptive transmitting antenna. 

maximum power will be transmitted when the combined 
phase shifts on each branch of the block diagram are 
integral multiples of 360 degrees relative to each other. 
Although there is no unique solution to the problem, there 
are families of equivalent solutions that provide maximum 
power transfer. 

This model comprises all aspects of the Satellite trans- 
mission example described ibove except the two-way time 
delay of the transmission path. This delay would affect the 
rate of adaptation of the processor and would have to be 
taken into account in designing a real system. 

Fig. 14 shows learning curves of the adaptive process 
for the DSD and LRS algorithms when the injected noise 
of Fig. 13 is set equal to zero. The transmittihg antenna was 
composed of 16 Isotropie elements in a line array. Note that 
the curves rise to an asymptote representing maximum 
power rather than decaying toward a minimum. Note 
further that they ate not exponential except as the optimal 
solution is approached. Exponential learning curves occur 
only when the algorithms are applied to quadratic per- 
formance surfaces. The performance surface for the 
simulated problem is a repreaentauon of output power as 
a function of phase and is not quadratic except near 
stationary points, where it can be represented by first- and 
second-degree terms of a Taylor expansion.12 For this 
application the method of steepest descent might better be 
designated the "method of steepest ascent." It is described 
by (24) with the sign of ji reversed. A corresponding reversal 
of sign is also required in applying the LRS algorithm to 
this problem. 

The "theoreticar time constant of both learning curves 
of Fig. 14 is 128 data samples. This value is based on the 
characteristics of the performance surface (that is, its 

«_ JL^Ü^Ä0^^^- ^ Uw'tt' ta a Jwt 1975 twin paper 
fSf *MgB g 373' Ä*5*? s'?l,n"' to *• D^MiMbtof ÖKtncal Eajaftriog at Staobni Untontty. that the perfomaooc 
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Fig. 14.   Learning curves of simulated Adaptive transmitting antenna 

without noise, (a) DSD algorithm, (b) LRS algorithm. 

"Ä-matrix") in the vicinity of the global optimum.13 

Visual inspection indicates that the actual time constants 
of the two curves are similar and agree well with the above 
value. The convergence parameter ft for the DSD algorithm 
was 8 x 10"3. The convergence parameters ß and a2 

for the LRS algorithm were 1 and 8 x 10"3, respectively. 
The maximum transmitted power {„.. was equal to 32. The 
"perturbation" P for both algorithms was S percent, and 
the value of N was one. 

Fig. 1S shows sequences of radiation patterns correspond- 
ing to the learning curves of Fig. 14. Real time is indicated 
in terms of data samples equivalent to sampling periods of 
the digital system of Fig. 13. The simulated receiving site 
was located at a relative angle of 20 degrees. The initial 
setting of the phase compensators was zero. The unknown 
phase settings of the phase shifters were chosen at random. 
Note the rapid formation of the main lobe at 20 degrees and 
the suppression of sidelobes. 

Fig. 16 shows learning curves of the adaptive process 
when independent samples of white noise with a power of 
0.01 were injected into the simulated received signal. Array 
configuration and adaptive parameters are the same as in 
the noiseless case represented by Fig. 14. As well as can be 
determined by visual inspection, the actual time constants 

the "»matrix" of the performaiice surface can be shown to be 
* - -««./• 

Tha mmmgam aw that w ii iar» and that equal power How« through 
all phase shiners. The maximum ojtput power is {«,. Note that all 
«gsnvalues are equal and negative. 
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for both alforiüum are also •pproximately the r^me at in Though the appropriate formulas have not yet been derived, 
the noiiektt case. the formulas for stochastic inputs and quadratic perform- 

Noise in the adaptive phase control process, as evident in ance surfaces would suggest that with equal theoretical time 
Fig. 16, causes a steady-Male average loss of array power constants the misadjustment of the LRS algorithm would be 
gain. One can define for this caw a form of misadjustment greater than that of the DSD algorithm. This expectation is 
that is a ratio of the loss in power to the peak power t^. confirmed by the results obtained in this experiment. 
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Fig. 16. Learning curves of simulated adaptive transmitting antenna 
with noise, (a) DSD algorithm, (b) LRS algorithm. 

VH. CONCLUSION 

The theoretical and experimental results presented in this 
paper show that the LMS algorithm is the most efficient by 
a large factor of the three algorithms compared and 
indicate that it should be used whenever circumstances 
permit. The DSD algorithm is less efficient than the LMS 
but more efficient by a factor of two than the LRS algorithm. 
Its use is appropriate where technical or economic con- 
siderations preclude use of the LMS algorithm or where 
a high speed of adaptation is not required. Use of the LRS 
algorithm may appropriate in cases where the per- 
formance surface for the adaptive process is not well 
behaved and has both local and global optima. Further 
experience is required, however, to confirm that the random 
weight vector changes associated with this algorithm can 
provide an advantage in the presence of local optima that 
may slow or prevent global convergence of algorithms 
based on the method of steepest descent. Further work is 
also required to extend the theoretical derivations for time 
constant and misadjustment of the three algorithms to 
applications other than those entailing stochastic inputs 
and quadratic performance surfaces. 
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