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I. INTRODUCTION

This note presents a mathematical model of an operation

in which a pursuer attempts to locate and destroy a group of

quarries. The model was developed to aid in the study of the

credibility of current and forecasted threats to the survival

of a ballistic missile submarine force. The credibility of

such threats was previously examined in another ANSER work,

"A Model for Examining the Feasibility of a Nuclear Barrage

Attack on a Submarine Force." This note, however, makes

a more general set of assumptions about the characteristics

of the pursuer, the quarries, and the weaponry used to attack

the quarries.

Nothing inherent in the model limits its use to the study

of a submarine scenario. In fact, throughout this note the

nonspecific terms "pursuer" and "quarry" are used to emphasize

the generality of the model. Ary scenario that fits into the

following framework can be modeled (although one ought to

consider the validity of the model's assumptions and approxi-

mations for the particular scenario being studied). A pursuer

with imperfect searching and tracking abilities searches for a

predetermined length of time for a group of quarries, each

quarry moving in a region distinct from that of any other

quarry. Different searching and tracking characteristics may

be specified for each quarry; however, these characteristics

remain fixed for each quarry throughout the search. At the

end of the search, the pursuer allocates his weapons to maximiz

the expected number of quarries to be destroyed and launches

the attack. Using a combination of analytic, numerical, and
Monte Carlo methods, the model (currently implemenued through

a FORTRAN program) calculates the expected number and the

variance of the number of quarries destroyed.
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The first part of this note defines the model and explains
the basic assumptions. It then develops the mathematical
relationships between the effectiveness of the attack on the
quarries and the values of the parameters that drive the

model. Initially, it considers only a single-quarry operation.
The results obtained for the single-quarry case are then
applied to solve the multiple-quarry case. The second part of
this note demonstrates how the model can be used to study the
vulnerability of a group of quarries as a function of the
parameters of the model. Specifically, it presents an example

in which a submarine force is threatened by a nuclear barrage
attack. By varying the model's parameters, it examines the
sensitivity to these parameters of the expected number of
submarines destroyed. The example is not meant to be exhaus-

tive or necessarily realistic, only instructive.
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Ui. MODEL

N. Si ngle-Quarry 0peration

Assume a single quarry moves with maximum speed s on an

unbounded plane. Suppose a pursuer will carry out an
operation to locate and destroy this quarry. The operEtion

wilJ consist of a search, which will last exactly T hours,
followed by an attack. During the searcl., ne may detect and
lose the quarry one or more times, or he may not detect the

quarry at all. When the pursuer has no contact with the
quarry, the probability of making contact during any time
interval within the search period will be a function solely
of the length t of the interval. Denote this probability by
R, (t). When the pursuer has contact with the quarry, the

probability of losing contact during any time interval within
the search period will also be a function solely of the
length t of that interval. Denote this probability by R2 (t).

Whenever the pursuer has contact with the quarry, the

error distribution of his knowledge of the quarry's true
position will be bivariate gaussian with covarianc3 matrix

vI, where v is a scalar and I is the identity matrix. There-
fore, the probability density function of the random vector U

that gives the vector difference (AX,AY) between the true
location of the quarry and the location determined by the
pursuer :Is

1 exp AX 4 y 2

h(AX,AY) - 27v 2v

At the conclusion of the search, the pursuer may or may not

have contact with the quarry. In either case, if t denotes
the number of hours between the last contact and the end of
the search (assuming contact was made at least once during



the search), then the probability distribution of the quarry's

final location from his location t hours before will be uniform

within a disc of radius st. That is, the probability density

function of the random vector V that gives the vector differ-

ence (AX,AY) between the quarry's final true position and his

true position when the pursuler last lost contact is

~ 1 1/2

1 for (AX 2 + A; 2 ) < st
gt (AýX,Ay) (S ) 22+=2 

1 2 S
0 for (AX 2 + AY2)1/2 > st

First we will derive an expression for F(t), the cumula-

tive distribution function of the random variable Z whose

value is either the time of the last contact with the quarry

during the search or -• if contact was never made. If

temporarily we let T = , then RI (t) can be viewed as the

cumulative distribution function of the random variable X

whose value gives the time between the beginning of the search

and the pursuer's first contact with the quarry. Notice that

R1 (t) satisfies

1 - RI (t+n) = [i - R (t)][l - R1 (h)] t,h > 0

because the probability of not. finding the quarry within t+h

hours equals the probability of not finding the quarry within

t hours times the probability of not finding the quarry within

h hours. It is well known 2 that any cumulative distribution

function that satisfies this equation must be of the form

R (t) = 1 - exp(- t/L)

where L is the expected value of X; that is, L is the

expected time until contact with the quarry is first made.

Now remove the restriction that T = •. Then R (t) takes the

form
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I - exp (- t/L) for tc[O,T]

R• (t) :

undefined otherwise

A similar argument applied to R2 (t) would show

S1 - exp (- t/M) for tc[O,T]

R2 (t)

Sundefined otherwise

where M is the expected length of time contact is continuously

maintained with the quarry.

For nonnegative t < T, let P(t) be the probability that

the pursuer will have contact with the quarry at time t, given

he had no contact at time 0. Also, define S(t) to be the

probability that the pursuer will make contact with the quarry

before time t and tnereafter not lose contact at lea.st until

time t, given he had no contact at time 0. We have

immediately

R 1(t _ P(t) > S(t) > 0l

Notice that S(t) satisfies

t
S(t) = f [1 - R 2 (t-x)]RWx)dx (1.2)

0

Since R (0) = 0, (1.1) implies

s(0) ý P(0) = R (0) = 0 . (1.3)

Differentiating (1.2) and evaluating the derivative at 0

yields

5= R (0) : I/L (1.4)

5
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Equations (Li), (1.3) , and (1..4) imply

P(0) - R1 (0) = 0 (1.5)

and

P'(0) = R'(0) = 1/L (1.6)

Similarly, if we define P0 (t) to be the probability that the

pursuer will not have contact with the quarry at time t,

given he had contact at time 0, then

P 0 (0) R2 (0) = 0 (1.7)

and

P (0) R'(0) I/M (1.8)

For any real h such that 0 < h IT-tj

P(t+h) -= P(t)[1 - P0 (h)] + [1 - P(t)]P(h)

Rearranging terms and dividing by h gives

P(t+h) - P(t) P(h) - P(t) [P(h) + P0 (h)]

h h

Also, if 0 < h < t

P(t-h) - P(t) P(h) - P(t-h) [P(h) + P 0 (h)]

-h h
The limits as h + 0 of both these equations are equal, and

thus the derivative of P(t) exists and equals

P'(t) = P' (0) - P(t) .P' (0) + P0(O)]

- /L - P(t) (1/L - 1/M)

The solution to this differential eq[uation satisfyinq

P(0) C C is

6



P(t) - M exp
L + M LM t

When necessary, to avoid ambiguity, we will write PLM for P.

Now let Q(t 0 ,tl) be the probability that the pursuer will
not have ccntact with the quarry in the time interval (t 0 ,tj).

Then

Q(t0,tl) P [ - PL,M (t0) ][i P PL,co('ti - to 0

L-exp (t - to)+ M-exp -toSL M L
: (1.9)

L + M

Define the function F(t) From the real numbers to the closed

u.nit interval as follows:

% Qý0,T) for t j 0

F(t) Q(tT) for tf (O,T] (1.10)

I 1 for t T

Then the probability that the last contact with the q-uarry
before the end of the search takes place in the interval

(t , t2) is F(t 2 F(t,) and the probability of never

contacting the quarry is F(0). Therefore F(t) is the cumula-

tive distribution function of the random variable Z, which is
what we intended to derive.

Next we will derive the probability density function of
the random vector W, which gives the vector difference between

the location of the, quarry at time T and the position determined

by the pursuer at the time cf the last contact. Assume the

pursuer- makes contact with the luarry at least once during the
search, and let t denote the t ime elapsc.d betw..en the last

contact and the end of the search. Thern the probability density

7



function ft of W is just the convolution of h and gt because
W is the sum of the two independent random vectors U and V,

and the probability density function of the sum of two inde-

pendent random vectors is just the convolution of their
probability density functions. Before deriving an expression

for this convolution, first notice that if (r,O) and (r',B')
are two vectors expressed in polar coordinates, then the length
of their vector difference (r,O) - (r',e') is

[r 2  + r' 2  - 2rr' cos (o- 1')]2/2

The convolution h*gt in polar coordinates is then

ft (R,e) h*g t(R,e)

0 2T

= I f h(r,O)g t[(R,e) - (r,y)]rdydr
0 0

1 st 2• 1 r 2 + R 2 - 2rR cos(y-R)
- f f L t) T exp 2vlrdydr2 , v 0 0 t_)L

1 st 21 R2 - 2rRrddr: •vst2/[exp L•+ 2 -2R coshiry) r
27T2v(St)2 L 2v j

This is as far a- the model for the single-quarry operation

will be de'-eloped. The two functiors f t(R,O) and F(t) are both

needed for the m- iple-quarry analysis, and, in fact, the
purpose for studying the single-quarry case was specifically
to derive expressions for them. In the next section, multiple-

quarry searches will be decomposed into a number of simul
taneous singlL-quarry searches, and the functions ft and F
will be ap lied to each search independently.

8



B. Multiple-Quarry Operation

Assume N quarries move on N unbounded euclidean planes

with maximum speed s, one quarry to each plane. Assume also

that no quarry has information about events outside his own

plane. Suppose a pursuer will carry out N independent

operations to locate each of the quarries. All of the

operations will begin simultaneously and last for exactly

T hours. At the end of the search, the pursuer will allocate

his weapons against the N quarries and launch a simultaneous

attack. His goal for the allocation will be to maximize the

expected number of quarries destroyed.

We will assume that whenever the pursuer does not have

contact with a quarry, the probability of detecting that

quarry within any time interval will be a function of both

the length of the interval and of the particular quarry

involved. Denote the exp.Žcted time to locate the ith quarry

by Li. Similarly, whenever the pursuer has contact with a

quarry, the probability of losing contact within any time

interval will be a function of both the length of that

interval and the quarry involved. Denote the expected time

to lose contact with the ith quarry by M i. In the single-

quarry analysis, we derived the expression (1.10) for F(t),

the cumulative distribution function of the last time the

pursuer had contact with the quarry during the search. F(t)

is expressed in (1.10) in terms of the function Q(t 1 1 t 2 ),

which in turn is expressed in (1.9) in terms of L and M,

the expected times to find and to lose the quarry. Since

we now have N different quarries, each associated with

different values of L and M, we need N different cumulative

distribution functions, one for each quarry. Wc will denote

the cumulative distribution function for the ith quarry by

F. (t). Then, if we substitute L. and M. for L and M in (1.9),1 1. 1

Fi (t) equals the right side of (1. 0).

9



As in the single-quarry case, when the pursuer has

contact with a quarry, the error distribution of his knowledge
of that quarry's true position will be bivariate gaussian with

covariancc+ matrix vI. Also, if t denotes the number of hours
between the last contact with a given quarry and the end of

the search, then the probability distribution of that quarry's
final position and his location at the time of last contact

will be uniform within a disc of radius st. Therefore, the

expression derived for f t(R,6) applies unchanged for each of

the quarries.

Up to this point we have considered only the search phase
of the pursuer's operation. After the search is concluded,

however, the pursuer is still faced with the problem of

allocating his weapons to maximize the expected number of

quarries destroyed. Initially, we will assume that the

pursuer's weapons are perfect in the sense that each weapon
detonates exactly at its aimpoint and has probability 1 of

killing a quarry within a radius k of its aimpoint and
probability 0 elsewhere. We will also assume that the

weapons detonate exactly at the conclusion of the search;

that is, the times to allocate and to deliver the weapons

are 0. Later, we will relax some of these restrictions.

We will not attempt to develop a scheme for computing an

exact maximal allocation, but instead we will develop a
method of constructing a "good" allocation and an upper

bound or, how far the allocation is from the theoretical

maximum.

Assume the pursuer has W weapons and that the kill radius

for each weipon is k. We may as well assume that he contacts

at least one quarry during the search, otherwise the expected

kill will be 0 irrespective of the allocation used. Suppose

he contacts the ith quarry. Denote the time between the last

10
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contact with this quarry and the end of the search by ti.
Then ft.(R,6) [defined by (1.11)] is the probabilitfy density

i
function describing the vector difference between the ith.

quarry's true position at the end of the search and the
position determined by the pursuer at the time of his last

contact with the quarry. fti is independent of 0 and is
monotonically decreasing in R. If we were to allocate a.
weapons against this quarry, then a straightforward but soeI-

what technical Lebesgue measure theoretic argument (which we

omit) would yield an upper bound on the probability of

destroying the quarry of

f• D f ft (r,e)r doer ,(2.1)
SD

"where D is the disc of radius kVaa. centered at the pursuer's~1
estimate of the quarry's position at the time of the last

detection. Notic2 that the area of D is just the total area

that would be attacked by all the weapons if there were no
overlap o-. their regions of co,7erage. Since it is impossible

to cover a disc with smaller discs without overlap, (2.1)
gives an unattainable upper bound.

In order to find a "good" attainable allocation, we need

to look at the problem of covering a disc with smaller discs.

Consider the covering that places the smaller discs in a
regular hexagonal array within the larger disc so as to
maximize the radius of the largest disc that can be covered

by the pattern. We will call this pattern the hexagonal

allocation. The pattern is illustrated by the diagram on the

following page. It is easy to show that any covering disc

that does not intersect the boundary of the larger disc loses

1 -3 /3/27 of its area to overlap. For a covering disc that

does intersect the boundary, the fraction of its area lost to
overlap is not so easily determined. Fortunately, as the

i1i
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ratio of the radius of the larger disc to that of the smaller

discs increases, the fraction of covering discs intersecting

the boundary approaches 0. If this ratio is large enough, we

can ignore these "edge effects" and approximate the number of

discs needed to cover the larger disc by

(A/a)/(3/3/27) z 1.21(A/a) , (2.2)

where A is the area of the larger disc and a is the area of

each covering disc.

Returning to the weapon allocation problem, if we accept

the approximation (2.2) (which we will), then the hexagonal

allccation using 1.21 ai weapons will achieve at least as
high a probability of kill as can be achieved with ai weapons

using the theoretically optimal allocation. Notice that

because ft (R,O) is monotonically decreasing in R, if we

remove 0.21 a- of the 1.21 ai discs farthest from the center

of the allocation, we will have a probability ot kill greater

than 0.82 of that achieved by the theoretically best alloca-

tion of ai weapons. But, because we are ignoring "edge

12
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effects," and because the hexagonal allocation maximizes the
radius of the largest disc that can be covered with a

hexagonal array, we can achieve at least as high a probability
of kill by using the hexagonal allocation for ai weapons.

Now assume that at the end of the search, S quarries have

been detected at least once; there is no loss of generality

in labeling these quarries 1,2,.--,S. For each j = 1,2,---,S,

define

f (r,O) = ft (r,O)
JJ

Again, assume we will allocate aI weapons against quarry i.

Then we want to find al,-.-,as, which maximizes

S k/ai 2 Tr
Z f f f i (r,O)r d~dr (2.3)

1=1 0 0

satisfying

a > 0 i =I, --. ,S

and
S

a. = W
i=l 1

By Gibbs' Lemma the solution a 1 ,..-.,aS satisfies

fi(k/ai.,) = do if f. (0,0) > do

aI = 0 if fi(0',) < do

for some d0 > 0 .

The maximum value of (2.3) is an upper bound on the

expected kill for any allocation. By allocating ai weapons

hexagonally to quarry i, we can achieve an expected kill
greater than 0.82 of this upper bound.

We have brought the mathematical development of the model

to the point where we can state the algorithm to which we

13
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referred in the introduction, that is, an algorithm to compute

the expected number of quarries destroyed as a function of the

input variables. First, however, we will present a preliminary

algorithm that will be used in the statement of the Main

Algorithm. Assume the search phase of the operation is

complete: let k, W, N, S, and t ,-..,'tN be defined as before.
The following procedure will compute a weapon allocation that
is at least 82 percent of optimal and will calculate the

expected number of quarries destroyed (again, we are ignoring

edge effects of the allocation).

ALGORITHM A

1. Set MX= 1, MN = 0, DN = 0.5

2. For i = 1,2,.--,S, find r such that

fi(ri,6) = DN

If no such r. exists, set r. = 01 1

Set B. 1.21(ri/k) 2

Set B B1 + B 2 + --- + BS

3. If B = W (within the desired accuracy), go to Step 7.

4. If B < W, go to Step 6.

5. Set MN = DN

Set DN = 0.5 (DN + MX)

Go to Step 2.

6. Set MX = DN

Set DN = 0.5 (DN + MN)

Go to Step 2.

7. Allocate Bi weapons to quarry i using the hexagonal

allocation. The expected number of quarries destroyed is

14
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-r. 2.

K Z f I f (r,O) rdedr
i=l 0 0

8. STOP.

The Main Algorithm, which we state below, is a Monte

Carlo procedure that repeatedly applies Algorithm A to sets

of times t1,...,tN that are chosen according to the distri-

butions F, (t),-.-,FN(t). We state the algorithm in a

general manner and leave out such details as stopping rules,

methods of generating random variates, etc.

MAIN ALGORITHM

1. Set EK = 0, EKSQ = 0, KOUNT= 0

2. Obtain N random numbers bii 1,---,N from a populationi -i
uniformly distributed in [0,1]. Set t = T - F. (b.)'i 1

3. Apply Algorithm A to obtain K.

Set EK = EK + K, EKSQ = EKSQ + K2 KOUNT = KOUNT +41

4. Apply the stopping rule; if we are not finished, go to

Step 2.

5. The expected number of quarries destroyed is

E = EK/KOUNT

The variance of the number of quarries destroyed is

V - EKSQ/KOUNT- E2

6. STOP.

C. Notes

a. In the development of the Main Algorithm, we assumcd the

weapon delivery times were 0. The algorithm is easily modified

to accommodate the case where these times are greater than 0.

15
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If d, ,--*,dN are the delay times between the end of the

search and the arrival of the weapons for quarries i,-..,N,

respectively, then insert Step 2.5 into the algorithm, which

adds d. to t for each i.1 1

b. If the weapon reliability p is less than unity, the alloca-

tion obtained by Algorithm A will not necessarily be "near

optimal." The approach we used to obtain the algorithm,

however, generalizes in a straightforward manner to include

weapons with reliability less than 1. Algorithm A can be

modified to handle such weapons by replacing Steps 2 and 7

with the tollowing steps.

2'. For i = 1,2,..-,S and j = 1,2,---,W, find r such that

p (1--p) 1 fi (rij,O) = DN

If no such r.. exists, set r.. = 0. Set

B. = 1.21 \1j=.l(

Set B =  Bi 4 B 2  + --- + BS

7'. Allocate B. weapons to quarry i as follows. Find the E.im-
1

points computed by the hexagonal allocation for 1.21(r. /K) 2

weapons. Then for each aimpoint whose distance from the origin

is greater than or equal to r and less than f. (1 < j < W),
allocate j weapons. For each aimpoint between 0 and riW,

allocate W weapons.

The expected number of quarries destroyed is

r..Wj-i S 13 2 7

K Z p(l-p) Y f f fi(r,O) rd6dr
j=l i:=l r. 0

where r. is defined to be 0.S,+1

16



III. APPLICATION

In this part we will look at some of the characteristics

of the model developed in Part II. We will do this by

examining the results computed by a FORTRAN implementation of

the Main Algorithm. The input parameters to this FORTRAN
program were set to values that might approximate those

corresponding to a nuclear barrage attack on a fleet of sub-

marines. By varying the values of some of these parameters,

we will be able to examine the sensitivity of the expected

number of submarines destroyed to these values. The values

of the parameters used in the example are purely hypothetical.

No classified information concerning the characteristics of

the detection system, weapons, or submarines has been used at
all in developing the model or preparing this note.

We are not going to do an in-depth analysis for this

example. We will present graphs illustrating tfe sensitivity

of the expected kill to only three parameters. Furthermore,

we have only plotted enough data points to draw reasonable

curves on these graphs. For any real application of the

model the number of data points calculated would, of course,

have to be chosen to insure the required accuracy.

To show the sensitivity of the expected kill to the three

parameters assume a fleet of 20 submarines are at sea and that

each vessel has a maximum speed of 6 knots. Assume also that

an attacker with a force of nuclear missiles decides to attack

the submarines. He will search for all the submarines inde-

pendently and will apply an identical effort to find and trail

each of them. At the end of 20 hours of searching he will

launch an attack with his missiles. The missiles all reach

their aimpoints 1 hour after the end of the search. Each

missile has reliability 1 and will destroy any submarine

within 6 nautical miles of its aimpoint.

17



Figure 1 plots the expected number of submarines destroyed

against the number of warheads when the expected times to find

and to lose each vessel are each 5 hours. The three curves on

the graph represent three different variances of the attacker's

locational system. For all three variances, the figure demon-

strates that the more warheads available for the attack, the

greater the expected number of vessels destroyed; it also

demonstrates that the smaller the variance of the attacker's

locational system, the higher the expected number of vessels

destroyed. Finally, one can infer from the figure that as

the number of warheads increases, the importance of the

variance of the locational system to determining the expected

kill decreases. That is, as the number of warheads increases,

the absolute difference of the expected kill for any two

variances decreases. If the three curves were continued to

the right indefinitely, they would all asymptotically approach

the same value, which is the expected number of submarines

detected within the search period. Thus, at least theoret-

ically, the attacker can always compensate for large locational

uncertainties by increasing the number of warheads.

Figure 2 presents the same data as Figure 1 except that

the ordinate is the variance of the location system. The

three curves on the graph correspond to three different

quantities of warheads. The tsymptotic walue for all three

curves as the variance increases is 0. We can infer from

the graph that as locational uncertainty of the attacker's

locatioial system decreases, the improvement in the expected

kill due to increasing the number of warheads diminishes.

One might expect that when the variance reaches 0, all three

curves would intersect. This is not necessarily true because,

dlthough there is no longer any uncertainty due to the loca-

tional system, there is still locational uncertainty due to

18



FIGURE 1

EXPECTED NUMBER OF SUBMARINES DESTROYED AS A FUNCTION OF

THE NUMBER OF WFAPONS USED IN THE ATTACK
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FIGURE 2
EXPECTED NUMBER OF SUBMARINES DESTROYED AS A FUNCTiON OF

THE VARIANCE OF THE ATTACKER'S LOCATIONAL SYSTEM
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the submarine's random movement. It is trae, however, that

if the locational variance is 0, there is a maximam number of

warheads, after which increasing that number will result in

no further improvement to the expectEd kill. If the locational

variance is greater than 0, however, the attacker can always

improve the expected kill by increasing the number of warheads.

Figure 3 )resents some very interesting and not altogether

expected resuits. Ti e iigure plots the expected number of sub-

marines destroyed agýainst the expected time to lose contact

with a vessel fcr three different values of the expected time

to make cruntact. It iF assumed the attacker's locational

system has a variance of 100 neutical miles and that he has

250 weapons to allocate to the attack. The figure shows

that the expected kill is almost independent of the attacker's

ability to maintain contact wit'i a submarine. It the attacker's

only criterion for evaluating his search system is the expected

namber of vessels it will allow him to destroy, thern it is a

waste of effort for him to improve this aspect of his search

system, as such an improvement would make virtually no

diff:.-erence on the e-pe('cted outcome of the attack. Notice,

however, that the expecued outcome is considerably more

sensitive to the attacker's ability to contact a submarine.

That i!,, although the expected time to lose a vessel is

unimportant in ,letermining the expected kill, the expected

time to 1ind x vessel is an important parameter.

in this u•x•lple, the variance of the attacker's locational

sy s 'wis chosen to be large with respect to the, submarine

sj.i-, I. Th(- di-,tance a <subinarine could be expected to move

betwuunn the time the attacker loses and reacquires contact is

smail rut1l<ti.v, to this v% riance and does n(ot contribute much

to J(-cr ua-sn-; the el fect.i veness of the attack. Therefore,

1 1.4,lre u does nct deImonsstrate an innerent- characteristic of

21



FIGURE 3
EXPECTED NUMBER OF SUBMARINES DESTROYED

AS A FUNCTION OF THE EXPECTED LENGTH OF TIME
THE ATTACKER MAINTAINS UNINTERRUPTED CONTACT
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the model, but only a characteristic of the model applied

to this particular example.
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