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MEMORANDUM
/61 LEESBURG PIKE. FALLS CHURCH, VIRGINIA 22041
TO: DDC DATE: 23 June 1977
FROM: J. W. Seelig, Managec, Strategic Divisicn
Y, -

SUBJECT: ERRATUM TO ANSER STRATEGIC DIVISION NOTE SDN 77-1

COPIES TO:

Please note the following correction to ANSER

Strategic Division Note SDN 77~1, A Model for Examining

a Search and Atftack Operation Against a Group of Moving

Quarries, which you received recently. In Figure 2,
page 20, the curves representing 250 weapons and 1,000

weapons should be interchanged.
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I. INTRODUCTION

This note presents a mathematical model of an operation
in which a pursuer attempts to lcocate and destroy a group of
quarries. The model was developed to aid in the study of the
credibility of current and forecasted threats to the survival
of a ballistic missile submarine force. The credibility of
such threats was previously examined in another ANSER work,
"A Model for Examining the Feasibility of a Nuclear Barrage

1 . .
This note, however, makes

Attack on a Submarine Force."
a more general set of assumptions about the characterist.ics
of the pursuer, the quarries, and the weaponry used to attack

the quarries.

Nothing inherent in the model limits its use to the study
of a submarine scenario. In fact, throughout this note the
nonspecific terms "pursuer" and "quarry" are used to emphasize
the generality of the model. Ary scenario that fits into the
following framework can be modeled (although one ought to
consider the validity of the model's assumptions and approxi-
mations for the particular scenario being studied). A pursuer
with imperfect searching and tracking abilities searches for a
predetermined length of time for a group of quarries, each
quarry moving in a region distinct from that of any other
gquarry. Different searching and tracking characteristics may
be specified for each quarry; however, these characteristics
remain fixed for each quarry throughout the search. At the
end of the search, the pursuer allocates his weapons to maximiz
the expected number of quarries to be destroyed and launches
the attack. Using a combination of analytic, numerical, and
Monte Carlc methods, the model (currently implemented through
a FORTRAN program) calculates the expected number and the

variance of the number of quarries destroyed.




The first part of this note defines the model and explains
the basic assumptions. I+ then develops the mathematical
relationships between the effectiveness of the attack on the
guarries and the values of the parameters that drive the
model. Initially, it considers only a single-gquarry operation.
The results obtained for the single-quarry case are then
applied to solve the multiple-quarry case. The second part of
this note demonstrates how the model can be used to study the
vulnerability of a group of quarries as a function of the
parameters of the mcdel. Specifically, it presents an example
in which a submarine force is threatened by a nuclear barrage
attack. By varying the model's parameters, it examines the
sensitivity to these parameters of the expected number of
submarines destroyed. The example is not meant to be exhaus-

tive or necessarily realistic, only instructive.

s
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IT. MODEL

A. Eingle-Quarry Operation

Assume a single quarry moves with maximum speed s on an
unbounded plane. Suppose a pursuer will carry out an
operation to locate and destroy this quarry. The operation
wil) consist ot a search, which will last exactly T hours,
followed by an attack. During the searct, he may detect and
lose the quarry one or more times, or he may not detect the
quarry at all. When the pursuer has no contact with the
quarry, the probability of making contact during any time
interval within the search period will be a function solely
of the length t of the interval. Denote this prokability by
R, (t). When the pursuer has contact with the quarry, the
probability of losing contact during any time interval wi%hin
the search period will also be a function solely of the

length t of that interval. Denote this probability by R {t).

Whenever the pursuer has contact with the guarry, the
error distribution of his knowledge of the guarrv's true
position will be bivariate gaussian with covariance matrix
vl, where v is a scalar and I is the identity matrix. There-
tore, the probability density function of the random vector U
that gives the vector difference (AX,AY) between the tiue
location of the quarry and the location determined by the

pursuer is

. 1 AX2 4+ py?
h(AX,4Y) = v €XP <— 45————£X—> .
2v

At the conclusion of the search, the pursuer may or may not
have contact with the quarry. 1In either case, if t denntes
the number of hours between the last contact and the end of

the search (assuming contact was made at least once during

Ly




the search), then the probability distributinon of the guarry's
final location from his location t hours before will be uniform
within a disc of radius st. That is, the probability density
function of the random vector V that gives the vector differ-
ence (AX,AY) between the guarry's final true position and his

true position when the pursuer last lost contact Is

1/2
——5——2 for (AX?® + Av?) < st
0 for (AX? + AY2)1/2 > gt .

FPirst we will derive an expression for F(t), the cumula-
tive distribution function of the random variable Z whose
value is either the time of the last contact with the quarry
during the search or -« if contact was never made. If
temporarily we let T = «, then Rl(t) can be viewed as the
cumulative distribution function of the random variable X
whose value gives the time between the beginning of the search
and the pursuer's first contact with the quarry. Notice that

Rl(t) satisfies

1 - Rl(t+n) = [l - Rl(t)][l - Rl(h)] t,h > 0

because the probakility of not finding the gquarry within t+h
hours equals the probability of not finding the quarry within
t hours times the probability of not finding the quarry within
h hours. It is well known2 that any cumulative distribution

function that satisfies this equation must be of the form
Rx(t) = 1 - exp{~- t/L)

where L is the expected value of X; that is, L 1s the
expected time until contact with the guarry is first made.
Now remove the restriction that T = ~, Then R](t) takes the

form




1 - exp (- t/L) for te[0,T]

S

R, (t) = )
~undefined otherwise .

A similar argument applied to Kk, (t) would show

\ 1l - exp (= t/M) for te[0,T]

undefined otherwise ,

where M is the expected length of time contact is continuously

maintained with the quarry.

For nonnegative t < T, let P(%) be the probability that
the pursuer will have contact with the quarry «t time t, given
he had no contact at time 0. Also, define S(t) to be the
probability that the pursuer will make contact with the quarry
befsre time t and thereafter not lose contact at leust until
time t, given he had no contact at time 0. We have

immediately
Rl(t) > P(t) > S(t) > 0 . {1.1)

Notice that s(t) satisfies
t

s(t) = [ [1 = R, (t=x) R (x)dx . (1.2)
0

Since R1(0> = 0, (l.1) implies

S{0) = P(0) = Rx(O) =0 . (1.3)

nifferentiating (1.2) and evaluating the derivative at 0

yields

S'(G) = R;(O) = 1/L . r1.4)

o autall PR




Eguations (1.1), (1.3), and (l1.4) imply

P(0) = R (0) = 0 (1.5)
and
P'(0) = R;(O) = 1/L . (1.6)

Similarly, if we define Po(t) to be the probability that the
pursuer will not have contact with the quarry at time t,

given he had coatact at time 0, then

p.(0) = R _(0) =0 (1.7)

and

B'(0) = R (0) = 1/M . (1.8)
For any real h such that 0 < h £ |T-t| ,
P(t+h) = P(t) [1 - Po(h)] + [1 - P{t)]P(h) .
Rearranging terms and dividing by h gives

P(t+h) = P(t) P(h) - P(t) [P(h) + Po(h)]

h h

Also, if 0 < h < t

P(t-h) - P(t) P(h) - P(t-h)[P(h) + Po(h)]

- h h
The limits as h + 0 of both these equations are equal, and

thus the derivative of P(t) exists and equals

' (t) P (0) - P(t)[P'(0) + pé(O)]

il

1

-/L = P(t) (1/L + 1/M)

The solution to this differential equation satisfying

P(0) = C 1is




. M Lo+ \
P(t) = ——— | 1 - exp <~ =+t M E) .
L + M| LM
When necessary, to avoid ambiguity, we will write P for P.

L,M
Now let Q(t,,t,) be the probability that the pursuer will

not have ccntact with the quarry in the time interval (tyrty).

Then
Qltgsty) = 11 = PP (€)1[1 = Py (&, = t)]
-t -ty to t
L-exp & T, > + M-exp (— T 77)
= . (1.9)
L+ M

Define the function F(t) from the real numbers to the closed

uait interval as fcllows:

\Q\O,T) " for t < 0
F(t) = Q(&,T) for tr (0,T] (1.10)

1 for £t > T .

Then the prokability that the last contact with the quarry
before the end of the search takes place in the interval
(tl’tz) 1s F(t,) - F(tl), and the probability of never
contacting the quarry is F(0). Therefore F(t) is the cumula-
tive distribution function of the random variable Z, which 1is

what we 1ntended to derive.

Next we will derive the probabitity density function of
the random vector W, which gives the vector difference between
the location of the quarry at time T and the position determined
by the pursuer at the time of the last contact. Assume the
pursuer makes contact with the quarry at least once during the
search, and let t denote the time elavsed between the last

contact and the end of the search. Ther the probability density




function ft of W is just the convolution of h and 9. because

W is the sum of the two independent random vectors U and V,

and the prohability density function of the sum of two inde-
pendent random vectors is just the convolution of their
probability density functions. Before deriving an expression
for this convolution, first notice that if (r,9) and (r',8')
are two vectors expressed in polar coordinates, then the length

of their vector difference (r,8) - (r',8') is

(r?2 + r'? - 2rr' cos (6-8')]11/2

The convolution h*gt in polar coordinates is then

ft(R.e) = h*gt(R,B)
o 2T
= [ [ n(,8)g, [(R,8) - (r,y)lrdydr
0 o t
st 27 B 2 2
1 1 r° + R - 2rR cos(y-0)
= 3 é é sty 2 exp l— 5o }rdydr
st 27 - : 2
_ 1 r< + R - 2rR cos(y) .
T 2m2v(st)? é [ exp [" v }rd(dr .
J

{1.11)

This is as far as the model for the single-quarry operation
will be developed. The two functions ft(R,ﬂ) and F(t) are both
needed for the m.. .iple~quarry analysis, and, in fact, the
purpose for studying the single-~quarry case was specifically
to derive expressions for them. In the next section, multiple-
quarry searches will be decomposed into a number of simul
taneous singlz-quarry searches, and the functions ft and F

will be aprlied to each search independently.

P T



B. Multiple-Quarry Operation

Assume N quarries move on N unbounded euclidean planes
with maximum speed s, one guarry to each plane. Assume also
that no gquarry has information about events outside his own
plane. Suppose a pursuer will carry out N independent
operations to locate each of the quarries. All of the
operations will begin simultaneously and last for exactly
T hours. At the end of the search, the pursuer will allocate
his weapons against the N quarries and launch a simultaneous
attack. His goal for the allocation will be to maximize the

expected number of gquarries destroved.

We will assume that whenever the pursuer does not have
contact with a gquarry, the probability of detecting that
quarry within any time interval will be a function of both
the length of the interval and of the particular quarry
involved. Denote the expacted time to locate the ith quarry
by L. Similarly, whenever the pursuer has contact with a
quarry, the probability of losing contact within any time
interval will be a function of both the length of that
interval and the guarry involved. Denote the expected time
to lose contact with the ith quarry by M;. In the single-
quarry analysis, we derived the expression (1.10) for F(t),
the cumulative distribution function of the last time the
pursuer had contact with the quarry during the search. F{t)
is expressed in (1.10) in terms of the function Q(tl,tz),
which in turn is expressed in (1.9) in terms of L and M,
the expected times to find and to lose the guarry. Since
we now have N different quarries, each associated with
different values of L and M, we need N different cumulative
distribution functions, one for each quarry. W will denote
the cumulative distribution function for the ith quarry by
Fi(t)' Then, if we substitute Li and Mi for I. and M in (1.9),
Fi(t) equals the right side of (1.10).

9
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As in the single-quarry case, when the pursuer has

contact with a quarry, the error distribution of his knowledge
of that quarry's true position will be bivariate gaussian with
covariance matrix vI. Also, if t denotes the number of hours
between the last contact with a given guarry and the end of
the search, then the probability distribution of that gquarry's
final position and his location at the time of last contact
will be uniform within a disc of radius st. Therefore, the
expression derived for ft(R,G) applies unchanged rfor each of

the gquarries.

Up to this point we have considered only the search phase
of the pursuer's operation. After the search is concluded,
however, ihe pursuer is still faced with the problem of
allocating his weapons to maximize the expected number of
guarries destroyed. Initially, we will assume that the
pursuer’s weapons are perfect in the sense that each weapon
detonates exactly at its aimpoint and has probability 1 of
killing a guarry within a radius k of its aimpoint and
probability 0 elsewhere. We will also assume that the
weapons detonate exactly at the conclusion of the search;
that is, the times tn allocate and to deliver the weapons
are 0. Later, we will relax some of these restrictions.

We will not attempt to develop a scheme for computiag an
exact maximal allocation, but instead we will develop a
method of constructing a "good" allocation and an upper
bound on how far the allocation is from the theoretical

maximum,

Assume the pursuer has W weapons and that the kill radius
for each weaipon 1ig k. We may as well assume that he contacts
at least one quarry during the search, otherwise the expected
kill will be 0 irrespective of the allocation used. Suppose
he contacts the ith quarry. Denote the time between the last

10




contact with this quarry and the end of the search by ti'
Then fti(R,G) [defined by (1.11)] is the probability density
function describing the vector difference between the ith
guarry's true position at the end of the search and the
positiop determined by the pursuer at the time of his last
contact with the quarry. fti is independent of 6 and is
monotonically decreasing in R. If we were to allocate a,
weapons against this guarry, then a straightforward but some-
what technical Lebesgue measure theoretic argument (which we
omit) would yield an upper bound on the probability of

destroying the guarry of

{ ] £, (x,0)r asar (2.1)
D i

where D is the disc of radius k/gi centered at the pursuer's
estimate of the quarry's position at the time of the last
detection. Notic2 that the area of D is just the total area
that would be attacked by all the weapons if there were no
overlap ol thelr regions of coverage. Since it is impossible
to cover a disc with smaller discs without overlap, (2.1)

gives an unattairable uapper bound.

In order to find a "good" attainable allocation, we need
to look at the problem of covering a disc with smaller discs.
Consider the covering that places the smaller discs in a
regular hexagonal array within the larger disc so as to
maximize the radius of the largest disc that can be covered
by the pattern. We will call this pattern the hexagonal
allocation. The pattern is illustrated by the diagram on the
following page. It is easy to show that any covering disc
that does notr intersect the boundary of the larger disc loses
1 -3 V/3/21 of its area to overlap. For a covering disc that
does intersect the boundary, the fracticn of its area lost to

overlap is not so easily determined. Fortunately, as the

11
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ratio »f the radius of the larger disc to that of the smaller
discs increases, the fraction of covering discs intersecting
the boundary approaches 0. If this ratio is large enough, we
can ignore these "edge effects" and approximate the number of

discs needed to cover the larger disc by

(A/a)/(3V/3/2m) = 1.21(A/a) , (2.2)

where A is the ares of the larger disc and a is the area of

each covering disc.

Returning to the weapon allocation problem, if we accept
the approximation (2.2) (which we will), then the hexagonal
allcration using 1.21 &; weapons will achieve at least as
high a prcbability of kill as can be achieved with a; weapons
using the theoretically optimal allocation. Notice that
because fy (R,08) is monotonically decreasing in R, if we
remove 0.2i aj of the 1l.21 a; discs farthest from the center
of the ailocation, we will have a probability of kill greater
than 0.82 of that achieved by the theoretically best alloca-

tion of aj weapons. But, because we are igrnoring "edge




effects," and because the hexagonal allocation maximizes the
radius of the largest disc that can be covered with a
hexagonal array, we can achieve at least as high a probability
of kill by using the hexagonal allocation for a, weapons.

Now assume that at the end of the search, S gquarries have
been detected at least once; there is no loss of generality
in labeling these quarries 1,2,.-.,S. For each j = 1,2,-+-,S,
define

fj(r,e) = ftj(r,e) .

Again, assume we will allocate a, weapons against quarry i.

Then we want to find a,r°t,ags which maximizes

S
S k/gi 2T
5 f [ E£,(r,8)r dsar , (2.3)
1=1 0 0
satisfying
a; 2 0 1 =1,---,8
and
s
T oa, =w .
i=1 %
By Gibbs' Lemma3 the solution ajrcetag satisfies
fi(k/éi,O) = do if fi(O,e) > do
a, = 0 if fi(O,e) < do

for some do >0 .

The maximum value of (2.3) is an upper bound on the
expected kill for any allocation. By allocating a; weapons
hexagonally to quarry 1, we can achieve an expected kill

greater than 0.82 of this upper bound.

We have brought the mathematical development of the model

to the point where we can state the algorithm to which we

13
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referred in the introduction, that is, an algorithm to compute
the expected number of quarries destroyed as a function of the
input variables. First, however, we will present a preliminary
algorithm that will be used in the statement of the Main
Algorithm. Assume the search phase of the operation is
complete: let k, W, N, S, and t1"'°’tN be defined as before.
The following procedure will compute a weapon allocation that
is at least 82 percent of optimal and will calculate the
expected number of quarries destroyed (again, we are ignoring

edge effects of the allocation).

ALGORITHM A

2, For i=1,2,+-+,5, find r. such that

It

fi(ri,e) DN .

I
o
.

If no such r, exists, set r.
= 1 2
Set Bi 1.2L(ri/k) .

Set B= B, + B, + -+ + B

1 S

3. If B = W (within the desired accuracy), go to Step 7.
4, If B< W, go to Step 6.

5. Set MN = DN .
Set DN 0.5 (DN + MX) .
Go to Step 2.

il

6. Set MX DN .
Set DN 0.5 (DN + MN) .
Go to Step Z.

7. Allocate Bi weapons to quarry i using the hexagonal

allocation. The expected number of quarries destroyed is

14



2
f £ (x,06) rdgdr .
0 *

8. STOP.

The Main Algorithm, which we state below, is a Monte
Carlo procedure that repeatedly applies Algorithm A to sets
1,- .'tN
butions Fl(t),---,FN(t). We state the algorithm in a
general manner and leave out such details as stopping rules,

of times t that are chosen according to the distri-

methods of generating random variates, etc.
MAIN ALGORITHM
1. Set EK = 0, EKSQ = 0, KOUNT = 0 .

2. Obtain N random numbers bi,i = 1,--+-,N from a population
uniformly distributed in [0,1]. Set t, = T - Fi—l(bi) )

3. Apply Algorithm A to obtain K.
Set EK = EK + K, EKSQ = EKSQ + Kz, KOUNT = KOQUNT + 1 .

4. Apply the stopping rule; if we are not finished, go to
Step 2.

5. The expected number of quarries destroyed is
E = EK/KOUNT .
The variance of the number of quarries destroyed is
V = EKSQ/KOUNT - E? .
6. STOP.
C. Notes

a. In the development of the Main Algorithm, we assumed the
weapon delivery times were 0. The algorithm is easily modified

to accommodate the case where these times are greater than 0.

15




. e et T A P A SR T AT AN RN .2

If dz""'dN are the delay times between the end of the
search and the arrival of the weapons for guarries 1,...,N,
respectively, then insert Step 2.5 into the algorithm, which

adds di to ti for each 1i.

b. If the weapon reliability p is less than unity, the alloca-
tion obtained by Algorithm A will not necessarily be "near
optimal." The approach we used to obtain the algorithm,
however, generalizes in a straightforward manner to include
weapons with reliability less than 1. Algorithm A can be
modified to handle such weapons by replacing Steps 2 and 7

with the tollowing steps.

2', For i =1,2,+++,% and j =1,2,+++,W, find rij such that

wpy -1 = DN
p(l-p) fi(rij,e) DN .

If no such r,. exists, set r,. = 0, Set
13 17

| 1%

rr. \2
B, = 1.21 = (-il>
1 1

J

Set B = B1 + B, + e 4+ BS .

7'. Allocate Bi weapons to quarry 1 as follows. Find the aim-
points computed by the hexagonal allocation for l.21(r1.1/K)2
weapons. Then for each aimpoint whcse distance from the origin

is greater than or equal to ry and less than fi j(l < J < Wy,
4

13+
allocate j weapons. For each aimpoint between 0 and r,..,

allccate W weapons.

The expected number of gquarries destroyed is

I,

W .1 S ij 2m
K= £ p(l-p)’ 5 i [ £,(x,8) rdéar ,
j=1 i=1 ri,j+l 4]
where ri,W+l is defined to be 0.

16

ik o b M L st sl N < i i FETT R TR ik, 5
RO USRI TSNS ;G




ITI. APPLICATION

In this part we will look at some of the characteristics
of the model developed in Part II. We will do this by
examining the results computed by a FORTRAN implementation of
the Main Algorithm. The input parameters to this FORTRAN
program were set to values that might approximate those
corresponding to a nuclear barrage attack on a fleet of sub-
marines. By varying the values of some of these parameters,
we will be able to examine the sensitivity of the expected
number of submarines destroyed to these values. The values
of the parameters used in the example are purely hypothetical.
No classified information concerning the characteristics of
the detection system, weapons, or submarines has been used at

all in developing the model or preparing this note.

We are not going to do an in~depth analysis for this
example. We will present graphs illustrating the sensitivity
of the expected kill to only three parameters. rurthermore,
we have only plotted enough data points to draw rcasonable
curves on these graphs. For any real application of the
model the number of data points calculated would, of course,

have to be chosen to insure the required accuracy.

To show the sensitivity of the expected kill to the three
pareameters assume a fleet of 20 submarines are at sea and that
each vessel has a maximum speed of 6 knots. Assume also that
an attacker with a force of nuclear missiles decides to attack
the submarines. He will search for all the submarines inde-
pendently and will apply an identical effort to find and trail
each of them. At the end of 20 hours of searching he will
launch an attack with his missiles. The missiles all reach
their aimpoints 1 hour after the end of the search. Each
missile has reliability 1 and will destroy any submarine

within 6 nautical miles of its aimpoint.
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Figure 1 plots the expected number of submarines descroyed
against the number of warheads when the expected times to find
and to lose each vessel are each 5 hours. The three curves on
the graph represent three different variances of the attacker's
locational system., For all three variances, the figure demon-
strates that the mcre warheads available for the attack, the
greater the expected number of vessels destroyed; it also
demonstrates that the smaller the variance of the attacker's
locational system, the higher the expected number cf vessels
destroyed. Finally, one can infer from the figure that as
the number of warheads increases, the importance of the
variance of the locational system to determining the expected
kill decreases. That is, as the number of warheads increases,
the absolute difference of “he expected kill for any twe
variances decreases. If the three curves were continued to
the right indefinitely, they would all asymptotically approach
the same value, which is the expected number of submarines
detected within the search period. Thus, at least theoret-
ically, the attacker can always compensate for large locational

uncertainties by increasing the number of warheads.

Figure 2 presents the same data as Figure 1 except that
the ordinate is the variance o©of the location system. The
three curves on the graph correspond to three different
quantities of warheads. The csymptotic value for all three
curves as the variance increases is 0. We can infer from
the graph that as locaticnal uncertainty of the attacker's
locaticnal system decreases, the improvement in the expected
kill due to increasing the number of warheads diminishes.
One might expect that when the variance reaches (0, all three
curves would intersect. This is not necessarily true because,
although there is no longer any uncertainty due to the loca-

tional system, there is still locational uncertainty due to

18

s anii . U TRE

ORI NN



TR

FIGURE 1
EXPECTED NUMBER OF SUBMARINES DESTROYED AS A FUNCTION OF
THE NUMBER OF WEAPONS USED IN THE ATTACK
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FIGURE 2

EXPECTED NUMBER GF SUBMARINES DESTROYED AS A FUNCTION OF
THE VARIANCE OF THE ATTACKER'S LOCATIONAL SYSTEM
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the submarine's random movement. It is true, however, that

if the locational variance is 0, there is a maximam number of
warheads, after which increasing that number will result in

no further improvement to the expected kill. If the locational
variance 1s greater than 0, however, the attacker can alwavs

improve the expected kill by increasing the number of warheads.

Figure 2 presents some very interesting and not altogether
expected results, Tie tigure plots the expected number of sub-
marines destroyed agalnst the expected time to lose contact
with a vessel fcr three different valums of the expected time
to make contact. "t 1is assumed the attacker's locational
system has a variance of 100 neutical miles and that he has
250 weapons to allocate to the attack. The figure shows
that the expected kill is almost independent of the attacker's
ability to maintain contact with a submarine. If *he attacker’s
only criterion for evaluating his search system 1s the expected
namber of vessels 1t will allow him to destroy, then it is a
waste of effort for him to i1mprove this aspect ¢f his search
system, as such an improvement would make virtually no
difference on the expected outcome of the attack. Notice,
however, that the expecced outcome is considerably more
sensitive to the attacker's ability to contact a submarine.
That 15, although the expected time to lose a vessel 1is
unimportant 1n determining the expected kill, the expected

time to tind a4 vessel 1s an important parameter.

In this exanple, the variance of the attacker's locational
system was chosen to be large with respect te the submarine
spetd. The distance a submarine could be expected to move
betveen the time the attacker loses and reacgquires contact is
small relat:ive to this veariance and does nor contribute much
to Jdecreas.ng the etfectiveaess of the attack. Therefore,

Frgure 3 does not demenstrate an innerent characteristic of
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Expected Number of Submarines Destroyed

FIGURE 3
EXPECTED NUMBER OF SUBMARINES DESTROYED
AS A FUNCTION OF THE EXPECTED LENGTH OF TIME
THE ATTACKER MAINTAINS UNINTERRUPTED CONTACT
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the model, but only a characteristic of the model applied

to this particular example.
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