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ABSTRACT"

This is a report of the work performed by the General Research
Corporation during the Advanced Software Quality Assurance contract.

Research was conducted in four major areas:
1. Assertions, verification conditions and consistency proof

2. Design of an executable assertion language and the

development of a preprocessor to implement this language

3. Development of a Software Quality Laboratory
4. Evaluation of existing languages as applied to BMD software
problems

This report gives a methodology for verifying software. The preprocessors
which allow assertions to be placed in FORTRAN and PASCAL programs are
described. The static analyses developed as part of the Software Quality
Laboratory are also described'and examples are given of their use. The

Concurrent PASCAL programming language is applied to a generic model of a

BMD software system.
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1 INTRODUCTION

In the current contract, GRC's work in advanced quality assurance
was concentrated on developing a capability for the formal verification
of large real-time systems. It was found in the course of this work
that some techniques useful in the formal verification process are also
applicable to the problem of detecting errors arising from erroneous
sensor data or hardware failures. In addition, languages that appear to

promise higher software quality were evaluated.

1.1  BACKGROUND

This effort was an outgrowth of an initial study, the Reliable
Software Study,l’2 which suggested a number of techniques that could lead
to improved software. Emphasis has been placed on techniques that ori-
ginated with Floyd,3’4 were shown to be useful by King,5 and further
developed by others.6-9 Specific costly errors, such as those described
by Osterweil and Fosdicklo and in a study by Logicon,11 were also

addressed.

Since the effort was directed towards the verification of real-time
programs, it was decided that the target languages should be 'real." By
real, it is meant that a compiler exists for the language such that a
program written in it can execute normally on a machine. This is a strong
criterion that most others have not chosen to meet. The target languages
were FORTRAN and PASCAL. As far as the techniques are concerned, their
analysis appears very similar, requiring only separate front ends. Fach
of the languages has a dialect--IFTRAN for FORTRAN and Verifiable PASCAL
for PASCAL. Preprocessors were developed to generate standard FORTRAN
from IFTRAN and standard PASCAL12 from Verifiable PASCAL. The resulting
programs execute on computers such as the CDC 6400 and CDC 7600 which

have standard compilers.

The system that actually performs the analysis was built using
IFTRAN.
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1.2  ACCOMPLISHMENTS

GRC's work has resulted in the establishment of the Software Quality
Laboratory. This facility contains tools which can be used to detect
common semantic errors, assist in testing, formally verify computer

programs, and provide for fault tolerance.

The facility has been designed to analyze both FORTRAN and PASCAL.
Extensions to both these languages have been designed and implemented so

that common errors can be detected and formal verification is possible.

The languages with their extensions have been translated into exe-
cutable code. The redundancy preseat in the executable extensions provides
for the detection of errors during program execution. This capability will

be used in future work in fault tolerance.

Since one of the goals of this work has been to apply formal verifi-
catior. to practical programs, verification condition generators were ~
implemented for both languages. The generators handle logical, fixed
point, character, and floating-point data types. Multidimension arrays
are presently handled and PASC\L records will be handled in the near

future.

The verification process divides programs into very small segments
each of which 1s verified independently of all other parts. Each verifi-
cation condition is tightly coupled to the code segment with which it is
associated. Both the code segment and the verification condition can be

listed on a printer and/or displayed on an interactive terminal.

A simplifier which contains many standard simplification rules can

be invoked to cause automatic simplification of verification conditionms.

Rules which are not in the simplifier can be applied to individual

verification conditions. These rules can be text replacement rules or




pattern matching rules. They can be applied only once or saved as an

axiom to be used again.

We have also looked at the classes of concurrency present in a
BMD system and at the possibility of using Co' ~urrent PASCAL as a
language for a BMD software system. The advantages and disadvantages

of Concurrent PASCAL for this application have been noted.

1.3 REPORT ORGANIZATION

Section 2 outlines how to prepare software for verification. It
contains an overall description of the Software Quality Laboratory, with
some examples of how the various parts can be used to validate software.
It also contains a set of recommendations for the development of quality

software. These have resulted from our experience with the techniques

discussed in this report.

Section 3 describes the language extensions that were made to FORTRAN
}r and PASCAL so that the software written in those languages could be
verified. Section 3 emphasizes the translation of the extensions into
executable céde. These same languages are the ones for which the static

analysis tools and formal verification techniques a:e available.

Section 4 describes techniques that can be used to remove errors
before a complete verification can be completed. These techniques could
be implemented in a super-compiler. However, they were implemented in a
separate process which allowed this work not to duplicate the compiler,
allowed the assumption that syntax errors had been rewoved, and provided

data which was used later in the formal verification process.

Section 5 shows how quality can be improved in the testing process
through the use of coverage tests and executable assertions. Also included
is a discussion as to how the executable assertions can be used to derive

loop invariants and to detect faults at execution time.
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Section 6 is concerned with the formal verification process. Once
software has been shown to be free of syntax and major categories of
semantic errors using the techniques described in previous sections, it
is ready for formal verification. This section describes the process of
verification from the design and implementation of the verification

condition generator and simplifier to examples of validated programs.

Section 7 discusses the possible application of Concurrent PASCAL
to a large software system. The advantages of and disadvantages of
Concurrent PASCAL are demonstrated with an example of its application to
a real-time simulation program. The types of concurrency which are
present in a BMD system are presented, and assertions for such programs

are given,

Appendixes are provided to describe the formal grammar of Verifiable

PASCAL (Appendix A), the translation templates for the generation of
PASCAL from Verifiable PASCAL (Appendix B), the translation templates
for the generation of FORTRAN from IFTRAN with assertions (Appendix C),

and the formal verification of sample programs (Apnendix D).
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2 METHODOLOGY FOR VERIFICATION

As the Software Quality Laboratory evolved, it became obvious that
it was not possible to verify software that had not been written with
verification in mind. This section outlines how software can be prepared
for the verification process, shows what can be accomplished through
several stages uf verification, and how the tools available for proofs of
correctness can be used to provide designed-in quality. Thé various

steps in this verification procedure are shown in Fig. 2.1.

2l RECOMMENDATIONS
Based upon GRC's experience to date in the development and use of
the Software Quality Laboratory, the following recommendations, which

should lead to higher quality software, are made:

1. Use small modules. Designs that use small modules with as

few global variables and paths as possible will aid the

verification process.

2. State data access rights. Every global variable should be

declared either an input, output, or both.

3, Limit variable rights. When computationally feasible, keep

inputs separate from outputs.
4. State units. Every variable should have its units declared.

5. State ranges. Every variable should have its range of values

declared at module entry and exit.

6. State invariants. When a relation between variables is known

to be always true, declare that relation. Try to design
algorithms that lend themselves to relations that are always

true rather than almost always true.

(it Place constraints on results. Every output variable should be

bound as closely as possible to an expression in terms of the

input variables.
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8. Use tools to eliminate errors.

a. Use static analysis tools to eliminate unreasonable

errors before testing single modules.

b. Make sure the execution test step checks each combination

of paths in a module before integration.

c. Use static analysis tools to check module interfaces

before testing modules together.
d. Turn on executable assertions during execution test.

9. Perform formal verification. Use assertions developed during

testing for formal verification.

2.2  VERIFICATION WITHOUT REDUNDANCY

The key characteristic of verifiable software is redundant informa-
tion that is provided to allow a checking process between the redundant
information and the softwar: itself. This is not unlike the systems used
in accounting which use double entries to provide a check. If there is
no redundant 1nformation, there is little that can be done to verify the
software. What is normally done instead is to run a set of test cases
for which answers are known. Unfortunately, the testing approach cannot
hope to completely verify large programs for there are far too many
possible combinations of paths through them and too many possible combina-
tions of variables to ever test all paths with all values. Since existing
systems have not been built with verifiable software, we have the situation
in large existing programs where 547 of the errors are found after accept-
ance test and 507 of the life cycle cost has been assigned to the time
period following acceptance tests.13 This time period, which is often
named the "maintenance" phase of the project, does not "maintain" the
software in its delivered state, but in fact tries to fix the errors that

are found after the software should be error-free.




There are a few valuable checks that can be made without redundant
information. The only check currently in use by most developers of large
systems is the syntax check which checks that every statement in the pro-
gram satisfies the rules of the programming language used. Statements
that do not satisfy the rules are designated as being in error, and
presented, along with the program listing, in a report known as the
diagnostic report. It is assumed that the programmer will correct these
problems before proceeding. As a result, most large systems today pre-
vent the programmer from testing a program before removing the syntax
errors. Since syntax errors are so easy to detect at an early stage in
the program development, they are not regarded as serious or costly. The
Software Quality Laboratory has taken the approach that other errors (due
to an unreasonable sequence of statements) should also be reported to the
programmer. This would be done in a fashion similar to the diagnostics
report so that these simple (but often costly) errors can be removed at
the same time as the syntax errors and with as little effort. The main
difference between the syntax errors detected by a language processor and
the simple, unreasonable errors found by the Software Quality Laboratory

is that a sequence of statements must be examined rather than a single

statement. These errors are then reported in terms of the groups of

statements that could have caused the error, rather than a single statement.

The unreasonable errors that do not require redundant information
are the set/use errors, mode errors, infinite loop errors, external
reference errors, and unreachable code errors. The method of detecting
and reporting each of these errors is fully described in Sec. 4. This
section briefly introduces the analysis that is performed by means of
examples. The unreasonable errors are removed in the step shown in
Fig. 2.1 labeled STATIC ANALYSIS. This step is done after the syntax

analysis.




§4 i 2.2.1 Set/Use Errors
Two types of set/use errors are detected. One of the most common
is use of a variable before it is set. This is usually due to forgetting
to initialize the variable. The other is that the variable is set, but
is not used. This last error is often due to a misspelling of the

variable. This brief program demonstrates some common set/use errors in

IFTRAN and PASCAL.

SUBROUTINE AVER(A, N, ANS) PROCEDURE aver (VAR a : ARRAY[l..n] OF real;
INTEGER N, I, J VAR ans : real);
REAL A(1), ANS, SUM VAR i, j : integer;
J=1 sum : real;
WHILE (I .LE. N) BEGIN
SUM = SUM + A(I) ji=1;
I=1+1 WHILE 1 <= n DO
END WHILE sum := sum + af[i];
ANS = SUM/FLOAT (N) i =1+ 1
RETURN END WHILE;
z END ans := sum/n
: END;
IFTRAN Set/Use Errors V-PASCAL Set/Use Errors

The program shows three set/use errors that will be detected by the
Software Quality LaBoratory. The variables I and SUM are not initialized,
although they are used in a WHILE loop, and the variabie J is set but not

used.

2.2.2 Mode Errors
If we had the statement

ANS = SUM/N
rather than

ANS = SUM/FLOAT (N)
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a mode warning would be produced as well, since real and integer variables
should not appear in the same expression. This error is more important

in the multi-mecdule case where one routine interfaces with another, as in

these programs.

PROGRAM STAT (INPUT, OUTPUT) PROGRAM stat (input, output);
INTEGER DATA(10), 1, M, N CONS n = 10;
READER = 5 VAR data : ARRAY[1l..n] OF integer;
PRIN = 6 ‘ result : real;
N =10 i, m : integer;
READ (READER, 1) (DATA(1), I = 1, 10) (*PROCEDURE aver goes here*)
Al FORMAT(15) BEGIN
CALL AVER(DATA, N, RESULT) FOR 1 := 1 TO n DO
WRITE(PRIN, 2) RESULT read (input, data[i])
2 FORMAT (F6.2) END FOR;
STOP aver(data, result);
END write(output, result)
END.

V-PASCAL Multi-Module Mode

IFTRAN Multi-Module Mode Error B Eor

The program STAT invokes AVER to calculate the average of ten data
values. Unfortunately, AVER expects that the data is real while STAT
provides integer data. The result, of course, would be erroneous if the

program were ever executed.

One can argue that some modern compilers, notably PASCAL, provide
this facility for mode checking. To do so they require that every module
be compiled together. As a result, a program with 105 lines of code has
not been written using such languages. The static analysis facility is
concerned with the analysis of systems with very large programs (e.g.,
106 lines of code), hence it was believed important to provide checking

of external modules after syntax errors had been removed.

10




2.2.3 External Reference Errors

Another costly error which is detectable without redundant informa-
tion is the misuse of external routines with the incorrect number of

parameters. If, for example, the IFTRAN CALL statement had been
CALL AVER (DATA, N, RESULT, FLAG)

or the V-PASCAL statement had been
aver (data, result, flag);

the error report would have indicated that the external routine did not

have the same number of parameters.

2.2.4 Infinite Loop Errors

Infinite loops often result because on one path the control variable
to exit the loop was not modified. If this is the case, an error report

listing the problem loop is given, as shown below.

-
WHILE (M .LT. N) WHILE m < n DO
I=(M+N)/2 i := (m + n) DIV 2;
IF (X .LT. A(I)) IF x < a[i] THEN
N=1 : n:=1I
ORIF (X .GT. A(I)) ORIF x > a[i] THEN
M=1 m:=1I
ELSE ELSE
LOOKUP = I lookup := 1
ENDIF ENDIF
END WHILE END WHILE

IFTRAN Infinite Loop Error V-PASCAL Infinite Loop Error

Once entered, the above loop would not exit if X is equal to some

element in the array A between A(M) and A(N) since neither M nor N is

modified once that element is found. P




2.2.5 Unreachable Code Errors

Another costly error is unreachable code. This 1s costly because

the expense of designing, preparing, and storing the code could have been

avoided if it is not needed. On the other hand, if it is meant to exe-

cute under some circumstances, then the fact that it cannot be reached is
an error. Structurally unreachable code is most common in large unstruc-
tured programs with unconditional transfers. In the example shown below,

statement 300 is unreachable.

REAL FUNCTION DISCR(A, B, C) FUNCTION discr (a, b, ¢ : real) : real;
REAL A, B, C, D 1ABEL 100, 200, 300, 400;
D = AX%2 - 4 (*B*C VAR d : real;
IF (D .LT. 0.0 BEGIN
GO TO 100 d := a*a - 4,0%b*c;
ELSE IF d < 0.0 THEN
GO TO 200 GOTO 100
END IF ELSE
' 300 DISCR = 0.0 GOTO 200 .
GO TO 400 END IF;
100 DISCR = -D 300: discr := 0.0; }
GO TO 400 GOTO 400;
200 DISCR = D 100: discr := -d;
400 RETURN GOTO 400;
) END 200: discr := d
400: END;
IFTRAN Unreachable Code V-PASCAL Unreachable Code

2.3  VERIFICATION WITH REDUNDANCY

s

While the preceding errors can be found without the need for redun-
dant information, the errors most difficult to find require additional
information specifically for program verification. The elements of this
information are known collectively as assertions. Every assertion added

to a program allows checks to be performed that can eliminate difficult-

e
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Some are rela-

There are several forms of assertions.

to-find errors.
tively easy to state and are merely the concrete expression of a designer's

Some are more difficult to state because

normal thoughts about a program.
|
designers do not normally take into account all the possible values that a

Finally, some are very difficult to state because

variable can take on.
they require a statement of the assumptions upon which a design is based.

Primarily because some assertions are more difficult to state than

others, the Software Quality Laboratory is able to accept a partially
This is similar to

asserted program and use these to detect some errors.

the early detection of hardware errors where, due to the difficulty of a

complete check, parity checks are made on memories assuming only a single

bit per word could be ir error.

2.3.1 Asserted/Actual Use
One of the easlest assertions to state is one of the most powerful
A common

in checking the correct usage of variables between modules.

1 error 1s the use of a variable as an input to a routine when it is an
In languages where a large number of variables

output, or vice versa.
are said to be "known" to the program, as in FORTRAN with its COMMON

blocks or in PASCAL with its global variables, errors in the misuse of

variables are costly to find.

In order to aid in checking that each variable is used correctly,

the INPUT,OUTPUT assertions were designed and implemented both to provide

an error detection capability before execution of the program and a trace
The error detection

of the input and output variables during test runms.

| 1 capability is further discussed in Sec. 4 and the trace capability is
Basically, what i1s checked is how the assertion

: discussed in Sec. 3.
that states how a variable is to he used in a given module matphes with

its actual use. For example, consider a routine TIMES that multiplies

A and B together and stores them in C:

Stz




SUBROUTINE TIMES (A, B, ) PROCEDURE times (VAR a, b, ¢ : integer);
INTEGER A, B, C BEGIN
COMMENT *** INPUT ASSERTION *#* (*** INPUT ASSERTION #*%%)
INPUT (/TUTEGER/A, B) INPUT a, b;
C =20 ¢ = 03
WHILE (B .CT. 0) WHILE b > 0 DO
C=C+A c = ¢ + a;
B=2B8-1 b:=b -1
END WHILE END WHILE;
COMMENT **% QUTPUT ASSERTION *** (**%* QUTPUT ASSERTION **%)
OUTPUT (/INTEGER/C) OUTPUT ¢
RETURN END;
END

IFTRAN Input/Output Error V-PASCAL Input/Output Error

An error would be reported since the value of B is changed. Hence B is

not just an input, it is also an output.

More important is the capability for checking that variables are
used correctly across modules. In the following example, the variable
ANS 1s asserted to be used both as an INPUT and as an OUTPUT. 1t is
intended that the CALL will compute ANS times F and store the result

in ANS, but because the TIMES module expects ANS to be used only as an

INPUT as the first parameter, and only as an OUTPUT as the third para-
meter, errors would be reported. In this example, note that since TIMES
sets the OUTPUT variable C to zero, ANS would also be set to zero and

the result would be zero. Such errors can be extremely difficult to find

if several levels of a subroutine hierarchy are involved.




INTEGER ANS, F : Integer;

COMMENT *** INPUT ASSERTION **%* (*** INPUT ASSERTION ***)
INPUT (/INTEGER/ANS, F) INPUT ans, f;

CALL TIMES (ANS, F, ANS) times (ans, f, ans);

COMMENT *** QUTPUT ASSERTION **%* (*** OUTPUT ASSERTION **%)
OUTPUT (/INTEGER/ANS) OUTPUT ans;

IFTRAN Input/Cutput V-PASCAL Input/Output
Multimodule Error a o Multimodule Error

2.3,2 Units Consistency

Another simple-to~state but very powerful assertion is the UNITS
assertion which is used to check that units are consistent thrcughout a
program. This is further discussed in Sec. 4, but a brief example is

appropriate here,

The units check is one that everyone trained in the physical

sciences has been urged to apply. Basically, it prevents apples being
assigned to oranges, miles being assigned to feet, dollars being added
to pounds, and other similar but troublesome errors, as demonstrated

here:
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Bt AV AUBLE CORY
¥l

LRROVTIND PAYROL (HRS, RALE, FAY, TAX) PROCEDURE pavrol (hes @ real UNITS hoursg
Rl HRS, KATH, PAY, L (#*% UNITS ASSERTION PART F TYPE DYCLARATION %#4)
WM N wER [N STRTION A% rate : real UNIIS dollars/hour,
UNITS (HR5 = HOURS, RA WELARS/HOER, PAY o DOlLLARS, VAR pay @ real UNITS dollars;
. 1AX = DOLLARS /D00 AR tax ¢ real UNITS dollarsfdollars)s
PAY « HRS®KALY 1AX RrGIN
RETHURN pav = hra*rate tax

ENT END;

1FTRAN Units Error V-PASCAL Units Error

Because the UNITS of TAX do not match the UNITS of the other terms in the
expression, an error would be reported. One can regard the UNITS asser-
tion as a very strong type declaration. Designers are accustomed to
specifying the type of arithmetic that their machine is using. Many .
recognize the dangers of mixed mode arithmetic, and the advantages of
checking to verify that only one kind of arithmetic is actually used in

an expression. However, here the dangers of allowing a variable named
MONEY expressed in dollars at one time and at another time being expressed
in cents have been overlooked. 1In IFTRAN a separate UNITS statement is
used for the UNITS assertion. In V-PASCAL, the UNITS assertion is part

of the type declaration.

All the errors and assertions discussed to this point can be found
once syntax analysis by a compiler has been completed, and before the

program is submitted for an execution test.

2.3.3 Logical Assertions

There are additional assertions which can be used in the execution
test (see the EXECUTION step in Fig. 2.1) and which can also be used in a

correctness proof.
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The easiest to use of the additional assertions is the INITIAL
assertion. The INITIAL assertion, which is more fully described in
Secs. 3 and 5, is meant to provide a means for explicitly stating the

initial conditions on variables. This is most often a limitation on

t the range that a variable can take on. For example, the TIMES program
presented in this section would not operate correctly unless B > 0 .
This condition can be stated in the INITIAL assertion by placing, as

the first executable statewent in the program,
§ INITIAL (B .GE. 0) INITIAL b >= 03
IFTRAN d V-PASCAL

which will ensure that on every entry to the routine, the second argument

is not less than zero.

One might also note that the TIMES program would not work correctly
if the result of A*B were too large for the machine. This error, known

as fixed-point overflow, is not detected on many machines and as a result

i can be a costly error to locate. One way to state an initial assertion
to prevent undetected overflow in the TIMES program would be to ensure
that the sum of the powers of each of the input values is less than the
largest number that can be represented in the machine. We would then
represent the assertion by

IFTRAN
INITIAL (B .GE. 0 .AND. POWER(A) + POWER(B) .LT. MAXP)
‘ V-PASCAL
i INITIAL b >= 0 AND power(a) + power(b) < maxp;
; For example, in a small computer with only 16-bit words, MAXP would be -
]: 15. 1In a computer with 60-bit words, MAXP would be 59.

POWER is a function that returns which power of 2 is greater than

or equal to the input value

POWER "

POWER~1

2 A>2

» VL A ARG AN TN AN VRN Y i i CY




Any time that an assertion is not true, an exception report is
printed stating which assertion in which module is in error. Provision
has also been made for allowing a block of code to be invoked in case an
assertion is not true. The block of code can be used for example to
correct the condition that caused the exception or to print out more

pertinent error messages.

By placing additional conditions on input variables, more checks
can be made that prevent errors. VWhen there is no condition stated on
an input variable, it is equivalent to stating that any value from the
smallest possible represented by the machine to the largest possible
will not cause an error. Since this is a very unlikely situation,
thought should be given to just what conditions are being assumed by the
designer. For example, in a particular payroll program it might be known
that a person can never work more than 168 hours between checks, that the
pay rate can never be more than $25.00 per hour, and that the tax rate

can never be more than 50%. We could state this in an assertion as

IFTRAN
INITIAL (HOURS .LE. 168 .AND. RATE .LE. 25.00 .AND. TAX
.LT. 0.50)

. V-PASCAL
INITIAL hours <= 168 AND rate <= 25.00 AND tax < 0.50;

if the input variables were HOURS, RATE, and TAX. This would help pre-
vent errors such as might result from reading or punching a time card

incorrectly.

Besides stating assertions on the input variables with an INITIAL
1 assertion, it is also possible to state assertions on output variables
with a FINAL assertion. As with the INITIAL assertion, the FINAL
assertion can also be used to check on ranges of output variables such
as in a payroll program to check that an employee is not paid too much

or too little,

et
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IFTRAN
'FINAL (PAY .LT. 500.00 .AND. PAY .GT. 40.00)
V-PASCAL

FINAL pay < 500.00 AND pay > 40.00;

or in a flight control program to check that an airplane is not too high

or too low
IFTRAN
FINAL (HEIGHT .LT. MAXALT .AND. HEIGHT .GT. MINALT)
V-PASCAL

FINAL height < maxalt AND height > minalt;

or in a chemical processing program to check that the calculated

temperature denotes the liquid state

IFTRAN
FINAL (TEMP .LT. BOIL .AND. TEMP .GT. FREEZ)

. V-PASCAL
FINAL temp < boil AND temp > freez;

or in an airline reservation system to denote that the number of seats

! remaining 'is reasonable

IFTRAN |
> . FINAL (SEATS .LT. 425 .AND. SEATS .GE. 0)

V-PASCAL

FINAL seats < 425 AND seats > 03

l 4 It is better to state acceptable ranges of output variables than
not to state anything about a variable so that obvious problems can be
i detected. However, it is best 1f possible to state the results of the

§ module in terms of the input variables so that the assertion can be

used in a formal verification. This is not very difficult to do if,

for example, a series approximation is being used and the error term

is known or if the inverse function is known.
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For example, if the module computed the square root of an input

variable x and the result was in y, the final assertion could be:

IFTRAN
FINAL (Y**2 .EQ. X)

V-PASCAL
FINAL y*y = x;

which uses the operation of raising to a power of 2 as the inverse

operation of square root.

In the TIMES module given previously the final assertion could be:

IFTRAN
FINAL (C .EQ. A*B)

V-PASCAL
FINAL c = a*b;

A check on the calculation of the altitude of a plane might be

IFTRAN
FINAL (ALT#**2 + GND**2 ,EQ. RANGE**2)

V-PASCAL
FINAL alt*alt + gnd*gnd = range*vange;

The object of a FINAL assertion 1is to place as tight a condition
on an output variable as possible. In the examples shown, an equality
relation was used. This is the strongest relation that can be used.
However, in other cases a bound is expressed. For example, it might be
necessary in a floating point machine to state a relative bound on a

result such as

TIFTRAN
! FINAL (Y#*2 - X .LT. 3.0E -~ 10%*X)

20




V-PASCAL
FINAL y*y - x < 3.0e - 10%*x

where 3.0e - 10*x {s the error bound of the algorithm.

The FINAL assertion is meant to provide a facility for specifying

a program's function. When it thoroughly specifies all the outputs of

the routine, it can be used in a formal program verification as described
in Sec. 6. When it partially specifies the outputs, it can be used during

execution test as described in Sec. 5 for fault detection and assertion

refinement.




#

i

3 LANGUAGE EXTENSIONS AND IMPROVEMENTS

The Statement of Work requirement to produce verifiable software
written in FORTRAN or PASCAL has been met by GPC, in part, by improving
the readability of the code and by adding features to support automated
verification. This section describes a number of changes which respond

to these needs. The language changes fall into several categories:

' Improved control structures, which are easier to write and

which result in more readable code

° Executable assertion statements (ASSERT, INITIAL, FINAL),

which may be used to report assertion exceptions during

testing and can also be used by a program verifier

° Data access statements (INPUT, OUTPUT), which qualify or

1imit the access rights and operations on data by explicitly
specifying the input and output variables

® Unit qualifiers for variables, which declare the physical

units in addition to any type declarations, thereby making

units consistency checking possible

These capabilities are implemented with preprocessors which accept as
input source code written in an extended language (IFTRAN or V-PASCAL)
and generate a standard language (FORTRAN or PASCAL) for compilation.
Figure 3.1 is sample IFTRAN program showing the assertions and some con-
trol constructs. A portion of a PASCAL program that uses some of the

language enhancements is shown in Fig. 3.2.

3.1 IMPROVED CONTROL STRUCTURES
3.1.1 IFTRAN Control Constructs
Unlike PASCAL and ALGOL-based languages (in which complex state-

ments are built in terms of decision statements and BEGIN...END clauses),

IFTRAN control constructs are composed of readily identifiable and
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%,:,; h\v H-LAL%%.E COPX
2?{ SUBRCUTINE THARSL (XeY42)

LITs (XSY = FETERSe 2= ML TERD/SEC)
ILWPUT U /REAL/ZXeY)
IITlan € A «6Te 1000 ohlLe ¥ ouTe 3000)

i+ (P)

[ ]

. hHlLE(b,

. . ASSERT (eAbLe § oINlN. (1+20) (2 «GT. AKRAY(I}))
s, . FALL | PERFURM=RECOVERY )

L] L]

[ ] .

. EhD WHILE

*

et G IF

ELCCKU PERFORNM=RECOVERY)

EnND bLGCK

FINAL ((X +GTs 1UQQUU oIMPe 2 sele FUNCLIIXsY)) ORe Z <EQ.
* FURCZIXeY))

CLTPLT(2)

ReTURN

L.l

Figure 3.1. Example Showing Use of IFTRAN Language Extensions

matching control statements. IFTRAN constructs are defined by pairs of

beginning and ending IFTRAN control statements. The following pairs
are legal:

IF...END IF

WHILE...END WHILE

DO...END DO

REPEAT. . .UNTIL

LOOP...END LOOP

FOR...END FOR

BLOCK. . .END BLOCK
Beginning IFTRAN control statements (IF, WHILE, DO, REPEAT, LOOP, FOR,
BLOCK) cause right indentation one level for succeding statements.
Ending IFTRAN control statements (END IF, END WHILE, END DO, UNTIL, END
LOOP, END FOR, END BLOCK) immediately cause left indentation one level.
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IFTRAN control statements which must match are connected with vertical

dots on the indented IFTRAN source listing:

CORRECTLY NESTED CONSTRUCTS
IF ( )
. WHILE ( )
. DO ( )
. . statement(s)
. END DO
. END WHILE
END IF

This enhances the visibility of program structure, as well as providing
a visual debugging aid. Indentation level must be zero when an END

statement is encountered.

An IFTRAN control statement is either an IFTRAN keyword or an
IFTRAN keyword followed by a character string contained within balancing
parentheses. Proper combinations of IFTRAN control statements form

IFTRAN control constructs.

The simplest IFTRAN control statement has the form
IFTRAN-KEYWORD l

where IFTRAN-KEYWORD may be ELSE, END IF, END WHILE, REPEAT, END DO,
END FOR, LOOP, EXIT, END LOOP, END BLOCK, or END. Blanks within IFTRAN

keywords are not significant. Each keyword must be a separate statement.

The second form of an IFTRAN control statément is
IFTRAN~KEYWORD (CHARACTER~-STRING)

where IFTRAN-KEYWORD may be IF, ORIF, EXIT IF, WHILE, UNTIL, DO, FOR,
INVOKE, or BLOCK. Keyword conventions are the same as for the simpler

IFTRAN control statement form., For a statement of this form to be an

IFTRAN statement, the left parenthesis following the keyword must be




balanced by the last non-blank character of the statement (which must be
a right parenthesis). Parentheses within Hollerith strings are not

counted.

The form of CHARACTER-STRING is not examined by the IFTRAN pre-
processor (except for balancing parenthesis and restrictions in the DO
and FOR statements). To be translated into compilable FORTRAN, CHARACTER-
STRING should be a FORTRAN logical expression for keywords IF, ORIF, WHILE,
UNITL, and EXIT IF, If the embedded language is not FORTRAN, this is not
necessary. For example, the embedded language can be English for

purposes of program design documentation,

IFTRAN STATEMENTS
IF (COMPUTATION IS COMPLETE)
WHILE(FLIGHT 76 IS IN DULLES)

\

IF...ORIL/ ,..ELSE...END IF
The IF...ORIF...ELSE...END IF construct provides the afllity to
select at most one (but possibly none) among several alternate groups of
statements to execute. The basic form of this construct is the. matching
1F...END IF pair. If the FORTRAN EXPRESSION is true, control proceeds
to the first statement-&ithipfthé'coﬁétrdét; otherwise control transfers

to the END [F statement.

Use of the ORIF and ELSE are optional. There may be more than one
ORIF condition stated; they will be tested consecutively and, if one of
the conditions is true, control will be transfered to the first statement
after that ORIF. Otherwise, control proceeds to an ELSE, if one is
present, or the END IF. Figure 3.3a shows the Statement Syntax and 3.3b

is a Construct Flowchart.
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Figure 3.3a. Statement Syntax
T
< _IF (EXP] 2. -
S
™
3
P A 5
“
i OR IF (EXPN)
; NOT. EXPN
Y
STATEMENTS TO STATEMERTS T0 -
EXECUTE IF EXPY| ,,, |EXECUTE IF Exp1| | SYATEMENTS TO
THRU EXPN ARE 1S FALSE AND TR
FALSE EXP2 IS TRUE
END IF )

Figure 3.3b. Construct Flowchart

Figure 3.3. 1IF...ORIF...ELSE...END IF Construct
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v
; WHILE...END WHILE

The WHILE...END WHILE construct indicates a repetitive operation
which is to be performed zero or more times. It is essentially a
single-exit loop which exits at the top of the loop. ?igure 3.4
illustrates the form and meaning of this construct. It is important
~to note that no initialization of incrementing operations are caused
by the WHILE...END WHILE construct. Initialization must be explicitly
performed before entering the loop, and the iteration variables must be

explicitly modified on each pass through the loop.

DO...END DO

The DO...END DO construct indiciates a repetitive operation that
is to be performed one or more times. It is a single-exit loop with
the exit at the bottom. Figure 3.5 illustrates this construct. It has
the same meaning as the FORTRAN DO-LOCP; however, no label is necessary,
and (CHARACTER-STRING) must be of the form (INDEX=INITIAL,FINAL, INCR)
where each of these variables is a simple integer variable or constant
(except for INDEX, which must be variable). If INCR is not present, it
is assumed to be 1. The value of INDEX is not defined after DO...END DO
termination. - The implied initialization and incrementing operations are
indicated in Fig. 3.5b.

REPEAT. . .UNTIL

The REPEAT...UNTIL construct is like a DO...END DO in that it is
performed at least once and has a single exit at the bottom of the loop,
and like a WHILE...END WHILE in that no initialization or incrementing
‘ operations are caused by this construct. Initialization must be performed
‘ before entering the loop, and iteration variables must be modified on each

pass through the loop. Figure 3.6 illustrates this construct.
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b) Construct Flowchart
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c) FORTRAN Example

Figure 3.4. WHILE...END WHILE Construct
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¢) FORTRAN Example
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c) FORTRAN Example

Figure 3.6. REPEAT...UNTIL Construct
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LOOP, . .EXIT...EXIT IF...END LOOP

The basic LOOP...END LOOP construct 1s a loop structure with no
exit (an infinite loop) and no implied initialization or iteration con-
ditions. At least one EXIT or EXIT IF statement should be used in each
LOOP, END LOOP construct. An EXIT or EXIT IF statement is asscciated
with the first END LOOP statement following it. As shown in Figs. 3.7
and 3.8, EXIT and EXIT IF statements cause control to transfer to the
first statement after the END LOOP, and are indented to the level of
the corresponding LOOP...END LOOP pair. This construct is most useful

for loops which naturally exit in the middle or mﬂy have more than one

reason for exiting.

FOR...END FOR

The FOR...END FOR construct allows a variety of loops to be built
from an initislization clause, modification clauses, and condition clauses.
The initialization clause is required to provide an initial value for the
FOR index variable. The index variable will have the last value assigned
to it when the FOR.,.END FOR construct terminates. Optional modification
clauses provide for changing the FOR index variable other than incrementing
by one (which is the default value). Escape tests at the top or bottom

of the FOR loop are constructed with optional condition clauses.

A FOR...END FOR construct with only an initialization clause has

the form:

FOR (INDEX = INITIAL)
. BODY OF FOR...END FOR

END FOR
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INDEX is any variable which is legal on the left-hand side of a FORTRAN
assignment statement. The FORTRAN expression "INITIAL" defines the
value which is assigned to the index variable when the FOR...END FOR
construct is entered. The index variable is incremented by one after
the body of the FOR...END FOR is executed. This form will cause an
infinite loop. It is shown separately to allow a clearer explanation of

the initialization clause alone.

One of the following modification clauses can be used to alter the
default incrementing of the index variable. The '"BY'" clause allows
positive or negative increments tc¢ be specified. A FOR...END FOR con-

struct with a "BY" clause has the form:

FOR (INDEX = INITIAL BY INCR)

. BODY OF FOR...END FOR

END FOR

A legal FORTRAN arithmetic expression to be used for incrementing is
specified with "INCR". This form will also not terminate., The "NEXT"
clause can be used to specify new values of the index variable. A

FOR...END FOR construct with a '"NEXT" clause has the form:

FOR (INDEX = INITIAL NEXT EXPR)

. BODY OF FOR...END FOR

END FOR

"EXPR" is a valid FORTRAN arithmetic expression whicn is used to compute

the next value of the index variable. This form will not terminate.

i




Several of the following condition clauses can be used to specify
FOR loop termination conditions. The "TO" clause is useful to specify

a bound on the index variable. This construct has the form:

FOR (INDEX = INITIAL TO FINAL)

BODY OF FOR...END FOR

END FOR

A "TO" clause and a "BY" clause may be used in the same FOR loop. The
"T0" clause alone will cause the index variable to be incremented by
one each time through the loop. When the BY clause is used the incre-
ment is specified in the clause. A '"NEXT" clause cannot be used with a
"TO" clause. If the "INCR" specified in the '"BY" clause is negative,

the appropriate termination test is performed.

The "WHILE" clause allows an escape condition to be inserted at

the top of the FOR loop. This construct has the form:

FOR (INDEX = INITIAL WHILE COND)

. BODY OF FOR...END FOR

END FOR

"COND" is a legal FORTRAN logical expression. The index variable wi.l

i be incremented by one after starting at the INITIAL value. The escape
test is at the top of the loop.

The "UNTIL" clause allows an escape condition to be inserted at
the bottom of the FOR loop. This construct has the form:

FOR (INDEX = INITIAL UNTIL COND)

. BODY OF FOR...END FOR

END FOR }
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As in the "WHILE" clause, COND is a legal FORTRAN logical expression.
A "WHILE" or "UNTIL" clause can be used with any of the other FOR

clauses.

The FOR construct and related clauses can be used to state a wide

variety of loops. Restrictions in using the FOR...END construct are:

1. An initialization clause must be used, and it must be the

the first clause.

The "NEXT" clause cannot be used with either '"TO" or "BY"

clauses.

Each clause keyword (BY, NEXT, TO, WHILE, UNTIL) must be
preceded and followed by a blank.

One example of the FOR...END FOR construct is shown in Fig. 3.9a,

b, and c.

BLOCK...END BLOCK and INVOKE

The BLOCK...END BLOCK construct provides a form of intevnal sub-
routine capability in IFTRAN source programs. This construct is an
internal procedure which has access to all variables in the routine
which contains it. A BLOCK...END BLOCK is executed only if it is
referred to with an INVOKE statement which specifies its name. The
name of the BLOCK below is CHARACTER-STRING:

BLOCK(CHARACTER-STRING) .

All characters in CHARACTER-STRING are significant after the first non-
blank and befcre the last non-blank; (this allows names of more than
six characters so that the name can have mnemonic significance).

Figure 3.10 illustrates this construct. As the flowchart for this
construct indicates, it is a single-entry (the BLOCK statement), single-
exit (the END BLOCK statement) section of code. An INVOKE statement

cauges control to transfer to the named BLOCK statement, and the
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matching END BLOCK statement causes control to transfer back to the
statement after the INVOKE. More than one INVOKE for a given BLOCK...
END BLOCK construct is allowed. Though BLOCK...END BLOCK constructs
can be nested, no recursion is allowed in the invoking of BLOCKS
(i.e., a BLOCK cannot directly or indirectly invoke itself). Also,
the‘pame of a BLOCK is known throughout the entire routine in which it

is contained. BLOCKS caunot be invoked from an external routine, nor

can they be passed as a parameter to another routine.

3.1.2 PASCAL Control Constructs

The PASCAL language provides a basic framework for programming
structured software. Such features as nested procedure declarations,
nested control structures, data typing and data structure hierarchy
with controlled access by‘scope are important when writing structured

code.

In standard PASCAL, the IF statement, CASE statement, WHILE
statement, FOR statement, and WITH statement are all assumed to co:ctain
a single statement. In order to allow the inclusion of more than one
statement in one of these statements, it is necessary to surround the
statements with the words BEG;N and END. The net }esult is that strings
of ENDs can appear in a programjwhich;7on 6ccasi$h,'are difficult to
pair with their respective BEGINs. One solution has been for a programmer
to indent the statements that belong together. Another solution is to
improve the syntax so that automatic indenting is possible with a single-
pass preprocesscr. This relieves the programmer from counting spaces to
achieve readability while still providing an indented listing. It also
eliminates the need for BEGINs within control structures and assigns
more meaning to the ENDs. This is accomplished by using unique keywords

to terminate each type of statement or to separate parts of the statement.
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?Ek Thus, where original PASCAL has

IF year > = 500 THEN
BEGIN write ('d'); year := year - 500 END;
the improved syntax lists a statement entered as:
IF year > = 500 THEN write ('d'); year := year - 500 END IF;

with the indented listing:

IF year > = 500 THEN

write ('d");
year := year - 500
END IF;

In a similar manner, where the original PASCAL has:

WHILE power > 0 DO
BEGIN {ans*temp**power = base**exponent,power > 0}
WHILE NOT odd (power) DO
" BEGIN power := power DIV 2; temp := sqr(temp)
END;
power := power - 1; ans := temp*ans
END;

the improved syntax would list a statement entered as:

WHILE power > 0 DO

{ans*temp**power = base **exponent, power > 0}
WHILE NOT odd (power) DO

power := power DIV 2; temp := sqr(temp)

END WHILE;

power := power - 1; ans := temp*ans

END WHILE;

with the indented listing:




WHILE power > 0 DO
{ans*temp**power = base **exponent,power > 0}
WHILE NOT odd (power) DO
power := power DIV 2;
temp := sqr(temp)
END WHILE;
power := power - 1;
ans := temp*ans

END WHILE;

Where the original PASCAL has a statement of the form:
FOR i := 0 TO 1lim DO
BEGIN x := d*i; y := exp (-x)*sin(c*x);
n := round(s*y) + h;
REPEAT write (' '); n t=mn -1
UNTIL n = 0
writeln ('*')

END; -

The changed syntax provides an indented listing of the form:

FOR 1 := 0 TO 1lim DO
x 1= d*i;
y := exp(-x)*sin(c*x);
n := round(s*y) + h;
REPEAT
write (' ');
n:=n-1
UNTIL n = O3
writeln ('*')
END FOR;

S A P AR L ST
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Where the original PASCAL has a statement:

WITH vaccine [child3] DO
BEGIN month := april; day := 23; year
END;

the indented PASCAL listing reads:

WITH vaccine [child3] DO
month := april;

day := 23;
year := 1973
END WITH;

The CASE statement in PASCAL permits the selection

actions based on the evaluation of a single expression.
original PASCAL has:

CASE 1 OF
0: side := 0.;
1: side := sin(angle);
2: side := cos(angle);
3: side := exp(angle);
4: side := ln(angie)
END

The improved syntax looks like this statement:
CASE 1
OF 0: side = O,
OF 1: side := sin(angle)

OF 2: side := cos(angle)
OF 3: side := exp(angle)
OF 4: side := ln(angle)
END CASE;

43
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and the indented listing:

CASE 1
OF 0: side = 0.
OF 1: side := sin(angle)
OF 2: side := cos(angle)
OF 3: side := exp(angle)
OF 4: side := ln(angle)
END CASE;

Note that the separator semicolon (;) has been replaced by the keyword
OF.

Other programming languges (e.g., JOVIAL and IFTRAN) offer a
language construct for alternative statement selection that is more
powerful than the PASCAL CASE statement, namely the IF...ORIF...ELSE
construct. The IF, each ORIF, and a terminating ELSE constitute a
sequence of alternatives. Each has an associated expression, and the
first expression in the sequence which evaluates as true determines the
alternative selected. Where in the original PASCAL a succession of

nested IF statements is required to state more complex alternatives:

IF distance > 0. THEN answer := distance + minimum X

ELSE IF distance = 0. THEN answer := abs(minimum) -
A
ELSE IF distance < minimum THEN answer := minimum

P

ELSE answer := special; 2
7

el
the improved syntax reads: -

IF distance > 0. THEN answer := distance + mgnimum
ORIF distance = 0., THEN answer := abs(miniﬁdm)

ORIF distance < minimum THEN answer :z minimum

ELSE answer := special
ENDIF;

-,




with the indented listing:

IF distance > 0. THEN

answer := distance + minimum
ORIF distance = 0. THEN
answer := abs(minimum)

ORIF distance < minimum THEN

answer := minimum

ELSE

answer := gpecial

ENDIF;

The advantages of these changes are:

1.

4.

5;e

A readable indented listing i1s provided whether the programmer

indented the source code or not.

The END statements do not require comments to tag them to

keywords such as END{with}.
Numerous BEGINs are eliminated.
The flavor of PASCAL is retained.

Standard PASCAL can be generated to retain compatibility.

The syntax for these statements is defined in Fig. 3.11; the syntax

*
diagrams are shown in Fig. 3.12. Figure 3.13 shows the indented listing

for a PASCAL program which utilizes most of these control structures.

*
The Syntax diagrams shown in Figs. 3.12, 3.15, 3.17, and 3.19 depict
changes to those in Ref. 12.
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* <if statement>::=
1if <expression> then <statement list> <alternative> end if
<alternative>:= {orif <expression> then <statement list>}| -~

{orif <expression> then <statement list>} else <statement list>

* <case statement>::=

case <expression> of <case list element>

{or <case list element>} end case

* <case list element>::=<case label list>:<statement list>|
<empty> -
* <while statement>::=

while <expression> do <statement list> end while
* <for statement>::=

for <control variable>:=<for list> do

<statement list> end for
* <with statement>::=

with <record variable list> do

<statement list> end with

+ <gtatement list>::=<statement>{;<statement>}

*
Denotes change to existing BNF.
i +Denotes addition to existing BNF.

Figure 3.11. PASCAL Statements for Control Structures
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3.2 EXECUTABLE ASSERTIONS

The addition of assertions to a language provides the designer
and programmer with a tool for stating specifications ttat can be used
as a basis for static consistency checking and program terification as
well as for execution tests. This capability has been added to FORTRAN
and PASCAL without disrupting the integrity of the standard languages.
The existing definition of expressions was retained, and the ability

to state quantified logical expressions was added.

Three keywords: INITIAL, ASSERT, and FINAL were added to the
language to allow the expression of assertions. As the names imply,
INITIAL is used for an assertion that is initihlly true on entry to a
program or procedure; FINAL is used for a final assertion that is true

on exit from a program or procedure; and ASSERT is used anywhere else.

The syntax of the INITIAL/ASSERT/FINAL assertions is:

FORTRAN PASCAL )
KEYWORD (assertion expression) KEYWORD assertion expression

where KEYWORD is INITIAL, ASSERT, or FINAL and is followed by any
expression that evaluates to true or false. Examples are
FORTRAN
ASSERT (LINEND .GT. ZERO)
FINAL (VOﬂUME .EQ.- HEIGHT*AREA)
INITIAL (COLOR .EQ. RED .AND. SIZE .EQ. 19)

PASCAL
ASSERT linend > zero;
FINAL volume = height*area;
INITIAL (color = red) AND (size = 10);




e
e reeio

One logical operator was added to the expression used in
assertion statements. This is the implication operator which is
represented by .IMP, in FORTRAN and by the pair of symbols => in
PASCAL. Thus it 1s possible to state

FORTRAN PASCAL
ASSERT (P .IMP. Q) ASSERT p => q;
ASSERT (A .AND. B .IMP. Q) ASSERT a AND b => q;

The implication operator has the lowest precedence of all operators

which means it is the last operator to be evaluated.

Quantified expressions are defined in terms of the keywords
SOME which stands for 3 and ALL which stands for VY . A range of
values is stated for the quantified variable in a similar manner to
PASCAL FOR statements. Examples of assertions which contain quantified

expressions are:

FORTRAN
ASSERT (.ALL. I IN (FIRST, LAST) (ARRAY(I)
.LT. ARRAY (I - 1)))
INITIAL (.SOME. J IN (1, K) (ARRAY(J)
.EQ. ANSWER))

PASCAL
ASSERT ALL (i IN 1 TO n IS
a[i] < a1 + 1])
INITIAL SOME (j IN 1 TO k IS
x[j] = answer)
FINAL ALL (m in 1CCQ DOWN TO 1 IS
y[m] >= x[n])

With these changes, the full range of expressions in the first-

order logic may be stated. HoweQer, there is one more type of

expression that is useful in assertion statements. This is the
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definition of an assertion that can be used as a function. For

example, to assert that an array subtotal has been zeroed requires

the statement

ASSERT ALL (i IN 1 TO length IS
subtotal[I] = 0);

However, if this type of assertion is common, a function named zeroed

can be defined so that we can state
ASSERT zeroed (subtotal);

vhich requires fewer symbols and is more mnemonic. The declaration
of this function is a Boolean type PASCAL function whose body contains

only assertion statements.

PROCEDURE zeroed (a: ARRAY [1l..length] OF integer): boolean;
VAR 1: integer;
BEGIN
ASSERT ALL (1 IN 1 TO length IS
a[i] = 0)
END; {zeroed}

Upon exit from the procedure, the value of the function is set to the

conjunction of all assertions.

The corresponding assertion form which would be recognized by the

IFTRAN preprocessor is
ASSERT (ZEROED (SBTOTL,LENGTH))
The code for the function would be

LOGICAL FUNCTION ZEROED (SBTOTL,LENGTH)
CMODN zEROED

LOGICAL ASSERT

ASSERT (.ALL. I IN (1, LENGTH) (A(I) .EQ. 0))

ZEROED = ASSERT

RETURN

END




»*

The assertion statement may include a FAIL clause. The FAIL con-
struct is a vehicle for defining an exception action which is executed
whenever the assertion expression evaluates to false. In an IFTRAN
program, this is accomplished with a FAIL statement which invokes an
error-processing routine specified by the user and contained within a
BLOCK...END BLOCK construct. Following execution of the BLOCK procedure,
control is transferred back to the statement following the FAIL. The

syntax of the FAIL construct is

KEYWORD (assertion expression)
FAIL (name of BLOCK)

BLOCK (name of BLOCK)

END BLOCK
where KEYWORD is INITIAL, ASSERT, or FINAL, An example is

INITIAL ( INDEX .GT. O )
FAIL ( PRINT ERROR CAUSE )

ﬁLOCK ( PRINT ERROR CAUSE )
WRITE ( LOUT,1)

1 FORMAT ( 41HOINPUT PARAMETER HAD NO MEANINGFUL VALUE )
END BLOCK

In PASCAL, a sequence of statements for the exception action starts

with the keyword FAIL and terminates with an END FAIL. The exception

action can be used to recover from erroneous data as in the example:
ASSERT ALL (4 IN 1 TO 20 IS z > afi])
FAIL recover(z) END FAIL;




3.2.1 FORTRAN

INITIAL, FINAL, and ASSERT statements are normally changed to
FORTRAN comments by the IFTRAN preprocessor, but may optionally be
changed to execute FORTRAN stateuents which provide exception reports
whenever the assertion is not true during execution. The translation

templates are presented in Appendix C.

Assertions for ASSERT may be placed anywhere a statement may be
used. The INITIAL and FINAL assertions are placed, respectively,
immediately before and after the executable code. It is also possible
to include any or all of these assertions within a BLOCK..END BLOCK

construct; the same rules for placement apply.

3.2.2 PASCAL

The PASCAL assertion for INITIAL is placed immediately after the
BEGIN which starts the program or procedure statements (or after a
label referenced by non-local GOTO statement*), and the assertion for
FINAL is placed immediately before the END which terminates the state-
ment part of a program or procedure (or before a GOTO which transfers
control to a non-local label**). Assertions for ASSERT may be placed
anywhere a statement may be used.  The syntax for executable assertions
is shown in Fig. 3.14 and the syntax diagrams’afe in Fig. 3.15. The

translation templates are in Appendix B.

3.3 DATA ACCESS STATEMENTS

In standard PASCAL and FORTRAN, a program module has access not
only to locally declared variables but also to variables which are
declared outside the scope of the module. Access to global variables
occurs in one of two ways: by explicit declaration (i.e., those appearing

as formal parameters or, in FORTRAN, as common variables) and, in

This construct violates :the single entry restriction for a module.

*k
This construct violates the single exit restriction for a module.
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* <unlabellced statement>::=
<simple statement>|<structured statement> 2l
<assertion>

+ <assertion>::= <initial assertion>|<assertion statement>|<final assertion>

+ <initial assertion>»::=

iritial <assertion expression>|

initial <assertion expression> fail <statement list> end fail

+ <final assertion>::=
final <assertion expression>

final <assertion expression> fail <statement list> end fail

'

+ <assertion statement>::=
assert <assertion expression>;|

assert <assertion expression> fail <statement list> end fail
+ <assertion expression>::=

<quantificd expression>|<quantifird expression>

=> <quantified expression>

+ <quantified exbression>::=
all <quantifier tail>| some <quantifier tail>|

<expression>

+ <quantifier tail>::=
(<control variable> in <quantifier list> is

<assertion expression>)

+ <quantifier list>::=

<initial valuve> to <final value> |

<initial value> down to <final value>

+ <initial value>::= <expression>

+ <final value>::= <expression>

*
Denotes change to existing BNF

+
Denotes addition to ¢xisting RNF

Figure 3.14. PASCAL Statements for Assertions
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standard PASCAL, by implicit scope rules (i.e., all variables declared

in the set of other modules which contain the particular module).

INPUT and OUTPUT assertions specify the data access righte to
global variables and are used in static consistency checking as well as
dynamic testing. The INPUT statement lists those variables which are
input (i.e., set prior to entry) to the module. The OUTPUT statement
lists thosevﬁgriables which are output (e.g., assigned or read from
auxil}ax& storage) by the module. This restricts the glcbal variables

which may be sed or set by the particular mndule.

3.3.1 FORTRAN

INPUT and OUTPUT statements are normally changed to FORTRAN comments
by the IFTRAN preprocessor, but may optionally be changed to executable
FORTRAN statements which cause the values of program varilables to be
printed. If the source language embedded in the IFTRAN program is
FORTRAN, and dynamic tracing of input or output variables will be performed,
a specific syntax for INPUT and OUTPUT statements is required. In order
to print with a correct format, the INPUT and OUTPUT statements must
provide type specifications. Any variables whose type 1s not specified
will not be printed. The syntax to provide type information is

INPUT (VARIABLE-LIST1)
or
OUTPUT (VARIABLE-LIST2)

where each VARIABLE-LIST is /TYPE/VARIABLEL,/TYPE/VARIABLE2, ... and
TYPE is one of REAL, INTEGER, HOLLERITH, LOGICAL, or none. Each
VARIABLE may be a non-subscripted variable name, array name, individual
element of an array, or array subrange. A(I=1, N) specifies a subrange

where A 1is an array of N words or more. 1 1is a variable whose

value will be undefined after the INPUT or OUTPUT statement is executed.




Type specifications preceding eaci. 7ARIABLE are optional. A type
specification remains in effect until it is changed. Only variables
with REAL, INTEGER, HOLLERITH, or LOGICAL type specifications will be
printed. The VARIABLE-LIST

INDEX, /REAL/RANGE,DIST,/INTEGER/L(I = M,N)

will not print a value for INDEX, but will print the values for RANGE
and DIST with an E or F format and the Mth to Nth values of

array L with an integer format. The variables of VARIABLE-LIST1 and
VARIABLE-LIST2 need not be distinct; that is, a variable may be used as
both input and output. Figure 3.1 provides a specific example of INPUT
and OUTPUT statements.

The INPUT statement should immediately precede the first executable
statement of a program or block. The OUTPUT statement should precede the
RETURN or STOP statement at the end of the program or an imbedded RETURN
or STOP which is before the end of the program. If used within a BLOCK,

it is placed after all executable code but before the END BLOCK.

3.3.2 PASCAL

The INPUT statement is positioned after tl.: first BEGIN in the
body of the module. Labels referenced by non-local GOTO statements
should be followed by an INPUT statement. The OUTPUT statement is
positioned prior to the last END in the module body. GOTO statements
which reference non-local statement labels should be immediately preceded
by an OUTPUT statement. The syntax of INPUT and OUTPUT statements is
shown in Fig. 3.16 and the syntax diagrams in Fig. 3.17

3.4 PHYSICAL UNITS STATEMENTS

The extensions to FORTRAN and PASCAL include a specification
capability for the physical units with each constant or variable. This
permits automated units consistency checking in expressions during

static analysis. A UNITS statement performs no executable function in




<input statement>::= input <variable identifi=r>{,<variable identifier>}

<output statement>::= output <variable identifier>{,<varizble identifier>}

Figure 3.16. Data Access Statements for PASCAL

INPUT variable identifier

@.

OUTPUT variable identifier

Figure 3.17. Syntax Diagrams for PASCAL Data Access Statements
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a dynamic test and is changed to a comment. Physical units are
expressed as a quotient of products (e.g., FT/SEC, LB*SEC**2, 1/GRAM)
for actual units, or the symbol 1 for unitless, or the symbol 0 for

arbitrary units.

3.4.1 FORTRAN
The syntax for the UNITS statement 1is

UNITS (VARIABLE-LIST1 = UNITS-EXPRESSION1,
VARIABLE-LIST2 = UNITS~EXPRESSION2,...)

where each VARIABLE-LIST is VARIABLEL = VARIABLE2 = ... and each UNITS-
EXPRESSION is an arithmetic expression involving the physical units of
the program variables. All UNITS statemeni:s should be included in the
declaration section before any executable statements. The second

statement in Fig. 3.1 provides an example of a UNITS statement.

3.4.2 PASCAL
Standard PASCAL has provision for assigning types to constants and

‘'variables. In addition hierarchies of dat« structures may be constructed

through type declarations. These represent the computer implementation

of the program data as opposed to a physical interpretation (e.g., physical
units) of the data. Some PASCAL compilers strongly enforce data types

and data usage (i.e., only permitted operations are allowed on a specific
data type and so-called "mixed mode" expressions are handled with type

conversion rules or are considered to be errors). For PASCAL, the syntax

of units declarations is a qualifier to the simple type or to the con-
stant definition. The syntax for the UNITS qualifier is shown in
Fig. 3.18, and the syntax diagram fs in Fig. 3.19. Figures 3.20 and 3.21

show examples of usage.




<constant definition>::=
<identifier> = <constant> |

<identifiar> = <constant> units <units>

<gimple type>::= <basic type>|<basic type> units <units>

<basic type>::= <scalar type>[<subrange type>|<type identifier>

<units>::
<units factor>|<units>/<units factor>

<units>*<units factor>

<units factor>::=

<identifier>| (<units>) |<units>**<constant>

Figure 3.18. UNITS Qualification for PASCAL
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replacement for simple type in all diagrams

Figure 3.19. Syntax Diagram for PASCAL UNITs Statements
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program convert (output);
{gencrates a table to convert between degrees centigrade

and degrees fahrenheit}

const
addin = 32 units degfahrenheit;
mulby = 1.8 units degfahrenheit/degcentigrade;
low = 0 units degcentigrade;
high = 39 units degcentigrade;
geparator = '-—--no- ————='y
var
degrec:low. . .high;
begin
writeln(separator);
for degree := low to high do
write(degree, 'c¢', round (degree*mulby+addin),'f');
if odd (degree) then
writceln
endif
end for:
writeln;
writcln(separator) ;

end.

Figure 3.20. Example of Constant Definition Part with Units Defined

type alpha = packed array {1:10]) of char;
payroll = record
name: record first, last:alpha
end record:

§8 : integer;

time worked: real units hours;
rate: real units dollars/hour;
pay: real units dollars;

end record;

Figure 3.21. Example of Type Definition Part with Units Defined
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3.5 IMPLEMENTATION OF VERIFIABLE PASCAL

The ability to verify and execute Verifiable PASCAL programs is
possible by the addition of a PASCAL front end to the verification condi-
tion generator and by a Verifiable PASCAL preprocessor which translates
the control structures and assertions into Standard PASCAL. Since PASCAL
has been selected as the base language for future Advanced Quality Assur-
ance research projects, extensions and improvements to the language
other than those described in Secs. 3.1-3.4 are expected (e.g., constructs
for fault tolerant software and for concurrency). This means that the

Verifiasble PASCAL should be easily adapted for language changes.

Several approaches to developing the PASCAL processor were con-

sidered:

1. Modify existing language tools (e.g., the PDL-1
translator or the IFTRAN translator) to analyze PASCAL

Design and develop a new processor based on the properties
of PASCAL

Use a compiler writing system such as CWIC14 or 12 to

generate the PASCAL processor

The existing language analyzer tools are, for the most part, based
on FORTRAN languages and extensions such as IFTRAN. The PASCAL language
with its extensions 18 richer than FORTRAN in the very features most
important to Advanced Quality Assurance research (i.e., data structure
and control structure), thereby adding complexity to the requirement for
the language analyzer. The existing front end tools for the verification
condition generator are separate and distinct from the translator
preprocessor. Because of the complexities of PASCAL, and the requirement
for analyzing future language expressions, a single language analyzer to
serve both functions (i.e., as front end to the verification condition

generator and as a preprocessor for the PASCAL compiler) was desirable.

This approach has the advantage of maintaining compatibility in source

recognition between the two functions, an improvement over existing tools.




Previous experience 1in using CWIC14 and CWS15 for other

applicationsl6 demonstrated the effectiveness, flexibility, and efficlency

of using a compiler writing system to implement language analysis tools
over conventional implementation techniques. CWIC offers an extensive
library of semantic actions to support syntactic analysis, but presents
serious integration problems with other Software Quality Laboratory
tools. CWS, on the other hand, is itself written in PASCAL, is moderate
in size, and generates a language analyzer written in PASCAL. The
resulting program is easier to interface with other tools. Using CWS
also offered an opportunity to gain experience with operational PASCAL

programs.

CWS is available in two versions: the original bottom-up system17
used by TRW in RSL devclopment:18 and the later top-down system.19 GRC
had previously obtained both systems, conducted informal experiments
using the grammar of PASCAL, and found the top-down system to be more

applicable and less restrictive for analyzing large grammars.

The top-down version of CWS consists of a sequence of three programs.
The first program, ANALGEN, accepts as input a syntax definition of the
language grammar with imbedded semantic actions, analyzes the grammar for
completeness and conformance to the properties of LL(l) grammars, prepares
tablzs for the later phase of the system, and generates the procedures
which perform the syntactic analysis and semantic analysis of source text.
The second program, SCANGEN, using the tables produced by ANALGEN,
together with a file of prototype code, constructs the lexical analyzer
with its required tables for reserved words and operators; it also
incorporates user-specified options for such details as treatment of
blanks, length, and maximum number of identifiers and other token-related
definitions. The third program, ANDEGEN, completes the language analyzer
in preparation for compilation. It merges code generated by both preceding
phases together with user-supplied supplementary declerations supporting

semantic actions to produce the language analyzer pro;ram.




Within the CWS framework a Verjfiable PASCAL analyzer has been
designed and partially implemented. This analyzer serves both as a
front end to the VCG and other tools (incomplete) and as a translator to

standard PASCAL (completed). This effort involves the following activities:

il Develop a description of the grammar for Verifiable PASCAL
(see Appendix A).

Design standard PASCAL templates for translation of

language extensions (see Appendix B).

Design and Implement semantic actions for language transla-

tion

4. Design the interface to the VCG and other tools

5. Design and implement semantic actions for interface

Items 1 through 3 are completed and work has commenced on the remaining

two.

The Verifiable PASCAL analyzer reads programs written in Verifiable
PASCAL and generates (1) a listing of the input text with imbedded
syntactic error messages, (2) a file of the translated program for input
to the PASCAL compiler, (3) a detailed description of the source text
guitable for input to the VCG and other tools, and (4) a series of reports
including an indiented listing of source text and a directory showing
text groups (e.g., CONST, TYPE, VAR, statements) and module block
structure. Examples of (1), (2), and (4) are shown in Figs. 3.22 through
3.23;

The indented listing (Fig. 3.24) contains a sequential statement
number for the entire text, the key for each text group (H for heading,
C for CONST, T for TYPE, V for VAR, and S for statement), the nesting
level for executable statements, the indented text, and the module block
structure with sequential statement number within the module. Assertion

warnings in the executed program list the appropriate statement numbers




PROGFAM FOSTFIX(INPUT,OUTPUT) }
VAR CHICHARS
PROCEIURE FINDS
BEGIN

REPEAT READI(CH)
UNTILICH<>»= Z)AND KOT FOLNCINPUT)
ENDS

PROCENURE EXPRESSINN3
VAR CPt1CHARS
PROCFLOURF TERMS
PROCEDURE FACTOR}
BEGIN

IF CH=Z(Z THEN
FINDS

EXPRESSIGNS

ELSE

WRITE(CH)

ENDIFS

FIND

END}S

(*FACTCR*)

BEGIN FACTORS
WHILE CH==*Z= 00
FINDS

FACTORS
WRITE(=*Z)
ENOWHILF

ENDS

(*TERP®)

BEGIM

TERMS

WHILE {(CH=Z+¢Z)J0OR(CH===-%) 0O
0OP8=CHS. . e
FINDS °

TERMS

WRITE(CP) S

FMD WHILF

ENDS
(*EXPFESSION®)
BFEGIN

FIND?

REPEAY

WRITE(Z 2%
EXPRFSSETIONS
WRITELN

UNTIL CH=zZa2

EMND o

WO NN & WN -

Figure 3.22, Example of Input Text Listing from Verifiable PASCAL
Preprocessor




NCCI06 PROGFAM POSTFIX ( INFUT , OUTPUT )
09045 VAR

90C4%64 CH ¢ CHER 3

ﬂA. CIL~63 ASSEFT % BOJILEAN §

al 000485 PROCEDURPE FIND 3
0J3003 VAR
000303 ESSFRT % BOOLEAN 3§
00C00& BEGIN
000004 KEPFAT
000305 RFGIN
034085 KEAD ( CH )
90C213 €80
033213 UNTIL ( CH <> = S ) AND NOT EOLN ( INPUT )
000015 END 3
.020025 PROCECURE EXPRESSION 3§
000003 VAR
000903 OP s CHAR
00CG0& ASSEFY % BOOLEAN
00C2C5 FPRCCFCURE TERM §
850303 VAR
£3C503 ASSEFY % BO0LEAN
€J0004 PROCEFCURE FACTOR
005963 VAR
06003 ASSEFT % BOOLEAN
C2C004 HEGIM
000004 IF CH = S(Z THEN
033319 BEGIM
£0CI13 FIND §
000311 EXPRESSION
036312 END
006312 ELSE
000013 BEGIt
03CJ13 wRITE ( CH ) 3§
003317 END (PENDIF %)
03017 FIND
003317 ENO 3
00002e BEGIN

{ 030026 FACTCP ¢
000307 WHILF CH = 2%z 0O
0003tl BEGIM
30311 FIND %
30012 FACYCR 3
£2021% WRITE ( =% )
coccie ENC (®ENOWHHILE *)
000015 ENO 3
000025 BEGINM
000925 TERM 3
00C207 WHILE ( CH = 4% ) OR ( CH = -2 ) 00
0630314 BEGINM
00001y CP 1= CH ¢
000217 FIND ¢
0CC020 TVERM 3
000022 WRITE ¢ OP ) %
00C326 CND (%END WHILE *)
60c025 €NC 3§
903037 EEGIM
009337 FIND 3
§22023 REPEAY
005923 BEGIM
000023 WRITE ( =
006025 EXPRESSION 3
000520 WRITELN
0a0026 FNO
000027 UNTIL CH = Z.:2
060027 END

.o

b a0

-e

Figure 3.23. Example of Translated Text Produced by Verifiable
PASCAL Preprocessor
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MODULE TEXT GROUPS ANN tLICK STRUCTURF

HEAD LABFL CONST TYPE VAR BEGINsesEND STRUCTURE

1 0 J 0 2 41 L3 POSTFIX

4 0 0 ¢ a 5 9 « FIND
10 0 0 0 11 32 L0 o« FXPRESSION
13 0 0 0 0 24 31 « o TERM
14 0 0 0 0 15 ?3 +» o o FACTOP

Figure 3.25. Example of Source Text Directory and Module Structure
Report

and module names shown on the indentecd listing. The directory report
(Fig. 3.25) shows the text-wide statement number which begins each text
group for each module and the module block structure depicting the scope

of the module.

The user may select from various options by preceding the text with
an OPTIONS statement. The keyword ASIS is a mnemonic for "as is." The

implemented translation options inciude:

CONTROL = ON (default), translate Verifiable PASCAL control
statements (IF...ORIF...ENDIF, etc.) to standard PASCAL

CONTROL = ASIS, pass control statements without translation

ASSERT = ON (default), translate assertion statements to executable

code
ASSERT = OFF, translate assertion statements to comments

ASSERT = ASIS, pass assertion statements without translation

1




s

UNITS

OFF (uefault), translate units qualifiers to comments

UNITS = ASI1S, pass units qualifiers without translation

RIGHTS = OFF (default), translate data access rights statements
(INPUT, OUTPUT) to comments

RIGHTS = ASIS, pass rights statements without translation

For translation to executable text the user normally selects the default
options. For interface to other tools the user selects the option appro-
priate for the target tool. Since the analyzer design is not yet complete

for the iunterface, user options for the interface have not been specified.
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STATIC ANALYSIS

Once the syntax analysis of a program is without errors, the second
step in developing verifiable software is static analysis, as shown in
Fig. 2.1. The Software Quality Laboratory provides a set of consistency
checking techniques that detect a wide variety of errors and are appli-
cable to large éoftware systems. They also detect the incorrect use of
variables when assertion statements are add:d to a program. Data access
statements and unit qualifiers provide formalized representations of soft-~
ware specifications and programming assumptions at the source languag:-
level of detail. Source language conventions and good programming prac-
tices also provide general software specifications. Inconsistencies be-
tween the software and its specifications are automatically detected and

reported by the static analysis tools in the Software Quality Laboratory.

The types of inconsistencies which are detected include:
° Operations on variables with mismatched physical units

° Variables used prior to being assigned a value or set

and not used

Actual use of a variable which differs from asserted use
Mismatched data types

Unreachable statements

Infinite loop constructs

Inconsistent actual and formal parameters

The Laboratory provides a command language to control the static

analysis tools. Commands may be entered as data input cards during

batch processing, or interactively through the Anagraph console.20 Use

of the Software Quality Laboratory commands is described in Sec. 4.1. A
static analysis tool which performs units checking by validating arith-
metic expressions for consistent physical units is included. The physical
units consistency analysis algorithm which is implemented in the Laboratory

is discussed in Sec. 4.2. Another tool which performs set and use checking




“' 5

AR

by uncovering possible use before set conditions and similar variable use
abnormalities is also included. Section 4.3 describes the algorithm usec
to perform variable use/set analysis (data flow analysis). The Software
Quality Laboratory provides a common data base which integrates the use-
fulness of static analysis tool~. Set/use analysis automatically gener-
ates the actual use of program variables. This allows data access asser-
tions to be compared with actual variable usage. The multiple module
data base and program structure information required for set/use analysis
allow formal and actual parameter checking as well as structural consis-

tency analysis.

4,1 STATIC ANALYSIS COMMANDS AND REPORTS
The static analysis techniques available in the Software Quality

Laboratory include:

] Units checking which validates expressions for consistent

physical units.

] Set and use checking which uncovers possible use before

set conditions and similar program abnormalities.

° Assertion use versus actual use which checks INPUT and OUTPUT

statements against actual usage of these variables within the
module and validates that unmentioned global variables are

not referenced.

° Type and mode checking which identifies possible misuse of
constants and variables in expressions, assignments and
invocations.

° Graph checking which identifies possible errors in program

control structure such as unreachable code.

° Invocation checking which validates actual invocations

against formal declarations; checking for consistency in
number of parameters and type and intermodule input/output

consistency.
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The Software Quality Lab analysis tools are controlled using a

command language. Static analysis is executed with the command

STATIC

Seven options may be selected. Five are selected "ON" by default, and
two "OFF". To change any of the default settings, it is necessary to
insert the appropriate command from the following list before the com-

mand STATIC (default values are underlined):

STATIC,UNITS=OFF/ON.
STATIC,SET/USE=OFF/ON.
STATIC,ASSERT/ACTUAL=OFF/ON.
STATIC,MODE=OFF/ON.
STATIC,CALL=0FF/ON.
STATIC,GRAPH=OFF/ON.
STATIC,LOOP=OFF/ON.

Separate commands are necessary for changing the default for each

type of analysis.

The rest of this section describes the analysis performed by each
of the commands, illustrates the kinds of errors which can be detected,

and explains the static anaiysis Treports.

4.1.1 Physical Units
Description

Requiring that each local variable and each global variable be
specified in terms of the physical units it represents (if any) allows
comprehensive checking of the consistency of units. This type of check-
ing is particularly relevant to technical software where many physical
properties are represented and there are many possibilities of confusion
over units. Unics can be checked not only in one module, but across two
or more modules if each module contains a description of the units for

each physical variable it refers to, in the form of an assertion:
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UNITS (variable 1list 1 = units expression 1,

variable list 2 = units expression 2,

An inconsistency in units is indicated if unlike units are added, sub~-
tracted, or compared. The physical-units analysis compares the right
and left side of assignment statements, the right and left side of re-
lational operations, and actual and formal parameters. For convenience
in stating UNITS assertions, all constants are assumed to be unitless,
except for zero, which will match any units expression. A variable is
declared unitless by stating that its units expression is the constant
1, as in UNITS (PI = 1).

Option Selection
The physical-units analysis is not performed unless the option is

selected by the command

STATIC,UNITS = ON.

Reports
The units asserted to be assoclated with each variable appear in

the Symbol Analysis Summary of the Static Analysis report. This report,

for a subroutine called XAMPL, is shown in Fig. 4.1. The last column

shows the asserted units for variables R, H, A, and V.

If a physical quantity is asserted to be in units other than
actually calculated, the units consistency check will identify such an
inconsistency within a given statement, anc also indicate interface
errors which arise when defined units of parameters passed between
routines do not match. All such inconsistencies will be reported in

the Statement Analysis Summary of the Static Analysis report.




STATIC ANALYSIS CONTaqe SUBKOUTINE xAMbL  Re Hy Ay V)

1ST TOTAL LAST ASSERTED ACTUAL PHYS1cAL
NAME CLASS MCOE STMT USES STMT usce USE UNITS

R PARAMETER REAL INPUT

h PAKAMETER REAL INPUT

A PARANETER REAL QUTPUT OUTPUT FEET #» 2

v PARAMLCTER Real l ) 6 QUTPUT OUTPUY FEET =»» 3

SYMEOL ANALYSIS SuMMaRY ERRCRS WARNINGS

ASSERT/ACTUAL USE CONSISTENCY ¢ 0
SET/USE CRECKING 0 (]

Figure 4.1. Symbol Analysis Summary

Figure 4.2 shows this report for subroutine CIRCLE. An error
message has been printed to show that AREA has been defined as FEET*#*2
and that the square of RADIUS would be INCHES**2. The units on both

sides of an equation must be equivalent.

Figure 4.3 shows another type of units error, in subroutine ARITH.
The inconsistency in the spelling of FEET has resulted in the same type
of operation error as before.




SIATIC ANALYSIS SUGRCOUTINE CIRCLE ( RADIUS. AREA )

SUBROUTINE CIRCLE ( RACIUS. AREA )

UNITS ( RACIUS = INCHFS. ARtA = FEET »» 2, PI =1 )
CATA Pl 7 3.1416 /

INPUT ( RACIUS )

AREA = pI & RACIUS s 2

P L LT L TRy Y P T T T T L F TP P T L YL

- UNITS ERKOR

- OPERATION WITH INCONSISTENT UNITS
- ( FEET ¢ FEETY )
- { INCHES s INCHES )

7 a0

8 CUTPUTY ( AREA 1}

9 RETURN

10 END ]

STATEMERT ANALYSIS SUMMARY ERRQRS WARNINGS

T T LT T T Yy Y Sap Y  a L X T EEE T Y

GRAPH CHECKING 0
CALL CHECKING 0
UhITSs CCNSISTENCY 1
MQDE CHECKING 0

Figure 4.2. Units Error Report due to Incorrect Units

SIATIC ANALYSIS SUGRCUTINE ARTIH ¢ AREAs FELGKT, VOLUME )

SULROUTINE ARLITH ( AREA. HEAGHT. VOLUML )

UNLTS ( AREA = FT s¢ 24 HETGHY = FEET. VOLUME = FEET *x 3 )
INFUT ( AREA, HEIGHT )

VOLUME = AREA * HEIGHT

- UNITS ERROR

- = UPERATION WITH INCONSLISTENT UNITS
- { FEET » FEET » FEET )

- ( FEET « FT & FT )

GUTPUT ( VOLUNE
KRETURN
FANE )

STATEMENT ANALYSIS SUMMARY ERRCRS WARNINGS

GRAPH ChHECKING 0 0
CALL CHECKING 0 ]
UNITS CCWSISTENCY 1 0
MLCE ChECKING 0 0

Figure 4.3. Units Error Report due to Misspelling




Figure 4.4 shows that the units analysis of the routine XAMPL,

which calls CIRCLE and ARITH, has discovered the inconsistency in units

of the parameters resulting from the two previous errors:

L. R, correctly specified as FEET, corresponds to RADIUS,

which was incorrectly specified as INCHES.

A is defined as FEET**2 and AREA as FT*%2,

SIATIC ANALYSIS SUBROUTINE XxnMPL ¢ Ry He Ay V)

SUBROUTINE XAMPL ( Rs He Ay V)

UNLTS ( H = FEETs H = FEET, A = FEET #& 2y V = FEET #e¢ 3 )
INPUT ( Ry H )

CALL CIRCLE ( Ry A )

EL P R L R R R T Y ey e L R Y T T Y L L ]

- UNITS ERKOR

- = OPERATION wITH INCONSISTENT UNITS
- FEET

- INCHES

CALL ARIIH ( Ay He v )

- uUN17S ERROR
- = OPERATICH WITH INCONSISTENTY UNITS
- ( FEET s FEET )
- ( FT » FT )
7 = :
8 QUYPUT « Ay Vv )
] RETURY
10 END )

STATEMENT ANALYSIS SUMMARY ERRCRS WAHNINGS

E R Y L T L Y RSPy e LI YT L) CL LY T X X

GRAPR ChECKING 0 0
CALL CHECRING 2 0
UiNITS CCNSISTENCY 0 0
MUDE CHECKING 0 ¢

Figure 4.4. Units Error Report due to Mismatched Parameter/Argument
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4.1.2 SET/USE
Description

Just as misuse of physical units 15 a source of many errors in soft-
ware systems, so 1s improper use of program variables. The technique of

data flow analysis detects anomalies in the use of variables such as

] Reference to a variable before it has been assigned
a value
) Failure to reference a variable after it had been

assigned a value

Causes range from simple misspelling to mismatched argument or
parameter lists. Not only are these more obvious errors detected, but
also more subtle inconsistencies can be found because the flow of data
between procedures is examined. When no data flow anomalies have been

uncovered, their absence can be assured.

Option Selection
The option to perform the SET/USE analysis of all variables is

automatically selected with the command.
STATIC.
The option may be turned off by the command

STATIC,SET/USE = OFF.

Report

Figure 4.5 is a listing of a subroutine SETUSE. The Symbol Analysis
Summary from the Static Analysis report on SET/USE (Fig. 4.6) indicates
that neither DIAMTR nor PI had been assigned a value being used.
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SUBRCLTINE SETLSE

haLIUS = UIAPTR 7/ 2

ARLA = Pl o RACIUSes2

ERILT 1o (RACIUSe AREAR )
1 FCHMAT (2 (Foeez) )

FETuRiy

enC

Figure 4.5. Subroutine SETUSE Statement Listing

1ST  TUTAL LAST ASSFRTED ACTUAL FHYSICAL
LAVE CLASS ¥ COE STH? USES  STwd UNE use UNITS

RADILS LOCAL L{Y T¥N 3 3 5
LIAMIR LCCAL REAL 3 1 3

- SFT/USE tRROR -
- VARIABLE OIAMTIR USED BLFCRE BEIMG ASSIGNED A VALLE -

AREA LOCAL REAL 4 2 S
Fi Locak Real 4 1 “

% SET/USE ERROR -
- VARIABLE ¥t USED BEFORE GEING ASSIGNED A VALUE -

SYNBECL ANALYSIS SUMKARY ERRCRS WARNINGS

SET/USE ChECKING 2 0

Figure 4.6. Symbol Analysis Summary with Uninitialized Variables Errors
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4.1.3 ASSERT/ACTUAL

Description
A third type of interface consistency checking is to compare the
actual use of global variables, as determined by the data flow analysis

of variables (see Sec. 4.1.2), with the asserted use.

The asserted use of a variable is stated in INPUT and OUTPUT
assertions:
INPUT (variable 1list)
OUTPUT (variable list)

An INPUT variable whose value may be changed in the routine should also
be included in the OUTPUT variable list.

An INPUT assertion states that the variables named:

° Are global variables (either parameters or common variables)
° Will have values whenever the routine is called
(] Will not be changed in the routine (unless they have also

been listed in the OUTPUT assertion)

® Are the only global variables used in this routine

An OUTPUT assertion states that the variables listed:

) Are_global variables (either parameters or common variables)
° Will be assigned a value in the routine
° Will not be used to supply a value to the routine,

unless they have also been listed as INPUT variables

° Are the only global variables set in this routine.
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A listing of subroutine CIRCLE appears in l'ig. 4.7.

SLERCUTLINE CLeCLL (RALLLSY AREA)

LTS € wALLIUS = LINCHESY AREA = FLET#*2, P1 =1 )
LATA FI 73.14l6/ E

InFPUL (kL LUs)

ARLA = Pl » PBACIUS**?

LLIFUY (ARENM)

Figure 4.7. Statement Listing for CIRCLE

In the CIRCLE routine, the assertion
INPUT (RADIUS) oy

is consistent if the first use of RADIUS on each path in CIRCLE is one
of the following:

On the righit-hand side of an assignment statement
Within a decision predicate

In 1 subroutine or function reference where RADIUS is

used as input

The assertion

OUTPUT (AREA)

is consistent if any use of AREA in CIRCLE is one of the following:

On the left-hand side of an assignment statement
In a READ statement

In a subroutine or function reference where AREA is used

as output.




Asserions about the use of arrays apply to the whole array, not
individual e.ements of the array. This is necessary because data flow
analysis does not distinguish the actual use of individual array elements.

*

Option Selection

The asserted/actual emphasis 1s not performed unless the option

is selected by the command

‘ STATIC,ASSERT/ACTUAL=ON.

Report
The report provided by this option indicates the number of incon-
sistencies, either as errors or warnings. For subroutine ARITH, listed

in Fig. 4.8, the Symbol Analysis Summary is shown in Fig. 4.9.

The first error occurs because HEIGHT has been listed incorrectly
as an OUTPUT variable; its actual use indicates that it is an INPUT
parameter which supplies a value for the computation of VOLUME.

The second error results because TOTAL has not been listed as
either INPUT or OUTPUT and hence has no asserted use. Because it is a

global variable (a parameter), it must be declared.

The third error is of the SET/USE type described in Sec. 4.1.2.
NUMBER is neither in common nor a parameter and so is a local variable;
Fowever, it 1s used in the computation of TOTAL before it has been given

a value.




SIMTEFLLT LISTING SULKCUTILE ARTIH ( AREAs FFIGHTs VOLUMEs TOTal )

fCe LLwEL LAk STAY: pihvT TLXT4us

P R e L L L L L e N R N e R L L LT T P P Y PR PR Y L LR L P L PR LY R

DO TR E -

16

SUBRCUTINE ARLITH « ARt as HEIGHT. VOLUNE, TCTAL )
el T ( AREA )
LivdTS € AREA = FEtT ee 2, HEIGHY = FEET, YOLUME = FEET »» 3 )

VOLUNME = AKEA & HELGHY
TOTAL = WUMULR & VULUME

CUVPUT ( FEILHT. VUOLUME )
RETURH
Live

Figure 4.8. Statement Listing for AR1TH

SIATIC ALALISIS LLKT oo SUUHCUTILEL ARTIN ( AREAy HEJOUMY, VOLULFEs TARTAL )

LAVE

1ST  TUTAL LAST ASSERTLD ACTUAL PHYSICAL
CLASS rCCE SIvT USLS  STwT USE USE UMITS

APEA

FEIGHY

VOLUNME

10TAL

AUMBEK

FAKAPLTER REAL 1 4 5 1P INPUY FEET s» >

PARAZETER Rual 1 4 ‘] CUuTPLT INPUTY FELY

- ASSERT/ACTUAL EKRROR o
- ACTUAL UsE CF HLJLHT LOEs WUT MATCH ASSERTED LSE -

PLRAMLTER ReAL 1 S -] CUtPLT QUTPUY FEET #» 3

PARAMETER niAL 1 2 [ QUIPUT
- ASSERT/ACTUAL EWRCR =
- ALIUAL U3E CF TOTAL LOLs NUY MATCH ASSCRYED ust -

INTEGER 6 1 6
= SET/USL ENROK s
- VAKLALLE WUMEER USED BLFCKWE UEING ASSIGNED A ValLE -

P e ey T P L L R L R e e e Y Y P Y I T YY PY AL L R R AL R P L L L AL LA L L DL AL d

SYNBGL ANALYSIS SUuWMARY ERRCRS WARNINGS
ASSERT/ZACTUAL USE CONSISTENCY 2 0
SLT/uSE CrECKING i o

Figure 4.9. Symbol Analysis Summary with Variable Use Assertion Errors




4.1.4 MODE

Description
Potential errors which result from inconsistencies in the mode of
variables (REAL, INTEGER, etc.) can be found in the static analysis

checking of expressions.

Cption Selection
Mode checking is one of the options which is included inh the an-
alysis performed by the command, STATIC. To turn off the option

STATIC,MODE=OFF.

must be commanded before the STATIC command.

Report
The Symbol Analysis Summary of the Static Analysis report lists the

name and mode of each variable which has been set or used in a routine.

A mode inconsitstency causes a warning to be printed immediately
following the statement in which it occurs in the listing, and the

number of warnings is tabulated in the Statement Analysis Summary.

Figure 4.10 is a listing of subroutine MODE; it contains two mode

errors, as can be seen in Fig. 4.11.




STATENMEAT LISTING SUBKOUTINL vOnE ¢ VALUEs JENDs TARRAY. ARRAY2 )
nCe LEVEL LAerL STATENENT TEXTeso

1 SUsRCUTINE MOCE ( VALLE. IEnDs 1ARRAY, ARRAY2 )
2 4

CINENSIGN TAKRAY (1 )¢ ARRAY2 ( 1)

Nz

n = vaLug

wHILE ( ¥ oLE. 1ENU )

« JARRAY ( M ) = ARRAY2 ( N )

. NzjNe+ld

e NZT N

ENOUWHILE

RETUKY
ENG

Figure 4.10., Statement Listing for Subroutine MODE

SIATIC ARALYSIS SUBROUTINE #ONE ( VALUE. JENL. 1ARIRAY,s ARRAY2 )

LT PP L P PR L Y L L N N LT e e e e a L LA L L L L LTI S L L

SUBROLTINC MOCE ( vaLuE, 1ENUs IARRAY, ARRAY2 ?
C
DIMENSLIGh LAKRAY ( 1 )¢ AKRAY2 ( 3 )
v el
M = VaLit
P T T AL L Y L LY LY e e P Y T e TP Y PR Y Y P TR L P LR L R L L LY X L Y )
= NCDE WARNING -
- LEFT hAND §IDE HAS MODE INTEGERRIGHY HAND SIUE HAs MnDE REAL O
WHILE ( ¥ JLE, TEND )
« IARRAY ( M ) z ARRAY2 ( i )
S MCDE WARAING -
= LEFT rAND SIDE HaS MOOE INTEGERRIGHY HAND SIDE HAS MnOE REAL -
[ ) . M2V e
9 (1 ¢« Nz N+
10 ENCWHILE
11
12 KETURN
13 ENU
’ STATEMENT ANALYSIS s;quav ERRCRS wARNINGS
GRAPH CHECKING 0 0
CALL ChECKING 0 0
MGCE CHECKING 0 2

Figure 4.11. Statement Analysis Summary with Mode Warnings




4.1.5 CALL
Description

Another of the static analysis options specifies interprocedural
checking of subroutine or procedure invocations to reveal situations

which may lead to errors, such as:

° The number of parameters listed does not agree with

those of the routine called.

° The mode of an actual parameter does not match that

of the corresponding formal parameter.

) A parameter 1is listed in the calling argument list
as a single, non-subscripted variable but is used

in the routine as an array.

° The routine called does not exist in the set of modules

being tested.

Option Selection -

Call checking of parameter lists is automatically included in the
analysis specified by the STATIC command. If the option is not wanted,
it is turned off by the command

STATIC,CALL=0FF,

Report

Figures 4.12 and 4.13 are listings of Subroutines CIRCLE and ARITH
(somewhat different from those given in Figs. 4.7 and 4.8).




SVATENMENT LISTING SUBKOUTINE CIRLLE ( RACIUS AREA )
NOe LEVEL LALEL STATENMENT TEXTewe

SUEHOUTINE CIRCLE ( RADIUS. AREA )
CATA PI / 3.14l6 /

AREA = pl » RADIUS #s 2
HETUKRN

LN

Figure 4.12. Statement Listing: Subroutine CIRCLE

SUATENENT LISTING SUURQUTINE AKITH ( AREAs HEIGhTs VOLUNE )
MLe LEVEL LAdEL STATEMENT TEXT.qo

SUBKRULTINE ARITH ﬂRLA' HFAGFT VOLUNE )
LIMENGLION VOLUML ( 10U )
LATA FIGHVA 7/ Su.U /

1 =1

HELGHT = 20465

WHILE  FLIGHT LT, HIGHNX )

« VOLUME (1 ) = AREA » HEIGHT
« I =1+1

e HETGKT 2 HEIGHT + 0.35
ENLWHILE

KETURM
ENG .

Figure 4.13. Statement Listing: Subroutine ARITH

A report showing interface inconsistencies among three modules is

generated in the Statement Analysis Summary for Subroutine XAMPL, Fig. 4.14.

The first error occurs because CIRCLE has two arguments (RADIUS and
AREA) and the invocation has one. Two errors result from the invocation
of Subroutine ARITH. The variable H has been declared as an integer,
put HEIGHT, the variable in ARITH which corresponds to H , is real.
The variable V 1is a single, non-subscripted variable, but, in ARITH,

VOLUME has been dimensioned as an array.




STATIC ALALYSIS SUBROUTINE XAKFL t Re Mo Ay V)

SUBROUTINL XANMPL ( R Mo Ay V )
INTEGEN »

CALL CIRCLE ¢ R )

CRAOR
ACTUALLY MAS 2 ARGIIMENTS

EnncR
PARAVLTER HAS PODE wEAL
PAlANLTER HAS pCTE THTEGER

CALL Flnlsh

e NO CALL CHECKING FOR FINISH
RLTURN
ehy

*%enctecacassncn teacsseetantcncatractoncttagtnctuttentemrlcterertssnbanataavntattanchntesarsane
STATLMEAT ANALYSIS SUNMaHY ERRCRS  wAHNINGS
GHAPKH CHESRING

CaLl CHECRING
FMGCE CHLCHING

Figure 4.14. Statement Analysis Summary Showing Calling Errors

Subroutine FINISH was not included in the set of routines examined
in this static analysis. Although this is not an actual error, a message

is printed on the right side of the report as a reminder.

4.1.6 Unreachable Statements

Description

An obvious consistency check is that of structural consistency.
The program graph for each module can be checked to see that all state-
ments are reachable from each statement. Unreachable statements repre-

sent extra overhead in terms of memory space required for a module, while

statements from which the exit cannot be reached represent potentially

catastrophic system failures.

Option Selection

The checking for unreachable statements is automatically included




in the analysis specified by the STATIC command. If the option is not

wanted, it is turned off by the command

STATIC,GRAPH=0FF

Report
Figure 4.15 is a statement listing of NOPATH. In this subroutine,
Statement 7 is a RETURN statement. The two executable statements which

follow it are unreachable, and a warning message is printed for each in

the Statement Analysis Summary (Fig. 4.16).

AU, LEVEL LAEEL STATENENT TEXT.,.,
SULKOUTINE NOUKRATH ( D1AMTK, AREA )
c
LVATA PI /7 3.1416 /
c
KALIUS = DIAMTR / 2
ARLA = Pl * HADIUS s¢ 2
RETURN
PHINT 1y ( HADIUSs AREA )
FORNMAT ( 2 (F6.2) )
10 RETURA
11 ENG

Figure 4.15. Statement Listing of Subroutine NOPATH

SIATIC ANMLTYSIS SUPHOUTING NOPATH ( CIAMTH, AREA )

1 SUUROUTINE NUPA!H t Clh!!ﬂ. ARFA ) ) ) e
<

(4

CATA 51 7 Belele /

IR &

nhulus = CIAMTR /7 2

ARLA B pl o RADIUS oo 2

KEILRN

FRINT 1o § RACIUS. AREA ) }

a
mevencsscscucsvnentegecan cenaw

GRAPR BARRING
STATENMENT 8 15 UNREACHAELE CR g IN AN INFINITE LOOP

>~ e

-------------- L R T T L T T L T B Y T L L T TP ¥y

Founat ( 2 (F6.2) )
KE (LRy
GRAPH WARNING -
STATEMENY 10 IS UNREACHABLE OR 1S LN AN INFINITE LOOP .
r o5 O g ) oot O I R e ey

SIAYfM;L1 ALIALYSIS SUMMaARY ERACAS  WARNINGS

GHAPR CHECKING .- ; --...-.;
CaLl ChECKING 5 H
MUCE ChECKING ¢ !

Figure 4.16. Statement Analysis Summary with Unreachable Statement
Errors




4.1.7 Loop Constructs

Description
|
One of the most frustrating and common errors is an infinite loop
construct. A check on structural consistencies determines if this pos-

sibility exists.

Option Selection
This option is on when the STATIC analysis is performed unless it

has been turned off with the command

STATIC,LOOP=0FF.

Report
No report is generated unless the possibility of an infinite loop
construct exists. If such a construct has been located, a loop analysis

report 1s generated containing a warning message and the statements of

the loop in question.

Some errors of this type are not immediately obvious and, therefore,
are difficult to detect. One such error is in subroutine SEARCH, listed
in Fig. 4.17. Figure 4.18 shows the report, which includes the portion
of the code where there may be an infinite loop. The infinite loop
would occur whgn the ELSE path is taken: LOOKUP is set to I , hut
neither M nor N 1is modified, so that the conditions of the loop would
be infinitely repeated.




rO. LEVEL LALEL  STATLNENT TEXTV..s )
1 * SUCROUTIRE SEARCH ( ARKAYy LENGTHs X+ LOORUP )
INTRGER ARRAY ( 1 ), x

1

LFNGTH
LE ( ¥ + 1 oLT. N )

L = (M e+ ND) /2

IF LTe ARRAY (1 ) )

o h I
CRIF X «6To AKRAY (I ) )
e M I
ELsLE
13 ¢« LCUKLP = 1
i 0 EN[.‘IF
15 ENCWHILE
16
17 RETURp,
18 ENU

- n

H

10
11
12

e e 6 o a ® 8 ¥ T X

P e e

Figure 4.17. Statement Listing of Subroutine SEARCH

AARNINC,ooPGSSI3LE IMNFINITE LCOPosoNO ESCAPE VARIABLE IS MOCTIFIED ON ALL PATHS,

WHILE ( M + 1 LY, N )
IL = t¥ >N/ &
IF ¢ oLTe ARRAY ( ¥ ) )
o N 1

CRTF X «GVas ARRKAY ( 1 ) )
. M )¢

e LGCKUP = ]
ENCIF

L[]
[ ]
L]
« ELSE
ENCWHILE

Figure 4.18. Loop Analysis Warning Report




4.2  PHYSICAL UNITS CONSISTENCY ANALYSIS

Physical units checking is an excellent example of consistency
analysis using a partial program specification at the source language
level of detail. The units tester uses UNITS statements (described in
Sec. 3) to associate specified physical units with program variables.
If program variables RGB, RHO, GR2, and BETA are specified by

UNITS(RGB = 1/FT)
UNITS(RHO = (SEC**2)/LBS)
UNITS(GR2 = FT/(SEC**2))

UNITS(BETA = LBS/(FT**2))
then the computation of RGB as
RGB = (-RHO*GR2)/BETA

is consistent. This can be verified by substitution of unit qualifiers
and simplification. The right-hand side of this assignment statemeat

becomes
(- ((SEC**2) /LBS)*FT/ (SEC**2)) /(LBS/ (FT**2))

cancelling the (SEC**2) terms results in
(-FT/LBS)/ (LBS/FT**2)

cancelling common FT and LBS terms, and dropping the minus sign yields
(1/FT)

which matches the units description of the left-hand side of the assign-

ment statement.

An algorithm to automatically perform this substitution and simpli-
fication process has been implemented in the Software Quality Lab. The
physical units checking process transforms each arithmetic expression into
a tree with unit qualifiers as nodes. Unit qualifiers associated with
variables are specified with UNITS statements. Figure 4.19 indicates
physical units assertions, the statement to be analyzed and the units

tree which results.
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RGB = - RHO * GR2/BETA
UNITS (RGB = 1/FT)
UNITS (RHO = (SEC**2)/LBS)
UNITS (GR2 = FT/(SEC**2))
UNITS (BETA = LBS/(FT**2))

SEC

Figure 4.19. Physical Units Tree

The physical units simplification and normalization rules which
are applied by the algorithm are shown in Fig. 20 and Fig. 21. Since
like units can be added or subtracted, the addition rule in Fig. 20
removes addition and subtraction operators from the physical units tree.
Like units can also be compared. The relational rule in Fig. 4.20
replaces relational operators (greater than, equal, not equal, etc.)
with the valuz TRUE. The addition, subtraction, or comparison of un-
like physical units immediately results in a units inconsistency.
Additional simplification rules include cancellation of like units in a
numerator and denominator, dropping unary minus and unary plus operators,

and logical operation simplification.

Normalization rules are limited to multiplication, division, and

exponentation operators since all other operators are simplified out.

The cummulative property of multiplication is used to lexically order




ORIGINAL EXPRESSION SIMPLIFY RULE SIMPLIFIED EXPRESSION

RN D AN
NN )

FT SEC FT SEC

RELATION

SN0

'\ D
/N /

FT SEC FT SEC

UNARY MINUS

“ D

N\

AND LOGICAL

f D

X

Figure 4.20. Physical Units Simplification Rules




ORIGINAL EXPRESSION NORMALIZATION RULE NORMALIZED EXPRESSION

COMMUTATIVE *

b N

FT

" EXPONENTIATION *

7\ D AN

2

N MULTIPLICATION

Y ) PAY

A///,/\\\\B 6///’/\\\\0 A///, \\\E é///,*\\\\D

DIVISION

Figure 4.21. Physical Units Normalization Rules




all product terms (Fig. 4.21). Exponentiation operations are converte .
to an equivalent product term (this limits the analysis to Integer expon-
ents). The normal form for units expressions is a quotient of ordered
product terms. The multiplication and division normalizations in Fig.
4.2]1 maintain this form by moving all division operators to the root of

the physical units tree being analyzed.

The physical units consistency analyzer applies these rules as the
physical units tree is walked. Each subtree of a nonterminal node must
be in normalized, simplified form before the rules are applied to that non-
terminal node. A recursive description of the algorithm is given in
Fig. 4.22.

FrGCLULRE CLITS SIVMPLIFICATION

IF ThE CUKNEAT NLUCE IS A nGaTERMINAL

PEnFURM LLTS SINPLIFICATICN Ch LEFY SUR-TRIE

IF Ikt CUNRLLT LG 18 NOT A UinArY GPERATCR

. Profiny Ui fls SlevpplfleaTloh CN KIGHT SuB-TREE
LovVe 1F

IF Tht (uvilol fute IS 4 #e=eCR HELATIUNAL OPLRATOR
. le THE LEFT Seu-T<bE LoSUALN THE RIONT SulieTREE
IF Tl CURBERT KhOLF IS A eolR « CPERATCHR

. PLRECRS ALLYITION SIFMPLIFLI¢ATION

Ll

. PrithbOni KELATEGWAL SIFPLIFLCATIGN

EnL IF

A LTS TRCUNCIRTE LY pAy UBLbn FOUNUeessaesRETURN

e s e s w e e e

RaF The CUBEILT wyk 1S A e Cr 7/ OFRRATOR
1F BATrbke SunTule 18 n /7 CPLRATUR
. Peif oo LTI LICATACK Ch LEVISION NOWMALLI2ATION
. FERb LY COVMLIATIVE ROHNALLIZATION CF NURERATDK
. Felb O M COAUTATINVE KOUMALIZATION UF UENORINATOK
. Feafunl® CialELATION SL.PLLELICAYICH
LREE CLEr LT LGUE §& A 7 CULPATLR
. FEAT L 0% COriUtAYINE RESMALTILATIC OF KUNMEHATOH
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Figure 4.22. Physical Units Consistency Analysis Algorithm




4.3 DATA FLOW ANALYSIS

Improper use of program variables is a major souce of errors in
large software systems. The technique of data flow analysis21 detects
anomalies in the use of variables such as references to a variable before

it has been assigned a value.

The results of data flow analysis technique in the Software Quality
Laboratory are similar to that performed by the DAVE system. A leaf-first
analysis of the system calling tree is performed. While the DAVE system
analyzes each module with a variable-by-variable depth first search, the
Software Quality Laboratory performs a parallel analysis of all variables
in a module. The resulting computation time can be several orders of

magnitude faster with the parallel analysis teclinique.

Both techniques are applicable to FORTRAN source code. DAVE is
limited to ANSII standard FORTRAN. The Software Quality Laboratory can
analyze common extensions to ANSII FORTRAN, including a dialect of struc-
tured FORTRAN(IFTRAN). The Software Quality Laboratory techniques in-
clude optional consistency checking of actual variables usage and desired

variable usag~. DAVE does not provide this additional check.

Data flow analysis classifies the usage of all program variables.
A variable is used as output (to receive a value) if any of its uses is

one of the following:

1, On the left-hand side of an assignment statement
2. In an initialization statement such as a DATA statement

3. In a READ statement

A variable is used as input (to supply a value) if its first use on

some path is one of the following:

0 On the right-hand side of an assignment statement

1
2% Within a decision predicate
3. Within a WRITE statement.




A path originates at the entry to the software system, follows one of
many structurally possible routes thru the software, and terminates at
an exit from the software system. A path will, in general, go through

more than one module of a multi-module software system.

A naive approach to data flow analysis is to identify all possible
paths and compute the use of each program variable on each path. This
approach quickly runs into the combinatorics problem of too many paths
in even moderately sized software systems. Several techniques are avail-
able to dramatically improve the efficiency of data flow analysis. The
first technique uses a software sys'em's intermodule calling structure.
The calling structure is represented as a tree whose root is the main
module in the software system. The calling tree is then analyzed in a
bottom-up fashion. Modules which do not invoke any other modules (leaf
modules) are analyzed first. Then modules which invoke only leaf modules
are analyzed, etc. After a module has been analyzed, it can be represented
in terms of its variables and how they are used rather than as a set of
statements with an inherent structure. Each module is only analyzed once
.when this techique is used. A similar technique allows each statement in
each module to be analyzed only once during a complete data flow analysis
for all program variables. This technique is based on (but not limited
to) a well-structured, single-entry, single-exit program graph. Data flow
analysis proceeds sequentially thru each statement in a well structured
program., The use state of each program variable is updated as statements
are sequentially analyzed. Control statements from which several parallel
paths originate cause parallel use states to be computed. Control state-
ments at which several parallel paths rejoin cause parallel use states to
be combined into one use state. Data flow analysis of the following

statements
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A=X
IF(A .GT. Y)
A=Y
ELSE
Y=A
END IF

would be performed in the following steps:
1. Statement 1 uses X as input and A as output.

2. Statement 2 adds use of Y and A as input to the

use--state and stacks the current use-state.

Statement 3 uses A as output and Y as input (this
is already described in the use-state for the path
originating at Statement 2).

Statement 4 pops the use-state and then stacks the

use~-state of the former path.

Statement 5 adds use of Y as output to the use-state

for the second path originating at Statement 2.

Statement 6 pops the use-state stack and causes the two
current use-states to be combined into one. The com-
bined use-state is use of A as output and input on all
paths, use of X as input on all paths, use of Y as

input on all paths, and as output on some paths.

Iterative constructs are proceesed once in the same sequential manner.

As described earlier, references to functions or subroutines will have

known variable use properties since the function or subroutine will

already have been analyzed. When the analysis of a module is complete,
use of local variables as input on some or all paths indicates a data
flow anomaly, and use of all global variables is avallable to compare

with data access assertions and to define the use properties of the module.
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An algorithm to automatically perform data flow analysis in the
manner just described has been implemented in the Software Quality
Laboratory. The implementation of the algorithm distinguishes three

types of output useage. They are:

S0 output on all paths
0 output on some paths

N not used as output.
Similarly three types of input useage are distinguished; they are:

S1 input on all paths
| input on some paths

N not used as input.

To allow for undefined externals, an additional unknown state, U , is

distinguished. Ten input/ouptut states for a given variable are possible:

(N,N)
(SI,N)
(N, S0)
(S1,50)
(1,N)
(N,0)
(1,0)
(1,50)
(S1,0)
(U

O 00 N O Ny -

[
o

A local variable is used before being assigned a value if its input state
is SI . It may be used before hav1n§'a value if its input state is I .
A global variable's actual use 1is consistent with asserted input usage
only if its input state 18 SI or I , and consistent with asserted
output usage only if its outputr state is SO or O . The use state for
a path is implemented as a 2-by-N array, where N 1s the number of
variables which have been used or set. The use of each variaﬁle is

assoclated with its symbol table pointer, and the array is ordered by
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symbol table entry. A variable width stack is used to temporarily store

use states during the data flow analysis of a module,

The data flow analysis algorithm can be applied to unstructured
progrars. A graphical analysis is performed which represents unstruc-
tured programs in a structured manner. The basic structured forms are
sequential, parallel, and iterative combinations of single-entry, single~
exit sequences of statements (Fig. 4.23). The graphical analysis per-
formed is based on two properties of the three basic structured forms.
Each of the basic forms can be characterized as a single entry/single
exit subgraph. Also the graph of a structured program which uses only
the basic forms is built up of well-nested single entry/single exit sub-
graph, the complexity of the graph can be reduced by replacing an identi-~
fied form with a single edge which goes from its single entry to its
single exit. 1t ie then possible to repeat this process and identify

basic forms which previously were composed of more complex structures than

the edges which have been inserted. The process terminates when the re-
sulting graph consists of a single edge from the entry of the module to
the exit from the module. As the reductions are being performed, it is
essential to maintain a data structure which indicates the basic form
identified and the single entry/single e.it (SE/SE) subgraphs of which it
is composed. The natural data structure for this information is a hier-
archy of SE/SE subgraphs. The structure of this heirarchy corresponds
directly with the well-nested, indented representation of the text as a

structured program.

The SE/SE tree (the structured graphical representation of the
program) is used to perform the data flow analysis of both structured and
unstructured programs. The algorithm involves walking the SE/SE tree
and computing the use state for each node in the SE/SE tree after the use
states of its sub-trees have been computed. A description of the data flow

analysis algorithr 1s presented in Fig. 4.24.
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3
l I
q(
A
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IF (P) THEN
A

ELSE
B

END IF

DO WHILE (P)
i A
END WHILE

Figure 4.23. Basic Structured Forms
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e3 3 . . . HWCRE U ARKAY SUBSCRIPT USE=SEY )
ce 3 . . . INVORE G EXTLIOAL HektRENCL LSE-SET )
I3 - T N . . 1F AN AiSSIGANVMENT STATLMELRT
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<9 3 . . . NG IF
20 3 . o INVCKE( DEFAULTY USF=SET )
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32 3 . . . [NVUKE L PRLSET STATEMEWT LSE-SET )
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6 2 . . EnU LIF
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41 END BLYCK
42
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49 1 . tLSE
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$ 2 . " SAVE LAST ULL=SeT Ch TOP CF STACK
£3 2 . . CCrbihE USE=SETS FOR A LINFAR CCMEINATION
d4 2 . . 6ET LSE=SEY ON TOF OF STACK
s 2 . . COmBIME USE-SETS FOR A PARLEL COMBINATION
56 2 . . PLT RESULTANT USE-SET Ok TOP OF STACK
L 57 1 o« ENL IF
e L0 uilln
<9 ernt
Figure 4.24. Data Flow Analysis Algorithm
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Several limitations are inherent in the simplicity of the data
flow analysis technique. All structurally possible paths are included
in the data flow analysis, even though many of them may not be logically
executable. Also arrays are treated as single variables., The use of
individual array elements is not distinguished. The implementation
currently available in the Soffware Quality Laboratory does not attempt
to recognize equivalenced variables during the data flow analysis. These
limitations can cause invalid error and warning messages to be generated.

They do not cause any data flow anomalies to go undetected however.
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5 EXECUTION

Once the techniques described in Sec. 4 héve been applied to show
that many of the costly semantic errors are not ;resent, the program is
ready for an execution test. In the execution test, the Software Quality
Laboratory provides facilities to show what paths have been tested, what
paths have not been tested, what assertions are false, what the values of
the input variables were on module entry, and what the values of the out-
put variable were on module exit. These facilities may be enabled or

disabled by the tester.

5.1  COVERAGE REPORTS

The reports which give information as to how well the software is
being tested in terms of number of tested paths, numbers of untested paths,
and number of times each path was executed are known as the QUICKLOOK
coverage reports. They can aid the tester in devising additional test
cases, in discovering paths which cannot be executed due to the range of
valid data, and in pinpointing areas of the program in which most of the

execution time is spent.

For the QUICKLOOK coverage reports, the modules for which data are
to be collected must contaln statements which are treated as comments by

the preprocessor. Such modules are said to be instrumented.

For IFTRAN the comment statement
CENTD name

where name is the module name is placed just before the first executable
statement in the program. The accompanying figure, Fig. 5.1, shows the

modules SEARCH and TRACK with these statements which define the modules'
entry points.

In addition, one module, usually the first must have the comment

statement

CINST
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SEG LEST SCuhCe

FROGRAN SEARCH (ILPUT ULTPUT TAPE6=CUTPULT (LTEST TAPESSINAUT)

InTEGER X3 e ILNITVOUNEY
REAL LaST
CATA TUNIT/574CUNIT/ZE/
SEANCH
CO PATH 1 1S ENTER CLECK
REAC CIULKIT 12 (X{I)elz143)
st lr (OULIT2)M(X(I)a1R103)
WHILE CEQF LALAIT) +JEWe 0)
CC FATH 2 IS whlLE COv 3 IS WHILE EXIT

e

. 1F (Xtl) +6T. 0)
CO FATH 4 IS IF TWLE. 5 IS 1F FALSE
. CALL ThACK(IX)
. DIST = SGRT(FLUATIX(1)eX(1) & X(2)eX(2, ¢ X(3)ex(3)))
EL>E
. CISY = 0.0
Ll IF
wRITE (CUNITe3) DIST
Real (JUNIYOR)IX(T)eIz2143)
WwRITE (CUNITe224X(1)el21e3)
LI.C aBILE
STOF

S e YY)

L0 PATH 6 18 STupP
FORMATLILS)
FORNAT (TH INPLTZ,315)
FORNAT (6N LISTE.1IT)
END

LEST SCLRCL SUBROUTINE THACK(X)

SUBRCUTINE TRACK(X)
INTEGRI ALS) oY L3 o Lam]N
LOGICAL FLAG

LATA FLaG/oTRLES/Z JMIf/Y/
THACHK

ENTER DECK
IF (FLAG)

IF ThUt s 3 IS IF
FLAG = FALSE,
FON (1 =1 TU 3)

5 FOR CC, 8 IS FCR
. X{1) 3 Yi1)
ENL FCH

[y

-

£
IF { JABS(Y(1) = X(1)) +6T. MIN)

IF THUE T 1S 1IF

~

o FGR (1 = L 70 3)
FOR CO, 9 IS FGR
. . i1y =2 Y€1)
0 EnD FOR
ELSE
. FCR (1 =1 Y0 5
FCR 0, 11 IS FOR
. . *I) =5 (X(L) ¢ Y(I))/2
. . (1) 3 x(1)
. END FOR
. tNU IF
EnND IF
HETURM

L X7 R LR RN

RETURN
END

Figure 5.1. Instrumented Modules
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which turns on the instrumentation for the module in which the statement
appears and all subsequent modules. Instrumentation may be turned off

in selected modules by use of the statement
CNOIN

which disables the data collection process until another
CINST

is encountered.

Besides preparing the module itself, a QUICKLOOK command set is
used to select reports which may be presented. This command set appears
just after the data cards. If there is an end of file at the end of the
data, it must be read by the module.

Three types of commands are used: the module select -ommands, the

report select commands, and the print command.

The module select commands allow reports to be printed for speci-

fied modules. The two commands are:

QUICKLOOK MODULE name
QUICKLOOK DETAILED name

If the DETAILED report is desired, the DETAILED command must be used. The
DETAILED report presents the information in a graphical form which is easy

to read.

While the module select commands state the module names for which
data are to be collected, the report select commands select which print-
outs are to be given. There are four print options: SUMMARY, NOTHIT,
DETAILED, and CUMULATIVE,

The command

QUICKLOOK PRINT SUMMARY




@4 gives the following information in tabular form covering all the selected

modules:
1. Test case number
2. Module names and number of decision-to-decision paths
3. Number of module invocations, number of decision-to-decision
paths traversed, percent coverage for this test case
4. Total number of module invocations, number of decision-to-

decision paths, and percent coverage for all test cases.

Figure 5.2 shows the SUMMARY report as a result of executing the
modules SEARCH and TRACK with the two sets of input data x = {5,3,6} and
x = {7,2,7} .

At this pdint the tester might decide further testing 1s necessary
and look at the NOTHIT report to see what paths were not executed and
| refer back to the program listing to see what additional test cases could

cause the paths to be executed.

The command
QUICKLOOK PRINT NOTHIT

presents the following report (next page) listing the decision-to-decision path
numbers for each module which were not executed. The paths are listed

for each test case and for all test cases.

The tester might in addition look at the DETAILED and CUMULATIVE
reports to see the unexecuted paths and note which paths are executed the

most frequently. The DETAILED report shows for each test case the number

of times a decision-to-decision path was executed in graphical form and

gives overall coverage\data for each module that was selected.




il .

] " "
” " ] n "
" [ 1 "
1t ] 1] |\
" . " H L " ) (]
" e H " H ] ]
t ' [ET] " 0 4 ! '
1 1 Lon - 2 D " L " H H
" [T TR B S S| u " ! f
(1} bd ] w1 .. 3 1 . i 3 | .
H s 22 W " ] '
" = ' R T T ] i i ! 1
" ' M A " " 1 '
[[IE 4 ] " " u i ] A
0 ; " " 1l " ] ]
" 5 " H 1" " ' '
i f f 1 1l u ] [}
[ ' Yy " i u f r
" ool b " i 0 . '
"o ' X " iy 1 . .
n ] x " " " ’ H
oo | VR T VI - S |1 L i ! H
" ] > 1 - 1] T " d 4
H ] S " nJ " 1 ]
" [ ] " I I ! /
noow [ :: :: no oo ' :
" 4 nJooon [}
woo> I " A4 ey I ] !
0 ; h " 4 iwx n ] ]
. 5 L i o Hid M [l [
" [ " o " i ! .
[ ] D H 1] [t ! !
) ] R H = oo [ [}
[T ' L] " g [ !
0 - T i o " " ’ ]
"o o oon " 1 e 0 : !
1" [ n b d !
f 2 (] > 1 "n [} = . " b
i DI " Wwea 1 '
H > o B Ha n ]
" ' i 0 -S n n ! !
ol = : . i oo [l '
i ' o g M neoon ] [
noow ] ~- i 1] o N . 4
N { 2 i (1} wa oo ' )
" \ Wl e o H g ' i
" ] [ n [75] k) " 4 .
1} ] 1] 1} O] g y
1] [T " w Tt : !
" [ EN] " o A o G f
[l ' 1" " o H '
I R R I R A A N e R NN ] = " H .
H : " " = " i ] !
Wz Wz H '
" =i n n 3 T ! : o
[T taon H os d ' ~
1] tws it Mmoo © § [ W R b ¥ °
[T] 1ux Kk mo ©~ M [coN. . | 2,
1] ] W " * e L3 ] " PO W H H 8
[T tae>n mn o~ N ° wge ! !
H ttQun o~ ~ U Haal oM ! . &
. 1" [T 1] Yud u i i A
H ; " H Hoim W t [ e~
; [T} 1 1] [0 o ] ' i
" ] ] [ n " H] ! ! —
e . " " T ] ' ]
" (7 XS 1] " [} we 0 '
[T 4 FIWN [1} a. (5 <L ' ) =
0] Ve an " b o ] 4 o
"o 1tax 0 " " " { ! =
1] rawin e = N o z A ] !
1] >n P “ L ! )
" [ o< 1] o 0 ) g
" [} [ " " l A A
1] [l 1} 4 u ' f
[T ' s " A i ] '
i ] 1] t I 1 ! !
Hnox 1 n " ! i e i
" . nn . 1] il 4 sz
0 a rw oz " [ " ! g
n roon " () ! " ' g
b2 | W " 1} 1oca
t [ S [ " 0 0 1.2
[[I- % 1 'wan 1] . " i . !
1] PV " " ! [ L
[ =N o~ ] WO~ ~ )
" taa>n " L " h A o
- [T, [ 1] \n S g L ¢
S ! N B A
N H a2 BNTEES N B A B )
R e N R NN ] Q :: " d ]
] 4 ! 4 I ] ] ]
" ’ " . =] " - ] ]
i " " n HICHetet i DO
I [T ] H (-] N A i \
" :ox:: :: ha, IR ] ] :
H < HaQHW '
" X< BN @ N0 P " ale . 0 !
i " WA W - " H] u p '
" L . Wt o 1)~ e 4 =0t
" e N “ " " i\ '
1 1I¢ N " s ’ N
] il i W JHd S
i : i ] Haan v 23
" : o ] Nwail at ad
o ' Y " Wee D0 20 I
: " : A » R no=TH 0L Wt
" "W " X " " " i ' '
" tJWH WUx I e
n [ IS v T} x U - " " " H H
" 1| W agt <4 M " AL
" 2N W @A N g ' ,
" LA W e w " e e f
i '. :: :: HJ W : 5 :
5 NI x
6D oo 0ot bt D ot e ) e e bt e WD e 1 H
q . 4] H Ha w bt ]
" (A" R ] " HE- S )
1] LD AN~ ] 4 WY L&
" twa i ]
1] [N ]
] ] " "
[ [ 1] "




2;‘ ' The CUMULATTVE command presents the results of several test cases
in the same graphical fo;mat as in the DETAILED report. Figure 5.3 shows
the DETAILED report for the test of. the modules STACK and SEARCH. The
CUMULATIVE report is the same as the DETAILED report in this case.

These reports are generated as a result of the two commands:

QUICKLOOK PRINT DETAILED
QUICKLOOK PRINT CUMULATIVE

The third type of command is
QUICKLOOK

which provides a listing of the requests that were made such as is shown

in Fig. 5.3 (next page).

As an example of a QUICKLOOK command set which produced all the
possible reports for a set of two modules, one of which is the main

program SEARCH and the other which is the subprogram TRACK is:

QUICKLOOK DETAILED SEARCH

QUICKLOOK DETAILED TRACK

QUICKLOOK PRINT SUMMARY

QHICKLOOK PRINT NOTHIT )
QHICKLOOK PRINT DETAILED

QUICKLOOK FPRINT CUMULATIVE

QUICKI.OOK

5.2  ASSERTIONS
Executable assertions may be used during execution to aid in testing
and to aid in generating the correct assertions which can be used in the

formal verification of a program.

During the testing phase, executable assertions are valuable in

checking that interfaces have been specified correctly. While the static
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analysis techniques described in Sec. 4 will detect most of the serious
errors, there still remains the possibility of data being out of the
expected range of values. This kind of error can be detected by explicitly
stating range restrictions on every input variabie in the INITIAL assertion.
If an error occurs the name of the module and the assertion number is re-
ported on a Jisting. A trace of tiae values of the input variable values
which is given by the INPUT assertion should then aid in the detection of
the source of the error. The fact that in one module the range of the
values generated is not consistent with what is expected by a subsequent

module will be immediately obvious.

Thus if processing data from a radar which provides a beam number
between 2 and 1021, a range bin number between 80 and 1600, and a signal
strength number between 0 and 95, one should have in the processing

toutine which receives the data as the first executable statements:

INPUT (/INTEGER/BEAM,RANGE,SICNAL)

INITIAL (2 .LE. BEAM .AND. BEAM .LE. 1021)

* .AND, 80 ,LE. RANGE ,AND, RANGE ,LE, 1600
* .AND. 0 ,LE. SIGNAL ,AND. SIGNAL ,LE. 95)

for IFTRAN

INPUT beam, range, signal;

INITIAL 2 <= beam AND beam <= 1021
AND 80 <= range AND range <= 1600
AND 0 <= signal AND signal <= 95;

for V-PASCAL.

Similar processing is available for the output variables which can
be checked for their range of values. If for the example the radar data
described above was transformed into a cartesian coordinate system where
the X,Y,Z coordinates were in terms of meters, and it was known that X
could be between 500 and 100,000 meters, Y could be between -50,000 and
40,000 meters, and Z could be between 50 and 75,000 meters, a reasonable-

ness check could be:
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OUTPUT (/REAL/X,Y,Z)

FINAL (500.0 ,LE, X ,AND, X ,LE. 100000.0 ,AND,
-50000 ,LE, Y .AND, Y ,LE., 40000.0 ,AND.
50.0 ,LE. Z .AND, Z ,LE. 75000.0)

A better check would be to relate the outputs: X,Y and Z to the inputs

such as making use of the relation between range and the outputs:
If

range2 =X +Y + 2
and if

radar range * k = range in meters
we could state

FINAL ((RANGE*K)**2 - (X**2 4 Y**2 +Z**2) _LE, RNDOFF)
for TFTRAN and

FINAL (range*k)*(range*k) - (x*x + y*y + :%z) <= rndoff;

for V-PASCAL.,

5.3  FAULT DETECTION

Once a program has been verified, it is known that it will produce
the specified results as stated in the FINAL assertion under the condi-
tions that are stated in the INITIAL assertion. The assertions can then

be used for detection of faults due to bad input data or bad hardware.

One of the possible causes of catastrophic failure in a computer
system is bad input data. If the data is from a sensor that normally
pro&iﬂes more data than is necessary, the bad value can be discarded and
the system can proceed to accept another value until n bad values in a

row.

The assertions with a FAIL clause can be used to provide for fault

detection with a usef»suppliéd block that can be used for fault recovery.
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1f, for example, it was known that the input SIGNAL should fall between
5 and 95, and if SIGNAL is invalid an error flag should be set, the

following assertion could be used:

ERROR = ,FALSE,
ASSERT (SIGNAL .GE. 5 .AND. SIGNAL .LE. 95)

* FAIL (ERROR FIX)
IF (.NOT, ERROR)

normal processing

END IF

BLOCK (ERROR FIX)
ERROR = ,TRUE,
END BLOCK

In this case, if the input did not meet the specification, rather than a

report on the listirg of a false assertion, the user-supplied hlock named

ERROR FIX is invoked to set the ERROR flag.

In V-PASCAL, the same assertion would be:

error := false;
ASSERT signal >= 5 AND signal <= 95
FAIL error := true END FAIL,
IF NOT error THEN
normal processing

END IF;

Rather than skip the processing the designer might decide to set SIGNAL

to a nominal value or to an old value.
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This could be done by

ASSERT (SIGNAL .GE, 5 .AND, SIGNAL ,LE, 95)
* FAIL (ERROR FIX)

normal processing

BLOCK (ERROR FIX)
SIGNAL = NOMINL
END BLOCK

While the same results could be obtained by a series of IF tests in

either language, the advantages of using the assertions are:

il The conditions under which the code that follows is expected

to operate are explicitly stated

2. The methods of handling errors due to input data are separated

from the rest of the code

. The assertions used in fault detection are the ones used in

a formal verification
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6 FORMAL VERIFICATION

A major pairt of the work is the development of a capability for the
verification of FORTRAN and PASCAL. This has resulted in the design and
implementation of a verification condition generator, a simplifier, and

an interactive simplifier which are able to verify single modules.

6.1 VERIFICATION TOOLS

6.1.1 Design and Implementation of VCG

The verification condition generator produces verification condi-
tions for programs with assertions written in FORTRAN, IFTRAN, or the
subset of PASCAl limited to FORTRAN-like data types.

The verification condition geﬁerator uses assertions which have
been inserted into the source code to generate verification conditions
in the form A + B , where A 1is the initial assertion on a program path
conjuncted with the predicates encountered along the path and B 1is the
assertion at the end of the path. All variables in the verification con-
dition are represented in terms of their symbolic value at the start of
the path. The required substitutions are made by symbolically executing

the final assertion and any predicates backwards to the initilal assertion.

Three keywords are used to state assertions in the present system.
These are INITIAL, FINAL, and ASSERT. The INITIAL assertion is a state-
ment of the conditions which are true when the module is entered. The
FINAL assertion is a statement of the conditions that are true on exit
from the module. The ASSERT statement is normally used to express loop %
invariants, but may be used anywhere in the body of the module to express
a condition that is true at that point. The syntax of the assertions is e
discussed in Sec. 3. First order predicate calculus statements about

program variables may be expressed in the assertions.

Program structure is used to determine the set of verification

conditions to generate. A well-structured, single-entry, single-exit




program has a readily identified set of verification conditions. There
is a verification condition for each verification path in the program.
Verification paths begin at the program entry point and loop entry points,
and end at the program exit point and loop exit points. Each logically
possible path between program entry, loop entry, loop exit, and program
exit corresponds to a verification path. Each verification path must

begin and end with an INITIAL, FINAL, or ASSERT statement.

Specification of verification conditions is presently handled by
stating the set of DD-pathé which lie between assertions. For example,
a verification condition is generated by giving the static analysis

system a command of the form:

VCG, PATH = 2,1,3.

"VCG" commands the system to invoke the verification condition
generator. PATH = 2,1,3 is an example of the present method of specify-
ing the path over which the condition is to be generated. The general -

form of the command is

VCG,PATH = <no. of paths>{,<dd path number>}

In the example, two decision-to-decision (dd) ﬁéths are specified: path
number 1 and path number 3. The verification condition generator will
take the first assertion on path 1, the last assertion on path 3, and the

intervening body of code to generate a verification condition.

The program SIMP is a very simple IFTRAN program which contains
three DD-paths.

PROGRAM SIMP (INPUT, OUTPUT)

ENTRY (.TRUE,)

A=5.0

B = 0.0

WHILE (A .GE. 0.0)
ASSERT (A .GE. 0.0 .AND, B ,LE. A**(-2))
B = A%%(-2)
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END WHILE

EXIT (B .LE, 1.0E-14)
STOP

END

Path 1 covers the program entry statement up to the WHILE statement.
Path 2 covers the "true'" part of the WHILE statement ancd the statements
in the loop. Path 3 covers the "false" part of the WHILE statement and
the statements following the END WHILE.

The verification condition generator, when given the command
VCG, PATH = 2,1,3 will take the assertion on path 1, ENTRY (.TRUE.); the -
statements A = 5.0 and B = 0.0; the '"false" of WHILE (A .GE, 0.0); and
the assertion on path 3, EXIT (B .LE, 1.0E-14), to generate the verifica-

tion condition:

(.TRUE,) A (5.0 .LE. 0.0) + (0.0 .LE. 1.0E-14)

In this simple example, the premise is false and hence the resulting
condition is true. When the premise is false, the implication is that the

selected path combination is impossible.

Although this method of selecting verification conditions to be
generated provides flexibility for symbolic execution, a more automatic

selection mechanism which relates to the assertions is under development.

Other approaches to verification condition generation are possible.
Most existing program proving systems generate one complicated verifica-
tion condition for an entire program. The advantages of associating

verification conditions with verification paths are:

1. Verification conditions are smaller and more succeptible to

automatic simplification

2. Verification conditions are more readable, allowing more

intelligent interactive simplification
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3. The size of verification conditions is independent of program
size
4, Incorrect assertions or code are easily found since each

verification conditfion is associated with a single verifi-

cation path.

A potential disadvantage is the large number of verification condi-
ticns which may be required for some programs. This has not been a

problem yet.

Several automatically produced reports are related to verification ¢
condition generation. Figure 6.1 shows the DD-path definitions report
for program SIMPLE. This report provides the DD-path numbers used in

specifying verification paths. It is produced with the commands:

MODULE = (SIMPLE).
PRINT, DDPATHS.

There is oune verification path around the loop in SIMPLE. it is specified

with the command

VCG,PATH = 2,2,2,

CLe=PaTr CEFINITICAS PHOLRAN S1IMPLE
1 FRUGHAM SIMPLE
®e DCPATH 1 1S PRUCEDURE ENYRY
H INLTIAL ( oYhUE, )
3 3 Az S,0
- i = v,0
3 ) wHELL A W6Ce 0 )
g ss DOPATH 2 1S LOOP AGAJN
s CCPATH 3 IS LOUP ESCAPE
3 c (1) e ASSENT ¢ A o6Es UeQ oAlDe B oLEe A 00 ( = 2 ) )
7T¢ « BT AN ~2)
[ thuaniLe
Y FluAL | & «Lbe <0COOQUAUGUOLODL )
10 $I:P
11 [RIS)

--------------------- F A L L T L T LY L T T T P P e P Y P L Y Y P P L PPN P P L P Ty s

Figure 6.1. DD-Path Definitions for Module SIMPLE




Figure 6.2 is produced as a result of this command. Tt identifies the
statements in the specified verification path. This verification path
corresponds to going around the loop in SIMPLE unce. Figure 6.3 1is also
produced as a result of the VCG,PATH command. It is the verification
condition associated with the verification path in Fig. 6.2. Each term

in the verification condition is directly related to the source line

number from which it was derived.

LINE PATH SULRCE TEXT

WHILE ( A «Gke 0 ) ’

* ASSERT ‘ A OGL. 000 QAND. 5 .LEO A 2 ( - 2 ) )
e B = A s { =« 2 )

ENUWHILE

wHilE ( A +Gt, 0 )

( 1) . ASSLRT { A oGEs 0o ohNue B oLk A s ( =2 )}

oMo~ U
-

Figure 6.2. Verification Path Report for Module SIMPLE

LINE VERIFICATION CONCITION
L A +Gke 0
AND
6 A ¢GEe 0,0 ¢AnDe B8 oLEs A #% = 2
AND

S A +GE. 0

etasPaegeew IMPLIES e N L T T L LY T T iy

6 A oGEe 0,0 ¢ANDoe A #2 = 2 LLE, A % = 2

Figuve 6.3. Verification Condition Report for Module SIMPLE
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All variables in the verification condition are represented in
terms of their symbolic value at the start of the verification path. The
verification condition is constructed as the verification path is symbol-
ically executed in reverse order. Each statement type encountered when
traversing the verification path in reverse order affects the verification

condition being generated. The rules for FORTRAN are:

° When a decision statement or assertion is encountered, the
appropriate condition is added as an .AND. term to the
current formula (the final assertion is added as the conse-

quence of the .IMP.).

° An assignment statement of the form x =y causes all
instances of the term x to be replaced with y din the

current formula.

° An iteration control statement, such as the statement at the
end of a FORTRAN DO-loop, causes all instances of the itera-
tion index to be replaced with the incremented value. This
is an assignment statement of the form: <index> = <index>

+ <increment>.

° An iteration initiation statement, such as a FORTRAN DO-
statement, causes replacement of instances of the <index>

with its <initial-value>.

. A statement label assignment results in replacement of

instances of the label-name with the actual label.

Planned extensions to the verification condition generator will allow
subroutine, function, and READ statements to be symbolically executed
when the corresponding subroutine, function, or I/0 unit has been defined

using INITIAL, ASSERT, and FINAL statements.

6.1.2 Simplifier Design and Implementation

The verification condition simplifier consists of two separate

parts: a standard simplifier and a user supplied simplifier. The
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standard simplifier applies a small set of arithmetic, logical, and
relational simplifications in an attempt to reduce the verification
condition to "true." The result of this attempt is presented to the
user who can then supply additional simplification rules, which are
peculiar to the problem at hand. Once a new rule has been applied, the
modified result is sent through the simplifier again and the new result
is presented to the user. In this manner, the user can verify the pro-

grams that the standard simplifier cannot.

6.1.2.1 Standard Simplification
The simplifier first puts the verification condition into a tree
data structure. The root of the tree contains the implies operation. In

Fig. 6.4, the tree for the expression

A>2+A>2VA=2

is shown as it is seen by the simplifier. A small set of tree operations
were defined so that it was not difficult in IFTRAN to build trees, walk
trees, delete nodes, move nodes, or print trees in the form shown in the

figure.

Cnce the tree has been formed, a lexical level 15 assigned to each
leaf sc that a lexical ordering of the nodes can be performed. This

allows the simplifier to recognize that the expressions

A+B+C
A+ C+8B
B+A+C
B+ C+A
C+A+8B
C+B+A

are all the same. The lexical ordering would result in the preceding

expression being'replaced by

A+B+C
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Constants have the lowest lexical order so any one of the expressions

A+1+8B
1+A+8B
B+1+A
B+A+1
1+B+A
A+B+1

would be replaced by

1+A+8B

Lexical ordering is part of the normalization process which takes
place before the actual simplification takes place. Normalization is

divided into four parts:

ks Products normalization

2 Conjunctive normalization




Relation normalization

Lexical normalization

Products normalization places expressions in a sum of products form.

That is if the expression is

A* (B -0C)

it will be normalized to

A*B-A*C

Products normalization also moves negations inwards to the indivi-
dual terms that are being operated on. Double negations are removed.

Some examples are:
Original Normalized
A- (A+B) A-A+8B
A- (-A+B) A+A+B

-(=(a)) A

- Conjunctive normalization is similar to products normalization.

The logical expressions are placed in conjunctive normal foim on each

side of the implies.
Original Normalized
(AAB)VC (Avce)a(BvO)

(AAB)YVvC+(AAD) VC (AvC ABVC >(AvC)A(VO

Conjunctive normalization is not applied across the implies because
it 18 expected that human interaction will operate better when the veri-
fication condition simplifications are recognizable, when the clauses
remain tied to the code and the assertions, and when the assertion on the

right hand side of the implies is kept as a separate set of clauses. This




is considered particularly important when a user attempts to generate a

loop invariant from the verification condition as described in Sec. 6.1.3.

Just as products normalization brings in the negation operation
next to individual terms, conjunctive normalization brings in the NOT

operation next to individual terms. Double NOTs are removed.
Original Normalized
114 A
1(A v B) 1A A 1B

1(A A 1B) 1AV B

Relational operators, the divide operator, and the exponential
operator pose special problems. This simplifier leaves the division
operator and the exponential operator as they appear in the original
expression. Normalization across the relational operators takes place

so that the normal form is

<variable expression> <relation> <constant>

Examples are:

Original Normalized

A>B A-B>0
3¢ ¢ C <3

A+2>D+7 A-D>7 -2

After a verification condition has been placed in normal form, it
is simplified. The simplifier consists of five parts which are applied

sequentially to each subtree during a post order walk of the tree. The

five parts are:

1% Constant simplification

2. Common term simplification




Logical simplification
Cancellation

Relational simplification

It is assumed that the normalization process will have brought
constant terms together. The constant simplification process will then
evaluate arithmetic end logical expressions which contain constants.
Special rules for 0 and 1 are incorporated in the constant simplification
process. Constant expressions which are simplified may be real, integer,

or logical data types. Examples of constant simplification are:

Original Simplified

A>3+6 A>9
.TRUE. + INPUT3 > O INPUT3 > 0
.FALSE, » INPUT2 < 0 . .TRUE,

B < 6 - .FALSE, B26

1 * RANGE + 6 RANGE + 6
0/TIME 0

0 + DIST

1 ** FINALV

.TRUE, A (C > 6)

1+2

6.0 + 3.0

2%

.TRUE., v (F = MA)




Common term simnlification searches arithmetic expressions for equal
terms which can be combined into a similar expression.

Original Simplified

A-A+B B

A*XB-AXGB 0

A*B+ AXB 2 * A*B

Logical simplification does the same as common term simplification

for the logical operators.

Original. Simplified

(A+B>5) A (A+B>05) (A+B > 5)

(C <E) v (C<E) (C < E)

Cancellation of like terms across the implies is a separate part of
the simplification process. If a clause on the right part of the implies
is the same as a clause on the left hand side, the right hand clause is
replaced by .TRUE.. The goal of the simplification process is to delete
as many clauses as possible so that eventually the verification condition

appears as:

el A C, + .TRUE.

which is simplified to .,TRUE.. Examples of cancellation are:

Original Expression

(A > 5) A SORTED A (L < N) -+ SORTED

Simplified Expression

.TRUE,




Original Expression

(RANGE > 0) A (ELEVATION > 50) - (RANGE > 0) A (AZIMUTH > 3)

Simplified Expression

(RANGE > 0) A (ELEVATION > 50) + (AZIMUTH > 3)

Relational simplification takes conjuncted relations which involve

equivalent terms and replaces them with the stronger relaticn.
Original Simplified
(RANGE > 3) A (RANGE > 5) (RANGE > 5)
(TIME 2 6) A (TIME > 6) (TIME > 6)
(DIST > 3) A (DIST < 2) .FALSE.,
(SPEED 2 0) v (SPEED < 0) .TRUE,

(VEL 2 2) A (VEL < 2) (VEL = 2)

1f as a result of simplification a variable 1s equal to a constant,
that constant replaces the variable in other clauses and the result is
resimplified

Original

(B2 0) A (B 0) »1 = A**B

Simplified
(B=0) + 1 = A**pB

Resimplified

.TRUE.

6.1.2.2 User-Supplied Simplifications
Although the standard simplifier contains many rules, it cannot

automatically verify all the verification conditions from many programs.




Rather than change the simplifier or develop a complete theorem prover,

the capability for adding rules to the simplification process was provided.

rd
&

Two forms of rules are avallable. The first uses simple text re-
placement and the second uses pattern matching. Under text replacement,

if a verification condition contained an expression of the form

B20

the user desired to change this to

B>0VvB=20

command sequence would be

VCG,REPLACE.
B .GE, 0 =B .GT. O .OR., B .EQ. O
*END,

IFTRAN OR

VCG,REPLACE,
B> 0=B8B>00RB=20
*END,

V-~PASCAL.

Such a command will cause the verification condition to be searched
for the text string B 2 0 which will be replaced with the text string
B>0VB-=0. Then the standard simplifier will be reinvoked to see if
the modified verification can be reduced to .TRUE. by the standard
simplifier.

The replacement operation is implemented by the formation of a tree
with the replacement equality operator as the root. The verification
condition is searched for subtrees which are equal to the left subtree of
the replacement tree. If found the right subtree is used for the replace-

ments.




The more general method is to use pattern replacement rather than
text strings which require exact matches. Pattern replacements are done

with special pattern variables:

PX1,pPX2,...,PX10.

An example of a pattern variable rule is:

PX1l > PX2 A PX2 > PX3 = PX1 > PX3

If this were applied to a verification condition which was

(RANGE > MINRANGE) A (MINRANGE > INPUT2) -+ (RANGE > INPUT2)

PX1 would match RANGE
PX2 would match MINRANGE

PX3 would match INPUT2

so the replacement would result in

RANGE > INPUT2 + RANGE > INPUT2

which the simplifier would recognize as being ,TRUE..

Pattern replacement rules are entered in the same manner as text

replacement rules.

The preceding rule would be entered as

VCG,REPLACE.
PX1 .GE. PX2 ,AND. PX2 ,GT. PX3 = PXl .GT. PX3
*END.

for IFTRAN, or as

VCG,REPLACE,
PX1 >= PX2 AND PX2 > PX3 = PXi > PX3
*END,

for V-PASCAL.




By the combination of using the standard simplifier and the user
supplied simplifier, several small programs have been formally verified
as described in Sec. 6.3. In the process of verifying the programs, it
was digcovered that once a new rule was defined to verify part of a pro-
gram, it was used repeatedly in the verification of that program. In
order to save the effort of re-entering rules, the AXIOM command was

implemented. Instead of giving the command sequence

VCG,REFLACT .,
<rule>

*END.

one states

VCG,AX1CM,
<rule>

*END.

The rule will be assigned an axiom number and saved on a library of rules.
A rule which does not result in any replacements will not be saved. Once
on the library, the user need only refer to the axiom number as for

example,

VCG,AXIOM, 1.
VCG,AXIOM, 3.

which would cause axiom 1 to be applied and then axiom 3.

6.1.3 Adding Assertions Using Verification Conditions

One of the methods proposed by Webgreit 22 to synthesize loop invari-

ants uses the FINAL assertion and the exit condition from the loop. The
trail loop invariant which is formed is then modified using a set of heur-
istics until it satisfies the conditions of a loop invariant. The Soft-
ware Quality Laboratory provides a means whereby trail assertions may be
placed in a program. The verification conditions which are generated from
the trail assertions may be examined to see how to alter the assertion so

that the verification conditions are valid.




By way of example, the text of the DIV subroutine which corresponds
to Wegbreit's first example is used as shown in Fig. 6.5. Assuming that
the INITIAL and FINAL assertions are provided, the problem is to find the
loop invariant which is placed in an ASSERT statement. The ASSERT state-
ment is expected to satisfy the following verification cunditions for the

loop:
Loop entry
INITIAL A (loop entry)' - ASSERT'
Around the loop
ASSERT A (loop continue)' -+ ASSERT'
Loop exit

ASSERT A (loop exit)' - FINAL'

loop entry is the condition or predicate that causes entry

to the loop

loop continue is the condition under which control remains

in the loop

loop exit is the condition that causes transfer out of the

loop

and INITIAL, ASSERT, and FINAL refer to the logical expressions

in the assertions.

The primed terms refer to the logical expressions as they appear in

of the variables that exist at the start of the loop.

For the example shown,

INITIAL=A20AB 20
FINAL=A=Q*B+RA0O<RARC<B
loop entry = loop continue = R 2 B

loop exit = R < B
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Wegbrelt states that the standard means for generating a loop invariant

is to start with the loop exit veritication condif.ion and use a trail

verification condition

(loop exit)' -+ FINAL'

In the Software Quality Laboratory, a trail loop invariant can be
generated by setting the loop invariant to .TRUE. as shown in the text of
the program. A verification condition is then generated for the path
around the loop. The resulting verification condition is then placed in

disjunctive form by using the REPLACE command with the rule

PX1 .IMP. PX2 = ,NOT. PX1 .OR. PX2

to remove the implies. The result of this operation is a trail loop

invariant which is shown below the text of the program.

Now the three verification conditions are regenerated using the
trail loop invariant. It is seen that the second verification condition
cannot be reduced to true (see Fig. 6.6). One of the heuristics is to
strengthen the assertion by changing the disjunction to a conjunction
which will allow the second verification condition to be valid. When
this is done, all the paths in the program can be verified using the

standard simplifier as shown in the second verified program in Appendix D.

6.2 INTERACTIVE ASSISTANCE

An interactive interface to the Software Quality Laboratory has been

implemented to aid the user in the development of assertions and improve
tHE performance of the simplifier. Throughthe interface, the Software
Quality Laboratory user can enter commands and receive output through the
Anagraph.zo A functional description of the relationship between the user
and the Software Quality Laboratory is shown in Fig. 6.7.

Through the Anagraph terminal, the user can request verification

conditions, provide trial assertions, specify additional simplification
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STANDARD INTERACTIVE
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Vis PROOF OF SIMPLIFICATION

e | RULE

“LORRECT"
BHD SOURCE

¢ USE PROGRAM STRUCTURE TO SIMPLIFY PROOF STEPS
e RELATE VERIFICATION CONDITIONS TO ORIGINAL PROGRAM

Figure 6.7. Interactive Program Proving

rules, and request the symbolic execution of expressions. In response,
the Software Quality Laboratory generates verification conditions from
assertions in the source code or assertions entered from the Anagraph,
simplifies these verification conditions, symbolically executes arbitrary
expressions over specified program paths, validates simplification rules,

and applies them to verification conditions.

The reason for implementing the interactive simplification capability
is to overcome a problem recognized by Deutsch:6
There are two respects in which PIVOT has failed to attain
the goals set for it by the author. One is stability.
Even though PIVOT is restricted to a fairly limited domain,
each new test case has required adding simplification rules
or extending the logic of PIVOT in some way.
It is impractical to extend the capability of a simplifier to prove every
possible program by including every possible simplification rule. It is
more feasible to allow a user to add a rule that applies only to a single

program.




The reason for giving the user the capability to interactively
specify assertions and genecate verification conditions is to assist the
synthesis of loop invariants. Until loop invariants can be generated
automatically, the user will need to supply these assertions. Since the
specification of loop invariants is an iterative process of trial and
error, the user can request that a loop invariant be tested by symbolic

execution through the loop.

The interactive interface was designed and built at GRC Santa Barbara
using a program which simulated the action of the Anagraph. The Anagraph
simulation runs in batch mode on the 7600 and produces printed output

which is the same as would be seen on the Anagraph screen. The use of

the simulation greatly reduced the amount of time requi;ed to develop the

interactive interface and allowed all but final testing to be done in

batch mode from Santa Barbara.

When the verification condition generator and the simplifier of the
Software Quality Laboratory are used interactively from the Anagraph
terminal, commands are selected by the trackball and textual information
is entered through the keyboard. Some commands may be entered by using
the trackball alone while others (PATH, REPLACE, EXPRESSION, AND RXVP)23
require the user to enter a text stfing through the keyboard. The inter-
active interface synthesizes the command corresponding to the command
selected and places it in a command buffer which is displayed to the user
when the ENTER button 1is depressed. The actual processing associated with
the command takes place when the command GO is selected by the user.
Textual output generated by a Software Quality Laboratory processing
module is displayed on the Anagraph screen. As each page of output is
displayed, the user can direct the interactive interface to disnlay the
next page of output, or to cease displaying the output and return to a

mode where commands can be entered.

The figures in this sectlon were derived from the Anagraph

simulator.




The basic display is a menu of commands from which the user selects
a command by placing the trackball position cursor over the command on
the screen and pressing the trackball ENTER key. The command menu is
shown in Fig. 6.8. Commands selected are echoed under the heading
SELECTED COMMANDS. The seven ~ommands that can be entered are described
in the following paragraphs.

To select the SIMPLIFY command, the user places the trackball
cursor over SIMPLIFY on the screen, and presses the trackball ENTER key.
The command VCG,SIMPLIFY is constructed and echoed on the right half of
the screen, under the heading SELECTED COMMANDS as shown in Fig. 6.9.

When the user selects the PATH command using the trackball, the
interactive interface responds by printing the prompt ENTER PATH on the
screen below the command menu. The user then enters the number of paths
and path list (such as 2,1,2) through the Anagraph keyboard. At this
point the screen appears as in Fig. 6.10. The command VCG,PATH = number
of paths, path list is then constructed and entered in the command buffer

by the interactive interface and echoed on the right half of the screen.

The PATH command causes the selection of a report showing the 'path
to verify," as shown in Fig. 6.11. This report replaces the menu display

on the Anagraph screen.

When the user selects the REPLACE command using the trackball, the
interactive interface responds by printing the prompt ENTER REPLACEMENT
STRING on the screen below the command menu. The user then enters the
replacement string through the keyboard. The interactive interface then

constructs the commands:

VCG,REPLACE
replacement string
*END.
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enters them in the command buffer, and echoes them on the right half of

the screen.

The REPLACE command causes the generation of a report showing the
result of applying the simplification rule to the verification condition
being simplified. This report replaces the menu display on the Anagraph

screen.

When the user selects the EXPRESSION command, using the trackball,
the interactive interface responds by printing the prompt ENTER EXPRESSION
on the screen below the command menu. The user then enters the expression
through the keyboard. The interactive interface then constructs the

commands

VCG,EXPRESSION
expression

*END.,

enters them in the command buffer, and echoes them on the right half of

the screen.

The RXVP command is used to enter commands to the Software Quality
Laboratory which do not appear on the ‘command menu. When the user selects
it, using the trackball, the interactive interface responds by printing
the prompt ENTER COMMAND on the screen bel(w the command menu. The user
then enters the command through the keyboard. The interactive interface
enters the command into the command buffer and echoes it on the right half
of the screen. Any valid Software Quality Laboratory command may be

entered in this fashion.

The reports corresponding to the entered command are produced on

the Anagraph screen.
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The END command is used to close all files, print a final report,
and terminate the execution of the Software Quality Laboratory. When the
user selects it, using the trackball, the interactive interface places

the command in the command buffer and echoes it on the right half of the

screen.

The END command causes the generation of a wrapup report, which
lists the mudules on the library and their attributes, along with statis-

tics on library creation and access.

The GO command causes the interactive interface to transfer control
to the Software Quality Laboratory's command-processing module. All com-
mands that have been previously selected (and echoed on the screen under
SELECTED COMMANDS) will then be executed, and the first page of the re-
sulting reports will be displayed on the Anagraph screen.

As each screenful of Quality Laboratory output is displayed on the
Anagraph, the user is given the option of viewing the next page of output
or returning to the command menu. These options are presunted to the
user by the words NEXT PAGE and MENU at thé bottom of the screen. To
select the next page of output or return to the command menu, the user
piaces the trackball cursor over the appropriate command and presses the
trackball ENTER key. If NEXT PAGE 1s selected and there is no more out-

put, the command menu is displayed.

6.3 VERIFIED PROGRAMS

The formal verification process has evolved from the generation of
verification conditions which required manual simplification to a process

which requires human interaction.

Included in Appendix D are listings of programs for which verifi-
cation conditions have been generated. Also included in a few cases are
the simplified verification conditions and the reduction via the user-

supplied simplification.
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These initial programs were chosen so that comparisons could be
made between the verification conditions that were generated by the
Software Quality Laboratory and similar verification conditions generated
by ot:hers.s-9 It is recognized that others have attempted to have their
conditions automatically reduced to .TRUE., whereas our approach attempts
to present them to a user in readable form so that the user can modify

them. This may be why the output shown in the appendix is more readable.

The first nine programs are from King.5 They were also used by

Deutsch6 and a few by Elspas.7 The tenth program has been used by Elspas.7

The eleventh program has been used by several others.6’9 The twelfth

program is new.

Program TIMES computes an output X = A * B by adding the input
A to a local variable SUM, B times. The local variable Y {is

used as a counter which is initially set to B and then decremented

to zero.

Program DIV computes two outputs: Q, which is the quotient of the
integer division of A by B, and R, which is the remainder of that
division. A and B are inputs.

Program EXPON computes an output 2 = A *#% B by multiplying the
partial result times itself using the binary value of the input B
as found by the MOD function. The local variable X is used as the

partial result and Y is used to find the binary representation for
B.

Program PRIME computes whether the input variable A is a prime
number and sets the output J to a "0" 1f A is prime of a "1" if
A 1s not prime. Testing 1s done by taking the remainder of A
divided by 2 to A -~ 1 using the local counter I.

Program ZERO sets an array A of length N to zero. A is treated
as input and output. N is input. The local variable I is used

as a counter.




|

1C.

Program MAXI searches an array A of length N for the largest element.
This element with the largest value in the array is then swapped
with the element A(N). A is treated as input and output. N is input.
The local variable 1 is used as a counter and the local variable

TEMP 1s used as temporary storage during the swap.

Program SORT1 performs a sort of an array A of length N. Elements
are exchanged using the local variable TEMP. 1 1is a local variable
used as a counter. J is a local variable which when set to 1 indi-
cates a swap was made. J is O when sorting is no longer necessary.

A is used as input and output. N is used as input.

Program MULT2 is a more complex version of the TIMES program which
performs multiplication of A times B whether A or B is negative.
The result is placed in ANS which is an output variable. A and B
are input variables. TEMPA, TEMPB and TANS are used as temporary

variables.

Program SORT2 also performs a sort of the array A of length N. .

The sort is accomplished by finding the largest element in the

rest of array at each iteration. Local variables I, J and K are
used as counters. Local variables M, N and L are used as assertion
counters. Local variable TEMP is used for swapping. A 1is used as

input and output. N is used as input.

Program BINSCH performs a binary search of an array ARRAY of length
LENGTH for the value in X. The element index where X is located
is placed in the output variable LOOKUP. If not found the output
variable ERROR is set to ,TRUE., otherwise it is set to ,FALSE..
ARRAY, X, and LENGTH are treated as input variables. I is a local
variable used as a counter. M and N are local variables used

to delimit the area to be searched each time. SORTED is a function
of an assertion on the array, used to provide a more readable

version of the assumption that the array is SORTED on input.
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11.

12.

Program FIND is an efficient sorting algorithm published by Hoare.24
In this version A 1is the array of length NN which is sorted about
element A(F). A 1is used as input and output. NN and F are used
as input. I, J, M, N are used as counters in the algorithm. P and
Q are used as counters in the assertions. PSORT 1is an assertion
function used to provide a more readable version of the asserfion

that the array is partially sorted.

Program SQX is a square root algorithm using Newton's method to
find an approximation to the square root of the floating point input
variable X . The program is a function where Y 1is used as a

local variable to represent the approximation.
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7 SOFTWARE DEVELOPMENT SYSTEM QUALITY ASSESSMENT

In this section we shall examine the role of high-level languages

in the production of reliable BMD software. Our approach is to use a
language developed for multi-tasking software systems, Concurrent
PASCAL,25 in reprogramming an existing BMD software simulation. The BMD
simulation, GSIM, has been described in previous reports.16 As each
algorithm from GSIM is implemented in Concurrent PASCAL, assertions will
be derived which express the correct behavior of the algorithm. From

N thege assertions we wili derive verification conditions, simplify them,

and prove them correct.

7.1  THE APPLICABILITY OF CONCURRENT PASCAL TO BMD SOFTWARE

We have found GSIM algorithms involving concurrent operations to be
easily constructed in Concurrent PASCAL. However, we have also discovered
certain task sequencing requirements common to BMD software which are not
expressible in Concurrent PASCAL. Before we discuss these, we will
briefly describe the Concurrent PASCAL Monitor and its use in implementing
an example algorithm from GSIM.

The language structure for expressing concurrent operations in
Concurrent PASCAL is the monitor.26 A monitor is a single programming
unit consisting of a shared data structure, local variables, procedures
and/or functions which operate on the shared data structure, Delay and
Continue operations and initialization statements. The monitor which
controls access to the search return data set of GSIM is shown in
Fig. 7.1. The monitor schedules exclusive access to the shared data
structure when a call ig made upon one of the monitor procedures by a

concurrently executing process (task). This scheduling is done by the

virtual machine or operating system routine which implements the monitor.
Access to the monitor is granted on a first come-first served basis. The
procedures which are defined within the monitor are local to the monitor
and have access only to data which is local to the monitor. Variables

which are local to the monitor can only be manipulated by calling the
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el

SRPSMON 8 MONITOR ( LIMIT ¢ INTEGER )

VAR RIND 3 ARBAY(0,,LIMITet]) NF SEARCHRETURN
SENDER, RECEJIVER 1 QUEUE
HEAD, TAIL, LENGTM g INTEGER

! PROCEGURF ENTRY PUT ( RETURN t SEARCHRETURM )
BEGIN
1F LENGTH 5 LIMIT THEN DELAY (SENDER)
RTNQ[TATL) 3= RETURM 3
TAIL 83 (TAIL ¢ 1) MOD LIMIT 3
LENGTH t= LENGTH ¢ 1 ¢
CONTINUE (RECEIVER) 3
ENR (% PUT #)

PANCEDURE ENTRY GET (VAR WETURM § SEARCHRRETURN)Y
BEGIN

1F LENGTH = 0 THEN DELAY (RECEIVER)

RETURN 12 RTHO[READ]

HEAD g2 (HEAD ¢ 1) MOD LIMIT 1@

LENGTH 12 LENGTH = |

CONTINUE (SEHDER)
END (* GET w) 3

REGIN (#» INMITIALIZE =)
HEAD 13 0 3
TAIL 18 0
LENGTH 13 0

END (% SRDS MONITOR w) 3

Figure 7.1. Monitor for Search Return Data Set

monitor procedures. When a process or task which has been given access
to the monitor executes a Delay operation, the task is suspended and
exclusive access to the monitor can be given to another task. Tasks
which have been suspended are reactivated on a first come-first servad
basis when a Continue operation is performed. In summary, monitors
implement mutual exclusion of concurrent tasks when they operate on a
shared data structure by allowing only sequential access to the data
structure. They prevent tasks from performing incorrect operations on
the shared data structure by requiring explicit definitions of the

allowed operations, and synchronize cooperating tasks through Delay and

Continue operations.




-

We will now give an example of a monitor which controls the access
to the data structure shared by concurrent tasks. Figure 7.2 shows how
a verify pulse is generated in response to a search return in GSIM.
Radar returns are placed in the radar returns buffer (RRB) by the channel
controller task. The assimilate radar returns task then classifies the
returns according to type and places all search returns in the search
returns data set (SRDS). The generate verify pulse task generates radar
requests for verify pulses from the search returns and places these
requests in the radar activities queue (RAQ). The generate radar orders
task then generates radar crders from the radar requests. Notice that
the SRDS is accessed by both the assimilate radar returns task and the
generate verify pulse. This 1s the data set we will implement with a

monitor.

Figures 7.1, 7.3 and 7.4 show the Concurrent PASCAL implementation
of the search return data set monitor, the assimilate radar returns pro-
cess, and the generate verify pulse process, respectively. The assimilate
radar returns process 1s a cyclic task which gets radar returns from the
RRB, classifies them as to type and in the case of search returns, places
them in the SRDS using the monitor call SRDS.PUT. The generate verify
returns task is also a cyclic task which retrieves search returns from
the SRDS using the monitor call SRDS.GET and creates radar requests for
the radar activities queue. The SRDS monitor implements a queue of radar
returns using an array data structure. The monitor contains a procedure
to place entries in the queue and another procedure to retrieve entries

from the queue.

It is possible for the assimilate radar returns process and the
generate verify pulse process to attempt to access the SRDS simultaneously
since they are independent tasks and we have made no assumption about
thelr relative speeds. The monitor prevents this from occurring by
allowing only one of the processes to complete a call to a monitor pro-

cedure at one time, Recall that this mutual exclusion property is
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SRDS = SEARCH RETURN DATA SET
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FROM
CHANNEL
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Figure 7.2. Search Return Processing in GSIM




AsaI™ w PuOCESS
(TOTUS 0 TOTOSs s 1 kW ¢ Wk ity g BTNRS ¢ 1a8enL
LR YU YO AT TR Y0 2 U A T AT M I}

VAR DINSKEC, TOTLSube, (YN8 ¢ TwaACKUE('WL )
SHOgLEC 1 AFARCHOE TyWn g
FEYum, g PaDARKE PN

PUPCFRIRE YAKECINSREC
LN B
nrnsg,rrtn g8 OF 170 9
PINKSFTTINE g3 b T VEASTINE » PITRR )
NING O13608 1o WFTPY HARGE « PTITHROICLNGH
tEND (o MAWE (T3S WECURD o)

PRACH Ditiel YANE T TLSIEG

PERTN
AUIR AT SRR & STHRN & 2N I RET-AIRS B AR |
TOTAG LYNEAY 1 Wb TiIha KEAVENS )
1OIN] I THLL 13 =F Tk Py SETYPE )
THINS LYTInh e khgowun,vEASTINE )
tToTRe T TELGF 18 FETOIN RanLt }
TEINS LN AL 18 HE TN RINDUAL

END (e MOxE TCTDS WECEAD o)

REGIN
cveLe
RER, AET ( 9FTUKN )
with BLTIIEN N REGEN
CASE PULSETYPE OF
SEANCH )
HEGIN
SPUT g8 SPOYT e § )
IF 4rapua) s GOD ThEN
WEGI' (o CRFATE A FLTRY [N THE §RDS o)
SHNSWEC hEAVENS 1B HEAMPGS
SLOSHEC JHONRE 93 WANGE )
SFUSSEC ,"EASTIME (3 MEASTINE
SAg . PUT ( SRNSKEL )
K END (0 IF o)
EnE (o SEAwCK PULIE ¢)
\ERTFY ¢
AFATY (e CHEATF FATRIES IN NTDS AND YTDS o)
{ IF NTAGLAL ® GOND TWEN
8tG1™
GHELD g CHIID ¢ 1 g
In & citJI0 o
MARF(TPSOEC 1
VAKFTGTUSKHEC ¢
TRIRS Pty ( TOTDSHEC )
TAUACKELE,RFANEST)
CTDR,PHT ¢ NINSREC ) g @
TUACKF JLE,FFLFASE
END (0 1% 0)
i €4S (o VERIFY PULSE #)
SPECTALSEARCH ¢
BEGIN (s CHREATE FNTRY [% YATDS OR LNTOS o)
IF RINAUAL w GOND THEN
(313 &3
marg TOTORREC
10TAS,PUY { THTDSREE )
| 3]
ELSE (o TRACK LOST #)
pEGIN
tRacuFILE wEQUFSYy
FYL§,MaTen € 10 9 DTOSREC )
TRACY? TLE,ALLFASE
LOYNSNEC gu OTNHALE
EMD (8 ¢ 0)
Ere (o SPECIAL SFARCH PULSE #)
TRafa
REGIN (o CHFATF ENTRIES (M TOTDS o)
vakp TTPSUFC g
TEINS, PLT { TNTOSKEC )
EAR (o THACK PULSE o)
ENP (o CaSL o)
END (e wlTh o)
PNap (0 CYCLE o)
Bun (o ASSIVILATE &ADAN RFTURANG o)

; " Figure 7.3. Assimilate Radar Returns Process

-

155




$S92014 9SIngd AJII2A d3IBILdUIH 4/ 3an8Ty

I (s 4STV1d4 A41E3IA d1vmandd ) UNd
| (#3713A0 #) UNI
(LS4Nu3In) Lid®Civa
t (H)Im ®») gni
{ @ 7 (AdA)IMUJNFNY ) =
LITA 7 (3wl 1SViWmduliflng) » wi!NTIE ¢ 491V )8Z ¢
(A4A) LY MIQd 28 3Ix14Ad38
PomUnLd ¢ ) 23 4nliling
$ SUd-YIa"Na1idn 22 guarivin®1s3Nu3y
§ A4l83IA =8 3daldS ind
§ 1 * dSiIxXiv B3 dasiXN
§ aSixy =1 QI
NiDdw
JU Nenp s fiSANU N Wi
I (nanidd) 439°syes
3113A2
nlV3Y

S TR R A Z LI R HI L]
$ ALIALLDwHwav~ 2 1S3NGIA  avA

$ 0V WIwmSaES § oSums 8 NURIYE 3 YR SS3)uMd 3 39EIA




implicit in the definition of the monitor. The monitor also prevents
either process from attempting to place or retrieve data in storage
locations beyond the length of the queue. For example, in the PUT
procedure, if the queue is full (LENGTH = LIMIT) then the assimilate
radar returns process is delayed until the generate verify pulse process
retrieves a search return from the queue. Similarly, in the GET proce-
dure, the generate verify pulse process is delayed when the queue is
empty (LENGTH = 0) and is only allowed to continue after the assimilate
radar returns process has placed a radar return in the queue. Therefore,
we see that the monitor has been successful in solving the probiem of
exclusive access to the search return data set and at the same time has
synchronized the interaction of the assimilate radar returns process and

the generate verify pulse process.

We shall now use GSIM to illustrate a number of problems that
cannot be solved using the monitor construct. Figure 7.5 depicts the
relationships between the tasks and data structures used in the genera-
tion and processing of radar requests. The generate search pulse,
generate verify pulse and generate track pulse tasks all place requests
for the radar in the radar activities queue (RAQ). The generate radar
orders task takes these requests from the RAQ and generates a radar
schedule satisfying these requests which does not exceed the constraints
of the radar. Unscheduled requests are returned to the RAQ. As will be
explained in the next section, this relationship is an example of the
reader's/writer's problem in concurrent processing. A read operation in
this case removes a request from the queue. There are more writers than
readers; however, in a BMD software system it would be preferable to let
the reader have priority over any of the writers. Suppose we implement
the RAQ with a monitor and consider the case where two of the three
writing processes are awaiting access to the RAQ while the third writer
is using it. If the generate radar orders task makes a read request, it

will have to wait until both write requests have been processed. The

manner in which exclusive access is granted by the monitor (first come-
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first served) prevents the generate radar orders task from getting

access to the RAQ immediately after the writer which is using the queue
has finished. However, since radar time is a scarce resource, we may
not want the generate radar orders task to wait for those tasks which
are generating radar requests. Unfortunately, there is no facility in
the Concurrent PASCAL monitor for implementing this priority

arrangement.

As a second example, consider the fact that we allowed the generate
radar orders task to get radar requests from and put radar requests into
the RAQ. This is perfectly reasonable in this case. Now consider the
search return processing which was depicted in Fig. 7.2. It would not be
reasonable in this case to allow the assimilate radar returns process to
both put and get search returns from the SRDS. There is nothing in the
description of a monitor which protects vs from this programming error.
That is, the monitor comstruct has no mechanism to protect the shared
data structure from being accessed by a process using an improper

operation.

Figure 7.6, which depicts track processing in GSIM illustrates
another problem with the monitor construct. The object track data set
(0TDS) 1is the track file for GSIM. The OIDS is shared by the assimilute
radar returns process which places track records in the OTDS and the
generate track pulse process which processes these track returns and
generates track pulses for the radar. These two processes also share
the temporary object %rack data set which is a queue of radar returns
from which the generate track pulse process matches entries in the OTDS.
The generate track pulse process is allowed to perform three operations
on the track file: match a track record with a radar return, update a
track record, and destroy a track record. However, the monitor imple-
mentation of the OTDS does not allow us to specify the order in which
these operations are to take place. If, due to a programming error in

the generate track pulse process, a destroy operation were to precede a
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match operation, the wrong track record could be destroyed. Although
there are ways in which the monitor procedures may be programmed to check
for an invalid order of operations, there is no way to state these

constraints explicitly in the monitor description.

7.2 CLASSES OF CONCURRENCY
In this section we shall identify several classes of concurrency
problems, relate them to problems that hava been studied previously and

identify the types of concurrency which occur in GSIM.

By studying the types of concurrent brocessing problems discussed
in the computer science lit:erat:ure.z-’"32 we can abstract at least four
dimensions along which to classify these problems. Figure 7.7 shows
these dimensions. From the first two dimensions, the number of processes

which are allowed to access the data structure simultaneously and the

number of shared data structures which each process requires, we can
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identify four problems in concurren* processing. These are summarized

in Fig. 7.8. 1In the case where only one user is allowed exclusive
access to a single shared data structure, we have the mutual exclusion
problem. This problem is typically present in tasks with producer/consumer
relationships. 1If more than one process can be given access to a shared
data structure at a time, we have the problem of mutual exclusion between
classes of processes. Problems of this type usually occur when processes
can be classified into those which read from a data base and those which
write into a data tase. If a single process requires more than one
shared data structure at a time, then we have a cooperation problem.
These are resource allocation problems in which the major error to .be
avoided is deadlock. Finally if more than one process can access a
shared data structure simultaneously and each process must access more

than one shared data structure, we have a problem in class cooperation.

NUMBER OF SIMULTANEOUS USERS

H >1

AN-48521

MUTUAL EXCLUSION
1| MUTUAL EXCLUSION OF CLASSES

>1 COOPERATION CLASS COOPERATION

NUMBER OF DATA STRUCTURES REQUIRED

Figure 7.8. Problems in Concurrent Processing




e

The operation a process performs on a shared data structure is
another dimension by which concurrent programming problems can be
classified. 1In the most general sense, a process can create (write) an
element in a data structure; read an element of a data structure;
change an element of a data structure; or destroy (consume) an element

of a data structure.

Lastly, the scheduling rule which we use to allocate exclusive
access to the data structure can be used to differentiate between types
of concurrent programming problems. In the case of the monitor, the
processes which request access to the data structure are given access to
it on a first come~first served basis. However, as we have shown

previously, other:scheduling rules may be desired.

From this simple classification scheme for concurrent programming
problems, we can identify which problems occur in GSIM. Figure 7.9 shows
the GSIM tactical software processes and the data sets that they access,
and Fig. 7.10 classifies the ways in which each data structure is used.
The SRDS and TOTDS are producer/consumer problems and were easily imple-
mented using the monitor construct. The RAQ and OTDS however were data
sets for which we identified difficulties in the. monitor implementation.
These data sets exhibit requiremehis for priofity access and multiple
operations, respectively. There are a number of examples of concurrent
processing which do not occur in GSIM, however, wé expect that all of the
types of concurrency will be present in a BMD software system. For
example, if there were multiple processes which assimilated radar returns
and a number of processes which generated verify pulses, we would have
classified the SRDS as a problem of mutual exclusion of classes with no

priority.

7.3  ASSERTIONS FOR CONCURRENT PASCAL MONITORS

In this section we develop assertions for the search return data

set monitor in GSIM. But first we identify several general requirements
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aﬁ‘ for the correctness of any concurrent processing implementation. From
these we define correctness criteria for the class of problem the SRDS
illustrates. Finally we describe @ symbolic execution technique for

deriving verification conditions from these assertions.

In Ref. 27, Dijkstra identifies four criteria for the correctness

of a solution to a mutual exclusion problem. They are:

° Mutual exclusion - only one process at a time may have

access to a shared data structure

° No deadlock - when a shared resource is requested simulta-
neously by several processes, it must be granted to one of

them within a finite time

e . No starvation - when a process acquires a shared resource,
the process must release it again within a finite time
B ° No busy waiting - a process should not consume processing

time while it is waiting to acquire a shared resource

In addition, our solution should not make any assumptions about the
relative speed of the processes since in general we cannot predict the

order in which processes will be executed.

The search return data set has been identified as the shared data
structure of a producer/consumer problem. To prove the correctness of
our monitor solurion we must show that séveral assumptions are not
violated. The first of these is that the producer and consumer are
prevented from accessing the queue simultaneously. Since this is an
j implicit assumption when the queue is implemented using a monitor, we

cannot prove this assumption wilhout appealing to how the monitor con-

struct is implemented. Secondly, we must show that the data structure
behaves as a queue. That is, mescages cannot be taken from the queue
when it is empty, a new message cannot be placed in the queue irhen it -

is full and that any message placed in the queue will eventually be

166

it A RN A N AR I




retrieved from the queue. Thirdly, we must prove the "no hlocking"
criterion: both the producer and consumer cannot be walting for each
other simultaneously. For the monitor implementation, this implies that
for every DELAY statement in a monitor procedure there must exist a
corresponding CONTINUE statement and that if any DELAY statement has been
executed, then the path which contains the corresponding CONTINUE state-
ment can be executed to remove the DELAY. Finally, we must show that
neither the producer nor consumer can continually overtake the other by
always gaining access to the shared data structure, that is, that the

scheduling of the monitor is fair.

We will now derive the assertions which describe the correct
behavior of the SRDS monitor. The first assertion is the invariant for
the correct operation of the queue. As shown in Fig. 7.1, the queue is
implemented by an array of search returns whose maximum index is LIMIT
- 1. The =2lement at the front of the queue is indicated by the index
HEAD and the element at the end of the queue is indicated by the index
TAIL. Since elements are inserted into the array in a circular manner
(after an element has been entered in position LIMIT - 1 the next element
will be entered in position 0), the length of the queue is given by the

expression:
LENGTH = ABS(TAIL - HEAD) + 1

Therefore, the invariant assertion for correct operation of the queue is
0 < LENGTH < LIMIT AND LENGTH = ABS(TAIL - HEAD) + 1

This assertion must always be true in the monitor.

We can however make stronger statements concerning the number of
elements in the queue after DELAY statements and before CONTINUE state-
ments., Figure 7.11 shows the SRDS monitor with comments which indicate
the conditions which must be true after DELAY and before the CONTINUE

statements in the PUT and GET precedures. In the PUT procedure, the
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o
sending process is delayed if the queue is full. This process cannot be
resumed until the GET procedure is called and the CONTINUE operation is
executed indicating at least one empty position in the queue. Conversely,
the process which calls the GET procedure is delayed if the queue is
empty. It cannot be restarted until the PUT procedure is called and its
CONTINUE operation is executed signaling at least one element In the
queue. The assertions which must be placed after the DELAY statements
and before the CONTINUE statements in order to express these relation-
ships are shown in Fig. 7.12. In general, the assertions which must

surround a DELAY statement can be expressed as
{I A 1B} DELAY {I A B}

and those which surround a CONTINUE statement as
{I A B} CONTINUE {I}

In these assertions, B expresses the condition which must be satisfied
before a task can be reactivated following a DELAY operation. The
assertion I (the monitor invariant) must be tfue whenever the locus of
control changes in the monitor. Since any monitor procedure can be
executed after a DELAY cperation, this invariant must be true on entry

to any monitor procedure. In the case of the SRDS monitor, the ilavariant
is simply our first expression describing the correct operation of the

queue.

The final assertion in each monitor procedure must describe what
result the execution of the procedure had upon the queue. For the PUT

procedure, this is that an element is entered at the tail of the queue

RTNQ [ABS (HEAD - LENGTH)] = RETURN

Similarly in the GET procedure, the assertion must state that an element

is retrieved from the head of the queue

RETURN = RTNQ [ABS (TAIL - LENGTH)]

i The monitor for the search return data set, complete with its assertioms

|
g

is shown in Fig. 7.13.
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To generate verification counditions, we must perform symbolic
execution over all paths between any two assertious. For all paths
in the monitor except those containing DELAY statements, this is the
same method as we have used for other programs. After a DELAY statement,
however, any other monitor procedure may be executed. So, in the general
case, we must generate verification conditions over all paths in all

other monitors! Fortunately, we can use the procedure we have developed

~ for subroutine calls to make this problem less difficult.

Since the verification condition generator and simplifier in the °
Software Quality Laboratory cannot as yet analyze Concurrent PASCAL, we
will not show all the verification conditions and proofs for the SRDS
monitor generated automatically. However, as a manually derived example,
we will show that the "no blocking" criterion holds for thiz wonitor.
First assume that the PUT procedure has been called and that the queue is
full. Therefore the process which called the PUT procedure is delayed
and the condition

LENGTH = LIMIT
is true. The verification condition at the DELAY statement is therefore

0 < LENGTH = ABS (TAIL - HEAD) + 1 < LIMIT
A LENCTH = LIMIT

which simplifies to

0 < LIMIT = ABS (TAIL - HEAD) + 1 < LIMIT
and finally gives the expression

0 < LIMIT = ABS (TAIL - HEAD) + 1

Since there is only one sending process, the only monitor procedure which
can be called next is the GET procedure. Examining the paths in the GET
procedure we find that the process which invokes it can be delayed 1f the

condition

LENGTH = 0




is true. The verification condition at the DELAY statement in the GET

procedure is

0 < LENGTH = ABS (TAIL - HEAD) + 1 < LIMIT A LENGTH = 0
which simplifies to

0 = ABS (TAIL - HEAD) = 1 < LIMIT

Both of these expressions must be true for each process to b: writing on
the other and since the expression ABS (TAIL - HEAD) + 1 appears in

both verification conditions we obtain the combined expression

0 = ABS (TAIL - HEAD) + 1 = LIMIT i
which implies that

LIMIT = 0

Since LIMIT is the length of the queue, the two processes cannot block

each other unless the queue has a length of zero.
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APPENDIX A

GRAMMAR DESCRIPTION FOR VERIFIABLE PASCAL

In the listing which follows is the syntactic description of
Verifiable PASCAL as presented to the Compiler Writing System (CWS).19
The imbedded semantic actions used to complete the Verifiable PASCAL

Preprocessor have been removed from the data for clarity and brevity.

In preparing this grammar, close compatibility with the distributed
version of the CDC 6000 standard PASCAL compiler was maintained. For

example, the names of standard procedures and functions for that compiler

are defined in the grammar, and are treated by the preprocessor as

reserved identifiers.

In order to permit more effective error recovery in the generated
preprocessor the grammar input to CWS departs slightly from the descrip-
tion shown in the syntax diagrams (see Sec. 3.2.1). For example, the
rule for statement list <STALIST> does not require a semicolon to separate

consecutive statements, but the syntax diagram does.

The grammar is stated as a set of rules in a form similar to BNF:
non-terminal = list of elements
As used in the grammar for Verifiable PASCAL, the elements are:
IDENT, a PASCAIL identifier
ENTIER, a PASCAL integer
REEL, a PASCAL real number
CRAINE, a PASCAL character string

VIDE, an empty element




FDF, the end-of-file

= and =, delimiters for a reserved word or a reserved identifier
< and >, delimiters for a non-terminal identifier

V, to separate alternatives

[ and }, to group elements

%[ and ]*, to signify that zero or more of the enclosed may occur

+[ and ]+, to signify that one or more of the enclosed occurs

=, to separate the left part of the rule for a non-terminal from

the right part

$, to signify the end of a rule

The grammar is shown in Fig. A.1l preceded by a sequence of options
for the first two phases of CWS. Rules of grammar begin after the symbol
REGLE and terminate with the symbol FIN.




PROGRAMME ELHALGEN.

1 DEBUT
2 PASCALV

3 OFTICHS

4 FOICTICN
S FTERPINA
6 GRAMVEIRF
7 RFOUITE
8 LLUN
9

11 OPTICHS

11 ANGLEIS

12 MOTSCLES

13 OPERBTEURS

14 RESEPVES

15 PRCCSYFACLCAPTURE
16 BLAICSCRCUPES

17 UTILICERTY 10

18 MAXICENT 9937

19 LCNGZCNECH4 000

20 LCNGCHEINESD

21 MAXKECHIFF13

22 DELCOMMENT<ws

23 8

26 TERMIMNAL

25 JI0ENT

25 ENTIER

t44 REEL ’
28 CHEINE

29 FOF

30 REGLE

31 <AXIOK> =

32 <PROGRAM> FOF :
33  §

34 <PROGREN> = .

35 { € SOPTIONSS <OPTIONLISTY» ) v VIDE )

36 { [ SPROGRAMZI <PROGHEAD>» ) v VIDE )

3 <BLOCK» ZoZ

38 s

39 <OPTIOMLIST> =

0 ®f <SWITCH» == <OPTION> )°®

(3 $

k2 <SWITCH>» =

43 ZASSERTS v ZUNITSZ v ZCONTROLZ v ZRIGHTSE
b 3 ;
45 <OPTICN> =

(X3 ZONS v ZOFFS v SASISE

%4 1

b8 <PRCGHEAD> =

.9 IDENT <FILELIST> 333

50 <

51 <FILELIST» =

52 S(Z <FILES» )=

53 3

St <FILES» =

535 <FILEID> ®f 2,5 <FILEID> )°®
56 s
57 <FILEID> =
58 { IDENY [ 3°Z v VIOE ) ) v SINPUTS v ZOUTPUTZ
59 s
] Figure A.1. Grammar for Verifiable PASCAL




51 <«BLOCV>» =

a1 U [ ZLABELZ <LABELPART> ) v VIDE )
82 { ( ZCONSTZ <«CONSTPART } v VIODE )
63 [ I ZTYPEZ <TYPEPART> ) v VIOE )
b4 { ( SVARZ <VARPART» ) v VIDE )
65 { ®( [ ZPROCEDURES <PROCPARY> J v [ ZFUNCTIONEZ <FUNCPART> ) }* ]
[ 1] <300Y»
X4 <
64 «BODY> =
63 ZBEGINZ <STALIST>» ZENDZ
70 $
71 <LABELPART> =
72 *{ ENTIER v 2,3 v 2%Z )*
73 s
T4 <CONSTPART> =
75 $( ¢CONSTDEC» v 232 )*
76 h
77 <CONSTOEC> =
78 IOENT == <CONSTANT>» <UNITSDEC»>
73 s
40 <CONSTANT> =
[} <CONSTA» v JOENT
82 3
83 <CONSTA>» =
[ CHAINE v STRUEEZ v SFALSES v TMAXINTZ v SNILS v ENTIER v REEL
15 v { { Se2 v T2 ) [ ENTIER v REEL v IDENT } )
85 3
87 SUNITSOEC> =
[.X.] ., [ ZUNITSE <UNITSTERM>» ) v VIDE
89 $
93 <UNITSTERM> =
91 CUNTTSFACTOR® ®( { Z%2 v Z/3 ) <UNITSFACTOR> )¢
92 $
23 <UNITSFACTOR> =
9% I JOENT v ENTIER v REEL v [ S(Z <UNITSTERM» 2)Z 1 )
g 93 e[ Z®*Z <UNITSPOWER> )*
9% H
97 <UNITSFOWFR> =
k1] IJENT v ENMTIER
93 s
100 <TYPEPART> =
101 *( <TYPEDEC>» v =33 }*
102
133 <TYPEQEC> =
104 TJENT Z=Z <TYPE>»
135 s
106 <TYPE> =
107 { [ ZPACKEDZ v VINE !
1038 £ [ SARRAYZ <ARRAYOFC» 1
109 v | ZFILES Z0FZ <TYPE» )
it v { ZSFGMENTEDZ SFILEZ ZOFZ «<TYPE>» )
111 v { ZSETZ SO0FZ <SIMPLETYPE> )
112 v { ZRECCROT <«FIELOLIST> ZENDE )} | )
113 v { ZeZ JDENT )
11le v <SIMPLETYPE>
§ 113 3
1 115 <ARRAYDEC» =
3 117 Z{2 <SIMPLETYPE> ®( =, <SIMPLETYPE> )® Z1Z ZO0FZ <TYPE>
118

Figure A.1 (Contd.) :

A4

# BRI LB bR L




113 <SIMFLETYPE> =
I ZINTEGERZI v ZREALT v ZTEXTZ v zCHARZ v ZROOLEANZ v ZALFAZ

120
121 v [ 2tz <IOLIST> 233 1
122 v { <CONSTA>» Z,.2 <CONSTANT> ]

123 v IDENT € [ ZSeeZ <CONSTANT> ) v VIDE ) )
12% <UNITSDEC»
125 ]
126 <FJIELCLIST> =
127 { <FIXEDPRRTY>» { [ SCASES <«VARIANTPART>» ) v VIOE ) )
128 v [ ¢ { SCASEZ <VARIANTPARY> ] v VIODE ) )
123 3
130 <FIXECFAPT> =
131 +{ <FIXEDDEC» v Z3Z 1¢
132 s
133 <FIXEQDEC> =
136 <IOLIST> § Z8Z v Z%UZ ) <TYPE>
135 $
135 <VARIANTPART> =
137 TOENT £ [ € Zt2 v Z%Z ) IDENT ) v VIDE 1 ZOFZ <CASE>
138 *[ 2Z0FZ <CASE» 1+
139 3
140 <CASE>» =
161 CCONSTANT> ®[ S, «CONSTANT> J® { 382 v %S ) Z(Z <FIELOLIST» 2)=
162 $
163 <VARPLRT> =
luée *{ <«VARDEC>» v =3z )¢
165 3
146 CVARDECL> =
167 <IDLIST>» [ 82 v ZXT )} <TYPE>»
148 ]
149 <IDLIST> =
150 IDENT o =,% IOENT )*

' 151 5
152 <PRCCPART> =
153 <PROCHEAD> Z3Z <PROCBODY>» Z3=
156 5
155 <«FUNCFARY> = .
156 <PROCHEAD> { =12 v ZU3 }
157 [ IDENT v ZINTEGERZ v ZBOOLEANZ v ZREALZ v ZCHARZ v ZALFAE ]
158 232 <PROCBODOY» =32
159 3
150 <PROCHEAD> =
161 T0ENT <PARAMLIST>
162 s
163 <PRCCLCOY> =
Y SFORTRANS v ZEXTERNZ v TFORWARDE v <BLOCK>
165 ]
165 CFARARMLIST> =
167 { Z(Z <PARAM3> Z)Z ) v VIOE
168
163 <PARAFS> =
170 CPARAM» [ ZI1Z <PARAM» )¥

i 171 s

172 <PARAM> = .
173 { ZPROCEDUREZ «IDLISY> )
176 v { [ SFUNCTIONS v ZVARE v VIDE ) <IOLIST» [ =8z v 2UZ )
175 { IDENY v ZINTEGERE v ZBOOLEANT v ZREALZ v ZCHARZ v ZALFAZ v ZTEXTZ ] )
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APPENDIX B

TRANSLATION TEMPLATES FOR VERIFIABLE PASCAL

The templates for translating Verifiable PASCAL control structures
and executable assertions are outlined below. Where appropriate, keywords
are retained in the translated text as comments (e.g., ENDIF becomes

(*ENDIF*)). Original comments are suppressed.

For the option ASSERT = ON, the following variable declaration

statement is inserted into the VAR group of each module:

ASSERT : BOOLEAN

If a module has no VAR group, one is inserted automatically.

For a Boolean function which contains only assertion statements,
an assignment statement 1g generated at the end of the statement list

for the value of the function:

function name := ASSERT

The templates shown below are valid only for an assertion expression

which does not contain another assertion expression as a subexpression.




Statement Source Translated Source
IF IT expression THEN IF expression THEN
statement list BEGIN statement list
ORIF expression THEN END (*ORIF*)
statement list ELSE IF expression THEN
BEGIN statement list
ELSE END
statement list ELSE
BEGIN statement list
ENDIF END (*ENDIF*)
CASE CASE expression OF CASE expression OF
case label list:
statement list BEGIN statement list END
OF case label list: ; (XOF%) case label list:
statement list BEGIN statement list END
END CASE END (*END CASE*)
WHILE WHILE expression IO WHILE expression DO
statement list BEGIN statement list
END WHILE END (*END WHILE*)
FOR FOR control variable FOR control variable
:= for list DO i= for list DO
statement list BEGIN statement list
END FOR END (*END FOR*)
WITH WITH variable list DO WITH variable list DO
statement list BEGIN statement list
END WITH END (*END WITH¥*)
INITIAL, INITIAL (*keyword*) assertion expression
ASSERT, ASSERT ssertion code;
expression
FINAL FINAL

bt o i 11

(without fail clause)

FAIlL statement list
END FAIL

1F NOT ASSERT THEN
WRITELN (‘*ASSERT FALSE
AT TEXT LINE statement
number FOR STATEMENT

AT module statement')

IF NOT ASSERT THEN
(*FAT1*) BEGIN
statement list

END (*END FAIL%)

B-2




first order expression

assertion p AND q ASSERT := p AND q
expression

p OR q ASSERT := p OR q

P =>4 ASSERT :=p;
IF ASSERT THEN
BEGIN
ASSERT := q
END
ELSE

ASSERT := TRUE

ALL ({ IN m TO n IS p) ASSERT := TRUE; 1 := m;
WHILE (1 <= n) AND ASSERT DO
BEGIN ASSERT := p;
1 :=1 + 1 END

ALL (1 IN m DOWNTO n IS p)  ASSERT := TRUE; i := m;
WHILE (i >= n) AND ASSERT DO
BEGIN ASSERT := p;
1 :=1 -1 END

SOME ({ IN m TO n IS p) ASSERT := FALSE; 1 := m;
WHILE (i <= n) AND NOT ASSERT DO
BEGIN ASSERT := p;
i:=1+1END

SOME (1 IN m DOWNTO n IS p)  ASSERT := FALSE; 1 := m;
WHILE (1 >= n) AND NOT ASSERT DO
BEGIN ASSERT := p;
i:=14-1END

*

Templates are valid for only where p and q are PASCAL expressions
of Boolean type, 1 {8 a PASCAL integer variable, and m and n

are PASCAL expressions of integer type.




APPENDIX C

TRANSLATION TEMPLATES FOR IFTRAN WITH ASSERTIONS

The IFTRAN preprocessor recogrnizes a set of assertion statements
which can be translated to compilable FORTRAN and executed. The default
translation of IFTRAN assertions is into FORTRAN comments. This section

describes the IFTRAN commands which cause executable assertion translation.

The executable form of the INPUT and QUTPUT statements writes the
current values of all variables in their variable lists. Thus, the INPUT
(OUTPUT) statement prints input (output) variables of a routine when used
as described in Sec. 3.2. The commands associated with INPUT and OUTPUT

statements are

IFTRAN COMMAND FUNCTION

TRAC Trace input and output values

TROF Resume default mode of no tracing

UNIT name Use as output unit the FORTRAN variable or

constant name

Figure C.1 is an example of a subroutine which uses the trace commands to

indicate its input and output values whenever it is executed.

The executable form of INITIAL, FINAL, and ASSERT statements evalu-
ates the first-order logic expression asserted with current valu2s of
program variables. If the expression is false, an error message is
printed and any associated FAIL BLOCK is executed. The syntax of INITIAL,
FINAL, and ASSERT statements with or without FAIL clauses is defined in
Sec. 3.3. The commands associated with ENTRY, EXIT, and ASSERT statements

are

C-1




%4 IFTRAN COMMAND FUNCTION
ASON Check assertions for validity during
execution
ASOF Resume default mode of no checking
UNIT name Use the FORTRAN variable or constant NAME

as output unit

MODN name Provides the name of a routine which has

ENTRY, EXIT, or ASSERT statements

The "ASON" and "ASOF" and "UNIT" commands are global commands in
that they refer to more than one routine. The 'MCDN'" command is local
to an individual routine. It can occur anywhere that a logical declara- /
tion statement is legal in FORTRAN., Deck specific executable assertion
checking is turned on by the "MODN" command. An example of a subroutine

which will produce exception reports when executed is given in Fig. C.2

The executable code for each type of assertion expression is given

in Fig. C.3.

|




¥

SUBRGUTINE MLTPLY(AB4CoN)
CTRAC
CUNIT LuULT
CIMENSICIN A(1e1)oB(141)eCt101)
LATA LOLT /&7
INPLT(NOALB)
LLl(Izlen)
. LGCu=1eN)
. a INvOKE( COMPUTE NEW ARRAY ELENEMNT )
. tNU 00
EMD ¢O

ELOCKU COUNPUTE NEw ARRAY ELEMENT )
* s H 0.

q LO(K=1eN)

D . S =2 8§ ¢+ A(IeK) » B(K.J)

. ENG DO

. Cllevd) = 8§

tnD LLUCK

CuTPULTIC)

RETURN

EnD

Figure C.1l. Trace Commands

FUNCTIUN SQRT(A)
CASON
CMODN SGRT
CUNIT Loul
CATA LOUT re/
INITIALG A LGTe 0 )
A = A
WHILE( ABS(X=A/X) «GT, 1.E-6 )
. X = (x ¢ A/X)/2
END wHILE
SGRT = X
RETURN
END

Figure C.2. Executable Assertion Commands
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ASSERTION EXPRESSION
(P .AND. Q)

(P .OR. Q)

(P .IMP. Q)

(ALL I IN (1,N) (P))

(SOME I IN (1,N) (P))

ASSERT = P

IF (ASSERT)
ASSERT = Q

ENDIF

ASSERT = P

IF (.NOT. ASSERT)
ASSERT = Q

ENDIF

ASSERT = P
IF (ASSERT)
ASSERT
ELSE
ASSERT
ENDIF

"
=)

.TRUE.

ASSERT = .TRUE.

I=]
WHILE (I .LE. N .AND. ASSERT)
ASSERT = P
IF (ASSERT) I = 1 +
ENDWHILE
I=1
(1 .GT. N .OR. ASSERT)
ASSERT = P |
IF (.NOT. ASSERT) I =1 + 1
UNTIL

(I .GT. N .OR. ASSERT)

Figure C.3. Translation Templates for IFTRAN Assertions
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VERIFICATION OF TIMES




CCNTENTS OF FILE/COMMAND PRIGR TO STARTUP OPERATION

tw LIBRAKRY = TLMF,
SIART JLANGUAGE=IF TRAN,
gagic,

FUR ALL MCUULES.
SIRUCTURAL .

PHINT srOCULL
VLG'pA1H=201'2

VLG «REPLACE,

P +GE, 1 =68 oG'. 0
stND,

VEG 1 FATHZ2+143

VLG PATRZZ24242

VLG «HREF|ACE.,

Y 674 1 5 Y L6GEs 2
‘thc.
VLGPATHZ24243
ENC FCR,

ENC.,

VCGePATHRZ 102 SUBROUTINE TIMES t Ae Be X |
LINE PATH SOURCE TEXT

1 SUBROUTINE TIMES ( Ay Be X )
11 INITIAL ( 8 «GE. 0 )
12 SUM = 0 :
13 Yy=@
15 WHILE | Y «NEo 0 )
18 ( 1) o ASSERT ( SUM ,EG, A » ( B « Y ) +ANCs Y +GE, 0 )

VERIFICATIUN CUNCITICN SUBROUTINE TIMES ( A« By X )

LILE  VERIFICATICN CONDIYION'

11 B J6Le O
ANU
15 B oNEs 0

...-----.-.- anths XY L L Y T L P YL Yy ey F Y Y TP Y AL L L Y L Y Y X ¥

ls 0 ¢4 A EQe A® (B =« (B =1 ) ) ,aND, B a1 (GE, 0




VCGPATH=2 1102 SUBROUTINE TIMES ( As By X )

CLALSE VERIFICATION CUNDITION
1 B +6Ts 0

emecccmanmmc [MPLIES ==®ers=se-sceccecsccacccncncccnasaasnecacemaranane
2 B «GEs 2

RLLE B «GEe 1 =

REPLACE B +GE. 13 3

VCGREPLACE., SUBHOUTINE TIMES ¢ Av He X )

FROCF OF VERIFICATICWN CORDITION COMPLLTED

VEGePATHZ24103 SUBROUTIKE TIMES ( Ao Be X )

LIk PATH SUUHCE TEXT

1 SUBROUTINE TIvES ( Ay B4 X )
11 INATIAL ( B o«GEs 0 )
12 SuM = 0
13 Y=8
15 WHILE (Y oNEs 0 )
21 FINAL ( & «EWs A ®» B )

VERIFICATIUN CUNCITICN SUBRCUTINE TIMES ( Ay Be X )
LINE VERIFICATICN CCACITION
11 B JbEe U
ANU
15 8 JEue O

ovTausgugees I“PLlLs YT T T LT L E T L L LT 7Y Py aupaipipipsgmpepspepmpepep Y TRy SR Y R Y

21 0 «ECG. A o B

VEGPATHS20143 SUBROUTINE TIMES ( A By X )

PROOF OF VERJFICATION CONDITION COMPLETED




VLGelATHEZ2 1 222 SUBROUTINE TIMES ( A
LINE PATH SUUKCE TEXT

15 wHILE € Y ohby 0 )

lé e SUM = SUM ¢+ A

17 « Y 2Y -1

18 e ASSERT ( SUM ,EW. A = ( B = Y ) «ANDe Y +GLs 0 )
19 - ENUWHILE

1% wHILE (Y oNE, 0 )

18 o ASSLRYT ( SUM sEue A % ( B = Y ) ¢ANCe Y +GEe 0 )

VERIFICATION CUNLITICN SUBROUTINE TIMES ( A
LINE VERIFICATIGH CUNDLTLON
1% Y NEo U
AND
SUM ¢+ A JEQ, A ® { B 2 (Y @« 1 ) ) oANLe ¥ = 1 oGEo O
AND
13 Y = 1 NEW O
ctcarencene INPLIES e=recccmccercecmsccccnqmnncasrsnccantcasnccnsncnns

18 SUM*A#A.EG.!&‘(B-(Y-I-I)).AND-Y-I-loGE.O

VCG1FATHZ20202 SUBROUTINE TIMES ( As By x )

CLAUSE VERIFICATION CCNDITIOM
1 Y oGTo 1
AND
2 = (AeB ) ¢ A2y )+ SUM JEQs O
cencvevaces IMPLIES SFamSeebm s st me s am e Lt SRR S e R e s SRR e S
3 Y ob. 2
RLLE Y oGTe 1 8 Y «GE. 2
REPLACE Y +6Ta 1 3 Y L6E., 2

VCGREPLACE, SUBROUTINE TIMES ( As Be X )

PROCF OF VERIFICATLON CONDITION COMPLETED




VEG'PATH=24243 SUBROUTINE TIMES ( A By X )
LINE PATH SUUKCE TEXT

15 wHILL € Y oiks 0 )

16 e SUNM = SUV + A

17 e Y 2Y =]

18 e ASSLRYT ( SUM JEue A ® ( B = Y ) ¢ANCe Y «6E. 0 )
19 ENUaHILE

18 WHILE (Y oNt, 0 )

21 FINAL ( % otW, A ¢ B )

VERIFICATION CUNCITICN SUBKOUTINE TINLS ( A By X )
LINE VLRIFICATICON CONCITION
18 Y oNte U
ANU
18 SUM + A (EQ, A ®» L B = (Y @« 1 ) ) 4ANDe ¥ = 1 oGE+ 0
AND
18 Y =1 +EGe O
cscemceacen INPLILS ====ecccascmccarcancaccacencsccansestcsccnncacaan

21 SUM + A ECG, A » 8

VEGPATHE242+3 SUBROUTINE TIMLS ¢ Ae By x )

PROCF OF VERIFICATION CONDITION COMPLETED




w

VERIFICATION OF DIV
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CLLIER TS WF FILE/ZCOMNANEG PRICR TU STARTUP GPERATION

New LIHMRARY = TEMP,
SIART oL ANGUALE=TIFTIRAN,
{gAS]C,

FUR ALL PCLULES.
SIRLCTURAL .

PRINTWvCLLLE
VEGWPATHEZZ102
VEGWPATE=C 103
VLGs PATHZZ 42,42
VEGeHATFSR0g 0 8
£/ C FON,
ENCo
VOC o PATRH=C ol 0 g SUEKGUTINE DIv ( Ay By @y R )
LI BATH SuunChk TCXT
1 SULROUTINE DIv ( Ay Be Qo R )

v INATIAL ( A oGEe O eAlTe U oGE, 0 )

11 e =0

1¢ kK= A

138 aHILL ( K oGE, B )

4 (1) o ASSERT ¢ A oEGe ¢ & B + i sANDe R +GEs 0 )
VERIFICATICHK CunLiITICH SUBRCUTINE CIv ( Ay Be Gy R )

LINE VENIFICATICH CONGITION
19 A elne U oA Ce B '6;0 0
ANU
13 A «GE. b
. etescescces LUHFLILS se==c~ecaccecscccrcncccnnncnsnscs,mrmsccnssonncnan

14 A osEuwe ( O o B ) ¢ A ¢ANCe A +GE. O

§ VEGoFATH=2v102 SUBROUTINE DIV ( Ay By Q¢ R )
i
!g

PROLF ULF VEHLIFLICATACH JUNCLITIUN COMPLLIEL

: : p-21

1 - s RBERA A k), Gl st (.1
s




{ VECvPATH=Z2e1 ¢ 3 SUBRCUTINE DIv ( Ay By Q4 R }

LIrt f-Alh suLnCE TEaTl

1 SUURUUITINRE UlIv € Ay S0 Go K )

1y 1dTinal € A oGEe U eANCe 5 «GE. 0 )

11 «w =0

12 h 2 A

13 wHILE t n «Ghe U ) ~

18 FLicsAL ( A oblyy O # B ¢« R ¢ANCe 0 oLEe H oANDs R LT, B

VERIFICATION CULLITICH SUBHOUTINE DIV ( As Bs Q4 R )

Llie VLRIFICATION CCNCITIOM
10 A subke @ eANDe B ooE. 0
ANL
13 A LT, &
sveccascans [uFLIES ~ewevreccnccrnccccncsccnnnerreccracanernnesncunene

le A CEG. ( 0 » B , + A 'A"tc' Q OLEO A OANGO A OL’. B

veGPATHE201e3 SUBHGUTIKE DIv ( As By Q4 R )

Pt.CCF COF VERIFICATION CONCITION COMFLETED

JCly FATFS24242 SUEROUTIKE DIv ( Ae Be Gy R )
L1ttt ‘ Paulh SuLHLL TEAT
. 13 whill ( K +Gke B )
k 14 (1) o ASSERT { A oLés W » B ¢+ R oANDe R GEe 0 )
iS 1) « 636
le { 1’ . R = h - 8
17 ahibnHlIbE
13 whilt { R <GE, B )
14 ¢ 1) o ASSERT ( A «EGe @ 8 B + K oANDe R oGEe 0 )
| |
)
| . D-22




, ‘ VERIFICATICL LLlLITIC. SUBIRGUTIRE OIv € ny By Gy R )

LILE Ve RIFICATION CONCLTLIOUN

12 K oCEo L
ANU

1y B siue (W 2 0 ) ¢+ K AnCe K fGE. 0
Al |

13 R = b «GEo &

et smCae,ane l.\,')L‘LS P T LT T Y R Y T TS PRy e e e Y L P YT T Y Y TS

14 A sbuwe ( ( 4 + 1 ) » B )+ R «8 AlDe R = 8 «GE. O

VEGer FATh=Z 204 SUEKRCLT LI DIV ( 4o Be Ge R )

FrOLF CF VEKIFICATLON CONCITION CUMPLETEL

S P IOk | SULBROUTIRE LIV ( ae By B4 R )
Ll e FALE stinCe 1EX1
f 1s coahIlE U R W6ke 4 )
y M3 . ASSERT U A sEUe G % B # K enhDe R 2GEs 0 )
r « W=z <+ 1
i (1) e H z K -8B
17 thNLnhILe
3 pHALE ( R oGEe B )
18 FINAL ( A oEude Q@ # B ¢ R oANDe U oeLEe K ¢ANDe R +LT, B
VERIFICATIUN CCNCITICA . SUERCUTINE DIV ( Ae By Qy R )
Liig VEREELCATICH CONCATLCN

i3 R «GEe E
ARG

14 A Jbbe QO ) + R ¢ANDe K «GEs O
Al

13 R = o ¢LTe ©

wteeronnane [NMPLILS werccvcccncocntrcvnanruncrrcceneraa et onancsccanane

18 A sblUe § £ @ ¢+ 1 ) o€ ) + K =B oANDe O ¢LEe R = B «ANDe R = B oLTe B

i D-23




YyCGoF ATHZ 1203 SUBROUTINE LIV ( Ay By Q4 R )

PRCCF GF VERIFICATIUW CCACITION COMPLETED




VERIFICATION OF BINSCH

N ||
t
i 5
’ 1 ‘ D-25
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CONTENTS OF FILE/COMMAND PRIONH TO STARTUP CPERATION

SIAKTLALGUAGE=]FYRAN,

gaslc,

VULLLE=(FINSCHY)

StrFuCiunat,

PNINT NCLULE .

FILEPAME WLOG=QUTPULT

VEGef'ATHh=2 el 48

VEGIFATRT20103

VEGFATHZC 1348

VLGeFATHEC 0309

VCGHEPLACE,

EHPCR = L TRUE,

(1 Y N9

VEGPATH=24349

VLG REPLACE,

ERFCR = ,FALSE,

sttt

VEGIPATHES 20402

FXY oLT, 0 = PX1 oLTe =1 0R, PX1 ,EQ, =}
sthCo

vEGsAXICV,

FAY o[ltiPe P22 +ORe PX3 = (PX1 oIMPs PX2) +CRs (PX1 IMPs sz)
stiiCo

VOGPATHEH 12984602

VLG REPLACE,

PX1 LT, 0 2 PX1 JLE. =i

sthCo

VCG'REFLACE,

FFAY oANCe PX2 oLTe =1 olNMPe PX2 oLEe =1 +AND. Px3 =
PRL osAlile PX2 oLTs =1 «I1MP. Px3

.hkc-

VLG WREPLACE,

PA1 ¢+ Pxe oLEs 0 = = PX)L =PX2 o6E. O
sthCe

viGREpLACE.,

PAl o«CGEo, O =z PX) «GTe O «OR. PX1 «ECG, O
LD

viGeAXION e 2,

VUG s PATHER 02054742

VEGsPATHE30244043

VCGeAXTION,

=((N+V)/2) ¢ M ,GE, =1 = =Ne¢M ,GE, =2
et Co

vEGoAXIQN,.

PAl oLT, =1 = PX1 ,LE, =2

sthCe

VviG REPLACE.,

oh ¢+ VM LE:s =2 +ANDe PX1 oANDe "N ¢+ M ,4E, =2 =
oh ¢ N EGCe =2 <ARDe PX1

atiile

VEG+RERLACE,

N s MFeg

othNCo

VCGREPLACE,

(12 + M ¢ M)/2) = ped

st Co

VEGFATHEU12+506+3

VCGKEPLACE,

“N ¢ ((N*M)/2) oGE:. =1 =

A ¢+ M .G:. -2




%@' st1,0.
VLGAXICN o4,
ViR RERFLACE,
fo = Meg
strie.
VLCnREPLACEo
(Lz + i + M)/72) = pi+l
st
VLG REPLACE,
-X + ARRAY (( 14pM)) sLbe O =
X=ARRAY((14M)) +GTs O oORe X=ARRAY ((ile¢M)) .Eus U
‘th.
viceAX QM2
VEGePATHZN 12050743
VCG.HCFLACﬁ-
X = ARRAY ((Mel)/2)
wbt.Co
vLGREPLACE,
SUPTEL (ARRAYWLENGTHI= (ARRAY (1) = ARRAY(I+1) LTe. 0 ) «AND. (I oGE. 1)
anCO (x LT LENGTH)

stt'Co
VLGWREFLACE,
I < (NendI/2
ot NDo
ENCe
VLGIPATHZ21 02 SULKOUTINE BINSCH ( ARKAY, LENGTHs Xo LOOKUP. ERROR )
LIKLE FATH SOURCE TEXT
1 SUERCLTINE BIKNSCH ( ARRAYs LENGTHe Xeo LOOKUPs ERKCR )
15 HilTdlie € 1 oLT. LENGIH eAbLs SCRTED ( AKRAYe LENGTH ) JAND. ¢
SHIKAY ( 1 ) olLEe X sAliLe X oLT. ARRAY ( LENGTH ) ) )
16 b=l
17 N 2 LENGTh
18 ERKCR = FALSE.
19 wHILE (¥ ’\1 eLTo N )}
20 ( 1) e ASSERT (" ( M LTe N oplNDe SORTED ( ARRAY, LENGTK ) ) ¢ANCs ( (
#, ARRAY ( M ) oLEs X +ANDe X oLTe ARRAY ( N ) ) o+AND. +NOT. FRROR )
$, )
VERIFICATIUN CUNCITICHN SUBROUTINE SINSCH ( ARKAY, LENGTHe X+ LOCKUP, ERROR )

LINE VERIFICATION CONCLTICH

13 1 +LT. LENGTH oAnDe SORTED ( ARRAY o LEWGTIH ) «ANCo ARRAY ( 1 ) oLFe X
eAlvUe X oLTe ARRAY ( LENGTH )

AND
19 1 ¢ 1 LTe LENGTR

sreccaasmes JMPLIES e wcccsceccrcntcnecncgncavsctssnncr e tessasCencavae

20 1 oLTs LENGTH oANue SOKTED { ARKAY o LENGTH ) «¢ANCs ARRAY ( 1 ) oLFe X
eANUe X oLTe ARRAY ( LENGTH ) oaNDes +NOT. JFALSE.

, D-27




Rt

i

o=

VEGsPATH=201142

SUBROUTINE BINSCH ( ARRAY, LENGTHs X+ LOOKUP, ERROK )

PROOF OF VERIFICATION CUNGITION COMFLETED

VEGFATHZ241+3 SUBROUTINE HMINSCH ( ARKAY, LENGTHe X+ LOOKUP+ ERAOR )
LInt PATH SOUNLL TEXY
1 SUGHOUTINE BINSCH ¢ AHKAY. LENGTHe Xo LOUAUPs ERROR )
15 INITIAL ¢ 1 oLTe LLANGTH onANDe SORTEL ¢ ARRAY, LENGTH ) +ANDs
SARRAY ( 1 ) oLEe X oANLe X oLT. ARRAY ( LENGTH )} ) )
lé £ =1 '
17 N 3 LENGIH
16 tRROK = LFALSE,
19 WHILE (M ¢ 1 «LTe N )
32 ASSERT ¢ { M (LTe N eANDe SGRTEC ( ARRAYe LENGTH ) ) oAWDe (
SARRAY ( M ) +LEs X oANCe X oLT. ARRAY ( N ) )} +ANDs o+NOTe¢ ERROR )
.)
VERIFICATIUN CUNL]ITION SUBROUTINE BINSCH ( ARRAY, LENGTHs Xe LOOK:iPy ERROK )

LINE VERIFICATION CONCITION

13 1 JLiy LENGTH oANDs SCKTED ( ARRAY 4 LENGTH ) eANCs ARRAY (1 ) oLFe X
eAplUe X obLTe ARRAY ( LENGTH )

AND
19 1 ¢+ 1 «6Ee LENGTH

et uovosanen IMPLI[S YT I YT Y L L P P P T P e P II YT Y L L Y LR L LR T

32 1 +LTe LENGTH «ANGe SORTED ( ARRAY ¢ LENGTH ) eANC. ARRAY ( 1 ) +LFe X
eAlUe X oLTe ARRARY ( LENGTH ) oAND. oWOT, FALSE.

VLG FATHZ24143 SUBROUTINE BINSCH ( ARRAY, LENGTHs X+ LOOKUP. ERROR )

PHCCF CF VERIFICATION CONDITION COMPLETED

VLG PATH=20348 SUBROUTINE BINSCH ( ARRAY, LENGTHy X+ LOOKUP. ERROR )
LINE PATH SOURCE TEXY
19 WHILE € ¥ ¢ 4 oLTe N ) ,
32 ASBERT ¢ ( M oLTe N enhDs SURTED ( ARRAYs LENGTH ) ) ofule ( (
SARHAY ( M ) oLEe X oARLe X oLT, ARRAY ( N ) ) +ANDs «NOTs ERROR )
’) a
33 IF ( X JNEe ARRAY ¢ M ) )

eNOTe ERROK oANDs X o+ECe ARRAY ( LOOKUP ) .ORe ERROR )

38 (1) « FIANAL




VERIFICATION CUNCITIGN SUBROUTLINE BINSCH ( ARKRAY. LENGTHe Xo LOOKUP, ERROR )
LIKE VLRIFICATIUN CUNULTIUN
15 M+ 1 +GEe N
AND

32 M oLTe N oANDe SORTEC ( ARRAY o LENGTH ) «ANCe ARRAY ( ® ) JLEs X .AND
o X oLToe AKRAY ( N ) oARNCs oWUTe LRROR

AND
33 X oNLe ARRAY ( M )

et ansvemaguwan IHFLIES ERT TR Y P T LT T Y Py R P e T T T T Y T Y PRy ey X T R

38 ( oiiUTs (TRUE. ¢ANDe X oeEWs AKKAY ( LOUKUP ) ) osURe «ThUES.

VLGPATHER 348 SUBROUTIKE BINSCH ( ARKAY., LENGTHs Xe LOOKIP. ERRCK )

PKCOF QOF VERIFICATION COAOITION COMPLETED

VLG PATHE24319 SUBROUTINE #INSCH ( ARKAY, LENGTHe X+ LOGKUPy ERRCR )
LINE FATH SOLRCE TEXT
19 aHILE (8 ¢ 1 LT, N
32 ASSERT ( € B .LTs W ophl3a SURTEL ( ARRAYs LLNGTH ) ) <ANDe (
sARRAY V‘, eLEe X oANCe X oLT. ARRAY ( N ) ) +ANDs oNOTe ERRCGR )
»)
33 IF ¢ X oAEs ARRAY ( N ) )
38 FINAL ( ohGTe ERKOR oANCs X ¢Eue ARRAY ( LOOKUP ) +CRs FRROR )
VERIFICATIUN CUNLITICA SUBROUTINL BINSCH ( ARRAY, LENGTHs Xo LOOKIPs ERROK )

LINE VERIFICATION CONC1T4ON
19 M ¢ 1 oGEe iv
AND

32 M oLTe N ¢ANCe SORTED ( ARRAY o LENGTH ) «ANCe ARKAY ( M ) LLE. X <AND
o X oLTe ARKAY ( N ) eANDe o+NUTs ERROR

AND
33 X oEwe ARRAY ( M )

ctansasageew IMPLIES P Y X YT Y TR LT T TR P pepey upnpapppip-Rerpeepep -y ¥ T T R Y Y e T Y

38 { +NOTe ERROR ¢ANUs X oEQe ARRAY { M ) ) JORs ERRQR




fo VLG PATHS24349 SUBKOUTINE BINSCH ( ARRAY. LLNGTHs X+ LOOKUP. ERRCR )

CLAUSE VLRIFICATICN CUNCITLION
1 X = ARRAY { N ) LY. O
ahD
2 ehCle EHROH
ANU
3 SCRTLD ( ARRAY o+ LENGTH )
ANC
4 X = ARRAY { M ) oEQs O
AND
-] - N + M ,GE, =l
M
(] « N+ VN LT, 0
ANC
? e X ¢ AKKAY ( ¥ ) ,LE. O
eceecccaces [MELIES =wo=oeccmecsccorcarcccerrcmnrnrccacttncnantccanee
8 ERROK oCRe ( oNOTe ERROR oANDs X -« ARRAY ( M ) oE¢e 0 )
ENTEREL CLXPRESSION
ERRCKR = ,TRUE.
RULLE ERROR 2 ,TRUE.
REPLACE ERRQK

. 'RUEC
RLPLACE LRROR & (TRUE.

REPLACE ERAROR = ,TRUE.

VLG IREPL ACE, SUBROUTINE BINSCH ( ARKAY. LENGTHs Xe¢ LOOKIIPy ERRGR )

PROCF OF VERIFICATION CONDITION COMPLETED

D-30




VEG\PATHEZ2 349 SUPHOUTIME &INSCH t ARHAY, LENGTHe Xo LOOKLP, ERROR )
LInLG PATH SUUNCE TLX1
19 wHILE ¢ M + 1 oLTe N )
32 ASSERT ( U M LTe I oulNCo SURTED ( ARRAYs LENGTH ) ) oAnDe (
$AKRAY ( M ) oLEe X oBAibe X oLTs ARRAY ( N ) ) «ANDs oNOTe ERROK )
*)
33 LF U X NEo ARRAY ( ¥ ) )
36 FluAL ( oNCTs ERROR oANDe

x oEae ARRAY ¢ LOOKUP ) «OR. FRROR )

VLRIFICATION CUNLITIGA SUBROUTINE BINSCH ( ARRAY, LLNGTHs X« LOOKUP. ERRCR )
LINE VERLIF ICATION CONCITIGN

1s M ¢+ 1 GE«. A

AND

32 ¥ oLTe N oANDe SORTED ( ARRAY o LENGTH )

+AiNDe ARRAY ( M ) JLEe X LAND
e X oLTe ARRAY ( N ) oANDe oNUT. ERKOR

AND
33 X +ECos ARRAY | im )

eccscssseen JNPLIES =eeweccvccccnscesncucaryomcrcesasnan o er accascanaa

38 ( «iWOTe« ERRGR «ANDe X +EGe ARRAY ( M ) ) «ORe ERROR

3
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O s e L

VEGsFATHZZ 13149 SUBKOUTINE BINSCH ( ARKAYs LENGTHe X» LOOKUP+ ERRGR )

CLAUSE VERIFICATICN CONDITION
i X = ARRAY ( N ) LT, O
AND
2 +hOT+ EKROR
AND
3 SORTED ( ARRAY + LENGTH )
ANG
4 X = ARRAY ( M ) .EQs 0
AND
s “ N+ V¥ ,GE, =1
AND
6 - N+ M, LT, 0
AND
7 e X + ARRAY ( M ) LEe O
ececcacacce [MPLLIES wemececcecevecenceccccncccencrccratttancncncacconn
] ERRUR +URe ( oNOTe ERROR ¢ANDs X = ARRAY ( M ) +ECs 0 )
ENTEREL EXPRESSION 4
ERROK = FALSE,

RuLE LRRUR 2 ,FALSE.
REPLACE LRRUR & FALSE,
REPLACE ERROR = ,FALSE.
RLPLACE ERRUR = ,FALSE,
VCGIREFLACE. SUBROUTINE SINSCH | ARKAY, LENGTHe X LOOKUPs ERROK )

PROCF OF VERIFICATION COMDITION COMPLETED




;?{ VEG o PATHZI 124042 SUBKOUTIRLE BINSCH ( ARKAY, LENGTHe X LOOKUP+ ERRGR )

LInE FATH SUUKCE TEXT
19 WHILE (M ¢ 1 LT N )
<0 (1) o ASSERT ( { M o1.Te N oAnNGe SORTED ( ARRAY, LENGTH ) ) eANLe ( (
*, BARRAY ( ¥ ) LF. X «ANUs X oLTe ARRAY ( N ) ) +ANDs oNOT. ERROR )
o, )
21 (1) e I = (M +NY /2
22 ( 1) o« IF { X oLTe ARRAY (I ) )
23 L g) e o W3
30 ( 1) « LENCIF
21 ENuvaHILE
19 whHILE ( F + 1 LT, N )
20 ( 1) e ASSERT ( ( M LTs M +AND. SORTED | ARRAY, LENGTH ) ) <ANC. (
®, ARRAY ( M ) «LEes X ¢ANDs X oL1+ AHRAY ( N ) )} «ANDs «NOT. ERROR )
e, )
VERIFICATIUN CUNCITICH SUBRCUTINE BINSCH { ARRAYy, LENGTHs X4 LOOUKUP, ERROR )

LINE VEKIFICATION CONDITION
19 M + 1 LT N
AKC

20 M oLTe N «ANDe SORTED ( ARRAY 4 LENGTH ) <AnDe ARKAY ( M } oLE. X JAND
o X oLTe ARRAY ( N ) oANLes oNUTes ERKOR

AN

22 X oLToe ARRAY { ( M+ N ) 7 2 )
AL

19 M+1 Te {MeN)V/ 2

etoacscngmee IMPL‘ES LY T LT Y YR L X oy T P Y T LY T T Y T Ty ¥

20 M oLTo ( ¥ ¢ N ) /7 2 ¢ANDe SORTEC ( ARRAY 4 LENGTh ) <ANDe ARRAY ( M )
ebEe X oANDe X obTe ARRAY ( ( M ¢ N ) 7 2 ) o¢ANGs oNOT. ERROR

D-33
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VCGFATHE3 020402 SUBROWTINE BINSCH ( ARKAYs LENGTHe Xo LOOKUP. ERROK )

CLAUSE VERIFICATION CONDITION
1 X = ARRAY ¢ N ) LT« O
ANC
eNOTe ERROR
ANC
SCRTED ( ARKAY o LENGTH )
ANC
X = ARRAY { ( N ¢+ K ) /7 2 ) +LTs O
AND >
e N+ F LT, =1
ANC
- X ¢ ARRAY ( K ) ,LE. O
ANC
? « CUNSNM D)7 2) 4K ,LT, =}
ctecseacces INPLIES =eev=cccsccrtcemcmcacascnncacssccnemtesianscanann.
L] - { (Ne VM) /72 )¢M, LT, O
EHMTEREL LXPHRESSION
Pxl oLTe 0 = PX1 oLT¥e = 1 +ORe PX1 +Ele = 1
RULLE Px1 L1, 0 = ( PX1 (LT, =1 ,OR, PX1l ,EW, =1 )

REPLACE X = ARKAY ( N ) obTe 0 2 &t X = ARRAY ( N ) (LTe =} +UR, X = ARRAY ( N
) eEGe =1 )

REPLACE X = AKKAY obLTe 0 = ( X = ARRAY (¢ ( N ¢ M ) 7 2 ) L7
¢ =1 JCR. V M) 7 2 ) £Q, =1}

sEPLACE - { { g e 0 8 = ( N+ M)/ 2) ¢H LT, =) .OR-
e { (Mo ¥ .

SAVED AS AXIOM




VCGeAXICN, SUBRGUTINE BINSCH ( ARRAY, LENGTHs X+ LOOKIP, ERROK )

CLAYSE VERIFICATICN CONDLITION
b € X = AKRAY ( N ) «LTe =1 «ORe X = ARRAY ( N ) +EGe =1 )
ARG
oNOTe ERROK
AND
SUHTEC ( ARRAY + LENGTH )

ANU

t X = AKRAY ( ( N ¢ M ) 7 2 ) JLTe =1 +OR. X = ARKAY ( { N ¢+ M ) /7 2)
EGe =1 )

AND
=N+ M LT, =2
AlD
- X + ARRAY ¢ M ) LE. O
AND
7 = (N+N) /2 ) +F LT, =1

mtawSgeguee x"PLlEs L L L LR L LT T R T e iy A T Y Yoo ey gy

] « { (N ¢ V) /72 ) ¢+ K okTe -} OOR. e { (N ¢ M Y /72 ) ¢ M .EO. el

ENTEREC EXPRESSIGN
Pxl +1¥P, FX2 ,OR, FX2 = ( Px4 +INP, PX2 ) ,O0R. ( PX1 .IMP, PX3 )

RULE ( Pxi oIMPs Px2 «GRe PX3 ) = ( ( PX1l oiMPe PX2 )} +ORs ( PX1 oIMPs PX3
) )

RLPLACE ( € X = ARRAY ( N ) LT, =1 ,UH, X = AHRAY ( N ) ,EQ, =1 ) ANC. .NOT,
EKRUR oANCe SORTED ( ARRAY o LEWGTH ) oANDe ( X @ AKRAY ¢ ( N ¢ M ) ,

2 ) LTy =1 «CRe X = ARRAY { { N ¢ N )} 7 2 ) oEQe *1 ) oANDs = N + M
oLTe =1 +ARCe = X ¢ ARRAY ( M ) oLEs ¢ oANDe = ( ( N+ M) 72 ) ¢ M,
LTe =1 oIMP, = & ( N+ M ) /7 2 ) ¢ M LT, =) 4OR, = ( ( N+ M) / 2)
* M GECe =1 ) 2 (L (X o ARRAY ( N ) oLT. =1 «OR. X = AHRAY ( N ) +EQ

o =1 ) «ANC,s oNOT. ERKOR «ANDe SORTED ( ARRAY o« LENGTH ) +ANDs ( X = A

RRAY € (. N ¢ M ) / @) oLTe @) eGRe X =» AKRAY { ( N ¢ M ) /7 2 ) oEQe -
1 ) ¢ANCo = N # M LTe =1 oANUe = X 4 ARRAY ( M ) LEe O +sANDe = ( ¢ N
$ A ) /720 4K oLTe =L oIMPs = ( (N * N ) /7 2) ¢F (LTe =3 ) +GR,

(€ X = ARRAY { N ) oLTe =1 ,ORs X




SAVED AS AXICM

veG o AXICH SUBRCOUTILL BINSCH ( ARRAY, LENGTHy X+ LOOKIPs ERROR )

PROCF OF VERIFICATICN CCALITION COMPLETED
USILG THE FOLLOWING AXICMS 1 2

VCGPATHZH 12054602 SUBRCOUTINE BInsCH ( ARRAY, LENGTHe X+ LOOK1P, ERRGR )

LINE PATH SUURCEL TEXT

19 whILE (M ¢ 1 JLTe N )
P4 o ASSERYT ( M oLle I oAN[e SORTED ( ARRAY, LENGTH ) ) eANGCs ( ¢
*, ARRAY ( M ) oLEe X oANCe X oLTe ARRAY { N ) ) «ANDs +NOTe ERiIOR
., }
21 o I = (N +N) /2
. IF ¢ X oLTe ARRAY ( T ) )
X +6Ts ARRAY ( 1 ) )
I

GR1F '
° L
ENVIF

ENUnHILE

wHILE ¢ ¥ ¢ 1 LT, N )

ASSERT ( ( M ,LTe W oAND. SORTED ( ARRAYs LENGTH ) ) +AND, (
SARRAY ( F ) oLEs X oANDe x oLT. ARRAY ( N ) ) <ANDe oNOTe ERROR )
s)

VERIFICATION CUNLITION SUBROUTIHE BINSCH ( ARRAY, LENGTHs Xo LOOKUP, ERROK
LINE  VERIFICATION CONGITION
19 M 1 oLTe b
AND

M oLTe N oANDs SORTEL ( ARRAY o+ LENGTH ) «ANDs ARKAY ( M ) oLEe X AND
e X oLTe ARRAY | N ) oARDe oNOUTe ERROR

ANy
X «GEo ARRAY ( { M ¢ N )} , 2 )
ANG
X «GTe ARRAY ( L K * N ) V7 2
ANC
19 (tmen) /7 2) 9+ 1 Te N

crpeSnegenw x“PL‘ts LU L L A AL L LY L LD L T T Py ¥ Py Yeyuprur ST pupapup sy ¥ T P g g

20 { K ¢ N ) /7 2 oLTe N oANDe SOHYEC ( ARRAY 4 LENGTH ) +ANDe ARRAY { ( ¥
¢ N ) 7 2 ) sLEe X oANDe X oLTe ARRAY ( N ) oAND+ «NOTe ERROR




VEG PATHEH 12194602 SUBROUTINE BINSCH ( ARRAY, LENGTH, X, LOOKUP, ERRCR )

CLAUSE  VERIFICATIGNK CONCITION
1 X = ARRAY ( N ) JLTe O
AND
+NOT. ERROR
AND
SCRIED ( ARRAY « LENGTH )
AND
X = ARRAY ¢ ( N ¢+ M ) /7 2) 46T, 0
AND
“ N eV LT, =2
AND
= X + AKRAY ( M ) ,LE. 0
AND
T e N+ UNCV )/ 2) T, =2
meccceceans JMPLILS =mec=sscmcescectmaccaccncecsccancceatcaccecenenaan
B <N+ (N+M)/2).T,0
AND

9 = X ¢+ ARRAY { ( N ¢+ M ) /7 2 ) JLEs 0
!

ENTEREC EXPRESSIUN
Px1 +LTe 0 = PX1 oJLE. ~ }
RULE Pxl oLTe 0 = PX1 «LEs =}
REPLACE X = ARRAY ( N ) oLTe 0 =2 X « ARRAY { N )} +LE~ =1
REPLACE <« N+ ( ( MN+ M ) /2 ) Te 03N+ (IN*M)/2) AL, -1




VLG REPLACE. SUBHROUTINE BINSCH { ARHAYs LENGTHe Xo LOOKUPs £RROK )

>

CLALSE VERIFICATIGN CCNCITVICN
1 X = ARKAY ( N ) «LEe =1
ANO
2 +hOTe ERROR
ANU
3 SUKTED ¢ ARKAY o+ LEANGTH )
ANU
4 Ko ARRAY { (N + M ) /7 2 ) GTe O
ANy
] e N+ M LT, =)
ANy
6 = X ¢ ARKAY ( ¥ ) LEs O
Al
7 e N ¢ L UNSVF ) /7 2) AT, =)
meeccscaces J}FLILS =swevercacmscccmaccccacrasnececsenntcnnacaccnenen
[} e N+l CN+V ) /7 2) ,LE, =1
ANL
S « X + ARRAY ( (. N ¢+ M) /7 2 ) +LE. 0
ENTEREL EXPRESSICN

Pxl «ANCs FX2 oLTe = 1 oIMP. PX2 JLEe = 1 +ANDe Px3 = PX]1 «AND. Px2 LTe = 1 JIM
Pe X3

RLLE { PA1l +ANDe PR2 obLTe =1 oJIMP. PX2 .LE. ~1 oAND:. Px3 1 = ( PX1 +AND. PX
2 oLTe =1 oIMPe PX3 )

REPLACL { X = AKRAY ( N ) oLEe =1 ohille oMNOTe ERRGR o«f5Coe SOKTED ( ARRAY o LLN
GIH ) ANDe X = ARRAY ( { N ¢ F ) / 2 ) «6T, 0 ARDe = N ¢ M LT, =1,

ANDe « X 4 ARRAY (V¥ ) oLEe¢ O ¢ANCs = N ¢ ( ¢ N ¢ M ) /7 2 ) oLTse =1 oI
MPe = N o { (N ¢ M ) / 2 ) oLEe ©1 oANCe = X ¢ ARRAY ( ( N + M) / 2
) oLEe 0 ) = ¢ X « ARRAY { N ) oLE. =1 +ANC, oNOT. ERROR +ANDe SURTED
( ARRAY | LENGTH ) «ANDe X = ARRAY ( ( N ¢ M ) / 2 ) +GTe 0 «ANDe = N

+ M oLTe =1 oANDs = X ¢ ARRAY ( ¥ ) oLEe 0 ¢ANCe = N ¢+ ( (. N+ M) /2

) oLTe =l «IMPe = X + ARRAY { ( N ¢ M ) 7 2 ) oLk, 0 )

D-38
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VLG WREPLACE. SUBROUTINE BINSCH ( ARKAY, LENGTHe« X+ LOOKiP« ERROR )

CLAUSE VERIFICATICN CONCLTION
1 X = ARRAY ( N ) +LEe =2
AND
«hNOTes EHHOH
ANU
SCRTLC ( ARRAY + LENGTH )
AND
X « ARKAY ( ( N ¢« M ) /7 2 ) 674 O
AND
=N+ ¥ LT, =1
AND
= X + ARRAY ( ¥ ) LLEs O
ANV
7 s N+ L CN+R )/ 2) LT, <)
eeeescceece JMPLIES ====vceccccccccreccccccnnceanatsarusanuecntacansan
8 « X * ARRAY ( { N » M ) , 2 ) JLE. O
ENTEREC EXPRESSIGN

Pxl + P2 oLEe 0 2 = PX) = PXx2 +GEs ©

RLLE PX1l ¢ PX2 oLEe 0 2 = PX1 = PX2 «GELe O
REPLACE ®= X % ARRAY ( M ) LEe 0 2 = = x « ARRAY ( M ) +GE. O

REPLACE =X ¢ ARRAY ( ( N ¢ K ) / 2 ) LEs 0 2 = =X = ARRAY { ( N+ M) /7 2)
«6te 0




VLG REPLACE, SUBKQUTINE BINSCH ( ARRAY, LENGTHs X+ LOOKUPs ERROR )

CLAUSE VERIFICATION CONDITION
1 X = ARRAY ( N ) o+LEe =1

AND

«hOTe ERHOR

ANOD

SCAILD ( ARRAY o LEAGTH )
AND

X = RRAY € . N + M) / 2 ) 6Te O
ANC

e N ¢+ LT, =2

AKC

X = ARRAY ( M ) +GE. O
AND

7 - N4t (N*sK)/72) ,LT, =2

.---;.-..-- IFPL‘LS P T T e L R P T Y Y P YT I LI P P L LY AL DL LY L L

8 X « AKKAY ( ¢ N + M ) /7 2 ) +GEe O
ENTEREL EXPHESSION
Pxl .GEe 0 = PX1 46Te O «OR. PX1l LEQ. U
RULE Px1 «GEe O = ( PX1 «6Te 0 «ORe PXx1l +EGs 0 )

REPLACE X = ARRAY { M ) o6Ee 0 = ( X « AKRAY ( M ) o6Te ) 4ORe X = ARRAY ( M )
.Ec. c ’

REPLACE X = ARRAY (- C N ¢« M ) /7 2 ) GEe 0 =2 X = ARRAY ( (N ¢+ M) / 2 orTe
O «O0Re X @ ARRAY ( ( N ¢ M ) /7 2 ) JEQ. O




ﬁ4 veGeREPLACE, SUBHOUTINE BINSCH ( AKKAY, LENGTHs X+ LOOKUP. ERRCR )

CLAUSE VERIFICATICN CONDITICN

1 X = ARKRAY { N ) JLEe =1
ANC

2 NCTs EHROR
AND

3 SORTED ( ARRAY o+ LENGTH )

ANG

4 X « ARRAY ( { N ¢+ ¥ ) / 2 ) L,6T. O
AN

S *= N+ M LT, =1
AND

6 ( X = ARRAY { M ) o,GTe O eORe X « ARRAY ( ¥ ) ;Ea. 0 )
AND

7 =N+ L (N+NM)/2) 4Te =1

emescccace= JNPLILS =e==cmececcvcscccacn vrincrscarecconrstrccnanccannan

8 X = ARRAY { ( N ¢ 0 ) / 2 ) ,6Te C «ORs %X = ARRAY ( ( N ¢+ N ) /7 2 E
. 0

USING AXIUM 2

RVLE ( PX1 ofNPe PX2 +ORs FX3 ) = ¢ 1 PXx1 IKP, PX2 ) LORe ( PX1 IMP, PX}
) )

REPLACE ( X = ARRAY ( v ) oLEe =1 +ANU. oNOTs ELRROR «AND. SOKTED { ARRAY + LEN
GIH ) oANDe X = AKRAY ( ( N ¢ M ) / 2 ) «GTa U osANDe = N ¢ N (LT, 1 ,

ANDe € Xx = AKRAY ( ¥ ) oGTe 0 ¢ORe X « ARRAY { M ) +EQs O ) «ANDs = N
*+ CUNMe V) /7 2 ) olTe =1 IMPe X = ARRAY ( ( N ¢ M ) 7 2 ) o6Te 0 &
OKe X = ARRAY ( ( N + M ) s 2 ) JtQs 0 ) = ¢ { X = ARRAY ( N ) JLE, =l
oANCe «NOTe LRRCR +ANDe SORTED ( ARRAY o LENGTH ) +AND. X =~ ARRAY ( {
Ne M) /72 ) «GTe 0 ¢ANDe = N ¢ M oLTe =1 ¢AND, ( X « ARRAY ( M ) .6
Te 0 «CRy X = ARRAY ( M ) +t@s 0 ) ¢ANLe o« N+ L It N+ M) Z72) T,

*1 JIFPe X = ARRAY ( { N *+ M ) /7 2 ) +6Te O } +ORe ( X = ARRAY ( N ) .,

LE. =1 +ANG, +NOT. ERROR oAND, SORTED ( ARRAY o LENGTH ) +AND, X = ARR
AY € (N 4+ M) 7 2 ) oGTo 0 2ANDe « N + M oL Te =1 «ANDs ( X « ARRAY {




A’ VEGAXIGN v 2. SUBROUTINE VINSCH ( ARRAY, LENGTHs Xo LOOKLPs ERRCR )

FRCCF LF VERIFICATION CGACITION COMPLETED

LSInG THE FCLLOWING AXIQNS 3
VEGIFATHSU12454T02 SULRGUTINE BINSCH ( ARRAY, LENGTHe Xeo LOQKUP+ ERRUH )
LINE FATH SOURCE TEXT
19 WHILE ¢ 0 ¢ 1 oLT. N )
20 1) o ASSERT ( (M LTe Iv sANDe SOKTED ( ARRAY,. LENGTH ) ) ANCe (
*, ARRAY ( M ) JLEe X ohANUs X oLTe ARRAY ( N ) )} JANDs NOUT, ERKOR )
*, )
2l ¢ 1) s 1 2 UM+ N) /2
k2 ( 1) e IF C 2 oble ARRAY (I )
24 ( 1) e ORIF ( X «GTe ARRAY ( 1 ) )
26 ELSE
27 ( 1) o« LUCGKUF =1
28 (1) « VM =1
29 (1) e« N=1+1
30 ENDIF
a1 ENLWRILE
19 wHILE (0 ¢ 1 oLTe N )
20 ASSERT ( ( M LTe N oANDe SOURTED ( ARRAYs LENGTH ) ) oAnNDe o ¢
BARKAY ( M ) oLEs X oANTe X oLTo ARRAY ( N ) ) <AND. «NOTe ERRQR )
.)
VERIFICATICK CUNUITION SUBROUTIME BINSCH ( ARRAY, LENGTHe Xe¢ LOCKUPs ERROR )

LINE VERIFICATION CONCITION
19 Ko+ 1 LTe N
AND

20 M oLTe N «ANDe SQRTED { ARRAY o+ LENGTH )} +ANDe ARRAY ( M ) (LE. X JAND
e X obLYo AKRRAY ( Iv ) oANDe +hUT, LRROR

: AND
; 22 X oGEe ARRAY ( L M ¢ N ) /7 2 )
AND
i 24 X oLEe ARRAY ¢ ( M ¢+ N ) /7 2 )
4 AND
7 ; 19 CCMeND)Z2) +1 okTe ( (LMONDYZ2) ¢1
scccncmnmen JNPLIES weresccccncccnccnaccacactcnnrccccarctcecentoccanea
t 20 (¥ ¢k ) /72 LTa & CK*N)Z/Z2) + 1 JAND. SORTED ( ARRAY o LENGTH
) +ANLe ARKAY ( ( K ¢ N ) / 2 ) oLEs X oANDe X oLTe ARRAY ( ( ( M ¢+ N
] ) /2 ) %3 ) +ANDe ¢NOTe ERHOR
3
|
' t D-42

) £ e




:$4 VEG o ATHE4 1245470, SUBNOLTINE BINSCHh ( ARRAY, LENGTHs X+ LOGKUP+ ERROR )

PRCCF OF VEKIFICAYIUN CONDITION COMFLETFD

VEGWPATHEZ3 020403 SUBHROUTILE BINSCH ( ARKAY, LENGTHe X¢ LOOKLP+ ERROR )
LInt PAYH SUUKCE TEXT
19 WHILE (M ¢ 1 4LT, M)
20 ¢ 1) o ASSKKT € { M LTs N «ANCe SORTED ( ARRAY, LENGTH ) ) eaNCo (
., ARRAY ( M ) oLEe X oANCoe X oLTe ARRAY ¢ N ) ) oANDe NOT. ERROR )
s, )
21 ( 1) o« T2 ¥W enN) /2
22 (1) . IF « & oLTe ARKAY (1 ) )
23 ( 2) e o W =1
0 (1) « ENCIF
31 LNLWHILE
19 Wil (VM ¢ 1 - T, N )
32 ASSERT ( ¢t M oLTe N +ALDe SURTED ( ARRAYs LENGTH ) ) +ANDs ( ¢
*ARKAY ( M ) oLEs X oANCe 5 «LT, ARRAY ( N ) ) +ANDs «NOTe ERROR )
’)

VERIFICATION CUNCITICN SUBROUTINE BINSCH ( ARRAy, LENGTHs Xe LOOKIP, ERKOR )
, LINE  VERIFIC, IOk CONDITICN
' 15 K 41 JLTe N
AND

20 M oLTe N oAlDe SORTEL ( ARRAY o LENGTH ) «ANCs ARRAY ( M ) LE. X .AND
o X oLTe ARRAY ( N ) oAlie ohule ERROR

ANC

22 X oLTe ARRAY ( ( M ¢« N ) / 2
ANU

19 M ¢ 1 oGEs ( M+ N )V 2

eSsavgegnee lMleES LA LA L L L LT L LI LT R L Ty Ry iy i P S X T Y P ey iy

¥ 32 B oLTe ( K ¢ N ) / 2 «ANCs SORTED ( ARRAY o« LENGTH ) <ANUe ARRAY ( M )
oLEe X oANDe X oLYe AKRAY ( ( M ¢ N ) 7 2 ) «ANDe oNOT. ERROR

A

N RS

D-43




VUGIPATHSI 124443 SUBROUTINE BINSCH ¢ ARRAY. LENGTHs X+ LOOKi,Ps ERRUR )

CLAUSE VEKIFICATICN CONCETIGN
1 X = ARRAY ( N ) ,LT. O
AND
ehOTe EKROR
AMG
SGRTEC ( ARRAY + LENGTH )
AND
X = ARRAY { (N + M) /7 2 ) oLTe 0
AN
© N+ ¥ LT, =
ANL
= X + ARKAY ( M ) LLE. U
AND
7 =G CNSFM) /7 2) 4K 6E. =1
ececceccces INPLIES =e=eevcseecmccccccnccccncncacosacucnamonnncocncannn
8 “CCN+$ND/Z2) 4 M, ,LT. O
ENTERED EXPRESSION
=L UNSP )/ 2) %M 6Es =13 2Nt M GEs -2

RULE =t (N &V )/ 2 )+ M GEsw =1 B o N+ M GEo =2

REFLACC - 0 { N+ V¥ ) / 2 ) "_ MOGEoﬂ'i = a N ¢+ ¥ OIGE- -2

SAVED AS AxiICK 3




VEGJWAXICN . SUBROQUTINE BINSCH ( ARRAY, LENGTNHs X+ LOOKIP,

CLAUSE VERIFICATION CONCITION
1 X = ARKAY ( N ) LTs O
ANC
2 +NOTe ERKOR
ANC
3 SCKTED ( ARRAY o+ LENGTH )
- AN
4 X = ARRAY ( ( N ¢ M ) /7 2 ) JTe 0O
ANO
S =N+ M .L“l. -1‘
AND
€ = X ¢ ARRAY ( ¥ ) LLE. O
AND
) - N ¢+ F Gty =2
eteccenmcenc LFPLIES m-e=tecseececsctcccacasmcceacnonteattacannaraana
] ~{ I Ns¥ )77 2)+M,LT.0
ENTERED EXPRESSION
Pxl oLTe = 1 2 PX1 obbke = 2
RLLE PX1 oLTe =1 = PX1 oJLEe =2
REPLACE = N * M LTe =1 3 a N ¢+ 4 o Es =2

SAVED AS AXICHK 4

O)

D-45
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VLGAXICN . SUBROUTINE BINSChH ( ARRAY. LENGTHe X+ LOOKUP, ERROR )

CLAUSE VERIFICATICKh CONDITICN
1 X = ARRAY ( N ) +LTe 0
ANL
2 ehCTe EKROR
ANU
3 SCRTED ( ARRAY o+ LENGTH )
ANy
4 X = ARRAY { ( N + p ) /7 2 ) oLTe O
AND
S N ¢ N ,LE, =2
ANC
3 = X + ARRAY ( M ) LLE. O
ANC
7 = N ¢+ F GE, =2
meecccesacns [NPLI{S =e=c=cceccrcccccncccnccnncneccrus o ttennacnarscecn
[ =l UN+ VM) /7 2)+F ,AT. 0
ENTEREL EXFRESSION

o« N ¢ F JLEe = 2 o¢ANDs Pxl ¢ANDe = N ¢ K GEs = 2 =2 =« N *+ M +EQe = 2 «AND. Pxl

RLLE ( » v # M oble =2 ¢ANCo PX1 ) 2t « N ¢ M LEGe =2 AND. PX1 )

N0 REPLACEMENTS PERFORMEC

ENTEREC EXPRESSION

e g

Weme2
l : RLLE Nz (2 e¢NM)

% RLPLACE N = 2 ¢ ¥

§ RLPLACE N = 2 4 K
§ REPLACE N = ( 2 ¢ K )
REPLACE N = (2 ¢ M)

| REPLACE N & 2 ¢ M

' D-46
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;&4 VLG WREFLACE, SUBROUTINE BINSCH { ARKAY, LENGTHs X+ LOOKUP, ERROR )

CLALSE VERLIFICATIUN CONCITION
1 +NOT+ ERROR
AND
2 SQRTEC ( AKKHAY o+ LENGTH )
At
3 X o ARRAY ( 2 ¢« M )} LLT. O
aNG
4 X « ARRAY ( ( 2 # b+ M ) /2 ) JT. O
AND
S = X + ARRAY ( M ) LEe O
ecevoscscen JEPLILS "e=cmmcsccsnsactacccnrcanenccemancranerccccsstaconne
[ = (2 + ¥ + M) /2) ¢M,LT¢e0D

ENTERED EXPRESSION

ttzepwsM)/s/2)N+1
RLLE t(2¢N+M ) /2)2(14hK)
i REPLACE (2 + M+ NV ) /72214y

RLPLACE tt2¢eMe M)/ 2)E (14K

VEGREPLACE, SUBROUTINE BINSCH ( ARRAY. LENGTHs Xo LOOKuP+ ERROR )

PROGF UF VERIFICATALUN CONUITION COMPLETED

LSING THE FOLLOWING AxIQwrs 3 4
VEGPATHZ4 42451643 SUCROUTIHE BINSCH ( ARKAY, LENGTHe Xo LOQKUP, ERROR )
LINE PATH SOURCE TEXY
19 WHILE (0 ¢+ 1 oLT. N )
2V ( 1) o« ASSLRT € M 4LTs iv oANLe SORTEC ( ARRAYs LENGTH ) ) «ANDe ( {
®, ARRAY ( M ) ,LEe X sANDe X oLT. ARRAY ( N ) ) +AND. .NOT, ERROR )
., )
21 (¢ 1) e 1 2 (NMeN) /2
22 ( 1) . IF ( % oLTe ARRAY (1 ) )
24 URIF { X «GTe ARRAY ( L ) )
2% ( 1) « k=]
30 ENGIF
‘ 3 EMUWHILE
i 19 WHILE (M 4+ 1 oLTe N )
32 ASSERT ( ¢ M +LTe N «AND. SURTED ( ARRAYs LENGTH )} ) +ANDe ¢
{ y SARRAY ( M ) oLEs X «ANDe X +LT. ARRAY ( N )} ) «ANDs +NOTe ERROR )
i | :
|

IOk T LSS0, LSRR




VERIFICATIUN CUNCITICA SUBROUTINE GINSCH ( ARRAY, LENGTHs X+ LOUKUP, ERROR )
i LINE VEHIFICATICK CONGITION
19 M+ 1 JLTe N
&NO

20 M oLTe N «ANDs SGRIED ( ARRAY o+ LENGTH ) +ANDe ARRAY ( M ) L,LE. X LAND
o X oLTs ARRAY ( W ) oANCe oNGTe ERROR

AND

22 X «GE« ARRAY ( { M ¢+ N ) / 2)
AND

24 X «Gle ARRAY t { M+ N ) / 2 )
AND

19 C UM e N)D)Z 2 ) + 1 oGEe I

econncmasan |NPLIES =emecceceercrnstancccnuccncccccancanotcccssosneasns

32 ( M+ N ) /7 2 «LTe N ¢ANCo SORTEC ( ARRAY 4 LENGTH ) oANDe ARRAY ( ( M
4+ N ) /7 2 ) oLEse X oANDe X oLTe ARRAY ¢ N ) oANDe oNOTe ERROR

D-48
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VEG o PATHEN 120546143 SUBROUTINE DINSCH ( ARKAY, LENGTHe X LOCKIIFe ERROK )

CLAUSE VERIFICATICN CONDITION
1 X = ARRAY { W ) oLTe 0
AN
oAG1+ ERROR
AND
SORTLD ( ARRAY o+ LENGTH )
AND
X = ARRAY { ¢ N+ ¥ ) 7 2 ) o7, 0
ANC
- N+ N LT, =1
AND
- X 4 ARRAY ( ¥ ) JLE. O
AND
7 e« N+ (N*V)/2) 6L =2
eemamcmeces [NPLIES ==-eoessececccccmccncnccneccenrcanaestscsanessonnes
e e+ {NEsV)/72) LT, 0
ANL
S e« X ¢ ARRAY ( (L N ¢ ¥ ) /7 2 ) JLEs O
ENTERED EXPRESSICN
e N+ L {N®*V )} /72) GEs =1 =« N* M 6Ee =2

RLLE « N+ (N®FM)/72) ,6E, =2 = =N+ M, ,6E. =2

REPLACE « N+ (N+PF )/ 2) 6Es «1 2 = N ¢ K GE» =2




VLG REPLACE. SUBKOUTINE BINSCH ( BRKAY, LENGThs X+ LOOKUPs ERROR )

CLAUSE VERIFICATICN CONDITIOUN
1 X = ARAAY ( N ) LY. O
ANU
+AhOTe ERROR
AL
SOKTED (¢ ARKAY o LEMGTH )
AND
X = ARHAY ( ( N ¢+ K ) /7 2 ) 46Ts 0
AND
- N+ V LT, =1
AND
e X + AKRAY ( F ) LLEe O
ANC
? e N+ ¥ ,GE, =2
esnmcacavse JMPLILS ®mrrececvccescactacnnncannsesn o anuTttoanesesccnene
8 el ¢+ (L (NS*K)/2) . .41.0
AND

9 v X ¢ AKRAY ( ( N ¢ M ) 7 2 ) oLie O

LSING AXICM &
RLLE Px)l oL7e =) =2 PX1 (LE. =2
REPLACE e N+ ¥ LTy =1 8 « N ¢ M (LE. =2




VEG o AXICY o4, SUBROUTINE BINSCH ( ARRAY, LENGTHs Xo LOOKIP, ERROR )

CLALSE VERIFICATICH CONDLTION
1 X = ARKAY ( N ) «LT. O
ANU
+n0Ts ERRGR
ANO
SORTED ( ARRAY  LENGTH )
AND
X = ARRAY { ( N ¢ N ) /7 2 ) 6T, 0
AND
= N ¢+ ¥V ,LE, =2
AND
« X 4 ARRAY ( V ) (LE., O
ANO

7 o« N ¢+ ¥ GE, =2

evowrveageee ;MPL‘ES LA AL LE L LT L LYY LY ey e e e T Y P Y P L L T T T Y I YT L)

8 e N+ LOMAYE )2 2) T4 0
AND
) = X ¢ ARRAY ( (N 4 M ) /22 ) LEs O
ENTEREC EXPRESSLON |
NZKe2

RLLE NE (2

REPLACE s 2

REPLACE

REPLACE

REPLACE

RLPLACE

REPLACE

REPLACE




VLG WREPLACE, SUBRGUTINE BINSGH ( ARRAY, LENGTHe Xs LOOKUFs ERROR )

CLAUSE VERIFICATION LONDITLION
1 onnOle ERRCH

AND

SGRTLD ¢ ARRAY + LENGIH )

ANC
X = ARRAY ( 2 ¢ ¥ ) LT, O
AND
X = ARRAY ( ( 2 ¢+ M 4+ M ) /2 ) 46Te 0
AND
= - X + AKKAY ( M ) LE. O
ccmececaces [NPLIE§ =e=eesecccemccccscaccccneacnscacencetasncemcccanen
6 =N + ( (2 +M KD/ 2) LTe 2
ANU
kj X ¢ AKRAY ( ( 2 + 1) /2 ) JLE. O
ENTEREC EXPRESSIUN
(L2 +menM) /2
RLLE (L2+MeM) /2
REPLACE 2emev)/s 2z
REPLACE (2+KeM) 72

REPLACE 2+ K+ M)/ as




VLG REPLACE, SUBKOUTINE BINSCH ( ARRAY. LENGTHe X+ LOOKiPs ERROK )

CLAUSE VEHRIFICATICN CONCITICHN
1 «NOTe LRROR
ANU
SCRILLC ( ARKAY + LENGTH )
ARND
X « ARRAY ( 2 ¢ ¥ ) +LT, O
AND
X = ARKAY ( 1 ¢+ y ) 46T, O
ANC
= X ¢ AKRAY ( M ) L,LE. O
seesvasgmcs INPLILS e==ceccscatccaccacccccasmunccnscn e nsnatsennaee
6 = X + AKRAY (3 ¢ N ) oLEe ©
ENTEREC EXPKESSION

« X ¢ ARAY { (1 ¢ F ) ) oLEe 0 % X « ARRAY { ( 1 ¢ M ) ) «6Ts 0 ORs X « ARRAY
( (1 +M) ) €6, 0

RLLE X * ARRAY (1 ¢+ M ) oLEse U a8 ( % o ANRAY (1 ¢ ¥ ) ,6T¢ 0 oOR, X = A
RRAY ( 1 *+ M ) +EGe 0 )

REPLACE = X 4 ARRAY ( 1 4 K ) oLEe U 2 X « ARRAY ( 1 *+ N ) ,67. 0 «ORe X = ARR
Ay ( 1 + M) €6, 0




o

s -

s

VCGWREPLACE, SUBHOUTIKE BINSCH ( ARRAY, LENGTHes Xeo LOOKUPy ERROR 1

CLAUSE VERIFICATIUN CONGITION

1 +NOTe ERROR
AND

2 SURTED ( ARRAY + LENGTH )
ANC

3 X = ARRAY ( 2 + ¥ ) LT, O
AND

4 X = ARRAY ( 1 « % ) +GT. O
ANU

3 = X ¢ AHRAY ( ¥ )} LiLE. U

Tt eeTengewaw IHPL‘LS L L T R L e e N L LA T P T P P R R Y )

[ X = ARHAY ( 3 ¢ M ) +6Te 0 «QHs X = AKKRAY (1 ¢+ ¥ ) JEde O

USING AKIUM 2

RLLE ( PX1 oliPe PX2 .ORe PX3 ) = ( ( PX] -IMP. PX2 ) .OR.
) )

t Px1

oINP. PX3

REPLACE { «NOTe ERRCR +AND. SCRTED ( ARRAY o LLNGTH ) oANCs X = ARRAY { 2 ¢+ M
) oLTe O ¢AlUe X = ARRAY ( 1 ¢ M ) GTe O oeaNDe = X ¢ ARRAY ( ¥ ) Lk,

0 .IMP. X -ARRhY {1 ¢ M ) OG" 0 OOR. b 4 -ARRA' { 1 + M)

EQ. 0 )

2 ( { onOTe ERHOK «ANC» SORTEL ( ARRAY o+ LENGTH ) JANDe X = ARRAY ( &2

* M ) oLTe O oAKUe X = ARRAY ( 1 ¢ M ) oGTe 0 eANLs = x ¢ ARRAY ( M )

oLEe 0 oIMP, X = ARRAY 1 ¢ M) ¢6Te 0 ) oORe ( oNCT.

ERROR

«AND+ SOR

TED ¢ ARRAY o LENGTh ) oANDe X = ARRAY ( 2 ¢ M ) LT« 0 «ANDs X « AHRA

Y (1 ¢ M ) 06‘- V] .A"Dc - X ¢ ARRAY { [ ] ) .LEQ 0 lIle X = ARRAY t 1

+ M) JEGge 0 ) )

VEG AXICM 2, SUBKOUTINE BINSCH ( ARRAY, LENGTHe X+ LOOKUP, ERRCR )

PROOF OF VERIFICATION CONDITION COMPLETED
USING THE FOLLOWING AXIOQNS 4 2
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VLG PATHSH 0205473 SUBRCUTINE BINSCH ( ARHAY, LLENGTHe X LOGKIP, ERROKR )}
LINE PATH SGURCE TEXT

19 WHILE & ¥ ¢ 1 ol.T4e N )
20 o ASSLKRT € ¢ M LTe b oANDe SGRTED ( ARRAY, LENGTH ) ) +ANC. (
®, ABRRAY ( ¥ ) oLEe X oANUe X oLTe ARRAY ( N )} ) <ANDe +NOTe ERROR )
s, )
21 e I 2 (N e )/ 2
22 e« IF U X «LT. ARRAY {
L} « CRIF ( X «GTos AKRAY
2% ELSE
217 o LOORLF =1
2b « N =z [
29 e N=1 +1
30 ENUIF
3 ENUNHILE
19 wHILE ( ¥ ¢+ 1 (LT, N )
32 ASSERT ( ( M LT, W .AND. SORTEG { ARRAYs LENGTH ) ) <AND, ( (

SARRAY ( M ) oLEe X oANGCe X oLTe ARRAY ( N ) ) +ANDe «NOTe ERROR )
s)

1))
(1))

VERIFICATION CUNCITICH SUDKOUTINE BINSCH ( ARRAY, LENGTHs Xe LOOKUP. ERROR )
LINE VERIFICATIUN CONDITION
is M+ ) oLTe N
ANOC

M oLTe M oANDe SORTEC ( ARRAY | LENGTH ) <ANDe ARKAY ( M ) o LE. X +AND
o X oLTe ARRAY ( i ) oANCe oNOTo CRROR

AND
X oGEe ARRAY ( ( M+ N ) /7 2 )
ANC
X oLE. ARRAY ( ( M ¢ N ) / 2 )
ANO
19 C UM eNDZ2) 41 6Ee CELMOENYIZ2) 9+
crevmeencee JUPLIES meccvccvcccctccmtcccncerccanccncscoanccccsossannne
32 (M e A7 2 oLTe (LN

+
) sANGe ARRAY ( ( M + N )
} 72 ) ¢ 1 ) JARD. oNOT,

/7 2 ) ¢« 1 JANDe SORTED ( ARRAY , LENGTH
} eLEe X oANDe X oLTe ARRAY ( { ( M ¢+ N
R

)
2
RRC




VCGoPATHSS 1295073 SUIROUTINE BINSCH ( ARRAY. LENGTHe X+ LOOKUPs ERROR )

CLAUSE VERIFICATION CONCITION
1 X = ARRAY ( N ) oLT. O
ANC
onNOTe ERKOR
ANU
SURTED ( ARRAY ¢+ LENGTH )
ANU
X = ARRAY € ( N + ¥ ) / 2 ) (t@e 0
AND
=N+ ¥V LT, =2
AND
6 e X ¢+ ARRAY ( M ) ,LE. O
esecccccaas [HPLIES <eceoscccccenccoianccccrcncensrcccnsntnccacncncnces
7 X « ARRAY (1 ¢ ( ( N+ M ) /2 ) ) 4LTe 0
ANU
8 = X ¢ ARRAY |
ENTERED EXPRESSIUN
X = ARRAY ( (
RLLE X 3 ARRAY (
REPLACE 2 ARKRAY
REPLACE "z ARRAY
REPLACE ARRAY
REPLACE ARKAY
REPLACE ARKAY




VLG REPLACE, SUBRGUTINE BINSCH ( ARRAY, LENGThHs Xo LOOKUP. ERROR )

CLAUSE VERIFICATICN COWDITICA
1 ohNOTs EKROR
AND
2 SGRTED ( ARRAY » LEAGTH )
AND
3 = ARRAY ( N ) & ARRAY L ( N + M ) /2 ) «Te O
~ AND
4 « N ¢} LT, =1
aND
5 = ARKAY ( ( N ¢ M ) /7 2 ) &« ARRAY { M ) oLE. O

-t neTawesns IMPL IES P L L Ll L L P T L LI T VLY TN e T TP P I T Y T Y T T X T P

6 ARRAY ( (N + M ) / 2 ) « ARRAY ( 1 ¢ ( ( N+ M) /7 2 ) ) oLT. O

ENTEREU LXPRESSION

SCRTED ¢ ARRAY o+ LENGTH ) = ( ARRAY ( 1 ) = ARRAY ( I ¢ 1 ) oLTe 0 ) oANDe { I
GEe 1 ) oANCe ( 1 (LTe LENGTH )

RLLE SORTED ( ARRAY ¢ LENGTH ) = ( ] .GEs 1 ¢ANC. ARRAY ( I ) = ARRAY ( 1 ¢
1) oLTs O «ANDs [ - LENGYH oTe 0 )

REPLACE SORTLD ( ARRAY o LENGTH ) = I .Gte 1 «ANDe ARRAY ( I ) « ARRAY ( 1 ¢ I
) oLTe @ oANDs I = LENGTH (LT. O




VCGWHEPLACE ., SUBROUTINE BINSCH ( ARRAY, LENGTHs X+ LOOKIP. ERROKR )

CLAUSE VERIFICATICN CCNULITIOM
1 1 +6ke 1
AL
ARRAY (1T ) = ARRAY ( 1 + 1 ) JLTe U
AND
I = LENGTH LT. O
ANO
NOTe ERRGR
ANC
= ARKAY (N ) ¢ ARRAY { ( N + ¥ ) /s 2 ) T4 O
AND
e N+ M LT, =1
AND
? = ARRAY ( { N ¢« M ) 7 2 ) + ARRAY ¢ M ) +.E. O

et ensseguene IMPLIES ==c=evcecaveccraccnccnrunyorenesntccrasnvonnsasesvascan

8 ARRAY ( ( N + M ) 7 2 ) = ARRAY ( 1 ¢+ ( { N+ M ) /s 2 ) ) «LTe O

ENTEREU EXPRESSION

I=2(K+N)

RULLE I =((N+H
REPLACE 1 (N
RLPLACE (N
REPLACE (O
RLPLACE (S

VEG+REPLACE, SUBKOUTINE BINSCH ( ARRAY. LENGTHs X+ LOOKUPs ERROK )

PROOF OF VERIFICATION CONCITIGN COMPLETED




VERIFICATION CONDITIONS FOR SQX




VCG'PATHE29143 REAL FUNCTION SGX ( X )
LINE PATH SOLKCE TEXT

REAL FUNLTION SUX ( X )

INITIAL ( X +GEe 0.0 )

SGa = 0,0

IF ( X 6Te 0,0 )

FINAL ( SQX ® SQX = X ,LEe Ue000003 » x )

VERIF ICATIUN CONCITICH REAL FUNCTION S6X ( X )
LINE  VERIFICATICN CONDITION
7 X «Ghe 0.0
AN
9 X JLt. 0,0
ce-ccecaccs (MPLILS =e==ss=cccmcecccaccccenccncencececemcecaccccaasan

17 { 0.0 » 0,0 ) =  § OLEO 00000005 s X

VCG+PATH=24143 REAL FUNCTION SCX ( X )

PRCCF OF VERIFICATICUN CONCITION COMPLETED

VLGeFATHZ301 0204 REAL FUNCTION SOX ( X )

LINE PATH SUULPCE TCXT

REAL FUNCTION SuX ( X )

INLTEAL ( X +GE. 00 )

S¢XK = 0,0

IF U X 46T 9,0 )

[ ' s 0!5 L X + 1.0

o WHILE (Y =« X /7 Y 6T 0,000001 » Y )

o o ASSERT ( ( X +GEs Us0 oANC. Y *GEs 000 ) ¢ANDe ¥ & Y o6T¢ X )

=D E -

b Pub 2




VERIFICATIUN CONLITICH

LINE VLRIFICATIUN
? L ouke U0
AND

S X «GTe 0,0
ANL

1 ( 0.9 )
» +

KEAL FUNCTION SUX ¢ X )
LONULTLICN

¢ 140 « ( X /7 Ut 0.5 s X ) ¢ 110 ) ) .‘Tl 00000001 s (|
1.0)

ovamdacgena XFPLlLS LT T I X T Y TT Y TPORY ey T S T LT FY Y Y T PR Y YY)

12 X oGEs 0.0 ¢ANCo { 003 ® X ) ¢ 1,0 oGEs 0.0 oANDe ¢ & 0.5 & X ) ¢ 140

} e ( (0.8

X )+ 10 ) oGTe X

VOGFATHS3 010204

REAL FLNCTION SOX ¢ X )

CLALSE VERIFICATION (CNOLITION

b = ( 0,0000005 ¢ x ) ¢ ( 0e5 8 X ) « ( X/ (240 ¢ ( 0e8 8 X)) ) 6T,y

1.00000)
AND
e X «GY, 0,0

atanstemgeew lpPLlls (I I PR I L L R P Y PP YYI P P IALL E L L DL S g )

3 « X ¢ { D5
AND
4 X ooEs 0,0

AND

X ) ¢ (05 8 X ) ¢ ( 0,29 8 X 8 X ) 6T, 1.0

S 0.5 & x ,GE, 1.0

VEGPATH=3014248
LINnE

REAL FUNCTIOM 8GX { X )
PATh SULRKRCE TLXT

REAL FUNCTION SUX t X )

INITIAL ( X oGEe Qo0 )

§64 2 0,0

lF ‘ x .G‘. 0.0 ,

e Y 2 05 & X ¢+ 1,0

o WHILE (Y = X / Y +GT, 0.000001 » v )

o FINAL ( S@X @ Sgx = X Lte 0.000003 » X )




VLRIFICATIUN CONCITION REAL FURCTION SCX ¢ X )
LINE VERIFICATION CONDITION
7 X «GEs 0,0
AND
X «6Te 9,0
AND
11 D X -? w« X/ C (0% & Xx ) ¢+ 1,0) , ,LE, 0,000001 « ¢ {
. )

» ) ¢+ 1
A + 1.0

«0
0,5

cevancange e IMPL‘ES -.-..-------..------.:.-.-..-.-------------------.-

17 €0 L 05 ® X ) ¢ 160 ) » € L 065 » X ) ¢ 1,0) ) «X oLEs 0.000003 »
X

VCGsPATHE3 014205 REAL FUNCTION SQX ( X )

CLAUSE VERIFICATICN CONCITLIOM

1 e ( U U0000US o x ) ¢+ ( 05 » x ) = a7/ t 1e0 ¢+ ( 0.5 ®» X ) ) ) LEo
1.000001

ANU
2 K «6T. 0,0
etossasgons l“FLxEs LT Y YT PRY LYY Y LY PRy R ey T T T T L E T T R Ty e

3 e ( 0,000003 X ) ¢+ ( 045 » X ) ¢+ { 05 » X ) + (10.25 » X & X ) - X
oLEs 1.0

VCGPATHZ vl o4 REAL FUNCTION s¢X ( X )
LINE PAYH SUUKHCE TEXT

wHILE (Y « X /7 ¥ 46T, 0,000003 » Y )

12 o ASSEHT C 4 X oGbe UeD oninbo Y oGLe U,V ) «ANDe Y # Y «GT. X
« Y2088 ( Yo/ V) . ’ :
ENCWHILE
WHILE (Y = X 7 Y 46T, 0,000001 » Y )
e ASSERT ( ( X .GEo 0¢0 sANDe Y oGEos (020 ) ANDe Y & Y GT, X )




&
*

VLRIFICATION CUNCITICN ALAL FUNCTION s@X ¢ X )
LINE VERIFICATION CONCITLUN
11 Yo X/ Y ) o«61s usl0000) o ¥
ANC
12 X oGEe 060 sANCe Y «GEw UeD «AWGe Y » Y T, X
ANO

11 ( 0,5 » (Y

* LA 7Y ) ) ) e X0 (Y s X 27Y D)D) GT,
0.0000G) #» UeS » (Y + ( X/ Y ) )

et aecsaganw IHPLICS CTT L LT T TR TN PR R T gy iy Sy P =Y 1 T R gy e

12 X oGEe Ge0 oANCo Qo3 ® (Y ¢ ( X / Y ) ) o4GEe 0e0 «ANDo DS = ( Y ¢ §
X795 01 ) ¢ 0e8 o ( Y® { X/ Y ) ) o6Te x

VEGeFATHSZ 0404 REAL FUNCTION 86X ( X |

CLAUSE VERIFICATIUN CUNDITION

l X OGE! 0.0

AND

2 = ( 0,0000005 * ¥ ) = ( 0,000000% ¢« ¢ X /7 Y ) ) ¢ ( 0.8 Y ) + ( ne8
* U X/ YD) ) et X/ L US e Y ) (0580 X/7Y D)) ) ) o6Te 0
AND

3 - { 0,000001 = Y ) ¢ Y & { X /7 YY) .67 O
AND
4 = X + (Y ®Y ) GTe O
ANV
- Y +Gt. G.0
wreuncugens [JPLIES =evw=cccecmercscanssncnrcanerossccsensacesncsvanse
6 { 05 s Y ) ¢ (05 80 X7 Y ) ) oGE, 0e0
AND

7 e X ¢ ( 0s25 Y oY )+ ( 0,29

s Y e ( X/ Y))+ L 0.5 X/ YY)
e Y )+ (050 (X/7Y)e L XY ))

oGTe O

D-63

TR T




_‘ VLG I1PATHZ204¢5 REAL FUNLTIOM SGX ( X )

LINE PATH SULKCE TEXT
11 WHILE € Y = X / ¥ ,GT, 0,00v001 = Y )
12 ¢ 1) o ASSLKT € € X +6to Usi oANCe Y «GEe 0,0 ) ANDe Y ® Y oGT. X )
13 (1) e Y T US s (Y eX/ Y )
14 ENUMHILE
11 wHILE © ¥ = X /7 Y 67, 0,000001 » Y )
17 FINAL ( SGX ® SOX = X JLE. 0.000003 » x )
(]
VERIFICATION CUNCITION REAL FUNCTION 5QX ( X )

LINE VERIFICATIUN CUNCITICN
11 Yo (X /Y ) +67s 04000001 » ¥
AND
12 X oGEs 0,0 ¢ANCs ¥ oGEe 040 «nANDe Y » Y 6T, X
AND

11 ( 0,5 % (Y

+ (X7
0.000001 * 0.5 » ¢

Y b)) et X /7 1 Ue3 ¢ (Y e (X7 V) ) ) LE,
Y+ (X/77))

T rLrery IMPLILS L T o L ey R e e L T L L L T T Ty s

17 (0.8 % (Y &+ (X /7Y ) ) *#0.58 (Y + (X/7Y)))eXx ,LE. 0.0n000
" 3 X

VEGIFATHhS 2445 REAL FUNCTION SOX ( X )

CLALSE VERIFICATICON CONCITION

1 X «GEs 0,0

AND
2 = ( 0.0000005 s v ) = ( Qo00U000S » ¢ X /7 Y ) ) ¢ (0,5 =Y ) ¢+ (U 0e5
$ (X /7 Y D))o X/ C L0 oY ) ¢ L 0.5 (X727 Y ) ) ) ) (LEW O
AND
3 = ( 0,000001 » Y ) + ¥ » ( X/ Y ) .GTa O
A AND
{ 4 - X ¢ LY ®Y) 6T, 0
AlvD
9 Y +GEs 0,0
| ceecccmeess IMPLILS *=esecscccesccasnacmacecmnassacaamesssanancacanaan
6 o ( 0,000003 » X ) = X ¢ ( 0,2% » ¥ ¢« Y ) ¢ ( 025 ¢ Y » (X /YY) ) ¢
( 0625 s ( X /7 Y ) 8 Y ) ¢ (V29 6 ( X /7Y ) & (X /7Y ) ) JLEs 0
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