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1. INTRODUCTION

The Navy Fleet Material Support Office (FMSO) is in the implementation
phase of an integrated real~time data communications network to make logistics
information avallable to a large number of dispersed Navy users. This in-
formation is necessary for effective and efficient logistics support. The
Logistics Data Communications Network (LDCN) will provide direct access
from remote locations to two Inventory Control Points (}CPs) which maintain
and manage major logistic data bases. FEach ICP computer complex has two
U494 computers; one also has an IBM 370 while the other has a Burroughs
3500. Each complex will have a Front-End Processor (FEP) to provide the
communications functions needed and relieve the Host computers of these
tasks. Programmable communications concentrators at selected Navy sites
will be used to interface low-speed terminals and provide cost-effective
remote access. Each concentrator will be connected via high~speed full-

duplex lines to each of the FEPs.

To assist management of the operational system and future developments
to satisfy new user requirements, FMSO has identified the need of an ef-
fective simulation tool to model system behavior under various load condi-
tions and design variations. Such a tool can be used to assist operations
personnel when unresolved problems occur in the existing network. The
results of a simulation run can be used for detailed examination of each
system resource utilization and to trace the progress of activity in the
system, thereby giving insight to a problem that empirical observation
cannot. In addition, a simulation program is essential when expanding the
capabilities of the network. It can be used to isolate potential bottle-
necks and quickly and cost-effectively evaluate potential alternatives to
alleviate such bottlenecks before the capabilities are required and imple-

mented.

When modeling a single processor, as opposed to the entire network,
simulation provides an economical means of evaluating various design al-
ternatives, both hardware and software. The primary objective of processor

modeling 1s to economically attain designs satisfying the performance re-

quirements.
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J
However, the effect of var&pus performance requirements on a particular

processor configuration can also be obtained visa simulation.
s .

In general when dealing with such complex systems, simulation can pro-
vide management and operations personnel with the off-line examination of
system operations needed for future growth feasibility studies as well as a

tool for verification of the actual implemented system.

This report describes a simulation strategy that can be used to model
the LDCN. The strategy presented allows total system modeling (i.e., the
network) and system element modeling (i.e., the processors). We begin in
Chapter 2 by giving a description of the various components of LDCN and
their interconnections. We also present a scenario life-cycle for a trans-
action from the origination at the terminal through the network and back to
the terminal. In Chapter 3 we present the modeling strategy. In Chapter 4
we describe in detail each of the models presented in the previous chapter.
The inputs and outputs of each model are described in Chapters 5 and 6 res-
pectively. 1In Chapter 7 a methodology for linkage of the various models
is discussed. Implementation considerations and, in particular, how
various simulation languages could be used to handle the specialized pro-
blems faced in coding the programs are described in Chapter 8. Finally in

Chapter 9 the conclusions and recommendations are presented.

1.2
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2. SYSTEM DESCRIPTION

The logistics Data Communications Network (LDCN) is combosed of five

classes of devices:
1) Host Computers or Simply Hosts
2) Front-End Processors - FEP
3) Concentrators
4) Terminals (e.g., CRTs, RJE, TTY)
5) Communication Lines

In terms of the simulation strategy we will exclude the terminals from
consideration as they are not programmable and can be viewed as sources and
sinks of traffic. [t is essential, however, to include the low-speed lines

that connect the terminals to the concentrators.

LDCN is composed of two main computer complexes; one ICP at Mechanics-
burg, Pennsylvania (SPCC), and one ICP at Philadelphia, Pennsylvania (ASO).
At Mechanicsburg, the ICP computer complex contains two U494 computers and
one IBM 370. At Philadelphia, the ICP computer complex contains two U494
computers plus a Burrought 3500. At each ICP, one U494 supports real-time
processing activity for an Inventory Control (IC) data base, and the other
U494 supports real-time processing for a Weapons System (WS) data base. Each
U494 can access the other's data base in a read-only mode. The 370 and
B3500 also support real-time processing but have access only to their own

data base.

In addition, each complex has a Front-End Processor (FEP) minicomputer
to serve the communications functions for the host computers. The FEP is
a dual-CPU Interdata Model 7/32 minicomputer ;ith moving and fixed-head
disks and several tape drives. The FEP is connected to each Host via a half-

duplex hard-wired channel.

2.1
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A total of nine remote concentrators are planned for the system; cach
concentrator connected to both FEPs. The concentrator is an Interdata 7/32
minicomputer with limited peripherals. The FEP~to-concentrator connections

will be via high-speed dedicated full-duplex channels.

A variety of terminals will be accessing the concentrators via low to
medium speed half-duplex dedicated or dialup circuits. The configuration

of LDCN is shown in Figure 2.1.

The system 1s transaction oriented with the terminals entering transac-
tions via the concentrators, which are then forwarded to the FEP wherc some
fraction are in turn forwarded immediately to a Host, and the others are
spooled for batch processing. Outputs generated by the Host are immediately
transferred to the FEP where they are buffered for segmented delivery to the
concentrator followed by transmission to the originating terminal. The 1life
cvele of a transaction 1s the sequence of steps describing its progression
through the system from its origin to its termination. Examining the life-
cycle of a typical transaction will provide substantial insight to the
various simulation models and the rationale of their structure. Transac-
tions originate at the terminal where a logged-on user keys in the message,
The characters are butfered in the concentrator where editing by the user
can be performed. After the end-of-message signal is sent, the concentrator
transmits the transaction to the FEP via the high speed lines. The FEP will
be & dual-CPU configuration; each CPU will effectively be connected to the
Hosts and the concentrators., Each CPU can take messages from the concen-
trators and deliver them to the appropriate Host and vice versa. In
addition, one CPU can receive a message from either Host or concentrator
and the other CPU can deliver it. When one CPU fails, the FEP will continue
to function. As transactlons are received by the FEP, they are processed
for error detection and to verify user validity, program availability, and
type. Two bhasic transaction types are identified: Real Time Transactions
(RTT) - those to be sent immediately to a Host on a First-In/First-Out
basis, and Possible Batched Transactions (PRT) - those to be spooled on

disk until a batch criteria i{s satisfied (time or volume) and then trans-

ferred to a Host.
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Two types of Real-Time Transactions for the U494's are also fdentified:

1) Upquires - those RTT's that can be sent only to a specific
Host because they imply a write operation (update of daia),

and

2) Inquires or shared transactions - those RTT's that can be
sent to either 494 because they imply a read-only operation.
Both 494's has access to both WEPS and ICS data bases in a

read-only mode.

In the FEP there are 2 queues (each FIFO) for each 494 Host; one for
the upquiry real-time transactions, the other for the batch transactions.
However, there is one additional queue for the 2-494's that hold the
shared real~time transaction. (The decision as to which 494 gets these
shared requests is done by an algorithm in the FEP that receives utiliza-
tion information from the 494's in the header of received transactions.)
The procedure for messages destined for one of the 494's is to alternate
between the 3 queues (real-time, shared real-time, and batch) and transmit
the message (if any is present) at the top of each queue. For the other
Hosts (370, B3500) there will only be 2 queues - one for real-time, the

other batch. Both queues are FIFO.

Transaction processing by a Host results in an output to be returned
to the user. This output 1s usually quite long, and since concentrators do
not have auxiliary storage, the content must be buffered via auxiliary
storage at the FEP. Thus, when outputs are received by the FEP, they are
transferred to disk to queue for buffer availability at the conceuntrator
for transmission to the user. Double buffering for each user communications
facility 1s used at the concentrator to obtain continuous transmission of
outputs to the user. As each buffer is emptied, transmission of the next
buffer i1s initiated, and a request for a new output segment (or RINM for
Request for Next Message) for the emptied buffer is sent to the FEP. The
FEP then reads the next output segment from disk and transmits it to the
concentrator. The life-cycle of a transaction terminates after the last

output block is transmitted to the terminal.

2.4
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3. MODELING STRATEGY

Development, operation, and management of a network such as the LDCN
requires the facilities to predict network and network subsystem perfor-
mance as a function of traffic characteristics and design variations.
During the initial development phases, such a capability can be used to
determine appropriate sizing factors and configurations for the given
performance objectives and traffic requirements. As development proceeds,
It can be used to examine sensitivities to changes in requirements and to
determine appropriate corresponding configuration adjustments. Once the
network is operational, such a capability can be used to assess the signi-
ficance of trends in traffic changes and to predict necessary design ad-

justnients before the need becomes critical.

The capabilities described above are basic objectives for develop-
ment and use of a system simulation model. The LDCN is a complex sys-
tem, composed of major subsystems in concentrators, Front End Processors
(FEPs), and Hosts, uwnified via data communications lines into an operational
system. Major design issues can focus on the network as a whole, or on
any subsystem, and may deal with hardware or software. Development of a
simulation model as a general tool to enable examination of such issues
requires major consideration be given first to the overall modeling strategv.
The strategy must address the issues of modeling the individual subsystems
as well as modeling their interaction in a unified system. The purpose of

this report 1is to present an appropriate strategy for modeling the LDCN.

The disucssion presented below outlines a modeling strategy that
allows both types of results. We begin with the global network strategy
and then show how detailed processor models can be extracted from the

global model.

3.1 Global Modeling Strategy

As an input to development of a total system modeling strategy, the
entire network of Hosts, FEPs, concentrators, and communications lines has

been functionally defined and portrayed in a simple system schematic.

3.1
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Previous work has defined the basic operational, hardware, and software
characteristics envisioned for the implemented system, and the traffic
load and flows it is required to support. With these factors given, two

basic simulation strategles for giobal network modeling may be considered:

1) Detailed Simulation;
2) Simplified Simulation But With Selected Detailed Subsystems.

The first choice is to make one large program that encompasses the
entire network. Each processor would be modeled at the desired level of
detail. From such a program would come results on the inner workings of
féach processor as well as global network performance measures. This
concept is obviously infeasible for the LDCN due to a variety of rea-

s0ns:

1) The number of computers involved in the network (in LDCN -
6 Hosts, 2 FEPs, 9 concentrators) would make the program

exceptionally large and require extensive computing resources

for execution;

2) The program would be required to simulate, in detail, the same
type of device several times concurrently. This is certainly
wasteful. One should simulate the same processor only once

for a given set of conditions;

3) There exists a time unit disparity. The level of detail desired
for the processors would be in the micro to milli-second domain
whereas the communication line delays are on the order of a milli-
second to a second. All the simulation time would be spent in
the devices, processing the message. Very few messages would be t
transmitted between the processors. The execution time of the g

simulation model may be an order of magnitude greater than the

elapsed time of the actual retwork being simulated.
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The second basic strategy for simulating the network as a whole would
be to simplify and reduce the most detailed portions of a model similar in
concept to the one presented above. The most detailed portlions of such a
model are found in the processors. Their basic functions as communications
processors, are to receive messages, apply various validity and error-
correcting functions to the messages, and then to forward the message onto
the next processor. This is a much simplified description of their func-
tions but it is, in essence, their primary task. When evaluating the
total network performance, the designer is not interested in the specifics
on how the processor performs its task. He would simply like to know that
glven an input message, the processor will generate some form of an output
at a finite time later. If this delay can be quantified and replaced by

an aggregate expression, which we will call a service time distribution,

the problem of modeling the entire network becomes tractable. The network
can be represented as a flow chart of single-servers with queues and
storages in the appropriate places (see Figure 3.1). A simulation program

depicting this model becomes straight forward. ]

3.2 Simplified Simulation With Selected Detailed Subsystems

The above discussion may appear to over-simplify the task of global
network modeling, but simplified simulation with selected detailed sub-

systems has several advantages that make this approach attractive:

1) The model and subsequent simulation program are cost-effective;
the program would be relatively simple to code. The execution of
such a program would be efficient thereby allowing many design
experiments to be run with each run simulating a longer real- |
time period. ‘3

2) The results of interest from such experiments should and would
be the global performance statistics only. Time and money are not
spent in obtaining detailed statistics associated with a particular

processor. These results will be determined by selectively incor-

porating detailed subsystem models in the experiments.
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(- 3) By effective program representatlon ol each device, such as by a ]
macro in GPSS or a matrix entry in FORTRAN | reconfiguration of the
L network, either by adding or removing devices, requires minimal,
if no, program modification.
- The service time distribution can initially be obtained by best esti-
mates of what the service time will be in each processor at zero-load
- conditions. In some cases, for example the Host, the service time might
already be known.
" Using this service time as a constant, independent of load conditions,
A — preliminary experiments can be quickly undertaken. One set of experiments
could be the evaluation of the performance of the network under varying
traffic loads and patterns. A base-line traffic pattern could be obtained
- from existing statistics and future projections. The sensitivity of
varying a class of processors' service time can also be examined. Early
i detection of potential bottlenecks can take place. In addition, initial
design constraints can be formulated.
The above discussion outlines a simulation strategy that can be used
— and implemented for quick and easy evaluation of a communications network
such as LDCN. However, the results of such an evaluation are clearly
1 - suspect due to the many assumptions being made to simplify the model and
reduce unknowns. Inappropriate assumptions might produce results that 1
eventually turn out to be orders of magnitude wrong. This global model f
= is meant to provide the first gross performance trends quickly and cheaply
and to act as the framework for more detailed models as it evolves into an :
- accurate global performance measurement tool. The weakest element of this E
model is the fact thac the service time of the processors is obtained by
- estimation. This can be remedied by the selective incorporation of de-
tailed subsystem models without incurring the negative effects of a de-
= tailed model for the total system.
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3.3 Selective Detailed Models

We mentioned above that one goal of the simulation effort is to acquire
the ability to model, in detail, particular processors. This can easily
be accomplished for stand-alone machines. Simulation of computer systems
has evolved out of the evaluation of a single processor, usually a main
computer. Typical studies are concerned with the effect of operating sys-
tems, memory allocation, peripherals, etc. The problem we are faced with

here is when the processor is an element of a total system network.

Typically the major areas of concern are the sequence of events that
occur inside the device; i.e., what happens to the quantum of interest (job,
task, transaction, message, etc.) after it enters the device and before it
leaves. What transpires before it enters and after it leaves is usually

not important.

But communications processors are bi~directional devices. Typically
after a message passes through the processor on the upstream path, it or
some function of the original message reappears at the processor traveling
in the downstream direction. The simulation model must, of course, account

for this bi-direction flow of traffic.

The interaction between the modeled processor and its surrounding
environment is an integral part of the simulation. The protocols, imple-
mented and cnvisioned, dictate a majority of the functions required at a
processor. Since there is this heavy interaction in two directions, and
the fact that once a message leaves a processor, it is usual’y not terminated
but reappears, the external environment of a communications processor is
much more important that in a stand-alone machine. In fact, the exogenous

events are the ultimate driver of the model itself.

How does one correctly choose the external environment for the com-
munications model? This is where the global network model comes into play.
One simplified single-server model of the particular device in the global

network is replaced by the more detailed version of the model. Next, since

3.6
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most devices do not communicate with devices of the same type (as in LDCN),
all other single-server models of the same class in the global model are
removed. Further reductions are made until what remains is one detailed
model of a particular processor with the external environment being all
the simple single-server modeling devices that directly communicate with
it. This scheme will become clearer in the next chapter when we apply
this technique to LDCN. But the aim is to maintain as much of the global

network model as possible when performing detailed modeling of a processor.

However, the simulation program that arises from this type of model
might still be too large and complex. In this case, reductions in the
structure of the external environment should occur first. There might
be a point, however, where further reduction of the environment could
lead to inaccuracies and inflexability. If the program is still too large,
minor features of the detailed model might be removed. This would be
least attractive, but it should be kept in mind that the external environ-
ment of the detalled model is almost as important as the model itself.

Yet the purpose of the detailed model is to perform detailed modeling.
What to sacrifice is a critical decision to make and can only be made at

implementation time.

3.4 Simplified Detailed Model Linkage

Once the detailed model is built, accurate descriptions of a device's
service time distribution can be made. These distributions can then be
used in the global network model, replacing old approximations. Many ser-
vice time distributions can be obtained for various hardware (peripheral
and memory) configurations at the device. The global network program can
then be run using the various distributions to obtain the global effect of
such configurations. The distributions will also serve, eventually, as
the more accurate description of the external environment of some other

processor.
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3.5 Basic Modeling Strategy

The problem of modeling and simulating a complex data communications
network, such as LDCN, can be approached with the strategy proposed above.
This strategy can be used to satisfy the two basic goals of such a simula-

tion effort:

1) The ability to obtain simulation results for the entire network;

2) The ability to obtain simulation results for any particular

processor or device in the network.

The strategy .is a two~fold hierarchical plan. The first milestone
and the highest level of the hierarchy is the development of a gross
simplified queueing model of the entire network. Each processor is
modeled as a single server. Service times are obtained from best estimates,
design goals, or existing statistics. Once the global network mod.l is
formulated, the development of each of the detailed processor models can
be initiated. Meanwhile, the global model can be coded and experiments
quickly started. The development of each of the detailed models can take
place in parallel or sequentially, as no one model is directly dependent
on another. The structure of the detailed model is obtained from the
framework of the global model as described above. The external environ-
ment of any detailed model is critical and should not be overlooked. The
detailed model can be used to simulate the processor at any desired level.

If program size becomes critical, two alternatives exist:

1) Reduce the scope of the model and therefore hopefully the

size;

2) Replace a complicated section of the program by a simpler one
and model this portion in detail in a stand-alone mode. This
concept can be viewed as another level of the hierarchy of the

models.
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KL As results are obtained from the detailed model, they are fed back into the
global network model and are used in modeling the external environment of
Y other detailed models.
¢ As the global model is fine-tuned with results from the detailed
= models, more confidence can be placed in the global performance results.
More meaningful experiments can be undertaken. One such series of experi-
- ments could be the evaluation of future enhanced capabilities. The pos-
sible scenario for one experiment could be the following: 1
1) Use the global network program with service time distributions for .
' . the processors that were obtained from the most current configura- ?
tion, traffic load and pattern;
(iR 9
2) Run the program, introducing the new set of conditions, e.g., i
increased traffic load; 3
3) Isolate any bottlenecks that occur in the model, e.g., a satura- ;f
- ted processor; s
= 4) Run the detailed model of the saturated processor using the i
same set of new conditions; 4
5) 1Isolate the cause of the bottleneck locally; é
3
= 6) Reconfigure the processor until the bottleneck is removed. This ‘?
might require that the detailed model be run several times; f
7) Using the new service time distribution obtained from 6), return ?
- to the global network model and rerun the experiment; f
8) If performance requirements are met, then the new capability can
L]
be accommodated and the steps needed to provide it are known.

Otherwise isolate the new bottleneck (might be the same one) and

go to that processor's detailed model;

3.9
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L 10) Continue with Step 6.
é&r i
- Given this hierarchical approach to network modeling, we will see, in
the next chapter, how it can be applied to the specific case of LDCN.
8
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4. SIMULATION PROGRAM STRUCTURE

The common structure of an integrated model is a modular program

functionally divided into three main areas:

1) Monitor;

2) Utilities;

3) Models.

The organization has many parallels to common operating systems with execu-
tives, utilities, and application programs. The monitor is the coordinating
element for all the modules and real-time activity. The utilities are pro-
gram modules handling routine functions that are independent of a particular
model implementation such as report generating. The models are the basic
program modules. Each module models some particular component or function
of the system. In this chapter each area of the common structure is

briefly described; the models being described in more detail.

4.1 Monitor

The level-one structure of the modular program is portrayed in Figure
4.1. Each of the main functional areas interacts with the other two and
with a common data structure maintaining facility tables, queues, event
chains, state vectors, etc. The monitor serves to coordinate the flow of
events in the system. It has primary responsibility for maintaining the
endogeneous and exogeneous event chains. As events progress, it advances
the simulation clock and at appropriate times invokes the utility routines

necessary for system statistical snapshots, state-recording, etc. It moni-

tors operator input messages and exercises control over simulation resources.

In some language implementations, some form of the monitor is automatically

provided.

R
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MONITOR

UTILITIES

MODELS

Figure 4.1 - COMMON PROGRAM STRUCTURE
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4.2 Utilities i
The utilities are divided into three main areas:
1) Front-End (1/0);
2) Traffic Generation;
3) Statistics
Each of these areas is further subdivided to yield the basic structure
shown in Figure 4.2, An important part of the utilities package is its
common interface structures with other program modules. All interfaces
are through the three main area levels and are subject to coordination

control of the monitor.

4.2.1 Front-End (1/0)

The front-end modules of the utilities provides both the inputs to
the entire program from the user and the outputs from the program to the
user. In terms of input, probably the most convenient and cost-effective
mechanlism is via an interactive program. Such a front-end could allow the
entering of parameters, control options, etc., in free format and provide
extensive prompting for and error detection of such input. This front end
could create a batch-type file that contains the JCL needed to run the
simulation program along with the required input data. This file then
could be submitted via RJE to the simulation programs. If a graphics
capability is available, the network can be displayed, quickly verifying

its configuration.

The output of a simulation run is usually voluminous. Listings are
the typical form of output. Report generators are the modules that perform
this task. However, along with an interactive input module, the output

could also be viewed with interactive programs. Specific reports and text

could be scanned with text editors. If graphics are available, histograms,
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i -
}. - 1. Front End (I/0)
E e 1.1 Interactive Interface
1.2 Input
= 1.3 Report Generator
2. Traffic Generator
- 2.1 Stochastic Source
i 2.2 Attribute Descriptors
3. Statistics
= 3.1 Statistics Gatherer
3.2 Trace
- 3.3 Statistics Processing
- Figure 4.2 - UTILITIES STRUCTURE
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- distribution and throughput-delay curves can be viewed quickly. It is even
possible to superimpose several curves to {mmediately compare results., :

Figures 4.3 and 4.4 are examples of interactive graphic output displays.

4.2.2 Traffic Generator

Essential to every simulation program is the traffic generator. It

s

serves as the driver of the models. Transactions are usually characterized
as following a random distribution in time with the mean arrival rate being
= used as a measure of demand on the system. At generation time, attribute
descriptors are also created. Attribute descriptors define values for
t; e attributes of a transaction that are also specified by random distributions.
Such attributes may include input message length, input duration (for
operator entry of a transaction on a character basis), output message

length, priority, etc. The user should be able to specify such distribu-

tions through a general, flexible, all-purpose traffic generator that can ;ﬁ

be used by all simulation programs.
4.2.3 Statistics

The primary form of output of any simulation program is the statistical
information describing system behavior. Three functions are identified in
obtaining statistics. Modules are needed to gather the statistics as the
simulation program is running. As the state of a facility changes or as a
transaction leaves a certailn processor, statistics are recorded. The
ability to trace a particular transaction through the model not only pro-
vides the analyst with more information about system behavior but assists
the programmer in the debugging phase of program development. After the
simulation program is finished running, various post-processing modules are
- required to transform the raw statistical data into utilization, distribu-
tion, etc., results. These post processors can be part of the simulation
program itself, taking the data from internal data structures, or they could .
exist in a stand-alone mode reading in a file that was dumped by the simula-

tion program. In either case, they would have to interact with the report

generator modules in the front-end portion of the program.
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4.3 Models

The third component of the simulation program is the model modute.
We now present the flow charts depicting the models for the LDCN devices.
We begin with the global network model, describing the sequence of faci-
lities visited by a typical transaction. We then describe each processor
model (Host, FEP, conc.) in the context of the global network and in more

detall as a stand-alone program.

4.3.1 The LDCN Global Network Model

The schematic diagram for the LDCN Global network model is shown in
Figure 4.5. A couple of general comments are given before we proceed.
First, the model represents the configuration and functions of LDCN to
the best of our knowledge. 1f say, a storage facility is actually imple-
mented as a queue, it is easy enough to modify the model to reflect this.
Half-duplex lines or channels are modeled as a single server in both
directions; full duplex lines are modeled as two servers in one direction
each. It is also easy enough to modify the model when the line status
changes from half duplex to full duplex or vice versa. The communications
processors (Front-End Processor and Concentrator) are modeled as two
servers; each server functioning in one direction, upstream or downstream.
This allows the measurements and service times to be taken for both input
and output which typically require different processing and therefore
imply different delays. However, the concentrator is implemented as a
single-CPU processor and even though the FEP 1s a dual-CPU configuration,
each FEP-CPU is not dedicated exclusively to input or output. The division
of functions in the model is meant only as a convenience in implementing
different service times. The exact model should reflect that only one CPU

or two CPUs "in parallel" are performing both functions.

We now describe the sequence of events, or life-cycle, that a trans-

action would take through the global network model.

1) The transaction is initiated by the traffic generator at the con-

centrator. We assume that the transaction 1is one complete

4.7
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— message. Several options exist at the level of detail for the
traffic generator. There could be one traffic generator per
b terminal, one per concentrator, or one for the entire system.
We feel that the way we have depicted the traffic generator
here for the global model (one per concentrator) allows for both
= general and specific characterizations of the traffic pattern f
and load. Consequently, the traffic generator must tag the ‘
= transaction, in addition to other attributes, with the origina-
tion terminal i.d.
-
2) The transaction then seizes the low-speed line server; here
i represented as half duplex. The service time is known and
is equal to the transmission rate of the line. ;
E L ]
i 3) The transaction then queues for service at the concentrator.
f - 4) It then seizes the upstream concentrator server. The service i

time is obtained initially from estimation but subsequent by

results from the detailed concentrator model.
i 5) After being served, the transaction queues for output to the FEP.

6) After seizing the high-speed line server for a duration equal

to the transmission rate of the line, it enters the FEP.

7) 1f the message was a RFNM (request for next message), it then
progresses to the downstream ‘FEP server. Otherwise, the upstream
module processes the transaction in preparation for transmission
to the Host. Again the service tiime is obtained either by es-

-— timation or detailed modeling results.

8) The transaction is then placed on an output queue depending on

destination Host and transaction type.

9) After seizing the half-duplex channel server, for a duration
again equal to the transmission rate, the transaction enters the

{ Host.

4.9
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The transaction queues for processing after which the Host server
performs part or all the processing required. After completion
4l of the processing, the transaction 1s now an output message
which begins its downstream journey.
¢ .
-
11) After queueing for the channel server and being served, the
message enters the storage buffers in the FEP.
—
12) After being served by the downstream FEP server, output blocks
- are then sent to storage buffers awaiting transmission to the
concentrator.
13) After seizing the high-speed line server the output block enters
storage buffers at the concentrator.
14) Subsequent to being processed by the downstream concentrator 1
= server, two output blocks are prepared for transmission on a d
per terminal basis.
i 15) After seizing the half-duplex line server, each output block
8 = is terminated and a RFNM generated for transmission back to
g the FEP. This RFNM joins the upstream input queue at the con-
centrator.
As the processor models are presented below, each of the above steps relevant
- to each model will be described in more detail.
= 4,3.2 The LDCN Host Model
— The Host model is depicted in Figures 4.6 and 4.7. Figure 4.6 shows
the relationship between the Host model and the global network model.
} - Figure 4.7 shows the Host model in a stand-alone mode. Notice that the

only element in the external environment -is a reduced version of the FEP

model. In addition, the simple single-server model of the Host is now

replaced with the more detailed version. This basic model can be used to
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model any type of Host in LDCN. We will now trace the life cycle for

transactions in this model.

1)

Network Analysis Corporation

Transactions are generated and immediately placed on an output
queue at the FEP. There are two queues; one for real-time trans-
actions, the other for hatch transactions, However, when modeling
a U494 Host, there is an additional facility; i.e., a storage,
that 1s used for real-time transactions that can be processed at
either 494 (inquiries). We will describe how this mechanism is
used to eliminate the necessity of modeling the two 494s simul-

taneously.

The traffic generated for the Host is only the amount to be pro-
cessed by the particular Host under consideration. However, when
modeling a U494 Host, the inquiry traffic generated should be the
amount destined for the complex under consideration (ASO or SPCC).
As an inquiry transaction is generated, it attempts to enter the
storage mechanism (really a finite-length queue) in the FEP. If
the storage is full, the transaction at the head of the storage is
removed and terminated, thereby making room for the new trans-
action which then joins the storage. Terminating the transaction
in the above manner simulates an inquiry transaction that even-~
tually is processed by the other 494 Host. This mechanism
prevents the buildup of a "standing-wave" of inquiries queued for

a 494 when the 494 becomes momentarily unavailable during processing

of a large batch of transactions. It is during such an interval
that the load-sharing feature of having a second 494 should be of 3
greatest significance. Without such a feature, the 'standing-

wave' effect would result in serious performance degradation on
inquiries for a period exceeding the momentary service disruption. i

By varying the length or size of the storage, one is able to vary

TR

the amount of inquiry transactions processed by the Host. A zero
length storage would imply no inquiry processing; an infinite
length would mean that this Host process all the inquiry trans- 4

actions. Measurements must be taken on the amount of inquiry

o

traffic terminated and it should be verified that the other U494

is able to accomodate at lease that amount. The scenario could be:

4.13
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4)
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6)

7)
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a) Run one 494 model with all the inquiry traffic destined for m

the system using a finite size storage; f
b) Measure the amount of inquiry traffic terminated at the FEP;

c) Run the other 494 model with only the amount of inquiry g
traffic measured from b) using an infinite size storage.
Thus, all the inquiry traffic would be serviced by either
U494,

Transactions wait for the availability of the half-duplex channel

modeled as a single server in both directions.

After selzing the server the transaction joins the Host input

queue. The time it joins the queue is recorded as t to be

i’
used as the starting of the service time.

—

After reaching the head of the queue the transaction enters the
detailed Host model. It is at this level where the various
functions of the host are simulated in detail, such as scheduling,
overlaying, peripheral access, CPU execution, etc. The trans-
action is terminated, and an output message is generated as a

function of the input transaction.

The output segment then joins an output queue, in preparation for
transmission to the FEP. The time it joins the queue is recorded
as t_. The Host service time for that transaction is then defined

ob -t
t eto i

After seizing the channel server, the output segment enters the

FEP storage buffers awaiting processing by the FEP modeled as a

single server. If the storage is actually implemented in parti-

tions dedicated to separate Hosts, the size of the storage should o
be equal to the size of the partition allocated to the Host being

modeled.

The processing in the FEP is only that amount required to store
the output segment on auxillary storage, i.e., disk or tape.

Once that is accomplished, the output is terminated.

4.14 !
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The model is fairly simple and straightforward. The level of detail
inside the detailed portion of the model is arbitrary and can be left up
to the designer. It can start as a simple, gross model evolving into a
more sophisticated program as simple functions are replaced with more
elaborate subroutines. The only portion of the external environment re-
quired are those functions in the FEP that directly communicate with the
Host. Those are the upstream output queues and the downstream storage

buffers and single server processor.

4.3.3 The' LDCN Front-End Processor Model

The FEP model in the context of the global network model is shown in
Figure 4.8. It is by far the largest model of the three processor mocdels.
Using the methodology presented in Chapter 3, the FEP model is obtained by
reducing and eliminating portions of the global network model. Concentra-
tors are connected only to the FEP under consideration. Therefore, the
nunber of high-speed lines has been cut in half. The FEP only communicates
with three Hosts, consequently, the number of Hosts in the model has been
again reduced by a factor of 2. In addition, the input queue at the Host
has been removed. The service-time distributions for the Hosts in this
model are obtained from the detailed Host model presented in the previous
section. There, we measured the time before it entered the input queue.
Therefore, in this model, the input queue is not needed. These Host
service-time distributions should also be the ones that the FEP under
consideration communicates with (i.e., when evaluating the traffic pattern
for the ASO FEP, the ASO Host computer service-time distributions should
be used.). In addition, the resources at the concentrator, buffers, queues,
input lines, CPU processing power, etc., should be proportional to the
number of terminals that are comnmunicating with the particular FEP under
consideration. The concentrator portion has also been modified by enbed-

ding the traffic generator inside the concentrator. This eliminates the

4.15
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necessity of simulating the upstream concentrator server. All these

changes are shown in more detail in Figure 4.9.

Again, using the modeling strategy described in-Chapter 3, the
simplified single server model of the FEP is replaced b& the detailed
version of the model. The dual-CPU configuration of the FEP is modeled
in the detailed portion. Again we have represented the detailed portion
as two servers; one in each direction. This was done only to point out
that the service time distributions are typically different in each di-
rection. The simulation program itself must take into account that there
:‘could possibly be only one CPU that is processing both the upstream and

downstream traffic simultaneously. '

1f the simulation program for the FEP is too large, an alternative
approach to modeling the concentrator (probably the largest component of
the external environment) is possible. This is described below and
depicted in Figure 4.10.

The life cycle of a typical transaction through this mcdel is quite
similar to that of the global network model. Therefore, we will only

describe the differences.

1) As mentioned above, the traffic originates from witﬁin the con-
centrator. The traffic generator tags the transaction with the
terminal identifier to be used on the downstream path later on.
Again, the traffic pattern and load generated should correspond
to that destined for the particular Hosts and, therefore, the
particular FEP being evaluated. y

2) As the transaction enters the detailed portion of the FEP model
on the upstream path, the time is recorded as til.

3) The detailed upstream portion of the model allows simulating, as
in the Host model, the various phases of processing involved.

These include error-checking, CPU execution, the writing of batch
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4)

5)

6)
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transaction onto secondary storage, retrieving batch transaction

from secondary storage, etc.

As the transaction leaveés the detailed upstream portion, the time
is recorded again, this time as tig' The service time then for
this transaction through the FEP in the upstream direction is

tiz = til. ‘
After the transaction is processed by the Host and an output is
generated, it enters the downstream detailed portion of the FEP
model via the half-duplex channel. Here again, the time is
recorded as tol. It is at this point that the functions and

tasks performed in transmitting output to the concentrator by

the FEP are simulated in detail. These include the storing and
retrieving of output messages to and from secondary storage,
processing involved in segmenting the output messages from the
Hosts, processing the RFNM, interleaving and transmission of
output segments to the concentrator, etc. Because the concen-
trators have no auxilliary storage, a scheme of double buffering
is used to provide continuous transmission from the concentrator
to the terminal. At the start of output, two output blocks are
sent to the concentrator. As a buffer is emptied, a Request for
Next Message (RFNM) is sent by the concentrator to the FEP. As

the first two blocks leave the detailed portion of the downstream
FEP model, the time is again recorded, this time as toz- There-
fore, the service time of the FEP for the storing of the entire
output message and the retrieval of the first two blocks is

t02 = tol. The FEP service time for retrieving subsequent output
blocks depends on when the RFNM is received by the FEP. Therefore,

we define another time stamp t_, as the time the RFNM arrives and

R
initiates retrieval of the next output block from storage. There-
fore, the service time for output blocks other than the first two
1s equal to tgyy - tp.
Output blocks terminate after being served by the low-speed line
server at which time the RFNM is generated. It is necessary to

F |
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include the low-speed terminal lines in this FEP model because the
generation of the RFNM which will initiate FEP processing occurs
after the transmission of an output block on the low-speed lines.
This requirement could make the FEP program very large and costly
to run. On the average only half of the total terminal popula-
tion need be included in the program. (Recall that only the
terminals communicating with the particular system and, therefore,
the particular FEP are required.) This still (approximately 350)
might 1limit the level of detail obtainable in the FEP program. In
the next section we present an alternative scheme to resolve this

problem.

An alternative approach to modeling the concentrator in the FEP pro-
gram is shown in Figure 4.10. All the low-speed line servers are replaced
by one single server with service time equal to the sum of the line speeds.
This 1is not totally accurate in the low traffic case, but in the high to
peak traffic load, this technique does return the average line speed ser- i
vice time. The goal is to remove the necessity of simulating every low- '
speed line in this model, therefore, reducing the size of the program. The
above scheme does this for the lines themselves, but the double buffer
mechanism still remains. That also can be replaced by the following

sequence of changes:

1) Two priorities are associated with output blocks sent from the
FEP to the concentrator. The higher priority is associated
with the two buffer message that initiates output. The lower
priority is associated with all single buffer messages that are
initiated as a result of a RFNM.

2) After the two-buffer message is processed by the concentrator
server, it is split into two messages. The first message seizes
the low-speed line server and subsequently generates a RFNM and
terminates. The second message has 1its priority lowered and is
fed back in the queue for processing as a single buffer message.

Only the first two output buffers are split in this manner. :

4.21 |
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0f course, this does not exactly model what 1s occurring in the con-
centrator. However, this approximation should be sufficient. The goal
in this model is the detailed simulation of the FEP. Approximations in
the external environment should be tolerable, since they lead to problem
and program reductions, thereby allowing greater flexibility in the de-
tailed model.

From the FEP model, we also define a system service time distribution

which will be used by the detailed concentrator model. If we take the

time interval toy - til for all messages in the FEP model, that defines

the amount of time required to »rocess an input message, create an output
message and prepare it for transmission to the concentrator. This interval
is the total turnaround time seen by the concentrator. This delay will,

of ésﬁise, depend on which system (ASO or SPCC) and which host at the
system the transaction requires. Consequently, a substantial amount of
statistics must be gathered from the FEP model that will be used in the
concentrator model. These statistics are more fully described in Chapters
5, 6, and 7.

4.3.4 The LDCN Concentrator Model

The LDCN Concentrator Model is shown in Figures 4.11 and 4.12. The
model is the same basic structure as in the global network model. However,
the FEP and Hosts have been replaced by an Input/Output Function Box that .
given an input message or RFNM, generates an output according to the sys- %
tem service time distribution obtained from the FEP model described in the
previous section. In addition, the simple single-server model of the con-
centrator is replaced by the more detailed version of the model. The life-
cycle of a typical transaction is again similar to that in the global net-

work model. The differences are described below:

1) The time an upstream message enters the detailed portion of the
model is recorded as til' As it leaves the detailed portion, the

time i8 recorded as tiz, thus attaining an input service time as

tiz = til.
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(- 2) After seizing the high-speed line server, the message enters a
system input/output function box. This device models both the

FEP and Host that the transaction would use. The service time

: is obtained from the distribution mentioned above,
g
= 3) As the output segments enter the detailed portion of the model,
the time is recorded as t°1. As it leaves, the time 1s re-
- corded as toz giving a downstream service time of to, = toy-
o Various experiments can be run using the basic concentrator model.
The goal is to obtain characteristics of the concentrator delay for all
L nine concentrators. Typically the local access configuration (number and
speed of the low~speed lines) at each concentrator will be different. In
1 addition the traffic load and pattern will differ. The same program can
' B be used for the experiments if the local access configuration is supplied
f as input. Service time distributions for the concentrator can be obtained
j = for each configuration and used in the various other models. However,
; when a new feature is implemented in the concentrator, the corresponding
: L simulation program must be run several, if not nine, separate times to
verify that all concentrators can accommodate the new feature. However,
e when a change in the local access configuration of one concentrator oc-
| curs (a change that might happen frequently) if other concentrators have
: - existing configuration similar to the new updated one, a new simulation
run need not always be performed. i
i - 4.4 The Structure of the Detailed Portion of the LDCN Models %
- Up to now we have left open the structure of the detailed portion of each
of the processor models. In this section we describe two alternative ap- 3
- proaches that could be used and implemented in the simulation programs. i
Each technique has advantages and disadvantages which are also presented. 1
N
The first approach, and probably by far the most classical, is to code ’
the specific functions and tasks directly into the program. The life-cycle
= or sequence of facilities inside the processor visited by a transaction are :
o
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enbedded inside the code. This method conveniently allows the functions
and tasks of the particular processor to be described and documented in
the simulation code. The program designer would be free to structure the
detailed portion as he wished, thereby allowing greater flexibility in
choosing the areas of most concern and desirable levels of detail. How-
ever, three separate program modules must exist and be maintained. 1In
addition, every change in the life-cycle of a transaction implies a change
in the code, a re-compilation of the module or subroutine, and a reloading

of the entire program.

The other approach is what can be referred to as the "unified" method
of processor modeling. It is based on the principle that every transaction
in a computef system goes from one "server" to another in an orderly and
predetermined fashion until its processing is completed and/or exits from
the system. This sequence of events or 'cycle-vector" would be different
for each processor. However, if the detailed portion of each of the pro-
cessor models were structured as the same general flexible skeleton, the
cycle-vector for each processor could be read in as input and thereby
create different "programs." This concept avoids recompiliation and re-
loading of the simulation program. Only one version of the program need
be designed and coded. However, there are some disadvantages to this ap-
proach. There is an overhead involved in reading in the cycle-vector and
initializing data structures in such a program. Design runs on a fixed
model would run longer and cost more with this approach than the first.
The input 18 more complicated, possibly requiring a pre-processor for

verification. Also, a general program, to accommodate all possible fea-

tures, might be so large that other features specific to each particular ;
processor might have to be reduced or removed. However, a well-designed ?
program structured in this manner could be both general and flexible in ,
addition to being cost effective. %

The tradeoffs of each approach must be made at implementation time
and in conjunction with the various simulation languages. Certain high
level languages that provide desirable features might be restrictive in

terms of the second method. Other more primitive languages that allow
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extensive 1/0 might not provide the capabilities of others. A more detailed

description of simulation languages and program {implementation is presented

in Chapter 8.
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5. INPUT TO SIMULATION PROGRAMS

A gencral modeling program for a communications system should reflect

three fundamental dimensions in which variations may be examined:
e System configuration,
e Processing cycles of messages, i.e., software design,
¢ Demand and service characteristics.

These dimensions may be viewed as a hierarchical structure. The hardware
configuration of a communications system is usually viewed as the most
fundamental aspect of the system. For a given configuration, several soft-
ware designs may be examined. Each such design is characterized by the
processing cycles of the messages. Finally, for each hardware and soft-
wvare design, performance is appraised for a range of traffic characteristics

and service times of the hardware and software elements.

5.1 System COnfigqration

The system configuration inputs are divided into two main levels:
network topology defining the overall system structure, and link and node
model attributes providing details for each structural component. The

basic structure of the configuration data base is shown in Figure 5.1.

Note that the data structure has provision for information for network

analysis beyond that required for network modeling. This permits a :

common input front end to serve network performance modeling and topological

design data bases. Each simulation program extracts only the required ]
information needed as input. As output is generated, such as the service 1
time distributions for the aggregate model attributes, it is either .

substituted for the old, outdated information or is added as another
statistic generated for a different set of conditions (e.g., a different

traffic pattern or load).
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1. Network Topology

1.1

1.2

Nodes (N)
1.1.1 Node 1i.d.
1.1.2 Node Descriptors

1.1.3 Position Data (only if other than operational modeling
desired)

Links (L)

1.2.1 Link i.d.

1.2.2 Link Descriptors
1.2.2.1 Node at First End
1.2.2.2 Node at Second End

1.2.3 Tariff Data (only if other than c¢perational modeling
desired)

2. Link Attributes (L#)

2.1
2.2
2.3

Nominal Line Speed
Error Rate

Half or Full Duplex

3.1

3.2

Node Models (N#)

Aggregate Model Attributes (A)
3.1.1 Priority 7
3.1.2 Service Time DistriﬁGtion
3.1.3 Average Queueing Delay
Detailed Model Attributes (D)
3.2.1 CPU

3.2.1.X CPU attributes
3.2.2 Peripherals

3.2.2.X Peripheral Attributes
3.2.3 Memory

3.2.3.X Memory Attributes
3.2.4 Buffers

3.2.4.X Buffer Attributes
3.2.5 Communications Interfaces

3.2.5.X Communications Interface Attributes

Figure 5.1 - SYSTEM CONFIGURATION INPUT
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5.2 Software Design

The software design of the system is defined by the processing
cycles of the messages. The processing cycle of a message is specified
by the sequence of servers visited by the message, and the state the
transaction induces in the server at each stage. As mentioned in
Section 4.4, two alternatives exist in modeling the software design of
a communications processor. The first is to imbed the software functions
and tasks directly into the simulation program code. This method requires
no input but necessitates recompilation and reloading of the program if

a different software design 1s investigated.

The other alternative is to have the software design, i.e., the
processing cycle of messages, read in as input. Thus, a state vector
is defined for each server (or facility), where each distinct state is
characterized by interrupt time distribution, service time distribution,
and priority. For each message type, the sequence of servers and their
appropriate states are then defined in a cycle vector. The state and
cycle vectors provide the linkage with the facilities to interconnect
the queueing structure in the detailed processor model. The basic input
structure is shown in Figure 5.2, For the global network model software
considerations are not too important. As a consequence, the state and

cycle vectors would not be used there.

The use of message processing cycles is a particularly convenient
means of specifying the system operation and structure. Most designers
frequently think in terms of the '"life cycle" of a message, that is, the
sequence of events followed by a message as it moves through the system.
Such a life cycle 1s illustrated by the extremely simplified sequence of

events listed below:
1) Transmission of a message to an input buffer,
2) (After being queued) processing by the CPU,

3) (After being queued) disc access,

5.3
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2.

Cycle Vector
2.1 Facility 1.d.
2.1.1 State Type
2.1.2 State Attributes

2.2 Facility i.d.

State Vectors
3.1 Facility 1i.d.
.1.1 State 1.d.

e

Priority

1
.1.3 Pre-Emptive/Non-Preemptive
1

Cycle Stealing Rate
Interrupt Processing

Processing Time Distribution

L W w W W W W
. . . . .

3.1.X State 1i.d.
3.2 Facility i.d.

Operational Functions Subroutines (e.g., Protocol)

Figure 5.2 - SOFTWARE DESIGN INPUT
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4) Processing by CPU,

5) (After being queued at an output buffer) transmission of the

reply on an output transmission line.

There is almost a direct translation from the "life cycle," illustrated
above, and the processing cycle needed for specification in the model.
Only refinements in modeling are needed, and are easily developed.

For example, from the above illustration, at the beginning of the event
"1," an "interrupt' would advance the simulated clock while delaying the
completion of all the messages already in the CPU. As the input message
is being transmitted, the impact of character interrupts can be approx-

"percentage."

imated by reducing the CPU processing power by a certain
Thus, the impact of event "1" on other messages can be given in terms of
"interrupt” time and '"percentage' CPU processing power degradation.

The impact of the other four events can be described in a similar

fashion.
The incorporation of system control logic is handled by sub-
routines triggered from the state vector processing. Thus, such logic

can easily be excercised at the discretion of the designer.

5.3 Demand and Service Characteristics

The third level of the hierarchy is the demand and service char-
acteristics. Most modeling exercises are not to determine system behavior
for only a single set of conditions, but rather for a range of possible
conditions. A general program must be easily changeable to reflect
different conditions. This is accomplished by specifying the conditions

through a set of parameters.

The basic parametric structure is shown in Figure 5.3.
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-
1. Message Type Attributes
s 1.1 Type
1.2 Priority
1.3 Message Length Distribution
2. Arrival Patterns
1 2.1 Scheduled
2.2 Random b
i 2.2.1 Interrival Distribution
: 3. Traffic Mix
; : 3.1 Message Type
3.2 Percent of Total Traffic
Traffic Matrix

4.1 Message Type

4.2 Percent of Type
4.3 Origin
4.4

Destination

Traffic Levels

5.1 Lowest Level
5.2 Highest Level

Figure 5.3
SERVICE AND DEMAND PARAMETER INPUT
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5.4 Input to the Specific LDCN Models

5.4.1 Input to the Global Network Model

The basic input to the global network model is the system config-

uration, consisting of network topology, and aggregate nodal attributes.

In particular, the following inputs are identified:

1) For each Host -

a) Service time distributions

2) For each FEP -

a) Service time distributions for both upstream and downstreaw

directions

b) Interconnections to Hosts

c¢) Output buffer storage size

3) For each Concentrator -

a) Service time distributions for both upstream and downstream

directions

b) Interconnections to FEPs

¢) Output buffer storage size

d) Local access configurations of terminal lines

It is at the concentrator level where the traffic load and pattern

characteristics are required for input.



-

i pmiei Mo it e s oo

Network Analysis (orporation
5.4.2 1Input to the Host Model

The input to the Host program can be divided into 2 parts: those
that deal with the Host itself, and the others that deal with the external

environment, namely the FEP.

The system configuration input, relative to the Host, consists of
the hardware configuration at the Host. These include memory, peripherals,

etc.

The software design input for the Host consists of the state and
cycle vectors describing the various operating systews implemented in or

under consideration for the particular Host.

The input to the Hést model that pertains to the FEP consists of
configuration data, software considerations, and service and demand
characteristics. Of course, the speed of the channel connecting the
Host and FEP must be specified. In addition, the output buffer
storage size, which is used as a throttling mechanism, should be input.
Obviously this should not be the total amount of storage available at
the FEP. It should reflect the amount available to the particular Host.
It is either the amount dedicated to that Host (if partitions are imple-
mented) or proportional to the amount of traffic processed by the FEP
for this particular Host (dynamic implementation). For U494 Host models,
the size of the inquiry storage mechanism (used for the shared transactions)

must also be specified.

The nominal service time distribution to process the output message
(remove from primary storage and store on secondary storage) is required

as 1input.

The traffic that arrives at the Host originates at the FEP. The
traffic generator in the FEP will generate traffic according to input
parameters, These include distributions by transaction type (inquiry,

upquiry, batch) and size. For batch transactions, a utilization

criterion for acceptance by the Host must be specificd.
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If aggregate traffic statistics for a particular Host are not
available from measurements, a traffic preprocessor can be applied to
the traffic loads and patterns used at each concentrator to extract

only the traffic destined for that particular Host.

5.4.3 1Input to the FEP Model

As in the Host model, the input to the FEP model can be divided
into 2 areas: The FEP itself and the external environment. This time

the external environment is composed of two classes of devices: Hosts

and concentrators.

For the FEP, the input consists of the hardware configuration and
the software design. The hardware input includes amount of main memory,
number and speed of peripherals, and amount of secondary storage. The
state and cycle vectors describe the software implemented in or under
consideration for the FEP. Some of the software-related functions and

tasks that can be evaluated are as follows:
a) Various queueing disciplines,
b) Dual - CPU servicing disciplines, cutover thresholds,
c) Overhead involved in gathering network statistics,
d) Whether statistics gathering is in effect or not.

There are various inputs required for the external environment of
the FEP. The number and identity of the Hosts and how they are connected
to the FEP must be input. For each Host, the service tim: distribution
is required. The number and identity of the concentrators and the line
speeds of the connections are required input. A full description of the
configuration of the concentrator is necessary including the number and
speed of the local access lines and the percentage of rcesources available
at the concentrator for the particular FEP under evaluaticn. The down-
stream service time distribution of the concentrator is uccdud. The

concentrators are the source of the traffic for the ViP Theretore, it
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is here that the traffic load and pattern distributions are specified.
Recall that these traffic statistics should only be for the FEP under
evaluation (ASO or SPCC). Again a preprocessor could be used to extract

this information from the traffic data base at each concentrator.

5.4.4 1Input to the Concentrator Model

The input to the concentrator model consists mainly of input
describing the concentrator. The only input for the externmal environ-
ment is the system service time distributions obtained from the FEP

model.

At the concentrator, the hardware configuration which includes the
communication interfaces and the number and speed of the lines, both to
the terminals and the FEPs are required for input. The state and cycle

vectors defining cthe software design in the concentrator are input.

In addition, the traffic load and pattern for the local config-
uration, which drives the concentrator model is required input. These,
however, are typically different for each concentrator. However, the

same program is used; only the input is different.

5.10
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6. OUTPUT

The principal output of the simulation programs is the statistical in-
formation describing system or processor behavior. In addition to the
statistics obtained from the simulation, the report generator should pro-
vide a description of the network or processor configuration being
evaluated plus a listing of all input parameters for easy cross-referencing
and verification. Also, when the tracing of a message option is in effect,
that output will aid both designers in attaining insights to the system as
well as providing debugging facilities for the programmer at implementation

time and for future updates.

The statistics output by the report generator that are common to all
the LDCN models include:

1) For each server or facility (e.g., communications line,
processor, or facility within a processor (CPU, memory,
peripheral etc.))

a) utilization
b) number of times occupied
¢) average time per occupation or service time
d) availability
2) For each queue

a) maximum and average contents

b) total and percent of entries that did not

have to wait (zero entries)

c¢) average queueing time for all and only-

delayed transactions

6.1
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d) buffer space used by queues 4
e 3) For each message type ]
Al a) the average lifetime in the system (i.e. round-
trip delay)
= b) the maximum and minimum observed lifetimes
1 - c¢) the number of messages generated and serviced 3
b by the processors.
-
In the detailed processor models, the software design is evaluated by
__ examining the state and cycle vectors. Therefore, additional output
includes:
e |
4) For each state in each cycle vector
= a) the average time spent in each state
- b) the number of times entering a particular g
gtate
c¢) wmaximum and minimum time spent in cach state
Flexibility exists in the form and style of the simulation output.
Some high level simulation languages automatically provide some form of re-
g - port generators and plotting capabilities. If these are not sufficient,
] programs can be written that can present the output in any manner desired q
The report generator provides several options to the user, rauging fi« '
158 simple summary reports to extensive detailed reports. The model user has {
the option of specifying retention of nnly needed information or all infor-
- mation resulting from exercising the model. This allows efficient model E
execution when only particular information is .desired. Exercises can be ;
A
- f
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tracked by summary reports with the total information retained for presenta

tion in detailed reports at a later time.

The above statistics provide the systems designer with the information
necessary to evaluate the performance of the processors and the entire mnet-
work. Because the modeling strategy presented relies on the interaction
between the various simulation programs, additional output is required to
serve as input for other programs. We have identified the linkage informa-
tion to be the service time distributions for the various processors.

These distributions would be for a fixed set of conditions; traffic load,
mix and pattern but would be a function of the message size (both input and
output) and message type. This {nformation is available from the set of
statistics presented above, and in fact, would provide thé designer with
further insights as well as serving as the linkage between the simulation
programs. The form and methodology of this linkage information is described

in the next chapter.
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[ 7. LINKAGE METHODOLOGY
‘_ In Chapter 3 we presented a modeling strategy that allows global net-
work modeling as well as detailed processor modeling. Because of the bi
directional nature of communications processors, it was identified that
B for processor modeling some form of the external environment need also
be simulated at the same time. The external processors were to be modeled
= as simple single servers with service times according to service-time
distributions. These distributions were to be obtained from the output of ;
- other detailed processor models and also be used in the global network
model. In this chapter we describe a methodology for obtaining this liunk- .
ke age information and its use in the detailed models.
- 7.1 Linkage Form
The information that links the LDCN models together are the service-
= time distributions of each of the processors. As stated in the previous ~
chapter, these distributions are a function of message type and size. :
= This output is obtained from the report generhtota for the user and is a
usually in the form of a histogram or an approximated continuous curve. 1
e It is now necessary to transform this information into machine-readablc; S
form to serve as input for the simulation programs that require it. This ‘?
_ can either be in punched-card format, kept on-line in a data set or file,
or presented in a manner that can be transcribed by hand and then input !
manually. Post-processing routines can perform this task at the end of a :
- program run and create the appropriate form of input. Alternatively, pre-
processing modules can take the raw output data from one program and ex-
- tract the required information. A third option is to create a stand-alonc 5
program that performs this task. These options are shown in Figure 7.1.
= The decision as to which scheme is the best depends on how the report i
generators are implemented. One can take advantage of how the other ]
i statistical output is generated by obtaining this linkage information in
the same manner.
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7.2 Methodology for Using the Linkage Information in the LDCN Models

The global LDCN network model provides no linkage information but
uses those of the other detailed models. At'first, since the detailed
models are not built, simple routines can be written to read in the gross
service-time distributions of the processors. As more accurate distribu-
tions become avallable from the detailed models, this linkage information

must be available to the global network model.

Each detalled model also requires the service-time distributions of
other processors for input as well as providing it on output. The order
in which these distributions are obtained is important in attaining
meaningful, accurate results and avoiding repeated simulation runs for a

fixed set of conditioms.

The recommended sequence of simulation runs for the LDCN detailed
models under a fixed set of conditions (traffic load, pattern, and mix)

is as follows:
1) Run the Host model using the nominal FEP output service time;

2) Using the accurate Host service-time distribution from 1) and
the nominal concentrator output service time, run the detailed
FEP model;

3) Using the system service time distribution obtained from the FEP

model, run the detailed concentrator model;

4) Compare the new service time distribution obtained for the con-
centrator with that distribution used in the FEP model. If they

are equivalent, then stop;

5) Otherwise, rerun the FEP model using the new concéntrator gervice
time distribution and go to 3).

7.3
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It is only necessary to simulate the HosL oaly once for a given set
of conditions. The service-time distribution of the Host will not depend
on how fast or slow the FEP serves the output messages. The output queue
at the Host might grow very large, but the service time, which we have
defined as the time in the Host until bei.g placed on the queue, will not

change.

The FEP and concentrator models, however, rely heavily on each other.
Of interest is the conjecture - is there any direct relationship between
the service times of the FEP and concentrator? If one changes, does the

other change and thereby cause a change in the first?

The sequence of steps shown above will detect this as well as validate
the linkage information between the models. Oscillation between the
concentrator service-time distributions used as linkage input to the FEP
model and that actually obtained from the concentrator model can be ex-
pected. However, continual oscillation indicates an unstable relationship
between the two processors. The results from the simulation runs should
provide insight into this problem. Oscillations that converge rapidly

indicate that only the preliminary assumptions were incorrect.
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8. IMPLEMENTATION CONSIDERATIONS

Choosing the appropriate simulation language for the LDCN models de-
pends on many elements. The general considerations include availability,
procurement cost, operating cost, training cost, portability, support, etc.
Other considerations pertain to the effectiveness of each language to solve
the various coding problems posed by the models proposed in the previous
chapters. In this chapter we present a comparison of the three primary
languages used for simulation programs: FORTRAN, General Purpose
Simulation System (GPSS) and SIMSCRIPT II. We also describe a relatively
new language, ECSS II, that was developed particularly for modeling computer
systems. We then describe the advantages and disadvantages each language
exhibits when actually applied to the LDCN models and modeling strategy.

Reitmanll] provides an excellent review and comparison of the three
most widely used simulation languages: FORTRAN, GPSS, and SIMSCRIPT II.
The comments are grouped into four basic categories: short term results,
ability of the simulation to represent the real world, long term results,
and effort required to use the language. A synthesis of his review is
presented below.

A. Procedure Oriented Languages - (FORTRAN, ALGOL, PL/1l) They are
not really simulation languages, but more like mathematical pro-

gramming languages. However, they have been used for simulation.

1) Short term results

e programmer must have good background in the language be-

fore it could be used for simulation

e have to provide the simulation structure; none exists

e statistics gathering functions internally have to be %
structured

e not very flexible - revisions in complex systems require

major modifications i

8.1
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e no graphic capabilities built in, additional propgrucati |

involved

Ability of simulation to represent the real world

could model almost any real-~world situation

e the more complex systems require much greater effort

e mathematical capabilities are excellent, many speci:l
purpose techniques for data smoothing and linear
programming

e list processing is weak. Any simulation program reguiies
some form of list processing to structure the model,
some form must be provided for these languages

e maximum program size is flexible; overlays are possible

Long term results

e language generality, supported universally

e documentation left up to programmer, cross reference s

available

e system designers other than original program should be alil

to follow the logic and detail of the simulation
Effort required i
e considerable, but several programmers can work on the siumu

lation in parallel if conventions governing the exchange

between subroutines i1s specified in advance

v
i
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GPSS - the first real programming language geared specifically

for simulation

1)

2)

Short term results
® pgeared to get results quickly
e simulation structure is strongly evident

e many built-in features, format, organizacion and

diagnostics

e statistics are maintained automatically both during and at

conclusion of the simulation
o flexible; easy to change logic, data and results selected
e debugging aids are many
e graphic presentation of output is available
Ability to represent the real world
® desired level can be obtained
e can use byte, half-word or full-word arrays

o logical situations are well represented by Boolean

equations

® mathematical capability is adequate for problems that dn
not require complex equations. However, the fact that values
are stored as integers causes scaling problems and loss of

precision in arithmetic computations such as division

8.3
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o list processing is avalflable, allowing FI1FQ, LIFO oy o0y
priority structures

e Maximum size of program is .he tradeoff between availabloc

core storage and execution time. Overlays are pessible
Long term results
o benefits from the highly structured laaguage

® documentation capability 18 very good, comments cap be past

of every statement
o transferability of GPSS programs is cxcellent
Effort required

@ (PSS provides the most working model for the effort expand:

SIMSCRIPT IT - programming system developed by RAND designed

particularly for simulation

1

Short term resulbs

s programmer should be compentent in STMSCRTPT 11
9 a
@ no inherent structure for the simularion. Conseguently 1
B
an extenslve problem definition and structore shesld &
developed before coding the wodel. /
-4
@ relationships are through the entity ~ attribute - unt "
&

relationship

SRR

BT

& statistics obtained either during or after model ewec:

are programmed by the system designer
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- e the language allows access to anything at any time, but the
structure and format of the statistics has to be specified
k. by the user
e flexibility is tied in with the basic subroutine structure
- of the programming approach. Individual subroutines can be
compiled and added or substituted into the model. The same
- , model may be run with different input data.
e programs to display output in graphic form are not built
= in, they have to be coded
- 2) Ability to represent the real world
; e logical situations can be well represented with the Boolean
[
capability. Very complex gituations can be structured.
- e mathematical capabilities will depend on the particular
installation since SIMSCRIPT II is a separate programming
— system. Libraries of utilities will have to be developed.
. e 1list processing capabilities are strong, owing to the
'; structured data storage system. FIFO, LIFO and any prior-
’ ity structures are easily developed
¢ maximum program size again, depends on available computer
= storage. SIMSCRIPT II 1is a compiler language. As such,
the compiler might use up an excess amount of storage.
- Overlays are possible.
—" 3) Long~term results ;
i
" e syntax of language is almost readable English
e as a consequence, the documentation throughout the program 4
4 = is excellent. Additional comments may be placed anywherc. i
Users other than the original nrogrammer should be able to 1
- Tollow the model in detail easily. ;
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e however, the structure of the program is still up o the
programmer. For complex problems the readability docs not
describe the reiationships between different factors.
Simultaneous events are difficult to document. Changing ti -
logic of an existing model is difficult for those changes

which require restructuring of data or system attributes.
4) Effort required

e comparable to GPSS, yet the more complex models requirc

giderable more effort

More recently, work has centered on creating simulation languages
designed specifically for modeling computer systems. There are now sever.
languages available that allow a programmer the freedom to write his
program referencing common computer hardware and software terms as part of
the code. Typically the language is implemented as a preprocessor to a
general-purpose simulation language. One such example is the Extendable
Computer System Simulator II (ECSS-II) developed at RAND. ECSS-II is
based on the SIMSCRIPT II language, with that language included as a subsut.
Consequently, all the advantages of SIMSCRIPT II are present in ECSS-IT,

plus some of the inadequicies are removed. In [2], Kosy states that:

"[ECSS-I1] provides a rich variety of statements and data
structures for describing common computer hardware configuracions,
software operations, and workload characteristics in a natural
and straightforward notation. Using these statements, one can
compactly express, for example, the name, quantity, and per-
formance of each kind of simulated hardware device, the behavior
and resource requirements of each kind of job to be processed,
the policies by which resources are assigned to jobs, the chir-
acteristics of messages sent through I/0 devices within the
model, and how the simulated system is to be loaded by jobs
and messages from its environment,"

The authors of ECSS-II have taken advantage of SIMSCRIPT 1I's ipherent

readability to create a language that utilizes computer hardware and soft

ware jargon,
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In addition, the added simulation structure provided by ECSS-II is
= directly applicable to modeling computer systems. In an early interim
report comparing ECSS-II (then, just ECSS) with FORTRAN and PL/1 [3], Kosy

b highlights these added structural features:

"To this [SIMSCRIPT II] base ECSS adds four new elements to

-’ describe the statics and dynamics of computer systems for
simulation: the System Description, Load Description, the
Service Routines, and an extension to the preamble called
L the Definition Description.

The System Description consists of a group of declarative

s statements that specify the number of each type of device
in the system, the names of the devices, the characteristics
of each device, and how this hardware is interconnected.

ol One can define CUPs, core storages, terminals, disks, or
any other kind of device in terms of its data transmission
capabilities, instruction execution rates, and storage
capacity. In general, these hardware elements are the

b resources to be allocated and utilized during the simulation.

In the Load Description section, special routines called
- "jobs" are defined to describe a system's dynamic behavior.
Jobs simulate the work of real application and control
programs by indicating sequences of hardware utilization
commands. These commands are used, for example, to indicate
amounts of data transmission and instruction execution, to
get and free simulated storage space, to define conditional
delays, to start and terminate jobs, and so on. Jobs are
- processes--simulated time advances as a job is executed and
many different changes to the state of the system are usually
included in one job. Quite detailed representations of
computer program behavior can be described by intermixing

= ECSS and SIMSCRIPT commands within the jobs. Jobs and events
can be used together in the same model to provide an extremely
powerful composite world-view of system dynamics.

-

The Service Routines are a collection of SIMSCRIPT II routines

which implement the Load Description commands. They assume the
- details of job processing and time advance, as well as updating
the variables that define the state of the system as jobs inter-
act with devices. Also incorporated into the Service Routines
are a number of resource-management algorithms that provide a
kind of built-in operating system. This capability gives
the user the power to specify multiprogramming, contiguous-
storage management, conversational messages and other high-
level activities with only a few statements.

The Definition Description is of lesser importance than the
— previous three elements, but it does supply the user the

ability to define his own commands, to use his own termi-

nology for certain computer-related dimensions (bytes for
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transmission, say, or pages for core space), and a statement
for compact definition of table functions, all of which are
lacking in SIMSCRIPT II.

We now describe some of the advantages and disadvantages of each of
the above languages when applied to the specific application at hand;
i.e., the LDCN models.

FORTRAN, because it is not a simulation language, is probable the
least attractive for such a lafge simulation project. Considerable effort 1

would have to be expended in providing even the basic simulation structure.

List processing capabilities, essential to any complex simulation program,
are generally weak; however, we are aware ¢f some available list pro-
cessing packages for FORTRAN programs. The I/0 capabilities of FORTRAN
are probably the best. The software design of the processors could be
implemented using the cycle and state vector approach and input to a
skeleton program that could be used for each of the detailed processor
programs. Also the 1/0 of the linkage data would be easier in FORTRAN.
The previously delivered stand-alone concentrator simulator was designed
with the vector approach and written in FORTRAN. The language is a

viable one but there are better ones.

GPSS, because it 1s a simulation language, would be better than
FORTRAN. However, because of thc general purpose nature of the language,
it may still not be the best language to use. Limited I/O facilities
prohibit using the vector approach for evaluation of various software ;
designs in the processors. There is no i&herent way to selectively
change only portions of the program without "recompiling'" the entire
program. However, the diagnostics and queuing structures are strong.
Since the LDCN models rely heavily on queues, the programming effort :
might be reduced. In addition, the U494 stand-alone Host simulator %
was written in GPSS and existing FMSO personnel are proficient in GPSS.

SIMSCRIPT II is probably the better of the two simulation languages.
Complex models, of which the LDCN models are ones, are more flexable
when written in SIMSCRIPT II than in GPSS. Limited I/0 capabilities,

again, limit the use of cycle and state vectors for defining softwarc
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design in the processors. However, separate modules or subroutines that
handle the software implementation could be changed and recompiled scparately
But it might be difficult to structure the programs in this manner (all

the software functions in one or two routines). In addition, personnel
familiar with SIMSCRIPT 1I might be limited.

ECSS-I1 is a relatively new and untested language. However, the
syntax is geared specifically towards ccmputer systems modeling, which
is the problem faced here. It conveniently allows both hardware and
sof tware evaluation. It has all the capabilities of SIMSCRIPT II plus
developments hav?ageen made to improve the deficiencies (e.g., statistical
B

instrumentation It might not provide the level of detail desired

in the processor models (''the language is oriented...at the millisecond

ny (3]

level and above . Procurement and training costs might be a
problem because the language is g0 relatively new. However, the Army,
in conjunction with FEDSIM, has recently used ECSS-II for simulating
[5]

a communication system with favorable results

In conclusion, a simulation language such as GPSS or SIMSCRIPT Il
would be more versatile for the LDCN modeling effort than FORTRAN.
However, variations in the software design of the processors would be
more easily evaluated in FORTRAN because of its extended 1/0 capabilities.
GPSS 1is probably too general for this effort, however, it does have some
merits. If SIMSCRIPT II were to be selected as the language to use,
serious consideration should be given to the ECSS-II language, as it is
based on SIMSCRIPT II, while providing a closer fit to the LDCN application.
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9. CONCLUSIONS

The LDCN 1is a complex system, composed of major subsystems in con-
centrators, Front End Processors, and Hosts, unified via data communications
lines into an operational system. Major design issues can focus on the
network as a whole, or on any subsystem, and may deal with hardware or k
software. Development of a simvlation modelias a general tool to enable ;

examination of such 1issues requires major considerations be given first

to the overall modeling stragety. The strategy must address the issues
of modeling the individual subsystems as well as modeling their inter-
action in a unified system. The purpose of this report has been to

present an appropriate strategy for modeling the LDCN.

The major conclusions of this report are as follows:

- Because of the size of LDCN, one large program that allows
detailed processor modeling as well as global network modeling
is infeasible.

~ An appropriate strategy is hierachically structured; at the
highest level is a similified global network model with the
processors modeled as simple single-servers. This model serves

tvo purposes;

1) It will serve as the framework for the detailed processor

models as they are built;

s e s e

class, removing all servers that are not directly connected via

2) It will provide the first gross performance trends quickly i
and cheaply as it evolves into an accurate global performance E
measurement tool. 1

~ The detailed processor models are extracted from the global model i
by replacing one simple server model of a processor with the ;
detailed version of the model, removing all servers of the same ;

communications lines to the detailed servers and finally reduce &

the scope of the model until it becomes tractable.

9.1
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When modeling communications processors, the external environment
is very important. Simplifications and omissfons must be treatoed

carefully to prevent inaccurate results.

The element that links the detailed processor models together

is the service time distribution. 1Initially, best guess esti-
mations are used to characterize the service time of. the external
processors. Meaturements are obtained from the detailed model and
these distributions are then used to model the environment of a

different processor.

The service time distributions are used in the global network model

to obtain more accurate global performance statistics.

The common simulation program structure is composed of a monitor,
utilities and the models themselves. The utilities are made up
of a Front-End for input and output, a traffic generator and a

statistics package.

The detailed portion of the processor models can be structured in

two ways:

1) 1Inbed the software design of the processor directly into the
simulation code. This requires no program input, but the
evaluation of variations in the software design requires

repeated simulation program modification.

2) The software design is read in as input, consisting of cycle '
vectors - the sequence of servers or facilities visited by :
transactions, and state vectors - the state induced on each 5
server in the cycle vector. A skeleton program is designed

that reads in this input to create different 'programs."

The input to the simulation programs consists of: i
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1) System (network or processor) configuration including the

linkage information;
2) Software design - if implemented with the vector approach;
3) Demand and service characteristics.
The output from the simulation programs includes:
1) Statistics describing system (network or processor) behavior:
2) Linkage information to be used in other programs.
Because of the excessive amount of interactions between the
various programs, the order in which the programs are run is

important. Care should be taken to avoid repetitions of rums

and inaccurate results.

Three languages that could be used to write the simulation programs
are FORTRAN, GP?SS, and '3IMSCRIPT II. Each has its own merits and
drawbacks. Of the three, SIMSCRIPT II would probably be the best,
with GPSS and FORTRAN tied.

However, new languages are available that are designed specifically
for simulating computer system. One such example is ECSS-11,
written at RAND. Based on SIMSCRIPT 11, ECSS-II has built-in

features that relate directly to computer hardware and software.
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