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1•  INTRODUCTION 

The Navy Fleet Material Support Office (FMSO) is in the implementation 

phase of an integrated real-time data communications network to make logistics 

information available to a large number of dispersed Navy users.  This in- 

formation is necessary for effective and efficient logistics support.  The 

Logistics Data Communications Network (LDCN) will provide direct access 

from remote locations to two Inventory Control Points (ICPs) which maintain 

and manage ma^or logistic data bases.  Kach TCP computer complex has two 

U494 computers; one also has an IBM 370 while the other has a Burroughs 

3500.  Each complex will have a Front-End Processor (FEP) to provide the 

communications functions needed and relieve the Host computers of these 

tasks.  Programmable communications concentrators at selected Navy sites 

will be used to interface low-speed terminals and provide cost-effective 

remote access.  Each concentrator will be connected via high-speed full- 

duplex lines to each of the FEPs. 

i: 

To assist management of the operational system and future developments 

to satisfy new user requirements, FMSO has identified the need of an ef- 

fective simulation tool to model system behavior under various load condi- 

tions and design variations.  Such a tool can be used to assist operations 

personnel when unresolved problems occur in the existing network.  The 

results of a simulation run can be used for detailed examination of each 

system resource utilization and to trace the progress of activity in the 

system, thereby giving insight to a problem that empirical observation 

cannot.  In addition, a simulation program is essential when expanding the 

capabilities of the network.  It can be used to isolate potential bottle- 

necks and quickly and cost-effectively evaluate potential alternatives to 

alleviate such bottlenecks before the capabilities are required and imple- 

mented. 

When modeling a single processor, as opposed to the entire network, 

simulation provides an economical means of evaluating various design al- 

ternatives, both hardware and software.  The primary objective of processor 

modeling is to economically attain designs satisfying the performance re- 

quirements. 

1.1 
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However, the effect of various performance requlrementa on a particular 
f 

processor configuration can also be obtained vln simulation. 

In general when dealing with such complex systems, simulation can pro- 

vide management and operations personnel with the off-line examination of 

system operations needed for future growth feasibility studies as well as a 

tool for verification of the actual implemented system. 

This report describes a simulation strategy that can be used to model 

the LDCN.  The strategy presented allows total system modeling (i.e., the 

network) and system element modeling (i.e., the processors).  We begin in 

Chapter 2 by giving a description of the various components of LDCN and 

their interconnections.  We also present a scenario life-cycle for a trans- 

action from the origination at the terminal through the network and back to 

the terminal.  In Chapter 3 we present the modeling strategy.  In Chapter A 

we describe in detail each of the models presented in the previous chapter. 

The inputs and outputs of each model are described in Chapters 5 and 6 res- 

pectively.  In Chapter 7 a methodology for linkage of the various models 

is discussed.  Implementation considerations and, in particular, how 

various simulation languages could be used to handle the specialized pro- 

blems faced in coding the programs are described in Chapter 8.  Finally in 

Chapter 9 the conclusions and recommendations are presented. 

1.2 
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2.  SYSTEM DESCRIPTION 

The Logistics Data Coiranunicatlons Network (LDCN) is composed of five 

classes of devices: 

1) Host Computers or simply Hosts 

2) Front-End Processors - FEP 

3) Concentrators 

A)  Terminals (e.g., CRTs, RJE, TTY) 

5)  Communication Lines 

In terras of the simulation strategy we will exclude the terminals from 

consideration as they are not programmable and can be viewed as sources and 

sinks of traffic. It is essential, however, to include the low-speed lines 

that connect the terminals to the concentrators. 

LDCN is composed of two main computer complexes; one ICP at Mechanics- 

burg, Pennsylvania (SPCC), and one ICP at Philadelphia, Pennsylvania (ASO). 

At Mechanicsburg, the ICP computer complex contains two U494 computers and 

one IBM 370.  At Philadelphia, the ICP computer complex contains two U494 

computers plus a Burrought 3500.  At each ICP, one UA9A supports real-time 

processing activity for an Inventory Control (IC) data base, and the other 

U494 supports real-time processing for a Weapons System (WS) data base.  Each 

ÜA9A can access the other's data base in a read-only mode.  The 370 and 

B35Q0 also support real-time processing but have access only to their own 

data base. 

In addition, each complex has a Front-End Processor (FEP) minicomputer 

to serve the communications functions for the host computers.  The FEP is 

a dual-CPU Interdata Model 7/32 minicomputer with moving md fixed-head 

disks and several tape drives.  The FEP is connected to each Host via a half- 

duplex hard-wired channel. 
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A total of nine remote concentrators are planned for the system; each 

concentrator connected to both FEPe.  The concentrator Is an Interdata 7/32 

minicomputer with limited peripherals.  The FEP-to-concentrator connections 

will be via high-speed dedicated full-duplex channels. 

A variety of terminals will be accessing the concentrators via low to 

medium speed half-duplex dedicated or dlalup circuits.  The configuration 

of LDCN is shown in Figure 2.1. 

The system is transaction oriented wiih the terminals entering transac- 

tions via the concentrators, which are then forwarded to the FEP where some 

fraction are in turn forwarded immediately to a Host, and the others are 

spooled for batch processing.  Outputs generated by the Host are inmedlately 

transferred to the FEP where they are buffered for segmented delivery to the 

concentrator followed by transmission to the originating terminal.  The life 

cycle of a transaction is the sequence of steps describing its progression 

through the system from its origin to its termination.  Examining the life- 

cycle of a typical transaction will provide substantial insight to the 

various simulation models and the rationale of their structure.  Transac- 

tions originate at the terminal where a logged-on user keys in the message. 

The characters are buffered in the concentrator where editing by the user 

ran be performed.  After the end-of-message signal is sent, the concentrator 

transmits the transaction to the FEP via the high speed lines.  The FEP will 

be .; dual -CPU configuration; each CPU will effectively be connected to the 

Hosts and the concentrators.  Each CPU can take messages from the concen- 

trators and deliver them to the appropriate Host and vice versa.  In 

addition, one CPU can receive a message from either Host or concentrator 

and the other CPU can deliver it.  When one CPU fails, the FEP will continue 

to function.  As transactions are received by the FEP, they are processed 

lor error detection and to verify user validity, program availability, and 

type.  Two basic transaction types are identified:  Real Time Transactions 

(RTT) - those to be sent Immediately to a Host on a First-In/First-Out 

basis, and Possible Batched Transactions (PBT) - those to be spooled on 

disk until a batch criteria is satisfied (time or volume) and then trans- 

ferred to a Host. 

2,2 
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Two types of Real-Time Transactlon.s for the l)Ws are also Identified; 

1) Upqulres - those RTT's that can be sent only to a specific 

Host because they Imply a write operation (update of daua) , 

and 

2) Inquires or shared transactions - those RTT's that can be 

sent to either 494 because they imply a read-only operation. 

Both 494's has access to both WEPS and ICS data bases in a 

read-only mode. 

In the FEP there are 2 queues (each FIFO) for each 494 Host; one for 

the upqulry real-time transactions, the other for the batch transactions. 

However, there Is one additional queue for the 2-494's that hold the 

shared real-time transaction.  (The decision as to which 494 gets these 

shared requests is done by an algorithm in the FEP that receives utiliza- 

tion information from the 494's in the header of received transactions.) 

The procedure for messages destined for one of the 494's is to alternate 

between the 3 queues (real-time, shared real-time, and batch) and transmit 

the message (if any Is present) at the top of each queue.  For the other 

Hosts (370, B3500) there will only be 2 queues - one for real-time, the 

other batch.  Both queues are FIFO. 

Transaction processing by a Host results in an output to be returned 

to the user.  This output is usually quite long, and since concentrators do 

not have auxiliary storage, the content must be buffered via auxiliary 

storage at tie FEP.  Thus, when outputs are received by the FEP, they are 

transferred to disk to queue for buffer availability at the concentrator 

for transmission to the user.  Double buffering for each user communications 

facility is used at the concentrator to obtain continuous transmission of 

outputs to the user.  As each buffer is emptied, transmission of the next 

buffer is initiated, and a request for a new output segment (or RFNM for 

Request for Next Message) for the emptied buffer is sent to the FEP.  The 

FEP then reads the next output segment from disk and transmits It to the 

concentrator.  The life-cycle of a transaction terminates after the last 

output block is transmitted to the terminal. 

2.4 
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3•  MODELING STRATEGY 

Development, operation, and management of a network such as the LDCN 

requires the facilities to predict network and network suhsystem perfor- 

mance as a function of traffic characteristics and design variations. 

During the initial development phases, such a capability can be used to 

determiiu' appropriate sizing factors and configurations for the given 

performance objectives and traffic requirements.  As development proceeds, 

it can be used to examine sensitivities to changes In requirements and to 

determine appropriate corresponding configuration adjustments.  Once the 

network is operational, such a capability can be used to assess the signi- 

ficance of trends in traffic changes and to predict necessary design ad- 

justments betöre the need becomes critical. 

The capabilities described above are basic objectives for develop- 

ment and use of a system simulation model.  The LDCN is a complex sys- 

tem, composed of major subsystems in concentrators. Front End Processors 

(FEPs), and Hosts, unified via data communications lines into an operational 

system.  Major design issues can focus on the network as a whole, or on 

any subsystem, and may deal with hardware or software.  Development of a 

simulation model as a general tool to  enable examination of such issues 

requires major consideration be given first to the overall modeling strategy 

The strategy must address the issues of modeling the individual subsystems 

as well as modeling their interaction in a unified system.  The purpose of 

this report is to present an appropriate strategy for modeling the LDCN. 

The disucssion presented below outlines a modeling strategy that 

allows both types of results.  We begin with the global network strategy 

and then show how detailed processor models can be extracted from the 

global model. 

3.1 Global Modeling Strategy 

As an input to development of a total system modeling strategy, the 

entire network of Hosts, FEPs, concentrators, and communications lines has 

been functionally defined and portrayed in a simple system schematic. 

3.1 
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PrevlouH work has defined the baäic operational, hardware, and Boftware 

characteristics envisioned for the implemented system, and the traffic 

load and flows it is required to support.  With these factors given, two 

basic simulation strategies for global network modeling may be considered: 

1) Detailed Simulation; 

2) Simplified Simulation But With Selected Detailed Subsystems. 

The first choice is to make one large program that encompasses the 

entire network.  Each processor would be modeled at the desired level of 

detail.  From such a program would come results on the inner workings of 

each processor as well as global network performance measures.  This 

concept is obviously infeasible for the LDCN due to a variety of rea- 

sons: 

1) The number of computers involved in the network (in LDCN - 

6 Hosts, 2 FEPs, 9 concentrators) would make the program 

exceptionally large and require extensive computing resources 

for execution; 

2) The program would be required to simulate, in detail, the same 

type of device several times concurrently.  This is certainly 

wasteful.  One should simulate the same processor only once 

for a given set of conditions; 

i)  There exists a time unit disparity.  The level of detail desired 

for the processors would be in the micro to milli-second domain 

whereas the communication line delays are on the order of a milli- 

second to a second.  All the simulation time would be spent in 

the devices, processing the message.  Very few messages would be 

transmitted between the processors.  The execution time of the 

simulation model may be an order of magnitude greater than the 

elapsed time of the actual network being simulated. 

^k^ 
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The second basic strategy for simulating the network as a whole would 

be to simplify and reduce the most detailed portions of a model similar in 

concept to the one presented above.  The most detailed portions of such a 

model are found in the processors.  Their basic functions as communications 

processors, are to receive messages, apply various validity and error- 

correcting functions to the messages, and then to forward the message onto 

the next processor.  This is a much simplified description of their func- 

tions but it is, in essence, their primary task. When evaluating the 

total network performance, the designer is not interested in the specifics 

on how the processor performs its task.  He would simply like to know that 

given an input message, the processor will generate some form of an output 

at a finite time later.  If this delay can be quantified and replaced by 

an aggregate expression, which we will call a service time distribution, 

the problem of modeling the entire network becomes tractable.  The network 

can be represented as a flow chart of single-servers with queues and 

storages in the appropriate places (see Figure 3.1).  A simulation program 

depicting this model becomes straight forward. 

3.2 Simplified Simulation With Selected Detailed Subsystems 

The above discussion may appear to over-simplify the task of global 

network modeling, but simplified simulation with selected detailed sub- 

systems has several advantages that make this approach attractive: 

1)  The model and subsequent simulation program are cost-effective; 

the program would be relatively simple to code.  The execution of 

such a program would be efficient thereby allowing many design 

experiments to be run with each run simulating a longer real- 

time period. 

2)  The results of interest from such experiments should and would 

be the global performance statistics only.  Time and money are not 

spent in obtaining detailed statistics associated with a particular 

processor.  These results will be determined by selectively incor- 

porating detailed subsystem models in the experiments. 

3.3 
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Figure 3.1 

NETWORK FLOW CHART 
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J) liy effective program repreuencatiun ot each device, auch  an by a 

macro in GPSS or a matrix entry in FORTRAN, reconfiguration of the 

network, either by adding or removing devices, requires minimal, 

if no, program modification. 

The service time distribution can initially be obtained by best esti- 

mates of what the service time will be in each processor at zero-load 

conditions.  In some cases, for example the Host, the service time might 

already be known. 

Using this service time as a constant, independent of load conditions, 

preliminary experiments can be quickly undertaken. One set of experiments 

could be the evaluation of the performance of the network under varying 

traffic loads and patterns.  A base-line traffic pattern could be obtained 

from existing statistics and future projections. The sensitivity of 

varying a class of processors' service time can also be examined.  Early 

detection of potential bottlenecks can take place.  In addition, initial 

design constraints can be formulated. 

The above discussion outlines a simulation strategy that can bo used 

and implemented for quick and easy evaluation of a communications network 

such as LDCN.  However, the results of such an evaluation are clearly 

suspect due to the many assumptions being made to simplify the model and 

reduce unknowns.  Inappropriate assumptions might produce results that 

eventually turn out to be orders of magnitude wrong. This global model 

is meant to provide the first gross performance trends quickly and cheaply 

and to act as the framework for more detailed models as it evolves into an 

accurate global performance measurement tool. The weakest element of this 

model is the fact thac the service time of the processors is obtained by 

estimation.  This can be remedied by the selective incorporation of de- 

tailed subsystem models without incurring the negative effects of a de- 

tailed model for the total system. 

3.5 
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3.3 Selective Detailed Models 

We mentioned above that one goal of the simulation effort is to acquire 

the ability to model, In detail, particular processors.  This can easily 

be accomplished for stand-alone machines.  Simulation of computer systems 

has evolved out of the evaluation of a single processor, usually a main 

computer.  Typical studies are concerned with the effect of operating sys- 

tems, memory allocation, peripherals, etc.  The problem we are faced with 

here is when the processor is an element of a total system network. 

Typically the major areas of concern are the sequence of events that 

occur inside the device; i.e., what happens to the quantum of interest (job, 

task, transaction, message, etc.) after it enters the device and before it 

leaves. What transpires before it enters and after it leaves is usually 

not important. 

But communications processors are bi-directional devices.  Typically 

after a message passes through the processor on the upstream path, it or 

some function of the original message reappears at the processor traveling 

in the downstream direction.  The simulation model must, of course, account 

for this bi-direction flow of traffic. 

The interaction between the modeled processor and its surrounding 

environment is an integral part of the simulation. The protocols, imple- 

mented and envisioned, dictate a majority of the functions required at a 

processor.  Since there is this heavy interaction in two directions, and 

the fact that once a message leaves a processor, it is usual'y not terminated 

but reappears, the external environment of a communications processor is 

much more important that in a stand-alone machine.  In fact, the exogenous 

events are the ultimate driver of the model itself. 

How does one correctly choose the external environment for the com- 

munications model? This Is where the global network model comes into play. 

One simplified single-server model of the particular device in the global 

network is replaced by the more detailed version of the model.  Next, since 
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most devices do not communicate with devices of the same type (as in LDCN), 

all other single-server models of the same class in the global model are 

removed.  Further reductions are made until what remains is one detailed 

model of a particular processor with the external environment being all 

the simple single-server modeling devices that directly communicate with 

it.  This scheme will become clearer in the next chapter when we apply 

this technique to LDCN.  But the aim is to maintain as much of the global 

network model as possible when performing detailed modeling of a processor. 

However, the simulation program that arises from this type of model 

might still be too large and complex.  In this case, reductions in the 

structure of the external environment should occur first.  There might 

be a point, however, where further reduction of the environment could 

lead to inaccuracies and inflexability.  If the program is still toe large, 

minor features of the detailed model might be removed.  This would be 

least attractive, but it should be kept in mind that the external environ- 

ment of the detailed model is almost as important as the model itself. 

Yet the purpose of the detailed model is to perform detailed modeling. 

What to sacrifice is a critical decision to make and can only be made at 

implementation time. 

3.4 Simplified Detailed Model Linkage 

Once the detailed model is built, accurate descriptions of a device's 

service time distribution can be made.  These distributions can then be 

used in the global network model, replacing old approximations.  Many ser- 

vice time distributions can be obtained for various hardware (peripheral 

and memory) configurations at the device.  The global network program can 

then be run using the various distributions to obtain the global effect of 

such configurations.  The distributions will also serve, eventually, as 

the more accurate description of the external environment of some other 

processor. 
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3.5 Basic Modeling Strategy 

The problem of modeling and simulating a complex data communications 

network, such as LDCN, can be approached with the strategy proposed above. 

This strategy can be used to satisfy the two basic goals of such a simula- 

tion effort: 

1) The ability to obtain simulation results for the entire network; 

2) The ability to obtain simulation results for any particular 

processor or device in the network. 

The strategy .is a two-fold hierarchical plan.  The first milestone 

and the highest level of the hierarchy is the development of a gross 

simplified queueing model of the entire network.  Each processor is 

modeled as a single server.  Service times are obtained from best estimates, 

design goals, or existing statistics.  Once the global network modol is 

formulated, the development of each of the detailed processor models can 

be initiated.  Meanwhile, the global model can be coded and experiments 

quickly started.  The development of each of the detailed models can take 

place in parallel or sequentially, as no one model is directly dependent 

on another. The structure of the detailed model is obtained from the 

framework of the global model as described above.  The external environ- 

ment of any detailed model is critical and should not be overlooked.  The 

detailed model can be used to simulate the processor at any desired level. 

If program size becomes critical, two alternatives exist: 

1)  Reduce the scope of the model and therefore hopefully the 

size; 

2) Replace a complicated section of the program by a simpler one 

and model this portion in detail in a stand-alone mode.  This 

concept can be viewed as another level of the hierarchy of the 

models. 

3.8 

. ,- .  ... 



mmmumm ,„r„,™ 
mmmm 

Network Analyntn Corporation 

As results are obtained from the detailed model, they are fed back Into the 

global network, model and are used in modeling the external environment of 

other detailed models. 

As the global model is fine-tuned with results from the detailed 

models, more confidence can be placed in the global performance results. 

More meaningful experiments can be undertaken.  One such series of experi- 

ments could be the evaluation of future enhanced capabilities.  The pos- 

sible scenario for one experiment could be the following; 

1) Use the global network program with service time distributions for 

the processors that were obtained from the most current configura- 

tion, traffic load and pattern; 

2) Run the program, introducing the new set of conditions, e.g., 

increased traffic load; 

3) Isolate any bottlenecks that occur in the model, e.g., a satura- 

ted processor; 

4) Run the detailed model of the saturated processor using the 

same set of new conditions; 

5) Isolate the cause of the bottleneck locally; 

6) Reconfigure the processor until the bottleneck is removed.  This 

might require that the detailed model be run several times; 

7) Using the new service time distribution obtained from 6), return 

to the global network model and rerun the experiment; 

8) If performance requirements are met, then the new capability can 

be accommodated and the steps needed to provide it are known. 

9) Otherwise isolate the new bottleneck (might be the same one) and 

go to that processor's detailed model; 

3.9 
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10) Continue with Step 6. 

Given this hierarchical approach to network modeling, we will see, in 

the next chapter, how it can be applied to the specific case of LDCN. 
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4.  SIMULATION PROGRAM STRUCTURE 

The common structure of an integrated model is a modular program 

functionally divided into three main areas: 

1) Monitor; 

2) Utilities; 

3) Models. 

The organization has many parallels to common operating systems with execu- 

tives, utilities, and application programs.  The monitor is the coordinating 

element for all the modules and real-time activity.  The utilities are pro- 

gram modules handling routine functions that are independent of a particular 

model implementation such as report generating.  The models are the basic 

program modules.  Each module models some particular component or function 

of the system.  In this chapter each area of the common structure is 

briefly described; the models being described in more detail. 

4.1 Monitor 

The level-one structure of the modular program is portrayed in Figure 

4.1.  Each of the main functional areas interacts with the other two and 

with a common data structure maintaining facility tables, queues, event 

chains, state vectors, etc.  The monitor serves to coordinate the flow of 

events in the system.  It has primary responsibility for maintaining the 

endogimeous and exogeneous event chains.  As events progress, it advances 

the simulation clock and at appropriate times invokes the utility routines 

necessary for system statistical snapshots, state-recording, etc.  It moni- 

tors operator input messages and exercises control over simulation resources. 

In some language implementations, some form of the monitor is automatically 

provided. 
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4.2 Utilities 

The utilities are divided into three main areas: 

1) Front-End (I/O); 

2) Traffic Generation; 

3) Statistics 

Each of these areas is further subdivided to yield the basic structure 

shown in Figure 4.2.  An important part of the utilities package is its 

common interface structures with other program modules.  All interfaces 

are through the three main area levels and are subject to coordination 

control of the monitor. 

4.2.1 Front-End (I/O) 

The front-end modules of the utilities provides both the inputs to 

the entire program from the user and the outputs from the program to the 

user.  In terms of input, probably the most convenient and cost-effective 

mechanism is via an interactive program.  Such a front-end could allow the 

entering of parameters, control options, etc., in free format and provide 

extensive prompting for and error detection of such input.  This front end 

could create a batch-type file that contains the JCL needed to run the 

simulation program along with the required input data.  This file then 

could be submitted via RJE to the simulation programs.  If a graphics 

capability is available, the network can be displayed, quickly verifying 

its configuration. 

The output of a simulation run is usually voluminous.  Listings are 

the typical form of output.  Report generators are the modules that perform 

this task.  However, along with an interactive input module, the output 

could also be viewed with interactive programs.  Specific reports and text 

could be scanned with text editors.  If graphics are available, histograms. 
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1. Front End (I/O) 

1.1 Interactive Interface j 

1.2  Input 

1.3 Report Generator 

2. Traffic Generator         1 

2.1 Stochastic Source 

2.2 Attribute Descriptors i 

i 3. Statistics 

3.1 Statistics Gatherer   1 

3.2 Trace              | 

3.3 Statistics Processing 

Figure 4.2 - UTILITIES STRUCTURE 
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distribution and throughput-delay curves can be viewed quickly.  It is even 

possible to superimpose several curves to linraedlately compare results. 

Figures 4.3 and 4.A are examples of interactive graphic output displays. 

4.2.2 Traffic Generator 

Essential to every simulation program is the traffic generator.  It 

serves as the driver of the models.  Transact ions are usually characterized 

as following a random distribution in time with the mean arrival rate being 

used as a measure of demand on the system.  At generation time, attribute 

descriptors are also created.  Attribute descriptors define values for 

attributes of a transaction that are also specified by random distributions. 

Such attributes may include input message length, input duration (for 

operator entry of a transaction on a character basis), output message 

length, priority, etc.  The user should be able to specify such distribu- 

tions through a general, flexible, all-purpose traffic generator that can 

be used by all simulation programs. 

4.2.3 Stat istics 

The primary form of output of any simulation program is the statistical 

information describing system behavior.  Three functions are identified in 

obtaining statistics.  Modules are needed to gather the statistics as the 

simulation program is running.  As the state of a facility changes or as a 

transaction leaves a certain processor, statistics are recorded.  The 

ability to trace a particular transaction through the model not only pro- 

vides the analyst with more information about system behavior but assists 

the programmer in the debugging phase of program development.  After the 

simulation program is finished running, various post-procensing modules are 

required to transform the raw statistical data into utilization, distribu- 

tion, etc., results.  These post processors can be part of the simulation 

program itself, taking the data from internal data structures, or they could 

exist in a stand-alone mode reading in a file that was dumped by the simula- 

tion program.  In either case, they would have to interact with the report 

generator modules in the front-end portion of the program. 
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4.3    Models 

The third compunent ol the Simulation program is the model moduli-. 

We now present the flow charts depicting the models for the LDCN devices. 

We begin with the global network model, describing the sequence of faci- 

lities visited by a typical transaction. We then describe each processor 

model (Host, FEP, cone.) in the context of the global network and in more 

detail as a stand-alone program. 

A.3.1 The LDCN Global Network Model 

The schematic diagram for the LDCN Global network model is shown in 

Figure 4.5. A couple of general comments are given before we proceed. 

First, the model represents the configuration and functions of LDCN to 

the best of our knowledge.  If say, a storage facility is actually imple- 

mented as a queue, it is easy enough to modify the model to reflect this. 

Half-duplex lines or channels are modeled as a single server in both 

directions; full duplex lines are modeled as two servers in one direction 

each.  It is also easy enough to modify the model when the line status 

changes from half duplex to full duplex or vice versa. The communications 

processors (Front-End Processor and Concentrator) are modeled as two 

servers; each server functioning in one direction, upstream or downstream. 

This allows the measurements and service times to be taken for both input 

and output which typically require different processing and therefore 

imply different delays. However, the concentrator is implemented as a 

single-CPU processor and even though the FEP is a dual-CPU configuration, 

each FEP-CPU is not dedicated exclusively to input or output.  The division 

of functions in the model is meant only as a convenience in implementing 

different service times. The exact model should reflect that only one CPU 

or two CPUs "in parallel" are performing both functions. 

We now describe the sequence of events, or life-cycle, that a trans- 

action would take through the global network model. 

1) The transaction is initiated by the traffic generator at the con- 

centrator. We assume that the transaction is one complete 

4.7 
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message.  Several options exist at the level of detail for the 

traffic generator.  There could be one traffic generator per 

terminal, one per concentrator, or one for the entire system. 

We feel that the way we have depicted the traffic generator 

here for the global model (one per concentrator) allows for both 

general and specific characterizations of the traffic pattern 

and load.  Consequently, the traffic generator must tag the 

transaction, in addition to other attributes, with the origina- 

tion terminal i.d. 

2) The transaction then seizes the low-speed line server; here 

represented as half duplex.  The service time is known and 

is equal to the transmission rate of the line. 

3) The transaction then queues for service at the concentrator. 

4) It then seizes the upstream concentrator server.  The service 

time is obtained initially from estimation but subsequent by 

results from the detailed concentrator model. 

5) After being served, the transaction queues for output to the FEP. 

6) After seizing the high-speed line server for a duration equal 

to the transmission rate of the line, it enters the FEP. 

7) If the message was a RFNM (request for next message), it then 

progresses to the downstream FEP server.  Otherwise, the upstream 

module processes the transaction in preparation for transmission 

to the Host.  Again the service time  is obtained either by es- 

timation or detailed modeling results. 

8) The transaction is then placed on an output queue depending on 

destination Host and transaction type. 

'-iiiii'fmi» ■i"'!--i:-- 

9)  After seizing the half-duplex channel server, for a duration 

again equal to the transmission rate, the transaction enters the 

Host. 
4.9 
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10) The transaction queues for processing alter which the Host server 

performs part or all the processing required.  After completion 

of the processing, the transaction is now an output message 

which begins its downstream journey. 

11) After queueing for the channel server and being served, the 

message enters the storage buffers in the FEP. 

12) After being served by the downstream FEP server, output blocks 

are then sent to storage buffers awaiting transmission to the 

concentrator. 

13) After seizing the high-speed line server the output block enters 

storage buffers at the concentrator. 

14) Subsequent to being processed by the downstream concentrator 

server, two output blocks are prepared for transmission on a 

per terminal basis. 

15) After seizing the half-duplex line server, each output block 

is terminated and a RFNM generated for transmission back to 

the FEP.  This RFNM joins the upstream input queue at the con- 

centrator. 

As the processor models are presented below, each of the above steps relevant 

to each model will be described in more detail. 

4.3.2 The LDCN Host Model 

The Host model is depicted in Figures 4.6 and 4.7.  Figure 4.6 shows 

the relationship between the Host model and the global network model. 

Figure 4.7 shows the Host model in a stand-alone mode.  Notice that the 

only element In the external environment is a reduced version of the FEP 

model.  In addition, the simple single-server model of the Host is now 

replaced with the more detailed version.  This basic model can be used to 
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model any type of Host in LDCN. We will now trace the life cycle for 

transactions in this model. 

1)  Transactions are generated and immediately placed on an output 

queue at the FEP.  There are two queues; one for real-time trans- 

actions, the other for batch transactions.  However, when modeling 

a U494 Host, there is an additional facility; i.e., a storage, 

that is used for real-time transactions that can be processed at 

either A9A (inquiries). We will describe how this mechanism is 

used to eliminate the necessity of modeling the two 494s simul- 

taneously. 

The traffic generated for the Host is only the amount to be pro- 

cessed by the particular Host under consideration.  However, when 

modeling a U494 Host, the inquiry traffic generated should be the 

amount destined for the complex under consideration (ASO or SPCC). 

As an inquiry transaction is generated, it attempts to enter the 

storage mechanism (really a finite-length queue) in the FEP. If 

the storage is full, the transaction at the head of the storage is 

removed and terminated, thereby making room for the new trans- 

action which then joins the storage. Terminating the transaction 

in the above manner simulates an inquiry transaction that even- 

tually is processed by the other 494 Host.  This mechanism 

prevents the buildup of a "standing-wave" of inquiries queued for 

a 494 when the 494 becomes momentarily unavailable during processing 

of a large batch of transactions.  It is during such an interval 

that the load-sharing feature of having a second 494 should be of 

greatest significance. Without such a feature, the "standing- 

wave" effect would result in serious performance degradation on 

inquiries for a period exceeding the momentary service disruption. 

By varying the length or size of the storage, one is able to vary 

the amount of inquiry transactions processed by the Host.  A zero 

length storage would imply no inquiry processing; an infinite 

length would mean that this Host process all the inquiry tr<ins- 

actions. Measurements must be taken on the amount of inquiry 

traffic terminated and it should be verified that the other 11494 

is able to accomodate at lease that amount.  The scenario could be: 
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a) Run one 494 model with all the inquiry traffic destined for 

the system using a finite size storage; 

b) Measure the amount of inquiry traffic terminated ut the FEP; 

c) Run the other 494 model with only the amount of inquiry 

traffic measured from b) using an infinite size storage. 

Thus, all the inquiry traffic would be serviced by either 

U494. 

2)  Transactions wait for the availability of the half-duplex channel 

modeled as a single server in both directions. 

3)  After seizing the server the transaction joins the Host input 

queue. The time it joins the queue is re( 

used as the starting of the service time. 

queue. The time it joins the queue is recorded as t,, to be 

. i^.. 

4) After reaching the head of the queue the transaction enters the 

detailed Host model.  It is at this level where the various 

functions of the host are simulated in detail, such as scheduling, 

overlaying, peripheral access, CPU execution, etc. The trans- 

action is terminated, and an output message is generated as a 

function of the input transaction. 

5) The output segment then joins an output queue, in preparation for 

transmission to the FEP.  The time it joins the queue is recorded 

as t . The Host service time for that transaction is then defined 
o 

to be t - t,. 
o   i 

6) After seizing the channel server, the output segment enters the 

FEP storage buffers awaiting processing by the FEP modeled as a 

single server.  If the storage is actually implemented in parti- 

tions dedicated to separate Hosts, the size of the storage should 

be equal to the size of the partition allocated to the Host being 

modeled. 

7) The processing in the FEP is only that amount required to store 

the output segment on auxiliary storage, i.e., disk or tape. 

Once that is accomplished, the output is terminated. 
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The model is fairly simple and straightforward. The level of detail 

inside the detailed portion of the model is arbitrary and can be left up 

to the designer.  It can start as a simple, gross model evolving into a 

more sophisticated program as simple functions are replaced with more 

elaborate subroutines. The only portion of the external environment re- 

quired are those functions in the FEP that directly communicate with the 

Host.  Those are the upstream output queues and the downstream storage 

buffers and single server processor. 

4.3.3 The LDCN Front-End Processor Model 

The FEP model in the context of the global network model is shown in 

Figure 4.8.  It is by far the largest model of the three processor models. 

Using the methodology presented in Chapter 3, the FEP model is obtained by 

reducing and eliminating portions of the global network model.  Concentra- 

tors are connected only to the FEP under consideration. Therefore, the 

number of high-speed lines has been cut in half. The FEP only communicates 

with three Hosts, consequently, the number of Hosts in the model has been 

again reduced by a factor of 2.  In addition, the input queue at the Host 

has been removed. The service-time distributions for the Hosts in this 

model are obtained from the detailed Host model presented in the previous 

section.  There, we measured the time before it entered the input queue. 

Therefore, in this model, the input queue is not needed.  These Host 

service-time distributions should also be the ones that the FEP under 

consideration communicates with (i.e., when evaluating the traffic pattern 

for the ASO FEP, the ASO Host computer service-time distributions should 

be used.).  In addition, the resources at the concentrator, buffers, queues, 

input lines, CPU processing power, etc., should be proportional to the 

number of terminals that are communicating with the particular FEP under 

consideration. The concentrator portion has also been modified by enbed- 

ding the traffic generator Inside the concentrator. This eliminates the 

4.15 
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necessity of simulating the upstream concentrator server.  All these 

changes are shown In more detail In Figure 4.9. 

Again, using the modeling strategy described in Chapter 3, the 

simplified single server model of the FEP Is replaced by the detailed 

version of the model.  The dual-CPU configuration of the FEP is modeled 

in the detailed portion.  Again we have represented the detailed portion 

as two servers; one in each direction.  This was done only to point out 

that the service time distributions are typically different in each di- 

rection.  The simulation program Itself must take into account that there 

could possibly be only one CPU that is processing both the upstream and 

downstream traffic simultaneously. > 

If the simulation program for the FEP is too large, an alternative 

approach to modeling the concentrator (probably the largest component of 

the external environment) is possible.  This is described below and 

depicted in Figure 4.10. 

The life cycle of a typical transaction through this model is quite 

similar to that of the global network model.  Therefore, we will only 

describe the differences. 

1) As mentioned above, the traffic originates from within the con- 

centrator. The traffic generator tags the transaction with the 

terminal identifier to be used on the downstream path later on. 

Again, the traffic pattern and load generated should correspond 

to that destined for the particular Hosts and, therefore, the' 

particular FEP being evaluated. 

2) As the transaction enters the detailed portion of the FEP model 

on the upstream path, the time is recorded as t  . 
1 

3) The detailed upstream portion of the model allows simulating, as 

in the Host model, the various phases of processing involved. 

These include error-checking, CPU execution, the writing of batch 
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transaction onto secondary storage, retrieving batch transaction 

from secondary storage, etc. 

A)  As the transaction leaves the detailed upstream portion, the time- 

is recorded again, this time äs t ir The service time then for 

this transaction through the FEP in the upstream direction is 

ti2 " tii- 

5) After the transaction is processed by the Host and an output is 

generated, it enters the downstream detailed portion of the FEP 

model via the half-duplex channel. Here again, the time is 

recorded as to1•  It is at this point that the functions and 

tasks performed in transmitting output to the concentrator by 

the FEP are simulated in detail.  These include the storing and 

retrieving of output messages to and from secondary storage, 

processing involved in segmenting the output messages from the 

Hosts, processing the RFNM, interleaving and transmission of 

output segments to the concentrator, etc.  Because the concen- 

trators have no auxilliary storage, a scheme of double buffering 

is used to provide continuous transmission from the concentrator 

to the terminal. At the start of output, two output blocks are 

sent to the concentrator.  As a buffer is emptied, a Request for 

Next Message (RFNM) is sent by the concentrator to the FEP. As 

the first two blocks leave the detailed portion of the downstream 

FEP model, the time is again recorded, this time as t02.  There- 

fore, the service time of the FEP for the storing of the entire 

output message and the retrieval of the first two blocks is 

ton ~ toi•  The FEP service time for retrieving subsequent output 

blocks depends on when the RFNM is received by the FEP,  Therefore, 

we define another time stamp tD as the time the RFNM arrives and 

initiates retrieval of the next output block from storage.  There- 

fore, the service time for output blocks other than the first two 

is equal to t02 
_ tR. 

6) Output blocks terminate after being served by the low-speed line 

server at which time the RFNM is generated.  It is necessary to 
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Include the low-speed terminal lines in this FEP model because the 

generation of the RFNM which will initiate FEP processing occurs 

after the transmission of an output block on the low-speed lines. 

This requirement could make the FEP program very large and costly 

to run.  On the average only half of the total terminal popula- 

tion need be Included in the program.  (Recall that only the 

terminals communicating with the particular system and, therefore, 

the particular FEP are required.)  This still (approximately 350) 

might limit the level of detail obtainable in the FEP program.  In 

the next section we present an alternative scheme to resolve this 

problem. 

An alternative approach to modeling the concentrator in the FEP pro- 

gram is shown in Figure 4.10.  All the low-speed line servers are replaced 

by one single server with service time equal to the sum of the line speeds. 

This is not totally accurate in the low traffic case, but in the high to 

peak traffic load, this technique does return the average line speed ser- 

vice time. The goal is to remove the necessity of simulating every low- 

speed line in this model, therefore, reducing the size of the program.  The 

above scheme does this for the lines themselves, but the double buffer 

mechanism still remains. That also can be replaced by the following 

sequence of changes: 

1) Two priorities are associated with output blocks sent from the 

FEP to the concentrator.  The higher priority is associated 

with the two buffer message that initiates output.  The lower 

priority is associated with all single buffer messages that are 

initiated as a result of a RFNM. 

2)  After the two-buffer message is processed by the concentrator 

server, it is split into two messages.  The first message seizes 

the low-speed line server and subsequently generates a RFNM and 

terminates.  The second message has its priority lowered and is 

fed back in the queue for processing as a single buffer message. 

Only the first two output buffers are split in this manner. 

4.21 
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Of course, this does not exactly model what Is occurring in the con- 

centrator.  However, this approximation should be sufficient.  The goal 

in this model is the detailed simulation of the FEP. Approximations in 

the external environment should be tolerable, since they lead to problem 

and program reductions, thereby allowing greater flexibility in the de- 

tailed model. 

From the FEP model, we also define a system service time distribution 

which will be used by the detailed concentrator model.  If we take the 

time interval t02 - t^ for all messages in the FEP model, that defines 

the amount of time required to orocess an input message, create an output 

message and prepare it for transmission to the concentrator.  This interval 

is the total turnaround time seen by the concentrator.  This delay will, 

of course, depend on which system (ASO or SPCC) and which host at the 

system the transaction requires.  Consequently, a substantial amount of 

statistics must be gathered from the FEP model that will be used in the 

concentrator model. These statistics are more fully described in Chapters 

5, 6, and 7. 

4.3.A The LDCN Concentrator Model 

The LDCN Concentrator Model is shown in Figures 4.11 and 4.12.  The 

model is the same basic structure as in the global network model.  However, 

the FEP and Hosts have been replaced by an Input/Output Function Box that 

given an input message or RFNM, generates an output according to the sys- 

tem service time distribution obtained from the FEP model described in the 

previous section.  In addition, the simple single-server model of the con- 

centrator is replaced by the more detailed version of the model.  The life- 

cycle of a typical transaction is again similar to that in the global net- 

work model.  The differences are described below: 

1)  The time an upstream message enters the detailed portion of the 

model is recorded as t^..  As it leaves the detailed portion, the 

time is recorded as tj», thus attaining an input service time as 

ti2 - tir 
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2) After seizing the high-speed line server, the message enters a 

system input/output function box. This device models both the 

FEP and Host that the transaction would use. The service time 

is obtained from the distribution mentioned above. 

3) As the output segments enter the detailed portion of the model, 

the time is recorded as t0,.  As it leaves, the time is re- 

corded as t0„ giving a downstream service time of t0- - t0,. 

Various experiments can be run using the basic concentrator model. 

The goal is to obtain characteristics of the concentrator delay for all 

nine concentrators.  Typically the local access configuration (number and 

speed of the low-speed lines) at each concentrator will be different.  In 

addition the traffic load and pattern will differ.  The same program can 

be used for the experiments if the local access configuration is supplied 

as input.  Service time distributions for the concentrator can be obtained 

for each configuration and used in the various other models.  However, 

when a new feature is Implemented in the concentrator, the corresponding 

simulation program must be run several, if not nine, separate times to 

verify that all concentrators can accommodate the new feature.  However, 

when a change in the local access configuration of one concentrator oc- 

curs (a change that might happen frequently) if other concentrators have 

existing configuration similar to the new updated one, a new simulation 

run need not always be performed. 

4.4 The Structure of the Detailed Portion of the LDCN Models 

Up to now we have left open the structure of the detailed portion of each 

of the processor models.  In this section we describe two alternative ap- 

proaches that could be used and Implemented in the simulation programs. 

Each technique has advantages and disadvantages which are also presented. 

The first approach, and probably by far the most classical, is to code 

the specific functions and tasks directly into the program. The life-cycle 

or sequence of facilities inside the processor visited by a transaction are 
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enbedded Inside the code. This method conveniently allows the functions 

and tasks of the particular processor to be described and documented in 

the simulation code.  The program designer would be free to structure the 

detailed portion as he wished, thereby allowing greater flexibility in 

choosing the areas of most concern and desirable levels of detail.  How- 

ever, three separate program modules must exist and be maintained.  In 

addition, every change in the life-cycle of a transaction implies a change- 

In the code, a re-compilation of the module or subroutine, and a reloading 

of the entire program. 

The other approach is what can be referred to as the "unified" method 

of processor modeling.  It is based on the principle that every transaction 

in a computer system goes from one "server" to another in an orderly and 

predetermined fashion until its processing is completed and/or exits from 

the system.  This sequence of events or "cycle-vector" would be different 

for each processor.  However, if the detailed portion of each of the pro- 

cessor models were structured as the same general flexible skeleton, the 

cycle-vector for each processor could be read in as input and thereby 

create different "programs." This concept avoids recompiliation and re- 

loading of the simulation program.  Only one version of the program need 

be designed and coded.  However, there are some disadvantages to this ap- 

proach.  There is an overhead involved in reading in the cycle-vector and 

Initializing data structures in such a program.  Design runs on a fixed 

model would run longer and cost more with this approach than the first. 

The input is more complicated, possibly requiring a pre-processor for 

verification.  Also, a general program, to accommodate all possible fea- 

tures, might be so large that other features specific to each particular 

processor might have to be reduced or removed.  However, a well-designed 

program structured in this manner could be both general and flexible in 

addition to being cost effective. 

The tradeoffs of each approach must be made at implementation time 

and in conjunction with the various simulation languages. Certain high 

level languages that provide desirable features might be restrictive in 

terms of the second method.  Other more primitive languages that allow 
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extensive 1/0 might not provide the capabilities of others. A inorü detailed 

description of simulation languages and proRrara Implementation Is presented 

in Chapter 8. 
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5.     INPUT TO SIMULATION PROGRAMS 

A general modeling program for a communications system should reflect 

three fundamental dimensions in which variations may be examined: 

• System configuration, 

• Processing cycles of messages, i.e., software design, 

• Demand and service characteristics. 

These dimensions may be viewed as a hierarchical structure. The hardware 

configuration of a communications system is usually viewed as the most 

fundamental aspect of the system. For a given configuration, several soft- 

ware designs may be examined. Each such design is characterized by the 

processing cycles of the messages. Finally, for each hardware and soft- 

ware design, performance is appraised for a range of traffic characteristics 

and service times of the hardware and software elements. 

5.1 System Configuration 

The system configuration inputs are divided into two main levels: 

network topology defining the overall system structure, and link and node 

model attributes providing details for each structural component. The 

basic structure of the configuration data base is shown in Figure 5.1. 

Note that the data structure has provision for information for network 

analysis beyond that required for network modeling. This permits a 

common input front end to serve network performance modeling and topologlcal 

design data bases.  Each simulation program extracts only the required 

information needed as input. As output is generated, such as the service 

time distributions for the aggregate model attributes, it is either 

substituted for the old, outdated information or is added as another 

statistic generated for a different set of conditions (e.g., a different 

traffic pattern or load). 

5.1 
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1. Network Top ology 

1.1 Nodes (N) 

1.1.1 Node l.d.                                      ! 

1.1.2 Node Descriptors                                j 

1.1.3 Position Data (only if other than operational modeling ! 
desired)                                       | 

1.2 Links (L) 

1.2.1 Link i.d. 

1.2.2 Link Descriptors 

1.2.2.1 Node at First End 

1.2.2.2 Node at Second End                         \ 

1.2.3 Tariff Data (only if other than operational modeling   j 
desired) 

2.  Link Attributes (L#)                                        1 

2.1 Nomina 1 Line Speed                                      j 

2.2 Error Rate 

2.3 Half or Full Duplex                                       1 

3.  Node Models (N#) 

i     3.1 Aggregate Model Attributes (A) 

|         3.1.1 Priority 

1         3.1.2 Service Time Distribution                          i 

|         3.1.3 Average Queueing Delay 

|     3.2 Detailed Model Attributes (D)                              1 

3.2.1 CPU                                               j 

3.2.1.X CPU attributes 

|         3.2.2 Peripherals 

3.2.2.X Peripheral Attributes                     1 

j         3.2.3 Memory 

3.2.3.X Memory Attributes                         | 

3.2.4 Buffers 

3.2.4.X Buffer Attributes 

1         3-2'5 Communications Interfaces 

3.2.5.X Communications Interface Attributes 

Figure  5.1 -  SYSTEM CONFIGURATION  INPUT 
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The software design of the system Is defined by the processing 

cycles of the messages.  The processing cycle of a message Is specified 

by the sequence of servers visited by the message, and the state the 

transaction Induces In the server at each stage.  As mentioned in 

Section 4.A, two alternatives exist In modeling the software design of 

a communications processor.  The first is to imbed the software functions 

and tasks directly into the simulation program code.  This method requires 

no input but necessitates recompilation and reloading of the program if 

a different software design is investigated. 

The other alternative Is to have the software design, i.e., the 

processing cycle of messages, read In as input.  Thus, a state vector 

la defined for each server (or facility), where each distinct state is 

characterized by interrupt time distribution, service time distribution, 

and priority.  For each message type, the sequence of servers and their 

appropriate states are then defined In a cycle vector.  The state and 

cycle vectors provide the linkage with the facilities to Interconnect 

the queueing structure in the detailed processor model. The basic Input 

structure is shown In Figure 5.2.  For the global network model software 

considerations are not too Important. As a consequence, the state and 

cycle vectors would not be used there. 

The use of message processing cycles is a particularly convenient 

means of specifying the system operation and structure.  Most designers 

frequently think In terms of the "life cycle" of a message, that is, the 

sequence of events followed by a message as it moves through the system. 

Such a life cycle is Illustrated by the extremely simplified sequence of 

events listed below: 

1) Transmission of a message to an input buffer, 

2) (After being queued) processing by the CPU, 

3)  (After being queued) disc access. 

5.3 
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1. Mesa age Type 

2. Cycle Vector 

2.1 Facility l.d. 

2.1.1 State Type 

2.1.2 State Attributes 
• 

2.2 Facility l.d. 

3. State Vectors 

3.1 Facility i.d. 

3.1.1 State l.d. 

3.1.2 Priority 

3.1.3 Pre-Emptive/Non-Preemptive 

3.1.4 Cycle Stealing Rate 

3.1.5 Interrupt Processing 

3.1.6 Processing Time Distribution 

3.1.7 Operational Functions Subroutines (e.g. , Protocol) 

3.1.X State i.d. 

3.2 Facility i.d. 

Figure 5.2 - SOFTWARE DESIGN INPUT 
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4)    Processing by CPU, 

5)     (After being queued at an output buffer)   transmission of the 

reply on an output transmission line. 

. 

There is almost a direct translation from the "life cycle," illustrated 

above, and the processing cycle needed for specification in the model. 

Only refinements in modeling are needed, and are easily developed. 

For example, from the above illustration, at the beginning of the event 

"1," an "interrupt" would advance the simulated clock while delaying the 

completion of all the messages already in the CPU.  As the input message 

is being transmitted, the impact of character interrupts can be approx- 

imated by reducing the CPU processing power by a certain "percentage." 

Thus, the impact of event "1" on other messages can be given in terms of 

"interrupt" time and "percentage" CPU processing power degradation. 

The impact of the other four events can be described in a similar 

fashion. 

L 

L 

The incorporation of system control logic is handled by sub- 

routines triggered from the state vector processing.  Thus, such logic 

can easily be excercised at the discretion of the designer. 

5.3 Demand and Service Characteristics 

The third level of the hierarchy is the demand and service char- 

acteristics. Most modeling exercises are not to determine system behavior 

for only a single set of conditions, but rather for a range of possible 

conditions. A general program must be easily changeable to reflect 

different conditions.  This is accomplished by specifying the conditions 

through a set of parameters. 

The basic parametric structure is shown in Figure 5.3, 
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1. Message Type Attributes            1 

l.l Type 

1.2 Priority 

1.3 Message Length Distribution 

2. Arrival Patterns 

2.1 Scheduled 

2.2 Random               \     \ 

2.2.1 Interrival Distribution i 

3. Traffic Mix 

3.1 Message Type 

3.2 Percent of Total Traffic       , 

1 ^• Traffic Matrix 

4.1 Message Type                | 

4.2 Percent of Type 

4.3 Origin 

4.4 Destination 

! 5- Traffic Levels 

5.1 Lowest Level 

5.2 Highest Level 

Figure 5.3 

SERVICE AND DEMAND PARAMETER INPUT 
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5.A Input to the Specific LDCN Models 

5.4.1 Input to the Global Network Model 

The basic input to the global network model is the system config- 

uration, consisting of network topology, and aggregate nodal attributes. 

In particular, the following inputs are identified: 

1) For each Host - 

a) Service time distributions 

2) For each FEP - 

a) Service time distributions for both upstream and downstream 

directions 

b) Interconnections to Hosts 

c) Output buffer storage size 

3) For each Concentrator - 

a) Service time distributions for both upstream and downstream 

directions 

b) Interconnections to FEFs 

c) Output buffer storage size 

d) Local access configurations of terminal lines 

It is at the concentrator level where the traffic load and pattern 

characteristics are required for input. 

iifc_. ■ -   1 M^Mli 
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5.4.2 Input to the Host Model 

The Input to the Host program can be divided Into 2 parts:  those 

that deal with the Host itself, and the others that deal with the external 

environment, namely the FEP. 

The system configuration input, relative to the Host, consists of 

the hardware configuration at the Host. These include memory, peripherals, 

etc. 

The software design input for the Host consists of the state and 

cycle vectors describing the various operating systeEis Implemented in or 

under consideration for the particular Host. 

The input to the Host model that pertains to the FEP consists of 

configuration data, software considerations, and service and demand 

characteristics. Of course, the speed of the channel connecting the 

Host and FEP must be specified. In addition, the output buffer 

storage size, which is used as a throttling mechanism, should be input. 

Obviously this should not be the total amount of storage available at 

the FEP.  It should reflect the amount available to the particular Host. 

It is either the amount dedicated to that Host (if partitions are imple- 

mented) or proportional to the amount of traffic processed by the FEP 

for this particular Host (dynamic implementation).  For U494 Host models, 

the size of the inquiry storage mechanism (used for the shared transactions) 

must also be specified. 

The nominal service time distribution to process the output message 

(remove from primary storage and store on secondary storage) Is required 

as input. 

The traffic that arrives at the Host originates at iht; FEP. Tho 

traffic generator in the FEP will generate traffic according to input 

parameters.  These include distributions by transaction type (Inquiry, 

upquiry, batch) and size.  For batch transactions, a utilization 

criterion for acceptance by the Host must be specified. 

5.8 
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If aggregate traffic statistics for a particular Host are not 

available from measurements, a traffic preprocessor can be applied to 

the traffic loads and patterns used at each concentrator to extract 

only the traffic destined for that particular Host. 

5.4.3 Input to the FEP Model 

As in the Host model, the input to the FEP model can be divided 

into 2 areas: The FEP itself and the external environment.  This time 

the external environment is composed of two classes of devices: Hosts 

and concentrators. 

For the FEP, the input consists of the hardware configuration and 

the software design. The hardware input includes amount of main memory, 

number and speed of peripherals, and amount of secondary storage.  The 

state and cycle vectors describe the software implemented in or under 

consideration for the FEP.  Some of the software-related functions and 

tasks that can be evaluated are as follows: 

a) Various queueing disciplines, 

b) Dual - CPU servicing disciplines, cutover thresholds, 

c) Overhead involved in gathering network statistics, 

d) Whether statistics gathering is in effect or not 

There are various inputs required for the external environment of 

the FEP.  The number and identity of the Hosts and how they are connected 

to the FEP must be input.  For each Host, the service time distribution 

Is required.  The number and identity of the concentrators and the line 

speeds of the connections are required input.  A full description of the 

configuration of the concentrator is necessary including the number and 

speed of the local access lines and the percentage of resources available 

at the concentrator for the particular FEP under evaluation.  The down- 

stream service time distribution of the concentrator Is 

concentrators are the source of the traffic for the FEP 

needed. Th« 

Therefore, It 

^ 
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is here that the traffic load and pattern distributions are »pecifled. 

Recall that these traffic statistics should only be for the FEP under 

evaluation (ASO or SPCC).  Again a preprocessor could be used to extract 

this information from the traffic data base at each concentrator. 

5.4.A Input to the Concentrator Model 

The input to the concentrator model consists mainly of input 

describing the concentrator.  The only input for the external environ- 

ment is the system service time distributions obtained from the FEP 

model. 

At the concentrator, the hardware configuration which inciudes the 

communication interfaces and the number and speed of the lines, both to 

the terminals and the FEPs are required for input. Hit state and cycle 

vectors defining the software design in the concentrator are input. 

In addition, the traffic load and pattern for the local config- 

uration, which drives the concentrator model is required input. These, 

however, are typically different for each concentrator. However, the 

same program is used; only the input is different. 

5.10 i 
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6. OUTPUT 

L 

The principal output of the simulation programs Is the statistical in- 

formation describing system or processor behavior. In addition to the 

statistics obtained from the simulation, the report generator should pro- 

vide a description of the network or processor configuration being 

evaluated plus a listing of all input parameters for easy cross-referencing 

and verification. Also, when the tracing of a message option is in effect, 

that output will aid both designers in attaining insights to the system as 

well as providing debugging facilities for the programmer at implementation 

time and for future updates. 

The statistics output by the report generator that are common to all 

the LDCN models include: 

L 1) For each server or facility (e.g., communications line, 

processor, or facility within a processor (CPU, memory, 

peripheral etc.)) 

a) utilization 

b) number of tines occupied 

c) average time per occupation or service time 

d) availability 

2) For each queue 

L 

L 

a) maximum and average contents 

b) total and percent of entries that did not 

have to wait (sero entries) 

c) average queueing time for all and only- 

delayed transactions 

»„-^„^.»«■J-.i..  .„„f., '..„. -,,, , M 
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d)  buffer space used by queues 

3) For each message type 

a) the average lifetime in the system (i.e. round- 

trip delay) 

b) the maximum and minimum observed lifetimes 

c) the number of messages generated and serviced 

by the processors. 

In the detailed processor models, the software design Is evaluated by 

examining the state and cycle vectors.  Therefore, additional output 

includes: 

4) For each state in each cycle vector 

a) the average time spent in each state 

b) the number of times entering a particular 

state 

c) maximum and minimum time spent in each state 

Flexibility exists in the form and style of the simulation output. 

Some high level simulation languages automatically provide some form of re- 

port generators and plotting capabilities.  If these are not sufficient, 

programs can be written that can present the output In any manner desired. 

The report generator provides several options to the user, ranging from 

simple summary reports to extensive detailed reports. The model user has 

the option of specifying retention of only needed information or all Infor- 

mation resulting from exercising the model. This allows efficient model 

execution when only particular information is desired.  Exercises can be 

Jä/^w..*-.^.,,-....^ ..„-y,'    v,.._. J*^:^:  ;j.^iL.^fem^ttü»..JÜ 
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tracked by summary reports with the total Information retained for presenta- 

tion In detailed reports at a later time. 

The above statistics provide the systems designer with the luformatlun 

necessary to evaluate the performance of the processors and the entire net- 

work. Because the modeling strategy presented relies on the interaction 

between the various simulation programs, additional output is required to 

serve as input for other programs. We have identified the linkage informa- 

tion to be the service time distributions for the various processors. 

These distributions would be for a fixed set of conditions; traffic load, 

mix and pattern but would be a function of the message size (both input and 

output) and message type. This information is available from the set of 

statistics presented above, and in fact, would provide the designer with 

further Insights as well as serving as the linkage between the simulation 

programs. The form and methodology of this linkage information is described 

in the next chapter. 

6.3 
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7.  LINKAGE METHODOLOGY 

In Chapter 3 we presented a modeling strategy that allows global net- 

work modeling as well as detailed processor modeling. Because of the bi 

directional nature of communications processors, it was identified that 

for processor modeling some form of the external environment need also 

be simulated at the same time. The external processors were to be modeled 

as simple single servers with service times according to service-time 

distributions. These distributions were to be obt*ined from the outinic of 

other detailed processor models and also be used in the global network 

model.  In this chapter we describe a methodology for obtaining this link 

age information and its use in the detailed models. 

7.1 Linkage Form 

The Information that links Che LDCN models together are the service- 

time distributions of each of the processors. As stated in the previous 

chapter, these distributions are a function of message type and size. 

This output is obtained from the report generators for the user and is 

usually in the form of a histogram or an approximated continuous curve. 

It is now necessary to transform this information into machine-readable 

form to serve as input for the simulation programs that require it. This 

can either be in punched-card format, kept on-line in a data set or file, 

or presented in a manner that can be transcribed by hand and then input 

manually. Post-processing routines can perform this task at the end of a 

program run and create the appropriate form of input. Alternatively, pr» 

processing modules can take the raw output data from one program and ex- 

tract the required information. A third option is to create a stand-alone 

program that performs this task. These options are shown In Figure 7.1. 

The decision as to which scheme is the best depends on how the report 

generators are implemented.  One can take advantage of how the other 

statistical output is generated by obtaining this linkage information in 

the same manner. 

7.1 
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7.2 Methodology for Using the Linkage Information in the LDCN Models 

The global LDCN network model provides no linkage information but 

uses those of the other detailed models.  At first, since the detailed 

models are not built, simple routines can be written to read in the gross 

service-time distributions of the processors. As more accurate distribu- 

tions become available from the detailed models, this linkage in'ormatlon 

must be available to the global network model. 

Each detailed model also requires the service-time distributions of 

other processors for Input as well as providing it on output. The order 

in which these distributions are obtained is Important in attaining 

meaningful, accurate results and avoiding repeated simulation runs for a 

fixed set of conditions. 

The recommended sequence of simulation runs for the LDCN detailed 

models under a fixed set of conditions (traffic load, pattern, and mix) 

is as follows: 

1) Run the Host model using the nominal FEP output service time; 

2) Using the accurate Host service-time distribution from 1) and 

the nominal concentrator output service time, run the detailed 

FEP model; 

3) Using the system service time distribution obtained from the FHP 

model, run the detailed concentrator model; 

A) Compare the new service time distribution obtained for the con- 

centrator with that distribution used in the FEP model. If they 

are equivalent, then stop; 

5) Otherwise, rerun the FEP model using the new concentrator service 

time distribution and go to 3). 
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It Is only necessary to simulate the Host only once for a given set 

of conditions.  The service-time distribution of the Host will not depend 

on how fast or slow the FEP serves the output messages.  The output queue 

at the Host might grow very large, but the service time, which we have 

defined as the time in the Host until bei.ig placed on the queue, will not 

change. 

The FEP and concentrator models, however, rely heavily on each other. 

Of Interest is the conjecture - is there any direct relationship between 

the service times of the FEP and concentrator? If one changes, does the 

other change and thereby cause a change in the first? 

The sequence of steps shown above will detect this as well as validate 

the linkage information between the models.  Oscillation between the 

concentrator service-time distributions used as linkage input to the FEP 

model and that actually obtained from the concentrator model can be ex- 

pected. However, continual oscillation indicates an unstable relationship 

between the two processors. The results from the simulation runs should 

provide insight into this problem. Oscillations that converge rapidly 

indicate that only the preliminary assumptions were incorrect. 
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8.  IMPLEMENTATION CONSIDERATIONS 

Choosing the appropriate simulation language for the LDCN models de- 

pends on many elements.  The general considerations Include availability, 

procurement cost, operating cost, training cost, portability, support, etc. 

Other considerations pertain to the effectiveness of each language to solve 

the various coding problems posed by the models proposed In the previous 

chapters.  In this chapter we present a comparison of the three primary 

languages used for simulation programs:  FORTRAN, General Purpose 

Simulation System (GPSS) and SIMSCRIPT II.  We also describe a relatively 

new language, ECSS II, that was developed particularly for modeling compute: 

systems. We then describe the advantages and disadvantages each language 

exhibits when actually applied to the LDCN models and modeling strategy. 

Reltman   provides an excellent review and comparison of the three 

most widely used simulation languages:  FORTRAN, GPSS, and SIMSCRIPT II. 

The comments are grouped into four basic categories: short term results, 

ability of the simulation to represent the real world, long term results, 

and effort required to use the language. A synthesis of his review is 

presented below. 

Procedure Oriented Languages - (FORTRAN, ALGOL, PL/1) They are 

not really simulation languages, but more like mathematical pro- 

gramming languages. However, they have been used for simulation. 

1) Short term results 

• programmer must have good background in the language be- 

fore it could be used for simulation 

• have to provide the simulation structure; none exists 

• statistics gathering functions Internally have to be 

structured 

• not very flexible - revisions in complex systems require 

major modifications 

8.1 
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• no graphic cnpabll 11 ien built In, addJtlona] programnitr<K 

Involved 

2) Ability of simulation to represent the real world 

• could model almost any real-world situation 

• the more complex systems require much greater effort 

• mathematical capabilities are excellent, many special- 

purpose techniques for data smoothing and linear 

programming 

• list processing is weak.  Any simulation program requires 

some form of list processing to structure the model, 

some form must be provided for these languages 

• maximum program size is flexible; overlays are possible 

3) Long term results 

• language generality, supported universally 

• documentation left up to programmer, cross references 

available 

• system designers other than original program should be ab I« 

to follow the logic and detail of the simulation 

4)  Effort required 

• considerable, but several programmers can work on Che si  

latlon in parallel if conventions governing the exchange 

between subroutines is specified in advance 

      rTtii'iMMü'üiirWiir 
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B.    GPSS - the  first real programming language geared specitically 

for simulation 

1) Short  term results 

• geared to get results quickly 

• simulation structure is strongly evident 

• many built-in features,   format,  organizarion and 

diagnostics 

• statistics are maintained automatically both during and at 

conclusion of the simulation 

• flexible;  easy to change logic,  data and results selected 

• debugging aids are many 

• graphic presentation of output is available 

2) Ability to represent the real world 

• desired level can be obtained 

• can use byte, half-word or full-word arrays 

• logical situations are well represented by Boolean 

equations 

• mathematical capability is adequate for problems that  do 

not require complex equations.    However,  the fact  that values 

are stored as integers causes scaling problems and loss of 

precision in arithmetic computations such as division 

8.3 
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» list processing Is available, allowing FIFO, L1F0 t>i an-, 

priority structures 

t Maximum size of program is „.he tradeoff between avallabl 

core storage and execution time. Overlays are possible. 

3) Long term results 

© benefits from the highly structured language 

m    documerttation capability is very good, comments can be \-. 

of every statement 

® transferability of GPSS programs is excellent; 

4) Effort required 

GPSS provides the most working model for the effort ei X\fU 

C.  SIMSCRIPT IT. -■ programming system developed by RAM) designed 

particularly for simulation 

1)  Short term results 

pro grans« sr should be coffipentent In SIMSCRIPT II 

« no inherent, structure for the simulation. Consequent 1.y 

an extensive problem definition and structure should '■•--• 

developed before coding the model,, 

« relationships are through the entity •- attribute -- set 

relationship 

# statistics obtained either during or after model exec 

are programmed by the system designer 
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• the language allows access to anything at any time, but the 

structure and format of the statistics has to be specified 

by the user 

• flexibility is tied in with the basic subroutine structure 

of the programming approach. Individual subroutines can be 

compiled and added or substituted into the model. The same 

model may be run with different input data. 

• programs to display output in graphic form are not built 

in, they have to be coded 

2) Ability to represent the real world 

• logical situations can be well represented with the Boolean 

capability. Very complex situations can be structured. 

• mathematical capabilities will depend on the particular 

installation since SIMSCRIPT II is a separate programming 

system. Libraries of utilities will have to be developed. 

i 

• list processing capabilities are strong, owing to the 

structured data storage system. FIFO, LIFO and any prior- 

ity structures are easily developed 

• maximum program size again, depends on available computer 

storage.  SIMSCRIPT II is a compiler language. As such, 

the compiler might use up an excess amount of storage. 

Overlays are possible. 

3) Long-term results 

• syntax of language is almost readable English 

• as a consequence, the documentation throughout the program 

is excellent. Additional comments may be placed anywhere. 

Users other than the original nrogrammer should be able to 

follow the model in detail easily. 

8.5 
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however, the structure of the prugrum la Htill u; t( ihn 

programmer. For complex problems the readability does not 

describe the relationships between different factors. 

Simultaneous events are difficult to document.  Changing th 

logic of an existing model is difficult for those changes 

which require restructuring of data or system attributes. 

it)    Effort required 

• comparable to GFSS, yet the more complex models require 

siderable more effort 

More recently, work has centered on creating simulation language:. 

designed specifically for modeling computer systems.  There are now severa] 

languages available that allow a programmer the freedom to write his 

program referencing common computer hardware and software terms as part of 

the code. Typically the language is implemented as a preprocessor to a 

general-purpose simulation language. One such example is the Extendable 

Computer System Simulator II (ECSS-II) developed at RAND. ECSS-II is 

based on the SIMSCRIPT II language, with that language Included as a subset, 

Consequently, all the advantages of SIMSCRIPT II are present in ECSS-II, 

plus some of the inadequicies are removed.  In [2], Rosy states that: 

"[ECSS-II] provides a rich variety of statements and data 
structures for describing common computer hardware configurations, 
software operations, and workload characteristics in a natural 
and straightforward notation. Using these statement), one cm 
compactly express, for example, the name, quantity, and per- 
formance of each kind of simulated hardware device, the behavlor 
and resource requirements of each kind of Job to be processed, 
the policies by which resources are assigned to jobs, the ch r 
acterlstics of messages sent through I/O devices within the 
model, and how the simulated system is to be loaded by jobs 
and messages from its environment." 

The authors of ECSS-II have taken advantage of SIMSCRIPT II's Inherent 

readability to create a language that utilizes computer hardware and sott 

ware Jargon. 

/ 
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In addition,  the added  simulation structure provided by ECSS-II  is 

directly applicable to modeling computer systems.    In an early Interim 
f 31 

report comparing ECSS-II  (then,  Just ECSS) with FORTRAN and PL/1 , Rosy 

highlights these added structural features: 

"To this  [SIMSCRIPT II] base ECSS adds four new elements  to 
describe the statics and dynamics of computer systems for 
simulation:    the System Description, Load Description,  the 
Service Routines, and an extension to the preamble called 
the Definition Description. 

The System Description consists of a group of declarative 
statements that specify the number of each type of device 
in the system,  the names of the devices,  the characteristics 
of each device, and how this hardware is interconnected. 
One can define CUPs,  core storages,   terminals, disks,  or 
any other kind of device in terms of its data transmission 
capabilities,  instruction execution rates, and storage 
capacity.    In general,  these hardware elements are the 
resources to be allocated and utilized during the simulation. 

In the Load Description section,  special routines called 
"jobs" are defined to describe a system's dynamic behavior. 
Jobs simulate the work of real application and control 
programs by indicating sequences of hardware utilization 
commands.    These commands are used,  for example,  to indicate 
amounts of data transmission and instruction execution,  to 
get and free simulated storage space,  to define conditional 
delays, to start and terminate jobs, and so on.    Jobs are 
processes—simulated time advances as a job is executed and 
many different changes to the state of the system are usually 
included in one job.    Quite detailed representations of 
computer program behavior can be described by intermixing 
ECSS and SIMSCRIPT commands within the jobs.    Jobs and events 
can be used together in the same model to provide an extremely 
powerful composite world-view of system dynamics. 

The Service Routines are a collection of SIMSCRIPT II  routines 
which Implement the Load Description commands.    They assume the 
details of job processing and time advance, as well as updating 
the variables that define the state of the system as jobs inter- 
act with devices.    Also Incorporated into the Service Routines 
are a number of resource-management algorithms that provide a 
kind of built-in operating system.    This capability gives 
the user the power to specify multiprogramming,  contiguous- 
storage management,  conversational messages and other high- 
level activities with only a few statements. 

The Definition Description is of  lesser importance than  the 
previous three elements,  but  it does supply the user the 
ability to define his own commands,  to use his own    termi- 
nology for certain computer-related dimensions  (bytes  for 

8.7 
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transmission, say, or pages for core space), and a statement 
for compact definition of table functions, all of which are 
lacking in SIMSCRIPT II. 

We now describe some of the advantages and disadvantages of each of 

the above languages when applied to the specific application at hand; 

i.e., the LDCN models. 

FORTRAN, because it is not a simulation language, is probable the 

least attractive for such a large simulation project. Considerable effort 

would have to be expended in providing even the basic simulation structure 

List processing capabilities, essential to any complex simulation program, 

are generally weak; however, we are aware of some available list pro- 

cessing packages for FORTRAN programs.  The I/O capabilities of FORTRAN 

are probably the best. The software design of the processors could be 

implemented using the cycle and state vector approach and input to a 

skeleton program that could be used for each of the detailed processor 

programs.  Also the I/O of the linkage data would be easier in FORTRAN. 

The previously delivered stand-alone concentrator simulator was designed 

with the vector approach and written in FORTRAN. The language is a 

viable one but there are better ones. 

GPSS, because it is a simulation language, would be better than 

FORTRAN. However, because of the general purpose nature of the language, 

it may still not be the best language to use. Limited I/O facilities 

prohibit using the vector approach for evaluation of various software 

designs in the processors. There is no inherent way to selectively 

change only portions of the program without "recompiling" the entire 

program.  However, the diagnostics and queuing structures are strong. 

Since the LDCN models rely heavily on queues, the programming effort 

might be reduced.  In addition, the U494 stand-alone Host simulator 

was written in GPSS and existing FMSO personnel are proficient in GPSS 

SIMSCRIPT II is probably the better of the two simulation languages. 

Complex models, of which the LDCN models are ones, are more flcxable 

when written in SIMSCRIPT II than In GPSS.  Limited I/O capabilities, 

again, limit the use of cycle and state vectors for defining softwart 

L 8.8 
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design In the processors.  However, separate modules or subroutines that 

handle the software Implementation could be changed and recompiled separately 

But it might be difficult to structure the programs in this manner (all 

the software functions in one or two routines).  In addition, personnel 

familiar with SIMSCRIPT II might be limited. 

ECSS-II Is a relatively new and untested language. However, the 

syntax is geared specifically towards computer systems modeling, which 

is the problem faced here.  It conveniently allows both hardware and 

software evaluation. It has all the capabilities of SIMSCRIPT II plus 

developments have been made to improve the deficiencies (e.g., statistical 
[A] 

Instrumentation)   . It might not provide the level of detail desired 

in the processor models ("the language is oriented...at the millisecond 
[3] 

level and above")   . Procurement and training costs might be a 

problem because the language is PO relatively new. However, the Army, 

in conjunction with FEDSIM, has recently used ECSS-II for simulating 

a communication system with favorable results  , 

In conclusion, a simulation language such as GPSS or SIMSCRIPT II 

would be more versatile for the LDCN modeling effort than FORTRAN. 

However, variations in ehe software design of the processors would be 

more easily evaluated in FORTRAN because of its extended I/O capabilities. 

GPSS is probably too general for this effort, however, it does have some 

merits.  If SIMSCRIPT II were to be selected as the language to use, 

serious consideration should be given to the ECSS-II language, as it in 

based on SIMSCRIPT II, while providing a closer fit to the LDCN application. 
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9.  CONCLUSIONS 

The LDCN is a complex system, composed of major subsystems in con- 

centrators, Front End Processors, and Hosts, unified via data communications 

lines into an operational system. Major design issues can focus on the 

network as a whole, or on any subsystem, and may deal with hardware or 

software. Development of a simulation model as a general tool to enable 

examination of such issues requires major considerations be given first 

to the overall modeling stragety. The strategy must address the issues 

of modeling the individual subsystems as well as modeling their inter- 

action in a unified system. The purpose of this report has been to 

present an appropriate strategy for modeling the LDCN. 

The major conclusions of this report are as follows: 

- Because of the size of LDCN, one large program that allows 

detailed processor modeling as well as global network modeling 

is infeasible. 

- An appropriate strategy is hierachically structured; at the 

highest level is a similified global network model with the 

processors modeled as simple single-servers. This model serves 

two purposes; 

1)  It will serve as the framework for the detailed processor 

models as they are built; 

2)  It will provide the first gross performance trends quickly 

and cheaply as it evolves into an accurate global performance 

measurement tool. 

The detailed processor models are extracted from the global model 

by replacing one simple server model of a processor with the 

detailed version of the model, removing all servers of the same 

class, removing all servers that are not directly connected via 

communications lines to the detailed servers and finally reduce 

the scope of the model until it becomes tractable. 

9.1 
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Wien  modelIng rommunlcat ions processors, the external environment 

is very important. Slmplillcatlonu and omlsülons muni be treated 

carefully to prevent Inaccurate results. 

The element that links the detailed processor models together 

is the service time distribution.  Initially, best guess esti- 

mations are used to characterize the service time of. the external 

processors. Measurements are obtained from the detailed model and 

these distributions are then used to model the environment of a 

different processor. 

The service time distributions are used in the global network model 

to obtain more accurate global performance statistics. 

The common simulation program structure is composed of a monitor, 

utilities and the models themselves.  The utilities are made up 

of a Front-End for input and output, a traffic generator and a 

statistics package. 

The detailed portion of the processor models can be structured in 

two ways: 

1)  Inbed the software design of the processor directly into the 

simulation code. This requires no program input, but the 

evaluation of variations in the software design requires 

repeated simulation program modification. 

2) The software design Is read in as input, consisting of cyclti 

vectors - the sequence of servers or facilities visited by 

transactions, and state vectors - the state induced on each 

server In the cycle vector. A skeleton program is designed 

that reads in this input to create different "programs." 

- The input to the simulation programs consists of: 

9.2 
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1) System (network or processor) configuration Including the 

linkage Information; 

2) Software design - If Implemented with the vector approach; 

3) Demand and service characteristics. 

- The output from the simulation programs Includes: 

1) Statistics describing system (network or processor) behavim 

2) Linkage information to be used In other programs. 

- Because of the excessive amount of interactions between the 

various programs, the order in which the programs are run is 

Important. Care should be taken to avoid repetitions of runs 

and Inaccurate results. 

- Three languages that could be used to write the simulation programs 

are FORTRAN, G?SS, and "SIMSCRIPT II.  Each has its own merits and 

drawbacks. Of the three, SIMSCRIPT II would probably be the best, 

with GPSS and FORTRAN tied. 

- However, new languages are available that are designed specifically 

for simulating computer system. One such example is ECSS-II, 

written at RAND.  Based on SIMSCRIPT II, ECSS-II has built-in 

features that relate directly to computer hardware and software. 
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