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Section 1. INTRODUCTION

This report is written to derive survival probabilities, exchange
ratios, weapons usage, and other measures of effectiveness in aerial f
duels based on simulated aerial combat. It is convenient to think of an :
m on n duel as taking place between two sides. Side I has m members and
side II has n members. Simulated aerial combat geometry is generated by :
allowing all (m + n) participants to fly for the entire duration of the i
duel.

From the trajectories on these runs, each combatant is assigned
firing opportunities consistent with missile flight characteristics,
envelope considerations, an appropriate firing doctrine, and weapons
loadout. The member of the side being fired at is assigned based on
both geometry and previous firing history. Thus, an attempt is made to
minimize overkill and spread kill potential uniformly over the history
of the duel, The kill probability associated with the launch is based
on relative geometries, single-shot kill probabilities and salvo size.

i TR R i RS o TS 15

Bl i il e IR

Unfortunately, an unavoidable difficulty is induced by the geometry.
Whenever m > 1 or n > 1, it is possible for a combatant who would have
died early in the engagement to continue to draw attention and fire from
an adversary who would otherwise be free to engage viable targets. Thus,
a pursuer has the chance of firing at "ghosts" or decoys, rather than
directing his attention at real threats.

In addition to the geometry problem there is apparently some d4if-
ficulty in making probability calculations correctly. Previous attempts
to make the probability calculations using a recursive algorithm violate
a critical independence assumption. A clear discussion of this fallacy
in duel calculations is contained in a report by Lincicum.! It is a
common error made by a number of contractors and government facilities.,
This report considers both aspects of these problems for general m on n
duels. Section 2 provides a special algorithm which correctly obtains
survival probabilities for the case m = n = 1. Weapons usage is also
determined for this case.

! Naval Weapons Center. Determinations of Kill Probabilities and Exchange Ratios for Multiple Firings by Two
Combatants, by L. Lincicum. China Lake, Calif., NWC, April 1973. (TN 3007-129, publication UNCLASSIFIED.)
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4
.{1 Section 3 presents a different algorithm for the general m on n duel.
3 The concept of m/0 on n/B duels is introduced as a method of handling the
ghost problem in shoot-look-shoot aerial duels. The problem is then
‘ formulated as a Markov process with appropriate updating formulae at
i state space transition times. Survival probabilities and exchange ratio
§ formulae are also presented.

A Section 4 extends the approach discussed in Section 3 to include

1 weapons usage. This extension is made at the cost of what appears to
be an exceedingly large state space. In application, the actual size of
F | the state space one must consider may be much smaller.

Section 5 discusses shoot-switch firing policies with updating
formulae when the "ghost" problem is ignored. The problem of combining
m/0. on n/f duels with a shoot-switch firing doctrine is discussed.

Appendixes A and B illustrate the updating formulae in Sections 3
b and 4, respectively. The important observation in this example is that,
K even though the potential state space is quite large, only a small

fraction of these states are ever used. Thus, a computer program which
ﬁ only introduces states as required may be quite efficient.
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Section 2. A SPECIAL ALGORITHM FOR 1 ON 1 DUELS

When m = 1 and n = 1, we are concerned with an important special
case of m on n duels. The algorithm presented here is more efficient
than the general algorithm of the next section and it is the preferred
method of analysis of 1 on 1 duels. The "ghost'" problem is not a con-
sideration in 1 on 1 duels.

2.1 SURVIVAL PROBABILITIES FOR TWO DUELISTS

In this section, which is based on a report by Reed,? we describe
an algorithm procedure for generating time-dependent survival functions
for two duelists whom we call I and II. We allow time delay between
launch and impact, so that the probability both duelists are killed may
be greater than zero.

We assume from simulation records that I launches his jth missile
at II at time tj(I), j=1,2,...,r, where r < Lj, the weapon load for I.
We assume that the corresponding intercept times Tj(I) are such that
T4(I) £ 1441(I) for all j and we allow Pj(I), the kill probability of I's
jth shot, to vary with j. Similarly, II launches his ith missile at I
at times t{(II), i = 1,2,---,8 S Ly, II's weapon loadout. The ith impact
of II's missiles occurs at T4(II) with T4(II) < Ti41(II) for all i with
probability of kill Py (II).

We define Pjj as the probability that I is killed at time T§(II) and
IT is killed at time Tj(I), for j = 1,2,¢¢0,r; 1 =1,2,-++,s. We define
Pgy; as the probability II is killed at T;i(I) and I survives the duel.
Similarly, Py is the probability I is killed at T;(II) and II survives
the duel. We let Pgg be the probability that both I and II survive the
duel.

The key to constructing a valid algorithm comes from considering a
general diagram which describes the interactions between missile launches
and subsejuent impacts of the two duelists. As an example, consider the
following figure:

2 Naval Weapons Center. Survival Probabilities for Two Duelists, by F. C. Reed. China Lake, Calif., NWC, June
1972. (IDP 3381, publication UNCLASSIFIED.)
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i t(h tpth 19410 7 (11 TIMES OF | LAUNCHES
AND Il IMPACTS
TIMES OF |} LAUNCHES
1 ph Tyl ol AND | IMPACTS

We say that the duel "ends" when one or the other duelist is killed.
This does not mean that the first duelist killed is the only one killed.
With this in mind, the first chance for the duel to "end" occurs with
the first impact. In the figure above T1(I) is the earliest impact time.

The duel "ends" at T1(I) with probability P1(I). Given that the
duel ends with II's death on this first impact, it is a simple proba-
bilistic calculation to obtain Pyj for i = 1,2,-+*,s. One merely looks
at the figure to see which launches 11 gets off before he is killed.

In this example, II gets two shots off, so the appropriate conditional
probabilities are

P, |11 killed at 7,(I) = P, (1I)

P21|II killed at T,(I) = (1 - P (II)) P,(1I)

n
o
w
IN
=
IN
w

P,,|1I killed at T,(1)

P01|II killed at T,(I) = (1 - PLII)( - P,(I1))
The unconditional probabilities Pj; for 0 < i < s are given by

P, = P (D P{(ID)

P =

= P (D - P, (1)) PZ(II)
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P

01 = Pl(I)(l - Pl(II))(l = PZ(II)) ;

T .

With probability (1 - P;(I)) the duel does not end at T7(I). Thus,
with probability (1 - P1(I)) one gets a figure like that above with the

———-
vector t3(I)T1(I) eliminated. Proceeding in this way one generates all
probabilities required, stopping when all vectors have been eliminated.

We now turn to an algorithm which formalizes these ideas. We let
tr+1(1) = Tr+l(I) = cs+1(II) = TS+1(II) =T
where
T > max [Tr(I), TS(II)]
We also let
PO(I) = PO(II) =0

For any ip,jg we proceed as follows:

1. If ig = s+l and jp = r+l, set

] r
Poo = JT (-2 (11) JT (1= B (1)
1=0 §=0

and end the algorithm; otherwise, go to 2.

2. If Tio(II) < Tjo(I), go to 3; otherwise, go to 6.
3. Form

S(I) =13 : tjo(I) S tj(I) < 110(11)

If S(1) = ¢, go to 4; otherwise, go to 5.




NWC TP 5815

iO—l jo-l

PiOO = PiO(II) ” (1 - Pi([I)) n - Pj(I))
i=0 j=0

and go to 1 with ip replaced by igt+l.

Set
iO—l max S(I)
Fagp ~ Fa (BT QSR IDY L = B
i=0 j=0
io-l j"‘l
Pioj = PiO(II)Pj(I) IT a-p . JT Q- P (1))
i=0 k=0

for je S(I), and go to step 1 with igp replaced by igtl.

Form

S(II) =1}{4i : tiO(II) < ti(II) < TjO(I)

s .
LA

e
i %

Fi)

F7

PR |

If S(II) = ¢, go to 7; otherwise, go to 8.

Set

S

P re S84

1y-1 3o

POjO = PjO(I) ino (1 - Pi(II)) 'no (1 - Pj(I))
= J=

-1

¢
S A

and go to step 1 with jg replaced by jo*l.
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:‘ 8. Set

} max S(II) i1

| POjo = Pj0<1) o a-ramn [l a- Py(1)
i=0 j=0

-

;g i-1 Jo~

- Pijo - PjO(I)Pi(II) kno (- p ) [T @ -2 (D)
; o

for ie S(II) and go to step 1 with jgj replaced by jp+l. ;ﬂ

1 The algorithm begins with iy = jg = 1. ¥

;4 Survival probabilities for the two duelists are easily obtained when
‘ the Pij have been obtained from the algorithm above. If Sy(t) is the

probability I survives through time t, we have

i

s (1, (D) =1 - Z Z s

k=1 j=0

a ]

and I's duel survival is

Similarly, if Syp(t) is II's probability of survival through t,
we have

s ]
Spp(Ty(1) =1 - > 20 B

i=0 k=1
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and II's duel survival is
) r )
31121'22P1k= P10
i=0 k=1 i=0

It is important to notice that the above algorithm does not depend
on a shoot-look-shoot firing doctrine. It only depends on the kth
missile fired by I(II) not reaching II(I) before the k+rth missile fired
by I(II) reaches II(I). We now turn to weapons usage.

2.2 WEAPONS USAGE

We define X as the random variable which takes on value 1 if I is
alive and 0 if I is dead. The random variable X2 is defined similarly
for II. The random variable M; takes on the integer values associated
with I's use of weapons. The random variable My is defined similarly
for IT. The joint distribution

P[Xl T X X2 = X2 Ml = My M2 = m2] = lemelmz
with
Plirs = Foo
P10jL2 = Py 3= 1,2,0sr
Foi 1 = Fio S oPEC
IR
P =1 -P - P - P
00L)L, 00~ & Fo3 T & o
From P

x]Xpmjmy We may compute the following means, variances, and

covariances:

2 g
E(X)) = }E: Poj
j=0

e e e e e o e I e e s i e
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S
B(X) = ) Pyq

i=0
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T S
Cov(MM)) = rsByy + L, E 1Bgy *+ Iy Z {Peo
j=1 j=1

r S
+ 1Ly (1= Pgg = D5 Poj = 2 Pyg) - EGEM,)

j=1 i=1 4
& r
4 = 1 -
Cov(X M) = rPyq + > 3oy = E(XEQ)
. j=1 1
|
1:.! 1 o
3 Cov(X,M,) = sPyy + 3, 1P, = E(X))EQM,)
:.’ .L=l
k.
.

Cov(XM,) = sPyg + Ly Z Poy = EX)EM,)

=1

S
: Cov(X,M;) = rPyy + Ly E P,y - E(X)EQ,)
i 1=1 .
T
=
i
k?;

3
1y
& :
g ,
]
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3 Section 3. SURVIVAL PROBABILITIES FOR m ON n
SHOOT-LOOK-SHOOT DUELS <

We now want to consider more general m on n shoot-look-shoot duels.
For this report shoot-look-shoot implies each combatant may have at most
one missile in flight at a time. The procedure will be to define a state
space for which the Markov assumption holds and then provide the proba-
: bilistic updating required. First, we introduce the concept of m/a on
n/f duels as a means for handling the "ghost" problem.

3.1 PESSIMISTIC/OPTIMISTIC FIRING DOCTRINE
AND m/a ON n/8 DUELS

From the simulated aerial engagement, missile simulation, and rules
, of assignment, one obtains a time history t] < t ... S ty where each ty
b | is either a missile launch or impact., For each ty the combatant firing
the missile salvo, the intended victim, and missile salvo kill probability
are all known. The victim is specified by the geometry of the engagement
and does not account for the fact that he may not be alive. This means
that whenever a combatant is being shot at for the ith time where i 2 2
and kill probabilities are greater than zero, there is a nonzero proba-
bility that the shot is wasted. We think of such a constraint as a
. "pessimistic firing doctrine," since it is pessimistic from the point
of view of the side doing the firing.

This geometric inaccuracy affects both sides and one would like to
:tf think the results have a balancing effect. Intuitively ocne would ex-
b pect the effect to be more serious for the better side. Every time the
better side kills an opponent it is replaced by a nonlethal decoy. These
nonlethal decoys tend to increase the survivability of opponents of the
better side. For 1 on 1 duels the '"ghost" effect is not serious, for a

NESL LS

f£~ nonlethal decoy does not degrade the survivability of the winner.
3y
_ié To compensate for the geometry inadequacy, we consider different

target allocations than those implied by the geometry. Targets are as-
signed using an assumption that is easy to implement with the existing
data base. One merely assumes that if, in the original geometry, the
target is dead when a missile is launched at him, then this firing may be
converted to a live target, if there is one. The ability to always con-
vert is called an "optimistic firing doctrine" and intuitively it gives
the pursuer more capability than he would have in a real duel.

4
.

We expand on this concept by defining an m/a on n/B duel as an m
on n duel in which side I has optimistic firings with probability a,
side II has optimistic firings with probability B, and pessimistic firings
occur with the complements of these probabilities. If E(m/a, n/B) is the
measure of effectiveness for side I associated with an m/a on n/8 duel

R el v R
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and E(m, n) is the unknown measure of effectiveness associated with an
m on n duel with the geometry deficiency removed, then intuitively,

E(m/0, n/1) £ E(m, n) £ E(m/1, n/0)

This should allow one to bracket the payoff to side I with two duel cal-
culations. Both E(m/0, n/0) and E(m/1, n/1) will 1lie in this interval
and one wonders if there exists an og and By so that E(m/ag, n/Bg) best
estimates E(m, n) over a wide class of m on n duels.

3.2 A MARKOV CHAIN FORMULATION FOR HANDLING
m/a ON n/g DUELS

We recall that the basic inputs to the problem are times
t] £ t2 £ ... < tN where each ty is either an impact or launch time.
Moreover, for each ty the launcher, target, and kill probability are
known. Our goal in this section is to define an appropriate state space
so that the stochastic process defined on this state space at times ty
satisfies the Markov assumption. Thus one may update probability dis-
tributions at time tg by knowing the distributions at time ty_] and the
appropriate transition probabilities.

To formulate the problem as a Markov chain, one must be careful to
construct a state space for which the Markov assumption holds. Once this
is done the problem is merely one of properly updating the probability
distributions of the state of the process at launch and impact times.

We define

Ky = (xgge Xpps m0s Xy
where x14 = 1 if the ith member of side I is alive and x3j = 0 if the
ith member of side I is dead. The components of vector

Xy = (xpqs os %)

are defined similarly for side II. We also have

Ty = (tygs typ *oos E)

where tyy = 0 if the ith member of side I has no missile in flight and
t1i = j 1f the missile of the ith member of side I is directed at the
jth member of side II. In a similar way,

Ty = (tgs oros b))

where t34 =0, 1, ++., m. The state space is determined by the vector

(X1, X2, T3, T2) and the associated Markov process has 2mn(n + 1)M(m + 1)P
states. Clearly, if m and n are large, the number of states is large.

14
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In order to reduce the size of the state space there is a real
temptation to let (X1, X2) describe the state space. If, however, the
missile of element i of side I is to impact element j of side II at a
transition time and if x3i = 0, we do not know whether to allow the
impact or not. Element i of side I may or may not have been alive at
the time of the missile launch. The state space description described
here is slightly more generous than actually required; however, this
state space description allows us to assess the effect of the geometry
deficiency described previously.

We are now ready to consider the updating of the probability dis-
tribution defined on the state space of the Markov process with the
possibility of optimistic firings. It must be stressed that, with
optimistic firings, targets other than those implied by the geometry
may come under consideration. The state space we have constructed

always allows us to decide who the target is, even if optimistic firings

are considered. =3

We shall make use of the following notation:

L, An r-vector of 1's

0r An r-vector of 0's

gr An r-vector of 0's with the exception of component
i i which is a1

éx A scalar which is 0 if x = 0 and 1 if x > 0

Pli(tk) Kill probability of salvo launched by member i

of side I and impacting at tj

sz(tk) Kill probability of salvo launched by member j
of side II and impacting at tj

For s = 0,1,*+-,r-1, we define
kr(i’ g) =i +s8 ifi+s<r
=i+s-r ifi+s>r

With respect to side I we define sl* to be the smallest integer s
for which

=1
xlkm(i, 8,%)

15
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If

then

km(i, sl*) =0

With respect to side II, we define sz* to be the smallest integer s
for which

2% (4, 5,9 "

If

then
k (3, 8,%) 20

We define PXlXZTlTZ(t) to be the probability that the stochastic

process under consideration is in state Xj,X2,T;,T2 at time t. Now
for all ty we want to take leszsz(tk-l)’ the probability distribution

defined on the state space at ty—] and update it based on the Markov
<
property to obtain leszsz(tk)' We assume that at tg < tj

Prroo (8) =1
mnonn

Now assume that at ty member i of side I shoots (according to the geom-
etry) at member j of side II. Assuming P (t, _,) is known then
the probability updating can be given as 1 XpTyTy k=

P (t,) = (1 -8 )P (ty_q)
X, X,T, T,k Xy, ) ¥ X,T, Ty k-1

+6 6 T oo (1)
X4 x2j -ij T, k-1

P
X X,T
172 1

1

(tp_y) I

+ 6 1-6 (1 - )P 7
xli( x2j) X. X, T -jdm T,

17271 i
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+ 36 1-86 aP =% (¢, )
xli( XZj) XXyl kn Gagy ™S, Fp kol

This updating breaks down into particular cases as follows:

1. If at t =0

k-1° *11

P (t,) =P (t, )
X1X2T1T2 k Xlszsz k-1

2. If at teo1r X4 = 1 and Xpy = 1

3

P 34 (¢,) =P (t,. .9
X1X2T1+j6m T2 k Xlszsz k-1

i

3. If at o1 X = 1 and x2J =0

P > () = (1 - )P (t,_y)
X1X2T1+j6miT2 k X1X2T1T2 k-1

(ty) = oy ¢ ¢ (ty)

2 1727172

P N
X, X,T e (3,8, )GmiT

A combination of these terms gives

P (t,) = (1 -3 )P (e, )
XlszlT2 k X14 XIXZTITZ k-1

' 6*11(1 i 6x2j))leszl'jgmiTz(tk‘l)

+ 8 a(l-é P . T (e )
oS x2j) x1X2T1’kn(3'52*)5m1T2 k-1

17
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In a similar manner, if at ty member j of side II shoots (according

to the geometry) at member i of side I, we have the following updating
formula:

Pyx,r, (B = (L ‘szj)leszsz(tk-l) 3

1"271%2 ‘
e

+ 6 l-B(l—G )P Tt ) ;
XZj( X14 ) X1X2T1T2-—16nj k-1 j

+ 8 3(1 -8 )P T (g 1) (3.2) 1
Xp5 X11 XIXZTlTZ—km(j’Sl*)an k-1

These launch formulae allow for the possibility of continued missile
launchings by one side even after all members of the other side are killed.
This does not affect survival results; however, it is not realistic in

terms of missile usage. More complex updating formulae will be introduced
for missile usage in Section 4.

Suppose that, from the geometry run, ty is a time point at which the
missile of element i of side I is to impact some member of side II. The
original geometry would have specified the member of side II receiving
the impact. Previous impacts on this particular member of side II and the
assumption of optimistic firings lead to the possibility that any member
of side II may be the target. With this in mind, we consider the fol-
lowing updating:

) (¢,) =P (e, )
xlx2TlT2 k X1X2T1T2 k-1
n
+ 1-6 )p 2 (t ) y
E( x2j X1X2T1+_]GmiT2 k-1 r

n
+ 2 ze (= Py (8 Py ¢ 1 g8 1, (1)
s h| 17271 m, 2
ji=1 i
n
>
b 2(1 o )Pli(tk)Px x. 45 T,+36_ 1. k-1
= 2 120 "1M%, 2

18
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where t1i, the ith component of T;, is 0. The above updating formula
may be condensed to yield

Py xor.r, () = Py xopo1, (teoy)

%7175 T SLL]
n
s, >
+ Z(l S .Pu(‘k))Px X, T.+j8_ T, (tk-1
- 2 12271130, Ty
j=1 i
n
- > >
+ 2(1 6x2 )Pli(tk)PX X 46 T +§6 Tz(tk—l) (5:8)
vl i 12 nj 1 m,

where t1y = 0.

In a similar manner, if the missile fired by member j of side II is
to impact side I at ty, then

P (t,) =P (t, 1)
X1X2T1T2 k xlXZTlTZ k-1

1-8 P P % L6t )
( X1y 2j(ck)) X1X2T1T2+i‘5nj k-1

(1) (3.4)

1 -8 P S RELE i
( X, i) 23 (t,) X1+6miX2TlT2+16nj

where t = (.

19
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b The updating for impacts is not nearly so straightforward as in

| launchings. Consider, for example, a 2 on 2 updating where member 1 of
-: side I has launched at side II with an impact updating at tp. Letting
3 Ty = Tg = 0y at ty and assuming we want PXI(l,O)OZOZ(tk)’ we have

P (¢, ) =P (t )
Xl(l,0)0202 k xl(l,O)(0,0)(0,0) k-1

1 = By ()% 10y (1,000, et

+ P ‘ (t, )
Xl(l,O)(Z,O)O2 k-1

+ Pll(tk)le(l,l)(2,0)02(tk-1)

] A number of events may contribute to the calculation under consideration
and all events must be accounted for properly.

If at ty the last possible impact occurs, we obtain PX X.0 0 (tN)
m n

which we redefine as P . 172
X1Xo

P W

The joint probability of survival of member i}, 19, *++, i, of side I
and jy, jp, *++, Jg of side II is given by

K
i e
G
)
0

% P X, ., X, . X y X . X, . ) =

*J ( 111’ 112’ 1i 2j1’ ZJS

: T 111 1

i

e > 2 2 2 > IR X14 %21 °*t %2y Px x
o) x,1=0 x,,=0  x =0 x,20 x,,=0  x, =0 ! r s 12
o gkt 1m0 *2170 *22 2n

¥
>

In particular, P(xj34) 1is the probability of survival of the ith member of

side I, and P(xzj) is the probability of survival of the jth member of
side II.

2l 2 2 g DA e s =
e e e

e o s L T T el s

20
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The expected number of survivors on side I is

E(X 5 xlm)Px X

) =
1 172

I
||t~1 =
.
~~~
S
=
+
K
[\ ]
+

m
Z P(xy,)
i=1

The variance in the number of survivors on side I is

1 1
_ 2 2
Var(X,) = :E: il :E: (k) + %y + ooe ¥ X)) lexz - ET(X))
1 o
Similarly for side II,
n
E(X,) = :E: P(x,y)
j=1
1 1
— 2 2 A1d
Var(X,) = :E: T }E: (xgy + +o0 + %50 lex2 - B (X))
=0 X, =0

The covariance in number of survivors on sides I and II is

1 1
Cov(X X)) = 3 -+ Do gy e X () + et x2n)PX1X2 - EXPEX,)
x_.=0 X, =0
11 2n

An important derived measure of effectiveness is side I's exchange ratio,

n - E(Xz)

8 m - E(Xl)

21
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ﬂ1 Section 4. WEAPONS USAGE FOR m ON n SHOOT-LOOK-SHOOT DUELS
8 There is a straightforward way of expanding the state spuace to keep

track of missile usage. One merely lets the state space be determined
by the vector (X3,X2,Ty1,T2,M;,M2) where X;,X2,T;, and T2 are defined in
Section 3 and M} is an m-vector where Mjj, the ith component of My, is
the number of missiles combatant i on side I has used. Similarly, M)
is an n-vector associated with missile usage of side II.

If L] is the missile loadout for elements of side I and if L2 is the
missile loadout for elements of side II, then the state space has
2m+“(n+1)m(m+l)“(L1+1)m(L2+l)n states. If, for example, m=n=2 and
L1=L2=4 there are 810,000 states in the state space.

E The numerical example in Appendix B suggests that the situation may
s not be as bad as one might expect. If one only introduces states as

3 required, the actual number of states considered may not be excessive

at all, 1If it should turn out that state space size starts to be a
problem, then Monte Carlo procedures should be considered for looking

at this problem for moderate m, n, and weapons loadout. The Monte Carlo
approach to this problem will be considered in a later report.

4.1 UPDATING FORMULAE

For weapons usage formulae in this and the next section we have

1 occasion to use the standard Kronecker delta,
o
] L1

) S, =1 L5 mhy = Ly

1 1i

% _

3?@ Also,
= L

i4 A ifmy. =L,

% T3 ]

£ =0 £
i : ey 4 1,

;%? The updating formulae are straightforward extensions of Equations 3.1,
& 3.2, 3.3, and 3.4 in Section 3. To obtain PXIXZTITZMlMZ(t) for any ¢,
. "% we assume

)

PLLoooo (to) =1
mnmnmm~n

where tg < t;. Now assume leXZTlTZMlMZ(tk'l) is known.
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If, at ty, member i of side I shoots, according to the geometry, at
member j of side II, the updating formula (Equation 3.1) is modified
as follows:

P (c)=(1-6 )P_ (t, ;)
X, X,T T M M, k xp; ) XX, T ToM M, k-1

17271

+ 8 1-afl -3 )P > > (t, )
xli( ( xzj) X.X.T -jdmirznl-dmimz k-1

>

+ 8 a(l -8 )P R (¢, )
X4 X3 XIXZTl-kn(J’52)6miT2Ml-6kn(j,s;)amiMZ k-1

(4.1)

One may modify Equation 3.2 in a similar way to obtain a corresponding
formula when member j of side II shoots at member i of side I.

If, at ty, a missile of element i of side I is to impact some
member of side II, we modify Equation 3.3 to obtain

P {t,) =P (t,_4)
X X,1, 1 MM k)T Froxor oMM, kel
n
- >
E :E:(l I .Pli(tk))Px x.1.+5_ T.MM. (Ek-1)
. 2j 17271 ""m, 2712
j=1 i
L2n
2PN
+ 5 (1—6 )P (t, )P, . .2 P * ()
m,y xy5) 115 x1x2+5anl+JdmiT2M1M2-(Lz-r)am_ k-1

(46.2)

where t;; = 0. A similar modification of Equation 3.4 is made when a
missile of element j of side II is to impact some member of side I.

4.2 JOINT PROBABILITY DISTRIBUTIONS OF SURVIVORS AND
MISSILES USED IN AN m/a ON n/8 DUEL

Finally at ty, Ty = T = O and one obtains PX1XoMjMy s the joint
probability distribution of survivors and missile usage. Various
statistical quantities of interest are

R e
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BQ) = D5 (mpy mpy b FmpPy gy
X X M.M 172712

1727172

the expected number of missiles used by side I and

BOL) = Y0 (my myy ke Fmy By gy
XXMM 172712

1727172

the expected number of missiles used by side II.

The corresponding variances are

o 2
= 2
Var(M,) = Z 2 myy lexzmlmz E ()
XXMM, \ 1=1
. 2
2
Var(M)) = Z Z mys | Py g, E )

o 1997172
X XM M)\ §=1

It is convenient to set K3 = m and K = n. Now various covariances
may be computed.

K K

r s .

Cov(XrMs) = E 2 xrk Z msk P)(lszle - E(xr)E(Ms)
X, X M. M \k=1 k=1

1727172
where E(X,) is given in Section 3 or may be computed directly as

K
r

Ex) = D0 | 20 *afPxoxum

X. X, MM, ‘k=1 LTeal oF

1727172
We also have
m n
Cov(MM,) = 2 PIEM > By )Px x My, - ECMPEM)
1727172
X XM M, \ i=1 j=1

24
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Section 5. SHOOT-SWITCH FIRING DOCTRINES {

In this section we consider firing doctrines that allow a combatant
to switch and fire at members of the opposing side while his missiles
are in flight. The only restriction is that combatant i of one side
cannot fire a migsile at combatant j of the other side if he has a
missile in flight at j. Providing L} 2 n, any member of side I can have
3 as many as n missiles in flight at a time. Providing Ly 2 m, any member i
of side Il can have as many as m missiles in flight at a time. ’

The vectors Xj, X2, Mj, and My are defined as in previous sectionms.
We replace vectors T} and Ty by the m by n matrix, T;, and the n by m
matrix, Ty2. The entry in the ath row and Sth column of matrix Ty,
tgal, is 1 if combatant o on side k has a missile in flight at combatant £
on the other side. This entry is 0 otherwise.

, With this notation the size of the state space is 2mtnt2mn(r,+1)m
g (Lp+1)M. This is larger thad the state space of Section 4 by a factor of

; m n o
k. 2280 () B (mtl)® = (—z-n—) (Em—) > 1 "
& ntl mtl/ ~

with exponential growth in m and n.

For m=n=1, the ratio is 1; for m=n=2, the ratio is 3.16; and for
m=n=3, the ratio is 64. Thus, the potential size of the state space
can increase dramatically for shoot-switch firing doctrines. Appendixes A
and B indicate that the number of states with non-zero probabilities may

B

SR BT

;g be relatively small for shoot-look-shoot firing doctrines. In fact,
24 those numerical examples indicate that the total number of states that
“%ﬂ occur with non-zero probabilities in the entire probability updating is
553 relatively small.
2
b¥
3 er 5.1 BOUNDS ON THE NUMBER OF NON-ZERO PROBABILITY STATES*
,5'
:E} We assume that a duel consists of at most 2NS events, the NS launches
i‘%E and NS impacts for all participants. It is also assumed that, at each 1
?fq launch event, each state with a non-zero probability gives rise to exactly :
3 one state with a non-zero probability. Generally speaking, Ty and My are
3 updated one state for one depending on X)X7TiToMjMy at the launch time.

oL

* This section is based on an analysis of the state space size
problem by Dr. William Alltop of the Mathematical Services Branch, NWC.

25
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Since the growth of non-zero probabilities can only occur at impact
events, the nature of this growth can be determined by considering a
single component i of Xj. Suppose i of side I is impacted Si times and
all other components of X1 and X7 are 1. The vector X] with ith com-
ponent equal to 1 (not killed) is a possible state on each impact. This
same vector with ith component equal to 0 (killed) may occur for the first
time on any of the Sj impacts. In general, the impact number associated
with the first time the zero occurs distinguishes different non-zero
probability states. Consequently the vector (X;,X2) with a 0 in the ith
component of X] and 1's elsewhere is associated with Sj non-zero proba-
bility states each having different entries in T1T9M]M2. That is, for
(X1,X2) as described there are Sj different states (XjX2T1ToMiM2) identi-
fiable in the total state space.

More generally, if Sg is the number of times participant j on side II
is impacted and it can be assumed that the appropriate tjj{ and t2ji are

all 1 for all impacts, then the number of states with non-zero probabili-
ties associated with each (X1,X2) is

A simple inductive argument shows that

1 n

1 1 1 m
I6xp4) © (180
2D D Y D SN
x,,=0 X, =0 x,,= x, =0 i=1 j=1
m n
IT a+s) IT (1+s;)
i=1 j=1

When t13j or t24i is 0, the possibility for growth does not exist.
Hence, if |Ng| is the number of non-zero probability states at the final
updating,

m n

*

Nl < IT +s) JT A+5))
i=1 =1

One may show that |Ng| is maximized when impacts are spread as evenly as
possible; hence,

NS
|NS| < (1 +Fn

yn+n
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If L =Ly =4, m=n=2,NS =mLj +nLy = 16,

[N_| < 625
S :

considerably less than 2.5 million. We now turn to updating formulae for
a number of cases.

5.2 SHOOT-SWITCH WITH a =0,8=10

With a = B = 0, every missile scheduled for firing is fired, if the
attacker is alive. This occurs regardless of whether the target is alive
or dead. In this case the duel consists of at most mLj + nL launches
and impacts. The only way a participant can end up with missiles is if
he is not scheduled to fire all missiles and he survives the duel.

The bound in this case is

mL,\" nL, \@
IN | < (1+—1) (1+——2)
S n m

The comments about the t1ij or t24i at impact apply here. Also, the fact
that impact numbers will not be exactly mL]/n or nLy/m implies that this
bound could be very conservative.

For this section we define Ggs to be an r by s matrix of 0's with

the exception that the element in the oth row and Bth column is a 1.
Assuming that the geometry is such that no combatant is allowed to fire

more missiles than his missile load, we arrive at updating formulae
similar to those in Section 4 when a = 8 = 0.

If, at tk, 1 of side I shoots at j of side II, then

P (t)=(1—6 )P (t, ;) _;;
T Mot s %y 0 ol Tt e s
+6 P ey 2 (8 ) (5.1)
x4 XX T -6pdToM, ‘Smiuz i
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:
|

é I1f, at tyg, i of side I impacts j of side II, 1
P (¢,) =P (e, )
XlXZTlTZMlMZ k X1X2T1T2M1M2 k-1 .

- . 3

1 <1 ‘szjpu(tk)) Px X,T +611T u (i) -,

| Ly

k. Lo E

il es 15 )a P (t,) P, . 2 1j T (t, )

b ( x2j m2j 1it 'k = X1X2+6jT1+6mnT2M1M2—(Lz—k)6j k-1

1 (5.2)

k. where tlij=0.

;?4 Similar expressions exist when j of side Il launches at i of side I

R and when i of side I incurs an impact of j of side II.

5.3 MODIFIED SHOOT-SWITCH, a =0,=0

By a modified shoot-switch firing doctrine with a = 0, 8 = 0 we
mean one that allows a combatant to save his missile if his opponent in
the firing schedule is dead. This does not compensate for the ghost
problem, but it does allow one to conserve missiles. As one might
expect, the updating is more complex and the duel does not necessarily
end with the (mLj + nL2)th impact. In fact, with non-zero probab’ ity,
each impact implied by the geometry will give rise to some new non-zero
(perhaps very small) probability updating.

Letting Sy be the total number of possible impacts on side I and
S11 be the total number of possible impacts on side II, the bound on the
number of non-zero probability states is

FoA8 3

,:g.n_v_' X SEhs B T — s, iy ”
7 AR AR | s e g ey T
e i . 2 £lats =

3%
B

N | s @+ sp/m™ @+ s /mt

5 82

42

17

If, for example, Sy = Sy = 16 and m = n = 2, then |Ng| < 6561.
However, St = Sy = 40 and m = n = 2 yield |Ng} < 194,481. As the duel
progresses, more and more t]jj and tpjj will be 0, reducing this bound
considerably. One procedure is to set aside a fixed number of storage
locations (say 10,000) and stop the updating when those locations are

28
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fully utilized or when the geometry indicates the duel has ended. In
most applications the joint probability distribution of (X1,Xp,M;,Mp)

at such a stopping point will differ only slightly from that same
distribution at the conclusion of the duel.

The updating formulae for i of I against j of II of the preceding

section must be modified to reflect these considerations. If, at tks
i of T launches at j of II, then

L,
P (t,) ={1-6 & (1-6 ) (¢, _.)
X X, T T M M,k < X)y %o o, /) X KT T MM, k-1

L
I T (1-51)

13 (t,_,) (5.3
X4 x2j m, X X, T,-6 T M 6 M, " k-1

17271 2’1 m, 2

1f, at ty, 1 of I impacts j of II, then the updating formula is identical
to Equation 5.2.

5.4 SHOOT-SWITCH, a =0, § =0

For the general case when a 2

0 and B 2 0, the problem gets out of
hand. The reader should note that

, 1f tx is a time when a missile of
i of T is to impact j of II, x24 =0, t144 = 0, and tlijk = 1 for some

jk # j, k = 1,2,-++, there is no way of knowing which one, if any, of
these jx is the consequence of an optimistic firing when i was to fire
at j. This presents a real problem on how to update on impact. It can

apparently only be handled by expanding the state space to carry this
type of information.

One possibility is to develop special updating algorithms for
2on1l, 1on2, and 2 on 2 duels. Another possibility is to resort to
Monte Carlo sampling procedures. More consideration will be given to
this problem at a later time if the concepts of optimistic firings and

shoot-switch policies both have merit within the framework of analyzing
aerial combat data.
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Appendix A

i e

i L

Ry o

| PRECEDING PAGE BLANK-NC

To illustrate the use of the formulae in Section 3, we shall discuss
in some detail the calculations associated with a sample 2 on 2 duel
where each combatant fires, at most, two missiles. We shall use the

following abbreviations:

L

H
i 0;\;\\

j of 11

L

——

H

-

A launch event

An impact event

Member i of side I

Member j of side II

Launches at

Missile impacts

Thus, 1 of I —Jio-j of II is read as member i of side I missile impacts

member j of side II.

A typical time history from imaginary aerial combat data is as

follows:

Time Event
t, = 5 L
L, = 8 H
ty = 10 L
t, = 14 H
tg = 14 L
te = 15 L
t, = 16 H
tg = 16 L
ty = 19 H
tio = 20 H
tyq = 20 L

i~

N

Who against whom
of I —Ye 1 of
of I —e 1 of
of 11 —Eu 1 of
ofII—H—>lof
of I —1L> 2 of
of I —Y o 1 of
OF T ey 2" GF
of I1 -—L—>20f
of II —e 2 of
ofII—-H—>lof
of I —Lw 2of

31

II
I1

11

11

I1

Kill probability (Py)

0.4
0.4
0.5
0.5
0.6
0.3
0.6
0.8
0.8
0.3
0.2
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A Time Event Who against whom Kill probability (Py)
t,=2 H lofI —a 2o0fIl 0.2
3 tj3=2 L 20f II —“u 20fI 0.7
t, =27 L 20f1 —Ee2o0fII 0.6
t,s=28 H  2o0f II = S 0.7
& te =28 H 20f1 —e20fIl 0.6
To illustrate the updating formulae, we redefine each of the states
with which a nonzero probability is associated sometime during the aerial
combat. In fact, states are only defined as needed. The following key
is required to understand the probability updating:
: ; State: Integer State: (X3, X9, T3, T9)
| 1 (1,1)(1,1)(0,0)(0,0)
E | 2 (1,1)(1,1)(0,1)(0,0)
] 3 (1,1)(0,1)(0,0)(0,0)
4 (1,1)(1,1)(0,0)(1,0)
5 (0,1)(1,1)(0,0)(0,0)
. 6 (1,1)(1,1)(2,0)(0,0)
7 (1,1)(0,1)(2,0)(0,0)
) 8 (1,1)(1,1)(2,0)(0,1)
3y 9 (0,1)(1,1)(0,0)(0,1)
| 10 (0,1)(1,1)(0,0)(0,2)
F 12 (1,1)(1,1)(0,0)(0,1)
E: 13 (1,1)(1,0)(0,0)(0,1)
b 14 (1,1)(0,1)(0,0)(0,1)
29 16 (1,1)(3,1)(0,0)(2,1)
i 17 (1,1)(1,0)(0,0)(2,1)
£ 18 (0,1)(1,1)(0,0)(2,1)
5 19 (0,1)(1,1)(0,0)(2,2)
| o 20 (1,1)(0,1)(0,0)(0,1)
% 21 (1,1)(0,0)(0,0)(0,1)
fi% 22 (1,0)(1,1)(0,0)(0,1)
g 23 (1,0)(1,0)(0,0)(0,1)
% 24 (0,05(1,1)(0,0)(0,1)
H 25 (0,0)(1,1)(0,0)(0,2)
% 28 (1,1)(1,0)(0,0)(0,0)
29 (0,1)(1,0)(0,0)(0,0)
30 (1,0)(1,0)(0,0)(0,0)
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» State: Integer State: (X3, X2, T3, T2)
4 32 (0,1)(0,1) (0,0) (0,0)
33 (1,1)(0,0) (0,0) (0,0)
, 34 (0,1)(0,0) (0,0) (0,0)
35 (1,0) (1,1)(2,0) (0,0)
1‘ 36 (1,1)(1,0)(2,0)(0,0)
“ 37 (1,1)(1,0)(1,0) (0,0)
38 (1,0)(1,0) (2,0) (0,0)
39 (1,0)(1,0)(1,0)(0,0)
40 (1,1)(0,0)(2,0) (0,0)
41 (1,0)(0,0) (0,0) (0,0)
42 (1,1)(1,1)(0,0)(0,2)
. 43 (1,0)(1,1)(0,0) (0,2)
- 45 (0,1)(0,1)(0,0) (0,2)
K 46 (1,1)(1,1)(0,2) (0,2)
1 47 (1,1)(1,0) (0,2)(0,0)
3 48 (1,1)(2,0)(0,1) (0,0)
49 (0,1)(1,1)(0,2) (0,2)
50 (0,1)(1,0)(0,2) (0,0)
51 (0,1)(1,0)(0,1)(0,0)
o 53 (1,1)(0,0)(0,2) (0,0)
3 55 (0,1)(0,0)(0,2)(0,0)
i 57 (1,0)(1,1)(0,2) (0,0)
= 59 (0,0)(1,1)(0,2) (0,0)
i 60 (1,1)(0,1)(0,2)(0,0)
£ 61 (1,0)(0,1)(0,2)(0,0)
= 64 (1,0) (0,1) (0,0) (0,0)
i 65 (0,0)(0,1)(0,0) (0,0)
it 66 (0,0) (0,0) (0,0) (0,0)
L E
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Nonzero State
probability Updating formula probability
states
Time: tg; action: ..
1 dc 1
Time: tj; action: 2 of I L1 of1r
2 P2(t1) = Pl(to) 1
Time: tj; action: 2 of I —H-> IT
1 Pl(tz) = (1 - Pk(tz))PZ(tl) 0.6
3 P3(t2) = Pk(tZ)PZ(tl) 0.4
Time: t4; action: 1 of II —L-> lofl
P3(t3) = P3(t2) 0.4
Pa(ta) = Pl(tz) 0.6
Time: t4; action: 1 of II -—H> I
P3(t4) = P3(t3) 0.4
PS(tA) = P4(t3)Pk(t4) 0.3
Time: tg; action: 1 of I —-£L>-2 of II
Ps(ts) = PS(tA) 0.3
P6(t5) = Pl(t4) 0.3
P7(t5) = P3(t4) 0.4
Time: tg; action: 2 of II L, 1of1
P8(t6) = P6(t5) 0.3
Po(te) = (1 - B)P.(ty) 0.3(1 - B)
10 Plo(t6) = BPS(tS) 0.38
11 Pll(t6) = P7(t5) 0.4

L2
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ke T B S
PSS SRR

e Nonzero SEate
; probability Updating formula probability
o states
‘t Time: t7; action: 1 of I ol Y
{f 9 Py(t,) = P9(t6) 0.3(1 ~ B)
f? 10 Pyofty) = Bpolte) 0.38
f'» 12 Plz(t7) = (1 - Pk(t7))P8(t6) 0.12
13 P13(t7) = Pk(t7)P8(t6) 0.18
14 P14(t7) = (1 - Pk(t7))Pll(t6) 0.16
15 Pls(t7) = Pk(t7)Pll(t6) 0.24
_;‘«-3 Time: tg; action: 1 of II L 2of1
3 16 P (tg) = P ,(t) 0.12
17 P17(t8) = P13(t7) 0.18
1 18 P18(t8) = P9(t7) 0.3(1 - B)
o 19 P g(tg) = Pp(t,) 0.38
® 20 Pyotg) = P, (t) 0.16
2. Py (tg) = P o(t) 0.24
ol
# Time: tg; action: 1 of II —H> 1
9 Po(tg) = (1 - B (£g))P (tg)  [0.06(1 - B)
'- ;;* 10 P,o(tg) = (1 - P, (£g))P 4 (ty) 0.068
S 12 P ,(tg) = (1 - P (tg))P (tg) [0.024
T B S e
@5 1479 208 '
?F% 21 P21(t9) = P21(t8) 0.24
% 22 Pyy(tg) = P (£g)P, (tg) 0.096
i 23 |P,q(t)) = B (t)P (ty) 0.144
% 24 Pza(t9) = Pk(tg)Pls(ts) 0.24(1 - B)
~ 25 P25(t9) = Pk(tg)Plg(tS) 0.248
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NWC TP 5815
Nonzero State
probability Updating formula probability
states
Time: tjg; action: 2 of Il Sl

1 Pl(tlo) = (1 - Pk(tlo))Plz(tg) 0.0168
3 P3(t10) = (1 - Pk(tlo))P14(t9) 0.112
2 Po(typ) = P (t1g)Pyp(ty)

+ Pg(tg) + (1-Pk(t10))P10(t9) 0.0672 - 0,018K
26 P26(t]0) = (l-Pk(tIO))PZZ(t9) 0.0672
21 Pa7(t10) = Pi(t19)P2a(ty)

+ P24(t9) + P25(t9)

MEASTUSTIY

= 0.3(0.096) + 0.24(1 - B)

+ 0.245 + 0.3(0.06)R 0.2688 + 0.018f
28 P28(t10) = (1 - Pk(tlo))P13(t9) 0.0252
29 P29(t10) = Pk(tlo)Pl3(t9) 0.0108
30 P30(t10) = (1 - Pk(tlo))P23(t9) 0.1008
31 P31(t10) = Pk(tlo)P23(t9) 0.0432
32 Paz(tlo) = Pk(th)pl4(t9) 0.048
33 Pagltyg) = (1= P (tg))P,, (tg) 10.168
34 P34(t10) = Pk(tlo)PZI(tg) 0.072

Time: tjyp; action: 1 of I —L—>2 of 1I
5 Ps(tll) = Ps(tlo) 0.0672 - 0.018f
6 P6(tll) = Pl(tlo) 0.0168
7 P7(tll) = P3(t10) 0.112
27 . P27(tll) = P27(tlo) 0.2688 + 0.0188
29 P29(Lll) = Pzg(tlo) 0.0108
31 P31(t11) = P31(t10) 0.0432
32 P32(t11) = P32(t10) 0.048
33 P33(tll) = aP33(t10) 0.168a
34 Pa (1) = Py (ty4) 0.072
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Nonzero Srane
probability Updating formula probability
states
Time: tjj; action: 1 of I—L>2 of II (contd.)
35 Pag(tyy) = Poc(tyy) 0.0672
36 Pag(tyy) = (1 - ®)P,o(t ) (1 - )(0.0252)
37 Poo(t ) = oPye(t ) (0.0252)
38 Pag(t ) = (1 - @)Py(ts0) (1 - a)(0.1008)
39 Pag(ty)) = aPyy(ty0) (0.1008)
40 Potyy) = (L= a)Pya(ty0) (1 - 0)(0.168)
Time: tjp; action: 1 of 1—,.n
1 P (t,) = (1= P ()P (t ) [0.01344
3 P3(t12) = (1 - Pk(tlz))P7(tn) 0.0896
5 Pg(ty,) = Pglt)) 0.0672 - 0.0188
26 Pye(ty)) = (1= P (t;,))Py(t);)]0.05376
27 By (g =B iE, 1) 0.2688 + 0.0183
& Prg(tyn) = Pglt P (ty))
+ Pygltyy)
+ Py(t )1 = P (t),)) 0.02856 - 0.00504a
29 Pog(tyn) = Poglty)) 0.0108
20 Pap(typ) = Pyslty )P (y5)
+ Pagltyy)
t Pag(t; )1 - P (t),)) 0.11424 - 0.02016a
31 Py (1) = By (t)) 0.0432
32 Pay(ty,) = Poo(ty)) 0.048
3 Pa3(typ) = Bt )Py(ty,)
+ Pagleyy) + Pypltyy)
+ P (t)))Pq (k) 0.1904 + 0.005040
34 Py, (ty) = Pyt )) 0.072
41 0.020160.

Pu1(tip) = B(ty5)Pyg(ty4)
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ot dating formul Sibete

; prc;t:til.ity Updating formula probability
Time: tj3; action: 2 of II Ly 2of1
L 7
r Bl
3 224713 26" 12 .
| 25 Pys(tyg) = (1 - B)P,,(t,,) (1 - B)(0.2688 + 0.018B)

27 Pyy(ty4) = BP, (t,) 8(0.2638 + 0.0188)
4 28 Pyg(tys) = Pyalty,) 0.02856 - 0.00504a
3 [PmtE R
b 3013 30712 3 d
3 31 Pay(tyg) = Py (tyy) [0.0432
f!i 33 Pag(tyy) = Pyalty,) 0.1904 + 0.005040
i 34 P, (t19) = Py, (t,) 0.072
E 41 P, (tys) = P (t,) 0.020160.
%Es 42 P, ,(t 4 = P (t),) 0.01344
iwﬁ 43 P,4(ty3) = (1 - BIP, (L)) (1 - B)0.05376
1;; 44 P,,(t13) = Pg(ty,) 0.0896
E- 45 P,s(tyq) = Pao(ty,) 0.048
Time: tj4; action: 2 of I _L> 2 of 11
8 22 By (Ey,) = Byt o 0.053768
ﬂ%? 25 Pyg(ty,) = Pyults) (1 - B)(0.2688 + 0.0188)
e 27 P,,(ty,) = Pyo(t; ) 8(0.2688 + 0.0188)
3;@ 30 Pan(ty,) = Pygltys) 0.11424 - 0.02016c
egg 31 Pap(ty,) = Byy(tys) 0.0432
:;ég 33 Paq(ty,) = oPga(t)y) a(0.1904 + 0.005040)
'J? 34 Py, (ty,) = aPy, (£ 5) 0.072a
}?; 41 P41(t14) = P41(t13) 0.020160
' 43 P,q(ty,) = Pyq(tys) (1 - B)(0.05376)
8y 46 Pae(tys) = Puo(tys) 0.01344

Y
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Nonzero
probability
states

Updating formula

State
probability

Time: tjy4; action: 2 of I—-ll>-2 of II (contd.)

(1 = )P,yg(tyy)
aPyg(t)3)
P1olt13)

(1 = )Pyg(t;4)
WP yq(t;4)
Pre(t13)

(1 - )Pyt )
Pys(tys)

(1 - a)Py,(t;5)

(1 - a)[0.02856 - 0.005040]
a[0.02856 - 0.00504a]
0.0672 - 0.0188

(1 - a)(0.0108)

2(0.0108)

0.0896

(1 - 0)[0.1904 + 0.00504qa]
0.048

(1 - 0)(0.072)

H

ty15; action: 2 of II —— 1

Pos(t1s) = Pusltyy)
L= Bt )Py,(ty,)
Pyg(tys) = P (t15)Py,(ty,)
Py (tyy) * Pyy(ey,)
P3p(tys)
Pap(tyy)
Py3(ty,)
Pas(tyy)
Puy(tys)
Pur(tis)
Pheltiy)
Psgltyy)
Psi(tys)
Ps3(tyy)
Ps5(t1y)

0.05376 - 0.0376328

0.2688 + 0.0556328
0.11424 ~ 0.02016a

0.0432

0(0.1904 + 0.005040a)
0.0720

0.020160

(1 - )[0.02856 - 0.00504qa]
2[0.02856 - 0.00504a]

(1 - )(0.0108)

a(0.0108)

(1 - a)[0.1904 + G.00504q]
(1 -~ a)(0.072)
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e o s L P

Nonzero State
probability Updating formula probability
3 states
; Time: tj5; action: 2 of II._31>.I (contd.)
! 56 Po(t,s) = (1 - B (£ )P, (t,,)]0.004032
; 57 B ()l = B (GE R o () ) 0.009408
1 58 Peg(t,s) = (1 = P, (£, ))P,g(t,,)[0.02016 - 0.00548
59 Pog(t)) = B (£ )P, o(t,,) 0.04704 - 0.01268
60 Peoltys) = (1= P (£ )P, (t,,){0.02688
} 61 P61(t15) = Pk(tls)Psz(tla) 0.06272
& | 62 P,,(t..) = ( -P (t,.)P_,(t,,)]0.0144
*** 63 PZi(ti:) = Pk(t15§95:?t14§4 . 0.0336
A Time: t1g; action: 2 of I —Tfrp II
1 P (t1) = (1= B (£ )P (t,) |0.0016128
3 Po(t)) = (1= P ()P (t,) [0.010752
: 5 Ps(to) = (1= P (£ ))Pgg(t; ) |0.008064 - 0.002168
| £5 Pasltie) = (1 = Bt 0))Pg,y(ty o)
;i; + Pye(tyo) 0.0575232 - 0.0376328
5 = Pyyltye) = (1 = Bt 0))Pgy(t)q)
‘i} + Py.(t)5) 0.287616 + 0.050592B
B E8 Prg(t16) = Pu(t16Ps56(15)
3% +P,_(t,.) 0.0309792 - 0.022176a
1 4715 :
! + 2ot (L - P (t)0)) + 0.0030240
&4 29 Pag(t16) = Pi(t16)P5g(ty5)
b + P (t) o) 0.022896 - 0.003248
£ + P (£, (1 - P (£)) - 0.00648a
u Pyolt1e) = Pi(t16)Ps7(t ) .
+ P00t o) 0.1198848 - 0.02016a
at P31(t1g) = Pyt Psg(t)5)
+ Py (e o) 0.071424 - 0.007568
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1 Nonzero State
1 probability Updating formula probability
» states
E Time: tjg; action: 2 of I-—lL,-II (contd.)
{ 32 P32(tl6) = (1 - Pk(tl6))P62(t15) 0.00576
?T 33 P33(t16) = P33(t15) + P53(t15) 0.2065280 + 05022176a
-» ' + Pk(t16)[P48(t15) + P60(t15)] -~ 0.0030240,
4 & Py(tye) = Paultyg) + Pog(tyq)
+ Pk(th)[P51(t15) + P62(t15)] 0.08064 + 0.006480
» = Pu1(t1e) = P(t1e)P61(t15)
3 + P, () 0.037632 + 0.02016a
‘ 64 P64(t16) = (1 - Pk(tl6))P6l(tlS) 0.025088
g - 65 P65(tl6) = (1- Pk(t16))P63(t15) 0.01344
] 66 P66(t16) = Pk(t16)P63(t15) 0.02016
{?! The survivability of various participants in the duel is given as
® follows:
F | P(x,, = 1) = 0.49 - 0.0376328
E 11

P(x12 = 1) = 0.367232 - 0.00548

Iy

P(x,, = 1) = 0.6 - 0.0488160 + 0.00302402

|-

£ P(x,, = 1) = 0.409856 + 0.01088

] 5“‘ .

_7§§ Also side 1I's exchange ratio which depends on o and R is given by
2 6(a, @) = 2= (1.009856 - 0.048816q + 0.0030240° + 0.01088)
-~ ’ 2 - (0.857232 - 0.0430328)

£

# _ 0.990144 + 0.048816a - 0.0030240° - 0.01088

b T 1.142768 + 0.0430328

where

£ I Sk

0.8258931 = 6(0,1) < 6 < 8(1,0) = 0.9065147

41
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,; %
B In particular i
b 6(0,0) = 0.8664436
b ; -
A 6(1,1) = 0.86451
}‘ and %
‘é‘h ;
% 060, ; 6(1,0) = 0.8662039 f
k| 1
3 Thus :

6 =0.866 * 0.041

becomes a reasonable estimate for 6 with a maximum percentage error less j
than 57%.

] 4
@ ’
A
a %
-.l f
7
-

-

ity f‘..-. AL -*,.,'" =3

L ATERY

RRYEY
o SAghe ¥ 4 Sviiion B NS
e
P

RE L gy e

42




NWC TP 5815

s O RS

Appendix B

THE NUMERICAL EXAMPLE CONTINUED TO
: INCLUDE WEAPONS USAGE

In the previous example we introduced the states to handle the
updating equations when 24(3)2(3)2 = 1,296 states are possible. Assuming
each participant in the duel of Appendix A has two missiles we have a
total of 1,296 x 32 x 32 = 104,976 possible states. We shall now give
a summarized version of the updating formulae when weapons usage is
considered and we shall see that the 66 states required to handle this
problem for when weapon usage is not considered are increased only slightly.

We associate with (M],M2) the integer to the base 3 and for
(M11,M12) (M21,M22) let the corresponding state be M3133 + M3232 + My13
+ M22. Since each of the states we consider may be thought of as an
ordered pair of integers where the first integer describes a state in
i Appendix A and the second integer is associated with a particular missile
1 count and varies from 0 to 80, we let the state space be described by
(i,j) where 1 £ 1 £ 66 and 0 < j < 80. The missile usage integers

required in the updating and the corresponding (M3j,Mj2)(M21,M22) are
as follows:

0 (0,0) (0,0) 44 (1,1)(2,2)
R 9 (0,1)(0,0) 52 (1,2)(2,1)
-: 4 12 (O,l)(l,O) 53 (1’2) (2’2)
P 15 (0,1)(2,0) 66 (2,1)(1,0)
3 39 (1,1)(1,0) 67 (2,1)(1,1)
k. 40 (1,1)(1,1) 70 (2,1)(2,1)
- | 41 (1,1)(1,2) 71 (2,1)(2,2)
o 2 (1,1)(2,0) 9 (2,2)(2,1)
33 43 (1,1)(2,1) 80 (2,2)(2,2)
‘ijz Thus, 18 out of 81 possible missile usage descriptions are required.
W
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NWC TP 5815 :
1
The probability updating for weapons usage is modified as follows: é
Time g Hew New probabilities (if required) 2
state | states 4
to 1 (1,0) ;;
t; 2 (2,9) ,j
t2 1 (1,9)
3 (3,15) 4
t 3 |(3,15) 1
31 4 |12 |
t, 1| ,12)
3 (3,15) ]
5 (5,66) ]
ty 5 |(5,66) :
6 (6,39) 3
7 (7,42) ¥
te 8 (8,40) 1
9 (9,67) !
10 (10,67) s
11 (11,43)
t, 9 (9,67)
10 (10,67)
12 (12,40) 1
13 (13,41) 4
14 (14,43) E
15 (15,44)
tg | 16 | (16,43) ,
17 (17,44) 5
18 (18,70)
19 (19,70) 1
20 (20,43) j
21 (21,44) k
tg | 9 |, |
10 (10,70) ]
12 (12,43) ]
13 (13,44)

44
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0ld New ,
Time sitate || Btes New probabilities (if required)
tg 14 (14,43)
21 (21,44)
22 | (22,52)
23 | (23,53)
24 (24,79)
25 (25,79)
t 1 (1,43)
00 3 | (3.43)
5 (5,70)
26 | (26,52)
27 (27,79)
28 (28,44)
29 (29,71)
30 (30,53)
31 (31,80)
32 (32,70)
33 | (33,44)
34 (34,71)
t 5 | (5,70)
Mg | (6.70)
7 (7,70)
27 (27,79)
29 (29,71)
31 (31,80)
32 | (32,70)
33 (33,44)
34 (34,71)
35 (35,79)
36 | (36,71)
37 | (37,71)
38 (38,80)
39 (39,80)
40 (40,71)
t 1 (1,70)
1203 | (3,70)
5 (5,70)
26 (26,79)
27 (27,79)
28 | (28,71)
29 (29,71)
30 | (30,80) 0

45
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0ld New .
L AR i New probabilities (if required)
31 (31,80)

32 (32,70)

33 (33,71) Pk(P7,70 + P37’71) + P40’71 = 0.1904 - 0.16296a

(33,44) P(33’44) = 0.168a

34 (34,71)

41 (41,80)

10 (10,71)

22 (22,80)

25 (25,80)

27 (27,79)

28 (28,71)

29 (29,71)

30 (30,80)

31 (31,80)

33 (33,71) | 0.1904 - 0.162960

(33,44) | 0.168a

34 (34,71)

41 (41,80)

42 | (42,71)

43 (43,80)

b4 (44,71)

45 (45,71)

(22,80)
(25,80)
(27,79)
(30,80)
(31,80)
(33,71)
(33,44)
(34,71)
(41,80)
(43,80)
(46,80)
(47,80)
(48,80)
(49,80)
(50,80)
(51,80)

(52,80)

a(0.1904 - 0.16296a)

0.1680:2
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New . "
Py New probabilities (if required)
- (53,80) |{(1 = @)Pyy . = (1 = a)(0.1904 ~ 0.162760)
] (53,53) [(1 - a)Pyy 4, = (1~ 0)0.1680
] (54,80)
3 (55,80)
s (26,80) ) 4
3 (27,80) |BPyy gy + Pys gy = 0.2682 - 0.2131688 - 0.0188
i (27,79) [Py, ;4 = 0.26888 + 0.0188 i
3 30 | (30,80) 4
r 31 | (31,80) 3
i 33 | (33,71) |a(0.1904 ~ 0.16296c) .
E (33,44) 10.16802 3
2 34 | (34,71) |
4 41 | (41,80) :
! 47 | (47,80)
| 48 | (48,80)
] 50 | (50,80)
& 51 | (51,80)
| 53 | (53,80) |(1 - 0)(0.1904 - 0.16296a)
- (53,53) |(1 - @)0.168a
b 55 | (55,80)
E i 56 ¢ | (56,80)
by 57 | (57,80)
¥ 58 | (58,80) ;
tj‘ 59 | (59,80) i
i3 60 | (60,80) s
F;i 61 | (61,80) ;
11 62 | (62,80) ;
£ 63 | (63,80) ]
3 t 1| (1,80) 4
= 161 3 1 (380) f
5 5| (5,80) |
» 26 | (26,80) L
5 27| (27,79) |Py; ;9 = 0.26888 + 0.01882 ;
AN ’
,§§§ (27,80) |Py; gy + (1 = P)Pgy = 0.287616 - 0.2182088
21 - 0.01882
X 28 | (28,80)
T 29 | (29,80)
| 30 | (30,80)
23 31 | (31,80)
L]
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0ld New
Time S lews 2= New probabilities (if required)
32 (32,80)
33 (33,71) | P = (0.1904 - 0.16296a)
33,71 "
(33,44) P33’44 = 0.168c
(33,80) Pk[P48 + P60] + P(53,80) = 0.206528 - 0.336224qa
+ 0.1599360.2
(33,53) P53’53 = (1 - 0)0.168¢c
34 (34,71) P34,71 = 0.072c
(34,80) P55 + Pk(PSI + P62) = 0.08064 ~ 0.06552u
41 (41,80)
64 (64,80)
65 (65,80)
66 (66,80)

TP, (1,1 2,2)(2,2)

The joint distribution of survival and weapons usage, leXZMlMZ’
is given below:

0.0016128

P(1,1)(0,1)(2,2) (2,2) = 9-010752

P 0.1y (1,1)(2,2)(2,2) = 0-008064 - 0.002168

P(l,O)(l,l)(z’z)(z’z) = 0,0575232 - 0.0376328

- 2
P(0,0)(1,1)(2,2)(2,1) - 0-26888 +0.0188

F0,0)(1,1)(2,2)(2,2)
P1,1)(1,0)(2,2)(2,2)

P0,1)(1,0)(2,2)(2,2)

P(1,0)(1,0)(2,2)(2,2) = 0-1198848 - 0.02016a

P (0.0)(L,0)(2,2)(2,2) = 0-071424 - 0.007568

P(O'l)(O,l)(Z,Z)(z’z) = 0.00576

48

= 0.287616 - 0.2182088 - 0.01852
= 0.0309792 - 0.0221760. + 0.003024a

= 0.022896 - 0.003248 - 0.00648a
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.1904a - 0.16296Ot2
2

P1,100,002,1)(2,2)
P1,10,00@,1)(2,2) = 0-168

2
P(1,1)(0,0)(1,2) (2,2) = 0-168% - 0.168x

2
P(1.1)(0,0)(2,2)(2,2) = 0-206528 = 0.336224a + 0.159936a

P0,1)(0,0)(2,1)(2,2) = 0:0722

P 0.1)(0.0) (2,2)(2,2) = 0-08064 = 0.06552a

P(1,0) (0,0)(2,2)(2,2) .037632 + 0.020160

P(1,0)(0,1) (2,2)(2,2) = 0:025088

P(O:O)(O,l) (2,2)(2,2) 0.01344

P0,0)(0,0)(2,2) (2,2) = 0:02016

From this distribution one obtains the following numerical results
for X;,X7,M;, and Mj:

E(Xl) = 1(0.357488 - 0.0430328)
2(0.249872)

0.857232 - 0.0430328

1(0.300224 - 0.048816a - 0.01088 + 0.003024&2)

4 "
i <
E: |
N
ti
Y

o

i

2(0.354816 + 0.01088)

SE N RN

St g

1.009856 - 0.0488160 + 0.01088 + 0.0030240>

ks
o 3%

= 1.356976 - 0.0430328
0.622129 + 0.0307458 - 0.00185232

1.719488 ~ 0.048816a + 0.03248 + 0.003024(12

£, TV < A L

2 o
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Var(Xz) = 0.699679 + 0.0497780 + 0.0105878

E(X,X,)

Cov(XlXZ)

Clearly, X1 and X7 display a strong negative correlation, as one would

expect.

]

0.005467a2 + 0.001054a8 - 0.000009c

1(0.1736288 - 0.00324B8 - 0.026640)

2(0.1073184 - 0.0397928 - 0.022176a + 0.003024&2)

4(0.0016128)

0.3947168 - 0.0828248 - 0.070992a + 0.00604801.2

-0.470964 - 0.0486268 - 0.0291450.

NWC TP 5815

4

0.0034560% - 0.00210108 + 0.00046582

0.0001 3080

For missile usage we have

E(Ml)

2(0.168a%) + 3(0.43040, - 0.33096a%)

4(1 - 0.43040 + 0.162960%)

4 - 0.43040 - 0.00504a2

a strictly decreasing function of a.

E(M,)

E(Mi)

3(0.26888 + 0.0188%) + 4(1 - 0.26888 - 0.0188%)

4 - 0.26888 - 0.01882

4(0.168a%) + 9(0.4304a - 0.3309602)

16(1 - 0.43040 + 0.162960°)

16 - 3.0128a

+ 0.3007202

50
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= 0.4304a + 0.075156a° + 0.0043380°

= 0.000025(14

= 9(0.26888 + 0.0188%) + 16(1 - 0.26888 - 0.0188%)

=16 - 1.88168 - 0.12682
2 3 4
= 0.26888 - 0.0542538" - 0.0096778~ - 0.0003248

= 8(0.168a%) + 12(0.26888 + 0.0188% + 0.4304a - 0.33096a2)
+ 16(1 - (0.26888 + 0.0188% + 0.43040 - 0.1629602))

16 - 1.07528 - 0.07ZB2 - 1.72160 - 0.020160t2

Cov(Mle) = -0.11569208 - 0.0077470182 = 0.001355&28

= 0.00009101.232

o
&2

E(XlMl) = 3(0.0720) + 4(0.357488 - 0.0430328 - 0.072u0 + 0.168a2)

+ 6(0.3584a - 0.330960°)

By

+ 8(0.249872 - 0.35840 + 0.162960%)

= 3.428928 ~ 0.7888a - 0.010080L2 - 0.17212883

=
e S o
LVIGIRE ), SR T AR

B &

.
Y

e o -
e A0

Cov(lel) = -0.419847a - 0.00576a2 - 0.018521aB - 0.000217&26
In a similar manner, one may show that

Cov(XzMz) = -0.2661518 - 0.0149282 - 0.01312208

- 0.00087808> + 0.0001948> + 0.0000540282

P A PO T A BAL S e

2z .

The resulting negative correlations are not surprising, since M = 4,
its largest value, whenever X = 0, its smallest value.
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