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FOREWORD

* ) This report was submitted by Thiokol Corporation/Huntsville Division at
- Huntsville, Alabama 35807 under Contract Number F04611-75-C-0059, Job

; Order 314810GV with the Air Force Rocket Propulsion Laboratory, Edwards
? AFB, California 93523,

A This technical report has been reviewed and is approved for publication

and distribution in accordance with the distribution statement on the
cover and on the DD Form 1473,
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& ~/Janes L. Koury, GSZ13 Lee G. Meverg/Ls-14, Chief
k" Project Manager Air launch Motor Section

k! FOR THE COMMANDER

Char €es faﬂ h5-T6, Iirector

k. . Solid Recket D1C15}¢n

- = NOTICES

o When U.S. Government drawings, specifications, or other data are used for

gi% any purpose other than a definitely related government procurement operation,
s the Government thereby incurs no responsibility nor any obligation whatsoever,
'@m and the fact that the Government may have formulated, furnished, or in any way

supplied the said drawings, specifications or other data, is not to be regarded
by implication or otherwise, or in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be related thereto,
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gpropellant without benefit of vacuum was evaluated by manufacturing two
motors, Technology in ambient-temperature (80°F) propellants developed
under AFRPL contract was satisfactorily transfered and combined with in-
house technology to produce improved propellant,

f
Components and other manufacturing techniques evaluated were consumable
grain-forming mandrels, igniter initiators and pyrotechnics, nozzle ablative
materials, nozzle configuration, steel and aluminum stock tubing cases,
aluminum impact extruded cases, metal and plastic laminated cases,
techniques for joining nozzles and forward closures to cases, thermoplastic
and mastic case insulations and adhesives,

Performance analyses were made to determine effects of nozzle throat
erosion rate, case strength level, thrust profile, and propellant formula-
tion on missile performance. Cost and weight data were combined to deter-
mine the best combinations of forward closure with its joining technique,
case, and nozzle with its joining technique,
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SECTION 1
INTRODUCTION

The objective of this program is to identify materials, designs and
manufacturing techniques that will significantly reduce the cost of tactical
rocket motors (4-inch to 8-inch diameter) in production, and to demonstrate
in pilot production quantities the validity of the identities made by study and
analysis,

Design simplicity is perhaps the greatest single contributor to the
development of high production rate, low cost solid rocket motors, Design
simplicity implies fewer components, fewer suppliers, less inspection, and
fewer manufacturing steps, all of which contribute to lowering motor cost.
Inasmuch as possible, commercially available materials with relaxed manu-
facturing tolerances and surface finishes will be used, The use of O-rings
and their specially prepared seal surfaces will be minimized, Design con-
cepts will emphasize high volume manufacturing processes and minimum
inspection requirements, without compromising safety, reliability, and long
service life, Component functions will be combined wherever possible,
Selected designs will be made available to potential subcontractors so that
competitive bids for motor production can be obtained, Also, designs will
include provisions for automated quality control functions where feasible,
Data generated by Booz, Allen under Contract F04611-72-C-0074 will be
used during the design phase, Design analyses will include detailed cost
estimates in order to establish the cost effectiveness of each of the candidate
concepts and methods., Tests will be designed and conducted to demonstrate
the capability of selected designs to meet the temperature/vibration environ-
mental requirements for air-launched tactical motors. Reliability and safety
are paramount in the manufacture of rocket motors for manned weapon systems,
To this end, development of highly repeatable, reliable techniques incorporating
safe designs and processes, a minimum of hand assembly operations, and
minirnum manufacturing costs was stressed,

The program has three phases, of which the first, Phase I, is complete.
The first phase involvec the evaluation of design options for each motor com-
ponent, Motor component designs and specific fabrication techniques were
screened both by analysis and by component tests in order to distinguish those
concepts and methods that meet performance requirements at acceptable cost
levels, The second phase will consist of selecting optimum combinations of
those concepts/methods determined to be successful under Phase I, These
optimum combinations will be fabricated and tested in twelve motors of 4-inch
diameter, Results from Phases I and Il will be compiled and used to devise
a manufacturing plan for Phase III, The third and final phase will be a pilot
production run of 120 motors at a rate of 30 motors/day in each of four
different runs, with time for analysis and modification between runs,
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Analyses and tests conducted under Phase | were designed to determine
the most effective way to implement recommended manufacturing methods,
design techniques, and new materials for reducing the costs of air launched

tactical motors,

Particular attention was paid throughout Phase I to the

requirements of the air launch environment and its effect on proposed designs,
methods, and materials. Candidate component designs, new materials, and
specific manufacturing techniques were screened during Phase I in two ways —

analyses and tests.
reliability, etc.),

Concepts were analyzed for performance (stress, ballistics,
Engineering judgement was used to screen concepts on the

basis of their actual or potential merit, Concepts (materials, designs, and
manufacturing techniques) were selected for detailed cost analysis, Analytical
screening of concepts by cost and performance produced a set of component
design and manufacturing process options. The most promising concepts in
this set were selected (with AFRPL concurrence) for component tests. Results
of these tests were then used to select candidate component concepts for inclu-
sion in Phase Il tests of complete motors,

Activities of Phase I are described in this Phase Report, which is
divided into fifteen sections with four appendices,

Section
Number

I

Il
111
Iv
v
Vi
vl
VIII
IX

XI
XI1
XIII
X1v
Xv

Appendix

A
B
C
D

Information in Appendix D is classified "Confidential" and is contained in a
separate volume (Volume 2) of this report,
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SECTIONII
SUMMARY AND CONCLUSIONS

The following paragraphs summarize the investigations performed
during Phase 1 and their findings. Details of the work are found in subse-
quent sections,

BASELINE MOTOR

At the beginning of the program, a 4-inch diameter motor was designed
that incorporated typical low cost components, Preliminary design calculations
showed that the required missile performance of burnout velocity, impact veloc-
ity and range could be provided,

The margin between delivered and required performance was not great,
which portended difficulties when incorporating even lower cost concepts, such

as lower strength case material and nozzles with less erosion resistance,

PROPELLANT

Technology in ambient-temperature cured Fropellantl (i.e., 80°F)
developed under AFRPL contract (Reference II-1)! was satisfactorily trans-
fered to Thiokol and combined with in-house technology to produce improved
propellant, The result is that ambient-temperature cured propellants are
available for further use and evaluation and that future system evaluations
can be made with a firm data base,

Improved propellant cure reproducibility and cure completeness were
obtained with the identification that moisture effects were significant, It was
found that detrimental moisture effects can be alleviated with mixing under a
vacuum at elevated temperature prior to addiny curing agent, The mix is
then cooled with the cure catalyst addition delayed until late in the mix cycle
to increase pot life,

The ambient-tomperature cured propellant used in this program met
the goals set for it:

Goals Demonstrated
Cure Temperature "Ambient" 80°F
Cure Time <9 days 8 - 10 days
Strain at Max, Stress, -65°F >25% 36%
Max, Stress, 77°F >100 psi 140 psi
Modulus, 77°F >400 psi 618 psi
Temperature Capability <65 to 165°F

1. References are given at the end of this section,

7




POUR CASTING \ !

An attractive low cost grain manufacturing technique is "pour casting",
wherein propellant is metered into the motor without benefit of the motor
chamber being at vacuum conditions. The propellant is simply poured into i
the case. Success of this technique depends on a propellant with very low 4
viscosity (2 to 3 kilopoise) and low yield values, Available ambient-tempera- ‘
ture cured propellants have end-of-mix viscosities of 12 to 20 kilopoise.

Two full-scale motors were pour cast, one with an ambient-temperature
cured propellant with a viscosity of about 15 kilopoise, and the other with an
elevated-temperature cure (145°F) propellant with about 3 kilopoise viscosity,
There was not a great difference in the final grain quality between the two
motors; both were considerably worse than usually considered acceptable
in the solid propellant industry. One motor was successfully static fired,
The other experienced an over-pressurization which cannot be attributed to
a single cause, Thus, at the present time, there are mixed results about the
necessary grain quality for this class of motors.

A < 4

‘J There is a need to study the effects of mechanical energy input to the

‘ motor during casting to achieve satisfactory grain quality. The ultimate
casting technique may combine elements of pure pour-casting and vacuum
casting.

FULL-SCALE MOTORS TESTS

Eleven full-scale (25 1b, ) four-inch diameter motors were static fired
to evaluate grain manufacturing techniques, nozzle ablative material, consum-
able mandrel with integral igniter, igniter configuration, and ambient-temper-

ature cured propellant,

One of the motors successfully tested incorporated:

Nozzle ablative material that can be transfer molded
Grain manufactured with leave-in-place foam mandrel
Integral igniter with magnesium-teflon pyrotechnics
Thermoplastic insulation samples !
Ambient-temperature cured propellant

o 0 00 0

CONSUMABLE MANDREL

Polyurethane foam was suitably fashioned into mandrels for evaluation
in full-scale motor firings, These tests demonstrated satisfactory motor
operation with a single pyrotechnic charge (integral with the mandrel) to
consume the mandrel and ignite the propellant, Presence of the mandrel
modulated the initial high pressure., Two motors were successfully cast
with ambient-temperature cured propellant and foam mandrels, which were
left in the motors.
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Hangfires resulted when the gap between propellant and mandrel was
closed through differential thermal expansion or because cure shrinkage was
not sufficient to separate the two, It was demonstrated in a full-scale motor
test that increased energy output from the igniter can alleviate the hangfire
without causing high pressure,

There is a need for additional experimental investigation to achieve
satisfactory ignition when the consumable mandrel is used to form the grain,

loNITER

Analysis confirmed Reference II-2 that bi-metallic wire could not serve

as a direct ignition source for the propellant because of large power require-
ments, Laboratory tests revealed that bi-metallic wire was impractical as an
initiator for other pyrotechnics because of fragility, The lowest cost initiator
found was an Atlab electric match which demonstrated satisfactory character-
istics in laboratory evaluation and full-scale motor firings.

Atlas matches can be obtained with one amp no-fire characteristics,
but not with one amp-one watt no fire, Thus safety considerations can
influence selection of an initiator ~ Atlas match for about $0.50 or one amp-
one watt initiators for about $7.00 (the latter being identified as part of the
investigation).

Magnesium-teflon pellets were selected as the primary pyrotechnic
charge because of cost (lower than the common BKNOj pellets), low gas-
solids ratio (which is beneficial when incorporating a consumable mandrel
to reduce maximum pressure), low sensitivity to moisture when compared
with BKNO,, and acceptable delay times. Magnesium-teflon pellets with
Atlas m.tcg initiators provided satisfactory ignition in full-scale motor tests,

NOZZLE

Six nossle ablative materials were identified through analysis and
experiments to offer up to 50% reduction in cost from the glass-phenolic
molding compound used as a baseline material. All six had satisfactory
erosion resistance and structural capabilities,

An extensive analytical evaluation was performed which culminated
in the rational selection of the best materials, Glass, cellulose, and wood
flour as fillers in phenolic resin were selected for Phase Il testing on the
basis of this study., Factors in the study were erosion resistance (sub-scale
meotor screening and full-scale motor testing), structural capabilities (stress
snalysis), availability (resin, reinforcement, compounding and fabrication),

and basic configuration. Other features of the selected nozzles were contoured

oxit sections and aluminum support structure,




CASE

Steel and aluminum stock tubing were analytically evaluated as case
material, Both are practical if performance losses (particularly with steel)
can be tolerated, Some performance loss (using 7075-T6 as baseline) can be
3 expected with aluminum tubing because the high strength 7075-T6 alloy was d
r available with only one wall thickness and unless pressure capability exactly
matches this wall thickness, then the higher strength is of no benefit,

On the other hand, 7075-Té6 (as well as other alloys) can be furnished
as impact extruded cases with integral forward closure or aft closure, with

the wall thickness dictated by the specific motor design. For this improved
performance capability there is an added cost,

i A detailed evaluation of impact extruded aluminum cases was made;
b cost and design details were a result, Alloy 2014-T6 was found to be the
most attractive from a cost standpoint,

Metal strip laminate cases (with appropriate closures) provide the
lowest weight and greatest internal volume, but at the highest cost for the
systems studied, Filament wound composite cases probably have the highest
performance/lowest cost potential of all cases examined; however, there are
technical misgivings about their current environmental and proof-testing
aspects, Additional experimental evaluation should be performed on the
filament wound case for air launch application,

CLOSURE/JOINING TECHNIQUE

Steel, plastic and aluminum closures are all practical at reasonable
cost, but some are more promising than others. The closures and joining tech-
niques must be compatible with the case approach, Plastic closures are
generally the least expensive,

ST

PO ?;{-;,a- »
e i R

Five joining techniques (friction welding, electromagnetic forming with
bond, weldbonding, taper bondline, and rivet bonding) were experimentally

- f‘" evaluated, These five and six others (laser weld, electron beam welding in

Z and out of vacuum, straight bondline, snap ring retainer, and threaded joint)
kb, were evaluated for costs and usability, Five techniques cost less than $1, 00
,?‘*‘ per joint (adhesive bonding with tapered and straight bondline, electromagnetic

b
A o

forming with bond, friction welding, electron beam welding out-of-vacuum)

when applied to a high volume production run, Friction welding for empty ’
motors and electromagnetic forming and adhesive bonding for either loaded or

empty motors are the lowest cost joining techniques,

i ST
SOV

&- S

T

Costs of eleven closure arrangements and nine of the above joining tech-
niques were combined to determine the lowest cost combination., Friction
welding aluminum is the best for empty motors, Adhesive bonding with a
straight (i, e,, constant diameter)bondline and plastic closure is best for a

lcaded motor.
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Stress analyses were performed on two test chambers (friction welded
and weldbonded) to assist in evaluating test results, 4

Difficulty was encountered in the bond of plastic to metal with room-
temperature cured adhesive where the motor was to be fired st 170°F,

INSULATION/LINER

.
AL e

: Three basic areas were investigated: thermoplastics for injection or 5
transfer molding integral case and dome ingulations; mastic insulations for 3
application directly into case; liner for use as back-up bonding agent,

1 It was experimentally determined that glass-filled thermoplastics can
be used as case insulation, Polycarbonate, nylon and ABS were investigated,
Polycarbonate had the best erosion resistance; ABS had the lowest cost, 1
. Polycarbonate has the potential for lowest cost because less is required for

‘ equal thermal protection. All demonstrated satisfactory bonding character-

\ istics when using appropriate bonding agents, Low cost adhesives were
identified to bond propellant to the thermoplastic and thus, liner, as commonly
used in solid propellant rocket motors, is not needed, However, an ambient-
temperature cured liner was found to be the most cost effective adhesive to
bond the thermoplastic to the case,

An ambient-temperature cured mastic insulation was formulated and
: experimentally verified, Three filler materials~ silica, carbon, glass - were
1% evaluated, Carbon was selected for Phase II testing because it results in the
i lowest cost, Liner is not needed between the insulation and propellant, Lab-
- oratory tests included cure catalyst and cure agent studies, bond to propellant
p and to case, effects of bond promoter, physical and thermal properties, pro-
k. cessing characteristics (pot life, cure time, viscosity), and qualitative erosion
{ resistance,

An ambient-temperature cured liner was formulated and experimentally

verified for use as a bond promoter, if needed, Laboratory evaluation con- 1
sisted of cure agent and cure catalyst studies, propellant-to-liner bond and !
effects of bond promoter,

A cost and performance analysis determined that case-bonded pro-
pellant grains with thermoplastic insulation is the lowest cost system,

PERFORMANCE AND COST TRADE-OFFS

Performance analyses were made to determine effects of nossle
throat erosion rate, case strength level, thrust profile and propellant formu-
lation on missile performance, Case strength and propellant formulation are
strong drivers on missile performance, Nozzle throat erosion rate is less
influential. High burnout velocity and high velocity out of a launch tube are
incompatible characteristics, Steel cases cause significant performance
penalties,

i s e e Hi
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Cost and weight data were combined to determine the best combinations

of forward closure with its joining technique, case, and nozzle with its joining
technique (Table II-1),

Three motor configurations were formulated (Table II-2) that com-

bined the best weight/cost considerations for manufacture and evaluation in
Phase II (consistent with program funding limitations).

NEEDED ADDITIONAL INVESTIGATIONS

Several areas for additional investigations were identified during the

Phase I studies:

a. Experimentally determine igniter/mandrel interactions in a
systematic manner to devise » combination that completely
eliminates the hangfire tendencies.

b, Experimentally and analytically determine the mechanical
energy input spectrum optimum for reducing number of voids
in propellant that is pour cast out-of-vacuum,

c. Experimentally and analytically determine the grain quality
requirements,

d. Perform a cost comparison of propellants that cure for 8 to 10
days at ambient temperature (80°F) with those that cure one
to three days at elevated temperature (145°F), Include the
total manufacturing process and facilities costs in the analysis,,

e. Conduct an evaluation of room-temperature cure adhesives for
bonding plastics to metals that provide high strength at elevated
temperatures (170°F),

REFERENCES

lo

" Demonstration of Ambient-Temperature Cure Propellant",
Aerojet Solid Propulsion Co., Report No. AFRPL-TR-73-68,
Contract No. FO-4611-72-C-0072, August 1973,

"Improved Low Cost Rocket Motor Processing and Component
Development Study', AFRPL-TR-75-34, Fred Marks and Edward
Gonzales, Booz, Allen Applied Research, July 1975,
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TABLE II-2

PHASE II MOTOR CONFIGURATIONS

Feature

Propellant

Grain Configuration

Grain Manufacturing

Mandrel

Igniter Pyrotechnics

Forward Closure

Forward Joining T echnique

Case

Aft Joining Technique
Nozzle Ablative
Nozzle Support Shell

Case Insulation

Configuration
No. 1 No. 2 No. 3
Ambient- Ambient- Ambient-
Temp. cured Temp. cured Temp. cured
Case Bonded Case Bonded Case Bonded

Pour casting
with vibration

Foam, leave-
in-place

Magnesium-
teflon pellets

Plastic/
taper
Taper-bond

Aluminum
stock tubing

EMF -Bond
Wood-flour
Aluminum

Polycarbonate

Pour casting
with vibration

Foam, leave-
in-place

Magnesium -
teflon peliets

Alum (FW)

Friction Weld

Aluminum
stock tubing

EMF -Bond
Cellulose
Aluminum

ABS

Pour casting
with vibration

Foam, leave-
in-place

Magnesium-
teflon pellets

Alum (FW)

Friction Weld

Aluminum
stock tubing

Snap Ring
Glass
Aluminum

Carbon Mastic
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SECTION III

BASELINE MOTOR PRELIMINARY DESIGN

One of the first activities in Phase I was to formulate a preliminary
design of a rocket motor which would provide the specified missile performance
and would incorporate typical low-cost components, This design then served
as a reasonable starting point from which to evaluate changes in propellant
burn rate, case strength level, nozzle throat erosion rate, insulation/liner
thickness, and nozzle exit diameter,

Performance requirements for the 4-inch motor were updated;

Burnout Velocity (ft/sec) 3290

Impact Velocity (ft/sec) 2820
Slant Range (ft) 12, 000
Launch Conditions
Altitude (ft) 6000
Velocity (ft/sec) 760
Angle (deg) -30
Misaile Inert Weight (1b)
Warhead 45
Fins 1.29
Motor External Configuration
Outside Diameter (in) 4,0
Overall Length (in) 53
Aft End Reduced Cross-
Section
Diameter (in) 2.6 and 3.29
Length (in) 8.0

Design pressure factors were calculated:

MEOP/Max Pressure at 70°F 1, 225
Burst Pressure/Max Pressure
at 70°F 1. 714

which were based on:

Temperature Range (MIL-R -25532) -65 to 160°F
Temperature Coefficient of Pressure, L 0. 001 per °F
Burst Pressure/MEQP (MIL-R-25532) 1.4
Variability of Maximum Pressure (3-sigma) 12%

1. Burnout velocity is final velocity of missile and includes the initial launch
velocity (burnout velocity equals launch velocity plus AV imparted by
rocket motor),

17
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UNCLASSIFIED

As a precursor to the baseline motor design, estimates of propellant
bore strain were made, Calculations were made for a case-bonded grain
and for a free-standing grain whefe the case was slipped onto the grain,
Results are shown on Figures III-1 and III-2, where pressurization and
thermal strains are a function of web fraction, It was decided to limit total
strains to 20%, which limits the web fraction to 0. 70 for a case-bonded grain.
Strains are less than 20% for a free-standing grain at 0, 70 web fraction,

Drag charact:ristics of a 4-inch-diameter missile were determined
as shown in Appendix C, The missile was launched with an initial flight angle
of minus 28 degrees as a result of preliminary studies (N, B,, slant range
of 12,000 ft,, launch altitude of 6, 000 ft. corresponds to a line-of-sight
launch angle of minus 30 deg. without consideration of gravity effects during
flight,)

A motor design (Thiokol designation TX-649), describedin subsequent
figures and tables, was formulated to meet the aforementioned missile per-
formance requirements, Preliminary calculations revealed that an aft-
diameter of 2, 6 inches made it unlikely that performance would be met.
Thus, further calculations were made with 3,29 inch aft missile diameter,

The baseline motor utilizes an aluminum case, an sll.plastic nozzle,
polyisoprene insulation, anda 12% aluminum HTPB propellant formulation.
The grain design (see Figure III-3) is a cylindrical perforate in the forward
end transitioning to two longitudinal slots in the aft end of the motor. The
longitudinal slots have a 7.5° taper onthe sides, This taper is to provide
the increasing radii needed to decrease the indvced strains as the configura-
tion transitions from the 14% web fraction beneatt the slots to the 70% web
fraction of the cylindrical perforate,

The case design is based on the strength level (78, 000 psi ultimate)
of 7075-T6 aluminum, The nozzle erosion characteristics are based on
demonstrated performance of molded glass phenolic. The motor case insula-
tion is TI-R300, an asbestos filled polyisoprene rubber, The liner is a
HTPB system compatible with both the propellant formulation and the insula-
tion. A complete summary of performance and general motor specifications
are presented in Table III-1. A summary of propellant characteristics used
in the design are shown in Table III-2, A predicted pressure-time, thrust-
time history is shown on Figure III-4, A plot of missile velocity versus time
is shown on Figure III-5,

Design of the baseline motor was based on a burning rate range
availability of 0. 39 in/sec at 1000 psia to 0,44 in/sec at 1000 psia, Plots
of the variation of burning rate with pressure are shown on Figure Illl-6 for
three rates, As may be seen from Figure III-6, as the basic rate increased,
so did rate exponent, The change in exponent as the base rate increased had

18
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'
TABLE lll.1
BASELINE MOTOR DESIGN .
A Motor Performance Parameters
g (70°F)
Sea Level Vacuum
Web Burning Time, sec 1.8 1.8
Average Thrust, 1b 3076 3178
i Average Pressure, psia 2263 2263
8 ~ Maximum Pressure, psia 2975 2975
Total Impulse, lb-sec 6013 6225
Total Impulse/ Total Weight, lb-sec/lb (Flight) 167.5 173.5
3 Propellant Weight/Total Weight (Flight) 0. 642 0. 642
General Specifications
l'k . Dimensions, in
: y Overall Length 55,25
‘ Outside Diameter 4,0
U Weights, 1b
“’ Propellant 23,05
{; Chamber 7. 01
m Nozzle 3,55
z’ Liner and Insulation 2,02 ) :
% Igniter _0,25
TOTAL WEIGHT (Flight) 35,88 c ;
Blow-Out Mandrel 0,66
TOTAL WEIGHT 36.54
VEHICLE FLIGHT WEIGHT (LAUNCH) 82, 25

(Continued on next page)
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Table IlI-1, (Continued).

Trajectory
Slant Range (ft)

Burnout Velocity (ft/s=c)
Impact Velocity (ft/sec)
Initial Flight Angle (deg)

Propellant Geometrical Parameters

Configuration---Case Bonded, Internal Burning, CP with two longitudinal
slots

Propellant Outside Diameter, in 3.58
Volumetric Loading Density, % 0. 85
Web Fraction 0. 70
Geometrical Web Thickness, in 1,253
Nominal Liner Thickness, in 0,010
Initial Burning Surface/Throat Area 342
Length-Average Port Area/Throat Area ' 2,04

Chamber

Type Cylindrical

Material 7075/ T6 Aluminum
Ultimate Uniaxial Strength, psi 78,000

Specific Weight, 1b/in3 0.10
Nominal Thickness, in 0,13
Minimum Thickness, in 0,13
Maximum Expected Operating Pressure (MEOP) 3642

A3
.
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Burst Pressure, psia 5100
Burst Pressure/ MEOP 1.4

(Continued on next page)




Table Il.l,

(Continued),

Nozzle

Geometry
Type Fixed

Expansion Section Configuration Conical
Number of Nozzles One
Throat Diameter, in (initial) 0.925
Exit Diameter, in (initial) 2,96

Throat Area, in? (average) 0,869

B o e

Expansion Ratio (average) 7.92

Entrance and Throat Section
Material Molded glass phenolic

(a)

Specific Weight, 1b/in3 0.068

Expansion Section
1 Material Molded glass phenolic(a)
Specific Weight, 1b/in3 0. 068
4 Insert
»
4 Material Molded glass phenolic'®’
Specific Weight, 1b/in3 0,068
ﬂ: Throat Erosion Rate (in/lec)(b) r, =0, 000111P°' Lk
& '
:
a. FM16771 Typical Material

b. RER 915, "Nozzle Throat Erosion Rates on Mark 17 Motors",
G. P, Roys, Thiokol/Huntsville, 6 June 1975,

£ G2 PN

O i el




TABLE II1-2

PROPERTIES AND BALLISTICS
OF HTPB-TYPE PROPELLANT

E i Characteristic Velocity, c*, (ft/sec) 5220(")

5 Specific Weight, 8, (1b/in3) 0. 063 (P

4 1 Ratio of Specific Heats, ¥ 1.145®

r Burning Rate Equation, r = atPcn 0,01328 P* PO
E:.f' Temperature Coefficient of Pressure, LI (%/ F) 0. 1o‘°’

: | Temperature Coefficient of Burning Rate, OK’ (%/°F) 0. 098(‘:)

Generalized Formulation (pbw)

Aluminum 12
AP 76
HTPB Binder System 12

a. Computer Sequence T51645, 7/22/75, at 2000 psia
b. Computer Sequence T51645, corrected for cure shrinkage
c. Assumed
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* Figure III-6, Variation of Burn Rate with Chamber Pressure, Showing
Three Basic Rates of Typical Ambient Temperature Cure
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a significant effect on the ability of the configuration to meet the required
slant range and velocity, A matrix of throat areas and burning rates was
used to establish the throat and burning rate combination that would meet

the requirements (Figure III-7). In using the lower burning rate range, it
was found that the pressure did not change rapidly enough to produce the
regressivity needed to meet the requirements. It was found that the higher
burning rate range would produce the necessary regressivity; however,throat
size would have to be so large that other problems would exist. The burning
rate used to establish the baseline design was 0. 42 inch per second at 1000
psia. In this rate range, the burning rate exponent is 0.5, high enough to

provide the necessary regressivity, but not so high that pressurization problems
are insurmountable,
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SECTION IV

PROPELLANT TAILORING AND CHARACTERIZATION

Ambient-temperature cured HTPB propellant used in conjunction with
consumable grain-forming mandrels was identified by the Booz-Allen study
(Reference IV-l)l as having high cost reduction potential., It was stated that
"the payback ratio is surprisingly high because of the mix of cost-reducing
elements: cheaper propellant, elimination of ovens, reduced tooling for
mandrels, no mandrel withdrawal, use of the mandrel as the weather seal,
and so on, It does not appear too difficult to develop ambient temperature
cured HTPB, since it is lower in viscosity and pot life is less of a problem, "
Because these advantages for achieving lower cost were identified, the AFRPL
contracted with Aerojet Solid Propulsion Company to develop an ambient-
temperature cured HTPB propellant (Reference IV-2), That program demon-
strated the feasibility of such a propellant system and thus ambient temperature
cure propellant was dictated for use in the subject contract.

Of the advantages listed in the Booz-Allen study for this propellant/
mandrel system, only the "elimination of ovens'' can be attributed to use of
ambient temperature cured propellant, Further details of this concept are
implied in Appendix D of Reference IV-.1 where propellant cure is described
as occurring while the motors are "waiting for normal shipment or being
shipped to a user destination,'" Thus, the propellant would be expected to
cure at some unknown, uncontrolled, inconsistent temperature. Geographic
location of the manufacturing facilities, season of the year, storage facilities
at the plant and mode of shipping finished motors would all affect the tempera-
ture-time history the propellant would experience while it is curing, Exper-
ience throughout the solid propellant industry has shown that consistent
propellant physical properties are obtained in large measure by consistent
temperature-time history during cure. The inappropriateness of inconsistent
storage conditions was implicitly recognized during the Reference 111-2 pro-
gram wherein those propellants were cured at 80°F for whatever time was
required for the given formulation,

Even so, it is accepted that curing propellant at a controlled 80°F may
be more economical than curing at the conventional 140-150°F, assuming
equal cure times, However, controlling temperature to B0°F will, in most
parts of the country, require both heating and cooling equipment for the
curing area, The opinion is that the initial cost of an 80°F cure facility
would be about the same as a 140-150°F facility, since the latter requires
only heating equipment, Of course, the former would operate at considerably
less energy cost. Perhaps the minimum cost cure condition (including both
initial investment and operating costs) would be 100-110°F, since only heating
equipment would be needed for most sections of the country and energy costs

1. References are given at the end of this section
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would be less than for 140-150°F cure, As a result of the above considera-
tions, Phase II scope of work was expanded to include a detailed cost analysis
of various cure time/cure temperature combinations,

Initial attempts during the subject contract to load heavy-weight full
scale motors with ambient temperature cure propellant were frustrated be-
cause of unacceptable grain quality and inability to complete casting oper-
tions. The initial evaluation indicated the problem was propellant rheological
properties but subsequent experiences revealed that casting tooling was the
culprit, Inthe meantime another available conventionally cured propellant
was loaded in the full scale motors so that component testing could proceed.
After rectifying the casting tooling deficiencies, ambient temperature cure
propellant was cast in full scale motors and was used to provide bond samples
for insulation systems,

PROPELLANT REQUIREMENTS

The propellant formulation for the Phase I motor tests was to be an
ambient temperature cure HTPB system using R-45 polymer and to have
solids loading of 88%, The goals for ballistic, physical and other charac-
teristics were:

Goals Demonstrated
Cure Temperature "Ambient" 80°F
Cure Time <9 days 8 -10 days
Strain @ Max. Stress, -65°F >25% 36%
Max, Stress, 77°F >100 psi 140 psi
Modulus, 77°F >400 psi 618 psi
Temperature Capability =65 to 165°F

These goals were met, as listed above, with D'I'S-7'1)84l propellant
as manufactured in Mix T-684,

PROPELLANT FORMULATIONS AND CHARACTERISTICS

Three :asic formulations were used in 5-gallon mixes:

1. Designated as TP-HB8256 at the end of Phase I, Identified as DTS.7984
throughout this report,
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Designation Cure Temp., (°F) Comments
TP-H8245 "Ambient-ternperature' Baseline formulation
DTS-7984 "Ambient-temperature' Same as TP-H8245 except 3%

plasticizer instead of 2%

TP-H8208 145 Developed for SAM.D

All three contained the same amounts of total solids and aluminum, Complete
formulations of the ambient temperature cure propellants are given in Appen-
dix D,

Theoretical thermochemical properties of TP-H8245 are:

TP-HB8245
Characteristic Velocity, C* (ﬁ:/sec)1 5186
Density, Of (1b/cu in) 0.0639
Flame Temperaturel
Tc (°F) 5838
G 263

I (lb-sec/ib
8p

Burn rate of TP-H8245 is defined in later sections., It was assumed
that DTS.7984 had the same burn rate,

MOTOR LOADINGS AND PROPELLANT PROCESSING

Ten 5-gallon mixes were manufactured during the program (Table
IV.1), Six used TP-H8208 propellant, one used TP-H8245 and three used
DTS.7984, Pertinent information abou* the mixes is listed in Table I1V-2,
A 5-gallon mix (T-600) was manufactured under a corporate-sponsored (IR&D)
propellant evaluation program prior tc the mixes manufactured to load the

—

. 1000 psia.

2. Optimum expansion from 100 psia to 14,7 psia; no divergence or nozzle
losses,

35

. o o




“s3jnsal juanbasqns yjim uosiredwod pue ssauajsjdwiod 30j uiazay pIuasaad s1

wo1ja1ay} eeq

‘wiexadoad uoyyenjeas yuerjadoad paiosuids-ajerodzod e jo jaed se painjoejnuew sem Q9L XIN '®

p#ajdwod s3s3)

sajdwes puoq :(s]24p

Aloye10Qe] (9. /61/2 P8I IS SI010N -u®wW ureoj) s10j0lN [£9-X1L 23 ¥86L-S1d gL/s/€ ¥891
p3ia1dwod 8183} Axojeroqe] sajdureg puog ¥86L-S1d 9L/1z/1 969.L

(3urysay [eraajepy
9./82/1 P31sA d1uws SIOION 01 9[ZZON} SI0}O0N ¢ XI °ed p1 80Z8H-dL 9L/¥1/1 6¥9L
9L/L2/2 Pa3183) duyvig SIOION 1€9-X1 "9 2 8028H-dL si/gz/2l €¥V9L

(3sed
9L/62/1 P#S3 duuTs sI0l0N anod 1 34D) SI0IOW [€9-X1L €3 2 8028H-dL sL/9t/zu 0¥9.L

9L/ol/¢
P18 duwMs {6/¢ ¥ §/¢ PIsay axnssaad

Z 94D "gL/vz/Z1 PAIsdy duwms | 33aeyn SI0JOW [£9-X1 "®2 2 80Z8H-d.L sL/s/zl ¥E9L

pasR sojdwes f1aadoad 1edisAyd
sajdwes 1241029, /0€/1 PMEH [€9-X1L pue puoq :(3sed inod) [g9-XL e[ ¥86L-S1A siL/12/11 0€9L
SL/6Z/11 ‘P:SA d11¥Is 81010 8100 1¢9-X1L €9 7 80Z8H-dL si/zl/11 2291

Buijooy Suysed R

sienbapeul jo asnedaq Suipeo] pajroqy SI010 1£9-X1 ‘e 2 80Z8H-dL  SL/91/01 919L

Pa189) swil aapo [[e (3urjooy Junses mo—.ue:dm pavezey pue Ayaadoad
s3enbapeut jo asnedsaq 33231 1£9-X1L ted1sdyd ‘puog '[¢9-XI °®2 | S¥Z8H-dL sL/81/6 LO9L

sadwes
P33} swa 11V Ayxadoad redrsdyd lg6e-X1 “®2 21 s¥28H-dL sL/oz/8 «0091
uonisodsigq papeo] swa] F= 0.5 “TIN ZIquInN

weradoad aeqg W
SAXIN NOTIVO-FAIL I ASVHA A0 AIVININAS
1= Al JI1dVL

AL

<|u_..<

36




N T

oty BN e e ‘f}'f" e
(s A

.W—:‘“»
i

l):
;

T

g

F 4}?.{:«&

o it T e,

re

&

s
P S

Y

component test motors, Data from Mix T-600 are presented in this report
for continuity and completeness of information and for comparison with
subsequent mixes,

Mix T-600 (TP-H8245)

Mix T-600 of ‘I'P-HSZ4‘5l was made without using heat during the
propellant processing, However, cooling water was not circulated and, con-
sequently, heat buildup due to work input resulted in a propellant temperature
increase. This mix processed well, and end-of-mix viscosity was 11 Kp,
The temperature at end-of-mix was 105°F which is 15-20°F higher than that
observed for gallon mixes, It is believed that this higher mix temperature
resulted in significant reduction in propellant pot life. As seen in Table
IV.2 and Figure IV-], time to 40 Kp was only 1,5 hours, Previous mixes
had pot lives of greater than four hours and the actual casting life was con-
sidered to be about eight hours as the rate of .scosity increase was still
low, For future mixes, it was decided that tiit processing temperature be
controlled to a lower temperature,

Mix T-600 was deaerated and cast at 145°F as previous experience
has demonstrated that this propellant tends to stack during casting below
about 80°F, Because of the short pot life, the deaeration and casting time
was longer than normal and consequently the propellant was exposed to 145°F
temperature longer. This extended exposure also contributed to a shorter
pot life, In future mixes, it was decided that the deaeration and casting
temperature be maintained at a lower level {(approximately 120°F), Although
this mix had a short pot life, the propellant was successfully cast and exhib-
ited good processing characteristics two hours after curing agent addition
(Figure IV.2),

Sensitivity was measured on this scale-up mix and, as expected, the
propellant was relatively insensitive to impact, friction, and spark (Table
1V.2), In addition, the propellant had good thermal stability based on limited
exposure to 250°F,

Mechanical properties, including tensile properties versus cure time,
broad spectrum, strain endurance, and short term aging, were measured.
Tensile properties after seven days at 145°F and eight days at ambient indi-
cated the propellant was softer than that from one-gallon mixes. After seven
days at 145°F, the stress was 111 psi and the strain was 64, 6% (Table 1V.3),
The 65% strain was high even for soft propellant, but might be very attractive.
After eight days at ambient temperature (80°F), the stress was 76 psi and
strain was 50, 4%, For the next five-gallon mix, since higher stress was
desired, the NCO/OH ratio was increased to 0. 93,

1, Earlier designation was DTS-7883,

37

—_—

e o

Sl




H g rpoml A A S S B sy R Bt e RLT L
B b e e i Rt 2 oy

-

vty
T

b o

¥

a1

LT

£, G

gD

Brookfield Viscosity (Kp)

140

120

100

80

60

40

20

145°F
Pot Life =2 hrs

Ambient
Pot Life = 1.5 hrs

EOM Temperature = = 105°F
Casting Temperature = 1450F
Cure Temperature = Ambient

1 2 3 4
Time After Curing Agent Addition (hrs)
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TABLE IV-2

CHARACTERISTICS OF TP-H8245 PROPELLANT

(Mix T-600)
EOM Viscosity, Kp 11
Pot Life, Hrs. to 40 Kp 1.5
Actual Cure Time, days 13
NCO/OH 0,90
Sensitivity (0% fire level)
Impact, Kg-cm 110/125
Friction, 1b, >100
Spark, joules >25
Thermal Stability (No Fire) at 250°F, hrs, 18
Strand Burn Rate
at 1000 psi, in/sec. 0.398
at 2225 psi, in/sec, 0,580
n 0, 46
Physical Properties
at 77°F  Modulus, psi 342
Maximum Stress, psi 80
Strain at Max, Stress, % 46,8
at -65°F Modulus, psi 10, 068
Maximum Stress, psi 530
Strain at Max, Stress, % 35.3
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|
! TABLE 1V-3
| DETERMINATION OF CURE TIME
L (Mix T-600, NCO/OH = 0,90, TP-H8245) i
»:‘ Cure Temperature Ambient 145°F
z Cure Time, days 7 5
77°F  Modulus, psi 301 336
& Stress, psi 78 109
Strain, % 51.9 65.3
Cure time, days 8 7
2 77°F  Modulus, psi 296 354
Stress, psi 76 111
Strain, % 50.4 64,6
Cure Time, days 9 9
b 77°F  Modulus, psi 232 352
L Stress, psi 75 123
b: 1 Strain, % 51,5 57.3
w4
H Cure time, days 13
77°F  Modulus, psi 296
b Stress, psi n
E Strain, % 48,9
#,
3
1
b
it
3




e Broad spectrum physical properties are shown in Table IV-4 and :
b Figure IV-3 for Mix T-600, Short term aging results are listed in Table IV-5, 4

Twelve TX-395(0, 5 1b,. ) motors were static fired with DTS-7883
(TP-HB8245) propellant loaded from Mix T-600, A complete ballistic analysis
was performed to determine pressure and temperature characteristics and
the results are reported in Appendix A, Following is 2 summary of the
findings,

TX.395 burn rate is described:

s . n
rb = aTP
Temp. (°F) .T n 3
f -65 0,02001 0.421
- 70 0,01487 0,475
b 160 0.01219 0,511

Burn rate at 1000 psia and 70°F is 0. 395 in/sec.

Temperature coefficients of pressure and rate are functions of ;
pressure because the pressure exponent, n, varies with temperature. i
Some typical values, which cover the pressure range of interest to this 3

i s
A ES
LA 3

\ program, are: ,.
- ) 3
= Temperature Coefficients (per F
Pressure (psia Pressure (Tk) Rate (Vk)
|
E ~ 1000 0.00065 0. 00086
21 ~ 1800 0.00110 0. 00114
k. ~ 2500 0.00159 0. 00162
“H
5
A The coefficient 0y is theoretically smaller than m for propellants with
ia;‘ constant pressure exponent, n. The subject data show O higher than m, .

which is probably caused by a bias in the data.

Strands were tested at 70°F in a nitrogen-pressurized bomb with
samples from Mix T-600 Figure IV<4). The rate is described by 4

0. 458

r=0,01679 P (T-600 Strands at 70°F)

which shows a rate of 1000 psia of 0, 398 in/sec. There is no statistical
difference between the levels or slopes of the strand and motor 70°F regres-
sion lines,
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Figure 1V-4, Strand Burning Rate, TP-H8245, Mix T.600
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As a result of the experiences with Mix T-600, the following procedures
were adopted for subsequent mixes:

1. Reduce and control maximum mix temperature
2. Reduce and control deaeration and casting temperature.
3. Minimize deaeration time,

4, Delay ZnO addition until late in mix cycle,

5, Increase NCO/OH.

Mix T-607 (TP-H8245)

Processing

The second scale-up mix of TP-H8245 propellant (Mix T-607) was
manufactured but it was not possible to cast acceptable motors. Processing
was hampered by mis-sized casting tooling, although at the time it was
thought the major blame was propellant rheological characteristics, A
subsequent mix (T-616) of TP-H8208 propellant (which has excellent rheology)
using the same casting tooling also experienced severe processing difficulties,
which identified the culprit as the tooling, at least in large measure. Details
of the casting experience are given in the paragraphs below,

Mix T-607 was an ambient cure HTPB formulation, TP-H8245. Based
on the results of Mix T-600,the following mix cycle was used:

1. Add and blend R45M polymer, DOA plasticizer, HX-752
bonding agent, and linoleic acid.

Add and blend oxidizer fractions.

Mix for 60 minutes at ambient pressure using no added heat.

Add and blend HMDI cure agent and ZnO catalyst.

Ui e W N

. Mix for 20 minutes, using cold water to hold the end-of-mix
temperature to 91°F.

The propellant was used to cast ballistic, tensile, and bond samples and one
TX-631 motor (4" OD x 42" long). The propellant for the samples was
deaerated and pressure cast without difficulty, Midway through the vacuum
casting of the TX-631 the propellant began to bridge and fill the annulus
formed by the casting sleeve and the aft end of the core. The casting was
interrupted to clean the sleeve/core annulus, but the plugging recurred
shortly after resumption of casting. The motor was eventually filled by
repeatedly interrupting the casting to clear the sleeve/core annulus. No
precise data exist, but the propellant viscosity during casting is estimated
to have been 20-30 kilopoise.




N

Radiographic inspection of the cured loaded case revealed many
voids, large and small, throughout the propellant, The most probable cause
of the unsuccessful casting was felt at the time to be the high viscosity of the
propellant, In order to supply TX-631 motors for component evaluation,
Phase I effort was redirected to use TP-H8208 (SAM- D) propellant,

Mix T-616 of TP-H8208 propellant was manufactured with standardized
raw materials per current TP-H8208 manufacturing procedures. End-of-mix
viscosity was 3.2 kilopoise. Two TX-631's were scheduled to be vacuum cast
from this mix. With approximately two-thirds of the first motor filled,

§ bridging in the sleeve/core annulus again occurred, necessitating several
interruptions in the casting to clear the casting sleeve. Eighty minutes were
required to cast the motor. Immediately after the start of casting of the
second: motor the casting sleeve plugging began to occur and the loading was
aborted.

| Visual inspection of the first loaded case after finishing showed propel-

*j lant/liner separation at the aft end. Radiographic inspection revealed numer-
ous 0. 1'" to 0. 4" voids throughout the motor and confirmed that the propellant/
liner separation was extensive. The separation was caused by over-cured
liner. The loaded case was unacceptable for test.

B A more critical review of the casting problems was conducted. This
1 review concluded that, though propellant viscosity was a contributing factor,
_ the primary cause of the bridging in the casting was casting tooling configura-
tion. The core/sleeve annulus was 0.67-inch wide and a 0.375-inch diameter

N hole plate was being used to deaerate the propellant as the propellant fell into
the sleeve. As a result of the small clearance, the propellant would occasion-
ally contact and stick to either the core or sleeve, gradually filling the annulus
until bridging occurred.

-3 Corrective action for this condition was to redesign the casting

R tooling to increase the core/sleeve annulus and to utilize an available 3/16-

: inch diameter hole plate for propellant deaeration. This design provided a

«'!ri 1.02-inch clearance for a 0.187-inch stream of propellant. Use of this tooling
T was initiated with Mix T-622, which also contained TP-H8208 propellant.

%‘\ As a result of these experiences, another project modified TX-631
B casting tooling in a manner similar to that described here. A defect-free
4 ;:‘” motor was produced with a propellant having comparable rheological character-
B istics as TP-H8208, thus proving that tooling configuration was the primary
F contributor to the TX-631 casting difficulties with both TP-H8245 and TP-H8208
% E, propellants,

R T T
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Rheology é

The end-of-mix viscosity of Mix T-607 was 20 Kp. This is a rather !

high viscosity to vacuum cast, but as seen in Table IV.6, this end-of-mix j

viscosity is exactly as predicted for this solids loading and ambient proces-
sing, Thiokol has made 10 pint, 3C one-gallon and two five-gallon mixes of 1
this ambient cured propellant. A summary of these mixes indicates an
average viscosity for this formulation is 21 Kp. As the Mix T-607 viscosity
was 20 Kp, it is obvious that this viscosity is well within experimental error,
As canalso be seen in this table, an average end-of-mix viscosity of approx-
imately 13,9 Kp was obtained in Reference IV-2; however, that program

used a 70/30 blend of coarse-to-fine AP, With this same blend, Thiokol
measured an end-of-mix viscosity of 15,5 Kp, Although the attempt to load
two full scale TX-631 motors from this mix was unsuccessful, the cause, as
demonstrated in other experiments, was casting equipment design as opposed
to abnormally high viscosity,

Yow sl 3

Time to 40 Kp for this second five-gallon mix was 9,5 hours (Figure
IV.5), Two changes were made to increase the pot life from the 1,5 hours of
the first mix (T-600) to the 9.5 hours of this mix, The processing temperature
was controlled to a lower value and end.of-mix temperature was 92°F, The
ZnO cure catalyst addition was delayed until immediately prior to curing
agent addition, Obviously, these two changes were successful as pot life was
increased significantly and demonstrated that the cure chemistry is sufficiently
understood to make desired formulation changes, As seenin FigurelV.6, the
HMDI selection as curing agent was justified as the pot life measured by
Thiokol in their second five-gallon mix exceeded that measured in the five-
gallon mix in Reference IV.2, The difference in rate of viscosity rise for
these two mixes is attributed to the reaction rate differences of HMDI and
TDI curing agents,

Sensitivity.

Samples for extensive sensitivity tests were cast from Mix T-607,
The results are summarized in Table IV-7 and indicate the propellant will
be classified as a military Class Il or a DOT Class B, Thiokol, however,
does not have the authority to make these classifications.

Mechanical Properties

For Mix T-607, the NCO/OH ratio was increased from 0,90 to 0,93
as the physical properties of the first five-gallon mix were considered soft,
Mechanical properties were measured at temperatures from -75° to 160°F
(Table IV.8), As seen in Table IV.9, the ambient modulus was increased
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TABLE IV-6
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SUMMARY OF THIOKOL END-OF -MIX VISCOSITY EXPERIENCE f

E AP Blend (Coarse/Fine)
" 70/30 60/40 - 55/45 50/50

20 20 47

14 22
s 18 22
: 15 16
k 12 23
b 14 18
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11 (5 gal) ;
20 (5 gal) i
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Reference IV-2
Mix 72-102
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Time After Curing Agent Addition (hrs)

Figure IV-6. Pot Life Comparison of Five-Gallon Mixes
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TABLEIV.7

CHARACTERISTICS OF MIX T-607

Propellant Type:

Mix Number

Date Made

EOM Viscosity, kp

Pot Life, hours to 40 kp
Actual Cure Time, days

Sensitivity

Uncured:

Impact, kg-cm’
Friction, lbs
Spark, joules

Cured:

Impact kg-cm

Card Gap

Lead Column, 5 tests

Unconfined burning

Thermal Stability - 48 hrs. at 75°C

Probable Classification:

Strand Burn Rate, in/sec

@ 1000 pst
@ 2225 pat
n

Physical Properties

NCO/OH
Storage Time at Ambient
Temp, (days)

17

Modulus, psi

Max. Stress, psi

Strain at Max, Stress, %
160°F Max. Stress, psi

=65°F Strain at Max. Stress, %

Strain Endurance, %

Bond to TL-H755 Liner: Peel, pli
Tensile, psi

53

TP-HB8245

T-607
9/18/75
20

9.5

11

115/125
> 100
> 25

45/50

0

negative
negative
No change

Military Class 2
DOT Class B

0, 42
0,61
0, 46

0.93

11

550
129
50
79

47

k1]

2.2
80

54

827
147
40
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TABLE IV.9

L RESPONSE OF PHYSICAL PROPERTIES TO NCO/OH

T-600 T-607

NCO/OH 0.90 0.93
2 Modulus (psi) at 77°F 342 550
‘ *‘ Maximum Stress (psi) at 77°F . 80 129
: ! Strain at Maximum Stress (%) at 77°F 47 50
# Maximum Stress (psi) at 165°F 53 79

Strain at Maximum Stress (%) at -65°F 35 47
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from 342 to 550 psi, Stress was increased from 80 to 129 psi while strain
was also increased from 47 to 50%, Normally, when modulus and stress are
increased, strain is decreased. However, when the propellant cure is not
complete or not optimum, it is fairly common to see an increase in both
stress and strain as the cure more nearly approaches the optimum point.

This type of effect was also observed at the other temperature extremes as
the 165°F stress was increased from 53 to 79 psi and the strain at -65°F was
increased from 35% to 47%. Mechanical properties of both five-gallon scale-
up mixes were considered soft, however, because higher values were obtaine:
reproducibly in one-gallon mixes,

As seen in Table IV.10, seven one-gallon mixes were made with the
same binder cure system, The average stress for these mixes was 218 psi
and strain was 29,9%, Obviously these mixes are significantly harder than
the five-gallon mixes., Aging data also indicates harder propellant should
be obtained at complete cure,

Historically, Thiokol has observed softer propellants when scaling
from the one-gallon to the five-gallon mixer. Generally, this difference in
mechanical properties has been attributed to a higher moisture content from
the five -gallon mixer, The differences observed befote have not been this
severe, However, because these propellants are ambient cured, a small
difference in moisture content, or any other slight changes in binder chemistry
conceivably could cause a significant difference in mechanical properties.
Complete cures and reproducible mechanical properties are one area that
needs additional evaluation and development,

Although the first five-gallon scale-up mix was considered soft by
Thiokol, a review of the Reference IV.2 propellant data indicated very
comparable properties. Aerojet measured an ambient stress of 86 psi
(uncorrected) on their five-gallon mix (Table IV-11). Comparable value
from Thiokol was 80 psi, The other physical properties were of similar
nature. It should be reiterated, however, that Thiokol does not consider
this propellant completely cured. Furthermore,these two propellants should
be different as Thiokol only uses 2% plasticize‘f’w‘zr?m% was used in
Reference IV-.2 (Appendix D), However, review of ''cured' and aging data
indicates to Thiokol that the Aerojet propellant was not completely cured
either (Table IV-12), The maximum stress as measured at 80°F increases
from 98 psi to 147 psi after four months storage at 165°F, Under the same
conditions, the modulus also increased from 490 to 783 psi. However,
Thiokol does not consider this a true aging phenomenon but rather a post
cure phenomenon, Results of the initial aging of Mix T-600 by Thiokol
indicate similar trends demonstrated by Aerojet. A summary of the Thiokol
aging data is presented in Table IV-5,
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:: TABLE 1V.10
: PHYSICAL PROPERTIES IN ONE-GALLON MIXES
b NCO/OH = 0. 90
‘ Modulus Stress Strain
' (psi) (pst) (%)
1256 225 36.8
1644 221 23.5
3 1764 226 24.6
994 222 36.8 ]

1027 212 29.4
1058 200 34,3
463 78 29.9

x 1108 218 29.9
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COMPARISON OF THIOKOL AND AEROJET PHYSICAL PROPERTIES

TABLE IV .11

Thiokol

T-600

342

80

47

53

35

Mix Number

Modulus (psi) at 77°F

Max, Stress (psi) at 77°F

Strain at Max, Stress (%) at 77°F
Max, Stress (psi) at 165°F

Strain at Max, Stress (%) at -65°F

a,
b,

Reference 1V.2
From 100-gallon mix

Aerojet

72-162

440
86

35,0

SZ(b)

37(b)




4 éé
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4 TABLE IV - 12
SUMMARY OF AEROJET AGING DATA(.)
(Mix 72-215 Cured at 80°F)
]
: Storage Time Modulus Stress Strain
(months) (psi) (psi) ( Zo[
% Stored at 1659F #
o
k- 0 490 98 35
4 0.5 578 115 36
|
’ 1.0 671 127 42
2.0 677 128 35
3.0 794 144 35 :
4,0 783 147 35
: Stored at 80°F
&
o 0 490 98 35
i 2.0 532 103 30
: 4,0 521 108 32
6.0 541 112 31

a. Appendix G, page 243, Reference IV-2
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One propellant slab was tested after 54 days storage at ambient con-
ditions, At 77°F, modulus was 827 psi, stress was 147 psi and strain was
40% (Table IV-7), By comparison with zero time data, it is seen that the
modulus and stress increased, and strain decreased slightly, which indicates
that post cure was still occurring, However, it is believed that if these
mechanical property values were obtained initially then post cure phenomena
would be eliminated., As observed previously, high modulus and stress were
obtained in one-gallon mixes and it was believed that they could be obtained in
the five-gallon mixer by implementing alternate processing and curing con-
ditions.

Tensile tests were performed with specimens from Mix T-607 at
several temperature and strain rates to establish a failure boundary (Refer-
ence I1V.3) for TP-H8245 propellant (Figure IV-7), These data represent
"gero time'' characteristics because they were obtained shortly after comple-
tion of cure,

Ballistic Properties

Only strand samples were loaded from Mix T-607 to measure the
burn rate, It was intended to use the remainder of the propellant for two
TX-631 motors and a limited amount of physical property measurements,
The data measurements are shown in Table IV-13 and Figure IV-8. The
strand rate is defined by

r=0.01521 pO 480

(T-607 Strands at 70°F)
which shows a rate of 1000 psia of 0. 418 in/sec, Standard deviation of In
rate at a given pressure is 0.0111 (coefficient of variation of approximately

lo l’o)o

Summary

In summary, the properties of the second five gallon mix (T-607) of
the ambient cured propellant (TP-H8245) were in line with the average prop-
erties calculated from the fairly large propellant data base, Although the
TX-631 motor castings were unsuccessful, the propellant rheology was
exactly as predicted. The casting difficulties were caused by inadequate
casting tooling.

Aerojet Formulation

A one-gallon mix (15Q-403) was made to provide propellant for
rheology testing of the Aerojet-developed ambient cure propellant, 1 This
rheology data was desired as Aerojet had successfully scaled-up their formu-
lation to a 300-gallon mixer and vacuum cast large-scale Sparrow motors,

1, Given the Thiokol designation DTS-7980 for internal records
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Figure IV.7,
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Failure Boundary of TP-H8245 Propellant, Mix T.607
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3 TABLE IV.13

STRAND BURN RATE MEASUREMENTS

(Mix T-607, 70°F)

Nitrogen Pressurization, 2-inch Length

i} Average Pressure (psia) Rate (in/sec.)

200 0.192
400 0.275 :
600 0.325

800 0.372

1000 0.410 E
1200 0. 459 .

1400 0. 493
1600 0.525 i
1800 0.557

2000 0.585

2200 0. 606
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MIX T.607
Nitrogen Strand
70°F, 2-inch Length

Burn Rate (in/sec.)
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Figure IV-8, Strand Burn Rate, Mix T-607
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but did not report sufficient rheology data to determine the propellant yield
value, Although the propellant had the same polymer and total solids content,
it included 3% plasticizer and 0. 1% bonding agent (Table IV-4), End-of-mix |
viscosity was 14 kilopoise and yield was 300 dynes/cm2 (Figure IV-9), TP- .
18245 has end-of-mix viscosity of 21 kilopoise and yield of 100 dynes/cmz.
Plasticizer level was considered the major formulation difference and the
improved rheology was attributed to this parameter, Plasticizer content

of the Thiokol formulation was increased from 2 to 3%, and this evaluation will
be discussed in the next section.

High modulus and stress of Mix 15Q-403 was obtained at a 0,9 NCO/ 3
OH ratio., Modulus at 77°F was 1250 psi, stress was 158 psi and strain was 1
42% after eight days cure at 80°F, Stress at 165°F was 113 psi and -65°F
strain was 53%, Better mechanical properties were obtained at all tempera-
tures because more complete cure was obtained, Reference IV.2 reported
routine measurements of 400 psi modulus and 90 psi stress. However,
the aging data demonstrated that this propellant post cured during storage,
at either 165°F or ambient, to about 800 psi modulus and 150 psi stress,
Aerojet stated their propellant was completely cured because the same
mechanical properties were obtained after curing at either ambient or 135°F,
However, their aging data demonstrate that complete cure was not obtained
and tensile properties appear to be approaching limiting values,

Mix T-630 (DTS-7984)

Based on the evaluation of the Reference 1V.2 propellant, it appeared
that the rheology properties of TP-H8245 could be improved by increasing the
plasticizer content, Consequently, a one-gallon mix (15Q-422) was made
with 3% IDP, which replaced the 2% DOA and 1% binder,! The end-of-mix :
viscosity was 12 kilopoise at 83°F (Table IV-15) and the yield was 300 dynes/ i
cm? (Figure IV.10), The increase in plasticizer content also increased the :
pot life to 21 hours, Subsequently, a five-gallon mix of DTS-7984 (T-630)
was manufactured to evaluate the pour-cast technique (Table IV-15), End-
of-mix viscosity was 12 Kp and the yield value without cure agent was approxi-
mately 200 dynes per cm? at 80°F (Figure IV.11). One hour after cure agent
addition the yield value at 80°F was 600 dynes/cmz (Figure 1V-12), Time to
40 Kp was 17,5 hours and the required cure time was less than 10 days, ;
Effective casting life at 77°F is shown in Figure IV.13, 4

Processing

Mix T-630 was processed differently in an effort to reduce the apparent
moisture effect on mechanical properties, Previous five-gallon mixes were i
significantly softer than comparable one-gallon mixes. A review of both '
mixers and procedures revealed that propellant in one-gallon mixers was

1. The new formulation was designated DTS.7984,
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TABLE IV.14

AEROJET FORMULATION MANUFACTURED AT THIOKOL

(DTS-7980)
Mix Numbers 72-215) 15Q-403
EOM Viscosity, kp/°F 13/7? 14/84
Pot Life, hrs, to 40 kp 7 5
Yield, dynes/cm? Not Reported 300
NCO/OH 0.91 0,90
Physical Properties
Required Cure Time, (A@g?:,:,;.r;o'
Days at 80°F 8 8
77°F Modulus, psi 490 783 1250
Stress, psi 98 147 158
Strain, % 35,0 35 42,1
165°F Stress, psi 66 --- 113
Strain, psi 33,0 31,4
-65°F Strain, % 17 - 53

a. Mix reported in Reference 1V.2
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TP.H8245 RHEOLOGY IMPROVEMENTS

TABLE IV.15

Mix Numbers

EOM Viscosity, kp/°F
Time to 40 kp, hrs,
Yield, dynes/cm2

NCO/OH

DTS-7984

15Q-422 T-630
12/83 12/90
21 18
300 100

0.90 0.975

67

TP.H8245

T.607
20/91

9.5

0.93
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Figure IV-13, Effective Casting Life, Mix T-630, DTS-7984 Propellant,
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1 deaerated at full vacuum and 145°F, It is believed that this small exposure
2 to high temperature vacuum removed sufficient water to make the difference;
therefore Mix T-630 was vacuum mixed at 145°F during solids addition,

Prior to curing agent addition, the temperature was reduced to approximately
80°F, M

1, Add and blend R45M polymer, IDP plasticizer, and HX.752
bonding agent,

2. Add and blend oxidizer fractions, using hot water to raise tem-
perature to 133°F,

1 3. Mix for 60 minutes at 10-12 mm of Hg, absolute pressure, main-
# taining mix temperature at 135°F,

S 4, For scheduling convenience, the mix was stored overnight
(16,9 hours). During this hold period, the mix cooled to 69°F,

5, After 5 minutes of reblending, the linoleic acid and ZnQO catalysts
were added and blended for 20 minutes under full line vacuum
(10-12 mm of Hg., absolute pressure),

; 3 6., Add HMDI curing agent and blend for 5 minutes at ambient
pressure,

7. Mix for 25 minutes under full line vacuum, using cold water to

hold propellant temperature down,
o NCO/OH ratio for this initial scale-up was set at 0,975 as the one-gallon
r checkout mix (150Q422) was soft (Table I1V-15) with an NCO/OH ratio of , 90,
‘.&1 End-of-cure modulus for Mix T-630 was 1564 psi, which indicated this ratio
3 &4 was slightly high, Maximum stress was 264 psi and strain at maximum ]
b stress was 25, 1% (Table IV-16), Samples of this mix were also cured at
» 145°F for eleven days (Table IV-17). This cure time was excessive but was ]
1 ;(_ utilized to insure complete cure. Modulus was 1661 psi, stress was 287 psi :
' ,f and strain was 25, 7", These properties duplicated the b::t ambient cure
; mechanical properties and further confirmed that complete cure was achieved,
1% As these were the best properties obtained from an ambient cure, there is _
j’:':; justification for concluding that the 145°F vacuum mixing was instrumental o
;:'3 to obtaining good cures. Tensile properties of a pour case sample were '
% also measured and maximum stress was 234 psi, Mechanical properties of

AW o

e

the pour cast sample were not quite as good as the pressure cast samples,
The stress and strain were lower,

X .L'.-_:




TABLE 1V.16

CHARACTERISTICS OF MIX T.630

(DTS-7984)
EOM Viscosity, kp/90°F 12
Pot Life, hours at 80°F 17.5
Yield, dynes/cm® at 80°F (w/o C. A) 200
Required cure time, days <10
Cure Temperature, T 80
NCO/OR 975
Physical Properties
165 F Modulus, psi 1174
Stress, psi 175
Strain, % 21.3
Strain, Ult., % 22,1
77°F Modulus, psi 1564
Stress, psi 264
Strain, % 25.1
Strain, Ult., % 26.0
_-:f)_fig Modulus, psi 10,413
Stress, psi 680
Strain, % 19.6
Strain, Ult.,% 26.2
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TABLE IV.17

EFFECT OF CURE TEMPERATURE ON MIX T.630 PROPERTIES

Cast Method

Cure Temperature, °F

Physical Properties
at 77°F:

Modulus, psi
Stress, psi

Strain, %

Pressure
80 145
1564 1661
264 287
25.1 25.0

74
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1709
234
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Post Cure Investi&ation

An ambient cured propellant has been developed which has acceptable
processing, pot life and complete cure. The one remaining technical prob-
lem is post cure, Both Aerojet and Thiokol/Huntsville experienced extensive
post cure during short term aging at ambient and elevated temperatures,
This post cure was attributed to incomplete cure. A five-gallon mix (T-630)
was made which appeared to be completely cured. Samples of this mix were
stored at 80°F and 145°F and the results indicated improved storage capabilities
(Table I1V-18),

After storage of Mix T-630 for five weeks at 145°F, modulus was
2357 psi and stress was 304 psi, Strain at maximum stress was 20, 3%,
Based on these limited results that indicate identical hardening at 80°F and
145°F storage, it is concluded that the post cnre problem has been eliminated.
Both RPL and Thiokol predicted post cure would be significantly reduced if
complete cures were obtained, During storage, stress increased 10% at
ambient, and 15% at 145°F, For the first time, strain decreased after stor-
age (19% at 145°F; 23% at ambient),

Because the T-630 samples stored at 80°F and 145°F hardened to the
same degree, the phenomenon is no longer considered as further polymer-
isocyanate reaction, It is believed that the probable cause of the current
hardening is oxidation of the double-bond in the polymer back bone, This
oxidation is believed to be promoted by the zinc, which is added as a cure
catalyst and is essential to obtaining ambient cures., If the cause of post
cure is metallic catalyzed oxidation, a possible solution is incorporation of
a metal scavenger. The mixed antioxidant system, developed during the
TALM program, has some scavenger characteristics, However, previous
evaluations have indicated the mixed antioxidants slow propellant cure at
ambient conditions, RPL indicated sulfur may serve as scavenger, but
technical details are not available, For the current program, this level of
hardening is acceptable and nv additional effort is planned at this time,

Comparison of Propellauts

Results of a one-gallon mix of Aerojet-developed propellant were re-
ported previously, Two basic Thiokol formulations have been processed:
TP-HB8245 with 2% plasticizer and DTS-7984 with 3% plasticizer, Table IV -19
compares the processing characteristics and physical properties of these
four propellants. Note that there has been no tailoring of the physical prop-
erties of DTS-7984, A high NCO/OH ratio was selected for Mix T-630
(DTS-7984) to assure complete cure so that the pour casting evaluation could
be performed,
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TABLE IV.19

FURTHER COMPAKISON OF AEROJET AND THIOKOL PROPELLANTS

s S

Aerojet Propellant Thiokol Propellant
72-2158) 15Q-403(d) TP.H8245(¢) DTs-7984(d)

i
3
E EOM Viscosity (kp/°F) 13/80 14/84 22/80 12/90
E“ Pot Life (hrs. to 40 kp) 7 5 10 18
]
«} Yield (dynes/cmz) at E0°F (e) 20c(® goc(f) 200(f)
F NCO/OH 0.91 0.90 0.90 0.975(8)
P £
i'f | required Cure Time (Days 8 8 9 11
’.“ at BO°F)

=S4T e

Physical Properties

k.
B 165°F Stress (psi) 66 113 101 175
Strain (%) 33 31 27 21
b 77°F Stress (psi) 98 158 218 264
" Strain (%) 35 42 31 25

R ¢ Modulus (psi) 490 1250 1307 1564
i L

3 -65°F Strain (%) 35(e) 53 25 20

g3
5
g a. Mix reported in Reference 1V.2
W b. Thiokol mix of same formulation as in Mix 72.215
2 c. Typical values
%E d. TP.H8245 modified to have 3% IDP instead of 2% DOA as plasticizer,
W Mix T-630
&3 e, Not reported

f. Before cure agent addition
g. Not optimized for physical properties
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Conclusions

1. Good mechanical properties (complete ambient cure) were ob-
tained by vacuum mixing the propellant at 145°F,

2. Post cure was eliminated--apparently by achieving complete
cures,

3, Ambient cured propellants may be subject to hardening via metallic

catalyzed oxidation, Incorporation of metal scavenger may elim-
inate this oxidation but an evaluation is not planned at this time,

Mix T-656 (DTS-7984)

A five-gallon propellant mix, T-656, was made (1/21/76) to provide
propellant (DTS-7984) for liner/propellant bond tests, This mix was proc-
essed and cured at ambient (80°F) and the propellant results are summarized
in Table IV-20, The mix processed easily and EOM viscosity was a reason-
able 13, 2 Kp at 82°F, (First scale-up mix, T-630, had an EOM viscosity of
12 Kp at 90°F,) Cne hour after cure agent addition the yield was 800 degrees/
cm?® (Figure IV-14), Cure was complete after eight days at 80°F as indicated
by the high stress propellant. At 77°F, stress was 260 psi ard strain was
22, 6%, Stress at 165°F was 173 psi and strain at -65°F was 18,7%, Con-
sidering that the NCO/OH ratio was reduced from 0,975 to 0,95, stress was
slightly high and strain was slightly low,

This mix was processed using the 145°F vacuum mix cycle implemented
for Mix T-630 to minimize the effect of water on propellant, However, the
vacuum mix time was reduced from 50 to 30 minutes and mix teinperature
was adjusted from 145 to 80°F in the same day. Previously, temperature
was reduced during overnight shutdown, The slightly lower strains may
indicate 30 minutes vacuum mixing was not quite as efficient, For future
mixes, a longer vacuum mix cycle (60 minutes) is recommended, Also,
NCO/OH ratio should be further reduced to approximately 0, 90,

Mix T-684 (DTS-7984)

A 65-pound mix of DTS-7984 propellant was manufactured to load
the two final TX-631 motors for component evaluation and cast tensile
property and bond samples, An NCO/OH ratio of 0,925/1, 0 and a 59, 2/40. 8
ratio of unground/high speed ground oxidizer fractions were selected to
achieve the desired properties, The following mix cycle (patterned after
Mixes T-630 and T-656) was used:

1. Add and blend R45M polymer, IDP plasticizer, and HX.752
bonding agent,




s e

—sa 2

ey 4B &*‘ﬁ;t B

ol o
7. armar
RSO A

3

A
x

e 4

g
P

spres;

,:».-.;J-'

'}

=
2

prar e
w s
WS

TABLE 1V-20

A

PROPERTIES OF PROPELLANT FOR BOND EVALUATION

Mix Number
Propellant Type

EOM Viscosity, Kp/°F
Yield, dynes/cm?

Pot Life, hrs. to 40 Kp
Required Cure Time, days

NCO/OH

Physical Properties(a):

165°F Modulus, psi
Stress, psi
Strain, %

779F Modulus, psi
Stress, psi
Strain, %

-659F Modulus, psi
Stress, psi
Strain, %

T-656 .
DTS-7984

13,2/82
800

18

8

0.95

1231
173
22.0

1885
260
22,6

9,721
667
18. 7

a. Tests conducted 20 days after cure agent addition.
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2. Add and blend oxidizer fractions, using hot water to raise tem-
perature to 145°F,

3, Mix for 30 minutes at 10-12 mm of Hg absolute pressure, main-
taining mix temperature @145°F,

4, Mix for 40 minutes at ambient pressure using cold water to cool
mix to 100°F,

5. The mix was stored overnight (16, 5 hours) and, during this hold
period, cooled further to 85°F,

6. Mix for 45 minutes, using cold water, to a temperature of 80°F,

7. Add and blend the linoleic acid and ZnO catalyst into the mix,

8, Add HMDI curing agent and blend,

9, Mix for 25 minutes at 10-12 mm of Hg, absolute pressure, using
cold water to hold propellant temperature down,

H
I

The mixed propellant had an end-of-mix viscosity of 10, 8 kilopoise @85°F, f
The effective casting life curve @77°F is shown on Figure IV-15, Physical i
properties are in Table IV-21, i

The mixed propellant was vacuum cast into the TX-631 motors,
Motor T-684-1 was cast first with no problems, Motor T-684-2 cast smoothly
until the aft end of the motor was reached. Then the streams of propellant
began to catch on the protruding ledge of mastic insulation and bridge to the
core., This condition in Motor T-684-2 required that the casting chamber be
repressurized and evacuated to complete the casting.

Reproducibility and Control of Ambient Temperature Cure Propellants

Four mixes (three five-gallon and one one-gallon) of DTS-7984 pro-
pellant have been ambient temperature processed and cured. NCO/OH ratio
of 0,9, 0,925, 0,95 and 0,975 were used for these four mixes to further de-
fine response of mechanical properties to cure stoichiometry (Table 1V-22),
Although the mechanical properties varied as expected with cure levels, a
plot of stress and strain versus modulus indicated both properties responded
much as would be predicted (Figure 1V-16), These predictable properties
further indicate that propellant cure is reasonably reproducible, Further-
more, it finally appears that ambient curing of propellant is understood and
controllable,

The key to ambient cure now appears to be the water content of the
propellant slurry, (Reacting at lower temperatures, ambient, apparently
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TABLE IV.21

DTS.7984 PROPELLANT PHYSICAL PROPERTIES(‘)
Mix T.684 %

Modulus (psi) at

165°F 299
77°F 618
-65°F 9819
Maximum Stress (psi) at
165°F 89
77°F 140 |
-65°T 577 |
Strain at Max, Stress (%) at f,‘
165°F 40.7 ]
77°F 36. 6
-65°F 36.1 &
Strain at Cracking (%) at
165°F 42,3 .
77°F 38,0
-65°F 40.9 tE

a, '"Cure' time of 19 days at 80°F
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significantly increase the adverse effect of water contamination,) The water
content can be effectively and practically controlled by efficient vacuum
mixing, There appears to be a correlation between vacuum mixing efficiency
and mixer load (Figure I1V-17), The smaller the mix size within a mixer, the
better vacuum mixing, and the higher the mechanical properties, Inherent in
mix size are mixing parameters like vacuum level and mixing time, Mixing
temperature is also important but the one-gallon mix indicated 145° F mixing
is not necessary if mix time is sufficiently long, For practical purposes,
145° F mixing is still recommended,

Processin&Aids

During this report period, a pint mix was made to evaluate poly-
dimethyl siloxane. The objective of this mix was to improve the rheology
characteristics of TP-H8245 propellant via a known processing additive. As
seen in Tahle IV-23, 0,05% poly-dimethyl siloxane reduced the propellant
yield from 1000 to 300 dynes/cm®, However, the end-of-mix viscosity was
not reduced, The siloxane appeared to reduce the mechanical properties.
Maximum stress was unchanged, but the strain was approximately haif, This
approach does not appear as attractive as increased plasticizer because high
gtrain will be required for the tactical application,

Process Hot/Ambient Cure
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