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SECTION   I 

INTRODUCTION 

1.1  BACKGROUND 

In the past, aeroelastic instabilities have generally 
been prevented by performing analytical and experimental 
investigations considering the interaction of the elastic 
structure and the aerodynamic and inertia loads. However, 
active control systems interacting with the aeroelastic 
response of the airplane can also cause instabilities which 
are classified as aeroservoelastic instabilities.  The trend 
toward the increased use of high-gain active control systems 
increases the need for accurate aeroservoelastic analysis 
techniques. 

During early flight tests, the YF-16 unexpectedly 
encountered aeroservoelastic instabilities for two configu- 
rations of the airplane, one with the wing tip missiles 
installed and one without the wing tip missiles.  The two 
instabilities were similar in that both involved antisymmetric 
motion of the airplane» However, the two instabilities 
differed in both the mode and frequency of the instability. 
With the tip missiles installed the frequency of the insta- 
bility was 6.5 Hz which coincided with the first antisymmetric 
mode of vibration of the airplane.  The motion of the airplane 
during the aeroservoelastic instability was similar to the 
mode shape of the first antisymmetric mode of vibration. 
Without the wing tip missiles, the frequency of the insta- 
bility was 3.5 Hz. This frequency is considerably above the 
airplane "dutch roll" mode frequency and considerably below 
the first antisymmetric elastic mode of vibration of the 
airplane (10.9 Hz). 

The flight test instabilities were unexpected because 
the limited aeroservoelastic analyses and tests which were 
conducted before first flight indicated the airplane to be 
stable.  Aeroservoelastic analyses conducted after the 
occurrence of the flight test oscillations showed the correct 
frequency and mode of vibration for both types of instabilities. 
However, the analysis for the missile-on configuration indicated 
a smaller flight region in which the instability would occur 
than was indicated by flight tests.  The analyses for the 
missile-off configuration showed the system to have minimum 
gain margin near 3.5 Hz but did not show the system to be 
unstable.  The analysis indicated that the flight test 
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instabilities for both configurations were caused by the roll 
loop rather than the yaw loop.  Based on these analyses and 
flight test data, the instabilities were eliminated by adding 
a notch filter and adjusting the gain in the roll loop. 

1.2 OBJECTIVE 

The analyses performed on the YF-16 during the flight test 
operation were sufficiently accurate to identify the mode of 
instability and the corrective action to be taken. However, 
for predicting and preventing aeroservoelastic instabilities on 
future systems, improved analysis techniques are needed which 
are more efficient for application early in the design cycle. 
Additional insight is needed on the accuracy of various analysis 
techniques in predicting aeroservoelastic instabilities.  There- 
fore, the objective of the study was to evaluate several methods 
of analyses that could be used to compute the stability of aero- 
servoelastic systems.  The study was conducted by determining 
the degree of correlation between analysis and test data that 
was obtained when each analysis method was applied to the pre- 
diction of both types of instability that occurred during the 
early flight tests of the YF-16 airplane. 

The previous aeroservoelastic analyses of the YF-16 were 
conducted immediately after the ground vibration tests and 
immediately after the instability occurred in flight. These 
analyses used the modes measured during the ground vibration 
tests as degrees of freedom in a truncated mode analysis. 
The first intermediate objective of the study reported here 
was to obtain good correlation between computed and measured 
modes of vibration, A larger number of computed modes could 
then be used in a truncated mode analysis than was possible 
using ground vibration test modes, A second reason for 
computing natural modes was to obtain a set of natural modes 
with a compatible flexibility matrix such that the residual 
flexibility method could be applied.  This method could not be 
applied with the measured modes of vibration because a com- 
patible measured flexibility matrix was not available. 

The previous YF-16 aeroservoelastic analyses employed the 
Nyquist criteria to determine stability in the frequency domain. 
The characteristic equation plot for determining stability, 
reference 1, or the determinant plot as it is called in this 
report, was used as a cross check to determine stability. 
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Both of these methods were employed in the study reported here. 
In addition, the root locus method of determining stability was 
employed.  This method required the development of aerodynamic 
indicial functions that were compatible with the oscillatory 
aerodynamic terms used by the frequency domain stability methods. 

The previous YF-16 aeroservoelastic analyses were conducted 
with the computed aerodynamic terms associated with the rigid 
body degrees of freedom modified to agree with wind tunnel based 
flexible stability derivatives in the low frequency range.  The 
analyses conducted under this contract were conducted with the 
same terms modified to agree with wind tunnel based rigid sta- 
bility derivatives. 

A secondary objective was to review the relationship 
between the flutter equations and the aeroservoelastic equations 
and the differences in the techniques used to solve the two sets 
of equations. A brief description of the organization of the 
report is given in the following. 

The airplane and flight control system are described in 
Section II. The preflight analyses and tests that were con- 
ducted to determine the stability of the airplane are described. 

The equations of motion for harmonic motion using the 
truncated mode concept are presented in Section III. The 
application of the determinant plot and the Nyquist criteria 
as a means of determining stability are presented. 

The results of applying the analysis techniques described 
in Section III using modes of vibration measured during ground 
vibration tests are presented in Section IV.  These analyses 
were conducted during the YF-16 development.  The analyses in 
the following sections were conducted under the study contract. 

The analysis techniques applied in Section V are similar 
to the methods applied in Section IV,  The principal differences 
are the use of computed modes rather than measured modes and the 
aerodynamic representation. 

The equations of motion for harmonic motion using the 
residual flexibility method are developed in Section VI and 
the results of applying this method are presented in Section VII. 
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A method of developing indicial functions from the 
oscillatory aerodynamic terms is presented in Section VIII. 
The equations of motion using the indicial functions are 
presented along with' the Laplace transform of the equations. 

The root locus method of determining stability is described 
in Section IX and the results of its application are presenteu. 

Conclusions and recommendations are presented in Section X. 
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SECTION  II 

YF-16  EXPERIENCE 

2.1  DESCRIPTION OF AIRPLANE 

The YF-16 is a light weight fighter. A three view drawing 
of the airplane is shown in Figure 1. The basic configuration 
has AIM 9 missiles mounted on each wing tip on launchers. 
Although the airplane is designed for high load factors the 
wing is relatively flexible because of its low thickness to 
chord ratio (4%). 

The design employs many advanced technology concepts, 
such as, a completely fly-by-wire flight control system. 
The more conventional mechanical linkages between the cockpit 
controls and the control surface hydraulic actuators are 
replaced by electrical lines.  The airplane also operates with 
a negative static margin for some flight conditions and the 
control system stabilizes what would otherwise be a statically 
unstable airplane.  The same sensors that are used for stability 
agumentation are also used for feedback to pilot commands.  The 
control system is not designed to be operated with the stability 
augmentation system disengaged. 

The basic control system has three loops referred to as 
the longitudinal, lateral, and roll loops.  The longitudinal 
loop commands the all-movable horizontal tail symmetrically. 
The yaw loop commands the rudder.  The roll loop commands the 
aileron and differential horizontal tail deflections in a fixed 
ratio of 1.0 to 0.25.  The sensor locations are shown on 
Figure 1. 
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GEOMETRY 
WING AREA 280SQ. FT 
ASPECT RATIO   3.0 
WING SWEEP (I. E.)  40"' 
WING t/« «H 

17 FT 3.2 IN. 

16 FT 5 IN. 
OVERALL 
HEIGHT 

Figure 1    YF-16 3-VIEW 
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A block diagram of the flight control system yaw and roll 
channels is shown in Figure 2.  The control system as it existed 
when the instability was first encountered is labeled as the 
reference control system.  The block labeled MGR is the manual 
gain in the roll channel.  Its reference value is 0.2.  The 
block labeled MGY is the manual gain in the yaw channel.  Its 
reference value is 1.0.  The block labeled M.G. is the manual 
gain in the aileron-rudder-interconnect.  Its reference value 
is also 1.0.  The blocks labeled GARI and Ga/57.3 are variable 
gains that vary as a function of the angle of attack of the 
airplane.  The gain variation is due only to very low frequency 
variations in angle of attack so it does not constitute a 
dynamic coupling between the pitch channel and either the yaw 
or roll channels.  The block indicated by F8 is a variable gain 
that is programmed as a function of flight condition.  Only roll 
rate is fed back through the roll channel.  Roll rate, yaw rate, 
and side acceleration are fed back through the yaw channel. 
Roll rate is fed back through the yaw channel by two paths, 
one directly and the other from the roll channel through the 
aileron-rudder interconnect.  The transfer functions for the 
command servos and actuators are shown.  The transfer function 
for the actuator is the transfer function for the case in which 
the actuator is operating against no load. 

The block diagram for the yaw loop can be put in the 
equivalent form shown in Figure 3.  The benefit obtained by 
this form for analysis purposes is that the loop is broken 
at the control surface deflection and all other transfer 
functions including the servo command and actuator are placed 
in the feedback loop.  The only transfer function that appears 
in this diagram that did not appear in Figure 2 is the sensor 
transfer function.  The specifications for the sensors permit 
the natural frequency and damping of the sensor transfer function 
to be in a specified range.  The highest natural frequency and the 
lowest damping permitted by the specification were used to define 
the sensor transfer functions.  The highest natural frequency was 
selected to place the break frequency of the sensor at the upper 
limit of its allowable range.  The lowest damping was selected 
so that the magnitude of the sensor output below the natural 
frequency would be at the upper limit of its allowable range. 
These assumptions were thought to be conservative.  That is, 
the sensor response in the frequency range of the aeroservo- 
elastic instability would be maximum when employing these 
assumptions. 
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Figure 3 YAW LOOP FLIGHT CONTROL SYSTEM 
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The diagram that appears on the lower left of Figure 3 
symbolizes this block diagram when it appears on subsequent 
tables of data.  The feedback to the point where the loop is 
broken on the diagram can be obtained by combining the sensor 
per rudder deflection transfer functions with the transfer 
functions of the feedback loop 

Feedback 
—i:— ■ Tay(s) fz + T ̂(8) t + T^Y(s) i 4- (2.1) 

where Tay(s) and T^(s) are transfer functions from the response 
at the ay and ip  sensor locations to the point where the loop is 
broken and T^yCs) is the sum of the two transfer functions from 
the response at the roll rate sensor location to the point where 
the loop is broken.  The values of the gains that vary with 
flight condition are listed in the table on Figure 3 for Mach 0.9 
and four altitudes. 

The equivalent diagram of the roll loop control system with 
the loop broken at the combined unit aileron command and 0.25 
horizontal tail command is shown in Figure 4.  The roll loop has 
no gains that vary with flight condition.  Only roll rate is fed 
back through the roll loop.  The feedback to the point at which 
the loop is broken on the diagram can be expressed as follows 

Feedback ■ T0R(s) 0 
(2.2) 

where T0R(s) is the transfer function from 0 to the point where 
the loop is broken on the diagram.  The diagram on the lower 
part of Figure 4 symbolizes this block diagram when it appears 
on subsequent tables of data. 

Tile sign convention for the control system block diagrams 
have the following positive directions:  (1) rudder, trailing 
edge left; (2) aileron, left aileron trailing edge down; 
(3) roll, left wing tip down; (4) yaw, fuselage nose right 
and (5) side acceleration, side translation left. 
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2.2  PRE-FLIGHT ANALYSES AND TESTS 

Prior to first flight, stability of the airplane was 
investigated by several analyses and tests.  These analyses 
and tests are described in the following. 

2.2.1 Preliminary Flutter Analyses Without Active Controls 

Flutter analyses which were conducted before the ground 
vibration tests of the airplane are referred to as preliminary 
flutter analyses.  These analyses used computed natural modes 
of vibration as degrees of freedom. 

A finite element stiffness matrix of each lifting surface 
was used to represent the flexibility of each surface.  Natural 
modes of vibration of each component surface were computed. 
Flutter analyses of each component were conducted employing 
the conventional V-g flutter diagram to determine the flutter 
velocity. ' The kernel function method of computing the oscilla- 
tory aerodynamics was employed for the subsonic analyses and 
the Mach box method was employed for the supersonic analyses. 
The analyses were computed for several subsonic and supersonic 
Mach numbers.  The flutter speeds on a plot of equivalent air- 
speed versus Mach number indicated that each component surface 
had at least a 20 percent flutter margin. 

A finite element stiffness matrix representation of the 
complete airplane was used to compute symmetric and antisymmetric 
natural modes.  Flutter analyses of the complete airplane were 
conducted and also indicated at least a 20 percent flutter margit). 
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2.2.2 Flutter Model Tests Without Active Controls 

A \  scale flutter model of the complete airplane was 
constructed.  No attempt was made to model the active controls. 
The model was designed to be tested in the NASA Langley 16 Ft. 
Transonic Dynamics Wind Tunnel.  It was tested both as a sting 
mounted model and as a free flying model on a two cable system. 
The model fuselage consisted of a single steel hollow welded 
spar with polyrethane reinforced fiberglass shell contour 
sections attached to it.  The wing and tail surfaces were made 
of composite fiberglass skins bonded to full depth Nomex honey- 
comb core.  The control surfaces were also fiberglass skin 
bonded to full depth Nomex honeycomb core.  Longitudinal and 
roll control on the two cable mount system was provided by 
controlling the horizontal tails (either symmetrically or 
differentially).  These were powered by electromechanical gear 

driven actuators. 

The model was tested throughout the transonic Mach number 
range capabilities of the wind tunnel and demonstrated that the 
unaugmented airplane had at least a 20 percent flutter margin. 
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2.2.3    Stability and Control Analyses With Active  Controls 

Stability and control analyses  of  the airplane with active 
controls were conducted.     These analyses were based  on rigid 
airplane degrees  of freedom with wind tunnel based  flexible 
stability analyses.     These analyses  indicated  the airplane  to 
be  stable. 

The static  stability derivatives were measured  in the 
following wind tunnels: 

(1) Cornell Aeronautical Laboratory 
8 Ft.   Transonic  Tunnel 

(2) NASA-Langley Research Center 
4 Ft. Unitary Supersonic Tunnel 

(3) NASA-Ames Research Center 
6 Ft. x 6 Ft. Transonic/Supersonic Tunnel 

(4) NASA-Ames Research Center 
11 Ft» Transonic Tunnel 

(5) General Dynamics 
8 Ft. x 10 Ft. Low Speed Tunnel 

Two YF-16 force models were used for these tests. 
The fifteenth-scale model was used for transonic and supersonic 
tests in the wind tunnels identified as (1) through (3) above. 
The ninth-scale model was used for transonic and low speed 
testing in the wind tunnels identified as (4) and (5) above. 
Tests were conducted for 1) the complete airplane, 2) less the 
vertical tail, 3) less vertical tail and ventrals, 4) less 
vertical tail and horizontal tail and 5) less horizontal tail. 

The rotary derivatives (damping derivatives) were computed 
by the DATCOM method. Reference 2.  This method utilizes the 
measured force and moment data to compute the rotary derivatives, 
Rotary stability derivative data were measured only at very low 
Mach numbers and low dynamic pressure.  The data was measured 
in the NASA Langley Research Center 30x60 Ft. wind tunnel on 
the 0.15 scale model.  Complete aircraft data was obtained at 
an oscillation frequency of 1.0 Hz.  The measured data agreed 
favorably with the computed data.  The damping derivatives were 
computed by the DATCOM method for the entire Mach number range. 
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The aeroelastic effects were computed using a flexibility 
matrix obtained from a finite element representation of the 
structure and a lifting surface finite span, compressible 
aerodynamic method (Reference 3).  Flexible and rigid stability 
derivatives were computed for each lifting surface.  Ratios of 
computed flexible derivatives to computed rigid derivatives 
were determined.  These flexible to rigid ratios were combined 
with the wind tunnel based rigid derivatives to obtain the 
flexible stability derivatives which were used in the stability 
and control analyses. 

The wind tunnel based rigid derivatives for Mach 0.9 are 
listed in Table 1.  The flexible stability derivatives for 
sea level, 5,000 ft, 15,000 ft and 20,000 ft are also tabulated, 
The stability derivatives are nondimenslonaliKed by 

SW = 280 Ft
2 

c = 10.937 Ft 

b - 28.98 Ft 

The stability derivatives for the configurations with tip 
missiles and without the tip missile are considered to be 
the same. 

The stability derivatives for the airloads on the tip 
missile and launcher were also measured. The tip missile and 
launcner airloads were obtained from a 1/9 scale model which 
utilized a 5 component balance in the tip mounted AIM 9F 
missile to measure the installed missile and launcher loads. 
The CLa and aerodynamic center data are very important from 
the point of view of predicting the instabilities encountered 
during flight. For Mach 0.9, 

CL =0.11 per radian and per missile (S=280 Ft2) 

a.c. = 376. fuselage station 
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Table  1 

STABILITY DERIVATIVES   BASED  ON WIND TUNNEL DATA 

M = 0.9 a = 1° Pitch Axis  ■ 
G.G.   = 

35% MAC 
357o MAC 

Stability 
Derivative 
(Per Rad.) 

Flexi .ble Rigid 

S.L. 
5,000 
Feet 

15,000 
Feet 

20,000 
Feet 

cyß -1.112 -1.112 -1.121 

.256 

-1.134 

.264~ 

-1.243 

.260 Cnß .239 .244 

Ctß -.080 -.080 -.086 -.095 -.1157 

Cyr .78 .80 .83 

-.428 

.165 

.014 

-.003 

-.28 

.83 .90 

-.456 

.171 

.014 

-.004 

-.325 

0 

-.038 

-.1339 

.209 

-.1066 

.0355 

Cnr -.4 

.135 

.013 

-.415 

.15 

.0135 

-.003 

-.27 

-.430 

.170 

.020 

-.008 

-.28 

0 

-.0322 

-.0950 

.138 

-.085 

.0220 

cir 

cyp 

cnp -.003 

^P -.26 

Cy<5a 0 0 

-.0360 

0 

-.0355 

-.0922 

c*öa -.0360 

-.0770 

.1050 

-.0848 

.1060 

-.0662 

.126 

-.079 

.0220 

Cndr -.0573 

cliör 
.0180 .0205 

i 
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2.2.4 Control System Ground Tests 

Control system ground tests were conducted on the complete 
airplane in a flight ready configuration. The airplane was 
supported by its landing gear.  Both hydraulic systems were 
powered.  Electrical power was supplied to the sensors and feed- 
back loops.  Tests were conducted with the airplane empty and 
fueled and with the tip missiles and without the tip missiles. 
Both open loop and closed loop tests were conducted. 

2.2.4.1 Open Loop Tests 

Each of the three primary flight control loops was tested. 
The longitudinal loop and the yaw loop were opened at the 
command servo valve for the horizontal ts.il  hydraulic actuators 
and the rudder actuators, respectively.  The roll loop was 
broken at the roll rate sensor. A constant amplitude signal 
was applied.  The input frequency was swept across a frequency 
range from 10 rad/sec to 300 rad/sec. The ratiso of output 
(feedback to point at which loop was broken) to input was 
plotted as magnitude (decibels) and phase angle versus frequency 
in the form of a Bode plot.  The data was used to determine if 
the system was sufficiently stable.  The criteria that was 
employed was that no peak in the Bode plot should be higher 
than -6 DB at any phase angle.  Based on previous experience, 
this degree of stability on the ground was sufficient to insure 
stability in flight. 

Least stability was obtained with the airplane empty. 
The largest ratios on the Bode plot (least stable) for each 
loop at structural mode frequencies (excluding low frequency 
landing gear modes) were as follows: 

Pitch Loop - With Missiles-On: ■6.5 Db at 135 rad/sec 

Yaw Loop  - With Missiles-Off:  -11.5 Db at 103 rad/sec 

Roll Loop - With Missiles-On:  -13.0 Db at 63 rad/sec 

17 
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1,2A.2    Closed  Loop Tests 

Two  types  of  closed  loop  tests  were conducted.     One  type  of 
test consisted  of closing the loop on  the  same configurations   for 
which open loop  tests were conducted.     The gain in each loop was 
separately increased until the system was  either unstable or very 
lowly damped  in respoase  to a control  system pulse.     The gain in 
the  longitudinal  loop could only be  increased approximately  5  Db 
before  the  system was unstable at a  low frequency corresponding 
to a  landing gear bounce frequency.     Both  the yaw loop gain and 
roll  loop gain were  increased 20 Db without either system going 
unstable.     This conclusion is not inconsistent with the -11.5  Db 
and -13 Db peaks  obtained during  the  open loop  tests because 
these peaks were not accompanied by phase angles   that would 
indicate instability with either a  11  Db or 13 Db gain increase. 

The second  type of closed loop   test is  sometimes  referred  to 
as  limit cycle  tests.     These  tests were conducted on the complete 
airplane on its  landing gear as  the  previously described tests. 
However,   the sensors were disconnected.     The sensor input to  the 
feedback  loop was  replaced by the output of an electrical  loop 
which received input from the control  surface position.    Each 
loop simulated  the sensor response per unit control surface 
deflection for critical  flight conditions as  predicted by analyses 
employing  rigid body degrees of freedom and wind  tunnel based 
stability derivatives  corrected for aeroelastic  effects.    Hence, 
these  transfer functions did not simulate airplane structural 
frequency response.     The sensor response per control surface  de- 
flection transfer functions were approximated by first and  second 
order systems.     These  tests  indicated  the airplane to have adequate 
stability at critical flight conditions. 

18 
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2.2.5 Ground Vibration Tests 

The ground vibration tests were conducted with the airplane 
suspended from a low frequency suspension system.  The airplane 
was hung from an overhead structure by three pneumatic springs. 
The forward spring was located at the nose jack point (Fus. Sta. 
95.0).  The two aft springs were attached on each side of the 
airplane at the aft hoist points (B.L. 41.5, Fus. Sta. 373.7). 

Three configurations were tested.  The two configurations 
of interest in this study were: 

(1) Wing with Modified Aero-3B Launcher on each wing tip 

(2) Wing with Launcher and AIM-9E Missile on each wing tip 

The airplane was in a flight ready configuration with all 
major mass and stiffness represented.  The airplane fuselage 
tanks were full and the wing fuel tanks were empty.  The elec- 
trical power was off (no feedback from sensors to actuators) 
but the dual hydraulic systems were powered. 

The gross weight of the airplane was 

With tip missile     GW = 20,200 lb 

With launcher only   GW = 19,860 lb 

The capacity of each wing fuel tank is approximately SO 
pounds.  Since fuel from the wing tanks is used before fuel from 
the fuselage tanks, the wing tanks are empty during most of each 
flight. 

The natural frequencies and damping coefficients of each 
antisymmetric mode is shown in Table 2. 

The first two antisymmetric modes for the missile-on 
configuration as measured during the ground vibration tests 
are shown in Figure 5.  The corresponding two modes for the 
missile-cff configuration are shown in Figure 6. 
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Table 2 

GROUND VIBRATION TEST ANTISYMMETRIC MODES 

Mode Description 

Wing + Launcher 
+ Missile 

Wing + Launcher 

F(Hz) 8 F(Hz) g 
Missile Pitch 6.5 .013 - 

Wing 1st Bending 8.0 .049 10.9 .019 

Launcher Pitch - - 17.4 .021 

Wing 2nd Bending 22.0 .045 32.0 .055 

Wing Torsion-Flaperon Pitch 36.6 .032 40.8 .039 

Flaperon Pitch 56.7 .085 57.4 .053 

Missile Roll 35.0 .100 37.4 .055 

Fuselage Lateral Bending 17.7 .110 - - 

Horizontal Tail 1st Bending 25.7 .037 25.2* - 

Horizontal Tail 2nd Bend-Yaw 51.2 .045 49.9* - 

Horizontal Tail 2nd Bending 74.6 .030 73.3* - 

Horizontal Tail Pitch** 70.4,97.1 .140,.060 73.0* - 

Vertical Tail 1st Bending 15.2 .055 15.1* - 

Vertical Tail 2nd Bending 39.0,41.4 .13,.05 ■ - 

Rudder Rotation 56.5 .065 55.6* - 

Vertical Tail Torsion 51.0 .110 52.4* - 

•» 

Aft Fuselage Torsion 25.7 .120 - - 

-i j   —" ".ww.t.^j.^u Vmuuc owape wets ctt>sumeG co oe trie 

same as was measured for Wing + Launcher + Missile configuration) 

** Frequency varies from 97.1 Hz with + 2.8# shaker force 
to 70,4 Hz for + 18# shaker force and higher 
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2.2.b    Final Flutter Analyses Without Active Controls 

The final flutter analyses were conducted using the natural 
modes of vibration measured during ground vibration tests as 
generalized coordinates.  Analyses were conducted for Mach 
numbers 0.9, 1.2 and 1.6.  Oscillatory aerodynamic pressures 
were computed by the kernel function and Mach box method for 
subsonic and supersonic Mach numbers, respectively.  Neither 
method as employed in these analyses accounted for aerodynamic 
interference effects between lifting surfaces. 

The wing flutter analyses were conducted using the natural 
modes which were primarily wing modes or which had significant 
wing motion.  Flutter speeds were greater than required for a 
20 percent flutter margin.  The flutter frequency for the con- 
figuration with tip missiles was between 10 and 13 Hz.  The 
antisymmetric flutter frequency of the configuration with only 
the launcher at the wing tip was between 16 and 17 Hz. 

The horizontal tail flutter analyses were conducted using 
natural modes whi n were primarily horizontal tail modes or 
which had significant horizontal tail motion. Flutter speeds 
were greater- than required for a 20 percent flutter margin. 
The antisymmetric flutter frequency for the horizontal tail 
was approximately 50 Hz. 

The vertical tail flutter analyses were conducted in the 
same manner as described for the wing and horizontal tail. 
The vertical tail flutter speeds were also greater than re- 
quired for a 20 percent flutter margin.  The flutter frequency 
for the vertical tail was between 28 and 32 Hz. 

2.2.7 Flutter Analyses With Active Controls 

Flutter analyses with active controls were conducted by 
employing the Nyquist criteria discussed in Section III, and 
employing the method of analysis described in Section IV. 
This analysis was conducted at Mach number 1.2 only.  This 
Mach number was expected to be the most critical because the 
minimum unaugmented airplane flutter margin occurred at this 
Mach number.  The analyses indicated the airplane with active 
controls to be stable. 
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2.3 FLIGHT TEST EXPERIENCE 

2.3.1 Airplane With Tip Missiles-On 

The instability was first observed during flight #8. 
An approximate flight path is shown on the upper left side of 
Figure 7.  The airplane was accelerating slowly at 15,000 feet 
when the instability occurred.  The pilot reduced speed and 
gained altitude to move out of the unstable region.  The air- 
plane was then accelerated at a higher altitude and the insta- 
bility was again encountered.  The instability was encountered 
three times on this flight. 

During flight #9, the instability was encountered during 
a climb from approximately 5,000 to 12,000 ft altitude as 
indicated by the upper center part of Figure 7.  Flight #10 
was planned to probe for the instability boundary by stabili- 
zing the airplane at specified Mach-altitude points and then 
pulsing the controls. 

The airplane was stable at the three Mach number points 
at 30,000 feet indicated by the open symbols on the upper right 
part of Figure 7.  The airplane was also stable at the two 
points indicated at 25,000 feet.  At 20,000 feet, the airplane 
was stable at the first three Mach number points and the 
airplane was being accelerated toward the fourth point when 
the instability was again encountered at approximately 0.91 
Mach number.  The oscillations were of sufficient magnitude 
to be readily visible by the pilot and chase pilot and the 
pilot took corrective action immediately.  The lower part of 
Figure 7 is a composite plot of the three flights.  A line Is 
sketched between the stable and unstable points to approximate 
the location of the unstable boundary.  Since the airplane 
had flown to much higher Mach numbers at 30,000 feet and above 
and since the instability appeared to be more pronounced at 
lower altitudes, it was speculated that the unstable region 
had a top to it and perhaps a backside as indicated by the 
dashed lines. 
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FLT #8 

ALTITUDE 
(1000 FT) -.± 
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Legend 

o Stable 

• Unstable 

Figure  7    MISSILE-ON FLIGHT TEST EXPERIENCE 
WITH REFERENCE CONTROL SYSTEM 
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The frequency of all of the instability points was approxi- 
mately 6.5 Hz and the motion wa. antisymmetric.  The roll pulse 
was the most effective pulse in exciting the oscillations at 
subcritical points but it was self-excited when the unstable 
boundary was penetrated.  The output of the instrumentation was 
constant amplitude sinusoidal motion during the instability 
encountered on flight #10.  The magnitude and phase of the 
accelerometers on the tip of each wing, horizontal tail, and 
vertical tail is shown on Figure 8.  The pilot and chase pilot 
described the instability as missile pitching. 

Subsequently, another series of flight tests were conducted 
with a systematic variation in the gains in both the roll and 
yaw channels.  The gains which were varied are designated as MGR 
and MGY on the block diagram of the flight control system, 
Figure 2.  The results of these flight tests are shown on 
Figure 9.  Before the gains were reduced, a series of test points 
were flown at 30,000 feet with the MGR and MGY gains both set at 
100 percent of their original values (MGR=.2, MGY=1.0).  The 
results of these tests are shown on the upper left part of 
Figure 9.  Contrary to the results shown for flight #10 on 
Figure 7, the instability now occurred as indicated by the solid 
circular symbols.  The instability was so mild that the speed 
was increased and a second point recorded. Apparently, the 
instability boundary, at least in the 25,000 to 30,000 feet 
range, varied somewhat from flight to flight.  The upper center 
part of Figure 9 shows the stable and unstable points that were 
obtained with the roll gain reduced to 75 percent of its 
reference value (MGR=.15).  The upper right side of Figure 9 
shows the flight points that were tested with the roll gain 
reduced to 50 percent of its nominal value (MGR=.10). No un- 
stable points were obtained with the 50 percent setting.  The 
same points were repeated with the yaw gain reduced to 75 per- 
cent of its reference value (MGY=.75).  There was no appreciable 
difference in the results indicating that the instability was 
primarily sensitive to the roll gain. 
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8a      Aileron +0.8    (Sinusoidal) 

8HT    Horizontal Tail +0.2°  (Sinusoidal) 

Sr      Rudder +0.12°  (Irregular) 

Figure 8    INSTRUMENT READINGS MACH 0.91 AT 20,000 FEET 
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2.3,2 Airplane With Launcher, Tip Missile-Off 

A teries of flight tests were conducted without the missiles. 
Only the launchers were attached to the wing tips. 

The test points that were obtained with the reference 
control system are shown on Figure 10.  The airplane was stable 
at all flight test points indicated at 30,000 and 20,000 feet. 
However, an instability was encountered at 15,000 feet at approx- 
imately 0.9 Mach number.  The motion was still antisymmetric but 
the frequency of the instability reduced to 3.5 Hz.  When the 
tip missiles are removed the mode corresponding to missile pitch- 
ing at 6.5 Hz increases to 17.4 Hz and the first antisymmetric 
wing bending mode increases from 8.0 Hz to 10.9 Hz.  Hence, it 
was not surprising that the frequency of the instability changed. 
However, 3.5 Hz is considerably above the rigid body natural 
frequencies and considerably below the first antisymmetric 
natural mode of vibration. 

A series of test points with reductions in the MGR gain 
obtained on Flight #15 are shown on the lower part of Figure 10. 
At 30,000 feet a series of test points were obtained with the 
MGR at its reference value (.20)  and also with it reduced to .15. 
A series of test points were obtained at 20,000 feet with MGR 
reduced to .15 and .10.  Last, a series of points were obtained 
at 5,000 feet with the MGR reduced to .10 and .085. All test 
points were stable. 

During the time period in which the aeroservoelastic 
instability was being investigated most of the flights were 
conducted with the tip missile installed.  Therefore, the body 
of flight test data for the missile-cff instability is con- 
siderably smaller than the data for the missile-on instability. 
The missile-off instability appeared to be milder than the 
missile-on instability.  The missile-off stability boundary 
was apparently never penetrated with sufficient depth to develop 
steady state constant amplitude oscillations.  The instability 
was characterized by a reduced rate of decay following control 
pulses, and by a build up and then a decay of the oscillations 
without control system inputs. 
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Figure  10    MISSILE-OFF FLIGHT TEST RESULTS WITH VARIABLE GAINS 
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SECTION   III 

FREQUENCY  DOMAIN  TRUNCATED 
MODE   ANALYSIS   METHODS 

3.1 HARMONIC EQUATIONS OF MOTION FOR UNAUGMENTED AIRPLANE 

Most unsteady aerodynamic methods are developed for the 
special case of harmonic motion.  Most unsteady aerodynamic 
methods are further characterized as providing a means of 
computing oscillatory pressure distributions for any chosen 
value of the reduced frequency, k, and normalwash.  However, 
the relation between oscillatory pressure and normalwash cannot 
usually be expressed as an explicit function of k. Hence, when 
unsteady aerodynamic effects are to be included the equations 
of motion are usually developed for harmonic motion using 
generalized coordinates. 

The equations of motion based on an inertial coordinate 
system translating at a constant speed equal to the constant 
airspeed of the airplane, using natural modes of vibration 
as generalized coordinates, can be expressed in matrix form 
as follows: 

MrsJ [qs] + [Drs [qs j+UrsJ j^s j = [ (3.1) 

where Mrs is the generalized mass matrix 

I Drs I is the generalized structural damping matrix 

Krs is t^6 generalized stiffness matrix 

JQrl is a column of generalized forces acting 
t   '    cm 1-hp airnlflnp on the airplane 

. 

The mass matrix is  square and diagonal  except for the possible 
mass coupling between  the rigid body degrees  of freedom.     These 
terms are zero only for a unique selection of  the rotation axis. 
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The generalized structural damping and stiffness matrices 
are always diagonal. 

Assuming harmonic motion 

 e icut 
Qr = qr (3.2) 

and expressing  the generalized stiffness as, 

Krr =    ^r Mrr (3.3) 

and  the generalized structural damping as, 

Drrqr - i grKrrqr (3.4) 

equation  (3.1)  can be expressed in the following  form: 

-^2jMrs][qs]+ i [grKrr] f qs] + [Vrr] [qs] = [Qrs]f qs] (3.5) 

where Qrs =  J 0r /ipsdS (3.6) 

0r is the deflection of the r^ mode normal 
to the lifting surface 

/lps is the pressure difference between the upper and 
lower sides of the lifting surface for the sth mode 

Equation (3.5) is the equation of motion of the unaugmented 
airplane for harmonic motion. 

An airplane idealized with a finite number of lumped masses 
and a flexibility matrix of finite order has e  finite number of 
natural modes of vibration.  If a subset of these natural modes 
are used as generalized coordinates in equation (3,5) with no 
compensation for the natural modes that are deleted, the modes 
are said to be truncated, and the analysis is described as a 
truncated mode analysis method. 
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3.1.1 Truncated Mode Flutter Analysis 

Most flutter analyses employ the truncated mode analysis 
method.  Equation (3.5) is divided by -iß  and put into the 
following form:. 

[Ars]fqsj = 0 (3.7) 

where 

Ars - [l 

= Mrs + Qrs 

Qrs = Jj J 0r4psdS 

(^)2(1 + igr)jMrs + Q rs r=s 

r^s 

The diagonal term is further modified by multiplying and 
dividing by a reference frequency cDa and all structural 
damping coefficients are set equal to g. 

Ars = 1 - (^)2i2 Mrs + Qrs (3.8) 

where 

ß- (^)2(1 + ig) 

For a typical V-g type of flutter analysis, a value of 
reduced frequency, k, is selected in order to be able to 
compute the generalized aerodynamic terms.  Stability is 
determined by setting the determinant of equation (3.7) to zero. 

^rs |=0 (3.9) 

and solving for the values of Q  that satisfy the equation. 
A value of w, g, and V are obtained from each Q . 

CO. 
Cü = 

Ja R 
2 = _£R   v = — 

' 8   % '     k (3.10) 

The process is repeated for several selected values of the 
reduced frequency.  The roots are connected on a velocity 
versus damping plot.  The velocity at which the g variable 
agrees with the structural damping is the flutter speed. 
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3,1.2 Determinant Plot for Unaugmented Airplane 

Stability can also be determined by evaluating the deter- 
minant of equation (3.7) as a function of frequency.  The 
aerodynamic terms are computed for selected values of reduced 
frequency. However, the velocity is assumed to be constant 
so that a change in reduced frequency is caused only by a 
change in frequency.  Hence, the determinant is plotted for 
a sequence of increasing frequency points. 

A - Aj-sC^) (3.11) 

The stability criteria described in reference 7 states that the 
determinant of a stable system will spiral in a counterclockwise 
direction. An unstable system will reverse its direction of 
rotation in the vicinity of the frequency of the instability. 

Some of the characteristics of the determinant plot can be 
observed by considering some simple examples of the determinant 
expressed in the Laplace variable in factored form.  Hence, the 
exact location of the zeros and poles are known and the corres- 
ponding characteristics of the determinant plot can be observed. 
A function of the Laplace variable is said to have a zero at a 
value of the Laplace variable at which the function is zero and 
is said to have a pole at a value of the Laplace variable at 
which the function approaches infinity. 

Consider the simple example in which a function had one 
real zero on the left hand side. 

cü 2 

O-.- 
CDBQ 

Sketch #1 Determinant Plot for One Left Hand 
Side Real Zero 
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From the sketch it can be seen that evaluating the deter- 
minant as a function of frequency is equivalent to evaluating 
the magnitude and phase angle of a vector with base at the 
location of the zero and with the head at the point on the 
frequency axis corresponding to the frequency at which it is 
to be evaluated. For this example, the determinant has a 
phase angle that varies from zero at 0.0 Hz to +90° as fre- 
quency approaches infinity. 

Next consider two left-hand-side complex zeros.  If the 
determinant of a physical system has complex zeros or complex 
poles they must exist as complex conjugate pairs. 

D(s)    = (s-SiXs-sf) = ^Z?! r2Z?2 = rj^ZfjA 

Sketch #2 Determinant Plot for One Pair of 
Left Hand Complex Conjugate Zeros 

If GQ represents the phase angle at zero frequency for the si 
root then -0o is the phase angle at zero frequency for the si 
root. Hence, over the frequency range from 0 to «> the s-si 
vector rotates 9OO-0O and the s-si vector rotates 90

o+0o. 
So the combined rotation angle is 180°. 
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Next consider two pairs of left-hand-side complex zeros. 

D(s)  = (s-s1)(s-s{)(s-S2)(s-sJ) 

- nh r2/h r3b rj\= r^rJh^^A. 

s2 

\ 

OJ 2 

sl^ 

-\ 
^1 

* ^^/ sl " / 

S2 

^^r1 

Sketch #3 Determinant Plot for Two Pairs of 
Left Hand Complex Conjugate Zeros 

o 
It can be seen that the determinant rotates 360 in the 
counterclockwise direction over the frequency range from 
0 to oo . 
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Consider two pairs of left-hand-side zeros and one pair 
of right-hand-side zeros close to the imaginary axis. 

D(s) = (s-s1)(s-s*)(s-S2)(s-S2)(s-S3)(s-S3) 

■ ri/^l ^Ih.  rafe r^ r5lh  relH 

Sketch #4 Determinant Plot for Two Pairs of 
Left Hand Side and One Pair of 
Right Hand Side Complex Conjugate Pairs 

Note that a vector from a zero on the right hand side rotates 
in the clockwise direction. Hence, the two left hand side pairs 
of zeros produce 360° clockwise rotation and the one pair on the 
right side produces 180° clockwise rotation.  The net rotation 
over the positive frequency range is 180° counterclockwise. 
The determinant plot initially rotates counterclockwise, then 
reverses and rotates clockwise in the frequency range of the 
right-hand-side zero and then reverses again and continues in 
a counterclockwise direction.  If the root lies close to the 
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imaginary axis the value of the determinant might decrease in 
amplitude because the vector from that root is a minimum for 
frequencies close to that root. Hence, a right-hand-side zero 
close to the frequency axis characteristically produces a 
reduction in the magnitude of the determinant and a phase re- 
versal in the frequency vicinity of the root. 

Consider two pairs of left hand side zeros and one pair 
of left hand side poles. 

D(s)  = 
(s-s1)(s-s*)(s-S2)(s-S2) 

(s-S3)(s-sf) 

i r9/^2 r./h rL&L 

r5l*l r6l*6 

ir2r3r4 /e1+e2+93+e4-e5-e6 
r5r6 

/ sp- ~^1 

/ K 
\ 

% 

Sketch #5 Determinant Plot for Two Pairs of 
Left-Hand-Side Zeros and One Pair of 
Left Hand Side Poles 
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The two left hand side pair of zeros cause two 180 counter- 
clockwise rotations but the pair of left hand side poles cause 
a 180° clockwise rotation over the positive frequency range. 
Hence, a pair of left hand side poles cause a phase reversal 
in the same manner as a pair of right hand side zeros.  However, 
the magnitude of the determinant is likely to increase in magni- 
tude in the vicinity of the reversal in contrast to the decrease 
that results from a right hand side zero. 

It should also be noted that poles located at the origin 
produce no phase change over the positive frequency range. 
They produce a 180° phase change as the frequency at which the 
determinant is evaluated changes from negative to positive 
frequencies, but they produce no phase change from an infini- 
tes imally positive frequency to any positive frequency through- 
out the positive frequency range. 

Some of the characteristics of the determinant plot when 
evaluated from very small positive frequencies to very large 
positive frequencies are summarized below: 

(1) One negative real zero causes 90° 
counterclockwise rotation 

(2) One positive real zero causes 90° 
clockwise rotation 

(3) One negative real pole causes 90° 
clockwise rotation 

(4) One positive real pole causes 90 
counterclockwise rotation 

o 

(5) One zero at the origin causes no rotation 

(6) One pole at the origin causes no rotation 

(7) One complex conjugate pair of zeros with 
negative real parts causes a 180° 
counterclockwise rotation 

(8) One complex conjugate pair of zeros with 
positive real parts cause a 180° 
clockwise rotation 
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(9) One complex conjugate pair of poles with 
negative real parts cause a 180° clockwise 
rotation 

(10) One complex conjugate pair of poles with 
positive real parts cause a 180° counter- 
clockwise rotation. 

Since the stability of a system represented by equation 
(3.7) is determined entirely by the location of the zeros of 
the characteristic equation, only the location of the zeros 
is important. A phase reversal in the determinant plot would 
always indicate a right-hand-side zero if the determinant had 
no poles.  It is assumed that the unaugmented airplane determi- 
nant has no poles except for the poles at the origin introduced 
by dividing the equation by minus frequency squared. And since 
poles at the origin produce no phase change over a positive 
frequency range, the determinant plot provides a convenient 
means to determine the stability of the unaugmented airplane. 

40 

^-'- -  -   — -■ 

^.^i,.,...^.^ ■^■^^^^-■■^■^^.■■^:°lJi1^ > 



iummtim«^**^m*m^^^^^^^^^^m^^^^m^^~m wmmmi^ 

3.2 HARMONIC EQUATIONS OF MOTION WITH ACTIVE CONTROLS 

The equations of motion for the steady state oscillatory 
response to the excitation produced by an oscillatory control 
surface can be developed by adding the control surface excita- 
tion terms to the right hand side of equation (3.7). (Bars over 
the generalized coordinates are omitted for notation convenience. 

[Ars]fqs] " -[Arö]ö (3.12) 

where 

Ar« = Mr« + Qr« 

The equations of motion with the rudder loop closed are 
developed by first expressing the response at the sensor 
locations in terms of the generalized coordinates. 

av ■ = |_-w hsJ | qs j 

4>= [_iW!Asj[qs] 

0 = [ico 0SJ [ qs } 

(3.13) 

where hs, i/fS, 0S are the side deflection, yaw angle, and 
roll angle at the sensor location due to unit amount of the 
qs coordinate. 

The rudder feedback signal can be expressed as 

6r  " -Ta (")ay -T,^ (a>)iA -T0Y(U;)0 (3.14) 

where Tay,  T^ ,  and Tgly are defined by the feedback  loops  in 
Figure 3 to the point at which the loop is broken. 
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Substituting equation   (3.13)  into equation  (3.14)  yields 

or = -TayL- A.J/q.] -T^ll« ^ s J f ^sj "% L1-^s J f qs] 

or (3.15) 

*r = LT<JrJf^] (3.16) 

where Tfir is defined by equation  O.. 15). 

Substituting equation  (3.16)   into equation  (3.12)  yields 

vrs W--(*rlr}L**rjf*< (3.17) 

Simplifying, 

[Ars] | qs '    SI 

^r] 
f9m\ 
(qsJ (3.18) 

where  [A|r] is  defined by equation  (3.17). 

Finally the equations  of motion with the yaw loop closed 
are  expressed as  follows: 

[Ars + A^] [ qs ] = 0 (3.19) 

In a similar manner the equations of motion with the roll 
loop closed can be developed and expressed as 

vrs + A<5a]ns] = 

The equations of motion with both loops closed are 

[ Ars + A^ + A^ JW = o 

(3.20) 

(3.21) 
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3.2.1 Flutter Equations for Closed Loop System 

The impact of a closed loop control system on the conven- 
tional V-g flutter analysis method can be seen by expressing 
the determinant of equation (3.19) in the following ^orm: 

lrs + Ad, Ars   -  TayC^)  f Ardr] [_- a;2hsJ 

"  T0Y(^)[Ardr]Lic1J0sJ (3.22) 

The Ars matrix is still in the form used for flutter analysis. 
All aerodynamic terms are a function of k. Frequency appears 
only in the term 0 . However, the feedback transfer functions 
cannot, in general, be expressed as a function of k.  The feed- 
back transfer functions can be expressed as a function of 
frequency.  Hence, for a fixed value of k, a frequency could be 
chosen such that the feedback loop transfer functions could be 
evaluated.  Then the flutter equations could be solved for cu , 
g,V.  If the solution frequency agreed with the frequency chosen 
to evaluate the transfer function the solution would be valid. 
If not, a new value of frequency could be selected and the 
analyses repeated until the solution frequency agreed with the 
selected frequency. When the two agree one valid point on the 
V-g plot is obtained. The procedure could be repeated until 
sufficient points were determined to adequately define the V-g 
curve. 

Often the gains in the feedback loop vary with velocity 
also.  Hence, the matching of a chosen velocity and frequency 
to define the feedback transfer function, with the frequency 
and velocity of the flutter solution, is even more laborious. 
Therefore, other methods of determining stability for a closed 
loop system are often more efficient. 
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3.2.2 Determinant Plots for Closed Loop Systems 

The determinant plot can be used to determine the stability 
of a closed loop system. However, it can be seen from equation 
(3.22) that the determinant for the closed loop system has poles 
as well as zeros.  The feedback loop transfer functions intro- 
duce the poles. 

It can be seen from the yaw loop block diagram, Figure 3, 
that the accelerometer loop has a pair of complex poles in the 
sensor and in the command servo.  It also has two negative real 
poles in the notch filter and one negative real pole in the 
actuator. The feedback loops for the yaw and rate sensors also 
have poles. 

Hence, if the reversal in the rotational direction of the 
determinant plot is to be used as a criteria to determine 
stability it is necessary to remove the poles. The poles can 
be removed by multiplying the determinant by the least common 
denominator. For example, a 3 DOF determinant for the airplane 
with the yaw loop closed should be multiplied by the following: 

[s2+2(.7)(52)s+(52)2] [s+2o] [s+is] [s+l])3. 

The 9 DOF system determinant should be multiplied by the same 
series of transfer functions but raised to the ninth power. 
Removing the poles, in this way, has no effect on the location 
of the zeros and any phase angle reversal would be a true 
indication of instability. 
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3.2.3    Nyquist Criteria for Stability 
of a Closed  Loop  System 

The Nyquist criteria is  illustrated  in Figure  11.     If G(s) 
and H(s)   are  the Laplace  transforms  of  the forward  loop and 
feedback  loop,   respectively,   the  closed  loop  ratio of output 
to input is  expressed as 

x. 

x,- 1+GH 
(3.23) 

The closed loop system is stable if the denominator, (l+GH) , 
has no zeros on the right hand side of the Laplace variable 
complex plane. 

The Nyquist criteria provides a means of determining the 
number of zeros that lie on the right hand side.  Conceptually, 
the function is evaluated along a closed path that encloses the 
entire right hand side of the Laplace plane. The path is from 
minus infinity to plus infinity along the imaginary (frequency) 
axis and then is described by a vector of infinite length 
extending from the origin that rotates in the clockwise direc- 
tion from +90° to -90°.  If the (l+GH) function is evaluated 
in the clockwise direction and plotted on a complex plane, 
the Nyquist criteria states that the number of clockwise 
enclosures of the origin is equal to the difference between 
the number of zeros and poles on the right, hand side of the 
Laplace plane. 

Alternately, the function GH is plotted and the number of 
enclosures of the -1 point, is determined.  The function GH is 
evaluated by breaking the loop as indicated in Figure 11 and 
computing the open loop feedback response to a unit sinusoidal 
input.  Since both zeros and poles of GH are either real or 
occur as complex conjugate pairs, the path described by GH for 
negative frequencies is the mirror image of the path for posi- 
tive, frequencies. Also, the characteristics of GH for very high 
frequencies can usually be deduced.  Hence, In practice, GH is 
evaluated along the positive frequency axis from zero to a 
sufficiently high frequency to insure that the characteristics 
of the curve for high frequencies can be inferred.  The number 
of enclosures of the -1 point by a plot of the GH function over 
the positive frequency range is determined and equated to the 
difference in the number of complex conjugate pairs of zeros 
and poles on the right hand side of the Laplace plane.   t 
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=u * G(s) 
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Xo,      G 
Xj    1 + GH 

H(s) 

s - PLAN E 1 +GH 
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I i: 

Xj 
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I 
G(s) 

H(s) 

Z - P - N 

Figure  11    NYQUIST CRITERIA 
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Z-P ■ N (3.24) 

If the number of right hand side poles can be determined by 
some other means the number of right hand side zeros can be 
obtained directly from equation (3.24). 

The number of right hand side poles in GH is the sum of 
the number of right hand side poles in G and H separately. 
The number of right side poles in the feedback loop H can be 
determined by inspection since the Laplace transform of H is 
known. Furthermore, there are usually no right hand side poles 
in the H function. 

Determining the number of poles in G is equivalent to 
determining the stability of the system without the H feedback 
loop.  If the system is stable there are no right hand side 
poles and if it is unstable there are a pair of right hand side 
poles for each instability. 

Hence, the Nyquist criteria is applied in the following 
manner for the two loop system under consideration.  First, 
determine the stability of the unaugmented airplane by either 
a V-g flutter analysis cr by the determinant plot.  Next, let 
the unaugmented airplan play the role of the G function and 
the yaw feedback loop play the role of the H function and use 
the Nyquist criteria to determine the stability of the system 
with the yaw loop closed.  Next, let the airplane with the yaw 
loop closed play the role of the G function and let the roll 
loop play the role of the H function and apply the Nyquist 
criteria to determine the stability of the airplane with both 
loops closed. 

The equations for computing the GH function are developed 
in the following: 

The generalized coordinate frequency response of the un- 
augmented airplane to the excitation produced by unit sinusoidal 
rudder oscillations is obtained from equation (3.12). 

"[Ars] [Ardr] (3.25) 

*+ / 
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The generalized coordinate response is converted to the 
response at the sensor location by multiplying by the appro- 
priate weighting functions. 

(3.26) 

9 
1 <Jü LM/3? ör 

The response at the point where the loop is broken in Figure 3 
can be obtained by combining the sensor-per-rudder-deflection 
frequency response functions expressed by equation (3.26) with 
the frequency response functions of the feedback loop. 

GH = Fee^ack  = Tay( m )l!JLj + T^( u )(* 

+ T0Y^>    X (3.27) 

The homogeneous equations of motion with the yaw loop 
closed is expressed by equation (3,19).  The equations of 
motion of the airplane with the yaw loop closed excited by 
a unit oscillatory aileron deflection plus .25 degree hori- 
zontal tail can be expressed as follows: 

lrs + A; W^'Ha] a (3.28) 
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The generalized coordinate response per unit aileron oscillatory 
deflection can be obtained from equation  (3.28). 

fail. ^rs + A, 
ff{ ^rl a 

(3.29) 

The generalized coordinate response per da obtained from 
equation (3.29) is transformed into roll rate response at the 
sensor location 

= ia> l:\ qs (3.30) 

The feedback to the point where the loop is broken is obtained 
by the following expression: 

GH = 
Feedback 

;j7~~ = T0R(.)  -r (3.31) 

where TQ    is defined by the block diagram of Figure 4. 

49 

 -■"-■- ■■ - - ■ -■- 



•^vmmm^ mmmm-mmmimm 

SECTION  IV 

TRUNCATED  MODE  ANALYSIS 
USING  GVT  MODES 

4.1 AERODYNAMIC CONSIDERATIONS 

The unsteady aerodynamic pressure was computed by the 
doublet lattice method.  The particular computer program that 
was used is described in Reference 4.  This program requires 
the lifting surfaces to be in the same planr for computing 
interference effects and requires the fuselage to be flattened 
into a lifting surface projection in order to be simulated. 
The wing, horizontal tail, and fuselage planform was simulated 
with 143 aerodynamic panels.  The vertical tail was simulated 
separately with 64 aerodynamic panels. The two sets of 
generalized aerodynamic terms were summed to obtain the total 
generalized aerodynamic terms.  The aerodynamic panel arrange- 
ment for the doublet lattice application is shown on Figure 12. 

The generalized aerodynamic terms computed by the doublet 
lattice method for the rigid body degrees of freedom were 
compared with the quasi unsteady terms that would be computed 
using measured rigid wind tunnel derivatives corrected for 
computed static aeroelastic effects and referred to as flexible 
wind tunnel derivatives.  The generalized aerodynamic terms and 
the corresponding stability derivative which can be deduced 
from each term is shown below for clarity. 

QTT QTIA QT0 

Q^T W Q^0 

Q0T Q0«/' Q00 

(0+iCy^) (Cyß+iCyr) (0+iCyp) 

(0+iC^) (Ct^+iCn,.) (0+iCnp) 

(o+ic^xc^+ic^xo+iCjp) 

(4.1) 

A multiplying factor was applied to each unsteady generalized 
aerodynamic term associated with the rigid body degrees of 
freedom such that the unsteady generalized aerodynamic terms 
matched the quasi unsteady aerodynamic terms (based on the 
flexible wind tunnel derivatives) at the lowest frequency at 
which the unsteady generalized aerodynamic terms were evaluated. 
These factors are shown in Table 3. 
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Similarly, the aileron and rudder unsteady generalized 
aerodynamic terms were forced to agree at the lowest frequency 
with the corresponding quasi unsteady aerodynamic terms. 

'  QT<5a ' 

1 %. 1 

cyda4"10 

^cn(ja+io 

C«. +10 
1a M; 

f ^Ir' 
>    and Qudr 1   -  ' 

■ %r 1 
Cn^p+iO 

C«. +10 
r '«^ 

(4.2) 

These factors are also shown in Table 3. 

The doublet lattice program that was used could not compute 
a side, force per aileron deflection or a yawing moment per 
aileron deflection so the QTda an^ Q^(5a terms were computed as 
quasi unsteady terms using the wind tunnel flexible derivatives. 

If the multiplying factor is visxaalized as a correction to 
the computed aerodynamic pressure it is rational to apply the 
same factor to every Qrs term in a given column where r refers 
to the natural mode generalized coordinate.  There is a choice 
of three factors for each column of rigid body pressures.  The 
three factors associated with the pressure for rigid body side 
translation, yaw, and roll varied to such an extent that it was 
elected to use unit factors (no corrections) on the terms in 
these columns associated with the natural mode of vibration 
generalized coordinates. However, since the roll moment per 
aileron deflection is the dominant rigid body derivative 
associated with the column of aileron generalized forces, 
the correction factor for Q0ia was applied to all of the Qrda 
terms where r refers to the natural mode generalized coordinates. 
Similarly, the Qrdr tec^s were multiplied by the factor asso- 
ciated with the QTdr term.  These correction terms are also 
shown in Table 3. 

The contribution to the generalized aerodynamic terms 
associated with pressures produced by the motion of the missile 
in each natural mode was computed as a quasi unsteady term using 
the wind tunnel measured stability derivative data for the wing 
tip mounted missile. 
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4.2  STABILITY ANALYSES - TIP MISSILE ON 

4.2.1 Generalized Coordinates 

Analyses were conducted for several sets of degrees of 
freedom.  The three rigid body degrees of freedom were included 
in all analyses. Hence, a 4 DOF analysis has one natural mode 
generalized coordinate, 5 DOF has two natural mode generalized 
coordinates, etc. The modes of vibration that were included in 
the analyses for each set of DOF are shown in Table 4. 

4.2.2 Flight Condition (Mach 0.9 at 20,000 Ft) 

4.2.2.1 Determinant Plots for Unaugmented Airplane 

The determinant plots for the unaugmented airplane are 
shown on Figure 13. The magnitude of the determinant varies 
over a wide range of values. Hence, the logarithm of the 
determinant is plotted after it has been multiplied by CJ

2
 and 

a constant chosen such that the smallest number is greater than 
unity so that there are no negative logarithms. None of these 
operations affect the phase angle.  The operations can be 
expressed as follows: 

Magnitude = log10 [c( w
2) |A( CJ )| 

The determinant of the equations of motion for the unaugmented 
airplane has a number of complex zeros equal to the order of 
the determinant.  These zeros cause the value of the determinant 
at high frequencies to increase proportionally to frequency 
raised to a power equal to twice the order of the determinant. 
But the equations were divided by Cü

2
 before evaluating the 

determinant which has the inverse effect.  Hence, 

lim A = Ci 
OiVoo '    ■L 

lim  \C( Cü
2
)|A|]   = lim C cj2 Ci 

(4.3) 

(4.4) 

The magnitude of the determinant begins increasing when the 
frequency at which it is evaluated becomes greater than the 
highest natural frequency in the equations of motion. 
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Figure  13    DETERMINANT PLOT FOR UNAUGMENTED AIRPLANE,  M=0.9, 
20,000 FT,  MISSILES-ON,  FLEXIBLE DERIVATIVES, 
TRUNCATED GVT MODES 
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The zero frequency limiting value of the determinant of 
the equations of motion before dividing each equation by 
frequency squared is a constant.  Therefore, the value of the 
determinant after dividing by frequency squared approaches 
infinity as follows: 

lim A 
OJ »-0 

■ lim C2 

CJ-^O ( w*) 2^n 
(4.5) 

9           cc2 
lim C( üJ^) A  = lim    1 

w-0 w-^O ( ^2)n'1- 
(4.6) 

wnere n is the order of the determinant, 
increases with the number of DOF. 

The constant C2 

Each determinant plot shown on Figure 13 is plotted two 
ways. The p?,ot on a complex plane shown on the left side is 
convenient for spotting a phase reversal. The plot on the 
right which consists of magnitude and phase versus frequency 
is convenient for determining the frequency at which a phase 
reversal occurs. The frequency varies from ,15 to 21,65 In 
.05 increments. 

The 3 DOF determinant should have three 180° counter- 
clockwise rotations.  Since only approximately one and a half 
180° rotations are shown the other part of the rotation occurred 
between zero and the lowest frequency shown on the plot.  The 
magnitude of the determinant increases as frequency approaches 
zero as predicted by equation (4.6).  The determinant has a 
minimum value at approximately 0.8 Hz corresponding to a rigid 
body resonant frequency.  For higher frequencies the value of 
the determinant increases at a rate proportional to frequency 
squared as predicted by equation (4.4). 

The 4 DOF plot has a phase angle at the lowest frequency 
that is 180° from the starting phase angle for the 3 DOF system. 
This phase shift is caused by the additional pair of poles at 
the origin caused by dividing the equations by frequency squared. 
Hence, an odd number of DOF will have approximately the same 
phase angle as the 3 DOF system at the lowest frequency, and an 
even number of DOF will have a 180° phase shift.  The 4 DOF 
determinant has a second minimum point at 6.3 Hz corresponding 
to the natural frequency of the first natural mode of vibration. 
For higher frequencies the determinant again increases at a rate 
proportional to frequency squared. 
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The 5 DOF determinant plot fits the pattern observed for 
the 3 DOF and 4 DOF plots.  One additional 180° phase shift is 
obtained and one additional minimum point on the magnitude 
versus frequency plot is observed at approxirr.=>tely 8.5 Hz. 

The 9 DOF determinant plot has two resonant frequencies 
above the maximum frequency at which the determinant has been 
evaluated and plotted.  If the frequency range were extended 
the phase angle would rotate through two additional 180° angles. 
The magnitude of the determinant has not started increasing at^ 
a rate proportional to frequency squared because of the two pairs 
of zeros associated with the two natural frequencies that are 
higher than the upper limit of the frequency range evaluated. 

The determinant plots for the 3, 4, 5 and 9 DOF systems 
rotate in the counterclockwise direction.  There are no phase 
reversals. Hence, each of the systems is stable and none of 
the systems have zeros on the right hand side of the Laplace 
plane.  Since the zeros of the determinant of the unaugmented 
system become poles of the transfer function of the unaugmented 
system, there are no right hand side poles in the transfer 
function for the unaugmented system. 

4.2.2.2 Sensor Response 

The sign convention for control surface command and sensor 
response for the structural dynamics analyses differ from those 
used on the flight control block diagrams. 

Structural Dynamics Analysis 

ör  (+ trailing edge left) 

ia (+ left aileron T.E. down) 

0 (+ left wing tip down) 

0 (+ fuselage nose right) 

ay (+ side translation left) 

Flight Controls 

ör*  = + Är 

«a* = - 6a 

0* = - 0 

V = ■ ay 

: ! 
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The block diagrams shown on Figures 2, 3, and 4 have the sign 
convention indicated by the symbols with asterisks above. 
The analyses described herein were conducted in the structural 
dynamics sign convention in the following manner. 

(1) The control surface commands were in the 
dr  and (5a sign convention. 

•  > 
(2) The response was computed in the 0, t//, a^ 

sign convention. 

The 0, (//, ay response was converted to the 
0'V, o*,  ay* sign convention.  These responses 
were plotted '0*/dr,  tW<5r, a.y*/ör,   and 0*/öa. 

The 0*, t//*, ay* were multiplied by the feedback 
loop transfer functions shown on Figures 2, 3, 
and 4 to obtain dr*  and 6a*  feedback signals. 

The Or*  and da* were converted back to the 
ör and da sign convention for the purpose 

of plotting Nyquist diagrams or for closing 
the loop. 

Hence, the response at the sensor locations as plotted are 
shown below and compared with the transfer functions in the 
flight control sign convention and the structural dynamics 
sign convention. 

(3) 

(4) 

(5) 

Plotted Data 

0-v 
dr    ' 

+ 
0-v 

<5r" 
= 0 

t]/-k 

ör 
+ i/y * ■ 

ay* 

or 
+ 

ay* 

or* 
"- 

0* 
«a 

- 
0* 

= 0 
«a 
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The response of the unaugmented airplane at the sensor 
locations to the excitation produced by unit control surface 
deflection oscillations is shown in Figure 14.  Magnitude and 
phase angle are plotted versus frequency.  The two plots at 
the top of the figure are lateral acceleration and yaw rate 
per degree of rudder deflection.  The plot on the lower left 
is roll rate per degree of rudder deflection and the plot on 
the lower right is the roll rate per degree of aileron deflec- 
tion (1° aileron + 0.25° horizontal tail). 

The 3 DOF plots show one resonance at approximately 0.75 Hz 

The 4 DOF plots show an additional resonance at approxi- 
mately 6.3 Hz at all sensor locations except yaw rate. 

The 5 DOF plots show an additional resonance at approxi- 
mately 8.0 Hz at all sensor locations except yaw rate. 

The 9 DOF plots show a high peak at 16 Hz.  The yaw rate 
and roll rate per rudder deflection also show a peak at 16 Hz. 
There is no significant peak in the roll rate per aileron 
deflection at 16 Hz. 

It is of interest to note the change in the amplitude at 
the lowest frequency as a function of the number of DOF.  The 
side acceleration, yaw rate and roll rate per unit rudder 
deflection do not change noticeably with the number of DOF. 
However, the roll rate per unit aileron changes appreciably. 
The roll rate per unit aileron is 26.0, 17.5, 17,4, and 11,5 for 
3, 4, 5, and 9 DOF, respectively.  Apparently, the static aero- 
elastic effect caused by the addition of these particular modes 
of vibration is very significant with respect to sensor response 
per unit aileron command but insignificant with respect to 
sensor response per unit rudder command. 

The transfer functions shown in Figure 14 are combined 
with the yaw loop and roll loop feedback transfer functions 
to compute the open loop feedback that is plotted as a Nyquist 
plot with both loops open. 
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The transfer functions with one loop closed are shown on 
Figure 15 for 3, 4, 5, and 9 DOF.  The plots labelled "Rudder 
Drive" are the lateral acceleration, yaw rate, and roll rate 
per degree of rudder deflection with the roll loop closed. 
The plots labelled "Aileron Drive" are the roll rate per degree 
of aileron deflection with the yaw loop closed.  These transfer 
functions are combii">ed with the yaw loop and roll loop feedback 
transfer functions to compute the feedback through the yaw loop 
with roll loop closed and the feedback through the roll loop 
with the yaw loop closed, respectively. 

4.2.2.3 Nyquist Plots 

The Nyquist plots for the feedback through the yaw channel 
due to a unit rudder excitation with both loops open are shown 
on the left side of Figure 16 for 3, 4, 5, and 9 DOF.  This 
Nyquist plot is computed by equation (3.27).  These figures 
were plotted by an automatic plotter that is programmed to use 
one scale when the magnitude of the complex number is equal to 
or less than unity and another scale for numbers greater than 
unity. Hence, all of the points can be seen no matter how large 
the magnitude and at the same time the path in the vicinity of 
unit magnitude is also visible.  The unit circle is shown as 
dashed lines. 

Referring to the 3 DOF Nyquist plot it can be seen that 
the minus-one point is not enclosed. Hence, the number of pairs 
of complex zeros minus pairs of complex poles of the 1+GH func- 
tion is zero. 

zY - PY = 0 (4.7) 

The unaugmented 3 DOF system was shown to be stable by the 
determinant plot. Hence, the number of right hand side poles 
in G is zero.  The number of right hand side poles in the yaw 
loop can be seen by inspection to be zero.  Therefore, the 
number of right hand side poles in GH and/or 1+GH is zero. 
Hence, by eqvition (4.7) the number of right hand side zeros 
is zero and it is concluded that the 3 DOF system with the 
yaw loop closed is stable.  The frequency and magnitude of the 
point at which the curve crosses the negative real axis closest 
to the minus-one point is tabulated.  The inverse of this 
magnitude is called the gain margin.  The angle from the 
negative axis to the point at which the curve crosses the unit 
circle closest to the minus-one point is the phase margin. 
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The corresponding Nyquist plots for the 4, 5, and 9 DOF 
show no enclosures of the minus-one point.  Using the same 
arguments that were applied to the 3 DOF system leads to the 
conclusion that the 4, 5, and 9 DOF systems with the yaw loop 
closed are stable. 

The plots on the right hand side of Figure 16 are the 
feedback through the roll channel due to unit aileron command 
with the yaw loop closed.  These Nyquist plots are computed by 
equation (3.31).  The airplane with the yaw loop closed now 
plays the role of the G function and the roll feedback loop 
plays the role of the H function.  Since the previous Nyquist 
plots established that the airplane with the yaw loop closed 
was stable, there are no right hand side poles in the G function. 
It can be determined by inspection that there are no right hand 
side poles in the roll loop feedback transfer function.  Hence, 
there are no right hand side poles in GH and/or 1+GH.  Hence, 
if the Nyquist plots on the right hand side of Figure 16 show 
no clockwise enclosures of the minus-one point the system is 
stable with both loops closed.  It can be seen that the plots 
for the 3, 4, 5, and 9 DOF systems do not enclose the minus-one 
point.  However, the magnitude of the negative axis crossing 
is .55 at a frequency of 6.4 Hz for the 4 DOF system.  This 
frequency is very close to the frequency of the instability 
encountered during flight tests.  The 5 DOF crosses the negative 
axis with a magnitude of .85 at a frequency of 6.4 Hz. Hence, 
the 5 DOF system is even closer to being unstable.  The addition 
of four more natural modes plightly stabilizes the 9 DOF system 
which has a negative axis crossing of .78 at 6.4 Hz.  The con- 
clusion by the analysis is that the system is stable but it does 
not demonstrate either an adequate gain margin or phase margin 
for the 4, 5, and 9 DOF systems. 

The analyses were repeated with the loops closed in the 
reverse sequence, that is, with first the roll loop closed and 
then the yaw loop closed.  These analyses provide a cross check 
on the conclusions with respect to the stability of the system 
with both loops closed because the conclusions should be the 
same regardless of the sequence of closing the loops.  However, 
new gain margin and phase margin information is also obtained. 
These Nyquist plots are shown in Figure 17.  The plots lead to 
the same conclusion that the 3, 4, 5, and 9 DOF systems are all 
stable with both loops closed.  However, these plots indicate 
that the 4, 5, and 9 DOF are close to being unstable with only 
the roll loop closed.,  The figures on the right indicate that 
the gain margin in the yaw loop when the roll loop is closed 
is very high.  That is, it would take a large increase in the 
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yaw loop gain to drive the system unstable.  Hence, if these 
were the only plots available the system would appear to be 
very stable with both loops closed, whereas, the previous 
sequence of Nyquist plots indicated that only a small increase 
in the gain in the roll loop would drive the system unstable. 

4.2.2.4 Determinant Plots for Augmented Airplane 

As a cross-check on the Nyquist criteria conclusion that 
the system is stable with the yaw loop closed, the determinant 
of the equations of motion with the yaw loop closed, equation 
(3.19), was evaluated and plotted.  The determinant plots are 
shown on Figure 18. 

The 3 DOF determinant plot shows a phase reversal at 
approximately 6 to 8 Hz.  If this phase reversal is interpreted 
to indicate an instability then it conflicts with the Nyquist 
criteria and is a false indication of instability. 

As discussed previously in Section 3.1.2, a phase reversal 
in the determinant plot is a conclusive indication of an insta- 
bility only if the determinant contains no left-hand side poles. 
It is assumed here that the determinant of the unaugmented 
airplane contains no poles that cause phase reversals and con- 
sequently the conclusions with respect to the stability of the 
unaugmented airplane as deduced from the plots of Figure 13 
are valid.  Since the equations of motion are in the frequency 
domain rather than the Laplace domain the. assumption cannot be 
confirmed by inspection of the equations of motion.  The ration- 
ale is largely intuitive.  The assumption can be restated as 
follows.  It is assumed that if the A matrix of Equation (3.12) 
before each row was divided by -tu2, were expressed in the Laplace 
variable, there would be no value of the Laplace variable which 
would cause the determinant to approach infinity.  The only way 
this could happen would.be if one or more of the elements of the 
A matrix became infinite for some finite value of the Laplace 
variable.  Clearly, the structural mass, damping, and stiffness 
terms do not approach infinity for any finite value of the 
Laplace variable.  Hence, only the aerodynamic terms need to be 
examined.  If quasi-steady aerodynamic terms are employed it is 
also clear that no finite value of the Laplace variable causes 
any of these terms to approach infinity. When unsteady effects 
are included the aerodynamic terms must be expressed as indicial 
functions or impulse functions.  Since these functions exist 
only in approximate forms (except for two dimensional indicial 
functions) the existence of poles in the true indicial functions 
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cannot be determined by inspection.  However, there are no 
poles along the imaginary frequency axis in the Laplace domain 
because the oscillatory aerodynamic terms do not approach in- 
finity for any finite frequency.  Hence, it seems unlikely that 
there are any complex values of the Laplace variable that cause 
the aerodynamic terms to approach infinity.  Many approximate 
forms of the indicial function do contain poles on the negative 
real axis.  However, it is not clear that these poles exist in 
the true indicial functions.  If they do exist then even these 
poles might not cause phase reversals except in the extremely 
low frequency range. As discussed earlier, the practice of 
dividing each of the equations of motion by -w2, does introduce 
poles at the origin. But poles at the origin produce a phase 
change only when the determinant is evaluated over an infini- 
tesimal frequency range from negative to positive frequencies. 
Hence, it is assumed that the determinant of the unaugmented 
airplane contains no poles that cause phase reversals in the 
determinant plot. 

However, as previously discussed in Section 3.2.2, when 
one or more control system loops are closed it can be seen by 
inspection of the equations that poles are introduced to the 
determinant of the closed loop systems.  The determinant for 
the airplane with the yaw loop closed is shown by equation (3.22). 
The phase reversal for the 3 DOF determinant plot shown in 
Figure 18 is caused by the pole in the command servo.  The fre- 
quency of this pole is approximately 6 Hz,  Had the frequency 
been extended to approximately 314 rad/sec the pole in the sensor 
would have caused another phase reversal. As also previously 
discussed in Section 3.2.2, since the locations of the poles are 
known they could be removed by multiplying the determinant by a 
least common denominator.  This operation was not performed on 
the determinant plots shown here. 

The phase reversal is very small on the 4 DOF plot. The 
first natural mode produces such a rapid phase angle shift in 
the 6.5 Hz range that it masks the reversal caused by the pole. 

The phase reversal cannot be seen at all on the 5 and 9 DOF 
plots. 

The correct interpretation of the determinant plots for the 
3, 4, 5, and 9 DOF systems is that these systems are stable with 
the yaw loop closed. 

vmaamm^mmmm^m _— mm   



■ ■■■■■■ii        ii        ii   in i    imwm^r^m^ 1J..J,,I.LI,I.J,1I.I. .:„, 

The determinant plots for the airplane with the roll loop 
closed are shown on Figure 19.  These plots also show a false 
indication of instability for the 3 and 4 DOF systems.  Ignoring 
the false sign, the determinant plots indicate that the airplane 
with the roll loop closed is stable. 

4.2.2.5 Tabulated Data 

The stability data is tabulated on Table 5.  The first 
column indicates the number of degrees of freedom employed in 
the analyses.  The second column indicates the stability of the 
unaugmented airplane as determined by the determinant plot. 
The number in this column indicates the number of phase 
reversals NA? of the determinant plot.  Hence, zero means the 
system is stable, one means one instability, etc.  The second 
column Ny indicates the number of clockwise enclosures of the 
minus-one point when the open loop feedback through the yaw 
loop is plotted.  The third column, Zy, indicates the number of 
zeros in the 14GH function and is determined by the expression 
Zy - Ny - Py with Py being determined by the determinant plot 
for the unaugmented airplane. A value of zero in this column 
means that the airplane with only the yaw loop closed is stable. 
The columns headed by the title "Negative Axis Crossing" give 
the frequency and magnitude of the largest (most negative) 
crossing of the negative axis.  The gain margin GM and phase 
margin 0i4 are also tabulated.  The column headed |A+A(Jr| is the 
determinant plot for the airplane with the yaw loop closed and 
the number of phase reversals N^ are tabulated.  It can be seen 
that the Ny column agrees with the Zy column.  The conclusion 
drawn is that the airplane with the yaw loop closed is stable 
for 3, 4, 5, 7, 8 or 9 degrees of freedom. 

\ 
The right side of Table 5 gives similar information for 

determining the stability of the system if the roll loop is 
also closed.  The Ny+R column gives the number of clockwise 
enclosures of the minus-one point when plotting the open-loop 
roll feedback due to aileron command with the yaw loop closed. 
The Zy-fR column gives the number of zeros in the 1+GH function 
when G is the airplane with the yaw loop closed and H is the 
roll loop feedback function.  It is determined by the expression 
Zy+R = Ny-f-R - PY+R where Py+R is the number of right hand side 
poles of the G function and is equal to either Zy or Ny.  The 
remaining columns are self explanatory. 
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The effect of adding DOF to the system can be seen in 
Table 5.  The column containing the gain margin for the yaw 
channel indicates very little change with the number of DOF. 
The column containing the gain margin for the roll channel 
indicates that stability of the system at 6.4 Hz decreases as 
DOF are added up to 8 DOF but then begins to increase for the 
9 DOF case. 

The stability data when the roll loop is closed first is 
also shown in Table 5.  It can be seen that the gain margin for 
the roll with the yaw loop open is about the same as the gain 
margin with the yaw loop closed as shown on the. preceding table. 
The two sets of data agree in that both indicate that the system 
with both loops closed is stable for all DOF systems analj^zed. 

4.2.2.6 Effect of Deleting Missile Aerodynamics 

The effect of deleting the tip missile aerodynamics Is 
shown in Table 6.  Scanning the columns for the roll loop gain 
margin with and without the yaw loop closed, it can be seen that 
the effect of deleting the missile aerodynamics is stabilizing. 
Restated, the missile aerodynamics have a destabilizing effect. 

4.2.3 Flight Condition (Mach 0.9 at Sea Level) 

The determinant plots for the 3 and 9 DOF unaugmented 
airplane are shown on Figure 20.  These plots indicate that 
each system is stable. 

The sensor responses for the unaugmented airplane are 
shown on Figure 21.  Again, the effect of adding DOF on the 
value of the roll rate per one degree aileron at the lowest 
frequency point is apparent.  It reduces from approximately 
23 for the 3 DOF system to approximately 6 for the 9 DOF. 

The sensor responses with one loop closed are shown on 
Figure 22.  The peak that occurs at 3 Hz on the roll rate 
response to rudder drive, with the roll loop closed for the 
3 DOF case is of interest.  Since there are no structural 
natural frequencies in the 3 DOF system and there is no corres- 
ponding peak for the 3 DOF unaugmented system (Figure 21), 
this peak is associated with a combined rigid body and control 
system resonance.  Referring to the plots in Figure 22 for the 
9 DOF system it can be seen that this peak is suppressed by the 
addition of the natural mode of vibration. 
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The Nyquist plots obtained by closing the yaw loop first 
are shown on Figure 23.  The 3 DOF system is still stable 
although the gain margin and phase margin are both less than 
computed for the 20,000 ft flight condition.  The 9 DOF Nyquist 
plot indicates that the system is stable with only the yaw loop 
closed.  However, the 9 DOF system with both loops closed is 
unstable.  The negative axis crossing has a magnitude of 1.15 
and a frequency of 6.3 Hz.  Hence, the Nyquist criteria indi- 
cates the 9 DOF system to be unstable at sea level and unstable 
at a frequency close to the frequency of the instability 
encountered during the flight tests. 

The Nyquist plots obtained by closing the roll loop first 
are shown on Figure 24. Again, the 3 DOF system is stable with 
the roll loop closed and with both loops closed.  The 9 DOF plot 
indicates that the 9 DOF system is unstable with only the roll 
loop closed.  The frequency of the negative axis crossing is 
6.3 Hz.  Hence, the transfer function for the airplane with the 
roll loop closed has one pair of complex poles on the right hand 
side of the Laplace plane.  Therefore, if the yaw loop is to 
stabilize the system it must produce a negative enclosure of 
the minus-one point.  The Nyquist plot on the lower right of 
Figure 24 does have a counterclockwise loop in the vicinity of 
6.3 Hz but it does not enclose the minus-one point.  Hence, 
the Nyquist criteria indicates that the system remains unstable 
with the yaw loop closed.  It is also clear from this series of 
Nyquist plots that the instability is caused by tbe roll loop 
rather than the yaw loop. 

The 3 Hz peak observed in the roll rate response, per 
rudder drive with the roll loop closed for the 3 DOF system, 
Figure 22, does not have a noticeable impact on the Nyquist 
plots.  This sensor response function along with the other 
sensor response functions are combined with the feedback loops 
in the yaw loop to form the 3 DOF Nyquist plot identified in 
Figure 24 as "Rudder Drive, Roll Loop Closedn.  The 3 Hz point 
on this Nyquist plot has a magnitude of 1.367 and a phase angle 
of -149°.  There is no peak in the Nyquist plot at this point. 
Also, comparing this Nyquist plot with the one on Figure 23 
identified as "Rudder Drive, Both Loops Open", it can be seen 
that both have approximately the same gain margin and phase 
margin. 
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Figure 23    NYQUIST PLOTS WITH YAW LOOP CLOSED FIRST,  M=0.9, 
S.L.,  MISSILES-ON,  FLEXIBLE DERIVATIVES, 
TRUNCATED GVT MODES 
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Figure 24    NYQUIST PLOTS WITH ROLL LOOP CLOSED FIRST,  M=0.9, 
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Tlie determinant plots for the airplane with the yaw loop 
closed are shown on Figure 25.  Again, the 3 DOF system has a 
false indication of instability for the reasons given previously 
(Section 4.2.2.4).  The 9 DOF plot indicates the system to be 
stable. 

The determinant plots for the airplane with the roll loop 
closed are shown on Figure 26.  The 9 DOF plot shows a rapid 
phase reversal at approximately 6.3 Hz.  The straight line on 
the determinant plot indicates the phase angle change for one 
incremental change in frequency (approximately .05 Hz).  A true 
indication of an instability can be determined by plotting the 
determinant plot for small variations in flight conditions about 
the unstable flight condition.  On the stable side there will be 
no reversal.  At the flight condition corresponding to the 
boundary of the instability the determinant plot will have a 
phase reversal and the magnitude will pass through the origin 
(zero magnitude). Above the unstable, flight, boundary the 
determinant plot phase will reverse rapidly but will not pass 
through the origin.  The phase reversal that occurs at the very 
low frequency is not understood at this time.  It appears likely 
to have been caused by the method of interpolating the aero- 
dynamic terms.  It does not appear on the Nyquist plots at 
20,000 feet but the aerodynamic terms are smaller compared with 
the stiffness and mass terms at the higher altitudes. 

The stability data is tabulated in Table 7. 

4.2.4 Flight Condition (Mach 0.9 at 5,000 Ft) 

The analysis was also conducted at Mach 0.9 at 5,000 feet. 
The stability data is tabulated on Table 8.  This table indi- 
cates that the 9 DOF system is neutrally unstable at this 
flight condition.  That is, the Nyquist plot passes very nearly 
through the minus-one point at a frequency of 6.5 Hz. 
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4.2.5  Roll Effectiveness 

_   The shape of the unstable region on a Mach-altitude plot 
is believed to be explainable by Mach number and aeroelastic 
effects on the control surface effectiveness.  The rolling 
moment per unit aileron deflection (one degree aileron plus 
0.25 degrees horizontal tail) as predicted by wind tunnel data 
and modified by computed aeroelastic effects is shown in 
Figure 27.  It can be seen that the rolling effectiveness has 
a maximum in the transonic region at all altitudes and, 
of course, decreases with increasing altitude. 

At the risk of over simplifying, it is of interest to 
determine the unstable boundary assuming that the instability 
occurs at a constant product of roll moment effectiveness and 
roll channel gain.  Also, assuming that the flight test 
instability boundary passes through Mach 0.9 at 20,000 feet 
for the referenced control system, it can be seen from Figure 27 
that the roll effectiveness at that point is 7700 ft lb/deg. 
A plot of a constant roll moment on a Mach altitude plot is* 
shown on the lower part of Figure 27.  The location of the 
instabilities which were observed on Flights 8, 9 and 10 are 
shown for comparison (all of these flights were conducted with 
the reference control system and hence all had the same roll 
channel gain).  The boundary encloses all of the flight con- 
ditions at which the instability was observed on these three 
flights.  It does not enclose the unstable points that were 
obtained later on Flight 23 at 30,000 feet.  However the 
instability was not present at 30,000 feet for other'flights 
and the constant roll moment encloses the unstable points that 
were repeated on several flights. 

For comparison the unstable boundary obtained by the 
analysis using the same rationale is shown on the lower part 
of Figure 27. At Mach 0.9 the 9 DOF analysis was unstable at 
sea level, close to neutrally stable at 5,000 feet and stable 
at 20,000 feet.  Hence, plotting a constant roll moment curve 
for the roll moment effectiveness at Mach 0.9 at 5,000 feet 
yields the unstable boundary on Figure 27. Again,'it can be 
seen that the analysis is unconservative. 

The primary source of the unconservatism is believed to be 
caused by the decision to multiply the computed rigid body 
generalized aerodynamic terms by a factor selected to force 
agreement with quasi unsteady aerodynamic terms based on flex- 
ible stability derivatives at very low frequencies.  This is a 
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Figure  27     ROLL EFFECTIVENESS AND CONSTANT ROLL MOMENT CURVES 
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rational approach for ehe  3 DOF rigid body system of equations 
and provided a means to correlate directly with earlier stability 
and control analyses.  However, flexible degrees of freedom pro- 
duce additional flexibility effects.  If a sufficiently large 
number of modes are employed the flexibility effects produced by 
the modes would be the same as computed by a static aeroelastic 
analysis, if the modes and static aeroelastic analysis were 
based on a common flexibility matrix.  In that event, the com- 
puted aerodynamic data should be modified to match the rigid 
wind tunnel derivatives.  But when a small number of modes are 
employed the flexible contribution is different.  If a measured 
set of structural influence coefficients were available, the 
residual flexibility matrix. Reference 5 , could have been 
employed to account for the difference between flexible effects 
produced by a truncated set of modes and the true flexibility of 
the airplane.  This approach is also discussed in References 6 
and 7.  Since a measured set of structural influence coeffi- 
elen cs were not available, it was decided to match the flexible 
stability derivatives and use a rather small number of modes. 
In particular, reducing all the control surface Qrg terms by 
ratioing to the flexible stability derivatives caused the un- 
conservatism. 

Since the analysis correlated with the flight test data 
very well except for the unconservatism, it was used to evaluate 
the effect of several proposed modifications of the control 
system for stabilizing the airplane.  The modification that was 
chosen consisted of reducing the roll gain, MGR, to 75 percent 
of its reference value and inserting a "notch filter" in the 
roll channel feedback loop.  The transfer function for the filter 
is shown at the bottom of Table 9.  The magnitude varies from 
unity at zero frequency to 0.4 at 6.5 Hz.  The phase angle varies 
from zero at zero Hz to approximately 70 degrees at 6.5 Hz, 
The net effect on the unstable loop on the Nyquist plot is to 
reduce the amplitude and add approximately 70 degrees phase 
shift.  This modification produced no adverse effects on any 
other natural mode.  The stability data with the filter included 
is tabulated in Table 9 for the Mach 0.9 at 5,000 feet flight 
condition.  These data can be compared directly with the data 
in Table 8 to see the stabilizing effect of the modification. 

The same modification was made to the airplane flight 
control system and the airplane was subsequently tested to 
limit speed.  The airplane proved to be very stable throughout 
its flight envelope. 
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4.3  STABILITY ANALYSES - TIP MISSILE-OFF 

4.3.1 Generalized Coordinates 

Analyses were conducted for 3, 4, and 9 DOF.  The three 
rigid body degrees of freedom were included in all analyses. 
The natural modes of vibration that were included in the 
analyses for each set of DOF are shown in Table 10. 

4.3.2 Flight Condition (Mach 0.9 at 20,000 Feet) 

These analyses were conducted 1) with the computed rigid 
aerodynamic terms multiplied by factors to force agreement 
with wind tunnel measured derivatives corrected for aero- 
elastic effects (same correction factors used for the 
missile-on analyses) and 2) with factors to force agreement 
with the wind tunrol measured rigid stability derivatives. 
The correction factors based on rigid derivatives were applied 
to the same computed terms as the correction factors based on 
flexible derivatives.  Specifically, the 3 by 3 array of rigid 
body aerodynamic terms were corrected.  The 3 by 1 array of 
control surface terms for both aileron and rudder deflections 
were corrected.  The terms in the aileron column resulting 
from the product of natural mode deflections and aileron 
pressure were multiplied by the same factor used to correct 
the Ctfa derivative.  The corresponding terms in the rudder 
column were multiplied by the same factor used to correct the 
Cy5r derivative. 

4.3.2.1 Flexible Stability Derivatives 

The determinant plots for the unaugmented airplane are 
shown in Figure 28.  These plots indicate that both the 3 and 
9 DOF systems are stable. 
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Figure 28     DETERMINANT PLOT FOR UNAUGMENTED AIRPLANE,  M=0.9, 
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The sensor responses for the unaugmented airplane are shown 
in Figure 29.  These curves have characteristics similar to the 
missile-on case except that the lowest structural natural fre- 
quency peak is approximately 11 Hz. 

The sensor responses for the airplane with one loop closed 
are shown on Figure 30. A very small peak at approximately 
2.5 Hi can be seen on the 3 DOF plot of roll rate response per 
rudder drive with the roll loop closed.  This peak is a combined 
rigid body and control system resonance that is similar to the 
peak observed for the missile-on case in Figure 22. 

The Nyquist plots obtained by closing the yaw loop first 
are shown on Figure 31.  These plots indicate that the 3 DOF 
system with the yaw loop closed and with both loops closed are 
stable. The 9 DOF plots also indicate the system to be stable 
However, the gain margin with only the yaw loop closed is lower 
than the gain margin in the roll loop with both loops closed. 
The frequency of the negative axis crossing is 4.2 and 3.8 Hz 
respectively, as compared with the 3.5 Hz frequency of the 
instability observed during flight tests. 

The Nyquist plots obtained by closing the roll loop first 
are shown in Figure 32.  The 3 DOF system still shows the same 
degree of stability.  The 9 DOF system plots also indicate the 
system to be stable but with the yaw channel having the lower 
gain margin. 

The determinant plots for the airplane with the yaw loop 
closed are shown on Figure 33 and indicate both the 3 and 0 DOF 
systems to be stable. 

The determinant plots for the airplane with the roll loop 
closed are shown on Figure 34 and they indicate both the 3 and 
9 DOF systems to be stable. 

The stability data is tabulated in Table 11 for 3 4 
and 9 DOF. '  ' 
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Figure 29    SENSOR RESPONSE FOR UNAWMENTED AIRPLANE,  M=0.9, 
20,000 FT,  MISSILES-OFF,  FLEXIBLE DERIVATIVES, 
TRUNCATED GVT MODES 
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Figure 29  (CONTINUED) 
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RUDDER DRIVE 3 DOF RUDDER DRIVE 3 DOF 

Note: Rudder Drive, Roll Loop Closed 
Aileron Drive, Yaw Loop Closed 
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Figure  30    SENSOR RESPONSE WITH ONE LOOP CLOSED,  M=0.9, 
20,000 FT,  MISSILES-OFF,  FLEXIBLE DERIVATIVES, 
TRUNCATED GVT MODES 
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Figure 30  (CONTINUED) 
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Rudder Drive,   Both Loops  Open 
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Aileron Drive,   Yaw Loop Closed 
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Figure  31    NYQUIST PLOTS WITH YAW LOOP CLOSED FIRST,  M=0.9, 
20,000 FT,   MISSILES-OFF,   FLEXIBLE  DERIVATIVES, 
TRUNCATED GVT MODES 
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Aileron Drive, Both Loops Open ; Rudder Drive, Roll Loop Closed 
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Figure 32    NYQUIST PLOTS WITH ROLL LOOP CLOSED FIRST,  M=0.9, 
20,000 FT,   MISSILE3-0FF,   FLEXIBLE  DERIVATIVES, 
TRUNCATED GVT MODES 
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4.3.2.2 Rigid Stability Derivatives 

In these analyses the unsteady aerodynamic terms, Qrsi 
for the rigid body modes have been modified to agree with the 
rigid wind tunnel derivatives (Table 1). No correction factor 
was applied to the flexible rows and columns of the Qrs matrices. 
A multiplication factor was developed from the ratio of the rigid 
C/8a tu the one computed by the doublet lattice program, to apply 
to the column of QrSa terms.  Individual factors were developed 
for QT8r» Q^fir and Q^8r in tiie same  manner' '^e  Qlßr factor was 
used to correct the remaining flexible mode terms of the 6r 
column. 

The determinant plots for the unaugmented airplane are 
shown on Figure 35.  These plots indicate that both the 3 and 
9 DOF systems are stable. 

The sensor responses for the unaugmented airplane are 
shown in Figure 36.  Comparing these sensor response curves 
with the corresponding curves obtained for the flexible 
derivative show that the rigid body resonances and the natural 
mode resonances have significantly higher response peaks when 
the rigid body derivatives are employed. 

The Nyquist plots obtained with both loops open are shown 
on Figure 37. The Nyquist plots with one loop closed were not 
computed.  Comparing these plots with the corresponding plots 
shown on Figures 31 and 32 it can be seen that the gain margin 
using the rigid derivatives are lower than the gain margins 
obtained with the flexible derivatives. However, the system 
is still stable. 

The stability data is tabulated in Table 12 for 3, 4, and 
9 DOF. 
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TRUNCATED GVT MODES 
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Figure  36    SENSOR RESPONSE FOR UNAUGMENTED AIRPLANE,  M=0.9, 
20,000 FT,   MIS SITZES-OFF,   RIGID DERIVATIVES, 
TRUNCATED GVT MODES 
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Figure 37    NYQUIST PLOTS WITH BOTH LOOPS  OPEN, M=0.9,   20,000 FT, 
MISSILES-OFF,  RIGID DERIVATIVES,   TRUNCATED GVT MODES 
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4.3.3 Flight Condition (Mach 0.9 at S.L., 
Rigid Stability Derivative) 

The effect of modifying the rigid body aerodynamic terms 
to agree with thp wind tunnel based rigid stability derivatives 
are shown in this section. 

The determinant plots for the unaugmented airplane are 
shown on Figure 38.  The phase reversal at approximately 1 Hz 
is not understood.  Since it is assumed that there are no left 
hand side poles in ehe determinant for the unaugmented airplane, 
any phase reversal should be an indication of a right hand side 
zero and thus an instability.  However, the frequency of the 
instability is low and the 3 DOF system does not show the in- 
stability.  The reversal might be the result of the aerodynamic 
interpolation method employed.  The reversal is treated here 
as if it were a false sign of an instability. 

The sensor responses for the unaugmented airplane are 
shown in Figure 39,  The sensor responses with one loop closed 
are shown in Figure 40.  The peak in the roll rate per rudder 
command with the roll loop closed, for the 3 DOF system, now 
occurs at approximately 4.3 Hz as shown in Figure 40.  Comparing 
with the roll rate per rudder command for the unaugmented air- 
plane (Figure 39) it can be seen that the effect of closing the 
roll loop is to reduce the magnitude of the peak in the dutch 
roll mode and introduce a second peak at 4,3 Hz.  This effect 
was observed on Figures 22 and 30 earlier but it is more pro- 
nounced at sea level and more pronounced when the larger rigid 
stability derivatives are employed.  Some indication of the 
4.3 Hz peak can be seen on the 9 DOF plots but the peak is very 
small. 

The Nyquist plots with the yaw loop closed first are 
shown in Figure 41,  The 3 DOF system is very close to being 
unstable with only the yaw loop closed.  The negative axis 
crossing is .99 at a frequency of 4,4 Hz,  The 3 DOF system 
with both loops closed is unstable.  It has a negative axis 
crossing of 1,09 at a frequency of 4.1 Hz.  The 9 DOF Nyquist 
plot indicates the system to be unstable with only the yaw 
loop closed.  The unstable frequency is approximately 4.0 Hz. 
The Nyquist plot for the feedback through the roll loop with 
the yaw loop closed fails to produce a negative enclosure of 
the minus one point.  Hence, the 9 DOF system is unstable with 
both loops closed. 
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Figure 38 DETERMINANT PLOT FOR UNAUGMENTED AIRPLANE, M=0.9, S.L., 
MISSILES-OFF, RIGID DERIVATIVES, TRUNCATED GVT MODES 
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RUDDER DRIVE 3 DOF 

RUDDER DRIVE 

RUDDER DRIVE 3  DOF 

3 DOF AILERON DRIVE 3 DOF 

Figure  39     SENSOR RESPONSE FOR UNAUGMENTED AIRPLANE,  M=0.9,   S.L., 
MISSILES-OFF,   RIGID DERIVATIVES,   TRUNCATED GVT MODES 
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Figure 40    SENSOR RESPONSE WITH ONE LOOP CLOSED,   M-0.9,   S.L., 
MISSILES-OFF,   RIGID DERIVATIVES,   TRUNCATED GVT MODES 
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Figure 40  (CONTINUED) 
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Rudder Drive,  Both Loops  Open Aileron Drive,   Yaw Loop Closed 
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Figure 41    NYQUIST PLOTS WITH YAW LOOP CLOSED FIRST,  M-G^,   S.L. 
MISSILES-OFF,  RIGID DERIVATIVES,  TRUNCATED GVT MODES 
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The Nyquist plots with the roll loop closed first are 
shown on Figure 42.  The 3 DOF system with only the roll loop 
closed is a little more stable than the case in which only the 
yaw loop is closed. Hence, the instability appears to be more 
sensitive to yaw loop gain.  The 3 DOF system with both loops 
closed is unstable.  The 9 DOF system is stable with only the 
roll loop closed.  It is unstable with both loops closed. 

The conclusion obtained from the two sets of Nyquist plots 
is that the system is unstable at a frequency of 4.0 Hz compared 
with the 3.5 Hz instability observed during flight tests.  The 
Nyquist plots indicate that the 3 DOF system could be stabilized 
by a gain reduction in either the roll or yaw loops.  However, 
the 9 DOF system could only be stabilized by a reduction in the 
yaw loop gain.  It should be noted that when the roll gain (MGR) 
was reduced during the flight tests the feedback through the 
aileron-rudder interconnect to the yaw channel was also reduced. 
Similarly, a reduction in the yaw gain (MGY) reduced only three 
out of the four feedback paths in the yaw channel. Whereas the 
statements with respect to gain as applied to the Nyquist plots 
refer to gain change in one channel without a change in the 
other channel. 

The determinant plots with the yaw loop closed are shown 
on Figure 43.  The 3 DOF system is stable.  The 9 DOF system 
shows both the same unexplained phase reversal at 1 Hz that 
was observed for the unaugmented airplane.  It also shows a 
180° phase reversal at 4.1 Hz that indicates an instability 
that is in agreement with the conclusion by the Nyquist criteria. 

The determinant plots with the. roll loop closed are shown 
on Figure 44.  The 3 DOF system is stable.  The 9 DOF system 
has a phase reversal at 1 Hz and 1.75 Hz which are interpreted 
as false signs of instability.  There is no phase reversal at 
4.1 Hz.  Hence, the determinant plot and the Nyquist plot are 
in agreement in that the system is stable at 4 Hz with only 
the roll loop closed. 

The stability data obtained from the Nyquist plots and 
the determinant plots are tabulated in Table 13. 
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Figure 42    NYQUIST PLOTS WITH ROLL LOOP CLOSED FIRST, M=0.9,   S.L., 
MISSILES-OFF,   RIGID DERIVATIVES,   TRUNCATED GVT MODES 
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SECTION V 

TRUNCATED       MODE      ANALYST 
WITH       COMPUTED MODES 

5.1  INTRODUCTION 

The analyses reported in this and subsequent sections were 
conducted under this contract, whereas the analysis results of 
all previous sections was a part of the YF-16 developmental 
contract. All analyses in this section and in the subsequent 
sections employ computed natural modes of vibration tuned to 
agree with the GVT results.  The stability analyses were con- 
ducted for the following configurations and flight conditions: 

Missiles-On:  M = 0.9, Alt = 20,000 Ft 
Missiles-Off: M = 0.9, Alt = 15,000 Ft 

The airplane was unstable at these two conditions with the 
reference flight control system. 

The analyses reported in this section employed a later 
version of the doublet lattice method, described in Reference 8 
The computer program designation was H7WC.  The computed aero- 
dynamic terms were multiplied by factors to force agreement with 
rigid wind tunnel based stability derivatives.  Only aerodynamic 
terms associated with the rigid body degrees of freedom were 
modified. 

The aerodynamic terms were interpolated as a function of 
reduced frequency in a different manner than was employed for 

^%f ?-ySe?.rep0rted ln Section IV. The aerodynamic terms used 
in Section IV were computed by the doublet lattice program for 
six values of reduced frequency. A Tschebychev polynomial 
approximation was employed to interpolate for aerodynamic terms 
at 40 reduced frequencies.  These 40 sets of aerodynamic terms 
Wfr!   L.  lnt:o a comPuter program for computing the Nyquist 
plots.  This program passed a line spline through the 40 sets 
of aerodynamic terms and interpolated for ten additional points 
between each adjacent pair of input points. Hence, the analyses 
were conducted for 430 values of reduced frequency.  The line 
spline interpolation method is generally satisfactory.  However 
it sometimes produces a bow in the interpolated curve between ' 
the first and last pair of reduced frequency supplied data. 
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The method employed in this section and the following sections 
was to use the Tschebychev polynomial approximation method 
to interpolate from aerodynamic data computed directly for 
six values of reduced frequency to the 430 values of reduced 
frequency.  This method produces a smoother set of interpolated 
data. 

5.2 AERODYNAMIC REPRESENTATION 

The aerodynamic panel arrangement is shown in Figure 45. 
The representation consists of 210 panels and 14 slender body 
segments. The tip missile lift and moment were added as 
quasi-unsteady terms in the same manner as employed for the 
analyses in Section IV. Aerodynamic interference between all 
lifting surfaces and the fuselage is inherent in this method. 
Comparisons between the stability derivatives computed by 
this method, the method employed in Section IV and the wind 
tunnel based derivatives are shown in Table 14. 

The multiplying factors that were applied to the computed 
generalized aerodynamic terms to force agreement with the wind 
tunnel based rigid stabilit derivatives are shown in Table 15. 
No modification was made to any aerodynamic terms which contained 
either a natural mode weighting function or a natural mode aero- 
dynamic pressure distribution. 
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Table 14 

COMPARISON OF AERODYNAMIC MATH MODELS 
WITH WIND TUNNEL DATA 

M=0.9 Rigid Stabili ty Derivatives 

Stability 
Derivative 
(Per Radian) 

Section 4 
Math Model 

Section 5 
Math Model 

Wind Tunnel 
Data 

cy/9 
-.70 -1.055 -1.243 

Cn0 .327 .320 .260 

etß -.141 -.098 -.1157 

Cyr .75 .718 .90 

Cn,. -.3785 -.394 -.456 

C*r .152 .0882 .171 

S -.269 -.0884 .014 

C„p .129 .0346 -.004 

% 
-.361 -.341 -.325 

cy<>a 

^(Ja 

_ 

- 

.126 

-.055 

0 

-.038 

c«i€ 
-.205 -.203 -.1339 

cyör .285 .258 .209 

C*ör -.158 -.142 -.1066 

Ctdr 
.0628 .0493 .0355 
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5.3 STRUCTURAL REPRESENTATION 

A finite element representation of the structure was 
employed.  The stiffness matrix of each element was assembled 
into a stiffness matrix of the entire unsupported structure. 
Only one side of the plane of symmetry was represented. 
Boundary conditions were employed along the plane of symmetry 
to restrict the simulation to antisymmetric loads and deflec- 
tions. A minimum number of coordinates necessary to remove 
the rigid body antisymmetric modes were fixed.  The matrix was 
then inverted to obtain the antisymmetric flexibility matrix 
for the supported case.  The idealization of the structure is 
shown by the solid lines in Figure 46.  The dashed lines show 
the external lines of the airplane. 

The antisymmetric natural modes of vibration of the 
airplane were computed and compared with the modes measured 
during the ground vibration tests.  The finite element repre- 
sentation was altered on a trial and error basis to improve 
the correlation between analysis and test results.  It was 
found that the first antisymmetric mode with the tip missile 
installed was sensitive to small variations in stiffness in 
the wing tip region.  The missile attaches to the launcher by 
three rails that slide in a track.  The correlation was improved 
by representing all three tie points to the launcher rather than 
simulating only the forward and aft connections as was done in 
the early simulations. A comparison between the computed and 
measured natural frequencies for the missile-on and missile-off 
configurations are shown in Tables 16 and 17. 

Stability analyses were conducted for 9 and 19 DOF. 
The 9 DOF analyses employed three rigid body DOF and six natural 
modes of vibration.  The six modes for the missile-on configura- 
tion were modes 1, 2, 3, 4, 5 and 9 as identified on Table 16. 
The 6 modes for the missile-off configuration are identified as 
modes 1, 2, 3, 4, 6 and 8 on Table 17.  The 19 DOF analyses 
employed all 16 modes shown on both Tables 16 and 17. 
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Table 16 

COMPARISON OF  COMPUTED AND MEASURED ANTISYMMETRIC 
MODES FOR MISSILE-ON CONFIGURATION 

Mode Analysis Test Description 

1 6.23 6.5 Missile Pitch 

2 8.38 8.0 1st Wing Bending 

3 14.86 15.2 1st Fin Bending 

4 16.70 17.7 1st Fuselage Side Bending 

5 22.40 22.0 2nd Wing Bending/H.T. Bending 

6 25.64 25.7 1st Horizontal Tail Bending 

7 31.55 39.0 2nd Fin Bending 

8 33.73 35.0 Missile Roll 

9 35.96 36.6 Wing Torsion 

10 38.53 41.4 Wing Torsion 

11 42.71 44.1 Rudder Rotation 

12 46.12 51.0 Fin Torsion & Rudder Rotation 

13 51.22 51.2 Wing/Empennage 

14 52.65 - 2nd Fuselage Side Bending 

15 54.74 56.7 2nd Horizontal Tail Bending 

16 58.45 
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Table 17 

COMPARISON OF COMPUTED AND MEASURED ANTISYMMETRIC 
MODES FOR MISSILE-OFF CONFIGURATION 

Mode Analysis Test Description 

1 10.83 10.9 1st Wing Bending 

2 15.08 1st Fin Bending 

3 16.72 1st Fuselage Side Bending 

4 17.07 17.4 Launcher Pitch 

5 25.27 1st Horizontal Tail Bendivig 

6 30.64 32.0 2nd Wing Bending/H.T. Bending 

7 31.56 2nd Fin Bending 

8 35.29 37.4 Wing Torsion 

9 38.63 40.8 Wing Torsion 

10 42.71 Rudder Rotation 

11 46.07 Fin & Rudder 

12 52.05 Wing/Empennage 

13 52.65 2nd Fuselage Side Bending 

14 54.97 57.4 2nd Horizontal Tail Bending 

15 58.53 63.4 

16 66.18 Horizontal Tail Pitch 
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In addition, several special purpose stability analyses 
were conducted for the missile-on configuration.  These 
consisted of a 1 DOF analysis using only the first natural mode 
and a 5 DOF analysis using the three rigid body modes and the 
first two natural modes.  An analysis was also conducted which 
employed only the three rigid body degrees of freedom. 

For the missile-off configuration, additional stability 
analyses were conducted which employed only the three rigid 
body degrees of freedom.  Also, a 1 DOF analysis was conducted 
which employed only the rigid body roll mode. 

151 

kiki-km AirrtiM wrtf <im Am i ^'■~-->■'-'  «hmini Mmmr^irif J 



-" ■^.■■r ' ■ " >«M mmm 

5.4 STABILITY ANALYSIS - TIP MISSILE-ON 
M=0.9 AT 20,000 FEET 

5.4.1 Determinant Plots for Unaugmented Airplane 

The determinant plots for the 1, 5, 9 and 19 DOF unaugmented 
airplane are shown on Figure 47.  The plots indicate that all 
systems are stable.  The 5 and 9 DOF polar plots on Figure 47 
have different appearances than the corresponding plots in 
Section 4 (Figure 20),  The difference is primarily caused by 
the choice of the scaling factor applied to the determinant 
before evaluating the logarithm of the magnitude. However, the 
plots of phase angle versus frequency are very similar. 

The 19 DOF determinant plot has no additional 180° phase 
angle changes when compared with the 9 DOF plot because the 
additional degrees of freedom have natural frequencies above 
the highest frequency at which the determinants were evaluated. 

5.4.2 Sensor Response 

L/ 

The sensor response plots for the unaugmented airplane are 
shown in Figure 48.  The 9 DOF plots can be compared with the 
plots on Figure 14 in order to compare the differences produced 
by the assumptions employed in Sections 4 and 5.  The plots 
have similar characteristics but the magnitudes at the resonant 
frequencies are different.  Note that the roll rate per one 
degree rudder peak magnitude in the 6 Hz range is approximately 
twice as large on Figure 48 as compared with Figure 14. 
Similarly, the roll rate per one degree aileron deflection 
peak magnitude is approximately 2.8 times larger on Figure 48 
as compared with Figure 14.  This increase in response is 
largely caused by the difference in the Q]^ and Ql^a terms. 
In Section 4 the computed values of these terms were multiplied 
by factors of .486 and .466, respectively, whereas in Section 5 
the corresponding factors were both unity. Similar observations 
can be made by comparing the 5 DOF plots of Figure 48 with the 
corresponding plots of Figure 14. 

A comparison of the 1 DOF (first natural mode) plots with 
the corresponding 5 DOF plots shows a considerable difference 
in the magnitude of the peak near 6 Hz. 
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A comparison of the magnitude of the peak near 6 Hz for the 
I, 5, 9 and 19 DOF systems shows the difference between the 1 DOF 
and 5 DOF systems to be much larger than the difference between 
the 9 DOF and 19 DOF systems.  This comparison gives an indication 
of the apparent rate of convergence as the number of degrees of 
freedom are increased. 

The sensor response with the yaw loop closed is shown on 
Figure 49.  The difference between the roll rate response with 
the yaw loop closed and the roll rate response with the yaw loop 
open can be seen by comparing Figure 49 with Figure 48.  The 
magnitude of the peak in the 6 Hz range is a little larger with 
the yaw loop closed for the 1, 5, 9 and 19 DOF systems« 

5.4.3 Nyquist Plots 

The Nyquist plots with the yaw loop closed first are shown 
on Figure 50. The plots of feedback through the yaw loop with 
both loops open show no enclosures for the 1, 5, 9 and 19 DOF 
systems.  The frequency of the negative axis crossing is approxi- 
mately 4.5 Hz for the 5, 9 and 19 DOF systems and 5.65 Hz for the 
1 DOF system.  Comparing the plots for the 5 and 9 DOF systems 
with the plots for the corresponding analyses of Section IV 
(Figure 16) it can be seen that the magnitude of the negative 
axis crossing on Figure 50 is higher for the 5 DOF system but 
approximately the same for the 9 DOF system.  The two sets of 
analyses are in agreement on the conclusion that the system is 
stable with only the yaw loop closed. 

However, the plot of open loop feedback through the roll 
loop with the yaw loop closed (Figure 50) shows a positive 
enclosure of the minus-one point for the 5, 9 and 19 DOF systems. 
All show a negative axis crossing at a frequency of approximately 
6.1 Hz.  The magnitude of the negative axis crossing is approxi- 
mately the same for the 5 and 9 DOF systems (1.78 and 1.80, 
respectively).  The 19 DOF system has a slightly lower negative 
axis crossing magnitude (1.55).  Hence, the larger response of 
the roll rate sensor in the 6.1 Hz frequency range, noted in the 
previous subsection, produces the instabilities whereas the 
corresponding analyses of Section IV showed the system to be 
stable (although only marginally stable).  It is also of interest 
to note that although the primary source of the aeroservoelastic 
coupling is the first natural mode, a 1 DOF system analysis 
using only the first natural mode produces a negative axis 
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crossing with a magnitude approximately one half of the magnitude 
for the 5 DOF system.  Hence, the rigid body degrees of freedom 
and the second natural mode make a considerable contribution to 
the magnitude of the negative axis crossing. 

The Nyquist plots for open loop feedback through the roll 
loop with both loops open are shown on Figure 51.  The minus-one 
point has a positive enclosure for the 5, 9 and 19 DOF systems. 
The frequency and magnitude of the negative axis crossings are 
almost identical with the crossings that occur with the yaw loop 
closed.  Hence, the yaw loop appears to have very little effect 
on the stability of the system.  The Nyquist plot for the 1 DOF 
system does not enclose the minus-one point.  It shows a negative 
axis crossing that is very close in both frequency and magnitude 
to the negative axis crossing for feedback through the roll 
channel with the yaw loop closed.  Again, the yaw loop appears 
to have very little effect on the stability of the system. 
The analysis for determining the open loop feedback through 
the yaw loop with the roll loop closed was not conducted. 

5.4.4 Determinant Plot With the Yaw Loop Closed 

Determinant plots with the yaw loop closed are shown in 
Figure 52.  These plots have no phase reversals and therefore 
indicate that the 1, 5, 9 and 19 DOF systems with the yaw loop 
closed are stable. 

5.4,5 Summary 

In summary the correlation between analysis and test is 
improved by the assumptions employed in Section V in the sense 
that the analysis indicates the system to be unstable at 
Mach 0.9 at 20,000 feet at a frequency very close to the fre- 
quency observed during flight tests.  By comparison the 9 DOF 
analysis in Section IV indicated the system to be stable with 
a negative axis crossing of .78 and the corresponding analysis 
in this section indicates a negative crossing of 1.80.  Since 
the boundary of the instability passes somewhere near the Mach 
0,9 at 20,000 feet flight point the analysis of the 9 DOF system 
in this section is more unstable than flight tests indicate. 
The increase in the number of Jegrees of freedom from 9 to 19 
reduces the magnitude of the crossing to 1.55 and improves the 
correlation. 
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Figure 51    NYQUIST PLOTS WITH ROLL LOOP CLOSED FIRST,  M=0.9, 
20,000 FT,  MISSILES-ON,   TRUNCATED COMPUTED MODES 
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The 5 DOF and 9 DOF system analyses in this section 
have virtually the same negative axis crossing magnitude and 
frequency. 

The difference between the assumptions employed in 
Sections IV and V that is the principal cause of the difference 
in the stability of the system is the multiplying factors that 
were applied to the Qi<ja term.  In Section IV that factor was 
.466 and in Section V that factor was 1.0. 

The stability data for the 1, 5, 9 and 19 DOF systems are 
tabulated in Table 18.  In addition, stability data is also 
tabulated for a 3 DOF system employing the three rigid body 
degrees of freedom.  This 3 DOF analysis employed aerodynamic 
terms which were multiplied by factors to force agreement at 
low frequencies with the wind tunnel measured rigid stability 
derivatives.  Comparing the 3 DOF data in Table 18 with the 
3 DOF data in Table 5 shows the difference produced in forcing 
aerodynamic agreement with rigid wind tunnel derivatives vs. 
forcing agreement with flexible wind tunnel based derivatives. 

Comparison of the data tabulated for the 1 DOF system 
analysis with the 5, 9 and 19 DOF analysis shows a negative 
axis crossing at approximately the same frequency (6.1 Hz) 
but with approximately half the magnitude« 
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5.5  STABILITY ANALYSIS - TIP MISSILE-OFF 
M=0.9 AT 15,000 FEET 

5.5.1 Determinant Plots for Unaugmented Airplane 

The determinant plots for the 9 and 19 DOF unaugmented 
airplane are shown on Figure 53.  The closest flight point 
analyzed in Section IV is Mach 0.9 at 20,000 feet.  The deter- 
minant plot is shown in Figure 28 for comparison.  The plots 
of phase angle versus frequency for the 9 DOF system are very 
similar. 

Comparing the 9 and 19 DOF plots on Figure 53 show expected 
characteristics. There is a larger variation in the magnitude 
in the 19 DOF versus the 9 DOF.  The plots of phase angle versus 
frequency are very similar.  The plots indicate that both the 
9 DOF and 19 DOF unaugmented systems are stable. 

5.5.2 Sensor Response 

The sensor response plots for the unaugmented airplane 
are shown in Figure 54. Again, the closest flight condition 
analyzed in Section IV was Mach 0.9 at 20,000 feet.  The sensor 
response for that flight condition is shown in Figure 29. 
In the 3 to 4 Hz range the sensor response per degree rudder 
are very nearly the same when comparing the plots on Figure 29 
and Figure 54.  However, the roll rate per degree aileron is 
higher on Figure 54 in the 3 to 4 Hz range. 

Comparing the sensor response for 9 and 19 DOF in Figure 54 
shows the sensor response in the 3 to 4 Hz range to be generally 
lower for the 19 DOF system for all sensors. 

The sensor response wich the yaw loop closed is shown in 
Figure 55.  Closing the yaw loop suppresses the peak at the 
rigid body resonance near .75 Hz.  The response in the 3 to 4 Hz 
range is approximately the same with the yaw loop open or closed, 
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Note:    Aileron Drive,   Yaw Loop Closed 

AILERON  DRIVE 9  DOF 

Figure  55    SENSOR RESPONSE WITH ONE LOOP CLOSED,  M=0.9, 
15,000 FT, MISSILES-OFF,   TRUNCATED COMPUTED MODES 
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5.5.3 Nyquist Plots 

The Nyquist plots with the yaw loop closed first are shown 
on Figure 56.  The 9 DOF plot of open loop feedback through the 
yaw loop with both loops open shows no enclosures of the minus- 
one point.  The negative axis crossing has a magnitude of .426 
at a frequency of 4.49 Hz.  The 9 DOF plot of open loop feedback 
through the roll loop with the yaw loop closed also shows no 
enclosures of the minus-one point.  The plot crosses the nega- 
tive axis with a .magnitude of .570 at a frequency of 3.93 Hz, 
The corresponding plot for the 29  DOF system shows a negative 
axis crossing with magnitude .418 at a frequency of 3.77 Hz. 
Increasing the number of degrees of freedom is again stabilizing 

The Nyquist plots for the open loop feedback through the 
roll loop with both loops open are shown on Figure 57.  The 
plots indicate no enclosures of the minus-one point for either 
the 9 or 19 DOF system.  The frequency and magnitude of the plot 
at the negative axis crossing closest to the minus-one point are 
very similar to corresponding data obtained with the yaw loop 
closed. 

5.5.4 Determinant Plot With the Yaw Loop Closed 

Determinant plots with the yaw loop closed are shown in 
Figure 58.  These plots have no phase reversals and therefore 
indicate that both the 9 and 19 DOF systems with the yaw loop 
closed are stable. 
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S. 

Figure 56    NYQUIST PLOTS WITH YAW LOOP CLOSED FIRST,  M=0.9, 
15,000 FT,  MISSILES-OFF,   TRUNCATED COMPUTED MODES 
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Figure 57 NYQUIST PLOTS WITH ROLL LOOP CLOSED FIRST, M=0.9, 
15,000 FT, MISSILES-OFF, TRUNCATED COMPUTED MODES 
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5.5.5 Summary 

The missile-off stability data is tabulated in Table 19 
for 3, 9, and 19 DOF.  In summary, the correlation between 
analysis and flight was not significantly improved for the 
missile-off configuration.  Comparing Table 19 with Table 10 
indicates that the 9 DOF system is slightly less stable as 
analysed in this section as compared with Section IV.  However, 
at least part of that decrease in stability is caused by con- 
ducting the analysis at 15,000 feet rather than 20,000 feet. 
Furthermore, the 19 DOF system analysis should be more reliable 
than the 9 DOF analysis and it shows a high degree of stability. 
Hence, the analysis method of this section does not show good 
correlation with the flight test experience with the missiles- 
off. 

It is of interest to note that if no correction factors 
had been applied to the computed aerodynamic terms the analysis 
would have come closer to predicting the instability.  For 
example, the roll rate response per aileron deflection is pri- 
marily controlled by the aerodynamic roll moment per aileron 
deflection in the frequency range below the first natural mode 
frequency.  This term (see Table 15) was multiplied by a factor 
0.66 to better correlate with measured data.  Had this factor 
not been applied it would have effectively increased the gain 
in the roll channel by the factor 1.52 (inverse of the factor 
0.66).  The 3 DOF Nyquist plot of feedback through the roll 
channel with the yaw loop open has a negative axis crossing 
of 0.57 (Table 19).  Multiplying 0.57 by 1.52 yields a crossing 
of 0.87 which is very close to correlating with flight test 
results.  Similar conclusions can be drawn by observing the 
factors applied to the rudder derivatives (Table 15) and de- 
ducing the effect on the Nyquist data (Table 19) for feedback 
through the yaw channel. 

Also tabulated in Table 19 are the results of a 1 DOF 
analysis to compute the feedback through the roll loop with 
both loops open.  Rigid body roll is the single degree of 
freedom employed in this analysis.  It can be seen that the 
frequency and magnitude of the negative axis crossing for the 
1 DOF system is almost identical to the 3 DOF system. 
Inspection of the frequency response curve for roll rate per 
unit aileron deflection shows that both the magnitude and phase 
of the 1 DOF and 3 DOF to be very nearly the same with the 
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exception of a very narrow frequency range near the Dutch Roll 
mode.  The agreement is also good when comparing the 1 DOF system 
with the 9 and 19 DOF systems over a frequency range from zero 
to approximately 7 Hz, again with the exception of the frequency 
range near the Dutch Roll mode.  The roll rate per unit aileron 
deflection has a phase lag near 80 degrees at 4 Hz. At this same 
frequency the phase lag produced by the combination of the 
command servo, power actuator, and sensor frequency response 
functions is approximately 100°. Hence, the Nyquist plots cross 
the negative axis at this frequency for almost any number of 
degrees of freedom. A 1 DOF analysis using quasi-steady aero- 
dynamics yields the same results.  It shows the magnitude of the 
roll rate per aileron deflection frequency response function at 
4 Hz to be proportional to Cjjg and inversely proportional to the 
airplane rolling moment of inertia. The principal cause of the 
variation in magnitudp of the negative axis crossings for the 
various analyses employed is the variation in Cjig when the 
flexible effects of the natural modes are taken into considera- 
tion.  The principal difficulty in predicting the instability 
is caused by an inability to predict the magnitude of the 
Nyquist plot sufficiently large to enclose the minus-one point. 
This suggests that the stability derivative Cj^g is actually 
larger than indicated by wind tunnel tests (flight tests do not 
confirm this assumption) or that the control system gain is 
higher than the mathematical model employed in the analyses. 
The moment of inertia of the airplane about the roll axis is 
minimum when the tip missiles are removed and hence this con- 
figuration is more likely to encounter the aeroservoelastic 
instability in the 4 Hz range. When the tip missiles are added 
the airplane roll inertia is increased which tends to suppress 
the 4 Hz instability but it introduces a 6.5 Hz natural frequency 
mode which causes a second type of aeroservoelastic instability. 
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SECTION       VI 

RESIDUAL       FLEXIBILITY       MATRIX 

6.1     PURPOSE 

In Section IV, the computed aerodynamic terms for the rigid 
degrees of freedom were multiplied by factors to force agreement, 
at low frequencies, with wind tunnel based flexible degrees of 
freedom. When natural modes of vibration are added to the 
equations of motion additional flexibility effects are intro- 
duced. As the number of natural mode generalized coordinates 
are increased the total aeroelastic increment to each rigid 
stability derivative approaches a level that is twice the 
correct amount. Hence, the aeroelastic increment is correct 
when the equations of motion are limited to the rigid body 
degrees of freedom, but it becomes increasingly too large as 
the number of natural modes added as degrees of freedom increases. 

On the other hand, if the computed aerodynamic terms for 
the rigid degrees of freedom are multiplied by factors to force 
agreement with wind tunnel based rigid stability derivatives, 
the correct aeroelastic increment might not be achieved until 
a large number of natural modes of vibration are added as 
degrees of freedom.  Hence, by this approach the aeroelastic 
increment is zero when the equations of motion are limited to 
the rigid body degrees of freedom but approaches the correct 
level as the number of natural mode degrees of freedom is 
increased.  This method was employed in Section V. 

When a small number of natural modes are employed as 
degrees of freedom neither method yields the desired aeroelastic 
effect.  In general, the method employed in Section IV produces 
too much aeroelastic effect and the method employed in Section V 
produces an aeroelastic effect that is too small. 

The residual flexibility method proposed in Reference 5 
offers a solution to this problem.  Conceptually, if a structure 
is idealized by a flexibility matrix of finite order and a 
lumped mass is located at each coordinate associated with the 
flexibility matrix the system has a finite number of natural 
frequencies.  If the complete set of natural modes are used as 
generalized coordinates the stiffness of the structure as 
expressed by the generalized stiffness terms is the same as 
expressed by the flexibility matrix that was used to compute 
the natural modes.  If a subset of the complete set of natural 
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modes are employed as degrees of freedom then the flexibility 
matrix that can be obtained from the subset of modes is different 
from the flexibility matrix associated with the complete set of 
modes.  The difference is defined in Reference 5 as the residual 
flexibility matrix.  If the subset of modes is called the retained 
modes and the remaining modes are called the deleted modes then 
the application of the residual flexibility matrix to the equa- 
tions of motion can be described as follows.  The inertia and 
structural damping terms associated with the deleted modes are 
neglected but the stiffness is retained.  The aerodynamic terms 
are a function of the normalwash produced by deflections in both 
the retained modes and the deleted modes. Hence, the aeroelastic 
effect in the low frequency range is the same regardless of the 
number of modes retained or deleted. 

The residual flexibility method as applied to the stability 
analysis is described in the following subsections. 

6.2 UNSUPPORTED FLEXIBILITY MATRIX 

The residual flexibility matrix requires the development of 
an unsupported flexibility matrix. The sequence of operations 
begins with the unsupported stiffness matrix. This matrix is 
singular so it cannot be inverted to obtain the unsupported 
flexibility matrix. 

The force-deflection relationship for the antisymmetric 
unsupported stiffness matrix can be expressed as 

Nf-is) -('1.3 (6.1) 

where [s] is a square unsupported stiffness matrix 
of order is x is 

fzig] is a column of physical deflections, is x 1 

1?! | is a column of physical forces of order ig x 1 

is is a subscript indicating structural control points. 
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The supported stiffness matrix is obtained by removing rows and 
columns corresponding to the coordinates that are to be fixed. 
The force-deflection relationship after fixing the minimum 
number of coordinates necessary to remove the rigid body degrees 
of freedom is expressed as follows 

where 

Wf^olJ    - (FOIJ 

S0 is of order Ts x Ts with T. 

(6.2) 

is - 3. 

The supported stiffness matrix can be inverted to obtain the 
supported flexibility matrix. 

W-W1 
(6.3) 

The force-deflection relationship for the supported flexibility 
matrix can be expressed as 

IXlfv}   -  fcor  ] (6.4) 

Rows and columns of zeros can be added to the supported 
flexibility matrix for the fixed coordinates. 

[I] 
Zo o 

(6.5) 

This matrix is the same order as the unsupported stiffness 
matrix.  The force-deflection relation 

WW-f-i.) (6.6) 

is the same as equation (6.4) except that it also explicitly 
yields zero deflections for the fixed coordinates.  The 
unsupported flexibility matrix which has no coordinates fixed 
satisfies the following relationship. 

ww-w (6.7) 
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The Z matrix is transformed to the unsupported flexibility 
matrix by the following transformation (Reference 5). 

[Z]-[T][Z][T] 

where 

- -1 -T 
[T] - [l - 0 M"1 0 mj 

(6.8) 

(6.9) 

I is a unit matrix 

0 is a isx3 matrix of rigid body deflections 

M is a 3x3 generalized mass matrix for rigid body modes 

m is a isxis diagonal mass matrix of the lumped masses. 

Some of the characteristics of the unsupported flexibilitv 
matrix are; ' 

(1) The unsupported flexibility matrix postmultiplied 
by a vector of rigid body inertia load yields a 
vector of zero deflections. 

(2) The unsupported flexibility matrix postmultiplied 
by a vector of natural mode inertia load equals 
the natural mode deflection vector. 
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6.3 NATURAL MODES OF VIBRATION 

The eigenvalue equation for the natural modes of vibration 
can be expressed in terms of either the unsupported flexibility 
matrix or the unsupported stiffness matrix. 

tv.]N.Jf<l-Äf< 
Sisis] ■ "r2 [misls: «is " 0 

(6.10) 

(6.11) 

where 

th • 0i [ is a isxl column of deflections for the r 
* ' natural mode. 

The natural modes of vibration are orthogonal with respect to 
the stiffness matrix and the mass matrix 

T   r -i   r -1       F i (6>12) 

[0isis]     [sisis]   [^isis] - [^rr] 

[^sis]1 [«M.] [0isis]   -[Mrr] (6.13) 

where Krr and Mrr are the generalized stiffness and generalized 

mass, respectively. 

The transformation between physical coordinates and 
generalized coordinates and the transformation between physical 
forces and generalized forces is expressed by the following 

equations. 

ZU 
1 
j 0isi s^-s 

0isis 

qr 

M 
(6.14) 

(6.15) 
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where    qr and Fr are generalized coordinates and 
generalized forces,  respectively, and 

01 i    Is a square matrix each column of which 
L -"Is a natural mode vector. 

6.4    RESIDUAL FLEXIBILITY MATRIX 

Applying the transformations expressed by equations   (6.14) 
and  (6.15)   to equation  (6.1) yields  the relation between 
generalized coordinates and generalized forces. 

[Krr]   [qr] (6.16) 

The generalized stiffness matrix can be Inverted to obtain 
the following expression. 

TS]   "[Krr]    [Fr] (6.17) 

Transforming the generalized coordinates and forces back  to 
physical forces and deflections yields the following expression 
In terms of the generalized stiffness matrix. 

-1 T 
|>1S]    -[01S1S]   [Krr]     [01S1S]    (FIS} (6.18) 

Equation (6.18) can be partitioned Into the natural modes to be 
retained. Indicated by a subscript f, and the remaining modes 
that are to be deleted. Indicated by the subscript oo . 

[H.) - fvM Kff 
 1- - - 

1  K^ 

-1 

[viv] Ns] 
(6.19) 
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Equation (6.19) is in the same form as equation (6.7).  Hence, 
the unsupported flexibility matrix is equated to the matrix 
that premultiplies the force vector in equation (6.19). 

-1 

[zisis>[MM [M 
(6.20) 

-1     T M t-J M 
W 

The first tem on the right side is the contribution to the 
unsupported flexibility matrix by the retained modes.  The 
second term is the contribution by the deleted modes and is 
defined as the residual flexibility matrix. 

-1 

W ■ hsis] - K^] N" [v] (6.21) 

Some of the characteristics of the residual flexibility 

matrix are: 

(1) The residual flexibility matrix postmultiplied 
by a vector of rigid body inertia terms or a 
vector of inertia loads associated with one 
of the retained modes yields a column of zeros. 

(2) The residual flexibility matrix postmultiplied 
by a vector of inertia loads associated with 
one of the deleted modes yields the deleted 
natural mode deflection vector. 
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6.5    AERODYNAMIC EQUATIONS 

The doublet lattice computer program which was  employed, 
formulates  a normalwash influence coefficient matrix wnich is 
postmultiplied by the aerodynamic pressure coefficients  to 
yield  the normalwash.     The  relation is  expressed in partitioned 
form. 

DWW'DWB    0 

-   - I J- - 

0 0 
 i— 

o ; o |i 

r 
dcpw 

<4cPB 

PTM 

[bl] + ik [h] 

[ATm][b7l+ik [ATM2JM      J 

K (6.22) 

The subscripts W, B, and TM indicate aerodynamic pressures on 
the aerodynamic panels, body, and the tip missile, respectively. 
The b matrices indicate transformations from deflections at the 
structural points to normalwash data needed at the normalwash 
control points.  The A matrices can be described as aerodynamic 
influence coefficient matrices for the slender body theory and 
for the quasi-unsteady representation of the tip missile aero- 
dynamics.  The relation is expressed more compactly as follows: 

^■a^-a 
B 1a1s 

(6.23) 

where ia is a subscript for the normalwash control points. 
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The relation between the deflections at structural control points 
and deflections at aerodynamic load points is expressed as 

rhWl b3 

• hß •   = b4 

^TM. Lb7j 
(^} (6.24) 

Equation  (6.24)   is  expressed more compactly 

hi hi. baQ K (6.25) 

Ihe  subscript 11 identifies the aerodynamic load point locations. 
Since the number of aerodynamic load points and normalwash points 
are the same, the subscript ia is used when its primary purpose 
is to identify the order of the matrix. 

The aerodynamic loads at the load control points are related 
to the aerodynamic pressure coefficients. 

FM qS Ac, •..1 (6.26) 

6.6 EQUATIONS OF MOTION 

The equations of motion in terms of physical coordinates 
and forces is expressed by equation (6.27). 

[misis] [Vis] + di  i 

mlsls 

SM J   [Zi: 

w * (6.27) 
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The equations transformed to generalized coordinates with the 
rigid body generalized coordinates partitioned from the natural 
mode generalized coordinates are expressed by equation (6.28). 

1 
M  '   0 

-- 1  
i 

- 
^R 

+ 
0  |   0 ^R 

'    + 
0   I   0 
— 1  " 

^R 

0   iMrr qr _0 !Drr_ ^r Ö   IK^.J. ^r 

[0isR0isis] fFisj - 
M RÖ 

M rö 
(6.28) 

The first term on the right is the work done by the aerodynamic 
forces acting on the structural control points. Since the aero- 
dynamic forces are computed at the aerodynamic load points it is 
convenient to express the work done in terms of the aerodynamic 
load points as indicated by equation (6.29). 

IT r 
[0isR0isis]   (ns}  =[0iaR0iais]   fFia) 

(6.29) 

Equation (6.29) is substituted into equation (6.28) and parti- 
tioned into the retained modes and the deleted modes. The rigid 
body modes are included in the retained modes. 

Mffl   0 qf Off'  o qf Kffl   0 qf 
- - + -- 

o I»« •        00 

I 

q« 
J 

• + — 4. «. 

0 |o^ 
• 

«L 
• + -- f -- 

_ 0 X 
■ 

q« 

&Miv]T[Ci.JW   (CPia)   ■ 
^1 

Moca 
(6.30) 
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The aerodynamic relationship, equation (6.23), is expressed 
in terms of the retained modes, modes to be deleted, and the 
control surface deflection. 

[H.I,] [#l.f #1^]     I'l    4Biais][^}d (6.31) 

Equations (6.30) and (6.31) express the equations of motion 
before any of the modes are deleted. 

The basic assumptions for deleting modes by the residual 
flexibility method are expressed by equation (6.32). 

WfvJ-WfO-M* •0 (6.32) 

These assumptions permit the equations of motion to be expressed 
by the following two sets of equations: 

[«ff]{if] +[Dff]fqf} +[Kff]fqf] - 

hsfl'tiais]1 W Kial    ■   W * (6-33) 

W [**] - M\%J tsJ ^cPia]       
(6-34) 
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Equation  (6.35)  shows how the aerodynamic  equation  (6.31)  can be 
expressed as a function of  the  retained modes  and control surface 
mode by the use of equation  (6.34)  to solve  for the deleted modes. 

[Diaia](4cPia]   " [BiaiS][
0isf][^]   + [Biais] Ks*] f <Ü  + 

+ [Biais QUO   ö 

Biais    0isf 

BiaisJ L0isy] 

qf J + 

-V T 

K« 0V 

v. 
X« 

-v^ 

HU liaj 

> 

Ciais [qsj^cpi4 + 

B lal a^-s J [»is'] (6.35) 

The resulting relationship contains the residual flexibility 
matrix.  It is combined with other matrices as indicated, 
to define the Xiaia matrix, which can be described as the 
residual flexibility matrix expressed in terms of the aero- 
dynamic control points and multiplied by the qS matrix. 

Equation (6.36) shows that the net effect of applying the 
residual flexibility matrix consists of subtracting the X matrix 
from the D matrix and then solving for the aerodynamic pressure 
coefficients in the usual manner. 

%la] " [Xlala]  f4cPia] " 

Bials 
0isE] M  + [Blais] [M Ö (6.36) 
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In order to compute the generalized aerodynamic terms the 
aerodynamic pressure coefficient vector is expressed as a linear 
combination of pressure coefficient vectors associated with unit 
amount of each retained generalized coordinate plus unit control 
surface deflection. 

K.] - [{% «if 
Ac 

I 
(6.37) 

These unit pressure coefficient vectors are computed by solving 
equations (6.38) and (6.39). 

Kla] - |>lalajj [(^ f J " M [fa.*]      (6-38) 

[Diala_ - Xiaia_ 

i 
4Cp 

d 
= 

•Mtj hsö (6.39) 

The difference between the truncated mode method and the residual 
flexibility method is easily seen in equations (6.38) and (6.39). 
The truncated mode method assumes the X matrices to be zero. 

The generalized aerodynamic terms are computed by converting 
the pressure coefficients to aerodynamic forces at the load con- 
trol points and then multiplying by the deflection at the load 
point normal to the surface.  The relations are expressed by 
equations (6.40) and (6.41). 

M-K£]T[cialj
Tw[(^)if; (6.40) 

M - K c.. 
Ws 

1^   "I f 4c 
qS — 

_     Si I    «5 
(6.41) 
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After the generalized coordinate response has been computed 
the response at any physical point on the structure can be com- 
puted as shown by equation (6.42). 

The first matrix on the right hand side of the first line 
is an interpolation matrix that transforms two or more deflec- 
tions at the structure control points to the deflection at the 
response point. 

The second line distinguishes between the retained modes 
and the deleted modes.  The third line replaces the deleted 
mode vector with its solution from equation (6.34), and the 
matrix multiplication that defines the residual flexibility 
matrix is identified. 

The fourth line expresses the pressure coefficient vector 
as a combination of the pressure coefficient vectors associated 
with unit amount of each of the retained modes. 

The terms in the last line can be described as follows: 
The vif  terms are the deflections at «/^ due to unit amount 
of each of the retained modes.  The «Alf terms are the response 
af   ^1 when the aero load associated with each of the retained 
modes is applied to the residual flexibility matrix.  The "ALJ 

and IAI^ terms have similar meanings with respect to the control 
surface mode. 

The difference between the truncated mode method and the 
residual flexibility method can also be seen from equation (6.42). 
The <// terms are neglected in the truncated mode method. 
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SECTION  VII 

APPLICATION 
LEXIBILITY 

OF  RES 
MATRIX 

I D U A L 
METHOD 

7.1 CONFIGURATIONS ANALYZED 

The residual flexibility method, described in Section VI, 
was applied to the following analyses: 

Configuration 

Missiles-On 
Missiles-Off 

M 

0.9 
0.9 

Alt (ft) 

20,000 
15,000 

DOF 

4,5,9 
4,9 

The 4 DOF analyses employed the three rigid body degrees 
of freedom and the computed first antisymmetric natural mode 
of vibration.  The 5 DOF analyses employed the three rigid body 
degrees of freedom and the first two computed antisymmetric 
natural modes of vibration.  The 9 DOF analyses employed the 
three rigid body degrees of freedom and the same six computed 
antisymmetric modes of vibration that were used in the 9 DOF 
analyses presented in Section V.  Hence, a direct comparison 
between the computed truncated mode method and the residual 
flexibility method can be made by comparing the results of the 
5 and 9 DOF analyses of Section V with the 5 and 9 DOF analyses 
presented in this section. 

7.2 AERODYNAMIC CHECKS 

Direct checks on the aerodynamic terms computed by the 
residual flexibility matrix method are difficult because of the 
number of large-order matrix operations.  Indirect checks can be 
made by the following considerations. 

If no natural modes of vibration are retained, the aero- 
dynamic terms computed for the three rigid body degrees of 
freedom correspond to flexibile stability derivatives. Hence, 
the ratio of the computed rigid body aerodynamic terms with 
residual flexibility to those computed without residual flexi- 
bility should yield flexible to rigid stability derivatives at 
low frequency that should be comparable to ratios computed by 
other methods. 
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If natural modes are retained as degrees of freedom, 
then the aerodynamic terms computed for the rigid body degrees 
of freedom plus the contribution of the retained modes should 
yield the same flexible stability derivatives, at low frequency, 
that are obtained by the residual flexibility method when no modes 
are retained. Similarly, the same flexible to rigid ratios of 
the stability derivatives should be computed.  The contribution 
of the natural modes of vibration to the flexible stability 
derivatives ran be obtained by reducing the number of DOF to the 
three rigid body degrees of freedom.  Consider the equations of 
motion in partitioned form as follows. 

— 
ARR    ARF ^R ARd 

■ - < 

AFR    AFF [qp AY6 

6 (7.1) 

The subscripts R and F refer to the rigid and flexible DOF, 
respectively. Equation (7.1) can be expressed as two matrix 
equations.  Solving for the flexible generalized coordinates 
from one equation and substituting into the other yields 

[ARR - A^ A;* AFR] fqRi = - {ARd -A^ A^ A^} i     (7.2) 

If equation (7.2) is evaluated at zero frequency or at a very 
low frequency such that the inertia terms are negligible the 
elements of the matrix correspond to the flexible aerodynamic 
terms.  The ARR and AR^ matrices contain the rigid body aero- 
dynamic terms. The other matrix products in equation (7.2) 
are the aeroelastic effect produced by the natural modes of 
vibration. 

When applying the residual flexibility matrix the aero- 
dynamic terms associated with the ARR and AR^ matrices contain 
the aeroelastic effects produced by the residual flexibility 
matrix.  Hence, when the effect of the natural modes are added 
as indicated by equation (7.2) the total aeroelastic effect is 
obtained.  Comparing these aerodynamic terms to the aerodynamic 
terms associated with the ARR and AR^ matrices computed without 
residual flexibility effects yields flexible to rigid stability 
derivative ratios. 
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The generalized aerodynamic terms were computed by the 
residual flexibility matrix method for the same six values of 
reduced frequency employed in the truncated mode analysis of 
Section VI. Similarly, the residual flexibility method 
generalized aerodynamic terms were interpolated by the same 
interpolation method employed in Section VI, for the purpose 
of computing the frequency response data at small frequency 
increments.  The aerodynamic check on the residual flexibility 
method generalized aerodynamic terms was applied at the lowest 
of the six reduced frequencies for which the aerodynamic terms 
were computed (k=.001796).  To improve the correlation it was 
recognized that the imaginary part of the QT^, Q^, and (U,/, 
aerodynamic terms contain contributions from both yaw rate 
and ß  type normalwash.  The ß  stability derivatives were 
computed separately and removed from these generalized aero- 
dynamic terms to yield a better estimate of the yaw rate 
derivatives.  The ß  derivatives were computed from the real 
part of the QTT, CtyT, and Q^T aerodynamic terms. Symbolically, 
the generalized aerodynamic terms from which the stability 
derivatives were computed are shown below. 

QTT   QT»^   QT^ 

Q^T   Qt//<|/  Q.H 

Q^T   Q<M  Q<M 

«V1 V (Vicyr+i V (0+iV 
(Cn^+iCn^) (Cn^+iCnr+iCn^) (0+iCnp) 

(Cj^+iCj^) (C^+iCj^+iC^) (0+iCip) 

(7.3) 

The computed rigid stability derivatives obtained in this manner 
are tabulated in the fourth column of Table 20. A comparison of 
the computed rigid derivatives of Table 20 with the computed 
rigid derivatives of Section V in Table 14 shows all derivatives 
to be the same except for the yaw rate derivatives. The rigid 
derivatives of Section V were computed for zero reduced frequency 
whereas the computed derivatives in Table 20 were computed for 
a small but non-zero value of reduced frequency (k«.001796). 
The difference is caused primarily by the difference in the' 
slender body theory contribution to the yaw rate derivatives at 
zero frequency and at any small but non-zero reduced frequency. 

The 
tion are 
flexibili 
puting th 
indicated 
flexible 
equation 

flexible to rigid ratios for the missile-on configura- 
shown in Table 20 for the 4, 5 and 9 DOF residual 
ty method. These ratios were obtained by first com- 
e flexible generalized aerodynamic terms by the method 
by equation (7.2) and then converting these terms to 
stability derivatives by the method indicated by 
(7.3).  The flexible stability derivatives were divided 
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Table 20 

COMPARISON OF FLEXIBLE TO RIGID RATIOS BASED ON 
WIND TUNNEL DATA WITH RESIDUAL FLEXIBILITY METHOD 

FOR MISSILES-ON, M=0.9, 20,000 FEET 

203 

Stability 
Derivative 
(Per Radian) 

Wind Tunnel Based [ Computed 
Rigid Flex  1 

Rigid 
Rigid Residual Flex/Rigid 

4 DOF 5 DOF 9 DOF 

cyß -1.243 .91 -1.055 .9675 .9667 .9671 

Cnß .260 1.015 .320 .9438 .9426 .9433 

c*ß 
-.1157 .82 -.098 .8767 .8948 .8933 

cyr .90 .92 1.114 .9399 .9395 .9556 

Cnr -.456 .94 -.499 .9364 .9354 .9370 

Cjlr 
.171 .99 .115 .8528 .8655 .8657 

Cyp .014 1.43 -.0884 .8949 .8829 .8878 

Cnp -.004 2.0 .0346 .9923 .9763 .9832 

C^p -.325 .86 -.341 .9531 .9657 .9660 

cy/8 -.2186 .7920 .7920 .7917 

Cnß .0621 .6048 .6043 .6047 

cXß -.0170 .8154 .8365 .8291 

cy6a 0 - .126 .7514 .7638 ,7574 

cn8a -.038 .847 -.055 .7276 .7421 .7345 

C>(8a 
-.1339 .71 -.203 .6398 .6669 .6669 

cy6r .209 .66 .258 .7611 .7604 ./604 

Cn8r 
-.1066 .797 -.142 .7706 .7700 .7700 

C>t8r 
.0355 .62 .0493 .7223 .7351 .7344 
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by the corresponding rigid computed stability derivatives 
tabulated in Table 20.  The flexible to rigid ratios for the 
4, 5 and 9 DOF systems are tabulated in the last three columns 
of Table 20.  It can be seen that the flexible to rigid ratios 
compare very well for the 4, 5 and 9 DOF systems.  The small 
differences that do exist are attributed to round off error. 
In view of the large number of numerical operations required 
to perform these calculations the aerodynamic check is considered 
to be very satisfactory. 

The flexible to rigid ratios tabulated under the heading 
"Wind Tunnel Based" are shown for comparison.  These ratios are 
also based on computed data.  They are tabulated under the 
heading "Wind Tunnel Based" because they are the ratios that 
were applied to the wind tunnel based rigid stability to obtain 
the flexible stability derivatives that were employed for 
stability and control analyses.  (The analyses described in 
Section IV were conducted with the computed generalized aero- 
dynamic terms for the rigid body degrees of freedom modified to 
agree with these flexible wind tunnel based stability derivatives 
at low frequencies.)  These flexible to rigid ratios should not 
necessarily agree with the ratios obtained by the residual 
flexibility method for two reasons.  First there are small 
differences between the mathematical model of the structural 
flexibility.  The structural model used for the residual flexi- 
bility method was developed at a later date and had been modifiec 
to correlate more closely with ground vibration test results. 
Secondly, and perhaps more importantly, the methods of computing 
the flexible to rigid ratios are entirely different.  The method 
employed for the wind tunnel based data employed flexible to 
rigid ratios that were computed for component surfaces of the 
airplane.  Each component surface was restrained at some point 
or along some line, such as, the root rib, airplane e.g., etc. 
The component flexible to rigid ratios were then combined with 
wind tunnel based derivatives (tail on, tail off, etc.) to 
compute total airplane flexible stability derivatives. 

In contrast, the method used to compute the flexible to 
rigid ratios by the residual flexibility method employed an 
aerodynamic model of the complete airplane with aerodynamic 
interference effects between all surfaces and the fuselage. 
Also, the residual flexibility matrix was obtained from the 
unsupported flexibility matrix of the entire airplane. Hence, 
the flexible stability derivatives obtained by the residual 
flexibility method represent aerodynamic loads on the total 
unrestrained airplane.  The aerodynamic loads are balanced by 
the inertia loads associated with the distributed mass of 
the airplane. 
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The corresponding comparison between the flexible to rigid 
ratios for the missile-o£f configuration is shown in Table 21. 
Again, the comparison betr/een the ratios obtained for the 4 and 
9 DOF systems is very good and indicates a very good aerodynamic 
check on the accuracy of the numerical operations.  The flexible 
to rigid ratios for the missile-off case differ from the ratios 
obtained for the missiles-on case for two reasons, /^t' ^ey 
were computed at different altitudes (20,000 ft. and 15,000 ft.). 
Secondly, they would differ even if they were computed at the 
same flight condition because of the difference in the mass of 
the tip missile.  Since the aerodynamic loads are reacted by the 
distributed mass, a change in the mass and/or mass distribution 
causes a change in the flexible stability derivatives. Hence, 
it is of interest to note that the flexible to rigid ratios 
computed by the residual flexibility will differ for different 
mass distributions even at the same flight condition (Mach number 

and dynamic pressure). 

The aerodynamic checks on the accuracy of the generalized 
aerodynamic terms computed by the residual flexibility matrix 
which are summarized in Tables 20 and 21 were conducted with 
no attempt made to modify the computed data to agree with wind 
tunnel based data.  However, before the aeroservoelastic stabil- 
ity analyses were conducted the generalized aerodynamic terms 
were modified. Again, since the generalized aerodynamic terms 
for the rigid body degrees of freedom as computed by the residual 
flexibility method, contain the aeroelastic contribution of the 
residual flexibility matrix the modification of these terms is 
not as straightforward as it is for the truncated mode method. 

The generalized aerodynamic terms for the rigid body 
degrees of freedom as computed by the residual flexibility 
method were modified by wind tunnel measured rigid derivatives 

in the following manner. 

Let 
(RF) 

Qrs ' be an element of the rigid body aerodynamic 
matrix computed by the residual flexibility 

method, 

(R) 
Qrs  be an element of the rigid body aerodynamic 

matrix computed without flexibility effects 
(true computed rigid), and 
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Table 21 

COMPARISON OF FLEXIBLE TO RIGID RATIOS BASED ON 
WIND TUNNEL DATA WITH RESIDUAL FLEXIBILITY METHOD 

FOR MISSILES-OFF, M=0.9, 15,000 FEET 

Stability 
Derivative 
(Per Radian) 

Wind Tunnel Based I Computed            | 
Rigid Flex 

Rigid 
Rigid Residual Flex/Rigid 

4 DOF 9 DOF 

S -1.243 .90 -1.055 .9623 .9616 

Cnß .260 .99 .320 .9353 .9341 

Clß -.1157 .74 -.098 .9673 .9673 

cyr .90 .92 1.114 .9353 .9487 

Cnr -.456 .94 -.499 .9261 .9263 

cXr .171 .965 .115 .9272 .9313 

cy? 
.014 1.0 -.0884 .8657 .8743 

S -.004 .755 .0346 .9627 .9749 

% 
-.325 .86 -.341 1.0556 1.0557 

cy/j -.2186 .7716 .7702 

Cn/8 .0621 .5610 .5590 

c^ 
-.0170 .9645 .9321 

Cy8a 0 - .126 .7021 .7016 

cn6a -.038 .934 -.055 .6715 .6705 

C^a 
-.1339 .689 -.203 .7409 .7401 

cy«r 
.209 .603 .258 .7174 .7167 

CnSr 
-.1066 .741 -.142 .7292 .7283 

cxsr .0355 .620 .0493 .7562 .7558 
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(R) 
Krs      be a correction factor to be applied  to Qrs 

to force agreement with  the wind  tunnel 
measured  rigid stability derivatives 

Then 
(RF)        (R) 

4Qrs  = Qrs     - Qrs (7.4) 

represents  the aeroelastic  increment produced by  the  residual 
flexibility matrix.     Hence,   the aerodynamic   terms  computed by 
the residual flexibility matrix can be expressed as   the sum of 
the rigid aerodynamic   term plus  the aeroelastic  increment 
From equation  (7.4), 

(RF)       (R) 
Qrs    = Qrs + 4Qrs (7.5) 

and  the rigid part can be multiplied by  the correction factor 
to obtain the modified aerodynamic   terms 

_(RF) (R) 
Qrs    = KrsQrs    + 4Qrs 

(RF) 

(7.6) 

where Qrs is the modified residual flexibility aerodynamic term. 

Substituting the aeroelastic increment from equation (7.5) into 
equation (7.6) yields ' 

_(RF) (R)   (RF) 
Qrs = (Krs-1) Qrs + Qrs 

Hence, the aerodynamic terms for the rigid body degrees of 
freedom were modified by the addition of the first term on 
the right hand side of equation (7.7). 

(7.7) 
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7.3 STABILITY ANALYSES, MISSILES-ON 

7.3.1 Determinant Plots for the Unaugmented Airplane 

The determinant plots for the unaugmented airplane are 
shown on Figure 59 for the 4, 5 and 9 DOF systems.  There are 
no phase reversals on these plots and hence each indicates a 
stable system.  The phase angle at the lowest frequency for the 
4 DOF system is 180° out of phase with either the 5 or 9 DOF 
system.  This observation is consistent with the rationale of 
Section IV which concluded that the phase angle of the determinant 
for systems with odd numbers of degrees of freedom would be 180° 
out of phase with systems with an even number of degrees of 
freedom. 

The determinant plots for the residual flexibility matrix 
method can be compared to the determinant plots for the truncated 
mode method by comparing the 5 and 9 DOF plots of Figure 59 with 
the corresponding plots of Figure 47.  The plots are very similar. 

7.3.2  Sensor Response 

The sensor responses for the unaugmented airplane are shown 
in Figure 60.  This figure can be compared with Figure 48 to 
compare the truncated mode method to the residual flexibility 
method. Making this comparison for the 5 DOF system it can be 
seen that the magnitudes of the response at the lowest frequency 
(0.15 Hz) and the peak magnitude near 6 Hz are lower for all 
sensor response plots when computed by the residual flexibility 
method.  Similar observations can be made, by comparing the plots 
for the 9 DOF system shown in Figure 60 with the corresponding 
plots in Figure 48. 

A comparison of the sensor response curves for the 4 DOF 
system with the 5 DOF system in Figure 60 shows the frequency 
response curves to be very similar from zero to approximately 
4 Hz.  The magnitude of the peak near 6 Hz is approximately the 
same for the lateral acceleration and the yaw rate.  However, 
the roll rate peak magnitude near 6 Hz is slightly higher for 
the 5 DOF system than the 4 DOF system.  The increase in the 
magnitude of the roll rate per aileron deflection frequency 
response curves that can be seen on the plots for both the 
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4 DOF and 5 DOF systems, for frequencies above 15 Hz, is of 
interest.  Referring to equation (6.42) it can be seen that the 
frequency response is a function of the generalized coordinates 
and the control surface deflection.  The generalized coordinates 
decrease in magnitude for frequencies above the highest natural 
frequency in the system.  Hence, this contribution to the fre- 
quency response tends to decrease for frequencies above the 
highest natural frequency.  However, the ^gterm which is the 
roll angle produced by the control surface aerodynamic loads 
applied to the residual flexibility matrix changes slowly with 
frequency. When this term is multiplied by iw, to convert to 
roll rate, and then multiplied by a unit control surface deflec- 
tion it becomes the dominant contribution to the response above 
some particular frequency.  For the roll rate per unit aileron 
frequency response curves it becomes the dominant term above 
15 Hz approximately.  The lateral acceleration and the yaw rate 
response curves would show the same effect if plotted to higher 
frequencies.  The "double barred" terms are not as large for 
these response curves and do not dominate until the response is 
evaluated at higher frequencies. All "double barred" terms 
decrease ixk  size as the number of retained modes are increased. 
Hence, this effect is far less visible in the 9 DOF sensor 
response curves because the "double barred" terms do not become 
the dominant factor until the response is evaluated at still 
higher frequencies. 

A comparison of the sensor response curves for the 5 DOF 
system with the 9 DOF system in Figure 60 shows the roll rate 
per aileron deflection plots to be very similar from zero to 
approximately 10 Hz. Hence, all stability conclusions with 
respect to the roll loop, in the zero to 10 Hz frequency range, 
should be virtually the same for the 5 and 9 DOF systems.  The 
lateral acceleration and yaw rate per rudder deflection fre- 
quency response plots for the 5 and 9 DOF are also very nearly 
the same from zero to 10 Hz.  Similarly, the roll rate per 
rudder deflection plots are very similar over the same frequency 
range except for some differences in the 3 to 4 Hz frequency 
range, where the magnitude of the response is very low. 
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The sensor responses per unit control surface deflection 
at the lowest frequency for which the response is computed, 
are tabulated in Table 22 for both the computed truncated mode 
method and the residual flexibility method.  Note that generally 
the magnitude of the response as computed by the truncated mode 
method decreases as the number of degrees of freedom increases. 
The response at zero frequency as predicted by the residual 
flexibility method should be the limiting case as the number of 
degrees of freedom in the truncated mode method is increased. 
It can be seen that the truncated mode data does appear to be 
converging toward the residual flexibility method data.  The 
truncated mode 19 DOF data is very close to the residual flexi- 
bility method data.  It would also be expected that the response 
computed by the residual flexibility method, at zero frequency, 
would be the same regardless of the number of DOF retained. 
Comparing the residual flexibility data tabulated in Table 22 
for the 4, 5 and 9 DOF systems it can be seen that this expec- 
tation was confirmed.  The frequency response data for each of 
the sensors is virtually the same for the 4, 5 and 9 DOF systems. 
The differences that exist are small enough to be caused by 
round-off errors.  The analyses require many matrix operations 
involving large order matrices. 

: 
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7.3.3 Nyquist Plots 

The Nyquist plots of feedback through the yaw loop with 
both loops open are shown on Figure 61.  Each of the plots for 
the 4, 5 and 9 DOF systems indicate that the airplane with the 
yaw loop closed is stable.  Hence, the conclusions with respect 
to stability agree with the truncated computed mode analyses 
The plots shown on Figure 61 are virtually Identical from zero 
to approximately 4 Hz. 

The Nyquist plots of feedback through the roll loop with 
both loops open are shown on Figure 62.  Each of the plots for 
the 4, 5 and 9 DOF systems indicate that the airplane with the 
roll loop closed is unstable.  Each has a negative axis crossing 
at approximately 6.1 Hz.  The magnitude of the negative axis 
crossing is 1.11, 1.52 and 1.54, respectively, for the 4 5 and 
9 DOF systems.  Hence, the addition of the second natural mode 
of vibration, which is the difference between the 4 and 5 DOF 
systems, makes a significant contribution to the degree of 
instability.  The addition of four more modes to form the 9 DOF 
system does not change the degree of instability significantly 

7.3.4 Tabulated Data 

The stability data for the missile-on configuration is 
tabulated in Table 23.  This table can be compared with Table 18 
to compare the results of the residual flexibility matrix method 
with the truncated computed mode method.  Comparing the data for 
feedback through the yaw loop with both loops open it can be seen 
that the residual flexibility method has essentially converged 
for 5 DOF.  On the other hand, the truncated mode method requires 
more than 5 DOF.  The truncated mode 9 DOF analysis is very close 
to convergence but the 19 DOF solution is even closer to the 
results of the residual flexibility solution. 

Comparing the data for feedback through the roll loop, 
with both loops open, shows the residual flexibility method 
again, to converge for 5 DOF.  For this case, the truncated' 
mode analysis shows significantly different results in terms 
of the magnitude of the negative axis crossing between the 9 DOF 
and 19 DOF (1.80 vs. 1.55).  The magnitude of the negative axis 
crossing for the 19 DOF system is almost identical with the 
residual flexibility analysis for 9 DOF.  Hence, the truncated 
mode analysis requires somewhere between 9 and 19 DOF, for 
adequate convergence, for this case. 
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Rudder Drive,  Both Loops  Open Rudder Drive,  Both Loops  Open 

Neg.Axls Crossing 
f = A.35 
M =   .33 

4 DOF Neg.Axls Crossing 
f - 4.50 
M -  .30 

5 DOF 

Neg.Axls Crossing 
f ■ 4.53 

M =  .31 

9 DOF 

6.8 

FIGURE 61 NYQUIST PLOTS WITH YAW LOOP CLOSED FIRST, M ■ 0.9, 
20,000 FT, MISSILES-ON, RESIDUAL FLEXIBILITY 
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Aileron Drive,  Both Loops Open 

Neg.Axls  Crossing 
£ » 6.07 
M -  1.11 

4  DOF 

Aileron Drive,  Both Loops Oper 

Neg.Axls Crossing 
f - 6.09 
M - 1.52 

Neg.Axls Crossing 
f » 6.09 
M = 1.54 

9  DOF 

5 DOF 

FIGURE  62     NYQUIST PLOTS WITH ROLL LOOP CLOSED FIRST,  M 
20,000 FT, MISSILES-ON, RESIDUAL FLEXIBILITY 
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7.4  STABILITY ANALYSES, MISSILES-OFF 

7.4.1 Determinant Plots for the Unaugmented Airplane 

The determinant plots for the unaugmented airplane are 
shown on Figure 63.  There are no phase reversals on either 
the 4 DOF or the 9 DOF plot. Figure 63 can be compared with 
Figure 53 to compare the residual flexibility method with the 
truncated mode method. 

7.4.2 Sensor Response 

The sensor responses for the unaugmented airplane are 
shown on Figure 64.  Comparing the yaw rate per unit rudder 
deflection response for the 4 DOF system to the 9 DOF system, 
it can be seen that the magnitudes of the two plots are con- 
siderably different in the 4 Hz range.  The magnitude of the 
4 DOF plot is approximately three times as high as the magnitude 
of the 9 DOF system in this frequency range.  The 4 DOF plot 
is dominated by the ^I8r term at a very low frequency, whereas 
the same term does not dominate within the frequency range of 
the plot for the 9 DOF system.  The magnitude of these two 
curves in the 4 Hz frequency range is the difference between 
whether the system is stable or unstable as will be seen later 
by the Nyquist plots. This same effect can be seen on the 
lateral acceleration response plot and to a lesser extent on 
the roll rate sensor response plot.  The roll rate per unit 
aileron deflection, which controls the stability of the system 
with the roll loop closed, does not exhibit large differences 
in the 4 Hz range between the 4 DOF and 9 DOF systems. The 
plots for the 9 DOF system are considered to be more reliable 
since more natural modes are retained. 

The sensor responses per unit control surface deflection 
at the lowest frequency at which the response is computed are 
also tabulated for the missile-off configuration in Table 22. 
The comparison of these response data as predicted by the 
residual flexibility matrix method for the 4 and 9 DOF systems 
is excellent for each sensor.  It can also be seen that the 
sensor response as predicted by the 19 DOF truncated computed 
mode method agrees very well with the residual flexibility 
method data except for the roll rate per unit rudder deflection. 
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The magnitude of this term has not quite converged for the 
19 DOF case.  However, it appears to be converging toward the 
value predicted by the residual flexibility method.  The good 
comparison between the 4 and 9 DOF residual flexibility data, 
and the apparent convergence of the truncated computed mode 
data toward these same data, indicate that the residual flexi- 
bility method is performing as expected in the low frequency 
region. 

7.4.3 Nyquist Plots 

The Nyquist plots of feedback through the yaw loop with 
both loops open are shown on Figure 65,  The 4 DOF plot shows 
an instability.  The negative axis crossing has a magnitude 
of 1.1 at a frequency of 3.97 Hz.  Hence, this analysis shows 
very good correlation with flight test observations.  However, 
the Nyquist plot for the 9 DOF system indicates that the system 
is stable.  It has a negative axis crossing magnitude of 0.393 
at a frequency of 4.36 Hz, which is in close agreement with the 
19 DOF truncated mode analysis results (0.400 at 4.35 Hz).  The 
difference between the 4 and 9 DOF plots on Figure 65 is pri- 
marily caused by the difference in the yaw rate sensor response 
discussed in the preceding subsection.  The influence of the 
"/'ISr tyP6 term in the 4 DOF system analysis is the principal 
cause of the difference.  Since the 9 DOF system contains more 
degrees of freedom it is considered to be the more accurate 
analysis.  It is concluded that the residual flexibility method 
is in agreement with the truncated computed mode analysis on the 
stability of the yaw loop.  The 4 DOF system analysis serves as 
a warning that the residual flexibility method can yield mis- 
leading results if a sufficient number of natural modes are aot 
retained as degrees of freedom. 

The Nyquist plots of feedback through the roll loop with 
both loops open are shown on Figure 66.  The plots indicate 
that both the 4 and 9 DOF systems are stable with the roll loop 
closed.  The magnitude and frequency of the negative axis cross- 
ing for the 4 and 9 DOF systems are in close agreement (0.427 
at 3.80 Hz and 0.467 at 3.81 Hz).  These stability data are in 
close agreement with the 19 DOF truncated computed mode analysis 
(0.41 at 3.87 Hz). 
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Figure 65    NYQUIST PLOTS WITH YAW LOOP CLOSED FIRST,  M-0.9, 
15,000 FT,  MISSILES-OFF,   RESIDUAL FLEXIBILITY 
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Aileron Drive,   Both Loops Open 
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f - 3.80 
M »  .43 

4  DOF 

Neg.Axis Crossing 
f - 3.81 
M -  .47 

9 DOF 

Figure 66 NYQUIST PLOTS WITH ROLL LOOP CLOSED FIRST, M=0.9, 
15,000 FT, MISSILES-OFF, RESIDUAL FLEXIBILITY 
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7.4.4 Tabulated Data 

The stability data for the missile-off configuration is 
tabulated in Table 24.  The data in this table can be compared 
with the data in Table 19 for a comparison of the residual 
flexibility method with the truncated computed mode method» 
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7.5 SUMMARY 

The comparison between the flexible to rigid stability 
derivatives computed by the residual flexibility method for 4, 
5 and 9 DOF systems as applied to the missile-on configuration 
was excellent. A similar comparison for the missile-off 
configuration for the 4 and 9 DOF was also excellent. 

The comparison between the missile-on sensor responses 
at the lowest frequency of the frequency response data, as 
computed by the residual flexibility method, for the 4, 5 
and 9 DOF systems was excellent. A similar comparison for the 
missile-off configuration for the 4 and 9 DOF systems was also 
excellent. 

The good comparison between the flexible to rigid stability 
derivatives and the sensor response at low frequencies insures 
that the Nyquist plots as computed by the residual flexibility 
method are very nearly the same in the low frequency region 
regardless of the number of degrees of freedom in the system. 
However, differences appear at the higher frequencies as would 
be expected but the differences begin at a somewhat lower 
frequency than might be expected.  For example, the stability 
analyses conducted by applying the residual flexibility method 
to the 4 DOF system showed better correlation with flight test 
observations for both the missile-on and the missile-off 
configurations than any of the other methods.  However, these 
results appear to be only coincidental because the addition of 
only one natural mode for the missile-on configuration (5 DOF 
analysis) brought the negative axis crossing, in the 6,0 Hz 
range, into close agreement with the 19 DOF truncated computed 
mode analysis.  Similarly, the addition of 5 modes to the 
missile-off analysis (9 DOF analysis), which was the only other 
missile-off analysis conducted, brought the negative axis cross- 
ing in the 4 Hz range into close agreement with the 19 DOF 
truncated computed mode analysis. Although more than just the 
first natural mode had to be retained, it is significant that 
good correlation with the 19 DOF truncated computed mode method 
was obtained with a much smaller number of degrees of freedom 
when employing the residual flexibility method. 
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The residual flexibility method provides an attractive 
means of maintaining the same aeroelastic effects in the low 
frequency range regardless of the number of modes retained 
as degrees of freedom. Furthermore, the residual flexibility 
method converges to the correct solution as the number of 
retained modes is increased.  It eliminates the problem of 
deciding, in advance of conducting the analysis, how many of 
the higher frequency modes must be included in order to 
adequately represent the correct flexibility in the low 
frequency region.  However, it is still necessary to retain 
the modes in the frequency range of the aeroservoelastic 
instability.  Determining how many modes and which modes to 
retain in the critical frequency range remains a matter of 
judgement.  Another by-product of either the residual flexi- 
bility matrix concept or the unsupported flexibility matrix 
concept is that they provide a means of computing flexible 
stability derivatives (or flexible to rigid ratios) of the 
complete airplane in an unrestrained condition (that is, 
without fixing the structure at any point). 
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SECTION       VIII 

INDICIAL      FUNCTIONS 

8.1    TSCHEBYCHEV POLYNOMIAL APPROXIMATION 

An arbitrary function of x can be approximated over a range 
from -1  to +1 by an expansion of Tschebychev polynomials of the 
first kind,  T(x),  as  shown in Reference 9. 

N-l 
f(x)  =  Y    anTn(x) 

n=0 

■l<x <+l 

where 

N    =    number of fitting points   (and functions) 

and 

T0 -    1.0 

T-L =    x 

T2 =    2x2-l 

Tn=    2xVrTn-2 

The coefficients are obtained by the following: 

H. N-1 an = IN I M(xi^Cxi) 
i=0 

where 

XJ 
/ ^i-1 - \ 

" cos ( -JS-    * ) 2N 

% - 1 for n=0 and n=N-l 

= 2 for  0 <n<N-l 

(8.1) 

(8.2) 

(8.3) 
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As shown in Reference 9 , an expansion of an arbitrary function 
into these polynomials yields an approximate function with a 
smaller estimated error than any other ultraspherical polynomial 
In comparison to the Legendre polynomials, the Tn(x) expansion 
yields a smaller maximum error but not necessarily a smaller 
average error. 

8.1.1 Application to Oscillatory Generalized Aerodynamic Terms 

To approximate the oscillatory aerodynamic terms over the 
entire positive frequency range the following transformation 
is applied. 

x = l-2e -2k (8.4) 

when 

x = -1 
x « +1 

k=0 
k=oo 

and 

k = "1 In 
2 

1-x 
2 

Each generalized aerodynamic term, Qrs, can be approximated by 
equation (8.1) with the above transformation. Dropping the rs 
subscripts, the approximation can be expressed as follows: 

N-l 

Q(k) = ^ (an+ibn)Tn(x) 

n=0 

(8.5) 

N-l 

(an+ibn) = 5S 2 HiQ(ki)Tn(xi) 

i=0 

(8.6) 

where 

1 IT 

ki ~ 2 ln  2 

, i = 0,1,...(N-l) 
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The inclusion of end points in the fit at k=0 and k=oo) ensures 
correct characteristics of the approximation in regions that 
are critical in the Fourier transformation of the generalized 
forces to obtain the indicial functions.  The end points are 
1) the steady state limit obtained from the same aerodynamic 
method used to compute the generalized aerodynamic terms for 
any finite value of reduced frequency and 2) the Piston theory 
limit as the reduced frequency approaches infinity. 

8.1.2 Tschebychev Polynomial Approximation to C(k) 

To demonstrate the method it was used to approximate the 
Theodorsen C(k) function.  The polynomial approximation obtained 
with N=9, without conditioning the C(k) function, is shown on 
Figure 67.  Two continuous curves are shown for both the real 
and imaginary parts.  One curve is for a range of reduced 
frequency from 0 to 0.12 and the other is for a range from 
0 to 1.2.  The real and imaginary parts of C(k) are unity and 
zero, respectively, at zero frequency. Note that different 
ordinate scales are used for the real and imaginary parts. 
The square symbols denote the polynomial fit of the real part 
and the circular symbols denote the polynomial fit of the 
imaginary part. The real part appears to be satisfactory but 
the imaginary part differs by noticeable amounts. 

A much improved approximation is shown in Figure 68 which 
was obtained in the following manner. The well known approxi- 
mation to the Wagner function (Equation 5.371 of Reference 16) is 

-0.0455t       -0.3t 
01(t) = 1 - 0.165e       - 0.335e (8.7) 

where t = Vt T 
The Laplace transform of Equation (8.8), when multiplied by the 
Laplace variable and then evaluated along the imaginary frequency 
axis, yields the following approximation of the Theodorsen func- 
tion. 

0.165     0.335 
C1(k) = 1-ik 0.0455+ik 0.3+ik (8.8) 
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Equation (8.8) is plotted on Figure 68 with dashed lines. 
The C(k) function was conditioned by subtracting the approxi- 
mation in equation (8.8).  The difference was then fit with 
the Tschebychev polynomials.  The Theodorsen function is 
approximated by the sum of the Ci(k) function plus the poly- 
nomial approximation of the difference.  The approximation 
obtained in this manner is shown by the square and circular 
symbols on Figure 68.  It can be seen that the approximation 
of the imaginary part is much Improved. 

The effect of using a different conditioning function is 
shown in Figure 69.  This conditioning function is not as good 
an approximation to the C(k) function but the final approxima- 
tion is still good.  This demonstrates that the conditioning 
function does not have to be a close approximation to the 
function to be approximated throughout the entire frequency 
range.  The important consideration is that it have similar 
characteristics at zero frequency and as frequency approaches 
infinity. 

8.1.3 Computation of Wagner Indielal Function 
From Approximated C(k) Function 

The Wagner indicial function can be computed from any of 
the following three equations as shown in Reference 10, 
pages 284 and 285. 

0(t)  - u(t) + JL/[(F(k)-l) S^bl+ G(k) £2|kt]dk (8.9) 

Ht)  = 77 •'O       K 
sin kt dk (8.10) 

0(t)   - u('t)  + cos kt dk 
0   k 

(8.11) 

where u(t)   is  the unit step  function 

u(t)  =0 t<0 
= 1 t>0 

C(k)  = F(k)+iG(k) 
(8.12) 
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The indicial functions were computed from the polynomial 
approximation to the C(k) function by two methods.  One method 
used the approximation for both the real and imaginary parts 
by applying equation (8.9).  The other method used only the 
real part of the approximation by applying equation (8.10). 
The results are tabulated in Table 25.  The exact Wagner func- 
tion as tabulated in Reference 11 is listed for comparison. 
The approximate indicial function obcained by using only the 
real part of the C(k) approximation without conditioning is 
tabulated as method 1.  The results obtained by using both the 
real and imaginary parts obtained without conditioning is 
tabulated under method 2.  Methods 3 and 4 are the same as 
1 and 2 except that the approximation obtained with condition- 
ing is employed.  It is concluded that the most accurate 
approximation to the indicial functions is obtained by methods 
1 or 3, which use only the real part with or without condition- 
ing.  Methods 2 and 4 are not as accurate because of the larger 
errors introduced in trying to fit the imaginary part of the 
Theodorsen function.  However, the best (method 3) and the 
worst (method 4) approximations are plotted on Figure 70 and 
both are excellent approximations. 
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Table 25 

COMPARISON OF WAGNER EXACT INDICIAL FUNCTION 
WITH APPROXIMATE METHODS 

Approximate Methods 

1. No Conditioning, Integral of Real Part Only 

2. No Conditioning, Both Integrals 

3. Conditioning, Integral of Real Part Only 

4. Conditioning, Both Integrals 

242 

t Exact 
Approximate Methods 

1 2 3 4 

0 .5 .5 .5 .5 .5 

.5 .5557 .5537 .5538 .5547 .5586 

1.0 .6006 .6009 .5980 .6008 .6039 

2.0 .6693 .6703 .6740 .6700 .6736 

4.0 .7582 .7579 .7587 .7579 .7617 

10.0 .8745 .8748 .8770 .8741 .8786 

20.0 .9321 .9361 .9390 .9355 .9404 
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8.2  INDICIAL FUNCTIONS FOR GENERALIZED AERODYNAMIC TERMS 

The normalwash for linearized oscillatory motion can be 
expressed as 

w = (V a+ i(jh)q 

= V a q + hq (8.13) 

The oscillatory generalized aerodynamic   terms  can be separated 
into the part resulting from the angle of attack and  the part 
resulting  from the normal velocity. 

Qrsq ■ Qrsa q + Qrsh q (8.14) 

The indicial  functions  that can be obtained from each part are 
identified as  follows 

Qrsc 

Qrs, 

0rs a (8.15) 

0 rsi 

Each indicial function can be obtained from the corresponding 
real part of each oscillatory generalized aerodynamic term. 
Dropping the subscripts r,s and a,h each indicial function can 
be expressed in a form analogous to equation (8.10) as follows 

Ä/Ä   2   T^QROO sin k t dk 0(t:) = ~ J0 IT" 
(8.16) 

where QROO is the real part of the appropriate generalized 
aerodynamic term in expression (8.15). 

Substituting the real part of equation (8.5) into 
equation (8.16) yields 

N-l 

0(t)   = ?±o J  sink^ dk + J.  ^    a,    jTn(x)^t dk 

n=l 
(8.17) 
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It is convenient at this stage to introduce a second 
transformation, 

2 (8.18) 

which has the properties 

x = 0 when k = 0 

MM 

x = 1 when k-> oo , 

The corresponding Tschebychev polynomials are expressed as 

T^x) = T^x) = 2x - 1 

T2(x) = T2(x) = 8x2 - 8x + 1 

T3(x) = T3(x) = 32x
3 - 48^+ 18x - 1 (8.19) 

n 

FnOO   = Tn(x)  =  (-l)n +   Z   hn    xJ   ,  n>0 
j=l      J 

where hn.   is  defined by equation  (8.19). 

The relation between x and k are tabulated as  follows: 

x    =  (l-e-2k) 

x2 =  (l-e-2k)   -   (e-2k  - e"^) 

x3=  (l-e-2k)   -  2(e-2k  - e"^)  + (e-4k  .   «-^ (8#20) 

xJ 1 
p-1 

SjpEp 

where g.  are the coefficients of the terms in parenthesis, 
and 

Ep - e -2(p-l)k _ e-2pk 
(8.21) 
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Employing the operations and definitions of equation (8.18) 
through (8.21), equation (8.17) can be expressed in the 
following form. 

N-l N-l    n    j 

0(t) = a0 + ^ aT1(-l)
n -f 1 S a,, Shnj 2 g«, -1  2t 

*  B.l ^ i.x 
nj ^i6JP   4p(p-l) n=l n  n=l   j=l   p=l 

(8.22) 

Summarizing, an is obtained from equation (8.6) and hnj and 
gjp are defined by equations (8.19) and (8.20). 

8.2.1 Laplace Transform of the Indicial Functions 

The Laplace transform of equation (8.22) is complicated 
and not in a convenient form for usage in the root locus method. 
Hence, the indicial function as expressed by equation (8.22) is 
also approximated by the Tschebychev polynomials.  The following 
transformation is made. 

y = 1 - e (8.23) 

when t * 0  ,  y = 0 

t -»-oo  ,  y - 1 

and 

I - -ln(l-y) (8.24) cr 

The constant tr is a scaling factor which dictates the actual 
location of the fitting points in the t  domain, even though 
the location of the fitting points in the y domain is fixed 
once the number of points is determined. 
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The approximation for the indieial functions are 
expressed as 

Ns-1 n j 

y    v.   y     ^ 0(t)   =  ^    cn   Z   hnj   ^    gj 
n=o j=o p=o 

Ns-1 

en =|H   1   H^Cti)   Tn(yO 
2Nsi=0 

(8.25) 

(8.26) 

71 - ■ -cos ks-i] 

ti = -tr in(hyi) 

(8.27) 

(8.28) 

The Laplace transformation of equation (8.25) can be expressed 
as follows 

Nc-1 n j 

L[0(t)l - Z o,, 2 HRJ 2 gj. 
n=o   j^o    p=o 

1 
S4-£ (8.29) 

where s = —H. 

Equation (8.29) can be reduced to the following form 

Cn        Ci C2 CNS-1 r -i       uo ^1 ^2 & 

L[0(t)J   =  ~-+~^    +~ä+'--+    -^ (8.30) 

247 

- ~ ^~^^..~.^-*A..a~..j. ■ LM<  .      ..•.a.    -   ' — 



mm •    ■»»■■ iiuiiii  iiiina 1 

The C constants are defined by equation (8.29). For example, 
if Ns=3, the constants are computed by the following matrix 
multiplication. 

I c0 Cl C2j c0 c1 c2 
2| 

h0ö 0  0 

h10 hll 0 

h20 h21 h22 

soo 0 0 

810 811 0 

820 821 822 

(8.31) 

Note that the locations of the poles in equation (8.30) are 
the same for all indicial functions once the number of fitting 
points have been determined and the scaling factor tr has been 
selected.  The C constants are different for each 0rs indicial 
function. 

8.2,1,1 Tschebychev Polynonri--.l Approximation of the 
Wagner Function 

In order to determine the accuracy that is lost in the 
second approximation the process was applied to the Wagner 
function.  The approximated Wagner function obtained from the 
Fourier transform of the Tschebychev polynomial approximation 
of the C(k) function was, in turn, also approximated by 
Tschebychev polynomials. The application was made to the 
approximated Wagner function identified as obtained by 
"method 1" in Table 25, The approximation was made with 
four fitting points and again with ten fitting points. The 
comparisons are shown in Table 26.  It can be seen that the 
approximation obtained with the ten fitting points compares 
very close with the "method 1" approximation and the exact 
Wagner function. The approximation with both the four fitting 
points and the ten fitting points employed a scaling factor, tr, 
equal to 22, The Laplace transforms are listed below and com- 
pared with the Laplace, transform of equation (8.7). 

Four Fitting Points (tr = 22): 

0(s) - i - Ä 1  0.34753 . 1.02819 1.18065 

•  S+.0455  s+2(.0455) s-K3(.0455) 
(8.32) 
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Table 26 

COMPARISON OF WAGNER INDICIAL FUNCTION 
WITH POLYNOMIAL APPROXIMATION OF 

APPROXIMATE INDICIAL FUNCTION 

t Exact 
Approximate Methods 

1 5 6 

0 .5 .5 .5 .5 

.5 .5557 .5537 .5399 .5545 

1.0 .6006 .6009 .5766 .5994 

2.0 .6693 .6703 .6411 .6688 

4.0 .7582 .7579 .7407 .7584 

10.0 .8745 .8748 .8917 .8747 

20.0 .9321 .9361 .9497 .9360 

Approximate Methods 

1. Fourier transform of Polynomial Approximation 
of C(k), No Conditioning, Integral of Real Part 
Only (same as method 1 of Table 25) 

5. Polynomial Approximation of Method 1 using 
4 fitting points and tr=22. 

6. Polynomial Approximation of Method 1 using 
10 fitting points and tr=22. 

V 
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Ten Fitting Points   (tr = 22): 

OCs)  = i .   «74410    + 9.93308      _  72.43757 
" s       S+.0455      s+2(.0455)     s+3(.0455) 

290.19019    _  692.12302     .   1006.9167 
s+4(.0455)      ?+5(.0455)   '   s+6(.0455) 

878.85959        423.71002 87.08566 
s+7(.0455) + s+8(.0455)       s+9(.0455) 

Laplace Transform of Equation  (8.7): 

0(V>  = i      0.165       _  0.335 
WK )   " s  '   S+.0455      s+.3 

(8.33) 

(8.34) 

Comparing equation (8.33) and (8.34) it can be seen that when 
the value 22 is chosen for the parameter tr, one pole of the 
polynomial approximation of the indicial function is the same 
as one of the poles of equation (8.34). 
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8.3    EQUATIONS OF MOTION 

The equations of motion for computing the response of the 
generalized coordinates  to the excitation produced by a control 
surface are expressed in terms of the indicial functions. 

do- 

(8.35) 

To simplify the notation,  let 

*/£> a = 0 

0 r3h ■ 0 

rs 

rs 
(8.36) 

The Laplace transform of convolution integral in equation (8,35) 
can be expressed as follows, for zero initial conditions 

:' 

L J [0(t-cr)]^j der = s|*(s)] ^(s) 

t 

L 

o 

(8.37) 

where 0(s) and 0(s) are the Laplace transformation of 0(t) 
and 0(t), respectively. 
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The Laplace transformation of equation (8.35) where the 
control surface deflection consists of both rudder and aileron 
deflections is expressed as follows. 

[S
2
[M]+ s[c] + [K] -S^S(S)]   -  s2[5rs(s)]        q(s) 

+ s2 [Mr4r }  dr + s2 [Mrda ]   - 

+ s [*rda(s) |   !«<•) + s2 prdaCs) }   da(s> 
(8.38) 

In order to close the loop the rudder and aileron feedback 
are expressed as follows. 

> 
«r(s)  - -KY Tay(s)ay(s)  - KY T^(s)^(s)   - KY T^ 0(s) 

"KR TpYR(s)   0s(s) 

öa(s)  - -KR T0R(s)   0s(s) (8.39) 

where Ky - MGY 

KR - MGR 

The transfer functions in equation (8.39)  are defined by the 
control system block diagrams in Figures 3     and   4 .     The bars 
over the transfer function symbols indicate the transfer func- 
tions with unit values of the manual gains. 
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The response at the sensor is expressed In terms of the 
generalized coordinates. 

ay(s) - [hsjfqsOO] - s2[hsj|qs(8)] 

Substituting equations (8.39) and (8.40) into equation (8.38) 
yields equation (8.41) which is the Laplace transform of the 
equations of motion for the airplane with both the yaw loop 
and the roll loop closed. No excitation or forcing function 
terms are included in equation (8.41).  It is in a form for 
conducting a root locus stability analysis in which either 
Ky or KR is the variable gain. 

(8.40) 
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SECTION       IX 

ROOT      LOCUS 

9.1    METHOD OF ANALYSIS 

For selected values  of Ky and KR,  equation  (8.41)   reduces 
to  the following form. 

^W* ^[Vl] + •••  + 4AlJ+ [Ao]][^s)] ■ 0 (9.1) 

When ten fitting points are used to form the polynomial approxi- 
mation and both the yaw loop and roll  loop are closed  the poly- 
nomial in equation (9.1)  is of order 22.     If four generalized 
coordinates are employed,   the characteristic equation has 88 
roots.    For this particular case equation (9.1)  is written as 
follows. 

[A22j[< 
w A2iJ j q       j + ... + [A! ,<l>] 

+ [Ao][q}-0 (9.2) 
,(n) wiiere qw  indicates  the n4*1 time derivative of q. 

In order to form an eigenvalue problem of order 88 define 
the following. 

h]-KH<.(1)] 

. 

[^l-RJ-fo^] j 

(9.3) 
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Then equation  (9.2)  can be written as 

[A22][q22}+[A2l]M4A20]M+ ." +MW 

MM-0 (9.4) 

Equations (9.3) and (9.4) can be combined to form the following 
set of simultaneous equations of order 88. 

Ai) 0 1 0 . • • 0] M 
{4a] ^o]    [o]    [i]          [o] M 

• 
• >m 

J          v 
\    f • 

[■bi] 
fi     1 
.q22i r-Ao" 

LA22_ 
["All 
A22. 

-kg 
A22 

-A2! 

A22 J 
fan] 

(9.5) 

I 
Equation  (9.5)  is written in a more compact form as follows 

(9.6) 

Substituting sq for k,  equation (9.6) reduces to an eigenvalue 

problem. 

[[A]-s[l]]fq]=0 C?) 

The roots of equation (9.7) can be obtained from **? f f^alue 
solution method. The Q-R transform method was applied in the 
analyses described in the following subsection  The analysis 
was reoeated for selected values of the control system gain. 
Te  "m^ex roots are plotted as a function of •J^*1f

te 

at which the real part of the root becomes zero is the gain 
that causes the closed loop system to become unstable. 
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9.2 APPLICATION OF THE ROOT LOCUS METHOD 

The root locus method described in subsection 9.1 was 
applied to the following airplane configuration and flight 
condition: 

Missiles-On: Mach = 0.9, Altitude = 20,000 feet 

The structural and aerodynamic representation of the airplane 
are the same as employed in Section V.  That is, the truncated 
mode analysis method was employed using computed modes of vibra- 
tion and the same doublet lattice method was used to compute the 
oscillatory generalized aerodynamic terms.  The oscillatory 
aerodynamic terms were adjusted to agree with wind tunnel based 
rigid stability data in the same manner as employed in Section V. 

9.2.1 Indicial Functions for Missile-On Configuration 

Several difficulties were encountered in attempting to 
develop mdicial functions from the oscillatory generalized 
aerodynamic terms.  The difficulty in approximating the 
oscillatory aerodynamic terms over the positive infinite 
frequency range is illustrated in Figure 71.  The real part 
of a typical generalized aerodynamic term is plotted versus 
the parameter that transforms the positive frequency ranee 
into a range from zero (0 Hz) to unity (infinite frequency). 
The curve through the circular symbols was obtained in the 
following manner. The oscillatory aerodynamic terms were 
computed by the doublet lattice method at the reduced fre- 
quencies shown in the first column of Table 27.  The limiting 
value for infinite reduced frequency was computed by piston 
theory  A Tschebychev polynomial approximation was developed 
for a finite frequency range (excludes the piston theory point) 
and used to compute the oscillatory aerodynamic terms for a 
large number of reduced frequencies for the application of the 
Nyquist criteria method in Section V.  The same polynomial 
approximation was used to compute the oscillatory aerodynamic 
terms at the reduced frequencies tabulated under the heading 
1st Approximation" in Table 27.  These points are shown as 

the circular symbol points on Figure 71.  The piston theory 

K^J i  K1SU ShOW? Plot:ted against unit value of the abscissa. 
The Tschebychev polynomial approximation over the infinite 
frequency range is shown as the solid line through the circular 
symbols on Figure 71.  It can be seen that the value of the 
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Table 27 

COMPARISON OF REDUCED FREQUENCIES AT WHICH 
AERODYNAMIC TERMS WERE COMPUTED WITH 
REDUCED FREQUENCIES FOR APPROXIMATIONS 

M = 0.9 1.0 Ft. 

Computed Aero Terms 1st Approximation 2nd Approximation 

k Method k Method k Method 

Doublet Doublet Doublet 
0.0 Lattice 0.0 Lattice 0.0 Lattice 

0.001796 0.0194 If 0.00355 ii 

0.009261 0.07917 0.01449 it 

0.01673 0.18456 0.03375 II 

0.0523 0.34657 0.0634 II 

0.1145 0.58776 0.1073 K 

0.2689 0.96055 0.1756 II 

1.6343 0.299 II 

00 Piston 
Theory 

OO Piston 
Theory 

0.4(oo) H 
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aerodynamic term at the highest frequency point obtained from 
the approximation does not approach the value obtained by 
piston theory.  Consequently, the curve through the circular 
points contains large oscillatory lobes.  It was concluded 
that the reduced frequency points at which the doublet lattice 
was evaluated did not cover a sufficiently high frequency range 
to adequately approach the piston theory limit. Furthermore, 
referring to Table 27, it was concluded that the fitting points 
for the first approximation were evaluated at values of k that 
were too high when compared to the highest value of k for which 
the doublet lattice was used to compute the original aerodynamic 
terms. 

The second approximation of the aerodynamic terms over the 
infinite frequency range used aerodynamic data obtained from 
the finite frequency range approximation (column 1, Table 27) 
evaluated at the reduced frequencies listed under the heading 
"2nd Approximation".  Also, the aerodynamic term evaluated for 
a reduced frequency of 0.4 was used as the infinite frequency 
point. These points are shown as the square symbols on 
Figure 71 and the solid line through these points is the 
"2nd approximation" over the infinite frequency. 

• 
The "2nd approximation" was considered to be the best 

that could be accomplished with the range of data computed by 
the doublet lattice that was employed in the Nyquist criteria 
studies.  Since the computation of the aerodynamic terms by 
the doublet lattice method is expensive, no attempt was made 
to determine how high a value of reduced frequency must be 
employed before the doublet lattice computed aerodynamic terms 
approach the piston theory limit.  It would be necessary to 
increase the number of doublet lattice panels for very high 
frequencies. Hence, this investigation was considered to be 
outside the scope of the current project.  Further studies of 
this subject are needed to develop better indicial functions. 

Since the number of terms in the polynomial approximation 
fixes the values of reduced frequency for which the input data 
must be supplied the values of the reduced frequencies cannot 
be changed. However, by changing the value of the reference 
length the corresponding values of the angular frequency divided 
by velocity can be changed.  The value of the reference length 
was changed from 1.0 to 5.468 (half the mean aerodynamic chord) 
when changing from the approximation indicated by the circular 
symbols to the approximation indicated by the square symbols 
on Figure 71. 
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1 
The indicial functions obtained from the approximation 

illustrated by the square symbols in Figure 71 will have the 
correct steady state value at high values of time (t —oo) 
but the initial value (t ■ 0) will not be compatible with 
piston theory. 

A comparison of the Laplace of the impulse function, 
evaluated along the imaginary axis, with the oscillatory 
aerodynamic terms from which it was generated is shown on 
Figure 72.  The steps leading to this comparison are reviewed 
briefly in the following: 

(1) The polynomial approximations of the oscillatory 
aerodynamic terms were developed in the manner 
previously described to obtain the curve through 
the square symbols of Figure 71. 

(2) The Fourier transform of the analytical 
approximation developed in step 1 was performed 
to yield the indicial functions. 

(3) A polynomial approximation of the indicial 
function computed in step 2 was performed 
in order to obtain an expression that was 
Laplace transformable. 

(4) The Laplace transform of the approximate 
indicial functions, obtained in step 3, 
was obtained and then multiplied by the 
Laplace variable to yield the Laplace of the 
impulse function. 

(5) The Laplace of the impulse function when 
evaluated along the imaginary frequency axis 
yields the oscillatory aerodynamic terms. 

The data from step 5 is compared with the polynomial 
approximation of step 1.  If steps 4 and 5 could have been 
applied to the indicial functions obtained in step 2, the 
output of step 5 would agree exactly with the polynomial 
approximation of step 1. However, step 3 (the polynomial 
approximation of the indicial function) causes the differences 
in the curves on Figure 72. 

261 

■iaMMMMit iMHWuHta jWinin-riiiinriiiiiiMiiiiiiiVi'liiiMiMifffnfihn 



—« 

■ 

= —^ . *—j 
—_—  —^ — 

•er 

+ 

c   - 

IM 
O      TS 

er 

.MO. 

I 

1 
// 

H 
ij 

*/ 
-fi 
4 st 

h 
0) 

r-l        M 
cd    ai 

. m %  - 
 r / 

' 

/ / '1 
ä^ " 

■— - 
—     »Ji 7^7- / 

  
i 

7^ ^ ^ yr ,< V g< 
y 

i 
,# jp -' ,^ 

f / ̂  

\   - — , 1             0  ; TT 1                    0 
mom   • 

*o   •   •   • o 

  
o in   • \ ;? 

TJ    •   »o " a) in r~ i-i 
\\ o) CM m r^ i-i 

cO    M   M   M \\ cd   M   L   M   M 1 
i r-l   U   U   U 

4J   ^     •«    .    ^ 
VI 
in 
(1. 

r-l   4J   M   -U   4J 
M    ^3      n     v\     n     n 

3 u m in in 
iXi-i ll   li   li 

- S o cn ro co cn 
a^i ll   n   ll   li 
C   Cd     CO    0)    0]    CO 

O 

s s s 

1 i ! 
y       \ 

\       1 
— 

 O - H U 

0 

z z z z 

IM! 
1    1   >   1 

1 1 i i • 
i 

i  , 3  r     * 
  

  

 4 

o o 

o 
o 

$8 3ls 

g^ 

o 
cn 

i 

o 
•>* 

i ? 8 o 
i 

o m 
o o 

Cd 
w 
Q 

I 
tu  H 

w Bd 

i 
E 

o 53 

8 
ot; 
o 
H 

O 

§ 
H 
pd 
< 

O  W o o 

262 

»■.iSitji .-i 



i r  A. 1                    1               -J-         -1  ''" ̂ —I—1— 
-■       . o 

o m   • -o   •   • o 
9i   if)   ?*•   r-l 
u  II   II   II 
CO    Vi   U   VJ 
I-(   4J   -U   iJ 

3 o Lo in m 
a^-t ii   it   ii 

—  , m o m   • 
•^   •   •   • o 

  4-)    II     II     II 
Cd     Ll    )-l   I 

r-4    U    U    i. 
4J   3      «    « 
3   Ü CO CO c 
ar-i   II    II    II 

II   -I   u 

i co 
II 

C  cd    tn   w   en 
M O 2 !a 2: 

1 

H C 

o 

0    w   vi   m   vi 
j z a z 2: 

MM 
„ ,   i 

i 

i    - ... 
. ——'   

 .   I  : 
    

■ ■ - 

I 

k _ ^   

..   . 

l 
i I 1 

i. . 
\ ;, n! ■   . 1 A _.. k H 1 UK. 
\ V •^ r « 

\ ^ 
r  i r i 

... •er \ 
.CL \- -   

■irt ki   T' 
1 

+ 1 
•ft ' 

XT 

* II 

o     ♦ 

1 

  

tr   
J_I      £ 

  
v   cd     o* 

PH 
Q) 

-    r-l          U 
cd     tu 

i    s 

_.   

  
  [.■■   — 

11  T 

o 
o 

o 
o 

(U 
u 

•A 

CM 7 CM 
I 

CO 
I 

o o 

263 

iürti fc^a-^^^^W^^- - t^^^^w^i«. 



 mm PP»W JWPP 1 

264 

— -— ^-.-,.. ..     ,.        



1 ■  asm 

265 

■ — 





F ' i "■■■ ■ ■,l ■HM 

problem was formed in the manner described by equations (9.5) 
through (9.7).  The eigenvalue problem was then solved by the 
Q-R transform method.  The number of roots for the unaugmented 
airplane can be determined as follows. There are 2 roots 
(complex pair, in general) for each airplane degree of freedom 
(DOF) and Ns-1 complex pairs from the indicial function. 

No. of Roots, unaugmented = (D0F)(2+NS-1)=(D0F)(Ns+1)  (9.8) 

To further simplify the first analysis quasi-steady aero- 
dynamic terms were employed for which Ns^l. A 3 DOF analysis 
was conducted employing only rigid body degrees of freedom. 
All of the roots of this analysis had negative real parts except 
for one small positive real root.  It had a value of 0.298x10*10. 
A 4 DOF analysis was conducted by adding the first natural mode 
as the fourth airplane degree of freedom. All of the roots of 
this system had negative real parts exceot for one small positive 
real root. It had a value of 0.734x10-10. since no indicial 
functions were employed in either of these analyses the source 
of the small positive root has to be in the rigid body degrees 
of freedom. 

The analyses were repeated for several indicial function 
approximations described by combinations of Ns and tr. In 
general, as the number of terms in the indicial function approx- 
imation increases, the number of roots with positive real parts 
increases and the magnitude of the largest positive real part 
increases. The number of roots with positive real parts and 
the value of the largest real part are tabulated in Table 28. 
The physical significance of the positive real roots is .not 
understood. All of the indicial function representations had 
the same value at t=0 and at t-^oo. Since a positive real root 
indicates a static instability, the number and magnitude of the 
instabilities are a function of the indicial function approxi- 
mation even though all indicial functions had the same steady 
state value (t-*-Qo). 

The data listed on Table 28 together with the comparisons 
shown on Figure 72 were used as a guide in selecting values of 
Ns and tr to be used in conducting the root locus analyses. 
The combinations that yielded the best comparison with the 
original oscillatory aerodynamic data (Figure 72) and the 
combinations that yielded the least number of positive roots 
and the smallest value of positive roots were selected. Since 
the number of roots increases rapidly with the number of terms 
in the indicial function, a maximum of five terms was used. 
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The following values of Ns and tr were selected for the root locus 
analysis: 

Ns    tr 

1 
3 
5 

2.5 
5.0 

Table 28 

POSITIVE ROOTS FOR UNAUGMENTED AIRPLANE 

DOF Quasi-Steady 
Aero. 

Indieial Function Number of 
Positive 

Roots 

Largest 
Positive 
Root Ns tr 

3 X 1 .298xl0"10 

4 X 1 .734xl0"10 

3 2 2.0 3 .377xl0"3 

4 2 2,0 3 .381xl0"3 

3 2 5.0 4 .988xl0"2 

4 2 5.0 4 .102X10"1 

3 2 10.0 4 .270X10"1 

4 2 10.0 4 .270X10"1 

4 3 2.5 2 .393xl0"3 

4 3 5.0 6 .230X10"1 

4 5 5.0 3 .288xl0"3 

4 5 7.5 4 .280xl0"3 

4 7 10.0 5 
+i.0165 
.1696xl0-2 

4 10 10.0 5 
+i.0138 
.203xl0-2 

4 10 12.5 5 
+1.132x10-1 
.253x10-2 

+1.0125 
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9.2.3 Root Locus Analysis for Augmented Airplane 

The root locus analysis was conducted by selecting a value 
for the roll and yaw loop gains, KR and Ky in equation (8.41), 
selecting a representation of the indicial functions defined by 
Ns and tr, and multiplying the equations of motion by a common 
denominator formed by the denominator terms of the control system 
and the indicial functions.  The common denominator for the yaw 
loop described in Section 3.2.2 is also the common denominator 
for the combined roll and yaw loops.  Referring to Section 3.2.2 
it can be seen that the control system produces eleven roots. 
Hence, the total number of roots for the augmented airplane can 
be determined by adding eleven to the second group of terms in 
equation (9.8). 

No, of roots, augmented = (DOF)(Ns+12) (9.9) 

The number of roots becomes very large for a large number of 
airplane degrees of freedom and for a large number of terms 
in the indicial function approximation. For example, when 
D0F=4 and Ns=5 there are 68 roots indicated by equation (9.9). 

After the equations have been multiplied by the common 
denominator, matrices with common powers of the Laplace variable 
were assembled as indicated by equation (9.1). Then the eigen- 
value problem was formed in the manner described by equations 
(9.5) through (9.7). Values of the gains KR and Ky are assigned 
and the eigenvalues are determined and plotted as a function of 
gain change. 

Root locus solutions for the three rigid body degrees of 
freedom configuration are plotted on Figure 73 for varying 
aerodynamic approximations.  The data is plotted on s-plane 
where 

g- = sbr = 
V 

trbi + iü>b r _ ~ 
V 

= 0^+ ik (9.10) 

and JL = 170.63. 
Dr 

All four of the plots are for variations in the roll gain. 
One plot is for the case in which the yaw gain is zero and 
Ns=l (quasi-steady conditions).  Each root locus analysis 
had positive real roots.  These roots changed very slowly 
with change in gain and are not shown on the plots. Only 
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the roct that went unstable with increasing gain is shown along 
with any other root in the same range of the Laplace variable. 
It can be seen that a root becomes unstable at a gain of 0.58 
and a frequency of 3.94 Hz.  The closest corresponding Nyquist 
criteria analysis is tabulated in Table 18,  This table shows 
a gain margin of 2,72 on a gain 0,2,  Hence, the Nyquist criteria 
indicates the system to be unstable at a gain of (2.72)(0,2)= 
0.544 which agrees very closely with the root locus solution. 
The indicated frequencies of the instability are also very close 
(3.94 Hz by the root locus and 4,05 Hz by the Nyquist criteria). 
The analyses differ in that quasi-steady aerodynamics arg used 
in the root locus analysis and oscillatory unsteady aerodynamics 
are used in the Nyquist criteria analysis. Also, the Nyquist 
criteria indicates the change in gain required to cause insta- 
bility when all feedback to the rudder command is held constant 
(feedback through aileron-rudder interconnect is held constant). 
However, when the roll gain, KR, is varied in the root locus 
analysis the feedback through the aileron-rudder interconnect 
changes as well as the feedback to the aileron, 

A second root locus plot on Figure 73 shows the effect of 
closing the yaw loop on the analysis described in the preceding 
paragraph.  The unstable root is only slightly effected.  It 
goes unstable at a gain of 0.61 and a frequency of 3.99 Hz, 
This result is also in agreement with the conclusions drawn 
from the Nyquist criteria data in Table 18,  That is, the roll 
gain for instability is approximately the same whether the yaw 
loop is open or closed. 

A third plot on Figure 73 shows the root locus solution 
for KY:=

1.0, NS=3, and tr=2.5.  This solution did not produce 
an unstable root for the roll gain variations investigated. 
Extrapolating a plot of the real part of the Laplace variable 
versus roll gain. Figure 74, yields a gain of 0,85, Hence, 
this indicial function approximation yields very poor correla- 
tion with the quasi-steady solution and the Nyquist criteria 
solution, 

A fourth plot on Figure 73 shows the root locus solution 
for KY=1.0, NS=5, and tr=5.0.  This solution produces an un- 
stable root at a gain of 0,34 and a frequency of 3.86 Hz, 

Damping is plotted versus MGR in Figure 74 for all four 
solutions obtained for the 3 DOF system.  It can be seen that 
a wide range of conclusions can be obtained with respect to 
the value of the roll gain required for instability as obtained 
from the indicial function approximations that were applied. 
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Root locus solutions for the 4 DOF system (three rigid body 
degrees of freedom plus the first natural mode of vibration) are 
shown on Figure 75. Four solutions are shown for the same aero- 
dynamic approximations used for the 3 DOF solutions. 

One of the 4 DOF plots is for the case in which the yaw 
gain is zero and Ns=l.  This analysis shows an unstable root at 
a roll gain of 0.147 and a frequency of 6.03 Hz.  The closest 
corresponding Nyquist criteria analysis that was conducted is 
the 9 DOF solution tabulated in Table 18.  This table indicates 
a gain margin of 0.55 on a roll gain of 0.2.  Hence, the roll 
gain for the neutrally stable point would be (0.55)(.2) = 0.11. 
The frequency of the instability is 6.1 Hz by the Nyquist 
criteria versus 6.03 Hz by the root locus method. 

A second root locus plot on Figure 75 shows the effect of 
closing the yaw loop on the analysis described above. The un- 
stable root is only slightly effected.  The unstable gain becomes 
0.158 at a frequency of 6.01 Hz.  This result is also in agree- 
ment with the conclusions drawn from the Nyquist criteria data 
in Table 18.  That is, the roll gain for instability of the 9 DOF 
system is approximately the same whether the yaw loop is open or 
closed. 

A third plot on Figure 75 shows the root locus solution 
for KY=1, NS=3, and tr=2.5.  This analysis shows an unstable 
root at  a roll gain of 0.109 and a frequency of 6.11 Hz which 
is virtually in perfect agreement with the Nyquist criteria 
analysis for the 9 DOF case. 

A fourth plot on Figure 75 shows the root locus solution 
for Ky-l.O, Ns=5, and tr=5.0. This analysis shows an unstable 
root at a roll gain of 0.096 and a frequency of 6.13 Hz. This 
analysis is in good agreement with the Nyquist criteria solution 
for the 9 DOF system but not quite as good as the correlation 
obtained with the three term indicial function analysis described 
in the preceding paragraph. 

Damping is plotted versus MGR in Figure 76 for all four 
solutions for the 4 DOF system.  These points lie almost on 
straight lines making interpolation very easy. 
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9.3 ROOT LOCUS SUMMARY 

The results of the root locus analyses are summarized in 
Table 29.  Since the root locus method and the Nyquist criteria 
method are two methods for determining stability of the same 
system, the results from both should be the same.  The two 
methods were not applied to identical systems.  That is, the 
variable gain is different in the two methods because of the 
aileron-rudder interconnect but this difference appears to be 
small.  (The roll gain in the root locus analysis was varied in 
exactly the same manner as it was varied during flight tests.) 
The two stability analysis techniques were both conducted for 
the 3 DOF system. However, the root locus method was also 
applied to the 4 DOF system and the closest Nyquist criteria 
solution that contained the first natural mode was a solution 
for the 5 DOF system. 

The root locus analysis of the 3 DOF system exhibited a 
wide range of conclusions with respect to the value of the 
roll gain required for instability as a function of the indicial 
function approximations.  The best correlation with the Nyquist 
criteria was obtained using quasi-steady aerodynamics in the 
root locus solution. 

In contrast, the root locus analysis of the 4 DOF system 
correlated with the Nyquist criteria very well when either the 
three or five term indicial function approximation was applied. 
The root locus analysis for the 4 DOF system using quasi-steady 
aerodynamics did not correlate very well with the Nvquist 
criteria. 

Although the root locus analysis was applied only to the 
missile-on configuration, some insight into the missile-off 
instability can be obtained by comparing the 3 DOF and 4 DOF 
solutions. The 3 DOF system goes unstable near 4.0 Hz when the 
roll gain is increased sufficiently. The 4 DOF system goes 
unstable near 6.0 Hz at a lower roll gain. Hence, the 3 DOF 
solution is similar to the missile-off instability.  The root 
locus method indicates the 4 Hz instability to be sensitive to 
the aerodynamic representation. However, the 6.0 Hz instability 
appears to be less sensitive.  This observation correlates with 
the variation in the approximation of the Q^a and QiSa terms. 
The Q«/>8a term is the most important aerodynamic excitation term 
for the 4 Hz instability. However, the Q1Sa term is the most 
important aerodynamic excitation term for the 6 Hz instability 
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Referring back to Figure 72 it can be seen that there is a 
larger deviation between both the three and five term indicial 
function approximation and the original oscillatory aerodynamic 
approximation for the Q>//8a term than there is for the Qlga term. 

Better correlation might have been obtained between the 
root locus and Nyquist criteria results if a larger number 
of terms were used in the indicial function approximations. 
However, the number of roots and hence the computational, cost 
increases with the number of terms in the indicial function 
approximation and becomes a limiting consideration. 

Table 29 

COMPARISON OF ROOT LOCUS AND NYQUIST CRITERIA 
PREDICTED ROLL GAIN FOR INSTABILITY, 
MISSILES-ON,   M=0.9,   20,000 FT 

Nyquist Criteria Root Locus 

DOF Yaw 
Loop 

Roll 
Gain 

Freq 
(Hz) 

DOF Ns tr MGY MGR Freq 
(Hz) 

3 Open .542 4.05 3 1 • • • 0 0.58 3.94 

3 Closed .540 3.92 3 1 • • • 1.0 0.61 3.99 

3 II " II 3 3 2.5 1.0 0.85* >4.0* 

3 II II II 3 5 5.0 1.0 0.34 3.86 

5 Open .112 6.13 4 1 • o • 0 0.147 6.03 

5 Closed .112 6.12 4 1 • • e 1.0 0.158 6.01 

5 II II M 4 3 2.5 1.0 0.109 6.11 

5 II II II 4 5 5.0 1.0 0.096 6,13 

* Extrapolated 
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SECTION  X 

CONCLUSIONS  AND 

RECOMMENDATIONS 

10.1 ANALYSIS METHODS 

10.1.1 Structural and Aerodynamic Representations 

Mathematical models of the structure should be modified 
or adjusted to provide good correlation with ground vibration 
test data and/or static test data. Similarly, the aerodynamic 
representation should be modified or adjusted to provide good 
correlation with wind tunnel measured stability derivatives. 
Good correlation with the measured control surface derivatives 
is of particular importance. Good correlation leads to 
"correction factors" near unity for the computed aerodynamic 
terms associated with the rigid body degrees of freedom and 
improves confidence in the computed generalized aerodynamic 
terms for the flexible degrees of freedom for which there 
usually are no wind tunnel data available. 

10.1.2 Equations of Motion 

The truncated mode method of analysis requires the least 
computational cost of the methods applied in this investigation. 
If the computed aerodynamic terms are multiplied by factors 
to force agreement with wind tunnel based flexible stability 
derivatives, the analyses employing only rigid body degrees of 
freedom are satisfactory in the low frequency range.  These 
analyses are not satisfactory in the vicinity of the frequency 
of the first natural mode and above. When natural modes of 
vibration are added as degrees of freedom, the analyses are 
likely to be unconservative.  That is, the predicted unstable 
region is likely to be smaller than the true unstable region. 
The flexible modes of vibration induce aeroelastic effects. 
In the limited case as an increased number of modes are added 
as degrees of freedom the effects of flexibility are included 
twice. Since flexibility effects usually decrease the control 
surface effectiveness the analytical model is likely to be 
more stable than the airplane. 
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On the other hand, if the computed aerodynamic terms asso- 
ciated with the rigid body degrees of freedom are corrected to 
agree, at low frequency, with wind tunnel based rigid stability 
derivatives, the analyses are likely to be conservative when 
only a small number of flexible degrees of freedom are included. 
That is, the system is likely to be more unstable than the air- 
plane. However, this method converges to the correct stability 
characteristics for a sufficiently large number of flexible 
degrees of freedom. But it is difficult to predict in advance 
how many degrees of freedom are required.  Even though the fre- 
quency of the instability might be rather low, high frequency 
modes involving control surface rotation might be required to 
produce the correct aeroelastic effects on the control surface 
derivatives. 

A third method of correcting the aerodynamic terms, that 
was not applied in these studies, is to compute the aeroelastic 
effect produced by the flexible degrees of freedom and then 
develop correction factors for the aerodynamic terms associated 
with the rigid body degrees of freedom such that the sum of the 
corrected terms plus the aeroelastic effects produced by the 
flexible modes equals the wind tunnel based flexible stability 
derivatives. 

The residual flexibility method provides a means of insuring 
that the flexibility of the structure is correctly simulated 
regardless of the number of natural modes retained as degrees 
of freedom. Hence, the aeroelastic effects on the stability 
derivatives at low frequencies are the same regardless of the 
number of natural modes retained as degrees of freedom. This 
method requires a higher computational cost than the truncated 
mode method. Furthermore, the aerodynamic terms computed by the 
residual flexibility method are unique for a particular set of 
degrees of freedom and a particular altitude in contrast to the 
truncated mode method in which the same set of aerodynamic terms 
can be used for altitude variations and/or reductions in the 
number of degrees of freedom. When applying the residual flexi- 
bility method it is recommended that checks be made at various 
stages of the analysis as described in Section VI. In particular, 
checks should be made on the unsupported flexibility matrix, 
the residual flexibility matrix, and the aerodynamic terms 
computed by the residual flexibility method.  The aerodynamic 
terms associated with the rigid body degrees of freedom as 
computed by the residual flexibility matrix can be corrected 
to agree with wind tunnel based rigid stability derivatives 
as described in Section VI. The residual flexibility method 
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is recommended as a method superior to the truncated mode method, 
Although it requires more computational cost for the same number 
of degrees of freedom it should yield more reliable results for 
a smaller number of degrees of freedom. 

10.1.3 Frequency Domain Analyses 

Both the Nyquist stability criteria and the determinant 
plot provide means of determining stability of an airplane with 
an active control system using the same unsteady aerodynamic 
methods used in flutter analyses.  Both require knowledge of 
the poles in the system.  The Nyquist criteria requires that 
the number of right hand side poles in the GH function be known. 
The determinant plot for the unaugmented airplane has no poles 
that produce phase reversals.  However, when a control system 
loop is closed, poles can be produced in the determinant by 
the control system feedback loop.  Left hand side poles produce 
phase reversals similar to the phase reversals caused by right 
hand side zeros. Hence, the poles of the determinant should be 
removed before plotting. 

The Nyquist criteria was the primary stability method 
employed.  The determinant plot was used to determine stability 
of the unaugmented airplane and also as a cross check on the 
stability conclusions derived from the Nyquist criteria.  The 
instability encountered by the missiles-on configuration occurred 
very near the natural frequency of the first antisymmetric mode 
of the airplane.  This instability was predicted by the Nyquist 
criteria.  The degree of correlation with flight test is depend- 
ent on the "correction factors" applied to the aerodynamic terms. 
However, each set of correction factors either predicted the 
instability or showed the system to be only marginally stable. 
The residual flexibility method provided the best correlation 
with flight test for the least number of degrees of freedom. 

Correlation between analysis and test was not as good for 
the missile-off configuration.  This instability occurs at a 
frequency that does not coincide with either a structural 
natural frequency or an airplane rigid body natural frequency. 
All Nyquist plots of feedback through the roll loop cross the 
negative axis at a frequency in the 3.5 to 4.5 Hz range.  The 
phase angle lag produced by the combined command servo, power 
actuator, and sensor is approximately 100° at 4 Hz.  The phase 
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lag in the airplane roll rate, at the sensor, per unit aileron 
deflection is approximately 80° at 4 Hz.  Since there are no 
other elements in the roll loop that cause phase lags the 180 
phase lag produced by these two parts of the roll loop explain 
the frequency of the negative axis crossing.  Variation in 
analysis methods produce small changes to the roll rate per 
aileron deflection frequency response and account for the 
negative axis crossing frequency varying from 3.5 to 4.5 Hz. 
Since the frequency of the instability in flight was approxi- 
mately 3.5 Hz, this explanation is believed to describe the 
primary source of the instability. However, the analyses, 
in general, do not predict sufficiently high feedback magnitudes 
in the 4 Hz range to accurately predict the instability. An 
exception was the 4 DOF residual flexibility analysis which 
showed an instability in the yaw loop in the same frequency 
range. However, the more accurate 9 DOF residual flexibility 
analysis indicated the system to be stable with a negative axis 
crossing very nearly the same as indicated by the 19 DOF trun- 
cated mode analysis. Therefore, the residual flexibility method 
also indicates the system to be stable when a sufficient number 
of natural modes are retained as degrees of freedom. The 
missile-off instability in flight was milder than the missile-on 
instability and was observed on far fewer flights. Perhaps 
nonlinearities in the system have to be included in order to 
predict the instability. Other possible explanations are 
1) the control system gain and/or phase lag is greater than 
indicated by the mathematical model, 2) the aileron effective- 
ness is greater than wind tunnel tests indicated or 3) actuator 
impedence (complex stiffness) is important and should be in- 
cluded in the analyses. 

10.1.4 Laplace Domain Analyses 

In order to perform the Laplace transformation of the 
equations of motion the generalized aerodynamic forces need 
to be expressed as indicial functions. A method was developed 
for approximating each generalized aerodynamic term for 
oscillatory motion, by Tschebychev polynomials.  In principle, 
the approximation is made for the entire positive frequency 
range with piston theory being employed to define the limit 
value of each generalized aerodynamic term as frequency 
approaches infinity. With each generalized aerodynamic term 
expressed as an explicit function of frequency, Fourier trans- 
formation techniques can be applied to compute indicial 
functions. The indicial functions represent the change in 
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the generalized aerodynamic forces as a function of time after 
a step change in either the generalized coordinate or the 
generalized coordinate velocity. 

In order to test the concept, the polynomial approximation 
to the Theodorsen function was developed and then the Fourier 
transformation was made to obtain an approximation to the Wagner 
function. The comparison with the exact Wagner function was 
shown to be good.  Based on this comparison it is concluded that 
this method provides a means of computing indicial functions 
from oscillatory generalized aerodynamic terms computed by any 
linear aerodynamic method. However, when the method was applied 
to the oscillatory aerodynamic terms that were used in the 
Nyquist criteria (computed by the doublet lattice method) diffi- 
culties were encountered.  It was found that the aerodynamic 
terms for the highest value of reduced frequency employed in 
the Nyquist criteria analyses did not approach the piston theory 
value. As a consequence, the polynomial approximation had large 
oscillatory lobes between the fitting points. As an expedient, 
the aerodynamic terms computed by the doublet lattice were 
extrapolated to a slightly higher value of reduced frequency 
and this extrapolated point was used as the point at infinite 
frequency rather than the piston theory approximation. This 
approach yields indicial functions that are compatible with the 
doublet lattice computed steady state aerodynamic terms as time 
approaches infinity but the indicial functions at time zero are 
not compatible with piston theory. Further study of this method 
of computing indicial functions is recommended to determine how 
high a reduced frequency must be employed to insure that the 
doublet lattice computed aerodynamic terms approach the piston 
theory limit and the importance of matching the piston theory 
limit. 

The Laplace transform of the indicial functions developed 
in the manner described above are complicated and not in a form 
convenient for use in a root locus analysis. Hence, the indicial 
functions were approximated with Tschebychev polynomials by tech- 
niques similar to those employed to approximate the oscillatory 
aerodynamic terms. This process produces additional difficulties. 
First, it is desirable to minimize the number of terms in the 
indicial function approximation in order to minimize the number 
of roots in the root locus solution. Second, the location of 
the fitting points expressed in nondimensional time, t, can be 
varied by the choice of the parameter tr. Hence, considerable 
variation in the indicial functions can be obtained by the 
choice of the number of terms in the indicial function approxi- 
mation and the choice of the parameter tr. These variations are 
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easily seen by multiplying the Laplace of the indicial functions 
by the Laplace variable, evaluating the product along the imagi- 
nary frequency axis, and comparing the result with the original 
oscillatory aerodynamic terms from which the indicial functions 
were developed.  Further study is recommended to develop guide- 
lines for selecting these two variables. 

10,1.5 Root Locus Analyses 

Root locus analyses have an advantage over frequency domain 
analyses in that they yield explicit information on the damping 
associated with each root.  However, root locus analyses are at 
a disadvantage because they require indicial functions which, 
in general, require another level of approximation in proceeding 
from the oscillatory aerodynamic terms. The analyses conducted 
during this investigation indicate the roots of the analysis to 
be sensitive to the indicial function approximations that were 
applied. The number of positive real roots that was obtained 
in these analyses appears to be directly related to the indicial 
function approximations. The indicial function approximations 
locate pol^s along the negative real axis. Some of these poles 
are located close to the origin and become small positive real 
roots or roots with small positive real parts in the root locus 
analyses.  These roots are believed to be fictitious in the sense 
that they yield a false indication of a zero or extremely low 
frequency airplane instability. More accurate approximations 
of the indicial functions are expected to be the means of 
removing these questionable roots in the root locus analysis. 
Hence, the recommendations for investigating means of improving 
the indicial function approximations that were made in the 
preceding subsection are also applicable to the improvement of 
the root locus analyses. 

The root locus analysis was applied only to the missile-on 
configuration. The roll loop gain required to drive the system 
unstable for the 6 Hz instability as predicted by the root locus 
analyses employing 4 DOF correlated very well with the corres- 
ponding Nyquist criteria analysis employing either 5 DOF or 
9 DOF. 

285 

■■J*JfaA'°^'*J—^—'*-—"—'-iJt*— ■ —^ —- -    .-■■■-?   -, nnt  n   ^- -— - 



wmmmimm 

10.1.6 Time Domain Analyses 

To include the effect of nonlinearities in the system 
solutions must be obtained in the time domain. Although this 
type of analysis was outside the scope of this investigation, 
the same indicial functions developed to conduct root locus 
analyses can be used to obtain time dependent solutions. 

10.2  TESTS 

10.2.1 Ground Vibration Tests 

Ground vibration tests should be conducted with the 
airplane supported or suspended by soft springs. Hydraulic 
power should be supplied to the actuators.  The feedback from 
the sensors should be disconnected.  The purpose of these tests 
is to measure the natural frequencies and mode shapes of the 
airplane with the control surfaces restrained by the hydraulic 
actuators.  The sensor response should be measured at each 
natural frequency as part of the mode shape measurement.  The 
mode shapes should be measured on both sides of the airplane 
centerline in order to determine the amount of nonsymmetry in 
the mode shapes. Data from these tests is used to correlate 
with the mathematical model of the structural stiffness and 
mass or used directly in the equations of motion employing the 
GVT modes as generalized coordinates. 

The tests described in the preceding paragraph are 
recommended when the impedance (complex stiffness) of the 
actuator can be approximated by a simple spring.  That is, 
the tests described above yield information on the actuator 
stiffness indirectly by determining control surface natural 
frequencies and control surface deflections associated with 
all natural frequencies and mode shapes.  These tests do not 
yield information on the magnitude and phase of the actuator 
stiffness at non-resonant frequencies. When justified, alternate 
tests are recommended which are the same as described in the 
preceding paragraph except the actuators are replaced by rigid 
links.  The impedance of each actuator is measured as a separate 
test.  Data from these combined tests are used to correlate with 
the mathematical model of the structural stiffness and mass in 
which the actuator impedance is represented as a separate com- 
plex spring. 
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10.2.2 Control System Ground Tests 

Open loop tests should be conducted.  These tests are 
performed by opening one of the control system loops and 
supplying a sinusoidal signal at that point. Frequency 
response data is measured at various points in the system 
including the feedback to the point where the loop is opened. 

Open loop tests should be conducted with the airplane 
resting on its landing gear.  The purpose of these tests is 
to determine the stability of the flight control system on 
the ground. These tests should not be used to infer the 
stability of the airplane in flight. Stability of the control 
system on the ground should be considered as a necessary but 
not a sufficient condition for stability in flight. 

For aeroservoelastic investigations it is desirable to 
conduct the open loop tests on a soft suspension system with 
the landing gear retracted. These data are used for the 
purpose of correlating with the mathematical model and it is 
desirable to remove the need for including the landing gear 
in the correlation process. Frequency response data should be 
measured from the point at which the input signal is applied 
to various points in the feedback path, such as, the control 
surface deflections, the sensors, and the feedback to the point 
where the loop is opened.  This type of data provides visibility 
on which parts of the system correlate well and/or which parts 
of the mathematical model need to be changed.  Hence, these 
tests do not provide direct information on the stability of the 
system in flight but they do provide information on the accuracy 
of the mathematical model in representing the structure and the 
flight control system. Good correlation between the measured 
and computed frequency response data should be obtained before 
the mathematical model is used for subsequent aeroservoelastic 
analyses. This type of test was conducted on the YF-16 under 
a separate contract, following the analyses described in this 
report. The results of these tests provided justification for 
small changes in the mathematical model which improved the 
correlation with the missile-off flight test experience. 
These tests are reported in reference 12. 
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10.2.3 Control System Flight Tests 

Provisions should be made to provide a sinusoidal or random 
signal to the control surface command in flight.  The purpose of 
these tests would be to measure the Nyquist plots during flight 
tests by measuring the ratio of the feedback signal to the total 
input command.  These tests would provide a direct measurement 
of gain margin and phase margin at each flight point and could 
be used to conduct tests analogous to flight flutter tests. 

10.3 CRITICAL FLIGHT CONDITIONS 

Critical flight conditions for airplanes with active 
control systems are to a large extent a function of the 
control system feedback loops. However, flight conditions 
for which the product of the control surface effectiveness 
and feedback loop gain is a maximum are likely to be critical 
flight conditions.  These flight conditions should be checked 
for stability along with flight conditions for which the 
unaugmented airplane has minimum flutter margin. 

10.4 TECHNOLOGY EVALUATION 

The missile-on instability cannot be predicted with 
rigid body degrees of freedom.  The first antisymmetric mode 
which is identified as the missile-pitch mode must be included 
as a degree of freedom. The instability is most sensitive to 
the Ql8a generalized aerodynamic term (work done by the aileron 
deflection aerodynamic forces on the missile-pitch mode).  The 
computed stability of the system is sensitive to the method of 
modifying the computed value of this aerodynamic term in order 
to correlate with experimental data. 

The missile-off instability is primarily described by 
rigid body roll motion of the airplane. The natural modes of 
vibration are of secondary importance. The instability is most 
sensitive to the C<ga stability derivative.  The computed 
stability of the system is sensitive to the method of modifying 
the computed value of C^ßa in order to correlate with experi- 
mental data. 
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An overall evaluation of ail methods that were applied to 
predict both the missile-on and missile-off type instabilities 
can be summarized with a general conclusion that the gain margin 
can be computed within +6 Db and the phase margin can be pre- 
dicted within +45°. 

10.5 RECOMMENDED RESEARCH 

Research is recommended to develop accurate and economical 
means of measuring oscillatory aerodynamic pressure distributions 
Emphasis should be placed on measuring aerodynamic pressures 
produced by oscillatory control surfaces in the transonic speed 
range. 

Continued research is recommended to develop improved 
analytical methods for computing oscillatory aerodynamic 
pressure and aerodynamic indicial functions. Again, emphasis 
should be placed on control surfaces in transonic flow. 
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LIST OF SYMBOLS 

"rs 

Ard 

A 

A+Ada 

A+A^r 

Biais 

br 

C(k) 

Ciais 

coefficients of equations of motion for 
unaugmented airplane 

coefficients for control surface deflection 

matrix of coefficients of equations of motion 
for unaugmented airplane 

matrix of coefficients of equations of motion 
with roll loop closed 

matrix of coefficients of equations of motion 
with yaw loop closed 

lateral acceleration at sensor location 

matrix to transform deflections at structural 
control points to normalwash data at aerodynamic 
control points 

semi chord (also used as span in defining 
stability derivatives) 

reference semi-chord 

Theodorsen function 

matrix to transform deflections at structural 
control points to aerodynamic control points 

Cy/S» cyr» Cyp' Cyda' Cydr stability derivative for 

side force due to /?, r, p, da» ör, respectively 

Cnyj, Ctij., Ctip, Cn8a, Cn8r stability derivative for 

yaw moment due to /?, r, p, ga» 8r» respectively 

4C. 

^fp»  ^£8a»  ciSr    stability derivative for 
roll moment due to /?,  r, p,  ga»   6r»   respectively 

coefficient of pressure difference across 
lifting surface 
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D(s) 

Diaia 

Drs 

Fia 

Fis 

Fr 

G 

gr 

H 

hr 

i 

ia 

is 

KQQ 

Krs 

KR 

Ky 

k 

M 

Mrs 

Mr8 

Misis 

determinant expressed as function of Laplace variable 

normalwash influence coefficient 

generalized damping matrix 

physical force at point ia 

physical force at point is 

generalized force 

forward loop transfer function 

structural damping of rth mode 

feedback loop transfer function 

deflection in r^a mode 

aerodynamic control point 

structural control point 

generalized stiffness matrix for deleted modes 

generalized stiffness matrix 

gain identified as MGR in roll loop 

gain identified as MGY in yaw loop 

reduced frequency 

Mach number 

generalized mass 

control surface generalized mass 

matrix of lumped masses located at structural 
control points 
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N 

N 

P 

4P 

Qrs 

q 

qr 

s 

s 

So 

s 

s 

T 

Tay 

T^ 

T0Y 

T0R 

Tn(x) 

t 

t 

tr 

number of clockwise enclosures of the minus-one 
point over the positive frequency range 

number of phase angle reversals in determinant plot 

number of complex conjugate pairs of poles on the 
right-hand side of the Laplace plane 

pressure difference across lifting surface 

generalized aerodynamic terms 

generalized coordinate 

magnitude of generalized coordinate for 
harmonic motion 

area 

unsupported stiffness matrix, physical coordinates 

supported stiffness matrix, physical coordinates 

Laplace variable 

bs Nondinensional Laplace variable, (■-—) 

transformation matrix 

yaw loop feedback transfer function from ay to Sr 

yaw loop feedback transfer function from «A to Sr 

yaw loop feedback transfer function from 0 to 6r 

roll loop feedback transfer function from 0 to 8a 

Tschebychev polynomial of the first kind 

time 

nondimensional time, (rr—) 

scaling factor used in approximation of 
indicial functions 
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V        velocity 

XQO      residual flexibility matrix 

xi» xo   input and output 

Z       number of comlex conjugate pairs of zeros on 
the right-hand side of the Laplace plane 

Z       unsupported flexibility matrix, physical coordinates 

Z0       supported flexibility matrix, physical coordinates 

Zis      physical deflection at point is 

8a      combined aileron and differential horizontal tail 
deflection in the ratio of 1.0 to 0.25 

Sr      rudder deflection 

^       yaw rate at sensor location 

V'lf deflection of WX  due to aerodynamic loads associated 
with qf are applied to the residual flexibility matrix 

$1$ deflection of ^i due to aerodynamic loads associated 
with control surface deflection are applied to the 
residual flexibility matrix 

• 
0       roll rate at sensor location 

0r      deflection of the r"1 mode normal to lifting surface 

0       isx3 matrix of rigid body deflections 

0       indicial function 

0rsa indicial function associated with the a  part of 
the downwash of the qs mode 

0rs      same meaning as 0rsa 

0rsh     indicial function associated with the h part of 
the downwash of the qs mode 

0rs     same meaning as 0rsh 
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Q Laplace of 0rs 

0 Laplace of 0rs 

0 phase angle 

w frequency, rad/sec 

wr natural frequency of rth mode, rad/sec 

DOF degraes of freedom 

Subscripts: 

/ roll moment 

n yaw moment 

p roll rate 

R roll channel 

r yaw rate 

r,s coefficient in rth equation for s^ generalized 
coordinate 

T side translation 

Y yaw channel 

y side force 

ß side slip angle 

\f/ yaw angle 

0 roll angle 

' 
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