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ABSTRACT 

This study reports an evaluation of Structured Programming as an aid in the 
production of highly reliable computer programs.   This approach to problem analysis 
and program composition organizes the program text to clearly reflect the order of 
execution for the program.   The resultant program text reflects the subdivision of the 
problem into smaller tasks which are clearly identifiable.   The rules for performance 
and ordering of these sub-tasks are reflected in the limited but sufficient set of controls 
used in program construction.   A set of Principles of Structured Programming is 
developed together with guides for determining an optimal upper and lower bounds on 
program size.   The applications of the Principles to a program are illustrated in the 
study report.   A set of observations and conclusions drawn from the experience of 
developing a program in this way are presented. 
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SECTION I 

INTRODUCTION 

This report presents the results of a test of the use of Structured Programming 
as described by Professor Dijkstra.    The study has two objectives:   1) determine the 
suitability of the Dijkstra paper, "Notes on Structured Programming",   as a basis for 
the practice of Structured Programming, and  2) evaluate the applicability of Structured 
Programming to the generation of aerospace software. 

The study is motivated by a recognition of the requirement for improvements 
in the software generation process.    This requirement is based on the high cost asso- 
ciated with the acquisition of the highly reliable software necessary to the aerospace 
mission.    Increases in both the size and the complexity of systems indicate Ugh costs. 

The approach to software composition, evaluated in this study, emphasizes 
steps that lead to a high level of confidence in the correctness of computer programs. 
An understandable program text is identified as one of the principal vehicles for 
achieving correct programs.   In particular, a solution to a programming task is 
specified with a program text that organizes the problem into sets of smaller tasks. 
This specification involves the use of a restricted set of control structures to organize 
the tasks.   It is intended that the resultant text be the principal documentation for the 
program, and that the text be sufficiently clear to support a convincing demonstration 
of the program's validity. 

This report presents a review of Structured Programming in Section II.   The 
review includes an introduction to the background of the concept of Structured Pro- 
gramming, and the development and illustration of a set of principles of Structured 
Programming.    The necessity for the identification and enumeration of the principles 
was motivated by failures of early attempts to apply Structured Programming based 
only on the Dijkstra paper. 

Section III presents an orderly development of a segment of a program to illus- 
trate the repeated application of the principles.    The application of the principles is 
discussed.   Following this discussion, arguments for the validity of the work are 
formulated. 

In Section IV the programs developed by Dijkstra are discussed.   A set of 
axioms that provide a rationale for Dijkstra's approach are presented.   The program 
form adopted for the study is then compared with the form used by Dijkstra. 

Section V of this report presents a set of observations that resulted from the 
effort.   An extensive bibliography of the literature of Structured Programming is 
included in this report. 
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Both of the objectives of the study have been addressed by the report.    The 
conclusions of the study are that Structured Programming can help improve the 
effectiveness of aerospace systems, but that the Dijkstra paper is not sufficient 
for use as the basis for the Structured Programming approach to software produc- 
tion.   Although the principles derived from the Dijkstra paper and illustrated in 
this report will probably be extended on the basis of experience, they provide 
sufficient guidance for the development of well structured programs. 
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SECTION II 

A REVIEW OF STRUCTURED PROGRAMMING 

1. INTRODUCTION 

The term Structured ProKramming identifies a particular philosophy of 
programming.    A philosophy of programming is a development and application of a 
body of principles about programming.    Programming can be defined as the art or 
technique of composing algorithms, called programs, for execution by a processor 
to perform a particular task. 

As is implied by its name. Structured Programming is concerned with the 
organization or structure of programs.   In particular, Structured Programming is 
concerned with the listing or text of the program. 

This concern with the program text is based upon its usefulness as the 
primary record jf the program.   The text provides a real basis for relating the 
execution of the program to the problem it is to solve.   Therefore, it is important 
that the text of the program be understandable.   A program text is understandable 
if a person, unfamiliar with the program, can easily read the code to determine what 
it does and how it operates.   If a program text is understandable, then it is possible 
to establish a clear, definite, and consistent relationship between the problem and 
the program execution based on the text. 

Each of the principles of Structured Programming presented in the latter part 
of this section has as a goal the formation of an understandable text.   The primary 
goal of Structured Programming, then, is the production of correct and understand- 
able programs, the text of which can adequately support a convincing demonstration 
of the correctness of the program with respect to the problem. 

Secondary goals of Structured Programming involve the generalization and 
adaptability of the program.   To accomplish these aims, the programs are constructed 
so as to localize the handling of individual parts of the problem to specific, easily 
identified parts of the program text.   These adaptations may be motivated by an 
anticipation of changes and modifications in the program specifications, to adjust 
to new requirements.   Alterations in the program may also be motivated by effi- 
ciency considerations.   These changes are easier if their effects are localized in 
the program. 

Advocates of Structured Programming base their approach to program con- 
struction upon the capability of a programmer to arrange or structure the program 
text according to any pre-determined criteria.    The text can be arranged or structured 
to provide the desired simple and direct relationship between itself, the static form, 
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and the dynamic or executional form of the program.    The text can then be made the 
basis for assertions about the properties of. and the validity of the dynamic form of 
the program    The size and the complexity of the program and its sub-structures 
can be controlled to conform to the perceptual limitations of the programmer.   These 
discip'ined actions aid both understanding and validation. 

The concrete realization of all of these basic philosophical beliefs is a usefully 

structured or a well structured program. 

Although the primary proponents of Structured Programming are concerned 
with achieving a philosophically pure way of deriving a well 8tr-tur^ P^"' ^ 
is currently no guaranteed "cookbook recipe" with which to produce one.   The pnmary 
ingredients, Ts in all programming, are the ingenuity, experience, and reasoning 

ability of the programmer. 

2. HISTORICAL BACKGROUND 

The most prominent names among the proponents of Structured Programming 
include E. Dijkstra. N. Wirth. B. Randell. C. A. R. Hoare. and H. Mdls.   Stimu- 
lation for the idea of Structured Programming originated from a ^«er submitted b^ 
E   Diikstra and published under the title. "GOTO Statement Considered Harmful. 
Most ome organized work in the field traces back to a previously -puMished pa^ 
distributed by Dijkstra among members of the computer community.    This paper has 
rece^ten published in a collection of pa^rs.« A theoretical ^sis forjruc^red 
Programming was originally established by Böhm and Jacopim* and Hoare    and 

extended by Mills. 6 

Many of the ideas expressed by Dijkstra had previously been ^rporated in 
.rood programming practice.   These ideas were also discussed in the literature in a 
d^ointXrt ve way.   However. Dijkstra's paper contains a lengthy philosophical 

rsuss^n regarding the desirability of organizing the ^Xl^ Ms^Z 
in a useful way so as to produce well structured programs.   In addition, his paper 
contaTiTa loosely formulated set of principles to guide the programmer m the con- 
st^ ion of such programs, together with some samples of the construction of well 
^ctured programs    It is the purpose of these principles to aid the Programmer 
fnTciÄthfspecified goals.   Program texts organized (structured) according 
o the principles can be more readily comprehended by others as well as by the 

oriEinal Programmer.   A determination of the validity of the program   with respect 
LTSation. can then possibly be made from an ^^^^^B- 
The areas of impact for future modifications to the program can be identified by 
«ferrTng to the program text.   Hie balance of this section deals with these principles 

of good programming practice. 
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3. BASIC CONCEPTS 

While developing the thesis of demonstrably correct programs, Dijkstra's 
paper observes the difficulty (near impossibility) of producing correct programs. 
As Dijkstra pointed out, this difficulty is particularly evident where full use is 
made of the unconstrained capabilities and sequencing control structures available 
in modern computer! and programming languages.   Discussions relevant to this 
problem may be found throughout the literature.^ The controversy over the GOTO 
statement is particularly relevant. 1, 7, 8,9, 10, 11 

As an alternative to the undisciplined use of generalized sequencing and 
control structures a controlled and restricted sequencing discipline, shown by 
Böhm and Jacopini4   to be sufficient for the production of any program, is adopted. 

It is proposed that programs be written primarily as an oriered sequence of 
steps.   The statements that make up a program are to be executed in the order in 
which they are written, with no backward reference. 

It is asserted that a program structured this way is the easiest of all program 
organizations to understand.   The text of such a program bears a one-to-one relation- 
ship to the execution form of the program.   This makes it easier to formulate a 
convincing demonstration of the correctness of an execution, based upon the text. 

It is interesting to note that the basic paper, as well as later papers, stresses 
a "convincing" demonstration rather than a more forxnal "proof" of correctness.   The 
notion of being able to demonstrate the correctness of a program stated as a list of 
an ordered set of steps has strong intuitive appeal.   There is a first, second, third, 
and ultimately an nth step in this program organization.   Each step follows its prede- 
cessor in a systematic way.   The effect of the program's execution can be analyzed 
through the application of stepwise enumerative reasoning. 

This seems to suggest that one has some chance to prove the correctness of 
such a program.   Possibly some of the techniques reported by London,12. 13 Good,14 

and others^5 could be useful in constructing such proofs. 

From the philosophical point of view, the most primitive operation of Struc- 
tured Programming is the division of the problem to be solved into two or more 
smaller problems or subtasks.   In the interest of simplicity the subtasks are ordered. 
This order is expressed by the relative positioning of each of the subtasks in a list. 

When these subtasks are carried out or executed, in the order specified, then 
the effect of their execution is the desired result  -  a solution to the problem.   The 
sequential ordering of the subtasks accommodates any time dependence that might 
exist between the subtasks.   Figure 2.1 illustrates a decomposition of a simple 
abstract problem into a sequence of subtasks. 

mm uaMMMH^MI mmtmäim  ■ - -^ 



PROBLEM 

'TZ 
SUBTASK1 SUBTASK2 

Figure 2.1.   Simple Problem Decomposition 

When this partitioning of the problem is expressed as a program, the subtasks 
are carried out by the execution of programs in the order specified, as shown below: 

PROGRAM1:   begin     PE1;     PE2;    end PROGRAM1; 

where PE1 performs SUBTASK1 and PE2 performs SUBTASK2.   When the program is 
executed, the control of the process to solve the original problem rests in PROGRAM1. 
Whenever PROGRAMl is executed the execution begins with the first step,  which per- 
forms SUBTASKl.   After PE1 is completed, control is returned to PROGRAMl for 
sequencing to the next step.   At this point PE2 is executed.   When this step is completed, 
then the execution of PROGRAMl is completed.    The program has been executed in a 
purely sequential manner with each step carried out exactly once in the order stated. 
The program consists of two steps or program elements (PE's).   A PE can take the 
form of another program, a subprogram, a macro instruction or a machine instruction, 
as appropriate. 

The orderly translation of the problem decomposition into this program organi- 
zation establishes the relationship between the problem and the program text.   Parti- 
tioning the problem and the program along the same boundaries as demonstrated in 
the above example exposes and preserves the analysis of the problem.   The handling 
of the parts of the problem in this way also localizes them to specific parts of the 
program text. 

The program text, written to express the problem decomposition, is laid out 
in the order of execution for the program.   The simple sequential ordering from top 
to bottom (beginning to end) satisfies the goals enumerated earlier for Structured 
Programming (e.g., clear, correct, understandable and adaptable). 

If, at this time, the problem has been decomposed into subtasks, all of which 
are satisfied by PE's which are defined, the decomposition process is completed. 
A PE is considered to be defined if:   1) there exist programs in a library of programs 
or instructions in the instruction repertoire which can carry out the subtask and produce 
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the desired result; or  2) it has occurred previously in the decomposition process. 
The latter case is considered to be a factorable PE   -  a program element the 
execution of which is invoked from more than one place in the program structure. 

In most instances the program reflecting the first step of decomposition has 
some PE's which are undefined, and thus does not meet the criteria for completion. 

Whenever any of the PE's are undefined, the task to be performed by that 
PE can be treated as a problem to be solved.   Partitioning is then repeated as often 
as is required.   The result of this partitioning is expressed as a program, just as 
was done for the original decomposition. 

A second application ot the decomposition operation creates subtasks of the 
subtasks, as the partitioning operation is applied to the subtasks derived in the 
first decomposition.   As successive decompositions of the problem are carried 
out, more of the details involved in the problem r.nd its solution are incorporated. 
To illustrate this point, a second order decomposition of the abstract problem is 
presented in Figure 2.2. 

PROBLEM 

— -   — 

SUBTASK1 Layer 1 SUBTASK2 

  _..     — - . _ . — — - —  

/ 

SUBTASK1.1 SUBTASK1.2 SUBTASK2.1 SUBTASK2.2 SUBTASK2.3 

Layer 2 

Figure 2.2.   Second Order Problem Decomposition 

Figure 2.2 illustrates the ordering of the subtasks that result from the second 
order application of the primitive operation, decomposition.   The subtasks shown in 
the figure are stratified into layers according to the order of the decomposition from 
which they resulted.   Layer 1 contains the set of subtasks which result from the 
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decomposition of the problem.   Layer 2, on the other hand, contains the set of sub- 
tasks formed by the decomposition of the members of Layer 1.   It is not essential 
Ümt all members of the layer be decomposed further; some may already be completely 
defined.   This tree-like organization of the partitioned process, in layers, represents 
one of the possible stratifications of the task.   A different decomposition of the problem 
would yield a different structure. 

It is not the hierarchical tree formed by the decomposition of the problem that 
is of primary interest.   Instead, the programs constructed from the problem decompo- 
sition are the focal point for consideration.   It is often helpful to distinguish between 
the ideas of problem decomposition and program composition.   To help separate 
these two concepts, this study uses different terms for similar notions that occur 
in each.   The term subtask is used when describing the parts which result from the 
decomposition of a problem.   The net effect of a problem or task is accomplished by 
performing a proper set of subtasks.   A task or a subtask is performed by executing 
a program, and a program is specified by an ordered set of program elements (PE's). 
The term layer is used to describe the relative location of subtasks when speaking of 
the nodes of decomposition.   The hierarchical grouping of programs and program 
elements, on the other hand, are described as belonging to levels of the program 
organization. 

For each layer of the problem decomposition, at least one program or program 
element, PE, is constructed to identify and order the sequence of the subtasks in that 
layer.   A PE then will most often appear in two ways in the program organization: 
1)   a PE first occurs as a step in a program (e.g., a procedure call) to define another 
PE;   2) the PE is itself defined at a lower level (higher numbered). 

The program presented earlier corresponds to the decomposition of the abstract 
problem into the first layer of subtasks.   That program, PROGRAM1, is the highest 
level of the program to solve the abstract problem.   The second layer of the decompo- 
sition, Figure 2.2, illustrates the need for more than one program to represent the 
decomposition.   At the second layer there are five additional subtasks, two of which 
result from the partitioning of SUBTASK1, and three as sub-components of SUBTASK2. 

The text of the program composed to solve the decomposed problem is shown 
in Figure 2 3, in which three programs are defined    These programs are identified 
and separated into two levels.   The program (PROGRAM1) which expresses the first 
decomposition of the problem is placed in the outermost level (LEVEL1).   Each of 
the steps of this program consist of calls on other programs (PE1 and PE2).   These 
program elements are defined, in the example, at the next level (LEVEL2) of the 
program structure.   If any of the PE's used in the programs PE1 and PE2 are defined 
with a program, those definitions are placed in a still lower level (i.e., 3 or beyond). 
In each of the programs a simple ordering of the program steps is preserved.   Each 
element of the structure is to be executed once, in the order specified, each time the 
program (PROGRAM1) is executed.   A trace of the flow of control during execution 
of the two levels of programs is shown in Figure 2.4. 
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LEVEL1:        begin 
comment        outermost level; 

PROGRAM1:       begin 
comment performs problem solution; 

PE1; 
comment        performs SUBTASK1 by causing the 

execution of the program (PE1) defined 
in LEVEL2; 

PE2; 
comment performs SUBTASK2 by causing the 

execution of the program (PE2) defined 
in LEVEL2; 

end PROGRAM1; 
end LEVEL1; 

LEVEL2:        begin 
comment specifies programs referred to in LEVEL1; 

PE1: 
comment 

end PE1; 
PE2: 
comment 

performs functions identified as SUBTASK1 when 
executed; 
PE3; 
comment        performs SUBTASK1.1; 

PE4; 
comment        performs SUBTASK1.2; 

begin 
performs functions identified as SUBTASK2 when 
executed; 
PE5; 
comment 
PE6; 
comment 
PE7; 
comment 

performs SUBTASK2.1; 

performs SUBTASK2.2; 

performs SUBTASK2.3; 

end PE2; 
end LEVEL2; 

Figure 2,3.   Two Level Program Text 

i 
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Enter PROGRAMl 

PROGRAM1, .Step 1 

Enter PE1 

PE1, Step 1 

Enter PE3 

EXIT PE3 

PE1, Step 2 

Enter PE4 

EXIT PE-l 

EXIT PE1 

PROGRAMl, Step 2 

Enter PE2 

PE2, Step 1 

Enter PE5 

EXIT PE5 

PE2, Step 2 

Enter PE6 

EXIT PE6 

PE2, Step 3 

Enter PE7 

EXIT PE7 

EXIT PE2 

EXIT PROGRAMl 

Figure 2.4.   Trace of Control for Execution of PROGRAMl 

10 
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The extremely simple relationships shown in this sample problem are not 
truly representative of those found in the "real" world.   The layers of decomposiUon 
in this problem map precisely into the levels of the program organization.   This is 
unusual     No provision is made in the example for the recurrence of the same subtask 
at different points in the problem.   To ignore this is impractical.   Common subtasks 
can often be performed by a single program or program element. 

The sample program does show something about the way that PE's are defined, 
by other PE's at a lower level.   The discipline of assigning definitions to lower levels 
is part of a consistent policy of using only forward references in the program text. 
The only instance when control is returned to a higher level is when the execution of 
a program at a lower level is completed.   Control then passes back to the calling PE 
at the higher level.   This discipline eliminates a potential cause of obscure circular 
deümtS and dependencies among program elements.   Further, it allows testing to 
be built up from the bottom.   The behavior of PE's, then, can be summamed into a 
set of rules:   1) a PE is activated from and exits to a PE at a higher level (lower 
numbered);  2) a PE, like all "good" programs, is executed sequentially from its 
entrance at the top to its exit at the bottom;  3) a PE never communicates directly 
with another PE at the same level as itself;   4) a PE performs its task by either 
executing instructions or calls on other PE's. defined at a lower (higher numbered) 

level. 

Having reviewed the rules of discipline for PE's. the problem of handling the 
recurrence of subtasks can now be addressed.   If, during the program decomposition 
Tsubtask recurs (i e., the decomposition yields a subtask which occurred elsewhere) 
then the subtask is favorable and the PE which satisfied the earlier occurrence should 
be used again.   If the definition of the PE appears on the same level or ^'^. 
of the program organization, it should be re-assigned to a lower level    The PE defim 
tLn mu^ be placed at least one level below the last reference to it in the program 
organization.   The re-assignment of the PE implies the re-assignment of any sub- 

structure used in its definition. 

To illustrate the effect on the program of factoring, it is helpful to develop an 
additional decomposition of the abstract problem.   This decomposition (Figure 2 5) 
a^ftle resultant^EVELS program set (Figure 2.6) are done first withou  factoring. 
The program set (LEVELS) is appended to the previous levels (Figure 2.3)    This 
^am set uses a new PE for each subtask.   The numbers in the PE labels are used 
Xto indicate uniqueness.   An alternate program or^.tion^^^en 
developed on the premise that SUBTASK2.2.2 is the same as SUBTASK1.2.   When 
the SUBTASK2 2 is translated into a program element in the LEVEL3 structure. 
SUBTASK2 2.2 is carried out using PE4.   The definition of PE4 which occurs on 
LEVEL3 in Figure 2. 6 is moved to the newly created LEVEL4, in Figure 2^ 
LEVEL4 is retired to provide a lower level position for the program which defines 
PE4. since it is called in LEVEL3.   From this it can be seen that the program 
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organization, in levels, is not necessarily identical to the problem decomposition 
of Figure 2.5.   A program element (PE) can be referenced anywhere, at any level 
in the program organization that meets the one restriction:  the definition of the PE 
must occur at a lower level (higher number) than any of its "calls". 

The freedom to assign program element definitions to appropriate levels of 
the program structure can be helpful in increasing the understandability of a program 
text.   Elements which pertain to similar or related aspects of the problem can be 
collected into a single level as long as they do not refer to each other.   Thus the 
levels are used to further isolate the parts of the problem to specific areas of the 
program text. 

Before presenting the possible variants on the simple ordering control struc- 
ture that can be used, it is worthwhile to re-state the relationship between a subtask 
(derived from the decomposition of the problem) and its companion program element. 
The subtask is a statement of the net effect to be achieved by the execution of the 
program element.   Therefore, the subtask is the criteria for evaluating the appro- 
priateness or correctness of the output of the program element. 

All subtasks do not decompose readily into a short, determinant sequence 
of smaller tasks, as shown in the abstract problem above.   Sometimes a problem 
decomposes into a number of repetitions of the same subtask.   An example of this 
kind of decomposition can be seen at the outermost level of the problem used in 
this study.   When this happens, a repetition control construct can be used to express 
the decomposition.   The net effect of the repetition of a program element can be 
readily identified (e.g., determine the square root of a number or run the appro- 
priate number of simulations).   This net effect can then be treated as a sequential 
element in the problem decomposition process.   The problem may not have been 
decomposed in such a way that the effect noted already appears as a subtask. 

It was indicated earlier, however, that in the interest of clarity of the program 
text, the partitioning of the program and the problem is to be made along the same 
boundaries    Therefore, in this case, it is necessary to re-partition the problem so 
that the net effect of the program implementation appears as a subtask in the decom- 
position.   Two forms of repetition control that preserve the isolation of the net effect 
are described later in this section.   (Repeat S until Condition; while Condition do S.) 

Sometimes a net effect must be achieved by selecting between alternative 
actions.   For example:  to find an element having a given key in an ordered list, the 
average search time can often be shortened by starting in the middle and searching 
in the appropriate direction.   Or, the actions required to form the absolute value of 
a real number are dependent upon the sign of the number.   Thus, under certain condi- 
tions of a problem, some of the steps in a program may not be executed.   To meet 
this need there are selection forms of the control statement.   The particular forms 
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of the selection which preserve the net effect (if Condition then EU;   if Condition 
then S1 else S2; and Case i of | Sj, S2, S3, ..., ^ [ ) are described later in this 
section.   A selection statement provides another instance of the interaction between 
the process of program construction and the problem decomposition process.   The 
net effect of the selection control must appear as a subtask in the problem decompo- 
sition.   If it does not, then the problem is decomposed again, at the appropriate 
layer, to yield a subtask which is the net effect of the selection. 

Normally the problem decomposition shapes the program organization. 
However, if actions must be performed which are controlled by a mechanism other 
than simple sequencing, it may be necessary to alter the program decomposition, 
The altered decomposition should contain subtasks which match the program organi- 
zation.   One of the subtasks should be the net effect of the program element which 
uses the non-sequential control mechanism for implementation. 

Programs constructed of levels, as illustrated in the abstract problem 
solution, can be thought of as being a nested set of abstract machines.   The machine 
at LEVEL1 can be thought of as having two (2) instructions, PE1 and PE2.   To solve 
the problem, a program is written for this machine.   This program establishes a 
sequence of the available instructions to achieve a solution to the problem.   This 
program is named PROGRAMl.   Other machines can be considered to exist for 
levels 2, 3 and 4.   The machine at LEVEL2 has a five instruction repertoire. 
The instructions are named:   PE3, PE4, PE5, PE6 and PE7.    There are two pro- 
grams currently written for this machine.   They are named PE1 and PE2.   These 
programs written for the second level machine provide a meaning to the instructions 
of the first level machine.   When these two abstract machines, each with its own 
instruction counter and space, are connected, they act as a single machine.   When 
they are connected and a program written for the machine LEVEL1 is executed, both 
machines are used.   The mechanism connecting the various levels of the program 
can be illustrated by following the execution of the program in this abstract machine 
organization. 

When the program (PROGRAMl) is activated, the instruction pointer for the 
machine LEVEL1 points to the first instruction of the program.   The instruction, 
PE1, is selected and recognized.   Machine LEVEL2 is activated to define the instruc- 
tion by executing the program PE1.   At this time, the instruction pointer of the machine 
LEVEL2 is set to step 1 of the program PE1, and the instruction PE3 is recognized and 
executed.   After the instruction pointer is stepped, the instruction PE4 is executed. 
When the instruction pointer is stepped the next time, the end of the program is 
recognized.   The termination of the program in LEVEL2 reactivates the machine 
LEVEL1.   The result of the execution of PE1 is made available to LEVEL1.   The 
machine LEVEL1 increments its instruction pointer to the next instruction.   Again, 
when the instruction is recognized, the next lower level machine, LEVEL2, is 
activated.   This process, in which the two machines work in lock step, is continued 

16 

 -'- ^ -—' "—'—-— 



m^mmmmm ^r mm^mmimmm "^ 

until the higher level machiiie, LEVEL1, has completed its program.   A lower level 
machine is activated anytime the machine executing the program cannot execute the 
instruction.   Whenever a machine must go to a lower level machine for service, the 
higher level machine suspends itself and waits until it receives a response. 

When program levels are thought of as abstract machines, attention is called 
to the blend of dependence and independence that exists between the levels.   Each of 
the levels can be thought of as a building block which is itself built of building blocks 
formed by the lower levels.   An approach to the testing of programs is suggested by 
this building block approach.   The lowest level building blocks can be tested and 
logically validated as independent units.   As the lower level units are validated, they 
are then combined to form the next higher level machine.   The programs which are 
written for each machine define the instruction sets of higher level machines.   Thus 
the validation of the program for any machine confirms the correctness of instructions 
for a higher (lower number) machine.   This approach to testing has been described 
for an operating system by Dijkstra. 16 

An abstract problem has been used as an example in this discussion of some 
of the basic concepts of Structured Programming.   The notions of sequential program 
construction, building block program organization and top-down program construction 
(based upon top-down problem decomposition), have all been discussed.   Other basic 
concepts are not easily demonstrated from the abstract model.   These concepts relate 
to the order in which some aspects of program composition should take place and also 
to the size of the program units developed. 

Throughout this discussion, emphasis has been placed on the use of a restricted 
set of control structures to organize the programs.   Experience has shown that a signif- 
icant number of program errors originate in the control structure.   Often the right 
actions are performed, but the wrong number of times or at the wrong time.   This 
observation has led to a conclusion: the control structure should be isolated from the 
actions controlled, insofar as possible.   In practice this is accomplished partially 
through the mechanisms of procedure calls, or "program stubs". I'   These stubs 
indicate the position of an action in the program execution sequence without the 
necessity to include the details of how it is done.   Through the use of this device, 
the definition of the control structure is given a priority in the order of development 
over the refinement of the actions being performed. 

Deferral of the specification of data representation forms is another of the 
basic concepts which are helpful in building readable programs.   The net effect of 
the deferral of these program details (actions and data representations) is to isolate 
the control structure of the program and make it highly visible to the reader of the 
program text.   Isolation of the control from the action appears also to increase both 
the generality of the program and the evolution of factorable subtasks. 
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There is no absolute answer to the question of a most appropriate size for 
program elements.   One of the basic premises of the work in Structured Programming 
has been man's inability to perceive clearly any program that is not small.18     Various 
writers have attempted to offer fixed criteria for the size of a program element.   The 
general criteria being proposed is the amount of code that will fit on an 8^ x 11 page, 
or roughly 50 statements.1^      Possibly this is a reasonable upper limit.    It is clear 
that the degree of perception attained is a function of the complexity of the control 
structure used in the page.   Complex control structures in conjunction with complex 
arithmetic expressions can easily make even a single page incomprehensible. 

The ultimate criteria for the size of a program element must lead to a "com- 
pletely readable program" text since this is the basis for assertions about the validity 
of the program.   A criteria which relates closely to the content of the page is more 
appropriate.   Perhaps it could be phrased as, "include only as much elaboration as 
can be grasped and understood in a single reading of the code. " 

Any aids to readability available through the programming language should be 
used.   Thus comments, indentation of lines and subroutines, together with judicious 
naming of identifiers, are all incorporated into a well structured program. 

It is clear that some languages, such as Algol and PL/l, offer more facilities 
for improving readability than others.   In addition to the appropriate control structures, 
these languages have an inherent block structure that facilitates the organization of the 
text to reflect the problem decomposition.   The wide support given to PL/1 by IBM 
makes it reasonable to expect that ii will be the dominant language for Structured 
Programming.   The basic concepts of Structured Programming are applicable, 
however, regardless of the language chosen. 

4. PRINCIPLES OF STRUCTURED PROGRAMMING 

The basic concepts discussed in the earlier part of this section can be 
formulated as a set of principles for use in doing Structured Programming.   As the 
practice of Structured Programming spreads it is expected that other principles will 
be formulated.   These principles are a first set and are useful in developing and 
testing the technique of using Structured Programming.   The principles can be applied 
to the production of correct and understandable code for all problems.   The text of 
those programs developed according to these principles will support either a con- 
vincing demonstration of correctness or an analytical detection of their error.   The 
principles are: 

• Develop programs from the "top-down", in a 
way which reflects a top-down decomposition 
of the problem to be solved. 
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• Organize the program into distinct levels 
forming an ordered series of intermediate 
systems of programs. 

• Develop the program as a simple sequence 
of calls on other programs or statements in 
a computer language, using only those control 
structures thet preserve the effect of this simple 
sequence. 

• Defer the development of program details until 
after the control structures are developed. 

• Defer decisions about data representation as 
long as possible. 

Each of these principles is discussed in detail below.   The examples in 
the discussion are drawn from the test problem used in the study, the simulation 
of the DEC PDP-11.* 

a. Principle #1.   Develop programs from the "top-down" in a way 
which reflects a "top-down" decomposition of the problem to be 
solved. 

This principle is the basis for an orderly development of an entire program. 
It is also the basis for establishing a well-defined relationship between the problem 
and the execution of the program. 

Most problems have a natural focal point, the point the designer considers 
to be the "heart" of the problem.   In the case of the simulation of a computer, the 
focal point is the processing of an instruction.   This is a traditional starting point 
for the composition of a program to do simulation.   It is natural for a programmer 
to start to outline a program for the test problem as follows: 

1. Fetch next instruction; 

2. Decode instruction; 

3. Execute instruction. 

*   Digital Equipment Company. 
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Following this outline, the details about instruction fetching and about ^ch of the 
Iher sups ar. filled 'in.   Attempts are then made to encode the co^rol de^aüs 
reouired for proper operation, generally working from the inside-out^   This 
^II s^encJThen^tarts in the middle of the program and works down and 

then returns to the middle and works up. 

The oroper starting point for "top-down" program construction is a general 

SÄSS. ^rfSS^-«- of «he probU*,. and tMs proems 
is the fundamental operation of Stmctured ProBrammiog. 

Stated almply. the problem need in .hie study ia:  "Run as many ****** 
of the PDP-ll aa a uaer wants."    This problem is read.ly apee.fed as a f.mte 
„ mbef of executions of a aintfe task.   The tash being repea^d eons.sto two 
«te^ or subtasks    The performance of a single simulation nm .s the first step m 
the^elnti  he second^ubtask involves the translation of the uaer-a needs into a 

and the proper termination of the sequence, then a complete specificat^n of the 
problem solution is formed.   Tins specification is given in Figure 2.8. 

PDP11SIM:    begin 
boolean Stop; 
repeat begin 

SIMPROG; 
QUERYUSER (Stop); 
end; 

until Stop; 
end PDP11SIM; 

The program 
the simulator 

Figure 2.8.   A First Program for Simulations 

presented is the first program of a "top-down" implementation of 

Similar 'top-down" program construction is applied to each of the small 
problemsTdlified'by the p^gram stubs.   As each of the program constructs i. 
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formulated, new, smaller problems are identified.   This process is carried on until 
the problems are specified either by existent programs or by programs composed 
of executable computer instructions. 

The problem represented by the program SIM PROG (inside PDP11SIM) is: 
"Perform a single simulation of the PÜP-11." Any simulation can be partitioned 
into a sequence of three (3) subtasks: 

1. Initialize the simulation; 

2. Perform the simulation; 

3. Clean up after the simulation. 

If each of these tasks were performed by the programs INITSIM, RUNS1M, and 
CLEANUPSIM, respectively, then a program can be constructed which will specify 
the meaning of S1MPROG.    This program is shown in Figure 2.9. 

SIM PROG:     begin 
integer Cyclellmit; 
INITSIM (Cyclelimit); 
RUNSIM (Cyclelimit); 
CLEANUPSIM; 
end SIMPROG; 

Figure 2.9.   A Program to Perform a Simulation 

The program presented in Figure 2. 9 can be incorporated into the earlier 
program (Figure 2. 8) to form a single program.   In the Algol-like language being 
used for the implementation, this incorporation can be done while still preserving 
the identify of SIMPROG and the hierarchical ordering between the programs.   See 
Figure 2.10 for the result of the combination. 

Starting from the "outermost" statement of the problem, the required con- 
trols and the user interfaces are developed as an integrated part of the program. 
This is in contrast to the "ad hoc" controls and user interfaces that often occur 
when programs are constructed from other starting points in the problem. 

The decomposition of the problem can be presented as a "tree of decomposi- 
tion. "   Figure 2.11 presents a five (5) layer decomposition of the problem of the 
PDP-11 simulation.   Each of the layers is formed by the decomposition of a problem 

specified in the preceding layer. 
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PDP11SIM:       begin 
comment establish iterative control to allow repetition of simulator for 

multiple runs; 

boolean 

repeat 

until Stop; 

Stop; 

begin 

SIMPROG: 
comment 

integer 

begin 
perform a single simulation run; 

Cyclelimit; 
comment     supplied by user to limit the number of 
~ machine cycles executed; 

INITSIM (Cyclelimit); 
comment        initialize simulator to appropriate I/O and memory 

configuration.   Get value for Cyclelimit, let user 

load peripheral files; 

RUNSIM (Cyclelimit); 
comment       perform a run on simulated machine.   Use Cyclelimit 

to control against infinite loop in user program; 

CLEANUPSIM; 
comment       cleanup any residual I/O left when RUNSIM quit; 

end SIMPROG; 

QUERYUSER (Stop); 
comment       talk to user and find out if should go again; 

end; 

comment end of controlled loop for repeated simulations; 

end PDP11SIM; 

Figure 2.10.   Text of PDPllSIM 
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The application of a "top-down" approach to the design of the program does 
not eliminate the need for re-adjustment to the design.   Iterations in the design 
will occur because alterations to previous work are required    These alterations 
are caused by decompositions which lead to awkward or incorrect program constructs. 
These alterations may sometimes require backing up the "tree of decomposition" to 
higher layers to make changes.   The "tree" is often helpful in identifying all of the 
areas of impact for the alterations.   When a new tree and program is built, the 
decomposition can be continued.   The result is usually a program which is a better 
fit to both the problem and the solution environment.   Thus, although the progress 
toward the ultimate expression of the program is not always uniformly a descending 
process, it results in a program with a top-down organization. 

b. Principle #2.   Organize the program into distinct levels forming 
an ordered series of intermediate systems of programs. 

When ? program is composed to reflect a "top-down" decomposition of a 
problem, it is generally built of a control structure and a series of "calls" or 
stubs for other programs.   For example, the program PDP11SIM (Figure 2.8) 
contains entry points into two programs, SIMPROG and QUERYUSER.    The program 
SIMPROG (Figure 2. 9) is defined by a new program composed of a sequence of three 
program calls. 

This formation of intermediate systems of programs can be repeated to a 
great depth for a large problem.   The arrangement of these programs in the text 
in an orderly way can present a problem.   Obviously, all of them cannot be incor- 
porated into the body of the text if the program is to be readable.   In the case of 
SIMPROG, it was incorporated into the text of PDP11SIM (Figure 2.10) because it 
was convenient to do so in the Algol-like language.   This incorporation is reasonable 
if:   1) there is no loss of the structural relationships;  2) a simple control structure 
can be maintained;  3) the generality of the program is preserved; and  4) the "small" 
size of the program is preserved. 

The readability of the program text is improved, hov/ever, if these programs 
are organized into levels which are clearly demarcated in the text.   These levels 
are ordered inversely to their indices, with LEVEL1 the highest level of the program. 
LEVEL1 always contains one program, which specifies the solution to the general 
problem statement.   In this case, it is PDP11SIM.   This program is the entry point 
for execution of the program, and appears at the start of the text.    The levels appear 
in the text according to their order, together with a notation of any particular signifi- 
cance attached to the level.   An outline of the textual organization of the levels in a 
program text is given in Figure 2.12. 
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LEVEL1:       begin 
comment       program at this level is the entry point to controls or specifies 

the total simulation program, providing multiple runs to the user; 
PDP11SIM: begin 

end PDP11SIM; 
end LEVEL1; 

LEVEL2:       begin 
comment       this level contains the programs to carry out the tasks of the first 

level decomposition of a single simulation problem; 
IN1TSIM: begin 

end INITSIM; 

RUNSIM: begin 

end RUNSIM; 

CLEANUPSIM:     begin 

end CLEANUPSIM; 
end LEVEL2; 

LEVELS:       begin 

end LEVELS; 

Figure 2.12.   Level Designations in the Program Text 
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The level to which a program is actually assigned is at the discretion of the 
programmer.   In the example shown in Figure 2.12, LEVEL2 is restricted to pro- 
grams which deal directly with the performance of a single simulation run.   At a 
lower level in the program organization there is a level dedicated to programs 
which simulate the effect of PDP-11 machine instructions.   Below this is a level 
which supports these instructions.   In this support level, the programs have the 
effect of performing the logical operations used to define the simulated instructions. 
This use of the levels in the text to isolate the program elements so as to form levels 
of abstraction of the problem adds both generality and adaptability to the program. 

There is a limitation on the programmer's freedom in the assignment of 
programs to levels.   Common programs, those used in more than one place, appear 
only once in the program text at a level which is at least one level below the lowest 
reference to it.   In Figure 2.11 there are two (2) subtasks, DISPLA2USR and USRBACK, 
which appear in several places in the tree.   They are elements of QUERYUSER, LIMIT- 
CYCLE, MEMINIT, IOINIT, and IOLOAD.   Based upon the tree as shown, the earliest 
level at which the programs to perform the subtasks could be placed is below the lowest 
of these. 

The only well-defined criteria for organizing the sub-programs into levels is 
the matter of interprogram reference (no program on any level may include a refer- 
ence to a program on the same or a higher level). *    The creative use of levels as 
aids in program organization is very much a function of the individual programmer. 

c. Principle #3.   Develop the program as a simple sequence of calls 
on other programs or statements in a computer language, using 
only those control structures that preserve the effect of this simple 
sequence. 

In his paper, Dijkstra proposed three kinds of program sequencing constructs 
(forms) that have the property of providing a beginning-to-end control flow.   These 
are: 

1) simple sequencing, represented by the concatena- 
tion of statements; 

2) iteration, represented by the forms 

while condition do statement 

repeat statement until condition; 

*   For discussion of the reasons for this, see Section II, page 

26 

-■   - -     J.--..     .—.^—.^-.-^        ^       .^      ..   . .-..■_■      ..-        . ..__--- - ..^ .._     .   ._.     .. .„^--L----*■*••"•■* 



r Jl   .il   «..I.-^^JIJIJI.,,!.. 

3) selection, represented by the forms 

if condition then statement 

if condition then statement, else 
statement 

case i of | statement 1, statement 2,  . .. 
statement n| 

In these forms, it is important to understand that the statement, S, stands for one 
statement or a group of statements which, in their effect, act as a single statement. 
Languages such as Algol 60 and PL/l use the words begin and end to act as brackets 
surrounding a group of statements that are treated (in their effect) as a single state- 
ment.   Such statement groupings are also called compound statements.   These 
sequencing forms have the property of one path in and one path out, as is shown in 
the following examples given in both flow chart and program form.   In the examples, 
S stands for any statement, C stands for any condition and i is an integer number. 
Subscripts, if present, designate individual statements. 

1) Simple Sequencing 

Program form:     S^; Sg; . 

Flow chart: 

2) Iteration 

r 
T 

Program forms:   (a)   while C do S; 

(b)   repeat S until C; 

Flow charts: 

(a) 

—vh 
T 

kij—i 
 4--. 

(b) r-"-^*!     - i 
i 

i s               ' 
i 

i ,W   : 
K    c 

'_ "rxTT..1 
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(a) 

3) Selection 

Program forms:   (a)   if C then S; 

(b) if C then S! else S2; 

(c) case i of {Sj, S2, .... Sn}; 

Flow charts: 

(b) 

r                 7                          ' 

!   ic ^   : 
I                       T                    i 

i  ^ 1 
1 

! t 1 

H ' ' In 1 
1 

yf A, i nr S2             1 

\ i      -j. rf-           < 
1 

^ 

(c) 

1                         > r 
1                                           i 

j, f vl                        ' m   q . i ••••   i8«!      ; 
i * 

~ > 

i 
1  

The dashed boxes around the statement flow charts are meant to emphasize the fact 
that the sequencing construct is treated as a unit. 

Two programs developed as part of the PDP-11 simulation effort illustrate 
this principle.   Figure 2.13 shows a flow diagram for the program PDP11SIM (Figure 
2.10).   The program can be considered to consist of a single statement which repeats 
a compound statement.   When the program PDP11SIM is activated, the instruction 
counter for this outer level program is set to point to this single statement; when it 
steps past it, the program is over.   Progressing inward, the compound statement, 
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PDP11SIM 

be Kin 

end PDP11SIM 

'vi NTEH 

S1MPR0G 
begin 

.endSIMPROG 

No 
STOP? 

Yes 

EXIT 

Figure 2.13.   Flow Diagram for the Program PDP11SIM 
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named SIMPHOG. consists of three program "calls" enclosed m the bracke s 
bei and end     This compound statement illustrates a simple ordenng of sta e- 
Ss     Itfio illustrates again the use of a simple sequence as a -^e entrty, 
Tr SIMPROG is itself made up of a sequence of three program calls or stubs. 

Flgure 2.14 shows a more complex combination of the control structures 
which still preserves the sequential ordering of a program, RUNSIM    The text 
If the program. Figure 2.15, shows the use of the control structures. 

d. Principle H.   Develop the control structures before the develop- 
ment of other program details. 

An examination of the text of the two programs, PDP11S1M and RUNSIM 
^        toTHnd 2 15) used to illustrate the earlier principles shows the general 

from control of the simulator through the control of the cycling of the simulated 

machine. 

Before any of the details of the PDP-11 actually enter into the Program 
the sequencTngTontrols for the first four levels of the program are fully developed. 
I^tilTe program FINDFORMAT is composed at LEVEL5 of the program, the 
simulation could be of an IBM 360 or any other computer. 

The actual details of how the programs which give meaning to the stubs 
operate are deferred until the control structure is well developed. 

e. Principle #5.   Defer decisions about data representation and 
other details as long as possible. 

This principle is also difficult to illustrate, since it too ^f^0^^ 

Uons, memory, or any other aspect of the target machine until the fifth level 

the program. 

In deciding about data for the PDP-11 aimnlatlon. it !• clear that the inatrac- 
tione for thnSatcd machine wiU have to be avaUaHe for the part of the program 
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RUNSIM 

INSTRUCT 
ENABLE 

CONSOLE 

IIALTINST 
F 

Enable: = false 

Cyclecnt: = 
Cyclecnt + 1 

Cyclecnt > 
Cvclelimit 

Go: = false 

-IMfi. =3!: 
noo 

~lHalt^s(Con- 
tinue \/Start) 

Enable: = true 

\Emy 

Figure 2.14.   Flow Diagram for the Program RUNSIM 
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RUNSIM (Cyclelimit):    begin 
comment     control a simulation run.   A run is repeated execution of console or 

instruction cycles.   A run is terminated by exceeding the Cyclelimit 
or by direction of the user; 

boolean        Enable:     false; Halt:    true; üo:     true; 

integer Cyclecnt: = 0; 

repeat begin 
comment     provide connecting link between the two kinds of cycles, 

as long as (Jo is true; 

if Enable then 

else 

end; 

until -~|Go; 

end RUNSIM; 

INSTRUCT: 

boolean 

begin 

Haltinst: false; 

INSTRUCTNHNDLR (Haltinst); 

if Haltinst then Enable: = false 
Cyclecnt: = Cyclecnt + 1; 

if (Cyclecnt > Cyclelimit) then Go: 

end INSTRUCT; 

false; 

CONSOLE: 

boolean 

begin 

Continue: = false; Start: = false; 

CONSOLEHNDLR (Halt, Continue, Start, Go); 

Jf flHalt /% (Continue \/Start) then Enable: = true; 

end CONSOLE; 

Figure 2.15.   Text of RUNSIM 
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that executes the instruction cycle.   It is equally clear, however, that the instructions 
being simulated must be entered or read as data outside of this function. 

Since the data for the simulation is entered as a separate step, and must also 
be accessible to the step that simulates the machine, storage for that data must be 
reserved outside of the scope of either step.   In keeping with the concept of abstract 
machines, a program at a very low level, used by both branches of the program 
organization, handles the data representation and the space.   In this study, the 
Algol own array construct is used to control the scope of access to the variable. 
Thus the need for data can be recognized at the point where it is required without 
necessarily defining in detail how it is to be represented.   In the specific example 
of PDP-11 instructions, it is necessary to recognize their existence at the point 
where they would be entered as data.   The decision on how to represent PDP-11 
memory words in the simulator can be put off to the point where this information 
is needed to continue program development (e. g., in the simulated instruction 
processing).   At this point one can determine the kind of machine the simulator is 
to run on and determine whether it is possible to represent the PDP-11 memory as 
one word per word of the host machine, or whether a packed form of two words per 
word of host machine memory is needed. 
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SECTION in 

APPLICATION OF THE PRINCIPLES OF STRUCTURED PROGRAMMING 

INTRODUCTION 

A program was written to demonstrate and evaluate the use of Structured 
Programming,    The problem used for the demonstration was selected on the basis 
of three criteria:  the problem had to be large enough to provide an adequate test 
of the use of Structured Programming; it had to be small enough to be reaiizabie 
within the constraints of the study effort; the essence of the problem had to be 
familiar to the investigator to avoid distractions from the approach taken to the 
program. 

2. TEST PROBLEM 

The problem selected for use in the study of Structured Programming was: 
"Build an interpreter for the DEC PDP-11." 

The control structure for an interpreter, with its continuous operation, is 
deemed to be more appropriate to the avionics environment than the sequential 
problems that have appeared in the literature to date.   The problem models, in a 
simple way, a control environment involving continuous operation, data generated 
internally or acquired by "sensing" its environment, and the selection of certain 
actions based on an analysis of the data.   In addition, it meets the three criteria 
enumerated above. 

A further interest in the problem is based on the potential use of simulators 
in microprogrammed processors for avionics systems.   This problem involved inter- 
pretative execution of programs similar to that done for emulation, and could serve 
as a model for emulator design. 

The PDP-11 is a 16 bit binary computer.   A variable length instruction 
format is used to provide optional zero, one and two operand addressing.   Multiple 
modes of addressing are provided with optional direct and indirect addressing. 
Indexing of operand addresses is provided together with an option for automatic 
incrementing and decrimenting of the index.   Seven general registers are provided 
for use by the programmer.   In addition to the variable length of the instructions, 
there is also a variable format for the instructions which provides for an expanded 
set of instructions.   Input-Output operations are controlled through registers that 
are within the normal address space of the machine.   The control of peripherals 
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involves two registers, one for data and one for the status of the device.   The status 
words are used to direct the input-output operation.   These registers may be used 
as operands with any of the instructions.   Specific details of the machine operation 
are available from Digital Equipment Company. 20 

3. THE PROGRAM 

The program is designed for execution from a remote terminal of a time- 
sharing system.   Facilities of the time-sharing terminal are used to simulate the 
console switches of the PDP-11.   Detailed internal timing aspects of the bus 
actions and I/O interfaces are not maintained; however, simulated I/O operations 
are activated and controlled through program accesses to related addresses in the 
simulated memory.   The operations are carried out as movements between the 
simulated memory and file space in the host machine.   The files are filled from 
the terminal if the file is empty and input is required by the program. 

Program loading into the simulated memory is carried out either through 
the simulated console actions or through the execution of the PDP-11 bootstrap 
loader on the simulated machine.   Other software aids must be provided in a 
similar manner. 

The simulator maintains a cycle count and limit as a protection against 
the occurrence of an infinite loop in a program being interpreted. The user is 
given the capability to specify both the memory size and the I/O device compliment. 

• 

a. Program Text and Flow Diagrams 

The programs presented here are a subset of the programs developed in 
composing a program to illustrate the principles of Structured Programming. 
These principles are followed in the program construction.   The text for the 
program begins at the level which contains a single program, PDPHSIM.   This 
program is the entry point into the simulation and is a functional specification 
for the operation of the system.   The program is constructed of a set of controls 
used to organize the activation of other programs, represented by stubs   or 
program "calls. "  These programs correspond to the subtasks identified during 
analysis by problem decomposition. 

The program PDP11SIM is given in Figure 3.1 (flow diagram in Figure 3.2). 
There are three layers of decomposition of the problem represented in this one 
program.   The outermost decomposition is represented programmatically by the 
iteration statement 

repeat    begin   ...   end until Stop 
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PDP11SIM:       begin 
comment establish iterative control to allow repetition of simulator for 

multiple runs; 

boolean 

repeat 

Stop; 

begin 

SIMPROG: 
comment 

integer 

begin 
perform a single simulation run; 

Cyclelimit; 
comment     supplied by user to limit the number of 

machine cycles executed; 

INITSIM <Cyclelimit); 
comment       initialize simulator to appropriate I/O and memory 

configuration.   Get value for Cyclelimit, let user 
load peripheral files; 

RUNSIM (Cyclelimit); 
comment       perform a run on simulated machine.   Use Cyclelimit 

to control against infinite loop in user program; 

CLEANUPSIM; 
comment       cleanup any residual I/O left when RUNSIM quit; 

end SIMPROG; 

QUERYUSER (Stop); 
comment       talk to user and find out if should go again; 

end; 

until Stop; 

comment end of controlled loop for repeated simulations; 

end PDP11SIM; 

Figure   3.1.   Text of PDPllSIM 
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PDP11S1M 

begin 

end PDP11SIM 

ENTER 

SIM PROG 
begin 

JNITSIM 

RUNSIM 

fCLEAN- 
.UPSIM, 

end SIMPROG 

/QUERY- 
USER 

No 

Yes     T 

EXIT 

Figure 3,2.    Flow Diagram for the Program PDP11SIM 
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The use of the simulator can involve multiple operations of the simulation program, 
possibly with different configurations of memory or I/O.   Since the number of 
simulations desired at any one time may vary, it is not practical to represent this 
decomposition in any way except through a repetition statement.   A control variable. 
Stop, used to terminate the repetition is defined in the program. 

The subtask controlled by the repetition is itself partitioned into two sub- 
tasks   identified by the programs SIMPROG and QUERYUSER.   The purpose of 
S1MPROG is to perform a simulation, and the purpose of QUERYUSER is to obtain 
a value for Stop from the user of the program.   A third layer of decomposition is 
shown in the subdivision of SIMPROG into the sequential steps necessary to perform 
initiation of a simulation, a simulation, and a clean-up of a simulation, respectively. 

b. Second Level of Program f\^anization 

The "top" level program, PDPUSIM, defers the details of the program 
actions for specification in lower levd programs.    PDPUSIM "^J« ^«««* 
conditions under which each of the four (4) programs (INITSIM. RUNSIM, CLEAN- 
UPSIM   and QUERYUSER) will be activated for execution.   All of these programs 
are candidates for inclusion in the next level of the program organization.   The 
definition of the program QUERYUSER is deferred to a lower level because it is 
very much dependent upon a particular installation's run time environment and 
because it is very close to being "completely" defined in some languages. 

The three programs placed at the second level are all derived from the 
program SIMPROG, contained within PDPUSIM.   These programs perform the 
three subtasks required to carry out a single execution of the simulation.   Of the 
three programs at this level, the program RUNSIM, which actually performs the 
simulation, is presented in this section. 

RUNSIM   as can be seen from its text (Figure 3.3). is. like PDPUSIM. 
a very simple program.   It also consists of the repeat of a compound statement 
until a control variable. Go. has a value of false.   This loop simulates the 
continuous cycling of a computer.   Each time the simulated computer cycles it 
selects the proper task to be performed, as indicated by the state of a control 
variable   Enable.   Whenever Enable is set to true, an instruction is processed. 

If Enable is false, a console action is initiated.   The nesting f^***™*™* 
in the program is clearly shown in the flow diagram (Figure 3.4)    The details 
of the program were developed until the facilities for assigning values to Go 

and Enable were specified. 
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RUNSIM (Cyclelimit):    begin ..        , ,   „„ 
comment     control a simulation run.   A run is repeated execut.on of console or 
      instruction cycles.   A run is terminated by exceeding the Cyclelimit 

or by direction of the user; 

boolean        Enable:    false; Halt: 

integer        Cyclecnt: = 0; 

true; Go: =- true; 

repeat begin 
comment provide connecting link between the two kinds of cycles. 

as long as Go is true; 

if Enable then 

else 

end; 

until "1 Go; 

end RUNSIM; 

INSTRUCT:      begin 

boolean Haltinst: = false; 

INSTRUCTNHNDLR (Haltinst); 

if Haltinst then Enable: - false 
Cyclecnt: - Cyclecnt + 1; 

if (Cyclecnt > Cyclelimit) then Go: « false; 

end INSTRUCT; 

CONSOLE:       begin 

boolean Continue: - false; Start: = false; 

CONSOLEHNDLR (Halt, Continue, Start, Go); 

if flHalt ^(Continue vStart) then Enable: = true; 

end CONSOLE; 

Figure 3.3.    Text of RUNSIM 
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RUNS1M 

INSTRUCT 

HALT1NST 
F 

Enable: = false 

Cyclecnt: = 
Cyclecnt + 1 

Cyclecnt > 
Cycilelimit 1 
Go: = false 

ENABLE 
JCONSOLE 

-'^MLl -*r<- T 
IGo 

nHalt^s(Con- 
tinue V Start) 

Enable: = true 

\EN^ 

Figure 3.4.     Flow Diagram for the Program RUNSIM 
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c. INSTRUCTNHNDLR, a Third Level Program 

The program INSTRUCTNHNDLR is a subtask of the program RUNSIM. 
The task addressed by this program is the organization of what is often called 
an iuatruction cycle.   A set of subtasks are designated which, when carried out 
in order, will process an instruction.   The sequential organization of these tasks 
is seen in the program text (Figure 3.5) and the flow diagram (Figure 3.6). 

This program reflects the transition from the control of the simulation to 
a closer involvement with the PDP-11 machine organization.   The impact of the 
hardware organization is reflected in the functions of three of the five subtasks 
formulated.   Often, the first phase of instruction processing is interrupt processing. 
In the PDP-11 this function is performed in a slightly more general way, although 
the result is the same net effect.   The name ISELECT indicates the change of 
emphasis from the more familiar interrupt toward the more general selection 
between alternative sources for the next instruction. 

Normally, an instruction is decoded after being brought to the processor. 
Because of the variable instruction format and the variable number of operands 
used for instructions on the PDP-11, the emphasis shifts from a decoding operation 
to one of format identification.   The procedure FIND FORMAT reflects this shift. 
An operand fetch requirement is automatic in many computers.   The conditional 
execution of the subtask, OPFETCH, is a reflection of the large number of instruc- 
tions which do not require normal operand processing.   After the operand processing 
is accomplished, the instruction can be executed by the program IXECUTE. 

d, FINDFORMAT and IXECUTE   -  Two Fourth Level Programs 

The programs used to develop the program INSTRUCTNHNDLR are all 
collected into the fourth level of the program organization.   Two of these pro- 
grams are closely related.   They are both presented here.   The text of the first 
of these programs, FINDFORMAT, is presented in Figure 3. 7; the flow diagram 
in Figure 3.8.   It is also a complex structure, set up as a sequence of three 
simple operations (REMOVEBYTE, GETOPFIELD, and OPFIELD).   The first 
two of these operations use stubs to defer any detailing of the functions required. 
The third divides the task of identifying the opcode into two parts.   For those 
instructions that use an extended opcode field (OP = 0), a stub (FINDONEOP), is 
used to defer the specification of the processing details.   Those instructions which 
use only the normal opcode field for identification are decoded for illegal instruc- 
tions and to separate addition and subtraction through the use of a local program 
(TRY2).   The name TRY2 indicates that if the instruction is valid, it will involve 
two operands.   Within the program TRY2 the two machine instructions, add and 
subtract, are separated.   These two instructions are distinguished by the state 
of the byte indicator. 
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INSTRUCTNHNDLR (Haltinst):   begin 
comment process a single machine instruction from the program being 

pseudo executed; 

boolean 

integer 
comment 

ISELECT: 
comment 

Byte, Haltinst, Sub; 

Source, Instruction, Destination, Adsource, Ades, J: = 0; 
Instruction, Source and Destination are 6 digit octal numbers 
where value is less than 216.   J is an integer between 0 and 2.; 

check for interrupts,   if priority of interrupt exceeds that of 
processor then save current instruction address and contents 
of status register in stack.   Set up new instruction winter and 
status from interrupt vector; ' 

IFETCH (Instruction); 
comment get instruction from memory and return it as a result; 

FIND FORMAT (Instruction,   Byte, J, Sub); 
comment with instruction as an input, do a partial decode to determine the 

number of operands required; isolate the Byte indicator in the 
boolean Byte.   If instruction is a subtraction set Sub to true , set 
J equal to number of operands required; 

if (J / 0) thenOPFETCH (Instruction, Byte, J, Source, Destination, Adsource, Ades); 
comment if any operands are required, then place them in Source and/or 

Destination and some effective address; 

IXECUTE (Instruction, Byte, J, Sub, Source, Destination, Adsource, Ades, Haltinst); 
comment perform the proper instruction and return result to storage if appro- 

.— priate.   If instruction is a Halt, then set Haltinst to true, else set 
false. 

end INSTRUCTNHNDLR; 

Figure 3.5.   Text of INSTRUCTNHNDLR 
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INSTRUCTNHNDLR 

Figure 3.6.   Flow Diagram for Program INSTRUCTNHNDLR 
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FINDFORMAT (Instruction, Byte, J, Sub):   begin 
comment given the instruction as input, determine the number of 

operands required for the instruction, J; isolate the Byte 
indicator and set the boolean Sub to indicate subtraction; 
bits in the input word are numbered from high to low (15 . 0); 

integer Op; 

REMOVEBYTE (Instruction, Byte); 
comment bit 15 indicates a byte operation; move bit 15 to Byte.   Remove 

bit 15 from Instruction; 

GETOPFIELD (Instruction, Op); 
comment 

OPFIELD: 
comment 

move bits 14, 13, 12 into Op; 

determine number of operands required; 

if (Op = 0), then FINDONEOP (Instruction, Byte, J); 

else 

TRY2:       begin 
comment  either double operand or illegal; 

if (Op/ 7), then 

LEGAL:    begin 

if (Op « 6), then 

ADDOP:    begin 
comment   (Op ■= 6)/N "IByte is add. 

(Op = 6)/\ Byte is subtract, 
if Byte, then 

SUBTRACT: begin 
Byte: = false 
Sub: ■ true 
end SUBTRACT; 

end ADDOP; 
J:=2; 
end LEGAL; 

end TRY2; 
end OPFIELD; 
end FINDFORMAT; 

Figure 3.7.    Text of FIND FORMAT 
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BYTE 

SUBTRACT \f 
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Sub: = true 

I  
If 

J: = 2 

1 . V 

EXIT. 

Figure 3.8.   Flow Diagram for the Program FIND FORMAT 
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IXECUTE is the second program of the fourth level programs presented. 
This is the program which actually carries out the PDP-11 instruction.   A case 
statement is used to separate the instructions into one of three classes of instruc- 
tion:   no operands, one operand and two operands. 

After the instruction is performed, the result is stored into the destination 
address for those instructions that require the result. The text of the program is 
given in Figure 3.9 and the flow diagram in Figure 3.10. 

IXECUTE (Instruction, Byte, Sub, Source, Destination, Adsource, Ades, 
Haltinst):   begin 

comment     use J values to separate the instructions according to a number 
of operands.   Source and Destination contain values at this point; 
the only output of this program is Haltinst; 

case J of { OPNONE (Instruction, Byte, Haltinst), 
OPONE (Instruction, Byte, Destination), 
OPTV/O (Instruction, Byte, Sub, Source, Destination)|; 

Ü J ^ 0, then STORERESULT (Destination, Ades); 
end IXECUTE; 

Figure 3.9.   Text of IXECUTE 

e. LEVELS Programs 

There are outstanding stubs (i.e., have not been specified with a program) 
from levels 1,2,3 and 4.   By choice, LEVELS programs are limited to those 
stubs from LEVEL4.   The program stubs for REMOVEBYTE and GETOPFIELD 
are not specified at LEVELS because of their use in other programs at lower 
levels.   There are two sample programs from LEVELS presented here, FINDONE- 
OP and OPNONE. 

The program FINDONEOP, Figures 3.11 and 3.12, is stubbed in FIND- 
FORMAT.   It is the most complex program presented.   The Algol procedure 
declaration is used to organize the parts of the program to improve the readability. 
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Figure 3.10.   Flow Diagram for the Program KECUTE 
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FINDONEOP (Instruction, Byte, J):  begin 
comment        if the instruction involves a single operand, then set J: 

else set J: 
- 1 

integer 

0; 

Hisource, Losource,  Hides; 

procedure      MORE TEST:   begin 
comment       Losource < 3 then shift else not one operand; 
GETLOoOURCE (Instruction, Losource); 
comment       get bits 8, 7, 6; 
if (Losource < 3) then J: = 1; 
end MORETEST; 

procedure      TESTBYTE:   begin 
comment       if not byte then JSR else traps and not one operand; 
if non Byte then J: = 1; 
end TESTBYTE; 

procedure      TRYDES:  begin 
comment       if Hides (bits 5, 4, 3) ■ 0, then in RTS and needs operand; 
GETDESHI (Instruction, Hides); 
if (Hides - 0) then J: - 1; 
end TRYDES; 

procedure     SOURCE LOW:  begin 
comment       if Losource = 1/2/3 a possible single operand instruction; 
GETLOSOURCE (Instruction, Losource); 
case Losource of  |   , J: = 1, TRYDES, J: = 1 I ; 
end SOURCE LOW; 

PROGRAM:   begin 
GETSOURCEHI (Instruction, Hisource); 
case Hisource of ) SOURCELOW,  ..., TESTBYTE, J: - 1, MORETEST, . |; 
end PROGRAM; 
end FINDONEOP; 

Figure 3.11.   Text of FINDONEOP 
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ontelUX ot two tasks:   "'"^ ""^ *Ji bytlJ    whe„ever the high byte does 

to determine the proper settings for J. 

The Drogram OPNONE (Figures 3.13 and 3.14) offers another contrast in 

computational events.   The purpose 01 me prms      . . . t   its (l{fect    Thus 

for their execution. 

The deeodlnB process is carried oot by a set ol six nested selection state- 
.nents    WRh n tte   econd alternative of the sixth case a case statement 1. used 
Tselect among six alternatives based on the value ot the mstrucfon. 

4 SAMPLE PROGRAMS AS AN ILLUSTRATION OF THE PRINCIPLES 

a "top-down" decomposition of the problem. 

Those texts presented in the ^^^ "^^TiST^. 

tlve ot this form of P^f ~~0 J0*   '^^ ^„Tllow multiple runs ot 

.*. A     fhi^ th*> tPxt of PDP11SIM    A second program, QUERYUBEK, is 
SÄ .^ ™- ol the 7L of the control variable Stop, used to terminate 

the program. 

RTMPROG is snecified to be composed of three parts, and 
th   labJs u^^r  he'rri dicarL function to be performed by then, (IMTSIM. 
U^M a^d?LEANUPS,M,.   The order in which tbey are to be carr.ed out I. 

also defined in the program. 
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OPNONE (Instruction, Byte, Haltinst):  begin 
comment     form subsets of the no operand instruction for further decoding and 

execution.   Byte and Instruction are the basis for set identification; 

if (Instruction > 6400) then ILLEGAL; 
else begin ONE: ji_(Instruction > 4400) then TRAP; 

else begin TWO:   if (Instruction > 4000) then EMT; 
else begin THREE:   if (Instruction > 400) then CONDBRNCH; 

else begin FOUR:   if (Byte) then CONDBRNCH; 
else begin FIVE:   if (Instruction > 240) then CONDITION; 

else begin SIX:   if (Instruction > 6) then ILLEGAL; 
else case:  Instruction ofj HALT,WAIT,RTI,BPT,IOT,RESET|; 

end SIX; 
end FIVE; 

end FOUR; 
end THREE; 

end TWO; 
end ONE; 

end OPNONE; 

Figure 3.13.   Text of OPNONE 
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THREE 
Instruction > 400 

FOUR Ty 

Instruction > 6 

Figure 3.14.   Flow Diagram for the Program OPNONE 
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This one program then presents in cameo the organization of the problem 
into the top-down program.   An examination of the programs found in the succeeding 
levels of the program organization shows further formulation of the details involved 
in the solution of the problem. 

The program RUNSIM (Figure 3.3), for example, illustrates the control 
of the actual simulation process.   RUNSIM is activated after the initialization of 
the simulation is carried out.   It is terminated by the state of a control variable, 
Go.   The simulation process is performed by the repetition of an unnamed process. 
Each time this process is repeated, an action is selected based on the state of the 
variable Enable.   The program RUNSIM is developed in sufficient detail to specify 
how the values are assigned to both of the control variables (Go and Enable).   Thus 
a net effect which simulates the cycling of a computer is achieved. 

The "top-down" development is continued at the lower levels through the 
specification of the actions represented by INSTRUCTNHNDLR and CONSOLEHNDLR. 

Each level of the program organization specifies in greater detail action 
identified in a predecessor program. Programs are presented for each subtask 
identified in the analytical process of problem decomposition. 

Principle Two specifies that the program should be organized into distinct 
levels forming an ordered series o^ intermediate systems of programs.   The 
programs used in the example have been identified as being assigned to various 
levels.   Beyond observing the required ordering between a stub and its definition, 
the programs have been grouped into levels in a way which isolates specific aspects 
of the program. 

The motivation for some of the grouping has already been discussed. The 
first level of the program organization contains the single program, PDP11SIM, 
which specifies the problem solution. At the second level, a choice is made not 
to include QUERYUSER because it does not deal with the problem of simulation. 
The stub is left undefined until LEVELS of the program organization. LEVEL2 
consists of the programs INITSIM, RUNSIM and CLEANUPSIM, all of which are 
stubs in SIMPROG. 

At LEVEL3, only two programs are included, INSTRUCTNHNDLR and 
CONSOLEHNDLR.   This decision reflects the intention to isolate in the levels 
as much of the interpretation process as possible.   At LEVEL4 the parts of 
INSTRUCTNHNDLR are collected and the parts of CONSOLEHNDLR are excluded. 
This separation was based upon the differences between the console simulation 
in this interactive program and any microprogrammed implementation of a 
console.   There is an intuitive feeling that an emulation of a PDP-11 could use 
the instruction processing program as its basis, but would not be likely to use 
the console processor. 
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Both the layers in the tree of decomposition and the levels of the program 
text form a hierarchy; they are related to each other.   A subtask appears in layer "n" 
of the tree of decomposition because it is a part of a task in the layer "n - 1".   A 
program is assigned to a level based on its predecessor and also on its having a 
common level of abstraction with other programs on that level.   A sub-system of 
programs is assembled in a level to facilitate testing of the programs and to 
isolate the impact of adaptations and changes to the program. 

The third principle of Structured Programming deals with the allowable 
set of control structures.   In particular it emphasizes the simple ordering of a 
sequence of program steps.   The purpose of this third principle is to assure the 
construction of a program, the execution of which progresses from the beginning 
to the end, stepwise, in a forward direction. 

One of the interesting aspects of the simulation as a test problem is the 
necessity for the use of a repetition statement to express the first decomposition 
of the problem.   As has been pointed out earlier in this report, the use of the 
simulator decomposes into a number of independent runs of the simulation program. 
This requirement is met with what is essentially a "one line program", PDPllSIM, 

repeat begin ... end until Stop; 

The repeated statement is decomposed until the setting of the control variable 
is specified. 

Perhaps the best example of the net effect of a combination of selection 
statements is found in the program FINDONEUP (Figure 3.11). This program 
consists of a simple sequence of two operations: 

1) isolate the high character of the source 
field; and 

2) assign J a value of one for all single 
operand instructions. 

Each of these events can be validated as stand-alone events which must take place 
in the stated order.   If the value of Hisource is 1, 2, 3 or 7, then the instruction 
cannot be a single operand instruction.   If it is 5, then it is a single operand instruc- 
tion without any question.   The other cases, 0, 4 and 6, all require further examina- 
tion before determining whether or not they are single operand instructions on the 
PDP-11 computer.   The inner structure of each of these further tests is built in 
the same way. 
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Because of the structured use of the nested selection statements, the complex 
selection and the resultant instruction execution is treated as a single computation 
in a sequence of computations. 

Thus, even when the non-sequential forms such as a repetition or a selection 
statement are used, each is incorporated into the program in terms of its net effect, 
in a sequential construct. 

An illustration of the operation of the fourth principle of Structured Program- 
ming can be seen by examining the programs given in this section in their order of 
occurrence. 

In the first program, given in Figure 3.1 (PDP11SIM), the control structure 
for the program is the repeat statement with the compound statement that it controls. 
The requirements to complete the control structure are satisfied by the declaration 
of Stop, the control variable, and by the indication of a component of the program 
QUERYUSER to provide a value for the variable.   The subtasks which must be 
performed to do the simulation are identified, and any conditions which apply to their 
execution are specified. 

The program RUNSIM again employs program calls or stubs to defer details 
about the computation which are not required for the complete specification of the 
control structure at this level.   Sufficient dotails of the program are developed to 
show how the control variable, Enable, receives its values.   The assignment of 
values to Go is also identified; thus Go is initialized to a true state and can be set 
to false either as a result of console action or if the cyclecount exceeds the cycle 
limit.   All other detailed specification of the solution is deferred to lower levels 
of the program organization. 

The program INSTRUCTNHNDLR introduces only enough detail into the 
program to specify the five subtasks into which instruction processing decomposes. 
The program stubs are used to separate the details involved in each phase of 
instruction processing from the sequencing controls used to activate the phases. 
The program composed through this third level of program organization contains 
none of the details that are directly associated with a PDP-11.   The simulator 
is programmed or specified into the very "heart" of the instruction cycle with 
only the control structure developed in detail.   When the stubs for INSTRUCTNHNDLR 
are defined (FINDFORMAT, Figure 3.7), then the details of the computer being 
simulated enter into the program design. 

The application of Principle #5, the deferral of decisions about data repre- 
sentation, is well illustrated in the example. In the sample of programs presented 
there is no discussion of data representation except for the comment contained in 
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the program INSTRUCTNHNDLR.   All requirements to deal with the internal repre- 
sentation of the data in the pseudo memory are isolated to a single level of programs 
at a very low level.   Aty concern as to whether the simulator is to be executed on 
a decimal or a binary machine are isolated from the program structure.   The impact 
upon the program of any particular optimum word width for the host machine is also 
isolated from all except the lowest levels of the program organization. 

5. ANALYZING PROGRAMS FOR THEIR CORRECTNESS 

The programs presented in this section are all formed by the decomposition 
of a programming problem.   These programs are constructed in one of three forms. 
The simplest form of these programs is an ordered set of smaller programming 
problems which are performed in the specified order (e.g. , INSTRUCTNHNDLR, 
Figure 3.5).   Another form of the programs involves the repetition of a smaller 
programming problem (e. g., PDP11SIM, Figure 3.1).   The third case involves 
the selection between alternatives (e.g., IXECUTE, Figure 3.9).   Thus each of 
the basic control structures used in Structured Programming can itself be the basis 
of organization for a program.   In each case, the net effect of the performance of 
the program must be to provide a solution to the programming problem on which it 
is based.   Each program represents the specification of a problem solution. 

Since the programs take on a restricted set of forms, some of the require- 
ments for their validation can be generalized.   This generalization is a guide for 
later application to the individual programs. 

a. Case I.   Sequential Programs 

For purposes of analysis certain properties of a well structured sequential 
program can be taken to be axiomatic. 

1. All of the statements in a sequential program will 
be evaluated once and only once, in the order of 
their occurrence. 

2. All programs have a single entry and exit point 
and therefore execute from beginning to end. 

3. No program can have its local variables altered 
as a side effect of the execution of some other 
programs. 

4. Only an own variable can retain a state from a 
previous execution of the program. 
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The essential problem in the validation of a sequential program can be ] 

summarized in questions. 

1 Do the statements constitute a decomposition of 
the problem; i.e., is the problem to be programmed, 
at a given level, completely satisfied provided the 
subtasks which occur as calls (procedures, sub- 
routines or macros) in the program are correctly 
defined and the control statements (repetition or 
selection) together with the assignment statements 
properly executed?  This requires consideration 
of the programming environment at the level being 
examined as well as the behavior of the PDP-11. 

2. Does the order of the subtasks (statements) create 
the desired effect ? 

b. Case n.   Iterative Programs 

Iterative programs present a different problem in validation.   The first 

question f^^ntial programs (Case I) must be ^"^^J^n 
erams also    In addition to that question, it is necessary to validate the iteration 
process itself.   Thus there are three additional questions to be examined. 

1. Is the controlled statement executed at least once 
when appropriate ? 

2 Is the minimal requirement for the termination of 
an iteration statement satisfied ?  Since side effects 
are not allowed, the statement, S, must modify the 
value of one or more variables in such a way that 
after a finite number of iterations the condition for 
repetition of S is no longer satisfied. 

3 Does the termination take place correctly; i.e., 
are the proper number of iterations carried ou* ? 

c. Case ID.   Selective Programs 

When a program is organized around a selection statement (the selection 
can be carried L through a case statement or an if statement), there are special 

criteria for correctness. 
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1. The number of statements provided as alternatives 
must exhaust all possible values of the selection 
variable. 

2. The alternative statements must themselves be 
valid representatives of one of the three forms 
(usually a sequential form). 

3. It must be possible for the selection variable to 
take on the full range of values. 

4. If the only assignment of values to the selection 
variable is after the selection, then this control 
variable must be declared at a higher level than 
the selection statement, and tba variable must be 
initialized. 

The conditions presented for the given program form, when satisfied, are a basis 
for an analytical validation of the program and are conditions which are necessary 
although possibly not sufficient for a demonstration of the program's correctness. 

PDP11SIM is an iterative program in which the statement being controlled 
is a compound statement.   The first step in the validation of the program is an 
analysis of the control structure of the compound statement being controlled. 
It starts with a statement of the net effect of the ordered execution of the two pro- 
cedures   SIMPROG and QUERYUSER.   The net effect states:  "Carry out a single 
simulation run and then ask the user if another run is desired." A single simulation 
run may include the execution of a number of programs for the target machine, the 
PDP-11    Theorderof execution for the two procedures is really immaterial.   As 
positioned, the details of the definition of QUERYUSER must correctly support the 
positior adopted relative to SIMPROG. 

The validity of the unlabeled compound statement can be asserted since it 
meets the needs of the problem.   There is an implied reservation, however, based 
upon the valid definition of the procedures SIMPROG and QUERYUSER. 

If the net effect of the iteration statement performs multiple executions of 
the simulation program based upon the user's requirements, then the program is 
valid    For this effect to be achieved, the compound statement must do exactly what 
it was specified to do.   The form used for the iteration statement guarantees that 
that there will be at least one execution of the simulation.   Within the compound 
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statement the procedure QUERYUSEH returns the value of the control variable 
true or false, which reflects the user's needs.   Therefore, the iteration statement 
can terminate.   If Stop:     Mse on the nth iteration, then there will be no iteration 
n + 1.   All of the conditions lor a valid iteration program are met. 

SIMPROG is a sequential program defined within PDPHSIM.   There are 
two (2) specific requirements for the validation of a sequential program     If the 
program can be shown to have as its net effect a single simulation run   then it 
is valid.    The three procedures INITS1M, RUNSIM and CLEANUPSIM 'if properly 
defined, are a decomposition of the functions of a simulation run and they are 
expressed in the only order that is appropriate to performing the task.   An integer 
variable is provided to communicate n user-supplied cycle limit value from INITSIM 
to RUNSIM where it is used to assure termination. 

The program SIMPROG can be asserted to be valid. 

RUNSIM (Figure 3.3) consists of the repetition of a compound statement 
The desired net effect to be achieved by RUNSIM is the performance of a single 
simulation run.   A single simulation run consists of cycling to carry out the 
simulation of either instruction processing or console actions as long as required 
The single statement being repeated in the program, RUNSIM, will continue until ' 
the value of Go is false.   With each cycle of the iteration the program will execute 
either of two programs, INSTRUCT or CONSOLE, to perform the required instruc- 
tion processing or console actions.   The choice of which program to execute is 
based on the value of the variable. Enable. 

Enable is initialized to the false state, which causes the program CONSOLE 
to be selected on start up.   Within this program the variable Enable can be set to 
true; since it can be reset to false within the program INSTRUCT, it is clear that 
it is possible for Enable to take on the full range of values.   The conditions under 
which the variable is set must match those found in the PDP-11     Enable is 
assigned the value true only if Halt is false and either Continue or Start is true 
Continue and Start are reset to false each time the program CONSOLE is entered 
Unless the Halt variable is previously set to false before Continue or Start la reset 
instruction processing will not commence since Enable would not be set to true. 
The net effect of this combination of switch actions is the same as that found in 
the PDP-11. 

Within the program INSTRUCT the variable Enable is assigned the value 
false if a variable Haltinst is true.   Haltinst is initialized to false with each iteration 
of INSTRUCT.   It is passed as a parameter to the program INSTRUCTNHNDLR     If 
the program decodes a Halt command, then it is expected that the value true will be 
assigned to Haltinst; this then allows Enable to be assigned the value of false.   Thus, 
a halt command stops the iteration of instruction processing and initiates CONSOLE ' 
to permit simulated console actions. 
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It can be concluded then that the compound statement controlled by the repe- 
tition does perform the proper functions as required by töe problem. 

'Hie variable Go can be set to false by a simulated console action.   This is 
an extension of the PDP-11 which is equivalent to turning off the power to the 
computer.   The variable Go is also set to false as a result of a limit placed on the 
allowable number of iterations of the instruction processing. 

It should be noted at this level that one facility of the PDP-U console is 
lacking in the model   -   allowing the user to set a simulated halt switch while 
Enable is set to true and PDP-11 instructions are being interpreted. 

INSTRUCTNHNDLR (Figure 3.5) is essentially a sequential program formed 
by identifying an ordered set of subtasks which completely perform the task of 
instruction processing.   ISELECT is assigned the task of guiding a re-direction of 
the instruction stream due to an interrupt, if necessary.    The responsibility to 
cause the word pointed to by the program counter (PC), register 7 (R7), to be 
brought to a pseudo instruction register, Instruction, is given to IFETCH.   A 
partial decoding of the instruction to identity the number of operands required 
for execution is the task of FINDFORMAT.   Based upon the necessity for an 
operand as determined by FINDFORMAT,  the task OPFETCH may be selected. 
If selected, OPFETCH retrieves the required source and/or destination data. 
IXECUTE must complete the decoding of the instruction,   select the proper function, 
and execute it, as well as store the result if required.   When executed in this order, 
the procedures identified, if properly defined, will effect an instruction processing 

cycle as defined for the PDP-11. 

INSTRUCTNHNDLR can be considered a valid program. 

The program FIND FORMAT (Figure 3. 7) consists of three subtasks.   The 
instruction format which is the basis of this syntactic analysis program is the 

double operand format. 

BYTE OP SOURCE DEST. 

ir. 14 12   11 6 5 

Double Operand Format 

The three subtasks are to extract the byte indicator, copy the op field, and then 
analyze the op field.   Both the order and the nature of the subtasks satisfy the 
assigned programming problem.   The third subtask, however, is a complex selective 
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statement, the net effect of which must be confirmed. There are four (4) sub- 
classes of requirements identified by the contents of the op fields dealt with in 
the compound statement OPFIELD. The four sub-classes, their identification 
criteria, meaning, and implied action are summarized in Table 3.1 below. 

OP MEANING ACTION 

(1) 0 Not double operand. Examine source field. 

(2) 1 - 5 Double operand; Byte 
operations allowed. 

J = 2, byte indicator valid. 

(3) 6 Double operand; Addition J = 2, byte indicator distin- 
or subtraction; No byte guishes addition from sub- 
operations traction, save it.   Set byte 

to false. 

(4) 7 Illegal operation. No operands. J = 0. 

Table 3.1.   Opfield Contents 

The compound statement OPFIELD opens with a selection statement of the 
form: 

if (Boolean = true), then Sj else So . 

This binary selection is based on the zero and non-zero classes in the opfield.   In 
the zero case, control is passed to FINDONEOP, with J = 0 as a result of initialization. 
If Op is non-zero, then the statement TRY2 is executed.   If OP = 7, then an exit is 
made from TRY2.   Control is returned to the outer block of the program with J ^ 0. 
Since the instruction is illegal there is no operand required.   If OP ^ 7 and OP / 0, 
then the instruction is legal; it remains to be determined if it is an add or subtract. 
In any ease, J is assigned the value 2, to indicate that two operands are required. 
The isolation of the add and subtract instruction is accomplished by the selection 
based on (OP = 6). 

Table 3.2 relates J values to all of the possible bit combinations for an 
instruction.   Based upon this and the analysis it appears that FIND FORMAT is a 
valid program. 
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1 
J Op Source Dest. Op   1 source Dest. Instruction Class 

0 17 00 00 < l< 17 77 77 Illegal 

2 1Ü 00 00 < * < 16 77 77 Subtract Instructions 

2 11 00 00 < * < 15 77 77 Double Operand - Byte 
Instruction 

0 10 64 00 < ! < 10 77 77 Illegal 

1 10 50 00 < l< 10 63 77 Single Operand - Byte 
Instruction 

0 10 44 00 < !< 10 47 77 Trap Instruction 

0 10 40 00 < I < 10 43 77 EMT Instruction 

0 10 00 00 < l< 10 37 77 Conditional Branch Instruc- 
tion 

0 07 00 00 < * < 07 77 77 Illegal 

2 01 00 00 < !< 06 77 77 Double Operand Word 
Instruction 

0 00 64 00 < I < 00 77 77 Illegal 

1 00 50 00 < I.< 00 63 77 Single Operand Word 
Instruction 

1 00 40 00 < * < 00 47 77 JSR • 

0 00 04 00 < I< 00 37 77 Conditional Branches 

1 00 03 00 < I < 00 03 77 SWAP BYTES 

0 00 02 40 < ! < 00 02 77 Condition Codes Operators 

0 00 02 10 < I < 00 02 37 Unspecified 

1 00 02 00 < l< 00 02 07 RTS 

1 00 01 00 < I< 00 01 77 JUMP ♦ 

0 00 00 06 < l< 00 00 77 Illegal 

0 00 00 00 < l< 00 00 05 Operate Instruction 

I stands for Instruction. 

♦Special check in instruction execution to be sure the destination is not a register. 

Table 3.2.   J Assignments All Possible Instruction Patterns 
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FINDONEOP (Figure 3.11) is a selection program (Case DI).   The form 
taken by the selection statement is the case statement 

"case  i   of   jS0. 8^ 8^ 83.  .... 8n |  when 0 < i < n." | 

Confirming the general criteria for validation shows that the control variable 
Hisource has a range from 0 through 7.   Since the statement list contains e.ght 
(8) entries   all possible values of the control variable are accounted for.    Hisource 
takes its value from bits 11 through 9 of the instruction being processed and thus 
may take anv of the values from 0 through 7.   The control variable is local to 
FINDONEOP; thus there are no scope problems.   A new value of Hisource is 
derived for each execution of FINDONEOP.   The remaining general requirement 
for correctness of FINDONEOP involves validating the alternatives in the statement 

list. 

Entry S0   SOURCELOW, a procedure declared as a part of FINDONEOP, 
is itself a selection program.   The control variable for this second order selection 
is Losource    It is also derived from the source field of the instruction local to 
FINDONEOP, and can take on the value of the eight (8) integers from 0 through 7. 
The statemeilt list has eight (8) entries.   The entries S0, S4, S5, 86, S7 are 
vacuous because all instructions which decode these values in bits 8, 7 and (. are 
instructions which have no operands (Operate Group and Conditional Branches . 
The statement S, decodes to a Jump command with a destination 0Pera"d. s° J lS 

assigned a value of 1.   Statement S2 from the list is a procedure named TRYDES, 
a sequential program which correctly differentiates between an RTS instruction 
and a Condition Code Operator.   If the instruction is recognized as an RTS, then 
J is assigned a value of 1.   The statement S3 assigns J the value of 1 because the 
instruction is recognized as a swap byte command.   Thus, all non-vacuous entries 
in the statement lisTare valid, which leads to an assertion that SOURCELOW is itself 

valid. 

Returning to the original solution statement, Sv S2 and S3 are vacuous 
and S. leads to a procedure which differentiates between the JSR command and the 
Trap command; S5 assigns J a value of 1 since all instructions in that class are 
members of the single operand group.   S6 is defined by a procedure which indicates 
the four shift commands and sets J equal to 1 for these values.   All others in the 
SG group are left at J = 0.    The S7 condition defaults J = 0 through the vacuous entry. 

The set of PDP-11 instructions which contain their distinguishing op codes 
in the source field are processed to identify those which require ^^ "^^d 

All possible bit combinations in the source field are processed and handled.   A 
summary of the information encoded in the source field and its significance as an 
operator indication is shown in Table 3.3.   Based on the satisfaction of the general 
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criteria for selection programs, and the relationship to the PDP-11 instructions, 
it is asserted that the set of all possible bit combinations in the source field are 
properly identified as belonging to one of two subsets, the one requiring a single 
operand for execution, the other requiring none.   FINEONEOP appears to be valid. 

2 Digit Source Field Meaning Action 

64 - 77 Illegal J = 0 

50 -   6 Single Operand J = l 

40-47   /\ -| Byte JSR J- 1 

40-47   /\ Byte TRAPS J = 0 

4-37 Conditional TRANS J = 0 

1 -   3   /^ Byte Conditional TRANS J-0 

S -   8  /N "I Byte SWAP BYTE J- 1 

2 -   2   /\ H Byte Dest. < 10 Condition Code Operator J -0 

1 -   1   /N 1 Byte JMP .     J = 1 

0 -   0   /\ 1 Byte J = 0 

Table 3.3.    Source Field as Operation Indicator 

OPNONE (Figure 3.14) is a selection program.   The program is built of 
nested binary selections.   Due to the nesting of the statements a table (Table 3.4) 
of all possible bit combinations for the instructions processed by OPNONE helps in 
the validation process.   The control variables used in the selection statements are 
all booleans    For ease of discussion the nested levels are identified as Zero (0) 
through Six (6).   The zero level is an implied identification.   The use of the nested 

-if B then S   else S2; 

form of selection divides the list pattern into progressively smaller subsets. 
Table 3 5 indicates the bit patterns that are isolated and the levels at which they 
are isolated.   Based on the tables, it can be asserted that OPNONE is a valid program 

An argument has been presented to demonstrate the validity of each of the 
programs used in this Section of the report. 
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Itange Identification 
r 

Level 
Handled 

17 00 00 £ I < 17 77 77 Illegal 0 

10 64 00 < I < 10 77 77 Illegal 0 

10 11 00 < I < 10 17 77 Trap 1 

10 40 00 < 1 < 10 43 77 EMT 2 

10 00 00 < 1 < 10 37 77 Conditional Branch 3/4 

07 00 00 < I < 07 77 77 Illegal 0 

00 64 00 < I < 00 77 77 Illegal 0 

00 04 00 < I < 00 37 77 Conditional Branch 3 

00 02 40 < I < 00 02 77 Condition Codes Operato rs     5 

00 02 10 < I< 00 02 37 Unspecified - Illegal 6 

00 00 06 < I < 00 00 77 Illegal Ü 

00 00 00 < 1< 00 00 05 Operate Group 6 

Table 3.4.    Possible Instruction Bit Patterns at OPNONE (J - 0) 

Level/ 
Statement Where Directed Trap No. 

ü SI 17 00 00 -    17 77 77 ILLEGAL 10 

10 64 00 -    1C 77 77 

07 00 00 -    07 77 77 

00 04 00 -    00 77 77 

1/Sl 10 44 00 -    10 47 77 TRAP 34 

2/S1 10 40 00 -    10 43 77 EMT 30 

3/S1 10 04 00 -   10 37 77 CONDBRNCH 

00 04 00 -    10 37 77 

4/S1 10 00 00 -    10 03 77 CONDBRNCH 

5/S1 00 02 40 -    00 02 77 CONDITION 

6/Sl 00 02 10 -    00 02 37 ILLEGAL 10 

00 00 00 -    00 00 77 

6/S2 00 00 00 -    00 00 05 case i of js    S    S 

Table 3.5.   Bit Patterns Selected at Each Level 
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SEC HON IV 

THE DIJKSTRA PROGRAMS AND THIS STUDY 

Before proceeding to a review of the results of this study effort, it is 
necessary to summarize the material presented by Dijkstra.      Within the Dijkstra 
paper there are two programs presented in detail   -   "print the first thousand prime 
numbers"   and "plot v    f(x)   -  as examples of the composition of structured pro- 
grams     They differ significantly in form, and these differences are sufficiently 
great that their common reliance on a set of axioms about programs and then- 
formation is obscured.   These axioms are the foundation for the principles of 
Structured Programming. 

Axiom 1.  All programming problems can be parsed, 
with respect io time, into a set of sequential 
sub-actions. 

This parsing is the very basis of computers and programs.   The parsing 
consists of the division of a problem into an ordered set of smaller subtasks.   In 
the prime number example 21 the task: 

"print the first thousand prime numbers" 

is given.   This task is then parsed into the two sub-actions: 

"fill table p with first thousand prime numbers" 

"print table p." 

The decomposition of some tasks leads to a repetition of the same sub-action.   An 
example of repetition is shown in the parse of the second statement from the example 

aforementioned: 

"print  p [ k ] for k from 1 through 1,000. " 

To be computable the number of repetitions of a subtask must be finite, but this 
number can be indeterminant, as in an iteration.   A shorthand representation of this 
special form of parsing is made through the use of the repetition statement: 

"repeat S, until  C." 

In this form the single statement which is controlled represents a parse with respect 
to time into an ordered set of sub-actions. 
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Axiom 2. Programs may be considered to be computa- 
tionally equivalent if they evoke computations 
which have the same net effect. 

The net effect of a program is defined as the net change which has taken 
place across an interval of time between the times t0 and tj.   The time of the 
beginning of the computation is denoted by t0, while tj identifies the terminal 
point of the execution.   Such an interval of time is considered as an entity.   Any 
intermediate changec in the state of the computat      process are ignored.   If there 
are no possibilities of side effects from other computations, those changes seen in 
the process state are the net effect of these computations. 

Corollary:   For net effect comparisons to be practical 
^    In large programs, it is often necessary to 

be able to map the sequence of one program 
upon the other. 

Such a mapping may often require the re-ordering of the sequence of one of 
the programs    The sequence of a program can be re-ordered by changing the order 
of the sub-actions if there is no change in the net effect of the program.   Sometimes 
comparisons can only be made at a more abstract level of the programs.   This more 
abstract state can be reached by applying the inverse of the operation described in 
Axiom 1. 

Axiom 3:     Any problem statement with its inputs and 
outputs identified can be considered a de- 
tailed program for an abstract "special 
purpose" machine. 

Given a machine the only purpose of which is to print a list of prime numbers, 
a complete program for this machine is expressed in a single statement: 

begin  print first thousand prime numbers;  end; 

A machine of this kind generally exists only as an abstraction.   Writing a program 
can be described as the process of reducing a problem to the logic and control 
required to transform a more general purpose machine into such a special purpose 

machine. 
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Corollary;  A problem statement can be considered to be 
an abstract program for a general purpose 
machine. 

The program is abstract because it deals with the solution of the problem 
in general terms rather than in the particular instructions of the general purpose 
computer. 

These philosophical points are the basis of Dijkstra's efforts to build pro- 
grams so that their texts will support a convincing demonstration of correctness. 
Yet the application of the axioms and their corollaries in the two examples given 
by Dijkstra ("list 1, 000 prime numbers" and "plot the graph y - f(x)") seem to 
yield radically different program forms, even though the essentials of the pro- 
grams are the same.   Neither of the examples results in a program that can be 
executed, except in the environment of special computer systems. 

Both of the programs composed in the Dijkstra paper present a progression 
of programs.   Each of the programs taken in order in the progression involves more 
detail than its predecessor.   This gradual refinement and functional parsing of the 
total task acts as a framework on which the analysis necessary to demonstrate 
correctness can be based. 

The examples presented by Dijkstra are relatively short programs in con- 
trast to the problems of the real world.   Both examples parse immediately into at 
least two sequential actions.   In fact, they are representative of a whole class of 
typical programs involving a two step process: 

1) derive a data set; 

2) display the result. 

The first example chosen by Dijkstra^2   hereafter referred to as Case I, 
reports the step-wise development of a program to print the first 1,000 prime 
numbers.   This program does not assume the algorithms for the "sieve of Era- 
tosthenes", but rather develops its own algorithm through a gradual process of 
refinements.   These refinements make use of the mathematical properties of 
prime numbers to produce a reasonable computational algorithm, which is a 
variation of the "sieve of Eratosthenes. " 

The second example. Case II,23involves the printing of a graph upon a 
line printer    The printer is given to have only two commands, "New Line 
Carriage Return" ("NLCR") and "Print Symbol (n)" ("PRYSM(N)").   NLCR 
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defines the left-most position of the next line as the "currently printable position;" 
PRYSM(N) prints a character identified by the value of the integer parameter N on 
the currently printable position, and defines the next position as the new currently 
printable position.   The problem to be solved is to plot the form given in a discrete 
parameter representation upon the digital printer. 

The form of Case I, the prime number example, is illustrated by the three 
levels of description given in Figure 4.1. 

description 0- 

begin "print first thousand prime numbers" end 

description 1: 

begin variable "table p"; 

"fill table p with first thousand prime numbers"; 

"print table p"; 

description 2: 

la = "Integer array  p  1:1000" 

lb = "make for k from 1 through 1000 p [k]  equal to kth 
prime number" 

1c = "print p [ kl for k from 1 through 1000" 

la 

lb 

1c 

2a 

2b 

2c 

Figure 4.1.   Dijkstra's Prime Number 

This program, Case I, can be characterized as follows: 

1. Makes explicit use of the problem statement to 
form the initial effort at a program. 

2. Step-wise development of levels are based upon 
the analysis of the program and directly reflect 
the analysis.   In each, the machine for which the 
proposals are to be considered as programs re- 
mains an abstract concept.    This machine exists 
outside the abstract state only when the syntax in 
which the problem is described maps into the svntax 
of some existent computer system. 
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3. 

■1. 

5. 

Each level is presented as a structure which 
approaches a program or procedure in form, 
but in an informal way.   The term proposal is 
used to describe these entities. 

The proposals themselves are formulated as a 
sequence of steps expressed in an informal 

syntactic way. 

Proposals are identified through the use of a 
functionally non-descriptive identifier.   The 
identifiers are used to describe the historical 
position of the proposal as a derivative of a 
predecessor.   Where a proposal is presented 
to refine a particular statement in a Predeces- 
sor   this derivative relationship is exhibited in 
the 'identifier for the proposal.   Alternative re- 
finements to the same predecessor have the same 
root identifier augmented with markers.   Multiple 
alternatives can be developed for the same pro- 

posal level. 

Thus, version 1 of the refinement of line 2b Is developed and is Isbeled 

description 2bl(l): 
begin    pll]-2;pl2]: = 3;  P [3] : = 5;  p[4]:^; 

p [5] : - 11; ... end 

A version 2 of this description recognizes that the programmer does not know the 

prime numbers and must derive them. 

description 2bl(2): 

^^-Sk^loOO do'bin "Inorease J until next prime 

2bl(l). 

number"; 
k:=k + lj p [kj- =j  end 

end 

The program 
a contrast in each of these areas 

development illustrated by Case U. on the other hand, offers 
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The first levels of text proposed for the graph problem illustrate the accom- 
panying comments. 

COMPFIRST 

begin 

draw:   | build; print | ; 

var       image; 

instr    build (image), print (image) 

end 

where, 

var       is an identifier for a variable list, 

instr    is an identifier for an instruction list for the machine COMPFIRST. 

The second text proposed refines the instruction build. 

CLEARFIRST 

begin 

build: jcfear; set marks [ ; 

instr    clear (image), set marks (image) 

end 

The characteristics of Case II are: 

1. The use of the problem statement is implicit. 

2. Development in the second example involves the 
explicit use of the machines as a level of develop- 
ment.   Each machine is formed to be capable of 
explicitly executing an algorithm.   This algorithm 
is included in the machine definition.   The state 
space of the machine is defined, as well as the 
instruction set required for the execution of the 
algorithm.   The entire package is called a pearl 
and is given the name of the machine.   The analysis 
for the problem in Case II takes place behind the 
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scenes.   This analysis is represented in the 
machine manuals, which Dijkstra suggests be 
developed for the machines.   In the example 
given, the meaning given to the instructions looks 
muchlike the proposal steps given in Case I. 

3. The programs which are written for the machines 
as they are presented in Case U are formulated 
in a clear functional notation.   Thus, a program 
can be illustrated with the program from COMP- 
FIRST 

draw: | build; print |; . 

In this notation what might be considered a level 0 
definition for Case I consists of a sequence of two 
Pteps.   This program is executed by calling two 
proceciures in order.   In this way the developmental 
notion is much closer to an executable form than is 
found in Case I. 

4 All proposals are presented as programs, together 
with the machine defined for them.   There can be 
more than one program written for a single machine. 
The programs are related to earlier proposals through 
their identifier.   All program identifiers except the 
first program identifier represent undefined instruc- 
tions for earlier machines.   The machine specified 
for "draw", the first proposal, is named COMPFLRST. 
It lias a state space "image" and two undefined in- 
structions, "build" and "print". 

5 Identifiers exist in Case II in two levels, machine 
identification and program identification.   In both 
cases the identifiers used are descriptive of the 
function associated with the machine or program, 
respectively.   The machine identifier COMPFIRST 
tells that computation precedes display.   The program 
identifier "draw" reflects the function to be performed 
by the program.   Thus the machine name reflects the 
ordering of the sub-actions and the name "draw" 
specifies the net effect of their execution. 
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6. The levels of machines in Case II are implicit in 
that a single level of a machine can be programmed 
in terms of lower level machines only.   In turn, the 
functions which are refined by the programs written 
for that machine are available to higher level machines. 
Thus the relationship between the various levels of 
the design can only be noted by referencing the 
machines themselves. 

A close examination shows that the examples present the same material in 
different ways; these differences are a reflection of a change in emphasis from 
design analysis to a closer approximation of the execution form.   Neither of these 
forms of step-wise program composition yields what could be considered a compilable 
or executable form. 

As the material of Case I is developed by Dijkstra, the procedures which are 
executable still must be connected.   Thus, when the decomposition of the statements 
2b and 2c are completed, a separate program must be built of the derived parts 
which will activate them as elements in the sequence.   Although the format of Case U 
does eliminate this problem, the executable programs are buried in the middle of 
the machine definitions.   Some researchers have designed systems which would 
execute the pearl type of structure used in Case U.        The procedure identifier 
together with the machine name form a name-couple which could serve to uniquely 
identify them in a computer system.   It is necessary to extract the executable pro- 
cedures from their positions inside the machine definitions. 

It should also be recognized that the two techniques presented in the 
examples have much in common. 

1. Both of the examples make use of the technique 
of step-wise decomposition of the problem through 
a step-wise composition of a program to solve the 
problem. 

2. The goal of constructing a program is addressed 
through this process in both examples. 

3. Design decisions are deferred in both of the 
techniques. 

4. Neither of the composition processes have hard 
and fast rules about how long the decisions are 
delayed. 
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5 Both approaches generally tend to place priority 
on the development of the controls for the pro- 
gram.   Thus, when a function will be performed 
is completely defined before the function is 
defined. 

6. Simply ordered processes are the preferred 
manner of expressing a parse of an action in 
both of the examples. 

7. Introduction of selection and repetition into the 
control path of the partitioning process is delayed 
until after the net effect has appeared in a sequen- 
tial parsing of the process under both approaches. 

Using these commor. features (expressed in Section H as Principles of 
Structured Programming), the programmer constructs a program of an ordered 
set of "small" sub-actions to create a desired net effect.   The resultant program 
organization is an aid to the programmer in constructing a convincing demonstration 
of correctness for the program. 

The seven common points observed here were compressed and re-stated to 
form the principles given in Section n, and it is upon this basis that the work re- 
ported in the study was developed.   Thus, the work presented in Section HI to 
illustrate the application of the philosophy of Structured Programming has ret^ned 
the substance of Dijkstra's work while essentially adopting the form of Mills. 

This form is constructed by explicitly using the functional program form of 
the programs found in the "pearls" of Case II.   There does not appear to be any 
advantage in uuilding an explicit form of machine as found in the "pearl".   The 
analytical development of a problem, found in the Case I example, has been rele- 
gated for use in the designer's notebooks, at least until the programmer's analytical 
msights become keen enough to overcome the drawbacks discovered during the course 

of this study. 
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SECTION V 

RESULTS AND OBSERVATIONS 

The results of the study consist of a statement of a set of Principles of 
Structured Programming and a program built using these principles.   A further 
result of this study effort is a pair of guides for limiting the size of the program 
produced at each level.   These guides are subjective as contrasted with Mills' 
"one page limit".19 It is evident from the experiments conducted in this study that 
the complexity of the statements used in a program should limit the size of the 
program.   It is reasonable to build a convincing demonstration of correctness for 
a program consisting of 50 sequential subtasks; it may not be reasonable to build a 
similar demonstration for a program consisting of a page full of nested selection 
statements.   Thus the ability to be convincing about the correctness of a program 
forms an upper bounds upon the size of any particular program construct.   A lower 
bound on the minimal size of a program is a function of the controls required in the 
program.   The details of the decomposition of an action must be sufficient to indicate 
the setting of the control variables used in the program.   Any conflict arising between 
the limits can be resolved by using an alternate form of decomposition. 

The programs given in Section III contain an illustration of the resolution of 
such a conflict.   It was necessary to split the FIND FORMAT program into the two 
programs, FINDFORMAT and FINDONEOP, because of the complexity of the control 
path.   The conflict which arose in FINDFORMAT was resolved by re-analyzing the 
task until sufficient understanding was achieved to allow the use of case statements 
as a selection mechanism.   It has been found that when the upper and lower bounds 
criteria are applied to a program, it has been possible to quickly construct a flow 
diagram for the program. 

A guide to the demonstration of the validity of the programs is included in 
Section HI, together with an example of its application.   This guide is a by-product 
of the effort, and while not sufficient for a proof of correctness, it has been very 
helpful in desk checking the programs and in building arguments for validity. 

1. OBSERVATION 

The study clearly revealed the elusive nature of the concepts of Structured 
Programming.   The prior lack of a clear presentation of the principles of Structured 
Programming was recognized during the investigation; as a result, a set of principles 
has been enunciated in this report.   These principles can serve to guide further re- 
search and development efforts.   They also can be applied to avionics systems 
currently in development and procurement. 
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While the study exposed ambiguities existent in the concepts of nested levels 
of abstraction   the concepts are not made inoperative by these ambiguities.   Rather, 
the study finds merit in the motion and a need for further clarity beyond that developed 
in the course of the study. 

Many researchers see this as an inter-relationship of all sub-actions of 
tasks which deal with a comparable level of detail.   This interpretation appears to 
be consistent with the reports Dijkstra made of "THE" system.10    However, the 
fact must be observed that each of these levels may contain a number of layers. 
Further, there are no rules for use as guides in allocating programs to levels. 
This is very much a function of the insights of the programmer. 

2. FAMILIES OF PROGRAMS 

Structured Programming appears to relate to the generation of families of 
programs using one member of the family as a base.   This indicates a potential 
impact on other software research aid development work currently in progress, 
particularly the A ED work of Ross. 26 

3. PROGRAM CRITICAL PATHS 

There is a practical interest in recognizing the critical paths in aerospace 
software systems.   Such a recognition often can lead to the removal of processing 
bottlenecks    When the relative frequency of execution of the sub-components of a 
program are known, then they can be intelligently evaluated as potential sources 
of bottlenecks in the system.   The use of a top-down program organization exposes 
hierarchical ordering of the elements of the program, which facilitates the assign- 
ment of relative frequency of execution values by analytical means. 

In the test problem, the program path from INSTRUCTNHNDLR down 
represents the principal computation path.   One of its subtasks is not executed as 
frequently as the others.   (The operand fetch subtask is not executed for instruc- 
tions having a j v^lue of zero (0).)  A frequency distribution of the instructions used 
in typical programs serves to provide a weighting value for this subtask. 

4. RECOGNIZING COMMON FUNCTIONS 

In applying the principles of Structured Programming, control for a function 
is developed before the function is defined.   The limited experience gained in this 
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test program, supported by previous experience?7 indicates that this approach leads 
to a greater recognition of common sub-functions.   An example of this is seen when 
the instruction fetch is recognized as being identical to the stack pop operation used 
in the operand fetch.   Thus, the frequency of use of this operation is obtained by 
adding the two uses of this common function.   Although there is insufficient evidence 
to evaluate just how much the organization of program structure aids in the recognition 
of these common functions, it would appear to be significant. 

5. ERROR DETECTION IN PROGRAMS 

In preparing the demonstrations of program correctness, a number of errors 
were found.   Other errors were avoided simply because of the orderly way in which 
the target program was organized.   Although the reliability of software is a function 
of the individual programmer as well as his environment, there are many factors in 
the use of well-structured programs which appear to contribute to reliability in the 
software.   From this experience as well as the support of other experiments 25 there 
is reason to believo that the use of Structured Programming contributes significantly 
to the reduction of programming errors. 

«. MEMORY EFFICIENCY 

The impact of Structured Programming efforts upon memory efficiency is 
basically unpredictable.   Any impact which results from Structured Programming is 
a function of other factors, such as the size of the system.   The larger a system is, 
the greater the probability that there are common sub-routines.   Structured Program- 
ming generally leads to much smaller sub-programs than are currently found in 
avionics systems.   There are preliminary indications from other studies that the 
frequency of utilization of a sub-program tends to vary inversely with its size. 
This would suggest that Structured Programming would lead to a set of frequently 
used sub-programs. 

In order for the maximum benefit to be derived from the use of common sub- 
routines, it is necessary for the system to allow shared code. Such a system would 
allow a single copy of the instructions to serve all users. 

Any advantages which accrue in memory utilization may be offset by require- 
ments for control of sub-routine communication. 
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7. HARDWARE - SOFTWARE TRADE-OFFS 

There is insufficient evidence in this study to draw any conclusions with 
regard to hardware-software trade-offs.   The Structured Programming approach 
does allow for the replacement of software functions by hardware with a minimal 
impact upon the program. 
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