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ABSTRACT

The demonstration of uncooled brittle materials in structural applications at
2500°F is the objective of the 'fBrittle Materials Design, High Temperature Gas
Turbine" program. Ford Motor Company, the contractor, will utilize a small vehic-
ular gas turbine comprising an entire ceramic hot flow path including the highly
stressed turbine rotors. Westinghouse, the subcontractor, originally planned to
evaluate ceramic first stage stator vanes in an actual 30 MW test turbine engine;
however, this objective was revised to demonstrate ceramic stater vanes in a
static test rig. Both companies had in-house research prograims in this area prior
to this contract.

In the stationary gas turbine project, the test of ceramic s'itor vanes in a
static rig for 100 cycles up to temperatures of 2500°TF has been completed. This
accomplishment meets the revised objectives for the stationary turbine project
and therefore, this prcject is completed as of the end of this reporting period. The
report of the last six months progress will be included in the final report for the
project and published separately.

A significant achievement, in the vehicular turbine project, was the test of a
partially bladed duo-density silicon nitride turbine rotor in an experimental high
temperature gas turbine engine up to a speed of 52, 800 rpm and turbine inlet temper-
ature of 26500F before failure on a subsequent run. A modification of the ceramic hot
gas flow path of the 820 turbine engine to accomplish this test is described in detail.
Two rotors, with blades of 10% length, were successfully tested for 45 minutes at
32,000 rpm and 2000°F turbine inlet temperature. Rotor testing capability at
elevated temperatures was initiated in two hot spin rigs which were checked out
with six available ceramic rotors. Cold spin test results of nine hot pressed
gilicon nitride rotor hubs correlated well with analytical predictions based on
Weibull MOR data from 140 test bars cut from five additional hubs. Testing of the
stationary ~omponents continued with a ""Refel' silicon carbide combustor tube
successfully accumulating over 200 hours in the steady-state test rig, equivalent
to the prescribed 200 hour engine duty cycle goal. Twenty-six hours and 40 min-
utes of this testing was at a turbine inlet temperature of 25600°F. Three addition-
al thin wall combustor tubes have been successfully qualified for further engine or
rig testing. Seven monolithic silicon nitride stators of 2.55 g/cc density and a
rotor tip shroud successfully passed an improved qualification light-off test. A
reaction bonded silicon carbide stator accumulated 147 hours of operation at 1930°F
and remains crack free. Testing of stationary components at turbine inlet tempera-
tures up to 2500°F continued with over nine hours of test time accumulated without
failures.

An important fabrication development to make duo-density turbine rotors in
three pieces was conceived and demonstrated a significant reduction of applied
loads during hot press bonding generally eliminating blade and rim cracking.
Alignment of the hot press rams and furnace was completed in addition to eliminat-
ing base plate creep by utilizing hot pressed silicon carbide base plates. During
the course of process development app. oximately 500 design D' blade rings of 2.7
g/cc density were injection molded, twelve were flaw free after nitriding. A number
of additional desired mechanical and process changes were identified to improve the
yield of flaw free blade rings. The development of the blade fill operation was com-
pleted with the optimization of the slip casting fixtures and processes coupled with
a laser removal technique.

ii




Modulus of Rupture tests were conducted on 274 specimens of hot pressed
silicon nitride to investigate the effects of surface finish, post machining heat treat-
ments and process variations., MOR tests on 155 bars of 2.7 g/cc density injection

* molded reaction sintered silicon nitride were completed to determine room and
elevated temperature strengths. Bending stress rupture tests on 15 specime.s re-
sulted in no time dependent failures for this material up to 2200°F. Twelve of the

- tests were suspended, without failure, after 200 plus hours at stresses of 20-30 ksi
and temperatures of 1900-2200°F. The nitridation of silicon compacts of various
densities was investigated for the effects of temperature schedule, atmosphere and
furnace load. The key to uniforin microstructure, fine porosity and associated high
strengths is the control of localized nitriding exotherms sc that no silicon melt out
occurs.

iii
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FOREWORD

This report is the tenth semi-annual technical report of the '"Brittle Materials
Design, High Temperature Gas Turbine" program initiated by the Advanced Research
Projects Agency, ARPA Order Number 1849, and Contract Number DAAG-46-71-C-
0162. This is an incrementally-funded six year program.

Since this is an iterative design and materials development program, design
concepts and materials selection and/or properties presented in this report will
probably not be those finaily utilized. Thus all design and property data contained
in the semi-annual reports must be considered tentative, and the rerorts should be
considered to be illustrative of the design, materials, processing, and NDT tech-
niques being developed for brittle materials.

The principal investigator of this program is Mr. A. F. McLean, Ford Motor
Company, and the technical monitor is Dr. E. S. Wright, AMMRC. The authors
would like to acknowledge the valuable contributions in the performance of this work
by the following people:
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R. A. Jeryan, C. F. Johnson, K. H. Kinsman, C. A. Knapp, J. G. LaFond,

J. A. Mangels,W. E, Meyer, M. E. Milberg, W. M. Miller, T. G. Mohr,
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1. INTRODUCTION

As stipulated by the Advanced Research Projects Agency of the Department of
Defense at the outset of this program, the major purpose is to demonstrate that
brittle materials can be successfully utilized in demanding high temperature struc-
tural applications. ARPA's major program goal is to prove by a practical demon-
stration that efforts in ceramic design, materials, fabrication, testing and evaluation
cau by drawn together and developed to establish the usefulness of briitle materials
for engineering applications.

The gas turbine engine, utilizing uncooled ceramic components in the hot flow
path, was chosen as the vehicle for this demonstration. The progress of the gas
turbine engine has been and continues to be closely related to the development of
materials capable of withstanding the engine's environment at high operating temp-
erature. Since the € rly days of the jet engine, new metals have been developed
which have allowed a gradual increace in operating temperatures. Today's nickel-
chrome superalloys are in use, without cooling, at turbine inlet gas temperatures of
1800° to 1900°F. However, there is considerable incentive to further incrcase tur-
bine inlet temperature in order to improve specific air and fuel consumptions. The
use of ceramics in the gas turbine engine promises to make a major step in increas-
ing turbine inlet temperature to 2500°F. Such an engine offers significant advances in
efficiency, power per unit weight, cost, exhaust emissions, materials utilization and
fuel utilization. Successful application of ceramics to the gas turbine would therefore
not only have military significance, but would also greatly influence our national con-
cerns of air pollution, utilization of material resources, and the energy crisis.

At the program beginuing, the application of ceramics was planned for two gas
turbine engines of greatly different size. One was a small vehicular furbine of about
200 HP (contractor Ford) and the other was a large stationary turbine of about 30 MW
(subcontractor Westinghouse). In the vehicular turbine project, the plan was to
develop an entire ceramic hot flow path including the highly stressed turbine rotors.
In the stationary turbin~ uroject, the engine being so large, plans were confined to
the development of ceramic first stage stator vanes, and design studies of ceramic
rotors. One difference in philosophy between the projects is worth noting. Because
the ceramic materials, fabrication processes, and designs were not developed, the
vehicular turbine engine was designed as an experimental unit and featured ease of
replacement of ceramic components. Iterative developments in a component's cera-
mic material, process, or design can therefore be engine-evaluated fairly rapidly.
This work can then parallel and augment the time-cousuming efforts on material and
component characterization, stress analysis, heat transfer analysis, etc. Some
risk of damage to other components is present when following this approach, but this
is considered out-weighed by the more rapid acquisition of actual test information.
On the other hand, the stationary turbine engine is so large, so expensive to test,
and contains such costly and long lead-time components which could be damaged or
lost by premature failure, that very careful material and design work must be per-
formed to minimize the possibility of expensive., time-consuming failures during rig
testing and, even more critically, during engine testing. These anticipated difficul-
ties in applying ceramics to a large stationary turbine engine have beern substan-
tiated to the extent that the scope of work for the stationary turbine project was re-
vised to demonstrate ceramic stator vanes in a static test rig rather than the
formidable task of testing in an actual 30 MW test turbine engine ©),

It should be noted that both the contractor and sub-contractor had in-house
research programs in this area prior to initiation of this program. Silicon nitride
and silicon carbide had been selected as the primary material candidates. Prelim-
inary design concepts were in existence ard, in the case of the vchicular engine,
hardware had been built and testing had been initiated.
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At the outset, the program was considered to be both highly innovative and
risky. However, it showed promise of large scale financial and technological
payoff as well as stimulation of the pertinent technical communities. This reporting
period is in the fifth year of the program and major accomplishments nave been
achieved. In the vehicular turbine project, the first 100 hour durability demonstra~
tion of stationary ceramic hot flow path components (a nose cone and stator, two
shrouds and a spacer) was carried out in an engine completely coupled with a control
system and producing power. In addition, a partially bladed ceramic turbine rotor
has been tested in an experimental high temperature gas turbine engine up to a
speed of 52,800 rpm and turbine inlet temperature of 2650°F before subsequenrt
failure. In the stationary turbine project ceramic stator vanes have been test~d in
a static test rig for 100 cycles up to temperatures of 2500°F. This latter accr-a-
plishment meets the revised objectives for the stationary turbine project and
therefore this project is completed as of the end of this reporting period.

This is the 10th semi-annual report of yrogress. The format is different
than previous reports in that the stationary tirbine project has been completed
while the vehicular turbine project is continuing. The report of the last six months
progress on the stationary turbine groject will be included in the final report for that
project and published separately @7), This and future interim reports will cover
the progress and accomplishments on the vehicular turbine project.

Note: Numbers in parantheses refer to references listed in Section 5. 0.




2. INTRODUCTION AND SUMMARY

The principal objective of the Vehicular Turbine Project ic to develop ceramic
components and demonstrate them in a 200-HP size high temperature vehicular gas
turbine engine. The entire hot flow path will comprise uncooled parts. The attain-
ment of this objective will be demonstrated by 200 hours of operation over a repre-
sentative duty cycle at turbine inlet temperatures of up to 2500°F. Successful
completion of this program objective demonstrates that ceramics are viable struc-
tural engineering materials, but will also represent a significant breakthrough by
removing the temperature barrier which has for so long held back more wide-~
spread use of the small gas turbine engine.

Development of the small vehicular regenerative gas turbine engine using
superalloy inaterials has been motivated by ‘*~ potentially superior characteristics
when compared with the piston engine. These . clude:

— Continuous combustion with inherently low exhaust emissions
—  Multi-fuel capability

— Simple machine ~ fewer moving parts

--  Potentially very reliable and durable

— Low maintenance

— Smooth, vibration-free production of power

— Low oil consumption

— Good cold starting capabilities

— Rapid warm-up time

With such impressive potential, the small gas turbine engine using superalloys
has been under investigation by every major on-highway and off-highway vehicle
manufacturer in the world.

In addition, the small gas turbine engine without exhaust heat recovery (i.e.,
non-regenerative) is an existing, proven type of power plant widely used for auxil-
iary power generation, emergency standby and continuous power for generator sets,
pump and compressor drives, air supply units, industrial power plants, aircraft
turboprops, helicopter engines, aircraft jet engines, marine engines, small port-
able power plants, total energy systems_ and hydrofoil craft engines. While this
variety of applications of the small gas turbine using superalloys is impressive,
more widespread use of this type engine has been hampered by two major barriers,
efficiency and cost. This is particularly so in the case of high volume automotive
applications.

Since the gas turbine is a heat engine, efficiency is directly related to cycle
temperature. In current small gas turbines, maximum temperature is limited not
by combustion, which at stoichiometric fuel/air ratios could produce temperatures
well in excess of 3500°F, but by the capabilities of the hot component materials.
Today, nickel-chrome superalloys are used in small gas turbines where blade
cooling is 1mpractical and this limits maximum turbine inlet gas temperature to
about 1800°F. At this temperature limit, and considering state-of-the-art compon-
ent efficiencies, the potential overall efficiency of the small regenerative gas turbine




is not significantly better than that of the gasoline engine and not as good as the
Diesel. On the other hand a ceramic gas turbine engine operating at 2500°F will
have fuel economies superior to the Diesel at significant weight savings.

The other major barrier is cost and this too is strongly related to the hot
component materials. Nickel-chrome superalloys, and more significantly cobalt
based superalloys which meet typical turbine engine specifications, contain strategic
materials not found in this country and cost well over $5/1b. ; this is an excessive
cost with respect to high volume applications such as trucks or automobiles. High
temperature ceramics such as silicon nitride or silicon carbide, on the other hand,
are made from readily available and vastly abundant raw materials and show pro-
mise of significantly reduced cost compared to superalloys, probably by at least an
order of magnitude.

Thus, successful application of ceramics to the small gas turbine engine,
with an associzted quantum jump to 2500°F would not only offer all of the attributes
listed earlier, but in addition offer superior fuel economy and less weight at com-
petitive cost with the piston engine.




2.1 VEHICULAR TURBINE PROJECT PLAN

The vehicular turbine project is orgarized to design and develop an entire
ceramic hot flow path for a high temperature, vehicular gas turbine engine,
Figure 2.1 shows a schematic of this regenerative engine. Air is induced through
an intake silencer and filter into a radial compressor, and then is compressed and
duciad through one side of each of two rotary regenerators. The hot compressed
air is then supplied to a combustion chamber where fuel is added and combustion
takes place.

The hot gas discharging from the combustor is then directed into the turbine
stages by a turbine inlet nose cone. The gas then passes through the turbine stages
which comprise two turbine stators, each having stationary airfoil blades which
direct the gas onto each corresponding turbine rotor. In passing through the tur-
bine, the gas expands and generates work to drive the compressor and supply useful
power. The expanded turbine exhaust gas is then ducted through the hot side of each
of the two regenerators which, to conserve fuel, transfer much of the exhaust heat
back into the compressed air. The hot flow path components, subject to peak cycle
temperature and made out of superalloys in today's gas turbine, are the combustor,
the turbine inlet nose cone, the turbine stators, the turbine tip shrouds, and the tur-
bine rotors. These are areas where the use of ceramicg could result in the greatest
benefits, therefore tiic.¢ components have been selected for application in the
vehic® - turbine project.

Successful development of the entire ceramic flow path, as demonstrated in a
high temperature vehicular gas turbine engine, will involve a complex iterative
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development, Figure 2.2 shows a block diagram flow chart, including the feed-
back loops, of the major factors involved, and serves to illustrate the magnitude of
this complex and comprehensive iterative development program. Of particular
importance is the inter-relationship of design, materials development, ceramic
processes, component rig testing, engine testing, non-destructive evaluation and
failure analysis. One cannot divorce the development of ceramic materials from
processes for making parts; no more so can one isolate the design of those parts
from how they are made or from what they are made. Likewise, the design of
mountings and attachments between metal and ceramic parts within the engine are
equally important. Innovation in the control of the environment of critical engine
components is another link in the chain. Each of these factors has a relationship
with the others, and to obtain success in any one may involve compromises in the
others. Testing plays-an important role during the iterative development since it
provides a positive, objective way of evaluating the various combinations of factors
involved. If successful, the test yields the credibility to move on to the next link in
the development chain. If unsuccessful the test flags a warning and prompts feed-
back to earlier developments to seek out and solve the problem which has resulted
in failure, Finally, all of the links in the chain are evaluated by a complete engine
test, by which means the ultimate objective of the program will be demonstrated.
It is important then to recognize that this is a systems development program — no
single area is independent, but each one feeds into the total iterative system.
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2.2 PROGRESS AND CUMULATIVE STATUS SUMMARY

To meet the program objectives, the work has been divided into two major
tasks.

1. Ceramic Component Development
2. Materials Technology

The progress and present status in each of these is summarized in Section
2,2.1and 2,2,2,

25 21 CERAMIC COMPONENT DEVELOPMENT

Two categories of ceramic components are under development: rotating
parts (i.e. ceramic rotors), and stationary parts (i.e. ceramic stators, rotor
shrouds, nose cones, and combustors). In this iterative development, each
component will pass through various phases comprising design and analysis,
materials and fabrication, and testing.

Ceramic Rotors

The development of the ceramic turbine rotors is by far the most difficult
task in the ARPA program. This is because of:

. the very complex shape of the turbine rotor forcing the development
of new and unique fabrication capabilities.

the high centrifugal stresses associated with maximum rotor speeds of
64,240 rpm.

. the high thermal stresses and associated thermal fatigue resulting from
both steady state and transient high temperature gradients from the
rotor rim to the rotor hub,

. the hostile environment associated with the products of combustion
from the combustor.

. the high temperature of t%e uncooled blades resulting from turbine inlet
gas temperatures of 2500 F.

During the last reporting period, a Turbine Rotor Fabrication Task Force
was established to maximize the effort on duo-density silicon nitride turbine
rotor fabrication by deferring all work on stationary ceramic component fabrication
and material problems. During this reporting period, the Task Force was continued
and met its goals of establishing the major process parameters for fabricating
duo-density silicon nitride turbine rotors. While process refinements, particularly
with respect to hot pressed silicon nitride starting powders, are still required to
produce flaw-free rotors, the decision was made to wind-down the Task Force so
that iabrication of stationary ceramic components could be resumed during this
reporting period.




Progress and Status

Fully dense SigN4 first and second stage integral rotors were designed and ana-
lyzed (1,2, 3, 4?.

A method of attaching rotors was conceived and designed (1,2),

The following approaches for making integral rotors were investigated but discon-
tinued:

~— Direct hot pressing of an integral SigN4 rotor @,

— Ultrasonic machining of a rotor from a hot pressed SigN4 billet 1,2,3),

— Hot pressing an assembly of individually hot pressed SigN4 blades (1 »2),

— Pseudo-isostatic hot pressing of an injection molded SigNy preform (1,2,3),

—~ Hot &r%sii)ng using comformable tooling of preformed Si N blades and
hub ¢» 9, %),

— Fabrication of a dense SiC blade ring by chemical vapor desposition (152,3,4),
— Electric disckarge machining of a rotor from a hot pressed SiC billet (2»3,4),
A "duo-density" SigNy ceramic rotor was conceived and designed (3).

Tooling to injection mold SigN, blade rings was designed and procured (3).

Over 375 hot press bonding of duo-density rotors were carried out 10). These
have progressed from rotors with flat-sided hubs to current fully-countoured hubs
made simultaneously with the hot press bonding operation. Prior severe blade
ring distortion problems have been solved by using a double blade fill to support
the blade ring during bonding., In addition, the diffusion bond has been improved
to its current excellent quality as evidenced by microstructural examination. New
experiments were conducted using magnesium nitrate instead of magnesium oxide
as a densification aid. Excellent bonding and density were achieved but strength
wag deficient. Successful modifications were made to the graphite wedge system
to reduce blade ring cracking and tearing problems. Problems which remain are
occasional blade ring and rim cracking (4,5,6,7,8),

Over 110 cold spin tests resulted in blade failures over a range of speeds, some of
which exceeded full speed requirements of the new Design D' blading. However,

an improvement in consistency is required if a reasonable yield from the blade ring
fabrication process is to be achieved. This emphasizes the need for three~dimen-
sional blade stress analysis as well as development of a higher strength, better
quality blade material. Cold spin testing of rotor hubs of hot pressed Si N

showed a characteristic failure speed of 115,965 rpm with a Weibull rpm slope of
17.66 (7). Several hot pressed hubs, made by the hot press bonding process, were
cold spui o destruction, and showed results consistent wi‘h the hot pressed hubs (8).
A high speed motion picture study (3000 frames/sec) was conducted of a turbine
rotor failure in the cold spin pit (8).

A three dimensional model of the rotor blade along with heat transfer coefficients
has been generated for three dimensional thermal and streus analysis (5,6, 8).




Development of a better quality blade rings continues. X-ray radiography of green
parts has proved effective in detecting major flaws. Slip cast SigNg test bars having
a density of 2.7 O'm/cm show four point MOR of 40, 000 psi therefore, processes to
slip cast a rotor blade ring are under 1nvestigation as are methods of achieving 2,7
gm/cm3 density with injection molded material (>

Thermal shock testing simulating the engine light-off condition was epnducted on
rotor blade rings for approximately 2,500 cycles without damage (5»9),

A technique to evaluate probability of failure using Weibull's theories was developed,
and applied to ceramic rotors (®),

A test rig was de51 ed and built to simulate the engine for hot spin testing of
ceramic rotors ( ). A set of low quality duo-density rotors was spin tested to
20% s’peed and 195001‘ for a short time before failure, believed due to an axial

A revised rotor design (Design D) was conceived, using common rctors at first and
second stage locations (7).

A lower stress version of the Design D rotor, designated Design D', has been de-
signed using radially stacked blade sections. Blade centrifugal stresses were
reduced from 21, 000 psi in Design D to 12,180 psi in Design D' 8).

The rotor test rig was rebuilt and testing initiated to evaluate the rotor attachment
mechanism and the curvic coupling mounting design. Hot-pressed SigN4 rotor hubs
were subjected to 10 operating cycles from 900 to 1950°F, during a 3-3/4 hour test,
without damage( ),

Design codes for ceramics were refined to include nonlinear thermal properties of
materials and to allow for the specification of the MOR-strength and Weibull "m"
requirements for a given failure at a specified loading and reliability level (9,10),

Rotor hubs were successfully densified and press bonded at both 2% and 3-1/2%
MgO levels, resulting in elimination of MgO migration into the blade ring and im-
proved high temperature strength over previous pressings with 5% MgO ().

A design C duo-density rotor with a few obvious flawed blades removed was cold
spin tested after static oxidation at 19000F for 200 hours. A single half-blade
failure occurred at 53,710 rpm, which corrects to 68,000 rpm or 105% speed for
the present shorter bladed Design D configuration. The results of a number of spin
tests of slip cast 813N4 blade segments were combined to yield a median failure
speed of 64,000 rpm (9).

Over five hundred blade rings, previous to Design D', were injection molded for
press bonding experiments, cold spin tests, and hot tests ).

New tooling to injection mold lower stressed Design D' rotor blade rings was re-
ceived and trial moldings to establish molding parameters were initiated (9).

Progress has been made in several aspects of the press-bonding step of duo-
density rotor fabrication. A problem of excessive deflection of the graphite sup-
port structure beneath the rotcr assembly, permitting bending and subsequent
blade fracture, was solved by the substitution of high moduluvs hot pressed SiC for
the low modulus graphite. Increasing the rate of pressure application also im-~
proved the quality of the hub sections (9)
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. A new hot spin test rig, designed to improve the turn-around-time in testing
turbine rotors, has been constructed, and is currently in the shakedown testing
phase. Using gas burners instead of a gas turbine combustion system, this rig
simulates the engine environment and was designed to be quickly rebuilt following -
rotor failures (95

. Inthe program to engine evaluate ceramic rotors having reduced blade length (and 3
less risk of catastrophic failure), two duo-density SigNy4 rotors with the blades
shortened to 10% of the design length have been selected and cold spun to 64, 000
rpm (9), These rotors were then hot tested in an engine for 45 minutes at 32, 000
rpm and 2000°F turbine inlet temperature without failure (10),

. The aerodynamic design of the increased efficiency Design E turbine was initiated.
Flowpath optimization, a one dimensional stress analysis, and preliminary detailed
blade section definition were completed for both the first and second stage turbine
strators and rotors (9).

. A process has been developed to slip cast turbine rotor blade rings (9).

3-D stress and reliability analyses were performed on preliminary blade configu-
rations for the increased efficiency Design E turbine rotors (10),

. 500 Design D' blade rings have been injection molded which will nitride to 2.7 g/cc
density (10),

. A new fabrication approach to make duo-density silicon nitride turbine rotors in
three pieces was conceived and demonstrated a significant reduction of applied
loads during hot press bonding generally eliminating blade and rim cracking (10),

. Good correlation was demonstrated between predicted cold burst speed and actual "
spin test results on nine rotor hubs spun to destruction (10),

c Six available duo-density turbine rotors of imperfect quality were used to check
out the hot spin rigs by hot spin testing to failure speeds ranging from 12, 000 rpm
to 35,300 rpm at rotor rim temperatures of 17800 to 22500F, (corresponding to
equivalent blade tip temperatures in an engine estimated to be 1930°F to
2400°F) (10),

. Duo-density rotor #709 with flawed blades removed achieved 52, 800 rpm in the
modified design engine with ceramic stationary flowpath prior to an unscheduled
dynamometer shutdown. A maximum turbine inlet temperature of 2650°F was
observed during this run. Post inspection showed all ceramic parts to be crack
free. A( 1rg)tor failure occurred on a subsequent run at 50,000 rpm and 23000F
T: 1.1, 5

Ceramic Stators, Rotor Shrouds, Nose Cones, and Combustors

While development of the ceramic turbine rotor is the most difficult task, devel-
opment of the stationary ceramiic flow path components is also necessary to meet the
objective of running an uncooled 2500°F vehicular turbine engine. In addition, success
in designing, making, and testing these ceramic components will have an important
impact on the many current applications of the small gas turbine where stationary
ceramics alone can be extremely beneficial. The progress and status of these devel-
opments is summarized below, taking each component in turn.

10
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Progress and Status

CERAMIC STATORS

Early Design A first stage stators incorporating the turbine tip shrouds had been
designed, made by assembling individual injection molded SigN4 vanes, and tested,
revealing short time thermal stress vane failures at the vane root (1),

Investigations of a number of modified designs led to Design B where the rotor
shroud was separated from the stator. Short time thermal stress vane failures at
the vane root were eliminated (1),

In the fabrication of stators, the starting silicon powder, the molding mixture and
the nitriding cycle were optimized for 2.2 gm/cm3 density (18 ksi-MOR) ma-
terial 2, 3)

. Engine and thermal shock testing of first stage Design B stators revealed a longer
term vane cracking problem at the vane mid-span. This led to modification of the
vane cord, designated the Design C configuration, which solved the vane mid-span
cracking problem %),

A remaining problem in first and second stage Design B stators was cracking of
outer shrouds, believed due to the notch effect between adjacent vanes. To solve
this, tooling for a one-piece first stage Design C stator was procured “,95)

The Design B second stage stator could not be made in one piece due to vane over-
lap, so an "inverted channel" design was investigated to eliminate notches at the
outside diameter. However, engine testing showed that axial cracking of the outer
shroud remained 2 problem (3,4, 5,6),

A 50 hour duty-cycle engine test of the hot flow path components to 1930°F was
completed. The assembled first stage Design C stator was in excellent condition;
8 out of(3§3 vanes in the second stage inverted channel stator had developed fine
cracks \°),

A 100 hour duty-cycle engine test of the hot flow path components (without a second
stage stator) to 19300F was completed. Th'. reaciion bonded silicon nitride (2. 55
g/ cc(ggensity) one piece first stage Design C stator successfully survived this

test \1),

Improvements in materials and processing resulted in the fabrication of flaw free
one piece stators of 2.55 gm/em3 density (8).

A test was devised for mechanically loading stator vanes to failure which provided
useful information for material and process development (8).

Thermal shock testing of 2.7 gm/cm3 density stator vanes revealed no detectalrle
cracking and negligible strength degradation after 9000 cycles of heating to 2700°F
and cooling in the thermal shock rig (8),

. Processing of 2.55 gm/ cm3 density injection molded stators continued. Consis-
* tently high weight gains (61-62%) have been obtained vsing the Brew all-metal fur-
nace employing a slow, gradual rate-of—rigse cycle, 4% Ho- 96% Ng gas under static
pressure, and SigN4 setters and muffles ©),

. An injection molded stator of 2.55 gm/cm3 density SigNy survived static testing
(no rotors) for 175 hours at 1930°F steady state. Weight gain of the stator was less

11
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than %), which stabilized after 10 hours of testing. The stator is in excellent con-
tion Y/,

. Testing of stators up to 2500°F in the Flow Path Qualification Test Rig was initiated
with over eight hours of testing accumulated at 25000F (9).

. A reaction bonded silicon carbide stator successfully accumulated 147 hours of
testing at 1930°F and remains crack free (10),

. Over nine hours of testing a silicon nitride stator were accumulated without incident
in themo%fied engine configuration to a maximum turbine inlet temperature of
2650°F (10),

CERAMIC ROTOR SHROUDS

Separate first and second stage ceramic rotor shrouds, which are essentially split
rings, evolved in the stator change from Design A to Design B (1).

As a result of rig and engine testing, rotor shrouds made of cold pressedz reaction
sintered SigN4 were modified to have flat rather than conical side faces (¢).

Because of occasional cracking, cold pressing was replaced with slip casting for
making higher density rotor shrouds, resulting in 2-3 times increase in strength(3).

. Slip casting of rotor shrouds solved the cracking problem but revealed a dimen-
sional change problem as a function of operating time. This was solved by incor-
poration of nitriding aids and heat treatment cycles and other changes in the
fabrication process which reduced instability to acceptable levels 4,5,6),

. A 50 hour duty cycle engine test of the hot flow path components {o 1930°F was
completed, after which both first and second stage rotor shrouds were in excellent
condition ().

. A 100 hour duty-cycle engine test of the hot flow path components to 1930°F was
completed, after which both first 2nd second stage rotor shrouds were in excellent
condition (7).

Further testing of rotor shrouds to 245 hours and over 100 lights showed them to
remain crack free and in excellent condition (7).

CERAMIC COMBUSTOR

. Combustor tubes made of slip cast SigN4 and various grades of recrystallized SiC
(Crystar) cracked during light off tests in the combustor rig 4),

. A thick-walled, reaction bonded silicon carbide (REFEL) combustor successfully
completed the 200 hour duty cycle. A total of 26 nours and 40 minutes was accu-
mulated at 2500°F turbine inlet temperature 0), This combustor was also
successfully tested in an engine (8),

. Three thin-walled, reaction bonded silicon carbide (REFEL) combustors were
successfully qualified over a 10 hour portion of the ARPA duty cycle (10),

. Over nine hours of testing a first and second stage rotor tip shroud were accu-
mulated without incident in the modified engine configuration to a maximum turbine
inlet temperature of 2650°F (10),
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CERAMIC NOSE CONES (with integral transition duct)

Early Design A nose cones had been designed, made from injection molded
reaction sintered SigNy, and tested (1).

The nose cone was modified to Design B to accommodate the Design B first stag?g
stator. Several Design B nose cones were rmade and tested in rigs and engines ).

Veids in molding nose cones ‘vere minimized by preferentially heating the tooling
during molding (®).

Circumferential cracking and axial cracking problems led to preslotted, scalloped
nose cones designated Design C (3)459,6),

A 50 hour duty-cycle engine test of the hot flow patch components to 1930°F was
completed, after which the Design C nose cone was in excellent condition (7).

A 100 hour duty-cycle engine test of the hot flow path components to 1930°F was
completed, after which the Design C nose cone was in excellent condition (7).

Further such testing of the 2.2 g/cc density nose cone to 221 hours showed it to
remain crack free and in excellent condition (7).

Improvements in materials and processing resulted in the fabrication of flaw free
nose cones of 2.55 gm/cm3 density (8),

Processing of 2.55 gm/ em3 density injection molded nose cones continued. Con-
sistently high weight gains (61-62%) have been obtained using the Brew all-metal
furnace employing a slow, gradual rate-of-rise cycle, 4% H- 96% N gas under
static pressure and SigN4 setters and muffles (9).

Testing of nose cones up to 2500°0F in the Flow Path Qualification Test Rig was
initiated with cver eight hours of testing accumulated at 2500°F (9).

Over nine hours of testing a silicon nitride nose cone were accumulated without
incident in the modified engine configuration to a maximum turbine inlet temper-
ature of 2650°F (10),

13



2.2.2 MATERIALS TECHNOLOGY

Materials technology forms the basis for component development including
component design, component fabrication, material quality in the component as-made,
and evaluation by testing. There are three major categories under materials tech-
nology — materials engineering data, materials science, and non-destructive evali.-
ation. Progress and present status in each of these areas is summarized belov:

Materials Engineering Data

Technique: were developed and applied for correlating the strength of simple
ceramic sgin disks with bend test specimens using Weibull probability
theories (9),

. Elastic property data as a function of temperature was deiermined for various
grades of silicon nitride and silicon carbide (2:3,4,5,6,7,9),

. The flexural strength vs, temperature of several grades of 5iC and SigNy was
determined (3s455,6,9,

. The compressive strength vs. temperature of hot pressed SiC and hot p1essed
SigN4 was determined “*/.

. Creep in bending at several conditions of stress and teﬁpgrgt\g)))‘e was determined
for various grades of reaction sintered silicon nitride ‘*» %> »*/,

. The specific heat vs. temperature of 2.23 gm/Cm3 reacdon sintered SigN, was
measured, as were thermal conductivitgr and thermal diffusivity vs, temperature
for both 2.23 gm/cm3 and 2. 68 gm/cm® reaction sintcred Sighy 4),

Stress~-rupture data was obtained for reaction sintered silicon nitride under
several conditions of load and temperature (6:9,10),

. Agi~up of 31.2.7 gm/cm3 density injection molded SigNy test bars, maae
using the best current nitriding cycle and an a*mosphere of 4% Hg, 96% Ny,
resulted in a Weibull characteristic strength of 44.3 ksi and an m value of
6.8. Additicnal meterinl development work is aimed at obtaining a higher
m value (9)

«  The effects of surface finish and post machining heat treatment on the room
temper:.ture strength of hot pressed silicon nitride were determine (10),

. The variation in MOR of hot prcssed siliconnitride was determined from
rotor—to—rotcrd within one rotor and as a function of initial material
preparation (10),

Room and elevated temperature flexure strengths of injection molded reac-
tion sintered silicon nitride of 2. 7g/cc were determined (10),

No time dependent fauilures were observed for 2.7g/cc injection molded
reaction sintered silicon nitride up to 200 hours at stresses of 20-30 ksi
and temperatures of 1900-2200°F (1V)

Materials Science

A technique was developed and applied to ;erform quantitative x-ray diffraction
analyses of the phases in silicon nitride (),
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. An etching technique was developed and used for the Study of the microstructure
of several types of reaction sintered silicon nitride (4,

c The relationship of some processin% parameters upon the properties of reaction
sintered SizNg were evaluated (3,4,5,6,10),

. The oxidation behavior of 2.2 gm/cm3 density SigN4 was determined at several
different temperatures. The effcct of oxidation was found to be reduced when
the density of reaction sintered SigNy4 increased (3, 7).

. The relationship of impurities to strength and creep of reaction sintered
silicon nitride was studied, and material was developed having considerably
improved creep resistance (4,9,6,9),

Fractography and slow crack growth studies were performed on reaction
sintered SIC (5) and hot pressed SigNg. (6,7)

The development of sintered Sialon-type materials was initiated (7). The effects
of Yttria additives are being studied expecially as it relates to the formation of
glassy phases (8,10),

. A higher density (2.72 gm/cm3) molded SigN4 has been developed which will be
used for component fabrication. Four point bend strengths of 43 ksi at room
temperature were measured (8),

. An experimental study showed that high pressures did not facilitate nitriding
of relatively dense silicon compacts. A perallel theoretical study showed that
to store sufficient nitrogen within the pores and avoid diffusion an impractically
high pressure would be needed (8),

. Three techniques to improve the oxidation resistance of 2.7 gm/cm3 injection
molded SigN4 were evaluated (9).

. Nitriding exotherms resulting in localized silicon temperatures in excess of
14200C produced silicon ""melt out" with resulting large porosity and lower
strength. Eliminating these exotherms by controlling furnace temperature
appears to be the key to uniform microstructure, fine porosity and higher
strengths (10),

Non-Destructive Evaluation

Ultrasonic C-scan techniques were developed and applied for the measurement
of internal flaws in turbine ceramics (1,2,3,4),

Sonic velocity measurements were utilized as a means of quality determination
of hot pressed SigNy4 (2,3,5,9).

. A computer-.ided-ultrasonic system was used to enhance the sensitivity of
defect analysis in hot pressed SigN4 (3,4,6),

Acoustic emission was applied for the detection of crack propagation and the
onset of catastrophic failure in ceramic materials (1,2,5,6),

. A method was developed and applied for the detection of small surface cracks
in hot pressed SigN4 combining laser scanning with acoustic emission ().
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X-ray radiog'raphg was applied for the detection of internal defects in turbine
ceramics (23,4,

Hidden flaws in as-molded stators and rotor blade rings were located by x-ray
radiography (5,6, 7)., Such NDE of as-molded parts has been used to develop
processes to make flaw-free components (8),

A dye penetrant has been used to detect surface cracks in components made of
the 2.55 gm/cm3 SigNy (8).

A state-of-the-art summary of NDE methods as applied to the ceramic turbine
programs was compiled (6).

500 injection molded blade rings were examined, most of them in detail using
30X magnification and X-ray radiography NDE techniques(10),
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2,3 TFUTURE PLANS

Section 2.2 of this report summarizes the progress made in ceramic compon-
ent development and materials technology over the contract period. Significant
accomplishments have been realized, though there are still problems to be solved
before achieving the target demonstration of stationary flow path components and
ceramic turbine rotors.

Ceramic Component Development

A major effort during the next reporting period will concentrate on the three-
piece duo-density silicon nitride turbine rotor. Although flaw-free rotor blade rings
have been fabricated, improvements to the injection molding process are planned to
increase yield. A new gating configuration is planned together with closer quality
centrol over material preparation which should reduce subsurface voids. In
addition, a solid state control system to control time and temperature of all phases
of the injection molding process is expected to improve the repeatability of fabrica-
tion,

The design change to a three piece rotor greatly reduced the incidence of
blade breakage and gross rim distortions occurring during hot press bonding, but
additional process refinements are required to eliminate minor blade cracking and
maximize the strength and Weibull modulus of the hot pressed materials.

Evaluation of the improved hot press bonded rotor hub material will be carried
out in order to update the reliability anaiysis of the rotors utilizing the latest 3-D
probabilistic design codes. The analytical investigation of time dependent failure
modes of rotors due to subcritical crack growth is planned. Correlation analysis
of predicted versus actual burst speeds will continue in an effort to refine the
analytical tools utilized to design ceramic components,

Further refinements will be incorporated into the two hot spin test rigs to
insure greater consistency of test conditions and to improve the quality of monitor-
ing data used in the failure analysis of turbine rotors. Interms of 2500°F engine
testing, further work is required on the modified enzine configuration to check out
its durability at high speeds and temperatures. A seccnd engine will be converted
to the modified engine design to increase the capability of engine testing ceramic
turbine rotors up to 2500°F.

The fabrication and testing of improved stationary hot flow path components
will be resumed, The injection molding of one-piece monolithic stators of 2.7 g/cc
density will begin. The improved oxidation resistance of this material should signi-
ficantly increase the stator's outer shroud life. Stator testing in the 2500°F flow
path qualification rig, the ceramic structures rigs and in regular aud modified
engines will be conducted to confirm the life improvement. The redesigned nose
cone tooling and improvements made to the injection molding control system should
reduce the incidence of molde? flaws in nose cones. Nose cones of 2.7 g/cc density
will be evaluated in rigs and cugines to determine if further improvements are
necessary to meet the 200 hour goal. Slip cast turbine rotor tip shrouds will also
be evaluated in rigs and engines.

Materials Technology

Work is continuing to improve room temperature strength, high temperature
strength and Weibull, 'm', value of hot pressed silicon nitride used in duo-density
turbine rotor fabrication. Principal approaches include the use of high purity
silicon nitride starting powders, refined powder processing and closer control




over critical hot pressing parameters. These improvements will be confirmed by
the continuing effort to characterize the material with a statistically significant
number of test specimens.

Further work is planned on improving the nitridation processing of reaction
sintered silicon nitride components. Closer temperature control to reduce local
nitriding exotherms will be investigated with respect to finer porosity, more uni-
form microstructure and asscciated higher strengths. The effect of furnace load
on component strength will continue to be investigated in an effort to increase the
production capability of fully nitrided, high strength parts.

The slip casting process will be further investigated in order to develop
a slip with less sensitive parameters that will produce components which can be
fully nitrided. Other process modifications are aimed at increasing the strength on
a consistent basis thereby improving the yield of useable components.

Improvements in injection molding will be realized through further refinement
and control of the molding parameters used to fabricate components in addition to
tighter quality control over material preparation. Further characterization of room
and high temperature strengths combined with additional stress rupture/creep test-
ing will provide the material data required for reliability and failure analyses of
ceramic turbine rotors.

Statistical techniques will continue to be developed in the areas of parameter
estimation and confidence interval estimates and will be included in the next report.
In addition development of significance testing and goodness of fit tests will be under-
taken and published in a latur report.
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3. PROGRESS ON CERAMIC COMPONENT DEVELOPMENT
3.1 DUO-DENSITY CERAMIC ROTOR DEVELOPMENT
SUMMARY
- To provide for testing ceramic turbine rotors over the full speed range at

turbine inlet temperatures of up to 2500°F, the hot gas flow path of an 820 turbine
engine was modified to allow a portion of the compressor delivery and combustor
entry air to re-enter the main hot gas flow path upstream of the regenerators

to protect them from over-temperatures.

An approach to make duo-density rotors in three pieces has been conceived;
these three pieces consist of the blade ring, the inner hub, and an intermediate
bonding ring between the hub and blade ring. The purpose was to minimize the press
bonding forces contributing to damage of the blade ring, and to achieve better control
of material strength in the hub region. A strength analysis of the three piece, first
stage rotor was conducted on the basis of desired reliability or knuwn material
properties. Strength requirements for 95% + reliability of the three piece concept
appear achievable with known physical properties of silicon nitride.

Analysis of the improved efficiency Design E turbine rotors continued.
Blade sections for first and second stage stators were designed and a two-
dimensional gas flow analysis indicates the diffusion parameters to be acceptable.
A three dimensional finite element stress analysis and a probability of failure
analysis were conducted for the first stage rotor and several designs of the second
stage rotor.

The new D' rotor tooling was utilized to injection mold approximately 500
- blade rings of 2.7 gm/cm3 silicon nitride material most of which were examined in
detail by 30X visual magnification and by X-ray radiography. After nitriding, a
total of 12 visual and X-rayed flaw free parts were obtained. A number of
additional desired mechanicai and process changes have been identified and are
being incorporated to improve the yield of flaw-free blade rings.

Development of a system of blade filling of rotor blade rings prior to press
bonding has been completed. The system produces repeatable results and consists
of centrifugally casting a low density silicon slip between and around the blades
utilizing a special fixture developed for this purpose. A graphite and plaster
block fixture is used o form the cavity for casting of the low density silicon slip
and a BN coating is used to prevent bonding between the blade fill and rotor blades.
After casting, the assombly is dried, nitrided, and machined preparatory to press
bonding. After press bonding, a COg2 lascr is used to cut through the blade fill for
easy removal of the blade inserts.

In the graphite wedge hot press bonding system used to fabricate duo-density
turbine rotors, the graphite base plates have been removed and replaced with high
denrity SiC, which has eliminated the base plate permanent deformation problem.
Alignment of the press rams and the furnace in the press was improved to alleviate
out-of-parallelism of the graphite piston faces. An important development during
this reporting period was that of a new approach to make duo-density silicon nitride
turbine rotors in three pieces to effect a significant reduction of loads during the
hot press bonding process. In this concept, a pre~-formed hot pressed silicon
nitride hub is hot press bonded to a reaction sintered silicon nitride blade ring by
means of a separate bonding ring of hot pressed silicon nitride. The advantages of
this system are reduced damage to the blade ring because of lowered Lot pressing
forces, and greater flexibility in the fabrication of the center hub since it is formed
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in a separate operation. Problems of inconcistent density in the bonding ring were
overcome by a slight change to the hot pressing piston dimensions at the expense of
additional final contour machining. Several three piece duo-density rotors were
made for preliminary hot spin testing.

The blade bend test fixture was modified to improve both load application,
and indexing of the blade ring to reduce set-up time. Several blade rings were
tested on the new fixture to evaluate fabrication methods and material processing.

A correlation analysis was carried out to compare the calculated rotor hub
failure distribution, utilizing Weibull theory as applied to brittle materials,
versus the actual failure distribution of nine hubs tested to destruction in the cold
spin pit. A further five hubs of identical material were used to obtain Weibull
MOR bar data for the analysis. Hub burst speeds ranged from 94,570 rpm to
115,810 rpm, with a Weibull slope of 14.8, and characteristic failure speed of
108,500 rpm. The calculated failure distribution is within the 90% confidence
bands superimposed on the experimental failure distribution.

Check out of the two hot 3pin rigs continued; cooling air quantity for metallic
components was determined to be saticfactory, and the natural gas burner system is
functional. Burst of a rotor hub at 41,000 rpm showed minimal damage to rig parts
with the exception of flaring of a pilot diameter on the high speed turbine mounting
shaft which led to corrective design modifications. A viewing port for optical
measurement of rotor temperatures was added to the rig, and a failure detector was
incorporated to shut down the test rig and provide a strip chart failure record. Six
available duo-density turbine rotors of imperfect quality were used to check out the
rigs by hot spin testing to failure speeds ranging from 12,000 rpm to 35,300 rpm at
rotor rim temperatures of 1780°F to 2250°F (corresponding to equivalent blade
tip temperatures in an engine estimated to be 1930°F to 2400°F). Preliminary
test plaus were formulated for validation of analytical predictions of reliability
versus speed, temperature and time.

Face splines (Curvic Couplings) are used to mount and pilot the ceramic
turbine rotors to the high speed shaft in the engine. Two new lubricants for the
curvic coupling teeth were evaluated over an improved test cycle and one of these
was successful during one-half hour of engine operation at 25000F Turbine Inlet
Temperature (T.1I.T.).

To gain early running experience with ceramic rotors in an engine, two
rotors with blades of 10% length were tested for 45 minutes at 32,000 rpm and
2000°F T.I.T. After test, the rotors were undamaged except for evidence of
slight abrasion of ceramic surfaces in contact with metal surfaces.

A ceramic rotor was tested at high temperatures in the engine with modified
hot flow path ceramic parte to protect the regenerators from over-temperature.
The modified ceramic parts were checked out successfully in test rigs and used
to build a modified engine. A set of bladeless turbine rotor hubs was used to
check out the modified engine. Following this, a poor quality duo-density turbine
rotor with ten 90% length aerodynamically functional blades was tested in the
engine to 52,800 rpm and 2650°F T.I.T. A rotor failure occurred on a
subsequent run at 50,000 rpm and 2300°F T.I.T.
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3.1.1 DESIGN AND ANALYSIS

Introduction

An 820 ceramic turbine engine was modified to facilitate testing of ceramic
rotors over the full speed range at turbive inlet temperatures of up to 2500° F (1 370°C).
The modification involved bv-passing of cold compressor and preheated combustor
inlet air to the downstrcam side of the turbine stages where it was mixed with hot
cxhaust gas thereby redueing the turbine cxit temperature to a level that was
acceptable for safe operation of the regenerators ( ZOOOOF).

Strength requirements for the new three piecc concept duo-density ceramic rotor
were analyzed and plotted using previously derived and reported (9) equations as
funciion of Weibull slopc m and reliability requirements.

Increased efficiency design E turbine blading was analyzed for stresses and
reliability under centrifugal loading using three dimensional finitc element computer
codes. Calculated blade ring reliabilities were 98% and 929 for the first and second
stages respectivcly based on a characteristic strength (MOR) of 40 ksi and a Weibull
slope of 12. Further analysis is rcquired to assess rotor hub reliabilities and complete
rotor reliabilitics. Design refinements may be required to maintain high reliabilities

under conditious of both centrifugaﬁn&%

Modificd Engine Design

The Turbine Inlet Temperature (T.I1.T.) schedule planned for the 820 ceramic
turbine engine is 1930°F over the 55-90% speed range and 1930°F to 2500°F over the
90-100% speed range. The two stage axial turbine cxtracts work from the hot gases
reducing the turbine exit temperature (regenerator inlet) to an acceptable level (about
1340°F at 100% speed and 2500°F T,.I.T.). However, during the development phase,
ceramic rotors with reduced height blades and/or non-fully bladed rotors(9) need to be
engine tested at 2500°F T.I.T. at lower speeds (55-90%) using only one rotor.

To accommodate these developmental testing requirements, the engine design was
modified to facilitate 2500°F T.I.T. over the entirc speed range without exceeding
rcgenerator inlet temperature limits. The modified engine was used to supplement
ceramic rotor testing in the hot spin rigs which is described in section 3.1.3 of
this report.

Mechanical Design Modifications

The standard engine configuration, previously shown in Figure 2.1, directs
all the compressor delivery air thrcugh the regenerators, into the combustor,
through the ceramic flowpath and exits through the regenerators. Tac Design D'
flowpath, shown in Figure 3.1, was modified to allow a portion of the compressor
delivery air to re-enter thc main stream just aft of the turbines and before the
regenerator (Figure 3.2). Additional air from the combustor inlct area was routed
past the combustor, the nose cone, 1st stator and 1st shroud and re-entered the
main stream in the 2nd stage stator location. Thec amount of air through these two
routes can be independently controlled.

The hardware was procurred and tested as reported in scctions 3.1.3 and 3.2
of this report.
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Mechanical Analysis of the Three-Piece Design

An approach to make duo-density SigN4 turbine rotors in three-pieces has been
conceived and is shown in Figure 3.3; the purpose is to minimize the risk cf blade
damage in the press bonding operation and to allow for better control of m:terial
strength in the hub region. In this concept, the rotor is fabricated from three SigN4
compositions which differ in their elastic and thermal properties. As a consequence,
the stress distributions in both 1st and 2nd stage rotors are improved relative to
those reported previously(8,9),

A two-dimcnsional analysis was performed on a first stage turbine rotor and
temperature and stress distributions at full power operation (25000F and 100% speed)
were obtained using boundary conditions derived earlier for the two-piece concept
and reported in the eighth interim report(8). The new temperature map is shown in
Figure 3.4. TFigure 3.5 shows corresponding maximum principal tensile stresses
which are somewhrt lower throughout the disk than those for a duo-density, two-piece
concept reported previously(S).

Utilizing three-dimensional finite element computer codes and the boundary
conditions previously derived, the blade centrifugal and thermal stresses were
computed at full power loaaing. Temperature disiributions for Design D! shown in
Figure 3.6, were determined using a 3-D finite elsment heat transfer program TAP R
For boundary input data to this program, film coefficients and adiabatic wall temper-
atures from TSONIC(8) and BLAYER (®)were defined at the pressure and suction surfaces
of the blade, while additional convection data and heat fluxes were supplied at the disk
surfaces and at the disk throat of the thrce-dimensional rotor model as shown in
Figure 3.7.

With these temperatures and the blade material mechanical properties,
SAPII(8) was used to calculate the blade stresses which are shown in Figures 3.8
and 3.9. Figures 3.8 and 3.9 show the maximum principal tensile stresses on the
camberline plane, and on the pressure and suction surface, respectivcly at the full
power condition. The blade stresses in these two figures also include the effccts of
aerodynamic gas loads.

Strength and Reliability Considerations

In a previous report(9) equations for MOR strength requirement were derived
as function of a spccified reliability. These have now been applied to the three-
piece rotcr concept with results shown in Figures 3.10 through 3.14.

Figure 3. 10 is a contour map of characteristic MOR strength rcquirements
for the first stage rotor corresponding to 90% overall reliability at full power
operation, i.e., 25600°F T.I.T. and 100% shaft speed. In this plot the reliability
and the Weibull parameter, "'m", are assumed to be uniform throughout the
structurc. The strengths quoted are in terms of a standard ""A" size (0. 125 x 0. 25
x 1.00 inches) MOR specimens tested in 4 point bending. By crossplotting strength
requirements with the temperaturc map of Figure 3.4 an envelope of strength
requirement as a function of temperaturc, shown in Figure 3.11, was obtained.
Figure 3.12 is a similar plot to Figure 3. 11 but with rotor reliability as a para-
meter at a fixed value of the Weibull Slope "'m' of 10. Figures 3.13 and 3. 14
give similar plots of strength requirements for the blade, again at full power
operation.
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Figure 3.3 Duo-Density Three-Piece D' Rotor Design.
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Figure 3.4

Temperature Contour Map at 2500°F T.I.T. and 100% Speed -
First Stage Turbine Disk.

25



Figure 3.5 Contour Map of Maximum Principal Tensilc Stresses at 2500°F
, T.I.T. and 100% Speed - First Stage Turbine Disk.
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Figure 3.6 Temperature Contour Map at 2500°F T.I.T. and 100% Speed -
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27



FILM COEFFICIENTS

o AND ADIABATIC
S T WALL TEMPERATURES
. i (SUCTION SURFACE)
FILM COEFFICIENTS b b |
AND ADIABATIC = |
WALL TEMPERATURES

(PRESSURE SURFACE) f . [ ! . |

“~FILM COEFFICIENTS
AND ADIABATIC WAL
TEMPERATURES
(AFT DISK SURFACE’

HEAT FLUX FILM COEFFICIENTS
(DISK THROAT) AND ADIABATIC WALL
TEMPERATURES
(FORWARD DISK SURFACE)

Figure 3.7 Thermal Boundaries for Three-Dimexn.ional Heat Transfer
Analysis - First Stage Turbine Rotor Blade.

28




LEADING

EDGE

TRAILING
EDGE

e

12,000

IR s SN

T e 7000

\

8000

10,000

N

Figure 3.8

Contour Map of Maximum Principal Tensile Stresses at
Camberline of First Stage Turbine Rotor Blade at 2500°F

T.I.T. and 1009 Speed.

Sl = e Aot

29

L Lk k.



|

e s

|
i
I
t

30

LEADING
TRAILING PRESSURE SURFACE EDGE SUCTION SURFALE TRAILING
EDGE | EDGE
B S00—
. — 2000 ————
_,-...--'-'""-FFF'_'_ FA000-——
| T e —

11,000

D"
N

3000

///_125::0 17,000
18,0007,

N

Figure 3.9

Contour Map of Maximum Principal Tensﬂe Surface Stresses

of First Stage Turbine Rotor Blade at 2500°F T.I.T. and

100% Speed.



BOND LINES

Figure 3.10 Contour Map of Characteristic MOR Strength Requirements
: of First Stage Turbine Rotor Disk at 2500°F T.I.T. and
' 100% Speed for m = 10 and R = 90%.
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CHARACTERISTIC MOR STRENGTH REQUIREMENT — KSI
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Figure 3.11 Envelope of Characteristic MOR Strength Requirements

Versus Temperature for the First Stage Turbine Rotor Disk
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Versus Temperature for the First Stage Turbine Rotor Disk
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Design E Turbine

Introduction

During this reporting period, analysis of the improved efficiency ceramic
turbine rotors, designated Design E, was continued. TLe objective of this design
is to evaluate thc efficiency potential of a turbine designed with the experience and
constraints of ceramics that have been learned on the program. In this first phase,
a prcliminary design of blading for a two stage axial turbine was completed. The
rotor designs incorporated the low stress helical stacking concept discussed in
previous reports(8,9), Aerodynamic analysis was continued to define the stator
sections and to establish basic surface gas velocities of both rotors and stators.
Three dimensional stress and reliability analysis was initiated to evaluate the
acccptability of the rotor blade designs. This E design turbine is estimated to
be 7 1/2 percentage points higher in total-to-total efficiency than the current D'
turbine.

Aerodynamic Analysis

Blade sections for both the first and second stage stators were designed
assuming fabricafion by axial draw injection molding techniques. This implies
(a) no channel divergencc within the blade; (b) circumferential clearance betwcen
blades (.050" miniinum); and () low blade inlet angles (50 or less). Stator exit
angles were selected to maximize overall turbine performance when coupled with
the low stress rotors. The overall aerodynamic flow path is shown in Figure 3.15.
As would be expected for best efficiency, the stators and rotors are not common
for both stages as they were in design D' to expedite ceramics development.

A basic two~-dimensional analysis of the gas flow fields of beth the rotors and
stators was accomplished using the NASA computer program TSONIC(11). Gas
and rotor speed conditions corresponded to those in the engine at 100% spced.

The principal objective of this flow analysis at this point in the design process was
to establish that excessive suction side adverse pressure gradients were not
present in the blading. Suction surface aerodynamic diffusion pararicters were
evaluated at the hub, mean and tip sections of both rotors and stators. For all

1 = r-""'-"r/
f 5 2.97" RAD
2.76” RAD
-
1 ) ¥
2.18” RAD ' T L —L
2.07" RAD | -

Figure 3.15 Proposed Design E Aerodynamic Flowpath.
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sections, the diffusion paramcters were below the maximum value of 2.0 as
recommenc d by Stewart and Glassman(12),

Stress Analysis

In order to evaluate the acceptability of the preliminary design E turbine,
three-dimensional stress and rcliability analyses were performed on both the first
and second stage rotor blades. Three-dimensional finite element models of the
first and second stage rotor blades were developed, with the blades modcled as
being fixed at the platform. Previous analysis has indieated that this assumption
is adequate for preliminary blade analysis(8). Gas loading was calculated and
applied to the pressure side of the airfoil models. Stresscs in the blades were
predicted using an in-house version of the SAPII(8) computer program for the
110% specd condition. For the second stage rotor, the basic aerodynamic design
and two alternative designs (A) and (B), were studied. The motivation for looking
at these two alternatives was to determine the cffect of straightening the rotor
trailing edge for the purpose of casier tooling construction. In configuration (A),
thc mcan section trailing edge was extended, while in configuration (B), the tip
section railing edge was shortened shown sehematieally in Figure 3.16. Maximum
prineipal stress results for all configurations studied are shown in Table 3. 1.

_—— CONFIGURATION ‘B’

AJ_/BASIC DESIGN
1
|

-«— CONFIGURATION ‘A’

LEADING \
EDCE

TRAILING
EDGE

L_—__‘———__
BASE

Figurc 3.16 Design E Second Stage Rotor Blade Trailing Edge
Configurations
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A probability of failure analysis described in previous reports(S’ 9), and

accounting for volumetric effects only, was performed on the above rotor blade
configurations using thc SAPII(8) stress results. The resultant reliabilities arc
shown in Tablec 3.1. Reliabilities are shown for both individual blades and for

the total blade ring of thirty-one blades. The first stage rotor has an overall
reliability of 98.7% while the second stage rotor configurations are shightly less
reliable. Configuration 2A has a reduced reliability compared to 2 and 2B, despite

a relatively low stress level, apparently because of a greater volume of strcssed
material. Although rotor 2B has % higher reliability than (2) and (2A), approximately
four degrees of tip turning were sacrificed which is undesirable from an aerodynamic
performance standpoint.

Before further refinement is performed on this two stagc design, an examination
will be made of the potential efficiency and reliability of a three stage ceramic

turbine. The objective will be to dctermine any increase in rcliability of the turbine
rotors for given ccramic materials without compromising turbine efficiency.

TABLE 3.1

PREDICTED STRESSES AND RELIABILITIES OF PRELIMINARY

DESIGN E TURBINE BLADES AT 110% DESIGN SPEED

Rotor First Stagce Seccnd Stage
Configuration 1 2 2A 2B

Maximum Principal Stress

Centroid ksi 19.0 19.5 19.1 18.0

Surface ksi 20.2 20.1 19.1 19.1
Reliability

Blde . 9996 . 9981 . 9975 . 9987

Blade Ring . 987 . 943 s 925 . 960

(31 hlades)

Material: Silicon Nitride 2.7 gm/cm3
Assumed Material Properties:*
Characteristic MOR: 40 ksi at all temperatures

Weibull Slope (m): 12.0 at all temperatures

* Within the capability of developed 2.7 gm/ cm? density reaction sintered silicon
nitride. MOR of 44. 2 ksi and m of 7.5 achieved on test bars, see Table 4.13.
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3.1.2 MATERIALS AND FABRICATION

Introduction

in the duo-density silicon nitride turbine rotor program, design D' roior
blade rings of reaetion sintered SigN4 were fabrieated to 2.7 gm/cm3 density using
the injeetion molding process. Development of the blade fill technique has been
completed with refinements to the casting proeess and blade fill removal proeess
using a laser. The press-bonding operation was improved by press alignment and
inereasing the stiffness of the foundation. A significant modification to improve
the press-bonding proeess was the introduetion of the three-pieee duo-density
rotor coneept.

Injeetion Molded Blade Ring Fabrieation

The new D' blade ring tooling(g) was received and installed and molding trials
made. In initial molding runs, blades were torn from the rim when the tooling was
opened. The blade damage problem was traced to insert surfaee finish, insert
timing, and elamy foree application. Finishing the die inserts to a high polish
aided in blade release from the die. Insert withdrawal was altered from
simultaneous to staggered with a 0.010 ineh delay between adjaeent inserts.

Mold clamping was adjusted to give nil preload on inserts when the die is fully
clamped while allowing no insert movement during injection,

Molding trials using the reworked D' tool were successful and a parametrie
sturdy to optimize molding parameters was initiated. All proeess times, material
eomposition and die clamping loads were maintained eonstant at the levels used
for design D rotor fabrication. Die and material temperature were varied from
700F to 85°F and 180°F to 220°F respectively. Seven rotors were molded at each
t emperature eombination seleeted and the resulting rotors were visually and X-ray
inspeeted. Evaluation of the NDT results indicated a die temperature of 80°F and a
material temperature of 190°F to be optimum for molding 2.7 gm/em3 design D'
rclors.

As previously reported(g), preliminary molding studies indieated that the
material flow in the D' tooling was more conducive to formation of molded
eomponents free of fold and flow lines. Two gating configurations, shown in the
last report(9), and repeated here as Figure 3.17, were evaluated for their effeet
on eomponent quality. A center gate configuration in whieh material was gated at
the component centerline over 3600 proved superior to an end gate. The end gate
distributed material over 3600 at the trailing edge of the rotor platform. It was
initially believed that an end gate would foree the material to form a uniform front
of advaneement into the cavity as it was forced through the cylindrical rim area.
Although a unified material front was formed, the longer path length caused
chilling of the front. Further investigation proved that the change in blade shape
from design D to design D' was sufficient to eliminate fold and flow lines.

Quality eontrol inspeetions of molded rotor blade rings revcaled three major
flaws present in D' rotor blade rings. Blade base cracks at the trailing edge,
unmelted inelusions, and small voids in the platform and blades which were
located by visual and X-ray techniques. Several proeess changes were made to
eliminate these flaws. Craeking was eliminated through realignment of the tooling.
To eliminate unmelted inclusions in the rotor blades, an improved mixing technique
has been employed. Following initial blending of the silicon powder with the
polymers, an extrusion operation has heen added to break up agglomerates of
unmixed silicon - polymer. Evacuation of the extrusion eylinder prior to
extrusion eliminates most large gas bubbles from the mix, and the shearing
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Figure 3.17 Gating Configurations of Rotor Tooling.

action of the extrusion die further eliminates trapped gas. However, some voids
still appear in the molded rotors and in an effort to eliminate all detectable voids,

a new material gating eonfiguration has been designed and fabricated, Figure 3.18.

The new gate utilizes an overflow reservoir similar to that used in the stator mold
to trap the initial front of material which flows into the die. Molding experience
with the stator indicates that most voids enter the die in the initial material front.
Providing a 60% overflow reservoir will trap the initial material front and should
eliminate voids.

Vacuum level control has been added to the rotor tooling in order to
eliminate possible molding of components at inadequate vacuum levels. The
injection cyele is sequenced eontingent upon attainment of a maximum of 6 iuches
of mercury absolute pressure in the die eavity. Failure to attain the required
vacuum will lock out the injection cyele until the eondition is eorrected.

During this reporting period significant progress has been made in the
fabrication of 2.7 gm/cm® silicon nitride blade rings. The new D' rotor looling
was utilized to mold approximately 500 blade rings during the eourse of proecess
development; other than those with obvious flaws, each of these blade rings were
inspceted in detail by 30X visual magnification and X-ray radiography; 330 werc
aeeeptable having no visible flaws, and 150 were aecepted for proeessing following
X-ray evaluation. While only 12 flaw-free blade rings, having no visible or X-ray
defects, remained after nitriding, a number of additional desired meehanieal and
process changes have been identified and are eurrently being incorporated as a
means of improving the yield of flaw-free rotor blade rings.
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Figure 3.18 Overflow Reservoir on D' Rotor Tooling.

Blade Fill Development

During this reporting period, development of a eonsistent blade fill process
has been eompleted.

The silieon nitride blade rings, after maehining and inspeetion, were dipped
in a boron nitride/methylethyl ketone slurry. The viseosity of the slurry was
eontrolled so that reproduetible BN thieknesses were achieved. The BN served
as a lubricant for subsequent blade fill removal and also served as a barrier
material which prevented blade ring to blade fill bonding during the nitriding
step.

The first blade fill operation consisted of manufaeturing the extraetable
inserts between the rotor blades. The BN coated rotor blade ring, with its
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Figure 3.19 Schematic of First Blade Fiil Operation.

trailing edge down, was placed into a countoured plaster block, Figure 3.19. A
concentric silastic rubber ring with access holes to each blade cavity was press
fitted over the leading cdge contour of the blade ring. Having masked the leading
and trailing edges of the blades, the independent casting cavities were formed by
placing a plaster ring over the outside of the rotor blade ring. Once the above
assembly was eompleted, a low density silicon metal stip was in.  duced
centrifugally into the cavities through the access holes in the silastic rubber.
When casting was cemplete, the fixturing was removed and the rotor blade ring
with its cast inserts was dried.

The second blade fil. operation was initiated by applying another coating
of BN to the blade ring/first blade fill assembly. Once the coating had dried,
the assembly was centered in a graphite retaining ring on a plaster block. A
low density silicon metal slip was introduced into the cavity which encases the
first blade fill assembly. After casting, the total blade filled unit was dried,
nitrided and diamond ground to final dimension prior to press-bonding.

Subsequent to the press-honding operation, described later in this
section, the blade fills must be removed without damaging the encunsulat.d
blade ring. A 300 Watt CO2 laser was used to make a 0.100'" dec:-
circumferential cut around the second or outer blade fill as shovw . in Figure 3.20.
Next a series of four to six radial euts, 0.250'" deep, were made along the top
and bottom surfaces as shown in Figure 3.21. The pie shaped segments of the
outer blade fill were easily removed from the rotor assembly whicl in turn
allowed removal of the individual inserts between the blades.

Duo-Density Rotor Fabrication

The majority of work during this reporting period was on the three-niece
duo-density rotor concept discussed previously. However, priur to this, work
on developing two-piece duo-density roters was directed toward further
refinement of the graphite wedge hot-press bonding system(‘ +8,9) for bonding
a theoretically densc SigN4 hub to a reaction sintered SigNy biade ring. It was
reported carlier (%) that a hot-pressed silicon carbide foundation was
substituted foi the graphite base supporting the blade ring and lower piston to
prevent relaxation of the blade ring support. Since it became apparent that
the available one inch thick hot-pressed SiC (Norton NC-2¢3) material was
inadequate to support the loads without excessive internal stresses and
permanent deformation, a threc inch thick hot-pressed SiC foundation was
tricd and proven successful. The combination of increased thickness and
reduced loading, discussed later, has resulted in a reduction in stress level to
a point where permanent deformations are no longer a problem.
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When the SiC foundation was initially ineorporated the blade ring remained
supported on a thin (0.26 in.) graphite ring (above the foundation), used to eenter
the lower piston. This ring has since been eliminated and the blade ring is now
supported directly on a boron nitride-coated SiC foundation. The lower piston,
whieh also rests on the SiC foundation, is now ecentered by the blade ring. This
change was made to eliminate the last vestige of low modulus material supporting
the blade ring.

Measurements of parallelism of the faces of the upper and lower pistons,
shown in Figure 3.9 of Reference 9, after removal from the press indicated
that the faces of the pressed hubs were out of parallel in varying amounts up
to 0.035 inehes over a three ineh diameter. This prompted a review of both
the alignment of the press rams to each other and alignment of the graphite
furnaece eomponents with the press vams. Press alignment was eheeked and the
rams were found to be out of eoncentrieity by « small amount. The press was
re-aligned and ehecked under maximum load.

A review of the furnace eonfiguration revealed this to be the primary cause
of the misalignment. The furnace was redesigned to provide spherical seats at
each press ram and direct eentering of the suseeptor to the ramis rather than
through the furnace box. Measurements of parallelism of the faces of the pistons
showed considerable improvement (0. 007" max. ) after the alignment modifica-
tions were incorporated.

While these modifieations improved the situation, they did not eliminate all
problems, indieating that lower fabrication pressures may be required to solve
the blade and rim cracking problem.

An important develenment during this reporting period was that of a new
approach to make duo-density silicon nitride turbine rotors in three-pieeces to
achieve a signifieant reduction of loads during the hot press bonding process.
This is known as the three-piecee duo-density turbine rotor previously introdueed
in Section 3.1.1. A schematic of this concept is shown in I'igure 3.22. A
pre-formed SigN4 hub is hot-pressed to theoretical density and placed in the
graphite wedge assembly with the contoured graphite pistons attached. This
fabrieation teehnique then involves hot-pressing a eireular ring of SigNy4 powder
to theoretieal density and simultaneously bonding it to both the reaetion-sintered
blade ring and pre-formed hub.,

The main advantage of this approach is a lower applied load during
hot-press bonding, resulting in less damage to the blades and the rim. Due to
the small area of the eireuluar segment, the applied load required to densify and
bond the SigN,4 powder was redueed by approximately two-thirds while
maintaining the same pressure. This has redueed the magnitude of the non-
uniform loading aeross the foundation of the assembly thereby diminishing the
defieetion of the SiC hase and corresponding defleetion of the blade ring. In
addition, since the pre-formed SigNy4 hub is hot-pressed in 2 separate operation,
fubrieation pressure of up to 5000 psi ean be used in forming the hub.

Many SigNy turbine rotors have heen fabricated by this teehnique. These
rotors were hot-press bonded at 17759C for three hours at pressures ranging
from 1500 to 2500 psi. A coating of boron nitride was used to minimize the
formation of silicon earbide on the surfaces of the <ilicun nitride hub and blade
ring.



The results indicate that the lower pressure of 1500 psi produced, on a
more consistent basis, a rotor with minor rim and/or blade root eracks.
However, the lower hot-pressing pressure did not consistently achieve a high

uniform density in the bond region.

are being evaluated to solve this problem.
greater than 95% of theoretical are neecssary to produee diffusion bonding.
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Full density also becomes a problem in the lower platform region as shown in
Figure 3.23. The low density area is indicated by the light color. This problem is
aggravated by the shape of the bottom contoured graphite piston and the lower piston
remaining stationary during hot-press bonding. Pressure is applied uniaxially from
“he top side only. Complete diffusion bonding at the upper portion of the platform has
occured as indicated by the darkening of the blade ring. A scanning electron micro-
graph showing the microstructure typical of the bond between the blade ring and bond
material is shown in Figure 3. 24.

To overcome the lower side densification problem, and achieve better pressure
distribution, the bottom contoured graphite piston was modified as shown in Figure 3. 25.
This modification greatly improved both densification and bonding at the expense of
additional final contour machining of the Si3N4 hub.

The three-piece duo-density fabrication technique has been used to make several
duo-density turbine rotors for preliminary testing. The main fabrication effort in the
future will be to refine the hot-press bonding procedures and establish the SigNy powder
processing parameters to optimize material properties.

Figure 3.23 Light Area Indicative of Lower Density in the Lower Platform
Region,
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Figure 3.24 S.E.M. of Typical Bond Joint.

Figure 3.25

Modification of Bottom Contoured Piston.
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3.1.3. ROTOR TESTING

Introduction

Emphasis during this reporting period was placed on the development and
check out of two hot spin rigs for evaluation of ceramic rotors under simulated
engine operating conditions and several rotors were tested in these rigs. Testing
of the Design D' rotor blades was started both on a revised bend test fixture and in
the hot spin rigs. Spin pit testing of a new series of silicon nitride rotor hubs,
with 29 MgO, was completed and the analysis showed the test results correlated
well with predicted analytical results. Two new lubricants, used at the ceramic
rotor/metal part interface, have been evaluaied and the lubricant evaluation test
cycle revised. Two duo-density turbine rotors with 10% blade lengths were tested
in an engine at 50% speed and 2000°F inlet temperaturc. A modified version of the
engine has been used to demonstrate rotor testing capability. A dun-density rotor
with 90% length blades was run in the modified engine to 52,800 rpm and 2650°F
turbine inlet temperature.

Blade Bend Test

Work continued during this reporting period on bend testing of rotor blades.
The design D blade bend test fixture, described previously (%) was modificd to
accommodate the design D' rotor blade. The revised fixture shown in Figure
3.26 incorporated several new features such as: the minimization of the frictional
component of the load, the addition of an indexing head and revised mounting plate
tc reduce set-up time, and a revised load stylus which can apply cither a tensile
or compressive load to the leading and trailing edges of the blade root section.
With the revised fixture, the point of load application was 0.480 inches from thc
blade root section.

Design D' blade bend tests were conducted in a similar manner to the design
D blade bend tests(?), The rotor blade ring was kcyed into position and epoxy
bondcd onto the mounting plate. The mounting plate was accurately attached to a
36 slot index plate which was rigidly mounted to the crosshead of an Instron Model
TT-D Universal Test Rig. The test blade could then be properly oriented with the
load stylus and the load applied at a constant displacement rate of 0.02 inches/
minutc until blade failure. A strip chart recorder was used to plot the applied
load versus stylus displacement up to the failure load. As a means of assessing
material potential at this stage of testing, test data was accepted only if, upon
visual cxamination of the fracturc surface, no gross fabrication flaws, such as
voids, white areas of alpha silicon nitride whiskers (which indicated presence
of a crack prior to nitridation) or large inclusions, were discernible. Prior to
testing, all blades were subjected to a 30X microscopic examination to dctermine
the prcsence of surface flaws and any blades found to be defective were excluded.

A summary of the bend test failure data accumulated since the last report
period is presented in Tables 3.2 and 3.3. In all cases reported, the lcading
and trailing eages wcrc tested in compression. Table 3.2 shows the D' rotor
blade test results for both slip cast and injection molded materials. Thrce
high density (2.9 g/cc) slip cast blade rings (475, 476, 479) were evaluated
after an experimental iouble nitriding firing cycle was unsuccessfully used to
achieve complete nitriaation. A second series (497-504) of experimental slip
cast blade rings of 2.7g/cc density was also evaluated during this reporting
period.

e i L
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TABLE 3.2

SILICON NITRIDE DESIGN D' BLADE BEND TEST RESULTS

Blade Process Nominal Number
Ring Slip Inj. Density of Data  Weibull Characteristic
Number Cast Molded g/cc Points Slope Load-Lbs Comment
475 X 2.9 10 20.1 46 Double nitride experiment
476 X 2.9 8 6.8 37 Double nitride experiment
479 X 2.9 5 2,5 43 Double nitride experiment
497 X 2.7 10 4,8 60 Second phase silicon
nitride grog inclusions
502 X 2.7 9 16.8 58 Second phase silicon
nitride grog inclusions
503 X 2.7 10 11.1 52 Second phase silicon
nitride grog inclusions
504 X 2.7 14 12,5 50 Second phase silicon
nitride grog inclusions
1346 X 20 12 7.1 86
1356 X 2.7 15 12.8 90
1377 X 2,7 18 6.6 82
1386 X 2,7 15 13.0 89
1410 X 2.7 19 14.1 95
1474 X 2.7 15 5.3 74
1534 X 2.7 13 12,1 82
1554 X 2.7 17 11.9 84
1568 X 257 18 13.9 96
1606 X 2,7 11 8.5 96



One of the primary funetions of the blade bend test was to evaluate changes
as they are incorporated in the fabrication process and provide timely feedback.
Most of the D' blade bend test data aeeumulated to date was on injeetion molded
blade rings and resulted in eonsiderable variability of Weibull slopes from 5.3
to 14.1 (Table 3.2). Based on 90% eonfidence, this difference in Weibull slope
is statistically significant. This feedbaek has prompted a eurrent program to
refine the nitriding step in the rotor fabrication process to produce blade rings
of more homogeneous mierostructure.

A summary of injeetion molded design D bend test data is given in Table
3.3 to allow comparison with the baseline slip cast material results previcusly
reported(g) and summarized in Table 3.4. Charaeteristie failure loads ranged
from 69 to 123 lbs for injection molded material and from 69 to 130 for the slip
cast material. Based on this limited amount of data, it appears that there is no
significant differenee in the room temperature strength of these two
fabrieation proeesses.

TABLE 3.3

INJECTION MOLDED SILICON NITRIDE DESIGN D BLADE BEND TEST RESULTS

Blade Nominal Number Weibull Characteristic

Ring Density  of Data Slope Failure Load
Number g/cc Points m Ibs Comment

1109 2.7 15 D% S 93 Baseline

1109 25 10 7.7 109 200 hour thermal soak
at 1900°F

1145 2.7 8 10.5 93 Baseline

1145 2.7 19 8.6 113 200 hour thermal soak
at 1900°F

1117 2.7 28 in,1 LB H&soiine

1186 2,7 8 5, " 69 Baseline

Two injection molded blade rings were tested before and after a 200 hour
furnaee soak in air at 1900°F. In this limited sample, failure loads of the thermal
treated blades were slightly higher than the untreated blades (Table 3.3). This is
eontrary to the results obtained with the slip east 2.8 g/ce material presented in
the last report(g) where a strength degradation oecurred. The difference in
behavior between the 2.8 g/ee slip cast and the 2.7 g/ce injeetion molded materials
is attributed to the effeet of unreacted silicon present because of incomplete
nitridation of the higher density slip cast material(9),
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TABLE 3.4

BASELINE SLIP CAST SILICON NITRIDE DESIGN D BLADE BEND

TEST RESULTS

Blade Nominal Number Weibull Characteristic

Ring Density of Data Slope Failure Load
Number g/cc Points m Lbs
92 2.84 14 8.7 96
129 2,8 28 15.6 69
190 2,82 12 13.2 130
204 2,82 19 16.8 116
222 2.8 9 11.6 82
273 2,8 8 16.1 103

Cold Spin Testing of Hot Pressed Silicon Nitride Rotor Hubs

Fourteen hot pressed SigN4 rotor hubs were made from 2% MgO SigN4
powder for correlation analysis testing. The purpose of the correlation analysis
was to compare the calculated rotoi hub failure distribution with the experimentally
determined failure distribution. Care was taken to fabricate these parts under as
identical conditions as possible. Nine of the fourteen test hubs were selected
for destructive cold spin pit testing. The remaining five hubs were sectioned for
determination of Weibull data for correlation analysis.

A minimum amount of machining was done on the hubs prior to testing in
crder to minimiz~ machining dumage. The blade platform width was machined to
¢ A7 .ches, “hr :cater line width to 1.23 inches, and the center bore to 0.50 +
0.005 inches. A formed grinding tool was used to radius each end of the center
bore. Surface finish of the machined surfaces, measurea perpendicular to the
grinding direction, showed a maximum surface roughness of 10 microinches
arithmetic average. All other surfaces were as hot pressed.

The test procedures adapted for this test have been described in detail
previously(7’8’ 9). All hubs were tested to destruction, and photographed at
burst speed with failures typical of previously published hub bursts(729), Burst
speeds ranged from 94,570 rpm to 115,810 rpm. The Weibull slope for thc hub
burst speed was 14.8 with a characteristic speed of 108,500 rpm, as shown in
Figure 3.27. The failure distribution was determined using the maximum
likelihood estimator technique.

A correlation study was made utilizing the Woipull data from test bars cut
from the five sectioned hubs and presented in Table 3.5. The purpose of the
correlation study was to check the validity of the use of Weibull theory(4) as
applied to brittle materials by calculating a failure distribution versus speed and
comparing it to the experirientally determined failure distribution. As shown in



Figure 3.27, the calculated Weibull slope was 16.8 and characteristic speed was
103,800 rpm. The calculated failure distribution falls within the 90 percent
confidence band of the experimental failure distribution. This indicates
acceptable correlation between calculated and experimental results and confirms
the use of Weibul! theory in the prediction of rotor hub failure distributions in
the cold spin pit.

99.
.- HOT PRESSED ROTOR HUBS
90.1 Al,0; MILLED
80.} 2% Mg0 — CP85 HOT
70l PRESSEL SILICON NITRIDE
60.}-
50.}
40 |-
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Figure 3.27 Predicted and Actual Weibull Distributions of Burst Rotor
Hubs.
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TABLE 3.5

WEIBULL TEST BAR DATA USED IN THE CORRELATION STUDY

Characteristic Weibull Number of

Modulus of Rupture Modulus Test Bars
Curvic Region 98, 300 10.3 60
Web — Region 94,600 8.4 77

Test bar geometry: 0.125 x 0.250 x 1.0 inch
Test spans: 0.375 inch top span, 0.750 inch bottom span

Crosshead speed: 0.020 inches per minute

Detailed test bar data is presented in Tables 4.6 and 4.7 in Section 4.1 of this report.

The caiculated maximum principal tensile stress contours of the rotor hub
at 116,000 rpm, is shown in Figure 3.28. The 116,000 rpm speed was chosen
so that the stress levels could be com](aared directly with stress levels of a
previously tested series of rotor hubs(?), The curvic recesses were omitted
from the present series to minimize machining. Comparison of the principal
stresses for this series of rotor hubs, and the previous series show the same
general level of stresses throughout the rotor hub.

Hot Spin Rig Testing

Testing of the hot spin rig, show: in Figure 3.29, was primarily confined to
rig development, during this reporting period, as follows:

the rig cooling system

. quick turn around capability

Non-rotational tests of thc hot spin rig were continued to determine the
cooling air flow rate required to prevent overheating of rig metallic components.
It was determined that for a gas temperature of 25009F at the turbine inlet,

0.02 Ib/sec cooling flow rate was sufficicnt to cool all mctallic components to
below 6000F except the rig combustor mounting cover which operated at
approximately 9000F.

i e SRR Al



S Ty m—

P VOGO Y S gy [ W AT i el e T s g ST s ol L T e

3.252 DIA.

WEB
REGION

CURVIC
REG:ON

Figure 3.28 Maximum Principal Tensile Stress Contours of a SigNy
Rotor Hub at 116,000 rpm and Room Temperature.

The second phase of the testing consisted of proving the relatively low cost,
quick turn around of the rig after a turbine rotor burst. An early rig test was
that of a rotor hub with no blades using the original design rotor mounting system
shown in Figure 3.29. The hub burst at 41,000 rpm with the following results:

The tension member of the simplified bolt fractured as
provided for in its design.

The ceramic fiber insulation at the rotor OD absorbed
the energy of the burst rotor as expected.

Some flaring occurred at the metal cone pilot on the end
of the rotor shaft.
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Figure 3.29 Hot Spin Rig Configuration Prior to Redesign.

Design ehanges were made to reduee flaring of the shaft pilot for the metal
cone, to provide a viewing por. ". measurement of temperature of the rear
surfaee of the rotor by optieal p rometer, and to ineorporate a failure deteetor.
“hese design ehanges are stewn in Figurcs 3.30 and 3.31. The rotor mounting &
changes, rigure 3.30, incorporated an OD pilot of the metal adaptor eone and '
inereased the contaet diameters between the parts to inerease the resistanee to
unbalaunee forees resuliing from blade failures. Addition of the viewing port to
measure rotor temperature from the diseharge side by optieal pyrometer, is
shown in Figure 3.31.

The hot spin rig has also been modified to inelude automatie shutdown of the
test rig ufter a rotor burst. A burst detector was installed around the outer
diameter of the rotor and eonsists of a sleeve of insulating material wound with

elosely spaeed eontinuous high temperature ehromel wire. The fine wire is eut
by a broken blade or other rotor failure debiris and automatieally shuts down the - E
dynamometer, turns off the fuel, and iudicates failure on a strip ehart reeorder. b -
The strip ehart from the reeorder provides a reeord of pertinent operating Jata at l-
time of failure. A
e
During these developments on the hot spin rig, its eapability for relatively
low eost, quiek turr. around was demonstrated. Six available duo-density turbine
= .




rotors of imperfect quality were used for this purpose and hot spin tested to
failure speeds ranging from 12,000 to 35,300 rpm at rotor rim temperatures of
1750°F to 2250°F (corresponding to equivalent blade tip temperatures in an engine
estimated to be 1930°F to 2400°F).

Preliminary plans have been established for hot spin testing ceramic turbine
rotors to assess rotor reliability versus speed, time and temperaturr Coarrelation
of short time reliability versus speed with analytical predictions wii. “¢ ~termined
by testing a number of turbine rotors at temperature in the following . i er:

Establish a base speed and adjust gas burners to achieve the
desired rotor hub temperature gradient (measured by an
optical pyrometer).

Accelerate the rotor to failure speed.

IMPROVED DESIGN

f -
METAL CONE
TO
MSTD“,,.{’S{‘ 5 CERAMIC CONE WASHER
o CONTACT RnTTDuE
METAL CONE
= ROTOR TO CONE CONTACT
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___;‘ e
e

ORIGINAL DESIGH_l

|

Figure 3.30 Improved Rotor Mounting Configuration in Hot Spin Rig.
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Correlation of long time (< 200 hours) reliability with analytical predictions
will be determined by testing rotors at a consiant speed and temperature until

failure oceurs.

Engine Testing

Rotor Attachment

Unlike the simplified conical mounting system used in the hot spin rigs,
as discussed earlier in this section, a face spline coupling is used to mount
ceramie rotors to the high speed shaft in the engine. This face spline, called a
Curvie Coupling(TM), is machined in the ceramic rotor hubs and metal shaft
interfaces as previously reported(l’z). Their function is to transmit rotor
torque to the engine shaft while maintaining the concentricity of the rotors to the
shaft and allowing relative motion between ceramie and metal resulting from the
difference in thermal expansion of the two materials. The need for a lubricant
at the metal to ceramie interface to allow this relative motion has been
documented(t5559) ang during this reporting period two new lubricants were
evaluated and an improved test eycle formulated.

The new test eycle, Figure 3.32, subjected candidate lubricants to loads
and temperatures which closely simulate the engine operating conditions of
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the curvic coupling between the first stage rotor and the metal curvic adaptor
(see Figure 3.33). The test load and temperature was produced in a mechanical
press equipped with an electric oven. The temperature was monitored with a
chromcl-alumel thermocouple cmbedded in a metal curvic adaptor tooth. The
test conditions selected were the most severe in terms of temperature, rclative
motion between parts, and destructiveness to the lubricant as found under engine
operating conditions.

2
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Figure 3.32 Thermal/Load Cycle Schedule for Curvic Tooth Lubrication Tests.
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Figure 3.33 Illustration of Rotor Attachment Parts.
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Previou, ‘ests(9) had shown that the lubricant initially used (Dow Corning
Molykote 321) waould survive two test cycles without failure of the ceramic curvic
teeth. However, long term engine tests required a better lubricant, so two ncw
lubricants, Borkote (Advanced Metals Company of Woburn, Massachusetts) and
Electrofilm 1000X (Electrofilm Corporation of Los Angeles, California) were
evaluated.

Borkote was applied to a metal curvic adaptor and subjected to the test
cycle which it successfully completed. However, examination showed the hard
top layer of the coating to be separating. The metal curvic adaptor was made of
Inconel X750 and the aluminum content (0.80%) has been determined to be the
cause of this problem. A new metal curvic adaptor of an aluminum free metal
will be fabricated and the Borkote test repeated.

The second lubricant tested was Electro Film 1000X which has passed
three test cycles. Figure 3.34 shows the test samples after the three test cycles.
This lubricant was also used in an cngine test of a bladeless first stage ceramic
turbine rotor hub of reduced outside diameter operated at 25009F turbine inlet
temperature for one half hour during the initial checkout of the modified epgine
(described later in this section).

Phased Rotor ‘I'csting

In order to gain early enginc running experience with ceramic rotors and
the mounting system( »9), two duo-density rotors with blades 10% of full length
were tested in an cngine at 32,000 rpm and 2000°F turbine inlct temperature for
45 minutes.

The rotors (S.N.716 and S.N.717) were mounted with curvic couplings, as
shown in Figure 3.35, lubricated with Molykote 321(TM). The bolt attachment
scheme was modificd to allow a lower initial clamping load and more elastic
stretch of the bolt tensile member to veduce the clamping load drop-off caused
by bolt heating.

The rotors werc tested in an enginc using a manual fuel control. The test
consisted of comhustor lite~off and rotor accelcration to 50% speed. Turbine
inlet temperature was held at 2000°F. This condition was maintained for 45
minutes whereupon the engine was shutdown and disassembled.

Post inspection showed the ceramic rotors to be in good condition. However,
they did show some abrasive wear of ceramic surfaces in contact with metal parts.
The metal seal between the rotors had abraded a groove into the surface of the
first stage rotor and the metal scal between the first stage rotor and metal curvic
adaptor had worn a circular groove into the rotor surface at the outer edge of the
seal where it contacted the rotor. This latter metal seal had pcrmanently
collapsed indicating a highcr-than-expected operating temperature. The first
rotor curvic tooth surface had also worn slightly where it contacted the metal
curvic adaptor. There was very little of the Molykote 521 lubricant remaining.

The rotor bolt, metal curvic adaptor and nut had all been over-heated.
The bolt was permanently elongated 0.007" inchcs and the adaptor, bolt and nut
had softencd indicating temperatures in cxcess of the metal heat treat temperature.
It is believed that undercooling of the metal parts was caused by a leak path in
the engine which affected the pressure drop across the bolt and hence the bolt
cooling air flow. Also, the high temperatures occurring during soak back
coniributed to overheating of metal parts. These problems will be circumvented
in future engine testing by using an external cooling air supply.
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Rotor Testing in the Modified Engine

The need for the modified engine configuration was presented in Section
3.1.1. Before incorporating the modified hardware into an engire, preliminary
testing and check out was done in available test rigs. The combustor operation
was evaluated in the 2500°F Flow Path Qualification Rig (FPQR)(Q) and modified
flow p(%t)h ceramic hardware was evaluated in the Ceramic Structures Rigs
(CSR){Y).

The modified ergine design configuration redistributed air flow in such a
way that the combustor overall fuel/air ratio was increased by a factor of 3. A
standard metal combustor and a redesigned version of it (with a leaner primary
zone) were tested in the FPQR at tae modified fuel/air ratios, air flow and
pressure levels. The standard combustor demonstrated a significant problem
with carbon formation in the primary zone which was overcome with the leaner
combustion configuration.

Modified flow path ceramic hardware was first qualified by the 10 cold light

test and then installed in a Ceramic Structures Rig and used to verify the effcctive-
ness of thc modified design in reducirg the 2500°F gas temperature to acceptable
levels before reaching the ceramic regenerator cores.

After testing, all hardware, including the regenerator cores, was in
satisfactory condition and was used to build the modified engine for testing ceramic
rotors.

Initial check out of the modified engine, complete with ceramic stationary
hardware described in Sections 3.1.1. and 3.2., was carried out using two ceramic
bladeless rotor hubs of reduced outsidc diameter. This check out run comprised a
successful test to 50% speed and 25009F Turbine Inlct Temperature (T.I1.T.). The
first stage hub was then removed in preparation for installation of a ccramic
turbine rotor.

To expedite rotor testing in 4 modified engine, ccramic rotor #709 was
selected from available hardware. Though of poor quality because of cracks in
the rim and most of the blades this rotor had been previously proof spun to
53,710 rpm cold. To further enhance its quality for a run at temperature, blades
with probable flaws were removed prior to its installation in the modified engine,
in addition the 10 remaining bladcs were reduced to 90% length to increase blade
tip clearances. The metal spacer (Figure 3.2) was instrumented with chromel-
alumel thermocouples to prevent any inadvertant over-temperature. The externally
supplicd cooling air discharging from the rotor bolt was also monitored to assure
adequate cooling air flow. Turbinc inlet temperatures were monitored by threc
platinum aspirated probes and constantly displayed on digital readouts.
Electrofilm 1000X lubricant was used on the metal curvic adaptor tccth and Dow
Molykote 321 was used on all other curvic teeth. A 4700 lb rotor attachment
bolt loaa was obtained by stretching the tension member of the bolting system.

Figure 3.36 shows the spced and turbine inlet temperature versus time for
the first test of rotor #709. This test ended at 52,800 rpm when a safety circuit
was actuated by a stray signal causing an automatic shut-down. The ceramic
rotor and other ceramic stationary parts were inspected and found undamaged
by the 2650°F T.I.T. and 52,800 rpm conditions expcrienced during this test.

The engine was reassembled and a second run was made to 50,000 rom and
2300°F T.I.T. Figure 3.37 prcsents the data for this run. After 2.4 minutes
rotor #709 failed and the engine was shut down. Examination showed complcte
destruction of the rotor and ceramic hot gas fiow path parts.
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3.2 CERAMIC STATOR, NOSE CONE, ROTOR SHROUD AND COMBUSTOR
DEVELOPMENT

SUMMARY

Due to the Turbine Rotor Fabrication Task Force cffort during this reporting
period, the fabrication of stationary ceramic components was deferred thus limiting
the amount of stationary component testing conducted.

One thick-walled silicon carbide "Refel' combustor successfully completed
the 200 hour engine duty cycle in the Combustor Test Rig including a total of 26
hours and 40 minutes at 2500°0F turbine inlet temperature. Three combustors of
a new thin-wall design have been successiully qualified for further engine or rig
testing .

Seven new stators of 2,55 gm/cm3 density and one rotor tip shroud successfully
passed an improved qualification light-off test. A reaction bonded silicon carbide
stator successfully accumulated 147 hours of testing at 19300F and remains crack
free. The 25000F flow path test rig was rebuilt and operating controls improved.
Work continues on improving temperature measurement techniques.

A nose cone, stator and tip shroud were succesefully tested in the modified
engine configuration, for over 9 hours, to a maximutr turbine inlct tempexature of
2500°F .

F B
- - " T i i T o

b b |
\ PREGERING RAGE BLANK-NOT #Ip:p :
) oo oS 0 MKV;‘M ? ] ~=ﬂ§b o

f5



b

-

PR

3.2.1 TESTING
Introduction

The stationary hot flow path components include the combustor, turbine
inlet nose cone, common first and second stage stators, and first and second stage
rotor tip shrouds. As discussed previously, fabrication of these stationary flow
path components was deferred during this reporting period in order to concentrate
on injection molding rotor blade rings as part of the Turbine Rotor Fabrication
Task Force. As a result, only limited testing of stationary ceramic components
made prior to October, 1975 was carried out during this reporting period. This
included three types of testing: combustor testing to 25000F, engine rig testing
for light-off qualification and durability evaluation, and stationary ceramic flow path
testing to 25000F .

With the wind-down of the Turbine Rotor Fabrication Task Force, the fabrication
of stationary ceramic components has been resumed. When processing of these
parts is complete, testing and evaluation of stationary ceramic components will
be continued.

8 OBSERVATION B2
PORT &

Figure 3.38 Combustor Test Rig



Combustor Testing

Evaluation of reaction bonded silizon carbide (REFEL) combustors(9) was
conducted in the steady-state Ccmibuscor Test Rig shown in Figure 3. 38 and described
in some detail in a previous 1 so»i\6),

One thick-walled '"Refel ' ~ombustor tu!. has now accumulated 201 hours:
5 minutes in the steady-state -t rig, equivalent to the prescribed 200 hour engine
duty cycle. At the 100% speeu, 2500°F simulated engine operating condition,
26 hours: 40 minutes have been successfully completed. No cracks or other
visual defects are present in the combustor tube. However, during this reporiing
period, three additional thick-walled combustor tubes failed to pass the 10 hour
qualification test described in Table 3.6(9),

Because of these inconsistent rcsults, a new thin-walled design configuration
with expected reduced thermal stresses was subjected to test. The first two such
combustors passed the 10 hour qualification test as reported previously(®) and during
this reporting period, a third thin-wall combustor tube has been qualified with no
resulting cracks. A photograph of the new design '"Refel' combustor tube is shown
in Figure 3.39. A summary of '"Refel" silicon carbide combustcr tube testing to
date is shown in Table 3.7.

TABLF 3.6

ARPA DURABILITY TEST CYCLE

FOR CERAMIC COMBUSTORS

Equivalent Engine

Speed Tg Pg Wa Tq Tine
% oF psia PPS OF Hours-Minutes

55 1628 24,7 0.63 1930 4 - 30
59 1590 26.9 0.71 1930 2 - 30
69 1425 333 0.93 1920 - 40
77.5 1413 40.8 1.15 1930 - 30
8G,5 1oy 50.1 1.41 1930 - 30
1o 1680 70.9 1.95 2500 1 - 20

10 hours

Tg — inlet air temperature to the combustor
P — inlet air pressure to the combustor
W, — combustor airflow (pounds per second)

Tr — exit gas temperature from the combustor

67



Figure 3.39 Thir-Wall Silicon Carbide ""Refel" Combustor.

TABLE 3.7

SUMMARY OF REACTION BONDED SILICON CARBIDE (RETEL)

COMBUSTOR TESTING

1930°F 2500°F Total

Design Serial Static Testing Static Testing Component Part Time
Number Number Hours: Minutes Hours: Minutes Status Hours: Minutes

1 1 174:25 26:40 S, N 201:05

1 2 0:00 0:30 (G 10:30

2 ] 9:05 2:20 S, N 11:25

2 2 5:55 1:20 F,C 7:15

2 3 8:40 1:20 r,C 10:00

2 4 0:00 1:20 r,C 1:20

3 1 3:40 1:30 S, N 10:10

3 2 9:00 2:20 S, N 11:20

3 2 8:55 1:20 S, N 10:15

Key to Component status

C = Cracks I = Failed N: No Cracks S - Serviceable
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Engine Rig Testing

Limited tcsting of turbine inlet nose cones, first and second stage stators,
and first and second stage rotor tip shrouds was conducted in engine test rigs.
Tables 3.8 to 3.10 show the rcsults to date of enginc testing on silicon nitride
and silicon carbide stationary components.

Component Qualifieation

In order to eliminatc componcnts with large fabrication and/or processing
defects, components arc first subjceted to a qualification test. This qualification
test was modified during this reporting period in order to suhject the eomponents
to a broadcr range of thermal cnvironments as shown in Table 3.11. Seven stators
of 2.55 g/cc density and one first stage rotor tip shroud suceessfully passed this
test during this rcporting period, all being in excellent condition after thc test.

1930°F Durability

After completion of qualification testing, scine cumponents wer ~ subjected
to static durability testing in engine test rigs at 1930°F.

Nose cone S/N £72, which had previously developed a crack in the inner
bell, was run again after becing reworked. The rcgion containing the crack was
ground off and the :0sc cone ran for 146 hours at 1930°F. The test was terminated
due to a crack in the nose cone outer shroud.

A reaction bonded silicon carbide stator was evaluated and demonstrated

very encouraging results. This stator was run for 147 hours at 1930°F ard is free
of cracks, as shown in I'igure 3.40.

TABLE 3.8

SUMMARY OF NOSE CONE TESTING

Totul
Matern! and ___Static kngine Testing __ __Cyche Fosting (ARPA 2500V E Sttie Misce Haneous £ omponent Part
Design Tuesting Tests Status Time
blentification  Serial Light  Shutdowns  lours*® Lithts Shutdowns  Hourst* Tighte  Toees  Taghts Hours** Hours**
Number Number (C.ld)  Colc Hot _ Cold ot Teld 1ot - = . T
Target HY 9 1 0,2 B 26 - 1 200 i 25
5 74 142 16,75 I 16.75
| 102 20! 18 T 24,5 i h ol o 227 ¥ B 216,00
I T i9 17 2 (£l 1 '! @ G 0.0 0 S B0
1 130 5 . 2 0 YR F,. 1 21,50
5 202 10 0 1 0,20 i H 2 (5} 1 3.0 1 18,30 [ala LD58 40,00
2 207 nn 51 £) R O 10 16 i20n | 0.x r,nB 40, H0
1 301 i 12 1 L.00 15 0.3 F,0,0,X 2.0
2 Hin 10 s F,X 1015
2 321 Rid] i i 29 27.50 FL,X 28,00
E) RO6 2§ 20 7 1 1 14,26 G 2,00 J2 8 33,2
il 07 B4 1] 6 F,0,X l=t2sd
J) 11 " 173 6 [ 3391
i LD 1 o 0 B 62,05
4 A2 LH) i) ER} 17005 [¥5(ak n7.15
i R7H 0 il 1 WR2hH J4 1.2 c 1.8) F R b3
1 476 16 ]l 7 SN t,B HERRIY
1 MM A4 36 i 1,00 B, 1.00
) HU0 19 B k] 3200 kAl 12,1
1 a0 1Y 9 1 (2] F,C,X 0.25
0 BUSY 7 ) F.,X D
| 911 iu 11 1 (OFs 1,91} 0.25
1 Bt 260 18 K 40, 00 E .G 0. 90
1 M7 16 Y 1 00 F,CL,X 0,25
1 420 10 4 1 0.25 F,H,X 0.25
* New entry this reporting period *r Uptoat least pa300F
Serial Numbecs T3-321are 2,2 goco diaallv; remining are 2,05 g/ce density
Key Lo Component Statyy
F o Failed ¢ Cracked shroud
O Fallure vecurred in other thun ARPA duty cyrle B Inner body crack
W Purt furled during bundling X Internal materw! flaw Involverl i tailure

Total
Purt
Laghts

112
105
22

28
NG
61
10

B}
64
19
i
LE
15
it
40
19
10

11
26
10
10
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TABLF 3.9
SUMMARY OF STATOR TESTING
Total Total
Material and Static Engine Testing Cyclic Testing (ARPA) 2500°F Static Miscel.aneous Component Part Part
Design Testing Tests Status Tlme Lights
wlentiflcation  Serial Light shutdowns  Hours** Lights Shutdowns  Hours** TLights Iours Lights Houi,*? fours**
Number Number (Coll) Cold _ilot Cold_Hot __Cold Tiot
Target 10 9 1 0.2 14 26 - 40 200 4 25
2 372 10 9 1 0.20 1 2 0 ki 50.5 2 7.9 F,v,1,0 58,60 15
2 421 10 9 1 0.20 3 2.80 C,X 3.00 13
2 424 10 9 1 0.25 9 2.5 (GG 3,00 19
2 428 10 9 1 0.20 17 14 b 20 103 F,C 103, 20 41
2 130 10 9 1 0.20 14 13 G 21 61.5 FG 61.70 37
5 5264+ 39 13 26 116,75 ] 146.75 39
1 715 10 9 1 0.20 i 0.10 F,v,0 0.30 16
1 751 11 10 1 0,20 2 C,V,0,X 0.20 13
2 817 RE] 31 3 0.75 38 0.75 34
1 820 11 13 1 0.30 (5 0.30 14
1 Bl 12 11 ! 0,20 6 e 16 42,8 I,C 13,00 28
1 LEL] 1t 10 1 0.20 F,i 0,20 i
1 852 23] 20 3 1.70 F,O0 1.70 23
1 LBL 12 11 1 0,20 [ 10 16 42,8 e 43,00 2H
1 865 k2 11 1 0.25 2 F,v,1,0 10.15 14
1 868 1.2 1 1 0,25 2 ¥,v,1,0 i0.15 14
6 H79* 10 ] i .25 W 1.0 b 1.25 12
2 &H0* 2 Y 3 2.4 I 5,00 S Tos 13
f BHy* 10 9 1 20 S .25 10
3 HBG* 54 449 i) 17.6 1 (] S 24.4 oK
3 894 10 a it 0.25 s 0.25 10
1 910¢ 1 1.0 1 b ) F,Vv,1 19.5 5
1 U 1> 9 6 v,V 51,20 15
2 911A 11 10 i 1 L2511 21,75 F,V,1,0 22,25 23
6 y21* 10 9 1 s .25 10
4 D24 10 i} 1 1 0,50 kX 0.75 11
4 927* m 1 .5 F W15 17
4 936+ 10 ] 1 s .25 10
1 910 29 i 1§ EsGi 32.75 29
i 943 1 £l ! 3 4.2 1 1,45 A C L] 14
i 915+ 11 ] 2 1 0B F,0 .53 12
1 918* 10 h T b .25 10
1 G54 19 9 10 L} 175.00 19
3 955 14 9 3 lirn 23.00 12
* New entry this reporting period ** 1'pto at leust 1930°F
+ Silicon Carbide pint
Serinl number 37218 2,2 g/t ¢ density; remaining are 2,55 g/ce exeept for 525 which wis S1¢
key to Component Stiatus
S Serviceable ¢ Cracked shrowl
o Falel Vo Vane(s) failed
O Failure occurred in other thin ARPA luty cyvele X Internd miterial flaw involved in tailure
1 Pirt failed iluring handling 1 impuact failore from combustor varbon
TABLE 3.10
) =
SUMMARY OF SHROUD TESTING
Tota: Total
Aawernb ad _oStan Fogun lesting tache Destg (ARPA) W0 F St Miser taneows Component Part Purt
Design fosting Tists Status TLimp Lights
blentsheation Sl Loght  shutfown-  flowrs 1 whes Shuldowns Jlovrsts Lights Howes  Tights ™ Jlours ©F llours**
Number Number  @Cold)  Cold flot. ol ol oobi o Tot g
et 10 il i [EI [} M - u 2un | =
Farst shivods
) I Iy N . Malt » 1 9,03 2l
| 21 9] 17 J 4o ! n i LAY 5 30,00 22
1 it 13 -4 i Ly hl [ v b 2un 5 210,20 115
3 1y 17 14 B [ K ", 20 15
= i = I | o, 2 S 1eh 12
(B 10 [ 1 o, O S 0,25 10
Secnned Sl s
i i [ B} i 1, g r, 0 10
5 ' (R I I ot ( 2.0 i AL b 22
il | 1 [0 | (@ 5% [N 10
l i ¢ [ 3 4
l ] I I ! [ { o H i o [ 22
1 1 i ‘ " 111 Hol ju 1,00 by . i
1 102 | 2 o 10 [F} b Gl I
1 1o ' i b S to h
1 101 | ) 1 h2u ! I o 1) u RRRAE o 240,20 112
* o new o enly i rcporting por ol et an loast devy Density 200 L7 e

Koy U Component Stalus
S oNersooehde
I Tl
¢ Crachod ol



TABLE 3.11

FLOWPATH QU:Lir'ICATION TEST SCHEDULE

Hold Tie
Number of Light-Off at 1930°F
Light Temperatures* OF Seconds
il; 70 30
2-5 150 30
6-9 150 60
10 150 300
10 420 Sec.
Total at
Lights 1930°F

*Forced cooling used between lights to achieve these temperatures

40 Silicon Carbide Stitor =525 After 1347 Holrs at 1000} g
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Stationary Ceramie Flowpath Testing to 2500°F

After eompletion of qualification testing, some eomponents were subjected
to statie durability testing at 250¢°F. Prior to this reporti% period, this effort
could only be eonducted in the 25009F Flow Path Test Rig.( With the design build,
and cheek-out of a modified engine (see Seceticn 3.1) the capability of 2500°F
testing hi's been demonstrated in & seeond typ > of test rig. Results frem both types
of rigs are presented.

As »nlanned for in the last rf‘port(g), a complete disassembly and rebuild of
the 2500°F Flow Path Test Rig w: s performed which involved:

a. Replacement of the entire ceramic ducting system, to replace cracked
parts.

b. Installation of a modified ceramic adaptor which functions as a container
for the components undar test,

c. Installation of an improved exhaust cooling control system, and

d. Ineorporation of a newly designed air-pressurized deuble face metal seal
to minimize internal air leaks.

While awaiting post-Turbin: Rotor Fubrication Task Foree stationary eomponents,
temperdture measuring tcehniques are being updated for overall improvement of
the 2500°F Flow Path Test Rig Operation.

Testing of stationary componenrts in the modified engine eonfiguration during
this report period is summarized as follows:

Components tested (1) nose cone
(1) 1st stage stator
(1) 1st stage stator insulator ring
(2) Rotor tip shrouds
Test Temperature Range — 17500F to 25000F
. Total Test Time — 9 hours and 4 minutes

No failures were noted in the hardware upon completion of these tests.
Subsequent testing of this hardware with a eeramie turbine rotor was covered
earlier in Seetion 3.1.3.
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4. PROGRESS ON MATERIALS TECHNOLCGY

SUMMARY

Materials technology is a very important .wortion of the systems approach
employed in this project for thc development of high temperature gas turbine
engines. The generation of ccramic material p.:opcrty data, in progress since
the heginning of the project, has becen instrumemal in component design
modifications and failure analysis. As testing aid fabrication exp2rience was
gained, improvements in materials have also becn made. The properties of
these imp1oved materials are determined and feo back into design modifications
and failure analysis, thus closing the loop. The work on determining material
properties and on generating material improveme s is reported in this section.

Modulus of Rupture tests were conducted on 274 specimens of hot pressed
silicon nitride to investigate the effects of surface finish, post machining heat
treatment and process variations. No statistical ciffercnce in MOR was found
between bars finished by grinding to 10 microinche. and bars finished by lapping
to 1 microinch. Six post machining heat treatment- on Norton NC-132 bars all
resulted in a decrease in the room temperature MCR due to oxidacion effects.

No statistical difference in MOR was found for bars inachined from one hot pressed
rotor hub nor was any found for bars machined fron: different hubs fabricated

from the same batch of powder. However, hitbs maode from different batches of
milled powder did show a variation in MOR.,

MOR tests on 155 bars of 2.7 g/cc density injection molded reaction sintered
silicon nitride were conducted on speciniens processed the same as engine hardware.
The room temp-<rature charactcristic bending strenghs were lower than previous
experimental batches, 36.3 ksi versus 44.3 ksi; hov~ver, the Weibull modulus
values increased from 6.78 to 11.1 indicating less s.atter. MOR tests werc also
carried out at elevated temperatures, 1700°F, 2100"F, 2500°F and 250007,

Bending stress rupturc tests on 15 .pecimens resuli-d in no time depenuent failures
for this material up to 2200°F. Twelve of ihe tests were suspended, without failure,
after 200+ hours at stresses of 20-30 ksi and temper.iitures of 1900-2200°F,

The nitride .ion of silicon compacts of various densities was investigated for
the effects of temperature schedule, atmosphere and furnace load. The "constant
rate of temperature increasc' cycle combined with an atmosphere of %% Ng9/4%

Ho produced strengths on the optimum strength density line (for densities in the
2.55-2.7 g/cc range) for moderate furnace loads. Other temperature schedules,
atmospheres and larger furnacc loads produced poorer strengths due to localized
silicon "melt out' and resulting large porusity. The ey to uniform microstruciure,
fine porosity and associated high strengths appears to be the controlling of the
nitriding exotherm so that the silicon compact does not reach 1420°C.

Thermal shock tesi results on a limited sample of sialon materials indicated
an oxygen-related melting phenomenon is associated with Y9Og which was used as
a sintering aid. Two samples with 1/2% Y903 did sustain 1312 cycles of 45 seconds
each to 2100°F while oth:rs, with 6% Y903, melted after less than 100 cycles to
22000F. Current work aimed at producing sialon according to the vacancy-free
med»al ie yielding promising results.

The preparation of silicon powder by attritor milling versus the conventional
ball milling technique was investigated. However, the flow characteristics, as
measured by a standard spiral flow test, indicated the material was inferior to
the conventionally processcd powder even though similar particle size distributions
can be achieved.



4.1 PROPERTIES OF HOT-PRESSED SILICON NITRIDE
Introduction

Room temperature Modulus of Rupture (MOR) tests were conducted on 274 hot
pressed silicon nitride specimens. Fifiy-six bars were cut from two rotor hubs
to investigate the effect of su:face finish on MOR. Seventy-eight bars from a billet
of Norton NC-132 were uscd to determine the effect of several post machining heat
treatments on MOR. An additional 140 test bars were cut from a total of five
rotor hubs to determine the variation in MOR from hub-to-hub, within one hub and
as a function of initial material batch,

The statistical analysis of strength data was performed by a "Most Likelihood
Estimator"(13) (MLE), computer program. Point estimatcs (i.c. 50% confidence)
as well as estimatcs of the 90% confidence interval of characteristie MOR and Weibull
slope were determined for reasonable sample sizes.

Effect of Surface Preparation

Test specimens were cut from rotor hubs 779 and 781 which were 2% Mg0
hot pressed silicon nitride material. Fifty-six test bars were preparcd according
to the procedure in Table 4.1 and twenty-four of these werc further hand lapped
on progressively finer diamond papers with Aly03 as the final polish. Figures 4.1
and 4.2 show comparisons of the two types of surfaces by Scanning Elcction
Microscopy (SEM) and by profilometer tracings. The SEM pieturcs show that the
lapped surfaces have no machining grooves and have finer pits. Further lapping,
i.e. removing additional 1, 2 and 5 mils of material, did not result in any visible
decrease of this pitting. Profilometer traces showed that the ground surfaces were
about 10 microinches arthmetie average and the lapped surfaces were about 1
microinch arthmetic average.

Four point bend strength testing was performed according to the Proposed
Military Standards for Testing of Ceramic Materials(14) on 1/4 x 1/8 x 1 inch specimens.
Tables 4.2 and 4.3 show the resulting MOR data. Based on 90% confidence, the
differences in MOR and Weibull slepe m between ihe two types of surface preparation
are not statistically significant. This indicates that, relative to the inherent flaws
in this matcrial, the surfaee damage from the three-step grinding process shown in
Table 4.1 is not severe enough, rclative to other material defects, to control the
strength.  Therefore, it is not necessary to use more elaborate finishing than the
three-step grinding, although, it should be recognized that this conclusion may not
be generally applieable to all hot pressed silicon nitride materials.,

Post Machining Heat Treatment

An investigation of possible heat treatment benefits was made on Norton's
NC-132 hot pressed silicon nitride, While this is a diffe *ent material {rom the 29
Mg0 hot pressed silicon nitride discussed eariier, it is being considered for
possible rotor hub application,

Pratt an i Whitney(15® have reported ¢ ignificant improvements in strength of
NC-132 material by post maekining heat treatments in air though their machining
proeedures differ from those shown in Table 4.1. The mechanism was suggested
to be due to crack healing, although ernceivably, stress relieving and/or erack
tip blunting by oxidation could have occurred.

To evaluate the possible benelits of heat treatment, seventy-eight test barvs
were maciined from Norion billet G 2559 according to the previousiy montionel
=5 " =
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three-step grinding procedure.
remaining bars, in groups of eight, were heat treated in air at various time-
temperatnre conditions including some approximating the 22009F — three hours,
2500°F — three hours, and 2500°F — 23 hours used by Pratt and Whitney.

oo oot e, o ki ek SIS N e s St e e

Thirty bars were used as control samples. The

The room temperature MOR results are shown in Tables 4.4 and 4.5.
Considering first the 2500°F — 20 hours heat treatment, whieh gave the best
strength improvements in the Pratt and Whitney work, a 43% degradation in
characteristic MOR resulted. Continued exidation to 100 hours resulted in further
loss of strength. Even a one-hour treatment at 2500°F resulted in 21% loss of
strength. These, together with weight gain data, are plotted in Figure 4.3 showing
typical parabolic curves of oxidation with a protective film of oxidation product( .
The strength curve corresponds to a mirror image of the weight gain curve;
thus, tne faster the oxidation, the faster the strength degradation.

TABLE 4.1

STANDARD TEST BAR PREPARATION PROCEDURE

Slicing

Wheel Specification
Wheel Speed
Downfeed

Tuble Speed

Rough Grind (when needed)

Wheel Specification
Wheel Speed
Downfeed
Crossfeed

Table Feed

Intermediate Grind

Wheei Specification
Wheel Speed
Downfeed
Crossfeed

Table Speed

Finish Grind

Wheel Spccification
Wheel Speed
Downfeed

Table Speed

Resin 120 diamond grit

5000 — 6000 SFPM*

0.0005" — 0.001" inches/pass
100 — 140 inches/minute

Resin 100 dianiond grit

5000 — 6000 SFPM

0.0015" — 0.002" inches/pass
1/8 — 1/4 inches/pass

596 -— 400 inches/minuic

Resin 150 diamond grit

5000 — 6000 SFPM

0.000" — 0.0015" inches/pass
1/8 — 1/4 inches/pass

200 inches/minute

Resin 280 diamond grit

5000 — 6000 SFPM

0.0003" — 0.0005" inCheS/paSS
100 — 140 inches/minute

All final grinding done parallel to the long axis of the specimen,
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HPSN Surfaces as Ground
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Figure 4.1

HPSN Surfaces as Ground.
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Position in Hub
_Hub__

Web

(Bl

Rim

Within Hub

Characteristic MOR of All Bars
Point Estimate
909, Intcrval Estimatc
Weibull Modulus of All Bars
Point Estimate
907 Interval Estimate
Number of Bars

Charuacteristic MOR of Web Bars
Point Estimate
90% Interval Estimate
Weibull Modulus of Web Bars
Point Estimate
90% Interval Estimal:
Number of Bars

Characteristic MOR of Hub Bars
Point Estimate
90% Intcrval Estimate
Weibull Modulus of Hub Bars
Point Estimate
909% Interval Estimate
Number of Bars

*  Insufficient Data

TABLLE 4.2
ROOM TEMPERATURE MOR (KSI) OF HPSN

Hub Nec. 779

Hub No. 781

After
Lapping and

As Ground After Lapping As Ground 500°F Aging
< 103.0 §0.9 72.0 62
9120 78.9 92.4 83.8
< 109.0 109.0 105.0 103.0
91.4 99.9 90.4 87.8
< 96.5 65.7 102.0 89.3
85,7 88.4 102.,0 98,3
< 90.0 81.4 94.3 93.6
90.0 94.3 107.0 90.1
RS 62.2 92.4 193
85.7 87.8 82.1 73.4
86.4 77.8 87.1 82.7
72.0 89.3 72.0 90.7
76.6 104.0
85.7 79.5
87.8 70.6
67.0 77.0
91.9 90.0 94,7 90.2
86.7-97.5 82.4-98.7 89.1-101 85.0-95.9
8.2 Grer® 7.8 9.6
5.3-10.6 3.8~ 8.6 5.1-10.1 5.7-12.8
16 12 16 12
98.3 92.8 99.9 92.8
91.4-106 82.2-105 93.0-108 8G.2-100
10.4 6.2 19,5 10.2
5.1-14.4 3.1- 8.6 5.2-14.6 5.1-14.2
8 8 8
83.0 * 87.9 X
77.9-88.8 76.3-99.1
11.7 i 6.5 o
5.8-16.2 3.2- 9.0
8 8

Test Bar Geometry: 0.125 x 0.25 x 1.25 inches
Test Spans: 0 375 inch top span, 0,750 inch bottom span
Crosshead Speed: 0.02 inches per minute
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In every case of heat trcatment, there was a decrease in characteristic
MOR, which agreed well with oxidation test rcsults reported by Westinghouse(€,9),
However, in some cascs in this experiment, the Weibull modulus appeared to be
improved by the heat treatment. The net result of whether or not heat treatment
is detrimental can not bc determined with high (90%) confidence due to an overlap
in the Weibull modulus confidence bands; a greater number of oxidized samples
would have to be tested to reach this determination. In addition, such results
should be applied to the particular ccramic structure in questicn to cvaluate
the effcct of oxidation on component reliability.

TABLE 4.3
ROOM TEMPERATURE MOR KSI OF HPSN

Combined Data; Hubs 779 and 781

As Ground After Lapping

Characteristic MOR of All Bars

Point Estimate 93.3 90.2

909% Interval Estimate 89.8-97.1 86.1-94.6
Weibull Modulus of All Bars

Point Estimate 8.3 8.1

907 Interval Estimatc 6.3-10.1 5.8-10.0
Number of Bars 32 24
Characteristic MOR of Web Bars

Pcint Estimate 99.1 92.9

90% Interval Estimatce 95.1-103 87.7-98.6
Weibull Modulus of Web Bars

Point Estimate 11.6 8.3

90% Interval Estimatc 7.5-14.9 5.4-10.7
Number of Bars 16 16
Characteristic MOR of Hub Bars

Point Estimate 85.7 83.8

909 Interval Extimate 80.7-91.1 77.2-91.3
Weibull Modulus of Hub Bars

Point Estimate 8.0 9.1

909 Intcrval Estimate 5.2-10.3 4,5-12.7

Number of Bars 16 8
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EFFECT OF OXIDATION ON ROOM TEMPERATURE STRENGTH

Individual MOR Values (psi)

Oxidation Time (Hours)

Oxidation
Temperature, Op 0 1

1900 101,000 88,300
101,000 104,000
102,000 108,000
104,000 111,000
108,000 113,000
111,000 122,000
112,000 127,000
113,000 135,000
115,000
116,000

2250 117,000 105,000
118,000 109,000
112,000 114,000
119,000 118,000
121,000 119,000
122,000 122,000
122,000 123,000
122,000 124,000
127,000
129,000

2500 130,000 90,700
130,900 95,300
131,000 96,200
131,000 97,900
131,000 99,100
154,000 99,400
134,000 101,000
137,000 103,000
139, C00
144,000

Test bar geometry: 0.125 x 0.255 5 £.25 inch.

Tcst Spans: 0.375 inch top span, 0.750 inch bottom span.

Crosshead Speed: 0.02 inches pe. minute.
] I

20

63,600
67,000
69,400
70,600
71,700
74,300
74, 600

100

69,400
73,700
72,700
78,000
78,000
81,100
81,800
85,200

61,900
64, 800
66,200
66,500
66, 800
87,000
68, 000
74,900

31
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Oxidation
Temperature °F

1900

2250

2500
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TABLE 4.5

C L Ll g ki GO i L I U

EFFECT OF OXIDATION OGN NORTON MNC-132

ROOM TEMPERATURE WEIBULL MOR (KSI)

Charaeteristic MOR

Point Estimate

909 Interval Estimate
Weibull Modulus

Poir.. Estimate

90% Interval Estimate
Weight Change

%

mg/em2
Number of Dars

Characteristiec MOR

Point Estimate

90% Interval Estimate
Weibull Modulus

Point Estimate

90% Interval Estimate
Weight Change

% 2

mg/em
Number of Bars

Charaeteristic MOR

Point Estimate

90% Interval Estimate
Weibull Modulus

Point Estimate

909 Interval Estimate
Weight Change

% 2

mg/em
Number of Bars

Time at Tenmperature {(Hours)

1 20 100
120
109-132
7.86
3.9-10.9
0.001 loss
0.02 loss
8
i20 79.6
115-124 75.3-84.4
19.7 13.4
9.8-27,4 6.7-18.7
0.001 gain 0.091 gain
0.02 gain 0.29 gain
8 8
99.4 71.8 68.8
£6.8-102 68.7-75.2 65.2-72.7
27.5 18.9 14.1
13.6-38.1 8.6-26.6 7.0-19.6
0.086 gain  0.242 gain  0.448 gain
0.27 gain 0.78 gain 1.43 gain
8 7 8

BASELINE MOR DATA. ON UNOXIDIZED RARS

Charueteristic MOR

Point Estimate

90% Interval Estimate
Weibull Modulus

Point Estimate

90’7 Interval Estimate
aumber of Bt s

27
123-130

—

I.4
-13.9

(e

8.1

S
O e

B
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EFFECT GF (2500 °F) OXIDATION ON NC-132
HOT PRESSED SILICON NITRIDE

140 ¢

b[11.4] [ ] weiBuLL moDuLUS (MOST LIKEL!HOOD
120 (30) ESTIMATOR METHOD) 25
( ) SAMPLE SIZE (NUMBER OF SPECIMENS)

[27.5] 12.0

(8)
[18.9]

(7) STRENGTH

100

80}

'&x__
on
WEIGHT GAIN, mg/omi?

ROOM TEMPERATURE
4-PT. BEND STRENGTH, KSI

0 | l | i 0
0 20 40 60 BO 100
OX!DATION TIME, HKRS.
Figure 4.3 Effect of 1371°C (2500°F) Oxidation on NC-132 HPSN.

Effect of Batch and Location Variables

The purpose of this task was to determine the consistency of strength
paramcters from rotor hub to hub, and from area to area within hubs. The
latter was particularly important in deciding whether separate strength paramet ers
had to be employed for differcnt finite elemenrts in reliability analysis for correlatio.
of MOR with spin failure rpm.

For this purpose, 140 test bars were cut from five rotor hubs (#814, 823,
824, 825 and 834) which had been hot presscd fromn 2% Mg0 silicon nitride powder.
Hubs #814, 323, 824 and 825 were pressed from the same milling batch whereas
hub #834 was pressed from another milling batch. TFigure 4.4 shows the test bar
locations. As before, the sample geometry and test conditions were based on the
Proposed Military Standards(1%). The raw data are presented in Table 4.6 snd
the statistical evaluation results are shown in Table 4.7. A fair consistency
of strength parameters from hub to hub (made from the sam¢ milling batch) is
evident.

The variability of strength with milling batch can be seen by comparing the
strength parameters of hub #834 with those of the cther four hubs. Hub #834 is
inferior in both the web and curvic areas. Since no difference in the milling conditions
was known, the source of tne variation was not clear. However, particle size
analysis showed that the lower strength batch had a coarser average particle size of
1.84 microns versus 1.44 for the other batch.
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'The consistency of strength from area to arca within the hubs is discernible
from the lack of a statistically significant difference between the web and curvie
areas within each hub and in the combirec data for all hubs, and between the outer
surfice lavers and the interiors. A meaningful comparison of surface layers of
each hub with the interior can not be made because of small sample sizes available
for siatistical analysis.,

Therefore, it has been concluded that, for the chemistry and processing
conditions uscd to make such rotor hubs, a single set of strength parameters can be
used for all the finite elements of the rotor in rcliability calculations. However, the
data would be applicablc only to the same milling batch. In order for the data to
reflect the variabiiity fron: batch to bateh of powder milling, MCR data for different
batches should be combined. The application of the above irformation is presented
in secticn 3.1.3 on correlation of MOR data with spin failure rpm.

TOP

[ 17, 21, 25 M
| 18, 22, 26 -

19, 23, 27 C‘Ljﬁ—ﬂ
_ —
\L p—

[]]8

Figure 4.4 L.ocation of Test Bars Cut From Rotor Hubs.
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TABLL 4.6

ROOM TEMPERATURE MOR DATA (KSI)

Hub Numbe-ar

Bar Number 814 823 824 825 83
Web Area
1 85.5 68.0 98.1 - 91.0
5 Nearest 98.8 84.7 89.6 79.2 73.4
9 Rim 80.9 99.2 90.7 93.6 92.2
13 100.0 89.7 93.9 83.8 85.7
2 98.8 105.0 101.0 117.0 76.3
6 82.1 96.8 93.3 103.0 79.2
10 87.1 111.0 57.2 77.8 90.7
14 69.1 87.6 102.0 102.90 7% 2
3 827 101.0 77.5 60.2 87.6
7 95.0 92.2 97.2 77.9 77.8
11 76.9 111.0 96.8 92.7 90.0
15 77.8 - 103.0 85.2 86.4
4 95.0 91.0 107.0 91.0 79.5
8 Nearest 79.8 88.0 101.0 90.6 -
12 Curvic 76.3 109.0 91.3 60.8 77.5
16 94.3 112.0 88.1 84.5 73.7
Curvic Area
17 113.0 101.0 108.0 104.0 92.2
21 110.0 103.0 66.8 92.4 98.6
25 Outer 96.5 69.4 95.0 96.8 98.2
20 Areas 90.9 106.0 103.0 104.0 78.5
24 87.6 99.6 99.6 108.0 101.0
28 89.6 107.0 90.4 89.9 94.2
18 93.3 80.6 101.0 81.4 90.1
22 96.8 113.0 84.1 97.9 80.6
26 Central 89.9 102.0 104.0 86.4 75.2
19 Areas 94,2 92.3 71.3 85.0 84.7
23 96.8 99.4 99.4 94.Zz 95.0
27 106.0 90.6 83.8 66.% 90.14

- Indicates bar with obvious defect.
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Characteristic MOR

Point Estimate

90% Interval Estimate
Weibull Modulus

Point Estimate

90% Interval Estimate
Number of Bars

Charaecteristic MOR

Point Estimate

90% Interval Estimate
Weibull Modulus

Point Estimate

90% Interval Estimate
Number of Bars

Characteristie MOR
Point Estimate

90% Interval Estimate

Weibull Modulus
Point Estimate

909 Interval Estimate

Number of Bars

Characteristic MOR

Point Estimate

90% Interval Estimate
Weibull Modulus

Point Estimate

90% Interval Estimate
Number of Bars

Charaeteristic MOR

Point Estimate

90% Interval Estimate
Weibull Modulus

Point Estimate

90% Interval Estimate
Number of Bars

Characteristic MOR

Point Estimate

90% Interval Estimate
Weibull Modulus

Point Estimate

90% Interval Estimate
Number of Bars

Characteristiec MOR

Point Estimate

90% Interval Estimate
Weibull Modulus

Point Estimate

90% Interval Estimate
Number of Bars

Characteristic MOR
Point Estimate
90% Interval Estimate
Weibull Modulus
Point Estimate
90% Interval Estimate

B
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TABLE 4.7
ROOM TEMPERATURE MOR OF HPSN (KST;
Hub
Number Web Areca Curvie Area All Bars
814
90.4 101 95.5
86.1-95.2 95.5-107 91.9-99.2
9.6 10.5 9.1
6.3-12.4 6.2-13.9 6.7-11.1
16 12 28
823
101 102 102
96.0-107 96.2-108 98,1-105
9.0 10.1 10.0
5.8-11.7 6.0-13.4 7.3-12.2
15 12 27
824
98.3 97.4 98.2
95.,7-102 91.1-104 95.56-101
15.8 8.6 12.4
10.3-20.4 5.1-11.4 9.2-15.2
16 12 28
825
92.7 96.9 94.7
85.2-101 91.0-103 90.2-99.5
5.9 9.2 7.3
3.8-7.17 5.5-12.3 5.3-8.9
15 12 241
834
85.5 93.5 89.5
82.2-89.0 89.2-98.0 86.7-92.5
12.7 12.3 11.0
8.1-16.5 7.3-16.3 8.1-13.6
15 12 27
All
Hubs 94.6 98.3 96.3
92.3-96.9 96.1-101 94,4-98.2
8.4 10.3 9.1
7.1-9.5 8.5-11.9 8.0-10.2
77 60 137
Outer
Surfaeces 100
97.6-103
12.3
9,2-15.0
30
Interior
96.0
92.4-99.7
8.9
6.6-10.8
30

Numher of Bars
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4,2 PROPERTIES OF INJECTION MOLDED REACTION SINTERED SILICON
NITRIDE
Introduction

In previous reports(8,9), various physical properties of 2.7 gm/cm3 injection
molded silicon nitride have been reported. These values were for material at various
stages of development and the data was used for process evaluation and estimates of
material capability. The data reported in this section is from test bars processed
the same as engine hardware.

Material Properties

MOR data at various temperatures, including Weibull modulus values, for
140 test bars is presented in Table 4.8. The characteristic MOR values are lower
than previously reported values for experimental batches due to problems encountered
in scaling up the nitriding process. These problems are disucssed in Section 4.3
of this report. It should be pointed out, however, that although the room temperature
characteristic strength is lower, 36.3 ksi versus 44.3 ksi(9), the Weioull modulus
has increased, 11.1 versus 6.78(%),

TABLE 4.8

WEIBULL DATA VERSUS TEMPERATURE OF

2.7 gm/cm3 INJECTION MOLDED SILICON NITRIDE

Temperature °F/0C

78/25 1700/927 2100/1149 2300/1260 2500/1370
Characteristic MOR * (ksi)
Point Estimate 36.3 33.0 32.5 33.2 31.7
90% Interval Estimate 35.2-37.4 32.2-33.9 31.6-33.5 32.1-34.4 30.5-32.9

Weibull Modulus *

Point Estimate 11.1 14.3 12.1 9.7 9.4
90% Interval Estimate 8.2-13.5 10.5-17.6 8.9-14.8 7.2-11.8 6.9-11.6
Number of Bars 29 27 28 29 27

3/8" x 3/4" Test Fixture; 4 Point Bending
1/8" x 1/4" Sample Size; As Nitrided Surfaces

0.020 inches/minute crosshead rate

* Maximum Likelihood Estimator Program (13)
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The results of fifteen bending stress rupture tests on this material are
presented in Table 4.9. As indicated, the samples either failed immediately or
were suspended after 200 or more hours without failure. Some immediate failures
at 30 ksi were to be expected based on the Weibull statisties presented in Table
4.8 at elevated temperatures. No time dependent failures have been noted for this
material up to 22000F (1204°C) which again is to be expeeted since no cvidenee of
slow crack growth was found in this material(9), even at temperatures up to 2550°F
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| (1400°C).
3
TABILE 4.9 ]
1 BENDING STRESS RUPTURE RESULTS OF 2.7 GM/CM3 j
! INJECTION MOLDED SILICON NITRIDE «3
&u
5
Temperature Stress Time Comments }
(°F/°C) (ksi) (Hours) %
1900/1038 20 210 No Failure %
¢ 20 208 No Failure
: 20 212 No Failure
; 25 279 No Failure :
30 211 No Failure j
] 30 0 Failed on Load :
30 0 Failed on Load %
; {
i 2100/1149 20 215 No Failure 3
A 20 215 No Failure ;
. 20 240 No Failure %
: 25 211 No Failure i
3 30 243 No Failure ]
30 0 Failed on Load !
:
g 2200/1204 20 200 No Failure %
25 200 No Failure
i
:
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4.3 NITRIDING DEVELOPMENTS

Introduction

Previous interim reports(7,8,9) described the development. of nitriding cycles
for the production of reaction sintered silicon nitride hardware. This section
summarizes the previous work and includes several new micrographs. In addition,
data is presented which will form the basis for scaling up the nitriding process for
large furnace loads and still producc good strength matcrial.

Nitriding Developments

Figure 4.5 shows the three basic temperature schedules investigated.
Table 4.10 shows the degrce of nitriding achieved for each cycle and atmosphcre
for densities from 2.3 to 2.8 g/cc. As shown, all cycles and atmospheres nitride
equally well for densities up to 2.7 g/cc. However, the 2.8 g/cc material can
only be nitrided to 96% with the cycles investigated. This material has large areas
of unreacted silicon in the structure which is not desirable for a turbine material.

The streagth-density relationship for the various nitriding cycles and atmospheres
are given in Figure 4.6. The data shows that the 3 step cycle results in the «trength
reaching a maximum of around 30 ksi at a density of 2.7 g/ce. However, the strength
starts to level out at the 2.55 g/cc density level. The multi-ctep cycle yiclds a
maximum strength level (35 ksi) at the 2.55 g/cc level and then decreases to the
25-30 ksi level for higher densities. The constant rate cycle is best up to the 2.7 g/cc
density level where it reaches a maximum strength of 44 ksi. The effect of Hg/Ng
nitriding atmospheres is most evident at the low densities where the 3-step cycle
was used and at the higher densities with the constant rate cycle.

Figure 4.7 shows thc microstructure of materials of diffcrent densities and
nitriding cycles but all having strengths between 25 and 30 ksi. It is obvious that the

OF Oc
1500
Si MELTING POINT / \
1400 - —
2500} —\ /\
1300 \‘ ‘./ \
2300} /
w 1200 -
> 2100 "/
E - 1
o 1100
S 1900
- 1000
1700} 3 STEP CYCLE
900 MULTI STEP CYCLE
i —— - -—— CONSTANT RATE CYCLE
1500 goo

T 4 .

1 1 1
20 40 60 80 100 120 140
TIME (HRS)
Figure 4.5 Nitriding Temperaturc Schedules.
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pore distributions are different for each density level, however, the largest individual
pores are in the 25 to 30 u m range. These large pores show evidence of having

been formed by silicon ""melt out'" and are mainly responsible for limiting the strength
of the material.

TABLE 4.10

PERCENT OF SILICON CONVERTED TO SILICON NITRIDE
FOR VARIOUS NITRIDING CYCLES AND DENSITY LEVELS

§ Nitriding
| Cycle Atmosphere 2.3 g/ece  2.55g/cc* 2.7 g/cex 2.8 g/eck
3 Step 100% N2 97. 97.0 98.5 94.
F 1% — 4% Hg/N2  97.1 - 96.7 -
Multi- 100% N2 97.0 99 0 98.1 95.9
Step 1% — 4% Ho /N2 - 98.3 98.4 95.9
v Constant 100% N2 - 98.3 98.0 -
: Rate 1% — 4% H2/Ng - 98.3 98.0 94.7
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* 2 1/2% Feg03 added as a nitriding aid. This has been compensated for
in the conversion data

o 2
sol  x 3 STEP CYCLE
sa0k 0 MULTI STEP CYCLE 100% N,
s CONSTANT RATE CYCLE
45}
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Figure 4.6 Strength Versus Density - Silicon Nitride.
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Figure 4.7 Micrographs of Different Density Silicon Nitrides.
(A) 2.3 g/ee  (B) 2.55g/ec (C) 2.7 g/ce (D) 2.8 g/ce

Table 4.11 shows in detail the properties of the 2.7 g/ec material nitrided
under the various eonditions listed. The only eyele that yielded material on the
optimum strength density line was the constant rate eyele with a 96% No/4% Hy
atmosphere. Figure 4.8 shows the microstrueture of 2.7 g/ec matcrials nitrided
with these various cyeles. The microstructure of the three step nitriding cycle,
Figure 4.8(A), (with a maximum nitriding temperature of 14500C (2642°F) shows much
evidenee of silicon "melt out' and the resulting large porosity deseribed by Evans
and Davidge(16), The arrow points to a large dense region of silicon nitride
(gray) with areas of silicon metal interspersed (white). This region probably was
formed when a silieon particle melted and was dispersed into the surrounding
strueture. Adjoining this dense region is a large pore, probably formed when
the silieon melted. Examination of the structure of the multistep cyele (Figure 4.8B)
shows many similar recgions indieating that molten silicon was prescnt at some stage
of the nitriding proeess even though the wrnace temperature of this eycle was only
1400°C (25520F), below the melting point of silieon. From these mierographs, it is
eoneluded that the dense regions with adjoining large porosity aet as [laws and cause
the low material strength. The structure of the multistep eycle lcads to the eonclusion
that the exotherm accompanying the nit iding reaction causcd the temperature of the
test sample to exeeed 14200C (258807,
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TABLE 4.11

CHARACTERIZATION OF 2.7 G/CC NITRIDED TEST SPECIMENS

Average Phase i

Nitriding Nitriding MOR # of Composition

Cycle Atmosphere (ksi) M Samples %a %8 %Si
3 Step 100% N 33 15 5 70 27 -
96% N2/4‘7? Hg 28 - 8 - - -
Multi- 100% N 26 8 12 63 34 -
Step 96% N2/4%2 H2 31 - 5 - - -
Constant 100% N 35 13 11 72 24 1
Rate 99% Nz/l%? H, 38 9.5 12 73 25 -
99% No/4% H, 43 8 31 0 27 -

Figure 4.8

Micrographs of 2.7 g/cc Silicon Nitride.

(A) 3-step cycle - 100% No  (B) Multi-Step Cycle - 100% N,
(C) Constant Rate Cycle - 100% N

(D) Constant Rate Cycle - 96% N2;4% H,




i

EWul R s, L il iy e S R i Rk s

The strength (Tablc 4.11) and microstructure of the 100% N, atmosphere run
(Figure 4.8C) shows the same phenomena as with the previous cycles; that is low
strength and evidence of localized temperatures in excess of 1420°C (2588°F).
These results also show that the Hg /N9 atmosphere yielded higher strengths (43 ksi
average with individual test specimcns having strengths as high as 58 ksi). The
microstructure of the 4% Ho run (Figure 4.8D) shows the structure contains much
less porosity, is more uniform and, most important, contains no evidence that the
melting point of silicon was exceeded.

The constant rate cycle was investigated further to determine the effect of the
hoid time at 1177°C (2150°F) and to see if this hold time could be reduced. Table 4.12
shows the results of partial nitridings performed at 1177°C (2150°F) for times up
to 72 hours. The data shows that while no additional nitriding was observed using
weight gain measurements, the phase composition of the 72 hour treatment contains
a higher percentage of SigNy at the expense of the silicon. It appears that no more
a SigN4 is formed at temperatures above 1177°C (2150°F) since the total a SigNy
present in completely nitrided specimens is from 70-73%.

TABLE 4.12
RESULTS OF PARTIAL NITRIDING AT 1177°C (2150°F),

4% Ho/96% No ATMOSPHERE

Phase
Composition a SigN,4 Ratio
Time at 1177°C (2150°F) % Nitrided %a % B % Si B Si3N4
0 Hours 19.2 1 1 98 1.0
24 Hours 60.8 62 15 23 4.13
72 Hours 59.2 73 15 11 4.86

Figure 4.9 shows the micrographs obtained from samplcs nitrided using various
1177°C (2150°F) hold times in the constant rate cycle with a 4% Hy/96% Ng atmosphere.
Figure 4.9A shows a poor structure with much porosity and evidence of temperature
exceeding 14200C (2588°F) when there was "no hold' at 1177°C (21500F). By holding
for 24 hours at 1177°C (21500F) the microstructure greatly improves and the 72
hour hold yields the most desirable microstructure (Figure 4.9 (C)).

Practical considerations neces=itate that large quantitics of silicon be nitrided
at one time and this could make the niiriding exotherm more pronounced. EXxperiments
were performed to determine the effect ou *he SigNy properties of nitriding large
quantities of silicon. Only the rate cycle with 473 H2/96% Ny atmosphere was used,

with the results being compared to previous small load results.

Test bars were placed in a developmental nitriding furnace along with turbine
components of 2.7 g/cc density. The loads were varied betwecn 1200 g and 10,000 g
of silicon. The constant rate cycle with a three day 1177°C (2150°F) hold was
used in conjunction with the 4% H2/96% No atmosphere.

The results, Table 4.13, show that, with the 1200 g load, there was no evidence
of a temperature overshoot at the kold temperature of 11430C (2089°F). The percent of
silicon nitride and the strength was acceptable.
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This run was repeated with a larger load (1600 g) and with the furnace controller
being adjusted to yield an actual 1177°C (2150°F) hold temperature. This time a
109C (18°F) temperature overshoot was noted in the first hour of the hold period.
Accompanying this overshoot was a reduction of furnace pressure from 3 psig to
1 1/2 psig, indicating a rapid consumption of nitrogen. The percent of silicon
nitrided was good, while the strength of the test bars was low (27.2 ksi).

The microstructure of the 1200 g run, with no temperature overshoot
(Figure 4.10 A) shows a fairly uniform structure with only small indications of
temperature exceeding 14200C (25880F). However, the second run (1600 g,
10°C (18°F) overshoot) (Figure 4.10 B) shows large porosity and many large areas

CYCLE “A” CYCLE “B” CYCLE “C”
NO-HOLD HOLD AT 1 DAY HOLD AT 3 DAY HOLD AT
1177°C 1177°C 1177°C
Figure 4.9 Effect of 1177°C (2150°F) Hold on Microstructure of 2.7 g/cc

Material

(A) No hold (B) One day hold (C) Three day hold

TABLE 4.13

LARGE FURNACE LOAD RESULTS

Characteristic
Nitriding wT Temperature  Temperature MOR # of
Cycle ATM Silicon Set Point Overshoot Y Nitrided (ksi) _m_ Samples
o 3 ~oC OF

Constant 4% Heo/ 1200 g 1143 2089  None 98.1 % 44,2 7.5 25
Rate 96% No
Constant 4% Hz/ 1600 g 1177 2150 10 18 98.1% 2111 12] 8.0 25
Rate 96% Ng
Cvele Stopped 4% Hg/ 10,000 g 1177 2150 10 18  Exuded and melted
after 2 hours 967 No silicon indicating
at 1177°C temperatures over
(2150°F) 1420°C (2588°F).




where silicon meltout occurred, indicating that 1420°C (2588°F) was exceeded
in this cycle.

B 2
e

: . The last run consisted of a 10,000 g load with a 1177°C (2150°F) hold.
Again there was a 10°C (180F) overshoot, however, the pressurc loss was much
larger (+3 psig to -4 psig). The run was aborted two hours into the hold period.
Examination of ti'~ amples revealed large amounts of exuded silicon was present
on the outside st. © »s. This indicates that while the furnace temperature did not
exceed 11770C (2. . F), the part temperaturc exceeded 1420°9C (2588°F), clearly
showing the severity of the exothermic nitriding reaction.
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e o
o

4

It has been clearly shown that to obtain the high strength possible from reaction
sintered SigN4, one must develop a uniform microstructure of fine porosity. Large
dense regions of SigN4 and large pores, both typical of nitriding above the melting
point of silicon, have been skown to lower the strength of the material, and consequently
must be climinated. In order to accomplish this, the effect of the nitriding exotherm
must be controlled, so that at no time do excessive localized areas of the silicon
{ compact exceed 1420°C.

= S |

|

The constant rate cycle was designed to control the nitriding exotherm.
However, when compared to other cycles, all using 100% Ny nitriding atmospheres,
no significant improvement was noted in either microstructure or strength.
Significant improvements in both these properties were noted when a 49 H2/96% Ng
nitriding atmosphere was employed. For small nitriding loads, this cycle and
atmosphere exhibited no evidence of 1420°C (2588°0F) being exceeded.

AT TR -

A

VR e

NO TEMP OVERSHOOT 10°C TEMP OVERSHOOT
Figure 4.10 Effect of Large Furnace Loads on Microstructure of 2.7 g/cc
Material

(A) 1200 grams - No Temperature Overshoot - 44.2 ksi
(B) 1600 grams - 10°C (18°F) Temperature Overshoot - 27.2 ksi
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4.4 SIALON MATERIALS

Introductic

Studies of sialons in the SigN4-Al90O3 system have shown that, with addition
of Y203 as a sintering aid, materials with room tempeiature strengths in the
80-90, 000 psi range were obtained by pressureless sintering ). Even without a
sintering aid, strengths of 60,000 psi were attained. However, tnese strengths were
not retained at elevated temperature because of the presence of a glassy phase. In
addition, those sialons prepared with more than a very small amount of Y203 tended
to melt at about 1200°C (2192°F) in the presence of oxygen. The extent of melting
increased with increasing YoOg content in the sialon and with increasing oxygen
content in the atmosphere when these sialons were tested.

Sialon Developments

Figure 4.11 shows the effect on eight speccimens of a sialon, prepared with
6% Y203, of fewer than 100 thermal shock cycles, using the thermnl shock test rig,
of 45 seconds each at 1204°C(2200°F). Figure 4. 12 shows the effect on four ditferent

Figure 4.11 Eight Sialon Samples (84% AME SigNy, 16% AloOg, with
8% Yg0g Sintering Aid) After T.ess Than 100 Thermal Shock
Cyecles to 2200°F for 45 seconds.
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sialons prepared with 1% or less YoOg of 1312 cycles of 45 seconds each at 1149°¢C
(2100°F). This oxygen -related melting phenomenon seems to rule out Y03 as a
sintering aid for SigN4-Al203 sialons.

Attempts to deal with the glassy phase are proceeding along two paths. One
nath involves crystallization of the glass by ricans of cuitable heat treatment, while
the other involved consideration of methods of preparing sialon without glass from
the outset. Crystallization studies of sialons prepared with Y90g additive were
mentioned in the previous report (9), Testing, of additive-free SigNg4-Al903 s.alons
have shown a decrease in room temperature strength after crystoallization, anc at times,
no further decrease at elevated temperature. Clearly, optimum crystallization
conditions have not yet been found.

If the assumption that sialon is simply a solution of A1905 in SigN4 is incorrect,
then the glassy phase might be the by-product of incorrect stoichiometry. It might
also result from impurities in the starting m#teriais — SiO2 contaminanis in the

Figure 4.12 Four Sialon Samples After 1312 Therma! Shock Cycles to
2100°F for 45 Seconds.
(A) 84% A.M.E, SigN4, 16% Alg03, 1/20 Y203
(B) 84% A.M.E. SigN4, 16% Al203, 1% Y203
(C) 84% Plessey SigNy, 16% AloOg, 1/2% Y903
(D) 84% Plessey SigNg, 16% Al203, 1% Y203
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SigN4, for example. Pcssibilities such as these are currently being considered in the
context ¢f the vacancy-free model of sialon, Sig-xAlxOxNg-x.

If the sialon is indeed Sig-xAlxOxNg-x rather than Sig-3,4xA’2/3xOxNg-x,
then attempts to prepare it from only SigN4 and AlpOg will lead to by- ; roducts as
well. These may be volatile-leaving only sialon in the sample-or nonvolat’te,
leaving other phases, (possibly glassy) along with the sialon. On the other hind,
preparation from SigN4 along with an equimolar mixture of A1203 and A1N should
lead to single phase sialon. Since SigN4 usually contains some SiOg contaminant,
and ALN frequently contains AloOg, ceactions are actually carried out in the system
SigN4-A1203-A1N-SiO9, and should follow the stoichiometry of a reaction such as

(2-%) Sigy, + (23—") AIN + (%) Al

X, s :
3 O3 + (z-) 8102—* Si

2 6-—xA1xOxN8-—x‘

Current work aimeé ' - producing sialons according to the vacancy -free
rrodel by pressureless si* - :ing has yielded promising preliminary results.
Although room temperature strexdibs as ..igh as those of the SigN4-Al203-Y203
materials have not yet been obtained, materials of moderate strength, which
retain that strength at 1200°C (2192°F) have been prepared. Work is proceeding
on increasing overall strength levels.
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4.5 SILICON MILLING STUDIES
Introduction

The previous report (9)presented interim results on the use of the attritor
mill as a replacement for 140 hour ball milling of silicon feed material. This
| s effort dealt primarily with the measurement of silicon particle size, and it was
sho vn that the attritor mill was capzble of producing a silicon particle distribution
very similar to the 140 hour ball milling technique. During this reporting period,
the work was expanded to include spiral flow measurements on molded compositions
made from attritor-milled silicon.

Procedure and Results

ASTM D-3123-/2 test procedure was used to measure spiral flow of the
various silicon molding compositions. Test conditions were material temperature
200°F., and die temperature 80°F. Spiral flow was measured for injection pressures
of 1500 and 2000 psi. Spiral flow resuits are shown in Table 4. 14.

TABLE 4.14

EFFECT OF ATTRITOR MILLING ON SPIRAL FLOW CHARACTERISTICS

OF SILICON POWDER

Batch Speed (rpm) Time (Minutes) Spiral Flow (Inches)
Number Grind Unload Grind Unload 1500 psi 2000 psi
32-36 R50 550 30 10 1-4 2-3
37 550 550 60 12 0 0
38 550 550 90 15 5 6
39 550 250 30 30 2 )
40 550 250 60 25 1 3
41 200 2002 45 20 0 1
42 200 200P 45 30 7 5
43° 550 550 45 15 3 3
44d 550 550 45 20 0 0
Std.© - - - - 10 10

a. Discharge port opened at start of grind.

b. Discharge port opened and closed for 10 minute intervals until
mill was empty.

c. Milled with 0.5 percent cthyl acetate.
d. Milled with 1.0 percent oleic acid.

e. Standard 140 hour ball milled silicon.
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Batches 32 through 36 were formulated with silicon milled in the attritor under
the same conditions that produced particle size distributions very similar to standard
140 hour ball milled silicon. The spiral flow results did not show the same correlation
between 140 hour grind and attritor milled material as preliminary recuits indicated
in the previous report (9). 1In all cases, spiral flow was much below 10 inches
measured on the standard material.

Batches 37 through 42 represent silicon obtained from the attritor under
various conditions of grinding and discharge speed, retention and grinding time.
Batches 43 and 44 were studied to show the effect of ethyl acetate and oleic #cid
additives on milling. It is obvious from the results, shown in Table 4. 14, %t changes
in these parameters did not produce silicon with spiral flows equivalent to the 140
hour ball milled silicon.

No investigation was made into why thc attritor-milled material behaved as it
did as it was judged that such an investigation was not warranted at this time since
ball milling, while time consuming, provided consistent results.
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1 Capt. Smyth, Wright-Patterson Air Force Base, Dayton, Ohio 45433
! Air Force Research and Development
H Dr. A. Lovelzce, Deputy Assistant Secretary (R&D) Office of Assistant
| Secretary of the Air Force (Research and Development), Room 4E973,
Pentagon, Washington D.C. 20330
1 Air Force Systems Command

Major Jose Baca, Headquarters, DLFP, Propulsion and Power Branch,
Andrews Air Force Base, Washington D. C. 20034

Argonne National Laboratory
: 1 Dr. Paul G. Shewmon, D212, 9700 South Cass Avenue, Argonne,
: Illinois 60439

Argonne National Laboratory
1 Mr. R. N. Singh, Materials Science Division, 9700 South Cass
Avenue, Argonne, Illinois 60439

3 U. S. Army Air Mobility Research and Development Laboratory
3 2 J. Accurio, Director, Lewis Directorate, NASA, Lewis
Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135

1 R. Berrisford, Chief, Structures Division, Eustis Directorate,
Ft. Eustis, Virginia 23604

1 T. Coleman, Director, Langley Directorate, Langley Research
Center, Langley Field, Virginia 23365

2 F. Immen, J. Wheatly, Advanced Systems Research Office, Ames
Research Center, Moffett field, California 94035

1 J. White, Assistant Technical Director, Eustis Directorate,
Fort Eustis, Virginia 23604

- U. S. Army Aviation Material Laboratories
| 1 Commanding Officer, Fort Eustis, Virginia 23604

U. S. Army Aviation School Library
1 Librarian, Fort Rucker, Alabama 36360 Bldg. 5907
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U. S. Army Aviation Systems Command
Commanding General, ATTN: R. Long, Deputy Director RD&E,
P. O. Box 209, St. Louis, Missouri 63166

U. S. Army Engineers
Commanding Officer, Waterways Experiment Station, Vicksburg,
Mississippi 39180 ATTN: Research Center Library

U. S. Army Material Command
Commanding General, Washington D. C. 20315
AMCRD-TC (Dr. E1-Bisi)
ANCDL (Dr. Dillaway)

Army Materials Command Headquarters
Dr. Donald Weidhuner, Chief, Power Division, Research Develop-
ment and Engineering Directorate, 5001 Eisenhower Avenue,
Alexandria, Virginia 22304

Army Materials and Mechanics Research Center
Director, Watertown, Massachusetts 02172
ATTN: AMXMR-PL

AMXMR-PR
AMXMR-CT
AMXMR-AP
AMXMR-X (Dr. Wright)
AMXMR-EO (Dr. Katz)
AMXMR-TM (Dr. Lenoe)
AMXMR-D (Dr. Priest)
AMXMR-EO (Dr. Messier)
AMXMR-P (Dr. Burke)
AMXMR-MS (Mr. MacDonald)
AMXMR-E (Dr. Larson)

Lt. Col. E. E. Chick

U.S. Army MERDEC
Command Officer, Fort Belvoir. Virginia 22060
ATTN: STSFB-EP (Mr. Frank Jordan)
STSFB-EP (Mr. W, McGovern)
AMCPM-FM (Mr. Allen Elkins)
AMXFB-EM (Mr. George F. Sams)
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3 Army Missile Command
i , 1 Commanding General, ATTN: AMCRD-F, J. Beebe,
1 Washington D. C. 20315
E ! 1 Commanding General, Redstone Arsenal, Alabama 35809
] ATTN: Technical Library
¥ 1 Commanding General, ATTN: AMCDL, Webb Taylor, 5001
‘- Eisenhower Avenue, Alexandria, Virginia 22304
-
% USACDC Ordnance Agency, Aberdeen Proving Ground
” 1 Commanding Cfficer, Maryland 21005, ATTN: Technical Library
4 Building 313
E 1 Commanding Officer, Maryland 21005, ATTN: Library, Building 350
a
% Army Research and Development
] 1 Office, Chief Research and Development, Department of the Army,
1 ATTN: R. Ballard, Physical and Engineering Sciences Division,
4 Washington, D.C. 20315
i
3 1 Office Chief Research and Development, Department of Army,
ATTN: Col. J. Barnett, Physical and Engineering Sciences
Division, Washington, D.C. 20315
1 Commanding Officer, Army Research Office (Durham), Bx CM, Duke
Station Durham, North Carolina 27006 ATTN: Dr. H. M. Davis
E 8 Lt. Col. James Kennedy, Chief, Materials Branch, European Research
1 Office U.S. Army R & D Group, (EUR), Box 15, FPO New York 09510
’ 1 Mr. H., Morrow, Eustis Directorate, AMRDL, Fort Eustis, Virginia 23604
U.S. Army Tank-Automotive Command
; 5 Commanding General, Warren, Michigan 48090, ATTN: AMSTA-BSL,
Research Library Br, ATTN: AMSTA-RKM (Mr. C. Green),
/ ' ATTN: AMSTA-RGR (Mr. Engel), ATTN: AMSTA (Dr. Banks),
] ATTN: AMSTA (Mr. L. Barnett)
- U.S. Army Weapons Command
*; 1 Commanding General, Research and Development Directorate,
| Rock Island, Illinois 61201, ATTN: AMSWE-RDR
Eg |
E |
i
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.S, Atomic Energy Commission
1 Dr. Joseph Griffo, Space Nuclear Systems Division, Century XXI
Building, Mail Station F-309, Washington D.C, 20545

1 Dr. Alan Womack, Assistant Director, Gas Cooled Reactors,
Washington D, C. 20545

British Embassy
1 Dr. R. Warren, Contract Officer, Defern-e Research and Development
Staff, 3100 Massachusetts Avenue N.W., Washington D. C. 20008

Bureau of Mines

1 Dr. E. P. Flint, Room 4513, Interior Building, Washington D. C. 20240
1 Mr. Ron Lowrey, P. O. Box 70, Albany, Oregon 97321
1 Mr. M. A. Schwartz, Tuscaloosa Metallurgy Research Laboratory,

P. O. Box 1, University, Alabama 35486

12 Defense Documentation Center
Commander, Cameron Station, Building 5, 5010 Duke Street,
Alexandria, Virginia 22314

1 Department of Transportation
Mr. Michael Lauriente, 400 Seventh Street, S. W.,
Washington, D. C. 20590

1 Directorate for Energy
W. C. Christensen, Assistant for Resources, OASD (I & L),
Room 2B341 Pentagon, Washington, D. C. 20301

1 Office of the Director of Defense
Mr. R. M. Standahar, Research and Engineering, Room 3D1085,
Pentagon, Washington, D. C. 20301

Energy Research and Development Administration

5 Division of Transportation, 20 Massachusetts Avenue, N.W.
Washington D. C. 20545
ATTN: Mr. George Thur (TEC) Mr. Frank Moore (CLNRT)
Mr. Robert Schulz (TEC) Mr. John Neal (CLNRT)

Mr. Thomas Sebestyen (TEC)
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1 Mr. E. N. C. Dalder, Materials and Radiation Effects Branch,
Division of Magnetic Fusion Energy, MSG-234, Washington D.C. 20545

1 Dr. C. Martin Stickley, Division of Laser Fusion, Mail Station
A-364, Washington, D.C. 20545

1 Mrs. Patricia Mooney, Office of Management and Budget,
Coordination Branch, Room 8001, New Executive Office Bldg.,
Washington, D. C. 20503

1 Mr. Steve Wander, Division of Fossile Fuels, Washington, D. C. 20545

1 Dr. S. M. Wolf, Division of Physical Research, Mail Station J-309,
Washington, D. C. 20545

1 Federal Energy Office
Mr. Thomas Gross, Staff Member, Office of Energy Conservation,
Room 4234, Columbia Plaza Bldg., Washington, D. C. 20461

1 Federal Power Commission
Dr. Charles Berg, Chief Engineer, Room 2100 825 North Capital
Street, N. E., Washington, D. C. 20426

1 USA Foreign Science and Technology Center
Commander, ATTN: AMXST-SD3, Mr. C. Petschke, 220 7th Street NE,
Charlottesville, Virginia 22961

National Academy of Sciences

1 Mr. Donald G. Groves, Staff Engineer, National Materials Advisory

Board, 2101 Constitution Avenue, N. W., Washington, D.C. 20418
National Aeronautics and Space Administration

2 Ms. Bolick, Goddard Space Flight Center, Greenbelt, Maryland 20771

1 Dr. G. C. Deutsch, Assistant Director of Research (Materials),
Code RR-1, NASA, Washington, D.C. 20546

1 Mr. James J. Gangler, Advanced Research and Technology Division,
Code RRM, Room B556, Headquarters, Washington, D.C. 20546

1 Mr. P. R. Miller, NASA Headquarters, Code RPD, 600 Independence
Avenue, S.W., Washington, D.C. 20546

1 Mr. Neil T. Saunders, Ch. Materials Application Branch,

Lewis Research Center, Cleveland, Ohio 44135
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7 NASA lLewis Research Center, 21000 Brookpark Road, Cleveland,
Ohio 44135
ATTN: Mr. W. Saunders Dr. S. K. Dutta
Dr. Hubert Probst Mr. C. Blankenship
Dr. Robert C. Bill Mr. M. Krasner

Mr. Donald Guentert

National Bureau of Standards
1 Dr. Robb Thomson, Senior Research Scientist, Room B109, Bldg. 225,
Washington, D.C. 20234

1 Dr. Duitald Vieth, Administration Bldg., Room A1002,
Washington, D.C. 20234

1 Dr. John B. Wachtman, Jr., Division Chief, Inorganic Materials Division,
Room A359, Materials Building, Washington, D.C. 20234

1 Dr. S. Wiederhorn, Physical Properties Section, Institute for
Materials Research, Washington, D.C. 20234

National Science Foundation
1 Dr. Raymond Bisplinghoff, Deputy Administrator, 1800 G. Street, N.W.,
Washington, D.C. 20550

1 Mr. R. Reynik, Director, Division of Materials Research, 1800 G. Street,
N. W., Washington, D.C. 20550

1 Dr. Leonard Topper, Office of Energy R & D Policy, Room 537, 1800 G.
Street, N. W., Washington, D.C. 20550

U. S. Naval Air Propulsion Test Center
1 Mr. Robert Benham, AEP-22, (AE), Philadelphia, Pennsylvania 19112

1 Mr. Joe Glotz, Department of the Navy, Trenton, New Jersey 08628
Naval Air Systems Command
1 Mr. Irving Machlin, High Temperature Materials Divsion, Materia’s
and Processes Branch, (NAIR-52031D), Department of the Navy,
Washington, D.C. 20360
1 Mr. Charles F. Bersch, Department of the Navy, Washington, D.C. 20360
Office of Naval Research

1 Dr. A. M. Diness, Metallurgy Branch, Code 471, 800 N. Quincy Street,
Arlington, Virginia 22217
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1 Mr. Keith Ellingsworth, Power Program, Arlington, Virginia 22217
1 Mr. R. Rice, Washington, D.C. 20390
Naval Ships Engineering
1 Mr. John Fairbanks, Prince George Center, Hyattsville, Maryland 20782
Naval Ships Research and Developmeat Center
1 Mr. George A. Wacker, Head Metal Physics Branch, Annapolis,
Maryland 21402, ATTN: Code 2812
1 Mr. W. Wheatfall, Code 2812, Annapolis, Maryland 21402
Naval Ship Systems Command Headquarters
1 Mr. Roy Peterson, Chief, Pollution Abatement and Gas Turbine Research,
Ship Research and Technology Division, 2531 Jefferson Davis Highway,
Arlington, Virginia 20362
Naval Underwater System Center
1 Mr. John Miguel, Newport, Rhode Island
Naval Weapons Center
1 Dr. W. Thielbaln, Code 4061, China Lake, California 93555
2 Dr. James I. Bryant, Office of the Chief of Research, Development
and Acquisition, ATTN: DAMA-CSS, the Pentagon, Washington, D.cC. 20310
1 Mr. Tyler Port, Special Assistant, OASA, (I&L), Room 3E620, Pentagon,

Washington, D.C. 20301
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1 Aerojet Liquid Rocket Company
Mr. O. I. Ford, Technical Manager, Combustor Systems,
P. O. Box 18222, Sacramento, California 95813

1 The Aerospace Corporation
Mr. Donald Lapades, P. O. Box 92957,
Los Angeles, California 90009

AiResearch Manufacturing Company
1 Dr. Robert F. Kirby, Materials Engineering Dept. 93-393M,
Sky Harbor Airport, 402 South 36th Street, Phoenix, Arizona &5034

1 Mr. Mc(Coy, Materials Engineering, Dept. 93-393M, 402 South
36th Street, Phoenix, Arizona 85034

1 Supervisor, Propulsion Engine Advanced Technology Dept., 93-12M
Sky Harbor Airport, 402 South 36th Street, Phoenix, Arizona 85034

1 Mr. Dennis W. Swain, Department 93-19M,
P. O. Box 5217, Phoenix, Arizona 85010

1 American Lava Corporation
Dr. J. T. Bailey, Chattanoga, Tennessee 37405

1 Arthur D. Little, Incorporated
Mr. D. William Iee, Accrn Park, Cambridge, Massachusetts 02140

Avco Corporation
1 Mr. Louis J. Fiedler, Materials and Process Technology Lab.,
550 S. Main Street, Stratford, Connecticut 06497

1 Dr. T. Vasilos, Applied Technology Division, Lowell Industrial
Park, Lowell, Massachusetts 01851

1 Babcock and Wilcox
Dr. A. W. Illyn, Technical Director, Refractories Division,
Old Savannah Road, Augusta, Georgia 30903

Battelle Colimbus Laboratories
1 Mr. Winston Duckworth and Mr. Lewis E. Hulbert,
505 King Avenue, Columbus, Ohio 43201

1 Mr. James Lynch, Metals and Ceramics Information Center,
505 King Avenue, Columbus, Ohio 43201
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Battelle Memorial Institute
1 Mr. William Combs, 2030 M Street N.W.
Washington, D.C. 20036
1 Metals and Ceramics Information Center, 505 King Avenue,
Columbus, Ohio 43201
Bell Aecrospace Company
1 Dr. Wilfred H. Dukes, Assistant Director Engineering for
Development, P.O. Box 29307, New Orleans, l.ouisiana 70189
Bell Aerospace Company
1 Mr. A. E. Lesch, Manager, Process Development Eungineering,
Mail Zone C-33, P. O. Box 1, Buffalo, New York 14240
1 Mi. Nelson R. Roth, P.O. Box #1, Department V70,
Buffalo, New York 14240
1 Cabot Corporation
Mr. S. T. Wlodek, Stellite Division, 1020 West Park Avenue,
Kokomo, Indiana 46901
The Carborundum Company
1 Dr. John A. Coppola, Project Manager, Research and Development
Division, Niagara F-lls, New York 14302
1 Mr. C. H. McMurty, Project Manager, Research and Development
Division, Niagara Falls, New York 14302
1 Caterpillar Tractor Company
Mr. A. R. Canady, Technical Center, Building F,
Peoria, Illinois 61602
1 Ceradyne Incorporated
Mr. J. A. Rubin, President, P.O. Box 11030, 3030 South Red
Hill Avenue, Santa Ana, California 92705
1 Ceramic Finishing Company
Dr. H. P. Kirchner, P. O. Box 498, State College,
Pennsylvania 16801
1 Ceramic Systems Incorporated
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Chrysler Corporation
1 Mr. C. E. Wagner, Senior Research Staff Engineer,
CIMS: 418-37-18, P. O. Box 1118, Detroit, Michigan 48231

1 Mr. Philip J. Willson, Chemical Research, Box 1118, )
CIMS: 418-19~18, Detroit, Michigan 48231 ‘
1 Colt Industries

Mr. E. J. Dulis, President, Materials Research Center,
Box 88, Pittsburgh, Pennsylvania 15230

1 Coors Porcelain Company
Research Department, 17750 West 32nd Avenue,
Golden, Colorado 80401

1 Corning Glass Works
Mr. John C. Lanning, Manager, Erwin Plant, Advanced Engine
Components Department, Corning, New York 14830

1 Creare Incorporated
Ms. Sharon Wright, Technical Library, Hanover,
New Hampshire 03755

1 Curtis-Wright Corporation
Mr. S. Walosin, One Passaic Street, Woodridge, New Jersey 07075

2 Cummins Engine Company, Incorporated
Mr. R. Kano, Mr. K. J. Mather, Columbus, Indiana 47201

e - R Gk

1 Deposits and Composites, Incorporated 3
Mr. Richard E. Engdahl, 1821 Michael Faraday Drive, i
Reston, Virginia 22090

Dow Corning Corporation
1 Mr. G. Kookootsedes, Market Development, Resins and Chemicals,
Midland, Michigan 48640

1 Mr. Donald E. Weyer, Midland, Michigan 48640
1 Eagle-Picher Industries

Mr. J. J. Stiglich, 200 9th Avenue N.E.
Miami, Oklahoma 74354
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Eaton Corporation
Mr. William E. Gurwell, Research Center
26201 Northwestern Highway, Southfield, Michigan 48076

EF Industries, Incorporated
Mr. J. D. Mote, 1301 Courtesy Road
Touisville, Colorado 80027

Electric Power Research Institute
Dr. Richard E. Balzhiser,
P. O. Box 10412, 3412 Hillview Avenue
Palo Alto, California 94304

Dr. Arthur Cohn, P.O. Box 10412,
3412 Hillview Avenue, Palo Alto, California 94304

Energy Research Corporation
Bethel, Connecticut 06801

Esso Research and Engineering Company
Dr. John V. Milewski, Government Research Laboratory,
P. O. Box 8, Linden, New Jersey 07036

Ferro Corporation
Mr. Y. Baskin, Manager Inorganic Chemical Research,
Technical Center, 7500 East Pleasant Valley Road,
Independence, Ohio 44131

Fiber Materials
Mr. Paul F., Jahn, Vice President, Broadway and Main Street,
Graniteville, Massachusetts 01829

Garrett Corporation
Mr. H. R. Schelp, 9851 Sepulveda Boulevard,
Los Angeles, California 90009

Gas Turbine International
Mr. Jack W. Sawyer, 4519 Eighteen Street North
Arlington, Virginia 22207

Gas Turbine World
Mr. Victor de Biasi, Editor, P. O. Box 494,
Southport, Connecticut 06490
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General Atomics Corporation
1 Mr. N. B. Elsner, Box 81608, San Diego, California 92138
1 Mr. Karl Koyama, Box 81608, San Diego, California 92138
1 Dr. Robert K. Thomas, FA4-4, Reactor Engineering,

P. O. Box 81608, San Diego, California 92138

General Electric
1 Dr. C. A. Bruch, Manager, Advanced Studies, Aircraft Engine
Group, Cincinnati, Ohio 45215

1 Dr. J. E. Burke, Corporate Research and Development,
P. O. Box 8, Schenectady, New York 12301

1 Dr. H. von E., D»ering, Manager, Fuels/Corrosion Unit,
Gas Turbine Products Division, Building 53-311, Schenectady,
New York 12345

1 Dr. Soloman Musikant, Manager, Metallurgy and Ceramics Lab
General Electric Valley Forge, Valley I'orge, Pennsylvania

1 Dr. Michael J. Noone, Space Sciences Laboratory, Box 8555,
Philadelphia, Pennsylvania 19161

1 Mr. Arthur L. Ross, Valley Forge Space Center, P. O. Box 8555,
Philadelphia, Pennsylvania 19101

1 Mr. Chester T. Sims, Manager, Advanced Materials, Gas Turbine
Products Division., Schenectady, New York 12301

General Motors Corporation
1 Dr. Morris Berg, AC Spark Plug Division, TFlint, Michigan 48556

1 Dr. John §. Tollman, Head, Power Systems Development,
Research waboratories, Warren, Michigan 48090

1 Dr. Robert W. Gibson, Jr., Head, Library Department
GM Technical Center, Warren, Michigan 48090

1 Mr. M. Herman, Detroit Diesel Allison Division, Indianapolis
Operations, P. O. Box 894, Indianapolis, Indiana 46206
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Mr. Michael E. Naylor, General Motors Technical Divsion,
Passenger Car Turbine Division, Warren, Michigan 48090

Mr. O. Prachar, Passenger Car Turbine Department, Engineering
Staff, General Motors Technical Center, Warren, Michigan 48090

Dr. Edward Reynolds, General Motors Technical Center, Passenger
Car Turbine Division, Warren, Michigan 48090

GTE Sylvania
Dr. Richard Kliener, Tonawanda, Pennsylvania 18848

Dr. William H. Rhodes, GTE Laboratories, Waltham Research Center,
40 Sylvan Road, Waltham, Massachusetts 02154

Howmet Corporation
Mr. vm. R. Freeman, Jr., Vice President and Technical Director, ¢
Superalloy Group, One Misco Drive, Whitehall, Michigan 47461

Industrial Materials Technology
Dr. Robert Widmer, President, 19 Whe«ling Avenue,
Woburn, Massachusetts

Institut fur Werkstoif-Forshung
Dr. W. Bunk, DFVLR, 505 Porz-Wahn, Linder Hohe, Germany

International Harvester Company
Mr. A. R. Stetson, Chief, Process Research Laboratories, Mail
Zone R-1, Solar Division of Int. Harvester Company, 2200 Pacific
Highway, San Diego, California 92112

Mr. M. J. Klein, Research Staff Specialist, Mail Zone R-1,
Solar Division of International Harvester, 2200 Pacific Highway,
P. O. Box 80966, San Diego, California 92138

The International Nickel Company, Incorporated
Mr. Gaylor D. Smith, 1 New York Plaza, New York, New York 10004

Kawecki-Berylco Industries, Incorporated
Mr. E. Laich, Mr. R. J. Longenecker, P. O. Box 1462, Reading,
Pennsylvania 19603

Kaman Sciences Corporation
Mr. William D. Long, Manager, Product Development, K-Ramics,
Garden of the Gods Road, Colorado Springs, Colorado 80907 -
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Lawrence Livermore Laboratory
1 Mr. C. F. Cline, L-503, Box 808, Livermore, California 94550
1 Dr. Michael Guinan, B. Div./L-24, P.O. Box 808, Livermore,
California 94550
1 Dr. Mark Wilkins, B Div./L-24, P. O. Box 808, Livermore,
California 94500
1 Lawrence Radiation Laboratory
Mr. R. L. Lormand, P. O. Box 808, Livermore, California 94550
1 Manlabs, Incorporated
Dr. L. Kaufman, Project Director, 21 Erie Street, Cambridge,
Massachusetts 02139
1 Materials Consultants, Incorporated
Dr. Jerry Plunkett, President, 2150 Souch Josephine Street
Denver, Colorado 80210
1 Materials Research and Computer Simulation
Mr. William Oldfield, 634 Berkeley Place, Westerville, Ohio 43081
1 Materials Science Corporation
Technical Library, Blue Bell Office Campus, Merion Towle
Building, Blue BRell, Pennsylvania 19422
1 Mechanical Technology, Incorporated
Mr. D. W. McLaughlin, Research and Development Division,
968 Albany-Shaker Road, Latham, New York 12110
1 National Beryllia Corporation
Dr. Peter L. Fleischner, Haskell, New Jersey 07420
1 Northern Research and Engineering Corporation
Ms. Raynas Lee Caplan, Librarian, 219 Vassar Street,
Cambridge, Massachusetts 02139
Norton Company
1 Mr. M. Blake, One New Bond Street, Worcester,
Massachusetts 01606
1 Mr. E. W. Hauck, Market Manager, Engine Components, One New

Bond Street, Worcester, Massachusetts 01606
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Mr. M. L. Torti, One New Bond Street, Worcester, Massachusetts 01606

Owens~-Corning Fiberglass Corporation
Mr. P. E. McConnell, Technical Center, Granville, Ohio 43023

Owens Illinois Glass
Mr. L. M. Donley, 1900 North Westwood Avenue, Toledo, Ohio 43601

Mr. Y. K. Pei, 1020 North Westwood Avenue, Toledo, Ohio 43607

PPG Industries, Incorporated
Mrs. Jane Bookmyer, Information Services Division, P, O, Box 11472
Pittsburgh, Pennsylvania 15238

Mr. F. G. Stroke, Asst. Manager Market Development, 1 Gateway
Center, Pittsburgh, Pennsylvania 15222

Pratt and Whitney Corporation
Mr. James F. Holloway, Materials Project Engineer, 400 Ma‘n Street,
E. Hartford, Connecticut 06108

Mr. M. Allen Magid, Materials Marketing Engineer, Florida R & D Center
P. O. Box 2691, West Palm Beach, Florida 33402

Mr. Francis L. VerSnyder, Manager, Materials Engineering and Research
Lab, 400 Main Street, E. Hartford, Connecticut 06108

Program Development Consultant
Dr. Robert A. Harmon, 25 Schalren Drive, Latham, New York 12110

The Rand Corporation
Dr. Eugene C. Gritton, Physical Sciences Department, 1700 Main
Street, Santa Monica, California 90406

Raytheon Company
Ms. Madaleine Bennett, Librarian, Research Division Library,
Foundry Avenue, Waltham, Massachusetts 02154

Raytheon Company
Dr. Stanley Waugh, Research Division, 28 Seyon Street, Waltham,
Massachusetts 02154

R. I. A, S.
Mrs. R. J. Benacquista, 3808 Acosta Road, Fairfax, Virginia 22030
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Rockwell International Corporation
1 Mr. F. E. Krainess, D/391-204 AB70, 12214 Lakewood Boulevard,
Downey, California 90241

1 Dr. Don Thompson, Science Center, 1049 Camino Dos Rios, Thousand
Oaks, California 91360

1 Rohr Industries, Incorporated
Mr. Joseph Simpson, Technical Library, P. O. Box 1516,
Chula Vista, California 92012

1 SKF Industries, Incorporated
Warren Jameson and Harish Dalal, Engineering and Research
Center, 1100 1st Avenue, King of Prussia, Pennsylvania 19406

1 Southern Research Institute
Mr. H. Stuart Starrett, Head, Mechanics Section, 2000 Ninth Avenue
South, Birmingham, Alabama 35205

i Special Metals Corporation
Mr. Willard H. Sutton, Manager, Cer amics Projects, New Hartford,
New York 13413

1 Stackpole Carbon Company
Mr. P. W. Parsons, Manager, Commercial Research Department,
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ABSTRACT

A\l

) b The demonstration of unéooled brittle materials in structural applications at
2500°F is the objective of the "Brittle Materials Design, High Temperature Gas
Turbine"’program. Koxd Motor Cempaky, ihe contractor, will utilize a small vehic-
ular gas turbine comprising an entire ceramic hot flow path including the highly
stressed turbine rotors. Westingheuse; the subcontractor, originally planned to
evaluate ceramic first stage stator vanes in an actual 30 MW test turbine engine;
however, this objective was reviced to demonstrate ceramic stator vanes in a
static test rig. Both companies had in-house research programs in thir area prior
to this contract.

In the stationary gas turbine project, the testl/ f ceramic stator vanes in a
static rig for 100 cycles up to temperatures of 2500°F has been completed. This
accomplishment meets the revised objectives for the stationary turbine project
and therefore, this project is completed as of the end of this reporting period. The
report of the last six months progress will be included in the final report for the
project and puklished separately.

A significant achievement, inthe ve: icular turbine project, was the test of a
partially bladed duo-density silicon nitride turbine rotor in an experimental high
temperature gas turbine engine up to a speed of 52, 800 rpm and turbine inlet temper-
ature of 26500F before failure on a subsequent run. A modification of the ceramic hot
gas flow path of the 820 turbine engine to accomplish this test is described in detail.
Two rotors, with blades of 107 length, wecre successfully tested for 45 minutes at
32,000 rpm and 2000°F turbine inlet temperature. Rotor testing capability at
elevated temperatures was initiated in two hot spin rigs which were checked out
with six available ceramic rotors. Cold spin test results of nine hot pressed
silicon nitride rotor hubs correlated well with analytical predictions based on
Weibull MOR data from 140 test bars cut from five additional hubs. Tcsting of the
stationary components continued with a "Refel" silicon carbide combustor tube
successfully accumulating over 200 hours in the steady-state test rig, equivalent
to the prescribed 200 hour engine duty cycle goal. Twenty-six hours and 40 min-
utes of this testing was at 2 turbine inlet temperature of 2500°F. Three addition-
al thin wall combustor tubes have becn successfully qualified for further engine or
rig testing. Seven monolithic silicon nitride stators of 2.55 g/cc density and a
rotor tip shroud successfully passed an improved qualification light-off test. A
reaction bonded silicon carbide stator accumulated 147 hours of operation at 1930°F
and remains crack free. Testing of stationary components at turbine inlet tcmpera-
tures up to 2500°F continucd with over nine hours of test time accumulated without
failures.

An important fabrication dcvelopment to make duo-density turbine rotors in
three pieces was conccived and demonstrated a significant reduction of applied
loads during hot press bonding gererally eliminating blade and rim cracking.
Alignment of the hot press rams and furnace was completed in addition to eliminat-
ing base plate creep by utilizing hot pressed silicon carbide base plates. During
the coursc of process development approximately 500 design D' blade rings of 2.7
g/cc (ensity were injection molded, twelve were flaw free after nitriding. A number
of additional desired mechanical and process changes were identificd to improve the
yield of flaw free blade rings. The development of the blade fill operation was com-
pleted with the optimization of thc slip casting fixtures and processes coupled with
a laser removal technique.
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Modulus of Rupture tests were conducted on 274 specimens of hot pressed
silicon nitride to investigate the effects of surface finish, post machining heat treat-
ments and process variations. MOR tests on 155 bars of 2.7 g/cc density injection
molded reaction sintered silicon nitride were completed to determine room and
elevated temperature strengths. Bending stress rupture tests on 15 specimens re-
sulted in no time dependent failures for this material up to 2200°F. Twelve of the
tests were suspended, without failure, after 200 plus hours at stresses of 20-30 ksi
and temperatures of 1900-2200°F. The nitridation of silicon compacts of various
densities was investigated for the effects of temperature schedule, atmosphere and
furnace load. The key to uniform microstructure, fine porosity and associated high
strengths is the control of localized nitriding exotherms so that no silicon melt out
occurs.
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