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ABSTRACT 

A method for computing three-dimensional flow over an ogival body at angle of 
attack is described. An approximate set of governing equations is derived for 
viscous flows which have a primary flow direction. The derivation is done in a 
coordinate independent manner, and the resulting equations are expressed in terms 
of tensors. In keeping with the inherent generality of the tensor formulation, a 
two-level second-order accurate marching procedure is derived for general tensor- 
like equations. With this procedure, a three-diiEMsional turbulent flow can be 
solved in any coordinate system by marching along the assumed primary flow direction. 
General tube-like coordinates are developed for a class of geometries applicable 
to flows between tubular surfaces. The coordinates are then particularized to the 
flow field bounded between an ogival body at angle of attack and its bow shock. 
Unlike the ogival body surface, the bow shock surface is not known in advance of the 
solution but instead must be computed as the solution develops. One marching step 
of the solution process is broken down into several steps. First, the bow shock 
surface is discretely extended by an iteration of explicit local solutions. The 
bow shock surface is then smoothly extended to provide a best fit to the discrete 
shock data. Tube-like coordinates are generated and finally the second order 
numerical scheme is applied to advance the fully viscous solution to the next 

station. / 
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A Method for Computing Three-Dimensional Viscous Flows 

Over an Ogival Body at Angle of Attack 

INTRODUCTION 

An important consideration in the design of supersonic missiles is the accurate 
prediction of both the pressure distribution and heat transfer loads about the body. 
Although the combination of inviscid flow theory and three-dimensional boundary 
layer theory may be adequate to predict the flows about ogival bodies at small 
angles of attack, these analyses used separately are inadequate at larger angles 
of attack. At larger angles of attack, a strong viscous-inviscid interaction occurs 
on the lee side of the body leading to the formation of a pair of vortices symmetric 
about the lee body generator and an accurate flow field prediction under these con- 
ditions requires a solution which considers the mutual interaction between the 
viscous layer and the nominally inviscid flow. Since increases in the body lift 
to drag ratio and in local heat transfer rate on the lee side of the body are 
associated with the formation of the vortices, an accurate method of predicting 
the lee side interacting flow field is necessary to insure both the effective 
operation and structural integrity of supersonic vehicles. 

Successful predictions of the flow about ogival bodies at angle of attack 
require an accurate flow model in which the strong viscous-inviscid coupling on the 
lee side of the vehicle at large angle of attack is modeled correctly. Boundary 
layer theory is not adequate to describe the development of viscous flow phenomena 
as coraplex as vortex rollup since the basic assumption that the boundary layer is 
thin compared to a typical body scale is invalid. Thus, a three-dimensional 
interacting boundary layer theory would be inadequate for description of the problem. 
Although a numerical solution to the full Navier-Stokes equations would provide a 
theory with the necessary generality to successfully predict such complex flows, 
the required computer time and storage indicate that three-dimensional Navier- 
Stokes solutions should be used only if no suitable alternative exists. An optimum 
analysis would possess the general three-dimensional nature of the Navier-Stokes 
equations but would not be limited by the large running time and storage require- 
ments associated with three-dimensional Navier-Stokes solutions. 

The problem of predicting the flow field about sharp nosed ogival bodies at 
incidence has been under investigation for the designer in his consideration of aero- 
dynamic forces and heating loads. At supersonic speeds the flow over ogival bodies 
at incidence may be thought of as having a component aligned with the free-stream 
flow direction, which is little affected by viscous forces, and cross flow com- 
ponents flowing around the body, which can, at large angles of attack, become 
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viscous dominated. This picture of ogival flow fields is borne out by various 
experimental investigations   (see  Refs. 1, 2, 3, and k).    These investigations 
have found that at zero angle of attack a symmetric flow field develops about the 
body, in which no cross flows exist. As the angle of attack is increased from 
zero, a cross flow pattern begins to develop proceeding from the windward symmetry 
plane toward the leeward symmetry plane. When the angle of attack becomes large 
enough, the cross flow adverse pressure gradient existing near the lee symmetry 
plane becomes sufficiently strong and the cross flow separates, leading to the 
development of a pair of vortices symmetric about the lee symmetry plane as depicted 
in Fig. 1. These vortices may or may not have imbedded shocks associated with 
them. The flow as depicted in Fig. 1 has been verified fox both laminar and tur- 
bulent flows for speeds in the supersonic and hypersonic regimes. The available 
experimental data indicates that flow separation (reversal) in the axial direction 

usually is not associated with the vortex development. 

The majority of previous attempts to predict flows of this type may be cate- 
gorized as either solutions of the inviscid flow equations or solutions to the 
three-dijnensional boundary layer equations. Even with the simplifying assumptions 
of these two approaches the equations must still be solved numericfJJy. Further- 
more, most previous investigations have been limited to the problem of flow over 
conical bodies in which axial invariance is assumed in order to eliminate deriva- 
tives in the direction of the cone axis. Such analyses cannot be used to analyze 
general body shapes or to accurately predict the development of the lee side vortices. 

The most common inviscid procedure currently in use involves numerical solution 
of the time-dependent inviscid flow equations. The steady inviscid flow solution is 
approached asymptotically for large values of time. The solutions of Moretti 
(Refs. 5 and 6) are examples of this type of approach. Other available inviscid 
techniques include the inverse method (Ref. 7) and the method of integral relations 
(Ref. 8). MacCormack and Warning (Ref. 9) have recently surveyed the available 
inviscid computational procedures. An obvious disadvantage of a purely inviscid 
solution to this problem is the failure to account for viscous effects. Viscous 
forces may be accounted for, however, by making use of the inviscid pressure distri- 
bution to solve the three-dimensional boundary layer equations (see Ref. 10). 
This procedure can give accurate predictions of ogival flow fields provided the 
angle of attack is small enough to prevent cross flow separation and hence does not 
permit lee side vortices. However, the small angle of attack constraint places a 

severe restriction on the boundary layer type procedures. 

Because of their complexity, and particularly the interaction which occurs 
between primary and secondary flows and viscous and inviscid regions, three-dimen- 
sional flows over ogival bodies at nontrivial angles of attack have been extremely 
difficult to analyze. There are considerable difficulties associated with the 
synthesis of inviscid flow analysis and boundary layer theory into a cohesive method 
of analysis. Among these difficulties are the lack of applicability of 
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three-dimensional boundary layer theory, a means for patching or interfacing bound- 
ary layer and rotational inviscid flow regions, and the treatment of interaction 

between viscous and inviscid flow regions. 

In efforts to develop methods for dealing with problems of this type, Patankar 
& Spalding (Ref. 11), Caretto, Curr, & Spalding (Ref. 12), and Briley (Ref. 13) 
devised numerical methods for solving approximate governing equations which are a 
more or less natural generalization of three-dimensional boundary layer theory. In 
these studies, solutions were computed for laminar incompressible flow in straight 
ducts with rectangular cross sections. The governing equations were solved by inte- 
grating in a primary flow coordinate direction while retaining viscous stresses in 
both transverse coordinate directions as opposed to only one direction for three- 
dimensional boundary layer theory. In addition, certain assumptions were made about 
the behavior of pressure gradient terms for incompressible flow to permit solution 
by forward marching integration. Subsequently, this general approach has been used 
to compute laminar incompressible flow in helical tubes by Patahfcar, Pratap, & 
Spalding (Ref. Ik),    A predictor/corrector solution procedure has been developed by 
Lin and Rubin (Refs. 15 and 16) to solve the parabolized three dimensional compres- 

sible Navier Stokes equations. The numerical technique is implicit in one transverse 
direction and iterative in the other. Helliwell andLubard (Ref. 17), Rakich andLubard 

(Ref. l8),.and Lin and Rubin (Ref. 16) have applied this method to the problem of 
flow over both sharp and spherically blunted cones at angle of attack. 

Recently in companion studies, Briley & McDonald (Ref. 19) and McDonald & Briley 
(Ref. 20) have developed stable and efficient noniterative implicit numerical tech- 
niques for application to systems of coupled nonlinear multidimensional nonelliptic 
equations. These general techniques were applied by McDonald & Briley (Ref. 20) to 
the computation by forward marching integration of laminar supersonic flow in rec- 
tangular jets. Subsequently, the laminar incompressible straight-duct analysis of 
Briley (Ref. 13) and the improved numerical techniques of McDonald & Briley (Ref. 20) 
for compressible flows were extended and synthesized by Briley & McDonald (Ref. 21) 
and Eiseman, McDonald, and Briley (Ref. 22) into a method for computing subsonic 
turbulent flow in curved ducts. The present study represents a further generali- 
zation of the latter method, to encompass general coordinates and highly complex 

geometries. 

In the ogival body problem the basic geometry is determined by both the ogival body it- 
self and by the bow shock propagated from the tip of the body. Unlike the body shape, the bow 
shock is not known in advance, but must determined as part of the solution. Since the region 
neares b the shock is dominated by convective forces, and the r'aock is treated as a discontin- 
uity, it is quite sufficient to perform a local inviscid analysis in that region; and, thereby, 
to determine the shock location one step in advance of the fully viscous solution which is 
beingmarched along the axis of the ogival body. The shock location is calculated numer- 
ically in terms of local extensions of the existing coordinate system. In this way 
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each new point of shock location Cd.n be explicitly computed independent of 
neighboring transverse points; and, hence, remove any need to construct a poten- 
tially costly global coordinate extension which would utlimately be discarded. 
Specifically, for each new shock point we have a disti. ctly tailored coordinate 
system which is an extension of the previous coordinate system that encoir.passes 
only the explicit difference molecule for the point in question. A distinct advan- 
tage here is that the metric data necessary to write the appropriate equations 
must only be determined at the shock point in question since the metric data at 
the explicit level is already in storage from the previous step. After the shock 
data has been determined one is left with a loop of points one station ahead of a 
smooth shock surface. The problem now is to extend the shock surface in a suffi- 
ciently smooth and uniform manner so that suitable coordinates can be generated 
for the advancement of the fully viscous solution to the same axial location of the 
Just completed shock calculation. The loop of shock points may lack a certain amount 
of uniformity by having oscillations in curvature if a strict interpolation were to 
be performed. The lack of uniformity can easily arise from the numerical nature of the 
calculation. Thus a least,-squares spline procedure is employed to remove the noisy 
oscillations of the data and to produce a loop which is smooth enough to possess 
continuous third derivatives (needed for a viscous calculation) and uniform enough 
to have curvature which reflects the global structure of the shock surface. At 
this point one has a well-defined loop in front of a well-defined surface. The sur- 
face is now easily extended in a patchwise fashion by smoothly joining polynominal 
surface elements. From here the coordinates are generated by a linear deformation 
of the ogival body surface into the bow shock surface. The rate of deformation is 
controlled by a choice of the linear deforming parameter. This parameter is con- 
strained to monotonically and smoothly vary from zero to unity. As this variation occurs, a 

family of coordinate surfaces is generated from the ogival body to the bow shock. 
When the parameter is chosen to be a function of only the deforming direction, the 
deformation is uniform over the body surface. This is ideal for global resolutions 
over or within an object. If, in addition, the deformation parameter should also 
depend upon surface location, then local resolutions would be possible. In the 
ogival body problem, however, the global resolutions are sufficient to adequately 
resolve the large velocity gradients associated with the attached boundary layer. 

Throughout the discussion to follow the material will be ordered from the more 
general to the more specific. In so doing one has more flexibility and generality 
at hand to apply to the ogival body problem. Thus it is best to start off with a 
discussion on the rationale behind the use of curvilinear coordinate systems for 
fluid dynamic problems. While the application of various coordinate systems is not a 
new idea, the coordinate independent concept associated with analyses based upon 
the metric tensor is of greater utility.  The metric tensor, as developed in the 
initial discussion, is used to compare coordinate systems of varying degrees of 
generality. In the next section use is made of the metric tensor to obtain a tensor 
(coordinate independent) form of the Navier-Stokes Equations which are tnen approxi- 
mated to produce an initial value problem. The approximation is obtained from a 

i 

5. 
üjjjüiai 



w%!><w!m?-w$!m&We"&?&ls*W 

mmummmmKmmm 

P.76-91202U-8 

neglect of viscous stresses, and henc; diffusion, in an assvmed primary flow direction. 
The approximation can be viewed as a generalization of boundary layer theory. The 
primary flow direction is assumed to be given by some smooth vector field. Since 
the specification of any vector field is independent of coordinates, the approxi- 
mation of the tensor form of the Navier-Stokes equations is also independent of 
coordinates. As a matter of convenience, however, the primary vector field is    ^ 
often chosen to be the vector field associated with a given coordinate direction 
of a given system of coordinates. For the ogival body problem this is done. To 
maintain the generality of the discussion one next considers the general numerier" 
method rather than the details of coordinate genoration. This is consistent with 
this general methodology since the computer code is constructed in a modular fashion 
in terms of the metric data. After this discussion one considers the construction 
of coordinates that are suitable for the ogival body problems; however, some gen- 
erality is still maintained by considering coordinate systems that are generated 
from any two concentric tubes. The metric data is then obtained so that the 
arbitrary two tube problem is fully specified once the tubes are specified. In 
the present study the inner tube is taken to be the ogival body and the outer tube 
is taken to be the bow shock. One finally considers the numerical generation of 
bow shock data, and the use of that data to suitably extend the bow shock surface 
so that a well-defined outer tube is specified. 

. 
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THE METRIC TENSOR AND ITS RELATIONSHIP TO SYSTEMS OF COORDINATES 

The governing equations for a viscous fluid will be expressed and approximated in 
generalized coordinates.    Like any physical process, the dynamics of a fluid is inde- 
pendent of coordinates; and is, therefore, describable in terms of arbitrary coordinates. 
The practical implication of this coordinate independence is that the analyst has the 
freedom to select coordinate systems which are easy to construct and which simplify 
the solution process. 

In the numerical solution of fluid dynamic problems there are many advantages to 
be gained by judicious choice of coordinates.    The most obvious advantage is that the 
physical boundaries of a flow region can be represented by coordinate surfaces.   This 
removes the need for fractional cells and hence removes the complications 
and loss of accuracy associated with an interpolation algorithms for the boundaries. 
Another advantage in the use of generalized coordinates is that a uniform numerical 
method can be used.    The solution can then be performed with a fixed number of cells 
in any given direction and with a unifom mesh spacing.    The result is a simplification 
of the computer logic; and hence, a savings in time for both the computer and the 
programmer.      Vor the ADI method of solution that we use, the one-dimensional rows 
and columns each have fixed lengths;  and hence, we are not faced with the corabinatorical 
problem of monitoring the lengths of rows and colimns which would otherwise be caused 
by geometric changes in the boundaries.    In addition to the above there is the advantage 
of an implicit mesh distribution.    The uniform mesh of computational space is simply 
mapped into an appropriately distributed mesh in physical space.    Thus, the coordinate 
transformation can be chosen to contain the distributional information as well as the 
boundary specifications.    The resolution of a rapidly changing  solution is the major 
objective in selection of a coordinate mesh distribution.    A classical example is the 
resolution of attached boundary layers where the solution is known to have large 
velocity gradients.    Another more subtle example is the resolution of large gradients 
in computational coordinates due to regions of high curvature on the bounding surfaces. 
When the transformation contains the distributional information there is no need to 
construct the apparatus for the discrete approximation of derivatives on a nonumform 
mesh.    This is a savings in both computer logic and storage.    With a different motivation, 
however, it may be desired to automate the difference molecule so that the numerical 
technique can be changed with a few parameters.    Changes, in practice, usually amount 
to a selection between forward,  backward or central differences.    For any given direction 
we need three parameters for first derivatives and three parameters for second derivatives. 
Thus,  even with such an automation of the numerical method we save on computer logic 
and storage.    Specifically, for an ADI direction of length N we need only 12 parameters 
as opposed to 6N parameters for nonuniform meshes.    The extra 6 parameters are for the 
boundary molecules.    A further advantage is that for a given problem we can select 
coordinates from a large class of coordinate system..    In the process of sorting through 
the various possible coordinate systems we are guided by two criteria.    First, the new 
coordinates must lead to a real simplification; and secondly, the coordinates must be 

1 

• ■■! ^■'■tritiMMW ^iiinr----     -■     .■>-■. ^■^—,^..^ - -.■> .   - -     ■   -^  ■■-.„...-.       11 M ■ ■ iiMilinlf' 



• "W^W-'^.<I*«S!5!^.^W 

R76-91202U-8 

easily generated.    Since bounding surfaces usually become coordinate surfaces the 
first criterion is directly measured by consideration of the metric tensor (gi;j) which 
is obtained from the expression for the fundamental element of arc length 

(ds)2 = gij dy1 <JyJ (1) 

to 

Specifically, an increase in the number of nontrivial elements in the expression of the 
metric tensor is accompanied by a corresponding increase in the number of terms in the 
equations of motion.    The result is an increase in the computational work that is 
needed after the coordinates have been generated along with the necessary metric data. 
The second criterion, unlike the first, is most often neglected.   The unfortunate 
result is that there is often more work involved in making the coordinates than in 
solving the original problem with a less efficient satisfaction of the first criterion. 
In fact, both of the criteria above usually are at opposite polarities in complexity. 
The prudent selection of coordinates is then a balance between these criteria. 

Our criteria for selecting a suitable system of coordinates can be used to 
compare the various classes of coordinate systems and to evaluate the relative 
u-vility of each.   We will start with conformal transformations and continually enlarge 
the class until we obtain general noncrthogonal coordinates. 

For conformal transformations the metric tensor is simply given by a scalar 
multiple of the Identity.    That is, g^  - h(y) 6^ where the kronecker symbol 6^ 
vanishes unless 1 = J in which case itJiF unity.   From this expression it Is easy 

show that h = (J2)1/" where J is the Jacob? in of the n-dlmensional conformal trans- 
formation.    The simplicity of the metric leads to very simple equations of motion at 
the expense of greatly restricting the class of easily obtained transformations. 
These transformations are generally obtained by the solution of partial differential 
equations which may in Itself be costly.    In addition, the control over the mesh 
distributions is indirect at best.    In two dimensions, however, confomal trans- 
formations have been successfully used on many occasions.    Here the metric Is given 
by gn = kl  644, and the theory of functions of one complex variable is a powerful 
tool that is at^our disposal.    When the boundaries of the flow region can be matched 
with well-known conformal transformations there is nothing that can effectively compete 
with this way of generating coordinates.    We have simply optimized on the generation 
of the equations of motion and on their solution process for any given method of 
solution.    In a number of cases boundaries can be matched through a sequence of well- 
known transformations.    However, in most cases of practical importance the boundaries 
are too complicated; and consequently, cannot be simply defined as desired. 

When conformal mappings become overly difficult to construct, it is best to 
consider the slightly larger class of orthogonal transformations.    For orthogonal 
transformations the metric tensor is given by the diagonal form g^ = [^(y)]    ^y 

ieak^a^a^^ ^.^^^^M^ä^äm 
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Note that, unlike the conformal transformations, the diagonal entries of the metric 
can be different.    The deviation from conformality can now easily be measured by an 
examination of the ratios of the functions h^.   To see why this is so we need an 
explicit geometric interpretation of the metric.    For a position vector field x, the 
vector field ^ = Ox/ay1   is the natural tangenj vector field along coordinate curves 
generated by holding the remaining coordinates y ,..., jr"  , y1* ,..., y11 constant. 
It is ofben common practice to use the op^-ator notation where the position vector 
field is omitted.    By an application of the chain rule, the fundamental element of 
arc length can be expanded as 

i 

P 

(ds)2 = ä'M = (^ 
dy ^Mfl^) • IV || ^ * ^W ****** (2) 

and hence, by linear independence g±* = e^e,.   Now note that we have an orthogonal 
metric if and only if the % and e. are perpendicular when i + J.    But perpendicularity 
of % and ej at a point is equivalent to the perpendicular crossing of the associated 
coordinate curves at the point in question.    Consequently our intuitive notion of 
orthogonalllty in terms of coordinate curves is equivalent to the metric expression 
above.    In addition the functions hj^ are easily seen to be equal to the lengths of 
the corresponding natural tangent vectors %.    In a small neighborhood of a point 
the functions^ are nearly equal to their values at the point and thus, the measurement 
of distance along coordinate curves is very nearly given by distance measurements along 
the respective vectors % in the tangent plane at the point in question.   When the 
functions h^  are all equal, the distance measurement in the tangent plane is merely a 
uniform dilation or contraction of the original cartesian system.    Thus, length ratios 
and, hence, angles are preserved between the cartesian system and the tangent plane. 
But'the projection of tangent vectors onto the curvilinear system preserves angles. 
Hence, with equal diagonal entries the transformation preserves angles and is, therefore; 
called conformal.    Consequently, as the ratios of the hj deviate from unity, the 
transformation smoothly deviates from conformalllty.   With fewer constraints on the 
metric the selection of coordinates from the class of orthogonal transformations is 
slightly less restrictive than a selection from the class of conformal transformations. 
The process of coordinate generation is usually accomplished by geometric methods which 
result in a system of differential equations.    The solution of these equations is often 
too costly to reasonably perform just to obtain coordinates.    In addition, it may be 
difficult or even impossible to properly distribute mesh points and still perserve 

orthogonalllty. 

General nonorthogonal coordinates are often to be preferred since the mesh dis- 
tributions can be controlled and since the coordinates are considerably easier to 
generate.    The construction process is entirely geometric and generally does not rely 
on the solution of differential equations.    Furthermore, points can be essentially 
distributed at will.    Mesh distribution functions can often be directly Inserted into 
the transformation in a manner which directly distributes the points.    The considerable^ 
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improvement in flexibility associated with the class of general spacial coordinates 
does come with a small price. Specifically, the metric tensor has generally non- 
trivial off diagonal elements. As with the difference between orthogonal and 
conformal coordinates, the deviation of the general nonorthogonal coordinates from 
orthogonallity can be measured directly fron the metric. That is, the cosine of the 
angle between distinct coordinate curves is given by the dct product of the associated 
unit tangent vectors. The cosine of the angle between curves i and j can be written 

as: 

' 

'J -  gi3 

v^T^Mej . ej) 
(3) 

,/gii g 
tt 

Thus when gi1 vanishes for distinct i and J we have orthogonallity, and when g^j 
increases from o the coordinates smoothly deviate from orthogonallity with deviation 
given by the arc cosine of the above. This deviation can be used to advantage by 
creating almost orthogonal coordinates in certain regions of importance. For example, 
one may wish to treat boundary layers with nearly orthogonal coordinates and let 
regions of greater nonorthogonallity fall into largely inviscid regions. 

With all of the above considerations born in mind it is clear that the general 
nonorthogonal coordinates are the most suitable choice for the numerical calculation 
of the fully viscous flow field over an ogival body at angle of attack. In particular 
the tube-like coordinate systems to be discussed in a later section are general non- 
orthogonal coordinates which are ideally suited to the ogival body problem. Coordinate 
generation with tube-like coordinates is computationally efficient and at the same 
time is flexible enough to allow for a great degree of control ove:,- the mesh distribution. 
This control is needed for the resolution of boundary layers and other regions where 
large gradients occur. The basic choice of these nonorthogonal coordinates essentially 
places the emphasis on the fluid dynamic problem rather than on the generation of 

coordinate systems per se. 

■; 
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THE GENERAL FORMATION OF AN INITIAL VALUE PROBLEM FOR STRONGLY CONVECTIVE FLCWS 

I; 
Central to the present analysis is the formulation of approximate governing 

equations which can be solved by forward marching integration in the direction of a 
"primary flow".   The entire flow field can thereby be obtained by a sequence of 
essentially two-dimensional calculations. This feature of the method results in 
a substantial saving of computer time and storage compared to that which would be 
required for solution of the full Navier-Stokes equations.    The equations are derived 
in a coordinate independent manner.    A vector field that reasonably approximates the 
primary flow direction is chosen and then used as the basis for an approximation of 
the stress tensor.    The time-averaged equations are written in general conservation 
law form, and then the approximate stress tensor is inserted to obtain the approximate 
equations.    Note that this process depends only on the choice of a primary vector 
field, and not on the particular coordinate system used for the numerical solution. 
The primary vector field used here consists of the tangent vectors to a certain family 
of coordinate curves that are roughly aligned with the flow geometry. 

The governing equations are derived from the Navier-Stokes equations for com- 
pressible flow of a viscous, perfect gas.    In conservation law form (Ref. 23) and, in 
general    curvilinear coordinates  (y1, y2, y3), these equations are given by 

|_P   +     *       (pvi/g) 
§t      ay1 

=    0 (M 

for continuity and 

9 
9t 

pv- 
ax 
ay 

/g 
a 

äy^ 
(pvV + TiJ) 

ay1 
=  o (Ub) 

for momentum.    Constant total temperature is assumed, and thus an energy equation is 
not required.    We have used (x1, x2, x3) for fixed cartesian coordinates, p, for density, 

v = vk ej^ for velocity, g = det^.)  =      det  (|-g)        for the metrical determinant,  and 

T
1J
 for the components of the stress tensor in the basis ei ® e^.     In terms of the metric, 

the components of the  stress tensor are given by 

M  -    iJ = g d p + cyk 
iJ Js + ß 

IM 
k 

oil 
ay^ 

(5a) 

■MMaaaiiiiaBai. '■afcaaafla^Matt'  -^ ,^ 
11 
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where 

^   -Mf ^   +^) 
ay 

(5b) 

and 
m ^ -(|g

iJ^    -."^.V'^) (5c) !■ 

for viscosity p,, inverse metric g % Kronecker deltas ö-j = 6^ 
symbols 

6.., and Christoffel 

rk     =     i"1    / —im   +  ?£lm   - agiJl iJ 2      \ öyj ^r       ^sr | (5d) 

From the ideal gas law and the constant total temperature assumption, the perfect gas 
relation has the form 

P    =   Ap + Bpg^vV 

where A and B are constants. In all of the above, the Einstein summation convention 
is assumed. That is, matching upper and lower indices are to be summed from 1 to 3 
unless otherwise stated. 

It is assumed that for high Reynolds number, viscous effects are negligible except 
in thin layers near the walls, and thus boundary layer concepts can be employed to 
examine the relative importance of viscous terms in the governing equations. Consequently, 
viscous terms which are considered important for boundary layer flow on walls are 
retained; other viscous terras are neglected. In this sense, the present approach can 
be regarded as a natural extension of three-dimensional boundary layer theory. Unlike 
conventional boundary layer theory, however, the approxiraate equations are to be 
applicable in the inviscid flow region as well as the viscous region and, thus, no 
approxiraations are made for inviscid terms other than those to be used for the 
pressure field in subsonic flow. i 

To account for turbulent transport processes, the governing equations are time- 
averaged in the usual manner for turbulent flows (e.g., Hinze, Ref. 2^). This process 
of averaging produces turbulent correlations which are conventionally termed Reynolds 
stresses. Certain components of viscous stress are removed from the time-averaged 
equations. The process of viscous approximation is based upon the assumption that a 
primary flow direction exists. This direction is assumed to be given in the form of 

..^^M*:*^^ 

12 
■..i;. I'J jitoa^ aw';. JflffellS^. 
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a vector field §- which identifies a direction at each spatial point. Then ^  can be 

extended to an orthogonal triple of vectors t^,  §2» I3 at each spatial point. 
This extension must be accomplished in a smooth enough fashion over the whole flow 
field so that at least one derivative can be taken. The required differentiability 
occurs because of the requirement to differentiate the components of the stress tensor 
as they occur in the Navier-Stokes equations. From this construction one obtains a 
specification of a field of orthogonal frames where 5o is aligned with the assumed 
primary flow direction, and for each point E^ and ?2 span an orthogonal transverse 
plane. Within such a frame, we form a differential viscous stress cube (Fig. 2). 
The resulting components of viscous stress on the cube surface are either aligned 
with or are orthogonal to the primary direction. In this way the force balances 
represented by the Navier-Stokes equations are effectively separated into three 
mutually exclusive directions so that approximations in any given direction do not 
directly affect other directions. That is, forces in any one of the directions do 
not have nontrivial projections on the other two remaining directions.  If the 
equations of motion were written for the isolated cube, then the stress components 
would contribute to the force balance in their respective directions. However, 
in the primary direction £?f  the viscous contribution a33 is  expected to add little 
to the strong convective forces and, hence, this contribution is ignored. In addition, 
the contribution of the viscous shearing stresses a31 and a3 to the force balance 
in the transverse equations for the %  and lf2 directions is also small relative to 
convective forces. These force balances are mutually exclusive due to the orthogonality 
of the frame. Effectively, we can generate longer and longer viscous stress cubes by 
joining existing cubes along transverse faces. The total assumption is that viscous 
forces on transverse faces are negligible. Eventually, we are considering forces on 
a fiber-like object aligned with the primary direction (Fig. 2). From this viewpoint, 
we are just neglecting internal viscous forces within the fibar. That is, the fiber 
has no stiffness and, therefore, the only balance against the convective forces is due 
to the shearing stress along its boundary. This is particularly appropriate when the 
fiber is in the boundary layer, where the no-slip condition causes the fluid to 

decelerate and come to rest at the walls. 

For a viscous stress cube in the frame f^, Cg, fj, the viscous stresses have the 

form 

a1*   = a1-3?.®^ (6) 

and it is postulated that the components o 31   for i = 1,2,3 are negligible relative to 
convective forces.    Thus we shall replace the tensor a ^ f ® i^ with the tensor 
a1^  fi of. where a ^   = (1-63) o ^    Unlike the original tensor, this new tensor is 
not  symmetric.    When this is inserted into the time-averaged Navier-Stokes equations, 
we obtain an approximate set of governing equations which are not elliptic, and which 
can be solved by a forward marching procedure. 

. ■ 
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The approximate governing equations are obtained in terms of the metric data 
associated with a curvilinear coordinate system.    In the ogival body problem, tube- 
like coordinates are used to match coordiate surfaces with the ogival body and the 
bow shock.    The solution is obtained by a forward marching procedure down the axis 
of the ogival body.    The development and analysis of tube-like coordinates is presented 
in a later section, together with the metric data.    For the present, we will assume 
that we are given an arbitrary coordinate direction taken as a marching direction for 
the solution.    This direction need not be aligned with the primary flow direction gy 
The natural basis of vectors tangent to coordinate curves is given by e^ = a/ay    for 
i = 1,2,3.    But the basis f^, |2, ?o» for our approximations is independent of this 
coordinate basis.    Hence, our approximation scheme is executed by transformation of 
the viscous stress from the ei basis into fj, followed by_the stress approximation as 
described above and, finally,^a transformation from the ^ basis back into ej.    This 
requires the transformation   ?.= 5^ and its inverse %- 1^,    In the Navier-Stokes 
equatios, the components of stress^are represented by a sum 

Tij  B pgiO  +   vij (7) 

where v1^ is the viscous part of the stress tensor.    But the T
1
^ are just the 

coefficients of the stress tensor T^ej^ej in the natural basis of tangents to 
coordinate curves.    Thus we must express its viscous part in terms of the frame 
f » 5  » ^o«    ^ a chanSe of tensor product basis we obtain 

via ?i® *t iJ (8) 

Now the coefficients in the tensor product basis of frame vectors are replaced by 

their approximates. This yields 

(v1^ 11i^)?r®?( 
=  (1-63) vid ^r ^s ^ (9) 

r=l i "d 

J^iM^äfl^ .. ■ •-;.-^jfeM|^Mi| 
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A transformation back into the tensor product basis of the coordinate tangents is 
needed so that the approximation can be properly inserted into Navier-Stokes equations 
which were expressed in terms of the coordinate system.    We obtain 

(v^TMr®^    =    £    -ij^^^^    em®ek 
r=l 

2 

r 

2 

r 

r _ra   k 

ink. 
and, therefore,  new coefficients of viscous stress u)      defined by 

tu        =    v 

(10) 

{  6m - H? I? ]   vik 

1      '* .3 

(    m r?   J*   \ < ^ J ifc     ftVJ J -   U*    - % «3;}       1  ^     v   + I. At 
äy1 

(ID 

'i        'i ^'      '    d 1 

The approximation is now complete when this is inserted into the equations. 

As a special case, suppose that the primary direction vector field is given by 
the y3 coordinate curves. Then, lo = e_. This is easily extended to an orthogonal 
triad by setting |2 = e2 and ?i = g    e -g-.X.    In the present tube-like geometry, we 

12^ ^ 31 3    JJ 
would take y , y  , and y3 for the angular,  radial, and axial variables,  respectively, 
as illustrated in Fig.  3« 

Our approximation to the Navier-Stokes equations can be written explicitly in 
the conservation law form given previously.    The time-averaging for turbulent 
fluctuations, however, requires  some additional notation.    Specifically, the dependent 
variables are represented as the sum of a time-averaged quantity denoted by a straight 
overbar (-) and an instantaneous fluctuating quantity denoted by a curved overbar (~). 
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After time-averaging, the equations become 

6yJ 
-    (p yi + p-v1  )/g      = 0 (12a) 

for continuity, and 

öy 
Cp v1 ^ + T vi vJ + ^ v1 v^ + ^ ^j v1 

öxs 
+ gi^  p+ w^)    ~j   /g] 

(12b) 

for momentum. The triple cross correlation terms have been neglected. Since the 
remaining components of Reynolds stress are coefficients in the tensor product basis 
e. ®e , they can be expressed in any needed form via a change of tensor product basis. 

Note that since the new stress tensor is not symmetric the index ordering in the 
viscous stress is important. In fact, if by mistake it should become inverted, then 
the primary direction momentum balance would have no viscous contributions at all. 
This, however, would be a false result since significant shearing stresses would be 
neglected. One can most easily examine this situation via the stress cube (Fig. 2) 
by considering any cartesian system with one coordinate aligned with the primary 
direction iL. With proper index alignment one gets precisely the derired equations. 
However, with the incorrect alignment the axial momentum equation is inviscld. Thus 
considerable care must be taken so that one does not inadvertantly apply symmetry to 

the nonsymmetric stress tensor derived here. 

For entirely supersonic flows, the approximate equations (Eqs. (12a) and (12b)), 
together with boundary and initial conditions can be solved by forward marching 
integration in the x direction without any assumptions about the pressure field, as 
was demonstrated by McDonald & Briley (Ref. l8) for laminar flow in rectangular jets. 

 .  • .. . ^~         ..^,.--.i.:lnttomh..iift--.t«-^.w...   -^   . '■wiMtiti'atitii 
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THE NUMERICAL METHOD 

Overview 

In the previous section we derived a system of equations in which the 
time-like derivative of the solution vector was expressed implictly. This occurred 
because time-like derivative was applied to a flux vector instead of the solution 
vector directly. The association with the. word flux is a direct result of the 
general Stokes theorem and the conservation law form of Eqs. (12a) and (1213). 
Since the time-like direction is the spatial marching direction and since the equa- 
tions were derived from the steady-state Navier-Stokes equations, (^a) and {hh), 
the flux vector is a nontrivial function of the solution. Consequently one is 
faced with the problem of constructing a numerical method that is sufficiently 
general to solve the general system of equations of the previous section. Since 
time-like variations are nontrivial, a second order solution is preferred. 

The method used is based on an implicit scheme which is potentially stable for 
large step sizes. Thus as a practical matter, stability restrictions which limit 
the axial step size relative to the transverse mesh spacing and which become pro- 
hibitive for even locally refined meshes (e.g., in laminar sublayers) are not a 
factor in making the calculations. The general approach is to employ an implicit 
difference formulation and to linearize the implicit equations by expansion about 
the solution at the most recent axial location. Terms in the difference equations 
are then grouped by coordinate direction and one of the available alternating- 
direction implicit  (ADl) or splitting techniques is used to reduce the multidimen- 
sional difference equations to a sequence of one-dimensional equations. These 
linear one-dimensional difference equations can be written in block-tridiagonal or 
a closely related matrix form and solved efficiently without iteration by stan- 
dard block elimination techniques. The general solution procedure is quite flexible 
in matters of detail such as the type and order accuracy of the difference approxi- 
mations and the particular scheme for splitting multidimensional difference approxi- 
mations. Based on previous experience of the authors, however, it is believed that 
the consistent use of a formal linearization procedure, which incidentally requires 
the solution of coupled difference equations in most instances, is a major factor 
in realizing the potential favorable stability properties generally attributed to 
implicit difference schemes. 

After modeling Reynolds stresses the governing equations of the previous 
section can be solved by the general approach to be presented herein which is 
motivated by the previous work of McDonald and Briley (Ref. 25). Unlike the earlier 
work, the present algorithm achieves second order accuracy for the forward marching 
direction using only two levels of storage as opposed to three. In addition, 
the present analysis is developed directly on tensor-like objects which contain 

17 |||ai||||||| 
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a considerable amount of generality and hence applicability. Further developments 
come with the construction of an implicit-explicit shifting function which can be 
used to well-condition an ill-conditioned transformation by creating a diagonally 
dominant (Varga, Ref. 26) and hence numerically solvable system. Other applications 
of implicit-explicit shifting occur when it is desired to cast the implict differ- 
ence equations in a form suitable for ADI splitting along coordinate directions. 
Here one shifts all mixed implict transverse derivatives to the explicit side. 
This avoids extra ADI sweeps or an increase in the matrix banded structures of the 

individual sweeps. 

The System of Equations 

In keeping with the viewpoint of maintaining generality, the numerical method 
shall be developed in a slightly more general context than is actually needed. 

Specifically, M-th order N-dimensional systems of the form 

6% 
bt" 

- Fi (13a) 

are to be solved for a solution (cp^) = (cpi, . . . %) where 

^ - Ht(T, Xj, Fia) *  Hid-, Xy  Pia(X, xk, CPj;)) 

Fi = F^T, XJJ, qia) = f^ir» Xy  q^U, xk, cp^)) 

T(t) = \(t) = t = time-like variable 

(Xj) = (Xi, . . ., xN) = spatial variables 

(13b) 

(13c) 

(13d) 

(I3e) 

for l<:i,  j, k,  jg^Nanda multi-index a =  (e^i   •   •   •> «214) with inteSers ay 
The reader should note that there has been a use of a compressed notation to 
indicate functional dependence.    The power of this notation is easily observed from 
the expansion. 

PlffU> xk' «P|) = Pic/X' X!, xg,   .   .   ., xN, «Pi, cp2,   .   .   ., cpfj) (Ik) 

In addition,  this notation avoids the confusion that can result when chain rule 
expansions produce Jacobian-like objects of varying dimensions.    This should be 
obvious from the form lUr, x,, pia)  since  (xj) and (pio) are vectors of generally 
unequal lengths.    This notation should, of course, be distinguisi.-.» from the 
Einstein summation convention of summing like indices which is in tue context of 
sums    of products as opposed to the argument listings here.    The spatial 

«jL.-k,. ■ .-.. . ..... ,     ; i^S^^&HJ^j^i^ie^iia^i&d^ä&ä^i^i^^i ünariiBiitoitaiiii 
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derivatives and the dependence upon the solution vector (y.)  are all contained 
in the specification of the functions pia and qix in (13b) and (13c). Specifically, 

one has 

lor 
= D.. G.. 

Lato+i * * % Gia2M 
(15a) 

where 

and 

D, Of-: 
bx 

01A 

Identity 

for a. 

G.    = G.   (X, XT-, cpj 

k, 2, . . ., N 

for ai = 0 
(15b) 

(15c) 

The form of q.  is similar but with different functions G-,-,*, .. It should be 
*9 ■LQM+J 

noticed that all of these specific forms can be expanded by successive applications 
of the chain and Leibnitz rules. If these expansions were taken to the point where 
only derivatives of the form Do •••%M

CP^ would appear then both p^ and q,ia could 

be replaced by expressions of the form D cp where 1^ = E^ . ..IL and a = (a , ..., 

«„■> «* , , > OJ • • • J 0) wi^h O^o/.  ^ N and a., , ^ 0. In particular, one would have 
M  M+l J        M+l 
the solution vector ^       a pia 3 qia for a = (0,...,0,a  , 0,..., 0) and deriva- 

tives of cp   up to order M as a varied otherwise. This simplified functional form 

for p. and q^a woiild certainly make the theoretical discussion easier; however, 

the computational complexity of the problem would generally be increased. In 
many cases a natural grouping of functions v±a  and q^ occurs. Such groupings are 
easy to spot in the general fluid equations (12a) to (12b). The above p^pansion 
and redefinition of p. ' and qj-,'would generally increase the number of terms in the 1a 11a 
equations. Each of these terms would require roughly the same number of operations 
involved in linearizations and differencing as was required in the original. Thus, 
the operation count would generally go up in a direct proportion to the increase 
in number of terms. Consequently, it is preferrable to stay with the theoretically 
more cumbersome form of equations (15) which produce a computationally more efficient 
scheme. Since the derivative operators with respect to X, "P^, and t all commute 
with the operator Da.  of (15b); the differentiation of pia and q. with respect to 

\, «p., or t is easily seen to obey the chain rule. Thus, one can treat the operator 

functions p^ and q. as ordinary functions in the variables X and cp«. 

mmm 
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From the chain rule, the system of partial differential equations (13) can be 

rewritten in the form 

i£ 5t ' i  bT   bP^i IQf bX 
(16a) 

where 

r 

bHi bPia . ^j 
U  öPi« Ö*i Wi 

(16b) 

is just the Jacobian of the flux (Hi) in the solution vector (CPÄ). If the matrix 
(A. ) represents a nonsingular linear transformation A, then one can directly solve 
for the time-like derivatives of the entire solution vector. Otherwise one must 
consider a system of lower rank and with constraining relations. Under a change of 
basis equations (l6) can be rewritten in an equivalent form where the linear trans- 
formation A is represented by a matrix with r linearly independent rows and N-r 
rows of zeros where r is the rank of A. The last N-r rows of the transformed equa- 
tions correspond to the nullity of A and hence involve no time-like derivatives. 
Consequently one can consider these to be constraining relationships which can be 
used to eliminate the last N-r rows of the solution vector in the first r equations. 
If this is possible, then one has reduced the original system of N equations in 
N unknowns to an equivalent system of r equations in r unknowns. These systems will 
be called reducible systems. This terminology corresponds with the matrix terminol- 
ogy since a discretization of the system would lead to reducible matrices (Varga, 
Ref. 26). If the system is reducible at each point (t, x.) with a continuous trans- 
formation of basis, then the system will be called a solvable system. Only solvable 
systems shall be considered here; and, in fact, without loss of generality one can 
assume that A is nonsingular for otherwise the reduced system would just produce a 
smaller nonsingular version of A which would be solved in the same manner. With 

this consideration one obtains 

Sü 
m 
bt = Bji I Fi 

bHj _ bHi_ bPia (17) 

10? 

where the matrix (B^) is the inverse of (A.k) and the notation s.  is introduced 
to denote the value of the time-like derivative of the oth component of the solu- 
tion vector that is determined directly by the system of partial differential equa- 

tions. 

MltMKMiBii'iiittiitrtaiMWIBi'ir i •    i    ini       •   ; 
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The Numerical Scheme 

Time-like variations of the system of equations (13) are generally nontrivial. 
This is evident on examination of the system of approximate Navier-Stokes equations 
developed in the previous chapter. There one has a time-like direction 
associated with the spatial direction which is then used to march the solution. 
The remaining directions form what is generally referred to as a transverse surface 
which is often taken as a transverse plane. As the solution is inarched the geo- 
metry of the problem changes as the bounding contours in transverse surfaces 
generate the flow region in a generally nontrivial fashion. Thus one has con- 
siderably more opportunities for error growth than if the flow region had no varia- 
tions in the time-like direction at all. With this motivation it is preferrable 
to develop a second order scheme as opposed to a first order one. 

The numerical scheme that is developed here is a second order generalization 
of the classical Crank-Nicolson scheme. In the well-centered framework of 

Crank-Nicolson one has 

H. 
n+1 

Hn 

h 

n+1 

V 
n+f 

+ 0(h2) (18) 

where h = t"" - t and all superscripts are used to denote time-like evaluations. 
The reader may also notice that all other indices in this section were carefully 
taken to be subscripts. In this way no confusion can result. One now must evalu- 
ate both sides of the Crank-Nicolson equation (l8) and preserve second order 
accuracy. From a Taylor expansion of the right hand side about level n one obtains 

t 

F. 
i 

n+^ n  < öFi  O^i I bFi I Wk« . Hi« ^i (19) 

+ 0(10 

where the chain rule has been used. The n-level evaluations in the first order 
piece are straight forward with the exception of the quantity (ftcp^/bt)11. This can 
be either evaluated by a finite difference or directly from the differential 
equations with Sjn of equation (17). If the latter approach is taken, then the 
implicit character of the basic Crank-Nicolson scheme is lost. Thus a finite 
difference shall be used. Since the term itself is first order, the simple first 
order forward difference is sufficient. Thus one obtains 
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m^i. 

n4-| 

n 
(20) 

n+1 
+ /JOJ (^ia)" (cp£  - .p/-) + o(h-) 

b^x 

On the left hand side of the Crank-Nicolson equation (l8) one miist evaluated a 
time-like difference quotient of fluxes. This is obtained by a Taylor Series 
expansion about the n-level. To break the calculation up into manageable pieces 
it is best to first expand each of the (ii+|)-1evel derivatives about level n. In 

so doing one obtains the finite difference 

m 
a+l n+1 n 

»St - n +  0(h2), 

the Taylor Series expansion 

h 

br 

and the similar expansions 

) 

V hT    ' bT^ bP,- .AT       l bPicybn 

bPi(y |   bPj^ bcp 

bX b^i    bt 

ll|l 
+ 0(h2) 

/bHi 

^bP ia 

bX 

n+i 

+ 0(h2) 

f «Piß 4 

bX 

öpm El 
b^.    b* 

J 

n+i / ÖPify\
n  , j ö2Pia (   b

2pia    bcpj | 

' bX                bX2          b^jbX    bt   ) 

n 

I   + 
2 

0(h2) 

and 

22 

n 

(21a) 

(21b) 

(21c) 

(21d) 

^ 
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>!   ' OVA 

52P1(y   +Ö2ia^ 
n 

I  +o(h2) (21e) 

The time-like difference of equatior  (18)  is now obtained by a direct substitution 
of equations  (21)  followed by an ab.orbtion of second order terms into the collec- 

tion 0(h2).    The result is given by 

n+1 n 
H..        - H, 

n 

= \^r/    Urs 
&2Hi       1 &!<* + ^ig g4 
bPia6T   ' ÖX bcpj    bt III 

■ 

bcp.bX    bt 

h 
2 

+ /ll-
!L     ! 

b Pia    L 
& pia b^ 

bXb^       bV.bV.     bt 

n       n+1 n
vl 

I) (^)i 
ou JK 

b2H 
^       +       b\ 

dV 

brbP.  ■    öP.0bP.     I &X        bV.    &* 

n 

n n 

i/* + ^i£^il!   h \i^\ 

/^i2\n(!i_lfL-\|+o(h2 

Vb^ /    \       h /'. 

(22) 

Now it is best to regroup the above into n-level time-like derivatives of cp^ and 
time-like differences in ^ with coefficients ordered by powers of h. This regrouping 

yields the form 

n+1 
Hi 

n+1    n n  
n+1 

— = ai ^ bij VTT) + U \     h       ;    i^ vöt ^     h 

n 

+ 0(h2) 

(23) 

where 

■ .. .■■■.,■■■ 

■.....,.,..                :.,■■,     ■ ■                      .- -  r1. ;i
:, ■:.-■  .—■  ■ 
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1 

ÖH.       0%    ftP^      h      OHi    + 2 

ÖT 

^•t 

öPla ex 

62Hi 

b\ 

^iS^tö   ÖX ax 

8^ ^PiQL 

3Piw a^bcp lor 3 
\ brbP, icy 

2 
b Hi 

öPiff bH. 
2 

b P iff 
bx       6Pia bx' 

bP.QöP. 
iß     iff 

bX    /      hq>< i 

(2Ha) 

(2Ub) 

mBL ^iff+b 
ije bpiff  ^^ 

H 
{2hc) 

and 

äij£ = 

öHj    b2v^   + b^ 

bP 

öPiß öPia 1  h 

icy öcp.ötP^     ÖPißöPia &*■)    ^ü 

(2Ud) 

From successive applications of the chain rule in conjtmction with the Leibnitz rule, 

the coefficients can be condensed into the simple forms 

and 

bHi u h b^Hi 

1  ÖT   2 bT2 

h b
2Hi 

b. . = 
U      2 bTb«Pj 

'bHi 
+ b. 

bCPj    id 

2 

ijk     2 bcPjbtPk 

(25tN 

(25b) 

(25c) 

(25d) 

where 

b_ 

ÖT 

b_ + b_ 
bt      bX 

(25e) 

Time-like derivatives of quantities other than the solution vector cp^ are given 
by derivatives with respect to T.    Such quantities, for example, are often items 
that are built up from the metric information when the equations of motion are 
expressed in some curvilinear coordinate system.    The derivatives with respect to 

T occur only in the coefficients ai, b^., and c^.    When the time-:Ike dependence 
is on the solution vector cp. alone, the coefficients ai and b^ both obviously vanish 

and the coefficient ei1 is 3ust the Jacobian of %.    The expression for d^ is 
independent of T-derivatives and is easily identified as the product of h/2 and the 

Hessian of Hi» 
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To maintain second order accuracy the derivative -— 
ot 

associated with the 

dj-j. -terms in equation (23) cannot be evaluated with a forward difference; for 
then, the quantities v/1"*"1 would appear in products of the form cpjn+ cp^1 and thus 
linearity would be lost. Consequently, one is left with two options.  First, one 
may take a simple backwards difference to a level (n-l) in the time-like variable. 
This difference represents the derivative to first order; and since the coefficient 
d^. already contains a factor of h, one has obtained second order accuracy. This 
was the option taken by McDonald and Briley (Ref. 25). The resulting scheme is, 
however, a three level scheme. In some problems storage is the critical factor; 
and in such cases,a two level scheme is much more desirable than a three level one. 
This motivates the second option. The idea is simply to evaluate the derivative 
directly from the orignal system of differential equations. Thus from equation 

(17) one has 

1 

1 

s . = J 
= B 

di 
Fi bT 

(26) 

in terms of the T-derivative. From a direct substitution of this expression into 
the d^.-terms of equation (23) one obtains the representation 

n+1  „ n 
H.   -H. 

n+1 

= a - +,.." (^i)n + (0. - +,..n s ^ (fi_^)        (CT) 
^ \öt /   U       idi 3 \   h      ' 

+ o(h2) 

for the time-like flux difference on the left-l uid side. Under either of the above 
options one has not yet finished the representation of this time-like flux difference 

since the n-level derivatives 
bt 

n associated with the bn.., -terms still remain 
10 

n 
to be considered. Since coefficients bi," contain a factor of h one can represent 
these derivatives by either a first order difference or a direct substitution of 
sjn. Unlike the d^j^-terms there are no (n+l)-level complications here and conse- 
quently only the simple first order forward difference need by considered. The 
representation of these terms, however, is not unique. For any n-level coefficient 

e^-s that is in 0(h) one has 

n 
Bij 

n+1   n 

hn-(2L-r^)l -0 o(h2) (28) 

which can be added to equation (23) without changing the order. Now if one uses 
the forward difference for the b^-terms and adds equation (28) to equation (2?), 
then one obtains the time-like flux difference representation 

25 
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n+1 
H. 

. n+1   n 

(29) 

+ 0(h2) 

With e. n = 0 the effect is to represent b. ."-terms with a finite difference; and with 

e. » - ^ n the direct substitution of 8|
n is used. In between there are anin^inite 

nÜber of^ossibilities. In effect this arbitrariness of eijt provides ^ ^^ 
degree of freedom that can be used to shift terms between implxcxt and explxcxt parts 
of the representation. The advantage here is thattems can be shxfted towards the 
implicit side to insure diagonal dominance and hence invertibilxty of the ^^ 
scheme, in addition, unwanted implicit terms can be shifted to made ADI-splxttxng 
easSr. For these reasons, the function e^ shall be called an implxcxt-explxcxt 

shifter. 

Both sides of the Crank-Bleolson equations (18) have heen suitably approxlmted 
to seoond orS with right a.d left ha.d sides heing giveu hy equations (20) and 

*29 respectively. By direet substitution one has the seoond order seheme 

n 
aj 

n  n 4 Kn n 
+ c 

H 
+  d 

■±u 

n  n 
s . 
0 

h 
h (30) 

-•'{&'&JtP-&{^ 
n+1 

where * n+1 = cp ^-V?'    From a multiplication by h, the notation of equation 

(25e), and the chain rule one obtains the fom 

K+ e^+ c^+ dij*Sj h öFj 
2 ÖV 

In      n- 
1   H 

l h 6Fi 
öD 

eU  si 
n 

where the strength of the implicit coupling is controlled by the ^st order functxon 
e . While this function can be taker to extreme settings, it xs usually taken as 
zero unless mixed derivatives occur or diagonal dominance is lost. The spatxal 
differences are easily inserted into equation (31) by the mere replacement of the 
spatial differential operators Dk of equation (15b) with the difference operators 

/u which are defined by 

bm 

T    Wk(i) Ek(i)   for o <k <N 

Av * / i=-r (32) 

Ek(o) for k = o 

— - - - - —^"^ - ■  - -.^.^^^^ 
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where E^Ci) is the evaluation map on the position designated by translation of the 

kth grid variable by i grid points and where W^Ci) is the associated finite difference 

weight. One easily notes that Ej^o) is the identity. When the weights W^Ci) are 

taken to give second order spatial accuracy in the interior and on the boundary the 

overall scheme of equation (31) is second order. Second order accuracy at interior 

points with a uniform mesh is achieved by setting r=s=l, Wk(o)=o and 

Wk(l) = - Wk(.l) = j+y (33) 

while taking Ek(+l) to be half point evaluations via two point averages, 

The scheme of equation (31) produces a linear implicit system of equations 

which are efficiently solved by the classical ADI procedures given by Douglas and 

Gunn (Ref. 27). The ADI splitting is usually taken along coordinate directions. 

When this is the case mixed derivative terms are often eliminated on the implicit 

side by use of the function ei/t of equation (31). 

It is often instructive to specialize from the general to the specific. In 

so doing one can consider the application of the scheme given in Eq. (31) to a 

hot ÖCPi. 
system with E^ = H^^, --^) and Fi = F  (cpj, —|). This system covers all equa- 

tions that do not have time-like derivatives outsida of the solution vector itself. 

In gas dynamics this type of system is obtained when a direct solution to the 

steady-state inviscid supersonic equations is desired in Cartesian coordinates. 

and from 
ML h JTHi 

From Eq.   (25) one obtains fty  = b^  =0, c^  = ■^-, and dij/t 
J 

2 öcpjf^ 

,ÖH, 
Eq. (17) one has s^ = B^ =  (^)ji Fi 

one gets 

5H4  i 
By substitution into Eq.  (31) 

ÖHi  + h & % ÜVA hbFi 
2  to^Jt bHr 

2  bcp VtJ 

n+1 
= hF. 

n (3*0 

with a choice of ei/t = 0 If one had considered the time-dependent equations in 

primitive variables,  then one would obtain Hi = 9* and hence the system 

«i -I 
ÖFj 

n 

Vn+1 " ^i" (35) 

27 
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-Hie further restriction to a single ordinary differential equation would lead to 

n 
(1 . | §)• <£li£) . ,- (36) 

or 

cp Vn+1 - ^   !     n       n     ^ n  Cpn+1   •"rl 
)h]3 (37) 

n+l 
But now within the square parenthesis one has an approximation to r   accurate to 
second order. If the system were linear in F, then one would have 

h 

which is exactly the Crank-Nicolson scheme. 

Fn  t Fn+1 

(38) 

.■■>--\e,---il  .. 
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THE COORDINATE SYSTEM 

;■ 

The Construction of Tube-like Coordinates 

Tube-like coordinates will be constructed in general to provide a natural 
setting for the study of flows within, between, or outside of a set of prescribed 
tubes. The prescribed boundary tubes then become coordinate surfaces, and, as a 
result, the specification of fluid dynamic boundary conditions is greatly simplified. 
Although the equations of motion contain more terms than for a cartesian system, 
this does not add excessively to the run time of a program. In addition, there 
must be some control over the resolution of regions near bounding tubes so that the 
effects of wall curvature and the growth of attached boundary layers can be ade- 
quately treated. Such controls are obtained from the specification of coordinate 
distribution functions which shall appear only as parameters in the basic geometric 
construction of the coordinates. The basic geometry of the bounding tubes then 
provides the intrinsic constraints upon the coordinate construction. Since the 
primary goal is the computation of fluid flows within nontrivial geometries and not 
the development of coordinate systems per se, the coordinates will be kept as simple 

as possible, given the desired generality. 

Considering various past successes of two-dimensional conformal mappings to 
obtain coordinates, one might naturally wish to obtain similar transformations for 
three-dimensions. Unfortunately, there is no three-dimensional theory of conformal 
transformations analogous to complex variables, and consequently, in three dimen- 
sions one is left with a complicated system of partial differential equations which 
generally would require numerical solution. To circumvent the considerable computa- 
tional labor required for solution of such equations, a constructive process is 

used for the development of tube-like coordinates. 

The first step in the construction of tube-like coordinates is to create a 
suitable family of two-dimensional surfaces which, in some sense, are transverse to 
a given centerline. If orthogonal coordinates are desired, then these surfaces would 
have to bend and flex as the tube would undergo changes in cross section at differ- 
ent centerline positions, m addition to the problem of constructing transverse 
surfaces which bend and flex, there is also the problem of constructing an orthogonal 
grid on a surface which has variations in Gaussian curvature, and hence, is not flat. 
This second problem, in fact, requires a more complicated construction than the 
first which in itself is not easy. Thus, the sheer magnitude of the work involved 
in the construction of orthogonal coordinates certainly would remove the desire 
for their use in fluid dynamic problems which undoubtedly would require less com- 
putation in nonorthogonal coordinates than in the construction of an orthogonal 
system alone. By contrast, if the transverse surfaces are selected to be two-dimen- 
sional planes, then the construction of coordinates is greatly simplified while the 
fluid dynamic computation is only marginally different due to coordinate nonortho- 
gonality. Consequently the coordinate system that we shall construct will have 

planar transverse surfaces. 

29 
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i 

Since each planar transverse surface is a linear subspace of the real 
three-dimensional Euclidian vector space R3, any such plane can be completely 
specified by any two spanning linearly independent vectors in R3. The specifica- 
tion of the planar family of transverse surfaces is then a result of a construction 
of two vector fields along a given centerline curve in R . The origin of each plane 
is chosen to coincide with the associated centerline point.  (See Fig. h.)    To 
assure that the planes are always indeed transverse, it will be assumed that they 
are orthogonal to the centerline at their origins. Ultimately, tube-like surfaces 
will be generated by loops about the planar origins which deform in some way as we 
move along the centerline curve; in general, these tube-like surfaces will not 
intersect the transverse planes orthogonally. Thus, only the centerline direction 
determines the transverse nature of the cross sectional planes. Specifically, 
the centerline tangent vectors form a vector field which, at each point, is ortho- 
gonal to the plane of the two transverse vectors, and thus each centerline point 
carries a triple of linearly independent vectors. By the Gram-Schmidt orthogonali- 
zation procedure, each such triple of vectors can be made into an orthogonal set, 
and hence, an orthonormal set which is simply called a frame. Thus, tube-like 
coordinate systems are constructed from a specified centerline curve and an asso- 
ciated frame field. Now the basic question is whether there is a canonical con- 
struction of tube-like coordinate systems from either a given centerline or a given 
frame field. From the theory of space curves (Ref. 26), it is well known that for 
positive curvature and specified torsion there is a local one-to-one correspondence 
between frame fields and space curves which pass through a given point. Thus, for 
nonzero curvature, the centerline space curve has a canonical frame field which is 
known as the Frenet frame. Consequently, the coordinates will be derived from the 
Frenet frame when it exists. At centerline points of zero curvature, the Frenet 

frame is degenerate and must be treated specially. 

Once the Frenet frame of the space curve v" has been established, the unit 
normal and binormal vectors V2 and Vo at each point of 'y determine a transverse 
plane orthogonal to the unit tangent vector Ä^.  (See Fig. 5.) Relative to any such 
transverse plane, these vectors are also the standard orthonormal basis. Conse- 
quently, we can examine the plane separately from the curve, %  which will only 
appear as the point at the origin. In two dimensional functional terminology, the 
unit normal direction can be considered as the abscissa and the unit binormal as the 
ordinate; or more simply, as x and y axes, respectively. Since the tube-like 
coordinates are to be generated from some family of tubes encasing the space curve, 
Y", a cross-sectional cut by a transverse plane produces within the plane a family 
of loops about the origin. We shall assume that each loop is represent able by a 
strictly monotone radial function of angle. In this regard, a polar type of descrip- 
tion is the most suitable. But, of course, the loops are usually more complicated 
than circles, and thus, we must replace the radius by a function L of both radial 
and angular variables r and 9. Furthermore, when noncircular loops bound a cross 
section of fluid, there are regions of varying wall curvature, m a numerical 
solution, it is desirable to put proportionately more mesh points in regions of 
higher curvature than in regions of less curvature. Consequently, an angular 

fei .  -..,-. -.,,-■ . ■ '-'- jvf', ■, ■■■■■■■ ■-   ■■■'■-* ■ ■    i  ;■ 
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distribution function, @, is a good replacement for the simple angular specification, 
9, of simple polar coordinates. The net result is a generalization where polar 
coordinates are replaced by a pseudo-radius, r and pseudo-angle, 6. Since the loops 
generally vary from transverse plane to transverse plane, the pseudo-radii and angles 
must also be functions of axial location, t, on the centerline space curve, 7(t). 
Since the normal and binormal directions are usually functions only of the centerline 
curve, Y(t), our loops may have symmetries that do not reflect about either of these 
Frenet directions. Since the use of known symmetries is a great simplification in 
most problems, we need an option which allows one to define axes that can be aligned 
in an optimal way. This option is easily established from the specification of a 
function, n(t), which is a rigid rotation relative to the normal-binormal directions. 
To bring this development of tube-like coordinates within the framework of the 
preceding tensor derivations, we shall use the notation, 3^=6, 3r=r and y^=t for 
pseudo-angular, pseudo-radial, and axial variables. In this notation, we have thus 
far developed (1) a length factor, L=L(y1, y2, y3), which is a generalization of 
radius, (2) an angular distribution function, 0=©(y1, y^) which is a generalization 
of angle, (3) a rotation function, n=a(y3), and {h)  the Frenet frame, (V-^ V2, V3)= 
(Vi(y3), ^(y3), Vo(y3)) upon which the coordinates are built. That the length • 
factor, L, and the angular distribution function, 0, give us a generalization of 
polar coordinates is obvious since polar coordinates are easily retrieved by taking 
Uy1, y2, y3) = y2 and ©(y1, y3) = y1. It is also worth noting that the angular 
distribution function, 0, was chosen to be independent of pseudo-radius, jT. 
Although it is not immediately evident, we have removed a considerable amount of 
potential computational complexity in the process of obtaining metric information 
by limiting the number of derivatives which must be computed. Furthermore, there 
is no real loss of flexibility in the construction of angular distribution functions. 
Since most commonly used analytic descriptions of loops are, in fact, controlled by 
a collection of parameters which depend only on axial location, y3, a knowledge of 
only these parameters is often sufficient for the construction of the angular dis- 
tribution function. For example, if the loops were to consist of a family of con- 
centric homogeneous ellipses, then the major and minor axes of the outermost ellipse 

would form a collection of two such parameters. 

With the above functions and the Frenet frame, the class of tube-like coordinates 

comes directly out of the transformation 

"x = "Y + LfV^ cos cp + V^ sin cp} 
(39) 

which transforms curvilinear coordinates, y = (y1, y2, y3) into cartesian coordinates 

x =  (x1, x2, x3) where 

cpfr1, y3) ^(y1, y3) +n(y3) &P) 

  „,■..■ ,..■...■. ■ .   . . .  .■ ,■.,■:.:...;..;,,., .;.::■ 
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At each transverse location, y3, the space curve vector,  v, translates the origin 
fo t^e space curve.    At a given pseudo-angle, ^ a unit vector, V2 cos cp + V3 sin cp,  is 
determined by the sum, cp = 0 + n of the radial distribution function, 0, and the 
tr^sverse rotation,  J This unit vector sweeps out a full 360 degs ^ the trans- 
verse plane as y1 passes through all of its values.    Hence, we could call this a 
direction pointer for the transverse plane.    When this direction poxnter is scaled 
by The length factor,  L, we obtain a point of our transformation      Sxnce the length 
factor depends on all three variables,  any set of tube-like surfaces can be obtained 
provided, of course, that loops are representable by a strictly monotone radial 
function of angle and also that no two transverse cross sections are allowed to 

intersect. 

in a geometric setting, the transformation is really an embedding of tube-like 
coordinate systems into three dimensional Euclidian space.    An illustration is 
provided in Fig. 5.    From the transformation,  it is also easy to see that the surfaces 
oflonstant y3 are the transverse planes, the surfaces of constant pseudo-angle, yl, 
are ruled surfaces generated from the centerline curve,  y,  and the surfaces of_con- 
stant pseudo-radius, y2,  are just the concentric tubes about the space curve,  y 
Separate illustrations of these various coordinate surfaces are given in Figs, ba, 

6b,  and 6c, respectively. 

i ? 

The Length Factor 

4.    = ^-p t^hP like coordinates, the length factor contains the in- 
„ithln ^Y™; "    nJion of basic gantry and tor the dlatributional 

fTorcf^f fl» reSon      The dlLibuticnal control can ba easily i^le^ented by 

r^a % ZT^I an. ^'-f-tr^rsi^": z^z*- 

coordinates (r,.) •' ^»^.^^»^ 'CL^ ***» 'i™™ 

reauoea   uu a &     <,;„ a\      Fnr a eiven set of loops Yif»*'iTk an>y 

ficients of the -J\-ctOT
1^fJ'^^^e^en the c0efficients .ilAe  satisfactory, 

sufficiently smooth ^erf ;ati°" f ^^J^flow region, then the flow region is 
If We assume that no two tubes join within the ^ r^      ' interpolation 
divisible into subregions with no more    ^ ^o^ ^   tube        The ^^P    ^^ 
process for two bounding loops Yp and y2 is, thereiore, ax 
and is given by the simple homotopy 

umi    ■ mäf^^rn^ .. . , . ■.-. ■,-.F..l.i.-'..-i;;;J.:   , 
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H (e,r) = L(e,r) (cos 9, sin e) (Ma) 

with length factor 

i 

L(e,r) = rF1(e) + (l-r) F,,  (e) (Mb) 

which takes 72(0) = H(e>0) uniformly and smoothly into y^Q) = H(e,l) as r goes from 
0 to 1.    (See Ref. 28.).    This is illustrated   in Fig.  7.    If the loop y2 is degenerate 
then the coefficient F2(e) vanishes and the length factor reduces to L(e,r) = rF (9), 
we thus have the cross section of a duct generated by one loop.    By the continuity 
of L as a function of Yo» tiie duct generated by one loop Y^^ 

can be considered as a 
limit of annular type regions between loops y^ and Y-,  and Y2 closes tightly upon the 
origin.    This concept is often quite useful since the origin in coordinates generated 
from one loop suffer from the same singularity problem that occurs with simple polar 
coordinates.    This singularity can be circumvented, however, by using an auxiliary 
loop Y? which is near enough to the origin to create a good approximation to the 
original region.    To preserve overall accuracy in a numerical computation,   1|Y2II  = 
m|xF2^)   «mist be less than the numerical truncation error.    In fact, the well-defined 
limiting process would lead one to believe that there would be no problem at all in 
taking 11%11  arbitrarily small.    But if  1^1 I   is taken within the region of machine 
roundoff error, then the singularity problem may reappear by default.    Consequently, 
it is best to choose  | | Y2 I I  to be much less than truncation errors but greater than 
roundoff errors. 

The final stage of length factor construction is accomplished by a replacement of 
the polar coordinates r and 9 by radial and angular distribution functions R(r5t) and 
0(9 t) for axial location t.    Now since R and 0 are to be the actual polar locations 
of a loop we must reinterpret r and e as pseudo-radial and pseudo-angular locations on 
the same loop.    Within this context the two-tube length factor becomes 

L(9,r,t) - R(r5t) Fi(0(e,t)) * Os(r,t)] F2(®(6,t))      ft?) 

and the associated unit vector becomes 

(cos (®(M) +Q(t)), sin (pi(e,t) +n(t)) m 

where the rotation n(t) of the Frenet frame has been included for completeness, 1 

33 
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The Construction of Bounding Tubes 

: 

As  the reader has just seen, the construction of tube-like coordinate systems 
relies upon the existence of smooth bounding tubes. When such tubes exist at the 
outset of a problem, the generation of coordinates is a straightforward application 
of the development above. However, if the bounding tubes are unknown at the outset, 
then they must be constructed in a smooth enough fashion.  In such cases one is 
often given a discrete specification of a sequence of bounding loops which first 
must be fit with a smooth curve and then must be joined to form a smooth surface. 
This circumstance can often arise out of the convenience associated with the discrete 
specification of a surface by means of successive cross sectional cuts. If this 
data were to be given all in advance of the intended use of the coordinate system 
as a whole, then the smoothed cross sectional loops could be effectively joined by 
fitting them together with splines which can have interior knots corresponding to 
interior loops. However, it is often the case that discrete loop data is only 
generated one station in advance of the use of the coordinate system. This occurs, 
for example, when the problem is to solve for the viscous flow field outside of an 
ogival body when the flow is predominately supersonic. While the ogival body sur- 
face is known in advance, the location of the bow shock is not. Thus one considers 
the ogival body surface as the unknown outer tube which one wishes to use for the 
generation of tube-like coordinates to allow for the efficient computation of the 
fully viscous flow field. Since the flow field in a neighborhood of the bow shock 
is largely inviscid, an inviscid explicit solution is performed iteratively to 
obtain discretely the geometry of the bow shock at one station in advance of our 
known soltuion and coordinate system. On? is now left with a fully developed bow 
shock surface preceeded by a discrete cross sectional loop of bow shock data. The 
problem is to smoothly fit the loop and then smoothly join the result to obtain a 
smooth extension of the surface. Since fluctuations may arise from the discrete 
generation of the bow shock data, a least squares spline procedure is used to fit 
the loop with smoothness up to three continuous derivatives. This type of least- 
squares procedure has the distinct advantage of accurately representing the surface 
normal curvature along the loop. Now one has a loop y       (e) at level n+1 and a 
bounding tube ending on a loop ^(G) at level n where there are known derivatives 
in the axial direction t. One then attaches a surface which extends the tube 
from 7^  to y , with the smoothness of three continuous derivatives. The extension 
is accomplished with the tensor product form 

r+1 
P (e,t) = £  f (t) y        (e) (kk) 

j=o 3        n+1"J 

which takes information back to loop X, r. At the beginning r must be 1 since there 
are only two available loops. The process continues with r increasing until a 
desired maximum r value is obtained. From there on r is assumed to be constant. 
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Distribution Functions 

When partial differential equations are discretized in terms of differences, 
the derivatives are replaced in some fashion by difference quotients. A simplifi- 
cation then leads to the difference equations that we solve. Implicitly in the 
discretization, however, is the assumption that derivatives are accurately estimated 
by secant lines. But then the exact solution may experience drastic variations in 
a short distance. Such solutions are said to have large gradients. In regions 
where the gradients are large, the approximation of derivatives by secants may be 
very poor unless the particular region is disected into smaller regions which have 
reasonable secant approximations, a practice commonly known as mesh refinement. In 
fluid mechanics, the boundary layer of a viscous flow around or through an object is 

such a region. 

Obviously, the necessary resoltuion could be accomplished by merely increasing 
the number of points in a uniform distribution; however, this would require excessive 
computer time and storage. Another alternative, known as the interface method, is 
to use a refined mesh only in the given region and then join it with the global 
mesh. An improved technique is to use coordinate distribution functions which 
smoothly distribute mesh points so that in some sense they are spaced in roughly 
an inverse proportion to the size of the gradients. Thus, regions of high gradients 
have proportionately more points than regions with smaller gradients. Unlike the 
interface method, the transition between different mesh lengths is made continuously, 
and as gradually as possible. Distributions are often used when the distributional 
transformation is applied to an independent variable of an existing transformation. 
The result is a new transformation obtained by composition. With this approach, the 
problem of mesh point distribution is replaced by the problem of selecting a suitable 
set of distribution functions within a transformation of coordinates. The problem 
is a nontrivial one since the distribution functions should depend upon the nature 
of the solution being computed but are determined in advance of the computation. 
Thus, some prior knowledge of the solution is required. In flows with large boundary 
layer separation or with adjacent dissimilar components, the critical region to be 
resolved is somewhere in the middle of the flow. But the location of such, regions 
is often unknown at the outset of the problem. One method to overcome this difficulty 
in marching procedures is to create the distribution function at the next level based 
upon a knowledge of the solution at the present level. Care must be taken, however, 
to create a distribution function that is sufficiently smooth in the marching 

direction. 

In many problems of practical interest, however, the regions that need resolu- 
tion are known in advance. Typical examples are attached boundary layers and boundary 
layers that may have small separations or separation bubbles. 

Within the framework of tube-like coordinate systems boundary layer resolution 

on the inner surface is accomplished by setting 

■ . 
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R(r,t) = 1 + £ (r-1) tanh [D ( ^)] (^5) 

where d = d(t) is the estimated boundary layer growth, a = a(t) is the desired 
proportion of mash points in the boundary layer, and D is the hyperbolic damping 
factor. The boundary layer growth d gives the fraction of the flow region occupied 
by the boundary layer, a is usually taken as a constant, and D can be given a value 
of about 2. When r is small, the radial distribution of equation (U5) reduces 

essentially to the line 

d 
R =- - r a m 

which would have been chosen had we used the interface method. As r approaches 
unity the distribution Bq. C+S) smoothly approaches unity as illustrated in Fig. 8. 

Metric Data for Tube-Like Coordinates 

The efficient generation of metric data is an important part of any solution 
procedure involving general curvilinear coordinates. Before a solution can be 
undertaken, the physical problem must be specified. Problem specification, however, 
involves the creation of boundary and initial data and the generation of the equa- 
tions of motion with the associated boundary conditions. In addition, the solution 
may be monitored, examined, or put under physical constraints. In all of these 
tasks, the metric data is needed. A knowledge of the metric data is enough to com- 
pletely specify the equations of motion and analyze the coordinate invariant direc- 
tions for the specification of boundary and initial conditions. For very compli- 
cated geometries the equations of motion may contain an inordinate number of terms. 
However, if the equations are taken in tensor form, then the coefficients to terms 
can be constructed from the metric data with the construction process being performed 
on a computer. Once a non-trivial terra is constructed, its contribution to the 
desired difference equations is computed before searching for the next non-trivial 
term. Sequentially, the process continues until all terms in the equations have 
given their contributions to the system of difference equations. Then, in the same 
fashion, we cycle through terms in the boundary conditions, sequentially adding in 
their respective contributions.  The result is the desired set of difference equa- 
tions, and the problem is effectively reduced to linear algebra. Note that with 
such methods there is no real need to write out the differential equations or compli- 
cated boundary conditions in detail. Thus, all we need to do is to generate the 

metric data and use it. 

The metric data for tube-like coordinates can be obtained from the transformation ■ 

Y" + L { Vg cos cp + Vo sin cp } m 

i&äkmMjJi^iü^^üki^iLäältL^ 
^■^^ai^^ 
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sending tube-like coordinates y =» (jA.y2^3) = (e,r,t) into cartesian coordinates 

x = (s*,ar>>X?5 where tp = e + 0, and 

y" _ y" (y3) = space curve center-line 

Vo = Vo (y3) = unit normal vector 

Vo = V3 (y3) = unit binormal vector (1+8) 

L = L (y1, y2, y3) = length factor 

9 = ® (y1» y3) = angular distribution 

n = n (y3) * rotation with respect to Frenet frame. 

By differentiation of the coordinate transformation, we obtain the Jacobian trans- 
formation which leads directly to the transformation rules for tensor fields. These 
rules allow one to input, monitor, or extract basic Information from a solution 
procedure involving transformed variables. The Jacobian Transformation is essentially 
obtained from the chain rule which yields 

SJ = 
bx bx bx«5' Ä 

*— u 
3 m M 

by1  by1 bxJ   by1 

where u.. is the standard orthonormal basis of constant vector fields, and e-j is the 
natural basis of tangent vectors to coordinate curves. With a slight abuse of 
notation, we have used "x as a position vector in the definitions of e- and u.. However, 
nothing is lost since the covariant derivative of "x ■ xJu. is Just the partial deri- 
vative of the x^ summed on &.. In terms of the notation 

A 
u„ (50) 

wie have 

(51) 

and hence the Jacobian matrix 

.  -    .        . :  ammmm i^lM^&i am^Määm-.^m 
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(e^, e^' *3^ 

ax1  öji a^' 
öF  öy2 ^ 

0x2    9x2 9x2 

W     zF *& 
9x3   ax^ 5x3 
äF  ay3 ay3 

Thus, to obtain the Jacobian transformation, we must calculate the natural coordinate- 
wise basis vectors e^. 

For notational convenience, let derivatives of functions in only the axial variable 
y3 be denoted by a dot; and in addition, let 

and 

ai+J+k L 
LiJk=   (ay1)i{ay2)J(ay3^ 

ai+J ® 
0ij =       (ayi)i(ay3)J 

(52a) 

(52b) 

(52c) 

where 0 < i,j,k < 3-    By differentiation,we obtain 

&  =  (L100 cos cp - L01O sin cfOVg + (L100 sin cp + lB10 cos cp)V3 

^2 =   (L010 cos f Jfl +  (L010 sin ^ ^3 

IW * g V^ ♦ L001 (V2 cos 9 + V3 sin 9) 

+ L (V2 cos cp + t- sin cp - f2 cp01 sin cp + V3 cp01 cos cp) 

(53a) 

(53b) 

(53c) 

': 

:; 
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Since the pseudo-angular vector S and the pseudo-radial vector %2  are linear 
combinations of the unit normal vector Vg and the unit binormal vector V3, they both 
lie entirely within the transverse plane at axial location y3. But unlike %^ and 
e , the axial coordinate direction vector ^o is not expressed in terms of the basic 
Frenet frame. Thus, we cannot easily measure $» relative to the transverse plane 
unless the y3-derivatives of unit normal and binormal vectors are expressed in terms 
of the Frenet frame. The necessary expressions are given by the last two Frenet for- 

mulas (Ref. 29) for the space curve y; namely, 

and 

V2 = 

V. 

SK V! ST V- 
(5^a) 

3 = 
ST V3 

(5^b) 

where s is arc length, K is curvature, and T is torsion. 

By substitution, we obtain 

S"   =. BV^ + (L^ COS tp - IA sin cp   )fg + (L001 sin cp    +    LA cos cp ) V3       (55) 

where A * sT + cp     and B => s {l-KL cos tp).    In summation, we have Just obtained a 
change of basis S[ • b^. from the Frenet frame ?1, ?2, % to the natural basis of 
tube-like coordinate vectors ^ t^t %*    Previously, however, we found a change of 
basis fM • ^4 % t*Q& the standard cartesian basis 1^, u2, u   to the Frenet frame. 
But then by composition we obtain the change of basis ^ =b^ aj um from cartesian 
tangent vectors to tube-like tangent vectors.    By the identification developed above, 
the Jacobian elements are Just 

ox01 = hJ am b. a" 
1    J (56) 

for i, m = 1,2,3. 

The metric tensor g. . is obtained from the differential element of arc length 

(ds)2 «• gi-jdy^dyj. But alternatively, we have 

(ds)2 = dx.dx .(1^ dyi).^ ^)  = l^-. |L dyidy^ = (^.i^) dyidyJ; (57) 

39 
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and hence, by linear independence g-ji = %#^4^ ,I*iat ^s» tlle me"tric tensor is conputed 
by taking the dot products of the tube-like tangent vectors fj_, e^j e^. This compu- 
tation is most efficiently performed when the e^  are expressed in terms of the Frenet 
frame. Since the Erenet frame is orthonormal, we have 

m —■ ,n» vJ S* tf  _ »J* wi •      - rja t.m Hi - H-t* . 0.1 vn).(bj v,) . ^ bj vm.vt - ." bj ^ . »j ^ ., {58) 

In particular, we obtain 

2 2 

2 
g22 " L010 

533 = B2 + Lnn1  +  (LA) '001 

= L,rtrt L, g12 = L100 L010 

\3 = L100 L001 + L ®10A 

(59a) 

(59b) 

(59c) 

(594) 

(59e) 

823 = ^lO L( 001 (59f) 

which by symmetry is the complete list. Note that the sines and cosines have disap- 

peared as a result of cross-cancellation and the identity sin
2 cp + cos2 cp » 1. Also 

note that the last three components listed are generally nontrivial off-diagonal 
entries. When any of these are non-zero, there is an angle other than 90° between 
the respective coordinate directions of the indices. For example, the cosine of the 
angle between the pseudo-angular direction e^ and the pseudo-radial direction e is 
given by the expression 

M, 
L100 

^811822     ^oo + (L®io^ 
(60) 

„.....-^ ..^.^ 
ho 
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which vanishes only when ITLOO " 0• But when ^OO v8^811®8» L is independent of angle 
and hence, the loops are circles. If, in addition, 0 is a uniform distribution, then 
the cross section is given by polar coordinates. In the same fashion, axially inde- 
pendent length factors would lead to the vanishing of ^y    If» ^ft addition, the 
angular distribution and the rotation do not change along a straight axis, then g^ 
vanishes, m this case, the only non-orthogonality that can occur is in the trans- 
verse plane. If we combine all of the constraints above, then the tube-like coor- 

dinates become cylindrical coordinates. 

The determinant of the metric can be easily obtained from elementary operations 

on determinants. That is, 

g » det (g^) = L( Ö10 

1 ^OO ^OOl 

^oo        hoo + (^IO)
2
        hooLooi + L2

®IO
A 

^Ol noO^Dl + L2®!^ L001 + (LA)2 + B2 

» 

= L, '010 

(I01O)2 L201OA 

L20loA (LA)2 + B2 

(61) 

(L loiOÖloB)^ 

Alternatively, we also have 

g = det (g^) = det (ei^j) 

det [(e^/e^e )* (i^,^,^)] 

= [det {ßii% ^s)]2 

(62) 

l 

• \rf 
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where J is the Jacöbian of the transformation. Consequently, J = L k-.. ® ^B« For 
the transformation to be nonsingular J must never vanish, and thus no factor in J 
can vanish. When L vanishes the transformation degenerates to the center line 
(Fig. 9a). When the pseudo-radial derivative Iimo vanishes, two distinct coordinate 
loops coincide. This can happen by an intersection or a point of tangency (Fig. 9b). 
If @,n were to vanish, then the angular distribution @ would fail to have the 
required monotonicity and hence a loop would be tangent to a radial line (Fig. 9c). 
Finally, if B vanishes, then two distinct transverse planes intersect (Fig. 9d). 
This leads to the restriction 

L cos 9 
^ (63) 

But the curve L cos cp = ^ is a line within a transverse plane (Fig. 9e),    The line 
is parallel to the binormal axis and passes through the normal axis at 1/K.  As the 
transverse planes move throughout the centerline space curve, these lines generate 
a ruled surface. Our condition for nonsingularity is then that the space tubes 
must never come into contact with this ruled surface. Thus, space tubes must either 
lie below or beyond the surface. If they were to lie beyond the surface, however, 
then 9 would be restricted to angles between - 90° and 90°. But then if the tubes 
were generated by full transverse loops, they would have to possess a bottom and a 
top. This would imply that a given angle would yield a radial line with tangents to 
the loop and/or a multiple intersection with the loop. (Fig. 9f.) A singularity 
of this type is the same as a singularity arising from a nonmonotonic angular distri- 
bution. Consequently, the restriction is that the space tubes must lie below the 
ruled surface, or algegraically that 

L cos cp < (61+) 

The space-tubes are then assumed to encase the space curve y  and never come into 
contact with the above ruled surface. For tubes that have convex loops symmetrically 
centered about the space curve centerline, the restriction reduces to the statement 
that the length factor must be bounded in the normal direction by the radius of curva- 
ture (Fig. 9g). In general, if a tube fails to meet the inequallity condition 
(Eq. 64), then it can be pushed off center until this condition is met. However, if 
the condition is so severe that the centerline must be taken extremely close to the 
normal side of a bounding tube, then coordinates will become unnaturally spaced. 
Since each loop (about this offset origin) intersects the normal line once on each 
side of the origin, the mesh spacing drastically changes. This would tend to cause 
an over-resolution on the normal side of the origin and an under-resolution on the 
opposite side. In such a case, it is best to generate the same bounding tube but 
with a new centerline with smaller curvature. This is always possible since we must 
only offset the old centerline in a convex direction which expands the curve rather 

than shrinking it. This is illustrated in Fig. 10. 
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If there are no coordinate singularities, then we can easily obtain the inverse 
of the metric. In a sequential order we have 

! 

«33 = i 
8 B2 

g^ = - *       33 

g11 - (^B)2 + i^ioT 

& =(ii22\ ^3 + IMS g 33 

g12 = . /W 613 m  /Lioo\ gll 

\Loio/   taaJ 

g22 = (Bg23)S 1 

010 

(65a) 

(65b) 

(65c) 

(65d) 

(65e) 

(65f) 

The e--direction covarieint derivative Dj of the vector ei is again a vector and 
d       •- ■      'i  -  1 . .s at  e*2, e-. Specifically, we have hence is expressible in terms of the same basis e1, fjg, e 

m 

Vd ij m 
(66) 

m 111 

*here the coefficients/Jj are known as Christoffel symbols. This covariant derivative 
measures the rate of change of e. along a coordinate curve in the direction of ^ 
This coordinate curve is an inteiral curve of ei. It is obtained by fixing all except 
the it'1 variable in the transformation. We shall assume that the covariant derivative 
is the natural one derivable from the metric. This is known as the Levi-Civita 
connection (Ref. 29). The Christoffel symbols for this covariant derivative are 
given by the formula 

inMrimmitiihiitiiiiM 
^3 

■ ■  - ■ — 
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(67) 

This formula is easily obtained by differentiating g. . • ^«C. with respect to y10-, 
permuting all three of these indices, forming the sum in parenthesis, applying sym- 
metry to the lower indices of the Christoffel symbols, and then applying the inverse 
metric. With some calculation, we obtain the non-zero Christoffel symbols directly 
from the above formula. For notational convenience, let 

B iJk = (ayl)i(öy2)J(öy3)k 
(68) 

for Osijjjk S 2. Then we have 

r3 . Bioo 
13   B 

A  = LQIO 
21    L 

^3 = ^ (r211- 23  810 ■v 

r3 = Boio 
23 B 

1^2 = ^020 
L010 

1 _ 2 L100 + ^0 
11 @ 10 (69) 

r    = Lo01 + en +  A__ (iioo) - r 3 ) 
31     L       elS     Sio  ~      13 

13    LQIO    LQIO      
31    ®IO ■'010 

,2 i ALUOs   ,   ^3 B B 

32 " ^ (Loii " eio   )    ^      010 

ft [gkii^^iiife^ii^l^iiif^fttii^iSiiiiii^^ '   
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2      JL_ 1 2 
ril = LOIO (l^OO - L100 ^ - 1%)) 

r33 = kHO  ^ L002 LA2- 
LlQQ 

(A ^Wl A)  ] 
(70) 

+ ( - s21 Bioo - e22 Boio + 823 Booi) B 

^^(A.iiosLij^.giiB^.^B   +6l3Booi)B 

33 ®io 

and 

r33 = ( - g31 B100 - g -«32 
B010 + g 

33 
B001^ B 

When viscous calculations are to be done, we also need the derivatives of the above 

Christoffel symbols. This is a straight forward but tedious process. The deriva- 

tive expressions are rather lengthy and we shall, therefore, not enumerate them. One 

may also note that the independence of 0 from r and of R from 0 leads to a definite 

simplification in the Christoffel sumbols. Had this independence not existed, then 

the above calculations would have been even more complex. 

The geometric interpretation of the Christoffel symbols above is quite natural. 

For example, consider the special case when the centerline space curve  is a^traight 

line. Since the contravarlant vector ^3 is defined by the relation ei.e^ = 6., it 

is perpendicular to the transverse plane. Consequently, P is a constant vector 

which is parallel to the straight centerline. But then the covariwit derivative of 

a constant vector vanishes. By the liebnitz rule for covariant derivatives, we then 

have 

0 = Di (63) = MfVt3) 

m  (Diej)."^ + 6^.(0^3) 

m -<. 
= (% %)»r^ + 0 

(71) 

m 3 
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for all i, J * 1»2,3. This fact can also be verified from our list of analytic 
expressions of Christoffel symbols. The geometric interpretation is that the covari- 
ant derivatives of natural basis vectors &, fL, ?- have no axial projection and 
hence are transverse. In summary, we have just shown that with straight center- 
lines, no vector from the natural basis ^ ?2, ?3 can change in the axial direction. 
The only such vector with a non-trivial axial projection is, however, the natural 
vector e?  to axially generated coordinate curves. Consequently, the axial projection 
of go along such a coordinate curve is a constant as illustrated in Fig. 11. 
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TREATlffiNT OF THE BOW SHOCK 

Although the shape of the body is specified at the start of the problem, the 
shape of the bow shock cannot be specified until effects of the body on the flow 
within the bow shock are evaluated. The shock shape is therefore evaluated at each 

new marching station based on information already computed. The shock surface is 
adopted as the outer coordinate surface and is used to determine the necessary 
metric information for the tube-like coordinates. The governing equations are then 
solved in the annular region between the ogival body and the bow shock by marching 
from one transverse plane to the next, proceeding in the nominally streamwise 

direction. 

I M 

The bow shock is computed as a discontinuity satisfying the classical Rankine- 
Hugoniot relations. The intersection of this shock and a transverse computational 
plane is a loop represented by discrete grid points. Provided that a given grid 
point on this loop is outside the "zone of influence" of the neighboring points on 
the loop, the shock solution at the given point is independent of the solution at 
adjacent points. This "zone of influence" assumption is valid over a wide range 
of flow conditions and consequently is not a limiting assumption. Thus the shock 
radius Yn+i(9) at each point in,the n+1 transverse plane can be evaluated inde- 
pendently by a pointwise iteration procedure. 

The iteration at each circumferential location in the n+1 plane proceeds by 
first locally extending the shock surface from the most recently evaluated trans- 
verse computational plane, n> to a point in the n+1 plane. The extension of the 
shock surface includes the point being evaluated in the n+1 plane, but does not 
extend circumferentially to the neighboring points. This extension is a first guess 
for the shock location at a circumferential point and hence for a point on the outer 
tube-like coordinate surface given by Yn+i(e) in Eq. kk. 

Given a guess at the shock location, the axial mass flux inside the shock can 
be computed by two methods. First, an application of the Rankine-Hugoniot condi- 
tions produces a value of the axial mass flux based only on the shock shape and the 
flow properties outside the shock. Second, an application of a compatibility condi- 
tion produces a second value of this flux that depends only on the shock shape and 
the flow properties inside the shock. The shock location is then adjusted iteratively 
until the axial mass flux inside the shock computed by the two methods is the same. 
This iteration for the shock location is repeated at each of the circumferential grid 
points to produce a ring of discrete points at the n+1 station which collectively 
determine the shock surface. These discrete points must be represented by a con- 
tinuous smooth curve to provide the information required to construct the coordinate 
system. For this purpose a least squares-spline curve fitting routine is employed. 
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FIGURE 1. FLOW PAST AN OGIVE AT INCIDENCE 
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FIGURE 2. VISCOUS STRESS CUBE 
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FIGURE 3. PRIMARY FLOW DIRECTION FROM THE COORDINATE SYSTEM 
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FIGURE 4. GENERATION OF TRANSVERSE PLANES FROM TWO VECTOR FIELDS 
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FIGURE 5. TRANSFORMATION AS AN EMBEDDING 

INTO THREE DIMENSIONAL EUCLIDIAN SPACE 

1 

.-a 
; i 

R07-94-14 



•W^.^w... - w.vmw.wmvwmwmw"- .....^-. .u^..,.,....■„-.-.., mMmv^.,.    ', r^-f-w T w ,■"*'*■" 

R76-912024-8 

FIGURE 6a. TRANSVERSE PLANAR CUTS OF CONSTANT AXIAL LOCATION y3 

FIGURE 6b. RULED SURFACE OF CONSTANT PSEUDO-ANGLE yl 

FIGURE 6c.  TUBE-LIKE SURFACES OF CONSTANT PSEUDO-RADIUS y2 
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FIGURE 7.  LINEAR HOMOTOPY BETWEEN TWO LOOPS 
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FIGURE 8. RADIAL DISTRIBUTION FUNCTION 
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FIGURE 9. COORDINATE SINGULARITIES 
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FIGURE 9g 
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FIGURE 11.  EQUAL PROJECTIONS 

y1 = CONSTANT PSEUDO-ANGLE 

V2 = CONSTANT PSEUDO-RADIUS 
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