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ABSTRACT

A method for computing three-dimensional flow over an ogival body at angle of
attack is described. An approximate set of governing equations is derived for
viscous flows which have a primary flow direction. The derivation is done in a
coordinate independent manner, and the resulting equations are expressed in terms
of tensors. In keeping with the inherent generality of the tensor formulation, a
two-level second-order accurate marching procedure is derived for general tensor-
like equations. With this procedure, a three-dim:asional turbulent flow can be
solved in any coordinate system by marching along the assumed primary flow direction.
General tube-like coordinates are developed for a class of geometries applicable
to flows between tubular surfaces. The coordinates are then particularized to the
flow field bounded between an ogival body at angle of attack and its bow shock.
Unlike the ogival body surface, the bow 'shock surface is not known in advance of the
solution but instead must be computed as the solution develops. One marching step
of the solution process is broken down into several steps. First, the bow shock
surface is discretely extended by an jteration of explicit local solutions. The
bow shock surface is then smoothly extended to provide a best fit to the discrete
shock data. Tube-like coordinates are generated and finally the second order
numerical scheme is applied to advance the fully viscous solution to the next

station.
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A Method for Computing Three-Dimensional Viscous Flows
Over an Ogival Body at Angle of Attack

INTRODUCTION

An important consideration in the design of supersonic missiles is the accurate
prediction of both the pressure distribution and heat transfer loads about the body.
Although the combination of inviscid flow theory and three-dimensional boundary
layer theory may be adequate to predict the flows about ogival bodies at small
angles of attack, these analyses used separately are inadequate at larger angles
of attack. At larger angles of attack, a strong viscous-inviscid interaction occurs
on the lee side of the body leading to the formation of a pair of vortices symmetric
about the lee body generator and an accurate flow field prediction under these con-
ditions requires a solution which considers the mutual interaction between the
viscous layer and the nominally inviscid flow. Since increases in the body 1lift
to drag ratio and in local heat transfer rate on the lee side of the body are
associated with the formation of the vortices, an accurate method of predicting
the lee side interacting flow field is necessary to insure both the effective
operation and structural integrity of supersonic vehicles.

Successful predictions of the flow about ogival bodies at angle of attack
require an accurate flow model in which the strong viscous-inviscid coupling on the
lee side of the vehicle at large angle of attack is modeled correctly. Boundary
layer theory is not adequate to describe the development of viscous flow phenomena
as complex as vortex rollup since the basic sssumpbion that the boundery layer ie
thin compared to a typical body scale is invalid. Thus, a three-dimensional
interacting boundary layer theory would be inadequate for description of the problem.
Although a numerical solution to the full Navier-Stokes equations would provide a
theory with the necessary gererslity to succesafully predict such complex flows,
the required computer time and storage indicate that three-dimensional Navier-
Stokes solutions should be used only if no suitable alternative exists. An optimum
analysis would possess the general three-dimensional nature of the Navier-Stokes
equations but would not be limited by the large running time and storage require-
ments associated with three-dimensional Navier-Stokes solutions.

The problem of predicting the flow field about sharp nosed ogival bodies at
incidence has been under investigation for the designer in his consideration of aero-
dynamic forces and heating loads. At supersonic speeds the flow over ogival bodies
at incidence may be thought of as having a component aligned with the free-stream
flow direction, which is little affected by viscous forces, and cross flow com-
ponents flowing around the body, which can, at large angles of attack, become
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B viscous dominated. This picture of ogival flow fields is borne out by various
' experimental investigations (see Refs. 1, 2, 3, and 4), These investigations
have found that at zero angle of attack a symmetric flow field develops about the
body, in which no cross flows exist. As the angle of attack is increased from
zero, a cross flow pattern begins to develop proceeding from the windward symmetry
plane toward the leeward symmetry plane. When the angle of attack becomes large
enough, the cross flow adverse pressure gradient existing near the lee symmetry
; plane becomes sufficiently strong and the cross flow separates, leading to the
1 development of a pair of vortices symmetrid about the lee symmetry plane as depicted
] in Fig. 1. These vortices may or may not have imbedded shocks associated with -
) them. The flow as depicted in Fig. 1 has been verified for both laminar and tur-
~ B bulent flows for speeds in the supersonic and hypersonic regimes. The available
‘ experimental data indicates that flow separation (reversal) in the axial direction
usually is not associated with the vortex development.

The majority of previous attempts to predict flows of this type may be cate-~
gorized as either solutions of the inviscid flow equations or solutions to the
three-dimensional boundary layer equations. Even with the simplifying assumptions
of these two approaches the equations must still be solved numericslly. Further-
more, most previous investigations have been limited to the problem of flow over
conical bodies in which axial invariance is assumed in order to eliminate deriva-
tives in the direction of the cone axis. Such analyses cannot be used to analyze
general body shapes or to accurately predict the development of the lee side vortices.

s ST R A SR SN SR RS R DR S

The most common inviscid procedure currently in use involves numerical solution
of the time-dependent inviscid flow equations. The steady inviscid flow solution is
approached asymptotically for large values of time. The solutions of Moretti
(Refs. 5 and 6) are examples of this type of approach. Other available inviscid
: techniques include the inverse method (Ref. 7) and the method of integral relations
E: (Ref. 8). MacCormack and Warming (Ref. 9) have recently surveyed the available
inviscid computatioual procedures. An ouvious i sadvantage of a purely irviscdd
solution to this problem is the failure to account for viscous effects. Viscous
forces may be accounted for, however, by making use of the inviscid pressure distri-
bution to solve the three-dimensional boundary layer equations (see Ref. 10).

This procedure can give accurate predictions of ogival flow fields provided the
angle of attack is small enough to prevent cross flow separation and hence does not
permit lee side vortices. However, the small angle of attack constraint places a
severe restriction on the boundary layer type procedures.

Because of their complexity, and particularly the interaction which occurs
between primary and secondary flows and viscous and inviscid regions, three-dimen-
sional flows over ogival bodies at nontrivial angles of attack have been extremely
difficult to analyze. There are considerable difficulties associated with the
synthesis of inviscid flow analysis and boundary layer theory into a cohesive method
a4 of analysis. Among these 2tfficulties are the lack of applicability of
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three-dimensional boundary layer theory, & means for patching or interfacing bound-
ary layer and rotational inviscid flow regions, and the treatment of interaction
between viscous and inviscid flow regions.

In efforts to develop methods for dealing with problems of this type, Patankar
& Spalding (Ref. 11), Caretto, Curr, & Spalding (Ref. 12), and Briley (Ref. 13)
devised numerical methods for solving approximate governing equations which are a
more or less natural generalization of three-dimensional boundary layer theory. In
these studies, solutions were computed for laminar incompressible flow in straight
ducts with rectangular cross sections. The governing equations were solved by inte-
grating in a primary flow ooordinate direction while retaining viscous stresses in
both transverse coordinate directions as opposed to only one direction for three-
dimensional boundary layer theory. In addition, certain assumptions were made about
the behavior of pressure gradient terms for incompressible flow to permit solution
by forward marching integration. Subsequently, this general approach has been used
to compute laminar incompressible flow in helical tubes by Patankar, Pratap, &
Spalding (Ref. 14). A predictor/corrector solution procedure has been developed by
Tin and Rubin (Refs. 15 and 16) to solve the parabolized three dimensional compres-
sible Navier Stokes equations. The numerical technique is implicit in one transverse
direction asnd iterative in the other. Helliwell and Lubard (Ref. 17), Rekich and Lubard
(Ref. 18),.and Lin and Rubin (Ref. 16) have applied this method to the problem of
flow over both sharp and spherically blunted cones at angle of attack.

Recently in companion stucies, Briley & McDonald (Ref. 19) anc. McDonald & Briley
(Ref. 20) have developed stable and efficient noniterative implicit numerical tech-
niques for spplication to systems of coupled nonlinear multidimznsional nonelliptic
equations. These general techniques were applied by McDonald & Briley (Ref. 20) to
the computation by forward marching integration of laminar supersonic flow in rec-
tangular jets. Subsequently, the laminar incompressible straight-duct analysis of
Briley (Ref. 13) and the improved numerical techniques of Mclonald & Briley (Ref. 20)
for compressible flows were extended and synthesized by Briley & McDonald (Ref. 21)
and Eiseman, McDonald, and Briley (Ref. 22) into a method for computing subsonic
turbulent flow in curved ducts. The present study represents a further generali-
zation of the latter method, to encupass general coordinaten ard highly complex
geometries.

In the ogival body problem the basic geometry is determined by both the ogival body it-
self and by the bow shock propagated rrom the tip of the body. Unlike the body shape, the bow
shock is not known in advance, but must determined as part of the solution. Since the region
nearest the shock is dominated by convective forces, and the shock is treated as adiscontin-

uity, it is quite sufficient to performa local inviscid analysis in that region; and, thereby,

to determine the shock location one step in advance of the fully viscous solutionwhich is
being marched along the axis of the ogivalbody. The shock location is calculated numer-
ically in terms of local extensions of the existing coordinate system. In this way
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each new point of shock location can be explicitly computed independent of
neighboring transverse points; and, hence, remove any need to construct a poten-
tially costly global coordinate extension which would utlimately be discarded.
Specifically, for each new shock point we have a disti..etly tailored coordinate
system which is an extens.on of the previous coordinate system that encor)asses

only the explicit difference molecule for the point in question. A distinct advan-
tage here is that the metric data necessary to write the appropriate equations

must only be determined at the shock point in question since the metric data at

the explicit level is already in storage from the previous step. After the shock
data has been determined one is left with a loop of points one station ahead of a
smooth shock surface. The problem now is to extend the shock surface in a suffi=-
ciently smooth and uniform manner so that suitable coordinates can be generated

for the advancement of the fully viscous solution to the same axial location of the
Just completed shock calculation. The loop of shock points may lack a certain amount
of uniformity by having oscillations in curvature if a strict interpolation were to
be performed. The lack of uniformity can easily arise from the numerical nature of the
calculation. Thus a least-squares spline procedure is employed to remove the noisy
oscillations of the data and to produce a loop which is smooth enough to possess
continuous third derivatives (needed for a viscous calcu.ation) and uniform enough
to have curvature which reflects the global structure of the shock surface. At

this point one has a well-defined loop in front of a well-defined surface. The sur-
face is now easily extended in a patchwise fashion by smoothly Joining polynominal
surface elements. From here the coordinates are generated by a linear deformation
of the ogival body surface into the bow shock surface. The rate of deformetion is
controlled by a choice of the linear deforming parameter. This parameter is con-
stratned tomonotonicelly and smoothly very feom mesd to unity. [e thie veri stion Leours, 4
family of coordinate surfaces is generated from the ogival body to the bow shock.
When the parameter is chosen to be a function of only the deforming direction, the
deformation is uniform over the body surface. This is ideal for global resolutions
over or within an object. If, in addition, the deformation parameter should also
depend upon surface location, then local resolutions would be possible. In the
ogival body problem, however, the global resolutions are sufficient to adequately
resolve the large velocity gradients associated with the attached boundary layer.

. Throughout the discussion to follow the material will be ordered from the more

E i general to the more specific. In so doing one has more flexibility and generality

?; ¥ at hand to apply to the ogival body problem. Thus it 1s best to start off with a

fi discussion on the rationale behind the use of curvilinear coordinate systems for

g '1 flutd dyramic proviens. While the applieation of we risul coordiusts symten# is not a

g new idea, the coordinate independent concept associated with analyses based upon
%i

; the metric tensor is of greater utility. The metric tensor, as developed in the f
E B initial discussion,is used to compare coordinate systems of varying degrees of %
E generality. In the next section use is made of the metric tensor to obtain a tensor 5
o g (coordinate independent) form of the Navier-Stokes Equations which are then approxi-
B mated to produce an initial value problem. The approximation is obtained from a
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neglect of viscous stresses, and henc«: diffusion, in an assumed primary flow direction.
The spproximation can be viewed as & ceneralization of boundary layer theory. The
primary flow direction is assumed to be given by some smooth vector field. Since
the specification of any vector field is independent of coordinates, the approxi-

 mation of the tensor form of the Navier-Stokes equations is also independent of

coordinates. As a matter of convenience, however, the primary vector field is
often chosen to be the vector field associated with a given coordinate direction
of a given system of coordinates. For the ogival body problem this is done. To
maintain the generality of the discussion one next considers the general numericr™
method rather than the details of coordinate gercration. This is consistent with
this general methodology since the computer code is constructed in a modular fashion
in terms of the metric data. After this discussion one considers the construction
of coordinates that are suitable for the ogival body problems; however, some gen=
erality is still maintained by considering coordinate systems that are generated
from any two concentric tubes. The metric data is then obtained so that the
arbitrary two tube problem is fully specified once the tubes are specified. In
the present study the inner tube is taken to be the ogival body and the outer tube
is taken to be the bow shock. One finally considers the numerical generation of
bow shock data, and the use of that data to suitably extend the bow shock surface
so that a well-defined outer tube is specified.

ey
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THE METRIC TENSOR AND ITS RELATIONSHIP TO SYSTEMS OF COORDINATES

The governing equations for a viscous fluid will be expressed and approximated in
generalized coordinates. Like any physical process, the dynemics of a fluid is inde-
pendent of coordinates; and is, therefore, describable in terms of arbitrary coordinates.
The practical implication of this coordinate independence is that the analyst has the
freedom to select coordinate systems which are easy to construct and which simplify
the solution process. i

In the numerical solution of fluid dynamic problems there are many advantages to
be gained by judicious choice of coordinates. The most obvious advantage is that the
physical boundaries of a flow region can be represented by coordinate surfaces. This
removes the need for fractional cells and hence removes the complications '
and loss of accuracy assoclated with an interpolation algorithms for the boundaries.
Another advantage in the use of generalized coordinates is that a uniform numerical
method can be used. The solution can then be performed with a fixed number of cells
in any given direction and with a uniform mesh spacing. The result is a simplification
of the computer logic; and hence, a savings in time for both the computer and the
programmer, For the ADI method of solution that we use, the one-dimensional rows
and columns each have fixed lengths; and hence, we are not faced with the combinatorical
problem of monitoring the lengths of rows and columns which would otherwise be caused
by geometric changes in the boundaries. In addition to the above there is the advantage
of an implicit mesh distribution. The uniform mesh of computational space is simply
mapped into an appropriately distributed mesh in physical space. Thus, the coordinate
tranaformation can be chosen to contain. the distributional information as well as the
voundary specifications. The resolution of a rapidly changing solution is the ma jor
objective in selection of a coordinate mesn distribution. A classical example is the
resolution of attached boundary layers where the solution is known to have large
velocity gradients. Another more subtle example is the resolution of large gradients
in computational coordinates due to regions of high curvature on the bounding surfaces.
When the transformation contains the distributional information there is no need to
construct the apparatus for the discrete approximation of derivatives on a nonuniform
mesh. This is a savings in both computer logic and storage. With a different motivation,
however, it may be desired to automate the difference molecule so that the numerical
technique can be changed with a few parameters. Changes, in practice, usually amount
to a selection between forward, backward or central differences. For any given direction
we need three parameters for first derivatives and three parameters for second derivatives.
Thus, even with such an automation of the numerical method we save on computer logic
and storage. Specifically, for an ADI direction of length N we need only 12 parameters
as opposed to 6N parameters for nonuniform meshes., The extra 6 parameters are for the
boundary molecules., A further advantage is that for a given problem we can select
coordinates from a large class of coordinate system.. In the process of sorting through
the various possible coordinate systems we are guided by two criteria. First, the new
coordinates must lead to a real simplification; and secondly, the coordinates must be
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easily generated. Since bounding surfaces ususlly become coordinate surfaces the
Pirst eriterion is directly measured by consideration of the metric tensor (31;]) which
is obtained from the expression for the fundamental element of arc length

(as) =g, vt & (1)

Specifically, an increase in the number of nontrivial elements in the expression of the
metric tensor is accompanied by a corresponding increase in the number of terms in the
equations of motion. The result is an increase in the computational work that is
needed after the coordinates have been generated elong with the necessary metric data.
The second criterion, unlike the first, is most often neglected. The unfqrtunate
result is that there is often more work involved in making the coordinates than in
gsolving the original problem with a less efficient satisfaction of the first criterion.
In fact, both of the criteria above usually are at opposite polarities in complexity.
The prudent selection of coordinates is then a balance between these criteria.

Our criteria for selecting a suitable system of coordinates can be used to
compare the various classes of coordinate systems and to evaluate the relative
w.z1ity of each. We will start with conformal transformations and continuelly enlarge
the class until we obtain general non:crthogonal coordinates. :

For conformal transformations the inetris tensor is simply given by a scalar
multiple of the identity. That is, 8y4 = h(y) 61;] where the kronecker symbol 613
vanishes unless 1 = j in which case it is unity. From this expression it is easy to

show that h = (J2 )1/ N here J is the Jacoblan of the n-dimensional conformel trans-
formetion. The simplicity of the metric leads to very simple equations of motion at
the expense of greatly restricting tle class of easily obtained transformations.
These transformations are generally obtained by the solution of partial differential
equations which may in itself be costly. In addition, the control over the mesh
distributions is indirect at best. In two dimensions, however, conformal trans-
formations have been successfully used on many occasions. Here the metric is given
by 8i4 = IJ l 844, and the theory of functions of one complex variable is a powerful
tool glmt is at our disposal. When the boundaries of the flow region can be matched
with well-known conformal transformations there is nothing that can effectively compete
with this way of generating coordinates. We have simply optimized on the generation
of the equations of motion and on their solution process for any given method of
solution. In a number of cases boundaries can be matched through a sequence of well-
known transformations. However, in most cases of practical importance the boundaries
are too complicated; and consequently, cannot be simply defined as desired.

When conformal mappings become overly difficult to construct, it is best to
consider the slightly larger class of orthogonal transformetions. For orthogonal
transformetions the metric tensor is given by the diagonel form 81y = [hﬁ_(y):l2 513.

iy
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Note that, unlike the conformal transformations, the diagonal entries of the metric

can be different. The deviation from conformality can now easily be measured by an :
examination of the ratios of the functions hj. To see why this 1s so we need an l
explicit geomgtric interpretation of the metric. For a position vector field ;t., the "
vector field e; = dX /ay;l is the natural ta.ngenii vector field along coordinate curves
generated by holding the remaining coordinates ¥ 4.4y yi'l, yi+1, FOT y® constant.

It is often common practice to use the opcrator notation where the position vector

field is omitted. By an application of the chain rule, the fundamental element of

arc length can be expanded as

(ds)2 = di.'df = (g_;ci dyi)O(S?x dyj) = %‘1 . %% dyid}"j = (é.i'gd) dyidyj (2)

and hence, by linear independence 814 = gi.-é' . Now note that we have an orthogonal _:
metric if and only if the E'i and €; are perpendicular when 1 % j. But perpendicularity
of €; and €j at a point is equivalent to the perpendicular crossing of the associated
coordinate curves at the point in question. Consequently our intuitive notion of !
orthogonallity in terms of coordinate curves is equivalent to the metric expression
above. In addition the functions hy are easily seen to be equal to the lengths of
- the corresponding natural tangent vectors 'é'i. In a small neighborhood of a point .
the functionshy are nearly equal to their values at the point and thus, the measurement
of distance along coordinate curves is very nearly given by distance measurements along
the respective vectors ¢; in the tangent plane at the point in question. When the E
functions hy are all equal, the distance measurement in the tangent plane is merely a
uniform dilation or contraction of the original certesian system. Thus, length ratios
and, hence, angles are preserved between the cartesian system and the tangent plane.

But the projection of tangent vectors onto the curvilinear system preserves angles.
Hence, with equal diagonal entries the transformation preserves angles and is, therefor

i called conformal. Consequently, as the ratios of the hy deviate from unity, the

) transformstion smoothly devistes from conformallity. With fewer constraints on the

b metric the selection of coordinates from the class of orthogonal transformations is :
' slightly less restrictive than a selection from the class of conformal transformations. “:
The process of coordinate generation is usually accomplished by geometric methods which
result in a system of differential equations. The solution of these equations is often !
{ too costly to reasonably perform just to obtain coordinates. In addition, it may be
difficult or even impossible to properly distribute mesh points and still perserve ;
orthogonallity. 4

DR
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General nonorthogonal coordinates are often to be preferred since the mesh dis-
tributions can be controlled and since the coordinates are considerably easier to
generate. The construction process is entirely geometric and generally does not rely
on the solution of differential equations. Furthermore, points can be essentially E
distributed at will. Mesh distribution functions can often be directly inserted into
i the transformation in a manner which directly distributes the points. The considerable;
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improvement in flexibility associated with the class of general spacial coordinates
does come with a small price. Specifically, the metric tensor has generally non-
trivial off diagonal elements. As with the difference between orthogonal and
conformal coordinastes, the deviation of the general nonorthogonal coordinates from
orthogonallity can be measured directly from the metric. That is, the cosine of the
angle between distinet coordinate curves is given by the d-t product of the associated
unit tangent vectors. The cosine of the angle between curves i and J can be written

as:

o Y (% ). E oo (3)
sl | \lsyl V@ . &)y . E) JB11 €y

Thus when 814 vanishes for distinet i and j we have orthogonallity, and when gid
inereases from o the coordinates smoothly deviate from orthogonallity with deviation
given by the arc cosine of the above., This deviation can be used to advantage by
cresting almost orthogonal coordinates in certain regions of importance. For example,
one may wish to treat boundary layers with nearly orthogonal coordinates and let
regions of greater nonorthogonallity fall into largely inviscid regions.

With all of the above cor.siderations born in mind it is clear that the general
nonorthogonal coordinates are the most suitable choice for the numerical calculation
of the fully viscous flow field over an ogival body at angle of attack. In particular
the tube-like coordinate systems to be discussed in a later section are general non-
orthogonal coordinates which are ideally suited to the ogival body problem. Coordinate
generation with tube-like coordinates is computationally efficient and at the same
time is flexible enough to allow for a great degree of control over the mesh distribution
This control is needed for the resolution of boundary layers and other regions where
large gradients occur, The basic choice of these nonorthogonal coordinates essentially
places the emphasis on the fluid dynamic problem rather than on the generation of

coordinate systems per se.
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THE GENERAL FORMATION OF AN INITIAL VALUE PROBLEM FOR STRONGLY CONVECTIVE FLOWS

Central to the present analysis is the formulation of approximate governing
equations which can be solved by forward marching integration in the direction of a
"primary flow". The entire flow field can thereby be obtained by a sequence of
essentially two-dimensional calculations. This feature of the method results in
a substantial saving of computer time and storage compared to that which would be
required for zolution of the full Navier-Stokes equations. The equations are derived
in a coordinate independent manner. A vector field that reasonably approximates the
primary flow direction is chosen and then used as the basis for an approximation of
the stress tensor. The time-averaged equations are written in general conservation
law form, and then the approximate stress tensor is inserted to obtain the approximate
equations. Note that this process depends only on the choice of a primary vector
field, and not on the particular coordinate system used for the numerical solution.
The primary vector field used here consists of the tangent vectors to a certain family
of coordinate curves that are roughly aligned with the flow geometry.

The governing equations are derived from the Navier-Stokes equations for com=-

pressible flow of a viscous, perfect gas. In conservation law form (Ref. 23) and, in
general curvilinear coordinates (yl, y2, y~), these equations are given by

90 el i .
= O I (pv'V/B) = 0

continuity and

3
ayd

momentum. Constant total temperature is assumed, and thus an energy equation is
required. We have used (xl, x2, x3) for fixed cartesian coordinates, p, for density,

- a2
vk ex for velocity, g = det(gij) = | det (%%3) \ for the metrical determinant, and

for the components of the stress tensor in the basis gi 8)53. In terms of the metric,
components of the stress tensor are given by

13 _ iJ 12J

T =g p+ Q/kij Vk + Bkl (58')
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where ‘
i
ij s
10 ot et L
a = p (§ B Ry # ;fk ) (50) . :
and B e = (g 1 6'c = g2 5 - gl 81 ) (5¢) ‘ j
k bR S N 7
p 14 1 44 "
or viscosity u, inverse metric g~~, Kronecker deltas 6y =8"Y = 513’ and Christoffel :
symbols 4
kn
k g { %8im 4+ %8ym . dgy "
r. o= — 4 d} (54)
13 2 5 5;% 38

s

From the ideal gas law and the constant total temperature assumption, the perfect gas
relation has the form

P = pAp + Bpgijvivd

where A and B are constants. In all of the above, the Einstein summation convention

is assumed. That is, matching upper and lower indices are to be summed from 1 to 3
unless otherwise stated.

It is assumed that for high Reynolds number, viscous effects are negligible except
in thin layers near the walls, and thus boundary layer concepts can be employed to
; examine the relative importance of viscous terms in the governing equations. Consequently, :
3 viscous terms which are considered important for boundary layer flow on walls are L
2 retained; other viscous terms are neglected. In this sense, the present approach can
be regarded as a natural extension of three-dimensional boundary layer theory. Unlike
ﬂ% conventional boundary layer theory, however, the approximate equations are to be
applicable in the inviscid flow region as well as the viscous region and, thus, no
approximations are made for inviscid terms other than those to be used for the
7 pressure field in subsonic flow. -

N
o

To account for turbulent transport processes, the governing equations are time- f
averaged in the usual manner for turbulent flows (e.g., Hinze, Ref. 24). This process . ¢
of averaging produces turbulent correlations which are conventionally termed Reynolds
stresses. Certaln components of viscous stress are removed from the time-averaged
equations. The process of viscous approximation is based upon the assumption that a
primary flow direction exists. This direction is assumed to be given in the form of

i
1
’
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a vector field E. which identifies a direction at each spatial point. Then £; can be
extended to an orthogonal triple of vectors Ei, Ez, E3 at each spatial point.
This extension must be accomplished in a smooth enough fashion over the whole flow
field so that at least one derivative can be taken. The required differentiability
occurs because of the requirement to differentiate the components of the stress tensor
as they occur in the Navier-Stokes equations. From this construction one obtains a
specification of a field of orthogonal framgs whers Eé is aligned with the assumed
primary flow direction, and for each point gl and €, span an orthogonal transverse
plane, Within such a frame, we form a differential viscous stress cube (Fig. 2).
The resulting components of viscous stress on the cube surface are either aligned
with or are orthogonal to the primary direction. In this way the force balances
represented by the Navier-Stokes equations are effectively separated into three
mutually exclusive directions so that approximations in any given direction do not
directly affect other directions. That is, forces in any one of the directions do
not have nontrivial projections on the other two remaining directions. If the
equations of motion were written for the isolated cube, then the stress components
would contribute to the force balance in their respective directions. However,
in the primary direction §3, the viscous contribution 033 is expected to add little
to the strong convective forces and, hence, this contribution is ignored. In addition,
the contribution of the viscous shearing stzesses 531 and 59°° to the force balance
in the transverse equations for the Ei and £, directions is also small relative to
convective forces. These force balances are mutually exclusive due to the orthogonality
of the frame. Effectively, we can generate longer and longer viscous stress cubes by
joining existing cubes along transverse faces. The total assumption is that viscous
forces on transverse faces are negligible. Eventually, we are considering forces on
a fiber-like object aligned with the primary direction (Fig. 2). From this viewpoint,
we are just neglecting internal viscous forces within the ?iber. That is, the fiber
hes no stiffness and, therefore, the only balance against the convective forces is due
to the shearing stress along its boundary. This is particularly appropriate when the
fiber is in the boundary layer, where the no-slip condition causes the fluid to
decelerate and come to rest at the walls.

For a viscous stress cube in the frame &, &5, §3, the viscous stresses have the
form

;@ L (6)

and it is postulated that the components d3 fori = 1,2,3 are negligible relative to
cgnvgctive forces. Thus we shall replace the tensor ¢ 13 E ® ? with the tensor

Cae £ ® -E’,j where sid = (1-63) oi'j. Unlike the original tensor, this new tensor is
not symmetric. When this is inserted into the time-averaged Navier-Stokes equations,

we obtain an approximate set of governing equations which are not elliptic, and which
can be solved by a forward marching procedure.

s e e i s s
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The approximate governing equations are obtained in terms of the metric data
associated with a curvilinear coordinate system. In the ogival body problem, tube-
like coordinates are used to match coordiate surfaces with the oglval body and the
bow shock. The solution is obtained by a forward marching procedure down the axis
of the ogival body. The development and analysis of tube-like coordinates is presented
in a later section, together with the metric data. For the present, we will assume
that we are given an arbitrary coordinate direction taken as a marching direction for
the solution. This direction need not be aligned with the primary flow direction E,.
The natural basis of vectors tangent to coordinate curves is given by _e'i = a/ay1 for
i =1,2,3. But the basis §, €5, 33, for our approximations is independent of this
coordinate basis. Hence, our approximation scheme is executed by transformation of
the viscous stress from the 'éi basisinto Ei, followed by__'the stress approximation as
described above and, finally, a transformation from the €; basisback into e;. This
requires the transformation E&,= gg’éi and its inverse -éi"' 'nli‘§k. In the Navier-Stokes
equatios, the components of stress“are represented by a sum

&

7id = pgld + Vi (7

where vij is the viscous part of the stress tensor. But the Tij are just the
coefficients of the stress tensor Tij—e'ia—é in the natural basis of tangents to
coorginate curves, Thus we must express i%s viscous part in terms of the frame
El’ 52, E3. By a change of tensor product basis we obtain

vil g @ & = vl ) 1) £@F (8)

Now the coefficients in the tensor product basis of frame vectors are replaced by
their approximates. This ylelds

/;—-\—/ -t - 8 de = - (9)
(i3 5 18) E,@F, = (2-60) VY nf 0 B,OF,
2
_ ij .r. s f@F
rE:L v My Mg £O°%,
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A transformation back into the tensor product basis of the coordinate tangents is
needed so that the approximation can be properly inserted into Navier-Stokes equations

s which were expressed in terms of the coordinate system. We obtain é
i. Tos — —) . ij r m k - u—ry :
. (v min3) 6,98, = Em 58 em®ey
(10)
2
= ij T M (K
VM 5ty e
i P a0
. ik 2 ea
rEl v Ty §r En® &y J
_ [ gm my ik i
= Lo -3 el ) V™ ¢ @ .;
ik '
and, therefore, new coefficients of viscous stress w = defined by
mk ~ mk §
w = v i
x {
{3 Em ) ik (11)
L §3 by ’
m 3 _m ik 1 3y E
S D A B R !

The approximation is now complete when this is inserted into the equations.

As a special case, suppose that tge primary direction vector field is given by ]
the y3 coordinate curves., Then, §3 = e3. This is easily extended to an orthogonal |
triad by setting £, = 32 and €y = P In the present tube-like geometry, we p

e €41%37€33%1°
: would take y , ¥y , and y3 for the angular, radial, and axial variables, respectively,
as illustrated in Fig. 3.

e e,

- Our approximation to the Navier-Stokes equations can be written explicitly in ‘
the conservation law form given previously. The time-averaging for turbulent

] fluctuations, however, requires some additional notation. Specifically, the dependent

variables are represented as the sum of a time-averaged quantity denoted by a straight

45 overbar (-) and an instantaneous fluctuating quantity denoted by a curved overbar (~).
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After time-averaging, the equations become

) Bt o Tera
5] Fvi+F¥)/g]=0 (12a)
for continuity, and
o) e e e R e —_— —_— 12
— |G +IHF + FHET + 3 et (2

oy d

for momentum. The triple cross correlation terms have been neglected. Since the
remaining components of Reynolds stress are coefficients in the tensor product basis
—e'i ®_e'j, they can be expressed in any needed form via a change of tensor product basis.

Note that since the new stress tensor is not symmetric the index ordering in the
viscous stress is important. In fact, if by mistake it should become inverted, then
the primary direction momentum balance would have no viscous contributions at all.
This, however, would be a false result since significant shearing stresses would be
neglected. One can most easily examine this situation via the stress cube (Fig. 2)
by considering any cartesian system with one coordinate aligned with the primary
direction £.,. With proper index alignment one gets precisely the derired equations.
However, with the incorrect alignment the axial momentum equation is inviscid. Thus
considerable care must be taken so that one does not inadvertantly apply symmetry to
the nonsymmetric stress tensor derived here.

For entirely supersonic flows, the approximate equations (Eqs. (12a) and (12b)),
together with boundary and initial conditions can be solved by forward marching
integration in the x direction without any assumptions about the pressure field, as
was demonstrated by McDonald & Briley (Ref. 18) for laminar flow in rectangular jets.

i 3
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THE NUMERICAL METHOD P
Overview
. Tn the previous section we derived a system of equations in which the

time-like derivative of the solution vector was expressed implictly. This occurred
because time~like derivative was applied to a flux vector instead of the solution
vector directly. The association with the word flux is a direct result of the
general Stokes theorem and the conservation law form of Egs. (12a) and (12b).

Since the time-like direction is the spatial marching direction and since the equa-
tions were derived from the steady-state Navier-Stokes equations,(4a) and (4b),

the flux vector is a nontrivial function of the solution. Consequently one is
faced with the problem of constructing a numerical method that is sufficiently
general to solve the general system of equations of the previous section. Since
time-like variations.arenontrivial, a second order solution is preferred.

The method used is based on an implicit scheme which is potentially stable for
large step sizes. Thus as a practical matter, stability restrictions which limit
the axial step size relative to the transverse mesh spacing and which become pro-
hibitive for even locally refined meshes (e.g., in laminar sublayers) are not a
factor in making the calculations. The general approach is to employ an implicit
difference formulation and to linearize the implicit equations by expansion about
the solution at the most recent axial location. Terms in the difference equations
are then grouped by coordinate direction and one of the available alternating-
direction implicit (ADI) or splitting techniques is used to reduce the multidimen-
sional difference equations to a sequence of one-dimensional equations. These
linear one-dimensional difference equations can be written in block~tridiagonal or
a closely related matrix form and solved efficiently without iteration by stan-
dard block elimination techniques. The general solution procedure is quite flexible
in matters of detail such as the type and order accuracy of the difference approxi-
mations and the particular scheme for splitting multidimensional difference approxi=-
mations. Based on previous experience of the authors, however, it is believed that
the consistent use of a formal linearization procedure, which incidentally requires
the solution of coupled difference equations in most instances, is a major factor ]
in realizing the potential favorable stability properties generally attributed to
implicit difference schemes. '

After modeling Reynolds stresses the governing equations of the previous
section can be solved by the general approach to be presented herein which is
- motivated by the previous work of McDonald and Briley (Ref. 25). Unlike the earlier
work, the present algorithm achieves second order accuracy for the forward marching
direction using only two levels of storage as opposed to three. In addition,
the present analysis is developed directly on tensor-like objects which contain

S
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a considerable amount of generality and hence applicability. Further developments

come with the construction of an implicit-explicit shifting function which can be

used to well-condition an ill-conditioned transformation by creating a diagonally .
dominant (Varga, Ref. 26) and hence numerically solvable system. Other applications

of implicit-explicit shifting occur when it is desired to cast the implict differ-

ence equations in a form suitable for ADI splitting along coordinate directions. 8
Here one shifts all mixed implict transverse derivatives to the explicit side. "
This avoids extra ADI sweeps or an increasé in the matrix banded structures of the

individual sweeps.,

e g

The System of Equations

Tn keeping with the viewpoint of maintaining generality, the numerical method
shall be developed in a slightly more general context than is actually needed.
Specifically, M-th order N-dimensional systems of the form

OH: s
—_— =T (132) g
dt

are to be solved for a solution (py) = (py, « - « @) where

Hy =87 X5 Fig) = HilTs X5, P;o(hs Xys @p)) (13p)

Fy = F; (7, X5 UGo) = F. (7, X35 (A5 Xy @) (13¢) v;

: r(t) = A(t) = t = time-like variable (134)
(xj) = (X5 o 0 o xN) = spatial variables (13e)

£ for L<i, j, k, £ < N and a multi-index a = (ot]_, .« o ey °’2M) with integers o-.
i 4 The reader should note that there has been a use of a compressed notation to
indicate functional dependence. The power of this notation is easily observed from

the expansion.

pia()\, Xk, (pz) = pid()\’ xl, XQ, e o oy XN, wl, (pz, o o oy CPN) (l’-l-) .1

B
In addition, this notation avoids the confusion that can result when chain rule ,"
expansions produce Jacobian-like objects of varying dimensions. This should be
obvious from the form Hi('r, X35 P;,) since (xj) and (p;,) are vectors of generally .

unequal lengths. This notation should, of course, be distinguisue: from the
Einstein summation convention of summing like indices which is in tue context of
sums of products as opposed to the argument listings here. The spatial

Lo SRR PR el R
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derivatives and the dependence upon the solution vector (wz) are all contained
in the specification of the functions p;, and 9y in (13b) and (13c). Specifically,
one has

= X q s s » g . 1
Pio Dal GldM}l DaM G1a2M (15a) :
where P
el fore, =k, 2, . . ., N
DX J
. a.
Dy, = J (150)
J Identity - for ay = 0
and
Gy =6, (% ) 15¢
1“M+j Loggs 4 s Xy CPE ( )
The form of qia\is similar but with different functions Giam+ . It should be :

noticed that all of these specific forms can be expanded by sﬂccessive applications
of the chain and Leibnitz rules. If these expansions were taken to the point where
only derivetives of the form Dﬁ]_' 5 .DBMtp P would appeer then both pi, and Qe could

be replaced by expressions of the form D%, where Dy = nal...q,M and o = (al, by
* e 0 S L} s .

O Opas Qs , 0) with O oy <N anda, . # 0. 1In particular, one would have

the solution vector %1 = Pia T Yo for o« = (0,...,0,a 1’ O0yeesy O) and deriva-

M+
tives of cP°’N+1 up to order M as & varied otherwise, This simplified functional form

for Pig and gy, would certainly make the theoretical discussion easier; however,

the computational complexity of the problem would generally be increased. In

many cases a natural grouping of functions pj, and qia'occurs. Such groupings are

easy to spot in the general fluid equations (12a) to (12b). The above evpansion

and redefinition of pia\and qia'would generally increase the number of terms in the
equations, Each of these terms would require roughly the same number of operations
involved in linearizations and differencing as was required in the original. Thus,

the operation count would generally go up in a direct proportion to the increase

in number of terms. Consequently, it is preferrable to stay with the theoretically

more cumbersome form of equations (15) which produce a computationally more efficient
scheme. Since the derivative operators with respect to A, ¥y, and t all commute ,
with the operator er of (15b); the differentiation of Pyo &nd qﬂ?'with respect to 5

As vz, or t is easily seen to obey the chain rule. Thus, one can treat the operator

functions py, and qia as ordinary functions in the variasbles A and vz.
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From the chain rule, the system of partial differential equations (13) can be
rewritten in the form

P ; E .
A. 9.&.— F. - EEL J oty OPig (16a)
ibat 1 dT  dpy, DA

. OP; :
A. = le —-l—a = -b}-—Il (l6b)
1L opy, %y 0Py

is just the Jacobian of the flux (Hi) in the solution vector (wz). If the matrix
(Ai ) represents a nonsingular linear transformation A, then one can directly solve
for the time-like derivatives of the entire solution vector. Otherwise one must
consider a system of lower rank and with constraining relations. Under a change of
basis equations (16) can be rewritten in an equivalent form where the linear trans-
formation A is represented by a matrix with r linearly independent rows and N-r

rows of zeros where r is the rank of A. The last N-r rows of the transformed equa-
tions correspond to the nullity of A and hence involve no time-like derivatives.
Consequently one can consider these to be constraining relationships which can be
used to eliminate the last N-r rows of the solution vector in the first r equations.
If this is possible, then one has reduced the original system of N equations in

N unknowns to an equivalent system of r equations in r unknowns. These systems will
be called reducible systems. This terminology corresponds with the matrix terminol-
ogy since a discretization of the system would lead to reducible matrices (varga,
Ref. 26). If the system is reducible at each point (t, x,) with a continuous trans-
formation of besis, then the system will be callel a solvéble system. Only solvable
systems shall be considered here; end, in fact, without loss of generality one can
sssume that A is nonsingular for otherwise the reduced system would Jjust produce a

smaller nonsingulsr version of A which would be solved in the same manner. With
this consideration one obtains

Oy ¥y ¥ig
T P4 o DA

(17)

where the matrix (Bji) is the inverse of (Aik) and the notation s, is introduced

to denote the value of the time-like derivative of the jth component of the solu-
tion vector that is determined directly by the system of partial differential equa-
tions.
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The Numerical Scheme

Time-like variations of the system of equations (13) are generally nontrivial.
This is evident on examination of the system of approximate Navier-Stokes equations
developed in the previous chapter. There one has a time-like direction
associated with the spatial direction which is then used to march the solution.
The remaining directions form what is generally referred to as a transverse surface
which is often taken as a transverse plane. As the solution is marched the geo-
metry of the problem changes as the bounding contours in transverse surfaces
generate the flow region in & generally nontrivial fashion. Thus one has con-
siderably more opportunities for error growth than if the flow region had no varia-
tions in the time-like direction at all. With this motivation it is preferrable
to develop a second order scheme as opposed to a first order one.

The numerical scheme that is developed here is a second order generalization
of the classical Crank-Nicolson scheme. In the well-centered framework of
Crank-Nicolson one has

= n+l n ol
L s n
h 1
n+l n . : . L
where h = t - t and all superscripts are used to denote time-like evaluations.

The reader may also notice that all other indices in this section were carefully
taken to be subscripts. In this way no confusion can result. One now must evalu-
ate both sides of the Crank-Nicolson equation (18) and preserve second order
accuracy. From a Taylor expansion of the right hand side about level n one obtains

1 F. - n
Fn+-§=Fin+{p_Fi+.b_‘.1; E.(ljﬂ-}..b_qlﬁ %]}2_

19
DT pagy O 9y ot )

+ o(h2)

where the chain rule has been used. The n-level evaluations in the first order
piece are straight forward with the exception of the quantity (b¢z/bt)n- This can
be either evaluated by a finite difference or directly from the differential
equations with sjn of equation (17). If the latter approach is taken, then the
implicit character of the basic Crank-Nicolson scheme is lost. Thus a finite
difference shall be used. Since the term itself is first order, the simple first
order forward difference is sufficient. Thus one obtains
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v =y

( T . . n
et o () (5 ) (el o
20 -

bF _b_q-_l_qn n+l ] n 2 ‘
(qu) (Pha) oy« -ep) 06 1

On the left hand side of the Crank-Nicolson equation (18) one must evaluated a
time-like difference quotient of fluxes. This is obtained by a Taylor Series
expansion about the n-level. To break the calculation up into menageable pieces
it is best to first evpand each of the (n+})-level derivatives about level n. In

so doing one obtains the finite difference d
n+% n+l 5 n
(E%Q) ) e AR o(n2), (21a)
b h

the Taylor Series expansion

n+s n
B (), pHvn e
= + (—=) =+0(h%)
oT T atar/ 2 (21b)
n 2 '
LU o R T E&a_JIf n
dT o2 appr dh oey Bt 1) 2
+ 0(h®)
and the similar expansions ‘
L n 2 2
n+ . ] I
(oHi') 2=(bH1)+3le , OHi opip Ja_ln
OPiy o, dTOR, . dPgdP, L 0A S v
c
+ 0(h?)
nt RS T
(bpia ) = (___bpm) +% =2 Sig 2% l‘. + 0(8%) (214)
A 3 o\ soh ot ) 2

and

Lked
s
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n"’% n 2 2 >
H ; 2
(Ria) - (24) +§bp xRl ) (21¢)
>, 29, NP,  3P; O

The time-like difference of equatioi (18) is now nbtained by a direct substitution
. of equations (21) followed by an abrorbtion of second order terms into the collec~
tion O{h?). The result is given by

: ;-,
;
.
L
»
o
.
‘#’!
i
L
&
E

n+l - = 2 2 , ; n
RL AT RTINS
g h dT dTe o0y o1 OA o0 ot 2
| T T S L a: 3%py, P :
- 3 1)3(_.__9:1) P (Pha Xk ) B
v dP; o oA G S ot 2
7L gl 2 n ml_ 0 Gt
: +(bpi % [ d p;o, , 2 Pio :c:j %) (“’z 2 )i
: 5 P OAD . h
; } 0Py ) b<PJb<P i
5 '& 2 o n n
1 4 +3 0 Hy % d Hi lapip . 0Pig ¥¥; lt h 3( bpj_a)
q {
i 3 7 - t 2 oA
3 : b'rbpia bpisbpia . O\ bcpJ 0

n n+ . n
() (2 oo
0%y h J

Now it is best to regroup the above into n-level time-like derivatives of ¢, and
time-like differences in @, with coefficients ordered by powers of h. This® regrouping
yields the form

g T

e
b 4
;

e S it
T o, S T *%‘Wﬁe'

n+l n . n+l n 5 n+l n

. Hy -Hy n n [E95\" n ®y - 9y no (%93\ (%2 -9y )

=& NPyl Py Jragy, 5

£ h J \dt h g L h

: | (23)
3 + 0(b?)
%? "s:\
| - where 1
;-g
.
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2
2 . . z
oy o dH; %y, MM  Pig
dr op; O dpy,, 12
ap-j_B mia]
A

2 2
0 Hj 0 Hy fo) O . o
i OB )

oropy, P, o, O\ 3

=P..I.‘I-.j-'— 9?1{1+b

(6]
iy opy, dw,

2 2
dH: D p. O Hj OP:, OP
s al T il ot o ig igl .g. (24d)

d.

From successive applications of the chain rule in conjunction with the Leibnitz rule,
the coefficients can be condensed into the simple forms

(25 °

(25b)

(25¢)

(25d)

o)
2 v (25€)

Time-like derivatives of quantities other than the solution vector ®; are given
by derivatives with respect to T. Such quantities, for example, are often items
thet are built up from the metric information when the equations of motion are
expressed in some curvilinear coordinate system, The derivatives with respect to
T occur only in the coefficients ay, bi , and cys. When the time-:ike dependence
is on the solution vector @, alone, the coefficients &; and by 3 both obviously vanish
and the coefficient cys 1is gust the Jacobian of Hy. The expression for d;sx is
independent of T-derivatives and is easily identified as the product of h/2 and the

Hessian of Hi'
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n

0P 3

To maintain second order accuracy the derivative —1:- associated with the

ay 2 -terms in equation 5%?)cannot be evaluated with a forward diff%rence; for
then, the quantities ¢zn would appear in products of the form wjn+ @zn+l and thus
linearity would be lost. Consequently, one is left with two options. First, one
may take a simple backwards difference to a level (n=1) in the time-like variable.
This difference represents the derivative to first order; and since the coefficient
d?jz already contains a factor of h, one has obtained second order accuracy. This
was the option taken by McDonald and Briley (Ref. 25). The resulting scheme is,
however, a three level scheme. 1In some problems storage is the critical factor;
and in such cases,a two level scheme is much more desirable than a three level one.
This motivates the second option. The idea is simply to evaluate the derivative
directly from the orignal system of differential equations. Thus from equation

(17) one has

.= _B_F,-
J ot g [ 1 2T
in terms of the T-derivative. TFrom a direct substitution of this expression into
the dgjz-terms of equation (23) one obtains the representation

S

n 0P\ B n n
+ Dy (-—i) + (e, “ra. s )(
17 \at i L5E . W

+ O(h2)

for the time-like flux difference on the left-l.and side. Under either of the above
options one has not yet finished the representation of this time-like flux difference
since the n-level derivativeS(_Ei)n associated with the bijn-terms still remain

i t

to be considered. Since coeffgcients bi-n contain a factor of h one can represent
these derivatives by either a first order difference or a direct substitution of

sjn. Unlike the d?-z-terms there are no (nt+l)-level complications here and conse-
quently only the simple first order forward difference need by considered. The
representation of these terms, however, is not unique. For any n-level coefficient

egj that is in O(h) one has

n+l n

)] = 0 + O(k%) (28)

which can be added to equation (23) without changing the order. WNow if one uses
the forward difference for the b?--terms and adds equation (28) to equation (27),
then one obtains the time=like flux difference representation
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n+l n ntl  n

Hi - Hi n n n n n n n nyf%® -9 !
= a, = €, s + [b. + e, + c, + d. 5. ] §
h i ig 12 ig ig ig ides "3 it F
» (29) 1
+ 0(h") 4
4
With eizn = 0 the effect is to represent bij“-terms with a finite difference; and with }g
e. D = _b. » the direct substitution of s Ln is used. Tn between there are an infinite

ntéber of possibilities. In effect this arbitrariness of eizn provides one with a
degree of freedom that can be used to shift terms between implicit and explicit parts
- of the representation. The advantage here is thatterms can be shifted towards the
1 implicit side to insure diagonal dominance and hence invertibility of the implicit 1
scheme. TIn addition, unwanted implicit terms can be shifted to mede ADI-splitting !

easier. For these reasons, the function eizn shall be called an implicit-explicit

shifter.

& Both sides of the Crank-Nicolson equations (18) have been suitably approximated
to second order with right and left hand sides being given by equations (20) and
(29) respectively. By direct substitution one has the second order scheme

- n+l Y if
i a H e [b T A M b ]
. g a; - €, Sy il €y ciz + 30 sj ] : £
: 4 (30) .
.\ . \? .\ . \B n+l ¥
o +{(bF1) . (bFl ) (gl_lg_) }% +(bFl \) (qu)w
0T b(;.ia o) bqial. bwz L
n+l n+l n
i where =@, -9 - From a multiplication by h, the notation of equation
- (25e), and the chain “rule one obtains the form
{ - . o ) h dFjn  ntl
[ gt eay toi Yy sy T2l W
(31)
h yF. n
= R ==L - la, = 4 4
’ h [Fl > T T ) L
4 - where the strength of the implicit coupling is controlled by the first order function |

e. . While this function can be taker to extreme settings, it is usually taken as
zero unless mixed derivatives occur or diagonal dominence is lost. The spatial

differences are easily inserted into equation (31) by the mere replacement of the
- spatial differential operators Dy of equation (15b) with the difference operators ‘;
! Ay Which are defined by

£

S 1

4 w W (i) Ek(i) for o <k <N i

% Ag = { i=-T b

& » (32) ;
Ey(0) for k = o
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where Ek(i) is the evaluation map on the position designated by translation of the

kth grid varisble by i grid points and where Wy(i) is the associated finite difference
weight. One easily notes that Ex(o) is the identity. When the weights Wy(i) are

taken to give second order spatial accuracy in the interior and on the boundary the
overall scheme of equation (31) is second order. Second order accuracy‘at interior
points with a uniform mesh is achieved by setting r=s=1, W,(o)=o and

1

V"‘_)k (33)

W (1) = = W (-1) =
while taking Ek(i;) to be half point evaluations via two point averages.

The scheme of equation (31) produces a linear implicit system of equations
which are efficiently solved by the classical ADI procedures given by Douglas and
Gunn (Ref. 27). The ADI splitting is usually taken along coordinate directions.
When this is the case mixed derivative terms are often eliminated on the implicit 4
side by use of the function ey, of equation (31). %

It is eften instructive to specialize from the general to the specific. 1In

so doing one can consider the application of the scheme given in Eq. (31) to a

§
: _ 0% _ Oy .
system with Hy = Hy (%, S—-z) and Fy = F (wj, —)- This system covers all equa-
y oy

tions that do not have time-like derivatives outside¢ of the solution vector itself.
In gas dynamics this type of system is obtained when a direct solution to the
stezdy-state inviscid supersonic equations is desired in Cartesian coordinates.

g i, . O h 8°Hy

f From Eq. (25) one obtains 84y = biJ =0, ¢4y = 353, and dijA =5 35—35;—’ and from

Eq. (17) one h B, ,F (OH‘) F, = — F,. By substitution into Eq. (31) i
] q. 7) one has sj = BygFy = 55; 31 T4 GHi 1" y subs ution into Eq. (3

3 one gets

My g 0H d o, | *'
P4 i n+l b
: [b - @ -

with a choice of ey, = 0. If one had considered the time-dependent equations in

" primitive variables, then one would obtain Hy =% and hence the system

o, | 4 L

oF, |°
[ai -4 i] " = br," (35)
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The further restriction to a single ordinary differential equation would lead to

n-+l n
Q-5E E—) =

LB (36)

gt - o

h

il 6 L D et P
_§{F+[F+(Fp)( = ) hl} (37)

But now within the square parenthesis one has an approximation to Fn+l accurate to
gsecond order. If the system were linear in F, then one would have

n o Fn+l

— (38)

F
2

which is exactly the Crank-Nicolson scheme.

o
el




R76-912024-8

THE COORDINATE SYSTEM

The Construction of Tube-like Coordinates

Pube-like coordinates will be constructed in general to provide a natural
setting for the study of flows within, between, or outside of a set of prescribed
tubes. The prescribed boundary tubes then become coordinate surfaces, and, as a
result, the specification of fiuid dynamic boundary conditions is greatly simplified.
Although the equations of motion contain more terms than for a cartesian systenm,
this does not add excessively to the run time of a program. In addition, there
must be some control over the resolution of regions near bounding tubes so that the
effects of wall curvature and the growth of attached boundary layers can be ade-
quately treated. Such controls are obtained from the specification of coordinate
distribution functions which shall appear only as parameters in the basic geometric
construction of the coordinates. The basic geometry of the bounding tubes then
provides the intrinsic constraints upon the coordinate construction. Since the
primary goal is the computation of fluid flows within nontrivial geometries and not
the development of coordinate systems per se, the coordinates will be kept as simple
as possible, given the desired generality.

Considering various past successes of two-dimensional conformel mappings to
obtain coordinates, one might naturally wish to obtain similar transformations for
three-dimensions. Unfortunately, there is no three-dimensional theory of conformal
transformations analogous to complex variables, and consequently, in three dimen-
sions one is left with a complicated system of partial differential equations which
generally would require numerical solution. To circumvent the considerable computa-
tional labor required for solution of such equations, a constructive process is
used for the development of tube-like coordinates.

The first step in the construction of tube-like coordinates 1s to create &
suitable family of two-dimensional surfaces which, in some sense, are transverse to
a given centerline. If orthogonal coordinates are desired, then these surfaces would
have to bend and flex as the tube would undergo changes in cross section at differ-
ent centerline positions. In addition to the problem of constructing transverse
surfaces which bend and flex, there is also the problem of constructing an orthogonal
grid on a surface which has variations in Gaussian curvature, and hence, is not flat.
This second problem, in fact, requires a more complicated construction than the
first which in itself is not easy. Thus, the sheer magnitude of the work involved
in the construction of orthogonal coordinates certainly would remove the desire
for their use in fluid dynamic problems which undoubtedly would require less com-
putation in nonorthogonal coordinates than in the construction of an orthogonal
system alone. By contrast, if the trausverse surfaces are selected to be two-dimen-
sional planes, then the construction of coordinates is greatly simplified while the
fluid dynamic computation is only marginally different due to ccordinate nonortho-
gonality. Consequently the coordinate system that we shall construct will have
planar transverse surfaces.
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Since each planar transverse surface is a linear subspace of the real
three-dimensional Euclidian vector space R3, any such plane can be completely
specified by any two spanning linearly independent vectors in R3. The specifica-
tion of the planar family of transverse surfaces is then_a result of a construction
of two vector fields along a given centerline curve in R°. The origin of each plane
is chosen to coincide with the associated centerline point. (See Fig. 4.) To
assure that the planes are always indeed transverse, it will be assumed that they
are orthogonal to the centerline at their origins. Ultimately, tube-like surfaces
will be generated by loops sbout the planar origins which deform in some way as we
move along the centerline curve; in general, these tube-like surfaces will not
intersect the transverse planes orthogonally. Thus, only the centerline direction
determines the transverse nature of the cross sectional planes. Specifically,
the centerline %angent vectors form a vector field which, at each point.is ortho-
gonal to the plane of the two transverse vectors, and thus each centerline point
carries a triple of linearly independent vectors. By the Gram-Schmidt orthogonali=-
zation procedure, each such triple of vectors can be made into an orthogonal set,
and hence, an orthonormal set which is simply called a frame. Thus, tube-like
coordinate systems are constructed from a specified centerline curve and an asso-
ciated frame field. Now the basic question is whether there is a canonical con-
struction of tube-like coordinate systems from either a given centerline or a given
frame field. From the theory of space curves (Ref. 26), it is well known that for
positive curvature and specified torsion there is a local one-to-one correspondence
between frame fields and space curves which pass through a given point. Thus, for
nonzero curvature, the centerline space curve has a canonical frame field which is
known as the Frenet frame. Consequently, the coordinates will be derived from the
Frenet frame when it exists. At centerline points of zero curvature, the Frenet
frame is degenerate and must be treated specially.

Once the Frenet frame of the space curve ¥ has been established, the unit
normal and binormal vectors V2 and V, at each point of ¥ determine a transverse
plane orthogonal to the unit tangent vector Vl. (See Fig. 5.) Relative to any such
transverse plane, these vectors are also the standard orthonormal basis. Conse-
quently, we can examine the plane separately from the curve, ¥, which will only
appear as the point at the origin. In two dimensional functional terminology, the
unit normel direction can be considered as the abscissa and the unit binormal as the
ordinate; or more simply, as x and y axes, respectively. Since the tube-like
coordlnates are to be generated from some family of tubes encasing the space curve,
y, a cross=sectional cut by a transverse plane produces within the plane a family
of loops sbout the origin. We shall assume that each loop is representable by a
strictly monotone radial function of angle. In this regard, a polar type of descrip-
tion is the most suitable. But, of course, the loops are usually more complicated
than circles, and thus, we must replace the radius by a function L of both radial
and angular varisbles r and §. Furthermore, when noncircular loops bound a cross
section of fluid, there are regions of varying well curvature. In a numerical
solution, it is desirable to put proportionately more mesh points in regions of
higher curvature than in regions of less curvature. Consequently, an angular

o i il
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distribution function, ®, is a good replacement for the simple angular specification,
9, of simple polar coordinates. The net result is a generalization where polar
coordinates are replaced by a pseudo-radius, r and pseudo-angle, 6. Since the loops
generally vary from transverse plane to transverse plane, the pseudo-radii and angles
must also be functions of axial location, t, on the centerline space curve, N(t).
Since the normal and binormal directions are usually functions only of the centerline
curve, Y(t), our loops may have symmetries that do not reflect about either of these
Frenet directions. Since the use of known symmetries is a great simplification in
most problems, we need an option which allows one to define axes that can be aligned
in an optimal way. This option is easily established from the specification of a
function, Q(t), which is a rigid rotation relative to the normal-binormal directions.
To bring this development of tube-like coordinates within the framework of the
preceding tensor derivations, we shall use the notation, yl—-e, y2=r and y3=t for
pseudo-angular, pseudo-radial, and axial varisbles. In this notation, we have thus
far developed (1) a length factor, I=L(yl, ¥, y3), which is a generalization of
radius, (2) an angular distribution function, ®=0(yL, y3) which is a generalization
of angle, (3) a rotation function, Q=((y3), and (4) the Frenet frame, (Vi,'Vé, Vé):
V1 (v3), Va(v3), V3 (y3)) upon which the coordinates are built. That the length
factor, L, and the angular distribution function, ®, give us a generalization of
polar coordinates is obvious since polar coordinates are easily retrieved by taking
L(yl, yz, y3) = y° and ®(yLt, y3) = yl. It is also worth noting that the angular
distribution function, ®, was chosen to be independent of pseudo-radius,

Although it is not immediately evident, we have removed a considerable amount of
potential computatidnal complexity in the process of obtaining metric information

by limiting the number of derivatives which must be computed. Furthermore, there

is no real loss of flexibility in the construction of angular distribution functions.
Since most commonly used analytic descriptions of loops are, in fact, controlled by
a collection of parameters which depend only on axial location, y°, a knowledge of
only these parameters is often sufficient for the construction of the angular dis-
tribution function. For example, if the loops were to consist of a family of con=-
centric homogeneous ellipses, then the major and minor axes of the outermost ellipse
would form a collection of two such parameters.

With the above functions and the Frenet frame, the class of tube-like coordinates
comes directly out of the transformation

X=Y + L{Vz cos ¢ +_\73 sin ¢}
(39)

which transforms curvilinear coordinates, ¥ = (yl, y2, y3) into cartesian coordinates
7= (x, x2, x3) where

o(yl, y3) = 8y, ¥3) +a(d). (40)

i
s




il s o Bl

R76-912024-8

At each transverse location, y3, the space curve vector, ﬁﬁ trani}ates the origin

to the space curve. At a given pseudo-angle, yl, a unit vector, V2 cos @ +:¢é sin ¢, is
determined by the sum, ¢ = ® + Q of the radial distribution function, @, and the
transverse rotat%on, Q. This unit vector sweeps out a full 360 degs in the trans-
verse plane as y passes through all of its values. Hence, we could cell this a
direction pointer for the transverse plane. When this direction pointer is scaled
by the length factor, L, we obtain a point of our transformation. Since the length
factor depends on all three variables, any set of tube-like surfaces can be obtained
provided, of course, that loops are representable by a strictly monotone radial
function of angle and also that no two transverse cross sections are allowed to
intersect.

In a geometric setting, the trensformation is really an embedding of tube=-like
coordinate systems into three dimensional Euclidian space. An illustration is
provided in Fig. 5. From the transformation, it is also easy to see that the surfaces
of constant y3 are the transverse planes, the surfaces of constant pseudo-angle, yl,
are ruled surfaces generated from the centerline curve, iﬁ end the surfaces of con-
stant pseudo-radius, y2, are just the concentric tubes about the space curve,'?.
Separate illustrations of these various coordinate surfaces are given in Figs. 6a,
6b, and 6c, respectively.

The Length Factor

Within the structure of tube-like coordinates, the length factor contains the in-
formation needed both for the specification of basic geometry and for the distributional
control of the flow region. The distributional control can be easily implemented by
the use of pseudo-radial and angular distributions as merely parameters in the con~
struction of the length factor. In this way, the basic geometry can be treated sepa-
rately from the distributional aspects. The point of separation becomes especially
evident when the process of length factor construction is broken down into a number
of stages. Since the bounding tubes can be smoothly generated from bounding loops
within each transverse plane, it is sufficient to temporarily restrict our analysis
to a consideration of regions between bounding loops within a transverse plane. For
our tube-like coordinates, we have implicity assumed that the nondegenerate bounding
loops do not pass through the origin and are contractable along radial lines emanating
from the origin. Thus, we do not allow bounding loops to intersect a radial line
more than once. Consequently, each bounding loop Y; can be expressed in terms of polar
coordinates (r,A) as the product of a single valued radial function Fi(6) and the unit
vector (cos 8, sin 8). With this polar description the contraction process effectively
reduces to a one~dimensional process. Specifically it is a process between the coef-~
ficients of the unit vector (cos 6, sin 8). For a given set of loops Yqis...sYy 80Y
sufficiently smcoth interpolation process between the coefficients will be satisfactory.
If we assume that no two tubes join within the flow region, then the flow region is
divisible into subregions with no more than two bounding tubes. The interpolation
process for two bounding loops Yy, and vo is, therefore, all that is usually needed;
and is given by the simple homotopy
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H (8,r) = L(e,r) (cos 6, sin @) (41a)

with length factor

L(e,r) = rF;(8) + (1-r) F, (e) (41pb)

which takes v,(8) = H(9,0) uniformly and smoothly into yl(e) = H(g,1) as r goes from
0 to 1. (See Ref. 28.). This is illustrated in Fig. 7. If the loop Y, is degenerate
then the coefficient Fz(e) vanishes and the length factor reduces to L(@,r) = rF.(6),
we thus have the cross section of a duct generated by one loop. By the continuity

of L as a function of Yo the duct generated by one loop vy, can be considered as a
limit of annular type reglons between loops Y, and Yl and Yo closes tightly upon the
origin. This concept is often quite useful since the origin in coordinates generated
from one loop suffer from the same singularity problem that occurs with simple polar
coordinates. This singularity can be circumvented, however, by using an auxillary
loop Yy, which 1s near enough to the origin to create a good approximation to the
originel region. To preserve overall accuracy in & numerical computation, ||y2|| =
mex F,(6) must be less than the numerical truncation error. In fact, the well-defined
limiting process would lead one to believe that there would be no problem at all in
teking ”'Y2|| arbitrarily small. But if ||y2|| is taken within the region of machine
roundoff error, then the singularity problem may reappear by default. Consequently,
it is best to choose ||'y2|| to be much less than truncation errors but greater than
roundoff errors.

The final stage of length factor construction is accomplished by a replacement of
the polar coordinates r and @ by radial and angular distribution functions R(r,t) and
®(8,t) for axial location t. Now since R and ® are to be the actual polar locations
of a loop we must reinterpret r and 8 as pseudo-radial and pseudo-angular locations on
the same loop. Within this context the two-tube length factor becomes

L(8,r,t) = R(r,t) F,(8(8,t)) + [1-R(r,t)] Fp(6(8;%))  (H2)
and the associated unit vector becomes

(cos (8(8,t) +0(t)), sin (a(e,t) +a(t)) (43)

where the rotation Q(t) of the Frenet frame has been included for completeness.
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The Construction of Bounding Tubes jﬂ

As the reader has just seen, the construction of tube-like coordinate systems 3
relies upon the existence of smooth bounding tubes. When such tubes exist at the
outset of a problem, the generation of coordinates is a straightforward application
of the development above. However, if the bounding tubes are unknown at the outset,
then they must be constructed in a smooth enough fashion. In such cases one is ;
often given a discrete specification of a sequence of bounding loops which first A
must be fit with a smooth curve and then must be joined to form a smooth surface. '
Trkis circumstance can often arise out of the convenience associated with the discrete (
sp-cification of a surface by means of successive cross sectional cuts. If this 8
data were to be given all in advance of the intended use of the coordinate system
as & whole, then the smoothed cross sectional loops could be effectively joined by
fitting them together with splines which can have interior knots corresponding to 3
interior loops. However, it 1is often the case that discrete loop data is only 3
generated one station in advance of the use of the coordinate system. This occurs, 4
fur example, when the problem is to sclve for the viseous Flow fleld cutside of an !
ogival body when the flow is predominately supersonic. While the ogival body sur-
face is known in advance, the location of the bow shock is not. Thus one considers
the ogival body surface as the unknown outer tube which one wishes to use for the 3
-generation of tube~like coordinates to allow for the efficient computation of the 9
fully viscous flow field. BSince the flow fiecld in a neighborhicod of the bow shock ‘
is largely inviscid, an inviscid explicit solution is performed iteratively to
obtain discretely the geocmetry of the bow shock at one station in advance of our
known soltuion and coordinate system. One is now left with a fully developed bow
shock surface preceeded by a discrete cross sectional loop of bow shock data, The
problem is to smoothly fit the loop and then smoothly join the result to obtain a
smooth extension of the surface. Since fluctuations may arise from the discrete
generstion of the bow shook deta, a lesst squares spline procedure is used to it
the loop with smoothness up to three continuous derivatives. This type of least-
squares procedure has the distinet advantage of accurately representing the surface
normal curvature along the loop. Now one has a loop ¥ 11 (p) at level n+l and a
bounding tube ending on a loop 75(9) at level n where %here are known derivatives
in the axial direction t. One then attaches a surface which extends the tube
from Yn to %Hd'with the smoothness of three continuous derivatives. The extension
is accomplished with the tensor product form

r+l
PO = E (8 Ty (0 ()

e

which takes information back to loop )h_r. At the beginning r must be 1 since there b
are only two available loops. The process continues with r increasing until a
desired maximum r value is obtained. From there on r is assumed to be constant,
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Distribution Functions

When partial differential equations are discretized in terms of differences,
the derivatives are replaced in some fashion by difference quotients. A simplifi-
cation then leads to the difference equations that we solve. Implicitly in the
discretization, however, is the assumption that derivatives are accurately estimated
by secant lines. But then the exact solution may experience drastic variations in
a short distance. Such solutions are said to have large gradients. In regions
where the gradients are large, the approximation of derivatives by secants may be
very poor unless the particular region is disected into smaller regions which have
reasonable secant approximations, a practice commonly known as mesh refinement. In
fiuid mechanics, the boundary layer of a viscous flow around or through an object is
such a region,

Obviously, the necessary resoltuion could be accomplished by merely increasing
the number of points in a uniform distribution; however, this would require excessive
computer time and storage. Another alternative, known as the interface method, is
to use a refined mesh only in the given region and then join it with the global
mesh. An improved technique is to use coordinate distribution functions which
smoothly distribute mesh points so that in some sense they are spaced in roughly
an inverse proportion to the size of the gradients. Thus, regions of high gradients
have proportionately more points than regions with smaller gradients. Unlike the
interface method, the transition between different mesh lengths is made continuously,
and as gradually as possible. Distributions are often used when the distributional
transformation is applied to an independent variable of an existing transformation.
The result is a new transformation obtained by composition. With this approach, the
problem of mesh point distribution is replaced by the problem of selecting a suitable
set of distribution functions within a transformation of coordinates. The problem
is a nontrivial one since the distribution functions should depend upon the nature
of the solution being computed but are determined in advance of the computation.
Thus, some prior knowledge of the solution is required. 1In flows with large boundary
layer separation or with adjacent dissimilar components, the critical region to be
resolved is somewhere in the middle of the flow. But the location of such regions
is often unknown at the outset of the problem. One method to overcome this difficulty
in marching procedures is to create the distribution function at the next level based
upon a knowledge of the solution at the present level. Care must be taken, however,
to create a distribution function that is sufficiently smooth in the marching
direction,

In many problems of practical interest, however, the regions that need resolu= ]
tion are known in advance. Typical examples are attached boundary layers and boundary &
layers that may have small separations or separation bubbles.

Within the framework of tube-like coordinate systems boundary layer resolution
on the inner surface is accomplished by setting
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R(r,t) = 1+ g (r-1) tanh [D ( E)] (45)

where d = d{t) is the estimated boundary layer growth, o = a(t) is the desired
proportion of mesh points in the boundary layer, and D is the hyperbolic damping
factor. The boundary layer growth d gives the fraction of the flow region occupied
by the boundary layer, o is usually taken as a constant, and D can be given a value
of about 2. When r is small, the radial distribution of equation (45) reduces
essentially to the line '

R"ar (llr6)

which would have been chosen had we used the interface method. As r approaches
unity the distribution Eq. (45) smoothly approaches unity as illustrated in Fig. 8.

Metric Data for Tube-like Coordinates

The efficient generation of metric data is an important part of any solution
procedure involving general curvilinesr coordinates. Before a solution can be
undertaken, the physical problem must be specified. Problem specification, however,
involves the creation of boundary and initial data and the generation of the equa-
tions of motion with the associated boundary conditions. In addition, the solution
may be monitored, examined, or put under physical constraints. In all of these
tasks, the metric data is needed. A knowledge of the metric data is enough to com-
pletely specify the equations of motion and analyze the coordinate invariant direc-
tions for the specification of boundary and initial conditions. For very compli-
cated geometries the equations of motion may contain an inordinate number of terms.
However, if the equations are taken in tensor form, then the coefficlents to terms
can be constructed from the metric data with the construction process being performed
on a computer. Once a non-trivial term is constructed, its contribution to the
desired difference equations is computed before searching for the next non-trivial
term. Sequentially, the process continues until all terms in the equations have
given their contributions to the system of difference equations. Then, in the same
fashion, we cycle through terms in the boundary conditions, sequentially adding in
their respective contributions. The result is the desired set of difference equa-
tions, and the problem is effectively reduced to linear algebra. Note that with
such methods there is no real need to write out the differential equations or compli-
cated boundary conditions in detail. Thus, all we need to do is to generate the
metric data and use it. 5

The metric data for tube-like coordinates can be obtained from the transformation %

. » i
X=YV+L {V,cos o+ Vy sin @ } (47)

i%
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sending tube-like coordinates y = (yl,yz,y3) = (p,r,t) into cartesian coordinates
x = (xl,x,x3) where ¢ = @ + 0, and

¥ = ¥ (y3) = space curve center-line
Vo (y3) = unit normal vector

V3 (y3) - unit binormal vector

L (%, ¥2, y3) = length factor
@ = 8 (y!, y3) = angular distribution

Q=0 (y3) = rotation with respect to Frenet frame.

By differentiation of the coordinate transformation, we obtain the Jacobian trans-
formation which leads directly to the transformation rules for tensor fields. These
rules allow one to input, monitor, or extract basic information from a solution
procedure involving transformed variables. The Jacobian Transformation is essentially
obtained from the chain rule which ylelds

- 0% I ¥ _ o
Tl ol wd oyl 9 (49)

where U, is the standard orthonormel basis of constant vector fields, and €y is the

natural basis of tangent vectors to coordinate curves. With a slight abuse of

notation, we have used ¥ as & position vector in the definitions of - and O,. However,

nothing is lost since the covariant derivative of X = xJi, is Just the partial deri-

vative of the xJ summed on ﬁd' In terms of the notation J :

0

4! A

u. = s u. =10 (50)
1

2 o

3
oyt
and hence the Jacoblan matrix
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ax ad 1

> a2
1 (€1, &2 33) = L I 3 (52)
ad a3 ]

e S

Thus, to obtain the Jacobian transformation, we must calculate the natural coordinate-

wise basis vectors 'éj. J

For notational convenience, let derivatives of functions in only the axial va.ria.ble
v3 be denoted by a dot; and in addition, let

: a:l+:]+k (52a)
: i3k = (ayl‘l’ayz)d(aﬁ‘k
{ 3i+d @
@i = — (52b)
1 (ay1)i(ay3) -3
A and di+d ¢ ;
T WS C G B 2 h
i = (3yl)i(ay3)d IgEe
where O < 1,3,k < 3. By differentiation,we obtain
& = (L1pp cos 9 - 1@ &in CP)VZ -+ (Iyop sin @ + 18y, cos cp)V3 (53a) 1
% ‘
,% 'e“3 i Vl + Loy (\772 cos @ + V3 sin ®)
;i + L (V, cos o + T'f3 sin ¢ - V, ¢y sin ¢ + V3 ¥o1 OS5 P) (53¢)
@
i |
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Since the pseude-angular vector € and the pseudo-radial vector e2 are linear
combinations of the unit normal vector V and the unit binormal vector V3, they both
lie entirely within the transverse pla.ne at axial location y3. But unlike é‘l and
62, the axial coordinate direction vector 6‘3 is not expressed in terms of the basic
Frenet frame. Thus, we cannot easily measure €, relative to the transverse plane
unless the y3-derivatives of unit normal and binormal vectors are expressed in terms
of the Frenet frame. The necessary expressions are given by the last two Frenet for-

mulas (Ref. 29) for the space curve vy; namely,

V2 = - 8K Vl + 87T V3 (5ha)

and

Voo ¥

3= - 8T V3
(54)

where s is arc length, x is curvature, and T is torsion.

By substitution, we obtain

—0

3=BV + (L

ooy OS5 @ - 1A sin g )VQ + (L 001 sing + LA cos®) V3 (55)

where A = ST+ 9 a.nd B =& (1l-KL cos (p) In summation, we have just obtained a
change of basis e’l = biV from the Frenet frame V V,, 7, to the natural basis of
tube-like coordina.te vec’gors €1, 'é’e, H‘eviously, however, we found a change of
basis V; = &% um from the standard ca.r%esian basis ul, i u to the Frenet frame.
But then by composition we obtain the change of basis S —bi Uy from cartesian
tangent vectors to tube-like tangent vectors. By the ident:.fijca,tion developed above,
the Jacoblian elements are just .

Q/

8yl e
- Sl (56)

Q/

for i, ms= 192’3'

The metric tensor 844 is obtained from the differential element of arc length
(as)® gladykdy . But a.iternatively, we have

—v»

(ds) = ax.dx —(’a—y'i dyi). (-7- 'j) %-i- g—:a- dyidy‘-l = (é;-'é:l) dyidy‘j; (57)
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and hence, by linear independence g;: = 31-3.. That is, the metric tensor is computed
by taking the dot products of the tube-like %angent vectors €1, €. 63. This compu-
tation is most efficiently performed when the 61 are expressed in terms of the Frenet
frame. Since the Frenet frame is orthonormal, we have

8yy = €1-85 = (g Vm).(bJ Vy) -bi bj V.V, = by b3 °mz' 1 %15 (s8)
In particular, we obtain
2 2
€11 = Lyoo *+ (L ) (598)
2
&2 = Lpio (59b)
2 2
g3 = B® + Loop + (LA) (59¢)
&2 = Io0 Lo1o (594)
: 2
g 4 = L100 Moor * L0t (59e)
€23 = Loio Loor (59¢)

which by symmetry is the complete list. Note that the sines and cosines have disap-
peared as a result of cross-cancellation and the identity sin? ¢ + cos? @ = 1. Also
note that the last three components listed are generally nontrivial off-diagonal
entries. When any of these are non-zero, there is an angle othexr than 90° between
the respective coordinate directions of the indices. For examp’e, the cosine of the
angle between the pseudo-angular direction & and the pseudo-radial direction 62 is
given by the expression

€12 Lyoo
r——— = —%
Jenmeze  Vijgo * (185 (60)

e TR
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which vanishes only when Ingg = O. But when Ijog vanishes, L is independent of angle
and hence, the loops are circles. If, in addition, @ is a uniform distribution, then
the cross section is given by polar coordinates. In the same fashion, axially inde-
pendent length factors would lead to the vanishing of g23- If, in addition, the
angular distribution and the rotation do not change along a straight axis, then €13
vanishes. In this case, the only non-orthogonality that can occur is in the trans-

[det (&],8,.F3) G

312

§ . :
& verse plene., If we combine all of the constraints above, then the tube-like coor- <
dinates become cylindrical coordinates.
3 3
: The determinant of the metric can be easily obtained from elementary operations n
iE on determinants. That is, !
: | o oo Loo1
= = L, 2 2 2 2

| g = det (gy4) = Lyjp | o0 Lioo + (183p) Looloor + L@ oh

; 2 2 2

1! Loo1 inoolooy + 1P8jph Ly + (14)2 + B

1] y B (18,5) L8t ™y

q:

2 ' 2

178 A (1A)2 + B

= (L I0108108)2

:; 4 Alternatively, we also have

1 g = det (gi;]) = det ('é"i.'é"J) |
i I T T '.:.-
:‘, = det [(81,82,83) (81,82,83)] (62) s
|
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where J is the Jacobian of the transformation. ConseqQuently, J = L L0 0@ oB* For
the transformation to be nonsingular J must never vanish, and thus no %ac%or in J
can vanish. When I vanishes the transformation degenerates to the center line

(Fig. 9a). When the pseudo-radial derivative L 0 vanishes, two distinet coordinate
loops coincide. This can happen by an intersecg%on or a point of tangency (Fig. 9b).
If 8o Were to vanish, then the angular distribution ® would fail to have the
required monotonicity and hence a loop would be tangent to a radial line (Fig. 9c).
Finally, if B vanishes, then two distinct trensverse plenes intersect (Fig. 9d).
This leads to the restriction

1
L cos® % ; (63)

But the curve L cos ¢ = & is a line within a transverse plane (Fig. 9e). The line
is parallel to the binormal axis and passes through the normal axis atl/k. As the
transverse planes move throughout the centerline space curve, these lines generate

a ruled surface. Our condition for nonsingularity is then that the space tubes
must never come into contact with this ruled surface. Thus, space tubes must either
lie below or beyond the surface. If they were to lie beyond the surface, however,
then ® would be restricted to angles between - 90° and 90°. But then if the tubes
were generated by full transverse loops, they would have to possess a bottom and a
top. This would imply that a given angle would yield a radial line with tangents to
the loop and/or a multiple intersection with the loop. (Fig. 9f.) A singularity
of this type is the same as a singularity arising from a nonmonotonic angular distri-
bution. Consequently, the restriction is that the space tubes must lie below the
ruled surface, or algegraically that

L cos ¢« (6&)

The space-tubes are then assumed to encase the space curve Yy and never come into
contact with the above ruled surface. For tubes that have convex loops symmetrically
centered about the space curve centerline, the restriction reduces to the statement
that the length factor must be bounded in the normal direction by the radius of curva-
ture (Fig. 9g). In general, if a tube fails to meet the inequeallity condition

(Eqa. 64), then it can be pushed off center until this condition is met. However, if
the condition is so severe that the centerline must be taken extremely close to the
normal side of a bounding tube, then coordinates will become unnaturally spaced.
Since each loop (about this offset origin) intersects the normal line once on each
side of the origin, the mesh spacing drastically changes. This would tend to cause
an over-resolution on the normal side of the origin and an under-resolution on the
opposite side. In such a case, it is best to generate the same bounding tube but
with a new centerline with smaller curvature. This is always possible since we must
only offset the old centerline in a convex direction which expands the curve rather
than shrinking it. This is illustrated in Fig. 10.

-



;

WY‘ e

R76-912024-8

If there are no coordinate singularities, then we can easily obtain the inverse
of the metric. In a sequential order we have

£ . 5
- 5 (658)
g3 =-4 33 :

g : 65b

8, (65b)

& - (@392 + o (65¢)

(1810)°
3 (& \

& -(———100). g3 (__.L°°1) g33 (654)
Loio Lolo ]
, gla = - (LOOI) g13 - {T100 g_'|_1 (65¢e) ;
' Loio Lo10 ii
b
. 22 2 flggo\2 [ 1\2 |

g = (B&3)" + (LOO.) ( ) g A (65¢)

10 e
LIoio 10 A
The &;-direction covariant derivative Dj of the vector € is again a vector and
hence is expressible in terms of the same basis El, €5, 63. Specifically, we have g
% m
: Diej = [;J e (66)

m
there the coefficientsl;- are known as Christoffel symbols. This covariant derivative
measures the rate of change of €, along a cocrdinate curve in the direction of Ei.
This coordinate curve is an integral curve of Ei. It is obtained by fixing all except
the ith variable in the transformation. We shall assume that the covariant derivative
: is the natural one derivable from the metric. This is known as the levi-Civita
commection (Ref. 29). The Christoffel symbols for this covariant derivative are
given by the formula

o a
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km
rk =& {8ny , demi 284
I yi Tyl (67)
This formula is easily obta.ined by differentiating 8;5 = é’i-'e’. with respect to ym,
permuting all three of these indices, forming the sum in parenthesis, applying sym- 1 :

metry to the lower indices of the Christoffel symbols, and then applying the inverse
metric. With some calculation, we obtain the non-zero Christoffel symbols cirectly
from the above formula. For notational convenience, let

h 3i+j+kpg
B B = 68
1k = Gy i) a3k e
- for 0=<i,j,k = 2., Then we have
. ‘ v
! 8 , Bed B3 - Bolo
! Ll 2,
r e D 2 = Logo
3 = 010 22 © == 3
, 21 L 010
oLt -8 1o, 0 :
:? 23 7 09 2l 13 L.~ T (69) 1
s 00 .oy + A (Bg) -3
| b Bo . w0 .
; T X Laor _ laoo [ R : + i 2 ! ] - e + g23 B. B r
13 LOlO LOlO 31 @10 13 LO]_Q i .,
:
& "ol AL110 !
r--—% (v., 22210y . 23 BB ;
: 32 Igo 011 &0 010
" f.
\ 4

% : A




R76-912024-8

2 1 _ il 2
Ty = Igro (Tooo = L00 Iy, = 180

2

L 1100 -
1“33=1010{L002-LA2-@5—(A+2_L%QL5}

1

2 22 2
+ (- 87 Bygo - & 301o+833001)3

R |
TR
33 @&

7 2 A
(A"'ﬂ;l—)"'('&lBloo'glzBOlO +gl3B001)B

; .
2 e 831 - 232 33
T33 ( Bloo - & By *+ & Boor) B

When viscous calculations are to be done, we also need the derivatives of the above
christoffel symbols. This is a straight forward but tedious process. The deriva-
tive expressions are rather lengthy and we shall, therefore, not enumerate them. One
may also note that the independence of @ from r and of R from § leads to a definite
simplification in the Christoffel sumbols. Had this independence not existed, then
the above calculations would have been even more complex. 4

The geometric interpretation of the Christoffel symbols above is quite natural.
For example, consider the special case when the centerline space curve 1s a, straight
line. Since the contravariant vector &3 is defined by the relation el.€; = 51, it
is perpendicular to the transverse plene. Consequently, S isa constang vecior
which is parallel to the straight centerline. But then the coverient derivative of
s constant vector vanishes. By the Liebnitz rule for covariant derivatives, we then

have

g e

e

g

Dy (63) = D;(8;%3)

s

et

(D3 €5)7e3 + €5.(pfe3)

m*
T (Fij em)l?3 +0

m 3

e R e e o B
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for all i, j = 1,2,3. This fact can also be verified from our list of analytic
expressions of Christoffel symbols. The geometric interpretation is that the covari-
ant derivatives of natural basis vectors éi, €., Eé have no axial projection and
hence are transverse. In summary, we have just shown that with straight center-
lines, no vector fram the natural basis éi, €, 2., can change in the axial direction.
The only such vector with a non-trivial axial projection is, however, the natural

vector €, to axially generated coordinate curves. Consequently, the axial projection
of 63 af%ng such a coordinate curve is a constant as illustrated in Fig. 1ll.
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TREATMENT OF THE BOW SHOCK

Although the shape of the body is specified at the start of the problem, the
shape of the bow shock cannot be specified until effects of the body on the flow
within the bow shock are evaluated. The shock shape is therefore evaluated at each
new marching station based on information .already computed. The shock surface is
adopted as the outer coordinate surface and is used to determine the necessary
metric information for the tube-like coordinates. The governing equations are then
solved in the annular region between the ogival body and the bow shock by marching
from one transverse plane to the next, proceeding in the nominally streamwise
direction.

The bow shock is computed as a discontinuity satisfying the classical Rankine-
Hugoniot relations. The intersection of this shock and a transverse computational
plane is a loop represented by discrete grid points. Provided that a given grid
point on this loop is outside the "zone of influence" of the neighboring points on
the loop, the shock solutlion at the given point is independent of the solution at
adjacent points. This "zone of influence" assumption is valid over a wide range
of flow conditions and consequently is not a limiting assumption. Thus the shock
radius Yn+l(6) at each point in the n+l +transverse plane can be evaluated inde-
pendently by a pointwise iteration procedure.

The iteration at each circumferential location in the n+l plane proceeds by
first locally extending the shock surface from the most recently evaluated trans-
verse computational plane, n, to a point in the nt+l plane. The extension of the
shock surface includes the point being evaluated in the n+l plane, but does not
extend circumferentially to the neighboring points. This extension is a first guess
for the shock location at a circumferential point and hence for a point on the outer
tube-like coordinate surface given by v,,1(8) in Eq. hb.

Given a guess at the shock location, the axial mass flux inside the shocg can
be computed by two methods. First, an application of the Rankine-Hugoniot condi-
tions produces a value of the axial mass flux based only on the shock shape and th?
flow properties outside the shock. Second, an application of a compatibility condi-
tion produces a second value of this flux that depends only on the shock shape an?
the flow properties inside the shock. The shock location is then adjusted iteratively
until the axial mass flux inside the shock computed by the two methods is the same.
This iteration for the shock location is repeated at each of the circumferential grid
points to produce a ring of discrete points at the n+l station which collectively
determine the shock surface. These discrete points must be represented by a con-
tinuous smooth curve to provide the information required to construct the coordinate
system. For this purpose a least squares-spline curve fitting routine is employed.
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FIGURE 2. VISCOUS STRESS CUBE

11 E
PRINCIPLE d+
DIRECTION
¥ 13
S —————
N
a2 / A?
|
TN |
|
)__ ORI F Wt £1
7~
rd
y 4
'623 3 32
i 22

ol = ol L
APPROXIMATION=03i =0FORi=1,23
RESULTING TENSOR 1S NON—-SYMMETRIC

THE EFFECTIVE DIFFERENTIAL ELEMENT IS A FIBER—LIKE THING

¢LLLLLLLLLL!AJ/LJI///

- - — e —

i s
_— =——=_ FIBER-LIKE OBJECT

ﬂ'f///////77-7-7.}_

STy



R76-912024-8

FIGURE 3. PRIMARY FLOW DIRECTION FROM THE COORDINATE SYSTEM
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FIGURE 4. GENERATION OF TRANSVERSE PLLANES FROM TWO VECTOR FIEL.DS
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FIGURE 5. TRANSFORMATION AS AN EMBEDDING
INTO THREE DIMENSIONAL EUCLIDIAN SPACE
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FIGURE 6a. TRANSVERSE PLANAR CUTS OF CONSTANT AXIAL LOCATION y3

FIGURE 6b. RULED SURFACE OF CONSTANT PSEUDO-ANGLE y!
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FIGURE 7. LINEAR HOMOTOPY BETWEEN TWO LOOPS
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FIGURE 8. RADIAL DISTRIBUTION FUNCTION
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FIGURE 9. COORDINATE SINGULARITIES

\ SINGULARITY

L=0
a
RADIAL
LINE
SINGULARITY
6190
Cc
BINORMAL
l Lcos ¢= -}(-
,?/‘

/

=1
L/
S
/
/ I
/
/“ ] I =
Lcos ¢ T_;_ NORMAL

|
e

SINGULARITIES
Lo1o=0

LOOP 1

fCENTERLINE

TRANSVERSE
PLANES ;
SINGULARITY -
B=0
d
BINORMAL

DOUBLE VALUES

oor

e e ol
=]

A0D7-94-4




R76-912072- 8

FIGURE 9g
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