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AMBIGUITY.RESISTANT THREE. AND FOUR-CHANNEL INTERFEROMETERS

1.0 INTRODUCTION

Electronics support measures (ESM) systems used in military applications such as
reconnaissance and threat reaction often require estimates of the angle of arrival (AOA)
of radio-frequency signals from distant emitters. Accurate real-time AOAs-to 10 rms
resolution and accuracy or better--facilitate efficient emitter sorting routines aa well as
establish emitter locations through the processing of successive relative btaring measure-
ments. For ESM use, increasing emphasis is being placed on the implen~eutation of AOA
techniques that can provide azimuth coverage over wide fields of view, approaching 460 0

with respect to the direction-finding (DF) system boresight. Multiple-element phase-only
interferometers processing electrical phase differences between the signals received at
spaced apertures turn out to be excellent for achieving accurate AOAs for certain ESM
requirements. These techniques appear particularly applicable to implementing high-
accuracy DF from airborne platforms in the frequency bands of interest above I GHz.

The three mjor goals of this report are

* To clarify some past misconceptions concerning the theory of multielement
interferometers.

* To expound a general theory of interferometers which may stimulate re-
search into the less-well-qualified aspects of phase-only interferometers, such as the con-
straints imposed by operation in severe multipath.

• To provide the ESM system designer with exact, readily applied techniques
for obtaining the lowest probability of ambiguity for a given overall array length in three-
and four-element arrays.

This report treats the phase-only interferometer exclusively. Interferometers that
process relative amplitude Information as well as phase difference information from multi-
ple apertures--techniques prevalent in radio astronomy-are beyond the scope of this
report. Attention will further be constrained to line arrays. Within those apparently
severe restrictions of scope, there are many areas of applications for interferometers.

The reason for fixing attention exclusively on the phase-only interferometer is that
in ESM systems, the designer often must maximize the instantaneous (nonscanned) field
of view. He is faced with the choice of implementing directive-gain antenna/receiver
channels, relatively nondirective antennas driving phase-only channels, or combinations
of these approaches. For those requirements in which the loss in system detection sensi-
tivity from nondirective apertures is acceptable, interferometer techniques that inherently

Manuscript submitted March 31, 1976,
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ROBERT L. GOODWIN

achieve a large variation in output parameter for a small change in input bearing angle
(large gradient) with comparatively few channels are quite suitable.

The sintiplest conceivable interferometer uses two essentially omnidirectional antennas
and must employ supplementary techniques to discriminate against energy arriving from
the rear hemisphere vs energy arriving from the front. In this elemental interferometer,
the maximum allowable aperture spacing without ambiguous indications of AOA is one-
half wavelength at the operating frequency. Arrays of i elements (, > 3) reovide (n - 1)
phase differences that can be used to resolve these ambiguities, C iii- 'hough the spacings
between one or more pairs of adjacent channels exceeds one-half WJ...401ngth. Multielement
arrays must be used in order to achieve both good angular resolution and low probability
of ambiguity for realistic values of receiving channel phase errors.

The amount of published material on radio direction finding is Incredible. Travers
and Hixon [11 have assembled abstracts on the DF literature (including interferometers)

r covering the period 1899-1965. More recently, Barton [2-41 has included entries on
interferometers in his index (and supplements) on material published in the I.E.E.E. Trans.
actions on Aerospace and Electronic Systems and its predecessor publications. The em-
phasis of recent Russian work available in translation (5-7] is oriented more toward "fre-
quency" interferometers (multifrequency ranging schemes) than toward addressing the
"spatial" interferometer synthesis problem. Apparently, no work clarifying past Incon-
sistencies In three-element arrays, mad extending the theory to optimum arrays of four
elements, has appeared to date.

Limiting the scope of this report to a consideration of only three- and four-element
systems will not unduly restrict design freedom. These arrays are suitable for many re-
quirements, as the following example will show.

The example pertains to locating surface emitters from an airborne platform and is
offered to illustrate some of the tradeoffs between using arrays with either three or four
elements. Figure 1-1 is a plan view of the geometry typical of an airborne collection sys-
tem taking a series of relative bearings on a distant emitter. There are many treatments
of the factors affecting location system performance (8-111 for the problem depicted in
the illustration. The example shown is Butterly's [81 "asymmetrical 15' sector." The
emitter range, normal to the assumed straight-line flight track, is 100 n.mi. (185.2 kin).
A flat-earth approximation is made, and errors because of altitude are neglected. The
collection platform takes 16 successive bearings (forced to be equally spaced in Butterly's
analysis, for convenience, with no great loss in generality). The first DF cut is made at
an angle of 450 right of the array boresight; the last is take, at a bearing of 300. But-
terly's analysis shows that to restrict the area of uncertain' of emitter location to I
n.mi.2 (3.437r km 2 ) to a probability of 0.95 requires accuracies of 0.210 rms on the bear-
ings over this 150 range in angle.

The spatial accuracy in degrees rms, ao., of an interferometer is related to the elec-

"trical phase error In the largest-spaced pair of antennas by the well-known expression

o00 = d cos 0• aIi

where

2
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Fig. 1.1 -Problem geometry for emitter location example

a = electrical phase error, degrees rms,

S= 2r/N = phase constant in the medium of propagation,

d channel-pair spacing, longest-spaced channels.

If uo = 120 rms (zero-mean) and if 0 a is in the vicinity of 37.50 (mean of 450 and

30)), to achieve an accuracy in AOA of 0.210 rms (zero-mean) requires an overall base-

line length d = 11.5 wavelengths = 23 half-wavelengths. (Note: In developing the theory

of low probability-of-ambiguity arrays, it is convenient to work with spacings expressed

in integer half-wavelengths.) The optimum three-element array employs a channel 1 to 2

spacing of 12 half-wavelengths, and a chaniel 2 to 3 spacing of 11 half-wavelengths. For

a readily obtained o - 120 rms, the probability of ambiguity of this array is 45%. This

is clearly unacceptable performance.

The optimum four-clement array, synthesized according to the principles presented

in Set-s. 4.0 and 5.0 of this report, has channel-pair element spacings of 6, 4, and 13

half-wavelengths between adjacent channels. For the same channel-pair phase error, 120

rms, the probability of ambiguity is 0.075%-a 600:1 Improvement over the three-
element array.

It is obvious that in (lense signal environments, initial estimates of emitter location

(and later refinements of these eatimates) can be occomplished much more rapidly using

3
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the more reliable estimates from the four-element array. It may also be observed that to
reduce the probability of ambiguity of the three-element array to 0.26% requires a re-
duction in channel-pair phase error to approximately 3.00 rms. At the present state of
the art in microwave component technology, it is doubtful whether such channel-pair
phase tracking can be obtained over more than 5% to 10% bandwidths, even with auto-
matic calibration.

The above example clearly shows the advantage of implementing a four-channel sys.
tern, if the obtainable performance can be justified against the need for (a) the additional
channel and (b) the additional processing. There are, of course, less stringent require-
ments that can be addressed very competently by a three-element array.

For example, suppose that it is possible to achieve system channel-pair phase track-
ing to 100 rms, and that a baseline length of d/\ = 4 (2 = 8 half-wavelengths) is available.
At boresight, the angular accuracy of such a system is 0.3980 rms. Over the symmetric
sector defined by a starting bearing of +15', and an ending bearing of -150, a direction-
finding system need take only 21 bearing cuts, spaced at 1.50 increments, to attain a
0.95 probability of determining the location of an emitter to within a 7r n.mi.2 (3.437 km 2 )
area of uncertainty at a cross-track range of 102.65 n.mi. (190.1 kmn). This particular
system has a probability of ambiguity of 1.01%, implying a somewhat longer initial

processing interval, on the average, before "outliers" in the data could be identified and
discarded (in contrast to the 0.075% p, of the four-element system).

For many applications, the obtainable performance in three-element systems is quite
satisfactory, provided that (a) the location geometry is favorable, (b) a sufficient number
of bearing cuts can be taken, and (c) the system channel-pair phase tracking is good.

Figure 1-2 is one configuration of a four-element interferometer. The four functional
elements shown are (a) relatively nondirective antennas for wide spatial coverage, (b) phase-
tracked receiver channels incorporating hard limiting of channel signal levels to remove
amplitude fluctuations, (c) phase comparators, and (d) an ambiguity-elimination and angle-
processing circuit. As shown in the diagram, the channel at the far left is the phase
reference. Other four-element array configurations are possible. See, 4.0 will show that
this particular array configuration, called "cascaded end-phase," is the canonical configura-
tion for a four-element array. Other array configurations can equal, but not exceed, its
tolerance to angular ambiguities. This configuration is optimal because of its relatively
simple processing compared with other array configurations.

For the configuration shown in Fig. 1-2, the electrical phase differences between a
signal in the reference channel and signals in the other channels are

sljj = Pdlj sin 0, , (1-2)

where dj,j is the physical spacing between the phase centers of antennas I and j in the
linear array (] = 2, 3, or 4). Thus, three phase differences--the necessary and sufficient
number to extract all the AOA-dependent electrical phase information the array can
provide-are made available to the processing circuits.

Suppose d1 ,4 = 4 dj,.a - 16 dl, 2 = 8 wavelengths, Normalized to half-wavelengths,
the spacing integers (see Fig. 1-2) are p- = 1, p + q -4, and p + q + r =16; these

4
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* , ESTIMATE OF 9,

Fig. 1,2-Block diagram of four-element phase Interferometer

define q 3 and r = 12. According to Eq. (1-2), as 0. increases, the electrical phase
angles associated with channel-pair 1 and 4 and channel-pair 1 and 3 will eventually ex-
ceed I±irl radians. However, since each member of the ensemble of phase comparator
outputs can only be known modulo 27r, ambiguities--multiple.candidatc AOAs--will be
manifested in the phase comparator outputs. On the other hand, the phase comparator
output associated with channel pair 1 and 2 can never exceed l±in1 radians. This fact
can be exploited to yield an ambiguity resolution process that will enable an estimate of
ADA associated with the correct mean AOA to be recovered.

There are Q - 1 ambiguous 0, in an array whose overall length is k half-wavelengths.
The probability that one of these ambiguous AOAs will be computed from the set of
modulo 2t phase angles applied to the processing circuits is inversely related to the array
spacings dij or more appropriately, to the spacing integers p, q, and r, when four-element
arrays are under consideration.

The interferometer synthesis problem that is the main scope of this report is to de-
termine p and q in three-element arrays; and p, q and r in four-element arrays so that an
acceptable balance is achieved between the mutually incompatible objectives of maxi-
mizing the accuracy of the AOA estimate (increasing the overall array length) and mini-
mizing the probability of ambiguity (minimizing the overall array length) subject to given
channel-pair phase errors.

'Fte two groups of readers to whom this report is addressed are (a) electronics sup-
port measure (ESM) system designeis whose direction-finding requiremenL8 may be met

Il'I
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ROBERT L. GOODWIN

by implementing arrays synthesized according to the principles given here, rnd (b) those
who may find the general theory of assistance as a point of departure in discovering the
principles of arrays of more than four elements.

Array designs that achieve the best obtainable probability of ambiguity for given
overall array length and channel-pair phase errors, and ar. guaranteed decodable, are
described here. Thus, the report may be considered to be an extended "existence
theorem" on low.ambiguity arrays. These arrays are guaranteed decodable because the
spacing integers p, q, and r are relatively prime, but no specific decoding procedures are
given in the report. The choice not to include some material on decoding was made
reluctantly (in order to stress ambiguity aspects of array design), but was done In the
knowledge that techniques based on the Chinese remainder theorem are well known.

Section 2.0 of this report is a short review of basic interferometer theory. It pro-
vides a thorough exposition of just what constitutes an ambiguity in arrays, and discusses
the ambiguity constraints In arrays defined by two spacing integers.

Section 3.0 begins with a discussion of the phase-error sources in multichannel re-
ceiving systems, and the magnitudes of these errors in current-art receiver components.
Then an expression for probability of ambiguity based on a channel-pair phase error
formulation is given for three- and four-element, two-integer set arrays. Finally, the
optimum spacings for these arrays is given, along with tabulations of p, for various Mvray
lengths as a function of channel-pair phase error.

Section 4.0 treats the fundamentals of four-element, three-integer set interferometers
by first considering the properties of various configurations of four elements, Resolvable
and unresolvable ambiguities in the two distinct three-element subarrays that constitute
a four-element array are then discussed. The role of the integer factor common to mem.
bers of each of the subarray ratios as this factor influences overall array ambiguity is

explored. Then, explicit forms are given for the ambiguity variables in each of the two
suba-rays, and some sample calculations are performed of probability of ambiguity. Last,
It is shown that a particular form of four-element array, the cascaded end-phase array, is
the optimum array configuration.

Section 5.0 provides the theoretical basis for aynthesizing optimum arrays of various
lengths. Two forms of array arm introduced and defined to achieve a rapid, readily applied
procedure; the "ideal unrealizable" array and the "optimum realizable" array. An approxi-
mate synthesis procedure, assuming independence of subarray ambiguities, is given. For
most cases of current practical concern, this approximate synthesis procedure is very satis-
factory. Indeed, this procedure often provides several arrays of the same overall length,
but with differing p, q, and r spacings, that achieve the same overall probability of
ambiguity. However, by treating the two subarray ambiguity variables as members of a
joint probability density function, with correlation between the variables, it is possible
to derive an exact formulation for the overall probability of ambiguity in four-element
arrays. The impetus for presenting this exact analysis is threefold:

0 The optimum Maay for a given overall array length and identical zero-mean
channel-pair phase errors can be unequivocally specified.

b
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* The analysis can be extended to arrays using anitenna elements sequenced
into a shared channel to achieve component.usage economies. (This analysis is not given
in the present report, but it is a straightforward extension of the analyses given here.)

0 Extensions of the basic analyses oriented toward other aspects of multi-
element array performance may be encouraged.

A convenient classification of overall array length that leads directly to a readily applied
computer-aided synthesis is then given. The section closes with tabulations of probability
of ambiguity for optimum arrays for a wide variety of array lengths.

* Extensions of the research presented in this report are in progress, and are discussed
briefly in a final section that summarizes the effort and provides some concluding remarks.

* 2.0 BASIC INTERFEROMETER THEORY

This section presents the basic principles underlying multielement phase interferom-
eters. Initial attention is directed to the concept of characterizing arrays by two.integer
sets. This generalized array concept emphasizes that the susceptibility of interferometers
to providing ambiguous (actually, grossly erroneous) estimates of angle of arrival is a func-
tion of two integers and two associated channel-pair phase errors.

This method of characterizing an interferometer is compatible with either three-
element or four.element arrays. For the former, a portion of the channel.pair phase
errors reside in a "common.channel" phase error, whereas for the latter case, phase errors
In one pair of channels are independent of phase errors in the other pair of channels.

There has been some confusion in the literature concerning the apparent superiority
of one configuration of three-element array with respect to another array configuration
as regards susceptibility to ambiguities for a given value of ciannel-pair phase error; as in
1hendall [121 and Margerum [13]. Apparently, Kendall's efforts in generalizing three-
element array theory to embrace arbitrary ratios, i.e., arrays whose spacings were not
relatively prime integers--obscured the fact that if one particular configuration of three-
element array is ambiguous (due to some set of channel-pair phase errors), then the other
configurations must also be ambiguous. The proof is trivial and is given in Sec. 2.4.

Margerum analyzed a midphase three-element array, but neglected to consider the
effects of "common-channel" phase. Consequently, the ambiguity constraints he derived
were actually those for the four-channel (independent) two-integer set array. However,
Margerum's use of the ambiguity-plane method of illustrating ambiguity boundary rela-
tionships seems to predate its employment by others. As will be seen in Sec. 2.3, the
ambiguity plane is a valuable concept for understanding the mechanism underlying am-
biguities in multiclement interferometers.

2.1 Two.lnteger Set Interferometer Fundamentals

Consider the linear array shown in Fig. 2-1. where the physical spacing between
antennms 1 and 2 is dL, and the spacing between antennas 3 and 4 is ds. As depicted,

h 7
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Fig, 2.1--One !orm of two-in tiger met interferometer

spatial angles of arrival are defined with respect to the normal to the baseline. With no
loss in generality as far as interferometer ambiguities are concerned, the sources of distant
signals are assumed to lie in the horizontal plane. It is further assumed that these spatial
angles of arrival are restricted to 10,1 < 900 or that other means have been employed to
resolve the gross front-to-back ambiguity inherent in phase interferometers using antenna
elements with little directivity.

The electrical phase differences between the signals in the two sets of antennas for
radio-frequency (RF) energy arriving from angle 0o are

Elements 1 and 2

4)L = dL sin 0,

27r=" dL sin 0,. (2-1a)

Elements 3 and 4

ýPS =ds sin 0,

2 1r= ds sin 0,. (2.1b)

These phase differences can be determined by applying the antenna outputs to phase-
tracked receiver channels incorporating hard limiters (to remove amplitude fluctuations)
and terminating in phase comparators. As is well known, in an elemental two-element

8
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phase interferomete.r that does not have any available supplemental amplitude informa-
tion from the antennas for use in resolving ambiguities, the maximum spacing between
antenna phase centers is restricted to

d - [sin (900) - sin (-90°)]

(2.2)

In interferometers providing two or more phase differences, it is possible to resolve
ambiguities even though one or more spacings exceed a half-wavelength at the operating
frequency.

Suppose dL and ds in the array of Fig. 2-1 are in the ratio of small integers, as

dL p
d,9 pq (2.3)

where p and q are relatively prime.

If

dL =- 7 , ds =",

p complete cycles of 27r-rad phase change will occur between the output signals of an-
tennas 1 and 2 and q complete cycles of 27r-rad phase change will occur between the out-
put signals of antennas 3 and 4 as 0a varies between -90 and +90'.

Electrical phase angles can be determined only (mod 21r); hence, the true phase dif-
ferences (L and 4)s must be expressed as

4 LL = ft -pc (mod 27r) + 21ry (2-4a)

and

4s = pS-pc 1mod 27r) + 21rx, (2-4b)

where

subscript pe = voltages available at the output of a phase comparator defining
angles,

x, y = pair of integers which must be determined so that 4 )L and (I)s of
Eq. (2-4) are equivalent to those of Eq. (2-1).

Determination of integers for x and y is basic to any vernier-resolving problem (e.g.,
distance measurement applications in which phase differences between sidetones displaced
from a carrier are used to resolve range ambiguities) and is readily achieved. Noting that

9
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• - s, (2-5)

and equating Eq. (2-4a) to (2-4b) yield

qUpL..p, (mod 21r) + 2wyl = p[,- _p, (mod 2r) + 21x]. (2-6)

An equivalent form is

p'Ps - q•L + 27r(px-- qy) 0, (2-7)

where the pc subscripts and the (mod 21r) notations have been suppressed for clarity.

One method of solving Eq. (2-7) is to doubly iterate through the allowable sets of x
and y until the qet giving equality is found. As will be shown in Sec. 3.0, the best strategy
in a system with phase errors is to accept the x1 , yj that result in

If(6L, 's,xd, Yj)I < 7r. (2-8)

2.2 Interferometer Array Classification

Figure 2-2 shows the four array configurations capable of providing two electrical
phase differences for estimating spatial angle of arrival. Only antennas and the associated
phase comparators are depicted; it is understood that receiving channels with phase devia-
tions (as contrasted to ideal channels) are interposed.

Figure 2-2a, b, and c illustrate the three possible ways of obtaining two phase dif-
ferences using three antennas, a consequence of the fact that the number of combinations
of three elements taken two at a time = 31/21(3 - 2)! = 3. Fig. 242d shows an array using
four elements,

The arrays may be classified according to the channel used for phase reference. Thus,
in Fig. 2-2a, channel 1 is the reference; the ar'ay it called End-phase Left. Similarly, in
Fig. 2-2c, channel 3 is the reference; the configuration is called End-phase Right. Finally,
in Fig. 2-2b, channel 2 is the reference; this array is called Midphase.I4

Obviously, for the array configuration in Fig. 2-2d, ps is unaffected by phase errors

in channels 1 and 2. 1Hlence, this four-channel interferometer is called Independent.

Suppose that for each of the three-element interferometers of Fig. 2-2, the element-
to-element Epacings (normalized to ha)f.wavelengths at the operating frequency) are p be-
tween elements 1. nd 2, and q between elements 2 and 3. Then, the hiterferometer
ratios in terms of 0lectrical angles and spacing integers are

End-phase Left '.L •4- p + I

10
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P P-•q (A) IrND-PHASE LEFT

•¢0 L p*

Sp • ci (B) MIOPHASF

1i.22-ipiidbokdarm 2 0th torp "i~

*g q

V p +q .-......-..~.j (C) END-PHASE RIGHT

2h 3W q

0L+5 0

p --- - q (01 INDEPENDENT

2 3• s = d d nq

yL #L -0- 5 i

Fig. 2.2--SIxplifled block diagrams of the four poulble
two-inteU'*r set lInterferometers

Midphase, TIT~

2End-phase Right !RR q

41 I where

27r

(DI..s (dL + ds) si ,

- i s~d in 0,,

PS= ds sin 0,.

For the four-element int*!rferometer, the analogous quantities are

11 *
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Independent

!R +Lt P

7F q

A complete classification should include consideration of phase-error parameters so
as to account for unequal channel electrica! lengths. Table 2-1 list- the channel-pair phase
error parameters appropriate to the four-interferometer array configurations, In accord
with the notation of Fig. 2-2. Expression of deviations from some nominal channel phase
length in terms of channel-pair errors will be useful in establishing ambiguity constraints
for the various interferometer configurations. In following sections, a channel-pair phase
error formulation will be useful in deriving analytic expressions for probability of ambi-
guity in three- and four-element arrays.

2.3 Ambiguity Constraints for Two-Integer Set Interferometers

* The constraints on channel-pair phase errors that preclude erroneous determination
of the spatial AOA (because of ambiguities) will now be derived for two-integer set

I interferometers.

Consider an interferometer in which dL and ds are in the ratio m:n. The integers
m and n are used to emphasize that a generalized interferometer, rather than one of the
specific four configurations introduced earlier, is being discussed. The maximum allow-

Iable spacings for the ratio AR rn m/n are, of course, dL = mX/2, and ds = nX/2. Otherwise,
more than one 0 within the -90" to +900 field of view (FOV) will produce a srxpcific (mod
21r) +1L, +I8 et. If mi 3, n = 2, dr = (3/2)X, ds - X, then

• - - *.-X = ±3ir ±tnr

.2=: X = ±27 r = .

If it were possible to measure +lj and +l unambiguously over their ranges, a phase-
_ plane plot of (DlL vs 4I's would appear as ahown in Fig. 2-3a, in a form due to Margerum

[13]. A more convenient representation is Fig. 2-3b, which is centered on 0, ±90'
rather than on 0a 0'. The expressions for (DL and (Di8 are thus modified to

00 (2-9a)

and

4,' (1 =3dL(2+sin 0,)
-900 <; 0a < 0". (2-9b)

(I)= Pds(2 + sin 0,)

12
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2,r
2

f0 / 1 ± 906

-19 - - 2w

"2w 0 2f ir 2vr4w

*L O~dL $In 0, O -Od s~n6, 00*.5.0~0o
S _ 90u&0G6 < goo s PL )2,n 906!4, <00

(A) CENTERED ON#, 0 - (9) CENTERED ON 0," 906

Fig, 2-3-Phaiio-plane diagramv for mwn w 3:2

Since cl4 and (1)s can be known only to within 2ir rad at the outputs of Phase Comn-
iparatori, the phase-plane plot must be collapsed to a s~uare 27r rad on a side, as shown
in FiR. 2-4. In this diagram, the intersections of the (IL VS (DF' trajectories on the ýpz, axis
are spaced 27r/n (~ir). The aps axis intersections are spaced 27r/rn( 27r/3).

*1 // ..-I--TRAJECTORY
/ / 2,r ----- AMBIGUITrY

'a ~ / /BOUNDARY

I t
L7

/ // 4 S-AI m
4dil.Al // / /,' (. .~ x2yr-O.Oeo7x2ff,

'I 0 
1  x 2irr= 0.7071 x27r,

0 2 7 2, FO *, 4-

Fig. 2.4-Ambiguity diagram for mn:n 3:2
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Suppose 0a 45'. Then

4' 2X 3/2X 10.

and

Also,

(P 2ir X 1 X 11/V2; 2/

From Eq. (2-7), we have

mps, no 2 (mx "-ny) 0.

Substituting for ip' and ps and dividing by 2t yields a trajectory-establishing equa-

tion of the form

3x + 2 = 2y. (2-10)

The only solution of Eq. (2-10) subject to constraints 0 < x < (n - 1) and 0 < y 4 (m - 1)

is x = 0, y = 1. (Note: The Fig. 2-3b formulation of the ambiguity plane leads only to

positive solutions of Eq. (2-10) and is much less cumbersome than an approach based on

Fig. 2-3a.) Thus,

4ý,• = •L+ 2r(1)

=2wr 3 _ 1 + 27r =27rX 3 J

(2V2
and

(P p + 21r (0)

The spatial angle of arrival 0a can be recovered, for example, from the expression

.Oa = sin' r - = sin- 1 I y " = 450

2w 7X -1 J
Errors in the channel-pair signals sent to the phase comparators will move the 'L,

tps set off the phase trajectories (solid lines 0, la, 1b, or 2) in Fig. 2-4. For simplicity,

the prime notation on 4L, @s and PL, 's will be dropped henceforth.

15
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If any (DL, (PS set is in error because of channel deviations, then the (mod 21r) repre-

sentation at the phase-comparator output is also in error. The actual phase differences
(including errors) compared to the phase differences made available by the instrumenta-
tion are as follows:

Actual Electrical Phase Differences
2ff

T dL sin 0 . + AftL ' L + AftL (2-1a)

279aat - ds sinO0 + A'ps = s + ApS. (2-11b)

"Available Electrical Phase Differences

4PLa ['IL + AOL 1 (mod 27r) (2-12a)

rSMV = [(s + Aýs] (mod 21). (2-12b)

The geometry of Fig. 2.4 shows that to equalize the possibility of invurring ambi.
guities over the -90' to +90' FOV, the dashed boundaries separating the region around
one trajectory from the region around another should be located parallel to, and equi-
distant from, adjacent phase trajectories. The ambiguity boundary directly above tiajec-
tory '0' intersects the 'PL axis at

AfL-Ai -"-2 - (2-13a)

and the boundary directly below trajectory '0' intersects the 'ps axis at

Af -A I (2-13b)

In attempting to generalize the conditions for obtaining minimum teridency toward
ambiguities over the field of view, Kendall [121 considered ratios !R = m/n (or n/in) in
which m and n were not restricted to relatively rAme integers. He employed a need-
lessly complex analytical formulation, whereas, with just the previously used georretric
arguments, It is easy to show that m and n must be relatively prime integers, as in the
following example.

Figure 2-5 shows a phase-plane plot of the trajectories for A " VTf/2 = 3.3166/2,
subject to the element spacing associated with m equal to v'1"/2 wavelengths. The solid
trajectories in the figure thus terminate with 3a, at a 'PL value of 0.3166 X 27r. This
Indicates, of course, that over a 180' range on 0a,, 1,, sweeps through 3.3166 X 21f rad,
and q's sweeps through 2fr rad. Since R is Irrational, one can, in theory, extend the
array length Indefinitely without encountering a condition where. multiple 0, give rise to
the same 'PL, 'Ps set. As more trajectories are added to Fig. 2-5 (implying increased array
length), the spacing between trajectones, and hence, the tolerance to ambiguities, decreases.

16
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S/ FIRS"FEW/- - PHASE TRAJECTORIES
/ , FOR 1-1= i/2

•L # ,.m ADDITIONAL PHASE

, I lb 
4O 

2soitdwt

TRAJECTORIES (when

associated with ,m
and ratio remWIng

K/

0 2

Fig, 2.5--Ambiguity diagram for •R ,, ./TT12

Of the additional trajectories 3b and 4 (shown dashed in Fig. 2-5), 4 terminates near
the point 'o'L, •o 2ii', 2ir, This might have been anticipated by noting that the integer-
, set ratio nearest •R = 12 i.• • = 5:3. For the latter ratio, there would be five equally

spaced trajectory intersections on the horizontal axis of the phase plane and three inter-
sections on the vertical axis. Because VTl/2 is irrational, however, there is no way of
drawing ambiguity boundaries to equalize their spacing from adjacent trajectories, thereby

* making the tendency toward ambiguities implicitly independent of 0=. Consequently,
ratios formed by relatively prime integers are preferable.

All phase trajectories and ambiguity boundaries in phase-plane plots intersect the
II • axis at an angle - = tan"1 [(2ir/n)/(2nr/m)] -- tan"1 [(rn/n) =Ri . For any 0a, it is easy

to show that the two ambiguity constraints are

A•0L > •A0 + A'PL.AI, (2-14a)

and

A~oI. < •A0 - A•PL-AI, (2.14b)

for •R = rn/n, with m and n relatively prime integers.

iN

If the upper inequality is satisfied, the ambiguity boundary abode a given trajectory
has been crossed; an analogous statement holds for the lower inequality.

An expression equivalent to Eq. (2-14a, b) which makes use of pl rn/n and

" A•/_LAI = .if/n is

,f in'Pr, s ir•at i• lr, (2-15)

where> implies an ambiguity, and < implies tro ambiguity.
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Equation (2-15) is the ambiguity constraint for any two-integer set interferometer,
provided that the channel-pair phase error terms AhpL and A;,s are defined properly with
respect to the particular array configuration being analyzed.

2.4 Ambiguity Constraints for Specific Array Configurations

The ambiguity constraints for the four possible two-integer set interferometer con-
figurations are now obtained by making use of the constraint just presented for a gen-
eralized interferometer.

Equation (2-15) Is expressed in terms of generalized array integers m and n and
channel-pair error parameters A4,OL and Aops. The array ratios (from Sec. 2.2) and the
channel-pair error parameters (from Table 2-1) for each of the array configurations are

End-phase Left

p + q AtPL - AP° - A4P8

L-- , (2-16a)
n p ~Aft = 41- AP

Midphase

rn P Aft = -AIP2 4' AW.
__ = , (2-16b)

End-phase Right

m P + q APL =AW3 AtPl

LR = -- V "-A"P , (2-16c)
¶ q ' = A - •

Independent

m P APL =A•t°l - AV2""R = = " ; (2-16d)

A~pos A'II3 - AVo4

Making the appropriate substitutions into Eq. (2-15) yields

End-phase Left

Ip(Ap, - A•p3) -(p + q)(&p I- 2)1 Ir, (2-17a)

Midphase

q At2 + AspI) - P(At 2 - Aý' 3 )I I ir, (2-17b)

I 18
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End-phase Right

Iq(AP3 - 41 (p q)(POAP 3 - A;P2 )1 • i, (2-17c)

Independent

Iq(AA'p - A'p2) - p(Af03 - AýO4)I Z i. (2.17d)

It is easily shown that Eq. (2-17a, 2-17b, and 2-17c) are all equivalent to the follow-
ing equation.

Three-element Interferometer

Ambiquity Constraint

IqAp, - (p + q)4A2 + PAI 31 > i. (2-18)

Equation (2-18) is, of course, a consequence of the fact that the channel-pair error param-

eters in a three-element interferometer are related by

a + c b, (2-19)

where

a = 4i - 42 2, on f,

C A P2 - 'pp3 on ýps,

b = Alp - Apa, onfpL+S.

The results of Sec. 2.0 are the basis for correcting past misconceptions concerning
the tendency toward ambiguities for various configurations of three-element interferom-
etors. Kendall [12] argued that the end-phase configuration is superior to the midphase
configuration. Margerum 1181 analyzed only the midphase configuration, giving actually
an expression for the probability of ambiguity for the independent four-element con-
figuration. This left the impression, perhaps by omission, that the end-phase array con-
figuration is inferior to the midphase configuration.

The correct statement for the ambiguity constraints in three-element i torferometers,
based on the development given here, is the following: Any configuration of three-
element interferometer defined by spacing integers p and q (implying identical overall
array length, regardless of configuration) has the same tendency toward ambiguity, re-
gardless of the channel employed as the phase reference.

3.0 PERFORMANCE OF TWO-INTEGER SET INTBRFEROMETERS

For many applications, the performance obtainable with two-integer set interferom-
eters, either three- or four-element, is adequate. For example, a three-element array
8 half-wavelengths long at the frequency of operation with channel-pair phase errors of

"19
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10 electrical degrees rms can achieve a boresight angular accuracy of 0.40 spatial degrees,
and a probability of ambiguity of 1.01%. Performance such as this can satisfy those
requirements which do not need tlhe "super" accuracy obtainable with multielement
arrays that have longer overall baselines. The primary reason for presenting a compre-
hensive theory of two-integer set arrays is that they are the basic subarrays that can be
cascaded to form longer arrays of four or more elements. In Secs. 4 and 5, examples of
the dramatically improved performance that can be achieved with these arrays will be
given.

This section discusses error sources, carefully distinguishing between a "channel"
error description and a more convenient formulation for design and analysis purposes-
the "channel-pair" description of error sources.

A channel-pair error correlation coefficient is introduced and defined for the end-
phase, midphase and independent array configurations. Although it is not mandatory to
use a channel-pair error and correlation coefficient formulation, this approach to deriva-
tion of probability of ambiguity facilitates the development of an exact expression for
it in four-element three-integer set arrays in Sec. 5.

A recurrence relationship for generating the optimum spacings for three-element
arrays of arbitrary length is given next. It is interesting that the full tabulation of allow-
able spacings, ie., nonredundant, for arrays of various lengths has a counterpart in the
Farey sequences of rational fractions from number theory. Travers [141 points out, how-
ever, that propagation anomalies irn the HF band (3 to 30 MHz) may constrain the "small.
spaced channel-pair" spacing to one half-wavelength rather than the optimum "small-spaced

channel-pair" spacing for the overall array being used, resulting in fewer ambiguities.

The section concludes with a tabulation of probability of ambiguity vs array length
(with channel-pair phase error as a parameter) for both three-element (end-phase or mid-
phase) and four-element (independent) two-integer set array configurations. Historically,
two-integer set interferometer arrays seem to have been implemented first in the inde.

pendent configuration as in Bailey and Moller [151. Watters, Rees, and Enstrom, [16]
have reported on a two-frequency technique oquivalent to the independent configuration.
Later, as the theory of arrays improved and the component art advanced, the three-
element, two-integer act arrays became much more prevalent. A recent example of a

commercially oriented three-element array is reported by Watanabe, et al. [17]. Many
current military surveillance systems also employ the three-element array.

3.1 Interferometer Channel-Pair Errors

In an actual interferometer, the electrical length •p of a given channel may be many
thousands of electrical degrees. This length may vary because of changes in operating
frequency, as a function of temperature, or with input signal power level (AM-to-PM con-
version). The length pi can be represented (as in Sec. 2.0) by

* t ý •komlnal + A•lp (3-1)

where AiV, is the deviation of channel i in phase length from Vnormfi-ud.

20
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Individual channel errors Api are accessible only by measurement to some standard.
However, channel-pair errors

•-•a- p1  °

('PrnominaI + i- ('PnominaWi +Aj)

Ai -- Apj (3-2)

are manifested in the outputs of phase comparators connected between pairs of channels.

It is convenient to define interferometer performance in terms of channel-pair phase
errors, rather than channel errors, for the following reason. The individual components
that constitute a channel are usually more readily specified in terms of their deviations
with respect to a corresponding component in another channel, rather than in terms of
their deviations from nominal (but not conveniently measured) electrical lengths.

The variance of channel-pair phase error between ith and jth channels for the Pth
component in an n-clement cascade is

V+

+ U h (3-3)

assuming that API;k- A'Pj;h are independent and have zero-mean deviation from nomPnal.m o
over applicable parameters (RF frequency, power levels, supply voltage, angle of arrival,
etc.).

The overall channel-pair error variance, summing over n components, is then

PI

(J~/~ + 7 .(3-4)

k-I

For a large number of cascaded components, all of whose variances are comparable,
the channel-pair phase error distribution tends toward Gaussian (central-limit theorem).
Statistical tunalyses of channel-pair errors obtained on actual multichannel systems support
this contention.

Figure 8-1 ir a block diagram of one channel of a multichannel interferometer show-
ing the principal contributors to channel-pair electrical phase error. The direct output
from phase comparators is analog. That is, Il) (0,) is defined by sin'01 (Vj j;,/Imvx) and
cos" 1 (Vj J.c/Vmx), where u, ,, and v, ., are voltages from the sine and cosine phase do-
teetors, respectively, of the phase comparator and ureax is the maximum phase detector
output voltage.

In automatic systems, it is convenient to perform ambiguity elimination and other
calculations digitally. Hence, additional contributions to channel-pair phase error aret

21
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ANTENNA GROUP RECEIVER GROUP PHASE-COMPARATOR GROUP

ANTENNAI RF IF I IF
-70A.t MIXER PREAMPLIFIER LIMITER

UOjF IJM R OPgRE 01F LM

I~. FILTR I.170LECt'TANSMISSION ___R
LINE LOCAL PHASE ,ER•LO,, COMPARATOR

Ii OSCILLATOR iCMAAOLIMITER INPUT FROM i!POWER DIVIDER I LIMITER INPUT FROM
~i LL . .ANOTHER CHANNEL

0,(0) INPUT TO ANALOG AMBIGUITY PROCESSING J

" iN~0%) INPUT TO DIGITAL AMBIGUITY PROCESSING L UNI E VE

*(Includes quantIzIng nolal

.I 

OUANTIZER GROUP

Fig. 3-1 -Interferometer error sources

-AlLD due to multivoltage level detector nonlinearities, and A•p due to the quantization of
electrical phase over 27r rad. Detailed consideration of the effects of AptD and AdPQ on
probability of ambiguity is beyond the scope of this report.

Table 3-1 lists typical values of the major contributors to channel-pair phase error.
It is assumed that the individual channel-pair errors are unihormly distributed between
the limits shown. Phase errors due to finite signal-to-noise ratio (SNR) are not specifically
included, but can be readily added with the aid of the relation o = 18 0 '/irV/NR, where
SNR is in terms of power. The associated standard deviation of channel-pair phase error
is I Aýpx -max I/VrI where Aýx _.a is the peak value of phase error for component-pair X.
Two values of phase "noise" due to quantizing are given. These represent upper and
lower bounds on the degree of quantizing typicully employed in interferometer syctems
of the type described in See. 1.0.

Table 3-1 shows that the phase erTor due to the quantizer group is more than half
the overall phase error on a root-sum-square basis for 4-bit quantizing. On the other
hand, quantizing-phase noise is negligible for 7-bit encoding. In general, higher-speed de-
coding (and possibly less complexity in the ambiguity algorithms) can be achieved with
low degrees of quantizing. Conversely, systems employing higher degrees of quantizing
perform closer to the theoretical probability of ambiguity for an analog processing system.

Radio-frequency calibration can be employed in interferometer systems to reduce the
magnitude of channel-pair phase errors. Alternatively, by the use of calibration techniques,
low-quality components (poor phase tracking) can provide performancu comparable to that
achieved in uncalibrated systems using high-quality components. Calibration signals are
usually introduced into the channels directly behind the antennas.

S,22
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Table 3-1 -One-Sigma Channel-Pair Phase Error*
No Calibration

Group Limits on A&pjjt Standard Deviation

Antenna Group:

Antenna ± 80 OANT 4,6190

Transmission line ± 40 aTL = 2.3090

RF filter ± 52887

Root-Sum-Square 5.916'

Receiver Group:

RF mixer and LO
power divider ±100 0 MXR 5.7740

IF preamplifier = + 30 
0PRE 1.7320

IF filter + 40 GIF = 2.309r

RSS = 6.4550

PhMae Comparator Group:

IF limiter 70 (Turn 4.0410

Phase comparator 0± 8 1,7320

RSS 4.3970

Quantizer Group:

Level detectoi' ± 10 LD =0.5770

Quantizer, 7 bit = ± 1.4060 uQ = 0.8120

Quantizer (4 bit) (= ± 11.250) (GQ = 6.4950)

0,9960RSS =
(6.5210)

9.848' rms
Overall channel-pair phase error ((11. 769' rms)

"Strong-signaI" conditions. "Uniform distribution assumed.

Note: Present teodtulogy, wideband systems.
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The use of calibration signals whose frequencies are equal to signals of interest makes

possible., in principle, the removal of channel-pair phase errors due to RF and IF filters,
RF mixer and local oscillator power divider, IF preamplifier, and phase comparator (see
Fig. 3.1). Since the power level of an incoming signal within the system dynamic range
is arbitrary relative to a fixed-level calibration signal, only a portion of the channel-pair
phase error from the IF limiters can be removed. Also, the signal angle of arrival is
arbitrary with respect to the fixed angle of arrival synthetically introduced into the sys-
tem during the calibration mode. Thus, quantizing group errors must be accounted for
twice: First, during the signal reception mode; and second, during the calibration mode.

The list of error sources and their magnitudes, typical of a system employing calibra-

tion, is given in Table 3-2. The independence of these errors during the two modes of
operation is assumed.

Table 3.2-One-Sigma Channel-Pair Phase Error*

With RF Calibration

Component FLimits on 6pi, jt Standard Deviation

ANALOG PROCESSING

Antenna ±80 AN, = 4.619'

RF calibration network ±30 OCAL = 1.732'

IF limiter ±30 1.7320

Root-Sum.-Square = 5.228"

DIGITAL PROCESSING

Antenna = ±80 OANT = 4.6190

RF calibration network =30 0 CAL = 1.7320

IF limiter = 4-30 eLIM = 1.7320

Level detector (signal) O±10 LD.SIG = 0.5770

Level detector (calibration) = ±10 0 LD-CAL = 0.577V

Quantizer, 7-bit (signal) = -1.406" aQ-SIG = 0.8120
Quantizer, 7-bit (calibration) = ±1.4060 =Q.CAL - 0.8120

Root-Sum-Square 5.4150

*"Strong-signal" conditions.
tUniform distribution assumed.

Note: Present technology, wideblnd systenis.
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3.2 Probability of Ambiquity for Two-Integer Set Inteeromseters

The ambiguity constraints for the three-element interferometer configurations of
Se.24are

End-phase Left

Ip(AW, A- (p + q)( -jA21 1 (3-5a)

where

AV, AV3 AIPL, AV1 4- Aip

n pq

Midphase

Iq42+ AP1) P (A1P 2 -4Vp) 7r (3-5b)

where

m P
n q

Pnd-phase Right

Iq(Ap03 - -- (p + q)(Aip 3 - A'P2)I i (3-5c)

where

AV3 At0 AV A 3  Aý02  408

ILI p+ q
n q

In See. 2.4, it was shown that Eq. (2-17a, b, and c), repeated above for convenience,
are equivalent to a single ambiguity constraint

, Nq~ AV (p + q)A~P2 + p Atpn1 I ir . (3.6d)

III this section, an expression for the probability of ambiguity of 0. generalized two-
integer set interferometer will be derived, starting from Eq. (3-5a, b, and c) rather than
from Eq. (3-5d), as could be readily ac 'omplisihed. The motive for this indirect deriva-
tion is to focus attention on channel-pair errors and channel-pair error correlation coef-
ficients. A formulation of the probability of ambiguity in termis of these parameters
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which simplifies the derivation of an exact expression for the probability of ambiguity in
four-element interferometers will be seen later (in Sec. 5).

Expressions for the channel.pair error correlation coefficient will be required. For
two zero-mean random variables (d and 18, the correlation coefficient between them is de.
fined [18] by

P O (3.6)

where E[x] expected value of x.

From Eq. (3-6a), for the end-phase left configuration, is derived

Pe E((A~pj - A~a)(A~pj - P)

ULU8

+0.5, all ai equal. (3-7)

Measurements on the joint statistics of aL and as tAre necessary to define p,; separate
measurements of UL and as in Eq. (3-7) are insufficient. For array design purposes, the
assumption that

is a reasonable one.

It is readily shown that pe +0.5, all a1 equal, for the end-phase right configuration
as well.

From Eq. (3-5b), for the midphase configuration, is derived
{(A + A•j)(Aip- A•g)1

-n0
- / 2- VO[7-03

2

UL 0 S

-0.,, all o. equal. (3-8)
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The variance of the left Aide of Eq. (3-6a), the end-phase left configuration, is

2 p2(02 + aj) - 2p(p + q)E{(Ap1 - Ap)(AiP & - 2)}

+(p + q)2(Crl + a). (3.9)

Substituting p = n, p + q = m, o+ + oal o=a, and of + ao ao yields

o m2a - 2mnE(lA4o- AýP 3 (4PI "A-. )) + n oL. (3-10)

Since, from Eq. (3-7)

.((AiP 1 - )( = = LS

Eq. (3-10) becomes, for the end-phase configuration,

o2 ý m 2 og - 2 p~mnaLos + n2 oE, (3-il)

where

m = p + q, oL = channel.pair phase error standard deviation, channels 1 and 3

n = p, as = channel-pair phase error standard deviation, channels 1 and 2

PC = o10OLOS
= +0.5, all oa equal.

The variance of the loft side of Eq. (3-5b), the midphase configuration, is

02 . 2- (02 + 1) -- 2pqE{(-Ap 2 + Aý1 )(AP 2 - A3)1 + p2(o•,+oc) (3.12)

Substituting p = m, q = n, g2 + uj o= , and oa + a2 o= yields

as= ;2a 2mnE{(_&• 2 + A )(A0 2 4.A))} + n UL (3-13)

Since, from Eq. (3-8), we have

E (-.Aý2 + 4ip 1 )(Aip 2 - 3)} =-02 PmoLs

Eq. (3-13) becomes, for the inidphase configuration,

II m2oM -
2 pC1 rnnLOS + n oL (3-14)

where
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-02

refer = q.2 channel-pair phe eor independentint itne s apand .

wherentta

p = +0-", end-ph

0 n, ain equal.
Eu Utio m+d pUand ( ) he t s2 (

Afis pji -2rPn)are + dnAed, (3-16)

where

Pp = or.5 dedinvlo

F 0 idedppeaon all spec uit.

Ans alternhae vrn A ty, andigiity a$ impled

m 2prn)ýno + n2o ., (3-17)

where

p = +0.5,aenominal, ordsgvlofrcane-arri hs ro

For designnpupoendns , alarusally speife eqaqual. ta U UH

AN/ al.ternte expesity, and aJ is piidfr f4i

0$• = ( 1•i.PR [(M} 2- 2pt~nA + (nA2,. (3-18)

where
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The probability of correct resolution, that is, the probability that the left sides of
Eq. (3-5a, b, or c) will not exceed ±w rad, is

PC 1 -Ial exp (-t'2/2) dt'. (3-19)

Setting t' = V2 t, dt' = V• dt and changing the limits of integration gives

P 2 f exp (-t 2 ) dt

erf(V ) (3-20)

Thus, the probability of ambiguity (the probability that the left sides of Eqs. (3-5a, b,

or c) will exceed ±tir rad) is

p. 1I- Pc

= erfc r(3-21)

where

Or = CH.PR[(mF1) - 2pm2nA + (nA)2]11 2 ,

m = integer associated with large spacing (m > n),

n = integer associated with small spacing,

1L, o4 = standard deviations of channel-pair phase errors for large and small spacings,
respectively,

p = {EMS} /ULU,', correlation coefficient between large and small channel-pair
phase errors,

UCH.PR ý design, or nominal, value for channel-pair phase error,

2 -'- S/OCH.PR, A =2 u,/uCH.IpR.

An asymptotic expression for erfe (t) is 1191

erfc(t) 1 { 1 ... + 3+ .... (3-22)
r 2t2 (212)2 (2t2)3

If the first two terms above are utilized, p, is bounded by

29
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- ''ip-< -exp p - ) (3-23) exp

3.3 Optimum Array Ratios in Three-Element Interferometers

The argument of the complementary error function defining probability of ambiguity
Eq. (3-21), with the simplified form of up, is

7r

UCH.PRV• - 2pmn

For three-element arrays of length R = p + q (in half-wavelengths at the operating fre-
quency), tegardless of which element is phase reference, the quadratic form within the
radical In the denominator of the expression above can be written as

p2 + pq + q2 , p q

where

p = integer related to the channel 1-channel 2 baseline,

q = integer related to the channel 2-channel 3 baseline.

To determine which sets of integers p, q are optimum-in the sense of providing
arrays having the lowest probability of ambiguity for given 2-subject to the constraint
p + q - constant = 2, it suffices to determine

1. [p 2 + p(- p) + (Q- p) 2 ] = 0,

which reduces to

_L [p 2 _p + k22 = 0.

For no restrictions on p and q, the solution is, of course, p = q 2/2. To form an allow-
able interfkrometer ratio pm P/q or q/p, however, the two parameters must be relatively
prime integers.

Thus p q (=1) only for 2 = 2. The optimum p, q for 2 2, 3, 4 are

S2=2; p 1, q 1

3; =2, =1

=4; =3, = 1 (p = q = 2 is not allowable since it is
a degenerate form of p q 1).

For V 5 through 10, the optimum set.s of p, q are
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= 5; p =3, q 2

6; =5, =1
= 7; =4, =3
- 8; =5, =3

- 9; =5, =4

=10; =7, =3.

Functions generated by induction for p and q, given 2 = p + q, are

P,.. 21, q = 21- 1; ,- = 41-1

pi,1 2i + 1, qj,1 21; Ri,j = 4C + 1

and

P, 2ip = -21, 3, qi, 2  21 - 1; 1,2 =4i + 2. (3-24)

S ITable 3-3 lists the optimum p, q and associated end-phase and midphase array ratios
vs overall array length R(2 < R <; 26).

* It can be readily deduced from the argument of the probability of ambiguity func-
tion for independent arrays,

1?

OCIl.pR \/;12 + n2

that the optimum p, q vs array length are just

M p
independent.

'Table 3-4 lists all possible p, q sets (including the optimum set defined above) for
three-element arrays of length k - 2 to 26. It Is interesting to note that the ratio entries
for p fixed have their counterparts in a table of Farey sequences (arrays of rational frac-
tions between 0 and 1) in number theory as shown by Niven and Zuckerman [201.

3.4 Tabulated Probability of Ambiguity for Three- and Four-Element
Two-Integer Set Arrays

frBased on Eq. (3-21) from See. 3.2, p, for three-element arrays are listed in Table 3-5
for UCH-pR = 50, 100, 12c, 1i 0 and 200. Table 3.6 provides the same information for
four-element (independent) arrays.
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Table 3.3-Optimum Midphase and End-phase Ratios vs
Array Length Q (2 4 R 4 26) for
Three-element Interferometers

Array Length, S=p = p + q p + q£ " R q 'p

2 1:1 2:1 , 2:1

3 2:1 3:1 3:24 3:1 4:1 , 4:3
5 3:2 5:2 , 5:3
6 5:1 6:1 , 6:5

7 4:3 7:3 , 7:4
8 6:3 8:3 , 8:5
9 5:4 9:4 , 9:5

10 7:3 10:3 , 10:7

11 6:5 11:5 , 11:6
12 7:5 12:5 ,12:7
13 7:6 13:6 , 13:7
14 9:5 14:5 , 14:9

15 8:7 15:7 , 15:8
16 9:7 16:7 , 16:9
17 9:8 17:8 , 17:9
18 11:7 18:7 , 18:11

19 10:9 19:9 , 19:10
20 11:9 20:9 , 20:11
21 11:10 21:10 , 21:11
22 13:9 22:9 , 22:13

23 12:11 23:11 , 23:12
24 13:11 24:11 , 24:13
25 13:12 25:12 , 25:13
26 15:11 26:11 , 26:1.5
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Table 3-5-Probability of Ambiguity vq Channel-pair Phase Error for
Three-element Interferometers

Array p + q Probability of Ambiguity for Given UCH-PR
Length, AM E + qq q p u = 5 a 1 0 0 u - 1 2 ' a - -1 0 = 2 0 "

3 2:1* 3:1 , 3:2 1 <IE-7 <6E-6 6.70E-4

4 3:1" 4:1 , 4:3 <6E-7 3.18E-5 8.74E-4 0.0126

3:2* 5:2 , 5:3 - 3.63E-5 5.79E-4 5.91E.3 0,0389
4:1 5:1 5:4 - 8.57E-5 1.06E-3 .. 83E.3 0.0495

6 5:1* 6:1 , 6:5 1.23E-3 7.06E-3 0,0311 0.106

4:3* 7:3 , 7:4 <1E-8 3.09E-3 0.0137 0.0485 0.139
S7 5:2 7:2 , 7:5 <1E-8 3.95E-3 0.0163 0,0547 0.150

6:1 7:1 , 7:6 <1E-7 6.05E-3 0.0222 0.0673 0.170

8 5:3* 8:3 , 8:5 <3E-7 0.0101 0,0321 0.0865 0.199
7:1 8:1 , 8:7 <2E.6 0.0171 0.0469 0.112 0.233

5:4* 9:4 , 9:5 4E-6 0,0212 0.0548 0.124 0.249
9 7:2 9:2 , 9:7 1,1E.5 0.0279 0.0669 0.143 0.271

8:1 9:1 , 9:8 2.5E.5 0.0351 0.0791 0.160 0.292
7:3* 10:3 , 10:7 5.1E-5 0.0429 0.0915 0.177 0.811

10 9:1 10:1, 10:9 1.61E.4 0.0592 0.116 0.208 0.345

6:5* 11:5 , 11:6 1.61E-4 0.0592 0.116 0.208 0.345

7:4 11:4 , 11:7 1.89E-4 0.0620 0,120 0.213 0.351
11 8:3 11:3 1.1:8 2.57E-4 0.0676 0.1.28 0.223 0.361

9:2 11:2 , 11:9 3.89E-4 0.0761 0.139 0.237 0.375
10:1 11:1 , 11:10 6.33E-4 0.0875 0,154 0.255 0.393

12 7:5* 12:5 , 12:7 5.64E.4 0,0847 0.151 0.250 0.389
11:1 12:1 , 12:11 1.80E-3 0.119 0.193 0.298 0.435

* optimum ratio for given V.
= P, < 1E-O.
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Table 3-6--Probability of Ambiguity vs Channel-pair Phase Error for
Two-integer Set Four-element Interferometern

Maximum !=P Probability of Ambiguity for Given oCHaPR
Spacinga q 6 50 = 100 a = 120 u = 150 o 200

3 3:1 -* <lE17 2E-6 1.48E-4 4.43E-3

4 4:1 1.3E-5 2.75E-4 3.61E-3 0.0290

5 5:,1 - 4,15E-4 3,26E.3 0.0186 0.0776

6 6:1 <1E-8 3.08E.3 0,0137 0.0485 0.139

7 7:1 <1E.6 0.0'109 0,0339 0.0897 0,203

8 8:1 8E.6 0,0256 0.0628 0,137 0.264

9 9:1 7.0E-5 0.0468 0.0976 0.185 0.320

10 10:1 3.41E-4 0.0733 0.136 0,232 0.371

11 11:1 1,12E-3 0.103 0.174 0.277 0.415

12 12:1 2.79E-3 0.1.35 0.213 0.319 0.455

*"=PU < 1E-10,

As mentioned previously in Sec. 3.2, ac1*HPR in the range 10" to 120 is typical of
present technology for wideband microwave systems-2 to 3 octaves of frequency coverage-
with lower and upper absolute limits of 500 MHz and 18 GHz. 0 CH.PR on the order of
50 typifies the channel-pair errors in the same category of systems utilizing lF calibra-

tion, The probability of ambiguity for oFCH.PR = 150 and 200 has been included as an
admittedly crude estimate of the performance that might be experienced with an inter-
ferometer operating in a severe multipath situation,

A p, criterion of 0.01 to 1 percent maximum ambiguity is often set by designers of
systems to be used for location by triangulation with multiple DF cuts. As Fig. 3.2
shows, with 0CH.PR In the range 100 to 12', the maximum allowable array length is be-
tween 8 to 6 half-wavelengths,

The angular accuracies of systems with baselines this short may be unacceptable.

This is the basic reason for synthesizing and employing arrays with additional elements,

In Skc. 5 it will be shown that the optimum four-element array of length Q = 25 half-
wavelengths has pa = 0.115 percent for OCH.PR 120, and P1, 1,17 percent for
0 CH-PR 150,
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Fig. 3-2-Probability of ambiguity VS O1CjH~pR for optimum
three-oioennt interferometers
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4.0 FUNDAMENTALS OF FOUR-ELEMENT TIHREE-INTEGER
SET INTERFEROMETERS

The theory of three-element interferometers in fairly well known (disregarding some
minor inconsistencies in the work referenced in Sec. 3.6), There does not appear to be
any corresponding body of theory available for four-element arrays, especially with re-
gard to the question concerning the existence of an optimum four-element array con-
figuration. With'an understanding of the material presented in this section, the ESM
designer will be prepared for the exposition of the array synthesis techniques of Sec. 5.0,
and he will be able to apply them without difficulty.

A four-element interferometer can be characterized by 4 antennsi/receiver channels,
4 - 1 = 3 available channel-pair phase differences (necessary and sufficient for ambiguity
resolution of the overall array), and .4 -- 2 = 2 subarrays formed by channels considered
three at a time. Section 4.0 introduces several four-element array configurations (some
of which are not optimum) which have been widely used in the past. These configura-
tions are compared mainly on the basis of how efficiently the signal processing and math-
ematical operations needed In ambiguity resolution can be mechanized.

* A discussion of resolvable and unresolvable ambiguities in the two three-element sub-
arrays that constitute a four-element array emphasizes that there is no need for either of
the two subarrays to be nonredundant. That is, there is no requirement that either of
the subarrays be capable of unambiguous operation as a distinct three-element array-as
long as the three spacing integers defining the overall array are relatively prime.

Each subarray is characterized by a subarray ratio minnl. One member of the
subarray ratio !Rj (either m, or nj) contains a factor common to one member of sub-
array ratio 1i2 (either m2 or n2 ), dependent on the overall array configuration, This
highest common factor a is introduced, and the manner in which the ambiguity tolerance
of subarray 2 is increased because of this factor a is fully explored.

The section closes with a development on canonical array configurations in four-
element arrays. It is shown that the cascaded end-phase configuration of four-element
interferometers is optimum from considerations, of efficiency of hardware usage and
probability of ambiguity. Trhis is believed to be a new result, and it was obtained with-
out recourse to the analytical artifice of a fictitious off-axis fifth channel used by
Hanson [211.

4.1 Three-Integer Set Interferometers

Interferometers whose performance could be specified as a function of the two
spacing integers p and q were classified in Sec. 2.2 according to which channel was des-
ignated the phase reference. For arrays formed with the number of channels n = 4 and
n = 3, classification can 'be done on the basis of the channel (or channels) used as phase
reference. The number of possible array configurations increases rapidly with n. It will
be shown later (in Sec. 4.4) that in four-element interferometers, the probability of
ambiguity is dependent on the array configuration as well as on array spacing integers
p, q, and r-in contrast to three-element interferometers.
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Figure 4.1 illustrates several configurations possible in four-element arrays. Param-
eters for these arrays of Interest to a system designer are given In Table 4-1.

One array comparison parameter is the number of phase comparisons utilized in
resolving the overall array ambiguities. The number of these ambiguities is Q - p + q + r,
for 0a within -900 to +90"; and p, q, and r represent the element spacings in half-wave-

lengths at the operating frequency. The minimum possible number of these comparisons
Is obviously (n - 1), since the use of less than (n - 1) phase comparisons implies that the
phase information from one or more channels has been discarded. The cascaded mid.
phase array requires four comparisons in resolving p + q + r k ambiguities. All of the
other array configurations require (n - 1) = 3 comparisons.

Y3 
i A) CASCADED END-PHASE

1w i P-- M24 p~qr

01,3 0 1.4

01.2 . '' ,

P q 4N, (r) CASCADED MIDPHASE

Pq

"", 1,,,

38.

02.3 03,4

01.2 01.3 02,3 03,4

qr(C) HYBRID MIOPHASE

A01.2 02A

000233 023,

0 1 14 2.3 7 0 2 (D ) A D D IT IV E M IO P H A S E
2 7 P

01.2 023,
0 2 23 03,4 _011.3 03.4

q(E) MULTIPLE END-PHASE

.701.3 'P,4

201.2

V1,3
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Note: For the "'infinite-resolution" phase-measurement systems considered here, imple-
mentation of other comparisons in addition to some minimum set is easily accom-
plished. Thus, the phase difference 4),3 is equal (formally) to 'P1 ,2 + 2•,3 , in-
"cluding any errors. In quantized-phase'systems, the direct representation of )1.3
may differ from 'N),3 obtained by summing quantized representations of D1,2 and
4'2 ,a. Hence, depending on the degree of quantizing implemented, the system de-
signer might be advised to obtain [1,3 directly by use of the additional phase
comparator.

A second array-configuration comparison parameter is the number of phase refer-
ences needed to implement a particular array. The number of high-level input signals
that must be provided is equal to the number of phase references. Minimizing this
number is desirable, since the analog phase comparators in widespread use in present
wideband receiving systems usually require a drive level on one of the input ports to be
at least 10 dB stronger than the other to facilitate accurate recovery of sin ~p and cos 0,
the quadrature components defining phase difference,

Another array-configuration comparison parameter is whether or not the R = p + q + r
ambiguities associated with the overall array length are resolved directly as a consequence
of the ambiguity-resolution process. If not, additional operations and calculations will be
needed. Table 4-1 shows, for n = 4, that only the cascaded end-phase and multiple end-
phase array configurations meet this criterion.

A final array-configuration comparison parameter is the subarray spacing length com-
mon to each of the two ratios characterizing the arrays shown In Fig. 4-1. The subarray
spacing length common to the two ratios influences the order of the ratio. An example
is a comparison between the midphase configuration and the cascaded end-phase con-
figuration for p 3, q = 1, and r = 7 half-wavelengths.

P =3 !

Common spacing: q 1,

r 7

Cascaded End-phase

p+ q 4

Common apacing: p + q - 4.

p + q + r 11
=2e p + q 4

Previous analyses into the theory of multipleolement ambiguity resolution have proceeded
on the awsumptlon that composite arrays having low probability of ambiguity could only
be achieved by combining subarrays of low order. Thus, inordinate interest has been
placed on the hybrid midphase and additive midphaso configurations. It will be shown
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later in this section that the cascaded end-phase and cascaded midphase configurations
exhibit the lowest probability of ambiguity for given p, q, and r because they have the
largest common spacing p + q, as the arrays are configured in Fig. 4-1. It will also be
shown that if the subarrays are redefined properly, all array configurations in Fig. 4-1
are equivalent except the multiple end-phase configuration. This is a new result in the
theory of four-element interferometers.

In summary, the four-element cascaded end-phase configuration

0 Employs the minimum possible number of phase comparisons-3

0 Requires the smallest number of phase references-1

* Resolves the overall length p + q + r = Q directly as a consequence of the
ambiguity resolution process

0 Exhibits the largest spacing common to the two subarrays constituting the
overall array-p + q.

4.2 Resolvable and Unresolvable Ambiguities in Subarrays of Three Elements

In this section, the distinction between resolvable and unresolvable ambiguities in
subarrays will be defined. The material will be useful in understanding the discussion on
ambiguity constraints in the section following,

For a four-element cascaded end-phase array, as shown in Table 4-1, the two sub.
arrays are defined by

p• P q mI
p nj 4.s

and

p + q + -- 2  (4-rlb)
!9, p+ q n2

Analogous to the requirements for an end-phase three-element interferometer, each of the
numbers mi and ni (i - 1, 2) associated with the two subarrays must meet the criterion
for a realizable Intorforometer. That is, mi and nt must be relatively prime integers.

SThere is a corresponding restriction that the spacing integers p, p + q, and p + q + r be
relatively prime, as will be shown in the next section on ambiguity constraints.

As an example, consider the cascaded end-phase array defined by p = 3, q = 3, and
r- 10 half..wavclengths at the operating frequency. The subarray parameters are

Subarray 1

p + q 3 + 3 6 2
p = •-,•; le = •7 '
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Subarruy 2
p + q + r 3 + 3 + 10 16 !1 8

p+q 3+3 6' 2e n 2 3

The individual three-element interferometers are respectively "three-times ambiguous"
[(p + q)/m 1 - p/n1 = 3], and "two-times ambiguous" [(p + q + )/m2 = (p + q)/n 2 = 21.
The overall array, as well as the individual subarrays, can be resolved, however, because
the four-element array was synthesized from two realizable ratios. An equivalent way of
stating this is to say that a four-element array is resolvable provided at least two of the
three spacing integers are relatively prime. Thus, the array formed by p = 3, q 3, r - 9
is not resolvable, whereas the array formed by removing the common factor 3, p. 1,
q -i 1, r' -' 3, resolvable.

In the above example involving subarray 1 with p - q - 3 half-wavelengths, theie are
p + q - 6 angles of arrival over a -90* to +900 field of view that will give rise to the
same phase code '1,3-avalluble = (D1.3 (mod 27r). This is, of course, a restatement of the
principle that a three-element array of length R = p + q (in half-wavelengths) cannot ex-
ceed m1 X/2 wavelengths; otherwise there will exist ambiguities beyond the capability of
the channel-pair spaced p half-wavelengths to resolve.

Subarrays which have no unresolvable ambiguities over the field of view are called
"unambiguous." Subarrays which exhibit one or more unresolvable amlbiguities over the
fiold of view are therefore called "ambiguous."

Table 4-2 lists all possible four-element arrays of length Q = p + q + r - 16 half-
wavelengths, with the associated subarray ratios Al. and AU for the cascaded end-phase
configuration (subject to an example constraint of p - 3). The purpose of the listing is
to illustrate the conditions unambiguous and ambiguous,

.The number of unresolvabr ainiiis f6Vea sbarray are . . ... . . .

subarray 1 A1 I (p+q) - ml (4-2a)

subarray 2 A2 = (p + q + r) - m. (4-2b)

Of the entries in Table 4.2, only 4 out of 12 have both subarrays I and 2 unambig-
uous. It is stressed, however, that the usual impetus for implementing arrays of four or
"lmore elements is to achieve the higher angular resolution implied by larger overall spacings
(with an acceptably low probability of ambiguity). Thus, the array designer is normally
indifferent to employing angular estimates from any spacings except the overall array
spacing Q. An exception to this statement occurs if all of the array spacings are used to
form an estimate of the angle of arrival, e.g., as in perhaps maximum-likelihood processing
of the electrical phases from the appropriate channel-pairs.

4.3 Ambiguity Constraints and Probability of Ambiguity for the Four-element
2 Cascaded End-phase Array

Explicit relations for the ambiguity conetraints in the cascaded end-phase configura-
tion of a four-element array will be derived in this section. The derivations for the other
array configurations given in See. 4.1 are similar.
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Table 4-2-Parameters of Four-element Arrays of Length Q p + q + r .16
(subject to the constraint p = 3)

Number of Unre-
Spacing Integers solvable Ambiguities,

p a- qiger 1 = (P +q):p 2 = (p +q +r):(p+q) A, in

A 1  j__A 2

3- 2- 11 5:3 16:5 U U
3- 4- 9 7:3 16:7 U U
3 - 8 - 5 1.1:3 18:11 U U
3- 10- 3 13:3 16:13 U U

3- 1- 12 4:3 4:1 U 12
3- 5- 8 8:3 2:1 U 14
S3- 7- 6 10:3 8:5 U 8
3- 11 - 2 14:3 8:7 U 8

3- 6- 7 3:1 16:9 6 U
3- 12- 1 5:1 16:15 10 U

3- 3- 10 2:1 8:3 4 8
3 -- 9-- 4 4:1 4:3 8 12

Notas:
1. U- unambiguous (no unru~olvable amblgutllen).
2. A1 , number of unresolvable amblgultles - (p +q)- inl, In !R,
3. A2 , number of unresolvable ambiguItis - (p + q + r) - ra2, In A2,

It will be convenient to introduce expressions for the array spacings in terms of the
subarray ratios 11, and R2U.

Consider a four-element cascaded end-phase array (see Fig. 4-1a). The two subarray
ratios, with the subscript e dropped for brevity, are

ma nmd P + q (4-3a)

and

R 2= m 2  p+q+r (4.3b)2 n'2-=V-2 P + q

with a an integer introduced for generality, to account for possible common factors in
m1 and n2 (common factors in n, and m2 are irrelevant). Another ratio rRo, the product
of A1 and !R2 , may be defined as
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mlM2 CYm iM2  moL)!RO n---? -n = -2 ' -T '
njan2 Wo

p+qp+q +r p+q+ r
p p + q p (4-3c)

Identifying like terms in thle denominators of the two forms for R0 provides

P ntn 2 (4-4)

Substituting this value for p into Eq. (4-3a) gives

nln
2p + q _ .F cj l

P TZn 2  ftl1

and solving for q,

- ( n 1) (4.5)

L Adding Eq. (4-4) to Eq, (4-6) gives
/ rain2

p + q (4.6)

Substituting this value for (p + q) into Eq. (4-3b) gives

Pn jn2
""-- + r M/2p•'q+r •a

p +, q m 1 n2 n2p tq

and solving for r,

r ;-(V (M2 - n2). (4-7)

Summarizing, we have

P = a•nn2

"•2 ni) p +q + r (4-8)

r -- (MI2 "n2) (

where
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rn1  p + q m2 _ + q + r

Sfactor common to m, arid n 2.

With the aid of subarray ambiguity diagrams, the ambiguity constraints for a four-
element cascaded end.phase array will now be derived.

Figure 4-2 shows the subarray ambiguity diagrams for the array ratios A, I ml In, 4:3;
A2 = M2 /n 2 = 11:4. Since mi = n2 - 4, the common factor a in Eq. (4-8) is 4, and p, q,
and r are given by

3X 4
4

T(4-3) = I p + q + r.

4 4X 11 1
(1 =-j(l1-4) 7 4

The ambiguity diagram for subarray 2, unresoLved by subarray 1, has ambiguity Inter-
cepts of

AP1,4-AI n2 4

ir" it r •

1,3'AI =-(16.36').

Similarly, the ambiguity diagram for subarray 1 has ambiguity intmrcept.4 of

Ap1 *A j (600),

A'PI,2AI (450)

It will be noted that the trajectories for subarray 1 are labelled with unprimed numerals
below the trajectories of slope 4:3, whereas the primed numerals above the trajectories
show parametrically the equivalent trajectory for subarray 2. This dual labelling reflects
the fact that as 0. varies from -90* to +900, the channel pair spaced (p + q) half-
wavelengths manifests 4 X 27r rad phase change, whereas the channel-pair spaced (p + q + r)

half-wavelengths manifests 11 X 2 r rad phase change.

The spacing integers p - 3, q = 1, and r - 7 for this example havo been chosen so

that both subarray 1 and subarray 2 are unambiguous in the sense of the development of

Sec. 4.2. That is, the appropriate processing of each of the suharray phase-comparator
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outputs can provide a single (though inexact) estimate of 0 for sufficiently small phase
errors.

The channel-pair errors for the two subarrays are

Subarray I

APsI= AI - A42 = 41,2

41,1  (449a)

Su barmiy 2

APL A - AV4 4 P1,4 (4-9b)

where S1, b, = small and large spacings for subarray i. For zero-mean channel phase
errors, the aisociated standard deviations of channel-pair phase error are

Subarray I

8 -- (02 + q11/ 2] 01,2

or + 1/2 = oa ,, (4-10a)

and

Subarray 2

,"S2 [2o + 0211/2

OL,, (02 + ;2 1/2 0 4-0b
1 4 O1,4. 41b

For all 01,a •j CH.pR j 2 to 4, the ambiguity variable in Eq. (3-18) for each of the
two subarmnys Is given by

" oCU.-,Rjm? - m.,•n 4 nj'/2l• (4-11)

since P= +0.5 for end-phase arrays. Consequently,

S~47
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001~=r UCI -P -

=' CH.PR for subarray 1,

and

(70p = 7CH-PR 11 4 + 4-

(YCH-PR V/9 for subarray 2,

Suppose that the rms electrical phase error between channel pairs 0 CH.PR = 12.50.
Then,

12.56 V./ = 45.070,

and
a4 12,50°V193 120.55, ,.

The integration limits in Eq. (3-19) are

Subarray 1, .! 1- =3.994

1800
Subarray 2: =t- ±1.493.

When Eq, (3.21) is used, the probability of ambiguity of the individual 0 ubarrays is

Subarray 1: p0 = rfu 6.497 X 10-r,

Subarray 2: p= = erfc -1801= 0,1354,

rThe p, for subarray 2 it over three orders of magnitude larger than for subarray 1. This
dramatically illustrates the desirability of utilizing the information from channels 1.2.3
"(subarray 1) to improve the ambiguity performance of subarray 2, composed of channels
1.3-4.

The ambiguity diagrams for the two subarrays illustrate how this may be accomplished.
Suppose that 0 =. 0' and that Aý01,2 = 36.818", A'P1 1 =" 49.0910, and A•01,4 = 45', (Note:
These error sots have been chosen to place the error sts (Ap 1,, 0'p,3) as well as (Aip 3,
AýP 1 4 ) directly on ambikuity-plane trajectories, but this assumption is not essential to t&e
following development.) Now, the error set (AýP12, 601.3) lies on trajectory 0 for sub-
array I (lower diagram in Fig. 4.2), whereaS the error set (AApl,, Ap14) lies on trajectory
3' for subarray 2 (upper diagram in Fig. 4-2).
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If the phase-comparator output from only the larger baseline in each of the two sub-
arrays was used separately to form an estimate of the angle of arrival, the results would
bo as follows

Subarray 1:

0 X 3600 + 49.09101

L 2x 36600

Subarray 2:

*6 sin" 1 [ x 360+4 34,62g'

i•. Thus, although the channel-pair phase or'ors are comparable in magnitude, since trajectory
3' for subarray 2 is not the true trajectory, using the phase Information from subarray 2

alone provides a grossly incorrect angle-of-arrival estimate.

Given that the error sot (AWp1 2, A€p1,,) for subarray 1 lies within the boundaries
around the trajectory associated vlth the true angle of arrival, the following items may
be noted

* The true trajectory for subarray 1 is 0,

• The true trajectory for subarray 2 is 0',

e The contiguous subarray 2 trajectories (plotted on the trajectories for suburray 1.)
are I for 0, (+) and 10' for 0, (-),

* 'The adjacent ambiguous trajectories for subarray 2 in Fig. 4-2a are 3' and 8',

which are i 2 - 1 = 3 greater or less than (mod 11) 0': (0 + 3 = 3; 11 - 3 -- 8),

* Trajectories 6' (3 + n2 - 1 -- 6) and 5' (8 -112 + I 5) lie midway between tra-
jectoxies 0' aid 1', and 0' end 10', rotsipctivoly.

The P,) calculations made above show that it is almost a certainty that the true tra-
jectory for subanay 1 is 0 for the given example, subject to channel-pair errors of 12.50
rms, with Gaussian distribution. Tho only subarray 2 trajectories possible, given trajec-
tory 0 on subarray 1, are 0', 1', and 2a'. Trajectory 3' In Fig. 4-2a for subarray 2 Js
adjacent to trajectory 0', whereas trajctories 1' and 2' are four trajectories to the ri'ht
and left, respectively, of trajectory 0. Hence, the true trajectory for subarray 2 is 0 , to
a very high probability.

Subarray I., in effect, increases the width of the ambiguity boundaries around the
phase trajectories for subarray 2 by the factor rn1 : 4. This is shown in Fig. 4-3, the
ambiguity diagram for 19 2 '- In2,: it2  11:4, resolved by t, 1 in AIl = in:.-I '- 4:3. Rather
than a square 21r on each side, the ambiguity-plane surface is now 2fr long on the 1112 axis,
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/b, i bb/ I IF

4AI 21r,2 /b /, 
:

/0 IF J1I / , Jh/

I/f

AV1.3 Al 2n 2,r 2fr 2v
000 0 0

RESOLVED A
B: TRIAICTORv 0 TRnAJECI'ORY 1 TRAJECTORY 2 TRAJECTORY 3

7riff
, A4 -A 'MI72."4 AW 1 Al" °j

(RESOLVED BY mli - 4 ifr (1801) (RESOLVED BY mi) } 4 W6.469

Fig. 4-3--Ambiguity diagram for !R2 " m2 :n 2 - 11:4 resolved by m, in !R1 m 1 :n 1  4:3

but is increased to 4 X 27r long on the n2 axis. It is readily seen that as trajectory 2'
pierces the first 27r ordinate to the right of Ap, 3 = 0, there is no need to translate this
intersection point back to the ordinate at Aýpl -3 0. The new ambiguity boundary be-
tween trajectory 0' and i' (in reality trajectory 6' in the previous illustration) is two times
the diutance between trajectorlris 0' and 3' in Fig. 4-2a.

In this modified ambiguity diagram for subarray 2, resolved by subarray 1, the am-
biguity intercepts are

7T r
A'PI,4.A" mI 2 4- = n" (180°),

PI,3.Al P-'11 • =4 (65.450).

The new integration limits in Eq. (3-19) for subarray 2 are

m tz 1 8 0 0 4 X 1 8 0 °
_+ 1 = ±- - -- - = ±5.9'73.

02 1 F120.550

Thus, the pa fcor subarray 2, resolved by subarray 1, is

(rot 1800\

P0  erfc -- I180 Iý 2.3 X 10-9.

If independence between ambiguities in subarray 2 and subarray 1 is assumed, the
overall array pa, is given by
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Pa.-overill P. (1 p)(1 -- p) (4-12)

For the example above,

Pa-overall 1 - (1 - 6.497 X 10-5)(1 - 2.3 X 10-9)

6.49723 X 10-.

This is a negligible increase from the p, for subarray 1 alone. However, the overall array
has a length R = 11 half-wavelengths, whereas subarray I has a lengLh p + q - 4 half-
wavelengths. Thus, the accuracy of angle of arrival estimates using the whole airay is
almost three times (11/4) better than for subariay I alone.

The geometric arguments above illustrate how the ambiguity boundaries for sub.
array 2 in a four-element cascaded end-phase interferometer are extended by a factor re-
lated to the rn1 spacing integer in subarray 1. This ambiguity constraint relaxation on

k suburray 2 can also be developed analytically, as shown below.

The ambiguity constraints for the two subarrays (considered as isolated three-element
arrays) can be written in several forms

Array Ratio Form

Subalray 1 InjAtpj,, -MIA.01,21 Ir (4.13a)

Subarray 2 ln2API,4 .- 4,A1,31 7r, (4-13b)

Spacing Integer Form

Subarray I -pA -(p +- q)Al)2l (4-14a)

Subarray 2 I(p. +q)AA- ,4 .- (p + q + r)Ap1 ,,, 7 (4.14b)

Spacing Integer-Channel Error Form
Subarray I I-qAp1 + (p,+q)A,2 -- pA~pa (4-15a)

Subarray 2 I-rA'p1 + (p + q + r)A0 3 -- (p + q) A41 i• (i-15b)

where

=nln 2  p + q n2"

n2 (ri ll?1) p + q + 1 2 -"

r = C (M2 - ?12)

S= factor common to m, and n2.
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If the subarray ratio-intger forms for the spacing integers p, q, r, are used, and if sub-

array 2 is resolved by subiarray 1, the ambiguity constraint Eq. (4-15b) becomes

" (;n2,-' n2 )AApI + 2 AT. (4-16)

Multiplying both sides of the inequality above by a/m 1 yields

1--(r2 - n 2 )AIP + M2A-o3 -n 2 Ao 4I Z a1r,

which simplifies to
I,

-- air Ambiguity constraint for subarray 2 (4-17)
2 ,-2 A1,81 < " resolved by subarray I

using

A 1 A '04 'A P1,4' A Wi - A•P3 A'401.3 .

The ambiguity constraint discussion in this section culminating in Eq, (4-17) can be sum-
marized for the four-element cascaded end-phase interferometer as follows

Four-Elernent Cascaded End-phase In terferomaeter

*Array Constants

in, P + q
Ratios: 'A,1 = - ..- P(4-18a)

!R = p+q+r (4-18b)

Spacing nt In 2  n2 m1
Integers: P = , q x'• (in' 111), 1r -,--t (1"2 - n1)

ma m2 (4-18c)

a- factor conmmon to mI and n 2

* Ambiguity Constraints (each subarray considered separately)

Subarray 1: InAipl,3 .- mTAA•,21' 1r (4-18d)

Subarray 2: In2 A'p1 ,4 .n 2 A01,1 l1 i (4-18e)

' I



NR. REPORT' 8005

0 Ambiguity Variables

U01 f OCH.PR[ml -2 Peitflill + n2,l 12 (4-18f)

ee0 =CH.PR -r2 2p 12 nm2 n 2 + n2lI/2 (4-18g)

* Integration Limits

100SubarraylI ": (4-18h) '

Subarray 2: ,-t Y180"o¢ (4.1 8i)

* Probability of Ambiguity

Pal -- erfe (4-18J) ],

P, erfct-X°180° (4-18k)

The relations above were derived analytically and hold for all four-element, cascaded
end-phase arrays, regardless of whether the individual subarrays are unambiguous or am-
blguous in the sense of Table 4-2 in Sec. 4.2.

'rable 4-3 shows examples of cascaded end.phasae arrays falling into two classes:
Class A Q - p + q + r it expressible directly as m 2 ,

Class B V can only be expressed as mlm21 •,.

Note: The meaning of the tenrms in parentheses will be explained below.

It should be apparent from Fig. 4-3 that a is the factor by which the width of the
ambiguity diagranu for subarray 2 is increased. Even though for the Class B, !R1 = 4:1,
R2 - 3:1 example, a is only unity, it should not be assumed that this is an array with
poor tolerance to ambiguities.

The ambiguity diagram for this array (Fig•. 4-4) shows why this is so. Since (P + q + r)/
(p 4 q) -: 3, the trajectories 3', 4', and 5' overlay respectivcly the trajectories 0', 1 and 2'.
in the terminology of See. 4.2, subiarray 2 is ambiguous-resolvable. 'rhe factor 01 is unity

(the common factor between n I = 4 and 12 "- 1 is 1); consequently, even with the infor-
ination from subarray 1, the ambiguity diagram for subarray 2 cannot be extended, as was
the ease in the previous example. Thero is no need to do this, however, because subarray 2
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Table 4.3-Examples of the Two Classes of Four-element
Cascaded End-phase Arrays

Subar'ay Ratios Array Spacing Integers
Array . . .c

Class = ml:nl !2 -n ":n 2  p q r

7:2 2 1 10 4
B 4:3 (14:4) (4)

3:1 1 1 3 8 1
Bot: 4:1 (12:4) (4)

Notem:

1, a factor common to ti 1 awdl n2.
111tl! t2 mI1 it n

2.p -i-, q n -). (in .-12) r -- (•-( 2 -112; Q p 4 q 4 r

is expressed In a form which already is "reduced" from an ambiguous higher-order form.

This can be illustrated as follows.

Suppose that subarray 2 is expressed as !A2 - m 2 :n2 - 1.2:4, such that m2 must

equal Q (disregarding any common factors in m2 and n 2 ). Then a - 4. Direct application

of the spacing integer equations will provide the same spacing integers p, q, and r as long

as the factor a appropriate to the M2 , 112 set under consideration is used. This is indicated

in Table 4-3 by listing, where necemsary, a second set of parameters within parentheses for

the Class B entries.

Now, from Eq, (4-18g),

UO rk1 2 -.. 12.4 + 42] 1/2

S= oCI..pR(4 V7), or 132.290 , for uCjt.PR- 12.50.

The integration limits for subarray 2 (with m 2 = 12, n 2  4, a = 4), using Kq. (4.18i), are

ax1800  4 X 1800
1.2.50 X 4 X

But, these are precisely the same integration limits that result with !R2 = 3:1, a 1, Gs
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Uc, ii-pR[32 3-1 + 12]1/2 = 33.07', for OCiI.PR = 12.5 '

an'l i X 1800 .

02• 33.070

It is apparent that one form of expressing JR2 for Class B arrays exhibits M2 and n2without common factors, and with • # ml. But the second form manifests M2 and n2

with Q• =f M2, and with a common factor a•-- ml. Thus, if mn2 and n2 are expressed in a

form that preserves any common factors, and If the appropriate modification is made In
ot, the distinctions between Class A and B disappear,

In Sec. 5.5, the tabulated results of an array synthesis procedure developed earlier
in that section will be presented. It will be seen that consistent expression of m 2 and n2
directly as m2 E- p + q + r = Q, and n2  p + q, with a r m1 highlights the importance
of basing a four-element array synthesis procedure on the subarray 1 Integer m I1 . It is
also stressed that the subarray 2 ambiguity constraint development ending in Eq. (4-17)
holds no matter in what form m2 and n 2 are expressed, provided a is correctly deftned.

4.4 Ambiguity Constraints and Pa for Four-element Arrays of Various Configurations

H The theory devoloped in Soc. 4.3 for the ambiguity constraints and p. associated
with the cascaded end-phase array will now be extended to other four-element array con-
figurations. Attention will be concentrated initially on the other four configurations of
Fig. 4.1 (see Sec. 4.1). Later, the development will be generalized to all possible array
configurations using three phase differences-the minimum number required to resolve
the ambiguities in a four-element array.

Subarray ratios Al and 'R2 for the remaining four configurations of Fig. 4-1 can be
expressed in terms of the ratio numerators and denominators by carrying out analyses
similar to those appearing In Eq. (4-3) through Eq. (4-8) of Sec. 4.3. The results of such
analyses are given in Table 4.4, which, for convenience of reference, also lists the appro-
priate parameters for cascaded end-phase arrays.

Consider the hybrid midphase configuration, as shown in Fig. 4-1c as an example of
how the ambiguity constraints, coupled with the factor a--the greatest factor common to
the two subarray integers associated with the common spacing-lead to the p( function.
The derivations of the ambiguity constraints are similar to those for the cascaded end-
phase configuration in Sec. 4.3, Eqs. (4-13) through (4-17). Since the derivations are
similar and are based on the same kind of geometric arguments, it will be convenient to
express the parameters for the hybrid midphase configuration in the same format as the
summary for the cascaded end-phaso configuration following Eq. (4-17) in Sec. 4.3.
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Four-element Hybrid Midphase Interferometer

* Array Constants

el p
Ratios: R 1,,1 =-f-=-•- (4-19a)

e 2  q+ r
R2e C2 q (4-19b)

Spacing el f 2  fI f 2  fl(e 2 -f 2 )
Integers: P= q = a , r= a

p + q + r = ( 1 f2 + fle 2  (4-19c)

,e = factor common to fl and fn

, Ambiguity Constraints (each subarray considered separately)

"Subarray I•. P Ift 1 ,2 - elA42,31 <> '' (4-19d)

Subarray 2: If2 A02 ,4  (.2AV2 ,3 1 Z ff (4-19e)

• Ambiguity Variables

9,,= UCH-PR[el - 2pclf + f, I (4-19f)

[e - 2pAeef 2 + f2]1/2 (4-19g)

* Integration Limits

Subr'ay 1: 1- (4-19h)

Subarray 2: ± ý-18-- (4-19i)

* Ptubability of Ambiguity

1 - erfc 800 ) (4.19j)

a1800

P02  erfc (4-19k)
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With the information from Fig. 4-1 and Table 4-4, similar summaries can readily be
generated for the remaining array configurations--cascade midphase, additive midphase,
and multiple midphase.

Calculated p are given for all array configurations in Table 4-5, with either p = 6,
q = 4, r = 11 orp = 4, q = 6, r = 11, subject to .a 12.5, thus lending insight into

the importance of the factor a on overall array performance, The overall array length 2
p + q + r = 21 half-wavelengths.

In the P. calculations, it has been assumed that ambiguities in subarray 2 (resolved
by subarray 1) are independent of ambiguities in subarray 1. [Note: Later, in Sec. 5, an
exact expression involving integration of a bivariate Gaussbin density function will be
given for four-element arrays. It will be seen that for most cases of practical interest, the
assumption of subarray independence causes negligible error in overall array po.]

Table 4-5 shows that all array configurations are characterized by Identical subarray 1
pu. This results, of course, from the fact that any configuration of three-element array,
end-phase left, midphase, or end-phase right, has the same p. for given p, q, and ctl.lPR.

The factor a for the five configurations varies from a maximum of 5 to a minimum
of 1, In addition, although it is not shown explicitly in the table, the subarray 2 ambi-
guity variable also varies, Consequently, the p. of subarray 2 ranges widely. The tabula-.
tion of overall Pa shows that the multiple end-phase configuration is clearly inferior to the
others for p - 4, q - 6, r = 11. For these spacings, multiple end-phase exhibits p, two
orders of magnitude inferior to cascaded end-phase.

It might be conjectured that hybrid and additive midphase arrays cannot achieve as
low an overall p0 as cascaded end-phase and cascaded midphasc arrays. This conjecture
is incorrect, as the following development will show,

Consider the hybrid midphase configuration. Suppose that

1. the array spacings are transformed according to the rules

r -*p' =,
q q' q (.4)

p -* r' (:6),

but that

2. the location of the phase reference at channel 2 remains unchanged.

Now, by redefining

r' + q' U1  a14',
q Vl V1

S. .. 5:2)

and
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jm p U2  142
r + ' V2  0 V

we can oasily show that

a factor common to u I and V2

Figure 4-5 shows the original, as well as the transformed, array.

V It can be seen, by referring to Table 4-5, that the parameters for the transformed
array are identical to those of the original cascaded midphaso array, which in turn has a
p,, equivalent to the cascaded and-phase array. Thus, by redefining the spacing integers
and the directions in which the subarrayR expand, it has been shown that hybrid midphase
arrays are equivalent to cascaded midphase, and ultimately, to cascaded end-phase arrays.

(A) ORIGINAL CONFIOIURATION

7 q f 5"f

F~ACTOR COMMON TO

SPACING COMMON 1O
BO0TH SUI3APIAY FIATIOS

11B) rI'ANSI01tMED CI)NFIGUHAl ION

W1  U2 IU2

0 12 02.3 024o FACTOH COMMON TO

ul AND v2

SPACING TRANSFORMATIONS: t' SPACING COMMON TO
130TH BUIIARRAY RATIOS

VIV, 4-.5-- OrIg~Iul and traiw~formed four-elomont hybrid inkipIhtaso arrayn
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4.5 Canonical Configurations for Four-element Arrays

Canonical array configurations may be defined as those for which

0 The minimum number of phase comparisons are implemented.

* The overall Pa is the lowest achievable for specific array spacing integers
p, q, r, ....

In Sec. 4.5, Intuitive arguments showed that the cascaded end-phase configuration was
optimum. This optimality of the cascaded end-phase configuration will now be proved.
It will be convenient to precede the specific development for n = 4 by some observations
on arrays using an arbitrary number of elements.

Consider an n-element array where (as shown In Fig. 4-1 for some four-element con-
figurations) the antenna receiver channels are numbered from the left as i = 1, 2, .,
j, ... , n. Adopt the convention that for any electrical phase angle (DJk provided by in-
strumentation associated with these channels, channel j is denoted the phase reference.
Thus,

+j, -- j,h sin 0,

2'r -+,)si 0 > j
•'"-(xk -x)sn0 ; 0a (+), (4.20)

where xk is the spacing of antemna k from antenna 1, x, - 0.

Obviously, by definition (1), 1 - 0. Further, +1, ,k .I.. J For n 2, 3, or 4, matrix
representations for the channel-pair phase variables are

ii 2: L0 (1,2 'UI4' 1 12 (4-21a)•2 "tll2 0

n 3:

S0 '!1,2 0I.,0 p (p +q)

2 :1 A) 1,2 0 (1) 2•3 (I' _p 0 q (4-21b)

S0 j-~(p +q) -q 0

62

S. .. . , " ' , ",".. . . . . . . . . . . .. . . . . . . . ........... '- i .. " i .. i ' ' l" "



NRL REPORT 8005

n = 4:

0 11) It (1'1,41' 0 p (p+q) (p+q+r)

"4)1,2  0 (P2,3 ,1'2,4 -p 0 q (q + r)
;$4 = = (P

-qN,3 -4)2,8 0 (, -.(p + q) -q 0 r

-l4 "-C)2,4  -(1)3,4 0 -(p +q+,) -"(q+r) -r 0

(4-21c)

21r Xwith) (D 7-§ sina 0, - rsin 0.

V Extension of this channel-pair phase matrix to n .'. 5 should be obvious, It is em-
phasized that these matrices list all possible channel-pair differences, but that usually, a
particular sot of (n - 1) p' so differonces are the only ones implemented in an array of a
given configuration.

By inspection, It can be seen that the 112 elements In those matrices are apportioned
as

* number of comparisons ,1)jj = n(n-- 1)/2

* number of comparisons clFi, j = (n - 1)/2

* number of comparisons ,I)i, n

total = n 2

Eliminating the phase differences 'I,, which are not functions of the angle of arrival in
the systems under consideration in this report leaves only i (n - i)/2 different comparisons
(excluding negatives) possible in an ni-element interferometer. The number n,, of these
comparisons for 2 n <, 7 is

fl, 11

2 1
3 3
4 6
5 10
6 15
7 21.

It is obviously nocessary to Implement only (a - 1) phase comparisons in an nt-ehlemnt
interferometer, if these comparisons make use of the phase Information from all a channels.
The number Nq, of different sets of (n -- 1) comparisons Is given iy the number' of combi-
nations of he, taken (a - 1) at a time, or
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nlp!
=(np 1 !- 1 (4-22)•! N• =(n - )(n• n + 1)!

For 2 < n < 7, N, is given below.

2 1 Note: For n 3 3, N, includes mirror-image
configurations; for strict consistency then,

4 20 with n = 2, N• should be equal to 2.S5 210

6 3,003
7 54,264

For 11 3, the matrix form of Eq. (4-21b) provides an illustration of the physical counter-
part of N The first tow of this matrix defines an end-phase left array, the middle row
defines a midphase array, and the bottom row defines an end-phase right array.

For n -- 4, it is difficult to visualize all 20 possible arrays with just the matrix form
of Eq. (4-21c). Therefore, the phase differences c' fined by the matrix form are used
((n - 1) 3 at a time, and the 20 possible array configurations are sketched as in Fig. 4.6.

10 (2 4)0

X0

0

XI

PHASE X *- UNUSED)
REPEMAENCE CHANNEL

Fi.4-6---Sivnplificod reprementations of the twetity po..siblu four--Aeniunt a rm~y
Con ipU lytlioltl Usiing thre(I iphaw di ffornces'
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'Fable 4-6 lists the spacings utilized, the array phase reference(s), and the spacing common
to the two subarrays. The arrays numbnred 2, 6, 13, and 20 can be immediately removed
from further consideration, since they do not employ information from channels 4, 3, 2,
or 1, respectively.

Arrays 7 and 12 have spacings of p + q + r common to the two subarrays. Thus,
whichever subarray is denoted subarray 2 in each of these four-element arrays has the
benefit of a large common factor ax in increasing the value of the argument of the anibi-
buity variable. Unfortunately, the array ratio for subarray 1 will be so large (this subarray
ratio also involves p + q + r) that the Pa of subarray 1 will be much larger than that ob-
tained with a cascaded end-phase configuration.

Arrays using a single common spacing-p, q, or r--cannot, of course, achieve the per-
formance of those using a double common spacing such as p + q or q + r. This was shown
in the calculations for pa in the example arrays of Sec. 4.4. This fact removes from fur-
ther consideration arrays 3 and 5 (with common spacing p), 9 and 14 (with q), and 16
and 18 (with r)-

The remaining arrays share two attributes: (a) the common spacings are either
p + q or q + r, arnd (b) four of the arrays are mirror images of the other four. Table 4-7
lists the comparison factors for these eight arrays. Arrays 4 and 11 can be shown with
no difficulty (by developments similar to those resulting in Eqs. (4-18a) through (4-18k))
to be identical in Pa performance to array 1. But arrays 4 and 11 do not resolve the
overall a.ray length associated with the integers p + q + r as does array 1. Hence array I
is superior to arrays 4 and 11.

Now, it has already been shown in Sec. 4.4 that the transformed hybrid midphase
array is equivalent in Pa performance to the cascaded end-phase array. Once again, how-
ever, array 1 is superior to its transformed counterpart, array 15, in the sense that overall
length p + q + r is resolved directly,

Each of the four arrays discussed above has its mirror-image counterpart in the re-
mainder of the table. Thus, it should be obvious that with the aid of the transformations
p -1 r', q -+ q', and r -• p', the performance of second group of arrays is identical to the
first group, and that a cascaded end-phase configuration is indeed optimum.

In contrast to two-element and three-element arrays, the performance of arbitrary-
configuration four-element arrays is dependent both on the configuration arid on the
array expansion direction.

The preceding development his shown that of the 20 possible (by definition) four-
element array configurations, there are four configurations that have particularly simple
realizations;

0 Array I.-Cawcaded end-phase (Reference channel 1)

* Array 8-Transformed hybrid midphase (Reference channel 2)

0 Array 15-Transformed hybrid midphase (Reference channel 3)

0 Array 19-Cascaded end-phase (Reference channel 4).
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Table 4-7-Comparison Factors for Four-clement Arrays with Spacings b 4. q or q + r

Common Array 'Mirror-image'Arra Cofiguatin Cmmon Ajry j Array
Array Configuration Spacing Reference(s) Number Number

Cascaded end-phase p + q 1 1 19

Equivalent to CE-P p + q 1, 3 4 10

Equivalent to CE-P p + q 1, 3 11 17

"Transformed hybrid midphase p + q 3 15 8
-- - - - - - - - - ------ Axis of configuration symmetry ------- -------

Transformed hybrid midphase q + r 2 8 15

Cascaded end-phase q + r 4 19 1

Equivalent to CE-P q + r 4,2 10 4

Equivalent to CE-P q+ 4, 2 17 11

Note: Array numbeew arc, defined i Fig, 4-6.

T'hese four array configurations are defined by rows one, two, three, and four in the
channel-phase error matrix of Eq. (4-21c).

This development showing that the cascaded end-phase configuration is indeed opti.
mum for n = 4, is, as far as the writer can determine, a new result. Although some of

*: the material presented by Hanson [211 for the case of four apertures on a line appears
relevant, he neglects to consider the effects of correlation between channel-pair phase

'*1errors in subarrays. Thus, hie is, in effect, formulating judgements on array-con figuration
suitability based on "Independent," i.e., four-element two-integer set subarrays, It is
known from Sec. 3.0 that this leads to incorrect conclusions when one deals with three-
element subarrays,

This concludes the exposition of the fundamental anatyses associated with four-
element arrays. Sec. 5.0 will address the synthesis of four-element arrays and will provide
techniques by which the optimum array of any length Q = p + q + r half-wavelengths can
be readily synthesized.

5.0 SYNTHESIS O01' OPTIMUM FOUR-ELEMENT ARRAYS

This section provides the theoietical basis for synthesizing the optimum-realizable
four-element cascaded end-phie array of arbitrary length Q > 4 half-wavelengths. (Note:
the case V 3 is trivial; the array consists of four channels separated by spacings p q
r 1 half-wavelength.)
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It is shown first that the ideal numerators to employ in the subarray ratios !j=
mi/ni are just mi = N. Of course, this condition can be met only for those cases In
which k is a perfect square. Next, an ideal.unrealizable array (achieving the minimum
possible p,) is defined. The only four-element array for which this ideal condition can
be met is the one defined by p 1 1, q 1 1, and r = 2; Q - 4. The performance of an array
of any other length can approach, but never equal, the performance of the ideal-unrealizable
array for that length. Interestingly, Moffet [221, citing a result due to Arsac, shows that
the longest zero-redundancy array in spatial-frequency terms, from the radio-astronomy
art, regardless of the number of elements, cannot exceed Q - 6, with n = 4 elements.

The concept of the ideal-unrealizable array is quite useful, nevertheless, because it
leads to a direct approximate synthesis procedure, This initial procedure assumes inde-
pendence of subarray ambiguities but achieves the twin objectives of (a) readily visualized
physical spacing interpretations, and (b) rapid convergence to a region of low p, so that
an exact-p, analysis on only a very small set of candidate arrays need be done.

The synthesis procedures given in this section lead to a specification of the channel
spacings for the optimum-realizable (minimum physically realizable probability of ambi.
guity) array of arbitrary length under the assumption of channel-pair phuse errors that
are Gaussian, zero-mean with equal standard deviations. This assumption simplifies the
analysis and subsequent synthesis, and in practice is not too reitrictive. This is because
the phuse errors in channels comprised of several components in cascade (see Sec. 3.1)
approach statistical regularity.

For a procedure to be exact, it must of course, take account of possible dependence,
or correlation between the ambiguities in suburray 1 and those in subarray 2. this de-
pendence is indicated by the absolute magnitude of an array-to-array correlation coeffi-
cient. For equal channel-pair phase errors, the correlation coefficient is a function only
of the subarray ratio integers (or equivalently, the array spacing integers). A knowledge
of this correlation coefficient, in conjunction with the ambiguity variables previously de-
fined in Sec. 4.0, enables one to define the complete bivariatA ambiguity density function
(actually, the no-ambigulty density function). Integrating this function between the ap.
propriate limits provides the probability of "no ambiguity," and ultimately, the probability
of ambiguity.

For many cases of interest, the array p1 is only a weak functilon of the array-to-array
correlation coefficient. The value of the (xact formulation, including the array-to-array
correlation coefficient, is that a four-element array of any configuration, subject to various
channel-pair phase errors, can be precisely characterized. For example, arrays in which
more than one antenna are switched sequentially into a common channel (to minimize
hardware) can be exactly analyzed upon derivation of the appropriate subarray-to-subarray
correlation coefficient.

, In the final portions of this section, the array length is characterized for synthesis
purposes as falling into one of three classes. These are Class I (,Q = perfect square), Class II
(V - geometric mean between successive square arrays), and Class III (Q = any length not
falling into Classes I and II). Examples of an optimum-realizable synthesis for each of
these auray classes are given.
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The section closes with tabulated exact p, (including the effect of array-to-array cor-

relation) for optimum-realizable, four-element cascaded end-phase arrays of various lengths

from k = 4 to 100 half-wavelengths, with channel'pair phase error as a parameter. It may

be noted that very early multielement interferometer configurations based on a binary

progression of spacings: p= 1, p+q= 2, p+q +r= 4, p+q+r+s=8, etc.,[ 2 3],

inherently have a very high resistance to ambiguities for the usual range of channel-pair

phase errors (even when relatively coarse quantizing of electrical phase is done). Thus,

based on the phase-tracking performance associated with presently available microwave

components, such a multielement design approach represents extreme (mad uneconomical)
overdesign.

5.1 Optimum Numerators mi for the Subarnay Ratios A, in n-Element Arrays

In synthesizing n-element arrays of a given length 2, it is desirable to have a proce-

dure for obtaining the particular set (or sets) of subarray ratios Ai, i = 1, 2, ..- , n - 2

that will provide the lowest overall Pa, subject to given ucH PR. (The optimum R, for

n = 3 element arrays, has already been formulnted in Sec. 3.0.)

Since the array length Q = m.n m 2 /a in four-element arrays, it is natural to focus at-

tention on the numerators mn in the subarray ratios !Ri = rni/ni. For four-element cascaded

end-phase arrays, the optimum (in general, unrealizable) %1, and A2 are readily derived.

The generalization to n , 5, i.e., three or more subarray ratios 'Ap, follows easily,

Making use of Eq. (3-19) and the summary material in Eqs, (4-18a) through (4.181)

results In the overall probability of "no-ambiguity," i.e,, probability of "correct," Pc-overall'

in a four-element cascaded end-phase array, of

Pc-overall (1 Pa )(1 - P.)

2 oxp (-tr/)di , (5.1)

where

S= oCH.-lPH[,'? - min, + n?']

Cyi = I, i= ,

= a, i 2, a - factor common to m1 and n2.

Equation (5-1a) assumes, of course, that ambiguities in subarray 2 (resolved by sub-

array 1) are independent of ambiguities in subarray 1. In Sec. 5.4, an additional develop-

ment will include the effects of correlated subarray ambiguities. It will be seen that op-

timum subarray ratios are only weak functions of subarray correlation coefficients.
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It is convenient to normalize the ni in Eq. (5-1) to the associated nin, as

00 1 : • M 1 ( C H ' P R [ 1 M n i l

- mloCH.PR 11 - a + a2 1/2, a nl/m,

0 < a < 1, (5-2a)

and
002 = 2UCH-PR [1 - b + b 2 11/2 b 112 /m 2

0< b < 1, (5.2b)

From Eq. (4-18c), the array length Q is

p + q + r

For Q constant, and with subarray ratio optimization carried out with respect to mi (for
convenience), m2 is given by

m n-'1  (5-3)

Thus, with Eq. (5-3), the integration limits (±) in the integral forms of p., in Eq.
(5-ia) become

ir

17 ~ccn-IPRSubarray I 11- (5.4a)
& WI flml(1 - a + a2)1 /2

and

Subarray 2 ar _ oCH-PR

11/
o¢ , M 2(1 -- b + b 2 ) 1/

ir
OCHPH(-4b)

Q(1 - b + b2)112

Functions of the form (1 -x +x2) 2 ,0 < x < 1, have a single minimum ofý/'.(5'--
0.866, at x -. 0.5, compared to en, point values of 1.000 at x 0 0, 1. Independent selec-
tion of a = nI/m 1 and b = n 2 /in 2 is, in general, not possible because m, and n12 are both
related to the same array spacing p I q. But, to establish optinmum realizable mi, we can
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assume that a and b = 0 or 1, with negligible error. The Integration limits of Eq. (5-4a, b)
are now approximated by

7r

Subarrayl -1 -

ho

and

Subaray 2 --(xl i m ko14. Suaa (5-5b)

where

2 2

If m 1 = /q, both integration limita in Eq. (5-5) are equal, and Pe-overall PCt P02

As in numerous related problems in communications technology in which there is
freedom to vary parameters to minimize overall probability of error, a value of V is
readily shown by assuming that rn,, = n .op'T + AmI is actually the optimum value and
then proving the converse.

Assume that ArnI/in, << 1. Then, in Eq. (5-5), the integration limits are

Subarray 1 v ( +) -- (-- 6), (5-6a)

and

0SunalTay 2 10 (1 + 6),. (5-6b)
(702 VF 1

For small changes In Integration limits, each pir in Eq. (5-1a) can be expressed ms

72

PCI /*---ho 2- cxP (5-7a)

and

+ 2

where
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I(x) -J exp ( -2) dt.

* 'rho overall p, thus becomes

/ 2

pC-Ve I (1-2 ex p (58

- rhe overall probability of correct ambiguity resolution, p~ veralU is maximnum when
6 =0, proving that the optimum value for m, Is

111011 - Vfl - r' n 4 clements. (5-9)

* The generalization for arbitratry it > 3 is obviously

rnm~p~rn > 3 elemnents, (5-10)

Luking into account that an n-element array definea (n - 1) element spacings, and a mini-

mum set (for ambiguity resolution) of (n 2) subarray ratios !A arnd associated min.

15.2 Integration i~mit8 in Ideal-Unrealizable and Realizable Arrays

Determination of particular spacings for the lowest p,, In% a four-olement array of a
given length V can be accomplished by exhitustively Iterating Hq. (5-1) through all possible

I, rn and ni defined by 1), q, and r, and selecting the nonredundant arraty that exhibits the
lowest p,, This determination Is not necessary if the concept of the ideal-unrealizable
array is utilized.

Consider it four4Ilement array in1 which the length Q, for generality, is not a peJrfect)square. 1Eqiuation (5-9) from the previous section defines the Idoal mi.,) 1?12-ID M r,
which is not an Integer if Q -/ 02, i 2. If any considorations of multiple ambiguities
over the field of view tire disregarded (because of common factors in the in, and n, sub-
array ratio integers), the Ideal (ID) it, allsociated with in1 are JIMt

Then, the Integration limits (I I,) in Eq. (5-1) for p, for these mubarrayg are
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ir 1 10 CH-PR 1/ 1 1-

ko 2
;2(1

where

7r __-0 CH.PR

An example of the use of this concept is an array whose length is 12. By definition,
ml.ID ' M2-ID = %/2 = 3.4641 111.ID = n2-ID = 1,7321 .... No p. q, and r exist
such that p + q + r - 12 and (p + q)/p = 2:1, (p + q + r)/(p + q) = 2:1. If such an array
existed, it would exhibit the lowest p, of all arrays of length 12. Hence, the term ideal-
unrealizable array seems appropriate,

Arrays which are realizable, and which approach, but do not necessarily equal, the

performance of the ideal array are called "optimum-realizable."

Realizable (RE) arra, have an integration-limit (IL) product given by

ILIRE= kO 1/2 (5-12)

(mt - min, +n?

where
$ I= 1,

4 2 factor common to in1 and n2,

0 Octi-~pR as in Eq. (5-11).

Each of the ILI.Rg can be expressed as the sum of I1q.1D and a deviation from this
ideal-unrealizable integration limit, as follows. For IIRE, we have

IL.IRE hk0  1 (5..13a)( 2 ... t nl 2 )21/ 2

2ko
v"~~ ~ 2]~.. flf 1

k (5-l3b)

2k/ + (5..13c)
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Equating the terins within the brackets in Eq. (5-13b) and (5-13c) defines

(3/4. R)1/2 (
1 (in - 1 1 (5.14)

If the form d, = 2ho0 /N/ . 6 1 is used in conjunction ,eith Eqs. (5-18) and (5-14), it is
easy to expresh IL1.1E in the form

IL.ILtE + ++4[1 2 -1 2

ILD + d1 . (5..5)

By a similar development, it can be Showna that

ItE 2k0  2

- + n,3)' 1

[L2.1D + d2 , (5-1(3)

The only realizable four-element array for which Mi.RE ILj. 1D is the one in which
p = 1, q = 1, r 2; R - 4, Here, m1I = M 2 = 2, itt I n 2 = :1, a -- 1. Thus,

and honce,

I1 1-lith ' 11L2 .RE IL I.ID IL2.1DL 2-k • • aCo,

Other arrays approach, but do not satisfy, the relations ILI.Ra = ILI.ID because the
ratio mi/ni can equal 2 only for R1 - 2:1. 'rhe di in Eqs, (5.16) and (5-16) are a measure
of how a realizablo array differs in performance from an ideal-unrealizable array, Synthesis
procedures based on the concept of deviation from the condition of ideal-unrealizability
will be given In the next subsection,
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5.3 Synthesis of Cascaded End.phase Four-element Arrays

The basis of the synthesis procedures to be discussed involves the subarray 1 numer-
ator m, and manipulations of the two realizable integration limits, ILI.RE and IL2.RE.
T1he standard forms for these two limits are

ILI.ItE 1 (5-17a)(m- ,.n,, +

and

IL2.1.E = o (5-17b)
(in2 "10n2 + "2

In this form, the dependence of the integration limits on array length R is implicitly,
rather than explicitly, expressed. An equivalent form for IL2.RE is more suitable for
array synthesis,

Use of Dq. (4-18c) from Sec. 4 yields equivalent forms for m2 and "2;

•a ~(P + Oa•
n m2 ="-T and n

When these substitutions are made in Eq. (5.17b), and some simplification is done, the
result Is

E(i (i) ..... (548)

The chanriel 1 to channel 3 spacing integer, p + q, can be equal only to a multiple of the

subarray 1 numerator integer in as,

1) + q - jil,.

Furthermoro, p 4- q cannot exceod VI - p + ( + r, Thus, the [,.lt, (in a form suitabhle
for synthesizing realizable arrays) become

IJ1l.RE 1 0  , 1 (5-19a)

4 (Jn)'iwed

IJ2.1RE k0 5-(19b)

where
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j = 1, 2, ... , T , where x] indicates the nearest integer less than x.

So far, nothing more has been accomplished than to express the ILI.RE in a slightly

different form to emphasize that subarray 2 is more logically thought of as a function of

the overall array length Q and the subarray 1 numerator integer In,. If one wanted to

establish that a particular set of mi, n, is the optimum-realizable for given Q, integration

of Gaussian error functions (as in Eq, (5-1)) seems necessary. ThesO integrations can be

avoided by the use of a simple test functio-i which involves the expansion of the error

function about a specific value.

The first stop in determinirg this test function Is to express Eq. (5-19b) in the form

of Eq. (5-16); that is, as the sum of IL2.RE and a term d.2 which represents the devlation

of IL.-2.RE from IL2.1D. This is readily done. 'rho result, with Eq. (5-15) for ILI.IrI re-

peated bolow for ease of comparison, is

ILl.R, 2" - + k- )1

ILI.ID + d , (5-20a)

"". 0 Q2 .- 1) + ( j 1)2 1 /

= IL 2.11) + do, (5.20h)

Equation (A-9) of Appendix A gives a three.te(rm 'Taylor's sncrhe expansion of Lhe

Gaussian error integral about a sp.ecific argurmet, as

A A /(A) 4 ) 2() (4 (.)+. ,(2)\02

where

A f x /2 dt,

For x/(u 2.000 (i.e., the, argument of A(-) is set at the 2a value), A(x + A/v) becomes

A •2 + ,' A(2) + L j 
2  + l J. (5-22)

21 (--2
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Equation (5-22) is an approximation to the Gaussian error integra, in the vicinity of an
argument set at the 2a value. Note that A(2) = 0.9544997. The corresponding compound
Pa (assuming independence) is 1 - A(2)A(2) = 0.08893 or 8.89F%.%

Now, ko is defined as ?r/aCH.pR. Thus, to force ILi.ID to assume the value of 2.000
(strictly for simplicity in generating a useful test function) regardless of array length Q,
Eq. (5-11) can be set equal to 2.000 and solved for the appropriate value of C0HPR, as'

27T

ILW.ID 2.000,
UCH.PR

or I

oCH.PR]2 = (5-23)

Use of this value of UCH.PR in Eq. (5.20a) and (5-20b) yields

rn 1 1 2 •

&lf(l

ILI-RE 2 + fV/• ml V 21

2 + (5.24ba

Tihe aprximate probabilities that subd subaurray 2 (resolved by subarray 1) are
unanibiguou~s are

P'.1 6.9544997 4- 1- e-2 [2 -l 2 +A A (5-25a)

"a:d

2(_2- J) + • (5-25u)
p,-2 0.9544.997 + 1 - . (A)+(_ 2b

The procedure for obtaining an approximate array synthesis, one not taking into con-
sideration subarray-to-sub;rray correlation of ambiguities, can be summarized as follows.
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* Choole A0 ".i n, ',..'n , to .!

* Choose an appropriate value of ij from Table 3-4 of Sec. 3.0.

1LI.rE (if Eq. (5-24a) is thus defined.

* Compute a set of trial values of IL2.RE by iterating through Eq (5-24b) with
= 1, 2 . Q/m.] where , indicavcs the nearest integer less than the ratio R/m1.

* Substitute the trWal ILI.RE and the Get of trial IL2.RE into I.'.q. (5-25a) and
Eq. (5-25b) and compute :;he overall probability-of-correct product pPP2

' The trial array achieving the highest p, p,, product is the best array for the
particular trial ni1 that was chosen initially.

These steps con be repeated for other trial values of ml, and the best-performing
arrays obtained for each rn 1 can then be compared to determine the optimum-realizable
array. This approximate procedure does not take into account a possible subarray-to-
subarray correlation of ambiguities. Thus, several arrays may bW obtained, all of which
have the same independent probability of ambiguity, Also, since this approximate proce-
dure is based on an expansion of the normal probability integral (evaluated in the vicinity
of argument 2.0000), a slightly different array may actually have a somewhat better p, at
a lower value of acli.Plt (implying a larger value of the probability function integral argu-
ineat) than the array found by this procedure. The designer may have to perform an exact
analysis at the specific value of UCII-pR that will be used for a particular application.

Both the procedure outlined above and an exact analytical form for p,, are easily
programmed, For the convenience of the designer, these programs are collected in Appen-
dix B. The use of these programs will be described fully in Sec. 5.5.

In Sec. 5.4, an exact relation-.one which considers the effect of subarray-to-subarray

correlation of ambiguities-for the Pa in any four-element array will be derived. This ex-
pression will become the basis for determining the optimum-realizable array (from p,
considerations) in the cascaded end-phase configuration (from the development of See. 4.5)
of any length.

of 5.4 Exact Pa for Four-element Arrays

In the previous section, a synthesis procedure was given for cascaded end-phase four-
element arrays of arbitrary length • , 3 (in half-wavelengths). The procedure was approxi-
mate, as the possibility that ambiguities in subarray 1 might be correlated with ambiguities
in subarray 2 was ignored. As will be shown in Sec. 5.5, certain arrays having the same
length ý apparently have the same probability of ambiguity, even though the element
spacings p, q, and r are different if correlation is ignored. In actuality, there is a slight
dependence of p, on array arrangement for fixed Q.

This dependence Is most conveniently expressed in terms of an array-to-array correla-
tion coefficient. Thi correlation coefficient pt , will be shown to be a function of the
array configuration (e.g., cascaded end-phase, hybAid midphase, etc.) as well as array
spacings (e.g., th., -.,tual p, q, and r employed).

79



ROBERT L. GOODWIN

The ambiguity constraints of a four-element cascaded end-phase array, using modi-
fied forms of Eq. (4.18d, e), can be written as

VSubarray 1. -ir < [ 1 n 1&AP1 ,3 - m1 AýP 1 ,2 < 7r, (5-26a)

and

Subarray 2 -ir < [02 = n2,4 - m2 Api, 31 < 7r. (5-26b)

The above two random variables (r.v.) ,1)1 and (1.2 are Gaussian, since they are linear com-
binations of various channel-pair phase errors A&p, = -.- A•p(J = 2, 3, 4) which are
assumed Gaussian, zero mean according to the development in Sec. 3.1. The variances of
these ambiguity variables, if Eq. (3-11) is used, are

o = 2 p _ .1 2 1 3 +rso, 3  (5-27a)
=$ M21021,2 2p,.1??111?1U1,2U1,3 + ri'l20l,3(52a

mid

", 2p•,m2 n2 Ul,301,4 + n201, 4 , (5627b)

=1+These define relations between

02 = U2 + L12 channel-pair error variances and1 3 + 3 { channel error variances,

* 1,201,3 (=0.5, all ot equal)

Pe2 = O1,301,4 (=0.5, all oi equal)

If we allow for possible correlation between the r.v. 1), mid (P2, their joint density
Ifunction is [18]

(1' PIP2) -

P exp 2,L•( * ('. )I=
P it27roU2 V) _ pU2

•l~a2

(5-28)

The subarray 1-to-subarray 2 correlation coefficient is defined by
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E [ ' 1 ', (5-29(1)2
P.,,.2 -J0 o002,

The probability that I'p1{ < 7r and 4p2 1 air, i.e., the probability that array ambi-
guities will be correctly resolved, is

Pc-overall J- f lr p'l,,t,, 2(,P, P2) dýp1 d4 2 . (5-30)

Equation (5.30) becomes just

Pc-overill J pI)c1(ýp1) dip 1 J P'1 2 ('02) dip2 , (5.31)

for p01 ,1 2 =0.

In general, Pa 1,U2 V 0, and to calculate the exact P,.,vy~ali requires (a) determination
of , and (b) integration of the bivariate density function of Eq. (5.28) between the
approp~riate limits.

The array-to-array correlation coefficient is readily found, if Eq. (5-29) is used with
Eq. (5.27a, b). The expected value of (,l,1d1)2)-is given by

E[(h11, (1) 21 = E[n 1Aip 1,, M1 AIP1,2) 2A'p 1,4  M2P1S)

= nP12E[(Apo1  Aýp3)(At0 1 - AP4)1

-mn1n2P.[(AP1 - AtPo2)(AP1 '_ ALP4)]

+nirn 2)Mm [(Aýpl _ AP 2 )(Aý0 - Aý3)] . (5-32)

The taking of the expected values of the various cross-products of channel-pair error yields

E[(I)ItI•2] "' n1112o' 21 _ m ln2 o2 - nltn2 21 .( - 3

Equation (5-33) expresses EPtIh11)21 in channel-orror form. An equivalent expression, in
channel-pair error form is

E[(I)1(1)21 n-, ln12Pl, 3;l,40 11 ,3o1, 4  -- t 1t1 f 2 Pl, 2 ;l, 4 01 ,4

1??lt2Pi,3 ,;l(11,3 + 1nlf?1?2Pl,2;1,301,20l,3 (5.34)

where
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Ef[A( p1  -A~)(h~pl -- A k ]:
1,j0 ,.AA A

By definition, pa 1 1. Now, if all channel phase errors ai are equal, this im-
plies that al 0.5 ol 0.5 o -..pR and that Pi,j;1,h = 0.5, j q k. For this situation,
both forms of E[,l, 1 4 2] become

E[cI,(1, 2 1 12- CH.PR[(nln2 -- mln 2 + mjm 2) - 2njm 2 1, all o0 2 OH.PR.
(5.35) 

.H

Equation (5-35) can also be expressed as

"[4) c2 02•
•[,I1lP21 1 -- oCH.PR[(m - n)(m 2  n 2 ) - nm 2 ] , all o0 2; 2H.PR

(5-36)

Finally, thu use of Eq, (5-36) with Eq. (5-29) yields

1 (MI - r11 )(m 2 - n2 ) - nj m 2  all - .
1 11 2I/2t,2 2 n)IH2R

(5-37)

Equation (5-37) is solely a function of the subarray ratio integers for a? - 0.5 0H.PR.
Furthermore, as with any correlation coefficient, -.1 < pa,, , 1<

Array-to-array correlation coefficients for the other four-element array configurations
of Fig. 4-1 and Table 44 are readily derived. Table 5.1 lists the correlation coefficients
for all five array configurations.

It is convenient to define two standardized variables with standard analytical tech.
niques for integrating bivariate density functions, as

Equation (5-30) is thus transformed into

Sp1 exp (x2- 2pxy +y dy

Pc-vca f 'I k Fir 21 p 2(1 p2) * pyd
Ih

dx F g(x, y, p) dy, (5-38)

whvre
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h S7r

k--0,{lr
a• 1

4 O02

P = Pala".

Equation (5.38) is the standardized form for the integral of the bivariate Gaussian density
function [19,24,25].

An alternate form for - which uses the well-known L(h, k, p) and A(x) func-

tions [19a]

Poverall -- 2L(h, 1?, p) + 2L(h, k, --p) + A(h) + A(k) - 1, (5-39)

where

L(h, k, p) J dx g(x, y, p) dx,

A(h) e ,-t'2/2 dt Probability of being correct, subarray 1,;iA(h) __. C -g .h

St212 dt Probability of being correct, subarray 2 (resolved
f-h V2-T by 1).

Many expressions for calculating L(h, I?, p) are available; one which is suitable for
h, k > I and IpI < 0.95 as is the case for arrays of interest in this report, is based on the
series expansion [19b]

L(h, k, p) Q(h)Q(k) + (P11+ (5+40)

where
-x° 1 e~t,2 1 ,dt

Q(x) 12 dt,

Z(x) '-- ex/v•-•

Z7(O(x) Z(g),
dx'

z(.'-+')(X) = -x7(1+ )(x) (n + 1)Z(")(x).
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A special value of L(h, k, p) is

L(h, k, 0) = Q(h)Q(k)

1- [I - A(h)] [1 -A(k)j . (6-41)

This indicates statistical independence between ambiguities in subarrays 1 and 2, for

p 0. Thus,

Pc-ovrall = [1- A(h)1 [1 - A(k)1 + A(h) + A(k) - 1

= A(h)A(k). (5-42)

Obviously, the overall probability of ambiguity, Pa-ovirall is 1 - Pc-overall from Eq.
k (5-39), and is given by

SPaoverall 2 - [2L(h, k, p) + 2L(h, k, -p) + A(h) + A(le)] (5-43)

where

S0 1) 02

and the functions L(h, k, p), A(h), A(k) are as defined by Eq. (5-39).

The following points may be noted about Eq. (5-13).

p Pa-overall is independent of the arithmetic sign of p, since the sum L(h, k, p) +
L(h, le, -.p) is Independent of the sign of p.

Paoveralil is greatest (other parameters being equal) when p is zero, since L(h. k, p) +
L(h, k, -p) > 2L(h, ke, 0).

:A. The formula for Pa is general and can be used to calculate the performance of

any four-element array, where h, ke, and p are properly defined,

5.5 Tabulated Pa and Array Spacings for Optimum-Realizable Four-Element Cascaded
End-Phase Arrays

In this section, the probability of ambiguity, p., the array spacings corresponding to
the optimum realizable arrays for 4 , 2 < 42, and selected lengths from 42 to 100 half-
wavelengths will be giv,'n for the cascaded end-phase configuration. It was shown in
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Sec. 4.5 that the performance of the cascaded Lnd-phase configuration exceeds that of all
other four-element array configurations.

It will be convenient to use as the point of departure in obtaining these optimum
spacings the fact that if the overall array length P is a perfect square, then the individual
subarray numerators are ,/V(Sec. 5.1), An example is k = 16; here m1 = m2 = 4. (It
will be seen that expression of m2 as Q without removing a common factor a, will in
general lead to a consistent procedure for classifying arrays in which R is not a perfect
square.)

After considering the so-called square arrays as those in which R is equal to 12,
i = 2, 3, 4, ... ,it is natural to examine arrays in which R Is equal to the producti( + 1).
An example is k = 20. Here i - 4, i + 1 = 5. It may also be noted that 20 is the geo-
metric mean of 16 and 25. That is, "mid-square" arrays are those whose overall array
lengths are "midway," in a geometric sense, between adjacent "square" arrays.

A final part of this array classification methodology will group into one remaining

category those arrays whose overall lengths do not fall into the other two categories.

rhis array classification may be summarized as follows:

Class I: k " 12, i = 2,3,4,...

Class 11: V = i(i+1), i = 2, 3,4,..,

Class IIT: V, - any length not falling into Classes I or IT.

The synthesis procedure is bused on the development. in Sec. 5.3, and is mechanized
as computer program CLSIII (see Appendix B for collected programs), In the remainder
of this section, an example of the use of CLSIII for each of the array classes will be
given. Then p, for various array lengths vs u(,jl.PR will be tabulated.

Class r

The first example synthesizes the optimum realizable array for R = 25. The proce-
dure is best described by an examination of a sample printout from CLSIII. Table 5-2a
shows the CLSIII printout for Q = 25, when an m1 value of 5 (known by inspection, be-
cause 25 is a perfect square) and a trial value of n1 = 1 is used. Candidate values of n,
can be obtained from Table 3-4, which provides the allowable p:q values for use In syn-
thesizing three-olement arrays. It will be remembered from See. 4.0 that a cascaded end.
phase four-element array can be thought of as two three.element arrays.

CLSIII yields for each trial value of n2 =]m 1 (see Eq. 5.19) the part.meters

* Ratio m 2 :n 2

* Spacings: p, q, and r in half-wavelengths

* Subarray 1 to subarray 2 correlation coefficient
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Table 5-2a--Programn CLSIII Printout for Q 25, in1  5; Trial nil 1 I
550 DAf'A P.,5 5,

* CL!;tI I

s1lMA-CHAIPN.L-'PAIR w 20.79146 5 LF.CTr!1CAL D,1IlE,',
)E0'IALL A'vAY LtI'TNTH - 2.3 MALF-'4.'RIJWI0TH,

MI W 5

THSl TPIAL 9)ALIM OF N1l'rlI ?I

Mi I H I ,• *MV. M,2

ALVHALoN0TM P***V** Co. coFn . P-W.,
(POTf)

t S a I **-' 25 a 5

5 0 25 1 4 P0 P,261905 11.4106 99999

5 a I *** 25 1 10
5 25 2 q 15 0, 175219 10.P966 99999 -

15 a 1 *** 25 t 15
5 , 25 3 12 10 7.50939--2 10.2966 99999

5 I 2** P. 0 a P0
S , 25 4 16 5 -2=3B095-!-2 11.4106 99999

* Overall compound probability of ambiguity (assuming subarray/amblguities
are independent) in percent

* Test of whether the resultant synthesized array is redundant, i.e., whether
p, q, and r have common factors.

It is stressed that CLSIII provides a synthesis under the assumption that subarray ambigu-
ities are independent. rhe correlation coefficient is displayed as an aid to the user to
show that among arrays with the Game independent compound p,, the array with the
largest absolute-value correlation coefficient will have the lowest overall Pa. The effect
of subarray.to.subarray p is secondary, as pointed out in Sec. 5.4. To establish optimality
of a particular array configuration, an exact calculation requires consideration of the array
correlation coefficient. Table 5-2a shows, that of all arrays of length 25 based on an
ml:nI = 5:1 ratio, the array ml:nl ( m2 n2 , a; p = 5:1 e 25:10, 5; +0.175219 is the
best. That is, although both the arrays with p, q, and r spacings of 2, 8, 15 or 3, 12, 10
have the same independent p,, consideration of the correlation coefficient in a exact
analysis will show the 2, 8, 15 array to be better.

Of course, the choice of 1:nI : 5: 1 is unwise, because Table 3.4 shows that the op-
timum nj for a three-element array when in 1 = 5 is either n I = 2, or 3. Tables 5-2b and c
result when CLSIII is rerun for n = 2 and 3 respectively. There are four candidate arrays
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5:2 (25:10

5:2S25:15

5:3 @25:10
5:3 S25:15,

all exhibiting the same p of 9.17% (due to OCHPR = 20.78 electrical degrees, as forced
by the criterion of Eq. (9- 2 3 )). Of these four arrays however, the array defined by
5:3 S 25:15 has the largest absolute value of correlation coefficient, p = -0.289373.
Consequently, this array haa the lowest overall p. for given OC1I-PR of arrays of length 25.

(Exact calculations of p. will be deferred until approximate synthesis procedures for the

other array classes have been described.)

It is easy to show that in Class I arrays the optimum ni must be equal to or greater
than in1 /2. If Eq. (5-37) is taken as a starting point, then expression of fj asmi(1 + 6j)/2,
where 6j is a deviation of n1 from rni/2, the array.to.arr;y correlation coefficient can be

put into the foini

i1 + 36, + 62•- 6162
.a .... 12 (32 + - )112(3 + 82)1/2 (5-44)

Table 5-2b--Program CLSIII Printout for Q 25, m1  5; Trial n1  2

550 DATA P5,9

C L.5 I II

9IlA-CHANNEL-PAIII 20.7846 1-LCCTRICAL DEV.RES
0IF.I2ALL ARPAY LFWITH * 25 HALr-'JAIELCNOT14S

TIM. 'rl (.l, 9AL'm or m I s ?2

Mil :N***M2.N2
ALPHAPLENITrI P,***Ql**ATl CO.COEFF. P-AMB TIDEUAN?

(PCT)

5 P 2 * 5* 25 9
5 , P.5 V 3 20 ':.00626F5-2 k0.2966 99999

5 a 2 4,.* 2$ a 10
'5 , 25 4 6 15 -2,631SUE-) 9.L6857 99999

P P 21 t 15
2 25 6 9 10 -0.105263 9.16857 99999 '--

9 :2 **29 20
5 25 8 12 5 -0.175219 10.2966 99999
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Table 5-2c--Prograrn CLSIII Printout for q 25. mi1  5; Trial Pi 3

550 DATA 25A5

CLSI II

SIGMA-CIIA•JNL-PAI1P , 20.7846 r•E.ICTI11CAL DaGRE£S
W'E2ALL APPAY LENGTH r 125 HALF-'AVEIELNGTIHS
MI " 5

THEl T'SIAL 'IALUE OF NI IS 73

HI tNl*$*M2iN2

ALPHAiLENGTH P***Q***R Ca.COEFV. P-AHD R1EDUN?
(PCTr)

5 1 3 *** %5 a 5
5 j 25 3 2 20 -0.175219 10.2966 99999

5 t 3 *** 25 t 10
5 , 25 6 4 15 -0.236542 9,*1e857 99999

S a 3 $** 25 a 15
5 25 9 6 t0 -0,289414 9.16357 99999 " -

5 1 2 **1 25 a 20
5 p 25 1P a 5 -0.325407 10.P966 99999

The 61 do not now depend on the size of mi and ni, but only on their ratio. Hence, oven
though mn2 and t12 might be expressed in CLSIII as 25 and 15 respectively, if the common
factor a - 5 is suppressed, 12 and n2 are functionally equivalent to 5 and 3 respectively.
It Is obvious that subarrays in which mi = 5 must utilize na = 2 or 3 in order to minimize
thei. respective subarray ambiguities. But, the values of 61 that maximize the correlation
coefficient of Eq. (5-44) must have the same algebraic sign. Hence, the 61 must be posi-
tive, which means that the ni must, be equal, and greater than m1/2.

As a second example of a Class I synthesis, consider V = 16. Table 5.3 shows the re-
sult of running program CLSIII for t = 16. It, is seen that for m j:n 1 nrn 2 : m2= 4:3 Of16:8,
the array is redundant, as indicated by the figure 2 in the REDUN? column, This is the
factor by which p = 6, q - 2, and r- 8 are redundant. Thus, the optimum array for

, = 16 is 4:33@16:12, with array-to-array correlation coefficient " -0,423077 .... 11/26.

One further observation in respect to Class I arrays is that the optimum subarray
ratios automatically ensure that the spacings p--q--r will be maximized. The array
4:3 a16:12 has minimum spacing q = 3, whereas the array 4:3 016:4 has minimum
spacing p ý- 1. 'Thus, for V - 16, the optimum array can be operated over a 3:1 bhadwidth
before the shortest spacing approaches one half-wavelength, whereas in the other two
arrays, the shorftst spacing is already at one half-wavelength. For separations less than
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Table 5-3-Program CLSIII Printout for Q 16, m t 4; Trial n1 = 3, 1

* ~550 DATA 16o14

CLSIII

SI"MA-CHANNEL-PAIR - 25.9808 ELECTRICAL DEOREES

M1,• ALL ARRAY LENG'fH w 16 HALF"IJAVELENI1THS
MI - 4

THE TRIAL VALUE OF N1 IS ?3

mN,,N***M21N2
I A LPIIA, L•I, IN'JrI p~**, Q* Ce F. P-AMB I.EDUN"

ALPH,. rmav P**Q**P c~corr. (PCT)

4 a 3 *** 16 a 4
.j 16 3 1 12 -0,346154 10.6339 99999

/4 t 3 ,w* 16 a 8
A4 16 6 2 8 -0.40032 9.76767 P

/ a 3 *,* 16 a 12
4a 16 9 3 4 -0.1423077 10,6339 99999

550 DATA 16A4

CLSIII

.•IMA-CHANNEL-PAIR " 25.9808 ELECTRICAL DEGREES

OVERALL ARRAY LENGTH a 16 HALF-'4AVELENGTHS
MI * L4

THE TtIAL VALUE or NI IS 71

MII NI***M23N2
ALPHAP LENGTH P**Q***R CO.COEFF. P-AMD MEDUN?

(PCT)

4 a I *** 16 4
4i .. 16 I 3 12 0.192308 10.6339 99999

16 I *** 16 a

4 . 16 2 6 8 8.00641E-2 9.76767

4L I 1 16 a 12

4 * 16 3 9 'a -3.84615E-2 10.6339 99999
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one half-wavelength, mutual impedance effects between antenna elements may affect the
phase tracking, thus increasing ambiguities.

Class II

The example for a Class II synthesis is for V = 20. The integer factors of 20 are 4
and 5 (-4 + 1). In the absence of array-to-array correlation It might be speculated that
there are eight "optimum" arrays formed by combinations of ml:n1 @ 12 :;n2 using nu-
merators 4 or 5 and denominators 3 or 1 (with mi = 4) and 3 or 2 (with m1 = 5). As in
the case of Q '- 16, there may be factors common to in, and n2 (even after the common
factor has been suppressed), in which case the program CLSIII will indicate the redundant
arrays, as before.

Table 5-4a through d show the results of CLSIII for V - 20. For each listing, the
arrow "--" indicates a candidate array. Examination of all four listings shows that the
array 4:3 @ 20:12 has the largest array-to-array correlation coefficient, and hence, will
exhibit the lowest Pa. The arrays 5:2 S 20:15 and 5:3 @ 20:15 have p, q, r spacings of
6, 9, 5 and 9, 6, 5, respectively, in contrast to the optimum 4:3 (1) 20:12 array which has
spacings 9, 3, 8,

Table 5-4a--Program CLSIH Printout for .Q 20, mi = 4; Trial n 3

550 DATA 20j4

CLSIII

511MA-CHAIANNEL-PAIR 23.2379 ELECTRICAL DEnaEiS
OWERALL ARRAY LENGTH 20 HALF-14AVELENGTHS
MI W 4

THE TRIAL VALIMl OIF N1 IS ?3

MI 1N1.**M2aN2
ALPHA, LEN'3TH P**Q *** C0.00EF. . P-.AMU REDUN?

4 3 *** 20 4
4 2 20 3 I 16 -0.332875 11.9703 99999

4 3 3 *ii 20 i a
A4 1 20 6 2 12 -0#381771 10,483 2

4 a 3 ,i 2-0 a 12
44 , 20 9 3 8 -0.4135U5 10.483 99999 -

4 3 ,i 20 i 16
4i 20 11 A 4 -0.423659 11.9703 4
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'Fable 5-4b-Program CLS11I Printout for k? 20, m,1  4; Trial n,
550 DATA 20o4

SIGMA-CHANNEL-PAIR *23.2379 ELECTRICAL DEGREES
OVERALL AR~RAY LENGTH *20 HALF-I4AVELENGTHS
M1 a 4a

THE TRIAL VALIIE OF NI IS ?I

Ml :NI***M2tN2
ALPHA,*LENOTH P***Q***R CO.COEFF. P-AMB REDUN?

(POT)

4 1 4 20 1 4
4 ,20 1 3 16 0.21183 1 Ie9703 99999

4:t1*420:t8
4 p 20 2 6 12 0.127257 10.483 2

4 s 1 * 20 a12
4 j 20 3 9 8 3.18142E-2 20.483 99999 ~

4 a 1 ** 20 a 16
4 ,20 4 12 4 -6.05228-e 211.9703 4

Table 5.4c-Program CLSIII Printout for Q =20, m, 5; Trial n., 2

550 DATA M05

C LS III

SIGMA-CHANNEL-PAIR *23.2379 ELECTRICAL DEGREES
OVERALL ARRAY LENGTH w 20 HALF-'?AVELENGTH5
MI w 5

THE TRIAL 'JALUr OF NI IS ?2

ALPHAPLENGTH P***(Q***R CO.C0EFF. P-AMI3 REDUN?

5 t 2 4 20 t 5
5 # 20 2 3 15 3.18142E-2 10.483 99999

5:t2 **20:10I

5 a 20 4 6 10 -6.62966E-2 9.894a53p

5 a2 **20 15I
5 ,20 6 9 5 -0.159071 10.483 99999 ~
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Table 5-4d-Program CLSIII Printout for V 20, m1  5; Trial n1 N 3

550 DATA 20#5

CLSIII

SIGMA-CHAVN1EL-PAIR i 23.2379 ELECTRICAL DEGREES
OVERALL ARRAY LE•13TH w 20 HALF'-WAVELENG¶THS
MI - 5

THE TRIAL VALUE OF NI IS 73

Ml ,N1*d*M2tN2
ALPHAiLENGTH P***Q***R C.COEFF. P-AMB REDUN?

(PCT)

5 3 20 1 5
5 , 20 3 2 15 -0.190885 LO.483 99999

5 : 3 *** 20 a 10
5 a 20 6 4 10 -0.264906 9.89453 2

5 3 *** 20,15
5 , 20 9 6 5 -0.318142 10.483 99999 " --

Class III

Over any span of array length, 1iere are many more overall lengths in Class IHI than
in Class I and Class II. To avoid unnecessary iteration through CLSIII, it is desirable to
know which mi are good starting choices for particular lengths R. Consideration of the
optimum mi for Class I and the candidate mI for Class II arrays should lead one to the
belief that

0 If IQ lies between i2 and 1(i + 1), choose mi, i

0 If R lies between i(i -- 1) and i2, choose in i.

The following are examples of this procedure.

S For R = 17; 12 = 16, i(1 + 1) = 20, choose in, = 4

0 For V 21; i(i - 1) = 20, 12 = 25, choose iI -- .

Figure 5-1 gives a geometric interpretation to this procedure. The trial mi, for Class

III are given with question marks following the trial integer, anticipating a later discussion
of lengths where this intuitive trial in, fails (these cases are "pathological" in the sense
that they are associated with in, nI pairs that are not as near the nI -n 1 /2 criterion
as their neighbors (see Table 3-4)). In any event, as will be seen, this geometric-selection
criterion for in, in Class III arrays is natural, and sterns directly from the fact that the
cascaded end-phase configuration is based on a common-factor concept that most simply
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CLASS:11--* 4,5 E

LENGTH: , I I' I ...
- 3 4 5 6 7 6 9 10 11 12 13 14 15 16 1718 19 20

P,, 4,51

...i L L J L I I I I [ 1; i -. . . .
-'I -20 21 22 23 24 26 28 27 28 29 30 31 32 33 34 35 36

-- - I I I I I

,-..- 36 37 38 39 40 41 42

Fig. 5-1--n1 for Claw; I and ll; candidato m, for Class III: 3 < k < 42

expresses the subarray parameters in terms of the overall length. This is in contrast to
array representations that have been used by others.

Tables 5-5a and b shows the result of the application of CLSIII to the example
S= 21. The optimum array is 5:3( 21:10, 5; -0.258501.

Exact p5, Including Correlation

Two additional computer programs are given in Appendix B, named AMBIG and
AMBIG2. AMBIG1 is configured to solve the relations beginning in Sec. 5.4 at Eq. (5-39)
for arbitrary ml, nj, M2 , n2 , (v, and arbitrary channel-pair phase errors ul 2, p1,3, and
01,4. AMBIG2 is configured to provide p, for arrays under the assumption that all
channel-pair phase error variances are identical. Thus, AMBIG1 has the nature of an ex-
perimenter's tool, giving the designer, for example, the ability to examine the effect of
putting higher-quality components in one channel-pair. AMBIG2 is more useful fur tab.
ulating Pa of various arrays over a range of channel-pair phase error distribution one-sigma
values.

Table 6-6 provides Pa vs channel-pair phase error for several arrays of Q = 16, 20,
and 25. AMBIG2 was used to calculate the p.. Figure 5-2 is a plot of p, vs channel-pair
phase error for R = 1.6, and Fig. 5-3 is the corresponding plot for 2 = 25. In both cases,
bec.use of the proximity of Pa vs channel-pair phase error for certain arrays, only two curves
are shown. Table 5-6 makes these relationships clear.
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6 4:1 c4-)16: 4, 4; + .1923
4:1 (+16:12, 4:.-0.0388p.6

4:.3 (j-) 16:12,4;. 0.4231 (OPT)
* 4:3 16; 4, 4;, 0,3462

2

t

z_
.5

.2

.1

1.11:fl OD m2!n 2,ai;p,

10- 120 140 16 18" 20' 22- 24" 261' 28" 30" 32' 34"
acH PR

Fig. 5-2-p, va OcI'-plt for arrays of . - 16 (i - 4), Clim I
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10 54 w 25:20, 5; - 0,4524

5: 1 * 26: 5, 5; + 0.2619

5:3 (4) 2(5:15, 5; 0.2890 (OPT)

2 5:2'425:10,5; -0.0263

.2

.05- M1:NI 4ý rna~z,at:p,

100 12u 140 160 18" 200 22" 24u 260 280 30o

Fig. 5-3 -p1, vii 0 UII.1, for arranym of V 25 (1 -5), Class I
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Comparison of Approximnate and Exact Synthesis Procedures

It was emphasized in the beginning of this subsection that an approximate synthesis
procedure was sought, in part to eliminate the necessity of calculating a bivariate density
function for every array configuration analyzed. An additional reason was to keep the
theory behind the basic synthesis of an array from being obscured. Table 6-7 shows the
approximate performance of the procedure.

This table is a list, over the range 3 <~ Q? < 42, of the optimum in I, as selected by
three different criteria.

0 Geometric-mean criteria-- Fig. 5-1
0 CLSIII program
0 AMBIG2 program.

A check appearing in the "cominents" column means that all three methods indicated the
same (and correct) in1 . in the case of Class I] arrays, the Inability of the two simpler
criteria to indicate the proper m,1 cannot be faulted, as they do indicate the proper ml1 -
ior I + 1-within the constraint of not considering array-to-array correl:&tlon,

Table 5-Ba-Program CLSIII Printout for R 21, m1  5; Trial in 3

550 DATA 21P5

SI1'MA-0HANNZL-PA1Iq 22.6779 ELECTRICAL DEOREES
OVERALL ARRAY LENGTH = 21 HALF-WAVELENGTHS
MI M 5

THE TRIAL VALUE OF NI IS 73

!4IuNl***M91N2
ALPHAiLENGTH l'***Q***R CO.CUF.FF. P-AI'11 REDUN?

(PCT)

5 21 3 2 16 -0.187155 10.2819 99999

5 3 21 10
5 2, 21 6 4 11 -0.258501 9.57561 99999

5 P ~ 1 15I
5 ,21 9 6 6 -0.312255 10.0414 3

5 23 4**21 20
5 21 12 a 1 -0.341022 11.3056 99999
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Table 5-5b-Program CLSIII Printout for R = 21, rn 1  5; 'IMal n 1  2

550 DATA 21A5

CLSIII

SIGMA-CHANNEL-PAIR 9 22.6779 ELECTRICAL DEGREES
OVERALL ARRAY LENGTH = 21 HAL•-'"AVELENGTHS
Hi 5S

THE TRIAL VALUE IT NI IS 72

MHiNI***M2tN2
A.PHAoLENCITH P***Q***R MUMCIE&F. P-AMB REDUN?

(PCT)

5 a 2 **9 21 5 S
5 , 21 2 3 16 3.62235E-2 10.2819 99999

5 t 2 *** 21 1 10
dd5 d21 4 6 1 -5.67442E-2 9.57561 99999

5 2 ,,21 t15
j 5 a 21 6 9 6 -0,146944 10,4414

5 t2 * 21 1 20
5 21 at 11 1• -0.21803 11.8056 99999

The situation is different for array lengths between 31 and 42. The reason can be
deduced from Table 3-4. Foir m1" - 6, the only allowable ni are either I or 5. Now, the
ideal-unrealizable quadratic form for nI = 6 is (6 .6 - 6.3 + 3.3)1/2 = 5.1962. By con-
trast, the two realizable quadratic forms are (6.6.- 6.1 + 1.1)1/2 = (6.6-- 6*5 + 5.5)1/2 =

5.5678. For mI -- 5, the ideal-unrealizable quadratic form is (5,5- 5.2.5 + 2,5.2.5)1j2 =
4.3301. The realizable quadratic forms for Si - are (5.5- 5.3 + 3.3)1/ 2 = (5.5 - 5.2
+2 2)1/2 = 4.3589. For in = 7, the ideal-unrealizable quadratic form is (7.7 - 7.3.5
+ 3.5.3.5)1/2 = 6.0622, The realizable quadratic forms are (7.7- 7.4 + 4.4)1/2 - (7.7

7- 7.3 + 3.3)1/2 = 6.0828.

The calculations above show that the subarray 1 ambiguity variable--(see Eq. (5-1))-
for in 1 = 6 (realizable) is proportionally farther from its ideal-unrealizable variable than
are the realizable variables for m1, = 5 or mi = 7 from ''wir ideal-unrealizable counter-
parts. The practical impact of this deficiency for arra, using in, - 6 is that as the array
length migrates farther in either direction from q = 36, eventually an array utilizing
in- 5 or in, - 7 will perform better than one using n1  6, even though the "geometric-
mean criteria of Fig. 5-1 are met.

rhe foregoing discussion illustrated one way in which the approximate analysis leads
to incorrect conclusions on the optinium-realizable array for a given length. Another way
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in which the approximate procedure leads to the wrong conclusions is as follows. The
approximate .procedure is based on the attempt to force the overall p( toward a value of
8.9%-by forcing the channel-pair phase error to assume a value based on overall array
length-without regard to correlation of ambiguities between the subarrays. As an ex-
ample of the effect of correlated ambiguities on array design, consider V = 37. On the
basis of the overall array length-square root criterion, one would probably evaluate candi-
date arrays based on in = 6 and nil = 7 by program CLSIII. rhis approximate proce-
dure indicates the following two arrays.

6:5G37:18,6 Pa = 10.4165%1. Program CLSIII,
7:4 ® 37:21,7 Pa 10. 3100% OOJ 'C11.pR - 17.0848'

(assuming independence of subarray ambiguites)

When program AMBIGI is applied to the same array parameters, and to the same channel-
pair phase error distributions, the results are

6:5 ® 37:18,6; -0.46517 Pa = 9 ,7 9 1 2 %j Program AMBIGi,

7:40E37:21,7;--0.255752 p, = 10.1879%J G(11t1lR = 17.0848)

(including effects of subarray correlation)

For selected values of channel-pair phase error that are more likely to he used in a system
design, Program AMBIG2 yields

6:50137:18,6,..0.46517 pN = 0.1945%, 1.1632%. Program AMBIG2,

7:40® 37:21,7t .0.255752 p= 0.3171%, 1.4693%J CII'pR =- 10', 12u,
respectively

(including effects of suharray correlation)

The above tabulations show that on the basis of the approximate procedure employ-
ing program CLSIII one might be tempted to choose the array based on in, = 7 as the
best performer. However, more precise evaluation of the arrays with the aid of AMBIG1
and AMBIG2 (once the simpler procedure exemplified by CLSIII is used to identify can-
didate arrays), shows the optimum array to be based on mn -- 6.

Tabitletted pi1 vs (,tlilR

'Table 5-8 gives pi, vs gUll-Pt for the optimum-realizable four-element cascaded end-
phase array over an Q range from 4 to 42 half-wavelengths. The arrays have optimum p,
q, and r spacings such thit p, of 0.1 to 15% for the uQH.l1l1 specified results.

It can he seen from the ttble that the optimum-realizable array for array lengths
24, 30, and 36 actually have a i', greater than the arrays one half-wavelength longer, or
25, 31, and 37 half-wavelengths, respectively. This fact has apparently not beon reported
previously in the literature on imultelement interferometeirs. The reason for this behavior
is that lengths 24, 30, and 36 are highly composite numbers, i.e.,
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24 = 2-2-2-3,

30 = 2-3-5,

36 = 2.2.3-3.

There are fewer degrees of freedom in synthesizing these arrays, than, for example,
in Q = 26 = 2.13. In each of the lengths 24, 30, or 36, m 2 :n 2 is either much greater, or
much less than 2:1. This is in marked contrast to the example Q = 26, where the m 2 :n2
ratio is 26:15, which is extremely close to the ideal-unrealizable ratio of 2:1.

As an aid to the system designer in making tradeoffs, the information in Table 5-8
is graphed in Figs. 5-4a and 5-4b.

A figure of merit for optimum-realizable arrays may be defined as the ratio of p,
ideal-unrealizable, given CHi.PR as per Eq. (5-23), to the Pa optimum-realizable, given the
same OH.P•R, evaluated in Program AMBIGI. That is,

Figure or Merit r Pa-ID I'CH-PR, Eq. (5-23)

Pa-RE I 0 CH-PR, Eq. (5-23)

0.088281
r Pa.RE I OCH-PR, Eq. (5-23)' (5-45)

Figure 5-5 shows the figure of merit, Ir vs array length for 4 < Q < 42. Several relation-
ships may be deduced from the graph.

* With the exception of the ideal-unrealizable array for Q = 4, Class I (. = i2 ) arrays
whose m1 are even do not have as great a IP as arrays whose m1 are odd

* Class II (Q = i(i + 1)) do not have as great a F as the adjacent Class I arrays-
exceptions are • 16, 36

0 Arrays whose lengths are prime have P greater than the mean P' of 0.898-the
only exceptions are V = 7, 13

Table 5-9 gives p. vs uCH.PR for the optimum-realizable four-element cascaded end.

phase arrays, Classes I and II over an Q range from 4 to 100. The tabulated p, are graphed
in Fig. 5-6. Figure 5-7 shows the figure of merit for these arrays. It should be noted that
as the array length exceeds 23 half-wavelengths, the P0 exceeds 0.1%, for oCH.PR = 120.
If OCH.PR is reduced to 100, arrays up to length 31 &re realized before a p0 of 0.1% is
exceeded. Arrays longer than this require some form of calibration (see Sec. 3.1) if the
larger p0 associated with uncalibrated arrays longer than this are unsuitable for a particular
application.

5.6 Concluding Remarks on Four-element Array Synthesis

The synthesis concepts presented in this section for four-element arrays enable the
ESM system designer to rapidly synthesize arrays of any length. These techniques are
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105

.~~. .. . . . ........



ROBERT L. GOODWIN

10,

2.

0,2

0.05

0.01

0.005_

ARRAY LENGTH, I -~

Fig. 5-4b-pu vs array length, with aUli.plt
I ~as a parameter, 30O < V < 42

'Aa

I 106



•.I ..t,

NRL REPORT 8005

1 .0
(4,1000) (26,0.98)

(23,0.973)

.5 (9,0.946) (17,0.945) 141,0.941)

MEAN r-o~em

(24,0.8741

(36,0.704)
(12,0.774) (00,0.770)

,75

4 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 39 40 42

ARRAY LENGTH, I

Fig. 5-5--Figure of merit, I' ve array length for four-element arrays

based on the concept of the ideal-unrealizable array. The two-step procedures given, in
conjunction with the computer-aided techniques exemplified in the programs CLSIII,
AMBIG1 and AMBIG2, provide the designer with (a) an approximate synthesis leading to
several candidate arrays, and (b) exact analyses to fix the parameters of the optimum-
realizable array once the approximate synthesis has been performed.

Although there is a small amount of trial and error in the procedures, this should
be viewed in the context that a brute-force analysis for arrays of length 2 = 16 leads to
well over 75 arrays, all of whose P, have to be evaluated before the optimum-realizable
array spacings can be specified.

By means of the concepts presented in this report, it has been possible to answer in
the affirmative the speculation of Hanson [21] on the existence of optimum four-element
arrays.

A final observation (not stressed in the development) is that one need not be re-
stricted to implementing the optimum-realizable array for a given length if one or more
of the spacings are too small with respect to the overall frequency range of operation
desired. The computer programs in Appendix B allow the designer latitude to choose be-
tween array spacings that will minimize the overall P, vs those which are close to the
optimum-realizable, but which will maximize the minimum interelement spacing in the
array.
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Fig. 5.7--Figure of merit, I' va array length for four-elernent arrays,
Claus I and 11, 4 . Q 1tOO

6.0 SUMMARY AND CONCLUSIONS

This report presented a theory of three- and four-element phase-only interferometers
for application to high resolution, low probability of ambiguity direction finding.

Although three-element Interferonieters have been widely used, the theoretical funda-
mentals of these arrays apparently have not been widely published in a form accessible to

the system designer. With respect to four-element arrays, it was possible to establish with
use of some geometric aids, in conjunction with the concepts of the Ideal-unrealizable
array and the subarray-to-subarray correlation coefficient, (a) the cascaded end-phase array
as the optimum configuration for four-element three-integer set arrays, and (b) the optimum
(i.e., the lowest probability of ambiguity subject to zero-mean channel-pair errors with equal
"standard deviation in all channel-pairs) four-element array spacings for arbitrary overall array
length.

Work is in progress to extend the results reported here to arrays of more than four
elements, and to define the Improvement in accuracy of estimated angle when phase infor-
mation from all the apertures, rather than from only the farthest-spaced pair of apertures,
is used.
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It is hoped that the theory and computer-aided design procedures given here will
stimulate both further research into, as well as wider wage of, phase-only interferometer
arrays in those applications requiring good angular resolution over wide fields of view.
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Appendix A

EXPANSION OF THE NORMAL PROBABILITY INTEGRAL (BETWEEN SYMMETRIC
LIMITS) AROUND THE NORMALIZED ARGUMENT 2.000

This Appendix provides an expansion of the normal probability integral (between
symmetric limits) around a normalized argument of 2.000. The expansion is the basis of
the approximate four-element array synthesis computer-aided procedure (see Appendix B-
Program CLSIII) used in Sec. 5.5 of the main body of this report.

Three functions from Ref. Al related to normal error functions appropriate to the
expansion desired are

NBS No. 26.2.2

1 x _t2
P P(X) 72*i 2• x dt, (Al)

NBS No. 26.2.4

A (x) = exp t2 dt 2P(x) I1, (A2)

NBS No. 26.2,9

Sa ( __m) P 1 -(-m)2

--ax 0 =0 27e 2o2

X -- _mt-- , (A3)

where

I IZx)-1 -x 2

X) exp -

A Taylor's series expansion for Eq. (A2) in the vicinity of argument x is

1A2  
, A3 A"'

A(x A) A•(x) t AA'(x) + T. A"(x) A (x). (A4)

Now we have
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a a

A'(x) =-•P(x) - -• P(-x)

= 2Z(x), (AM)

A"(x) = 2Z'(x)= -2xZ(x), (A6)

and

A a"(x) 2Z(x)[x2 
- 1]. (AM)

The use of Eqs. (A6, 6, and 7) in Eq. (A4) yields

-2A
2  3

A(x ± A) - A(x) ± 2AZ(x) - !-A xZ(x) 9-A3 (x 2 
-1)Z(x). (A8)

The transformation x + A -+ X +.A results ina

A )2-) A (A9)

For x/u = 2.000, Eq. (A9) simplifies to

(2+ A(2) + eA.2 [( 1(\)]2 (A1O)
e-27

From Ref. Al, exact values of A(2) and Z(2) = are

A(2) = 0.95449 97361

Z(2) = 0,05399 09665.

Over a range of -0.4 to +0.4 relative to a mean value of x = 2.000, the approximate value
of A(x + A) compared to the exact value from Ref. A2 is given in the table below.

(x + A)/o A (Arg.) A (Arg.)
Arg. Eq. (A10) Ref. A2 Error

1.6 0.890574 0.890401 1.73E-04
1.7 0.910929 0.910869 5.99E.05
1.8 0.928152 0.928139 1.27E.05
1,9 0.942568 0.942567 7.97E.07

2.0 0.9545 0.9545 0.

2.1 0.964272 0.964271 8.64E&07
2.2 0.972209 0.972193 1.56E-05
2.3 0.978634 0.978552 8.19E.05
2.4 0.983871 0.983605 2.66E.04
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Appendix B

COMPUTER PROGRAM LISTINGS AND COMMENTS ON THEIR USE

This Appendix provides listings of three computer programs for analyzing and syn-
thesizing four-element cascaded end-phase arrays, along with examples of their use. The
programs are written in BASIC language, and have run satisfactorily on a time-shared
system utilizing a Digital Equipment Corporation System 10 at the Naval Research
Laboratory.

; The three programs are called CLSIII, AMBIG1, and AMBIG2. Descriptions of the
programs are given below.

CLSIII

Figure B1 is a listing of program CLSIII. The user specifies the desired overall array
length, q and a trial subarray ratio 1 numerator, m1 as data input via line 550. The pro-
gram automatically selebts a channel.pair phase error, uCH-PR based un overall array length
R (according to Eq. (5-23) of Sec. 5.3 of the body of this report) that would result in a
probability of ambiguity of approximately 8.89% for the ideal-unrealizable array of the
given length. The program will then query the user for his trial subarray ratio 1. denom-
inator, iii.

The program then prints out the parameters of all possible array configurations for
the particular set of V, m, and nj chosen, listing

• mn:n 1 ®m 2 :n 2 ra"ios

• Factor o, and length 9.

• Array spacings p, q, and r

0 Array-to-array conr.lation coefficient, P0,,

• Approximate p,, in percent, assuming independence of subarray.to-subarray
ambiguities

• Indication of redundancy in array spacings: "99999" indicates "no redun-
dancy"; a small integer indicates that the spacings p, q, and r have this factor in common.

An example of a CLS[II tprintout is given in Fig. 132 for Q = 21, m, - 5, and nI = 3.

The printout shows that the array whose spacings are p - 6, q 4, and r - 11 is the best-
performing array of length 21, given m1  5 and n - 3. Actually, as pointed in the main
body of the report, this is the optimum array for length 21. The user has the freedom to
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CLSIII

20 DIM x(I0VaEycI0),F(l0),(0.C0)7I)

30 "RAD LaMl
140 LET )(9 m !'QflT(3*L)
50 LET S9 - :80/K9
60 PRINT"9I1MA-CHANNEL-PAIR *19"ELECTRICAL DEr3RECS"
70 LET CI - E0-2/SQRT(2*3.14159P6)

80 0INT"OlIERALL ARRAY LENGTH w"i LlIALF-'lPlLEN3Tl(S"

110 IF J9*M1-Lu0 THEN 13

130 LET' .J9 J9-1
1/40 PlINT
150 P)TUNT"T1*iF TtlIAL 'PAL'IE OF N1I ! "
160 LNPITT NI
170 PflINT
IaO P14INT
190 PR I NT" MI INI ***M2sNfl'
r)00P P INT "A Lrj HA J '"J "LENlTlV'*P*Q**" C .OF "" P-AMIJ"j "9EStJN?

210 o~Dn' X' l ."1 pCT)"
220 PRIUNT
230 PR14~T
240 FO J wI TO J9
250 LET A w ML*MI-Ml*NI+FMI*KNI
260 L'ET 11 a 1.*l.-l*J*MI*J*Hll*J*MI
270 LET C *m -H)LJ*-NL
290 LET "(J) w .5*C/S0RTCA*3)
290 LET 01 K9/StMG(A) - 2
300 LET D2 w MI*1<9/SflT(0) 2
110 LET 11 a.95414997 + CI*C2*Di - 2*D1*01 + 0)1*01*01)
320 LET 12 * 95144997 + Cl*(2*02 - 2*02*D2 + 02*02*02)
330 LET 13 w rl I*(12
3140 LET OCJ) w ID0*(I-q3)
350 LET n(J) = NI*J
360 LET T(J) a (MI-NI)*J
370 LET F(J) aL - J*Ml
3110 FOR K< - J9 + 2 TO P. STEP -1
390 LET T -DCJ)/1{ - N'TJ)K
1400 LET 11 - E(j)/K - INT(E(J'),/()
1410 LET "1 - F(J)/K - IHT(F(,d)/K()
49.0 L)ET 1-I - 7 + T I I- t
itl0 11' - 0 T1IEN 1470
1440 NEXT KC

1I'5/a0 LE"T 1(J) w-99
1160 10 T(A 14i0
4i? 0 L'rT '1(J) m KC
1490 NESCT j
1490 FOR J -I TO J9)
500 P11INT M "'N '*l'L':JM
5310 PqIN"Ml ''L0Ji(ýFJ,()I()1J
5P0 PRIMT

940 NEXT a
550 DATA 25,'i
560 END

Fig. BI.. Lieting of program CL.SIII
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550 DATA 21,5

CLSIII

SIGMA-CHANNEL-PAIR U 22.6779 ELECTRICAL DEGREES
OVERALL ARRAY LENGTH - 21 HALF-'JAVELENGTHS
MI a 5

THE TRIAL VALUE OF NI IS 73

MI zNI***M21N2

ALPHALENrTH P***Q***R CO.COEFF. P-AMB REDUN?
(PCT)

S t 3 *** 21 t 5
5 . 21 3 2 16 -0.187155 10.2819 99999

5 s 3 *** 21 1 I0
5 21 6 A 1I -0.258501 9.57561 99999

5 a 3 *** 21 1 15
5. 21 9 6 6 -0.312255 10.0414 3

5 a 3 *** 21 1 20
S , 21 12 8 1 -0.341022 11.8056 99999

Fig. B2--Example of program CLSIII printout

explore the performance of other arrays of length 21 by modifying his m1 and nj inputs,
should he wish to search, for example, for arrays whose minimum spacings exceed those
obtained for the optimum-realizable arrays (from Pa considerations) discussed in the main
text of this report.

If a radically unsuitable trial m 1 is chosen, say m, = 2, for ? = 21, the program will
indicate an overall Pa that is grossly in error, compared to the exact-independent Pa, be"
cause the range of validity of the expansion for the probability integral for subarray 2
will have been exceeded. Normally, trial m, will be chosen by reference to Fig. 5.1 in
Sec. 5.5 of the body of this report. Figure B3 shows the exact probability of ambiguity
(independence assumed) for a four-element array in terms of the normalized arguments
for the individual subarrays, centered on a normalized argument of 2.000 for each sub-
array. That is, if each subarray has a normalized probability function argument of 2.000,
then, the Pa for this array is 8.89%. Suppose an array is characterized by a normalized
argument of 1.9 for subarray 1 and 2.3 for subarray 2. The exact p, for the overall
array would be 7.765%; the approximate p, returned by program CLSIII would be 7.757%,
or 0.008 percentage points low. It can be seen that the extremes of error in program
CLSIII occur when both arguments are nearly the same value. That is, if both arguments
are 1.6 (normalized), the exact p, is 20.719%, and the approximate P, is 0.031 percentage
points low. It can be appreciated, however, that in most array syntheses, when the r-or-
malized argument of one subarray is less than 2.000, the normalized argument of the
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* 2.4-.0522.4 - 3,25/
-. ,016 -0,4

2.3- 4.24 3.76/
TABULAR VALUES IN THIS REGION -003 -. 010 -. 027

2.2, ARE SYMMETRICAL AROUND THE DIAGONAL 6.48 4.7 4.37
LINE-EQUAL ARGUMENTS IN
A,(x), A2(y)

2.R0002 -, ,002 -. 006 --.026
2.1. 7.02 6.25 6.64 6.15,K=

0
.... .... -. 002 -. OW -- .025

U. 2.0 8.89 7.96 7.20 6.0 6.11

S-.,0002 *.... ..0002 --.002 ...00 -. 025
1,9, 1i6 10.03 9.11 0.36 7.76 7.29

4 /

//
-. 002 -01 -. 001 -.001 -.00'O3 - .0w9 -. 026.

1. ~.6 125 1,1 10.50 9.77 9.18 0.71

-. 011 -. 007 .. 006 -. 006 -. 006 .-. 007 .- 013 -. 030
1.0 15._46_ 14,1-4 _13_06 1217 11.4"5 10.67 10.41

1.6 -. 031 -. 021 -.017 -. 016 -. 017 -. 018 -. 024 -. 041
20.72 18.90 17.36 16.07 15.01 14.14 13.44 12.87 12.42

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

ARGUMENT OF AINx) OR A2(y]

NOTES: 1) I 1 - AIX)A2Iy); 1.6:ý x. 2.4, 1.6<; y!ý 2.4.• 2) - 002/8,36 INDICATES EXACT P. :n 8.36%, APPROXIMATE p.

IS 0.002 PERCENTAGE POINTS LESS,

Fig. B3--Comparison or a~pproximate and exact Pa for normalized arguments A 1 (x), A 2 (y)
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other subarray is generally larger than 2.000; Fig. B3 shows that the errors in the approxi-
mation tend to cancel when this condition exists.

In summary, program CLSIII is suited to the purposes for which it is intended: to
eliminate the need to calculate the exact p, for each array candidate, and to provide the
user with a readily applied overview of the performance of various arrays on a relative
basis.

ANIBIG1

Figure B4 is a listing of program AMBIG1. This program provides an exact calcula-
tion of Pa for a four-element cascaded end-phase array upon the user's specifying the fol-
lowing data inputs:

0 Subarray 1--(line 1110)
ml, n1 , and PI,2,1,3'

0 Subarray 2--(line 1120)

M2 = , n2 =: jC" /)1,3-,1,4

• Miscellaneous parameters -(line 1130)

01,2, 1.3,3 01,4, Pl,2;1,4I a

An example of an AMBIG1 printout for •1 = 5:3, "A2 21:10, ot 5, at,2 1 ,3
01,4 = 12.5', and PI,2;1,3 = P ,3;1,4 PI,2;1,4 = +0.5000 is given in Fig. B5.

Program AMBIG1 can also be used to calculate the p, of arrays in which the olj,
j 2, 3, 4 are not equal. F:'or example, suppose that

01,2 10.,

140,
01,4 12".

Suppose furth,,r that the channel-pair phase error correlation coefficients are known (by
measurement of the joint channel-pair phase errors) to be

P1,2;1,3 0.4571.43,

P1,3;1,4 0.380952,

p , 0.533333.

*P1.2". is the correlation coeffici(ent between channel-pair errors In the 1, 2 channel-pitr to the 1, .1 chaninl-

pair. rho vatlte or this coorricient (and the two helow in lnems 1120 and 1130) Is usually set at +0.5000 for
design purposes.
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10 READ MINIPI[ I20 READ M2,NP.,P2
30 READ S1,52,53,#P3,0
40O DIM M(31,2),L(2),¶1(2)A7C2)
50 PR iNT"F0IlJR-ELEMENT PHASE INTSRFERCWETERi"l
60 PRINT"0011P0!IND PROB.-0F~-AMDI0UITY FOR ARRAY SYNTHESIZED"
70 P17IN'r"BY CAS;CADIN3 T'40 THT-EE-ELEMENT INTERFEROMETERS ----

80 pPRINT"~iAcIp~ , "i1"LCR LDGES
100 ?PINT "5IqlMA,#CH-PR-- 1,3 =";S1)23"ELECTRICAL DE.GREES 0'
110 PRnINT "SI"WMA,#CH-PR--l,4 &'.;S3J"E_4LECTRICAL DEGREES"
120 PRINT 9ipCPR1, l;S1"LCRCLDGE"
130 PRINT
140 PRINT" RA O1PRMTRt
140 PRINT" 'ARRGE's A'3M1," 'SMAL'""N
260 PRINT" LRE "MolISALIal
170 PRINT" AAYN2PAAtERs
180 PRIINT", 'ARGE' ""112,PM"TE'SALL' "N
190 PRINT" LRE 1;lol'ML'w'N

¼ 20~~~~10 PR INT" AAYN.-RA N.1RSLTNFCTt"J

210 PR INT
220 LET Al =SO(M*)?)2*IM1S*(*S)(1522)

230 LET A9 w SQR(((M2*S2)t2)-2.*P2s(M2*cS2)*(N2,*S3)+((N2*S3),2))I
240 LET P8 a MIa112*P1*S1*S2 + NI*NRP.*PR*S2*3
2-50 LET P9 - -t11sN2*P3*SI*53 - NI*M2*S2*Sj2 + P8
260 LET fl/4 a PQ/(AI*AQ)
270 LET Cl " 1/(2*3.1415926)
280 LET C2 a 1./SQR(1.-P4*PA)
290 LET A2 m A9/0
300 PRiINT"SIG-Z(ATRAY NO.1) -"JAI"DEGAEES"
310 PRINT

¶3n20 PRINT"'SIG-'J(ARflAY NO.2) *"JAgo,"DEGREES"
330 PRINT"SI93-tJ(ARllAY NO.2) *"3A2.,"DEGREESCRESOLVED BY NO. 1)

06
340 P I T
350 PflINT"E(7*'4) *"3;P9,p"DEGREES5"
360 PRINT"-------

410370 PRINT"ARRAY-TO-APRAY CORR* COEFF'T. *"3;P4
380 PRINT"------------
39 PRIN

*0 ~~~400 PIT--
410 LET Ul - 180/Al
420 LET !12 * 180/A2
430 PRINT"PROBABILITY FUNCTION PARAMETERS:"

t440 PRINT
450 PRINT"ARGTJMENT F7u *"JtII1
460 PRINT"ARGTNENT F(2) -~"J112
410 LET 11( 1) w TNl
490 LET -IT OP wU

4480 LET J w2I TOU2
500 IF U(J)>5.4513 THEN 630
510 LET !3 v 0.
520 LET T w tT(J)/(2t.5)
530 LET S - T

560 LET D - D + 2 ;j
N VI4. 114 -Listting )r program AMBIG I
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570 LET T - T*(2*Y2/D)
580 LET 5 = S + T
590 IF(T/S-IE-10)3)0 THEN 560
600 LET 7,3 K (2/SQ"T(3*1415926))*S*EXP(-Y2)

610 LET Z(J) K (I.-Z3)/2
620 a0 TO 640
630 LET ZCJ) w 2.5E-08
640 NEXT J
650 LET Al a I - 2*Z(I)
660 LET B1 a I - 2*Z(2)
670 FOFR .J U TO 2
680 IF Tl(J) >5.4513 THEN 950
690 LMT H(0,J) " I
700 LET 11(1,J) 0-rj(JI
710 LET A "-tI(J)
720 LET B a I
730 FOR I a 2 TO 20
740 LET C 0 A
750 LET A •-A*1T(J) -(I-I)*B
760 LET B a C
770 LET H(IJ) - A
780 NEXT I
790 NEXT T
800 FOR J x I T 2
810 LET E • I
820 LET F • 0
830 FOR K 0 TO 20

. 840 LET X - P4*(3-2*J)
850 LET D - HCKjI)*H(K,2)*(Xt(K+M)/{860 LET E K E*(K+!)
870 LET F - F + D/E
880 NEXT K
890 LET 1T3 a + (1)*I(1) I t(2)*U(2)
900 LE'r Fl w F*Cl*EXP(-TU3/2)
910 LET L(J) w Z(I)*Z(2) 4. Fl
920 NEXT J
930 PRINT"L(l) M"JL(I)." L(2) ,"')L(2)
940 10 TO 960
950 LET L(M) w L(2) w 0
960 PRINT"PROB*-CORR(|) ""JAI," PROB.-CORR(2) ="j2B
970 PRINt"P1gB.-AMB(l) ""J2*?Z(l)," PRB.-AAMB(2) w"l 2*Z(2)
980 PRINT" ------------
990 PRINT
1000 LET El - 2* - (AI+B1+2.*L(l)+2.*L(2))
1010 PRINT
1020 PRINT" -----------
1030 LET F2 a l00*El
1040 LET E3 a INT(M2*10t4 4. .5)/10t4
1050 PRINT "PfRgB. OF AMBIGUITY t")E3i"PERC!NT(INCL. CORRELATIOM)"

A 1060 PRINT
1070 LET D2 = l00*(I-AI*B1)
1080 LET D3 w INT(rD2*10'tl + .5)/10t4
10go PRINT "PR0B. or AMBRVVTITY ,")D3)"Pl:f1CENT(ASS'JMIN0 INDEPENDENJCE)"
1100 PRINT" -----------
1110 DATA 5,3,.5
1120 DATA 21,l0,o5
1130 DATA 12o5,12.5,12.5,.5,5
1140 END

Fig. B4-Llatlng of program AMBIGI (continued)
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1110 DATA 5,3,,5
1120 DATA 2l,10.o5
1130 DATA 12.5,12.5,12,5o.,,5

AMBI(31

FOUR-ELEMENT PHASE INTERFEROMETERI
C0MPOUND PROB.-0F-AMBIG3IITY FOR ARRAY SYNTHESIZED
BY CASCADING T140 THF{EE-ELEMENT INTERFEROMETERS- ...

SIGMACH-PR--1.2 a 12.5 ELECTRICAL DEGREES
SIGMACH-PR--l' 3 a 12.5 ELECTRICAL DEGREES
SI1MAoCH-PR--'I4 w 12.5 ELECTRICAL DEGREES

ARRAY N.*1 PARAMETERSI
'LAPIS' a 5 'SMALL' * 3

* AnRA" NO,2 PA"AMETE.SIS
* LARIE' m 21 'SMALL' * 10

ARRAY NO,2-ARRAY N0,1 RESOLUTION FACTOR 5

SI.G-Z(ArRAY N0,1) 0 54t4a862 DEGREES

SI1-'I(ARRAY NO*2) w 227.418 DEGREES

SI'I-14(ARRAY N0.2) N145.4835 DEIREES(RESOLUED BY N0.1)

E(*',a) -- 3203.13 DEGREE5

ARAY-T0-ARRAY COVR. COEFF'T, m-0.258501

PROBBABILITY FtINCTIO1N PARAMETERS.

AR11MESNT F(1) a 3.30359
ARWIMENT F(2) a 3.95748
L(1) 1.07035E-10 L(2) m 4.10727E-7
PROB.-CORR(l) , 0.999045 PROB,-CORR(2) a 0,999924
PROB,-AMB(1) . 9.54531E-4 PROB.-AMB(2) a 7.57352E-5

PROB, OF AMBIGUJITY w 0.1029 PERCtNT(INCL. CORRELATION)

PROB, OF AMBIGUITY a 0.103 PERCENT(ASSUIMING INDEPENDENCE)

Fig. BS-Example of program AMBIGI prhntout-equal channel-pair phase urrorm
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Those two sets of values define zero-moon channel errors, according to Eq. (3-7) of See. 3.2
of the main text (for P1,2;t,3, and with suitable subscript changes-the other correlation
coefficients)

oI= 8.00000,

02 (02,2 2) -- (100---64)1/2 6.00000,

3 (,3 -o)I0 2 (196--64)1/2 11.48920,
04 = (01,4- of)/2 (144 -64)'/2 8,94430.

Figure B6 shows the AMBIG1 printout for the data inputs

= 5, n I = 3, P1,21,3 -0.457143 (line 1110)

"12 21, n2 "= 10, P1 ,30. 4  0380952 (line 1120)

l,2 "-10', oj,:i = 140, 01,4 120, (line 1130)

p ,2,1,4= 0.533883, a 5.

"AMBIG2

Figure B7 is a listing of program AMBIG2. This program is similar to program
AMBIGi, providing exact calculations of p, for a four-element cascaded end-phase array.
The details of the probability functions are omitted in the printout, and all channel-pair
phase error distributions are presumed equal to oCH.PR in the input. Hence, in AMBIG2,
all the channel-pair phase error correlation coefficients are forced to equal +0.5000.

Figure 138 shows a printout for the same example that was used in the printout
given as Fig. B5. The data input on line 860 of AMBIG2 has the form:

mi --- 5, ni -ý 3, In2 - 21, n2 = 10, C _g 5.

The exact p, (including the effect of subarray-to-subarray correlation) is calculated over
the range on ac11.PR from 10 to 25 electrical degrees in 1-dogree steps in this example.
The range and step size on oUU.pl can be varied readily by altering lines 290 and 300
in the program as required.
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1110 DATA 5,3,.457143

1120 DATA 21,j0,.3809521130 DATA 10..14.oi2*..533333,5

AMD IlzI

FOUR-ELEMENT PHASE INTERFEROMETERI
COMPOUND PROB.-OF-AMBIGUITY F0R ARRAY SYNTHESIZED
BY CASCADING T'10 THREE-ELEMENT INTERFEROMETERS -----

St(MA#OH-PR--io2 10 ELECTRICAL DEGREES
SIIMACH-PR--,23 14 ELECTRICAL DEGREES
SInMA,CH-PR--I,3 * 12 ELECTRICAL DEGREES

ARRAY N0.1 PARAMETERS:
'LARGE' * 5 'SMALL' * 3

ARRAY N0.2 PARAMETERSI
'LARIE' v 21 'SMALL' m 10
ARRAY N0.2-ARRAY NO&I RESOLUTION FACTOR: 5

WV SIG-%(ARRAY N0.1) w 48.4149 DEGREES

SI1'T1-(ARRAY N0.2) w 271.949 DEGREES

SIG-'1(ARRAY N02) w 54.3897 DEGREES(RESOLVED BY N0*1)

E(Z*l'j) w-6908. DEGREES

ARRAY-T0-ARRAY CORR. COEFF'T. W-0.524671

PR0rABILITY FUNCTION PARAMETERS:

ARGUMENT F(l) a 3.71787
AW3UMENT F(2) • 3.30945

LM) w-1.59I28E-13 L(2) a 7.61799E-6
PR0B.-CORR(1) • 0.999799 PROB.-CORR(2) • 0.999065

,* PR0•,"'AMBS() • 2.00920E-4 PROB.-AMB(2) * 9.34742E-4

PROB. 0F AMBIGUITY u 0.112 PEnCENT(INCLo CORRELATION)

PROB. OF AMBIGUITY - 0.1135 PERCENT(ASSUMING INDEPENDENCE)

Pig, H6 -I-ENmplo •fi p~rogram AMB101 pI~vntout--unequlU. el,,mmul-pair phaw• errors
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AMB112

10 READ MINlM2jN2,Q
20 DIM 5(50)
30 DIM H(312)oL(2)oU(2)AZ(2)
40 PRINT"FlIR-ELEMENT PHASE INTERFEROMETER:"
50 PRINT"COMPOUND PR0B.-0F-AMBIGUITY F0R ARRAY SYNTHESIZED"
60 PRINT"BY CASCADING TVG THREE-ELEMENT INTERFEROMETERS .......
70 PRINT
80 PRINT" ARRAY N8.l PARAMETERS:"
90 PRINT" 'LAR1E' "'"Ml," 'SMALL' *"JN1
100 PRINT
110 PRINT" ARRAY N102 PARAMETERSI"
120 PRINT" 'LARGE' ,"1142," 'SMALL' -"Nl2
130 PRINT
140 PRINT" ARRAY N0.2-ARRAY NO.1 RESOLUTION FACTORW";Q
150 PRINT

,160 LET Al a SQRT(MI*Ml-M1*NI÷NI*NI)
• 170 LET A9 w SQRT(M2*M2-M2*N2+N2*N2)
* 180 LET P9 u (M1-NI)*(M2-N2)-N1*M2

190 LET P4 w .5*P9/(AI*A9)
200 LST Cl m 1/(2*3.1415926)
210 LET C2 v 1./s'•(1.-P4,P4)
29.0 LET A2 w A9/Q
230 PRINT
240 PRINT"ARRAY-TO-A9RAY COItR. COEFF'T. u"3Pi4
250 PRINT
260 PRINT"GP.PR.SIG*"p"fl P-GORR."o"02 P-CORR."o"COMP'D*AMB*"
270 PRINT" (DEGR)"'" "," "," (POT)"
280 PRINT
290 FOR M w 6 TO 26
300 LET S(M) w 5 +(M-1)
310 LET U1 , 180,/(S(M)*AI)
320 LET U12 , 180./(S(M)*A2)
330 LET IT() I uI1
340 LET U(2) a U2
350 FOR J a I TO 2
360 IF lt(J)>5.4513 T14EN 490
370 LET Z3 u 0.
380 LET T , tI(J)/(2t.5)
390 LET S * T

! i~ig. B7-Listing or program AMBIG2
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400 LET Y2 U U(J)*U(J)/2
410 LET D I .
420 LET D * D + 2
430 LET T - T*(2*Y2/D)
440 LET S u S + T
450 ZF(T/S-IE-I0)*Q THEN 420
460 LET Z3 - (2/SQRT(3.1415926))*S*EXP(-Y2)
470 LET Z(J) - (1.-.3)/2
480 10 TO 500
4SO LET Z(J) a 2,SE-08
500 NMXT J
510 LET A7 w I - 2*Z(1)
520 LET 937 I - 2*,(2) ''
530 FOR J - I TO 2
540 IV" U(J)>5.4513 THEN 800
550 LET HM(,J) - I

560 LET HX(IJ) "-U(J)
570 LET A "-YI(J)

580 LET B a I
590 FOR I a 2 TO 20
600 LET C a A
610 LET A a-A*tICJ) -(-1)*13
620 LT B m
630 LET H(I.,,) m A
640 NEXT I
650 NEXT J
660 FOR J a I ro 2
670 LET S a 1.
630 LET F a 0.
690 FOfR K a 0 TO 20
700 LET X w P4i*(3-2*J)
710 LET D w I(Kl)*H()C,2)*Xt(K+I))
720 LET E m E*(K+I)
730 LET F w F + D/E
740 NEXT K
750 LET U3 + U(I)*'(I) 1 1(2)*U(2)
760 LET F! • I*Cl*EXP(-TJ3/2) /

770 LET LCJ) w Z(l)*Z(2) + FI
/80 NEXT J
790 GO0 TO 810

800 LET L(I) a L(2) a 0
810 LET El m 2v - CA7+B7+2**L(1)4-2.*L(2))

820 LET E2 a 100*El
830 LET E3 w INT(E2*10?/4 + #5)/I0+4
B40 PRINT S(M)oAToB?*E3

850 NEXT M860 DATA 5.3,211*10o5
870 END

Fig. B7--Li~titig of progrfam AMBIG2 (continued)
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290 FOR M * 6 T0 21
860 DATA 5,3,211.O5

AMBI12

FOUR-ELEMENT PHASE INTERFEROMETER:
COMPOUND PROS*-0F-AMBIGUITY F0R ARRAY SYNTHESIZED
BY CASCADING T'V0 THREE-ELEMENT INTERFEROMETERS -----

ARRAY N0,[ PARAMETERS M'LARGE' a 5 .'SMALL* 3

ARRAY N0,2 PARAMETERS:
'LARGE' = 21 'SMALL' * 10

ARRAY Ng,2-ARRAY N0.1 RESeL!!TI0N FACTOR: 5

ARRAY-TO-ARRAY CORR, COEFF'T, a-0#258502

CP.PR.,SIGo #I P-ConR. 02 P-CORR, COMP'DAMDB
(DEGR) (PCT)

10 0.999964 0.999999 0,0037
11 0.999826 0.999993 0.0181

12 0.999421 0.999963 0.0616
13 0.99851 0999358 0.163
14 00996818 0,99959 0.3583
15 0.994095 0.999026 0.6851
16 0.990146 0.99801 1.1766
17 0.984864 00996385 1.8573
18 0.978219 0,994009 2.7409
19 0,970251 0.990775 3,8303
20 0.961053 0.986617 5.119
21 0.95075 0.981509 6.5929
22 0,939487 0.97546 8.2329
23 0,927414 0.968508 10*0165
24 0.91468 0.960715 11.9201
25 0.901423 0.952155 13.9199

Fig. 88-Example of program AMBIG2 printout
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