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AMBIGUITY-RESISTANT THREE- AND FOUR-CHANNEL INTERFEROMETERS

1.0 INTRODUCTION

Electronics support measures (ESM) systems used in military applications such as
reconnaissance and threat reaction often require estimates of the angle of arrival (AOA)
of radio-frequency signals from distant emitters. Accurate real-time AOAs—to 1° rms
resolution and accuracy or better—facilitate efficient emitter sorting routines as well as
establish emitter locations through the processing of successive relative bearing measure-
ments. For ESM use, increasing emphasis is being placed on the impleruentation of AOA
techniques that can provide azimuth coverage over wide fields of view, approaching +60°
with respect to the direction-finding (DF) system boresight, Multiple-element phase-only
interferometers processing electrical phase differences between the signals received at
spaced apertures turn out to be excellent for achieving accurate AOAs for certain ESM
requirements, These techniques appear particularly applicable to implementing high-
accuracy DF from airborne platforms in the frequency bands of interest above 1 GHz,

The three major goals of this report are

¢ To clarify some past misconceptions concerning the theory of multielement
interferometers.

® To expound a general theory of interferometers which may stimulate re-
search into the less-well-qualified aspects of phase-only intexferometers, such as the con-
straints imposed by operation in severe multipath,

& To provide the ESM system designer with exact, readily applied techniques
for obtaining the lowest probability of ambiguity for a given overall array length in three-
and four-element arrays.

This report treats the phase-only interferometer exclusively. Interferometers that
process relative amplitude information as well as phase diffexrence information from multi-
ple apertures—techniques prevalent in radio astronomy—are beyond the scope of this
report, Attention will further be constrained to line urrays. Within these apparently
severs restrictions of scope, there are many areas of applications for interferometers,

The reason for fixing attention exclusively on the phase-only interferometer is that
in ESM systems, the designer often must maximize the instantaneous (nonscanned) field
of view. He is faced with the choice of implementing directive-gain antenna/receiver
channels, relatively nondirective antennas driving phase-only channels, or combinations
of these approaches. For those requirements in which the loss in system detection sensi-
tivity from nondirective apertures is acceptable, interferometer techniques that inherently

-———
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B, ! achieve a large variation in output parameter for a small change in input bearing angle

;@‘ " ' (large gradient) with comparatively few channels are quite suitable,

;“ .

i‘, The simplest conceivable interferometer uses two essentially omnidirectional antennas

Co s

3

and must employ supplementary techniques to discriminate against energy arriving from
the rear hemisphere vs energy arriving from the front. In this elemental interferometer, ‘
the maximum allowable aperture spacing without ambiguous indications of AOA is one- . '
half wavelength at the operating frequency. Arrays of n elements (13 3) vrovide (n - 1) -
phase differences that can be used to resolve these ambignities, ¢ s+ *hough the spacings

between one or more pairs of adjacent channels exceeds one-half w..iuisngth. Multieloment
arrays must be used in order to achieve both good angular resolution and low probability

A

P

‘, . of ambiguity for realistic values of receiving channel phase errors.
k, 3
-"-V . The amount of published material on radio direction finding is incredible. Travers k.

Ey and Hixon [1] have assembled absttacts on the DF literature (including interferometers) _ |
e covering the period 1899-1965. More recently, Barton [2-4] has included entries on o

interferometers in his index (and supplements) on material published in the LE.E.E, Trans-
actions on Aerospace and Electronic Systems and its predecessor publications. The em-
phasis of recent Russian work available in translation [5-7] is oxiented more toward “fre-
quency” interferometers (multifrequency ranging schemes) than toward addressing the
“spatial” interferometer synthesis problem, Apparently, no work clarifying past incon-
sistencies in three-element arrays, and extending the theory to optirnum arrays of four
elements, has appeared to date.

P
~

v : Limiting the scope of this report to a consideration of only three- and four-element !
- ! systems will not unduly restrict Jesign freedom. These arrays are suitable for many re- -
b quirements, us the following example will show. -

' The example pertains to locating surface emitters frora an wirborne platform and is i
" offered to illustrate some of the tradeoffs between using arrays with either three or four g
_ elements. Figure 1-1 is a plan view of the geometry typical of an airborne collection sys-
; J tem taking a series of relative bearings on a distant emitter. There are many treatments

of the factors affecting location system performance [8-11] for the problem depicted in
3 the illustration. The example shown is Butterly’s [8] “asymmetrical 156° sector.” The
emitter range, normal to the assumed straight-line flight track, is 100 n.mi. (185.2 km). .
A flat-earth approximation is made, and arrors because of altitude are neglected. The .
collection platform takes 16 successive bearings (forced to be equally spaced in Butterly's -
analysis, for convenlence, with no great loss in generality). The first DF cut is made at
an angle of 45° right of the array boresight; the last is take: at a bearing of 30°. But-
terly’s analysis shows that to restrict the aren of uncertain?- of emitter location to 7 4
n.mi.2 (3.487 km2) to a probability of 0.95 requires accuracies of 0.21° rms on the bear-
ings over this 156° range in angle. _ E

The spatial accuracy in degrees rms, 0y , of an interferometer is related to the elec- !
trical phase error in the largest-spaced pair of antennas by the well-known expression g

|
l
o - 11 2
% = Bdcos 0, ’ (1-1) -
y

where

Ry .
Akttt e mem s et el
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4 - TO ACHIEVE Th. mi.2lm x 3.43 Km?) / ® EOR %% =12%ms } ::
5 AREA-OF-UNCERTAINTY CHANNEL-PAIR PHASE &
L TO PRORABILITY 0.96 ERROR, AND :
. REQUIRES %9 ~0.21°ms % =0,21° tma, I
W ' {required) 3
. AEQUIRED INTERFEROMETER |
3 BASELINE d (normalized Cs
9 10 wavelengths) IS | h:
d (.. :
RANGE T ~'6OoR D
w100 n. mi. =23 | % WAVELENGTHS) S
\ {186.2 Km) 3
CROSS-TRACK -
@OPTIMUM n=3 r
i INTERFEROMETER SPACINGS .
por 1 START END d___, FLIGHT p=12, q=1l R
b ——’ T TAACK .
v N = 16 BEARING MEASUREMENTS ®OPTIMUM =4 &
1. INTERFEROMETER SPACINGS
g . @THREE - AND FOUR-ELEMENY ARRAY PERFORMANCE be6 qud, rel3
e @e || 129ma{CLECTR.) | 3°%ms (ELECTA.) ' ' .
. n Py %, P %, b
a. -
, 3 “% 0.28% 3
' - ' 0.21° 0.083° : y
vt me ms i
i, 4 “ 0.076% NEGL. 3
. Fig. 1-1—Problem geometry fur emittor location example
. ,
. 0g = electrical phase error, degrees rms, 3
g = 2m/\ = phase constant in the medium of propagation,
Ld 3 d = channel-pair spacing, longest-spaced channels. 4
o) _ If oy = 12° rms (zero-mean) and if 6, is in the vicinity of 87.56° (mean of 45° and 3
30°), to achieve an accuracy in AOA of 0.21° rms (zero-mean) requires an overall base- g
ey line length d = 11.5 wavelengths = 23 half-wavelengths. (Note: In developing the theory A
b ¥ of low probability-of-ambiguity arrays, it is convenient to work with spacings expressed
% 4"‘ : in integer half-wavelengths.) The optimum three-element array employs a channel 1to 2 i
. . o spacing of 12 half-wavelengths, and & channel 2 to 3 spacing of 11 half-wavelengths. For
% (<8 o a readily obtained oy = 12° rms, the probability of ambiguity of this array is 45%. This 3
B .3 . is clearly unacceptable performance.
s .
A . The optimum four-clement array, synthesized according to the principles presented

in Secs. 4.0 and 5.0 of this report, has channel-pair element spacings of 6, 4, and 18

half-wavelengths between adjacent channels. For the same channel-pait phase error, 12°
. rms, the probability of ambiguity is 0.076%—a 600:1 improvement over the three-

' . element array.

R o : It is obvious that in dense signal environments, initial estimates of emitter location
v ' (and later refinements of these estimates) can be accomplished much more rapidly using

\ ’ - : 3 |>_
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the more reliablc estimates from the four-element array. It may also be oliserved that to
reduce the probability of ambiguity of the three-element array to 0.26% requires a re-
duction in channel-pair phase error to approximately 3.0° rms. At the present state of
the art in microwave component technology, it is doubtful whether such channel-pair
phase tracking can be obtained over more than 5% to 10% bandwidths, even with auto-
matic calibration.

The above example clearly shows the advantage of implementing a four-channe! sys-
tem, if the obtainable performance can be justified against the need for (a) the additional
channel and (b) the additional processing. There are, of course, less stringent require-
ments that can be addressed very competently by a three-element array.

For example, suppose that it is possible to achieve system channel-pair phase track-
ing to 10° rms, and that a baseline length of d/\ = 4 ({ = 8 half-wavelengths) is avallable.
At boresight, the angular accuracy of such a system is 0.398° rms. Over the symmetric
sector defined by a starting bearing of +16°, and an ending bearing of ~15°, a direction-
finding system need take only 21 bearing cuts, spaced at 1.5° increments, to attain a
0.96 probability of determining the location of an emitter to within a 7 n.mi.2 (3.437 km?2)
area of uncertainty at a cross-track range of 102.65 n.mi. (190.1 km). This particular
system has a probability of ambiguity of 1.01%, implying a somewhat longer initial
processing interval, on the average, before “outliers” in the data could be identified and
discarded (in contrast to the 0.076% p, of the four-element system).

For many applications, the obtainable performunce in three-element systems is quite
satisfactory, provided that (a) the location geometry is favorable, (b) a sufficient number
of bearlng cuts can be taken, and (c) the system channel-pair phase tracking is good.

Figure 1-2 is one configuration of a four-element interferometer. The four functional
elements shown are (a) relatively nondirective antennas for wide spatial coverage, (b) phase-
tracked receiver channels incorporating hard limiting of channel signal levels to removes
amplitude fluctuations, (¢) phase comparators, and (d) an ambiguity-elimination and angle-
processing circuit. As shown in the diagram, the channel at the far left is the phuse
reference. Other four-element array configurations are possible. Sec, 4.0 will show that
this particular array configuration, called ‘“cascaded end-phase,” is the canonical configura-
tion for a four-element array. Other array configurations can equal, but not exceed, its
tolerance to angular ambiguities. This configuration is optimal because of its relatively
simple processing compared with other array configurations.

For the configuration shown in Fig. 1.2, the electrical phase differences between a
signal in the reference channel and signals in the other channels are

py,j = Bdy,jsinfy, (1-2)

where dy ; is the physical spacing between the phase centers of antennas 1 and j in the
linear array ( = 2, 8, or 4). Thus, three phase differences—the necessary and sufficient
number to extract all the AOA-dependent electrical phase information the array can
provide—are made available to the processing circuits,

Suppose dy 4 = 4dy 3 - 16d 1,2 = 8 wavelengths., Normalized to half-wavelengths,
the spacing intogers (see Fig. 1-2) arep=1,p+q=4,andp+q +r= 16; these

4
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diq
di3 I '
. —-»{ —l
Y Y Y Y ANTENNAS
: 2 1 4 RECEIVERS
A
REFERENCE,
OR COMMON
CHANNEL PARAS
e COMPARATORS
dyz=pA/2
AMBIGUITY ELIMINATION dhgm b+ qid/2
AND dig~{pra+rh/2
ANGLE PROCESSING #y,=Bdy aing,,
1=2,3,4

L 8,, ESTIMATE OF 6,

Fig. 1-2—Block dlagram of four-element phase Interferometer

define ¢ = 8 and r = 12, According to Eq. (1-2), as 0, increases, the electrical phase
angles associated with channel-pair 1 and 4 and channel-pair 1 and 3 will eventually ex-
ceed | 7| radians. However, since each member of the ensemble of phase comparator
outputs can only be known modulo 2w, ambiguities—multiple-candidate AOAs-~will be
manifested in the phase comparator outputs. On the other hand, the phase comparator
output associated with channel pair 1 and 2 can never exceed |tn| radians., This fact
can be exploited to yield an ambiguity resolution process that will enable an estimate of
AOA sssoclated with the correct mean AOA to be recovered.

There are £ -~ 1 ambiguous 0, in an array whose overall length is € half-wavelengths,
The probability that one of these ambiguous AOAs will be computed from the set of
modulo 27 phase angles applied to the processing circuits is inversely related to the array
spucings dy,; or more appropriately, to the spacing integers p, q, and r, when four-element
arrays are under consideration,

The interferometer synthesis problem that is the main scope of this report is to de-
termine p and q in three-clement arrays; and p, ¢ and r in four-element arrays so that an
acceptable balance is achieved between the mutually incompatible objectives of maxi-
mizing the accuracy of the AOA estimate (incressing the overall array length) and mini-
mizing the probability of ambiguity (minimizing the overall array length) subject to given
channel-pair phuse errors.

The two groups of readers to whom this report is addressed are (a) electronics sup-
port measure (ESM) system designeis whose direction-finding requiremenws may be met

b
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ROBERT L. GOODWIN

by implementing arrays synthesized according to the principles given here, end (b) those
who may find the general theory of assistance us a point of departure in discovering the
principles of arrays of more than four elements.

Array designs that achieve the best obtainable probability of ambiguity for given
overall array length and channel-pair phase errors, and ar2 guaranteed decodable, are
described here, Thus, the report may be considered to be an extended “existence
theorem” on low-ambiguity arrays. These arrays are guaranteed decodable because the
spacing integers p, q, and r are relatively prime, but no specific decoding procedures are
given in the report. The choice not to include some material on decoding was made
reluctantly (in order to stress ambiguity aspects of array design), but was done in the
knowledge that techniques based on the Chinese remainder theorem are well known.

Section 2,0 of this report is a short review of basic interferometer thecry. It pro-
vides a thorough exposition of just what constitutes an ambiguity in arrays, and discusses
the ambiguity constraints in arrays defined by two spacing integers.

Section 3.0 begins with a discussion of the phase-error sources in multichannel re-
ceiving systems, and the magnitudes of these errors in current-art receiver components.
Then an expression for probability of ambiguity based on a channel-pair phase error
formulation is given for three- and fouy-clement, two-integer set arrays. Finally, the
optimum spacings for these arrays is given, along with tabulations of p, for various avray
lengths as a function of channel-puir phase error.

Section 4.0 treats the fundamentals of four-clement, three-integer set interferometers
by firat considering the properties of various configurations of four elements. Resolvuble
and unresolvable ambiguities in the two distinct threc-element subarrays that constitutoe
8 four-slement array are then discussed. The role of the integer factor common to mem:
bers of each of the subarray ratios ag this factor influences overall array ambiguity is
explored. Then, explicit forms are given for the ambiguity variables in each of the two
subarrays, and some sample calculations are performed of probability of ambiguity. Last,
it is shown that a particular form of four-element array, the cascaded end-phase array, is
the optimum array configuration.

Section 5.0 provides the theoretical basis for synthesizing optimum arrays of various
lengths. "T'wo forms of array are introduced and defined to achieve a rapid, readily applied
procedure; the “ideal unrealizable” arruy and the “optimum realizable” array. An approxi-
mate synthesis procedure, assuming independence of subarray ambiguities, Is given. For
most cases of current practical concern, this approximate synthesis procedure is very satis-
factory. Indeed, this procedure often provides several axrays of the same overall length,
but with differing p, ¢, and r spacings, that achieve the same overall probability of
ambiguity. However, by treating the two subarray ambiguity variables as members of a
joint probability density function, with correlation between the variables, it is possible
to derive an exact formulation for the overall probability of ambiguity in four-clement
arrays. The impetus for presenting this exact analysis is threefold:

® The optimum array for a given overall array length and identical zero-mean
channel-pair phase errors can be unequivocally specified.
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A ® The analysis can be extended to arrays using antenna elements sequenced
i into a shared channel to achieve component-usage economies. (This analysis is not given
in the present report, but it is a straightforward extension of the analyses given here.)

. ¢ FExtensions of the basic analyses oriented toward other aspects of multi-
element array performance may be encouraged.

A convenient classification of overall array length that leads directly to a readily applied
. computer-aided synthesis is then given. The section closes with tabulations of probability
of ambiguity for optimum arrays (or a wide variety of array lengths.

* . Extensions of the research presented in this report are in progress, and are discussed i
briefly in a final section that summarizes the effort and provides some concluding remarks,

2.0 BASIC INTERFEROMETER THEORY

This section presents the basic principles underlying multielement phase interferom-
eters. Initial attention is directed to the concept of characterizing arrays by two-integer
gets, This generalized array concept emphasizes that the susceptibility of interferometers )
to providing ambiguous (actually, grossly erroneous) estimates of angle of arrival is a fune- 4
tion of two integers and two assuciated channel-pair phase errors. E

- ! This method of characterizing an interferometer is compatible with either three. ]
element or four-element arrays. For the former, a portion of the channel-pair phase ‘

- - errors reside in a “common-channel” phase error, whereas for the laiter case, phase errors 1

g in one pair of channels are independent of phase errors in the other pair of channels. 4

There has been some confusion in the literature conceming the apparent superiority
of one configuration of three-element array with respect to another array configuration
as regards susceptibility to ambiguities for a given value of channel-pair phase error; us in
. Kendall [12] and Margerum {13]. Apparently, Kendall’s efforts in generalizing three-

i 1 element array theory to embrace arbitrary ratios, i.e., arrays whose spacings were not
.. ‘ relatively prime integers--obscured the fact that if one particular configurution of three-
'}‘i element array is ambiguous (due to some set of channel-pair phase errors), then the other
configurations must also be ambiguous. ‘The proof is trivial and is given in Sec. 2.4,

Margerum analyzed a midphase three-clement array, but neglected to consider the
effects of “common-channel” phase. Consequently, the ambiguity constraints he derived
were actually those for the four-channel (independent) two-integer set array. However,
Margerum’'s use of the ambiguity-plane method of illustrating ambiguity boundary rela- .
tionships seems to predate its ecmployment by others, As will be seen in Sec. 2.3, the
ambiguity plane is a valuable concept for understanding the mechanism underlying am-
biguities in multielement interferometers,

e S mmaet e b ot

2.1 Two-Integer Set Interferometer Fundamentals

Consider the linear array shown in Fig. 2-1 where the physical spacing between \
antennns 1 and 2 is dj, and the spacing between antennas 3 and 4 is dg. As depicted,

7
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[
7 <7 \ / ANTENNAS
| S — dL ' .-EZA- [EE—— d. --SA-Z eyl
\ [' 2 N 4 RECEIVERS
PHASE COMPARATORS
. p AND g
@ =fd, sind, L -3"-"":: ARE RELATIVELY
=2 b = PRIME
X 1Py lsinGy Kf("z"'"e' INTEGERS

Fig. 2:1—One form of two-in'ager set interferometer

spatial angles of arrival are defined with respect to the normal to the baseline. With no
loss in generality as far as interferometer ambiguities are concerned, the sources of distant
signals are assumed to lie in the horizontal plane. It is further assumed that these spatial
angles of arrival are resiricted to 16,] < 90° or that other means have been employed to
resolve the gross front-to-back ambiguity inherent in phase interferometers using antenna
elements with little directivity.

The electrical phase differences between the signals in the two sets of antennas for
radio-frequency (RF) energy arriving from angle 6, are

Elements 1 and 2

&y = fdp, sin @,
_ 2r dr si N
=5 dg sin 0. (2-1a)
Elements 3 and 4
$g = Pdg sin 0,
= 2T 45 sin 4, . (2-1b)

These phase differences can be determined by applying the antenna outputs to phase-

tracked receiver channels incorporating hard limiters (to remove amplitude fluctuations)
and terminating in phase comparators. As is well known, in an elementul two-clement

8
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phase interferometer that does not have any available supplemental amplitude informa-
tion from the antennas for use in resolving ambiguities, the maximum spacing between
antenna phase centers is restricted to

T - (—n)
[sin (90°) - sin (-90°)]

dmnx -

or
A
A
5 (2-2)
In interferometers providing two or more phase differences, it is possible to resolve

ambiguities even though one or more spacings exceed a half-wavelength at the operating
frequency.

Suppose d;, and dg in the array of Fig. 2-1 are in the ratio of small integers, as

e S R = E_L..

S

(2-3)

i

alw

where p and g are relatively prime.

If

p complete cycles of 2m-rad phase change will occur between the output signals of an-
tennas 1 and 2 and q complete cycles of 2m-rad phese change will occur between the out-
put signals of antennas 3 and 4 as 0, varies between ~90° and +90°.

Electrical phase angles can be determined only (mod 27); hence, the true phase dif-
ferences ¢; and ®g must be expressed as

b, = YL - pe {mod 27) + 2nmy (2-4a)
and -
dg 198 -pe fmod 27) + 2mx , (2-4b)

where

subscript pc = voltages available at the output of a phase comparator defining
angles,

x,y = pair of integers which must be determined so that ¢; and dg of
Eq. (2-4) are equivalent to those of Eq. (2-1).

Determination of integers for x and y is basic to any vernier-resolving problem (e.g.,

distance measurement applications in which phase differences between sidetones displaced
from a carrier are used to resolve range ambiguities) and is readily achievad. Noting that

9
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o =% 0, (2-5)
and equating Eq. (2-4a) to (2-4b) yield

qlvp.pc (mod 21) + 2my] = plvs.pe (mod 27) + 27mx] . (2-6)
An equivalent form is
pys — qop t+ 2n(px-qy) = 0, (2-7)
where the pe subscripts and the (mod 27) notations have been suppressed for clarity.

One method of solving Eq. (2-7) is to doubly iterate through the allowable sets of x
and y until the set giving equality is found. As will be shown in Sec. 3.0, the best strategy
in a system with phase errors is to accept the x;, ¥j that result in

Iflep v ogrxpy)l < m. (2-8)

2.2 Interferometer Array Classification

Figure 2-2 shows the four array configurations capable of providing two electrical
phase differences for estimating spatial angle of arrival, Only antennas and the associated
phase comparators are depicted; it is understood that receiving channels with phase devia-
tions (as contrasted to ideal channels) are interposed.

Figure 2-2a, b, and ¢ illustrate the three possible ways of obtaining two phase dif-
ferences using three antennas, a cansequence of the fact that the number of combinations

of three elements taken two at a time = 31/21(3 - 2)! = 3. Fig. 2.2d shows an array using
four elements,

The arrays may be classified according to the channel used for phase reference. Thus,
in Fig. 2-2s, channel 1 is the reference; the arcay iu called End-phase Left. Similarly, in
Fig. 2-2¢, channel 3 is the reference; the configuration is called End-phase Right. Finally,
in Fig. 2-2b, channel 2 is the‘ reference; this array is called Midphase.

Obviously, for the array configuration in Fig. 2.2d, gg is unaffected by phase errors
in channels 1 and 2. Fence, this four-channel interferometer is called independent.

Suppose that for each of the three-element interferometers of Fig. 2-2, the element-
to-eloment epacings (normalized to half-wavelengths at the operating frequency) are p he-
tween elements 1 and %, and ¢ between elements 2 and 3. Then, the interferometer
ratios in terms of electrical angles and spacing integers are

R (blfﬂ'S p+aq
L

= -—‘(i‘,-—.“ B et
L

p

End-phase Left
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e pq ——01 {A] END-PHASE LEFT
f*~— °F """"l R 8Ls L pra
R - Ses | Bra

1V 2 3Y [ % p

|‘—-—. Y —-.] (8) MIOPHASE

¢
232 3 2t L2
%M o a
]

I..__- P+Q m——— {C) END-PHASE RIGHT
""-" a P, p+Q

1 Y,gfi U el s

PLig ®s
b — e a (D) INDEPENDENT
1 2\ 3 4 b
.%in ‘s q
® ®s

Fig, 2.2-8implifiad block diugrams of the four poseible
twosinteger set interferometors

(I) p
i Ry, = L =
Mldphase W E%— g
€ +
End-phase Right R = —2 = 2t
S q
where
, 2r :
Gr,g = Y (dg, + dg)sin0,,
®, = 2L 4 sind,,

g = 2L dgsin 0,

For the four-element interferometer, the analogous quantities are
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Independent E
o o
| R .t _p ‘
: r- (bs T q ‘

A complete classification should include consideration of phase-error parameters so
as to account for unequal channel electrica! lengths. Table 2-1 list the channel-pair phase
error parameters appropriate to the four-interferometer array configurations, in accord
with the notation of Fig, 2-2. Expression of deviations from some nominal channel phase
length in terms of channel-pair errors will be useful in establishing ambiguity constraints v
for the various interferometer configurations. In following sections, a channel-pair phase 2
error formulation will be useful in deriving analytic expressions for probability of ambi-
guity in three- and four-element arrays.

2.3 Ambiguity Constraints for Two-Integer Set Interlerometers ‘.1

'The constraints on channel-pair phase errors that preclude erroneous determination
of the spatial AOA (because of ambiguities) will now be derived for two-integer set
interferometers,

Consider an interferometer in which d; and dg are in the ratio m:n. The integers

m and n are used to emphasize that a generalized interferometer, rather than one of the

. specific four configurations introduced earlier, is being discussed. The maximum allow-
i able spacings for the ratio R = m/n are, of course, dj, = m\/2, and dg = n\/2. Otherwise,
mote than one 0, within the -90° to +90° field of view (FOV) will produce a specific (mod
i 2n) &y, Bg eet. M m =3, n=2,d = (3/2)\, dg = A, thon K

L L S S

e e -

= Iiglr' --"3-7\ = =87 = .’cm1r|.

Iq’L ~mux A

l"’S-muxl = Iﬂ:%{—' N = A2r = tmrl.

-

If it were possible to measure b; and dg unambiguously over their ranges, a phase-
plane plot of &y vs dg would appear as shown in Fig. 2-3a, in a form due to Margerum
[13]. A morc convenient representation is Fig. 2-3b, which is centered on 0, = £90°
rather than on 0, = 0°. The expressions for ¢y and dg are thus modified to

dy = Bdy, sin 0,
0° = 0 < 90°, (2-9)
by = Bdg sin 0,
. and
4
O} = Bdy(2+8in0,)
' -90° < 0, < 0°. (2-9b)
Py = Bdg(2 + sin 0,)
12
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o ' . =fd) (2+4ind,}, ~90°58,<0° v
P ! 5 |
' {A} CENTERED ON@, = 0° {B) CENTERED ON 9, = £80°
| Fig, 2-3—Phase-plane diagrams for m:n = 3:2
. L 3
; ) Since @}, and by can be known only to within 27 rad at the outputs of phase com- :
8 , parators, the phase-plane plot must be collapsed to u square 27 rad on a side, as shown
¥ 0 ! - in Fig. 2-4. In this dingram, the intersections of the ®}, vs by trajectories on the yp;, axis -
1 are spaced 2n/n (=7). The pg axis intersections are spaced 2m/m (=2n/3). S
i
l 0'5
a ' an w5 PHASE -
: TRAJECTORY 4
k1) e = AMBIGUITY N
At BOUNDARY .
v .m
L R -
a9 a0 " T 8,
. . ;
, drg.a " m g
S 4
| Lo v (—-—-—3 -~1)x2n-0.0607x27r. y
] 2y2 I,
AY 0
' , 1 R
3 v - ( )err = 0.7071 x 21, N
0 ; 2 3
FOR 8, = 46° 4
] Fig. 24 —Ambiguity diagram for m:in = 3:2
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Suppose 0, = 45°. Then

@) = 27X 3/2%X 1NZ,

it

and

: &}, (mod 2m) = 2 (3/2/2-1).

A
=~
i

Also,
By = 2r X 1X 14/Z;  ¢5 = 2712,
From Eq. (2-7), we have
mey = nyy + 2m(mx - ny) = 0.

Substituting for ¢} and yf and dividing by 21 yields a trajectory-establishing equa-
tion of the form

3x + 2=2y, (2-10)

The only solution of Eq. (2-10) subject to constraints 0 < x < (n-1)and 0K y < (m-—1)
isx =0,y=1 (Note: The Fig. 2-3b formulation of the ambiguity plane leads only to
positive sofutions of Eq. (2-10) and is much less cumbersome than an approach based on
Fig. 2-3a.) Thus,

2V?2

and
o5 = g + 2m(0)

=2
V2
The spatial angle of arrival 6, can be recovered, for example, from the expression
3., 1
), 27 X > X 73
0, = sin"l | = = sin" | ~——g— | = 45°.
L -max 2m X )

Errors in the channel-pair signals sent to the phase comparators will move the g,
pg set off the phase trajectories (solid lines 0, 1a, 1b, or 2) in Fig. 2-4. For simplicity,
the prime notation on &y, g and v, v5 will be dropped henceforth.
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If any ®;, ®g set is in error because of channel deviations, then the (mod 21) repre-
sentation at the phase-comparator output is also in exrror. The actual phase differences
(including errors) compared to the phase differences made available by the instrumenta-

tion are as follows:

Actual Electrical Phase Differences

27 .

Bp =% drsind, + Agp = dp + Agy (2-11a)
2n .

Py = F dstinb, + Apg = Bg + Apg. (2-11b)

Avatlable Electrical Phase Differences
er,, = [P + A¢y] (mod 2m) (2-12a)

Y5,y = [Ps + Apg] (mod 21) . (2-12b)

The geometry of Fig. 2-4 shows that to equalize the possibility of incurring ambi-
guities over the ~90° to +90° FOV, the dashed boundaries separating the region around
one trajectory from the region around another should be located parallel to, and equi-
distant from, adjacent phase trajectories. The ambiguity boundary directly above tiujec-
tory ‘0’ intersecis the yp; axis at

Apr,-ar =T (2-13a)

and the boundary directly below trajectory ‘0’ intersects the pg axis at

T
A‘pS"AIV = m‘ (2'13b)

In attempting to generalize the conditions for obtaining minimum tendency toward
ambiguities over the field of view, Kendall [12] considered ratios R = m/n {or n/m) in
which m and n were not restricted to velatively prime integers. He employed a need-
lessly complex analytical formulation, whereas, with just the previously used georr etric
arguments, it is easy to show that m and n must be relatively prime integers, as in the
following example,

Figure 2-6 shows a phase-plane plot of the trajectories for ® = /11/2 = 3.3166/2,
subject to the element spacing associated with m equal to «/T1/2 wavelengths, The solid
trajectories in the figure thus terminate with 3a, at a )y, value of 0.3186 X 2r. This
indicates, of course, that over a 180° range on 0,, ¥ sweeps through 3.3166 X 27 rad,
and ®g sweeps through 2w rad. Since R is irrational, one can, in theory, extend the
array length indefinitely without encountering a condition where multiple 0, give rise to
the same yp; , vg set. As more trajectories are added to Fig. 2-5 (implying increased array
length), the spacing between trajectones, and hence, the tolerance to ambiguities, decreases.
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Fig 2-5—Ambiguity diagram for R ~ /T1/2

Of the additional trajectories 3b and 4 (shown dashed in Fig, 2-5), 4 terminates near
the point ¢y, vg = 2m, 21, This might have been anticipated by nating that the integer-
set retio nearest R = /T1/2 11 R = 5:3. For the latter ratio, there would be five equally
spaced trajectory intersections un the horizontal axis of the phase plane and three inter-
sections on the vertical axis. Because +/T11/2 is irrationial, however, there is no way of
drawing ambiguity boundaries to equalize their spacing from adjacent trajectories, thereby
making the tendency toward ambiguities implicitly independent of 0,. Consequently,
ratios formed by relatively prime integers are praferable.

All phase trajectories and ambiguity boundaries in phase-plane plots intersect the
g axis at an angle v = tan~1 [(2n/n)/(2n/m)] = tan~1[(m/n) = R]. For any 0,, it is easy
to show that the two ambiguity constraints ave
A!PL > .(RAQOS + A\OL-A[ ) (2-14a)
and

A\OL < fRAtps - A‘pL—'AI! (214b)
for & = m/n, with m and n relatively prime integers.

If the upper inequality is satisfied, the ambiguity boundary above a given trajectory
has been crossed; an annlogous statement holds for the lower inequality.

An expression equivalent to Eq. (2-14s, b) which makes use of R = m/n and
App.py=m/nis

InAgy, - mApgl & T, (2-15)

where > implies an ambiguity, and < implies no ambiguity.
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Equation (2-15) is the ambiguity constraint for any two-integer set interferometer,
provided that the channel-pair phase error terms Ay; and Agg are defined properly with
respect to the particular array configuration being analyzed.

2.4 Ambiguity Constraints for Specific Array Configurations

The ambiguity constraints for the four possible two-integer set interferometer con-
figurations are now obtained by making use of the constraint just presented for a gen-
eralized interferometer.

Equation {2-15) is expressed in terms of generalized array integers m and n and
channel-paix error parameters Ayg; and Agg. The array ratios (from Sec, 2.2) and the
channel-pair error parameters (from Table 2-1) for each of the array configurations are

End-phase Left

App = Apy - Ay
+ L 1 3
gy, =2 =E1, : (2-16a)
Agg = Avy — Apy
Midphase
B¢y, = ~Qpy + Ay,
m_ B :
R = 5 = : (2-16b)

Apg = Apg - Ay
End-phase Right

Apr = Apg — Ay
+ L 3 1
Ry =B« 22T, \ (2-16¢)
Aps = Apy ~ Ayg

Independent

App = App ~ Apy
; . (2-16d)

m
fR’ = """ 5
AWS = A‘pa - A‘P,‘

il
@l

Making the appropriate substitutions into Eq. (2-15) yields

End-phase Left

FaYg

Ip(Avy = Apg) - (P + q)(Apq — Apy)l T, (2-17a)

Midphase

la(-Apy + Apy) — p(Apg - Apy)l 2 7, (2-17b)
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End-phase Right .
lq(Apg = &py) = (p+q)(Apg - Bpg)l 2 n, (2-17c)
Independent
lq(Ap; - Apg) ~ p(Apg ~ Apy)l 2 . (2-17d)

It is easily shown that Eq. (2-17a, 2-17b, and 2-17¢) are all equivalent to the follow-
ing equation,

Three-element Interferometer
Ambiquity Constraint
lqd¢y - (P +q)Apy + pAggl 2 7. (2-18)

Equation (2-18) is, of course, a consequence of the fact that the channel-pair error param-
eters in a three-element interferometer are related by

a+c¢=bhb, (2-19)
where

a = Ap; - Ay, 0nyp,
Apy - Ayg, on gy,
Ap1 - Apg, on vr,s.

1l

B

b

The results of Sec. 2.0 are the basis for correcting past misconceptions conceming
the tendency toward ambiguities for various configurations of three-element interferom-
stors, Kendall {12] argued that the end-phase configuration is superior to the midphase
configuration, Margerum [13] analyzed only the midphase configuration, giving actually
an expression for the probability of ambiguity for the independent four-element con-
figuration. ‘T'his left the impression, perhaps by omission, that the end-phase array con-
figuration is inferior to the midphase configuration,

The correct statement for the ambiguity constraints in three-element interferometers,
based on the development given here, is the following: Any configuration of three-
element interferometer defined by spacing integers p and g (implying identical overall
srray length, regardless of configuration) has the same tendency toward ambiguity, re-
gardless of the channel employed as the phase reference.

3.0 PERFORMANCE OF TWO-INTEGER SET INTERFEROMETERS

For many applications, the performance obtainnble with two-integer set interferom-
eters, either three- or four-element, is adequate. For example, a three-element array
8 half-wavelengths long at the frequency of operation with channel-pair phase errors of
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10 electrical degrees rms can achieve a boresight angular accuracy of 0.40 spatial degrees,
and a probability of ambiguity of 1.01%., Performance such as this can satisfy those
requirements which do not need the “super” accuracy obtainable with multielement
arrays that have longer overall baselines. The primary reason for presenting a compre-
hensive theory of two-integer set arrays is that they are the basic subarrays that can be
cascaded to form longer arrays of four or more elements. In Secs., 4 and 5, examples of
the dramatically improved performance that can be achieved with these arrays will be
given,

This section discusses error sources, carefully distinguishing between a “channel”
error description and a more convenient formulation for design and analysis purposes—
the “channel-pair’” description of error sources.

A channel-pair error correlation coefficient is introduced and defined for the end-
phase, midphase and independent array configurations. Although it is not mandatory to
use a channel-pair error and correlation coefficient formulation, this approach to deriva-
tion of probability of umbiguity facilitates the development of un exact expression for
it in four-elernent three-integer set arrays in Sec. 5.

A recurrence relationship for generating the optimum spacings for three-element
arrays of arbitrary length is given next. It is interesting that the full tabulation of allow-
able spacings, i.e., nonredundant, for arrays of various lengths has a counterpart in the
Farey sequences of rational fractions from number theory. Travers [14] points out, how-
ever, that propagation anomalies in the HF band (3 to 30 MHz) may constrain the “small-
spaced channel-pait” spacing to one half-wavelength rather than the optimum *small-spaced
channel-pair” spacing for the overall array being used, resulting in fewer ambiguities,

The section concludes with a tabulation of probubility of ambiguity vs array length
(with channel-pair phase cerror as 4 parameter) for both three-element (end-phase or mid-
phase) and four-element (independent) two-integer set arcay ennfigurations. Historically,
two-integer set interfexometer arrays seom to have been implemented first in the inde-
pendent configuration us in Balley and Moller [16]. Watters, Rees, and Enstrom, [16]
have reported on a two-frequency technique equivalent to the independent configuration.
Later, as the theory of arrays improved and the component art advanced, the three-
element, two-integer set arrays became much more prevalent. A recent example of a
commercinlly oriented three-element array is veported by Watanabe, et al. [17]. Many
current military surveillance systems also employ the three-element array.

3.1 Interferometer Channel-Pair Errors
In an actunl interferometer, the electrical length ¢; of a given channel may be many
thousands of electrical degrees. This length may vary because of changes in operating

frequency, as a function of temperature, or with input signal power level (AM-to-PM con-
version). The length ¢; can be represented (a8 in Sce. 2.0) by

Wi * Ynominal * AY (3-1)

where Ay 18 the deviation of channel i in phase length from v,ominan
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Individual channel errors Ay, are accessible only by measurement to some standard.
However, channel-pair errors

i

Ay = ¢ = ¢

= (Pnominal * A¢1) =~ (Pnominal * Ay))

]

Ay; - Ay (3-2)
are¢ manifested in the outputs of phase comparators connected hetween pairs of channels,

It is convenient to define interferometer performance in terms of channel-pair phase
errors, rather than channel errors, for the following reason. The individual components
that constitute a channel are usually more readily specified in terms of their deviations
with respect to a corresponding component in another channel, rather than in terms of
their deviations from nominal (but not conveniently measured) electrica! lengths.

The variance of channel-pair phase error between {th and jth channels for the kth
component in an n-element cascade is

of e = E{Avk,} + E{avf,)
= afy, + o}y (3-3)

assuming that Ag;,, Ay, are independent und have zero-mean deviation from wpgminat-x
over applicable paramoters (RF frequency, power levels, supply voltage, angle of arrival,
ote.).

The overall channel-pair error varlunce, summing over r components, is then

n

ofy = 2. obju = of + of. (3-4)

=1

For a large number of cascaded components, all of whose variances are comparable,
the channel-pair phase error distribution tends toward Gaussian (contral-limit theorem).
Statistical analyses of channel-pair errors ohtained on actual multichannel systems support
this contention.

Figure 8-1 ie a block diagram of one channel of a multichannel interferometer show-
ing the principal contributors to channel-pair clectrical phase error. The direct output
from phuse comnpurators is analog. That is, d; ;(0,) 18 defined by sin~1 (v, j..,/vm,m) and
08”1 (U 1.0 /Uy )» Where v ., and v; ;.. are vo{tagea from the sine and cosine phase de-
turtors, respectively, of the phase comparator und vy, 18 the maximum phase detector

output voltage.

In automatic systems, it s convenient to perform ambiguity elimination and other
caleulations digitally. Hence, additional contributions to channel-pair phase orror are
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" Fig, 3-1—Interferometer ercor sources 4

Ayy,p due to multivoltage level detector nonlinearities, and Apg due to the quantization of
F electrical phase over 27 rad. Detailed consideration of the effects of Appp and Ayg on ;
4 probability of ambiguity is beyond the scope of thie report. X

Table 3-1 lists typical values of the major contributors to channel-pair phase error. T
It is assumed that the individual channel-pair errors are uniiormly distributed between i
the limits shown. Phase errors due to finite signal-to-noise ratio (SNR) are not specifically i
- included, but can be readily added with the aid of the relation oy = 180°/r\/SNR, where g
Er Q' SNR is in terms of power. The associated standard deviation of channel-pair phase error
3 is | 8¢y - mux II\/3 where APy —max 18 the peak value of phase error for component-pair X.
Two values of phase “noise’ due to quantizing are given. These represent upper and
lower bounds on the degree of quantizing typicully employed in interferometer systems
of the type described in Sec. 1.0,

Table 3-1 shows that the phase error due to the quantizer group is more than half
the overall phase error on a root-sum-square basis for 4-bit quantizing. On the other
hand, quantizing-phase noise is negligible for 7-bit encoding. In general, higher-speed de-
coding (and possibly less complexity in the ambiguity algorithms) can be achieved with
low degrees of quantizing, Conversely, systems employing higher degrees of quantizing
perform closer to the theoretical probability of ambiguity for an analog processing system.

Radio-frequency calibration can be empioyed in interferometer systems to reduce the
magnitude of channel-pair phase errors, Alternatively, by the use of calibration techniques,
low-quality components (poor phase tracking) can provide performance comparable to that
achieved in uncalibrated systems using high-quality components. Calibration signals are h \
usually introduced into the channels directly behind the antennas.
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Table 3-1—One-Sigma Channel-Pair Phase Error*

No Calihration

Group

Limits on Acp,-'j'r

Standard Deviation

Antenna Group:

Overall channel-pair phase error =

Antenna =t 8° OANT = 4.619°
Transmission line = % 4° opp, = 2.309°
RF filter = t §° Opp = 2.887°
Root-Sum-Square = 5.916°
Receiver Group:
RF mixer and LO
power divider = $10° omxg = 5.774°
IF preamplifier =t 8 oprp = 1.782°
IF filter =t 4 o = 2.800°
RSS = 6.455°
Phase Comparator Group!
IF limiter _— Ol = 4.041°
Phase comparator =t §° opc = 1.732°
RSS = 4.397°
Quantizer Group:
Level detectox =t 1° opp = 0.677°
Quantizer, 7 bit = + 1,406° cq = 0.812°
Quantizer (4 bit) (= * 11.26°%) (0 = 6.495°)
_ 0.996°
(8.521°)
9.848° rms

(11.769° rms)

*"Strong-signal” conditions.

Note: Present techu1logy, wideband systems.
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The use of calibration signals whose [requencies are equal to signals of interest makes
possible, in principle, the removal of channel-pair phase errors due to RF and IF filters,
RF mixer and local oscillator power divider, IF preamplifier, and phase comparator (see
Fig. 3-1). Since the power level of an incoming signal within the system dynamic range
is arbitrary relative to a fixed-level calibration signal, only a portion of the channel-pair
phase error from the IF limiters can be removed. Also, the signal angle of arrival is
arbitrary with respect to the fixed angle of arrival synthetically introduced into the sys-
tem during the calibration mode. Thus, guantizing group errors must be accounted for
twice: First, during the signal reception mode; and second, during the calibratiors mode.

The list of error sources and their magnitudes, typical of a system employing calibra-
tion, is given in Table 3-2. The independence of these errors during the twe modes of
operation is assumed.

Table 8-2—One-Sigma Channel-Pair Phase Error*
With RF Calibration

Component Limits on Ay; Standard Deviation

ANALOG PROCESSING

Antenna = £8° oaNT = 4.619°
RF calibration network = +8° ocar, = 1.732°
IF limiter = £8° oLIM = 1.732°

Root-Sum-Square = b5.228°

DIGITAL PROCESSING

Antenna = #8° OanT = 4.619°
RF calibration network = £8° ocaL, = 1.782°
IF limiter = +8° LM = 1.732°
Level detector (signal) = £]1° oLpsic = 0.677°
Level detector (calibration) = £1° oLp-cAL = 0.877°
Quantizer, 7-bit (signal) = +1.406° og.sig = 0.812°
Quantizer, 7-bit (calibration) = +1,406° 0Q.car, = 0.812°

Root-Sum-Square = 5.415°

*Steong-signal” conditions.
Uniform distribution assumed.

Note: Present technology, wideband systems.
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3.2 Probability of Ambiquity for Two-Integer Set Intexferometers -
The ambiguity constraints for the three-element interferometer configurations of
. Sec. 2.4 are
End-phase Left
- Ip(Ap; - Apg) — (0 +a)(Ap; - Apg)l 2 7 (3-50)
where
" Apy ~ Byg = Agp, Apy - Apy = Apg
#Y
.&.' Ry = %‘- = 2...)3...9. '
-
. Midphase
lg(~Apy + Apy) = p(Apy - Ap3)l 2 (3-5b)
1{ . where
‘i_‘ ‘_ ; ~Apy + Loy = Ay, Apy - Apg = Agy
- . Ry = 5= % 8

End-phuse Right A

la(Aps - Apy) = (P +a)(Apg - Apg)l Z (3-Bc) 8

.M _“ C
‘;j,l where iy
.* ')' ’. ) “

3 ‘} Opz ~ Ay = Apy,, Apg ~ Apg = Ayg P -
Y1 3
4 m_pP*q

o Ry = T k.

In Sec. 2.4, it was shown that Eq. (2-17a, b, and c¢), repeated above for convenience,
are equivalent to a single amblguity constraint

lgdpy - (@ +q)Apy + pAgyl Z n. (3-5d)

In this section, an expression for the probability of ambiguity of s. generalized two-
integer set interferometer will be derived, starting from Eq. (3-Ba, b, and ¢) rather than -
from Eq. (3-6d), as could be readily accomplished. The motive for this indirect deriva- 8
tion ie to focus attention on channel-pair errors and channel-pair error correlation coef- k' &
ficients. A formulation of the probability of ambiguity in terms of these parameters '

L el o
= O
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which simplifies the derivation of an exact expression for the probability of ambiguity in
four-element interferometers will be seen later (in Sec. bB).

Expressions for the channel-pair error correlation coefficient will be required. For
two zero-mean random variebles & and B, the correlation coefficient between them is de-
fined [18] hy

_ E{@R}
P = Gaop " 9
where E[x] = expected value of x.
From Eq. (3-5a), for the end-phase left configuration, is derived
_ EUAp) — Awvg)(Avy - Agp))
© Vel o} VT o

.

 oLUg

= +0,6, all 0; equal. o (8-7

Measurements on the joint statistics of oy, and og nre necessary to define p,; separate
measurements of o, and og in Eq. (8-7) are insufficient. For array design purposes, the
assumption that :

4 1 1
0? O% = Oé 2 OE 2 ”%’
is a reasonable one.

It is readily shown that p, = +0.5, all 0; equal, for the end-phase right configuration
as well.

From Eg. (3-Bb), for the midphase configuration, is derived

E{(-Apy + Ap) )(Apg =~ Apg)}
Ve I EL

m

~0}

OpL0g

= -0,6, all 0; equal. (3-8)

B raacesiiithion Sl
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The variance of the left side of Eq. (3-ba), the end-phase left configuration, is
07 = p(0} +0%) ~ 2p(p + QVE{(Byy - Ap3)(Apy ~ Apy)}
+(p + q)%(0} +0f) . (39)
Substituting p = n, p + ¢ = m, o} + of = of,, and 0} + 0§ = 0§ yields
02 = m20§ - 2mnE{(Apy ~ Ap3)(Apy - Apg)) + n%o} . (3-10)
Since, from Eqg. (3-7)

E{(&p; - Ap3)(Ap; - Apy)} = of = p,0y,05,

Eq. (3-10) Becomes. for the end-phase configuration,

02 = m20% - 2p,mnog0g + n2of, (3-11)
where
m = p + q, 0, = channelpair phase error standard deviation, channels 1 and 3
n = p, 0g = channel-pair phase error standard deviation, channels 1 and 2
pe = 03lop0g

1}

+0.5, all 0; equal.

The variance of the loft side of Eq. (3-Bb), the midphase configuration, is
of £ a0} +0}) - 2pqE{(-Apy + A0y )(Apy - Apy)} + p*(0d + 0]). (3-12)
Substituting p = m, q = n, 03 + 0§ = of, and 0} + 0f = 0 yields
02, = m20§ ~ 2mnE{(~Apy + Apy WApg - Apy)} + noy, . (8-13)
Since, from Eq. (3-8), we have
E{(~Bpy + 81 )(Apy ~ Apy)} = 03 = p,0p,0,

Eq. (3-13) becomes, for the midphase configuration,

o = m%o} - 20,mnopog + n?ef (3-14)
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= p, 01, = channel-pair phase error standard deviation, channels 1 and 2

& ,:. : m =

l‘: n = q, 6g = channel-pair phase error standard deviation, channels 2 and 3

N )

i Pm = ,,:,fs

= 0.5, all o; equal.

!%'f"'l Equations (3-11) and (3-14) have the same functional form; hence a single relation

Y suffices provided m, n, 0, og, and p(p, or p,,) are properly defined. In fact, if we
AR refer to Eq. (2-17d), Sec. 2.4, for ‘the four-element independent interferometer, it is ap-

parent that
L Affgf“’a “fed o, (3-15n)
and
of = o} + 0%, of = 0% + o}. (3-16b)
Thus, the variance of the ambiguity variable is
t ‘; a = m%o§ -~ 2pmnoyog + nof,, (3-16)
f B 'I where 7

+0.5, end-phage
0 , independent» all 0; equal.
= -0,6, midphase .

hel
i

i}

s el o -:._

1n
S Ay

An alternate expression for 0% is

e e

0,?5 = o&prl(mE)? - 2omEnA + (nA)*], (3-17)
where 1
Ogy.pr = 4 nominal, or design, value for channel-puir rms phase error
. A = oy /0cH.pr ,
{ 2= 0g/0cH.pR- ;

For design purposes, all 0; are usually specified equal, implying that oy, = g = opy.pp =
VvZ0;. Thus ¥ = A = unity, and a simplified form of of is

S S

’ 0% = o%“,m[mz - 2pmn + n2] . (3-18)

=5
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_ The probability of correct resolution, that is, the probability that the left sides of
{?'-,, e Eq. (3-6a, b, or ¢) will not exceed tw rad, is
ity ;
. A= "% xp (<Y2) dt (3-19)
Do = == exp (- . 3-
A8 -ﬂl0¢

Setting t' = /2 ¢, dt' = \/2 dt and changing the limits of integration gives

2 nINZ oy N
pe = \7—;’/; exp (-t%) dt

= erf (\/;a‘#) . (3-20)

Thus, the probability of ambiguity (the probability that the left sides of Eqs. (3-6a, b,
or c) will exceed tr rad) is

= erfo ( \/2”%), (8-21)

f where

oy = ocu.prl(mM2)? - ZomEnA + (nAPY?

m = integer associatod with large spacing (m » n),
n = integer assoclated with small spacing,

Uy, 0y = standard deviations of channel-pair phase errors for large and small spacings,
respectively,

e = E{$8}/0y,0g, correlation coefficient between large and small channel-pair
phase errors,

acy.pr = design, or nominal, value for chunnel-pair phase error,

L = og/ocy.pry A = 01/0¢cH-PR-

An asymptotic expression for erfe (t) is [19]

p=t% 1 1-3 1:3:5 }
erfctm"-'“--‘-{l—--—~+--—'—-——-—+... . (3-22)
RV 22 () (202)
If the first two terms above are utilized, p, is bounded by
29
- ; '
".
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2 1 ik 1 2 1 72
= —— exp [~=——}|1 - —— (< p, < ‘/---——-ex -l 3-28
/“ (.1) ( 20%) (."_)2 ’ 4 (_w_) p( 20%) (29
Oy Ug O

3.3 Optimum Array Raiios in Three-Element Interferometers

The argument of the complementary error function defining probability of ambiguity
Eq. (3-21), with the simplified form of oy, is

T
UCH,pR\/mz - 2pmn + ne

For three-element arrays of length € = p + g (in half-wavelengths at the operating fre-
quency), 1egardless of which element is phase reference, the quadratic form within the
radical in the denominator of the expression above can be written as

~

p2 + pg +q2, p>ygq

where
p = integer related to the channel 1—channel 2 baseline,
q = integer related to the channel 2--channul 8 baseline,

To determine which sets of integers p, ¢ are optimum—in the sense of providing
arrays having the lowest probability of ambiguity for given 2—subject to the constraint
p + ¢ = constant = {, it suffices to determine

'a% [p% + p(®R-p) + -p)?] = 0,
which reduces to
& 102 -+ 42 = 0.

For no restrictions on p and g, the solulion is, of course, p = ¢ = /2, To form an allow-
able interferometer ratio .‘Rm = plq or q/p, however, the two parameters must be relatively
prime integers,

Thus p = ¢ (=1) only for £ = 2. The optimum p, q for ¢ = 2, 3,4 are

L=2; p=1, qg=1
= 3 -::2, = 1
= 4, = 3,

1  (p =g =2 is not allowable since itis
a degenerate formof p = g = 1),

For ¥ = 5 through 10, the optimum sets of p, q are
30
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=5, p=3, q=2
= 8, =5, =1
= 7 = 4, =3
= 8 = B, = 3
= 9, = 5, = 4
= 10, =17, = 3

Functions generated by induction for p and ¢, given £ = p + q, are
p;‘.,l = 2, q,-'-l = 2f -~ 1; Ql',"l = 4 - 1

Pio = 2 +1, a0 = 2 -1, Q,"o = 4

biy

2 + 1, q;1 = 2i; Qx',l = 4 + 1

and

i
]

Pig 2 » 8, Q2 = 20 -1, 21'2 4 + 2. (8-24)
Table 3-8 lists the optimuin p, ¢ and associated end-phase and midphuse array ratios
vi overall array length £(2 < £ « £86),

It can be readily deduced from the argument of the probability of ambiguity func-
tion for independent arrays,

i
\/mE + ne

OcH-PR
that the optimum p, q vs urray length are just

m=p={
independent .
n=gq=1

‘Table 3-4 lists all possible p, g sets (including the optimum set defined above) for
three-clement arrays of length € = 2 to 26. It is interesting to note that the ratio entries
for p tixed have their counterparts in a table of Farey sequences (arrays of rationel frac-
tions between 0 and 1) in number theory us shown by Niven and Zuckerman [20].

3.4 Tabulated Probability of Ambiguity for Three- and Four-Element
Two-Integex Set Arrays

Based on Eq. (3-21) from Sec. 3.2, pr, for three-elament arrays are listed in Table 3-5
for ogy.pr = 6°, 10°, 12°, 16° and 20°. Table 3-6 provides the same information tor
four-element (independent) arrays.
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" Table 3-3—Optimum Midphase and End-phase Ratios vs
: Array Length £ (2 < £ < 26) for
? " Three-¢lement Interferometers
My
Array Length, 4 P | g _pta pta
i 2 m g E-"q  p
b * 2 1:1 21, 21
b
!“?' 8 2:1 31, 3:2
(e 4 3:1 41 , 4:3
- b 3:2 52 , B3
l 6 6:1 6:1 , 6:b
r ! 7 4:3 73, T4
A : 8 5:8 83 , 85
i , 9 B:4 9:4 , 95
l:.’- . 10 7:3 10:3 , 10:7
g;' 1‘
- / 11 6:5 1:6 , 11:6
) l 12 T:6 12:56 , 127
" 138 7:6 13:6 , 13:7
! 14 2:5 14:6 , 14:9 u,
r 15 8:7 16:7 , 15:8
16 917 16:7 , 16:9
g ) 11 9:8 17:8 , 17:9 §
: ".‘1 18 117 18:7 , 1811
} 19 10:0 19:9 , 19:10 .
20 11:9 20:9 , 20:11 ‘-
21 11:10 21:10 , 21:11 .
22 13:9 22:9 , 22:13
23 12:11 28:11 , 23:12
_ 24 13:11 24:11 , 24:18
N 26 13:12 26:12 , 25:13
! 26 156:11 26:11 , 26:156
©
\ i
;! 32
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Table 8-6—Probability of Ambiguity v« Channel-pair Phase Error for
b Three-element Intérferometers
Array . + 4| Probability of Ambiguity for Given ocy.pr
5 Length, sz=.’¢.;.mE=qu'ppq
2 0 =5 fo=10°|v = 12°|0 = 16°|0 = 20°
I 3 21 31, 3:2 -1 - <1E-7 |<6E-6 |8.70E-4
g ’, 4 3:1* 4:1, 4:3 ~ | <BE-7 |3.18E-5|8.74E-4|0.0126
%
" 5 8:2¢ 5:2 , b:3 - 3.63E-6| 65.79E-4 | 5.91E-3| 0.0389
4:1 b:1 , B5:4 - 8.67E-6 | 1.06E-3 | B.83E-3 | 0.0485
. 6 5:1" 6:1, 8:6 - 1.28E-3| 7.08E-3 | 0.0311 | 0,108
| 4:3* 7:8, T4 <1E-8 |3.09E-3|0.0137 |0,0485 |0.139
L ; 7 5:2 72, Tb <1E-8 |3.96E-3|0.0163 | 0,0647 | 0,150
6:1 71, T:6 <1E-7 |86.06E-3]|0.0222 | 0.0673 |0.170
"R ; 8 5:3* 8:3, 86 <8E-7 |0.0101 |0,0821 |0.0885 |0.199 -
; T 7:1 &1, 8:7 <2E6 |0.0171 | 0.0469 {0,112 |0.233 !
- 5:4* 9:4 , 9:6 45-6  [0.0212 [0.0648 {0124 |0,249 .
: 9 7:2 22, N7 1.1E.5 |[0.0279 | 0.0669 | 0,143 [0.271 M
h 8:1 91, 98 2.6E.5 |0.0361 |{0.0791 ] 0,160 [0.292 i
% 10 7:8¢ | 10:3, 10:7 B.1E-6 |0.0420 |0.0015 |0.177 |0.811 3
‘l!\l.‘l 2:1 10:1 , 10:9 1.61E.4|0.0592 |0.116 |0.208 |0.345 ‘-2
ey, i
6:5* 11:6 , 11:6 1.81E-4{0.0692 | 0.116 |0.208 [0.34b6 |
7:4 11:4 , 11:7 1.89E-4{0,0820 }0.120 [0.213 ]0.3561
11 8:8 i1:3 , 11:8 2.67%-410.0876 | 0.128 |0,223 }0.881 i
9:2 11:2 , 11:9 3.89E-4]0.0761 }0.1390 |0.237 |0.376 "
10:1 11:1 , 11:10 6.33E-470.0876 |0.164 |0.266 |0.393 }r
12 7:6* | 126, 127 6.645-4|0.0847 | 0.1561 |0.250 |0.389 3
111 121, 12:11 1.80F-310.119 [0.193 [0.2908 |0.436
*w optimum ratic for given L. ,
= = p, < 1E-10, ‘
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Table 3-6—-Probability of Ambiguity vs Channel-pair Phase Error for
Two-integer Set Four-element Interferometers

Maximum Probability of Ambiguity for Given ogy.pg

Spacing, ? 1

%
i
ala

0=5" lo=10°0=12° {o=15" | 0 = 20°

3 3:1 - <1E.7 2E-6 1.48E-4 | 4.43E-3
4 4:1 - 1.3E-5 | 2.756E-4 | 3.61E-3 | 0.0290
] 5:1 - 415E-4 | 3.26E-3 | 0.0186 | 0.0776
6 6:1 <1E-8 | 8.08E-3 | 0.0137 | 0.0485 | 0.139
7 7:1 <1E-6 0.0109 | 0.0339 | 0.0867 | 0.203
8 8:1 8E-6 0.0256 | 0.0628 | 0.187 0.264
9 9:1 7.06-6 | 0.0468 | 0.0976 | 0.185 0.320

10 10:1 3.41E-4 | 0.0738 | 0.136 0.232 0.371

11 11:1 1,12E-3 | 0.108 0.174 0.2717 0.415

12 12:1 2.798-8 | 0.136 0.213 0.319 0.455

*.. = p, < 1E-10,

As mentioned previously in Sec. 3.2, ogp.pg in the range 10° to 12° is typical of
present technology for wideband microwave systems--2 to 3 octaves of frequency coverage—~-
with lower and upper absolute limits of 600 MH2 and 18 GHz. ogyy.pr on the order of
8° typifies the channel-pair errors in the same category of systems utilizing RF calibra-
tion. The probability of ambiguity for ogy.pg = 16° and 20° has been included as an
admittedly crude estimate of the performance that might be experienced with an inter-
ferometer operating in a severe multipath situation,

A p, criterion of 0.01 to 1 percent maximum ambiguity is often set by designers of
systems to be used for location by triangulation with multiple DF cuts. As Fig. 3.2
shows, with 0cp.pr In the range 10° to 12°, the maximum allowable array length is be-
tween 8 to 6 half-wavelengths.

The angular accuracies of systems with baselines this short may be unacceptable,
This is the basic reason for synthesizing and employing arrays with additional elements,
In Sec. 5 it will be shown that the optimum four-clement urray of length ¢ = 25 half-
wavelengths hos p, = 0.115 percent for ogy.pg = 12°, and p, = 1.17 percent for

1 O
Ocu-pr = 16,
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4.0 FUNDAMENTALS OF FOUR-ELEMENT THREE-INTEGER

SET INTERFEROMETERS

The theory of three-element interferometers in fairly well known (disregarding some
minor inconsistencies in the work referenced in Sec. 3.0), There does not &ppear to be
any corresponding body of theory available for four-element arrays, especially with re-
gurd to the question conceming the existence of an optimum four-element array con-
figuration. With an understanding of the material presented in this section, the ESM
designer will be prepared for the exposition of the array synthesis tochniques of Scc. 5.0,
and he will be able to apply them without difficulty.

A four-element interferometer can be characterized by 4 antenna/receiver channels,
4 ~ 1 = 3 available channel-pair phase differences (necessary and sufficient for ambiguity
resolution of the overall array), and -4 - 2 = 2 subarrays formed by channels considered
three at a time. Sectlon 4.0 introduces several four-clement array configurations (some
of which ara not optimum) which have been widely used in the past. These configura-
tions are compared mainly on the basis of how efficiently the signal processing and math-
ematical operations needed in ambiguity resolution can be mechanized.

-

- A discussion of resolvable and unresolvable ambiguities in the two three-clement sub-
2 ' arvays that constitute a four-element array emphasizes that there is no need for either of
: the two subarrays to be nonredundant. That is, there is no requirement that cither of
h the subarrays be capable of unambiguous operation as a distinct three-element array —us

% long as the threc spacing integers defining the overall array are relatively prime.

; i Each subarray is characterized by a subarray ratio R; = m;/n;, One member of the .
e~ subarray ratio R (either m; or n;) contains a factor common to one member of sub- b
18 array ratio R, (either my or ny), dependent on the overall array configuration. This ~
. | highest common factor « is introduced, and the manner in which the ambiguity tolerance By
of subarray 2 is increased because of this factor o is fully exploved. W

The section closes with a development on canonlcal erray configurations in four-
element arrays. It is shown that the cascaded end-phase configuration of four-clement
interferometers is optimum from considerations of efficiency of hardware usage and
probability of ambiguity. This is believed to be a new result, and it was obtained with. S
out recourse to the analytical artifice of a fictitious off-axis fifth channel used by .
Hanson [21]. b

4.1 Three-Integer Set Interferometers

, Interferometers whose performance could be specified as a function of the two .
‘ spacing integers p and ¢ were classified in Sec. 2.2 according to which channel wus des- b
igated the phase reference, For arrays formed with the number of channels n = 4 and .. -
n = 3, clagsification can ue done on the basis of the channel (or channels) used as phase .
reference. The number of possible array configurations increases rapidly with n. It will p.
be shown later (in Sec. 4.4) that in four-element interferometers, the probability of A3
ambiguity is dependent on the array configuration as well as on array spacing integers
P, q, and r—in contrast to three-element interferometers.
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Figure 4-1 illustrates several configurations possible in four-element arrays. Param-
eters for these arrays of Interest to a system designer are given in Table 4-1,

One array comparison parameter is the number of phase comparisons utilized in
8. resolving the overall array ambiguities. 'The number of these ambiguities is 8 = p + ¢ + 1,
: : for 8, within ~90° to +90°; and p, g, and r represent the element spacings in half-wave-
lengths at the operating frequency. The minimum possible number of these comparisons
is obviously (n — 1), since the use of less than (n — 1) phase comparisons implies that the
phase information from one or more channels has been discarded. The cascaded mid-
- phase array requires four comparisons in resolving p + q + r = £ ambiguities. All of the
TN other array configurations require (n - 1) = 3 comparisons.

*This ratio usad after p, ¢ (osaivad by fﬁ‘mn

Fig. 4-1-—Various configurations for four-clement arxays
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~ wideband receiving systems usually require a drive level on one of the input ports to be

ROBERT L. GOODWIN

Note: For the “infinite-resolution” phase-measurement systems considered here, imple-
mentation of other comparisons in addition to some minimum set is easily accom-
plished. Thus, the phase difference ¢, 3 is equal (formally) to ®; o + P, g, in-
cluding any errors. In quantized-phase systems, the direct representation of L S
may differ from ¢y 5 obtained by summing quantized representations of ¢ » and
d)z g. Hence, depending on the degree of quantizing implemented, the system de-

signet might be advised to obtain &, 3 directly by use of the additional phase
comparator.

A second array-configuration comparison parameter is the number of phase refer-
ences needed to implement a particular array. The number of high-level input signals
that must be provided is equal to the number of phase references. Minimizing this
numbar is desirable, since the analog phase comparators in widespread use in present

at least 10 dB stronger than the other to facilitate accurate recovery of sin ¢ and cos y,
the quadrature components defining phase difference.

Another array-configuration comparison parameter is whether or not the 8 =p + q +r
ambiguities associated with the overall array length are resolved directly as a consequence
of the ambiguity-resolution process. If not, additional operations and calculations will be
needed. Table 4-1 shows, for n = 4, that only the cascaded end-phase and muitiple end-
phase array configurations meet this criterion.

A final array-configuration comparison parameter is the subarray spacing length com-
mon to each of the two ratios characterizing the arrays shown in Fig. 4-1. The subarray
spacing length common to the two ratios influences the order of the ratio. An example

is a comparison between the midphase configuration and the cascaded end-phase con-
figuration for p = 3, ¢ = 1, and r = 7 half-wavelengths.

Midphase

Common spacing: ¢ = 1,

Coramon spacing: p + g = 4.

sR2e =

Previous analyses into the theory of multiple-clement umbiguity resolution have proceeded
on the agsumption that composite arrays having low probability ot ambiguity could only
be achieved by combining subarrays of low order. 'Thus, inordinate interest has been
placed on the hybrid midphase and additive midphaso configurations. It will be shown
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later in this section that the cascaded end-phase and cascaded midphase configurations
exhibit the lowest probability of ambiguity for given p, ¢, and r because they have the
largest common spacing p + q, as the arrays are configured in Fig. 4-1, It will also be
shaown that if the subarrays are redefined properly, all array configurations in Fig, 4-1
are equivalent except the multiple end-phase configuration. This is a new result in the
theory of four-element interferometers,

In summary, the four-element cascaded end-phase configuration
¢ Employs the minimum possible number of phuse comparisons—3
® Requires the smallest number of phase references—1

® Resolves the overall length p + ¢ + r = € directly as a consequence of the
ambiguity resolution process

¢ Exhibits the lurgest spacing common to the two subarrays constituting the
overall array—p + q.

4.2 Resolvable und Unresolvable Ambiguities in Subarrays of Three Elements
In this section, the distinction between resolvable and unresolvable ambiguities in
subarrays will be defined. ‘The material will be useful in understanding the discussion on

ambiguity constraints in the section following,

For a four-clement cascaded end-phuse array, as shown in Table 4-1, the two sub.
arrays are defined by

« D +tq my
.RM S el (4-1a)
and
+q +r mey
5R2c = ——I—J“ +q il m:" (4-11))

Analogous to the requirements for an end-phase three-eloment interferometer, each of the
numbers my and n; (i = 1, 2) associated with the two subarrays must meet the criterion
for a reallzable interforometer. That is, m; and n; must be relatively prime intogers.
There is a corresponding restriction that the spacing integexs p, p + g, and p + ¢ + r be
relutively prime, as will be shown in the next section on ambiguity constraints.

As an example, consider tho cascaded end-phase array defined by p= 3, ¢ = 8, and
r= 10 half-wavelengths at the operating frequency. The subarray parameters are

Subarray 1

Pty 8+3 6 4 M 2
p TRty e tH T
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Subarruy 2

ptg+r 3+
ptq 8

The individual three-element interferometers are respectively “three-times ambiguous”

[(p + q)/my = p/ny = 8], and “two-times ambiguons” [(p + ¢ +r)/my = (p + q)/ng = 21].
The overall array, as well as the individual subarrays, can be resolved, however, hecause
the four-element array was synthesized from two realizable ratios. An equivalent way of
stating this is to say that a four-element array is resolvable provided at least two of the
three spacing integers are relatively prime. Thus, the array formed by p = 3, ¢ =3,r=9
is not resolvable, whereas the array formed by removing the common factor 3, p =1,

¢ = 1,1 = 8, resolvable.

In the above example involving subarray 1 with p = q = 3 half-wavelengths, theie are
p + q = 6 angles of arrival aver & —=90° to +90° field of view that will give rise to the
same phase code ¥ y.uvuituble = P1,3 (mod 27). This is, of course, a restatement of the
principle that a three-element array of length £ = p + ¢ (in half-wavelengths) cannot ex-
ceed my \/2 wavelengths; otherwise there will exist ambiguities beyond the capability of
the channel-pair spaced p half-wavelengths to resolve.

Subarrays which have no unresolvable ambiguities over the field of view are called
“unambiguous.” Subarrays which exhibit one or more unresolvable ambiguities over the
ficld of view are therefore called “ambiguous.”

Table 4-2 lists all possible four-element arrays of length L = p + ¢ + r = 16 half-
wavelengths, with the associated subarray ratios R, and Rg, for the cascaded end-phase
configuration (subject to an example constraint of p = 8). The purpose of the listing is
to illustrate the conditions unambiguous and ambiguous,

" 'he numnber of unresolvablé amblguitics for each subarruy are
subarray 1 Ay = (p+q) - my (4-2a)
subaxray 2  Ag = (ptqt+r) - mg. (4-2b)

Of the entries in Table 4-2, only 4 out of 12 have both subarrays 1 and 2 unambig-
wous. It ls stressed, however, that the usual impetus for implementing atrays of four or -
mote nrlements is to achieve the higher angular resolution implied by larger overail spacings
(with an acceptably low probability of ambiguity). Thus, the array designer is normally
indifferent to employing angular estimates from any spacings except the overall array
spacing £ An exception to this statement occurs if all of the array spacings are used to
form an estimate of the angle of arrival, e.g., 8s in perhaps maximum-likelihood processing
of the electrical phases from the appropriate channel-pairs.

4,3 Ambiguity Constraints and Probabilily of Ambiguity for the Four-element
Cuscaded End-phase Array

Explicit relations for the ambiguity constraints in the cascaded end-phuse configura-
tion of a four-element array will be derived in this section. The derlvations for the other
array configurations given in Sec. 4.1 are similar,
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2 9 I \ Table 4-2—Parameters of Four-element Arrays of Length 8= p+¢ +r=16
,?5 ' } : (subject to the constraint p = 3)
; Number of Unre-
i solvable Ambiguities,
; Sp;d_'_‘g;“f"%e“ R = P+a)p| Ry = (w+q+ri@+q) AinQ;
4 Al l A2
i §- 2-11 5:3 16: & U U
! 8- 4- 9 T:3 18: 7 U U
. 3 8- b 11:3 18:11 U U
‘\ §-10~ 3 13:3 16:13 U U
[
. 3- 1-~12 4:3 4: 1 U 12
’) 3- 65- 8 8:3 2: 1 U 14
g 3~- 7~ 6 10:3 8 b U 8
i 3-11 - 2 14:3 8 17 U 8
. - 8- T 3:1 16: 9 8 U
s 3~-12- 1 61 16:15 10 U
f 8- 8-10 2:1 8: 3 4 8
4 3- 9+ 4 4:1 4: 3 8 12
; Notos:
:’ N ! 1. U = unambiguous (no unresolvable ambiguities). )
. 2. Ay, number of unresolvable ambiguilies = (p +g) - mq, In Ry, F
¥ 3. Ag, numbaer of unresolvable ambiguities = (p + g + r) - my, in Ry, |

e It will be convenient to introduce expressions for the array spacings in terms of the
subarray ratios Ry, and Rg,.

- e

m!.’ " :"
‘ﬂl Consider a four-element cascaded end-phase array (sce Fig. 4-1a). The two subarray "
i | ratios, with the subscript ¢ dropped for brevity, are I
l‘,"‘ 3 . . ,‘
ﬂ'- '< ' m am! + .
"o lf - ___1 = 1 = ,p q h !
r foewm W " (4-3u) ]
1y o and
i \ Mmqy mo ptaq+r

§ R em—— &= s -

Ry iy 'y ¥ q (4-3b)

. with o an integer introduced for generality, to account for possible common factors in \

my and ny (common factors in ny and mg are irrelevant). Another ratio Ry, the product
of R, and Ry, may be defined as
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| R mymy  amimg  my
o = = £3  amemnn
' 0" iy T pianh - Mo

Praptqg*r prqgtr
P ptgq P

ldentifying like terms in the denominators of the two forms for R provides

hyna

!
p= n1n2 wa

Substituting this value for p into Eq. (4-3a) gives

UP
ptrq “g t9 m
p mhg  ny '
a

l and solving for gq,

D Y V. S Sa—

No
l. q=T(m1~n1).

" Adding Eq. (4-4) to Eq. (4-6) gives

m
v co p+q=—=,

| ' Substituting this value for (p + q) into Kq. (4-3b) gives

!IIIN2 + p
ptqrr _a M
—_— —- 1tz MmN n
p tq 172 2
and solving for r,
my

ro=— (my —ny).

Summarizing, we have

Ring
p =
. P ny L
, q = =5 (myp-ny) L=p4+g+r
A my ALY
: ro= === (my - ny) w

where
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(R B mrm—— D ee— m, —_— = S
1 ny p 2 ho p¥q '

1

a = factor common to m; and ny.

With the aid of subarray ambiguity diagrams, the ambiguity constraints for a four-
element cascaded end-phase array will now be derived.

Figure 4-2 shows the subarray ambiguity diagrams for the array ratios Ry=my/ng = 4:3;

Rg = mg/ng = 11:4. Since my = ng = 4, the common factor « in Eq. (4-8) is 4, and p, q,
and r are given by

S-m=1 % t-pratr

QD
i

11.

[~ Mn’ﬂ
4

-
[

4
Ta1-4) = 7

The ambiguity diagram for subarray 2, unresolved by subarray 1, has umbiguity inter-
vepts of

T m o
Aoy g.a1 = 7y =g (45,

m m v
Ay geAt = Ty <11 (16.36°) .

Similarly, the ambiguity diagram for subarray 1 has ambiguity intercepts of

T T
Awl ,3-1\1 = -ﬁ-l- = "g‘ (()00) .

Bpy,2-A1 = 7,,’5; = (48°).

It will be noted that the trajectorles for suburray 1 are labelled with unprimed numerals
below the trajectories of slope 4:8, whereas the primed numerals above the trajectories
show parametrically the equivalent trajectory for subarray 2. This dual labelling reflects
the fact that as 0, varies from -90° to +80°, the channel puir spaced (p + q) half-
wavelongths manifests 4 X 27 rad phase change, whereas the channel-paiy spaced (p +q +7r)
half-wavelengths manifests 11 X 27 rad phase change.

The spucing integers p = 8, ¢ = 1, and r = 7 for this example have been chosen so

that both subarray 1 and subarray 2 are unambiguous in the sense of the development of
Sec. 4.2. 'That is, the appropriate processing of each of the suburray phase-compurator
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Fig 4-2--Ambiguity diagrams for unresolved four-element intorferometer
(Ry=myitg w3 @ Rymmying = 11:4)




A

NRY, REPORT 8006

outputs can provide a single (though inexact) estimate of 0, for sufficiently small phase
errors,

The channal-pair errors for the two subarrays are

Subarray 1
; Aoy, = Ap| ~ Apy = Apy g
| Apry = Apy = Bpg = Ay g. (4-9a)
: | Subarray 2
i Bps, = Apy ~ bypy = Ay
5 Apr, = bpy = Apy = Aey g, (4-9b)
' where S;, [,; = small and large spacings for subarray i{. For zero-meon channel phase
o errors, the associated standard deviations of channel-pair phase error are
“"" . Subarray 1
:’ oy, = [of + o1V = 0y
) N g, = [o? + cv%]”2 =04, (4-10n)

Yy and

Subarray 2

i
1

¢ « 1/2
us, = [of +of]

1/2

0, = [0} + 0¥] 0y.4 - (4-10b)

For all 0y j ¥ UcH.PR» J = 2 to 4, tho ambiguity variuble in Kq. (3-18) for cach of the
two subarraya is given by

1/2

Oy, = oon.primf ~ Lp,mpn; + nfl
‘ = Ocn-pnl'"5a ~omng nf]m, 4-11)

since p, = +0,6 for end-phase wrays, Consoquently,
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0g, = Ocy.pr V42 -4+ 3+ 37

= OeH.pr V13 for subarray 1,
and
O¢, = OCH.PR \/112 w11 4 + 42
= OcH.pr V93 for subarray 2 .
Suppose that the rms electrical phase exror botween channel pairs ogoy.py = 12.5°.
Then,
0, = 12.6°y/13 = 45.07°,
und
Oy = 12,6° /93 = 120.55°,
The integration limits in Eq. (3-19) uxe
=]
Subarray 1: :EJ%Q-— = +3,994,
1
o
suburray 2 + 320 = 41,493,
du

When Eq, (3-21) is used, the probability of ambiguity of tho individual subarrays is

if

0
Suburray 1@ p, = orfo <~1289-~) = 6.497X 1075,

99,

i

Subarray 2: p, = erfc (7155—%»‘): 0.1364 ,
V4 Yy

The p, for subarruy 2 is over three orders of magnitude larger thun for subarray 1. This
dramatically {llustrates the desirability of utilizing tho information from channels 1.2.3
(subarray 1) to improve the ambigulty porformance of subarray 2, composed of channels
1.3.4,

The ambiguity diagrams for the two subarrays illustrate how this may be accomplished.
Suppose that §, = 0° and that Apy 5 = 36.818°, Ap; 3 = 49.001°, and Ay, 4 = 45°. (Note:
These error sets have been chosen to place the error sots (Agpl.?. A\ol_ 3) o5 well as (A, 4,
A\OL 4) directly on ambiguity-plane trajectorios, but this assumption is not essential to the
following development.) Now, the errar set (A o, Ay 3) lies on trajectory 0 for sub-
array 1 (lower diagram in kg, 4-2), whereas the error set (Agpl'a, Aw1'4) lies on trajectory
3’ for subarray 2 (upper dingram in Fig. 4-2).
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If the phase-comparator output from only the larger baseline in each of the two sub-
arrays was used separately to form an estimate of the angle of arrival, the results would
bo as follows

Subarray 1: .
s A0 [+}
6, = gin=1 0 X .’160 + 49.001° | _ 3.91° ,
) X 8360°
Subarray 2.
(-] o
0,,2 = sin"l |3 >(11360 * 451 = 3482,
N X 860°

Thus, although the channel-puir phase ervors are comparable in magnitude, since trujectory
3' for subarray 2 is not the truoe trajectory. using the phase information from subarray 2
alone provides u grossly Incorrect angle-of-urrival estimata,

Given that the orror set (Ayy o, Apy y) for subarray 1 lles within the boundaries
around the trajectory associuted with the true angle of urrival, the following items nay
o noted

® The true trajectory for subarray 1 is 0,
® The true trajectory for subarray 2 s 0,

® The contiguous subarray 2 trajectores (plotted on the trajectories for subarray 1)
aro 1' for 0, (+) and 10’ for 0, (-),

® The adjucent ambiguous trajoctories for subarray 2 in Fig. 4-2a are 8' and 8,
which are ng ~ 1 = 3 greater or less than (mod 11) 0':(0+38=3;11- 3= 8),

¢  Trajectorios 6' (3 + ng - 1= 6) and 5’ (8 “hg *+ 1= 6) lle midway between tra-
jectordes 0' and 1, and ' and 10, respoctivoly.

"The p, caleulations mado above show that it is almost a cortainty that the true tru-
joctory for subarray 1 is 0 for the given example, subject to channel-pair orrors of 12.5°
rms, with Gaussian distribution, 'The only subareny 2 trajectories possible, given trajec-
tory 0 on subarray 1, are 0', 1', and 2a’. Trajectory &' in Fig. 4-2a for subarray 2 is
adjacent to trajectory 0/, whereus trajoctorios 1" and 2' are four trajectorios to the dght
and left, rospectlvely, of teajectory 0°. Hence, the true trajectory for subarray 2 is 0, to
a very high probability.

Subarray 1, in effect, incroases the width of the ambiguity boundaries around the
phase trajectorics for subarcay 2 by the factor my = 4, This Is shown in Fig, 4-3, the
amblguity diagram for Ry = mgyiny + 11:4, revolved by my in Ry = mying = 4:3. Rather
than a square 27 on each sido, the ambiguity-plane surface is now 2r long on the m, axis,
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t k 2n

L de14.a {

deia Al

~ v — \
RESOLVED  rragectorvo TRAJECTORY 1 TRAJECTORY 2 TRAJECTORY 3

" "
Avyq.n =M Y dera.a = omy ™ X
4 .

(RESOLVED BY my) » 4 f— = 1t 1807) (RESOLVED BY my} = 4 I (66.45°)

Fig. 4-3— Ambiguity diagram for Rg = mying = 11:4 resolved by mq in Ry w mqy:nq = 4:3 s

but is increased to 4 X 2m long on the ny axis, 1t is readily seen that as trajectory 2' B
pierces the first 27 ordnmte to the right of Ay; 4 = 0, there is no need to translate this H
o intersection point back to the ordinave at 4w 3 = 0. The new ambiguity boundary be-
g | . tween trajectory 0’ and 1’ (in reahty trmectory 6' in the previous illustration) is two times .
. : the distance between trajectories 0' and 8' in Fig. 4-2a. '

| In this modified ambiguity diagram for subarray 2, resolved by subarray 1, the am-
' ‘ biguity intercepts are

: APra-A1 ¥ My % = 4 {"= T (180°),

L .
AW‘,:}'AI = My m‘; = 4 'i?'ri (65450).

1 The new integration limits in Fq. (3-19) for subarray 2 are

M (] '.
$MI80 4 X 180 ypang, ;
Og, 120.55°

| "Thus, the p, for subarray 2, resolved by subarray 1, is

. my 1800
B rfe (-
Pq er \/E.Ud,h

) < 2.3 X 10°9,

If independence between ambiguities in subarray 2 and subarray 1 is agsumed, the
overall array p, is given by
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Paoverst = 1 = (1= Py ) (1 - pg,). (4-12)

Ior the example above,

1~ (1-6.497x 10°6)(1~2.3x 10°9)

Pg.overall =

6.49723 X 105,

i

This is a negligible increase from the p, for subarray 1 alone. However, the overall array
has a length R = 11 helf-wavelengths, whereas subarray 1 haes a lengin p + ¢ = 4 half
wavelengths, Thus, the accuracy of angle of arvival estimates using the whole airay is
almost three times (11/4) better than for subariuy 1 alone,

The geometric arguments above illustrate how the ambiguity boundaries for sub-
array 2 in a four-element cascaded end-phase intorferometer ure extended by a factoy re-
lated to the m; spacing integer in subarray 1. This ambiguity constraint relaxation on
suburray 2 can also be developed analytically, as shown below,

The ambiguity constraints for the two subarrays {considered as isolated three-cloment
arrays) cun be written in several forms

Array Ratio Form

Subairay 1 |nyAp; g ~ myApy gl 2 7 (4-13a)

Subarray 2 |ngApy 4 =~ myde gl 2 W, (4-13b)
Spacing Integer Form

Subarray 1 |pApq3 ~ (P +Q)hpyl 2 w (4-14a)

Subseray 2 [(p+q)Apy 4 ~ P +qtr)Apal 2 1, (4-14b)
Spacing Integer-Channel Error Form

Subarray 1 |-y, + (p+q)Apy ~ pApyl 2 7 (4-162)

Subarray 2 |-rAg; + P +q+r)Apy - P +q)Agyl Z (4-15b)

where
p=n1:2 n+q=T~1£2*
my

r o= a (m2~712)

o = factor common to m, and n,.
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If the subarray ratio-integer forms for the spacing integers p, g, r, ... are used, and if sub-
array 2 is resolved by subarray 1, the ambiguity constraint Eq. (4-15b) becomes

mying ryRa

=== Apg ~ — Ay 2 mym. (4-16)

my
o {my —ng)Ayy +

Multiplying both sides of the inequality above by a/m, yields
|~(mg ~ ng)Apy + myApg ~ nghpyl 2 am,
which simplifies to

B > Ambiguity constraint for subarray 2 qn
IngApy 4 — mydyy gl 2 ‘”} resolved by subarray 1 (41D

using

Dpy = Doy & Apy 4, APy - Aoy = Bpy g

. The ambiguity constraint discussion in this section culminating in Eq. (4-17) can be sum-
i C marized for the four-element cascaded end-phase interferometer as follows

Four-Element Cascaded End-phase Interferometer

® Array Constants

T T S
Ratins: R = TR (4-18u)
R, .Mz pratr .
2"y X (4-18b)
Spucing _hhg _Na U
Integers: p=—g=y a= g (mg-nml), re=-5" (my —ny)
mimy
p+q+rx‘. Q.: o (4‘180)
a = factor conunon to my and ngy

® Ambiguity Constraints (each subarray considered sepurately)

Subarray 10 InjApy g - miAp gl € 7 (4-184)
Subarray 2: [nglpy 4 - my Ay gl Zm (4-18¢)
52
H ' '
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® Ambiguity Variables

1/2 .
g, = Ocu.prlmt = 20, myny + nil ! (4-18f)
= 2 .. 211/2
0p, = OgH-prIME = 2pg,many + n3l (4-18g)

® Integration Limits

Subarray 1: &= 4-18h
y Oy, ( )
()
Submmay 2+ 4380 (4181)
¢y
¢ Probability of Amblguity
180°
Dy, = orfc/ .-——\ (4-18j)
“ \vZoy,
«180°
Py, = erfe [~—=—— (4-18k)
' <\/2‘0¢2>

The relations above were derived analytically and hold for all four-clement cascaded
end-phase arrays, rogardless of whether the individual suburrays are unambiguous or am-
biguous in the sense of Table 4.2 in Sec. 4-2,

Table 4-3 shows examples of caseaded end.phase arrays falling into two classes:
Cluss A = p + ¢ + ris expressible directly as my,
Class B ¢ can only be expressed us mymy/a.
Note: 'The meaning of the terms in parentheses will be oxplained below,

It should be apparent from Fig. 4-3 that « is the factor by which the width of the
wmbiguity dingram for subarray 2 is incressed. Even though for the Class B, R, = 411,
5R2 = 3:1 example, o i8 only unity, it should not be ussumod that this is an axeay with
poor tolerance to ambiguitios.

The ambiguity diagram for this areay (Fig. 4-4) shows why this is so. Since (P +q+r)
(p +q) = 3, the trajectories 9, 4', and &' overlay respectively the trajectories 0', 1" and 2",
In the terminology of Sec. 4.2, suburray 2 is ambiguous-resolvable, ‘T'he factor « is unity
(the common factor between my = 4 and ny = 1 i8 1); consequently, even with the infor-
mation from subarray 1, the ambiguity diagram for subarray 2 cannot be extended, os wes
the ense in the previcus example, There is no need to do this, however, because subarruy 2

53




'8
ROBERT L, COODWIN
'y
by
B
5
‘vi am
% ' - 31
Y14 pHa+r my
Sy I - -—D.'T;l—h - _.'.1?
~ {
. 'v d,]" Al’r" pw= i
R, -3
= 8
"« = prqer = 12
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Table 4-3— Examples of the Two Classes of Four-element
Cuscaded End-phase Arrays

Array Subarray Ratios . Array Spacing Integers
Class Ry = mying | Rg = mying p q r L
e ———— — = Y
A 43 11:4 4 3 1 1 11
A 3:2 11:6 3 4 2 ] 11
. 1:2 2
B 4:3 (14:4) (4) 3 1 10 14
. 3:1 1
B 4:1 (12:4) (4) 1 3 8 12
Notes:
1, & v factor common to my and ny.
Spnm 'L%'-"-. q= "?‘ {my=-ng), r = %‘-(mz—nz); R=ptqrrs= %”—3—‘-

{ expressed in a form which already is “reduced’ from an ambiguous higher-order form.

This can be illustrated as follows.

Suppose that subarray 2 is expressed o8 R, = motny = 12:4, such that my must
2 2: 1y 2

equal ¢ (disregarding any common factors in my and ny). Then « = 4, Direct application
of the spucing integer equations will provide the same spacing integors p, q, and r as long
as the factor « appropriate to the mg, ny set under consideration is used. This is indicated
in Table 4-3 by listing, where necessary, & second set of purameters within parentheses for

the Class B entries.
Now, from Eq. (4-18g),

0, = Ccmenl122 - 1204 + 421"

= Ucu_pn(‘l \/’n , or 132.290 , for OCeH-PR T 12.50 '

The intogration limits for subarray 2 (with mgy =12, ng = 4, o = 4), using Kq. (4-181), axe

«180° 4 X 180°
t = = +6.443 .
0¢2 12.50 X 4X \/7 5 3

But, these are precisely the same integration limits that result with Ry = 8:1, =1, 88
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v Uq)a = U(';u,pn[az - 31 + 12] = 33.070, for OCH-PR = 12.50; n
La180° _ 1 X 180°

L " g, saor | oA4d ‘i

. It is apparent that one form of expressing Ry for Class B arrays exhibits m, and ny
" without common factors, and with & #* m;y. But the second form manifests my and n,

: with & = my, and with a common factor @ = my. Thus, if my and ny are expressed in a
form that preserves any common factors, and if the appropriate modification is made in
«, the distinctions between Class A and B disappear,

In Sec. 5.5, the tabulated results of an array synthesis procedure developed earlier
in that section will be presentod. It will be seen that consistent expression of mg and ny
directly a8 mg =2 p+ g + r = {, und ny = p + q, with &« = m; highlights the importance
of basing a four-element array synthesis procedure on the subarray 1 integer my, It is
also stressed that the subarray 2 ambiguity constraint development ending in Eq. (4-17)
holds no matter in what form my and ny are expressed, provided « is correctly defined.

i 4.4 Ambiguity Constraints and p; for Four-element Arruys of Various Configurotions

e A 1 o T+ a1 e B ol T

i ‘The theory developed in Soc. 4.8 for tho ambiguity constraints and p, assoclated
with the cascaded end-phuse array will now be extended to other four-clement array con.
S figurations, Attention will be concentrated initially on the other four configurations of
P Fig. 4-1 (see Sec. 4.1), Later, the developmont will be generalized to all possible array
configurations using three phase differences~—the minimum number required to resolve
tho ambiguitics In a four-elomont array.

o

Subarray ratios R{ and Ry for the remaining four configurations of Fig. 4-1 can be
oxpressod In terms of the ratio numerators and denominators by cuxrying out analyses .
similar to those appearing In Eq. (4-3) through Eq. (4-8) of Sec, 4.8. The results of such .
unalyses are given in Table 4.4, which, for convenience of reference, also lists the appro-
priate parameters fox cascaded end-phaso arruys.

Conslder the hybrid midphase configuration, as shown in Fig. 4-1c as an example of
how the ambiguity constraints, couplod with the factor a—the greatest factor common to
tho two subarray integers assocluted with the common spacing—lead to the p, function,
The derivations of the arabiguity constraints aro siinilar to those for the cascaded end-
phase configuration in Sec. 4.3, Eqs. (4-18) through (4-17), Since the derivations are
similar and are based on the same kind of goometric arguments, it will be convenient to
express the purameters for the hybrid midpbase configuration in the same format as the
summury for the cascaded end-phase configuration following Kq. (4-17) in Sec. 4.8.
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.y ROBERT L. GOODWIN
} _ \l Four-element Hybrid Midphase Interferometer
B AR
‘ '-I- i ® Array Constants
i e
s . 1 _p
Ratios: Ry, = A = (4-19a)
P
: _ % qgtr
i Rg, = e (4-19b)
i Spacing _eafy _hife _ fileg — fp)
. | Integers: P~ "a » 977 IS o
2l 1
' eyfy + fre
. ptrqg+rs= =-1—2——a-—f-l—% (4-19¢)
)
« = factor common to f; and fy
H
® Ambiguity Constraints (each subarray considered separately)
. Subarray 3:  |f1Ap1,p - e189g3] Z (4-19d)
| Suban‘ay 2: lszthA - G2Atp2'3| % T (4'190)
I ¢ Ambiguity Variables
- 2 _ o fy 4 F211/2 4-16¢
_. 0y, = ocy.prlef - 2omerf1 + f7} (4-101)
\‘..‘.l’,' - [‘2_2 + 2]1,2 (4-19
s O0p, = Ocu-prle2 — 2peeafy * f3 8)
' ® Integration Limits
Q
Subarray 1:  # 1010- (4-10h)
1
Subarray 2: % 9_,61_§__Q_ (4-19i)
Y2
® DProbability of Ambiguity
180°
. pa e erfc( ) (4‘19j)
. ! \/p‘.o\pl
«180°
P, ert‘c( - ) (4-19k)
* V2 Uy
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With the information {rom Pig. 4-1 and Table 4-4, similar summarics can readily be
gonerated for the remaining array configurations—cascade midphase, additive midphase,
and multiple midphase.

Calculaied p, ure given for all array configurations in Tuble 4-5, with either p = 6,
g=4,r=11orp=4,q =6, r= 11, subject to 6oy.pg = 12.6°, thus lending insight into
the importance of the factor a on overall array performance, ‘The overall array length 2 =
p +q +r= 21 half-wavelengths,

In the p, calculations, it has been assumed that ambiguities in subarray 2 (resolved
by subarray 1) are independent of ambiguities in subarray 1, [Note: Later, in Sec, b, an
exact expression involving integration of a bivariate Gaussian density function will be
given for four-element arrays. It will be seen that for most cases of practical interest, the
assumption of subarray independence causes negligible error in overall array p,.]

Table 4-5 shows that all array configurations are characterized by identical subarray 1
py. This results, of course, from the fact that any configuration of three.element array,
end-phase left, midphase, or end-phase right, hus the samo p, for given p, q, und dgy.pR.

The fuctor o for the five configurations varies from a maximum of § to a minimum
of 1. In addition, although it is not shown explicitly in the table, the subarray 2 ambi-
guity variable also varies, Consequently, the p, of subarray 2 ranges widely. The tabula.
tion of overall p, shows that the multiple end-phasge configuration i cloarly inferior to the
others for p = 4, ¢ = 6, r = 11, For these spuacings, multiple end-phase exhibits p, two
orders of magnitude inferior to cuscaded end-phase,

It might be conjectured thut hybrid and additive midphase arrays cannot achieve as
low an overall p, ns cascaded end-phase and cascaded midphase arrays, This conjecture
is Incorrect, us the following development will show,

Consider the hybrid midphuase configuration, Suppose that
1, the array spacings are transformed according to the rules
r->p'(=11)
q - q' (=4)
p > r(=6),
but that

2. the location of the phase refexence at chunnel 2 remains unchanged.

Now, by redefining
R L

(R 1" TN eremmemetmnats NI amesan (D asmwder

q' V1 Uy
814
( y 5‘2) ,
and
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we can easily show that
«a = factor common to u; and vy
'Eix ) = B,

Figure 4-b shows the original, as well us the transformed, array.

i‘\ Voo It cun bo seen, by referring to 'l'ablo 4.5, thut the parameters for the transformed

h. array are identical to those of the original coscuded midphase array, which in tum has o
. P, ¢quivalent to the cuscaded end-phuse array. Thus, by redefining the spacing integers

. ' und the directions in which the subarruys oxpand, it has been shown that hybrid midphase
¥ arrays ure equivalont to cascaded midphase, and ultimately, to cuscaded end-phase arrays.

(A} ORIGINAL CONFIGURATION

@ - FACTOR COMMON Y0
1, AND 1,

4 SPACING COMMON 1O
BOTH SUBAHRAY HATIOS

(B) TRANSFORMED CONEFIGURATION

’ 4
pt 9’ ! ot g u ooy
1 2 .ﬁ"' oo ———. eam————
v vy v

' n’ uy u;
. H 2
.‘}?. e e A
dm I +q V3 ()lv-,.7

P12 P2 P @ FACTOH COMMON TO
Uy AND v,
r 14
. . . I t'vg’ SPACING COMMON TO
SPACING THANGFOHMATIONS: ROTH SUBAHRAY RATION
remsdp’, gmdd’ pe=dt pry

Pl 4-5- Origlual and transformed fourelomont hybrid midphase arrays
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4,6 Canonical Configurations for Four-element Arrays
Canonical array configurations may be defined as those for which
¢ The minimum number of phase comparisons are implementad,

® The overall p, is the lowest achievable for specific array spacing integers
Pr@y Ty v,

In Sec. 4.5, intuitive arguments showed that the cascaded end-phase configuration was
optimum, This optimality of the cascaded end-phaso configuration will now be proved.
It will bo couvenient to precede the epecific development for n = 4 by some observations
on wrrays using an arbitrary number of olements,

Consider an n-element array where (as shown In Fig. 4-1 for some four-clement con-
figurations) the antenna recoiver channels axe numberoed from the left as (= 1, 2, ...,
5y «vvy n. Adopt the convention that for uny clectrical phase angle &y ), provided by in-
strumentation associated with these channels, channel j Is denoted the phase reference.
Thus,

on
'l’j,k = "X' dj,k sin Ou

o +. k> )
w 55 (xp = xp) siny Og (+) (4-20)
~ k<

whore x), I8 tho spacing of antonna k& from untenna 1, x; = 0,

Obviously, by definition &, ; = 0. Further, &; 3 = ~d, ;. Forn = 2, 8, or 4, mutrix
representutions for the channel-pair phuse variabled are

n= 2
. 0 "’1.2 0 b
([)2 = ) (4-21&)
"'(!)1,2 0 -p 0
n=3
0 Py Py 0 p (p+q)

(I)a e ,,_(|,1‘2 4] (|)2.3 = ] 0 q (4-21b)
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n =4
X i 0 (1)1'2 (bl‘a ‘!)l,q B Q p (p+q} (b+q '0'?'51
~ Pz 0 byg dyy ~p 0 q (a+r)
: q)4 wt = ¢
; ~P13 ~Pgg 0 Dy, ~(p+q)  -q 0 r
R ~0y 4 ~bgy ~P3q4 O ~prgtre) ~(g+r) v 0
K . - (4-21c)
¥y wibh«b=-2.—f-%sin0a=1rsin0,.
tl
k' Extension of this channel-palr phase matrix to n » b should be obvious, It is em-
o phasized that these matrices list all possible channel-pair differences, but that usually, a
’ ' particulur set of (n - 1) p' so differonces are the only ones implemented in an array of a
' glven contlguration,
By inspoction, it can he seen that the n? elements in these matrices are apportioned
' s
L . ® number of comparisons @;; = n(n- 1)/2
‘ ' ® number of compurisons &y ; = n(n-1)/2
® number of comparigons ;; = n
total = n?

Eliminating the phase differences ®; ; which are not functions of the angle of wrrival in
the systems undor consideration in this report leaves only n(n - 1)/2 different comparisons
(excluding negutives) possible in an n-element interferometer. The munber ny of theso
comparisons for 2 < n < 7 is

n Ny
2 1
3 3
4 6
b 10
6 16
7 21,

It is obviously nocessary to implement only (n ~ 1) phase comparisons in an n-element
intorforometer, if these comparisons make use of the phase Information from all n channels.
The number N, of different sets of (n - 1) comparisons 8 given by the number of combi-
natione of Nyy tuken (n - 1) at a time, or
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)
b N = ! 4-22
& 0T - Ding-n+ D (4-22)
.
S For2<n <17, N, is given below.
0 k4 Ny
"} 2 1 Note: For n = 3, N¢ includes mirror-image
ool 8 2(3) configurations; for strict consistency then,
f 4 o with n = 2, N,, should be equal to 2.
6 3,003
7 54,264
! For n = 3, the matrix form of Eq, (4-21b) provides an illustration of the physical counter-
R part of N,,. The first tow of this matrix defines un end-phase left array, the middle row
‘ ’ defines a midphase array, and the bottom row defines an end-phase right array.

For n = 4, it is difficult to visualize all 20 possible arrays with just the matrix form
of Eq. (4-21c). Therefore, the phase differences ¢ :fined by the matrix form are used
(n—1)= 3 at a time, and the 20 possible array configurations are sketched as in Fig. 4-6.

~Z (e AR N R S RN
® ® ® ® ®

" x
i3 ® ® ® @
p x
g N, O = NG 3 N
4 ® ®@ ® o)
s
A NS Ny N N
® ® ® Q) @
g = PHASE X e UNUSED
REFERENCE CHANNEL
Pig. 4-6-~Simplifiod representiations of the twenty possible Four-olement srray Y
configuntions using three phase difforences 1‘ o
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Table 4-6 lists the spacings utilized, the array phase reference(s), and the spacing common B %

) to the two subarrays. The arrays numbored 2, 6, 13, and 20 can be immediately removed i

. from further consideration, since they do not employ information from channels 4, 3, 2,
; or 1, respectively.

Arrays 7 and 12 have spacings of p + ¢ + r common to the two subarrays. Thus,
whichever subarray is denoted subarray 2 in each of these four-element arrays has the
benefit of a large common factor « in increasing the value of the argument of the ambi. ..
buity variable. Unfortunately, the array ratio for subarray 1 will be so large (this subarray .
ratio also involves p + ¢ + r) thav the p, of subarray 1 will be much larger than that ob-
tained with a cascaded end-phase configuration.

Arrays uging a single common spacing—p, g, or r——cannot, of course, achieve the per- N
formance of those using a double common spacing such as p + q or ¢ + r. Thiz was shown A9
in the calculations for p, in the example arrays of Sec, 4,4, This fact removes from fur- '
ther consideration arrays 3 and 6 (with common spacing p), 9 and 14 (with ¢), and 16
and 18 (with r).

The remaining arrays share two attributes: (a) the common spacings are either
p t+qorq+r und (b) four of the arrays are mirror images of the other four. Table 4-7 - 3
! lists the comparison factors for these eight arrays. Armrays 4 and 11 can be shown with T
: no difficulty (by developments similar to those resulting in Eqs. (4-18a) through (4-18k)) 4
- i to be identical in p, performance to array 1. But arrays 4 and 11 do not resolve the
VR o overall array length associated with the integers p + ¢ + r as does array 1. Hence array 1 Pe
. . is superior to arrays 4 and 11, ‘

! Now, it has already been shown in Sec. 4.4 that the transformed hybrid midphase .
il array i equivalent in p, performance to the cascaded end-phase array. Once again, how- .
ever, array 1 is superior to its transformed counterpart, array 15, in the sense that overall -
length p + q + r is resolved directly.

Each of the four arrays discussed above has its mirror-image counterpart in the re-
mainder of the table. Thus, it should be obvious that with the aid of the transformations "
p—=>r,q ¢, and r = p', the performance of second group of arrays is identical to the A
first group, and that a cascaded end-phase configuration is indeod optimum, o

In contrast to two-element and three-element arrays, the performance of arbitrary-
configuration four-slement arrays is dependent both on the configuration and on the ‘
array expansion direction. £

The preceding development hes shown that of the 20 possible (by definition) four- 1~"

. eleient array configurations, there are four configurations that have particularly simple g

, realizations; o

| [

'\ ® Array l-—Cuoscaded end-phase (Reference channel 1) "_‘
. ®  Array 8—Transformed hybrid midphase (Reference channel 2) 1
® Array 15—Transformed hybrid midphase (Reference channel 3) A

. '

!

1 _
Array 19—Cascaded end-phase (Reference channel 4). B¢

! 66 W

et et b e maman R D, -




b £% » P r 5
44+ b z A r ~ 8
4+ 54 d 1 a /~ A L
pasn o ¢ PUIPYD _ A R . . | 1
: Aviie JUamaa-§ B JON / / i
w d 1 P~ r P g . %
a . w
Q k-
e b+ d €1 ro ~ ~ ¥ ©
E = %
£ d z°1 A » ‘ ~ € k!
m b
2 POsTi J0U § PRUBR . )
‘ ﬂ.NHHN - - \/ / \/ N 1 |3
. JUIWIB[R-§ 2 JON *.
b+ d 1 N ~ » 1 : m
g i
souaRIdHes + D+ di 144+ b bid P b d _
Supedg uonrmos; aseyd H.MMMMA k-
! Aeqy peoziTy] sSuedyg
L

SIOUSIBIJL(] 25U IaIYT, YA SARUY JUSWA[-INO] I[ISS0J AJuam], 9] I0] sIajatueied—9-F dlqel]




NRL REPORT 8005

“g-§ “31,3 Ul P33RSRl are SUORINSIFUOd ARV IION

Posn 30U T PURYP
¢ SelTe JUsWa[a-H e 10N

B+ 4

b4 4

b+ d

o

FOsn j0U g [SUUB
‘Aelre JuaWa3[o-P B 10N

14+ b+ d

b4+ d

14+ b

v'e

Ve

¥e

\).

Da

61

L1

91

01

EERTE N e )
e

et L

R

67
LT ——————m

ot o




ROBERT L. GOODWIN

Table 4-7—Comparison Factors for Four-element Arrays with Spacings b + qorg + r

‘Mirror-image’
, . Common Array Array
Array Configuration " Array
Spacing Referenca(s) Number Number
Cascaded end-phase p+tq 1 1 19
Equivalent {o CE.P ptyq 1,3 4 10
Equivalent to CE-P ptaq 1,3 11 11
Transformed hybrid midphase ptyq 3 16 8
———————————————— Axis of configuration symmetry —=— == — ==~ ==~ —~
Transformed hybrid midphage gtr 2 3 16
Cuscaded end-phase q+r 4 19
Equivalent to CE-P q+r 4,2 10
Equivalent to CE-P g+r 4, 2 17 11

Note: Avray numbers are defined In Fig, 4-6,

These four array configurations are defined by rows one, two, three, and four in the
channel-phase error matrix of BEry. (4-21c).

This development showing that the cascaded end-phase configuration is indeed opti
mum for n = 4, is, as far as the writer can determine, a new result. Although some of
the material presented by Hanson [21] for the cose of four apertures on a line appears
relevant, he neglocts to consider the effects of correlation between channel-pair phase
errors in subarrays. 'Thus, he is, in effect, formulating judgements on array-configuration
suitability based on “independent,” i.e., four-element two-integoer set suburrays, It is
known from Sac. 3.0 that this leads to incorroct conclusions when one doals with three-

clement subarrays.

This concludes the exporition of the fundamentel analyses ussociated with four-
element arrays. Sec. 5.0 will address the synthesis of four-clement arrays and will provide
techniques by which the optimum array of any length ¢ = p + ¢ + r half-wavelengths can

be readily synthesized.

5.0 SYNTHESIS OF CPTIMUM FOUR-ELEMENT ARRAYS

This section provides the theoretical basis for synthesizing the optimum-realizable
four-element cascaded end-phivie array of arbitrary length ¢ > 4 half-wavelengths. (Note:
the case ¢ = 8 is trivial; the array consists of four channels separated by spacings p = g =

r = 1 half-wavelength.)
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It is shown first that the ideal numerators te ciploy in the subarray ratios R, =
m;/n; are just m; = /%, Of course, this condition can be met only for those cases in
which R is a perfect square. Next, an ideal-unrealizable array (achieving the minimum
possible p,) is defined. The only four-element array for which this ideal condition can
be met is the one defined by p = 1, ¢ = 1, and r = 2; £ = 4, The performance of an array
of any other length can approach, but never equal, the performance of the ideal-unrealizable
array for that length. Interestingly, Moffet [22], citing a result due to Arsac, shows that
the longest zero-redundancy array in spatial-frequency terms, from the radio-astronomy
art, rogardless of the number of elements, cannot exceed £ = 6, with n = 4 elements.

The concept of the ideal-unrealizable array is quite useful, nevertheless, because it
leads to a direct approximate synthesis procedure. This initial procedure agsumes inde-
pendence of subarray ambiguities but achieves the twin objectives of (u) readily visualized
physical spacing interpretations, and (b) rapid convergence to a region of low p, so that
an exact-p, analysis on only a very small set of candidate arrays need be done,

The synthesis procedures given in this section lead to a specification of the channel
spacings for the optimum-realizable (minimum physically realizable probability of ambi.
guity) array of arbitrary length under the wssumption of channel-pair phase errors that
are Gaussian, zero-mean with equal standard deviations. This ussumption simplifies the
analysis and subsequent synthesis, and in practice is not too restrictive, 'This is because
the phase errors in channels comprised of several components in cascade (see Sec, 3.1)
approach statistical rogularity.

For a procedure to be exact, it must of course, take account of possible dependence,
or corrclation between the ambiguities in suburray 1 and those in subarray 2. ‘This do-
pendence is indicated by the absolute magnitude of un array-to.arruy correlation coeffi-
ciont. For cqual chunnel-pair phase arrors, the corrolation coefficient is & function only
of the subarruy ratio integers (or equivalently, the array spacing integers), A knowledge
of this correlation coefficient, in conjunction with the ambiguity variables praviously de-
fined in Sec. 4.0, onables one to define the completo bivariate ambiguity density function
(actually, the no-ambiguity density function). Integrating this function between the ap-
propriate limits provides the probability of “no ambiguity,” and ultimately, the probability
of ambiguity.

FPor many cases of interest, the array p, is only a weak function of the array-to-nreay
corrolation coefficient., The value of the exact formulation, including the array-to-urray
corrolntion coefficiont, is that a four-clement array of any configuration, subject to various
channel-pair phase errors, can be precisely charucterized. For example, arrays in which
more than one antenna are switched sequentially into a common channel (to minimize
hardware) can be exactly analyzed upon derivation of the appropriate subarray-to-subarray
correlation coefficient.

In the final portions of this section, the array length is characterized for synthesis
purposes as falling into one of three classes. 'Those are Clags 1 (¥ = perfect square), Clasy 11
(¢ = geometric mean between successive square arrays), and Class III (£ = any length not
falling into Classes 1 and IT). ¥xamples of an optimum-realizable synthesis for each of
these wrray clagses are given,
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The section closes with tabulated exact p, (including the effect of array-to-array cor-
relation) for optimum-realizable, four-element cascaded end-phase arrays of various lengths
from ¢ = 4 to 100 half-wavelengths, with channel:pair phase error as a parameter. It may
be noted that very early multielement interfoerometer configurations based on a binary
progression of spacings: p=1,p+q=2,p+ty*+r= 4, p+ q+r+s=8,etc, [23],
inherently have a very high resistunce to ambiguities for the usual range of channel-pair
phase errors (even when relatively coarse quantizing of electrical phase is done). Thus,
based on the phase-trucking performance associated with presently available microwave
components, such a multielement design approach represents extreme (and uneconomical)
overdesign,

6.1 Optimum Numerators m; for the Subarray Ratios R; in n-Element Arrays

In synthesizing n-element arrays of a given length &, it is desirable to have a proce-
dure for obtaining the particular set (or sets) of subarray ratios Rppi=1,2,...,n~2
that will provide the lowest overall p,, subject to given ocyy pg. (The optimum R, for
n = 8 elemoent arrays, has already been formulated in Sec. 3.0.)

Since the array length & = mmy/a in four-cloment atrays, it is natural to focus at-
tention on {the numerators m; in the subarray ratios R; = my/n;. For four-element cascaded
end-phase arrays, the optimum (in general, unrealizable) le and R, are readily derived.
The generalization to n @ b, i.0,, threc or more subarray ratios R;, follows ecasily.

Making use of Eq. (3-19) and the summary material in Egs. (4-18a) through (4-18i)

results in the overall probability of “no-umbiguity,” i.e., probability of “‘correct,” pe.qyerall
in a four-element coscaded end-phase array, of

Pe-ovorall * (1~ Pay )(1 - pa,‘)

2 *al"/0¢
y - ! -t} )
H[\/‘ﬁ J oxp (~t}/2) dt,] , (5-1)

iml o [og,

whore

i

b} D ],2
0s, = Ocm.primf =~ myn +nf17,
o = 1, I = 1,
= q, { = 2, ac= factor common to my and ny.

Equation (5-1a) assumes, of course, that ambiguities in subarray 2 (resolved by sub-
urray 1) are independent of ambiguities in subarray 1. In Sec. 5.4, an additional develop-
ment will include the effects of correlated subarray ambiguities. 1t will be seen that op-
timum subarray ratios are only weak functions of suburray correlation coefficients.
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1t is convenient to normalize the n; in Eq. (6-1) to the associated m;, as

! B ny n
Oy = M™Ocupr (1 = 77 * I

= myocy.pr [1 - a + 02177, a=nymy,
» 0<a<1, (5-2a)
h and
= o R
. ¢p = M2Vcp.pr (1 - 1'%, b= nyimg,
R 0<b<1, (-2b)
- From Eq. (4-18c), the array length ¢ is
3 .“ ( 17"2
L. l Q=p+qg+pr= ——=

For € constant, and with subarray ratio optimization carrled out with respect to my (for
convenience), mgq is given by

: ! .
: my = %{ (6-8)
3 !
y i
8 | Thus, with Eq. (5-3), the integration limits () in the integral forms of p, in Eq.
& : (6-1a) become
. T
N R (44 L PK
X1 Subarray 1 0—"- = CH IR 7 (5-4a)
.;!‘ : 1 my(1-a+a?)
and ’
% _an_ '
am JCH-PR

Subarray 2 ==

%2 my(1- b+ b2)'2

"™ Goup
. ' = m%‘,; ‘ (6-4b)

‘ R(1-b+b2)

Functions of tha form (1 - x +x2)!/%, 0 < x < 1, have a single minimum of /0,76 =
0.866, at & = 0.5, compared to en. point values of 1,000 at x = 0, 1. Independent selee.
tion of a = ny/m, and b = ng/m, is, in general, not possible because m; and ny are both
related to the same array spacing p + q. But, to establish optimum realizable m;, we can
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assume that @ and b = 0 or 1, with negligible error, The integration limits of Eq. (6-4a, b)
are now approximated by

"
7 . UCH-PR
Subarray 1 5¢—1 = m;
ko
~ ol (H-Bn)
and
Subartay 2 LIPS T—-l-—k-(-) ' (b-bb)
: G, 7
where
13 = r .
TCH-PR

If my = /%, both integration limits in Bq, (6-6) are equal, and pe.gyerant = PZ, = D3,
As in numerous related problems in communications technology in which there is
freedom to vary parameters to minimize overall probability of error, a value of \/Q' is

readily shown by sssuming that mj = my.qpp + Am, is actually the optimum value and
then proving the converse.

Assume that Amij/m; = § << 1. Then, in Eq, (6-5), the intogration limits are

Suburray 1 - = _Fo_ A *o (1-8) (6-6a)
uburray O, = n11(1+5) \/i ’

and

.k
Suoarray 2 2% & ~—% (1+6), (5-6b)

g, R

For small changes in integration Umits, each p, . in Eq. (6-1a) can be expressed oy

p. = b ko) Sko 3 oxp ko (6-Tn)
o )T e Ve

and

/

kg 8kg 2 kg
; |l B R T - e ) B-Tt
Pey )(\/Q> VO Ve o v &0

where
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i ;
! . | l x — 2
A ; B(x) = ke | ex (--t--) dt.
t: | ( Vo » P15
.
'The overall p, thus becomes
‘;1' s
| k Sk o\
by of Ro 0o ./2 R0
f'l N Pe.ovorall & ‘Pz<_\7'f> - '\'/‘TZ’ \/-_;' exp <"W> , (6-8)
The overall probubility of correct ambiguity resolution, p. . jupas 18 maximum when
I § = 0, proving that the optimum value for my is
I\ 1 '
é ~ .
b, : myopr = VU, n = 4 cloments. (6-9)
‘ ".":7-I The generalization for arbitrary n > 3 is ohviously
b mygpp = [LYCH w5 3 clements, (6-10)
3 |
; taking into account that an n-eloment array defines (n ~ 1) olement spacings, and g mini-
A ; mum set (for ambiguity resolution) of (n - 2) subarray ratios R; and associated m;.
. %
X i
T 5.2 Integration Limits in Ideal-Unrealizable and Renlizable Axrays

& Determination of particular spacings for the lowest p, i a four-element urray of &
. i given length € can be accomplished by exhaustively lterating Eq. (5-1) through all possible K.
e | m; and n; defined by p, g, and r, and selecting the nonredundant array that exhibits the <

lowest p,. This detormination is not nocessary if the concept of the ideal-unrealizable
array is utilized.

Consider a four-element array in which the length €, for generality, i not a purfect .
square. Kquution (5-9) from the provious section delines the ideal m 1y = my.pp 68/, '
which i not an integer if ¢ 4 (2, i > 2. [f any considerations of multiple ambiguitics g
ovor the flold of view are disregurdod (because of common factors in the m; and n; sub-
array ratio intogers), the ideal (ID) n; assocluted with my are just

M.y VT !

e AR

timp * Ty 9

T A e
: s f LN e s

Then, the intogration limits (11,4) in Eq. (8-1) for p, for these subuarrays aro
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" 1
OCH-P
CH®R [(mf i ~ miipniip * nfip]

Ll 1 1
UCH-PR 7&7 /1 NN 1
2 4

2_

13

ILI-ID = IL2-ID = 1/2

(6-11)

SiE

An example of the use of this concept is an array whose length {s 12, By definition,
myp = Mogp =12 = 8.4641 ... ny p = ngyp = 17321 .... Nop, ¢, and r exist
suchthat p + g+ r=12and (p+¢)/p=2:1, (p + q + r)/(p + q) = 2:1, If such an array
existed, it would exhibit the lowest p, of all arrays of length 12. Hence, the term ideal-
unrealizable array seoms appropriate.

Arrays which are realizable, and which approach, but do not necessarily equal, the
performance of the ideal array are called ‘“‘optimum-realizable.”

Realizable (RE) array - have an integration-limit (IL) product given by
oy

’
(mf ~ myn; + nj"')”2

ILigg = ko (6-12)
where
Q) = 1,

xy = factor common to my and ny,

ko = =, us in Eq. (5-11),
0 = Goppr ' I Ba- (6-11)

tuch of the 1L, i can be expressed as the sum of [L,jy and & deviation from this
ideal-unrealizable integration limit, as follows. IFor 1Ly.pg, we have

ILl-RE = Ry " 1 172 (6-13a)
(mg -~ myny +n)
- Zko \/3Q (5 13b)
\/QQ 2(m'f = myng + n%)”2
2kg X
I e ——— ) -+ . - Y
T (1+8,] (6-13¢)
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Equating the terins within the brackets in Eq. (5-13b) and (5-13c¢) defines

a/d. 0y1/2
(mf - myny +nd)**

If the form d; = 2ko//3% ¢ 8, is used in conjunction \vith Eqs. (5-18) and (5-14), it is
easy to express 1Ly pg in the form

ILipg = '%’:'9* + ko |t iz “7"'2
3% (m§ - myng +n¥)'s 3%

w IL1~ID + dl f (5-]5)

By a similar development, it can be shown that

]L‘, RE ™ -?—EQ. o+ ko o - 2
g V32 (m3 - mgny + n§)"? /37
= lLgqp *+ dy. (5-16)

The only realizable four-element array for which I pg = 1L,y I8 the one in which
p=lqg=1r=2,0=4, Here, my = my = 2,n =ng =1, a=1 Thus,

d, = ko 1 - 2
@22-2.1+12=g)}2 VB4

. | N T .
= F?0[7§l :75] 0, i 1,2,

and hence,

2kp 7
Ly * Wope = Wygp = gp = :
Ling o.rk = IL1p 210 * 8%~ 75 vomom

Other arrays approach, but do not satisfy, the relations 1L, g = IL;.1p because the
ratio m;/n; can equal 2 only for R;= 21, The d; in Kqgs, (6-16) and (5-16) are a measure
of how a realizable array differs in performance from an ideal-unrealizable array, Synthesls
procedures bused on the concept of deviation from the condition of ideal-unrenlizability
will be glven in the next subsection,
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5.3 Synthesis of Cascaded End-phase Four-element Arrays
The basis of the synthesis procedures to be discussed involves the subarray 1 numer-

ator my und munipulations of the two realizable intogration limits, IL;. g and 1Ly gg.
The standard forms for these two limits are

IL1.ge = ko 1 ~ 73 (5-17a)
(m} - mn; +n?)
and
44
ILg.gg = ko Th (5-17b)

(m# - myny + nf)
In this form, the dependence of the integration lmits on array length € is implicitly,
rather than explicitly, expressed. An oquivalent form for ILy .y is more suitable for
urray synthesis,

Use of kg, (4-18¢) from Sec. 4 yields equivalent forms for my and ny;

_ ka d _ gl
My = my un Ny = "*‘F{T—-

When these substitutions wro made in By, (6-17h), und some simplification is done, the
result s

!

1 - (5-18)

Iyrp = Ry 5 5
LA AN VLR A +q
"Tl ) my my my

The channel 1 to channel 8 spacing integor, p + ¢, can be oqual only to a multiple of the
subarray 1 numerator integer iy as,

ptq-ofmy

Furthermore, p + ¢ cannot exceed U= p + ¢ + r. Thus, the 1L,z (In o form suitable
for synthesizing roalizablo arrays) become

1

g = ko —~ (6-194)
(mf - myn + n"f)l')'
und
I A M (5-19b)
“-RE TR0 T 173" 3-18b
(V2 - R(my) + (jm)%) !
where
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F=12, ..., -,—,?—l-] , where x] indicates the nearest integer less than x.

So far, nothing more has been accomplished than to express the IL; yy in a slightly
difforent form to emphasize that subarray 2 is more logically thought of as a function of
the overall array length € and the subarray 1 numerator integer m,. If one wanted to
establish that a particular set of my, n; is the optimum-realizable for given ¢, integration
of Gaussian error functions (as in Eq, (6-1)) seems necessary. These integrations can he
avolded by the use of a simple test function which involves the oxpunsion of the error
function about n specific value,

The first step in determining this test function ts to oxpress Eq. (5-19b) in the form
of Eq. (5-18); that is, as the sum of ILy g 8nd a term dy which represonts the ceviation
of 1Lg.rg from ILgyp. 'This is readily done. The rosult, with Eg. (5-16) for ILy.py re-
peated below for euse of comparison, is

1L 2kg + i 1 9
LRE =S+ kg [ e . R
V3t (m¥ - myng +nd)l* VEI!

- lLi-lD o+ dl . (5-20&)

2k my D)
Wppp = 7775 * ko 5
% (e - Qgmy) + Gmpt)7? VAR

= IL2_,D + du__)'. (5-20&))

dquation (A-9) of Appendix A gives a throe-term Paylor’s serles expansion of the
Guussion orror intogral nbout a specitic argument, a

n(52)- ) AR B Wl rE 0 ) e

whore

X/

l A (2‘"\‘ = '-l_:.—.f 42
. 0/ \/ZW ~xflo ‘ “

For x/u = 2.000 (Le., the argument of A(+) is set at the 20 value), A(x + A/o) becomes

2 ]
- A . 0"2 o A : '
A (‘2 + —(-;) x A(2) + ‘-\-/—.é_; [u (5) -2 (%‘) + K—f})] . (6-22)
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kquation (6-22) is an approximation to the Gaussian error integral in the vicinity of an
argument set ai the 20 value. Note that A(2) = 0.9544997. The corresponding compound
. (assuming independence) is 1 - A(2)A(2) = 0.08898 or 8.893%,

Now, kg is defined as w/ogy.py. Thus, to force IL; p to assume the value of 2.000
(strictly for simplicity in generating a useful test function) regardless of array length €,
Eq. (6-11) can be set equal to 2.000 and solved for the appropriate value of ooy .pg, as

N
[+

IL,'_[D = OCH-PR = 2.000,
or
ocu-prl, = = (6-23)
CH-PR 2 \/3Q
Use of this value of ogy.pg in Eq. (5-20a) and (5-20b) yields
— —_—
ILi.gg = 2 + - 2
RE [1/m% - m1n'1 + rz% :‘
A
= 9 4 (._6’..) , (5-24a)
and
my /388
Lopg = 2 + ! -2

V2 - Umy) + (imy)?

#

Ay
9 + (=2}, (5-24b)

g

The apprcximate probabilities that subarray 1 and subarray 2 (resolved by subarray 1) are
unambiguous aye

2 3
A A A
P = 0.9644997 4 \“‘[12‘7; e? [2 (-‘—}1> -2 ("0—1> + (—0—1):| (5-261)

2 3
A, A, A,
Pey ~ 0.9545997 + —e =2 (2 (J)~ 2 (——4) + (—-5) : {5-26b)
¢ a g g

The procedure for obtaining an approximaie array synthesis, one not taking into con-
sideration subarray-to-subarray correlation of ambiguities, can be summarized as follows.
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® Choose 7 wrind m, Coa to ST
©  Choose an appropriate value of 4; from Table 3-4 of Sec. 3.0.
® 1Ligrg ¢of Bq. (5-24a) is thus defined,

® Compute a set of trial values of ILg. g by iterating through Eq. (5-24b) with
J=1,2, ..., %/m1] where '] indicates the nearest integer less than the rativ ¢/my.

® Substitute the trial ILy. g and the set of trial IL, pp into Ny, (5-26a) and
Eq. (5-26b) and compute ‘he overall probability-of-correct product BeyDey-

® The trial array achieving the highest p,, 1 Pey product is the best array for the
particular itial my that was chosen initially.

These steps can be repeated for other tral vilues of my, and the best-performing
arrays obtained for each ry can then be compared to determine the optimum-realizable
array. This approximate procedure does not take into acerunt & possible subarray-to-
subarray correlation of ambiguities. Thus, several arrays may be obtained, all of which
have the same independent probability of ambiguity, Also, since this approximate proce-
dure is based on an expansion of the normal probebility integral (evaluated in the vicinity
of argument 2.0000), a slightly different array may actually have a somewhat better p, at
a lower value of o¢y.py (implying a larger value of the probability function integral argu-
ment) than the arvay found by this procedure. The designer may have to perform an exact
analysis at the specific value of oy pr that will be used for a particular application.

Both the procedure outlined ahove and an exact analytical {orm for p,, are casily
programmed, For the convenience of the designer, these progrars are collected in Appen-
dix B. The use of these programs will be described fully in Sec. b.5.

In Sec. 5.4, an exact relation—one which considers the effect of subarray-to-subarray
correlation of ambiguities—for the p, in any four-element array will be derived. This ex-
pression will become the basis for determining the optimum-realizable array (from p,
considerations) in the cascaded end-phase configuration (from the development of Sec. 4.5)
of any length.

5.4 Exact p, for Four-clement Arrays

In the previous section, a synthesis procedure was given for cascaded end-phase four-
element arrays of arhitrary length € » 3 (in half-wavelangths). The procedure was approxi-
mate, as the possibility that ambiguities in subarray 1 might be correlated with ambiguities
in subarray 2 was ignored. As will be shown in Sec. 5.5, certain artays having the sarne
length ¢ apparently have the same probability of ambiguity, even though the element
spacings p, q. and r are different if correlation is ignored. [n actuality, there is a slight
dependence of p, on array arrangement for fixed U,

This dependence is most conveniently expressed in terms of an array-to-array correla-
tion coefficient. This correlation coefficient p, ., will be shown to be a funclion of the
array configuralion (e.g., cascaded end-phase, hybnd midphuase, etc.) as well ag array
spacings (e.g., th~ actual p, g, and r employed).
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The ambiguity constraints of a four-element cascaded end-phase array, using modi-
fied forms of Eq. (4-18d, ), can be written as

Subarray 1 -7 < [¢y = njApy 3 ~ mylpyy) < 7, (b-261)

and

Subarray 2 -1 < [¢g r¢2A¢].4 - mzA‘P1,3] <. (6-26b)
The above two random variables (v.v.) P, and 4, are Gaussian, since they are linear com-
binations of various channel-pair phase errors Ay, g Ay - Ay;(J = 2, 8, 4) which are
assumed Gaussian, zero mean according to the development in Sec, 3.1, The variances of
these ambiguity variables, if Eq. (3-11) is used, are

mfo}y ~ 2pe min101,9013 + nioiy (6-27n)

Q
_'?-l:\:
i}

and

2 = m2g2. - 2.9
0%, = m3os s ~ 2p,,mang0y 5014 + nfof,, (5-27b)

fo=of + o}
These define relations betwaen

o3 = of + 0} channel-pair error variances and
o y o channel etror variances,
07,4 = 01 * 0y
of
Pey = E’T;‘;I,T; (=0.5, all o; equal) ,
o1 0.5, all
Pes = 513014 (=0.5, all 6; equal) .

If we allow for possible correlation between the r.v. & and dy, their joint aensity
function is [18]

1
Pa, b,(P192) = . \/f———f;f,—a—,
1 e\ o vr, (o2}
X exp —-ZZI—_—;E;:) (5:51-;) =~ 200.an " %l-; ’ Tg, + <TIE,:) .
(5-28)

The subarray 1-to-subarray 2 correlation coetficient p, 1Lay is defined by
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E[q)‘ ([)2]

Poues = "og.0p, e

The probability that |¢,| < 7 and |pa| = am, i.e., the probability that array ambi-
guities will be correctly resolved, is

m [3414
Pe-ayerall ™ j [ P, dy(P1,92) doy dg . (5-30)
-1 “-an
Equation (5-30) becomes just
n an
Pe.overall = f p‘l’1(‘pl) dyy f P(l)2(‘P2) dypgy (6-31)
- “Qm
for pg a, = 0.
In general, py, ,, # O, and to calculate the exunct pe.oyan tequires (a) determination
of Pay,a; and (b) integration of the bivariate density function of Eq. (5-28) between the
appropr’iute limits.

The array-to-array correlation coefficient is readily found, if Eq. (5-29) is used with
Eq. (5:27a, b). The expected value of (Pythy)—is given by

it

E[dy, by] = El(nyApy 3 - mide) ) (nadw) 4 = Madpy y)]

ningE[(Ap; — Apy)(Ap; - Apy)l

=mynak{(Apy - Apy)(Apy - Apy)]

—nymyE[(Apy ~ Apy)?]

+mymyE[(Apy ~ App)(Dy¢y — Apg)] . (6-32)

The taking of the expected values of tho various cross-products of channel-pair error yields
E[dDg] = nyngo¥ ~ myngo? - n,mz(o‘f +0§> + myngad . (6-33)

Equation (5-83) expresses E{¢;dy] in channcl-error form. An equivalent expression, in
channel-poir error form is

E[d D]l = myngm 3,1,401,8010,4 ~ M1RaP1,2.1,491,4

MMy P ai1,a0Ts MMy Py g,1,901,2013 (6-34)

where
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? _ Bl(80y - Ap)(Ap; - Apy)]
plnj;lv"' = Ul‘jol'k )

By definition, py 3,1 3 = 1. Now, if all channel phase errors 0; are equal, this im-
plies that of = 0.5 of ; = 0.5 0Zy.pg and that p; j;1 5 = 0.5, # k. For this situation,
both forms of E[D; ¥,] become

1 . 1
: E[4,dy] = 5 ody.prl(nyny = myng +mymy) = 2nymg],  all 0f = 5 ofu.pr -
(6-36)

Equation (5-36) can also be expressed as

i " 1 1
s Db by] = 5 odyprlimy —ny)(my = ng) ~nymgl,  all of = 5 odu.pr
. (5-36)

Finally, the use of Eq. (5-36) with Eq. (5-29) yields

(my —ny)(mg — ng) ~ nymy

‘ 1
all of =50 .
e NN NCSTL f =% okuer
m¥ - mynyny +ny) ' C(mg - mgng +nsg)

(5-37)

Fquation (5-37) is solely a function of the subarray ratio integers for of = 0.5 0&y.pp-
Furthermore, as with any correlation coefficient, -1 < p,, 5, < 1.

Array-to-array correlution coefficients for the other four-element array configurations
of Fig. 4-1 and Table 4<1 are readily derived. Table B-1 lists the correlation coefficients
for all five array configurations.

It is convenient to define two standardized variables with standard analytical tech.
niques for integrating bivariate density functions, as

Oy i W = ‘I’g .
T -
0¢y Ugy

Equation (B-30) s thus transformed into

h R
1 1 ] 0
Peoverall = f dx f DS gs. exp [————-— (x% - 2pxy +y--)] dy
cOVera - Jo o297</1 - p* 2(1 - ,D2) .

h k
=j dx f g(x, y, p)dy, (5-38)
~-h

1)

where
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= T
h = 0,4]1 ’
ar ¢
k= —
0¢2 ~
p = pahau'

Equation (5-88) is the standardized form for the integral of the bivariate Gaussian density
function [19,24,256].

An alternate form for p,.,veran Which uses the well-known L(h, &, p) and A(x) func-
tions [19a]

Peoverall = 2L(A, kB, p) + 2L(h, &y ~p) + A(R) + A(R) - 1, (5-39)
where
(=] - -]
L(h, &, p) =f dxj glx, y, p) dx,
h h

h
A(h) = j 1; e~t%/2 dt = Probability of being correct, subarray 1,
..h

&
AR) = f ——1«;: e~t42 gt = Probability of being correct, subarray 2 (resolved
-k ‘/2" by 1).

Many expressions for calculating L(h, &, p) are available; one which is suitable for

h, k> 1 oand |p| < 0.95 us s the case for arrays of interest in this report, is based on the
series expansion [19b]

b (N TIAVALOTY’
L(h, &k, ) = QUM)Q(R) + .Z‘o —'—(ET]:):T)*!_‘(_Q pn*l (5-40)
f =

where
L > - 1 )“f'l/?- dt
Q(x) J; \—/E—? ¢ ;
U = gz o,
; I
2 (x) = e Z(x),

Z('“'2)(x) = -*xZ(””)(x) - (n +1)Z(")(x).
84
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A special value of L(h, k, p) is

Lih b, 0) = QUNQ(R) _
= 3 [1- AW - AR) . (5-41)

This indicates statistical independence between ambiguities in subarrays 1 and 2, for
p = 0, Thus,

Pe-gverall = [L—AM)[1~-A(R)] + A(h) + A(k) - 1

A(MAR). (5-42)

Obviously, the overall probability of ambiguity, P, verat 18 1 = Pe.averan from Eq.
(6-39), and is given by

Pa-overal = 2 = [2L(h, k, p) + 2L(h, k, -p) + A(h) + A(R)] (6-43)
where
ho= e
! Oy
o
k Hem——
Op,
_ E[l[)l(l)2]
P oy 0,

and the functions L(h, k, p), A(h), A(k) are as defined by Eq, (6-39).
The following points may be noted about Eq, (5-13),

®  Daovarall 18 independent of the arithmetic sign of p, since the sum L(h, k, p) +
L(h, k, —p) is independent of the sign of p,

®  Paoverall 18 greatost (other purameters being equal) when p is zero, since L(h. k, p) +
L(h, k, -p) = 2L(h, k, 0).

® The formula for p, is general and can be used to caleulate the performance of
any four-clement array, where h, k, and p are propexly defined.

5.5 Tabulated p, and Array Spucings for Optimum-Realizable Four-Element Cascaded
End-Phase Arrays

In this section, the probability of ambiguity, p,, the array spacings corresponding to
the optimum realizuble arrays for 4 < ? € 42, und selected lengths from 42 to 100 balf-
wavelongths will be givan for the cascaded end-phase configuration. 1t was shown in
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Sec. 4.5 that the performance of the cascaded end-phase configuration exceeds that of all
. N\ other four-element array configurations,

It *~ill be convenient to use as the point of departure in obtaining these optimum
gpacings the {act that if the overall array length f is a perfect square, then the individual
subarray numerators sre \/F(Sec. 6.1). An example is £ = 16; here my = my = 4, (It
will be seen that expression of m, as & without removing a common factor «, will in
e general lead to a consistent procedure for clessifying arrays in which £ is no¢ a perfect
K square.)

After considering the so-called square arrays as those in which £ is equal to {2,

o i=2,8,4,...,it is natural to examine arrays in which £ is equal to the producti(i + 1),
. An example is £ = 20, Herei = 4,{ + 1= 5, It may also be noted that 20 is the geo-

: metric mean of 16 and 25. That is, ‘“‘mid-square” arrays are those whose overall array
lengths are “midway,” in a geometric sense, between adjucent “square” arrays.

N A final part of this urray classification methodology will group into one remaininé
; category those arrays whose overall lengths do not fall into the other two categories,
it This array classification may be summarized as follows:

. Class T K =i2=2384,...
L . Class II: ¢ = i(i+1),i = 2,8, 4,...
",_ ' L Class III: ¥ = any length not falling into Classes [ or II.

- [ The synthesis procedure is based on the development in Sec. 5.3, and 15 mechanized
. v as computer progrum CLSIII (see Appendix B for colloected programs). In the remainder
of this section, un example of the use of CLSIII for each of the array classes will be
given. Then p, for various array lengths vs ¢(yq.pp will be tabulated,

Class [

The first examplo synthesizes the optimum realizable array for ¢ = 25. The proce-
dure is best described by an examination of a sample printout from CLSIII, Table b-2a
shows the CLSIII printout for € = 25, when an m, value of 5 (known by inspection, be-
cauge 25 is a porfect square) and a trial value of ny = 1 is used. Candidate values of ny
can be cbtained from Table 3-4, which provides tho allowable p:¢ values for use in syn-
thesizing threc-clement arrays. It will be remembered from Sec, 4.0 that a cascaded end-
phuse four-clement array can be thought of as two three-element arrays.

CLSIII yields for each trial value of ng = jm; (sec Eq. 5-19) the par.meters

® Ratio mging

®  Spacings: p, q, and r in half-wavelengths

®  Subarray 1 to subarray 2 correlation coefficient
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Table b-2a~-Program CLSIII Printout for € = 25, my = 6; Trial ny = 1
550 DATA 45,5

CLelll

SIIMA«CHANYSL-PAIR = 20,7944 ELECTNICAL DIIRERS
@IETALL ATRAY LuNHITH = 2% HALF-"NIRLEMNATHE
Ml % 5

THE TRIAL YaLuw OF NI LS 71

MLIMN ) wwaeM2M2
ALPHA, LENTTH Prasduas? Ce.COTFF., PupME BEDUN?
(PCTH

% &t 1 ke 2% 308§
S s 2% 1 4 20 0.241908 11.4106 99979

5 ¢t 1 #kd 29 ¢t 10

S . 25 2 8% 15 D.175219 10.2946 B399 e
S 11 max 295 t 15
S ., 25 3 2 10 7.50%395-2 10.294¢ 99999

S 1 | mus 2% 1 R0
% , 2% 4 16 5 =2,38095K-2 1144106 99999

® OQverall compound probability of ambiguity (assuming subarray/ambiguities
are independent) in percent

® Test of whether the resultant synthesized array is redundant, i.e., whether
P, ¢, and r have common factors,

It is stressed that CLSIII provides a synthesls under the sssumption that subarray ambigu-
itles are independent. The correlation coefficient is displayed as an aid to the user to
show that among arrays with the same independent compound p,, the array with the
largest absolute-value correlation coefficient will have the lowest overall p,. The effect

of subarray-to-subarray p is secondary, as pointerd out in Sec. 65.4. To establish optimality
of a particular array configuration, an exact calculation requires consideration of the array
correlation coefficient. ‘Table 5-2a shows, that of all arrays of length 25 based on an
myiny = B:1 ratio, the array my:ny @ mgtng, a; p = 6:1 @ £6:10, 6; +0.176219 is the
best. That is, although both the arrays with p, ¢, and r spacings of 2, 8, 16 or 3, 12, 10
have the same independent p,, consideration of the correlation coefficient in a exact
analysis will show the 2, 8, 156 array to be better.

Of course, the cholce of my:in, = 5:1 is unwise, because Table 3-4 shows that the op-
timum n; for a three-element array when my = b is either ny = 2, or 3, Tables 5-2b and ¢
result when CLSIII is rerun for ny = 2 and 3 respectively. There are four candidate arrays
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A
i 5:2® 25:10
b _, 5:2® 25:16
d 5:3® 25:10
*3 5:3® 26:16,
!1 all exhibiting the same p, of 9.17% (due to ocy.pr = 20.78 electrical degrees, as forced
2 by the criterion of Eq. (8-28)). Of these four arrays however, the array defined by
'.'gi 5:3 ® 26:15 has the largest absolute value of correlation coefficient, p = ~0.289373.
{;‘i_- ) Consequently, this array has the lowest overall p, for given ocy.pgr of arrays of length 26,
[‘1, (Exact calculations of p, will be deferred until approximate synthesis procedures for the
3
i‘g.' : other array classes have been described.)
It is easy to show that in Class I arrays the optimum n; must be equal to or greater
than m,/2. If Eq. (5-37) is taken as a starting point, then expression of n; asm; (1 + §;)/2,

! where 8; is u deviution of n; from m;/2, the array-to-array correlation coefficient can be
' put into the form

1+ 86y + 6, - 6,8
pu,a = -“-1- ll/2 2 ;/22 * (5'44)
(8+8%2)'%(3 +8%)

B3

Table B-2b—Program CLSIII Printout for R = 25, my = b; Trial ny = 2

550 DATA 29,5

CLSITL

4 IMMA~CHANNEL=PAIR = 20.7846 ELECTRICAL DEGREES
PUEPALL ARRAY LEMATH w 25 HALF<JAVELENGTHS
Ml = 5

THE 'FRIAL VALNE @F Ui 15 e

Ml INl M2 IN2
ALPHALLENATH P Qdoen I} COCOEFF. P=-AMB REDUN?
(PCT)

5 3 2 sas 25 1 %

5 5, 25 ¢ 3 20 %, 00626E-2 10.2966 99999
5 1 2 awme 25 1 10
5 2 &85 4 6 1% «2.631%58E-2 9.168%7 29999

5 . é% & 9 10 ~0.10%2863 9. 16847 99899 S
5 1 2 msw 09 3 20
5. 25 g 12 9 =0.17%219 10,2964 99999
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Table 5-2¢-Program CLSII Printout for € = 26, my = 6; Trial n, = 3 =

550 DATA 25,5 o

TR

CLRITL N

=, G
TG e B

=2

SIGMA=-CHANNEL-PAIR = 20.7846 HLECTRICAL DEGREES .

QUERALL ARRAY LENGTH » 2% HALF-WAVELENGQTHS ‘R
Ml = 5§ o

!
!
4
|
.
]

THE TRIAL YALUE QF NI IS 73

Ml sNIwnxM2IN2
ALPHA, LENGTH Pk Quen R COCEERF, P-AMB REDUN? ‘S
(PCTY a2

. § 1 3 %k 25 4 8 \
S ,» 25 3 2 20 w0 175219 10.296¢ 999498 '

N
U N
-
(24
*
-
*
”n
s
3
—
o

5, 28 6 4 15 ~0.236342 9416657 99999

o 9 1 3 whkk 25 1 1Y "
¥ ! 5 , 2% 9 6 10 =0,289474 9.168%7 99599 trmeum——— -

. ' 5oy 3 Mk 28 1 R0
25 12 3 s -0.325407 10,2566 99999

3 The §; do not now depend on the sine of m; and n;, but only on thelr ratio. }Hence, even '
" though my and ny, might be exprossed in CLSIII as 26 und 15 respectively, if the common :
"2' factor o = b is suppressed, nqy and ny are functionally equivalent to 6 and 8 respectivoly. i
! It Is obvious that subarrays in which m; = b must utilize n; = 2 or 8 in order to minimizo 9
theix respective subarray ambiguities. But, the values of §; that maximize the correlation
coefficient of Eq. (5-44) must have the same algebraic sign. Hence, the §; must be posi- b
tive, which means that the n; must be equal, and greater than m;/2, b

As a second example of a Class 1 synthesis, consider ¢ = 16, ‘Table 5.3 shows the re-
sult of running program CLSIII for ¢ = 16, IL is scon that for miny @mg:my= 4:3 ®16:8,
| the array s redundant, as indicated by the figure 2 in the REDUN? column. This is the
factor by which p = 6, ¢ = 2, and r = 8 ave redundant. Thus, the optimum array for .
=16 is 4:3®16:12, with array-to-array correlation coofficient = -0.423077 = -11/26. V

One further observation in respect to Class U arrays 18 that the optimum subuarray
ratios automatically ensure that the soucings p—g—r will be muximized. The array
4:3 ®16:12 has minimum spacing g = 3, whereas the array 4:3 ®@16:4 has minimum
spacing p = 1. Thus, for ¢ = 18, the optimum array can be operated over a 3:1 ban.dwidth
before the shortest spacing approaches one half-wavelength, whereas in the other two
arrays, the shortest spacing is already at one half-wavelength. For separations less than

N . - R U e TR AR s A it s . s W
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Table 6-8—Program CLSIIT Printout for € = 16, m = 4; Tral ny = 3,1

850 DATA 16,4

CLsIlL

S1AMA-CHANNEL=PAIR = 25,9808 ELECTRICAL DEGREES
AVERALL ARRAY LENAGTH = 16 HALF=WAYELENGTHS
Ml = 4

THE TRIAL VALUE OF N1 IS 73

Ml aN]kekeM2IN2

ALPHA,L,LENGTH Poeon Qbbb R C@.COEFF. P=AMB
(PCT)
I T T - )
4 , 16 3 1 12 ~0,346194 10,6339

1 ) wxwk 16 t B
16 6 ¢ 8B =0,40032 9.76767

o
-

Aot 3 wkox 161 1R
4, 16 9 3 4 =0,483077 1046339

550 DATA 16,4

CLSsI1!

4 INMA-CHANNEL~PAIR = 25.9808 ELECTRICAL DEGREES
@QUERALL ARRAY LENGTH = 16 HALF=WAVELENGTHS
Ml = 4

THE TRIAL VALUE OF N1 1§ I8!

MIINIeeRM2iIN2

ALPHA, LENGTH Pk Qe kR CA.COEFF. P-AMB
(PCT)
4 1 1 kew 16 ¢ 4
4Ny 16 1 3 12 0.192304 10.6339

4 5 16 2 &6 8 §.00641K=2 9.76167

4 ¢t ) wawe 16 1t 12

4 5 16 3 9 4 -3.8461858-2 106339
90

REDUN?

99999
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REDUN?

99999

99999
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one haif-wavelength, mutual impedance effects between antenna elements may affect the
prase tracking, thus increasing ambiguities.

Class Il

The example for a Class II synthesis {s for ¢ = 20. The integer factors ot 20 are 4
and 6 (=4 +1). In the absence of array-to-urray correlation it might be speculated that
there are eight “optimum' arrays formed by combinations of my:ny ® mgin, using nu-
merators 4 or 5 and denominators 3 or 1 (with m; = 4) and 3 or 2 (with m; = b). Asin
the case of £ = 16, there may be factors common to my and n, (even ufter the common
factor has been suppressed), in which cuse the program CLSIII will indicate the redundant
arrays, as before.

Table 6-4a through d show the results of CLSIII for ¥ = 20, For each listing, the
arrow ‘" indicates a candidate array. Examination of all four listings shows that the
array 4:3 @ 20:12 has the largest array-to-array correlation coefficient, and hence, will
exhibit the lowest p,. The arrays 5:2 ® 20:16 and 5:3 ® 20:15 have p, q, r spacings of
6, 9, 6 und 9, 6, b, respectively, in contrust to the optimum 4:3 ® 20:12 array which has
spacings 9, 8, 8.

Tuble 6-4a—Program CLSIII Printout for £ = 20, my = 4; Trial n| = 3

580 DATA 20.4

cLstll

SIGMAZCHANNEL-PAIR » 23,2379 ELECTRICAL DEQRERS
@VERALL ARRAY LENGTH = 20 HALF-YAVELENGTHS
ML w4

ATHE TRIAL VALUE oF NI IS 73
MIINlmeeMEINS

ALPHA, LENGTH Prowk Qaon R COCOEFF, P-AMB REDUN?
(pPCTY

41 3 wee 20 1 4
4 , 20 3 1 14 «0.33287% 119703 99999

4 3 3 ek 20 1 8
4 , 20 6 2 12 -0.381771 10.483 2

4 1 waw 20 1 12
a4 , 29 2 3 8 ~0.410%08% 10.483 99990 W

A 1 3 %em 20 t 16
h , 20 12 4 4 ~04.423659 11,9703 a
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Table b6-4b—Program CLSIII Printout for £ = 20, my = 4; Trial nq = 1
550 DATA 20,4

CLSILI

SIGMA-CHANNEL-PAIR = 23,2379 ELECTRICAL DEGQREES
BUERALL ARRAY LENGTH = 20 HALF-WAVELENGTHS
Ml = 4

THE TRIAL VALUE @F NI IS 21

M1 tN1 kkkM2IND

W ALPHA,LENGTH  PakkQuékkR CA.COEFF, P-AMB REDUN?
3 (PCT?

X

A s 1 wkk 20 1 4

' . 4 , 20 1 3 16 0.21183 11.9703 99999
S

» 4 1 1 wkok 20 1t 8

o 4 , 20 2 6 12 0.127857 10.483 2

A- 4 1 1 &kak 20 t 12
g 4 , 20 3 9 8 3.181428-2 10,483 99999 Wm———mmeee

X ' 4 3 1 wkx 20 2 16
o 4, 20 4 12 4 “6.052288=0 11,9703 4

B Table 5-4c—Program CLSIII Printout for ¢ = 20, m; = b; Trial ny = 2

t 550 DATA 20,5

cLSIII

SIGMA=CHANNEL=-PAIR = 23,2379 ELECTRICAL DEGREES
BVERALL ARRAY LENGTH » 20 HALF-'TAVELENGTHS
M1 = §

THE TARIAL VALUE OF N1 IS 22

M1IN LakkM23N2
ALPHA,LENGTH Pk QekkR CA.COEFF. P~-AMB REDUN?
(PCT)

S ¢t 2 ®kk 20 1 8
' 5 » 20 2 3 15 3.18142E-2 10.483 99999

5 1 2 sk 20 3 10
5 , 20 4 6 10 “6.62266E=-2 9.89452 2

5 ¢ 2 wwx 20 t 15
5 » 20 6 9 5 =0.159071 10,483 99999 e
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Table 5-4d—Program CLSIIT Printout for ¢ = 20, m; = 5; Trial ny = 3

550 DATA 20,8

CLSIII

SIGMA-CHANNEL=-PAIR » 23.2379 ELECTRICAL DEGREES
PVERALL ARRAY LENGTH = 20 HALF-WAVELENGTHS
Ml = § .
THE TRIAL VALUE OF NI IS 13
MIeNIkkaM2tN2

ALPHA,LENGTH Pk Qe R CO.COEFF. P-AMB REDUN?
(PCT)

5 8 3 Mk 20 ¢t 5
$ » 20 3 2 18 -0.190885 10.483 99999

5 ¢ 3 %k 20 ¢t 10
5 . 20 6 4 10 =0.264906 9.89453 2

5 1t 3 wwx 20 1 IS .
s , 20 9 6 5 -0.318142 10.483 99999 e

Class 111

Over any span of array length, \nere are many more overall lengths in Class III than
in Class I and Class iI. To avoid unnocessary iteration through CLSIIH, it is desirable to
know which m; are good starting choices for particular lengths £, Consideration of the
optimum m,; for Class I and the candidate m; for Class II arrays should lead one to the
belief that

® If Q lies between i and i(i + 1), choose my = i
® If Q lies between i(i - 1) and i2, choose m, = i,
The following are examples of this procedure,

® Forf=17;,12=16,i(l+1)

fl

20, choose m; = 4

1

® For ¢=21;i(i—1)= 20,i% = 26, choose m, ~ B.

Figure 6-1 gives a geometric interpretation to this procedure. ‘The trial m, for Class
III are given with question marks following the trial integer, anticipating a later discussion
of lengths where this intuitive trial m; fails (these cases are *‘pathological” in the senso
that they are associated with m, n; pairs that are not as near the n; = my/2 criterlon
as their neighborg (see Table 3-4)). In any event, as will be seen, this geometric-selection
criterion for m; in Class III arrays is natural, and stems directly from the fact that the
cascaded end-phase configuration is based on a common-factor concept that most simply
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CLASS:
| i
g = ]
w—{z] [z] 2] [& KM N
LENGTH: | | [N AR DN NN S SN NN SR SN R S |

Il
!—ba45678910111213141516171819

20
| —— [s] _ [ 6 |
= [es 5.8
= IR e

L L1 J
- 20 21 22 23 24 26 28 27 28 20 30 3 32 1 M B ¥

iaguta .,—.,1

i [ | e

A W TN WO W

e 3 37 38 3 40 41 42

Fig, 5-1=—my for Class [ and IY; candidate my for Cluss III: 3 < R < 42

expresses the subarray parameters in terms of the overall length. This is in contrast to
array representations that have been used by others.

Tables 56-5a and b shows the result of the application of CLSIII to the example
Q= 21, The optimum array is 65:3® 21:10, 5;~0.268501.

Exact p,, Including Correlation

Two additional computer programs are given in Appendix B, named AMBIG1 and
AMBIG2. AMBIGI is configured to solve the relations beginning in Sec. 5.4 at Eq. (5-39)
for arbitrary my, Ry, My, Ry, & and arbitrary channel-pair phase errors 04 5, 0 3, and
01,4- AMBIG2 is configured to provide p, for arrays under the assumption that all
channel-pair phase error variances are identical. Thus, AMBIG1 has the nature of an ex-
perimenter’s tool, giving the designer, for example, the ability to examine the effect of
putting higher-quality components in one channel-pair. AMBIG2 is more uselul fur tab-
ulating p, of various arrays over a range of channel-pair phase error distribution one-sigma
values,

Table 5-6 provides p, vs channel-pair phase error for several arrays of € = 16, 20,
and 25. AMBIG2 was wsed to calculate the p,. Figure 5-2 is a plot of p, vs channel-pair
phase error for { = 18, and Fig. 5-3 is the corresponding plot for £ = 25. In both cases,
becruse of the proximity of p, vs channel-pair phase error for certain arrays, only two curves
are shown. Table 5-6 makes these relationships clear,
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Comparison of Approximate and Exact Synthesis Procedures

It was emphasized in the beginning of this subsection that an approximate synthesis
. procedure was sought, in part to eliminate the necessity of calculating a bivariate density
function for every array configuration analyzed. An additional reason was to keep the
k theory behind the basic synthesis of an array from being ohscured. Table 5-7 shows the
approximate performance of the procedure.

| This table is a list, over the range 8 < ¥ < 42, of the optimum m, as selected by
three different criteria.

. ) .~ ® Geometric-mean criteria—Fig, 51
o ® CLSIII program
IR ® AMBIG2 program.
. : A check appearing in the “comments” column means that all three methods indicated the

v same (and correct) my. In the case of Class II arrays, the inability of the two simpler
- criteria to indicate the proper m, cannot be faulted, as they do indicate the proper m;—
i or | + 1—within the constraint of not considering array-to-array correlation,

: Table 5-5a—Program CLSII Printout for ¢ = 21, m; = 5; Trial ny = 3

$50 DATA 21,8

CLSILX

S1GMA~CHANNEL-PAIR = 22,6779 ELECTRICAL DEQREES
AVERALL ARRAY LENGTH = 21 HALF-WAVELENGTHS
Ml = 5

THE TRIAL VALUE @F N{ IS 73
MIINIdeaMEIN2

ALPHA, LENGTH Pk QuokkR CA+COEFF. P«AMB REDUNT
(PCT)

5 t 3 wuw 2 1 8
5 » 21 J 2 16 ~0.18718%5 10.2819 99999

$ 1 3 & 2] 1 10
5, 21 & 4 |1 =0.258501 9.57561 9999  rmmccammeren

5 oy 3 kax 21 2 IS
5 . 21 9 6 6 -0.31225% 10.0414 3

B o1 3 4%k 0] 3 20
5 . 21 12 8 1 ~0.341022 11.8056 99999
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Table 5-6b—Program CLSIII Printout for £ = 21, my = §; Trialn, = 2

550 DATA 21,5

CLSIII

SIGMA-CHANNEL~PAJR = 22,8779 ELECTRICAL DEGREES
QUVERALL ARRAY LENGTH = 21 HALF~WAUVELENGTHS
Ml = §

THE TRIAL VALUE @F NI IS 72

MLIN] ®ReM2sNR
ALPHA,LENGTH PhowwQuuwR CO.CEEFF, P=AMB REDUN?
(PCT)
St 2 whe 21 10 Y
5 » 21 2 3 16 3.62233E~2 10.2819 99999
5 ¢ 2 Hokw 21 ¢ 10
5 . 21 4 6 11 -8.67442E~2 9.57%61 99999
5 1 2 Wk 2) 1 18
5 , Bt 6 9 & ~0,146944 10.0414 3
S 1 2 mex 2) 1 20
5, 21 8 12 1 -0.21803 11.8056 99999

The situation is different for array lengths between 31 and 42. The reason can be
deduced from Table 3-4. Fou m, = 6, the only allowable n, are either 1 or 6. Now, the
ideal-unrealizable quadratic form for m; = 6 is (6:6 - 6-3 + 3:3)1/2 = 510982, By con-
trast, the two realizable quadratic forms are (66~ 8:1+1:1)1/2 = (6+6- 6:5 + 5+5)1/2 =
5.6678. For my = b, the ideal-unrealizable quadratic form is (5+6 - 5+2,6 + 2,6:2.5)}/2 =
4.3301, 'The realizable quadratic forms for m; = bare (56:6- 6-3 + 3.3)/2= (5+5-5-2
+2:2)1/2 = 4,35689, For m; = 7, the ideal-unrealizable quadratic form is (7°7 ~ 7:3.6
+3.5:3.6)1/¢ = 6.0622, The realizable quadratic forms are (7+7~ 7+4 +4.4)1/2 = (7.7
~7:83+3.3)12 = 6,0828,.

The calculations above show that the subarray 1 ambiguity variable--(see Eq. (6-1))—
for m; = 6 (realizable) is proportionally farther from its ideal-unrealizable variable than
are the realizable variables for my; = b or my = 7 from teir ideal-unrealizable counter-
parts. The practical impact of this deficlency for arra~ using my = 6 is that as the arvay
length migrates farther in either direction from ¢ = 36, eventually an array utilizing
my = B or my = 7 will perform better than one using m; = 8, even though the “goometric-
mean criteria of Fig. 5-1 are met.

'The foregoing discussion illustrated one way in which the approximate analysis leads
to incorrect conclusions on the optimum-realizable wray for a given length., Another way
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in which the approximate procedure leads to the wrong cornclusions is as follows. The
approximate procedure is based on the attempt to force the overall p, toward a value of
8.9%—by forcing the channel-pair phase error to assume a value based on overall array
length—without regard to correlation of ambiguities between the subarrays. As an ex-
ample of the effect of correlated ambiguities on array design, consider £ = 37, On the
basis of the overall urray length-square root criterion, one would probably evaluate candi-
date arrays based on m; = 6 and m, = 7 by program CLSIII, This approximate proce-
dure indicates the following two arrays,

I

!

8:5®37:18,6 Pq = 10.4166%]  prog=am CLSIII,
7:4©37:21,7 pg = 10,3100% UcH.pR = 17.0848°

(assuming independence of subarray ambiguities)

When program AMBIG1 is applied to the same arvay parametors, and to the same channel-
pair phase error distributions, the results are

i

6:5 @ 37:18,6; -0.46617 Pq
7:4®37:21,7;--0.266762  p,

i

9.7912% Program AMBIG1,
10.1879% UuH.PR = 17.0848°

(including effects of subarray correlation)

For sclocted values of channel-pair phase error that are more likely to be used in a system
design, Program AMBIG2 yields

6:6® 37:18,6,~0.46517  p, 0.1946%,1.1632%} Program AMBIG2,

. . - - OcH.PR © 1()0, 12u,
7:4®387:21,7:-0.266762 p, = 0.3171%, 1.4693% respactively

(including effects of subarray correlation)

The above tabulations show that on the basis of the approximate procedure employ-
ing program CLSI! one might be tempted to choose the array based on my = 7 as the
best performer. However, more precise evaluation of the arrays with the aid of AMBIG1
and AMBIG2 (once the simpler procedure exemplified by CLSII is used to identify can-
didate arrays), shows the optimum array to be based on m, = 6,

Tabulated p, vs 0ey.pr

Table 5-8 gives p, v8 Ug.pr for the optimum-reatizable four-element caseaded end-
phase array over an ¢ range from 4 to 42 half-wavelengths. ‘The arrays have optimum p,
q, and r spacings such thnt p, of 0.1 to 16% for the ogyq.py specified results,

It ¢an be seen from the table that the optimum-realizable array for orray longths
24, 30, and 36 actually have o p, greater than the arrays one half-wavelength longer, or
26, 31, and 37 hall-wavelengths, respoctively. This fuct has apparently not been reported
previously in the literature on multiclement interferometers, The reason for this bohavior
is that lengths 24, 30, and 36 are highly composite numbers, i.o.,,
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24 = 2:2-2-3,
30 = 2:3+5,
36 = 2:2-3-3.

There are fewer degrees of freedom in synthesizing these arrays, than, for example,
in = 26 = 2:13. In each of the lengths 24, 80, or 36, mqy:ny is either much greater, ox
much less than 2:1. This is in marked contrast to the example ¢ = 268, where the mg:n,
ratio is 26:15, which is extremely close to the ideal-unrealizable ratio of 2:1.

As an ald to the system designer in making tradeoffs, the information in Table 5-8
is graphed in Figs. 5-4a and 5-4b.

A figure of merit for optimum-realizable arrays may be defined as the ratio of p,
ideal-unrealizable, given opy.pg as per Eq. (5-23), to the p, optimum-realizable, given the
same Unyy.pR, evaluated in Program AMBIG1. That is,

Poap | Ocu-pry Eq. (6-23)
Pa.RE | OcH-pR» Eq. (6-23)

it

Figure of Merit = I

0.088281
| R -4
Pq.RE | 9cH.pRy Eq. (B-23) (6-45)

Figure 5-6 shows the figure of merit, I' vs array length for 4 < £ < 42. Several relation-
ships may be deduced from the graph.

® With the exception of the ideal-unrealizable array for £ = 4, Class I (2= i2) arrays
whose my are even do not have as great a I' as arrays whose m; are odd

® (Class I (¢=i(i + 1)) do not have as great a I" as the adjacent Class I arrays—
exceptions are £ = 16, 36

®  Arrays whose lengths are prime have I' greater than the mean I' of 0.898—the
only exceptions are £ = 7,13

Table 5-9 gives p, vs 0cy.pr for the oplimum-realizable four-element cascaded end-
phase arrays, Classes I and II over an ¢ range from 4 to 100, The tabulated p, are graphed
in Fig. 6-6. Figure 5-7 shows the figure of merit for these arrays. It should be noted that
as the array length exceeds 23 half-wavelengths, the p, exceeds 0.1%, for ogy.pg = 12°,
If ocy.pr 18 reduced to 10°, arrays up to length 31 are realized before a p, of 0.1% is
exceeded. Arrays longer than this require some form of calibration (see Sec. 3.1) if the
larger p, associated with uncalibrated arrays longer than this are unsuitable for a particular
application.

5.6 Concluding Remarks on Four-element Array Synthesis

The synthesis concepts presented in this section for four-element arrays enable the
ESM system designer to rapidly synthesize arrays of any length. These techniques are
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N
By i ARRAY LENGTH, /
% : Lo Fig. 5-6—Figure of merit, I' va urray length for four-eclement arrays
&,
3
F ; based on the concept of the ideal-unrealizable array. The two-step procedures given, in
4‘:-, conjunction with the computer-aided techniques exemplified in the programs CLSIII,
‘, , AMBIG1 and AMBIG2, provide the designer with (a) an approximate synthesis leading to

. several candidate arrays, and (b) exact analyses to fix the parameters of the optimum-
i realizable array once the approximate synthesis has been performed.

y ; Although there is a small amount of trial and error in the procedures, this should

: I : be viewed in the context that a brute-force analysis for arrays of length £ = 16 leads to

6 : well over 75 arrays, all of whose p, have to be evaluated before the optimum-realizable
array spacings can be specified,

By means of the concepts presented in this report, it has been possible to answer in
the affirmative the speculation of Hanson [21] on the existence of optimum four-element
arrays.

|
|
' A final observation (not stressed in the development) is that one need not be re-
. - stricted to implementing the optimum-realizable array for a given length if one or more
' ' of the spacings are too small with respect t{o the overall frequency range of operation

v desired. The computer programs in Appendix B allow the designer latitude to choose be-
tween array spacings that will minimize the overall p, vs those which are close to the

| optimum-realizable, but which will maximize the minimum interelement spacing in the
array.
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Fig. 5-6—p, va urvay length, with 0cj.pp as o paramoter,
Class Tand 11, 4 € ¢ < 100
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¢ 6.0 SUMMARY AND CONCLUSIONS -3

;H ! This report presented a theory of three- and four-element phase-only interferometers 3
1 ' for application to high resolution, low probability of ambiguity direction finding. N

e Although three-element Interferometers have been widely used, the theoretical funda-
'&-’- mentals of theso arrays appavently have not been widely published in a form accessible to
the system designer. With respect to four-element arrays, it was possible to estublish with
use of some geometric aids, in conjunction with the conceptis of the ideal-unrealizable

: . array and the subarray-to-subarray correlation coefficient, (a) the cascaded end-phase array ,
‘j.‘. : as the optimum configuration for four-element three-integer set arrays, and (b) the optimum i
(i.e., the lowest probability of ambiguity subject to zero-mean channel-pair errors with equal
standard deviation in all channel-pairs) four-element array spacings for arbitrary overall array
o length,

g Work is in progress to extend the results reported here to arrays of more than four
elements, and to define the improvement in acouracy of estimated angle when phase infor-
mation from all the apertures, rather than from only the farthest-spaced pair of apertures,

is used.
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It is hoped that the theory end computer-aided design procedures given here will

stimulate both further research into, as well as wider usage of, phase-only interferometer
arrays in those applications requiring good angular resolution over wide fields of view.
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Appendix A

B EXPANSION OF THE NORMAL PROBABILITY INTEGRAL (BETWEEN SYMMETRIC
, LIMITS) AROUND THE NORMALIZED ARGUMENT 2.000

This Appendix provides an expansion of the normal probability integral (between
. symmetric Jimits) around a normalized argument of 2,000. The expansion is the basis of
- the approximate four-element array synthesis computer-aided procedure (see Appendix B—
Program CLSIII) used in Sec, 5.6 of the main body of this report.

b
B, Three functions from Ref, Al related to normal error functions appropriate to the
o expansion desired are
<) NBS No. 26.2.2
' 5 p 1 ¥ =t2 1 -
- il (x) = _\72?11: B exp 5 dt, (A1)
' NBS No. 26.2.4
'l A 1 X 2 -
R .:.t_. = ¢ - ‘ ’-
‘ E Alx) = \/2.; J:x exp —g dt = 2P(x) - 1, (A2) y
. ! 4
L ; NBS No. 26.2.9 A
| i ,
il ; ,a,p(a_:_m):_L. 1, o m)?
, oo\ 0@ o /2 P02 :

L, (o m -
-_34( 1), (A3) !

where

—x?

, -l X
Z(x) —\/2._1.rcxp 5

A Taylor’s serles expansion for Eq. (A2) in the vicinity of argument x is

l' ' A2 n A3 13 "'I
: Alx+8) ~ A(x) £ AA(x) + 57 A"(x) & g7 A"(x). (A4) -

Now we have

.. I y - e . -
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A(x) = P(x) P( x)
= 2Z(x), . (AB)
A(x) = 22'(x) = ~20Z(x), (A6)
and
A" (x) = 22(x)[x2 ~ 1]. (A7)

The use of Eqs. (Ab, 6, and 7) in Eq. (A4) yields
2A2 2A

Alxt A) ~ A(x) £ 2AZ(x) - o xZ(x) t (*2 -~ 1)Z(x) . (A8)
The transformation x + A — & 3 a results in

e IR R =

For x/o = 2,000, Eq. (A9) simplifies to

e b @] o

From Ref. Al, exact values of A(2) and Z(2) = ﬁ =2 are

A(2) = 0.96449 97361
Z(2) = 0.06399 09665.

Over a range of ~0.4 to +0.4 relative to a mean value of x = 2,000, the approximate value
of A(x + A) compared to the exact valus from Ref. A2 is given in the table below.

(x + A)/a A(Arg) A(Arg.)

_= Arg. Eq. (A10) Ref. A2 Error
1.6 0.890674 0.800401 1.73E-04
1.7 0.910929 0.910869 5.99E-06
1.8 0.928152 0.928139 1.27E.05
1.9 0.942668 0.942587 7.97E.07
2.0 0.95456 0.9545 0.

2.1 0.964272 0.964271 8.64E-07
2.2 0.972209 0.972193 1.66E-05
2.3 0.978634 0.978552 8.19E-06
2.4 0.9838171 0.983606 2.66E-04
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Appendix B
COMPUTER PROGRAM LISTINGS AND COMMENTS ON THEIR USE

This Appendix provides listings of three computer programs for analyzing and syn-
thesizing four-element cascaded end-phase arrays, along with examples of their use. The
programs are written in BASIC language, and have run satisfactorily on a time-shared
system utilizing a Digital Equipment Corporation System 10 at the Naval Research
Laboratory.

The three programs are called CLSIII, AMBIG1, and AMBIGZ2., Descriptions of the
programs are given below.

CLSIII

Figure Bl is a listing of program CLSIII. The user specifies the desired overall array
length, ¢ and a trial subarray ratio 1 numerator, m; as data input via line 5660, The pro-
gram automatically selects a channel-pair phase error, ogy.py bused un overall array length
¢ (according to Eq, (6-28) of Sec. 5.3 of the body of this report) that would result in a
probability of amhiguity of upproximately 8.89% for the ideal-unrealizable array of the
given length, The program will then query the user for his trial subarray ratio 1 denom-
inator, ny.

The program then prints out the parameters of all possible urray configurations for
the particular set of £, m, and n; chosen, listing

© mying®m,:n, ratios

® Factor o, and length ¢

® Array spacings p, q, and r

® Array-to-array contelation cooefficient, Pa,a

¢ Approximate p,, in percent, sssuming independence of subarray-to-subarray
ambiguities

¢ Indication of redundancy in array spacings: “99999" indicates “no redun-
dancy”; a smull integer indicates that the spacings p, ¢, and r have this factor in comimon,

An example of a CLSIII printout is given in Fig, B2 for £ = 21, m, = b, and n; = 8.
The printout shows that the arruy whose spucings aro p = 6, ¢ = 4, and r = 11 is the best-
performing array of length 21, given m; = b and n; = 8. Actually, as pointed in tho main
body of the report, this is the optimum array for length 21, The user has the freedom to
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CLSI1L

F 10 DIM X¢10),YC10),4¢10)

- 20 DIM DC10).ECI0Y,F(10),F(10),8¢107,7¢10)
i 30 8|EAD L,MI}

1§ : 40 LET XS = SQNT(3sL) i
. . 50 LET §9 = 1B80/K9 3
\)

v

-

. 60 PRINT"S14MA=CHANMEL~PAIR ="}593" ELECTRICAL DEGREES" L
70 LET Cl = EXD(-2)/SQRT(243.1415926) |

i B0 SRINT"QUERALL ARRAY LENATH ='}L“HALF-VAVTLENGTHS" .
90 PRINTYM] u't3M] i

100 LET J9 = INT(LMI) .

110 IF J9%M1-L®0 THEN 130 C g

120 7@ T 140 X

130 LET J9 = J9el|

% 140 BRINT

i 150 PRINT“THE TRIAL UALME @F NI 1§

A8 160 [NPUT NI 'y

A 170 PRINT '

k- 180 PRINT

: 190 PRINT"  MlsNlsaaM21N02"

N0 PRINTYALPHAYIY, "IVLENATHY, " PrerQawxiR","CACORFF )" P-AMDY,"REDYNT"
e 2!0 OanT " n'u u’u n‘u (PCT)" .
220 NRINT ¥

v 230 PRIMT
L) ' 240 FaR J

. . 1 Te J9 k'
B 250 LET A = MLAMI~MINN]+NIMN] o
!y 260 LET R LokL~LowdetM ]l + 0wt wdweM ] x
a \ 270 LET C = (MI=MI)#{L=JM1)=NI*L &
b . R0 LET P(J) = 5%C/SQRT(AKD)
‘ 290 LET D1 = K9/SARTCA) - 2
TR 300 LET D2 w MI4K9/SANT(D) « 2
910 LET 11 = ,9544997 + Cla(24Dl = 2xD1%Dl + DI%Di#D1)
300 LET 42 =~ .9%44997 + Cla(2xD2 - 2+D2%D2 + DR*D2%D2)
330 LET 73 = f1sa2 .
940 LET 0¢J) = 100%¢1-G3) ]
350 LET DCJY = Niwd A
Y 350 LET TCJY w (MI=Nl)#y '
R . 370 LET F(J) = L = JaM] !
- 1 IB0 FAR K = J9 + 2 T@ & STEP =i p.
" 390 LET T = DC(JI/K ~ INT(DCII/K) K:
"y 400 LET U = E¢JI/K ~ INT(EC(JI)/IO '
f} : 410 LET U = F(I)/K = INT(FLD /K Ok
azn LeET M oe T o4 1 oty )
430 IF = 0 THSN 470 ‘-
440 NEXT ¥ :
450 LWT 3¢J) = 99999 5
' 460 38 TO 480
o 470 LET q¢d) = K
I
1

| I S B )

>

490 NEXT J .
490 FER J = | TQ J9 3
; K00 PRINT MIJ' v pml 2 muw fL30 1 s JaMl '
1 S10 PRINT MITC, " BL,DCI) IR IFCII A PLIILRCII T D
' 20 PRINT

. 830 "RINT 2
540 NEXT J N

) S50 DATA 25,% 3
o 960 END g

Fig. B1--Ligting of program CLSIIT
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p‘ 550 DATA 21,5 5
" ;',
E.'f' CLSIIY 3

i S1GMA=CHANNEL=PAIR @ 22,6779 ELECTRICAL DEGREES
G @VERALL ARRAY LENGTH = 21 HALF-WAVELENGTHS
\ Ml = S

[TV P, SV

THE TRIAL VALUE @F NI IS 23

S M1INlxdxeM21N2
ks | ALPHA, LENATH Pk Qmokok R C2.CRAEFF. P~AMB REDUN?
S (PCT)

B et et

SRS -4
e’

5 ¢t 3 %%k 21 ¢t 5§
5 » 21 3 2 16 -0.187155 10.2819 99999

5 2 3 w¥x 21 12 10 :
5, 21 6 4 11 ~0.258501 9.57561 99909 !

S 1 3 wkk 21 1 IS 3
5., 21 9 6 6 -0.312255 10,0414 3

L
g 3 3 ik 21 3 20
5 » 21 12 8 1 -0.341022 11,8086 99999

Fig. B2--Example of program CLSIII printout

PR V-

e S Ak N B L T L e

explore the performance of other arrays of length 21 by modifying his m; and ny inputs,
should he wish to search, for example, for arrays whose minimum spacings exceed those
obtained for the optimum-realizable arrays (from p, considerations) discussed in the main
text of this report,

If a radically unsuitable trial m, is chosen, say my = 2, for £ = 21, the program will
indicate an overall p, that is grossly in error, compared to the exact-independent p,, be-
cause the range of validity of the expansion for the probability integral for subarray 2
will have been exceeded. Normally, trial m; will be chosen by refcrence to Fig, 6-1 in
Sec. 5.5 of the body of this report. Figure B3 shows the exact probability of ambiguity
(independence assumed) for a four-element array in terms of the normalized arguments
for the individual subarrays, centered on a normalized argument of 2.000 for each sub-
array. That is, if each subarray has a normalized probability function argument of 2.000,
then, the p, for this array is 8.89%. Suppose an array is characterized by a normalized
argument of 1.9 for subarray 1 and 2.3 for subarray 2. The exact p, for the overall
array would be 7.765%; the approximate p, returned by program CLSIII would be 7.7567%,
or 0.008 percentage points low. It can be seen that the extremes of error in program
CLSIII occur when both arguments are nearly the same value. That is, if both arguments
are 1.6 (normalized), the exact p, is 20.719%, and the approximate p, is 0.031 percentage
points low. It can be appreciated, however, that in most array syntheses, when the ror-
malized arguinent of one subarray is less than 2,000, the normalized argument of the

o
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L 1 Ll A L T o A
'{3 . 18 17 1.8 1.9 2.0 2.1 22 23 24
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other subarray is generally larger than 2.000; Fig. B3 shows that the errors in the approxi-
mation tend to cancel when this condition exists.

In summary, prograra CLSIII is suited to the purposes for which it is intended: to
eliminate the need to calculate the exact p, for each array candidate, and to provide the

user with a readily applied overview of the performance of various arrays on a relative
busis, '

AMBIG1
Figure B4 is a listing of program AMBIG1., This program provides an exact calcula-
tion of p, for a four-element cascaded end-phase array upon the user’s specifying the fol-
lowing data inputs:
®  Subarray 1—(line 1110)
my, ny, and Pl,z;l.a*
& Subarray 2-—(line 1120)
my = U, ny = Ja,  Prang
¢ Miscellancous parameters—(line 1130)
01,20 01,3y Orar Praostas &

An example of an AMBIG1 printout for Ry = 5:3, Ry = 21110, = 5, 0y » = 0 3=
0'1'4 = 12.50, and pl,zil,a =pn Bid = pl}.z;l,,‘ = +0,6000 is giVGn in Fig. Bb.

Program AMBIGI can also be used to caleulate the p, of arrays in which the oy
j= 2,8, 4 are not equal, Kor example, suppose that

01‘2 = 100,
ol,:l = 140!
01’4 = 120.

Suppose furthor that the channel-pair phase crror correlation coefficients are known (by
measurement of the joint channel-pair phase errors) to be

91'2.‘1’3 = (.457143 s

0.380962 ,

P1,3:1,4

pl.zn A4 0.5633333.

*py.2:1,3 i the correlution coeflicient between channel-pair evrors in the 1, 2 channel-puir to the 1, § channel-
puir. The value of this coelTicient (and the two below in lines 1120 and 1130) is usually set at +0.6000 for
design purposes,
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READ MI,NI1,PI]

READ M2,N2,P2

READ S$1,52,53,P3,0

DIM HC31,2),L(2),11¢2),7%(2)

PRINTHFQURESLEMENT PHASE INTERFERAMETERS:"

PRINT"“CEMPOIIND PRAB,«-@F-AMBIGUITY FOR ARRAY SYNTHESIZED"
PRINT'"BY CASCADING TYQ@ THREE=-ELEMENT INTERFEROMETERS-=w==« "
PRINT

PRINT “SIAMACH~PR==1,2 ='3S1IVELECTRICAL DEGREES"

PRINT "SINMA,CH=PH=~«],3 =352 "ELECTRICAL DEGREES"

PRINT "SIAMA,CH-PRe=1,4 =";S33"ELECTRICAL DEGREES"

PRINT

PRINT

PRINTY ARRAY NO.! PARAMETERSt"

PRINT" YLARGE* ='"jiMl," *SMALL' ="3NI

PRINT

PRINTY APRAY N@.2 PARAMETERS:"

PRINTY YLARGE ="3M2,%" 'SMALL' ="}3N2

PRIMNT

PRINTY APRAY NO.2-ARRAY N@.! RELBLUTION FACTOR:'M™:NQ
PRINT

LET Al = SQRUC((MI%RS1H)12)=2 %Pl (MI*SLIIR(NLIXS2)+C(N1452)12))
LET A9 m SQR(((M2%G2)12)=2 . kP2x({M2x82Ix (N2XxSID+((N2%S53)22))
LET P8 = MIxM2xP1IxSI%S2 + NIAN2AkP2uSPxS3

LET P9 = ~MIxNZ2AP3xSIxE3 « N1AMEXS2x52 + PH

LEY P4 = PO/(AIXA9)

LET Cl = 1/(2%3.,1415926)

LET C2 = 1./SQR(1.~P4%PY)

LET A2 = A9/Q

PRINT"SIG=ZCARTAY N@.1) ="3Al,"DEGREES"

PRINT

PRINTVSIG-TC(ARRAY N@.2) ='"3AQ,"DEGREES"

PRINT"SIQ =W (ARTAY N@.2) ="} AR,"DEGREESC(RESQLVED BY NO.1)
PRINT wemcmammaat

PRINTY"E(Z%) =";P9,"DEGREES"

PRINT"wname waowa?

PRINT"ARRAY-T3-ARRAY CORR. COEFF'T. ="3P4

PRINT"comcmmmmn=

LET Ul = 180/A1

LET N2 = 180/A2

PRINTY"PRUBABILITY FUNCTION PARAMETERS:'

PRINT

PRINT"ARGIIMENT F(1) =*3t1]

PRINT"ARGUMENT F(2) w~*3112

LET U¢ly = 11}

LET 11(2) = 2

FOR J = | TQ 2

IF UCJ)>544513 THEN 630

LET 23 = 0.

LET T = 11(J)/(21.5)

LET S = 7T

LET Y2 = 'I(J)*"I(J)/2

LET D = |

LET D = D + 2 '
Fiy. B4 —Lisling of program AMBIG1
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580
560
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
B60
870
880
890
600
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1080
1060
1070
1080
1090
1100
1110
t120
1130
1140

ROBERT L. GOODWIN
LET T = Tx(2%Y2/D)

LET S = § + T
IF(T/5-1E=10)>>0 THEN 560
LET %23 = (2/5QRT(3.1415926))*SxEXP(~Y2)
LET Z(J) = (1.=-23)/2

G0 T@ 640

LET Z(¢J) = 2,5E-08

NEXT J

LET Al = 1 = 2w2(l)

LET Bl = | =~ 2x2(2)

FOR J = ! T@ 2

IF 11¢(J) »>5.4513 THEN 950
L2T H(0,J) » |

LET H(1,J) ==11¢J)

LET A =-l1¢J) :
LET B = | ?
FGR ! = 2 T@ 20 .
LET C = A K
LET A =-A#lIC¢J) -(1-1)%B ‘
LET B = C

LET H(l,J) = A

NEXT 1

NEXT J

FBR J = | T@ 2

LET & = | .
LET F = 0 =
FOR K = 0 T@ 20

LET X = P4%(3-2xyJ)

LET D = HC(Ks 1)*H(K,2)m(Xt (K+1)) "
LET E = Ew(K+1) a
LET F = F + D/E

NEXT K

LET 113 w 15¢1)atCl) + 11¢(2)a0(2)
LET Fl = FRCIwEXP(=113/2)

LET L(J) = Z(1)yxZ2¢2) + Fl o
NEXT J v,
PRINTYLCL) ="2L¢1)," LC(2) u"3L(2)
1% TY 960

LET LC1) = L¢(2) = O
PRINT"PREB.-CE@RR(1) «''3A1," PROB.-CORR(2) =331
PRINTYPRIB,~AMB(1) ="j2%2(1)," PREB.-AMB(2) »"12x%x2(2)
PRINTVeewmac—a -t
PRINT

LET El = 24 = (Al+B1+2.%L{1)+2exL(2))

PRINT

PRINT"mwcnnmcaaat

LET F2 = (00x%xE]

LET E3 = INT(E2%10t4 4+ .,5)710v4

PRINT “PReB. OF AMBIGUITY ="}EJ"PERCENT(IMCL. CORRELATION)"
PRINT

LET D2 = 100x(1«Alx%B}])

LET D3 = INT(D2%10t4 + .5)/10v4

PRINT "DREB, OF AMBIRUITY ="iDI;"PENRCENT (ASSUMING INDEPENDENCE)®
PRINT" remamnammatt

DATA 5,3.,.5

DATA 21,10,.5

DATA 12:5,12:5212:5,45,5

END

Fig. B4~ Listing of program AMBIG1 (continued)
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NRL REPORT 8005 R

4] |
o '
o A 1110 DATA 5,3,.5% :
I A 1120 DATA 21,10,.5 .
- S 1130 DATA 12:5,12:5,1245,.5,5 -
Ry ) L
i : AMB1G 1 ..
- ' FOUR-ELEMENT PHASE INTERFERGMETER: .
COMPOUND PROB.=@F~AMBIGUITY F@R ARRAY SYNTHESIZED 5
BY CASCADING TW@ THREE-ELEMENT INTERFEROMETERS===== "
- "y
SO SIGMA,CH=PR~=1,2 = 12,5 ELECTRICAL DEGREES ®
R SIGMA,CH=-PR==1,3 = 12,5 ELECTRICAL DEGREES A
1 SIMA,CH=PR==1,4 = 12,5 ELECTRICAL DEGREES
3
' ARRAY N@.1 PARAMETERS: j
. 'LARAE' = 5§ "SMALL' = 3 i
b L
. ! ARRAV N@.2 PATAMETERS! Y
B ’ *LARGE' = 21 *SMALL' = 10 -
| <
‘- v ARRAY N@.2~ARRAY N@.l RESOLUTI@N FACT@R: 5 k-
L B L "
e N SIS-ZCAPRAY N@.1) = 54,4862 DEGREES ) 3
. ! S19=Y(ARRAY N@.2) = 227,418 DEGREES "
S15-4 (ARRAY N@.2) = 45,4835 DEAREES(RESOLVED BY N@.1) g
. ; ECZ#) ==3203.13 DEGREES 2 ¥
1l 1 - -
; ARRAY=T@=ARRAY CORWR. COEFF'T, =-0,258501 3
"4 ! ¥
. - . i~
.f . : PROBABILI'TY FINCTION PARAMETERS!: 2
: }
F I
By : ARJUMENT F(1) = 3,30359 .
. ARGUMENT F(2) = 3.95748
- L L¢l) = 1,070358~-10 L(2) = 4.10727E~7
il . PROB.~CORR(1) = 0.999045 PROB,. ~CORR(2) = 0.999924 1
g(‘ - PROB.~AMB(1) = 9.54531E-4 PROB.-AMB(2) ™ 7,57352E~5 Ny
N Y
b ‘\‘ ! L N N
3 M ‘ . PROB. OF AMBIGUITY = 0.1029 PERCENT(INCL. CORRELATION) X
N ‘
ekt ‘ PROB. OF AMBIGUITY = 0,103 PERCENT(ASSUMING INDEPENDENCE)
& \‘ msnmma.e- 3
’ . I'\ Fig. Bb—Example of program AMBIG1 printout—equal channel-pair phase errors A
'_ & i 123 X
B ¥ B LI T T . - . . —— e e r
;. : O
Ty ' .I




a e e el

P L2

T

g ST =
=

ROBERT L. GOODWIN

These two sets of values define zero-meon channel errors, according to Eq. (3-7) of Sec. 3.2
of the main text (for oy 9,1 3, and with suitable subscript changes—the other correlation
coofficients)

o) = 8.0000°,

o3 = (0%, - 0})""? = (100 - 64)!/% = 6.0000°,
a3 = (33 -0D)'"% = (196 - 64)'/% = 11.4802°,
o4 = (034~ 0h)'"? = (144 - 60)!/% = goaaw°,

Figure B6 shows the AMBIG1 printout for the data inputs

my = 5, ng = 3, pyga,s - 0467143  (line 1110)

my = 21, ny = 10, py g4 = 0380962 (line 1120)

01'2 =t 100, 01'3 = 140, 01'4 = 120, (line 1130)

Pro,4 = 0.533383, a = 6.

AMBIG2

Figure B7 is a listing of program AMBIG2, This program is similur to program
AMBIG1, providing exact calculations of p, for a four-element cascaded end-phase array.
The details of the probubility functions are omitted in the printout, and all channel-pair
phuse error distributions are presumed equal to ogy.pg in the input. Hence, in AMBIG2,
all the channel-pair phuse error correlation coefficients are forced to equal +0.5000,

Figure B8 shows a printout for the same example that was used in the printout
given as Pig, B6. ‘The data input on line 860 of AMBIG2 has the form:

my b, ny < 3, mqy = 21, Ry = 10, o = b,

Tho exact p, (including the effect of subarray-to-subarray correlation) is calculated over
the range on ogy.pr from 10 to 26 clectrical dogrees in 1-degree steps in Lhis example.
The range and step size on Opyy.pr can be varied readily by altering lines 290 and 300

in the program as required,

o |
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1110 DATA 5,3,.457143
1120 DATA 21,10,.380952
1130 DATA 10..,14.,12.,.833333,5

AMBIS])

FOUR~ELEMENT PHASE INTERFEROMETER!
COMPEUND PROB.-@F~AMBIGUITY FOR ARRAY SYNTHES!ZED
BY CASCADING Tv@ THREE-ELEMENT INTERFERGMETERS====~=

S1GMA,CH-PR~~1,2 = |0 ELECTRICAL DEGREES
SIMMA,CH-PR~~1,3 = 14 ELECTRICAL DEGREES
SI1AMA,CH~PR«~1,4 = 12 ELECTRICAL DEGREES

ARRAY N@.! PARAMETERS!:
'LARGE' = § *SMALL" = 3

ARRAY N@.2 PARAMETERS:H
'LARGEY x 21 'SMALL' = 10

ARRAY N@.2-ARRAY N@.! RES@LUTIGN FACTER: 5
SIG-ZCARRAY NQ«1) = 48.4149 DEGREES

SIG=M(ARRAY NQ.2) w» 271.949 DEGREES
S5183=1CARRAY N@.2) = G4.3897 DEGREES(RESGLVED BY N@.1)

ECZ#Y) =~6508. DEGREES

LR R R

ARRAY~TO~ARRAY C@ARRs COEFF'T. ==0.%24671

PROBABILITY FUNCTION PARAMETERS:

ARGUMENT F(1) = 3.71787

ARGUMENT F(2) = 3.30945

LCl) wm=],59428L-120 L¢(2) = 7.61799E~6
PREB.=CORR(1) = 0.999799 PROB.«CORR(2) = 0.99%065
PREB.~AMB(1) = 2,00920E-4 PROB.=AMB(2) = 9,34742E-4

- A -

PR@B. @F AMBIGUITY = 0,112 PERCENT(INCL. CORRELATIGN)

PREB. QF AMBIGUITY = 0.1135 PERCENT(ASSUMING INDEPENDENCE)

LA X X

IMig. BO- - Examplo of program AMBIG1L printout —-unequal eliannel-pair phase errors
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AMBIG2

10 READ MI,NI,M2,N2,Q

1 20 DIM S5¢(50)

! 30 DIM H(31,2),L(2),UC2),2(2)
! 40 PRINT"FRUR-ELEMENT PHASE INTERFEROMETER:" '

- . i 50 PRINT"C@MPBUND PREB.«@F-AMBIGUITY FBR ARRAY SYNTHESIZED"
. A 1 60 PRINT"BY CASCADING TW@ THREE~ELEMENT INTERFERZMETERS=====" »
R ' 70 PRINT
! ' 80 PRINT® ARRAY N@.l PARAMETERS$"
B ' 90 PRINT" "LARGE' w"IMI," SMALL' ='"3N{
- 100 PRINT
-8 . 110 PRINT" ARRAY N@.2 PARAMETERS!"
. ; 120 PRINT™ "LARGE' ="sM2," 'SMALL' ='";N2
I 130 PRINT
o 140 PRINT" ARRAY N@,2~ARPAY N@.1 RESOLUTION FACTORI"™3Q
| 150 PRINT
| 160 LET Al = SQRT(MIAMI=MIXN1+Ni#*N1)
| 170 LET AD = SQRT(M2#M2-M2xNZ+N2#wN2)
’ 1B0 LET P9 » (MI-M1)&CM2-N2)-N1%M2
190 LET P4 = .5%P9/CAl*AS)
200 LET €1 = 1/¢2%3.1415926)
210 LET €2 = 1./50RC1e=P4%P4)
220 LET A2 = AO/R
230 PRINT
240 PRINT"ARRAY=-T@~ARRAY CORR. CPEFF'T. ="ip4
250 PRINT
260 PRINT“CP«PR.SIG","#l P=CORR*","#2 P=CORR.","COMP*D.AMB."
270 PRINT"  (DEGR)"," ", ", (PCT)
280 PRINT
290 FER M = 6 TQ 26
300 LET SCM) 1= 5 +(M=1)
310 LET Ul w» 180./¢S(M)*AL)
320 LET U2 = 180./¢S(M)I*A2)

330 LET u(l) = Ui

340 LET U(C2) = 12

350 FgR J = 1 TQ 2

360 IF U(J)I>5.4513 THEN 490
370 LET Z3 = Q.

380 LET T = UCJ)/(21.5)

390 LET § = T

Kig. B7 —Listing of program AMBIG2
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8 400 LET Y2 = UCJInUCII /R

.3 ; 410 LET D = |

- 420 LET D = D + 2

- 430 LET T = Tw»(2%Y2/D)

i 440 LET § = S + T

4%0 IF(T/S=1E~-10)>0 THEN 420 -
460 LET 23 =» (2/SQRT(3.1415926))%SkEXP(~Y2) k.
470 LET 2(¢J) = ¢1.=23)/2 '8
480 16 T@ 500 g
A 460 LET 2¢J) = 2,5E-08 oo
- 500 NEXT J

5i0 LET A7 = | - 2xZ(1)

B S20 LET B? = | - 2x2(2) E.
b 530 FOR J = 1 TQ 2 :

A 540 I¥ U(Jr>»5.4513 THEN 800 !
‘ 550 LEYT H{O0,dJd) » | 3
560 LET H(1,J) ==UlJ) %

-

570 LET A mel'(J) "
. $80 LET B = 1} A
- 500 FER I = 2 T@ 20 X
& 600 LET C = A -
610 LET A ==Anl(J) =(1-1)4B N
N 620 LUT B ~ G .
8 , 630 LET HCL,J) = A 3
b 640 NEXT 1 -
: 650 NEXT J 4
o X ! 660 FQR J = | TQ 2 i
= : 670 LET B = |, i
, ' 680 LET F = 0. e
690 FEN K = 0 T@ 20 .
| 700 LET % = PA(3=24J) C
710 LET D @ H(Ko1)®H(I, 2) % (X1 C(K+1)) ,
B l 720 LET E = Ex(K+1) Y
5 730 LET F w F + D/E 3
g ‘ 740 NEXT K .
3 750 LET U3 = UCIIRTCL) + 11¢2)aUce) ..
' 760 LET Fl » FxCIxEXP(-U3/2) P,
770 LET LCJ) = ZC1)%2¢2) + FI !

! 780 NEXT J E
l 790 a8 T@ 810 :
.[ 800 LET LCL1) w L2y = 0 X
: 810 LET Bl = 2, =~ CAT+BT+2.4L(1)42.%LC2)) -
! 820 LET E2 = 100xE1 -
830 LET E3 = INT(EZ%10®4 + ,8)/10v4 -
BAO PRINT S¢M3.A7,B7,E]
: B850 NEXT M
| 860 DATA 5,3,21,10,5%
' 870 END

\ Fig. B7~Listing of program AMBIG2 (continund) iy
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290 FOR M = & TO 21
860 DATA 5,3,21,10,5

AMBIG2

FOURELEMENT PHASE INTERFEROMETER:
COMP@UND PROB.-OF-AMBIGUITY F@R ARRAY SYNTHESIZED
BY CASCADING TW@ THREE-ELEMENT INTERFEREMETERSww=w=-

ARRAY N@.1 PARAMETERS1
' LARGE*

ARRAY NG.2 PARAMETERS!
' LARGE!

-5

= 21

Y SMALL!

' SHALL®

ARRAY N@.2-ARRAY N@.1 RESQLUTION FACTOR: S

ARRAY=Tg~ARRAY CORR.

CP.PR.S1G.

(DEGR)

COLFF'T. w=0,258502
¢l P=CARR., 42 P-C2RR.
0.999964 0999999
0.999826 04699933
0.999421 0+4999963
0.99851 0.999458
0.996818 0.99959
0.994098 0.999026
0.990146 0.99801
0.984864 0.996385
0.978219 0.994009
0.970251 0990775
0.961053 0.986617
0495075 0.981509
0,939487 0.97546
0.927414 0.968508
0.91468 0.960715
0.901423 0.9521585%

At e Sha e gt . ey e ey

Fig. B8 —Example of program AMBIG2 printout

COMP*'D.AMB.
(PCT)

00,0037
0.018)
0.0616
0.163
0.3583
0.6851
1.1766
1.8573
2,7409
3.8303
56119
6:.5929
8.2329
10,0168
11.9201
13.919¢%
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