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FOREWORD

This report was prepared for the Air Force Flight Dynamics Laboratory

3 (AFFDL) by the Los Angeles Aircraft Division of Rockwell International.

1 This is the final technical report for the Advanced Design Composite Air-
craft (ADCA) study program, conducted under contract F33615-75-C-3157,
project task No. 1368-01-35. The period of contract performance is

; 25 June 1975 to 19 December 1975,  Submittal date of the final report is

p February 1976. Mr. Larry Kelly, AFFDL/FBSC, is group leader, Advanced

i Structure Technology Group, Structure Division of the AFDL, and Capt.

-8 E. T. Bannink, AFFDL/FBSC, is the ADCA project engineer for the USAF.

| Mr. B. F. Baumann is program manager for Rockwell. Key assistants are

Mr. E. Jaffe, deputy program manager; Mr. D. Robinson, configuration

development and mission trade studies; Mr. F. McQuilkin, structural de-

sign; Mr. T. Goebel, aerodynamics; Mr. P. Jesse and Mr. M. Nadler, manu-
facturing; Mr. G. Minnick, mass properties; Mr. L. Young, propulsion;

Mr. F. Reimer, operations and cost analysis; Mr. T. Matoi, structure

analysis; and Mr. C. Crother, flight controls.
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LIST OF SYMBOLS

Area sq in., sq meters

Panel dimension
Area

Aerodynamic center

- Inlet mass flow ratio

Aspect ratio of reference trapezoidal wing

Panel dimension subscript, bending

Stringer or spar spacing, in.

Core height subscript, core subscript, compression

Mean aerodynamic chord of reference trapezoidal wing, in.

Drag coefficient, D/qSw

_ Boattail drag coefficient,
[)B/qumax

_ Inlet drag coefficient,

Di/quc

Zero-1ift-drag coefficient

- Nozzle thrust coefficient

Lift coefficient, L/qSw
Rolling/Moment coefficient, l/qub
Pitching/Moment coefficient, M/qué

Yawing/Moment ~oefficient, n/qub




cr

C .
Ex (Msi)
Ex' (Msi)
E ¢ (Msi

- (Msi)

t :

E Msi
y (Msi)
F (psi)

f(psi)
( g
fy, (psi)
£ (psi)

FCL
FQJ

F - D/F;
Fg/F;, Fg/Fg,
FISU (ksi)

(Fj —Fa,p)/Fi

£ (psi)

Subscript, critical subscript, crushing

Side Force coefficient, Y/qSy
Longitudinal compression modulus
Longitudinal tension modulus

Transverse compression modulus

Transverse tension modulus 4

Allowable stress
Applied stress

Flexible or flap

Applied bending stress

Applied compressive stress

Applied compression stress in lower cover for
negative vertical load factor, 1b/in.2

Applied compression stress in upper cover for
positive vertical load factor, 1b/in.2

Thrust - drag 3
Ideal gross thrust 4

_ Measured gross thrust
Ideal gross thrust

Interlaminar shear ultimate b

_ Thrust - pressure drag
Ideal gross thrust
(NASA TN P-7906

Applied shear stress
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Layup (o,

r

Ply -
orientation

Applied tension stress in upper cover for negative
vertical load factor, 1b/in.?2

Compression ultimate

Longitudinal tensile ultimate
In-plane shear ultimate
Transverse compression ultimate

Transverse tensile ultimate J

Gravitational constant, 32 ft/sec2

In-plane shear modulus
Core shear modulus (longitudinal)
Core shear modulus (transverse)

Inertia

Buckling coefficient

Coefficient (panel shear for p loading)
Coefficient (panel moment for p loading)

Length

Ply orientation
Y ‘—Ply orientation

S = Symmetrical layup ??
/485 . /90 31 o~ 1 .Total laywp ;
LNo. of 90° plies

No. of +45° plies ¥
No. of -45° plies r;
|

No. of 0° plies




Mach number
Bending moment
MAX Subscript, maximum
Mo Free-stream mach number

M.S. Margin of safety

N(1b/in.) In-plane load

n. (in.) Core height

NCr (1b/in.) Critical in-plane load

NMI Nautical miles

Number of stringers or intermediatc spars

Longitudinal Poisson's ratio

Cover load for negative vertical load factor, 1b/in.
Cover load for positive vertical load factor, 1b/in.

Axial load
- Pressure

Uniformaly distributed normal load (pressure)
Roll rate, rad/sec

Steady-state static pressure at engine face, psig

Hammershock pressure, psig

- Total pressure
- Inlet pressure recovery

- Nozzle pressure ratio
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t (in.)

tf (in.)

T-L

TSKL

TSKU

TSTR

Allowable transverse shear

. : 2
Dynamic pressure, 1b/ft
Applied transverse shear force
Radius

Rigid or rudder

Yaw rate, rad/sec

Ratio applied stress/allowable stress (comp)

Radius of penetration leg, mautical miles

-

Ratio applied stress/allowable stress (shear)
- Specific fuel consumption
Simple support

Planform area of reference trapezoidal wing, ft2

Thickness
Wing thickness ratio

Face sheet thickness

Lower cover equivalent gage for total skin,
stringers, and intermediate spar caps, in.

Lower cover skin gage, in.
Upper cover skin gage, in.

Stringer or intermediate spar cap gage, in.

Upper cover equivalent gage for total skin, stringers,

and intermediate spar caps, in.

Level-flight maximum speed, nautical miles




Vv Limit speed, nautical miles

Vq (1b) Vertical shear i

Transverse Poisson's ratio

- Weight flow, 1b/sec

Wf (1b/hr) - Fuel consumption
WO Takeoff gross weight

W/S Wingloading, psf

Wv/b/Stz (1b/sec) - Engine inlet airflow corrected ]
to sea-level standard {

Cartesian coordinate - subscript, x-directijon
Cartesian coordinate - subscript, y-direction
Angle of attack, deg

Angle of sideslip, deg

AC _ Boattail drag
dg Ideal gross thrust

AC _ Plug drag
dq Ideal gross thrust

AC ' _ External nozzle friction drag
fe Ideal gross thrust

AC _ Internal nozzle friction drag

in Ideal gross thrust
Leéading edge sweep of reference trapezoidal wing, deg

Flap deflection, deg

Deflection of trailing edge flap or rudder, deg
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Ultimate longitudinal strain
Ultimate transverse strain

Free stream engine station
Engine inlet engine station
Nozzle throat engine station

Nozzle exit engine station




Section 1

INTRODUCTION AND SUMMARY

PROGRAM OVERVIEW

OBJECTIVE

The objective of the ADCA study program was to exploit the benefits of
advanced composite materials at the conceptual design phase of an advanced
high-performance fighter. The study was to utilize the high specific strength
properties (thin wings, higher aspect ratio) and variable anisotropic prop-
erties (aeroelastic tailoring) of advanced composite materials in the design
of a credible, realistic, lightweight, and reliable future fighter aircraft.
The design was to incorporate unitized construction and low-cost assembly
techniques to achieve cost reduction through a lower weight, smaller air-
frame design. The integration of composite material structural components
with air vehicle subsystems was to be assessed. The cost and performance
payoffs of advanced composite materials were to be assessed relative to
advanced metallic structure. In addition, technology gaps were to be identi-
fied in the categories of structure analysis, design, manufacture, main-
tainability, and seivice life, and development programs were to be defined
that would allow low-risk system application of advanced composite materials
in the early 1980 time period.

APPROACH AND STUDY PAYOFF

The approach to conducting the study was to first select a design mis-
sion and define an all-composite (70 to 80 percent of the structural weight)
baseline configuration which met these mission requirements. Then, using
the same configuration concept, mission, and design requirements, a baseline
configuration was defined which utilized advanced metallic structure. Since
some use of composite materials in aircraft design is now considered state-
of-the-art, the advanced metallic configuration was permitted by study ground
rules to incorporate advanced composite materials up to 20 percent of its
structural weight. This was interpreted to be secondary type of structural
components such as leading and trailing edge high-1ift devices, control sur-
faces, and weapon bay doors.

These two aircraft designs were to be compared in the categories of:
* Takeoff gross weight

* Empty weight




Flyaway cost

Life cycle cost

Aircraft performance characteristics

S ol 1

Fuel consumption

The study payoffs, however, go beyond just identification of payoffs for
advanced composite materials in the aforementioned categories. The study
calls for rigorous application of 1980 advanced composite technology level
in the design of a future fighter at the conceptual design phase. This is
an entirely different problem than designing composite component substitu-
tions for metal counterparts. The payoffs of this design exercise would,
therefore, result in the development of methods to apply composite materials
at the point in the design cycle of an aircraft development when the benefits
of composite materials could be maximized. The study payoffs would also

include identification of technology gaps and definition of required develop-
ment programs.
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PROGRAM TASK DESCRIPTIONS
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] The program was organized into four technical tasks with subtasks, as
i shown in Figure 1, plus reporting.

Task I set the stage for the ADCA study by defining the mission and
design requirements of the air vehicle, by sizing the two configurations,
and by formulating a payoff assessment method (and exercising it at a pre-
liminary level) which would properly compare metal and composite aircraft.
The initial configurations, at the start of task I, were refined at the
conclusion of task I, based on evaluation of mission and design trade studies,
composite application trade studies, manufacturing assessment of and influ-
ence on the initial configuration, and aerodynamic development and analysis.

At the conclusion of task I, 12 weeks after contract go-ahead, a formal
briefing was presented at WPAFB. The purpose of the briefing was to estab-
lish the viability of the configuration concept. Following this presenta-
tion, the Air Force was to make a decision whether the program was to be
terminated or continued, and if continued whether it would proceed as planned
or modified to reexamine the configuration or some other program variation.

The purpose of task II was to develop vehicle structural and configura-
tion definitions which would provide the basis for further detail design
and payoff analysis in tasks III and IV. In line with the major thrust of
the program, emphasis was to be placed on maximum exploitation of composites
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to produce a minimum-cost aircraft meeting mission requirements. Emphasis ]
was also to be placed on credibility through the detailed development of E
designs and analysis and a concurrent, closely integrated, manufacturing :
development.

E The purpose of task 111 was to examine certain areas of the preliminary f
design which were known trouble spots for application of the all-composite
approach, and to create a manufacturing plan which would show that the design
being evolved in task II could be built with low-cost techniques. In par-
ticular, the joint interface design problems associated with the joining of
major airframe components were to be addressed to optimize these connections
to minimize the associated cost/weight penalties to the composite airframe.
g The airframe components were to be assessed for in-process and service damage
b vulnerability. These assessments were to lead to classification of the types
of damage expected to occur, and proposed depot and field repair methods to
2 restore the damaged hardware to its design strength. The task was to define
y inspection procedures and techniques required to insure quality and reliabil-
i 1ty assurance for the proposed manufacturing and tooling concepts proposed
: to support the high-rate production of the composite airplane.

B BT 3K SV O

The first purpose of task IV was to compare the all-composite baseline
from tasks II and Il1 with the metal baseline developed in task I. The
principal payoff index was to be lower cost to perform the same mission role
and the second indcx was to be increased performance. The second purpose of
task IV was to ilentify the key assumptions which support the payoff assess-
ment, and to detemine what must be done to accomplish the necessary advances
in the state-of-the-art by 1980. Advanced development plans (ADP's) needed
by the all-composite design were to be formulated. The focus of these ADP's
were to be toward the developments which must be accomplished before an all-
composite airplane could be built with acceptable risk. :

A similar contract was awarded to Grumman Aircraft Corporation and,
following contract award, it became apparent the AFFDL, as a result of
budget cuts within the structural division, did not have sufficient funds
to continue both Gruman and LAAD contracts. It became necessary to stop 3
one contractor at the conclusion of task I. The contract with LAAD was 2
terminated after completion of task I. This report thus includes the
results of task I activities only.

MASTER PHASING SCHEDULE

Each subtask activity shown in the task flow diagram is shown on the
master phasing schedule in Figure 2 plus significant reporting milestones.
The vertical scale on the right side of the schedule indicates program dollars.
The dashed line running diagonally across the schedule shows scheduled expendi-
tures. As the program progressed, actual expenses were shown as a solid line
on a weekly basis. The value of work performed is shown as a third coded line.
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TASK I SUMMARY

Task I activities were conducted as shown on the work flow diagram in
Figure 3. The ADCA point design mission was selected from representative
tactical fighters mission desires (discussed in Section II) and used for
sizing the initial contract configurations for both the all-composite base-
point and advanced mgkallic basepoint shown in Figures 4 and 5. Using these
two basepoint aircraft, trade studies were conducted on a family of wing
geometry variations (aspect i1atio, thickness, wing loading, and sweep) and
sensitivity studies were conducted for drag, weight, and mission parameters.

CONTRACT
C Aien COMPOSITES
ol APPLICATIONS
TRADE STUDIES
PRECONTRACT v f
COMF IGURAT | DN
STUDIES BASEL INE MANUFACTURING,
STRULCTURE el PERFORMANCE ,
DEFINITION COST ANALYSIS
ALL-COMPOSITE 2;;?3::?:*“ REF INED
PPYUSASELINE =%l uass PROPERTIES sl
NF | GURA CONF IGURAT IONS
CONF IGURAT 1ON ALY (5
ADCA MISSION ‘ , ‘
:2:2’:552 WING OPTIMIZAT1ON PRELIMINARY
= =#{ TRADE STUDIES | PAYOFF
BASEL INE Uty ASSESSMENT
CONF IGURAT 1 ON D N
- SENSITIVITY 1 2-WEEK
S e L &  TRADE STUDIES PROGRAN
TRADE STUDIES AWT, DRAG REVIEW
-
) LAAD IN-HOUSE SUPERCRUISER WIND TUNNEL PROGRAMS AND FIGHTER STUDIES R o

Figure 3. Task I activities.
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The two initial baseline configurations were also subjected to detailed
aerodynamic, propulsion, and mass Froperties analysis, Baseline structure
diagrams plus materia) and structural concept drawings were also prepared
for both baseline configurations. Trade studies on the all-composite
configuration included variations in structural concepts for the outer wing
banel, wing carry-through structure and fuselage. Manufacturing analysis
included an interface with enginecering to influence structure design toward
low-cost fabrication methods and also included development of preliminary
tooling concepts, manufacturing breaks for few components and unitjzed
construction, and development of a preliminary assembly sequence. Following
the analysis and trade study activities, the data was evaluated for selection
of design parameters to be used for s design iteration of the initial base-
line configurations into refined baseline configurations to be recommended
for subsequent task IT, 111, and 1V studies,

Sections |1 through TV of this document include details of the afore-
mentioned task [ activities. A three-view drawing is shown in figure 6 of the
basel ine all-composite configuration. This is the baseline which was recommen-
ded for further study in tasks IT, II1I, and 1V.

CONCLUSTONS

Preliminary assessment indicates that the composite baseline aircraft
provides significant payoff in comparison to the metallic baseline in temms
of both weight and cost. Performance is identical for the two airplanes in
terms of radius, payload, and cruise speed but there are advantages for the
composite baseline in maneuver performance. The two airplanes are compared
in Table 1. The cost of the all-composite aircraft was calculated at two
values for cost of composite material. One value was 20 dollars per pound,
generally believed by the industry to be achievable by the early 1980 time
period. However, since there is some doubt that this value will be achieved,
a second cost comparison was made using a value of 35 dollars per pound for
Ccomposite materials. This compares to 39 dollars per pound actually being
paid today for composite materials.

Weight differences between the two airplanes are at a lower percentage
than ordinarily seen in earlier similar studies. The reason tor this is that
both of these airplanes use the same engine, and off-design performance capa-
bility (transonic and supersonic maneuver) is allowed to be a variable. If
maneuver were held constant and rubberized engines were used the differences
of weight between the two airplanes would be substantially increased,
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TABLE 1. COMPARISON, ALL-COMPOSITE VS ADVANCED
METALLIC BASELINE CONFIGURATIONS

Composite

Parameter -4B Ccmposite -5A Metallic  Payoff
Total Program Cost, 300 Unitsd, D 823.84 1263.77 439,93
Average Unit Costa, b 2.746 4.213 1.467
Total Program Cost, 300 Unitsad, € 951.90 1263.,77 311.87
Average Unit Costa 3.173 4,213 1,040
Takeoff Gross Weight 31303 35108 12,1%
Wing Area 400 Ft2 500 Ft2 --
Wing Loading (PSF) 78.3 70,2 --
Engines F404-GE-~400 F404-~GE-400 ~n
Installed Thrust-to-Weight 0.763 0.680 10.8%
Structural Weight 8300 11346 36.7%
Empty Weight 20331 22763 12%
Fuel Weight 6852 7642 11.5%
Design Mission Radius 400 NM 400 NM o
Battlefield Mission Radius 252 WM 257 \M -5 NM
Ferry Mission Range 2563 NM 2037 NM 526 NM

(no auxiliary)

Takeoff Distance 2251 Ft 2460 Ft 209 Ft
Landing Distance 2505 Ft 2632 Ft 127 Ft
Ps - 0.9M/30,000 Ft/5g -5 FPS -9 FPS 4 FPS
Ps - 1.2M/30,000 Ft/5g 266 FPS 172 FPS 94 FPS

bCost in million dollars - does not include RDT&E, avionics, or engines.
Cost based on $20 per pound for composite materials.

“Cost based on $35 per pound for composite materials.
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RECOMMENDATIONS

Because of the very substantial potential cost payoffs in the use of
composite materials, it is strongly recommended that programs be formulated
to continue the development of these materials,with emphasis on known problem
areas, critical design areas, and manufacturing development. These include
the development of materials to be used as core structure in honeycomb
panels to eliminate corrosion problems currently being experienced. It
also includes the detail design, test article fabrication and strength and
fatigue testing of typical highly loaded joints such as wing to fuselage,
fuselage break points, outer panel to wing center section, and landing gear
carry-through structure. Testing is required at the element and subcom-
ponent level to ascertain combined fatigue/environment effect on long-temm

durability. These are long-running, expensive tests which should be under-
taken now.

e

In addition, development of matrix materials should emphasize higher
temperature resistance to provide for future aircraft operating at higher
mach numbers and to provide greater protection against combined effects of
temperature and moisture at today's operating temperatures.

Development of thermoplastic matrices is required to reduce moisture
degradation and fabrication costs.

Immediate development of manufacturing methods for integrated substructure/
cover structure is necessary to insure readiness in the 1980-85 time period.
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Section 11

CONFIGURATION DEVELOPMENT

INTRODUCTION

The two baseline configurations, D579-4B and -5A, respectively composite
and advanced metallic designs, are the result of iterative design and mission
changes which began before the Advanced Design Composite Aircraft (ADCA)
request for proposal (#¥P) was received., Rockwell International's supersonic
cruise vehicle, or "supcrcruiser,' concept was selected as an ideal demon-
stration vehicle for use of composite materials. Preliminary vehicle syn-
thesis was based on the RFP mission and the initial ADCA configuration design
cycle was started. Aerodynamic, mass properties, and propulsion analyses
were made and vehicle sizing and performance were calculated at an approximate
level of effort encompassed by the heavy dark lines as shown in Figure 7.

The resulting vehicle became the proposal vehicle (-4) shown in Figure 8.
Changes in mission and/or vehicle requirements led to the -4A and -4B vehicles
shown on the same figure. Parametric changes in the -4A vehicle led to the
design of the advanced metallic vehicle, -5, and in a similar fashion, analysis
produced the -S5A vehicle. Level of analyses of effort of the -4B and -5A
vehicles in general was represented by the lighter solid lines of Figure 7.
Parametric vehicles and mission trades were conducted on these vehicles and

the resulting changes were incorporated in the task II basepoint vehicles -4C
and -5B. ‘lThesc analysis levels in task 11 for these vehicles is expected

to be nearly the maximum scope shown on Figure 7.

This section will present only propulsion, mass properties, and analysis
used to define these configurations. Aerodynamics characteristic will be
discussed in Section III,

Details of the vehicle definition presented within this section are
primarily those of -4B and -5A, with the resulting -4C and -5B discussed
briefly. .

SIZING GROUND RULES

Vehicle sizing and development for the baseline aircraft was done through
use of the Rockwell-developed Vehicle Sizing and Performance Estimation Pro-
gram (VSPEP). This computer program utilizes baseline aero, propulsion, and
mass property data coupled with a vehicle geometry representation to effect
the scaling of the baseline aircraft to accomplish some specified criteria.
For the ADCA contract, the primary criterion is the Deep-Strike Mission radius
(defined in the next section). The performance of this vehicle was then
measured against alternate criteria (i.e., the Battlefield Interdiction Mission
and the Ferry Mission recuirements) with variations made only in payload and fuel

13
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available, and the resulting takeoff weight, due to different alternate
mission design criteria. In addition, the vehicle performance was computed
for takeoff utilizing various flap settings and power settings, landing with
and without thrust reversing, and acceleration ability at an altitude of
35,000 feet. The maneuverability of the aircraft at various mach, altitude,
and load factor conditions was calculated, as was the variation in the Breguet
range parameter ((M * L/D)/SFC). All of these parameters were also computed
when the wing loading was parametrically varied, and the results are presented
in the section titled '"Mission and Design Trade Studies."

Payload ground rules were a function of mission. For the deep-strike
mission, the assumed payload was two MK-84 laser-guided bombs carried inter-
nally and, although the M-61 cannon was carried, no ammunition was provided,
nor were any self-defense missiles. For the battlefield interdiction mission,
two self-defense missiles of configuration similar to the AGILE were included,
as was 300 rounds of ammunition for the M-61 cannon. Although the current
version of the MK-84-LGB is not compatible with external carriage at 1.5 mach
number, two weapons of that configuration were added to the two carried
internally, as weight and drag characteristics were assumed to be representa-
tive. No weapons except the M-61 cannon were carried for the ferry mission.
The maximum fuel volume of the vehicles was utilized, and additional tanks
and fuel were added to the armament bays. The armament bay contained
3,000 pounds in 300 pounds of tanks, supporting structure, and attachments.

Maximum allowable takeoff and landing distance was set at 3,000 feet
and a desired maneuverability ievel for the 0.9 mach, 30,000-foot, 5-G load
factor case was assumed as approximately equal to a lightweight fighter
class of vehicle (i.e., PS =0).

DESIGN MISSION

The ADCA was designed for the primary mission, a deep-strike mission,
and two alternate missions; a battlefield interdiction mission and a ferry

mission (see Figure 9).

The deep-strike mission was based upon the requirement for an operational
radius of at least 400 nautical miles, including a supersonic penetration of
200 nautical miles beyond the FEBA. The weaponry compliment carried on the
deep-strike mission includes two MK-84 laser-guided bombs and an improved

M-61 cannon.

The mission consists of a warmup and takeoff, a minimum-fuel climb to
best cruise altitude, cruise at optimum mach and altitude to the FEBA, climb
and accelerate to 1.5 mach number and optimum altitude, penetrate at 1.5 mach
to the point of weapons delivery, drop stores, execute a 180° turn, egress at
1.5 mach and optimum altitude, descend and decelerate (no time or fuel) to
subsonic optimum mach and altitude, and loiter for 20 minutes at sea level.

16
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The battlefield mission consists of the same outbound and return legs
as the deep-strike mission up to the FEBA. From the FEBA, the vehicle descends
to 20,000 feet and penetrates at 1.5 mach for 50 nautical miles to a point
where the weapons are delivered. The payload for the battlefield mission
includes four MK-84 laser-guided bombs, two self-defense missiles, and one
M-61 cannon with 300 rounds of ammunition.

The ferry mission features a 2,800-nautical-mile range w:thout refuel-
ing. In order to meet the range requirement, the weapons bay was fitted with
a fuel tank and the excess volume in the wing tank was utilized., The total
additional fuel was 8,900 pounds, 3,000 pounds in the weapons bay, and 5,900
additional in the wing tank.

The desired requirements for the takeoff is to design the aircraft to
a 3,000-foot takeoff over a 50-foot obstacle.

ALL-COMPOSITE BASELINE CONFIGURATION

The baseline composite aircraft configuration D572-4B is illustrated in

Figure 10. This vehicle is designed to the mission requirements outlined

in the paragraph '"Design Mission.' Briefly summarized, these include a 3,000-
foot takeoff over a 50-foot obstacle, deep-strike mission radius of 400 nauti-
cal miles, unrefueled ferry mission range of 2,800 nautical miles, and battle-
field mission radius of 250 nautical miles with a 50-nautical-mile penetration,
The takeoff gross weight for the primary design mission was 31,845 pounds, and
the resulting wingloading was 79.6. The installed thrust-to-weight for static
sea level conditions is 0.751.

The basepoint configuration features a one man crew situated in a 65-
degree 'laydown' high-acceleration cockpit. This arrangement results in
lower wave drag due to reduced cross-sectional area and provides for increased
G-level tolerance for this pilot. The design features that contribute most
significantly to the low total drag are (1) minimum control surface size, (2)
high degree of propulsion integration, (3) aerodynamic shaping to produce
isobars that fall behind the mach cone, (4) low profile cockpit, and (5)
minimum wetted area. An assumption inherent in this design is the strong
requirement imposed by aeroelasticity that requires the wing torsional
deflections are minimized as the wing bends.

The wing has an aspect ratio of 2.5 and a leading edge sweep of 60
degrees, and is shaped to generate vortex lift to improve the off-design
high-1ift capability. The wing incorporate elevons and powered droop leading
edge devices for mechanical camber control as well as structural design for
dynamically controlled bending. The primary material of the wing is graphite/

epoxy .
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The basepoint aircraft is powered by two General Electric F404-GE-400
engines, FEach engine is equipped with remote afterburning, thrust reversing,
] thrust spoilage, and thrust vector control. The installation includes a 2-D
i fixed-ramp inlet designed for 1.6 mach number and an acrodynamically inte-

f grated exhaust system with a 2-D plug mozzle. Details of the propulsion
system are included in a later section.

T W & ] %“ Eﬁ‘ ..v..*v :=«‘€:‘1.A 4 . Jah
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ADVANCED METALLTC BASELINE CONFIGURATION

The baseline metallic aircraft D572-5A is shown in Figure 11. The
vehicle design requirements and design missions are identical to the D572-4B

g presented previously. The takeoff gross weight for the summary design mission
| was 35,385 pounds, and the resulting wing loading is 70.7. The installed

: thrust-to-weight ratio for static sea-level conditions and gross weight was

4 0.676.

The basepoint metallic airplane confipuration features and design assump-
tions are identical to the -4B airplane, with the exception that the majority
structure is metallic with composites used only on the armament bay doors and
the wing leading and trailing edge devices.,

PROPULSION SYSTEM SUBSTANTIATION

INTRODUCTION

The ADCA propulsion system is keyed to the use of a rectangular 2-D plug
nozzle. The 2-D plug nozzle minimizes afterbody and wave drag. Thrust
vectoring is used to capitalizc upon propulsive lift enhancement for mancuvers.
The plug nozzle also incorporates a lightweight thrust reverser installation.

A fixed-geometry inlet was selected for a 1.6 mach number design. The
inlet is designed to maintain high peirformance while minimizing the use of
cutouts or variable-geometry panels. However, an inlet bypass system is
employed to improve the inlet-engire match during supersonic penctration at
20,000 fcet.

This section presents the propulsion system design guides and criteria
and substantiation data for the installed performance data input for the
mission analyses of the ADCA.

Engine Description

The Statement of Work specified the use of a 1980 production engine for % :
the ADCA study. The selected engine is the General Elect(}c F404-GE-400 4
(company designation J101-J7A9) with a rectangular augmentdr.and plug nozzle .
replacing the axisymmetric augmentor and nozzle used in the F-18. fighter
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installation. The F404-GE-400 sea-level static, Standard Day ratings are:
thrust - 15,950 pounds at maximum power, 11,480 pounds at intermediate power,
142.5 pounds-per-second airflow, bypass ratio 0.34, cycle pressure ratio 24.4,

The Rockwell cycle analyses were conducted using the GE Source Deck
J101/J7A9 75015 to modify the F404 cngine performance for the installation
of the 2-D augmentor and nozzle. This resulted in reducing the maximum
] augmentor temperature, and a revised thrust coefficient schedule. The
. resultant rated thrust, adjusted to a 100-percent inlet recovery, is about
1 N 2 percent lower than the -400 engine, However, the ADCA is not takeoff
y limited, and maximum thrust is not critical.

T T

The transition from the basic axisymmetrfic to a rectangular augmentor

- zross section begins at the -400 augmentor fuel manifold; engine station 271,
i and air vehicle station 690. (Scc Figures 19 and 20.) The augmentor/nozzle
3 modification will increase the base cngine weight from 2,020 pounds (-400)

ﬁ to 2,673 pounds (Rockwell estimates based on GE and PWA contributions to the

AFTT program).

d Inlet Selection
W The engine flight limits and corrected airflow demand are given in
1 Figure 12. The maximum corrected f{low is 145 pounds per second, which results

in a maximum inlet throat area of 428 square inches for efficient transonic
acceleration. The airflow curves in Figure 12 show a significant corrected
airflow decay with increasing ram temperature which will require variable-

s geometry provisions for proper inlet engine match during supersonic flight
el at low altitudes.

The pressure recovery versus mach number capabilities of scveral inlet
configurations are compared in Figure 13. A fixed ramp or f{ixed cone inlet
i can achicve good recoveries up to MI.6. A variable ramp or translating cone
9 is required for good performance for a M2.0 design. The M1.5 penetration
,1 design D572-4B air vehicle has the vertical wall of the weapons tay forward
| of the inlet. A vertical ramp inlet at the wing fuselage juncture provides
' the optimum diffuser contours and lightest weight for the ADCA application.
The inlet is designed for shock-on-cowl at M1.8 to provide maneuvering
stability at Mi.6. The inlet has a 6-degree fixed ramp, a 0.5-inch cowl
] thickness, and a capture area of 525 square inches.

Both top and bottom inlet locations were considered for this air vehicle.

1 The ideal location of the inlet for a penetration air vehicle is the upper

1 aft fuselage, to shield the cavity reflector from ground-based radar. Unfor-
tunately, the local mach numbers at this location are normally above freestream

3 and become progressively higher with angle of attack. The result would be a

progressively decreasing thrust and inlet stability margin during air vehicle

maneuvers; i.e., SAM avoidance. Figure 14 presents experimental flow field
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data from NASA TN D-4809, 'Flow Field Properties Near an Arrow-Wing-Body Model
at Mach Numbers of 1.60, 2,36, and 2.96." This test showed unacceptable flow
i gradients in both pitch and yaw for a top inlet location. The figure also

9 shows cross sections for both the D572-4B configuration and the 9:1 ellipse

3 used in a Slender Body Simulation program. The simulation data show mild flow
# transients, however: (1) attempts to input a more representative body shape
into the simulation were unsuccessful, and (2) the program accuracy is limited
to about 5-degree pitch or yaw variations. More work is needed in this area.

The ADCA diffuser loss coefficient is estimated to be 8 percent of the

throat dynamic pressure with good entrance flow. A perforated surface bleed

region on the ramp at the inlet lip station will remove a boundary layer

bleed flow equivalent to 1.5 percent of the inlet capture area at 1.6 mach

rumbe~ to minimize shock-boundary layer interaction and to achieve good

diffuser entrance flow. The boundary layer bleed also helps to lower the

3 mass flow ratios at which buzz instability occurs. Figure 15 presents B-1

" inlet test data with the inlet ramps in the minimum angle, maximum throat
area position (7° ramp angle vs 6° ramp for ADCA). For this off-design

| geometry, the B-1 inlet shows high performance at 1.4 mach number, but the

i pressure distortion (max-min/Py;) and turbulence (AP /Pt2) are unsatis-
factory at 1.8 mach number. The combined effects of this distortion and

turbulence exceed the inlet flow quality limits® for the F101 engine. The

4 B-1 inlet bleed pattern was ontimized for four-shock operation. Improved
performance with a low ramp angle will be achieved with future tests of the
fixed ramp B-1 inlet with the boundary layer bleed configuration modified

for fixed, single, ramp operation,

The above data, plus a survey of other inlet buzz margins, were used
for the estimated buzz margin schedules of Figure 16. The aforementioned
depressed engine air demand during the 20,000 feet penetration results in
J inlet-engine matching very near the buzz limit at 1.5 mach number. A decrease
1 in engine air demand by an engine deficiency or a step increase in ambient
temperature, a mach number overshoot, a decrease in angle of attack, or an
air vehicle sideslip maneuver could rapidly use up the inlet stability margin,
without bypass provisions. The effect of the inlet bypass system on maneuver-
ing margin is shown on the right side of the figure. This bypass will be con-
trolled by the inlet throat mach number at flight mach numbers above 1.4.
Both the B-1 type of hinged door and a sliding block type of bypass exit will
be studied during the structural design phase. The corcept most compatible
with composite construction will be employed.

The estimated inlet performance data used in the installed performance
E calculations are shown on Figures 17 and 18, These performance estimates
were supported by the extensive B-1 inlet test data.
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Inlet performance - subsonic.
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Exhaust Nozzle Selection

The F404-GE-400 axisymnctric augmentor and nozzle and the 2-D plug
nozzle with both a high intensity "Vee'" gutter and the PWA swirl burner
augmentors are depicted on Figure 19, The swirl burners have demonstrated
efficient combustion in a short length, and the burner can surface provides
% an intermediate heat shield for the augmentor walls and thus minimizes the
i augmentor shroud cooling airflow, pressure drop, and thrust penalty for
! cooling. The high-intensity ''V'' gutter will create high-pressure losses
] and will result in high heat transfer to the augmentor walls. Therefore,
the swirl burner augmentor design will produce the best fuel consumption for
this application due to reduced cooling airflow and pressure losses. To
determine the most critical flight conditions for nozzle performance, the
ADCA fuel usage versus range for both the basic and alternate missiuns are
| plotted on Figure 20. The mission segments of greatest significance are
| 3, 5, 7, and 8. The nozzle/afterbody performance for these segments is
analyzed in detail in the following sections. Figure 21 compares the nozzle
area ratio schedules, i.e., exit area, Ag, versus throat area Ag, for both the
4 GE axisymmetric nozzle and the Rockwell 2-D plug nozzles, and the resulting
4 isentropic thrust coefficients for the significant cruise points. The GE
' nozzle is optimized for the F-18 air vehicle but is not the best choice for
supersonic cruise at Intermediate Power due to its low expansion ratio at
minimun Ag.

The ADCA nozzle/afterbody is shown on Figure 22. Significant cross-
section areas are noted on the figure. The cross-hatched regions on the
rear view illustrates the expansion arcas on the plug and sidewalls. As
, shown on Figure 26, the nozzle throat area between the flaps and plug and
1 the nozzle flap contour is controlled by a pair of actuators mounted in
: the sidewalls. The Ag/Ag ratio is 1.5 at Intermediate Power and decreases
to 1.2 at Maximum Power, Figure 21. At supersonic speeds an additional
external expansion thrust is created on the plug surface. As will be shown
later, a 2-D plug nozzle does not incur significant overexpansion losses at
subsonic cruise conditions. Data to be presented in AIAA 75-1317, "Investi-
gation of Two-Dimensional Wedge Nozzles for Advanced Aircraft," show that
internal-external expansion 2-D) nozzles show very high thrust minus drag
¢ transonic speeds.

S

The plug nozzle thrust bookkeeping is shown on Figure 23. The Rockwell
procedure used for ADCA divides the external aerodynamics and propulsion
drag responsibilities at Station 726. The nozzle/afterbody performance is
expressed as gross thrust minus drag (Fg-D) divided by the ideal gross
thrust potential for gas properties measured at the augmentor exit, Fgi.

The nozzle/afterbody forces are:

s

TR L i

1. expansion decrement - AFjsen/Fgi, due to a non-optimum nozzle £
area ratio g

O e il
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2. internal nozzle friction - AC, .
f in
3. extcrnal friction aft of Station 744, sidewalls and plug surface
scrubbed by exhaust gases - ACfe

4. pressure drag on the external flap surface - ACp

5. the pressure drag or thrust on the plug and sidewall surface - ACD

P
The plots on the right of the figure illustrate typical trends of these nozzle/
afterbody thrust and drag components versus nozzle pressure ratio. Note that
item 5 becomes a thrust increment at nozzle pressure ratios above design.

Figure 24 compares the ADCA afterbody and the plug nozzle test model
reported in NASA TN D-7906, '"Performance of an Isolated Two-Dimensional
Variable-Geometry Wedge Nozzle with Translating Shroud and Collapsing Wedge
at Speeds Up to Mach 2.01." The afterbody drag estimates on the right side
of the figure were based upon boattail drag versus area ratio trends from
L/D = 1 models, NASA TN D-7163, "Effects of Fineness and Closure Ratios on Boat-
tail Drag of Circular-Arc Afterbody Models With Jet Exhaust at Mach Numbers
Up to 1.3," at mach numbers below 1.2 and Prandtl-Meyer expansion calcula-
tions at mach numbers above 1.2. These calculations were based on jet exit
conditions which result in ambient pressure at the junction of the jet and
external flow. The solid curve represents the afterbody drag forward of
Station 726 that is buried in the air vehicle wave drag computations. The
ACq between stations 726 and 744 is part of the propulsion bookeeping, -
item (4) of the preceding figure, assuming a continuing Prandtl-Meyer expan- 3
sion aft of station 726, at Mg >1, and no interaction with the nozzle exhaust ’
for this case.

Test data in TN D-7906 were used to extrapolate and interpolate nozzle/
afterbody performance at mach 1.5 cruise conditions. Selected NASA data
are shown on Figures 2-19 (simulated dry power nozzle) and 2-20 (simulated
maximum power nozzle). The circular symbols denote static test thrust
coefficients; a 0.98% Fisen/Fj (items 1 and 2 of Figure 23) is included for
comparison and extrapolation. The diamond symbols denote the NASA test
(Fj-Fa, ap)/Fi (model thrust minus drag adjusted for afterbody friction drag).
Afterbody pressure data were not shown in the NASA report. The "X" symbols
show a Rockwell correction for the estimated afterbody drag from Figure 24 -
ACfp = Cpp/Fi. Thus, the ACf ex is the combined plug pressure force and fric-
tio dragﬁon the plug and sidewalls (items 3 and 5 on Figure 23) plus inter-
action between the exhaust jet and boattail).

The dry power nozzle with an internal expansion ratio of 1.53 (design
pressure ratio = 6.05) is examined on Figure 25. The M; = 0.95 data show
a high ACf ¢x at low nozzle pressure ratio but this increment decreases to
little more than plug and sidewall friction drag at pressure ratios of 3 to 4.
At very low pressure ratios the overexpanded jet probably sucked down the

39




e o re gl
3 Rl ;

e ]

'3

ssayeutisa Feip Apoqialjy "¢ 2Ind14

0°z 91 A g'o

n0' G

o |
| d =64 Pyy
d¥14 IVZZION _
rAR} :
S o 906.-0 zhi
9vya AG0EHILAY _ )
whl V1S ‘voQy —— — —— -
}
I3 —— § / N
9z/ V1S ‘vaav V O
1300W 906/ -aNL
(NOISNVAX3 W-d) 2°1 < W “(Fy1.-G-NL) Z°1 > W
R M A T T A £ T M WS T gAY AT o SR T T et Tl T e g L £ N At = m T 9 T LS - AR B TR e hesies




"I-BIBP 906.-0 NL VSVN JO MATA9Y "SZ 9andrq

©4/8%4 ‘01Lvy 3¥NSSIW4 I1ZZON

8 9 .~ 9 y z 9 -

w

152 %2y

V)

%0 26°0
||I.|l-l.-.-l-
| ‘0
a0 96
* \\.
U o ovl'-u-l.k.ls\l — - 'O = U
Gl =MW =W, Los S6'0 =MW
4/ "4 8860 —-c=-=-c
_u\mﬁ.fﬁﬂ -Qn—lm‘.h I 00°1
afde 8y - 4 o—
(906L-a Nz) ‘'i/'y O——O
Lzz 0 = XMWy Ly ¢y = 1y 3y

(

i 3/85- *4 “IN313144300 LSN¥HL

41




S it AN Ml R O R

T . .

boattail surfaces and may have further overexpanded on the plug. The Ag/A. =
1.05 nozzle (design pressure ratio = 2.6) showed better performance at pressure
ratios below 3.5. At mach 1.2 the ACy ex Was about 6 points at all nozzle
pressure ratios. At mach 1.5 the ACf o Was estimated to be about 2 points

in the anticipated operating pressure ratios of 7 to 9. The ACf ex incre-

ment is much smaller with the maximum power nozzle at 1.2M (Figure 26) due

to the lower internal expansion ratio and smaller plug/nozzle area ratio.

At mach 2.0 a substantial plug thrust is indicated. Interpolation indicates
a small external force penalty at mach 1.5.

The data from NASA TN D-7906 and ATAA 75-1317 show that twin 2-D plug
nozzles will provide significantly higher thrust minus drag than axisymmetric
nozzles. Experimental data at mach 1.2 and 2.0 indicate that efficient
supersonic cruise with 2-D nozzles can be achsteved. It also appears that
the plug forces approach friction drag at subsonic speeds and 75 to 100 per-
cent of the design internal expansion pressure ratio,

One of the major unknown factors of supersonic cruise performance is
the effect of boattail flow-exhaust jet interaction, The local mach
numbers on the basic body will be above freestream due to the progressive
reduction in cross section to station 726. Prandtl-Meyer expansions at the
nozzle flap hinge can create even more sub-ambient pressure and drag.
Tests of axially symmetric boattails show that a positive exit static pressure
of an underexpanded jet will initiate a shock-induced separation of the boat-
tail boundary and create a region of ambient or positive pressures over a part
of the boattail. This is illustrated on Figure 27; the scheduled geometry
operation results in a jet exit static-pressure ratio of 1.6 and an 8-degree
turning of the jet boundary. The flap angle was 14 degrees at this point;
therefore, it was assumed that 8/14 of the theoretical flap drag was cancelled
by ambient pressure on the flap. As shown by the bar chart on the right side
of the figure, the thrust minus drag is within two points of the complete
expansion geometry configuration.

The thrust coefficients used for the installed performance calculations
in May 1975, were developed in TFD-75-573, "Inlet and 2-D Plug Nozzle Design
and Performance, ADCA Supersonic Penetration Interdiction Fighter," from a
brief review of the aforementioned NASA TN D-7906. The nozzle pressure ratio
versus mach number trends at part power cruise conditions were unknown at that
point so the simple Cfg versus Pig/P, was employed. Figure 28 presents a recap
of both the 20,000 and”50,000 feet penetration missions.

The Cg, versus P.o/P, data on the left present the simplified data inputs
g .70 T8/ o TS T .

used for the initial propulsion inputs for the ADCA mission analyses and
several detailed spot point analyses of cruise segments. The ACg, increments
between the curves and specific points were utilized to comput<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>