UNCLASSIFIED

AD NUMBER
LIMITATION CHANGES
TO: Approved for public release; distribution is unlimited.
FROM:
Distribution authorized to U.S. Gov't. agencies
only; Test and Evaluation; 16 APR 1976. Other
requests shall be referred to Naval Weapons
Station Earle, Handling Laboratory, Colts Neck,
NJ 07722.

THIS REPORT HAS BEEN DELIMITEDand cleared for public releaseUNDER DOD DIRECTIVE 5200.20 ANDNO RESTRICTIONS ARE IMPOSED UPONITS USE AND DISCIOSURE,
distribution statement a
APPROVED FOR PUBLIC RELEASE;DISTRIBUTION UNLIMITED,

A
NAVAL WEAPONS HANDLING LABORATORY

NAVAL WEAPONS STATION EARLE Colts Neck, New Jersey 07722

Abstract
A dynamic and structural analysis of a proposed reusable Shipping and Storage Container for the Encapsulated FARPCON: Missile was made by the Naval Vleapons Handling Laboratory as part of the design study for such container.

The subject design incorporates a freebreathing fiberglass pod containing the encapsulated weapon. The pod and weapon are suspended from a truss-like outer structure by elastomeric mounts configured in a laterally focalize fashion.

The analysis generates isolator parameters which attenuate the handling and transportation shock and vibration environment to safe levels for the weapon and verifies that the structural design concept can sustain the resulting loads. \&
(16) Detains of the analysis is are preenteced herein.

AF $-51 \phi 5 / 16 \phi-7 / 6$ SSH $\phi 9-D \phi \phi \phi$

Prepared by:.
(10) Charles बF. Haber

Analysis Branchia

Approved ky:

Test \& Evaluation Division

1. INTRODUCTION

1.1 The analysis which follows is based upon Specification XAS-3894B, dated 18 December 1974, for a reusable shipping and storage container for the Encapsulated HARPOO: Missile (RG:-84A).
1.2 This version of the HARPOON has a support-attenuator (sabot) at Capsule Station 62 which greatly reduces the bending of the HARPCON when the Capsule/HARPOON is subjected to shock inputs. (See Figure 1). As a result, the resilient suspension system in the reusable container can be stiffened to a maximum of 12.3 Hz in vertical translational natural frequency.
1.3 A focused suspension system is proposed. The Capsule is supported at Capsule Stations 54 and 172 in cradles which are carried on two longitudinal beams. A free-breathing fiberglass shell encloses the capsule and cradles: it consists of a lower shell and upper cover closed by l/4-turn fasteners. The beans are sumported on focused resilient elements, symetrical in the plan vie? about the cambined C.G. of the assembly. The compression axes of the mounts at each mount station are focused so as to project the elastic center (EC) to a longitudinal axis through the center of gravity (CG) of the resiliently supported load. This concept so positions the mountings that it minimizes the width and height of the container assembly. It also results in a suspension that should decouple the modes: a translational lateral input should result in a translational response. Along the longitudinal axis the suspension provides a lower spring rate in shear to minimize loajs from end impact: the links which restrain the HARPOON within the Capsule reguire this. Note that cradles are not symmetrical about the C.G. and so are not directly over the mount clusters.
2.1 Vibration. Transmissibility of the resilient suspension system shall be four maximum in the vertical and axial directions of the container. XAS-3894B requires the natural frequency to be 7 to 10 Hz in the vertical mode. Measured in transverse direction, the missile response to conform to the maximum response as depicted on Eigure 2 of XAS-3894B, when subjected to the vibration inputs of Table I of XAS-2381 (as modified). Natural frequency in the transverse direction to be less than 18 Hz .
2.1.1 Vibration Fatigue Test. To be conducted fer para. 10.2.5.1 of OR-11. Input: cycled from 5 to 60 Hz in 15 minutes with a logarithmic sweep rate: input acceleration amplitude shall be a consistent 1 g. Resonant dwell at 1 g input for 15 minutes. Transmissibility shall be 4 or less: response per Fig. 2 of XAS-3894B.
2.2 Shock Response. The undamped shock spectra of the missile response pulses in the three major axes are limited to the envelope depicted in Figure 1 of XAS-3894B, per para. 4.2.2.11.2, when the loaded container is subjected to the following shock attenuation tests:
2.2.1 Vertical Shock Test. Free fall flat drop from 18 inch height performed at $50^{\circ}-90^{\circ} \mathrm{F}$.
2.2.2 Rotational Drop Test. Four (4) rotational corner drops fran a height of 18 inches at temperatures of $-20^{\circ} \pm 5{ }^{\circ} \mathrm{F}, \quad 50^{\circ}-90^{\circ} \mathrm{F}$., and $140^{\circ} \pm 5^{\circ} \mathrm{F} .$, for a total of 12 drops: 3 at each corner.
2.2.3 Impact Test. Incline-impact test on each end of the container with 10 f.p.s. velocity at temperatures of $-20^{\circ} \pm 5{ }^{\circ} \mathrm{F}, \quad 50^{\circ}-90^{\circ} \mathrm{F}$., and $140^{\circ} \pm 5^{\circ} \mathrm{F}$. Limit load on missile is $24,000 \mathrm{lbs}$. (or 16 g s) at $-20^{\circ} \mathrm{F}$.
2.2.4 Repetitive Shock Test. Method 5019 of FTMS 101B as modified by para. 10.2.2,3 of OR-11 at $50^{\circ}-90, \mathrm{~F}$. temperature.
FOLDED WINGS Coser

FITTINGS

CAPSULE UMBIIICAL
tall SEParation

DORSAL

ENCAPSULATED HARPOON CONTAINER CONCEPT
FIGURE 2

BENDING MOUENTS AND REACIIOT LONDS AT SUPPORN POINTS FOR 18 TNCH FLAM DROP Calculated for Suspension System with f_{n} (Vertical Trans) $=12.3 \mathrm{~Hz}$ Encapsulated Harpoon

Figure 3
3. SUMMARY
3.1 Sumnary of Dynamic Analysis. The resilient suspension of the mass weight of the capsule/missile assembly, protective shell, cradles and beams consists of a Cour-point spring (shear mount) system) symmetrical about the combined C.G. of the assembly. Two mounts are arranged at each support point to focus
their elastic center (EC) to a point on the longitudinal axis through the CG of the assembly. This should effectively decouple the system in the presence of transverse excization: also, the natural frequency in transverse direction should be about equal to the natural frequency in vertical translation. The capsule is secured In the two cradles by means of clamps tightened about the capsule at strong points defined by Table I of XAS-3894B. In the longitudinal direction the elastomeric shear mounts are loaded primarily in shear, which should keep forces along that axis well under the 24,000 pound (16G) limit established for the links which restrain the HARPOON within the Capsule.
3.1.1 Suspension System Natural Frequency, Estabilished as 10.5 Hz in vertical translation based upon a calculated maximum of 12.3 Hz which would keep the undamped shock spectrum of the resulting shock pulse within the envelope of Fig. 1 of XAS-3894B. The 10.5 Hz was chosen to provide a margin for low temperature sttffening of the resilient mounts. Note that the HARPOON is supported within the Capsule at CS63 and this additional support allows the use of higher suspension system natural frequency than allowed by XAS-3894B, Para. 3.2.1.1.
3.1.2 Resilient System Spring Rate. The dynamic vertical spring rate of the focused system at $+70^{\circ} \mathrm{F}$. is $\mathrm{K}_{v}=33,280$ pounds/ inch which resolves into static shear spring rate per mount $=k_{s}=800 \mathrm{lbs} . /$ inch.
3.1.2.1 Resilient Suspension Elements. The design of the bonded elastomer/metal shock and vibration attenuating mounts is covered in para. 6.1 and show on Figure 8. Its desigi is based upon an elastomer having good low-temperature and damping properties expected to meet the requirements of XAS-3894B.
3.1.3 Acceleration Response. For free-fall and rotational cornerwise drops the resulting undamped shock spectrum should be within the allowed limits. For 10 fps end impact the resulting longitudinal force will be well under the established limit. Anticipated accelerations are shown on the calculation sheets.
3.1.4 Mount Station Spacing. Longitudinal half-spread of mount cluster stations to CG is 57.87 inches.
3.1.5 End Deflections. Maximum deflection of extreme end of the Capsule is 2.3 inches at $+140^{\circ} \mathrm{F}$. in 18 inch rotational drop. The end impact results in longitudinal deflection of 3.8 inches maximum at $+140^{\circ} \mathrm{F}$.
4. DYMAIC ANALYSIS
4.1 SYMEDLS USED IN: ANALYSIS:
(1) A Maximum Vertical Acceleration a CG
(2) B Naximum Vertical Acceleration at oth心 than CG due to rotation
(3) b Longitudinal distance to mounts from Cr inches
(s) c Distance to outer fiber from neutral axis inches
(5) CG Center of Gravity of resiliently suspended equipment
(6) CS Capsule Station inches
(7) D Correction factor for energy losses due to damping
(8) d Deflection inches
(9) d_{1} Maxinum vertical deflection at $C G \quad$ inches
(10) d_{2} Maximum vertical deflection at end of inches
(il) Nomamic deflection at resilient mountings inches
(12) d_{r} Deflection; rebound inches
(13) $\mathrm{d}_{\text {st }}$ Static deflection inches
(14) d_{t} Dynamic Deflection - total at end of unit inches
(15) E Voculus of Elasticity
lbs/in. ${ }^{2}$
(16) EC Elastic Center of suspension system
(17) e Vertical distance from longitudinal axis through G to focal point. of mounts' compression axes inches
(18) F.S. Factor of Safety
(19) fn Natural Frequency Hz
(20) $f_{s t}$ Coefficient of friction
4.1 SYMBOLS USED IN ANALYSIS - Continued
(21) G Unit of Gravity
(22) g Acceleration of Gravity
(23) G Maximum Vertical Acceleration @ CG @ CS124
(24) Gha Maximum Vertical Acceleration at HARPOON aft end at CS-205.4
(25) Ghf Maximum Vertical Acceleration at HARPOON forward end at CS-25
(26) $G_{c a}$ Maximum Vertical Acceleration at Capsule aft end at CS-246
(27) $\mathrm{G}_{\mathrm{cf}} \quad \begin{aligned} & \text { Maximum Vertical Acceleration at Capsule } \\ & \text { forward end }\end{aligned}$
(28) G_{r} Maximum Vertical Acceleration ac C.G. due rebound
(28) G_{T} Total Acceleration on Equipment due to Translation and Rotation
(30) h Height of Drop
(31) h_{1} Height of Container Pivot Point above Floor
(32) I Moment of Inertia of Section
(33) $I_{\text {CG }}$ Moment of Inertia about CG
(34) I_{0} Moment of Inertia about Pivot Point " O "
(35) J Correction factor to account for damping in mounts
(36) K_{V} System Dynamic Vertical Spring Rate
(37) K_{H} System Dynamic Horizontal Spring Rate
(38) K_{R} System Dynamic Rotational Spring Rate
(39) $\mathrm{k}_{\mathrm{d}} \quad$ Single Mount Dynamic Shear Spring Rate
(40) k_{s} Single Mount Static Shear Spring Rate
(41) KE Kinetic Energy
(42) L_{o} Length of Container, overall
(43) L_{1} Distance from CG to end of Capsule : inches
(44) I_{2} Distance from CG to end of HARPOON
$386 \mathrm{in} . / \mathrm{sec}^{2}$
Gravity Units
Gravity Units

Gravity Units

Gravity Units

Gravity Units

Gravity Units

Gravity Units
inches
inches
in. ${ }^{4}$
lb-in-sec ${ }^{2}$
$1 \mathrm{~b}-\mathrm{in}-\sec ^{2}$
lbs./inch
lbs./inch
lbs./inch
lbs./inch
in.-1bs.
inches
inches
(45) L' Ratio $\frac{\text { compression } k}{\text { shear } k}$ of nountings
(46) \& Unit length inches
(47) M Moment . in-lbs.
(68$) \mathrm{m}$ l'ass of suspended unit
lb-sec ${ }^{2} /$ inch
(49) N Clamping Load

1bs.
(50) P Load
lbs.
(51) PE Potential energy
inch-lbs.
(52) P Lateral horizontal distance from vertical inches plane through CG to mount's EC
(53) R Distance from container pivot point " 0 " to inches
(54) R_{A} Reaction loã at point A It. .
(55) R_{B} Reaction load at point B lbs.
(56) r Radius of gyration of suspended mass inches
(57) S Stress psi
(58) T Transmissibility
(59) v Impact velocity
in./sec.
(60) M Meight of suspended equipment lbs.
(51) [! Weight of outer frame lbs.
(62) w lieight per unit of length lbs./inct
(63). X Horizontal distance from container pivot inches point " O " to unit CG
(64) X_{f} Horizontal distance from CG to forward end of inches
(65) $X_{a} \begin{aligned} & \text { Horizontal distance from } \propto G \text { to aft end } \\ & \text { of container assembly }\end{aligned}$
(66) Y Vertical distance from container base
to unit's $C G$ (See Figure
(67) Z Length of suspended unit inches

4.1 SMBBOLS USED IN ANALYSIS - continued

(68) 0 , Angle between a line joining the CG and pivot degrees point "O" and a vertical plane before drop (Outer end of unit raised " h " inches)
(69) θ_{2} Angle between a line joining the CG and pivot point " O " and a vertical after drop. $\quad(\mathrm{h}=0)$
(70) ω_{0} Angular velocity of mounted unit about pivot Radians/sec point " O "
(71) ω_{1}.Vertical Translational Circular Frequency Radians/sec
(72) ω_{2} Rotational Circular Frequency

Radians/sec
(73) α Angle between focused mounts' compression degrees axis and horizontal
(74) β Angle between focused mounts' compression degrees axis and vertical
(75) $\zeta \quad \%$ Critical damping ($\mathrm{C} / \mathrm{C}_{\mathrm{C}}$)
(76) δ Logarithmic decrement

FACTORS USED IIN AINALYSIS
$\frac{\text { DYNAMC SPRING RATE }}{\text { STATIC SPRING RATE }}=1.3$
MOUNT SPRTI:G RATE AT $-20^{\circ} \mathrm{F}$. $=1.25$
MOUNT SPRING RATE AT +700 F .
$\frac{\text { MOLNT SPRIIG RATE AT }+140^{\circ} \mathrm{F} .}{\text { MOUNT SPRING RATE AT }+70 \mathrm{~F} .}=0.9$
Factors based upon data from mount vendors.

310:3.

	$\begin{aligned} & \text { Yeight } \\ & \text { pords } \end{aligned}$
3703.3	276
30	34
2319	386
278	32
237.5	20
10240.2	1494.7
10551	683
27,8:0.2	2,948.7

Assume $10.5 \mathrm{~Hz}=\mathrm{f}_{\mathrm{n}}$ in Vertical Translational Mode
$K_{v}=W\left(f_{n} / 3.13\right)^{2}=2,948(10.5 / 3.13)^{2}=33,1751 \mathrm{ba} /$ inch
Using 8 shear mounts with compression axis focused at 45° from vertical (β)

$$
\begin{aligned}
& K_{v}=8 k_{d}\left(L^{\prime} \cos ^{2} \beta+\sin ^{2} \beta\right) \text { and } L^{\prime}=7 \\
& \text { or } 8 k_{d}(4)=33,175 \\
& k_{d}=10361 \mathrm{~b} / \text { in } \\
& k_{s}=k_{d} / 1.3=797 \mathrm{lb} / \text { in }
\end{aligned}
$$

$$
\text { Using } k_{s}=800 \mathrm{lb} / \text { in for }+70^{\circ} \mathrm{F} \text {. }
$$

$$
+70^{\circ} \mathrm{F}
$$

$$
K_{v}=8(800)(1.3)(4)=33,280 \mathrm{lb} / \mathrm{in}
$$

$$
-20^{\circ} \mathrm{F} . \quad \text { Using stiffening factor of } 1.25
$$

$$
\mathrm{K}_{\mathrm{v}}=41,600 \mathrm{ib} / \mathrm{in}
$$

$$
+140^{\circ} \mathrm{F} . \quad \text { Using stiffness reduction factor of } 0.9
$$

$$
K_{v}=29,952 \mathrm{lb} / \mathrm{in}
$$

$$
\mathrm{K}_{\mathrm{H}}=800(8)(1.3)=8,3201 \mathrm{bs} . / \text { inch (Longitudinel) }
$$

5.1 18 INCH FLAT BOTTOM DROP
$+70^{\circ} \mathrm{F}$:
Energy to be stored = K.E. = P.E. $=$ wh
$W h=2948(18)=53,064 \mathrm{in}-1 \mathrm{bs}$.
$d^{2}=2 \mathrm{KE} / K_{v}=2(53,064) / 33,280=3.19$
$\mathrm{d}=1.78$ inches
$G_{1}=d K_{V} / W=1.78(33,280) / 2948$
$\mathrm{G}_{\mathrm{I}}=20 \mathrm{G} \mathrm{s}$
5.2 END IMPACT at $10 \mathrm{ft} / \mathrm{sec}$
$d^{2}=W v^{2} / 8 k_{d} g$ and $G=d K_{d} / W$
$-20^{\circ} \mathrm{F} . \quad \mathrm{d}^{2}=2948(120)^{2} / 8(800)(1.3)(1.25)(386)=10.57$
$\mathrm{d}=3.2$ inche:
$\mathrm{G}_{1}=3.2(8)(800)(1.3)(1.25) / 2948$
$\mathrm{G}_{1}=11.3 \mathrm{G}$'s vs 16 G allowed
$+70^{\circ} \mathrm{F} . \quad \mathrm{d}=3.6 \mathrm{in} . \& \mathrm{G}_{1}=10.1 \mathrm{G} \mathrm{s}$
$+140^{\circ} \mathrm{F} . \quad \mathrm{d}^{2}=2948(120)^{2} / 8(800)(1.3)(.9)(386)=14.68$
$\mathrm{d}=3.8$ inches
$\mathrm{G}_{1}=3.8(8)(800)(1.3)(.9) / 2948$
$\mathrm{G}_{\mathrm{l}}=9.6 \mathrm{G} \mathrm{s}$
5.3 AFT END 18 INCH ROTATIONAL DROP

Ref: J. J. Goodill Paper "Flexible Suspension Systems" published in "Industrial Packaging" 10/15/56.

$$
R^{2}=X_{f}^{2}+Y^{2}=(137.5)^{2}+(22)^{2}=19,390 \mathrm{in}^{2}
$$

$R=139.25$ inches
$m=\frac{2948}{386}=7.637$ lbs. $-\mathrm{sec}^{2} / \mathrm{in}$.

$$
I_{0}=I_{C G}+m R^{2}=27,84047.637(139.25)^{2}=175,930 \text { in. }-1 \mathrm{~b} .-\mathrm{sec}^{2}
$$

- Radius of Gyration about Pivot Point " O " $=r$

$$
r=\sqrt{\frac{I_{o}}{m}}=\sqrt{\frac{175,930}{7.637}}=\sqrt{23,035}=151.77 \text { inches }
$$

5.3 AFT END 18 INCH ROTATIONAL DROP - continued

5.3.1 DETERMNATION OF ANGLES θ_{1} and θ_{2}

$$
\begin{aligned}
& \theta_{1}=90^{\circ}-\tan ^{-1}\left[\frac{y}{x}\right]-\sin ^{-1}\left[\frac{h-h_{1}}{I_{0}}\right] \\
& \theta_{1}=90^{\circ}-\tan ^{-1}\left[\frac{22}{137.5}\right]-\sin ^{-1}\left[\frac{18-6}{271.5}\right] \\
& \theta_{1}=90^{\circ}-9.0903^{\circ}-2.5332^{\circ} \\
& \theta_{1}=78.3765^{\circ} \\
& \cos \theta_{1}=0.20148 \\
& \theta_{2}=90^{\circ}-\tan ^{-1}\left[\frac{\mathrm{y}}{\mathrm{X}}\right]+\sin ^{-1}\left[\frac{h_{1}}{L_{\mathrm{O}}}\right] \\
& \theta_{2}=90^{\circ}-9.0903^{\circ}+1.2633^{\circ} \\
& \theta_{2}=82.176^{\circ} \\
& \cos \theta_{2}=0.13613
\end{aligned}
$$

5.3.2 AFT END 18 IMCH ROTATLONAL DROP - continued

At impact, mounted unit's angular velocity $=\omega_{0}$

$$
\begin{aligned}
& \omega_{0}=\left[\frac{2 R g\left(\cos \theta_{1}-\cos \theta_{2}\right)}{r^{2}}\right]^{\frac{1}{2}} \\
& \omega_{0}=\left[\frac{2(139.25)(386)(.20148-.13613)}{23,035}\right]^{\frac{1}{2}} \\
& \omega_{0}=0.5 \varsigma 225 \text { Radians } f \text { second }
\end{aligned}
$$

5.3.3.18 INCH EDGEMSE DROP (Slightly mare severe than cornerwise drop)

$$
\begin{array}{ll}
\text { Vertical Translational } f_{n} & \text { Rotational Circu lar } f_{n} \\
\omega_{1}=\left[\frac{K_{v}}{m}\right]^{\frac{1}{2}} & \text { Radians/second } \\
\omega_{1}=73.8 & \omega_{2}=\left[\frac{K_{R}}{I_{\mathrm{CG}}}\right]^{\frac{1}{2}} \text { Rad/sec. } \\
\omega_{1}=66.0 & \omega_{2}=70.74 \\
\omega_{1}=62.6 & \omega_{2}=63.27 \\
& \omega_{2}=62.03
\end{array}
$$

$-20^{\circ} \mathrm{F}$
$+70^{\circ}$.
$+140^{\circ} \mathrm{F}$.
5.3.4 AFT END DROP .- Pivot Point "O" at Forward End:
$-20^{\circ} \mathrm{F}$.

$$
\begin{aligned}
& A=\omega_{1} R \omega_{i} \cos \tan ^{-1}\left[\frac{Y}{X}\right] \quad \text { in. } / \mathrm{sec} .{ }^{2} \\
& A=73.8(130.25)(.55225)(.98744) \\
& A=5,604 \mathrm{in} / \mathrm{sec} .^{2} \quad \text { i } 386=14.5=G_{1} \\
& B=\omega_{2} \mathrm{~L} \omega_{0} \\
& : B_{1}=70.74(01.1)(.5225) \\
& B_{1}=3,179 \mathrm{in} / \mathrm{sec}^{2} \quad \begin{array}{l}
=8.2=G_{\text {ha }} \text { due to Lotetion } \\
\text { \% } 22.7 \text { G's } G_{\text {he }}
\end{array} \\
& E_{2}=70.74(122)(.55225)=12.3 \mathrm{G}^{\prime} \mathrm{s}=G_{c a} \text { due to rotation } \\
& B_{2}=4,766 \mathrm{in} / \mathrm{sec}^{2} \text { ? } \\
& =\frac{+14.5}{26.8} \mathrm{G}^{\prime} \mathrm{s}=\mathrm{G}_{\mathrm{ca}}
\end{aligned}
$$

* ω_{2} is only about 2.5% less than ω_{1} so one can use the relationship $G_{T}=\frac{A}{g}+\frac{B}{g}$
$+70^{\circ} \mathrm{F}$.
$A=66.0(139.25)(.55225)(.98744)$
$A=5,011 \mathrm{in} . / \mathrm{sec}^{2}{ }^{2} \quad=13.0 \mathrm{G} \mathrm{s}=G_{C G}$
$B=63.27(81.4)(.55225)=\frac{7 . A^{\prime}}{} G^{\prime} \mathrm{s}=\mathrm{G}_{\mathrm{ha}}$ due to rotation
$B=2,844 \mathrm{in} . / \mathrm{sec}$? $\quad G_{h a}=20.4 \mathrm{G}^{\prime} \mathrm{s}$
$B=63.27(122)(.55225)$
$B=4,236$ in. $/ \mathrm{sec}^{2} \quad=11.0 \mathrm{G} \mathrm{s}=G_{c a}$ due to rotation $G_{C a}=\frac{13.0}{24.0} \mathrm{G}^{\prime} \mathrm{s}=G_{C G}$
$B=63.27(57.87)(.55225)$
$B=2,022 \mathrm{in} . / \mathrm{sec}^{2}$. $\quad=5.2 \mathrm{G}$'s due to rotation AT OUTBOARD MOUNT $=+\frac{13.0}{18.2} \mathrm{G}^{\prime} \mathrm{s}=G_{\mathrm{CG}}$
$+140^{\circ} \mathrm{F}$.
$A=62.6(1.39 .25)(.55225)(.987440$
$A=4,753 \mathrm{in} . / \mathrm{sec}^{2}=12.3 \mathrm{G}^{\prime} \mathrm{s}=G_{C G}$
$B=60.03(81.4)(.55225)$
$\begin{aligned} B=2,698 \mathrm{in} . / \mathrm{sec}^{2} & =\frac{7.0}{} \mathrm{G}^{\prime} \mathrm{s}=G_{\text {ha }} \text { due to rotation } \\ G_{\text {ha }} & =19.3 \mathrm{G}^{\prime} \mathrm{s}\end{aligned}$
$B=60.03(122)(.55225)$
$B=4,044 \mathrm{in} . / \mathrm{sec}^{2}$? $\quad=10.5 \mathrm{G} \mathrm{s}=G_{\mathrm{ce}}$ due to rotation

$$
G_{c a}=\frac{12.3}{22.8} \mathrm{G}^{\prime} \mathrm{s}=G_{\mathrm{CG}}
$$

5.3.4 AT ERD DROP - Continued

5.3.4.1 Dynamic Deflection at Aft End of Capsule

$$
\begin{aligned}
+140^{\circ} \mathrm{i} \cdot d_{t} & =\frac{A}{\omega_{1}^{2}}+\frac{B}{\omega_{2}^{2}} \\
d_{t} & =\frac{4,753}{(62.6)^{2}}+\frac{4,044}{(60.03)^{2}} \\
d_{t} & =1.2+1.1 \text { inches } \\
d_{t} & =2.3 \text { inches at aft end of Capsule }
\end{aligned}
$$

5.3.4.2 DTHASTC DEFIBCTION at Outboard Mount Cluster

$$
\begin{aligned}
&+140^{\circ} \mathrm{F} . b \\
& \mathrm{~B}=57.87 \text { inches } \\
& B=1.90 .03(57.87)(.55225) \\
& d_{\mathrm{n}}=\frac{\mathrm{A} . / \mathrm{sec}^{2}}{\omega_{1}^{2}}+\frac{\mathrm{B}}{\omega_{2}^{2}} \\
& d_{\mathrm{n}}=\frac{4,753}{(62.6)^{2}}+\frac{1,918}{(60.03)^{2}} \\
& d_{\mathrm{in}}=1.2+0.5 \text { inches } \\
& d_{\mathrm{L}}=1.7 \text { inches deflection at Mounts } \\
&+70^{\circ} \mathrm{F}, \quad f_{\mathrm{n}}(\text { pitch })=\frac{\omega_{2}}{2 \pi}=\frac{63.27}{2 \pi}=10.07 \mathrm{~Hz}
\end{aligned}
$$

Deflection at Outboard Mounts:
$d_{m}=\frac{A}{\omega_{1}{ }^{2}}+\frac{B}{\omega_{2}^{2}}$
$d_{m}=\frac{5,011}{(66.0)^{2}}+\frac{2,022}{(63.27)^{2}}$
$d_{\mathrm{n}}=1.15+0.50$ inches
$d_{\mathrm{m}}=1.65$ inches deflection at Outboard Mounts.

5.4 FORWARD END 18 INCH ROTATIONAL DROP

```
Pivot "o" at aft end
```


$$
R^{2}=X_{a}^{2}+Y^{2}=\overline{134}^{2}+\overline{22}^{2}=18,440 \mathrm{in}^{2}
$$

$$
R=135.8 \text { inches } \quad m=\frac{2948}{386}=7.637
$$

$$
I_{0}=I_{C G}+m R^{2}=27,840+\frac{2948}{386}[135.8]^{2}=168,672 \text { in. } 1 \mathrm{~b} . \mathrm{sec}^{2}
$$

Radius of gyration about pivot point "o" $=$ r

$$
\begin{aligned}
& r=\sqrt{\frac{I_{0}}{\mathrm{~m}}}=\sqrt{\frac{168,672}{7.637}}=\sqrt{22,086} \\
& r=148.61 \text { inchas }
\end{aligned}
$$

5.4.1 DETERMINATION OF ANGLES θ_{1} and θ_{2}

$$
\begin{aligned}
\theta_{1} & =90^{\circ}-\tan ^{-1}\left[\frac{Y}{X}\right]-\sin ^{-1}\left[\frac{h-h_{1}}{L_{0}}\right] \\
\theta_{1} & =90^{\circ}-9.3236^{\circ}-2.5332^{\circ} \\
\theta_{1} & =78.1432^{\circ} \\
\cos \sigma_{1} & =0.20547 \\
\theta_{2} & =90^{\circ}-\operatorname{tar}^{-1}\left[\frac{Y}{X}\right]+\sin ^{-1}\left[\frac{h_{1}}{L_{0}}\right] \\
\theta_{2} & =90^{\circ}-9.3236^{\circ}+1.2633^{\circ} \\
\theta_{2} & =81.9397^{\circ} \\
\cos \theta_{2} & =0.14021
\end{aligned}
$$

AT IMPACT, MOUNTED UNIT ANGULAR VELOCITY $=\omega_{0}$
$\omega_{0}=\left[\frac{2 R_{g}\left(\cos \theta_{1}-\cos \theta_{2}\right)}{r^{2}}\right]^{\frac{1}{2}}$
$\omega_{0}=\left[\frac{2(135.8)(386)(0.20547-0.14021)}{22086}\right]^{\frac{3}{2}}$
$\omega_{0}=0.55657 \mathrm{rad} . / \mathrm{sec}$.

SUSPENSION SPRING RATES - same as for aft end drops
ω_{1} and ω_{2} also the same.
5.4.2 FORWARD END DROP - PTVOT POINT "O" AT AFT END.

$$
\begin{aligned}
& -20^{\circ} \mathrm{F} . \quad A=\omega_{1} R \omega_{6} \cos \tan ^{-1}\left[\frac{Y}{X}\right] \quad \text { and, } \cos \tan ^{-1}\left[\frac{22}{134}\right]=0.98679 \\
& A=73.8(135.8)(.55657)(.98679) \\
& A=5,504 \mathrm{in} . / \mathrm{sec}^{2}=14.2 \mathrm{G} \mathrm{~s} \text { @ CoG. } \\
& B_{1}=\omega_{2} L_{1} \omega_{0} \\
& B_{1}=70.74(98.97)(.55657) \\
& B_{1}=3,897 \mathrm{in} . / \mathrm{sec}^{2} \quad=\underline{10.1} \mathrm{G}^{\prime} \mathrm{s}=\mathrm{G}_{\mathrm{hf}} \text { due to rotation } \\
& G_{h f}=24.3 \mathrm{G} \text { 's total } \\
& \text { vs } \quad G_{h a}=22.7 \mathrm{G} \text { s total. }
\end{aligned}
$$

5.5 DEFLECTION

Aft End of Capsule during rotational drops:

$$
\begin{aligned}
140^{\circ} \mathrm{F} . \quad \mathrm{d} & =\frac{\mathrm{A}}{\omega_{1}^{2}}+\frac{\mathrm{B}}{\omega_{2}^{2}} \\
\mathrm{~d} & =\frac{4753}{(62.6)^{2}}+\frac{4.044}{(60.03)^{2}} \\
\mathrm{~d} & =1.2+1.1 \\
d & =2.3 \text { inches }
\end{aligned}
$$

Capsule during 18 inch Flat. Drop $@+70^{\circ}$ F. $d=1.78$ inches

Capsule during $10 \mathrm{ft} . / \mathrm{sec}$. End Impact $@+140^{\circ} \mathrm{F}$.

$$
\mathrm{d}=3.8 \text { inches }
$$

5.6 SHOCK REBOUND

5.6.1 Rebound load and deflection at mounts as related to loads and deflections due to initial impact:

$$
\begin{aligned}
& G_{1}=\sqrt{\frac{2 \mathrm{hK} v}{W}} \\
& G_{1}=\sqrt{\frac{2(18)(33280)}{2950}} \\
& G_{1}=20 \\
& \frac{G_{r}}{G_{1}}=\frac{W_{1}}{W+W_{1}} \sqrt{1-\frac{W_{1}}{2 h_{V}}} \\
& G_{r}=\frac{20(550)}{2950+550} \sqrt{1-\frac{550}{2(18)(33280)}} \\
& G_{r}=3.14 \\
& d_{r}=\frac{G_{T} W}{K_{V}}=\frac{3.14(2950)}{33280} \\
& d_{r}=0.28 \text { inch } \\
& \text { REF: Dynamics of Package } \\
& \text { Cushioning, R. D. Mindlin } \\
& \text { Bell Telephone Laboratories } \\
& 1945 \\
& \text { pp. 44-47 }
\end{aligned}
$$

6. 1 LOADS - CRADLES

1G distribution of Capsule/HARPOON load on cradles:

$$
\begin{array}{ll}
M_{A}=2180(70)-R_{B}(118)=0 \\
R_{B}=1293 \mathrm{LB} . & R_{A}=887 \mathrm{LB} .
\end{array}
$$

With EC at $こ G$, upon impact due to aft end rotational drop the unit will revolve about the $C G-E C$, resulting in displacement and load due to rotation being proportional to distance from CG-EC. Adding loads and displacements due to translation gives total G forces at any point.

Thus, to determine load at CS-172 Cradle, there is a load of 7.4 G 's at CS-205.4, so on cradle at CS-172 there will be:

$$
\begin{aligned}
& G_{172}=13.0+\frac{(172-124)}{(205.4-124)}(7.4)=13.0+4.4=17.4 \mathrm{G}^{\prime} \mathrm{s} \\
& P_{172}=17.4(1293)=22,498 \mathrm{lbs} .
\end{aligned}
$$

In 18 inch flat drop there is load of 20 G 's $\times 1293=25,860 \mathrm{lbs}$.
Cradle load is most severe in the flat drop.
This $25,860 \mathrm{lb}$. load is carried $1 / 2$ on each end of the cradle.

6.2 LOADE ACTING ON MAIN SUPPORT BEAMS

Bending across the 3 inch depth of beam is considered most critical and the 18 inch flat drop loading will be maximum.

Acting across this 3 inch depth are loads at CS54 and CS172 (where cradles are attached) and reaction loads from mounts at 64.75 and 180.75 as shown on diagram. Loads on beam at cradles must also include 296 pounds of fiberglass shell, which is clamped between beams and cradles, and 54 pounds of two cradles. Inlcuded in the total 2948 pound suspended load is 418 pounds for beams and $1 / 2$ of weight of mounts.

Mount reaction loads are based upon deflection which takes no account of energy dissipated in mounts during deflection.

Forces exerted by mounts along their compression axes, centered at CS 64.75 and CS 180.75 are 2 (9177) $=18,354 \mathrm{lbs}$. (See paragraph 6.4) Of this, $418(18,354)=2602 \mathrm{lbs}$. at each mount cluster is due to 2948
weiaht of beam and $1 / 2$ mounts.

Loads acting across the 3 inch depth of beam are shown below:

$$
\begin{aligned}
\sum M_{\mathrm{CS} 54} & =10.75(15,752)+\chi(118)-126.75(15,752)=0 \\
\chi & =18,355 \mathrm{lbs} .
\end{aligned}
$$

6.3 LOADS AT RESILIENT MOUNT SUPPORTS

Rotational drop of aft end
Forces at mounting stations
Total at CS182 --- $P=\frac{2948(18.2)}{2}=26,827 \mathrm{lbs}$.

Total at CS66 -- $\quad P=\frac{2948(13-5.3)}{2}=11,497 \mathrm{lbs}$.

Above loads act on outer frame during rotational drops.
18 inch flat drop results in 20 G 's, so is more severe loading on pedestals carrying resilient mounts:
$P=2948(20) / 12=29,480$ lbs. at each mount station.
LOADS ACTING ON OUTER FRAME ON EACH SIDE, during rotational drops, causing comer loading.

DIVIDING by 2 the vertical loads derived above:
NOTE: Mount loads are applied at bottom of outer frame.

$$
M_{F}=5748(78)+13413(194)-R_{A}(268.5)=0
$$

$R_{A}=11,361 \mathrm{lbs} . \quad R_{F}=7,800 \mathrm{lbs}$.

6.4 LOADS ACTING AT MOUNT SUPPORT POINTS AND REACIING ON BEAMS

18 inch flat drop at 70 F .
With mounts at 45° angle, a vertical deflection of 1.78 inches results in displacements of 1.26 inches along compression and shear axes of mounts.

Force along shear axis of mount $=$ $k_{d}(d)=800(1.3)(1.26)=1,311$ lbs.

Force along compression axis of mount $=$ $k_{d}(\mathrm{~d}) \mathrm{L}^{\prime}=1,311(7)=9,177 \mathrm{lbs}$.

At each support point there are two mounts. Each mount is supported on a short colum which in tum is supported by a cross member. On top of the column is a single plate to which the two mounts are bolted. This plate is welded to the stacking member and to the two cross members, for increased rigidity.
6.5 LOADS (LATTRAL) ON MOUNT PEDESTALS
$\mathrm{P}_{\mathrm{H}}=9177 \cos 45^{\circ}-1311 \cos 45^{\circ}=0$
$\mathrm{P}_{\mathrm{H}}=5,562 \mathrm{lbs}$. acting laterally

5,562

6.6 LOADS (LONGITUDINAL) ON MOUNT PEDESTALS

The $10 \mathrm{ft} / \mathrm{sec}$ end impact results in a maximum of 11.3 G 's on 2948 lb . suspended mass, or a load of $11.3(2948)=33,312$ pounds distributed over 8 pedestals, for unit pedestal load $=4164$ lbs., which is lower than lateral load of 5562 lbs.

6.7 STRAP ASSEMBLY LOADS

Rebound load $=G_{I} W=3.14(2950)=9,263$ lbs. total

OUTER FRAME

6.8 LOADS ON OUTER TRUSS MBMBERS

Aft End 18 inch Rotational Drop

NOTE: Mount loads are applied at bottom of frame.

Rotation about Point A (Fwd end) AT POJNT G:

$$
\begin{array}{rlrl}
\operatorname{Tan} \alpha & =\frac{24}{75}=0.32 \quad \alpha=17.745^{\circ} & \\
\operatorname{Sin} \alpha & =0.30478 & & \\
\operatorname{Cos} \alpha & =0.95242 & & F G=37,381 \\
\Sigma P_{Y} & =-11,393+F G \sin \alpha=0 & & E G=35,602
\end{array}
$$

AT POINT F :

AT POINT E:

$$
\begin{array}{ll}
\Sigma P_{Y}=-13487+2 F=0 & E F=13,487 \\
\Sigma P_{X}=E G-D^{\prime} E=0 & D^{\prime} E=35,602
\end{array}
$$

6.8 L

$$
\begin{gathered}
\Sigma P_{Y}=D D^{\prime}=0 \\
\Sigma P_{X}=B D-F D=0 \\
B D=30,542
\end{gathered}
$$

AT POINT $D^{\prime}:$

$\mathrm{BD}^{\prime}=5477$
$\Sigma \mathrm{P}_{\mathrm{X}}=C D^{\prime}-E D^{\prime}=0 \quad C D^{\prime}=35,602$
AT PNTNT C:

$$
\begin{gathered}
\Sigma P_{Y}=B C-5675=0 \\
B C=5675 \\
\Sigma P_{X}=C D^{\prime}-A C=0 \\
A C=35,602
\end{gathered}
$$

AT POINT B:

$$
\begin{aligned}
& \operatorname{Tan} \theta=\frac{24}{78}=0.30769 \\
& \operatorname{Sin} \theta=0.29409 \\
& \operatorname{Cos} \partial=0.95578 \\
& \Sigma \mathrm{P}_{\mathrm{Y}}=A B \sin \theta-B D^{\prime} \sin \beta-B C=0 \\
& A B \doteq 26,415
\end{aligned}
$$

6.9 STRESS

6.9.1 CRADIE

Cradle is curved beam of relatively large diameter so for simplicity is considere as a uniformly-loaded simple beam of horizontal projected length of 17 inches.

$M=w l^{2} / 8$ and $w=25,860 / 17$
(Ref. Para. 6.1)
$M=25,860(17)^{2} /(17)(8)=54,952$ in-lb.
$Y_{\max }=\frac{5 W \ell^{3}}{384 \mathrm{EI}}=\frac{5\left(25,860(17)^{3}\right.}{384(10)} \frac{(\mathrm{I})}{}=\frac{0.165}{I}$
and $I=4.93$ in ${ }^{4}$ for section shown in Loads Section
$y_{\max }=0.165 / 4.93=0.033 \mathrm{in}$.

Using 220-T4 Aluminum Casting, Y.S. $=22,000 \mathrm{psi}$
$S=\frac{M c}{I}=\frac{54,952(1.5)}{4.93}=16,719 \mathrm{psi}$
F.S. $=\frac{22,000}{16,719}=1.32$

As flanges will be thicker than the 0.31 used to derive I, stresses and deflection should be lower than calculated.

```
6.9.1 GRADLE - STRESS (contin:UCd)
```


$\mathrm{I}=\frac{\mathrm{BH}^{3}-\mathrm{bh}^{3}}{12}$ (Ref: Marks Handbook)
$I=\frac{6(3)^{3}-5.6875(2.625)^{3}}{12}$
$I=\frac{162-102.87}{12}$
$I=4.93 \mathrm{in}_{\mathrm{o}}{ }^{4}$
$I / c=\frac{\mathrm{BH}^{3}-\mathrm{bh}^{3}}{6 \mathrm{H}}=3.285$ or $\frac{4.93}{1.5}=3.286$

6.9.2.1 MAIN BEAM BENDING - STRESS AND DEFLECTION

Beam weighs 127 pounds uniformly distributed along 144 inch length and 34 pounds distributed along 28 inches at forward end and 32 pounds distributed along 26 inches at aft end. This is shown below:

We can make simplifying assumptions (conservative in nature) to approximate deflection and stresses due to bending caused by loading as shown.
(a) Assume loads at ends due to weight of stiffeners act directly down on supporting mounts so they do not contribute to beam deflection or bending stress.
(b) Assume that bending is caused only by the 102 pound uniformly distributed load of 116 inch beam length between supporting mounts.

6.9.2.2 STRESS AND DEFLECTION OF MAIN BEAMS

(a) Due to point loads as shown

Using the method of double integration, main beam deflection equations were determined to be:

$$
\begin{aligned}
& y_{1}(E I)=-2191.5 x^{3}+3138531.9 x-31016723.7 \quad \text { for } 0 \leqslant x \leqslant 10.75 \\
& y_{2}(E I)=433.8 x^{3}-84667 x^{2}+4048702.1 x-34278125.7 \text { for } 10.75 \leqslant x \leqslant 118 \\
& y_{3}(E I)=-2625.3 x^{3}+998278 x^{2}-123738807.9 x+4991921064 \\
& \text { for } 118 \leqslant x \leqslant 126.75
\end{aligned}
$$

which yield the deflection curve shown below:

6.9.2.2 STRESS AID DEFLECTIO: OF MAIN BEAMS - Cont'd

Of the 418 pound beam weight, 102 pounds are considered as causing bending due to weight of beam between mountings. Thus,
$\frac{102}{418}$ (5204) or 1270 pounds uniformly distributed, causes bending across the three inch depth of beam. (Ref para 6.2 on page 25).

$y_{\text {max }}=\frac{5 \mathrm{LL}^{3}}{384 E I}$ at center of span
$y_{\max }=\frac{5(1270)(116)^{3}}{384\left(30 \times 10^{6}\right)(5.08)}=0.169$ inch

At point where deflection is 0.15 upward, which is 31.6 inches from forward end of beam or $31.6-8.75=22.85$ from forward mount point at CS 64.75, beam weight causes downward deflection of $(22.85 / 58)(0.169)=0.067$.

Similarly, at point of 0.27 deflection there is added deflection of $(28.25 / 58)(0.169)=0.08$ inch due to beam weight.

6.9.2.3 TOTAL DECLECTIONS

6.9.2.4 STRESS IN BEAM:

For aft end
$M_{\text {max }}=\frac{\mathrm{Pab}}{\mathrm{L}}$ at $\mathrm{a}=8.75$
$M_{\text {max }}=\frac{18,355(8.75)(52.95)}{61.7}$
$M_{\text {max }}=137,830$

CS-180. 75
15,752
$S=\frac{M C}{I}=\frac{137,830(1.5)}{17.9}=11,550 \mathrm{PSI}$
$S=11,550$ PSI vs nominal 30,000 PSI allowable; however, maximum stress will occur 6 inches forward on the beam where the stiffening plates fat the end) terminate.
$M=\frac{43.75}{52.95}(137,830)=113,882$
$S_{\text {max }}=\frac{113,882}{5.02}=34,028$
Although the calculated $S_{\text {max }}$ exceeds the nominal allowable it is not considered to be significant because the anldysis is conservative in that it doesn't include the positive effect of the following:

1. Damping in the mounts
2. Elastic deformation of the outer frame.
3. Local plastic deformation at the impact point.
4. Negative moments developed in the cradles.
5. Stiffening effect of the fiberglass shell.

6.9.2.5 STRESS IN MAIN BEAMS - Continued

This approximation is conservative because:
(a) distributed loads have been (onsidered as point loads, and
(b) the effects of $3 / 8$ inch thick reinforcing plates on ends have not been taken into consideration. ($I=17.9$ in. ${ }^{4}$ at ends).

By measuring beam deflections during drop tests, it can be determined if it is desirable to stiffen the center section of the beams, although this will add weight.

6.9.3 STRESS IN MOST HEAVILY LOADED FRAME MEMBERS

(a) Compression load of $26,415 \mathrm{lbs}$.

$$
S_{C}=\frac{P}{A}=\frac{26,415}{2.1146}=12,492 \text { p.s.i vs } 30,000 \text { p.s.i for } 6061-T 6
$$

Diagonal considered is approximately 75 inches long and $\ell / k=75 / 1.1492$

$$
=65 \text {, }
$$

which is less than 80 so need not be considered as a column liable to buckling.
(b) Tension load of $35,602 \mathrm{lbs}$.

$$
S_{t}=\frac{P}{A}=\frac{35,602}{2.1146}=16,836 \text { p.s.i. vs } 30,000 \mathrm{psi} \text { for } 6061-\mathrm{T} 6
$$

6.9.4 STRESS IN STACKING LEGS

Five containers high $\times 3 \mathrm{ft} .=15$ feet.
Legs on bottom unit sarry 3,500 pounds each
$S_{c}=\frac{P}{A}=\frac{3,500}{2.1146}=1,6, j$ p.s.i. vs 30,000 p.s.i. for $6061-T 6$

6.9.5 STRESS HOLD-DON STRAPS AHD ELEMENTS DUE TO CLAMPING FORCE

Required restraining force $=P=G W=12,2(2180)=26,600 \mathrm{lbs}$. during end impact
Using $f_{s t}=0.5=$ static coefficient of friction for rubber on painted aluminum

There are two cradles with clamping force at top and at bottom: $\mathrm{f}_{\text {st }}=0.5$ is conservative: Ref: MIL-HDBK-149A, p. 18.

$$
\begin{aligned}
\sum P_{x} & =4 f_{s t} N-26,600=0 \\
N & =\frac{26,600}{4(0.5)}=13,300 \mathrm{lbs} .
\end{aligned}
$$

Tension in strap is:
$P_{1}+P_{2}=N$ and as $P_{1}=P_{2}, N=2 P_{1}$
$P=\frac{N}{2}=\frac{13,300}{2}=6,650 \mathrm{lbs}$. and there are two bolcs per strap
Tightening torque $=r_{b}=0.2 \mathrm{dW}=0.2(0.375)(6650) / 2=250 \mathrm{in} .-1 \mathrm{bs}$. Stress in strap $=\frac{6650}{.06(6)}=18,472$ psi vs 110,000 Y.P. in $301 \mathrm{SS} \frac{1}{2}$ hard F.S. ~ 6°

6.9.5 STRESS IN HOLD-DOW STRAPS - continued

18 inch flat drop is most severe condition

$$
\begin{aligned}
\text { Rebound load } & =G_{r} W=3.14(2130) \\
& =6,845 \mathrm{lbs} .
\end{aligned}
$$

At C. S. -172 :
Rebound Load $=3.14(1,293)=4,060$ lbs., with $\frac{1}{2}$ sarried on 2 bolts.

At C.S.-54:
Rebound Load $=3.14(887)=2,785$ lbs.
Straps are SS301 $\frac{1}{2}$ hard, with allowable stress $=110,000$ P.S.I.
Straps are 0.06×6 inch $=0.36 \mathrm{in}^{2}{ }^{2}$
$S=\frac{2,030}{0.36}=5,639$ P.S.I. vs 110,000 P.S.I. Y.P.
F.S. ~ 20

6.9.6 TEE BOLT STRESS

Minimum cross sectional area $=\pi r^{2}=3.14(0.322 / 2)^{2}$
$=0.086$ in. 2 per bolt
Two (2) bolts carry load of $2,030 \mathrm{lbs}$. or $1,015 \mathrm{lbs}$, per bolt
$\mathrm{S}=1,015 / 0.086=11,802 \mathrm{p} . \mathrm{s} .1$.
Tee bolts are 4130 alloy steel at 125,000 p.s.i.
$F_{0} S_{\text {. }}=125,000 / 11,802=10.6$
6.9.7 HINGE PIN SHEAR STRESS

Pin diameter $=0.401$ inch and shear load is carried on 2 shear areas: $S=\frac{P}{A}=\frac{2,030}{2 \pi(.200)^{2}}=\frac{2,030}{.2526}=8,036$ p.s.1.
F.S. ~ 9

```
6.9.8 STRESS - NIN, CR:DIN TO STRAT
```

Shear Area $=2(t)(2 \mathrm{C})$
$=2(1)(2)(.42) \quad \square .211$ radius

$$
=1.68 \mathrm{in}^{2}
$$

$$
\text { Stress }=\frac{\text { Load }}{\text { Shear Area }}
$$

$$
s=\frac{6782}{1.68}=4,036 \text { p.s.1. }
$$

$$
\text { F.S. }=34,000 / 4,036=3.4
$$

6.9.9 STRESS in lateral chammel dUe to hand truck hendling

Consider channel as fixed beam: concentrated load at center.
$M=\frac{P \ell}{8}=\frac{1750(38)}{8}$
$M=8,312$ in-1b
Deflection $y=\frac{W \ell^{3}}{192 E I}=\frac{1750(38)^{3}}{192(10)^{7}(9.007)}=0.0055 \mathrm{inch}$
$S=\frac{M c}{I}=\frac{8.312(3)}{9.007}=2,768$ p.s.i.

MIL-STD 648, Para. 4.17.7a, page 19 , requires
Load $=7,500$ lbs. be carried at single end fitting:
$M=\frac{7500(38)}{8}=35,625 \mathrm{in}-1 \mathrm{~b}$
$y=\frac{7500(38)^{3}}{192(10)^{7}(9.007)}=0.024$ inch
$S=\frac{M c}{I}=\frac{35,625(3)}{9.007}=11,865$ p.s.i.

6.9.10 STRESS - HOISTING RING

Worst condition is lifting of full load on one point, as required by $0 R-11$.
6061-T6 has Y.P. $=20,000$ p.s.i. (Shear)
For load of 3500 lbs. , minimum shear area required $=\frac{3,500 \mathrm{lbs}}{20,000 \mathrm{lbs} / \mathrm{in}^{2}}$.
$\begin{aligned} & \text { Area } \\ & \text { min. }\end{aligned}=0.175 \mathrm{ir}_{1}{ }^{2}$ minimum
Using $1 / 2$ inch thick plate with 1 inch minimum distance to hole from edge gives 0.5 sq.in. and for shear it would be 1.0 sq.in. so

$$
\text { F.S. }=\frac{1.0}{0.175}=5.7
$$

6.9.11 BENDING IN $3 \times 3 \times 3 / 16$ LATEPAL FRAME MEMBERS:

Consider load from individual mount on pedestal on each side as acting horizontally at point 4.5 inches above neutral axis of cross member. Resolving mount's compression and shear vectors into horizontal forces:
$\sum P=9177 \cos 45^{\circ}-1311 \cos 45^{\circ}=0$

$=5562$ lbs. acting outward
With moment $=5562(4.5)=25,029$ in. -1 bs at each end of 35 inch wide lateral,
Maximum deflection $=\frac{M_{0} L^{2}}{8 E I}=\frac{25,029(35)^{2}}{8(10)^{9}(2.7993)}=0.137$ inch

7.0 RESILIEN SUSPE:SICY DESIG:

Because of linit on loads during end irpact, it is desirable to have a relatively low spring rate along longitudinal axis and to have large deflection capability. Elastomeric shear mounts having shear axes parallel to length of weapon are cesirable.

The system can be stiffer in the vertical airection due to additional sumport given HARDON by Sabot support. Laterally, system may be even stiffer but it is inportant to minimize the rocking response, particularly during lateral vibration.

A resilient elastomeric sandsich mount suspension was conceived, with mounts located on each sice of and belo, the longitudinal axis of the asserbly, having their corpression axes focusea to a point above the longituainal aris through the C.G. of the assembly, thus projecting the elastic ces.ter of the mounts to that axis.

Focal angle, vertical distance from horizontal plane through C.G. to mount's elastic center, aistance from vertical plane through C.G. to mounts' E.C., and fiscal angle θ are inter-related with the "L'" ratio of the mount. This is shom graphically on Figures 5 and 6.

A 45° focal angle was chosen, with an estimated ratio of corrpression to shear spring rate of $L^{\prime}=7$.

Mounts are in shear along longitudinal direction for end impact. Iength of mount is greater than the anticipated deflection, to insure that an adequate colum of elastoner carries the vertical load during deflection in shear.

Because the stipulated support points on the Capsule are not symmetrical about the C.G., a structure is required to support the Capsule on the upper side and to pick up mounts on the lower side. Hollow rectangular steel tubes were selected, with cast aluminum saddles for the weapon, this assembly being supported on mounts. i'cunt spacing was predicated on keeping bending in the tubes to a minimun while providing a pitch natural frequancy in the 10 Hz region.

As the weight of the saidles and tubes is below the C.G. of the weapon assembly, the overall C.G. is lowered slightly below the longitudinal axis of the weapon assembly.

Until mounts are made and tested, their spring rates and L^{\prime} value won't be known accurately. Then such information is derived, consideration will be given to moving mounts slightly to modify the e/p ratio.

If L' decreases to 5.5 for vibration at resonance, anc unacceptable rocking modes are revealed during testing, decoupling might we accorplished by moving mounts outwards and upwards approximately 0.4 inch on the supporting structure and on the beans.

Again, measured spring rates are essential to this calculation.

$\frac{e}{p}=.8$

MOUNT LATERAL SPACING DETERMINATION
FIGLiRE 5

Mount design is based on suspension system requirements determined by analysis of a focalized suspension system in which bonded metal/elastoner/metal sandwich mounts are loaded in both compression ani shear simultaneously. A nominal static shear spring rate of $800-825$ pounds per inch per mounting and a compression to shear spring rate ratio of seven was required. Also needed was damping adequate to keep transmissibility at resonance to four maximum, which requires a fairly hard elastomer (nominally 65 duroneter was selected).

Mounting configuration selected is similar to a component used previously elsewhere but increased in thickness to four inches. Unit. is hollow, to help provide linear spring rate characteristics along corpression axis, and to permit changes in spring rates by varying size of mold insert, rather than by changing stiffness of elastomer. The need for a stiff elastomer recommends this approach.

With a 1.25 inch rubber wall thickness and a three inch column height being compressed, there exists a possibility of some buckling of the mount along its compression axis. However, this should not occur until deflections are approximately the calculated 1.2 inch along the corpression axis. Final detemination of mounting buckling characteristics should be made when rounts become available.

In the calculations it was assumed that mounts had linear loaddeflection characteristics, but this is only an approximation, as shown by the calculated L-D curves. Data from parts should be reviewed as soon as it is available.

7.1 RESILIENT SUSPENSION ELEMENT DESIGN (Cont'd)

The ratio of compression to shear spring rate used in drop calculations is 7:1 ($\mathrm{L}^{\prime}=7$). For this value and the relationship between mounting half-spread (lateral) and height of CG above mounts elastic center, with mounts' compression axis angled 45° from the verticial, a decoupled system is provided. Thus a lateral translational input should result in a translational response. The mounts' lateral spacing may require modification after initial testing. The L-D curves are not linear and this results in lowering of the "L" " value for small deflections.

The elastomer closen retains its properties quite weil over the temperature range that the suspension system is required to meet. Factors used in calculations are based upon vendor data and are as follows:

$$
\begin{aligned}
& \frac{\text { Dymamic Spring Rate }}{\text { Static Spring Rate }}=1.3 \\
& \frac{\text { Stiffness at }-20^{\circ} \mathrm{F}}{\text { Stiffness at }+700 \mathrm{~F}}=1.25^{*} \\
& \frac{\text { Stiffness at }+140^{\circ} \mathrm{F}}{\text { Stiffness at }+70^{\circ} \mathrm{F}}=0.9
\end{aligned}
$$

Required is $C / C_{C}=0.125$ minimum to limit T to 4 or less. *For shock: Will be lower for vibration.

It should be noted that damping constant is dependent upon elastomer blending but that, in general, the stiffer the elastomer the higher the damping, and the lower the elongation capability.

7.2 mount design

USING 6011 DATA FROM GOODYEAR HANDBOOK

CORPRESSION

Deflection Inch	\% Compression	Compression Stress PSI	Force Lbs.	Spring Rate Lbs./inch
.25	.07	43	894	3577
.50	.14	92	1913	3827
.75	.21	150	3120	4160
1.00	.28	240	4990	4990
1.25	.35	350	7280	5825
1.50	.42	510	10600	7070

SHEAR

d/t	$\begin{aligned} & \text { Deflection } \\ & \text { Inch } \end{aligned}$	$\begin{gathered} S \\ \text { PSI } \end{gathered}$	$\begin{aligned} & k_{s}=\frac{S A}{t} \\ & \text { Lbs./in. } \end{aligned}$	$\begin{aligned} & \text { Force/Defl. } \\ & \text { Lbs. © In. } \end{aligned}$	$\frac{\text { Comp. } k}{\text { Shear } k}=L$
. 1	. 356	140	818	205 ©. 25	4.4
. 2	. 712	132	771	380 @. 50	5.0
. 3	1.069	122	713	575 @.75	5.4
				665 @ 1.0	. 7.4
. 4	1.424	113	660	940 @ 1.4	
. 5	1.78	108	631	1123 (1.78	
. 6	2.14	103	602	1288@2.14	

7.2 Movit desigiv

USING 70I. DATA FROK GOODYEAR HANDBOOK

COMPRESSION

Deflection Inch	\% Compression	Compression Stress PSI	Force Lbs.	Spring Rate Lbs./inch
.25	.07	60	1248	4992
.50	.14	130	2704	5408
.75	.21	210	4368	5824
1.00	.28	345	7176	7176
1.25	.35	490	10192	8154
1.50	.42	750	15600	10400

shear

d/t	$\begin{aligned} & \text { Deflection } \\ & \text { Inch } \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \mathrm{PSI} \end{gathered}$	$\begin{aligned} & k_{s}=\frac{S A}{t} \\ & \text { Lbs. } / \mathrm{in} . \end{aligned}$	$\begin{aligned} & \text { Force/Def1. } \\ & \text { Lbs, a In. } \end{aligned}$	$\frac{\text { Comp. } k}{\text { Shear } k}=L$
				283 @ . 25	4.4
. 1	. 356	194	1133	403 @. 356	
				506 @ . 50	5.3
. 2	. 712	173	101.1	720 @.71	
				758 @ . 75	5.75
. 3	1.069	158	923	987 @ 1.07	
				:923 @ 1.0	7.77
. 4	1.424	145	847	1206@1.4	
. 5	1.78	137	800	1425 @.1.78	
. 6	2.14	131	765	1637 @ 2.14	

COMPRESSION/SHEAR MOUNTIMG

FIGURE 8

7.3 RESILIENT MOUNT DESIGN

Although it is anticipated that mounts will have adequate damping to limit transmissibility to 4 , there is a possibility that a lower transmissibility might be desirable. To obtain this would require that a silicone elastomer be used in the mountings.

Silicones have lower tensile strength and lower elongation capability when used as an alternate elastomer in a particular configuration. Direct substitution is rarely possible unless the possible need has been anticipated.

Normal design limits for these materials are:

Organic
Static Shear Stress Dynamic Shear Stress Dynamic Shear Strain

25 psi 250 psi 250\%

Silicone
10 psi 160 psi 200\%

End Impact @ $10 \mathrm{ft} / \mathrm{sec} @+140^{\circ} \mathrm{F}$.
Strain $=3.9$ in. def1./3.62 in. thickness $=108 \%$
Stress $=3.7$ in. defl. (Ambient) $\times 966 \mathrm{lbs} / \mathrm{in} .=172 \mathrm{psi}$

To limit stress to 160 psi entails increasing bond area to 22.4 sq . in. which is readily accomplished by a slight reduction ir the width of the cavity in the mount.

After vibration tests have been run the effects of the highly-damped non-linear butyl mounts between HARPOON and Capsule can be considered. Also, the lower ratio of compression/shear spring rates' effect on lateral response can be considered: a small change in focal angle may be desirable.

7.4 NOTES ADD CONCLUSIONS:

.....The HARPCON is supported within the Capsule on resilientlymounted rails plus a precompressed 8-segment "Sabot" clarmed to forward section of HARPOCN. This Sabot support reduces bending by reducing the cantilevered load. Characteristics of the resilient Sabot are not known and the rail mounts are reportedly about 40 Hz natural frequency both vertically and laterally. All such internal mounts are compression-type elastomeric mounts which have non-linear spring characteristics after small initial deflection. Lack of data on these internal mounts, precluded any analysis taking these mounts' effects into account.

During testing phase it is anticipated that both Capsule and HARPOON will be instrumented. Data will be examined to determine if there are any adverse effects resulting from internal suspension and, iff so, what action to take. As is usual practice, dynamic analysis assumes container resilient mounts to have linear characteristics. This is not quite true for either shear or compression loading: at small displacements in shear, the mounts' apparent shear rate is higher than for larger displacements. Conversely, in compression the spring rate increases as displacement increases. At the anticipated SHOCK displacement the ratio of compression spring rate to shear spring rate is calculated to be approximately 7:1. As displacement decreases, this ratio will also decrease. This is shown in the mount design data. Adjustment is possible by small movement of mounts outward and upward without change of the 45° focal angle. Ey reference to the curves relating L^{\prime} to the focal angle and e/p ratio, keeping the focal angle fixed at 45°, it will be seen that if L^{\prime} was as low as 5.5 , the required e/p ratio becomes 0.69. Moving the mounts laterally out and up a distance of 0.40 iach results in $\mathrm{e} / \mathrm{p}=0.69$. Thus, some adjustment is possible by a relatively simple change in location of mounts.

SECURITY CLASSIFICATION OF TNIS PAGE When DATMFEICROD)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIO:S BEFORE COMLIETNG FORM
1. REPORT NUMEEA M.:T: REPORT 7028\quad 2. GOVT ACCESSION NO.	3. Recipient's catalog number
4. Title (and Subille) Dyanic and Etructural Maiysis oE Eipping and Storage Container for Encapsulated Whiocow (RG:1-84A)	5. TYPE OF REPORT A PERIOD COVERED
7. AUTHOR(t) Cazales P. Haber	8. CONTRACT OR GRANT NUMGER(A) Cot applicaslc
9. PERFORMING ORGANIZATION NAME AND ADORESS Naval lieapons Station Earle Naval 7 raporis hamdling Laboratery Colts :leck, lien Jersey 07722	10. PROGRAMELEMENT, PROJECT, TASK A-510-5153/100--3/61:GK 020030
i1. CONTROLLING OEFFICE NAME ANO AOORESS Naval Sea Systens Command Wasiington, D. C. 20360	12. REPORT OATE 16 April 10/6 13. Numberof pages
	15. SECURITY CLASS. (of imie roport) U:CLASEIFIED 15. OEGLASSIFICATION/DOWNGRAOING
16. DISTRIGUTION STATEMENT (ot this Roport) Distrijution limited to LS Government Agencies Galy Other requests for this document must ve referred Earle.	y; Test and Evaluation. to iiaval :':eapons Etation APr. 76

17. DISTRIBUTION STATEMENT (ol the abetrect ontered in Block 20, If difterent from Report)
18. SUPPLEMENTARY NOTES
ilone Apply
19. KEY WOROS (Continue on reverse alde if necensary and ldently by block number)

Container Dynamics
Reusable Contaírer
20. ABSTRACT (Continue on reverne elde If neceseary and identify by block number)

A cymaric and seructural analysis of a proposed reasable Eipping and Storage Container for toe incapsulated FAROGUissile was i.ade by the Naval acapoas bandling Lajoratory as part of the design study for sucin container.

Ti:e sujject design incorporates a frecbreataing fiberglass pod containing the encapsulated weapon. The pod and weapon are suspenced from a truss-like
outer structure by chastoneric wounts consigured in a lateraliy focalized fasinion.

Fine anaysis gencrates isolator paramezers wic: atcenuate the nanding and transportation snoci and visratio. cavironent to safe leveis for tie weapon anci verifies tiat the struccural design concepe car sustain tive resulting loads.

